
ABSTRACT

Title of dissertation: BUILDING EFFICIENT AND COST-EFFECTIVE
CLOUD-BASED BIG DATA MANAGEMENT SYSTEMS

Abdul Hussain Quamar,
Doctor of Philosophy, 2015

Dissertation directed by: Professor Amol Deshpande
Department of Computer Science

In today’s big data world, data is being produced in massive volumes, at great ve-

locity and from a variety of different sources such as mobile devices, sensors, a plethora

of small devices hooked to the internet (Internet of Things), social networks, communica-

tion networks and many others. Interactive querying and large-scale analytics are being

increasingly used to derive value out of this big data. A large portion of this data is being

stored and processed in the Cloud due the several advantages provided by the Cloud such

as scalability, elasticity, availability, low cost of ownership and the overall economies

of scale. There is thus, a growing need for large-scale cloud-based data management

systems that can support real-time ingest, storage and processing of large volumes of het-

erogeneous data. However, in the pay-as-you-go Cloud environment, the cost of analytics

can grow linearly with the time and resources required. Reducing the cost of data ana-

lytics in the Cloud thus remains a primary challenge. In my dissertation research, I have

focused on building efficient and cost-effective cloud-based data management systems for

different application domains that are predominant in cloud computing environments.

In the first part of my dissertation, I address the problem of reducing the cost of

transactional workloads on relational databases to support database-as-a-service in the

Cloud. The primary challenges in supporting such workloads include choosing how to

partition the data across a large number of machines, minimizing the number of dis-

tributed transactions, providing high data availability, and tolerating failures gracefully.

I have designed, built and evaluated SWORD, an end-to-end scalable online transaction

processing system, that utilizes workload-aware data placement and replication to mini-

mize the number of distributed transactions that incorporates a suite of novel techniques

to significantly reduce the overheads incurred both during the initial placement of data,

and during query execution at runtime.

In the second part of my dissertation, I focus on sampling-based progressive analyt-

ics as a means to reduce the cost of data analytics in the relational domain. Sampling has

been traditionally used by data scientists to get progressive answers to complex analytical

tasks over large volumes of data. Typically, this involves manually extracting samples

of increasing data size (progressive samples) for exploratory querying. This provides the

data scientists with user control, repeatable semantics, and result provenance. However,

such solutions result in tedious workflows that preclude the reuse of work across samples.

On the other hand, existing approximate query processing systems report early results,

but do not offer the above benefits for complex ad-hoc queries. I propose a new progres-

sive data-parallel computation framework, NOW!, that provides support for progressive

analytics over big data. In particular, NOW! enables progressive relational (SQL) query

support in the Cloud using unique progress semantics that allow efficient and determin-

istic query processing over samples providing meaningful early results and provenance

to data scientists. NOW! enables the provision of early results using significantly fewer

resources thereby enabling a substantial reduction in the cost incurred during such ana-

lytics.

Finally, I propose NSCALE, a system for efficient and cost-effective complex an-

alytics on large-scale graph-structured data in the Cloud. The system is based on the

key observation that a wide range of complex analysis tasks over graph data require pro-

cessing and reasoning about a large number of multi-hop neighborhoods or subgraphs in

the graph; examples include ego network analysis, motif counting in biological networks,

finding social circles in social networks, personalized recommendations, link prediction,

etc. These tasks are not well served by existing vertex-centric graph processing frame-

works whose computation and execution models limit the user program to directly access

the state of a single vertex, resulting in high execution overheads. Further, the lack of

support for extracting the relevant portions of the graph that are of interest to an analysis

task and loading it onto distributed memory leads to poor scalability. NSCALE allows

users to write programs at the level of neighborhoods or subgraphs rather than at the level

of vertices, and to declaratively specify the subgraphs of interest. It enables the efficient

distributed execution of these neighborhood-centric complex analysis tasks over large-

scale graphs, while minimizing resource consumption and communication cost, thereby

substantially reducing the overall cost of graph data analytics in the Cloud.

The results of our extensive experimental evaluation of these prototypes with sev-

eral real-world data sets and applications validate the effectiveness of our techniques

which provide orders-of-magnitude reductions in the overheads of distributed data query-

ing and analysis in the Cloud.

BUILDING EFFICIENT AND COST-EFFECTIVE
CLOUD-BASED BIG DATA MANAGEMENT SYSTEMS

by

Abdul Hussain Quamar

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2015

Advisory Committee:
Professor Amol Deshpande, Chair/Advisor
Professor Richard Marciano
Professor Jimmy Lin
Professor Alan Sussman
Professor Pete Keleher

c© Copyright by
Abdul Hussain Quamar

2015

Dedication

This dissertation is gratefully dedicated to

My loving wife Shahista Quamar

My mother Bano Quamar

My father Dr Masood Quamar and

My brother Abbas Quamar

ii

Acknowledgments

Working as a PhD student at the University of Maryland at College Park has been a

rewarding as well as a challenging experience for me that I shall forever cherish. This

work would not have been possible without the invaluable educational, moral and physical

support of many people. I owe my profound gratitude to the following people for helping

me during the course go my PhD.

First and foremost, my deep gratitude goes to my advisor Prof Amol Deshpande

for his unwavering support and mentorship throughout the course of my PhD. His con-

stant encouragement and valuable guidance helped me immensely with my research work

and in making steady progress throughout the years of my graduate work. I am deeply

indebted to him for his gracious support.

I wish to profoundly thank Prof Jimmy Lin for his valuable guidance, cheerful

enthusiasm and practical insights that helped me immensely in making progress towards

my PhD. The resources provided by him for conducting the experimental evaluation of

my work have been an invaluable support over the course of my dissertation research.

I would like to thank my committee members Prof Alan Sussman, Prof Pete Keleher

and Prof Richard Marciano for agreeing to be on my dissertation committee and sparing

their invaluable time for reviewing my thesis manuscript. My deep gratitude is also due

to researchers Badrish Chandramouli and Jonathan Goldstein at Microsoft Research, who

provided their valuable guidance and support during my research internships. These in-

ternships gave me an incredible opportunity for honing my system building skills that

have been immensely valuable in making progress towards my PhD research.

iii

I express my gratitude to Professors Aravind Srinivasan, Atif Memon, V.S. Subrah-

manian, Nick Roussopoulos, Samir Khuller and Lise Getoor who have taught me during

my graduate course work and advised me on my research work. The valuable insights

and skills that I learnt from these esteemed professors have helped me immensely during

the course of my research. I also wish to thank the chair, all the faculty and staff of the

Department of Computer Science especially Jennifer Story and Fatima Bangura for their

valuable administrative support during the past several years. I would also like to thank

the UMIACS staff who have provided valuable technical support for the resources that I

have used for conducting the experimental evaluation of my research.

My special gratitude goes to my colleagues in the computer science department

and especially in the database group whose help and collaboration have been immensely

useful in making progress towards my PhD over the past several years. I would like to

make a special mention for Ashwin K. Kayyoor, Souvik Bhattacharjee, Amit Chavan,

Udayan Khurana, Theodoris Rekatsinas, Walaa Eldin Moustafa, Hui Miao, Jayanta Mon-

dal, Mossaab Bagdouri, Ben London, Ahmed E. Kosba, Karla Saur and Ioana Bercea for

their valuable help and support. I have immensely enjoyed working, collaborating and

interacting with these people throughout my PhD.

I owe my deepest gratitude to my family especially my wife, my parents, my kids

and my brother for their constant support and belief in me during the course of my PhD.

No words can express the profound gratitude that I owe to them. This thesis would not

have been possible without their support.

Last but not the least I wish to thank the Almighty God for his extreme benevolence

and graciousness and everything that he has provided for.

iv

Portions of this dissertation research have been generously supported by the NSF

grant CCF-0937865, NSF Grant 1319432, an IBM Collaborative Research Award, and an

Amazon AWS in Education Research grant.

v

Table of Contents

List of Tables x

List of Figures xi

1 Introduction 1
1.1 Cloud-Based Big Data Management Systems 1
1.2 Scaling Transactional Applications . 3
1.3 Big Data Analytics in the Relational Domain 5
1.4 Data Analytics on Large-Scale Graphs 7
1.5 Thesis Contributions . 9

1.5.1 Scalable Workload-Aware Data Placement for Transactional Work-
loads . 9

1.5.2 Progressive Analytics on Big Data in the Cloud 10
1.5.3 Neighborhood-centric Analytics on Large-scale Graphs in the Cloud 12

1.6 Organization . 14

2 Related Work 16
2.1 Scaling Transactional Workloads . 16

2.1.1 Workload-aware Data Placement 16
2.1.2 Replication . 18

2.2 Progressive Analytics on Big Data in the Cloud 19
2.2.1 Approximate Query Processing 19
2.2.2 MR Framework Variants . 20
2.2.3 Distributed Stream Processing 21
2.2.4 Interactive Full-Data Analytics 21

2.3 Data Analytics on Large-scale Graph Structured Data 22
2.3.1 Vertex-centric Approaches. 22
2.3.2 Existing Subgraph-centric Approaches. 24
2.3.3 Other Graph Processing Frameworks. 25

vi

3 Scalable Workload-aware Data Placement for Transactional Workloads 27
3.1 Introduction . 27
3.2 SWORD Overview . 31

3.2.1 System Architecture . 31
3.2.2 Workload Modeling . 34

3.3 System Design . 34
3.3.1 Hypergraph Compression for Scaling 35
3.3.2 Incremental Repartitioning . 38
3.3.3 Workload-aware Replication . 42
3.3.4 Fine-grained Quorums . 45
3.3.5 Query Routing . 47

3.4 Experimental Evaluation . 52
3.4.1 System Implementation . 53
3.4.2 Experimental Setup . 53

3.4.2.1 System Configuration 53
3.4.2.2 Workloads and Datasets 54
3.4.2.3 Baselines . 54

3.4.3 Hypergraph Compression Analysis 56
3.4.4 Effect of Workload Change . 58
3.4.5 Routing Efficiency and Quality 60
3.4.6 Fine-grained Quorum Evaluation 64
3.4.7 Dealing with Failures . 65

3.5 Conclusion . 67

4 Progressive Analytics on Big Data in the Cloud 68
4.1 Introduction . 68
4.2 Background . 73

4.2.1 PRISM semantics & construction 73
4.2.2 Logical Progress and Progress Intervals 74
4.2.3 Progressive Operators and Queries 75
4.2.4 Summary of Benefits of the PRISM Model 77
4.2.5 Implementing PRISM . 78
4.2.6 PI Assignment . 79
4.2.7 Performance Optimizations . 80

4.3 NOW! Architecture and Design . 81
4.3.1 Overview . 81
4.3.2 Progress-aware Data Flow & Computation 83

4.3.2.1 Progress-aware Batching 84
4.3.2.2 Progressive Data Shuffle 85
4.3.2.3 Progress-aware Merge 87
4.3.2.4 Progress-aware Reducer 89

4.3.3 Support for Multi-stage . 90
4.4 Discussion and Extensions . 93

4.4.1 High availability (HA) . 93
4.4.2 Straggler and Skew Management 94

vii

4.5 Evaluation . 95
4.5.1 Implementation Details . 95
4.5.2 Experimental Setup . 97
4.5.3 Experiments and Results . 100

4.6 Conclusion . 108

5 Neighborhood-centric Analytics on Large-scale Graphs in the Cloud 109
5.1 Introduction . 109
5.2 NSCALE Overview . 113

5.2.1 Application Scenarios . 114
5.2.2 NSCALE Programming Model 117
5.2.3 System Architecture . 120

5.3 Graph Extraction and Packing . 123
5.3.1 Subgraph Extraction . 123
5.3.2 Subgraph Packing . 127

5.3.2.1 Bin Packing-based Algorithms 128
5.3.2.2 Graph Partitioning-based Algorithms 132
5.3.2.3 Clustering-based Algorithms 133

5.3.3 Handling Very Large Subgraphs 138
5.4 Distributed Execution Engine . 141

5.4.1 Execution modes . 141
5.4.2 Bitmap Implementation . 144
5.4.3 Support for Iterative Computation. 147

5.5 Experimental Evaluation . 151
5.6 Experimental Results . 156

5.6.1 Baseline Comparisons . 156
5.6.2 GEP Evaluation . 162
5.6.3 Execution Engine Evaluation . 169
5.6.4 System Evaluation . 171
5.6.5 Evaluation of Support for Iterative Applications. 172
5.6.6 Discussion. 173

5.7 NSPARK: Porting NSCALE on Apache Spark 175
5.7.1 Challenges Involved . 176
5.7.2 Our Approach . 177
5.7.3 Experimental Evaluation . 180

5.8 Conclusion . 183

6 Conclusion and Future Directions 184
6.1 Conclusion . 184
6.2 Limitations . 186
6.3 Future Directions . 188

6.3.1 Multi-tenancy and Workload Consolidation 189
6.3.2 Progressive Analytics in the Graph Analytics Domain 190
6.3.3 Addressing Disruptions from Hardware Improvements 190

viii

Bibliography 192

ix

List of Tables

2.1 Message passing and memory overheads of an vertex-centric approach,
for constructing neighborhoods of different sizes at each vertex for
executing an ego-centric analysis task (the input Orkut graph has
3M nodes and 234M edges). 24

3.1 Router memory requirements . 50

5.1 Memory footprints in Bytes for different bitmap constructions and
bitmap sizes in bits. For CBitSet, the table shows the initial memory
footprint and how it increases when 1 bit is set, 2 bits are set and 25%
bits are set (#bits set indicate the #subgraphs the vertex is part of). . . 146

5.2 Dataset Statistics . 152
5.3 Comparing NSCALE with Giraph, GraphLab and GraphX 157
5.4 Comparing NSCALE with Giraph, GraphLab and GraphX 158
5.5 Performance (X) improvement of NSCALE over Giraph, GraphLab

and GraphX; a “-” indicates that the other system ran out of memory
or did not complete. 160

5.6 Performance (X) improvement of NSCALE over Giraph, GraphLab
and GraphX; a “-” indicates that the other system ran out of memory
or did not complete. 161

x

List of Figures

3.1 System architecture . 32
3.2 (a) A sample workload; (b) Workload representation using a hyper-

graph; (c) Hypergraph compression. 35
3.3 In-graph replication . 44
3.4 Routing architecture . 51
3.5 Effect of hypergraph compression on min-cut and partitioning time.

(Note that the left y-axis does not start at 0.) 56
3.6 (a) Fine-grained approach is more sensitive to workload changes than

the compressed approach; (b) Our approach needs to move signifi-
cantly smaller amount of data to maintain an effective partitioning
compared to a baseline that does complete repartitioning; (c) Num-
ber of iterations required to bring down the increased min-cut under
the threshold value. 59

3.7 (a) Effect of hypergraph compression in minimizing the query pre-
processing time and the set-cover computation time (note that the
y-axis is in log scale); (b) The transaction dispatch time is directly
dependent on the query span. (c) End-to-end system performance in
terms of the end-to-end transaction time and the throughput for the
compared schemes. 61

3.8 Effect of increasing parallelism on throughput: due to the high query
routing costs, the fine-grained approach is not able to effectively uti-
lize the available parallelism. 63

3.9 (a)-(c) The impact of the choice of quorum on the performance for
different transactional workload mixes. The different query work-
load mixes shown are: Mix-1 {75% read, 25%write}, Mix-2 {50%
read, 50% write}, Mix-3 {25% read, 75%write}. (d)-(e) The impact
of fine-grained quorums on query span and system throughput. (f)
The effect of data placement on fault tolerance. 66

4.1 (a) Click data; (b) Impression data; (c) Final result of Qc and Qi; (d)
Final result of Qctr. 69

4.2 (a) Progressive Qc output; (b) Progressive Qi output; (c) & (d) Two
possible progressive Qctr results. 69

xi

4.3 CTR; MR jobs. 71
4.4 (a,b) Input data with progress intervals; (c) Progressive results of Qc

and Qi; (d) Progressive output of Qctr. 73
4.5 Input and output progress intervals, query semantics. 75
4.6 System architecture (MR vs. NOW!). 84
4.7 (a) Input data annotated with PIs; (b) Progress-batches according to

input data PI assignment; (c) Progress-batches with modified granu-
larity using a batching function. 86

4.8 Progress-aware merge. 87
4.9 Multi-stage map reduce data flow. 92
4.10 Performance analysis.(a) Time taken to process a query in progress-

sync order; (b) Effect of batching granularity; (c) Analysis of time
taken by different elements for a two-stage Map-Reduce query. Scal-
ability: (d) Effect of data size on query processing time; (e) Through-
put scalability with increase in #machines; (f) Overheads of disk I/O
(Map output materialization). 103

4.11 Resource Utilization. (a) CPU and memory utilization NOW!; (b)
CPU and memory utilization SMR;(c) CPU and memory utilization
without memory optimization; (d) CPU and memory utilization with
memory optimization. (e) Effect of sort order on memory and %
CPU utilization for different data sizes; (f) Memory optimization ef-
fects on query processing time. 104

4.12 Qualitative analysis. (a) Top-k Convergence; (b) Error estimation of
progressive results. 107

5.1 An example of neighborhood-centric analysis: identify users’ social
circles in a social network. 114

5.2 Counting different types of network motifs: (a) Feed-fwd Loop, (b)
Feedback Loop, (c) Bi-parallel Motif. 115

5.3 A subgraph extraction query on a social network 117
5.4 Example user program to compute local clustering coefficient writ-

ten using the BluePrints API. The edgeExists() call requires access to
neighbors’ states, and thus this program cannot be executed as is in
a vertex-centric framework. 118

5.5 NSCALE architecture. The GEP module is responsible for extracting
and packing subgraphs of interest and then handing off the partitions
to the distributed execution engine. 121

5.6 Distributed GEP Architecture: Stages 1 and 2 construct the 2-hop
neighborhoods; Stage 3 does the distributed shingle based bin pack-
ing producing the final subgraph to bin mapping. 124

5.7 Effect of Graph Sampling . 139
5.8 Bitmap based parallel execution . 143
5.9 Effect of batching on execution time and memory footprints on two

different graph datasets. 145

xii

5.10 Iterative execution of global connected components algorithm on an
example graph on NSCALE. 149

5.11 For the different shingle based subgraph packing heuristics, we com-
pare: (a) #bins required; (b) total computational effort required; (c)
total elapsed time (wall clock time) for running the LCC computation
on the subgraphs; (d) total cluster memory required for GEP and ex-
ecution of the LCC computation; (e)-(f) distribution of # subgraphs
and of execution engine running times over the bins 164

5.12 Comparison of shingle based subgraph packing heuristics with the
other bin packing heuristics; we compare: (a) #bins required; (b)
total time taken for bin packing; (c) memory required. 165

5.13 Comparing subgraph packing heuristics to (a) the optimal solution
and (b) each other, for synthetic graphs 166

5.14 GEP architecture: (a)-(c) Comparison of centralized and distributed
GEP architectures; (d)-(f) Distributed GEP architecture: Impact on
graph extraction and packing time, max memory required per bin,
and #bins required for packing with increase in number of machines. 168

5.15 (a) Effect of different execution modes on the running time; (b)-(c)
Effect of different bitmap implementations on the memory footprints
and the running times of the execution engine; (d) End-to-End run-
ning time and #partitions required for different numbers of subgraphs;
(e) Performance breakdown of different stages of NSCALE for graphs
of different sizes and different applications; (f) Scalability: NSCALE per-
formance over large graphs. 170

5.16 Connected components: (a-d) Performance break down for different
iterations; (e-f) Performance comparison with GraphX and GraphLab
in terms of running time and CE (node-secs). 174

5.17 NSPARK Performance : (a-b) Computational Effort (CE (node-secs))
comparison with NSCALE; (c-d) Cluster memory (GB) comparison
with NSCALE; (e) Performance breakdown of NSPARK. (f) Perfor-
mance comparison with NSCALE and GraphX. 182

‘

xiii

Chapter 1: Introduction

1.1 Cloud-Based Big Data Management Systems

Over the last decade there has been an explosive growth in data that is being gen-

erated by a wide variety of sources. These include data being produced by information

networks; a variety of static and mobile sensors; mobile devices; social media interac-

tions on forums and online platforms such as Twitter, Facebook, etc.; logs produced by

systems and devices; data generated by cloud applications and geo-distributed services,

etc. A wide variety of businesses and application domains such as marketing and ad-

vertisement, financial services, healthcare, retail, telecommunications, gaming, etc., can

benefit from the querying and analysis of this big data to derive meaningful value for solv-

ing challenging real-world problems. Examples include gaining useful business insights

from customer trends, profiles and activities; prediction of security threats and vulnera-

bilities; fraud detection and prevention; operational analysis of logs, sensor and machine

data for improved corporate decision making, etc. There is thus, a growing need for data

management systems that can support real-time ingest, storage, integration, interactive

querying and complex analysis over large volumes of heterogeneous data coming from

different sources.

A large portion of this massive amount of data is increasingly being stored and

1

processed in the Cloud due to economies of scale. Processing data in the Cloud provides

several advantages such as scalability to store, manage and process large volumes of data;

elasticity to enable utilization of resources as per requirement; availability to minimize

application downtimes; low cost of ownership enabling small business to take advantage

of the cloud, etc. These significant advantages have led to the rapid growth of several

cloud-based storage and compute services such as Amazon’s EC-2, AWS, S3; Google’s

compute cloud; Dropbox; Rackspace and many others. A host of services and applica-

tions such as document/spreadsheet services, web-based email, social networking plat-

forms (e.g. Facebook, Twitter, LinkedIn etc.) content distribution (e.g. Netflix, Amazon

Prime); etc., all live in and benefit from the Cloud today. The pay-as-you-go paradigm of

the Cloud causes computation costs to increase linearly with query execution time and the

amount of resources consumed, which in turn depend on the size of the data and the com-

plexity of the analytics performed. Reducing the cost of interactive querying and complex

analytics over large volumes of data in the Cloud while maintaining the desired latency,

quality and efficacy of analysis results, thus remains a primary challenge for large-scale

cloud-based data processing systems today.

My dissertation research focuses on building data management systems that can

efficiently execute interactive queries and complex analytics over large-scale data while

minimizing the cost of such data processing. Pursuant to this direction, I have focused

on two different approaches to reduce the cost of data processing in the Cloud. The first

approach concentrates on building algorithms and techniques that reduce the memory

requirements, communication and I/O overheads and complexity of distributed compu-

tation. In essence, it allows the system to consume fewer resources while providing the

2

same or better service. The second approach uses progressive analysis techniques to re-

duce the cost by doing less work. It enables the production of results over partial data

and refinement of these results as more data is consumed. It also enables users to stop

computations early if sufficient accuracy is reached or query incorrectness is observed.

More specifically, I have designed, built and evaluated three different data process-

ing systems which address the challenges for three different application domains that are

predominant in cloud computing environments today. These are: (1) Transactional ap-

plications that require ACID guarantees, (2) Applications that involve analytics over data

in the traditional relational domain, and (3) Complex analytics over large-scale graph-

structured data. I further elaborate on these in the following sections.

1.2 Scaling Transactional Applications

A large number of cloud-based applications that query data stored in traditional re-

lational tables require transactional guarantees. Transparently scaling such OLTP work-

loads to support database-as-a-service requires mechanisms to partition the data onto mul-

tiple machines and provide high data availability. Horizontal partitioning (or sharding) is

a technique used to partition the data onto multiple machines, wherein rows of the rela-

tional tables are divided and placed into separate partitions that are spread across different

machines. The commonly used techniques for horizontal partitioning include hash-based

partitioning [1], round robin partitioning, and range partitioning. Replication is a tech-

nique wherein multiple copies of a data item are created and placed on separate partitions

to provide high availability. These techniques are now routinely used to store, query,

3

and analyze very large datasets, and have become an integral part of any large-scale data

management system that supports transactional applications.

A natural consequence of employing sharding and/or replication on transactional

workloads is that transactions or queries may need to access data from multiple parti-

tions. This is usually not a problem for analytical workloads where this is, in fact, desired

and can be exploited to parallelize the query execution itself. However, to ensure transac-

tional semantics, distributed transactions must employ a distributed consensus protocol

(e.g., 2-phase commit or Paxos commit [2]), which can result in high and often unaccept-

able latencies [3] and consequently a high cost of executing the workload in the Cloud

environment. During the last decade, this has led to the emergence and wide use of key-

value stores that do not typically support transactional consistency, or often restrict their

attention to simple single-item transactions.

Over the last few years, there has been an increasing realization that the functional-

ity and guarantees offered by key-value stores are not sufficient in many cases, and there

are many ongoing attempts to scale out OLTP workloads without compromising the ACID

guarantees. H-Store [4] is an attempt to rethink OLTP query processing by using a dis-

tributed main memory database, but requires that the transactions be pre-defined in terms

of stored procedures and not span multiple partitions. Google’s Megastore [5] provides

ACID guarantees within data partitions but limited consistency guarantees across them

and has poor write throughput. Moreover, the database features provided by Megastore

are limited to the semantics that their partitioning scheme can support.

Capturing and modeling the transactional workload over a period of time, and then

exploiting that information for data placement and replication has been shown [6] to pro-

4

vide significant benefits in performance, both in terms of transaction latencies and overall

throughput. However, such workload-aware data placement approaches are not scalable

as they can incur very high partitioning and routing (dispatching transactions to appro-

priate partitions) overheads. Further, they do not deal with workload changes and may

perform worse than naive approaches even for small workload changes. Thus, efficiently

supporting ACID guarantees for transactions while employing sharding and replication

for scalability and availability, remains a challenge in this environment.

1.3 Big Data Analytics in the Relational Domain

Complex analytics on large-scale data for applications in the relational domain in-

volves processing of data by relational operators using a relational query processing en-

gine. These analytical tasks when carried out in the Cloud can be quite expensive depend-

ing upon the amount of resources required. The problem is exacerbated by the exploratory

nature of such analytics, where queries are iteratively discovered and refined, and include

the submission of many off-target and erroneous queries (e.g., bad parameters). In tradi-

tional systems, queries must execute to completion before such problems are diagnosed,

often after hours of expensive compute time are used up. In order to reduce the cost of

such analytics in the Cloud, data scientists typically choose to perform their ad-hoc query-

ing on extracted samples of data. This approach gives them the control to carefully choose

from a huge variety [7–9] of sampling strategies in a domain-specific manner. For a given

sample, it provides precise (e.g., relational) query semantics, repeatable execution using a

query processor and optimizer, result provenance in terms of what data contributed to an

5

observed result, and query composability. Further, since choosing a fixed sample size a

priori for all queries is impractical, data scientists usually create and operate over multiple

progressive samples of increasing size [8].

In an attempt to help data scientists, the database community has proposed ap-

proximate query processing (AQP) systems such as CONTROL [10] and DBO [11] that

perform progressive analytics. We define progressive analytics as the generation of early

results to analytical queries based on partial data, and the progressive refinement of these

results as more data is received. Progressive analytics allows users to get early results us-

ing significantly fewer resources, and potentially end (and possibly refine) computations

early once sufficient accuracy or query incorrectness is observed.

The general focus of AQP systems has, however, been on automatically providing

confidence intervals for results, and selecting processing orders to reduce bias [12–16].

The premise of AQP systems is that users are not involved in specifying the semantics

of early results; rather, the system takes up the responsibility of defining and providing

accurate early results. To be useful, the system needs to automatically select effective

sampling strategies for a particular combination of query and data. This can work for

narrow classes of workloads, but does not generalize to complex ad-hoc queries. Further,

traditional scalable distributed frameworks such as Map Reduce (MR) are not pipelined,

making them unsuitable for progressive analytics. Map Reduce Online (MRO) [17] adds

pipelining, but does not offer the semantic underpinnings of progress necessary to achieve

the desirable features outlined above.

To summarize, data scientists prefer user-controlled progressive sampling because

it helps avoid the above issues, but the lack of system support results in a tedious and

6

error-prone workflow that precludes the reuse of work across progressive samples. We

need a system that (1) allows users to communicate progressive samples to the system; (2)

allows efficient and deterministic query processing over progressive samples, without the

system itself trying to reason about specific sampling strategies or confidence estimation;

and yet (3) continues to offer the desirable features outlined above at scale.

1.4 Data Analytics on Large-Scale Graphs

Over the last decade, information networks have become ubiquitous and widespread.

These include social networks, communication networks, Web, financial transaction net-

works, citation networks, gene regulatory networks, disease transmission networks, eco-

logical food networks, sensor networks, RDF knowledge bases, and more. Network data

also arises in applications like phone call data, IP traffic data, health-care data, source

code repositories, parcel shipment data, and so on. Social contact graphs are expected

to be available for analysis in near future, and can potentially be used to gain insights

into various social phenomena as well as disease outbreak and prevention. The ubiquity

of these information networks has led to an unprecedented growth of graph-structured

data, since representing information network data as a graph is most natural; with nodes

representing the entities and edges denoting the interactions between them.

The domain of data analytics on such large-scale graph structured data is growing

rapidly. There is increasing interest in applications that require executing complex analyt-

ics over such graph data to get valuable insights into the network’s functional abilities, for

scientific discovery, for event or anomaly detection, for assessment of potential impact of

7

interventions, etc. Many of these complex analysis tasks on graphs require processing a

large number of multi-hop neighborhoods or subgraphs. Some specific examples include

ego network analysis, motif counting, finding social circles, personalized recommenda-

tions, link prediction, anomaly detection, analyzing influence cascades, and others. Al-

though there have been quite a few vertex-centric graph processing frameworks proposed

in recent years, these tasks are typically not well-served by those. This is because, in those

frameworks, user programs are only able to directly access the state of a single vertex at a

time, resulting in high communication, scheduling, and memory overheads in executing

such tasks.

Further, most existing graph processing frameworks ignore the challenges in ex-

tracting the relevant portions of the graph that an analysis task is interested in, and load-

ing those onto distributed memory. In many cases, the user may only want to analyze

a subgraph (or several subgraphs) of the overall graph that would require access to a

subset of the nodes and edges. Naively loading each disk partition of the graph onto a

separate machine may lead to unnecessary distributed communication, especially for dis-

tributed graph analytics, where the number of messages exchanged typically increases

super-linearly with the number of machines used. This is likely to become a scalability

bottleneck especially for subgraph-centric analysis tasks.

As such, we see that the existing vertex centric approaches are good at certain graph

computation tasks such as computing Page Rank, Connected components, etc., which do

not require aggregating neighbor state information. These approaches do not scale well to

large graphs for subgraph-centric graph analysis tasks because of fundamental limitations

imposed by their computation and execution models as mentioned above.

8

1.5 Thesis Contributions

In this section I provide an overview of the contributions of my dissertation research

that provides solutions for building cost effective systems for data processing in the Cloud

for the above mentioned application domains.

1.5.1 Scalable Workload-Aware Data Placement for Transactional Work-

loads

To address the problem of scaling transactional workloads to provide Database-

as-a-Service in the Cloud, we built SWORD [18, 19], a scalable workload-aware data

partitioning and placement approach for transparently scaling out standard OLTP work-

loads with full ACID support. Our key contributions in this work are a suite of novel

techniques to achieve higher scalability, and to increase tolerance to failures and to work-

load changes. We model the workload as a hypergraph over the data items, and propose

using a hypergraph compression technique to reduce the overheads of partitioning. To

deal with workload changes, we propose an incremental data repartitioning technique

that modifies data placement in small steps without resorting to complete workload repar-

titioning. We have built a workload-aware active replication mechanism in SWORD to

increase availability and enable load balancing. We propose the use of fine-grained quo-

rums defined at the level of groups of tuples to control the cost of distributed updates,

improve throughput, and provide adaptability to different workloads. To our knowledge,

SWORD is the first system that uses fine-grained quorums in this context. Summarizing,

9

the major contributions of this work are:

• Effective workload modeling and compression that reduces partitioning and book-

keeping overheads, and enables handling of both new tuples and those not represented

in the workload.

• Incremental repartitioning to mitigate performance degradation due to workload changes

without a complete repartitioning.

• Use of fine-grained quorums to control the cost of distributed updates, to improve

throughput, and to cater to OLTP workloads with a mix of different access patterns.

• Workload-aware replication mechanism that attempts to disentangle conflicting trans-

actions leading to better data placement.

• Efficient and scalable routing mechanism that minimizes the number of partitions

to involve for a given query and uses compact routing tables to minimize memory

requirements.

The results of our experimental evaluation on SWORD deployed on an Amazon

EC2 cluster show that our techniques result in orders-of-magnitude reductions in the par-

titioning and book-keeping overheads, and improve tolerance to failures and workload

changes; we also show that choosing quorums based on the query access patterns enables

us to better handle query workloads with different read and write access patterns.

1.5.2 Progressive Analytics on Big Data in the Cloud

To address the problem of reducing the cost of big data analytics in the Cloud we

propose a new progressive analytics system called NOW! based on a progress model

10

called PRISM that (1) allows users to communicate progressive samples to the system;

(2) allows efficient and deterministic query processing over samples; and (3) provides

repeatable semantics and provenance to data scientists. Instead of modifying an existing

relational engine to support progressive analytics, we use an unmodified temporal stream-

ing engine, by carefully reinterpreting its temporal fields to denote progress.. Based on

PRISM (Section 4.2), we have built NOW!, a progressive data-parallel computation frame-

work on the Azure cloud platform, where progress is understood as a first-class citizen in

the framework. NOW! generalizes the popular data-parallel Map Reduce (MR) model and

supports progress-aware reducers that understand explicit progress in the data. NOW!

works with these “progress-aware reducers”– in particular, it works with streaming en-

gines to support progressive SQL over big data.

I summarize the major contributions in this work below:

• We designed and built NOW!, a new pipelined computation platform for the Cloud,

that natively supports progressive queries with explicit progress semantics built into

the framework as a fundamental building block. NOW! has several important fea-

tures which are summarized below:

• Fully pipelined progressive computation and data movement across multiple

stages with different partitioning keys, in order to avoid the high cost of sending

intermediate results to cloud storage.

• Elimination of sorting in the framework using progress-ordered data movement,

partitioned computation pushed inside progress-aware reducers, and support for

the traditional reducer API.

11

• Progress-based merge of multiple map outputs at a reducer node.

• Concurrent scheduling of multi-stage map and reduce jobs with a new schedul-

ing policy and flow control scheme.

• We show that an unmodified streaming engine with temporal semantics (such as

Microsoft StreamInsight) can be used to answer SQL queries with progress seman-

tics.

• We extend NOW! with features for high performance and minimizing resource uti-

lization and provide mechanisms for elasticity and migration .

• We provide a detailed evaluation with real and synthetic datasets (up to 100GB) on

NOW! used with StreamInsight on Windows Azure.

Extensive experiments on Windows Azure with real and synthetic workloads vali-

date the scalability and benefits of NOW! and its optimizations, over current solutions for

progressive analytics.

1.5.3 Neighborhood-centric Analytics on Large-scale Graphs in the Cloud

For cost-effective complex analytics on graph-structured data we propose NSCALE [20–

22], a novel end-to-end graph processing framework aimed at supporting complex subgraph-

centric analytics over large-scale graphs in the cloud. NSCALE enables users to write

programs at the level of subgraphs rather than at the level of vertices. Unlike most pre-

vious graph processing frameworks, which apply the user program to the entire graph,

NSCALE allows users to declaratively specify subgraphs of interest. Our framework in-

12

cludes a novel graph extraction and packing (GEP) module that utilizes a cost-based opti-

mizer to partition and pack the subgraphs of interest into memory on as few machines as

possible. The distributed execution engine then takes over and runs the user program in

parallel on those subgraphs, restricting the scope of the execution appropriately, and uti-

lizes novel techniques to minimize memory consumption by exploiting overlaps among

the subgraphs. Our key contributions in this work are summarized below:

• Subgraph-centric programming model. Unlike vertex-centric frameworks, NSCALE al-

lows users to write custom programs that access the state of entire subgraphs of the

complete graph. This model is more natural and intuitive for many complex graph

analysis tasks compared to the popular vertex-centric model.

• Extraction of query subgraphs. Unlike existing graph processing frameworks, most

of which apply user programs to the entire graph, NSCALE efficiently supports tasks

that involve only a select set of subgraphs (and of course, NSCALE can execute pro-

grams on the entire graph if desired).

• Efficient packing of query subgraphs. To enable efficient execution, subgraphs of in-

terest are packed into as few containers (i.e., memory) as possible by taking advantage

of overlaps between subgraphs. The user is able to control resource allocation (for ex-

ample, by specifying the container size), which makes our framework highly amenable

to execution in cloud environments.

• Support for iterative analysis tasks. NSCALE supports the Bulk Synchronous Pro-

tocol (BSP) model for executing iterative analysis tasks like computation of PageRank

or global connected components. NSCALE’s BSP implementation is most similar to

13

that of GraphLab, and the information exchange is achieved through shared state up-

dates between subgraphs on the same partition and through use of “ghost” vertices (i.e.,

replicas) and message passing between subgraphs across different partitions.

NSCALE has been implemented and deployed over two data distribution and com-

putation frameworks. The first is the popular Apache YARN framework and the second is

the Apache Spark framework. Both these frameworks/platforms have been extensively

used for big data processing and thus were a natural choice for deploying NSCALE.

We present a comprehensive empirical evaluation comparing against three state-of-the-art

systems, namely, Giraph, GraphLab, and GraphX, on several real-world datasets and a va-

riety of analysis tasks. Our experimental results show orders-of-magnitude improvements

in performance and drastic reductions in the cost of analytics compared to vertex-centric

approaches.

1.6 Organization

In Chapter 2 we review work related to workload-aware data placement, progres-

sive analytics on big data and graph analytics on large-scale graph-structured data. In

Chapter 3 we discuss in detail the concept of workload modeling and present the de-

sign and architecture of our system SWORD. In Chapter 4 we provide a background on

PRISM, the progress model used by NOW!. We then present the detailed design and ar-

chitecture of NOW! which enables progressive analytics on big data in the Cloud. In

Chapter 5 we describe the design and architecture of NSCALE, our proposed framework

for neighborhood-centric analytics on large-scale graphs in the Cloud. Finally in Chap-

14

ter 6, we provide our concluding remarks on building cost effective cloud-based data

processing systems and briefly discuss directions for future work.

15

Chapter 2: Related Work

In this chapter I first discuss the related work in the area of workload-aware data

placement. I then review other related work in area of progressive analytics on big data

and graph analytics on large-scale graph structured data.

2.1 Scaling Transactional Workloads

As distributed databases have grown in scale, partitioning and data replication to

minimize overheads and improve scalability has received a lot of interest.

2.1.1 Workload-aware Data Placement

Among workload-aware data placement techniques, Schism [6], is closest to our

work. It uses a schema-independent approach which observes and captures the query

and transaction workload over a period of time, and utilizes this workload information

to achieve a data placement that minimizes the number of distributed transactions. Their

approach models the transaction workload as a graph over the database tuples, where an

edge indicates that the two tuples it connects appear together in a transaction; it then

uses a graph partitioning algorithm to find a data placement that minimizes the number of

distributed transactions thus increasing throughput significantly over baseline approaches.

16

There are significant differences between Schism and SWORD in handling the crit-

ical issues of scalability, availability, fault-tolerance and dealing with workload changes.

Schism does not provide any mechanism to deal with workload changes. Another dif-

ference between our framework and Schism is the use of aggressive replication. Schism

trades off performance for fault tolerance by not replicating data items with a high write/update

frequency. This might compromise the availability of these data items in presence of fail-

ure and affect the ability to do load balancing across multiple machines. We instead

replicate each tuple at least once, and possibly more times depending on the access fre-

quencies. The replicas are kept strongly consistent. We also empirically show that our

approach is more fault-tolerant than tuple-level fine-grained partitioning techniques such

as Schism described above.

In a follow-up work to Schism, Tatarowicz et al. [23] use a powerful router with

high memory and computational resources and employ compression to scale up the lookup

tables. However, that approach suffers from the same issues as a scaled-up architecture

and may not be cost effective because it needs large memory and computation resources.

In our work, we minimize the lookup table sizes significantly by using a compressed

representation of the workload.

Workload-aware approaches have also been used in the past (e.g., AutoAdmin

project [24]) for tuning the physical database design, i.e., identifying the physical de-

sign structures such as indexes for a given database and workload. Kumar et al. [25]

propose a workload-aware approach for data placement and co-location for read-only an-

alytical workloads. The solutions proposed in that paper focus on optimizing the energy

and resource consumption, unlike our work that deals with data placement for minimizing

17

distributed transactions for OLTP workloads. Pavlo et al. [26] propose a workload-aware

approach for automatic database partitioning for OLTP applications. However, their ap-

proach does not provide an incremental mechanism to deal with workload changes once

data is partitioned.

The partitioning strategies in cloud/NoSQL systems [27,28] primarily aim for scal-

ability by compromising the consistency guarantees. Moreover, the partitioning in [27]

cannot be changed without reloading the entire dataset. On the other hand, we endeavor

to scale OLTP workloads while maintaining transactional ACID properties and provide

an incremental repartitioning mechanism to deal with workload changes.

Nehme et al. [29] have developed a system to automatically partition the database

based on the expected workload. Their approach is tightly integrated with the query op-

timizer which relies on database statistics. However their approach ignores the structural

and access correlations between queries that we consider by modeling the query workload

as a hypergraph.

2.1.2 Replication

Replication has been widely used in distributed databases for availability, load bal-

ancing and fault tolerance [30–32]. In this dissertation, we focus on active replication as

it provides increased availability and load balancing. Gray et al. [33] showed that repli-

cation in distributed databases can result in performance bottlenecks and can limit their

scalability. We address the performance issues related to replication by using a workload-

aware replication technique which further minimizes distributed transactions with the use

18

of in-graph replication and control update costs using fine-grained quorums. Although

quorums have been used to alleviate the cost of replica updates [34], we have shown that

a static choice of quorums for all data items is not sufficient to handle different workloads

with varying access patterns.

2.2 Progressive Analytics on Big Data in the Cloud

There is a substantial body of prior work in the area of progressive analytics which

can be grouped into four broad categories: (1) Approximate query processing (AQP),

(2) Map-Reduce framework variants, (3) Distributed stream processing systems and (4)

Interactive Full-Data Analytics. I review related work for each of these below.

2.2.1 Approximate Query Processing

Online aggregation was originally proposed by Hellerstein et al. [12], where the

focus was on grouped aggregation with statistically robust confidence intervals based on

random sampling. This was extended to handle join queries using the ripple join [15] fam-

ily of operators. Specialized sampling techniques have been widely studied in subsequent

years (e.g., see [10, 13, 35]). Laptev et al. [36] propose iteratively computing MR jobs

on increasing data samples until a desired approximation goal is achieved. BlinkDB [37]

constructs a large number of multi-dimensional samples offline using a particular sam-

pling technique (stratified sampling) and chooses samples automatically based on a user-

specified budget.

We follow a different approach: instead of the system taking responsibility for query

19

accuracy (e.g., as sampling techniques) which may not be possible in general, we involve

the user (the query writer) in the specification of progress semantics. A query processor

using PRISM can support a variety of user-defined progressive sampling schemes; we

view prior work described above as part of a layer between our generic progress engine

and the user, that helps with the assignment of PIs in a semantically appropriate manner.

2.2.2 MR Framework Variants

Map-Reduce Online (MRO) [17] supports progressive output by adding pipelining

to MR. Early result snapshots are produced by reducers, each annotated with a rough

progress estimate based on averaging progress scores from different map tasks. Unlike

our techniques, progress in MRO is an operational and non-deterministic metric that can-

not be controlled by users or used to formally correlate progress to query accuracy or to

specific input samples. From a data processing standpoint, unlike NOW!, MRO sorts sub-

sets of data by key and can incur redundant computations as reducers repeat aggregations

over increasing subsets (see [38] for more details).

Li et al. [39] propose scalable one pass analytics (SOPA), where they replace sort-

merge in MR with a hash-based grouping mechanism inside the framework. Our focus is

on progressive queries, with a goal of establishing and propagating explicit progress in the

platform. Like SOPA, we eliminate sorting in the framework, but leave it to the reducer to

process progress-sync ordered data. Streaming engines use efficient hash-based grouping,

allowing us to realize similar performance gains as SOPA inside our reducers.

20

2.2.3 Distributed Stream Processing

Stream processing engines (SPEs) answer real-time temporal queries over win-

dowed streams of data. We tackle a different problem: progressive results for atemporal

queries over atemporal offline data, and show that our new progress model can in fact

be realized by leveraging and re-interpreting the notion of time used by temporal SPEs.

NOW! is an MR-style distributed framework for progressive queries; it is markedly dif-

ferent from distributed SPEs [40] as it leverages the explicit notion of progress to build

a batched-sequential data-parallel framework that does not target real-time data or low-

latency queries. The use of progress-batched files for data movement allows NOW! to

amortize transfer costs across reducer per-tuple computation cost. NOW!’s architecture is

designed along the lines of MR with extended map and reduce APIs, and is designed for

the Cloud.

2.2.4 Interactive Full-Data Analytics

Dremel [41] and PowerDrill [42] are distributed systems for interactive analysis of

read-only large columnar datasets. Spark [43] provides in-memory data structures to per-

sist intermediate results in memory, and can be used to interactively query big data sets

or get medium-latency batch-wise results on real-time data [44]. These engines have a

different goal from us; by fully committing memory and compute resources a priori, they

provide full results to queries on hot in-memory data in milliseconds, for which they use

careful techniques such as columnar in-memory data organization for the (smaller) subset

of data that needs such interactivity. On the other hand, we provide generic interactivity

21

over large datasets, in terms of early meaningful results on progressive samples and re-

fining results as more data is processed. Based on the early results, users can choose to

potentially end (or possibly refine) computations once sufficient accuracy or query incor-

rectness is observed.

2.3 Data Analytics on Large-scale Graph Structured Data

In this section we focus related work in the area on the large-scale graph processing

frameworks and programming models.

2.3.1 Vertex-centric Approaches.

Most existing graph processing frameworks such as Pregel [45], Apache Giraph,

GraphLab [46], Kineograph [47], GPS [48], Grace [49], etc., are vertex-centric. Users

write vertex-level programs, which are then executed by the framework in either a bulk

synchronous fashion (Pregel, Giraph) or asynchronous fashion (GraphLab) using message

passing or shared memory. These frameworks fundamentally limit the user program’s

access to a single vertex’s state – in most cases to the local state of the vertex and its

edges. This is a serious limitation for many complex analytics tasks that require access to

subgraphs.

For example, to analyze a 2-hop neighborhood around a vertex to find social cir-

cles [50], one would first need to gather all the information from the 2-hop neighbors

through message-passing, and reconstruct those neighborhoods locally (i.e., in the vertex

program local state). Even something as simple as computing the number of triangles

22

for a node requires gathering information from 1-hop neighbors (since we need to reason

about the edges between the neighbors). This requires significant network communication

and an enormous amount of memory. Consider some back-of-the-envelope calculations

for estimating the message passing and memory overhead for constructing neighborhoods

of various sizes at each vertex for the Orkut social network graph with approx 3M nodes,

234M edges and an average degree of 77. The original graph occupies 14GB of memory

for a data structure that stores the graph as a bag of vertices in adjacency list format. Ta-

ble 2.1 provides an estimate of the number of messages that would need to be exchanged

and the memory footprints required in order to construct 1- and 2-hop neighborhoods at

each vertex for ego network analysis. It is clear that a vertex-centric approach requires

inordinate amounts of network traffic, beyond what can be addressed by “combiners” in

Pregel [45] or GPS [48], and impractical amount of cluster memory. Although GraphLab

is based on a shared memory model, it too would require two phases of GAS (Gather,

Apply, Scatter) to construct a 2-hop neighborhood at each vertex and suffers from dupli-

cation of state and high memory overhead.

We also see that even for a modest graph, the memory requirements are quite high

for most clusters today. Furthermore, because most existing graph processing frameworks

hash-partition vertices by default, this approach will create much duplication of neighbor-

hood data structures. In recent work, Seo et al. [51] also observe that these frameworks

quickly run out of memory and do not scale for ego-centric analysis tasks.

The other weakness of existing vertex-centric approaches is that they almost always

process the entire graph. In many cases, the user may only want to analyze a subset of

the subgraphs in a large graph (for example, focusing in only on the neighborhoods sur-

23

Neighborhood size 1-Hop 2-Hop
Messages required to construct neighborhoods 231 M ≈ 18 B
Avg. Memory required per neighborhood 83 KB 6 MB
Total Cluster Memory required 233 GB ≈ 18 TB

Table 2.1: Message passing and memory overheads of an vertex-centric approach,
for constructing neighborhoods of different sizes at each vertex for executing an
ego-centric analysis task (the input Orkut graph has 3M nodes and 234M edges).

rounding “persons of interest” in a social network, or only the subgraphs induced by a

set of “hashtags” depicting current events in the Twitter network). Naively loading each

partition of the graph onto a separate machine may lead to unnecessary network commu-

nication, especially since the number of messages exchanged increases non-linearly with

the number of machines.

2.3.2 Existing Subgraph-centric Approaches.

While researchers have proposed a few subgraph-centric frameworks such as Gi-

raph++ [52] and GoFFish [53], there are significant limitations associated with both.

These approaches primarily target the message passing overheads and scalability issues

in the vertex-centric, BSP model of computation. Giraph++ partitions the graph onto

multiple machines, and runs a sequential algorithm on the entire subgraph in a partition

in each superstep. GoFFish is very similar and partitions the graph using METIS (another

scalability issue) and runs a connected components algorithm in each partition. An im-

portant distinction is that in both cases, the subgraphs are determined by the system, in

contrast to our framework, which explicitly allows users to specify the subgraphs of inter-

est. Furthermore, these previous frameworks use serial execution within a partition and

the onus of parallelization is left to the user. It would be extremely difficult for the end

24

user to incorporate tools and libraries to parallelize these sequential algorithms to exploit

powerful multicore architectures available today.

2.3.3 Other Graph Processing Frameworks.

There are several other graph programming frameworks that have been recently

proposed. SociaLite [54] describes an extension of a Datalog-based query language to

express graph computations such as PageRank, connected components, shortest path, etc.

The system uses an underlying relational database with tail-nested tables and enables

users to hint at the execution order. Galois [55], LFGraph [56], are among highly scalable

general-purpose graph processing frameworks that target systems- or hardware-level op-

timization issues, but support only low-level or vertex-centric programming frameworks.

Facebook’s Unicorn system [57] constructs a distributed inverted index and supports on-

line graph-based searches using a programming API that allows users to compose queries

using set operations like AND, OR, etc.; thus Unicorn is similar to an online SPARQL

query processing system and can be used to identify nodes or entities that satisfy certain

conditions, but it is not a general-purpose complex graph analytics system.

X-Stream [58] provides an edge-centric graph processing model using streamed

partitions on a single shared memory machine. The programming API is based on scatter

and gather functions that are executed on the edges and that update the states maintained

in the vertices. Any multi-hop traversal in X-Stream would be expensive as it requires

multiple iterations of the scatter, shuffle and gather phases. Since the stream partition-

ing used by the framework does not take the neighborhood structure into account, such

25

operations would necessitate a large amount of data to be shuffled to the gather phase

across different stream partitions. X-Stream also fundamentally relies on the vertex state

remaining constant in size, and it would negate the key benefits of X-Stream if variable-

sized neighborhoods were constructed in the vertex state. Finally, X-Stream provides a

restricted edge-centric API that would make it hard to encode neighborhood-centric com-

putations such as those supported by NSCALE.

GraphX, built on top of Apache Spark, supports a flexible set of operations on

large graphs [59]; however, GraphX stores the vertex information and edge information

as separate RDDs, which necessitates a join operation for each edge traversal. Further,

the only way to support subgraph-centric operations in GraphX is through its emulation

of the vertex-centric programming framework, and our experimental comparisons with

GraphX show that it suffers from the same limitations of the vertex-centric frameworks

as discussed above.

26

Chapter 3: Scalable Workload-aware Data Placement for Transactional

Workloads

3.1 Introduction

In this chapter, we discuss our work on the problem of transparently scaling out

transactional (OLTP) workloads on relational databases, to support database-as-a-service

in cloud computing environment. The primary challenges in supporting such workloads

include choosing how to partition the data across a large number of machines, minimiz-

ing the number of distributed transactions, providing high data availability, and tolerat-

ing failures gracefully. Workload-aware data placement and replication approaches such

as the schema-independent approach proposed by Curino et al. [6] have been shown to

provide significant benefits in performance, both in terms of transaction latencies and

overall throughput. However, such workload-aware data placement approaches can incur

very high partition and execution overheads, and further, may perform worse than naive

approaches if the workload changes. There are several challenges in employing a fine-

grained workload-aware data placement approach such as Schism. We highlight these

below:

Scalability: The initial cost of partitioning and the follow-on cost of maintaining the

27

partitions can be very high, and in fact, it is unlikely that the fine-grained partitioning

approach can scale to really large data volumes;

Efficient Routing: The routing tables that store the tuple-to-partition mappings, required

to dispatch the queries or transactions to appropriate partitions, can become very large

and expensive to consult;

Workload Modeling: It is not clear how to handle newly inserted tuples, or tuples that

do not appear in the workload;

Dealing with Workload Change: The performance for such an approach can be worse

than random partitioning if the workload changes significantly; a consequence of overfit-

ting the data placement to a particular workload.

Load balancing and Handling Failures: Random hash-based partitioning schemes of-

ten naturally have better load balancing and better tolerance to failures as compared to a

fine-grained partitioning approach.

In this dissertation, we propose SWORD, a scalable workload-aware data parti-

tioning and placement approach for OLTP workloads, that incorporates a suite of novel

techniques to significantly reduce the overheads incurred both during the initial place-

ment, and during query execution at runtime. We elaborate on the key ideas proposed in

SWORD below.

Hypergraph compression to reduce book-keeping overheads: We model the workload

as a hypergraph1, where each hyperedge corresponds to a transaction or a query2, and em-

1We chose a hypergraph-based representation because we observed better performance, but we could
also use a graph-based representation instead.

2Hereafter we use the term transaction to denote both an update transaction or a read-only query.

28

ploy hypergraph partitioning algorithms to guide data placement decisions. We propose

using a two-phase approach, where we first compress the hypergraph using either hash

partitioning or an analogous simple and easy-to-compute function, and then partition the

compressed hypergraph. This results in a substantial reduction in the sizes of the mapping

tables required for dispatching the transactions to appropriate partitions. As we show, this

simple hybrid approach is able to reap most of the benefits of fine-grained partitioning

at a much lower cost, resulting in significantly higher throughputs. Our approach also

naturally handles both new tuples and tuples that were not accessed in the workload. Fur-

ther, it is able to deal with changes in workload more gracefully and is more effective at

tolerating failures.

Incremental Repartitioning: We propose an incremental repartitioning technique to

deal with workload changes, that monitors the workload to identify significant changes,

and repartitions the data in small steps to maintain a good overall partitioning. Our ap-

proach is based on efficiently identifying candidate sets of data items whose migration

has the potential to reduce the frequency of distributed transactions the most, and then

performing the migrations during periods of low load.

Fine-Grained Quorums: Third, we propose using fine-grained quorums to alleviate the

cost of distributed updates for active replication and to gracefully deal with partition fail-

ures. Unlike prior work [33, 34] where the types of quorum are chosen a priori and

uniformly for all data items, we choose the type of quorum independently for groups

of tuples based on their combined read/write access patterns. This allows us to cater to

typical OLTP workloads that have a mix of read and write queries with varying access

29

patterns for different data items.

Aggressive Replication: We propose an aggressive replication mechanism that attempts

to disentangle conflicting transactions through replication, enabling better data place-

ment.

Scalable Routing mechanism: Finally, we develop an efficient query routing mechanism

to identify which partitions to involve in a given transaction. Use of aggressive replica-

tion and quorums makes this very challenging, and in fact, the problem of identifying a

minimal set of partitions for a given query is a generalization of the set cover problem

(which is not only NP-Hard but also hard to approximate). We develop a greedy heuris-

tic to solve this problem. We also develop a compact routing mechanism that minimizes

memory overheads and improves lookup efficiency.

Our experimental evaluation of SWORD deployed on an Amazon EC2 cluster

demonstrates that our hypergraph-based workload representation and use of in-graph

replication based on access patterns, lead to a much better quality data placement as

compared to other data placement techniques. We show that our scaling techniques result

in orders-of-magnitude reductions in the partitioning overheads including the workload

partitioning time, cost of distributed transactions, and query routing times for data sets

consisting of up to a billion tuples. Our incremental repartitioning technique effectively

deals with the performance degradation caused by workload changes using minimal data

movement. We also show that our techniques provide graceful tolerance to partition fail-

ures compared to other data placement techniques.

30

3.2 SWORD Overview

We begin with providing a high-level overview of SWORD’s architecture. We then

briefly present the basic workload-aware approach that captures a transaction workload

as a hypergraph, and utilizes that workload information to achieve a data placement that

minimizes the number of distributed transactions [6].

3.2.1 System Architecture

The key components of SWORD are shown in Figure 3.1, and can be functionally

divided into three groups: data partitioning and placement, incremental repartitioning,

and transaction processing. The data itself is horizontally partitioned (sharded) across

a collection of physical database partitions, i.e., machines that run a relational resource

manager such as a relational DBMS server (PostgreSQL in our implementation). Data

may be replicated (at the granularity of tuples) to improve availability, performance, and

fault tolerance. We assume that each tuple is associated with a globally unique primary

key, which may consist of more than one attribute. We briefly discuss the key functional-

ity of the different components next.

Data partitioning and placement: These modules are in charge of making the initial

workload-aware data placement and replication decisions, and then carrying out those

decisions through appropriate data migration and replication. The query workload man-

ager takes the query workload trace (the set of transactions and the tuples they access

(Section 3.4.1)) as input and generates a compressed hypergraph representation (Sec-

31

User Interface

Router Router

Transaction
Manager

Transaction
Manager

DB-1 DB-2 DB-N

Query Workload Manager

Data
Partitioner

Data Placement Module

Workload
Monitoring

and Statistical
Module

Incremental
Repartitioning

Module

Figure 3.1: System architecture

tion 3.3.1) of the query workload. The compressed hypergraph is then fed to the data

partitioner which does in-graph replication (Section 3.3.3), and partitions the resulting

hypergraph using the hMetis [60] partitioning tool. The output of the partitioner is a map-

ping of the tuples to their physical database partitions. These mappings are fed to the data

placement sub-module and the router. The data placement sub-module then uses these

mappings to partition the database across the machines.

Incremental repartitioning: The workload monitoring and statistical module monitors

the workload changes and maintains statistics on the workload access patterns. It provides

this input to the incremental repartitioning module (Section 3.3.2) which identifies when

the current partitioning is sub-optimal and triggers data migration to deal with workload

changes. The data migration is done in incremental steps through the data placement

module during periods of low activity.

32

Transaction processing: The users submit transactions, and receive their results through

an interface provided by the transaction processing module. The user interface sends the

transactions to the router which parses the SQL statements in the transactions using an

SQL parser that we wrote. The router determines the tuples accessed by the transaction

(more specifically, the primary keys of the tuples accessed by the transaction), their repli-

cas, and their location information using the mappings provided by the data partitioner.

The router also determines the appropriate number of replicas that need to be accessed

for each tuple to satisfy the quorum requirements (Section 3.3.4). The router then uses a

set-cover based algorithm to compute the minimum number of partitions that the trans-

action needs to be executed on (referred to as query span in the rest of the chapter), to

access all the required tuples and replicas (Section 3.3.5). This information, along with

the transaction, is passed on to the transaction manager which executes the transactions

in parallel on the required database partitions. The transaction manager uses a 2-phase

commit protocol to provide the ACID guarantees.

We represent the query workload as a hypergraph, H = (V,E), where each hy-

peredge e ∈ E represents a transaction, and the set of nodes Ve ⊆ V spanned by the

hyperedge represent the tuples accessed by the transaction. Each hyperedge is associ-

ated with an edge weight we which represents the frequency of such transactions in the

workload.

A k-way balanced min-cut partitioning of this hypergraph would give us k bal-

anced partitions of the database (i.e., k partitions of equal size) such that the number of

transactions spanning multiple partitions is minimized. This is because every transaction

that spans multiple partitions corresponds to a hyperedge that was cut in the partitioning.

33

Instead of looking for partitions of equal size, we may instead assign a weight to each

node and ask for a partitioning such that the total weights of the partitions are identical

(or almost identical). The weights may correspond to the item sizes (in case of hetero-

geneous data items) or some combination of the item sizes and access frequencies. The

latter may be used to achieve balanced loads across the partitions.

The problem of k-way balanced min-cut partitioning generalizes the graph bisec-

tion problem, and is NP-hard. However, due to the practical importance of this problem,

many efficient and effective hypergraph partitioning packages have been developed over

the years. We use the hMetis package [60] in our implementation.

3.2.2 Workload Modeling

Figure 3.2(a) shows an illustrative example where a transactional query workload is

transformed into a hypergraph. The hypergraph consists of a vertex set V = {a, b, c, e, f, g}

and hyperedge set E = {e1 = {a, b, c}, e2 = {a, g}, e3 = {g, c}, e4 = {a, e}, e5 =

{f, c}} where ei represent the transactions. A 2-way min-cut partitioning of this hyper-

graph gives us 2 distributed transactions, as compared to a naive round-robin partitioning

that would have given us 4 distributed transactions.

3.3 System Design

In this section, we first present our proposed techniques for scalable workload-

aware data partitioning, and for incremental repartitioning to cater to workload variations.

We then discuss our in-graph replication mechanism, and use of fine-grained quorums to

34

a b c

g

e

f

phone 35g
f tablet 70

heater 50e
60

20

30

Sales

40

d

a

c
b

ID

watch
fan

torch
camera
Product

Item

Begin
update item set sales = 200 where product = phone
update item set sales = 150 where product = fan
Commit

Begin
select sales from item where product = camera
select sales from item where product = phone
Commit

Begin
select * from item where sales <= 30
update item set sale=100 where product=torch
Commit

Begin
update item set sales = 25 where ID = e
select * from item where product = camera
Commit

Begin
select sales from item where product = tablet
select sales from item where product = fan
Commit

e1

e2

e3

e4 e5

e1

e2 e3

e4 e5

(b) Tuple level hypergraph

a,b

e

c,f, g

e'1

e'2
v'1

v'2

v'3

2

1

(c) Compressed hypergraph
min-cut

min-cut

(a) Workload

Figure 3.2: (a) A sample workload; (b) Workload representation using a hypergraph;
(c) Hypergraph compression.

improve availability. Finally, we present our query routing mechanism to select partitions

to involve in a given query or a transaction.

3.3.1 Hypergraph Compression for Scaling

The major scalability issues involved with workload-aware hypergraph (or graph)

partitioning-based techniques are: (1) the memory and computational requirements of

35

hypergraph storage and processing, which directly impact the partitioning and reparti-

tioning costs, and (2) the large size of the tuple-to-partition mapping produced by the

partitioner that needs to be stored at the router for routing the queries to appropriate par-

titions, that makes the router itself a bottleneck in query processing. Existing hypergraph

compression techniques [61] based on coalescing help in effectively reducing the size

of the hypergraph, and in some cases [62] even minimize the loss of structural informa-

tion by using additional neighborhood information as input to the coalescing function.

However these techniques do not reduce the sizes of mapping tables required for routing

queries, and thus are not appropriate for our context.

We propose using a simple two-step hypergraph compression technique instead.

We first group the nodes of the hypergraph (i.e., database tuples) into a large number

of groups using an easy-to-compute function applied to the primary keys of the tuples,

and we then collapse each group of nodes into a single virtual node. More specifically,

in the first step, we map each node v ∈ V in the original hypergraph to a virtual node

v′ ∈ V ′ in the compressed hypergraph by computing v′ = f(pkv), where pkv repre-

sents the node v’s primary key. In our current implementation, we use a hash function,

HF (pkv) = hash(pkv) mod N , where N is the desired number of virtual nodes. How-

ever, any inexpensive function (e.g., a range partitioner) could be used instead. Using

such a primary key-based coalescing plays a crucial role in developing an efficient and

scalable routing mechanism with minimum book-keeping; further details are discussed in

Section 3.3.5.

Let V ′ denote the resulting set of virtual nodes. For a hyperedge e ⊆ V in the

original hypergraph, let e′ ⊆ V ′ denote the set of virtual nodes to which the vertices in e

36

were mapped. If e′ contains at least two virtual nodes, then we add e′ as a hyperedge to the

compressed graph (denoted H′ = (V ′, E ′)). We define the hypergraph compression ratio

(CR) as the ratio of the number of nodes |V | in the original hypergraph to the number

of virtual nodes |V ′| in the compressed hypergraph, i.e., CR = |V |
|V ′| . CR = 1 indicates

no compression, whereas CR = |V | indicates that all the original vertices were mapped

onto a single virtual node.

Next, we iterate over each hyperedge e ∈ E of the original hypergraph and replace

each node ve ∈ Ve spanned by the hyperedge e with v′e′ using the mapping generated

in the first step. Each hyperedge e′ ∈ E ′ so generated in the compressed hypergraph is

associated with an edge weight we′ which represents the frequency of the hyperedge. Fig-

ure 3.2(b) provides an illustration of compressed hypergraph generation. The mappings

produced by the first step create virtual nodes v′1 = {a, b}, v′2 = {c, f, g} and v′3 = {e}.

The second step generates the hyperedges e′1 and e′2 and the edge weights associated with

these hyperedges depict the frequency of transactions accessing the corresponding sets of

virtual nodes.

This hybrid coarse-grained approach, although simple, is highly effective at reap-

ing the benefits of workload-aware partitioning without incurring the high overhead of

the fine-grained approach. First, the hypergraph size is reduced significantly, reducing

the overhead of running the partitioning and repartitioning algorithms. Second, it natu-

rally handles new inserted tuples and tuples that were not part of the provided workload.

Each such tuple is assigned to a virtual node based on its primary key and placed on the

partition assigned to the virtual node. Third, it avoids over-fitting the partitioning and

replication to the provided workload, resulting in more robust data placement. We also

37

need significantly smaller query workloads as input to make partitioning decisions.

On the other hand, the coarseness introduced by the compression process may result

in larger min-cuts (and thus higher number of distributed transactions). However, we

empirically show in Section 3.4 that the orders-of-magnitude gains in terms of the above

mentioned benefits far offset the probable increased cost of distributed transactions as

compared to a fine-grained approach.

3.3.2 Incremental Repartitioning

A workload-driven approach is susceptible to performance degradation if the ac-

tual workload (in the future) is significantly different from the workload used to make

the partitioning and replication decisions. The quantum of performance variance is de-

pendent on the sensitivity of the data placement technique to workload change. As we

illustrate through our experimental evaluation (Section 3.4.4), the coarser representation

achieved through hypergraph compression makes our approach less sensitive to workload

changes compared to the fine-grained approach. However, significant workload changes

will result in the initial placement being sub-optimal over time. In this section, we present

an incremental repartitioning technique that performs data migration in incremental steps

without resorting to complete repartitioning.

Our proposed incremental repartitioning technique monitors the workload changes

at regular intervals, and moves a fixed amount of data items across partitions in incremen-

tal steps to mitigate the impact of workload change. The data migration is triggered when-

ever the percentage increase in the number of distributed transactions (4mincut) crosses

38

a certain threshold, c, a system parameter which can be set as a percentage of the initial

min-cut, depending upon the sensitivity of applications to latency.

At a high level, our algorithm maintains pairs of sets of candidate virtual nodes

that can be swapped to reduce the size of the min-cut. During lean periods of activity,

the algorithm makes a maximum of k such moves in each step to reduce the min-cut of

the data placement as per the current workload. It repeats these steps until the min-cut

reduces below the threshold value. The algorithm thus provides an incremental approach

to adjust the data placement without resorting to complete data migration.

More specifically, letHcut = {e1, e2, . . . , et} denote the set of hyperedges that span

multiple partitions, i.e., the set of hyperedges in the cut, as per the initial data placement.

Let Pcut = {P1, P2, . . . , Pt} be the set of partition sets, where Pi ∈ Pcut is the set of

partitions spanned by hyperedge ei ∈ Hcut. Further, let Vi = {v1, v2, . . . , vn} be the set

of virtual nodes covered by hyperedge ei, and let Vcut = {
⋃

i=1,...,t Vi}, be the union set of

nodes covered by all the hyperedges in the cut. This is the first set of our candidate nodes

for migration. For each virtual node vi ∈ Vcut, in our first candidate set, we maintain a set

of partitions Pvi that contain the node or its replicas, such that {vi ∈ pj, ∀pj ∈ Pvi}. Let

nhij be the sum of the weights of hyperedges incident on node vi in partition pj . So each

vertex vi is associated with a set NHi where nhij ∈ NHi and pj ∈ Pvi .

Let VS be the set of virtual nodes that are covered only by hyperedges that are not

cut. In other words, if we move a virtual node in VS to a different partition, it would

not change the min-cut value. This set of virtual nodes forms our second set of candidate

nodes.

Let the contribution of each hyperedge e ∈ Hcut towards total number of distributed

39

transactions seen so far be

Ce =
ndte∑

i=1,...,t ndtei

and let C = {Ce|e ∈ Hcut}. The numerator ndte is the weight of the hyperedge e in the

cut, whereas the denominator is the sum of the weights of the hyperedges in the cut. We

maintain a priority queue, PQ of hyperedges e ∈ Hcut. Each element in PQ is ordered

by Ce and thus the largest element represents the hyperedge with the highest value of Ce.

We choose to consider only those hyperedges that span two partitions which guarantees

that a single swap of virtual nodes between two partitions would reduce the min-cut3.

Swapping gain (SG): Consider a hyperedge ei ∈ Hcut spanning two partitions pa ∈

Pi and pb ∈ Pi where Pi ∈ Pcut. Let Sa = {pa
⋂
Vi}, Sb = {pb

⋂
Vi}, be the set of virtual

nodes covered by ei in the partitions pa and pb respectively. Let S̄a = {{pa − Vi}
⋂
VS},

S̄b = {{pb− Vi}
⋂
VS}. The swapping of all the virtual nodes in Sb with a set of virtual

nodes {I ⊆ S̄a | Iw ' Sbw} where Iw and Sbw is the sum of node weights in I and Sb

respectively (to maintain a load balance), would result in two things. Firstly ei would

be removed from Hcut decreasing the min-cut by ndte. Secondly, the set of hyperedges

other than ei which are incident on the nodes in Sb might probably become distributed

increasing the min-cut by (
∑

i∈Sb
nhib − ndte) in the worst case. Thus the minimum

swapping gain SG is given by:

SG = ndte − (
∑
i∈Sb

nhib − ndte) = 2× ndte −
∑
i∈Sb

nhib

3A majority of hyperedges in the cut of our compressed hypergraph representing TPC-C, a typical OLTP
workload, span two partitions.

40

Algorithm 1: Incremental repartitioning algorithm
Require: Initial min-cut Mc, PQ, threshold c, CN = ∅.

1: while4mincut > c% of Mc do
2: while |CN | < k do
3: e = PQ.peek()
4: SG1 = 2× ndte −

∑
i∈Sa

nhia

5: SG2 = 2× ndte −
∑

i∈Sb
nhib

6: if SG1 ≥ SG2 and SG1 > 0 then
7: Identify {I ⊆ Sb | Iw ' Saw}
8: CN = CN ← (I, Sa)

9: PQ.remove(e)
10: else if SG2 ≥ SG1 and SG2 > 0 then
11: Identify {I ⊆ Sa | Iw ' Sbw}
12: CN = CN ← (I, Sb)

13: PQ.remove(e)
14: end if
15: end while
16: Swap the k sets of virtual nodes
17: UpdateHcut,4mincut, PQ
18: end while

Algorithm 1 provides the details of our proposed incremental partitioning tech-

nique. A background process monitors the workload and populates PQ. The algorithm

is triggered when 4mincut exceeds a given threshold value c. The algorithm (lines 2-9)

identifies at most k pairs of sets of virtual nodes for swapping which would maximize the

total SG and stores them in CN as candidates to be swapped. It executes the k swaps (line

10) at a lean period of activity. It then updatesHcut,4mincut to reflect the changes caused

by the swaps. It repeats the steps until the current min-cut falls below the set threshold

value.

41

3.3.3 Workload-aware Replication

Active and aggressive replication has the potential to provide better load balancing,

improved availability in presence of failures, and a reduction in the number of distributed

read transactions. However, providing strict transactional semantics with ACID proper-

ties becomes a challenge in presence of active replication [33].

We propose an aggressive workload-aware replication technique that provides data

availability proportional to the workload requirement. We exploit tuple-level access pat-

tern statistics to ascertain the number of replicas for each data item. We argue that the

drawbacks of replicating items that are heavily updated are offset by several considera-

tions: (1) for availability, it is desired that each data item be replicated at least once; (2)

items that are heavily updated are typically also heavily read and replicating those items

can reduce the total number of read-only distributed transactions; (3) through use of ap-

propriate quorums, we can balance the writes across a larger number of partitions. A key

feature of our replication technique is the notion of disentangling transactions to afford

better min-cuts. We discuss this further below.

Replica generation: We have developed a statistical module that uses the transactional

logs (Section 3.4.1) to compute the read and write statistics for each virtual node. Each

node v′i in the compressed hypergraph H represents a set of tuples Ti. Each tuple tij ∈

Ti has a read frequency (frij) and a write frequency(fwij). To compute each node’s

replication factor we compute the size compensated average of reads and writes per virtual

42

node as follows:

Avg(v′i)w =

∑
j fwij

logS(v′i)
, Avg(v′i)r =

∑
j frij

logS(v′i)
, R =

Avg(v′i)w
Avg(v′i)r

whereAvg(v′i)w andAvg(v′i)r are average read and write frequencies of node v′i, logS(v′i)

is the log of the size of node v′i. R is the average write-to-read ratio.

Based on the access pattern statistics generated, if the ratio Ṙ ≥ δ (where 0 < δ <

1) the virtual node is replicated only once to control the cost of distributed updates. For all

other nodes, the number of replicas generated is a linear function of Avgr(i). δ serves as

a threshold value for controlling the number of replicas for heavily written tuples and can

be chosen based on the workload requirements and the level of fault tolerance required.

We use the log of the sizes of virtual nodes to compensate for the skew in the size of the

virtual nodes; this helps in limiting the number of replicas created for heavily accessed

large virtual nodes.

In-graph replication: Once we have chosen the number of replicas for a virtual node,

we modify the compressed hypergraph by adding as many copies of the virtual node as

required. One key issue then is assigning these virtual node replicas to the hyperedges

in the graph. We observe that by doing this cleverly, we can disentangle some of the

transactions that share data items and construct a graph with a better min-cut. Let Rv′

be the set of replicas for the virtual node v′. The replica assignment algorithm computes

a set of distinct hyperedges Ev′ incident on v′ and for each e′ ∈ Ev′ its associated edge

weight we′ . There are two possibilities:

Case 1: |Ev′| ≥ |Rv′|: We reduce this case to a simple multi-processor scheduling prob-

43

a d c

c
e'1 e'2

e'3

2 6

7

a d d' c

c
e'1 e'2

e'3

2 6

7

2
2 6
2
7 6

e'1
e'1 e'2
e'1e'3

(a) Case 1 (b) Case 2

d d'

e'2

a d

c
e'1

20

10

e'2

e'2

d'

c

a d d''

e'11
10

10

10
e'12

Figure 3.3: In-graph replication

lem. Each replica r ∈ Rv′ is associated with a processor br. Each hyperedge e′ ∈ Ev′ is

assigned to one of these processors, increasing the current load on the processor by the

corresponding hyperedge weight we′ . Minimizing the maximum load across the proces-

sors is equivalent to finding an equitable assignment of the replicas to the hyperedges.

Since the scheduling problem is NP-Hard, we use a greedy approach which considers the

hyperedges in the decreasing order by weight, and assigns the next hyperedge to the pro-

cessor with the current minimum load. Finally all the hyperedges assigned to a particular

processor br are allocated the replica r associated with the processor.

Figure 3.3(a) gives an example showing the assignment of a virtual node d and its

replica d′ to the incident hyperedges e′1, e
′
2 and e′3 with edge weights 2, 6 and 7 respec-

tively. The algorithm creates two processors representing d and its replica d′ and assigns

hyperedges to these processors greedily.

44

Case 2: |Ev′| < |Rv′ | : The insertion algorithm splits the hyperedge e′ with the highest

weight we′max
into two hyperedges with weights dwe′max

2
e, bwe′max

2
c respectively. It repeats

this procedure until the number of hyperedges is equal to |Rv′ | and then allocates one

replica to each hyperedge.

Figure 3.3(b) gives an example for case 2 showing the assignment of a virtual node

d and its replicas d′, d′′ to the incident hyperedges e′1 and e′2 with edge weights we′1
= 20

and we′1
= 10 respectively. The algorithm chooses e′1 since it has the highest weight and

splits it into two hyperedges e′11 and e′12 each with a weight of 10.

3.3.4 Fine-grained Quorums

Aggressive active replication comes at the cost of distributed update transactions

which hurt performance. Quorums [63] have been extensively used to control the over-

heads associated with distributed updates for maintaining active replica consistency [33,

34]. In addition to this, quorums also help in improving fault tolerance by gracefully

dealing with partition failures.

Let S = {S1, S2, · · · , } denote the set of partitions on which a data item is stored. A

quorum system Q (for that data item) is defined to be a set of subsets of S with pair-wise

non-empty intersections [32]. Each element of Q is called a quorum. A simple example

of a quorum system is the Majority quorum, where every majority of the partitions forms

a quorum. Defining read and write quorums separately, a quorum system is valid if: (a)

every read quorum (rq) overlaps with every write quorum (wq), and (b) every two write

quorums have an overlap. Another quorum system is ROWA (read-one-write-all), where

45

a read can go to any of the partitions, but a write must go to all the partitions. Quorums

allow us to systematically reduce the number of partitions that must be involved in a

query, without compromising correctness.

Depending on the nature of the workload, the choice of the quorum system plays a

significant role in determining its effectiveness in improving performance. For example,

ROWA quorum would perform well for read intensive workloads and Majority quorum

would help in controlling the cost of distributed updates for write intensive workloads.

However different transactional workloads might have different mixes of read and write

queries. Also, different data items in a given workload may have different read-write

access patterns. Choosing a fixed quorum for the all the data items in the system a priori

may significantly hurt the performance.

In this dissertation, we propose using fine-grained quorums, which are defined at

the virtual node level (a group of tuples). We focus on two quorum systems, ROWA and

Majority. Given a workload, the type of quorum for each virtual node is decided based

on its read/write access pattern, as monitored by the statistical module. We compute R,

the write-to-read ratio (Section 3.3.3) for each virtual node. The quorum for each virtual

node is then decided based on the value of R. If R > γ, where (0 < γ < 1), then we

chooses Majority quorum else ROWA quorum. The value of γ is a system parameter,

which can be adjusted based on the nature of the query workload. We experimented with

different values for γ and observed that as γ increases from 0.5 and tends towards 1, the

system chooses ROWA for most data items incurring a high penalty for writes thereby

reducing performance. On the other hand, as γ decreases from 0.5 and tends towards 0,

the system chooses Majority quorum for most data items incurring a higher overhead for

46

reads. Our experiments showed that γ = 0.5 was able to achieve a fine balance between

the benefits of ROWA quorum for reads and Majority quorum for reducing the number of

copies to be updated and gave the best performance for the TPC-C benchmark.

Quorums defined at the virtual node level specify the number of copies of each

data item that need to be accessed in order to meet the quorum requirement. For each

virtual node v′ having a set of available copies Cv′ , a read quorum |cr|, cr ⊂ Cv′ and

a write quorum |cw|, cw ⊂ Cv′ defines the number of copies of v′ required for either

a read or write query. These read and write quorums values are defined based on the

types of quorum. For example, a majority quorum requires that |cr| + |cw| > |Cv′ | and

2 ∗ |cw| > |Cv′ |, while ROWA requires |cr| = 1 and |cw| = |Cv′|.

The choice of quorum at the level of each virtual node makes the system adaptive

to a given workload and improves the effectiveness of quorums in reducing the costs of

distributed updates significantly. We have conducted extensive experiments to study the

use of different quorums for a number of query workloads with different mixes of read

and writes. Our results show that fine-grained quorums provide significant benefits in

terms of reducing the average query span and improving the transaction throughput for

different types of workloads. This feature is especially useful for database-as-a-service in

a cloud computing environment.

3.3.5 Query Routing

The use of graph based partitioning and replication schemes requires that the map-

pings of tuples to partitions be stored at the router to direct transactions to appropriate

47

partitions. This is a major scalability challenge since the size of these mappings can

become very large, and they may not fit fully in the main memory leading to increased

lookup times. The problem is further aggravated with tuple-level replication which only

adds to the size of these mappings. Existing techniques for dealing with this issue [23] use

compute-intensive look-up table compression techniques coupled with a scaled-up router

architecture to fit the lookup tables in memory, which may not be cost effective.

We propose a routing mechanism that requires minimum book-keeping as a natural

consequence of our hypergraph compression technique. The size of the mapping tables

is reduced by a factor of CR (the hypergraph compression ratio). Depending on the

router’s compute and memory capacity, a suitable CR could be chosen to optimize overall

performance. In addition to this, we incorporate two additional features to reduce the

query span and the cost of distributed updates: fine-grained quorums (as described in

Section 3.3.4) that determine the number of copies of each data item required, and a set-

cover algorithm that determines the minimum number of partitions required to satisfy the

query and meet the quorum requirements.

Minimum set-cover algorithm: The minimum set-cover problem to minimize the query

span can be defined as follows: given a transaction e′, a set of virtual nodes V ′
e′ accessed

by e′ and their replicas Re′; a set of partitions {P e′

RV ′ | V ′
e′ ∪ Re′ ⊆ P e′

RV ′}; a universe

Ue′ = {v′ → c | v′ ∈ V ′
e′ , c ∈ Ce′} where c is the number of copies required for v′

as per the quorum requirement; a set-cover map Se′ = {v′ → c | v′ ∈ V ′
e′ , c ∈ Ce′}

where the initial count c of each element is set to 0; determine the minimum number

of partitions S ⊆ P e′

RV ′ that cover the universe Ue′ . The minimum set-cover is an NP-

48

Algorithm 2: Set-cover Algorithm
Require: H′, e′ ∈ E′, Pi ∈ PRV ,Ue′ = {v′ → c | v′ ∈ Ve′ , c ∈ Ce′}, Se′ = {v′ → c | v′ ∈

Ve′ , c ∈ Ce′}
1: while UCe′ 6= 0 do
2: pindex =argmaxi({Ue′ − Se′} ∩ Pi)

3: S ∪ = Ppindex

4: Se′ + = Ppindex

5: UCe′ = Ue′ − Se′
6: end while
7: return S

Complete problem and we use a greedy heuristic to solve the same. In each iteration

the algorithm determines the partition Pi which covers the maximum uncovered elements

UCe′ in the universe Ue′ given by max({Ue′ − Se′} ∩ Pi), where {Ue′ − Se′} denotes the

operation wherein the counts of the elements in the universe Ue′ are decremented by the

count of the corresponding elements in Se′ . The set-cover S is updated with the partition

Pi, i.e., S = S ∪ Pi, Se′ = Se′ + Pi which increases the count of common elements in

the set-cover map by one. The uncovered elements are updated by UCe′ = Ue′ − Se′

which reduces the counts of common elements in Ue′ by the counts of the corresponding

elements in Se′ . The algorithm terminates when the counts of all elements in UCe′ = 0

and outputs S. The algorithm for computing the set-cover is shown in Algorithm 2.

To give an example: consider a transaction e′ = {2, 3, 5, 9, 12, 14} where the num-

bers in the set indicate the IDs of the virtual nodes accessed by e′, Ce′ = {2, 1, 1, 2, 1, 1}

which denotes the number of copies required for corresponding elements in e′ to satisfy

the quorum requirements. Consider a set of partitions P1 = {2, 9}, P2 = {2, 3c, 5c, 14},

P3 = {9c, 5c, 12}, and P4 = {12c, 14c} where the element n ∈ V ′
e′ and nc ∈ RV ′

e′
. In

the first iteration the algorithm chooses P2, updates S = {P2}, then computes the uncov-

49

Table 3.1: Router memory requirements
Scheme Fine-grained CR=3 CR=6 CR=11 CR=28

Mappings size 20 GB 8GB 4GB 2.2GB 857MB

ered elements UCe′ = e′ − P2 updating Ce′ = {1, 0, 0, 2, 1, 0}. In the second iteration it

chooses P3, updates S = {P2, P3} and Ce′ = {1, 0, 0, 1, 0, 0}. In the third iteration the

algorithm chooses P1, updates S = {P2, P3, P1} and Ce′ = {0, 0, 0, 0, 0, 0} and the algo-

rithm terminates as all elements in the universe are covered. S constitutes the minimum

number of partitions that the transaction needs to be routed to.

Generation of mapping tables: We use a hash table-based lookup mechanism to deter-

mine the virtual nodes accessed by a query. We create a set of hashmaps for each relation

RE i in the partitioned database. Using the hash function HFpkv used for graph compres-

sion to map tuples to virtual nodes, for each relationRE i, we create one hashmapMk per

primary key attribute k ∈ Ki where Ki is the set of attributes which form the primary key

for relation RE i. These hash tables map the distinct values of k ∈ Ki to a set of virtual

nodes that contain tuples with corresponding values of k. Further, we create union maps

Mi = ∪Mk, ∀k ∈ Ki which essentially contain all virtual nodes containing tuples of

relationRE i. These mapping tables generated at the virtual node level need to be updated

or regenerated only at the time of data repartitioning, a relatively infrequent process for

stable workloads. New tuples in the database are automatically mapped to existing virtual

nodes and hence do not require any updates to the mapping tables at the router.

We see a drastic reduction in memory requirement compared to the fine-grained

scheme. This can be attributed to two factors. First, the tables are maintained at the level

of virtual nodes and hence provide a reduction in size by a factor of CR. Second, we

50

Routing interface
QP contains

primary keys (pk_v) QP contains
partial set of
primary keys

QP contains
 no primary keys

hash
(pk_v)

Router

Intersection of primary
key hash maps

Union set of
primary

key hash maps

Quorum
input

Minimum partition set
Transaction Manager

Query

Replica,
location info

Set of virtual nodes containing the required tuples

Step-1

Step-2

Figure 3.4: Routing architecture

maintain hash maps per primary key attribute. The number of distinct values per primary

key attribute is much smaller than the total number of distinct primary key values4, making

the hash tables very compact. Table 3.1 shows the effectiveness of our proposed routing

mechanism by comparing the size of the router mapping tables for a workload of 1 Billion

tuples.

Routing mechanism: Figure 3.4 illustrates the flow of our routing mechanism. The rout-

ing interface provided by the query processing module takes a query as input and parses it

to determine the relationRi and the set of primary keysQP i in the query predicate. It then

deals with three cases. First, ifQP i = Ki, it simply hashes the key values and obtains the

virtual node which the query needs to access. This process requires no lookup and is the

4The Cartesian product of the full set of attributes forming the primary key.

51

most efficient case. Second, if QP i ⊂ Ki the routing module returns ∩Mk,∀k ∈ QP i

which would give the set of all virtual nodes that contain tuples with the corresponding

primary key values. The lookup and intersection operations are quite efficient as the size

of these tables is small and the operations can be done in memory. Third, if QP i = null,

i.e., the query predicates do not contain any primary key attributes, the union setMi of

the corresponding relation Ri is returned. Here no computation is involved as the pre-

computed union set is returned.

In the next step, the router determines the virtual node replicas, and their location

information using the mappings obtained from the data partitioner. It gives this informa-

tion as input to the set-cover algorithm which computes the minimum partition set that

meets the quorum requirement on which the transaction needs to be executed.

3.4 Experimental Evaluation

In this section, we present the results of the experimental evaluation of our system.

We first provide some details of our system implementation in Section 3.4.1 followed by

our experimental setup in Section 3.4.2. We then provide an experimental analysis of our

hypergraph compression technique, and discuss the effects of our techniques on router

efficiency and system throughput. We then evaluate our fine-grained quorum technique

and its effect on the end-to-end system performance.

52

3.4.1 System Implementation

We have used PostgreSQL 8.4.8 as the relational DBMS system and Java-6-OpenJDK

SE platform for developing and testing our framework. For hypergraph generation we

follow an approach similar to that of Schism [6] wherein we use the PostgreSQL logs to

determine the queries run by the benchmark. We have developed a query transformation

module that transforms each query into an equivalent SELECT SQL query, from which

we can extract the primary keys of the tuples accessed by the query to build the hyper-

graph. For executing the transactions the transaction manager uses the Java transaction

API’s (JTA) XAResource interface to interact with the DBMS resource managers running

on the individual partitions and executes transactions as per the 2-phase commit protocol.

3.4.2 Experimental Setup

This section provides the details of our system configuration, workloads, datasets

and the baselines used.

3.4.2.1 System Configuration

Our system deployment on Amazon EC2 consists of one router cum transaction

manager and 10 database partitions each running an instance of a PostgreSQL 8.4.8 server

running with a read committed isolation level. The router configuration consists of 7.5 GB

memory, 4 EC2 Compute Units, 850 GB storage, and a 64-bit platform with Fedora Core-

8. The 10 database partitions are run on separate EC2 instances each with a configuration

of 1.7 GB memory, 1 EC2 compute unit, 160 GB instance storage, 32-bit platform with

53

Fedora Core-8.

3.4.2.2 Workloads and Datasets

We have used the TPC-C benchmark for our experimental evaluation which con-

tains a variety of queries: 48% write queries (update and insert), 47% read queries (select),

and 5% aggregate queries (sum and count). The database was horizontally partitioned into

ten partitions according to different partitioning schemes for the purposes of experimen-

tal evaluation. In order to experiment with a variety of different configurations, we used

a dataset containing 1.5 Billion tuples, and different transactional workloads consisting

of up to 10 million transactions. We have varied the percentage of read and write trans-

actions to simulate different types of transactional workloads. In particular, we created

three different mixes from the TPC-C workload: Mix-1 consisting of 75% of read-only

transactions and 25% write transactions, Mix-2 consisting of 50% each of read and write

transactions, and Mix-3 consisting of 25% read and 75% write transactions.

3.4.2.3 Baselines

In our experiments we compare the performance of our approach of using com-

pressed hypergraphs (referred to as compressed) with two partitioning strategies as base-

lines: Random (hash-based) with 3-way replication, and fine-grained tuple-level hyper-

graph partitioning approach.

Random: We use tuple-level random partitioning with 3-way replication as our baseline.

This approach is essentially the same as hash partitioning. We place the tuples using a

54

hash function (specifically, by overriding the hashcode() function in java to a hash func-

tion of choice, MD5 in our case) with range {1, ..., P} (P = number of partitions), and the

resulting placement is nearly random. The 3-way replication is achieved using 3 different

hash functions, with a post-processing step to ensure no two replicas land on the same

partition.

We note here that the TPC-C benchmark includes a large number of queries that

access a small number of tuples, and a few queries that access a large number of tuples.

In particular, we need to be able to handle queries where only a portion of the primary

key of a table is specified. An example of such a query is:

select count (c id) from customer where c d id = 3

and c last = ’OUGTHCALLYPRES’ and c w id =1.

The predicates of this query specify a partial primary key set and the query accesses more

than one tuple. Therefore, in spite of using hash functions to map the tuples and their

replicas to physical partitions, we still need tuple-level mapping tables to determine the

locations of all tuples that are accessed by such queries.

Fine-grained: Fine-grained partitioning is obtained by first constructing a tuple-level hy-

pergraph where each hyperedge represents a transaction and nodes spanned by the hyper-

edge represent tuples accessed by the transaction. We use tuple-level read-write access

patterns to determine the number to replicas for each tuple and use in-graph replication

which approximates an average 3-way replication for each tuple, and partition the hyper-

graph using hMetis to obtain a fine-grained partitioning.

Compressed: We generated compressed hypergraphs for different compression ratios and

55

 5000

 10000

 15000

 20000

 25000

R
andom

C
R
:112

C
R
:56

C
R
:28

C
R
:11

C
R
:6

C
R
:3

Fine-grained

 0

 50

 100

 150

 200

M
in

 c
u

t

P
ar

ti
ti

o
n

 t
im

e
(s

ec
s)

Partition time and min-cut comparison

Min-cut
Partition time

Figure 3.5: Effect of hypergraph compression on min-cut and partitioning time.
(Note that the left y-axis does not start at 0.)

selected six different CRs (3, 6, 11, 28, 56, 112) as candidates for comparing our proposed

technique with random and fine-grained partitioning schemes for our initial experiments

in Section 3.4.3. Based on the results obtained we use a subset of these CRs (6, 11 and 28)

for our experiments in the subsequent sections. Although our workload-aware replication

scheme generates different number of replicas for each virtual node based on its access

patterns, our scheme approximates an average 3-way replication in terms of the total

number of replicas produced to provide a fair comparison with the other two techniques.

3.4.3 Hypergraph Compression Analysis

We explored the trade-off between the partitioning quality (min-cut) and the par-

titioning time for different compression ratios (CRs) and compared the same with our

baselines (Figure 3.5). The number of distributed transactions is highest for the random

56

partitioning scheme (26244) since it does not take into account the nature of the query

workload at all. The min-cut for fine-grained is the minimum (4860) as it accurately rep-

resents the query workload at the tuple-level. The min-cuts for the compressed graphs

lie in between random and fine-grained, and their magnitudes vary closely in accordance

with the compression ratio of the hypergraph, ranging from 10944 for a compression ratio

of 112, to 7740 for a compression ratio of 3. On the other hand, the hypergraph partition-

ing time is highest for the fine-grained and decreases significantly with the increase in

the CR of the hypergraph. The partitioning time for random is 0 since it does not involve

hypergraph partitioning and places the tuples randomly on different partitions.

There is a clear trade-off between the partitioning time and the min-cut. On one

hand, a decrease in min-cut represents a reduction in the number of distributed transac-

tions while a reduction in the partitioning time plays a crucial role in reducing the overall

costs associated with partitioning and repartitioning the database. An interesting thing to

note here is that there is little variation in the min-cut as the compression ratio is increased

from 3 to 56 which gives us the flexibility of compressing the graph without paying too

much penalty in terms of the increase in the number of distributed transactions and at

the same time making the system more scalable and efficient in terms of handling larger

query workloads. Based on these results we have chosen CRs 6, 11, 28, as potential sweet

spots which have a reasonable min-cut and a substantially lower partitioning time for our

further experiments. We advocate using an analogous analysis phase to choose the CR

for other scenarios.

57

3.4.4 Effect of Workload Change

To ascertain the sensitivity of our approach to workload change and its impact on

system performance, we conducted an experiment (Figure 3.6(a)) to evaluate the percent-

age change in the number of distributed transactions against the variation in the workload.

For the purpose of the experiment, data was partitioned as per different partitioning strate-

gies (fine-grained, our compressed hypergraph scheme with CRs 6, 11 and 28) for a given

workload. Thereafter, the workload was varied by removing some old transactions and

adding some new transactions. The variation in the number of distributed transactions

was observed against the percentage change in workload. As can be seen, fine-grained

partitioning was the most sensitive to workload change and the compressed hypergraph

schemes were able to absorb the effect of workload change to a much greater extent with

a smaller change in the number of distributed transactions for the same percentage change

in workload.

Experimental evaluation of our incremental partitioning module highlights its effec-

tiveness in dealing with the performance variation due to workload change. Figure 3.6(b)

shows the number of data items that need to be moved in terms of percentage of the total

number of data items placed as the workload changes. We see that our scheme can handle

up to a 90% change in workload by migrating up to a maximum of 20% of data items

as compared to the baseline which represents the amount of data required to be migrated

when performing a complete repartitioning of the database. Figure 3.6(c) shows the num-

ber of incremental steps required to bring the increased min-cut (due to workload change)

to a value below the required threshold value.

58

150

200

250

300

%
 C

h
a

n
g

e
 i

n
 m

in
cu

t

Sensitivity to workload change

Fine-grained CR:6 CR:11 CR:28

0

50

100

150

34 50 60 67

%
 C

h
a

n
g

e
 i

n
 m

in
cu

t

% Change in workload

(a)

40

60

80

%
 D

a
ta

 m
o

v
e

d

Effectiveness of data movement

Baseline % Incremental Re-partitioning

0

20

40

10 20 30 40 50 60 70 80 90

%
 D

a
ta

 m
o

v
e

d

% Change in Workload

(b)

60

80

100

120

%
 R

e
d

u
ct

io
n

 i
n

 m
in

-c
u

t

v
a

ri
a

n
ce

Effect of Incremental Re-partitioning

10% change 20% 30% 40% 50% 60%

70% 80%

90%

0

20

40

60

1 12 23 33 43 53

%
 R

e
d

u
ct

io
n

 i
n

 m
in

v
a

ri
a

n
ce

Number of incremental steps

Threshold

(c)
Figure 3.6: (a) Fine-grained approach is more sensitive to workload changes than
the compressed approach; (b) Our approach needs to move significantly smaller
amount of data to maintain an effective partitioning compared to a baseline that
does complete repartitioning; (c) Number of iterations required to bring down the
increased min-cut under the threshold value.

59

We see that the number of iterations required to bring the variation (or increase) in

min-cut below the threshold value increases as the % change in workload increases. We

compute the % change of workload in terms of the fraction of hyperedges (transactions)

affected by the workload change. The number of steps would vary with the value of k,

the number of swaps that can be done in one iteration. The results shown are for k = 10.

3.4.5 Routing Efficiency and Quality

We measure the router efficiency in terms of the query routing time (comprising of

query pre-processing time, and set-cover computation time) and routing quality in terms

of the query span. The query pre-processing time includes the time for query parsing,

determining the tuples accessed by the query, their replicas and their locations. We study

the variation of router efficiency and quality with the variation in the min-cut of the hy-

pergraph. All plots in this section show average quantities per query over 350K TPC-C

queries.

Query routing time: Figure 3.7(a) shows the comparison of query routing times for dif-

ferent partitioning schemes on the log scale. Random and fine-grained partitioning have

much higher query pre-processing times since they require lookups into large tuple-level

routing tables, whereas, the average query pre-processing time for the compressed hy-

pergraph reduces with the increase in the compression ratio and is substantially smaller

than the other two partitioning schemes. This can be attributed to lookups into much

smaller hash tables making the system scalable for handling large query workloads.

60

 0.1

 1

 10

 100

 1000

 10000

Pre-process Set-cover Routing
T

im
e

(m
se

cs
)

(l
o

g
 s

ca
le

)

Query routing time comparison

Random

Compressed (CR: 28)

Compressed (CR: 11)

Compressed (CR: 6)

Fine grained

(a)

 1.5

 2

 2.5

 3

 3.5

R
andom

C
R
:28

C
R
:11

C
R
:6

Fine-grained

 0

 10

 20

 30

 40

 50

Q
u
er

y
 s

p
an

T
ra

n
sa

ct
io

n
 d

is
p
at

ch
 t

im
e

(m
se

cs
)Query span analysis

Query span
Transaction dispatch time

(b)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

R
andom

C
R
:28

C
R
:11

C
R
:6

Fine-grained

 0

 200

 400

 600

 800

 1000

 1200

T
o
ta

l
en

d
-t

o
-e

n
d
 t

im
e

(m
se

cs
)

T
h
ro

u
g
h

p
u
t

(t
x
s/

se
c)

End-to-end time system testing

Total time
Throughput

(c)
Figure 3.7: (a) Effect of hypergraph compression in minimizing the query pre-
processing time and the set-cover computation time (note that the y-axis is in log
scale); (b) The transaction dispatch time is directly dependent on the query span. (c)
End-to-end system performance in terms of the end-to-end transaction time and the
throughput for the compared schemes.

61

The set-cover computation time is dependent on the size of the partition-wise list of

data items accessed by the query. For tuple-level partitioning schemes, this partition-wise

list is in terms of individual tuples and for the compressed graph partitioning schemes it

is in terms of virtual nodes. Consequently, random and fine-grained partitioning have a

much higher set-cover computation time. The set cover time decreases with increase in

CR and compressed graph partitioning with the highest compression ratio (CR:28) having

the lowest set-cover computation time.

Query span analysis: Figure 3.7(b) gives a comparison of the average query span for

different partitioning schemes and compares its effect on the transaction dispatch time

which is the time taken by the transaction manager for executing transactions on the dis-

tributed database partitions5. The query span is a measure of the quality of data placement

achieved. Random partitioning has the highest query span and the fine-grained parti-

tioning has the lowest, while the query spans of the compressed hypergraphs for different

CRs fall between those two. The transaction dispatch time closely follows the distribution

of the average query spans, wherein a higher query span results in a higher transaction

dispatch time. It is pertinent to note here that the reduction in transaction dispatch time

achieved using fine-grained partitioning as compared to compressed hypergraph is not as

significant as the orders of magnitude reduction in routing time achieved through graph

compression and an efficient routing mechanism.

End-to-end system testing: Figure 3.7(c) shows the comparison of the end-to-end trans-

action times and throughput measurements on 10 partitions for different partitioning

5It does not include the query routing time.

62

 100

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1 2 3 4 5 6 7 8

T
h
ro

u
g

h
p
u
t

(t
ra

n
sa

ct
io

n
s/

se
c)

Number of partitions

Scalability comparison

Compressed Graph (CR:11)
Fine-grained

Ideal

Figure 3.8: Effect of increasing parallelism on throughput: due to the high query
routing costs, the fine-grained approach is not able to effectively utilize the available
parallelism.

schemes on the log-scale. We see a substantial reduction in the total end-to-end trans-

action time and a high throughput for the compressed graph partitioning scheme with dif-

ferent CRs as compared to random and fine-grained partitioning. This can be attributed to

the substantial reduction in routing time due to hypergraph compression and a reasonably

good data placement as compared to fine-grained. Fine-grained does better than random

due to better data placement and consequently a reduced transaction dispatch time and

improved transaction throughput.

Throughput scalability: In order to test the end-to-end scalability of our system, we

partitioned the workload using different partitioning schemes onto 1, 2, 4, and 8 partitions

and used the TPC-C workload to ascertain the throughput as compared to an ideal linear

speed-up for an embarrassingly parallel system. The results (Figure 3.8) indicate that

the compressed graph scheme starts with a throughput of 165 transactions per second and

achieves a throughput of 904 transactions per second for 8 partitions which is substantially

63

higher than that achieved by the fine-grained partitioning scheme which can be attributed

to its large query processing time. The non-linear speed-up is due to contention inherent

in the TPC-C workload.

3.4.6 Fine-grained Quorum Evaluation

To ascertain the suitability of different types of quorums for different transactional

workloads, we used different proportions of reads and writes to generate different work-

load mixes. For this set of experiments, we used Mix-1, Mix-2, and Mix-3 data sets,

a CR of 11 for the compressed graph, and compared its performance with random and

fine-grained for different types of quorums.

We studied the variation of query span and total transaction time for ROWA (read-

one-write-all) and Majority quorum for different query workload mixes. Our results (Fig-

ure 3.9) validate that for read-heavy transactional workloads, ROWA gives the minimum

query spans and end-to-end transaction times, while the Majority quorum performs better

for write heavy loads as they reduce the cost of distributed updates. Thus the experiments

demonstrate that the choice of quorum depending on the query workload significantly

impacts performance.

Figures 3.9(d) and 3.9(e) show the effect of fine-grained quorums on average query

span and system throughput respectively. We experimented with different values of γ, the

threshold value ofR used by the router for deciding the type of quorum for a given node.

We show the plots for γ = 0.5 which provided the best results for the TPC-C workload.

Use of fine-grained quorums reduces the average query span and increases throughput

64

for all the partitioning strategies considered as compared to a fixed choice of ROWA or

Majority for all data items, making the system adaptable to different workloads.

3.4.7 Dealing with Failures

We evaluate the effect of quorums and data placement on the ability of the system

to deal with failures for the TPC-C workload. Figure 3.9(f) shows the percentage of query

failures as a function of the number of partition failures. We randomly fail a given number

of partitions for a given run and see its effect on the query failures. Each point on the plot

is an average of 10 runs.

The results show the effectiveness of our proposed technique in terms of fault toler-

ance and indicate that fine-grained partitioning schemes may not perform well in presence

of faults, due to a very high degree of data co-location. Our compression scheme does

a relatively modest co-location of data, thereby naturally maintaining a balance between

minimizing distributed transactions and providing better fault tolerance. Our experimen-

tal results show that fault tolerance improves as the CR increases. Random with ROWA

provides us with a baseline to see the quantum of improvement for different data place-

ment strategies using read one write all available (ROWA-A), which excludes the copies

on failed partitions.

65

 1

 2

 4

 8

Mix-1 Mix-2 Mix-3

Q
u
er

y
 s

p
an

Workload mix

Query span comparison

Random (ROWA)
Random (MAJORITY)

Compressed Graph(Cr:11) ROWA
Compressed Graph (CR:11) MAJORITY

Fine-grained ROWA
Fine-grained MAJORITY

(a)

 32

 64

 128

 256

 512

 1024

 2048

 4096

Mix-1 Mix-2 Mix-3

E
n
d
-t

o
-e

n
d
 t

ra
n
sa

ct
io

n
 t

im
e

(m
se

cs
)

Workload mix

End-to-end transaction time comparison

Random (ROWA)
Random (MAJORITY)

Compressed Graph(Cr:11) ROWA
Compressed Graph (CR:11) MAJORITY

Fine-grained ROWA
Fine-grained MAJORITY

(b)

 16

 32

 64

 128

 256

 512

 1024

 2048

 4096

 8192

Mix-1 Mix-2 Mix-3

T
h
ro

u
g
h
p
u
t

(t
rx

s/
se

c)

Workload mix

Throughput comparison

Random (ROWA)
Random (MAJORITY)

Compressed Graph(Cr:11) ROWA
Compressed Graph (CR:11) MAJORITY

Fine-grained ROWA
Fine-grained MAJORITY

(c)

 1

 1.5

 2

 2.5

 3

 3.5

 4

Majority ROWA Dynamic

Q
u
er

y
 s

p
an

Quorum type

Query span comparison

Compressed Graph (CR:11)
Random

Fine-grained

(d)

 0

 200

 400

 600

 800

 1000

 1200

 1400

Majority ROWA Dynamic

T
h
ro

u
g
h
p
u
t

(t
rx

s/
se

c)

Quorum type

Throughput comparison

Compressed Graph (CR:11)
Random

Fine-grained

(e)

 0

 20

 40

 60

 80

 100

 0 2 4 6 8 10

%
 o

f
q

u
er

ie
s

fa
il

ed

Number of partition failures

Fault tolerance comparison

Fine-grained ROWA-A
Compressed Graph (CR:5.5) ROWA-A
Compressed Graph (CR:11) ROWA-A
Compressed Graph (CR:55) ROWA-A

Random ROWA

(f)

Figure 3.9: (a)-(c) The impact of the choice of quorum on the performance for differ-
ent transactional workload mixes. The different query workload mixes shown are:
Mix-1 {75% read, 25%write}, Mix-2 {50% read, 50% write}, Mix-3 {25% read,
75%write}. (d)-(e) The impact of fine-grained quorums on query span and system
throughput. (f) The effect of data placement on fault tolerance.

66

3.5 Conclusion

In this chapter, we presented SWORD, a scalable framework for data placement

and replication for supporting OLTP workloads in a cloud-based environment, that ex-

ploits available workload information. We presented a suite of techniques to reduce the

cost and maintenance overheads of graph partitioning-based data placement techniques

and to minimize the number of distributed transactions, while catering for fault tolerance,

increased availability, and load balancing using active replication. We proposed an ef-

fective incremental repartitioning technique to maintain a good partitioning in presence

of workload changes. We also explored the use of fine-grained quorums to reduce the

query spans and thus improve throughputs. The use of fine-grained quorums provides

our framework with the ability to seamlessly handle different workloads, an essential re-

quirement for cloud-based environments. We have carried out an exhaustive experimental

study to investigate the trade-offs between routing efficiency, partitioning time, and the

quality of partitioning. Our framework provides a flexible mechanism for determining a

sweet spot in terms of the compression ratio of the hypergraph, that gives a reasonably

good quality of partition, improves routing efficiency, and reduces partitioning costs sub-

stantially. We have shown experimentally that our incremental repartitioning technique

mitigates the impact of workload change with minimal data movement and that our pro-

posed data placement scheme naturally improves resilience to failures.

67

Chapter 4: Progressive Analytics on Big Data in the Cloud

4.1 Introduction

Analytics over the increasing quantity of data stored in the Cloud has become very

expensive, particularly due to the pay-as-you-go Cloud computation model. Data sci-

entists typically manually extract samples of increasing data size (progressive samples)

using domain-specific sampling strategies for exploratory querying. This provides them

with user-control, repeatable semantics, and result provenance. However, such solutions

result in tedious workflows that preclude the reuse of work across samples. On the other

hand, existing approximate query processing systems report early results, but do not offer

the above benefits for complex ad-hoc queries. A classic example is the infeasibility of

sampling for join trees [64]. In these cases, a lack of user involvement with “fast and

loose” progress has shortcomings; hence, data scientists tend to prefer the more laborious

but controlled approach mentioned above. We illustrate this using a running example.

Example 1 (CTR). Consider an advertising platform where an analyst wishes to compute

the click-through-rate (CTR) for each ad. We require two sub-queries (Qc and Qi) to

compute (per ad) the number of clicks and impressions, respectively. Each query may be

non-trivial; for example, Qc needs to process clicks on a per-user basis to consider only

legitimate (non-automated) clicks from a webpage whitelist. Further, Qi may need to

68

User Ad . . .
u0 a0 . . .
u1 a0 . . .
u2 a0 . . .

(a)

User Ad . . .
u0 a0 . . .
u0 a0 . . .
u1 a0 . . .
u2 a0 . . .
u2 a0 . . .

(b)

Ad Clicks
a0 3

Ad Imprs
a0 5

(c)

Ad CTR
a0 0.6

(d)

Figure 4.1: (a) Click data; (b) Impression data; (c) Final result of Qc and Qi; (d)
Final result of Qctr.

Ad Clicks
a0 2
a0 3

(a)

Ad Imprs
a0 1
a0 4
a0 5

(b)

Ad CTR
a0 2.0
a0 0.5
a0 0.6

(c)

Ad CTR
a0 3.0
a0 0.75
a0 0.6

(d)

Figure 4.2: (a) Progressive Qc output; (b) Progressive Qi output; (c) & (d) Two pos-
sible progressive Qctr results.

process a different set of logged data. The final query Qctr joins (for each ad) the results

of Qc and Qi, and computes their ratio as the CTR. Figure 4.1 shows a toy input sorted

by user, and the final results for Qc, Qi, and Qctr.

Next, Figure 4.2 (a) and (b) show progressive results for the same queries Qc and

Qi. Without user involvement in defining progressive samples, the exact sequence of

progressive counts can be non-deterministic across runs, although the final counts are

precise. Further, depending on the relative speed and sequence of results for Qc and

Qi, Qctr may compose arbitrary progressive results, resulting in significant variations in

progressive CTR results. Figures 4.2(c) and (d) show two possible results for Qctr. For

example, a CTR of 2.0 would result from combining the first tuple from Qc andQi. Some

results that are not even meaningful (e.g., CTR > 1.0) are possible. Although both results

eventually get to the same final CTR, there is no mechanism to ensure that the inputs

being correlated to compute progressive CTRs are deterministic and comparable (e.g.,

computed using the same sample of users).

The above example illustrates several challenges that are mentioned below:

69

1) User-Control: Data scientists usually have domain expertise that they leverage to se-

lect from a range of sampling strategies [7–9] based on their specific needs and context.

In Example 1, we may progressively sample both datasets identically in user-order for

meaningful progress, avoiding the join sampling problem [64]. Users may also need

more flexibility; for instance, with a star-schema dataset, they may wish to fully process

the small dimension table before sampling the fact table, for better progressive results.

2) Semantics: Relational algebra provides precise semantics for SQL queries. Given

a set of input tables, the correct output is defined by the input and query alone, and is

independent of dynamic properties such as the order of processing tuples. However, for

complex queries, existing AQP systems use operational semantics, where early results

are on a best-effort basis. Thus, it is unclear what a particular early result means to the

user.

3) Repeatability & Optimization: Two runs of a query in AQP may provide a different

sequence of early results, although they have to both converge to the same final answer.

Thus, without limiting the class of queries which are progressively executed, it is hard to

understand what early answers mean, or even recognize anomalous early answers. Even

worse, changing the physical operators in the plan (e.g., changing operators within the

ripple join family [65]) can significantly change what early results are seen!

4) Provenance: Users cannot easily establish the provenance of early results, e.g., link

an early result (CTR=3.0) to particular contributing tuples, which is useful to debug and

reason about results.

5) Query Composition: The problem of using operational semantics is exacerbated when

one starts to compose queries. Example 1 shows that one may get widely varying results

70

(e.g., spurious CTR values) that are hard to reason about.

UserId UserId

AdId

Job
partitioning

keys

Figure 4.3: CTR; MR jobs.

6) Scale-Out: Performing progressive analytics at

scale exacerbates the above challenges. The CTR

query from Example 1 is expressed as two map-

reduce (MR) jobs that partition data by UserId,

feeding a third job that partitions data by a differ-

ent key (AdId); see Figure 4.3. In a complex dis-

tributed multi-stage workflow, accurate determinis-

tic progressive results can be very useful. Map-reduce-online (MRO) [17] adds a limited

form of pipelining to MR, but MRO reports a heuristic progress metric (average fraction

of data processed across mappers) that does not eliminate the problems discussed above

(Chapter 2 covers related work).

In this dissertation we design and build a new progressive analytics system called

NOW! [66]. NOW! enables fault tolerant execution of complex analysis tasks on massive

amounts of data in a scaled out distributed setting and provides meaningful progressive

answers to users at intervals of their choice. NOW! is particularly suitable for progressive

analytics on big data in the Cloud, since it supports queries that are complex, and memory-

and CPU-intensive.

NOW! is based on a progress model called PRISM(Progressive sampling model)

[66] which enables users to encode their chosen progressive sampling strategy into the

data by augmenting tuples with explicit progress intervals (PIs). PIs denote logical points

where tuples enter and exit the computation, and explicitly assign tuples to progressive

samples. NOW! treats these PIs as first class citizens in the framework and provides

71

closed-world determinism: the exact sequence of early results is a deterministic function

of augmented inputs and the logical query alone. They are independent of physical plans,

which enables side-effect-free query optimization. Provenance is explicit; result tuples

have PIs that denote the exact set of contributing inputs. NOW! also allows meaningful

query composition, as operators respect PIs. If desired, users can encode confidence in-

terval computations as part of their queries. PIs offer remarkable flexibility for encoding

sampling strategies and ordering for early results, including arbitrarily overlapping sam-

ple sequences and special cases such as the star-schema join (Chapter 4 provides more

details).

NOW! generalizes the popular data-parallel MR model and supports progress-aware

reducers that understand explicit progress in the data. Instead of modifying an existing

relational engine to support progressive analytics, we use an unmodified temporal stream-

ing engine, by carefully reinterpreting its temporal fields to denote progress. In particular,

NOW! uses StreamInsight [67] as a progress-aware reducer to enable scaled-out progres-

sive relational (SQL) query support in the Cloud. Provision of meaningful early results

on large volumes of data using significantly fewer resources, substantially reduces the

cost of data analytics in the Cloud. We also extend NOW! with a high performance mode

that eliminates disk writes, and discuss high availability (by leveraging progress seman-

tics in a new way) and straggler management. We perform a detailed evaluation of NOW!

in a cloud setting over real and benchmark datasets up to 100GB, with up to 75 large-

sized Windows Azure compute instances. Experiments show that we can scale effectively

and produce meaningful early results, making NOW! suitable in a pay-as-you-go environ-

ment. NOW! provides a substantial reduction in processing time, memory and CPU usage

72

PI User Ad
[0,∞) u0 a0
[1,∞) u1 a0
[2,∞) u2 a0

(a)

PI User Ad
[0,∞) u0 a0
[0,∞) u0 a0
[1,∞) u1 a0
[2,∞) u2 a0
[2,∞) u2 a0

(b)

PI Ad Clicks
[0, 1) a0 1
[1, 2) a0 2
[2,∞) a0 3

PI Ad Imprs
[0, 1) a0 2
[1, 2) a0 3
[2,∞) a0 5

(c)

PI Ad CTR
[0, 1) a0 0.5
[1, 2) a0 0.66
[2,∞) a0 0.6

(d)

Figure 4.4: (a,b) Input data with progress intervals; (c) Progressive results of Qc and
Qi; (d) Progressive output of Qctr.

as compared to current schemes; performance is significantly enhanced by exploiting sort

orders and using our memory-only processing mode.

Outline. We begin with a background on PRISM in Section 4.2. We then discuss NOW!

in detail in Section 4.3; and discuss several extensions in Section 4.4. The detailed evalu-

ation of NOW! is covered in Section 4.5 and finally Section 4.6 concludes this section of

the proposal.

4.2 Background

In this section, I provide a detailed background on PRISM, the progress model used

by NOW!.

4.2.1 PRISM semantics & construction

At a high level, PRISM defines a logical linear progress domain that represents

the progress of a query. Sampling strategies desired by data scientists are encoded into

the data before query processing, using augmented tuples with progress intervals that pre-

cisely define how data progressively contributes to result computation. Users express their

data analytics as relational queries that consist of a DAG of progressive operators. An

73

extension of traditional database operators, progressive operators understand and propa-

gate progress intervals based on precisely defined operator semantics. The result of query

processing is a sequence of augmented tuples whose progress intervals denote early re-

sults and their associated regions of validity in the progress domain. Each of these steps

is elaborated in the following subsections.

4.2.2 Logical Progress and Progress Intervals

PRISM defines a logical linear progress domain P as the range of non-negative inte-

gers [0,∞). Progress made by a query at any given point during computation is explicitly

indicated by a non-decreasing progress point p ∈ P . Progress point∞ indicates the point

of query completion. Next, we associate a progress interval (PI) from the progress do-

main to every tuple in the input data. More formally, each tuple T is augmented with two

new attributes, a progress-start P+ and a progress-end P-, that jointly denote a PI [P+,

P-). P+ indicates the progress point at which a tuple T starts participating in the compu-

tation, and P- (if not ∞) denotes the progress point at which tuple T stops contributing

to the computation. PIs enable users to specify domain-specific progressive sampling

strategies. PI assignment can be controlled by data scientists to ensure quicker and more

meaningful early results, either directly or using a layer between the system and the user.

Figures 4.4(a) and (b) show PIs for our running example inputs; they are also depicted in

Figure 4.5 (top). We provide several concrete examples of PI assignment in Section 4.2.6.

74

0

Impression

Input Data

Progress Domain 1 2

1 2 3

2 3 5

0.5 0.66 0.6

Click

Input Data

Early results (on partial data) Final result (on full data)

Progress interval

Figure 4.5: Input and output progress intervals, query semantics.

4.2.3 Progressive Operators and Queries

Progressive Operators Every relational operatorO has a progressive counterpart, which

computes augmented output tuples from augmented input tuples. Logically, the output at

progress point p is the operation O applied to input tuples whose PIs are stabbed by p.

Figures 4.4(c) and 4.5 show the results of Qc and Qi, which behave as Count operators.

We see that Qc produces a progressive count of 1 at progress point 0, which it revises to

2 and 3 at progress points 1 and 2. As a result, the PIs for these tuples are [0, 1), [1, 2)

and [2,∞) respectively. The P- for an output tuple may not always be known at the same

time as when the operator determine its P+. Thus, an operator may output a tuple having

an eventual PI of [P+,P-) in two separate pieces: (1) at progress point P+, it generates a

start-edge tuple T1 with a PI [P+,∞) indicating that the tuple participates in the result

forever; (2) at the later progress point P-, it generates an end-edge tuple T2 with the actual

PI [P+,P-). We use the term progress-sync to denote the progress point associated with

75

a tuple (or its subsequent update). The start-edge tuple T1 has a progress-sync of P+,

whereas the end-edge tuple T2 has a progress-sync of P-.

Every operator both processes and generates augmented tuples in non-decreasing

progress-sync order. The eventual P- values for early results that get refined later are less

than∞, to indicate that the result is not final. For example, consider an Average operator

that reports a value a0 from progress point 0 to 10, and revises it to a1 from progress point

10 onwards. Tuple a0 has an eventual PI of [0, 10). This is reported as a start-edge [0,∞)

at progress point 0. At progress point 10, the operator reports an end-edge [0, 10) for the

old average a0, followed immediately by a start-edge [10,∞) for the revised average a1.

Similarly, a progressive Join operator with one tuple on each input with PIs [10, 20) and

[15, 25) – if the join condition is satisfied – produces a result tuple with PI [15, 20), the

intersection of the two input PIs. Note here that the output tuple’s PI ends at 20 because

its left input is no longer valid at that point.

Progressive Queries Based on the above semantics, operators can be composed mean-

ingfully to produce progressive queries. We define PRISM output for a relational query Q

as:

Definition 1 (PRISM Output). Associated with each input tuple is a progress interval (PI).

At every unique progress point p across all PI endpoints in the input data, there exists a

setOp of output results with PIs stabbed by p. Op is defined to be exactly the result of the

query Q evaluated over input tuples with PIs stabbed by p.

76

4.2.4 Summary of Benefits of the PRISM Model

The results ofQctr for our running example are shown in Figures 4.4(d) and 4.5; ev-

ery CTR is meaningful as it is computed on some prefix of users (for our chosen progress

assignment), and CTR provenance is provided by PIs. The final CTR of 0.6 is the only

tuple active at progress point∞, as expected.

It is easy to see that the output of a progressive query is a deterministic function

of the (augmented) input data and the logical query alone. Further, these progressive

results are fixed for a given input and logical query, and are therefore repeatable. PRISM

enables data scientists to use their domain knowledge to control progressive samples;

Section 4.2.6 provides several concrete examples. Early results in PRISM carry the added

benefit of provenance that helps debug and reason about early results: the set of output

tuples with PIs stabbed by progress point p denote the progressive result of the query at p.

The provenance of these output tuples is simply all tuples along their input paths whose

PIs are stabbed by p.

One can view PRISM as a generalization of relational algebra with progressive sam-

pling as a first-class concept. Relational algebra prescribes the final answer to a relational

query but does not cover how we get there using partial results. The PRISM algebra explic-

itly specifies, for any query, not only the final answer, but every intermediate (progressive)

result and its position in the progress domain.

77

4.2.5 Implementing PRISM

One can modify a database engine to add PI support to all operators in the en-

gine. However, we can realize PRISM without incurring this effort. The idea is to

leverage a stream processing engine (SPE) as the progressive query processor. In par-

ticular, the semantics underlying a temporal SPE such as NILE [68], STREAM [69],

or StreamInsight [67] (based on temporal databases [70]) can be leveraged to denote

progress, with the added benefit of incremental processing across samples when possible.

With StreamInsight’s temporal model, for example, the event validity time interval [71]

[Vs, Ve) directly denotes the PI [P+,P-). T1 is an insertion and T2 is a retraction (or revi-

sion [72]). Likewise, T1 and T2 correspond to Istreams and Dstreams in STREAM, and

positive and negative tuples in NILE. We feed the input tuples converted into events to

a continuous query corresponding to the original atemporal SQL query. The unmodified

SPE operates on these tuples as though they were temporal events, and produces output

events with timestamp fields that we re-interpret as tuples with PIs.

Note that with this construction, the SPE is unaware that it is being used as a pro-

gressive SQL processor. It processes and produces events whose temporal fields are

re-interpreted to denote progress of an atemporal (relational) query. For instance, the

temporal symmetric-hash-join in an SPE effectively computes a sequence of joins over a

sequence of progressive samples very efficiently. The resulting query processor transpar-

ently handles all of SQL, including user-defined functions, with all the desirable features

of our new progress model.

78

4.2.6 PI Assignment

Any progressive sampling strategy at the inputs corresponds to a PI assignment;

several are discussed next.

Inclusive & Non-inclusive Samples With inclusive samples (as used, for example, in

EARL [36]), each sample is a superset of the previous one. To specify these, input tuples

are assigned a P- of ∞, and non-decreasing P+ values based on when tuples become a

part of the sample, as shown in Figure 4.5 (top). In case of non-inclusive samples, tuples

have a finite P- to denote that they no longer participate in computation beyond P-, and

can even reappear with a greater P+ for a later sample (our technical report [38] includes

a concrete example of expressing non-inclusive sampling using PIs).

Reporting Granularity Progress reporting granularity can be controlled by individual

queries, by adjusting the way P+ moves forward. Data is often materialized in a statisti-

cally relevant order, and we may wish to include k additional tuples in each successive

sample. We use a streaming AlterLifetime [73] operator that sets P+ for the nth tuple to

bn/kc and P- to∞. This increases P+ by 1 after every k tuples, resulting in the engine

producing a new progressive result every k tuples. We refer to the set of tuples with the

same P+ as a progress-batch. Data scientists often start with small progress-batches to get

quick estimates, and then increase batch sizes (e.g., exponentially) as they get diminishing

returns with more data.

Joins & Star Schemas In case of queries involving an equi-join, we may apply an

identical sampling strategy (e.g., pseudo-random) over the join key in both inputs as this

79

increases the likelihood of getting useful early results. With a star-schema, we may set all

tuples in the small dimension table to have a PI of [0,∞), while progressively sampling

from the fact table as [0,∞), [1,∞), This causes a Join operator to “preload” the

dimension table before progressively sampling the fact table for meaningful early results.

Stratified Sampling Stratified sampling groups data on a certain key and applies a

sampling strategy (e.g., uniform) within each group to ensure that rare subgroups are

sufficiently represented. BlinkDB [37] pre-computes stratified samples of different sizes

and responds to queries within a given error and response time by choosing the correct

sample to compute the query on. Stratified sampling is easy to implement with PRISM:

we perform a GroupApply operation [73] by the key, with an AlterLifetime inside the

GroupApply to create progress-batches as before. The temporal Union that merges groups

respects timestamp ordering, resulting in a final dataset with PIs that exactly represent

stratified sampling. Stratified samples of increasing size can be constructed similarly.

Other Examples For online aggregation, we may assign non-decreasing P+ values over

a pre-defined random order of tuples for quick result convergence. Active learning [7]

changes the sampling strategy based on outcomes from prior samples. Prior proposals

for ordering data for quick convergence [13, 15, 35, 65] simply correspond to different PI

assignment schemes in PRISM.

4.2.7 Performance Optimizations

Query processing using an in-memory streaming engine can be expensive since the

final answer is over the entire dataset. PRISM enables crucial performance optimizations

80

that can improve performance significantly in practical situations. Consider computation

Qc, which is partitionable by UserId. We can exploit the compile-time property that

progress-sync ordering is the same as (or correlated to) the partitioning key, to reduce

memory usage and consequently throughput. The key intuition is that although every

tuple with PI [P+,∞) logically has a P- of∞, it does not contribute to any progress point

beyond P+. Thus, we can temporarily set P- to P++1 before feeding the tuples to the SPE.

This effectively causes the SPE to not have to retain information related to progress point

P+ in memory once computation for P+ is done. The result tuples have their P- set back to

∞ to retain the original query semantics (these query modifications are introduced using

compile-time query rewrites). A similar optimization applies to equi-joins; see [38] for

details. We will see in Section 4.5 that this optimization can result in orders-of-magnitude

performance benefits.

4.3 NOW! Architecture and Design

4.3.1 Overview

At a high level, NOW!’s architecture is based on the Map-Reduce (MR) [74] com-

putation paradigm. Figure 4.6 shows the overall design of NOW! (right) as compared to

vanilla MR (left), for a query with two stages and different partitioning keys. Blobs in the

figure indicate the format of input and output data on Windows Azure’s distributed Cloud

storage, and can be replaced by any distributed persistent storage such as HDFS. The key

points are as follows:

1) Progress-aware data flow: NOW! implements the PRISM progress model and provides

81

support for data flow (§ 4.3.2) in strict progress-sync order. The main components of

progress-aware data flow are:

• Batching NOW! reads input data annotated with PIs (progressive samples) and

creates batches (§ 4.3.2.1) of tuples with the same progress-sync. Data movement

in NOW! is fully pipelined in terms of these progress-batches, in progress-sync

order.

• Sort-free data shuffle MR sorts the map output by key, followed by a merge to

enable grouping by key at reducers. This sort-merge operation in MR is a perfor-

mance bottleneck [39]. In contrast, the batched map output in NOW! is partitioned

and shuffled across the network to reducers without sorting (§ 4.3.2.2), thus retain-

ing progress-sync order with improved performance.

• Progress-aware merge A progress-aware merge at reducers is key to enabling the

PRISM model for progressive query results. Each reducer groups together batches

received from different mappers, that belong to the same PI, into a single progress-

batch, and ensures that all progress-batches are processed in strict progress-sync

order (§ 4.3.2.3) along all data flow paths.

Data flow between map and reduce in NOW! uses TCP connections which guarantee

FIFO delivery. Since the input data is read in progress-sync order and all components

retain this invariant, we are guaranteed global progress-sync order for progress-batches.

2) Progress-aware reducers: NOW! introduces the notion of a progress-aware reducer

(Section 4.3.2.4), that accepts and produces augmented tuples in progress-sync order,

82

and logically adheres to the PRISM query model. The progress-aware merge generates

progress-batches in progress-sync order; these are fed directly to reducers that produce

early results in progress-sync order. While one could write custom reducers, we use an

unmodified SPE (§ 4.2.5) as a progress-aware reducer for progressive relational queries.

3) Multi-stage support: NOW! supports concurrent scheduling of all jobs in a multi-

stage query and co-location of mappers of dependent jobs with the reducers of feeding

jobs on the same slave machine (Section 4.3.3). Data transfer between jobs is in-memory

providing significant savings in a Cloud deployment where blob access is expensive.

4) Flow control: NOW! provides end-to-end flow control to avoid buffer overflows at

intermediate stages such as mapper output, reducer input and reducer output for multi-

stage MR. The flow control mechanism ensures data flows at a speed that can be sustained

by downstream consumers. We use a blocking concurrent queue (BCQ), a lock-free data

structure which supports concurrent enqueue and dequeue operations, for implementing

an end-to-end flow control mechanism for NOW! (our technical report [38] has more

details on flow control in NOW!).

5) In-memory data processing: By default, NOW! materializes map output on disk to

provide better data availability during failure recovery. For better interactivity, we also

support a high-performance in-memory mode (see Section 4.4).

4.3.2 Progress-aware Data Flow & Computation

Data flow in NOW! is at the granularity of progress-batches and governed by PIs.

This section describes the generation and flow of these progress-batches in the framework.

83

Blob Blob Blob

Map Stage

Disk Disk Disk

Reduce Stage
Merge Merge Merge

Map Stage

Disk

Reduce Stage
Merge Merge Merge

Blob Blob Blob

Shuffle

Shuffle
Disk Disk

Sort

Blob Blob Blob

Map Stage
(Progress-aware batching)

Progressive Reducer (Gen API)
Progress Aware Merge

Map Stage
(Progress-aware batching)

Progressive Reducer (Gen API)
Progress Aware Merge

Blob Blob Blob

Progressive data
shuffle

No
Sort

Blob Blob Blob
In Memory

data transfer

Progressive data
shuffle

No
Sort

(a) Vanilla MR (b) Now!

PI
annotated

 Input

Progressive
Output

Figure 4.6: System architecture (MR vs. NOW!).

4.3.2.1 Progress-aware Batching

The input data is partitioned into a number of input splits (one for each mapper),

data tuples in each of which are assigned progress intervals in progress-sync order. The

mapper reads its input split as progress annotated tuples (progressive samples), and in-

vokes the user’s map function.The resulting augmented key-value pairs are partitioned by

key to produce a sequence of progress-batches for each partition (downstream reducer).

84

A progress-batch consists of all tuples with the same progress-sync value (within the spe-

cific partition) and has a unique ID. Each progress-batch sequence is in strictly increasing

progress-sync order. The input text reader appends an end-of-file (eof) marker to the map-

per’s input when it reaches the end of its input split. The mapper, on receipt of the eof

marker, appends it to all progress-batch sequences.

Batching granularity. The batching granularity in the framework is determined by the

PI assignment scheme (§ 4.2.6) of the input data. NOW!, also provides a control knob to

the user, in terms of a parameterized batching function, to vary the batching granularity

of the map output as a factor of the PI annotation granularity of the actual input. This

avoids re-annotating the input data with PIs if the user decides to alter the granularity of

the progressive output.

Example 2 (Batching). Figure 4.7(a) shows a PI annotated input split with three progres-

sive samples. Figure 4.7(b) shows the corresponding batched map output, where each

tuple in a batch has the same progress-sync value. Figure 4.7(c) shows how progress

granularity is varied using a batching function that modifies P+. Here, P+ = bP+

b
c is the

batching function, with the batching parameter b set to 2.

4.3.2.2 Progressive Data Shuffle

NOW! shuffles data between the mappers and reducers in terms of progress-batches

without sorting. As an additional performance enhancement, NOW! supports a mode for

in-memory transfer of data between the mappers and reducers with flow control to avoid

memory overflow. We pipeline progress-batches from the mapper to the reducers using

85

PI User Ad
[0,∞) u0 a0
[0,∞) u0 a0
[1,∞) u1 a0
[1,∞) u1 a1
[2,∞) u2 a1
[2,∞) u2 a1
[2,∞) u2 a1
[2,∞) u2 a1

(a)

PI User Ad
[0,∞) u0 a0
[0,∞) u0 a0

PI User Ad
[1,∞) u1 a0
[1,∞) u1 a1

PI User Ad
[2,∞) u2 a1
[2,∞) u2 a1
[2,∞) u2 a1
[2,∞) u2 a1

(b)

PI User Ad
[0,∞) u0 a0
[0,∞) u0 a0
[0,∞) u1 a0
[0,∞) u1 a1

PI User Ad
[1,∞) u2 a1
[1,∞) u2 a1
[1,∞) u2 a1
[1,∞) u2 a1

(c)

Figure 4.7: (a) Input data annotated with PIs; (b) Progress-batches according to
input data PI assignment; (c) Progress-batches with modified granularity using a
batching function.

a fine-grained signaling mechanism, which allows the mappers to inform the job tracker

(master) the availability of a progress-batch. The job tracker then passes the progress-

batch ID and location information to the appropriate reducers, triggering the respective

map output downloads.

The download mechanism on the reducer side has been designed to support progress-

sync ordered batch movement. Each reducer maintains a separate blocking concurrent

queue (BCQ) for each mapper associated with the job. As mentioned earlier, the BCQ

is a lock-free in-memory data structure which supports concurrent enqueue and dequeue

operations and enables appropriate flow control to avoid swamping of the reducer. The

maximum size of the BCQ is a tunable parameter which can be set according to the avail-

able memory at the reducer . The reducer enqueues progress-batches, downloaded from

each mapper, into the corresponding BCQ associated with the mapper, in strict progress-

sync order. Note that our batched sequential mode of data transfer means that continuous

connections do not need to be maintained between mappers and reducers, which aids

scalability.

86

M0 M1 M2 M3 Mn

Download Manager

Map output
queues

Progress ordered
download

Mappers

Merged
map output

Progress-
Aware

Reducer
Progressive

output

Progress-aware
merge

Figure 4.8: Progress-aware merge.

4.3.2.3 Progress-aware Merge

NOW! implements the PRISM model using a progress-aware merge mechanism

which ensures flow of data in progress-sync order along all paths in the framework. Fig-

ure 4.8 shows the high level design of the progress-aware merge module within each

reducer. Once a map output is available in each of the map output queues, the reducer in-

vokes the progress-aware merge mechanism the details of which are given in Algorithm 3.

The algorithm takes as input the number of mappersM , a set of BCQs B where qi ∈

B denotes the blocking concurrent queue for mapper i, the current progress-sync value

cmin of the merged batch that needs to be produced (cmin is initialized to the minimum

progress-sync across the heads of the BCQs), and H, where hi ∈ H is the progress-sync

value currently at the head of qi (hi is initialized to the progress-sync value at the head of

87

Algorithm 3: Progress-aware merge
input : # of Mappers M , B = {q1, . . . , qM}, cmin,H = {h1, . . . , hM}
output: Merged batch O
begin
O = ∅;
for each qi ∈ Q do

if (hi==∞) then continue;
;
progress-sync = peek(qi); // peek blocks if qi = ∅
if (progress-sync==eof) then

hi =∞; continue;
end
hi =progress-sync;
if (hi == cmin) then
O = O

⋃
dequeue(qi);

progress-sync = peek(qi);
if (progress-sync==eof) then hi =∞;
;
else hi =progress-sync;
;

end
end
cmin = min(H); return O;

end

qi).

The algorithm initializes an empty set O as output. It iterates over all mapper

queues to find and dequeue the batches whose progress-sync values match cmin, adds

them to O and updates hi to the new value at the head of qi. It finally updates cmin and

returns O, a merged batch with all tuples having the same progress-sync value. O is

then fed to the progressive reducer. If O = ∅, indicating end of input on all BCQs, the

framework passes an eof marker to the progressive reducer signaling termination of input.

88

4.3.2.4 Progress-aware Reducer

Let partition denote the set of keys that a particular reducer is responsible for. In

traditional MR, the reducer gathers all values for each key in the partition and invokes a

reduce function for each key, passing the group of values associated with that key. NOW!

instead uses progress-aware reducers whose input is a sequence of progress-batches as-

sociated with that partition in progress-sync order. The reducer is responsible for per-key

grouping and computation, and produces a sequence of progress-batches in progress-sync

order as output. We use the following API to achieve this:

Unchanged map API:

void map(K1 key, V1 value, Context context

Generalized Reduce API:

void reduce(Iterable<K2, V2> input, Context context)

Here, V1 and V2 include PIs. NOW! also supports the traditional reducer API to

support older workflows, using a layer that groups active tuples by key for each progress

point, invokes the traditional reduce function for each key, and uses the reduce output to

generate tuples with PIs corresponding to that progress point.

Progressive SQL While users can write custom progress-aware reducers, we advocate

using an unmodified temporal streaming engine (such as StreamInsight) as a reducer to

handle progressive relational queries (§ 4.2.5). Streaming engines process data in times-

tamp order, which matches with our progress-sync ordered data movement. Temporal

notions in events can be reinterpreted as progress points in the query. Further, streaming

engines naturally handle efficient grouped subplans using hash-based key partitioning,

89

which is necessary to process tuples in progress-sync order.

4.3.3 Support for Multi-stage

We find that most analytics queries need to be expressed as multi-stage MR jobs.

NOW! supports a fully pipelined progressive job execution across different stages using

concurrent job scheduling and co-location of processes that need to exchange data across

jobs.

Concurrent Job Scheduling The scheduler in NOW! has been designed to receive all

the jobs in a multi-stage query as a job graph, from the application controller. Each job is

converted into a set of map and reduce tasks. The scheduler extracts the type information

from the job to construct a dependency table that tracks, for each task within each job,

where it reads from and writes to (a blobs or some other job). The scheduler uses this

dependency table to partition map tasks into a set of independent map tasks Mi which

read their input from a blob/HDFS, and a set of dependent map tasks Md whose input

is the output of some previous stage reducer. Similarly, reduce tasks are partitioned into

a set of feeder tasks Rf that provide output to mappers of subsequent jobs, and a set of

output reduce tasks Ro that write their output to a blob/HDFS.

Algorithm 4 shows the details of how the map and reduce tasks corresponding to

different jobs are scheduled1. First, all the reduce tasks in Rf are scheduled on slave

machines that have at least one map slot available to schedule a corresponding dependent

map task in Md which would consume the feeder reduce task’s output. The scheduler

1If the scheduler is given additional information such as the streaming query plan executing inside reduc-
ers, we may be able to leverage database cost estimation techniques to improve the scheduling algorithm.
This is a well studied topic in prior database research, and the ideas translate well to our setting.

90

Algorithm 4: Scheduling
input : Rf , Ro,Mi,Md, dependency table

begin
for each r ∈ Rf do

Dispatch r;
if Dispatch successful then Make a note of tracker ID;
;

end
for each r ∈ Ro do Dispatch r;
;
for each m ∈Md do

Dispatch m, co-locating it with its feeder reducer;
end
for each m ∈Mi do

Dispatch m closest to input data location;
end

end

maintains a state of the task tracker IDs of the slave machines on which these feeder

reduce tasks have been scheduled. Second, all the reducers inRo are scheduled depending

on the availability of reduce slots on various slave machines in a round robin manner.

Third, all the map tasks in Md are dispatched, co-locating them with the reducers of

the previous stage in accordance with the dependency table and using the task tracker

information retained in step 1 of the algorithm. Finally, all the map tasks in Mi are

scheduled closest to the input data location. Placing tasks in this order ensures that if

there exists a feasible placement of all MR tasks that would satisfy all job dependencies,

we will find such a placement.

Data flow between jobs Figure 4.9 shows a sample placement of map and reduce tasks

for processing a query that constitutes three jobs, J1, J2 and J3.

Figure 4.9(a) shows the data flow between jobs and Figure 4.9(b) shows the place-

91

J3

J2

J1

Data input

Final output

Data flow

Initial Job

Intermediate
 Job

Final Job

M1 M2 M3

R1 R2

M1 M2

R1 R2

M1 M2

R1 R2

F1 F2 F3 Input Files

O1 O2 Output Files

Blocking
Concurrent

Queue

Blocking
Concurrent

Queue

(a) (b)
Task placement

J2

J1

J3

Figure 4.9: Multi-stage map reduce data flow.

ment of map and reduce tasks as per NOW!’s scheduling algorithm (Ref Algorithm 4).

The shaded portions in the figure indicate that the corresponding map and reduce tasks

have been co-scheduled on the same slave machine. The scheduler also verifies that the

number of dependent map tasks are equal to the number of feeder reduce tasks of a pre-

ceding job, thus ensuring that there is one dependent map task for each feeder reduce task

that is co-scheduled on the same slave machine.

Data flow between jobs is modeled on the producer-consumer paradigm using a

BCQ and takes place completely in memory avoiding data materialization and shuffling

overheads. Further, co-location of the reducers and mappers of dependent jobs does away

with the overhead of data serialization, de-serialization and expensive network I/O be-

92

tween stages in a Cloud setting.

4.4 Discussion and Extensions

4.4.1 High availability (HA)

Upadhyaya et al. [75] have recently shown how a multi-stage pipelined map-reduce

system can support hybrid strategies of replay and checkpointing; these solutions are

applicable in our setting. Specifically, the failure semantics for NOW! are:

Map task failure: Any map task in progress or completed on a failed worker node needs

to be rescheduled as in vanilla MR.

Reduce task failure: After a reduce task fails, one can replay its input starting from the

last checkpoint (map output is materialized on local storage to allow replay). Interest-

ingly, PRISM can further reduce the cost of replay after a failure. The key insight is that

processing at progress point p depends only on input tuples whose PIs are stabbed by p.

We can leverage this in two ways:

• We can filter out tuples with P-≤ p during replay to significantly reduce the amount

of data replayed and prune the intermediate map output saved on local storage2.

• During replay, we can set P+= max(p, P+) for replayed tuples so that the reducer

does not need to re-generate early results for progress points earlier than p.

Prior research [76] has reported that input sizes on production clusters are usually

less than 100GB. Further, progressive queries are usually expected to end early. There-
2This optimization does not apply to external input which has P- set to∞, but can apply to intermediate

results in multi-stage jobs.

93

fore, NOW! supports an efficient no-HA mode, where intermediate map output is not

materialized on local storage and no checkpointing is done. This requires a failure to

cascade back to the source data (we simply restart the job). Restarting the job on failure

is a cheap and practical solution for such systems as compared to traditional long-running

jobs. That said, we acknowledge that high availability with low recovery time (e.g., by

restarting only the failed parts of the DAG) is important in some cases. Prior work [44,75]

has studied this problem; these ideas apply in our setting. We leave the implementation

and evaluation of such fine-grained HA in NOW! as future work.

4.4.2 Straggler and Skew Management

Stragglers A consequence of progress-sync merge is that if a previous task makes slow

progress, we need to slow down overall progress to ensure global progress-sync order.

While progress-sync order is necessary to derive the benefits of PRISM, there are fixes

that avoid sacrificing semantics and determinism:

• Consider n nodes with 1 straggler. If the processing skew is a result of imbalanced

load, we can dynamically move partitions from the straggler to a new node (we need

to also move reducer state). We may instead fail the straggler altogether and re-start

its computation by partitioning its load equally across the remaining n − 1 nodes.

The catch-up work gets done n − 1 times faster, resulting in a quicker restoration

of balance 3.

• We could add support for compensating reducers, which can continue to process
3If failures occur halfway through a job on average, jobs run for 2.5/(n − 1) times as long due to a

straggler with this scheme.

94

new progress points, but maintain enough information to revise or compensate their

state once late data is received. Several engines have discussed support for com-

pensations [71, 72], and fit well in this setting.

As we have not found stragglers to be a problem in our experiments on Windows Azure

VMs, the current version of NOW! does not address this issue. A deeper investigation is

left as future work.

Data Skew Data skew can result from several reasons:

• Some sampling strategies encoded using PIs may miss out on outliers or rare sub-

populations within a population. This can be resolved using stratified sampling

which can be easily implemented in PRISM as discussed in Section 4.2.6.

• Skew in the data may result in some progress-batches being larger than others at

the reducers. However, this is no different from skew in traditional map-reduce

systems, and solutions such as [77] are applicable here.

Since skew is closely related to the straggler problem, techniques mentioned earlier for

stragglers may also help mitigate skew.

4.5 Evaluation

4.5.1 Implementation Details

NOW! is written in C# and deployed over Windows Azure. NOW! uses the same

master-slave architecture as Hadoop [78] with JobTracker and TaskTracker nodes. Task-

Tracker nodes are allocated a fixed number of map and reduce slots. Heartbeats are used to

95

ensure that slave machines are available. We modified and extended this baseline to incor-

porate our new design features (see Section 4.3) such as pipelining, progress-based batch-

ing, progress-sync merge, multi-stage job support, concurrent job scheduling, etc. NOW!

deployed on the Windows Azure Cloud platform, uses Azure blobs as persistent storage

and Azure VM roles as JobTracker and TaskTracker nodes. Multi-stage job graphs are

generated by users and provided to NOW!’s JobTracker as input; each job consists of in-

put files, a partitioning key (or mapper), and a progressive reducer. Although NOW! has

been developed in C# and evaluated on Windows Azure, its design features are not tied

to any specific platform. For example, NOW! could be implemented over Hadoop using

HDFS and deployed on the Amazon EC2 cloud.

NOW! makes it easy to employ StreamInsight as a reducer for progressive SQL, by

providing an additional API that allow users to directly submit a graph of 〈key, query〉

pairs, where query is a SQL query specified using LINQ [79]. Each node in this graph

is automatically converted into a job. The job uses a special progressive reducer that

uses StreamInsight to process tuples. The NOW! API can be used to build front-ends

that automatically convert larger Hive, SQL, or LINQ queries into job graphs. Although

the system has been designed for the Cloud and uses Cloud storage, it also supports

deployment on a cluster of machines (or private Cloud). NOW! includes diagnostics for

monitoring CPU, memory, and I/O usage statistics. These statistics are collected by an

instance of a log manager running on each machine which outputs these in the form of

logs which are stored as blobs in a separate container.

96

4.5.2 Experimental Setup

System Configuration The input and final output of a job graph are stored in Azure

blobs. Each Azure VM role (instance) is a large-sized machine with 4 1.6GHz cores,

7GB RAM, 850GB of local storage, and 400Mbps allocated I/O bandwidth. Each instance

was configured to support 5 map slots and 2 reduce slots. We experiment with up to 75

instances in our tests4.

Datasets We use the following datasets in our evaluation, with dataset sizes based upon

the aggregate amount of memory needed to run our queries over them:

• Search data. This is a real 100GB search dataset from Bing, that consists of userids

and their search terms. The input splits were created by sharding the data into a

number of files/partitions, and annotating with fine-grained PI values.

• TPC-H data. We used the dbgen tool to generate a 100GB TPC-H benchmark

dataset, for experiments using TPC-H queries.

• Click data. This is a real 12GB dataset from the Microsoft AdCenter advertising

platform, that comprises of clicks and impressions on various ads over a 3 month

period.

Queries We use the following progressive queries:

• Top-k correlated search. The query reports the top-k words that are most correlated

with an input search term, according to a goodness score, in the search dataset. The
4Our Windows Azure subscription allowed no more than 300 cores; this limited us to 75 4-core VM

instances.

97

query consists of two NOW! jobs, one feeding the other. The first stage job uses the

data set as input and partitions by userid. Each reducer computes a histogram that

reports, for each word, the number of searches with and without the input term, and

the total number of searches. The second stage job groups by word, and aggregates

the histograms from the first stage, computes a per-word goodness, and performs

top-k to report the k most correlated words to the input term. We use “music” as

the default term.

• TPC-H Q3. We use a generalization of TPC-H query 3:

SELECT L_ORDERKEY, SUM(L_EXTENDEDPRICE*(1-L_DISCOUNT)) AS

REVENUE, O_ORDERDATE, O_SHIPPRIORITY FROM ORDERS, LINEITEM

WHERE L_ORDERKEY = O_ORDERKEY

GROUP BY L_ORDERKEY, O_ORDERDATE, O_SHIPPRIORITY

• CTR. The CTR (click-through-rate) query computes the MR job graph shown in

Figure 4.3 (our running example). It consists of three queries (Qc, Qi, and Qctr)

where Qc is a click query which computes the number of clicks from the click

dataset, Qi is an impressions query which computes the number of ad impressions

from the impression data set and Qctr computes the CTR.

Baselines We evaluate NOW! against several baseline systems:

• Map-Reduce (MR). For standard map-reduce, we use Daytona [80], a C# imple-

mentation of vanilla hadoop for Windows Azure. This baseline provides an estimate

of time taken to process a partitioned query without progressive results.

98

• Stateful MR (SMR). Stateful MR is an extension of MR for iterative queries [81],

that maintains reducer state across MR jobs. We use it for progressive results by

chunking the input into batches, and submitting each chunk (in progress-sync order)

as a separate MR job. Subsequent chunks use reducers that retain the prior job’s

state. For each chunk, we run each MR stage as a vanilla MR job. With multi-stage

jobs, we process one chunk through all stages before submitting the next chunk to

the first stage.

• MRO [17]. MRO pipelines data between the mappers and reducers, but is unaware

of progress semantics and does not use progress-sync merge at the reducers. This

can lead to different nodes progressing at different speeds. We approximate MRO

in NOW! by replacing the progress-aware merge with a union5.

Job configuration and parameter settings. The configuration for a two-stage job (with

one job feeding another) is depicted as M1−R1−M2−R2 where M and R represent the

number of mappers and reducers and their subscripts (1, 2) represent the stage to which

they belong (note that R1 = M2). A single stage job is depicted as M1 − R1. In our

experiments, the number of mappers is equal to the number of input splits (stored as

blobs). The number of reducers is chosen based on the memory capacity of each worker

node (7GB RAM) and the number of mappers feeding the reducers.

5This baseline benefits from our other optimizations such as concurrent job scheduling, no sorting, and
pipelining across stages.

99

4.5.3 Experiments and Results

We now present our evaluation results for NOW!.

Effect of Progressive Computation We evaluate NOW!’s performance vs. SMR in

terms of time taken to produce progressive results. The first experiment (see Figure

4.10(a)) plots the time taken to run the top-k correlated search query which provides the

top 100 words that were searched with “weather”, in terms of progress-batches plotted

in progress-sync order. The input data set was batched by the mapper into 75 progress-

batches by NOW!. For the SMR baseline, the data was ordered and split into 75 chunks

(one per PI). Each chunk representing one PI, was processed as a separate MR job and

the time taken taken for the same was recorded. Each point on the plot represents an

average of five runs. We used datasets of two sizes (6 and 8GB). The experimental results

show that NOW! performs much better (6X improvement) than SMR, which processes

each progress batch as a separate job and resorts to expensive intermediate output mate-

rialization, hurting performance, particularly in a Cloud setting. Also, the time taken for

the first 50% of the progress batches is under 20mins as opposed to 105mins for SMR, for

the 8GB dataset, highlighting the benefit of platform support for progressive early results.

Effect of Batching We evaluate the performance of NOW! for different progress-batch

sizes and compare the same with SMR and MR. The MR baseline processes the entire

input as a single batch. The granularity of batch size controls the number of progress

batches. The dataset size used in this experiment is 6GB and the configuration is 94-26-

26-4. The experiment shows the results for 3 different batch sizes: 80MB (75 batches),

100

600MB (10 batches) and 1200MB (5 batches), and compares them against vanilla MR

which processes the entire input of 6GB at once.

Figure 4.10(b) shows the change in total query processing time with change in

batch size. As the batch-size decreases from 1200MB to 80MB, the number of batches

processed by the system increases from 5 to 75. The query processing time of SMR

increases drastically with the increase in the number of batches, which can be attributed

to the fact that it processes each batch as a separate MR job and resorts to intermediate

data materialization. The MR baseline which processes the entire input as a single batch

does better than SMR , but does not provide early results.

On the other hand, the query processing time for NOW! does not vary much with

increase in number of batches as it is pipelined, does not start a new MR job for each

batch, and does not materialize intermediate results between jobs. We do see a slight

increase in query processing time when the number of batches increases from 10 to 75,

which can be attributed to a moderate increase in batching overheads. However, the

smallest batch-size provides the earliest progressive results and at the finest granularity.

The figure shows the time to generate the first progress batch i.e., the time when the user

starts getting progressive results. The time to first batch increases with increase in batch

size (or sample size), but is significantly lower than the total query processing time.

Performance Breakdown We analyzed the performance of NOW! using our diagnostic

monitoring module which logs CPU, memory, and I/O usage. Figure 4.10(c) analyses the

performance of the two-stage top-k correlated search query with k = 100, and plots the %

time taken by different components in NOW!. Each data point in the figure is an average

101

over 10 runs, for two different datasets (15GB and 30GB) on 30 machines. The results

indicate that the maximum time is spent in the first stage reducer followed by the second

stage reduce and writing the final output to the blobs. The framework does not have any

major bottlenecks in terms of pipelining of progress-batches. The time taken by the two

reduce stages would vary depending on the choice of progressive reducer and the type of

query. Our current results use StreamInsight as the progressive reducer.

Scalability Figure 4.10(d) evaluates the effect of increase in data size on query process-

ing time in NOW! as compared to SMR. We used the top-k correlated search query for the

experiment and varied the data size from 2.8GB to 30GB. The results show that NOW!

provides a scale-up of up to 38X over SMR in terms of reduction in query processing time.

This can be attributed to pipelining, no sorting in the framework and no intermediate data

materialization between jobs. Figure 4.10(e) shows the scale-up provided by NOW! in

terms of throughput (#rows processed per second) with the increase in #machines. For

the top-k correlated search query (top 100 words correlated to “music”), we achieved a

6X scale-up with 74 machines as compared to the throughput on 20 machines, for 15GB

data.

Data Materialization Overheads Writing map outputs on the local disk, has a sig-

nificant performance penalty, while on the other hand, intermediate data materialization

provides higher availability in presence of failures . Figure 4.10(f) shows the overhead

of disk I/O in materializing map output on disk and subsequent disk access to shuffle the

data to the reducers within a job.

102

0 20 40 60 80 100

0

50

100

150

200

Progress %

Ti
m

e
ta

ke
n

 (
m

in
s)

Effect of progressive computation

SMR: 8GB

Now!: 8GB

SMR: 6GB

Now!: 6GB

(a)

80 600 1200 6000

0

20

40

60

80

100

Batch Size (MB)

Q
u

er
y

p
ro

ce
ss

in
g

ti
m

e
(m

in
s)

Effect of batch size

MR

SMR

Now!

Time to first batch (Now!)

(b)

30GB 15GB

0

20

40

60

80

100

%
 T

im
e

ta
ke

n

Performance Analysis
Write to Blob

2nd Stage Reduce

2nd Stage Map D/n loads

2nd Stage Map

1st Stage Reduce

1st Stage Map D/n loads

1st Stage Map

Input enumeration

(c)

0

10

20

30

40

50

3 5 6 8 9 13 15 30

1

10

100

1000

10000

Sc
al

e-
U

p
 f

ac
to

r

Data size (GB)

Q
u

er
y

p
ro

ce
ss

in
g

ti
m

e
(m

in
s)

Lo

g
sc

al
e

Scalability with increase in data size

SMR

Now!

Scale-up

(d)

20
(1X)

30
(1.5X)

45
(2.25X)

60
(3X)

74
(3.7X)

1
2
3
4
5
6

Machines

Th
ro

u
gh

p
u

t
sc

al
e

-u
p

fa

ct
o

r

Throughput Scalability

Scale up: Now!

(e)

0

25

50

75

100

M
ap

 o
u

tp
u

t
sh

u
ff

le
 t

im
e

(i
n

 s
ec

s)

Effect of map output materialization

Map o/p in-memory

Map o/p on disk

(f)

Figure 4.10: Performance analysis.(a) Time taken to process a query in progress-
sync order; (b) Effect of batching granularity; (c) Analysis of time taken by different
elements for a two-stage Map-Reduce query. Scalability: (d) Effect of data size on
query processing time; (e) Throughput scalability with increase in #machines; (f)
Overheads of disk I/O (Map output materialization).

103

0

50

100

150

200

250

300

0 20 40 60 80 100

0

500

1000

1500

2000

%
 C

P
U

 U
ti

l

Progress (% Time elasped)

M
em

o
ry

 U
ti

l (
M

B
)

Resource Util: Now! (94-26-26-4)
Memory Util Mean (Memory Util)
CPU Util Mean (CPU Util)

Time taken : 19 mins 4secs

(a)

0

50

100

150

200

250

300

0 20 40 60 80 100

0

500

1000

1500

%
 C

P
U

 U
ti
liz

a
ti
o
n

Progress (% Elapsed time)

M
em

o
ry

 U
ti

l (
M

B
)

Resource Utilization: SMR (94-26-26-4)
Memory Util Mean (Memory Util)
CPU Util Mean (CPU Util)
Normalized CPU Util

Time taken : 86 mins 20 secs

(b)

0

50

100

150

200

250

300

0 20 40 60 80 100

0

1000

2000

3000

4000

5000

%
 C

P
U

 U
ti

liz
at

io
n

Progress (% Elapsed time)

M
em

o
ry

 U
ti

l (
M

B
)

Resource Util: Now! (No Mem opt)
Memory Util Mean (Mem Util)

CPU Util Mean (CPU Util)

Normalized CPU Util Time taken: 53 mins

(c)

0

50

100

150

200

250

300

0 20 40 60 80 100

0

100

200

300

400

%
 C

P
U

 U
ti

liz
at

io
n

Progress (% Elapsed time)

M
em

o
ry

 U
ti

l (
M

B
)

Resource Util: Now! (Mem opt)
Memory Util Mean (Mem Util)

% CPU Util Mean (CPU Util)

Time taken: 4 mins 26 secs

(d)

0

200

400

600

800

1000

1200

10GB (10 machines) 60GB (60 machines)

0

1

2

3

4

%
 C

P
U

 U
ti

l

M
em

o
ry

 U
ti

l (
G

B
)

Effect of sort order: Resource Util
Memory Util* Normalized CPU Util

Memory Util Normalized CPU Util *

* With memory optimization

(e)

1

10

100

1000

10GB (10 m/cs) 60GB (60 m/cs) 100GB (74 m/cs)

Ti
m

e
ta

ke
n

 (
m

in
s)

 L
o

g
sc

al
e

Effect of Sort Order: X-put scalability
Time taken * Time taken

* With memory optimization

4.43mins

53mins

14.83mins

189mins

18.15mins

Out of
memory

Scale-up:12X Scale-up:12.8X

(f)

Figure 4.11: Resource Utilization. (a) CPU and memory utilization NOW!; (b) CPU
and memory utilization SMR;(c) CPU and memory utilization without memory op-
timization; (d) CPU and memory utilization with memory optimization. (e) Effect
of sort order on memory and % CPU utilization for different data sizes; (f) Memory
optimization effects on query processing time.

Our results show an overhead of approx 90 secs for a dataset of 8GB for the 94-

26-26-4 configuration. NOW! is tunable to work in both modes (with and without disk

I/O) and can be chosen by the user depending on the application needs and the execution

104

environment. It is also pertinent to note here that there is no data materialization on

persistent storage (HDFS or Cloud) between different Map-Reduce stages in NOW! which

provides a similar performance advantage for multi-stage jobs over MR/SMR as seen in

section 4.5.3.

Resource Utilization We evaluated NOW! for its resource utilization in terms of memory

and CPU. Figures 4.11(a,b) compare the memory and CPU utilization of NOW! and SMR

for the 94-26-26-4 configuration for a dataset size of 8GB. The figures show the average

real time memory and CPU utilization over 30 slave machines each running 4 mappers and

1 reducer plotted against time. The results indicate that there is no significant difference

in the average memory utilization for both platforms, and the average CPU utilization

of NOW! is actually higher than that of SMR. However, we also show the normalized

%CPU utilization for SMR which is the product of the average CPU utilization and the

normalization factor (ratio of time taken by SMR to the time taken by NOW!.) The

normalized %CPU utilization is much higher as SMR takes approx 4.5X more time to

complete as compared to NOW!. Thus, NOW! is ideal for progressive computation on the

Cloud, where resources are charged by time.

Memory Optimization using Sort Orders The next experiment investigates the ben-

efit of our memory optimization (cf. Section 4.2.7) in case the progress-sync order is

correlated with the partitioning key. Our TPC-H dataset uses progress in terms of the

L ORDERKEY attribute, and TPC-H Q3 also partitions by the same key. An optimized

run can detect this at compile-time and set P-=P++1, allowing the query to “forget” pre-

vious tuples when we move to the next progress-batch. An unoptimized run would retain

105

all tuples in memory in order to compute future join and aggregation results. We exper-

iment with 10GB, 60GB and 100GB TPC-H datasets. Figures 4.11(c) and 4.11(d) show

the variation of memory and CPU utilization with progress with and without memory op-

timization for the 10GB dataset. Figure 4.11(e) shows that the memory footprint of the

optimized approach is much lower than the unoptimized approach, as expected. Further,

it indicates that the lower memory utilization directly impacts CPU utilization since the

query needs to maintain and lookup much smaller join synopses. Figure 4.11(f) shows

that memory optimization gives an orders of magnitude reduction in time taken to process

the TPC-H Q3 for all the three datasets providing a throughput scale-up of approx 12X in

two cases (10GB and 60GB). As indicated in the figure, the 100GB run without memory

optimization ran out of memory (OOM) as the data per machine was much higher.

Qualitative Evaluation: Result convergence In order to determine the speed of conver-

gence we compute the precision (for the top-k correlated search query) of the progressive

output values that we get as intermediate results. Figure 4.12(a) varies k and plots pre-

cision against the number of progress-batches processed for a data size of 15GB, with

a configuration of 60-43-43-1 and 200 progress batches. The precision metric measures

how close progressive results are to the final top-k. We see that precision quickly reaches

90%, after a progress of less than 20% as the top k values do not change much after sam-

pling 20% of the data (lower k values converge quicker as expected). This shows the

utility of early results for real-world queries where the results converge very quickly to

the final answer after processing small amounts of data.

Qualitative Evaluation: Progress Semantics We compare result quality against an

106

0.4

0.6

0.8

1

0 20 40 60 80 100
P

re
ci

si
o

n

% Progress

Top-k Convergence

k-1000 k-500

k-100 k-50

k-10

(a)

0 25 50 75 100

-100

0

100

200

300

400

% Progress (Progressive Output)

%
 C

TR
 E

rr
o

r

CTR Estimation error
Now! MRO (Skew 0.2) MRO (Skew 0.5)

MRO (Skew 2) MRO (Skew 5)

(b)

Figure 4.12: Qualitative analysis. (a) Top-k Convergence; (b) Error estimation of
progressive results.

MRO-style processing approach using the clicks dataset to compute CTR (Figure 4.3)

progressively. We model variation in processing time using a skew factor that measures

how much faster Qi is, as compared to Qc. A skew of 1 represents the hypothetical

case where perfect CTR information is known a priori, and queries follow this relative

processing speed. Figure 4.12(b) shows the % error in CTR estimation plotted against

% progress. The experiment shows that if different queries proceed at different speeds,

early results without user-defined progress semantics can become inaccurate (although

107

all techniques converge to the same final result). We see that even moderate skew values

can result in significant inaccuracy. On the other hand, progress semantics ensure that the

data being correlated always belongs to the same subset of users, which allows CTR to

converge quickly and reliably, as expected.

4.6 Conclusion

Progressive data analytics can be used to as a means to reduce the cost of data

analytics in the cloud. Data scientists typically perform progressive sampling to extract

data for exploratory querying, which provides them user-control, determinism, repeatable

semantics, and provenance. However, the lack of system support for such progressive ana-

lytics results in a tedious and error-prone workflow that precludes the reuse of work across

samples. We designed and built a new system called NOW! based on PRISM that (1) al-

lows users to communicate progressive samples to the system; (2) allows efficient and

deterministic query processing over samples; and yet (3) provides repeatable semantics

and provenance to data scientists. We showed that one can realize this model for atempo-

ral relational queries using an unmodified temporal streaming engine, by re-interpreting

temporal event fields to denote progress. NOW! has been built as a progressive data-

parallel computation framework for the cloud, where progress is understood and propa-

gated as a first-class citizen in the framework. NOW! works with StreamInsight to provide

progressive SQL support over big data in Azure. Large-scale experiments showed orders-

of-magnitude performance gains achieved by our solutions affecting substantial reduction

in the cost of analytics in the cloud, without sacrificing the benefits offered by our under-

lying progress model.

108

Chapter 5: Neighborhood-centric Analytics on Large-scale Graphs in the

Cloud

5.1 Introduction

There is an increasing interest in executing complex analyses over large graphs,

many of which can be viewed as operations on local neighborhoods (or subgraphs of local

neighborhoods) of a large number of nodes in the graph. For example, there is much inter-

est in analyzing ego networks, i.e., 1- or 2-hop neighborhoods, of the nodes in the graph.

Examples of specific ego network analysis tasks include identifying structural holes, bro-

kerage analysis, counting motifs [82], identifying social circles (Figure 5.1) [50], link

prediction and recommendations using Personalized Page Rank [83], computing local

clustering coefficients, and anomaly detection [84]. In other cases, there may be interest

in analyzing connected or induced subgraphs satisfying certain properties. As an example,

we may be interested in analyzing the induced subgraph on users who tweet a particular

hashtag in the Twitter network. Similarly, we may be interested in analyzing groups of

users who have exhibited significant communication activity in recent past. More com-

plex subgraphs can be specified as unions or intersections of neighborhoods of pairs of

nodes; this may be required for graph cleaning tasks such as link prediction and entity

109

resolution.

Several vertex-centric distributed graph processing frameworks have been proposed

in recent years, including Pregel [45], GraphLab [46], Apache Giraph [85], to name a few.

In these frameworks, the users write vertex-level programs, that are then executed by the

framework in either bulk synchronous or asynchronous fashion. The computation and

execution models in these frameworks fundamentally limit the user program’s access, to

a single vertex’s state (including its edges and in some cases neighbor IDs). This makes

writing many of the above mentioned tasks in these frameworks not natural. For example,

to analyze a 2-hop neighborhood to find social circles, one would first need to gather all

the information from 2-hop neighbors through message-passing (a huge communication

overhead), and reconstruct those neighborhoods locally (i.e., in the vertex program local

state). This not only duplicates the graph processing functionality, but will likely be

infeasible because high memory requirements arising from duplication of state. (Even

reconstructing 1-hop neighborhoods locally, e.g., for counting triangles, increases the

memory requirement by orders of magnitude). If the task is decomposable into smaller

tasks, it may be possible to execute it in multiple steps through partial computations at a

collection of nodes; however, most of these analysis tasks are not easily decomposable.

Customizing these existing frameworks for analytics that require traversing beyond 1-hop

neighbors may not be practical or efficient.

Most of these frameworks ignore the issues in extracting relevant portions of the un-

derlying graph that an analysis task may be specifically interested in, and loading it onto

distributed memory. In many cases, the user may only want to analyze a subgraph (or sev-

eral subgraphs) of the overall graph, and may only need access to a subset of the node and

110

edge attributes.. Further, to minimize network communication due to distributed traversal

during analysis, it is desired that vertices and edges be replicated so that the subgraphs

that are analyzed by the user programs are entirely present in one of the partitions [86].

This leads to a critical challenge in the Cloud computing environment, that needs to be

addressed to reduce the cost of analytics: given the user specification of an analysis task

and neighborhoods of interest, how to load the relevant data onto a minimum number of

partitions while minimizing the communication cost?

This dissertation introduces NSCALE, an end-to-end graph processing framework

that enables scalable distributed execution of subgraph-centric analytics over large-scale

graphs in the Cloud. In our framework, the user specifies: (a) the subgraphs of interest (for

example, k-hop neighborhoods around vertices that satisfy a set of predicates) and (b) a

user program to be executed on those subgraphs (which may itself be iterative). The user

program is written against a general graph API (specifically, BluePrints), and has access

to the entire state of the subgraph against which it is being executed. NSCALE execution

engine is in charge of ensuring that the user program only has access to that state and

nothing more; this guarantee allows existing graph algorithms to be used without modi-

fication. Thus a program written to compute, say, connected components in a graph, can

be used as is to compute the connected components within each subgraph of interest.

Our current subgraph specification format allows users to specify subgraphs of in-

terest as k-hop neighborhoods around a set of query vertices, followed by a filter on the

nodes and the edges in the neighborhood. It also allows selecting subgraphs induced by

certain attributes of the nodes; e.g., the user may choose an attribute like tweeted hash-

tags, and ask for induced subgraphs, one for each hashtag, over users that tweeted that

111

particular hashtag.

User programs corresponding to complex analytics may make arbitrary and random

accesses to the graph they are operating upon. Hence, one of our key design decisions

was to ensure that each of the subgraphs of interest would reside entirely in memory on

a single machine while the user program ran against it. NSCALE consists of two ma-

jor components. First, the graph extraction and packing (GEP) module extracts relevant

subgraphs of interest and uses a cost-based optimizer for data replication and placement

that minimizes the number of machines needed, while attempting to balance load across

machines to guard against the straggler effect. Second, the distributed execution engine

executes user-specified computation on the subgraphs in memory. It employs several opti-

mizations that reduce the total memory footprint by exploiting overlap between subgraphs

loaded on a machine, without compromising correctness.

Although we primarily focus on one-pass complex analysis tasks described above,

NSCALE also supports the Bulk Synchronous Protocol (BSP) model for executing it-

erative analysis tasks like computation of PageRank or global connected components.

NSCALE’s BSP implementation is most similar to that of GraphLab, and the information

exchange is achieved through shared state updates between subgraphs on the same par-

tition and through use of “ghost” vertices (i.e., replicas) and message passing between

subgraphs across different partitions.

We present a comprehensive experimental evaluation comparing against three state-

of-the-art systems, namely, Giraph, GraphLab, and GraphX, on several real-world datasets

and a variety of analysis tasks. Our results illustrates that extraction of relevant portions

of data from the underlying graph and optimized data replication and placement helps

112

improve scalability and performance with significantly fewer resources reducing the cost

of data analytics substantially. The graph computation and execution model employed

by NSCALE affects a drastic reduction in communication (message passing) overheads

(with no message passing within subgraphs), and significantly reduces the memory foot-

print (up to 2.6X for applications over 1-hop neighborhoods and up to 25X for applica-

tions such as personalized page rank over 2-hop neighborhoods); the overall performance

improvements range from 3X to 30X for graphs of different sizes for applications over

1-hop neighborhoods and 20X to 400X for 2-hop neighborhood analytics. Further, our

experiments show that GEP is a small fraction of the total time taken to complete the task,

and is thus the crucial component that enables the efficient execution of the graph com-

putation on the materialized subgraphs in distributed memory using minimal resources.

This enables NSCALE to scale neighborhood-centric graph analytics to very large graphs

for which the existing vertex-centric approaches fail completely.

NSCALE has been primarily deployed and tested on the Apache YARN platform.

The details of the deployment architecture on YARN are discussed in Section 5.2. In

addition to this, we have also implemented NSCALE on Apache Spark, the new big data

management platform. We elaborate on the details of this implementation in Section 5.7.

5.2 NSCALE Overview

In this section we first discuss several representative graph analytics tasks that are

ill-suited for vertex-centric frameworks, but fit well with NSCALE’s subgraph-centric

computation model. Subsequently we provide an overview of the programming model

113

High school
friends

Family
members

Office
Colleagues

Friends

College
friendsFriends in

database lab
in CS dept

Friends in
CS dept

Work place friends

Figure 5.1: An example of neighborhood-centric analysis: identify users’ social cir-
cles in a social network.

and architecture of NSCALE.

5.2.1 Application Scenarios

Local clustering coefficient (LCC). In a social network, the LCC quantifies, for a user,

the fraction of his or her friends who are also friends—this is an important starting point

for many graph analytics tasks. Computing the LCC for a vertex requires constructing its

ego network, which includes the vertex, its 1-hop neighbors, and all the edges between

the neighbors. Even for this simple task, the limitations of vertex-centric approaches are

apparent, since they require multiple iterations to collect the ego-network before perform-

ing the LCC computation (such approaches quickly run out of memory as we increase the

number of vertices we are interested in).

Identifying social circles. Given a user’s social network (k-hop neighborhood), the goal

is to identify the social circles (subsets of the user’s friends), which provide the basis for

information dissemination and other tasks. Current social networks either do this manu-

ally, which is time consuming, or group friends based on common attributes, which fails

114

V2

V1

V3

V2

V1

V3

V1

V2 V3

V4

(a) (b) (c)

Figure 5.2: Counting different types of network motifs: (a) Feed-fwd Loop, (b) Feed-
back Loop, (c) Bi-parallel Motif.

to capture the individual aspects of the user’s communities. Figure 5.1 shows examples

of different social circles in the ego networks of a subset of the vertices (i.e., shaded ver-

tices). Automatic identification of social circles can be formulated as a clustering prob-

lem in the user’s k-hop neighborhood, for example, based on a set of densely connected

alters [50]. Once again, vertex-centric approaches are not amenable to algorithms that

consider subgraphs as primitives, both from the point of view of performance and ease of

programming.

Counting network motifs. Network motifs are subgraphs that appear in complex net-

works (Figure 5.2), which have important applications in biological networks and other

domains. However, counting network motifs over large graphs is quite challenging [87]

as it involves identifying and counting subgraph patterns in the neighborhood of every

query vertex that the user is interested in. Once again, in a vertex-centric framework, this

would entail message passing to gather neighborhood data at each vertex, incurring huge

messaging and memory overheads.

Social recommendations. Random walks with restarts (such as personalized PageRank [83])

lie at the core of several social recommendation algorithms. These algorithms can be im-

plemented using Monte-Carlo methods [88] where the random walk starts at a vertex v,

115

and repeatedly chooses a random outgoing edge and updates a visit counter with the re-

striction that the walk jumps back only to v with a certain probability. The stationary

distribution of such a walk assigns a PageRank score to each vertex in the neighbor-

hood of v; these provide the basis for link prediction and recommendation algorithms.

Implementing random walks in a vertex-centric framework would involve one iteration

with message passing for each step of the random walk. In contrast, with NSCALE the

complete state of the k-hop neighborhood around a vertex is available to the user’s pro-

gram, which can then directly execute personalized PageRank or any existing algorithm

of choice.

Subgraph Pattern Matching and Isomorphism.

Subgraph pattern matching or subgraph isomorphism have important applications in

a variety of application domains including biological networks, chemical interaction net-

works, social networks, and many others; and a wide variety of techniques have been de-

veloped for exact or approximate subgraph pattern matching [89–99] (see Lee et al. [100]

for a recent comparison of the state-of-the-art techniques). Many of those techniques

work by identifying potential matches for a central node in the pattern, and then explor-

ing the neighborhood around those nodes to look for matches. This second step can

often involve fairly sophisticated algorithms, especially if the patterns are large or contain

sophisticated constructs, or if the goal is to find approximate matches, or if the data is

uncertain. Most of those algorithms are not easily parallelizable, and hence it would not

be easy to execute them in a distributed fashion using the vertex-centric programming

frameworks. On the other hand, NSCALE could be used to construct the relevant neigh-

116

1

5

2

9 10

3

7

4

11 12

6 8

6.24.5

7.39.5
2.2

5.4

7.2

11.9

12.3

12.6

2.1

1.3

10.6

6.4
Age: 18 Age: 32 Age: 22 Age: 36

Age: 19

Age: 22Age: 31

Age: 43Age: 33Age: 22

Age: 32 Age: 21

6.7

5.4

Subgraph Extraction Query: {Node.Sex = Male; Node.age > 18}, 1, {{Node.age > 25}, {Edge.weight > 5}}, all

5

2

10

2

10

7

11

6

4

8

7

11

6

SG-1 SG-2

SG-3 SG-4

Figure 5.3: A subgraph extraction query on a social network

borhoods in memory in many of those cases, and those search algorithms could be used

as is on those neighborhoods.

5.2.2 NSCALE Programming Model

We assume a standard definition of a graph G(V,E) where V = {v1, v2, ..., vn}

denotes the set of vertices and E = {e1, e2, ..., em} denotes the set of edges in G. Let

A = {a1, a2, ..., ak} denote the union of the sets of attributes associated with the vertices

and edges in G. In contrast to vertex-centric programming models, NSCALE allows users

to specify subgraphs or neighborhoods as the scope of computation. More specifically,

users need to specify: (a) subgraphs of interest on which to run the computations through

a subgraph extraction query, and (b) a user program.

Specifying subgraphs of interest. We envision that NSCALE will support a wide range

of subgraph extraction queries, including pre-defined parameterized queries, and declara-

tively specified queries using a Datalog-based language that we are currently developing.

Currently, we support extraction queries that are specified in terms of four parameters: (1)

117

ArrayList<RVertex> n_arr = new ArrayList<RVertex>();
for(Edge e: this.getQueryVertex().getOutEdges)

n_arr.add(e.getVertex(Direction.IN));

int possibleLinks = n_arr.size()* (n_arr.size()-1)/2;

// compute #actual edges among the neighbors
for(int i=0; i < n_arr.size()-1; i++)

for(int j=i+1; j < n_arr.size(); j++)
if(edgeExists(n_arr.get(i), n_arr.get(j)))

numEdges++;
double lcc = (double) numEdges/possibleLinks;

Figure 5.4: Example user program to compute local clustering coefficient written
using the BluePrints API. The edgeExists() call requires access to neighbors’ states,
and thus this program cannot be executed as is in a vertex-centric framework.

a predicate on vertex attributes that identifies a set of query vertices (PQV), (2) k – the

radius of the subgraphs of interest, (3) edge and vertex predicates to select a subset of ver-

tices and edges from those k-hop neighborhoods (PE, PV), and (4) a list of edge and vertex

attributes that are of interest (AE, AV). This captures a large number of subgraph-centric

graph analysis tasks, including all of the tasks discussed earlier. For a given subgraph

extraction query q, we denote the subgraphs of interest by SG1(V1, E1), ..., SGq(Vq, Eq).

Figure 5.3 shows an example subgraph extraction query, where the query vertices

are selected to be vertices with age > 18, radius is set to 1, and the user is interested in

extracting induced subgraphs containing vertices with age > 25 and edges withweight >

5. The four extracted subgraphs, SG1, ..., SG4 are also shown.

Specifying subgraph computation user program. The user computation to be run against

the subgraphs is specified as a Java program against the BluePrints API [101], a collec-

tion of interfaces analogous to JDBC but for graph data. Blueprints is a generic graph

Java API used by many graph processing and programming frameworks (e.g., Gremlin,

118

a graph traversal language [102]; Furnace, a graph algorithms package [103]; etc.). By

supporting the Blueprints API, we immediately enable use of many of these already ex-

isting toolkits over large graphs. Figure 5.4 shows a sample code snippet of how a user

can write a simple local clustering coefficient computation using the BluePrints API. The

subgraphs of interest here are the 1-hop neighborhoods of all vertices (by definition, a

1-hop neighborhood includes the edges between the neighbors of the node).

NSCALE supports the Bulk Synchronous Protocol (BSP) for iterative execution,

where the analysis task is executed using a number of iterations (also called supersteps).

In each iteration, the user program is independently executed in parallel on all the sub-

graphs (in a distributed fashion). The user program may then change the state of the query

vertex on which it is operating (for consistent and deterministic semantics, we only allow

the user program to change state of the query vertex that it owns; otherwise we would

need a mechanism to arbitrate conflicting changes to a vertex state and we are not aware

of any clean and easy model for achieving that). The state changes are made visible

across all the subgraphs during the synchronization barrier, through use of shared state

for subgraphs on the same partition and through message passing for subgraphs on dif-

ferent partitions. We provide a more detailed description of the provision of support for

iterative computation in NSCALE, including the consistency and ownership model used,

in Section 5.4.3.

Certain user applications might require customized aggregation of the values pro-

duced as a result of executing the user-specified program on the subgraphs of interest.

Our mechanism to handle state updates for iterative tasks can also be used for aggregat-

ing information across all the nodes in the graph in the synchronization step. To briefly

119

summarize, the nodes can send messages to the coordinator that it can use to make various

decisions (e.g., when to stop). The messages can be first locally aggregated, and the final

aggregation is done by the coordinator (depending on the aggregation function).

5.2.3 System Architecture

Figure 5.5 shows the overall system architecture of NSCALE, which is implemented

as a Hadoop YARN application. The framework supports ingestion of the underlying

graph in a variety of different formats including edge lists, adjacency lists, and in a va-

riety of different types of persistent storage engines including key–value pairs, special-

ized indexes stored in flat files, relational databases, etc. The two major components of

NSCALE are the graph extraction and packing (GEP) module and the distributed execu-

tion engine. We briefly discuss the key functionalities of these two components here, and

present details in the following sections.

Graph Extraction and Packing (GEP) Module. The user specifies the subgraphs of in-

terest and the graph computation to be executed on them using the NSCALE user API.

Unlike prior graph processing frameworks, the GEP module forms a major component of

the overall NSCALE framework. From a usability perspective, it is important to provide

the ability to read the underlying graph from the persistent storage engines that are not

naturally graph-oriented. However, more importantly, partitioning and replication of the

graph data are more critical for graph analytics than for analytics on, say, relational or

text data.

Graph analytics tasks, by their very nature, tend to traverse graphs in an arbitrary

120

HDFS

Subgraph Extraction

Cost Based
Optimizer

Set Bin Packing

Map Phase

Reducer 1 Reducer NNode to
Bin

mapping

Underlying Graph Data

Flat
Files

K-V
Stores

 Special
Purpose
Indexes

NScale User API

Graph Extraction and Packing Distributed Execution Engine

Apache YARN

Map Reduce

Output
Materialization

Exec
Engine

Exec
Engine

Figure 5.5: NSCALE architecture. The GEP module is responsible for extracting and
packing subgraphs of interest and then handing off the partitions to the distributed
execution engine.

and unpredictable manner. If the graph is partitioned across a set of machines, then many

of these traversals are made over the network, incurring significant performance penalties.

Further, as the number of partitions of a graph grows, the number of cut edges (with

endpoints in different partitions), and hence the number of distributed traversals, grows in

a non-linear fashion. This is in contrast to relational or text analytics where the number

of machines used has a minor impact on the execution cost.

This is especially an issue in NSCALE, where user programs are treated as black-

boxes. Hence, we have made a design decision to avoid distributed traversals altogether

by replicating vertices and edges sufficiently so that every subgraph of interest is fully

present in at least one partition. Similar approach has been taken by some of the prior

work on efficiently executing “fetch neighbors” queries [104] and SPARQL queries [86]

121

in distributed settings. The GEP module is used to ensure this property, and is responsible

for extracting the subgraphs of interest and packing them onto a small set of partitions

such that every subgraph of interest is fully contained within at least one partition. GEP

is implemented as multiple MapReduce jobs (described in detail later). The output is

a vertex-to-partition mapping, which consists of a mapping from the graph vertices to

partitions to be created. This data is either written to HDFS or directly fed to the execution

engine.

Distributed Execution Engine. The distributed execution phase in NSCALE is imple-

mented as a MapReduce job, which reads the original graph and the mappings generated

by GEP, shuffles graph data onto a set of reducers, each of which constructs one of the

partitions. Inside each reducer, the execution engine is instantiated along with the user

program, which then receives and processes the graph partition.

The execution engine supports both serial and parallel execution modes for execut-

ing user programs on the extracted subgraphs. For serial execution, the execution engine

uses a single thread and loops across all the subgraphs in a partition, whereas for parallel

execution, it uses a pool of threads to execute the user computation in parallel on multi-

ple subgraphs in the partition. However, this is not straightforward because the different

subgraphs of interest in a partition are stored in an overlapping fashion in memory to re-

duce the total memory requirements. The execution engine employs several bitmap-based

techniques to ensure correctness in that scenario.

122

5.3 Graph Extraction and Packing

5.3.1 Subgraph Extraction

Subgraph extraction in the GEP module has been implemented as a set of MapRe-

duce (MR) jobs. The number of MR stages needed depends on the size of the graph,

how the graph is laid out, size(s) of the machine(s) available to do the extraction, and

the complexity of the subgraph extraction query itself. The first stage of GEP is always

a map stage that reads in the underlying graph data, and identifies the query vertices. It

also applies the filtering predicates (PE, PV) to remove the vertices and edges that do not

pass the predicates. It also computes a size or weight for each vertex, that indicates how

much memory is needed to hold the vertex, its edges, and their attributes in a partition.

This allows us to estimate the memory required by a subgraph as the sum of the weights

of its constituent vertices. (Only the attributes identified in the extraction query are used

to compute these weights.) The rest of the GEP process only operates upon the network

structure (the vertices and the edges), and the vertex weights.

Case 1: Filtered graph structure is small enough to fit in a single machine. In that case,

the vertices, their weights, and their edges are sent to a single reducer. That reducer con-

structs the subgraphs of interest and represents them as subsets of vertices, i.e., each

subgraph is represented as a list of vertices along with their weights (no edge information

is retained further); this is sufficient for the subgraph packing purposes. The subgraph

packing algorithm takes as input these subsets of vertices and the vertex weights, and

produces a vertex-to-partition mapping.

123

Input Graph
on HDFS

Stage 1&2
Construct 2- Hop Neighborhoods

Compute Shingles

Stage 3
Distributed Shingle Based

Bin Packing

Shingle
Based

Shuffling Subgraph
to Bin

Mapping

Figure 5.6: Distributed GEP Architecture: Stages 1 and 2 construct the 2-hop neigh-
borhoods; Stage 3 does the distributed shingle based bin packing producing the final
subgraph to bin mapping.

Case 2: Filtered graph structure does not fit on a single machine. In that case, the sub-

graph extraction and packing both are done in a distributed fashion, with the number of

stages dependent on the radius (k) of subgraphs of interest.

We explain the process assuming k = 2, i.e., assuming our subgraphs of interest

are 2-hop neighborhoods around a set of query vertices. We also assume an adjacency list

representation of the data1 (i.e., the IDs of the neighbors of a vertex are stored along with

rest of its attributes);

Figure 5.6 shows the 3-stage distributed architecture of GEP. We begin with pro-

viding a brief sketch of the process. Given an input graph and a user query, the first two

stages essentially are responsible for gathering for each query-vertex, its 2 hop neighbor-

hood along with the weight attributes associated with each vertex in the 2-hop neighbor-

hood. This is done iteratively, wherein the first stage constructs the 1-hop neighborhood

1For input graphs represented as an edge list with the vertex attributes available as a separate mapping,
we have a minor modification to the first stage that uses a MapReduce job to join the edge and vertex data
and produce a distributed adjacency list in the required format.

124

of the query-vertices specified by the query with all the required information on a set

of reducers. Subsequently, the second stage takes the output of the first stage as input,

constructs the 2-hop neighborhoods of the query-vertices and computes their shingle val-

ues in a distributed fashion, and outputs them as keys associated with these query-vertex

neighborhoods. The final stage shuffles the neighborhoods based on these keys to multi-

ple reducers in an attempt to group together neighborhoods with high overlap on a single

reducer. The reducers in stage 3 run the bin packing in parallel which is followed by a

post-processing step to produce the final neighborhood-to-bin mapping.

Next, we provide an in-depth description of the process. For a node u, let N(u) =

u1, ..., uN(u) denote its neighbors. The following steps are taken:

MapReduce Stage 1: For each vertex u that passes the filtering predicates (PV), the map

stage emits N(u) + 1 records:

〈key, (u,weight(u), isQueryV ertex,N(u))〉,

where key = u, u1, ..., uN(u). Thus, given a vertex u, we have N(u)′ + 1 records that

were emitted with u as the key, one for its own information, and one for each of its N(u)′

neighbors that satisfies PV (emitted while those neighbors are processed). In the reduce

stage, the reducer responsible for vertex u now has all the information for its 1-hop neigh-

bors, and IDs of all its 2-hop neighbors (obtained from its neighbors’ neighborhoods), but

it does not have the weights of its 2-hop neighbors or whether they satisfied the filtering

predicates PV . For each query vertex u, the reducer creates a list of the nodes in its 2-hop

neighborhood, and outputs that information with key u. For each vertex v and for each of

its 2-hop neighbors w, it also emits a record 〈key = w, (v, weight(v))〉.

125

MapReduce Stage 2: The second MapReduce stage groups the outputs of the first MapRe-

duce stage by the vertex ID. Each reducer processes a subset of the vertices. There are

two types of records that a reducer might process for a vertex u: (a) a record containing a

list of u’s 1- and 2-hop neighbors and the weights of its 1-hop neighbors, and (b) several

records each containing the weight of a 2-hop neighbor of u. If a reducer only sees the

records of the second type, then u is not a query vertex, and those records are discarded.

Otherwise, the reducer adds the weight information for 2-hop neighbors, and completes

the subgraph corresponding to u. For each of the subgraphs, the reducer then computes a

min-hash signature, i.e., a set of shingles, over the vertex set of the subgraph, and emits a

record with the set of shingles as the key and the subgraph as the value (we use 4 shingles

in our experiments). A shingle is computed by applying a hash function to each of the

vertex IDs in the subgraph, and taking the minimum of the hash values; it is well known

that if two sets share a large fraction of the shingles, then they are likely to have a high

overlap [105].

MapReduce Stage 3: The third MapReduce phase uses the shingle value of the sub-

graphs to shuffle the subgraphs to appropriate reducers. As a result of this shuffling, the

subgraphs that are assigned to a reducer are likely to have high overlap and the subgraph

packing algorithm is executed on each reducer separately. Finally, a post-processing step

combines the results of all the reducers by merging any partitions that might be underuti-

lized in the solutions produced by the individual reducers.

Intuitively, the above sequence of MapReduce stages constructs the required sub-

graphs, and then does a shuffle using the shingles technique in an attempt to create groups

126

that contain overlapping subgraphs. Those groups are then processed independently and

the resulting vertex-to-partition mappings are concatenated together.

5.3.2 Subgraph Packing

Problem Definition. We now formally define the problem of packing the extracted

subgraphs into a minimum number of partitions (or bins)2, such that each subgraph is

contained within a partition and the computation load across the partitions is balanced.

Let SG = {SG1, SG2, .., SGq} be the set of subgraphs extracted from the underlying

graph data (at a reducer). As discussed earlier, we assume that the memory required to

hold a subgraph SGi can be estimated as the sum of weights of the nodes in it. Let BC

denote the bin capacity. This is set based on the maximum container capability of a YARN

cluster node, a configuration parameter that needs to be set for the YARN cluster keeping

in mind the maximum allocation of resources to individual tasks on the cluster.

Without considering overlaps between subgraphs and the load balancing objective,

this problem reduces to the standard bin packing problem, where the goal is to minimize

the number of bins required to pack a given set of objects. The variation of the problem

where the objects are sets, and when packing multiple such objects into a bin, a set union

is taken (i.e., overlaps are exploited), has been called set bin packing; that problem is

considered much harder and we have found very little prior work on that problem [106].

Further, we note that we have a dual-objective optimization problem; we reduce it

to a single-objective optimization problem by putting a constraint on the number of sub-

graphs that can be assigned to a bin. Let MAX denote the constraint, i.e., the maximum

2We use the terms partitions and bins interchangeably in this chapter.

127

number of subgraphs that can be assigned to a bin.

Subgraph Bin Packing Algorithms. The subgraph bin packing problem is NP-Hard

and appears to be much harder to solve than the standard bin packing problem, as it

also exhibits some of the features of the set cover and the graph partitioning problems.

Next, we develop several scalable heuristics to solve this problem. We also developed

and implemented an optimal algorithm for this problem (OPT), where we construct an

Integer Program for the given problem instance and use the Gurobi Optimizer to solve the

Integer Program. We were, however, able to run OPT successfully only for a very few

small graphs; we present those results in Section 5.6.2.

5.3.2.1 Bin Packing-based Algorithms

The first set of heuristics that we develop exploit the similarity between subgraph

packing problem and the bin packing problem. All of these heuristics use the standard

greedy bin packing algorithm, where the items are considered in a particular order and

placed in the first bin where they fit. More specifically, the algorithm (Algorithm 5) takes

as input an ordered list of subgraphs, as determined by the heuristic, processes them in

order, and packs each subgraph into the first available bin that has the available residual

capacity, without violating the constraint on the maximum number of subgraphs in a bin.

The addition of a subgraph to a bin is a set union operation that takes care of the overlap

between the subgraphs. Each bin represents a partition onto which the actual graph data,

associated with the nodes mapped to the bin using this algorithm, would be distributed

for final execution step.

The complexity of this algorithm in the worst case in terms of the number of com-

128

Algorithm 5: Bin Packing Algorithm.
Input : Ordered list of subgraphs SG1, ..., SGq, each represented as a list of

vertices and edges
Input : Bin capacity BC; Maximum number of subgraphs per bin MAX
Output: Partitions
for i = 1, 2, ..., q do

for j = 1, 2, ..., B do
if number of subgraphs in Bin j < MAX then

if SGi fits in Bin j (accounting for overlap) then
Add SGi to Bin j;
break;

end
end

end
if SGi not yet placed in a bin then

Create a new bin and add SGi to it;
end

end

parison operations required is O(nm) where n is the number of subgraphs and m is the

number of bins required (= n in the worst case). Each comparison operation compares the

estimated size of the union (accounting for the overlap) and the bin capacity. In addition

to these comparisons, there would be n set union operations for inserting the subgraphs

into bins. The complexity of the comparison and the set union operations is implementa-

tion dependent. For a hashtable-based approach, those operations would be linear in the

number of set elements, giving us an overall complexity of O(nmC), where C is the bin

capacity. However this worst-case complexity is quite pessimistic, and in practice, the

algorithms run very fast.

We now describe three different heuristics to provide the input ordering of the sub-

graphs to be packed into bins.

1. First Fit bin packing algorithm. The first fit algorithm is a standard greedy 2-

129

approximation algorithm for bin packing, and processes the subgraphs in the order in

which they were received (i.e., in arbitrary order).

2. First Fit Decreasing bin packing algorithm. The first fit decreasing algorithm is

a variant of the first fit algorithm wherein the subgraphs are considered in the decreasing

order of their sizes.

3. Shingle-based bin packing algorithm. The key idea behind this heuristic is to order

the subgraphs with respect to the similarity of their vertex sets. The ordering so produced

will maximize the probability that subgraphs with high overlap are processed together,

potentially resulting in a better overall packing.

The shingle-based ordering is based on the min-hashing technique [107] which pro-

duces signatures for large sets that can be used to estimate the similarity of the sets. For

computing the min-hash signatures (or shingles) of the subgraphs of interest over their

vertex set, we choose a set of k different random hash functions to simulate the effect

of choosing k random permutations of the characteristic matrix that represents the sub-

graphs. For each query vertex and each hash function, we apply the hash function to the

set of nodes in the subgraph of the query vertex and find the minimum among the hash

values.

Thus the output of the shingle computation algorithm (Ref Algorithm 6) is a list of

k shingles (min-hash values) for each subgraph of interest, where the order of the hash

functions within the list is effectively arbitrary3. To compute the shingle ordering, we

sort-order the subgraphs of interest based on this list of shingle values associated with the

3The higher the value of k, the better the quality of the result. We have chosen k = 6 for our implemen-
tation which was determined experimentally to strike a fine balance between the quality of shingle-based
similarity and computation time.

130

Algorithm 6: Computing shingles for a subgraph
Input : Subgraph SG(V,E); A family of pairwise-independent hash functions H
shingles[SGi]← {};
for h ∈ H do

shingles[SG]← {shingles[SG],minv∈V h(v)};
end
return shingles;

subgraphs in a lexicographical fashion. The sorted order so obtained using this technique

places subgraphs with high Jaccard similarity (i.e., overlap) in close proximity to each

other. This shingle-based order is then used to pack the neighborhoods into bins using the

greedy algorithm.

Handling skew. A high variance in the sizes of subgraphs could lead to a bin packing

where some partitions have only a few large subgraphs and few partitions have a very

large number of small subgraphs. This might lead to load imbalance and skewed execu-

tion times across partitions. To handle this skew in the sizes of the subgraphs, the bin

packing algorithm (Algorithm 1) accepts a constraint on the maximum number of sub-

graphs (MAX) in a bin in addition to the bin capacity. This limits the number of small

subgraphs that can be binned together in a partition and mitigates the potential of load

imbalance between partitions to some degree. The trade-off here is that, we may need

to use a higher number of bins to satisfy the constraints while some of the bins are not

fully utilized. The MAX parameter can be set empirically depending on the nature of user

computation and the underlying graph keeping in view the above mentioned trade-off.

131

5.3.2.2 Graph Partitioning-based Algorithms

The subgraph packing problem has some similarities to the graph partitioning prob-

lem, with the key difference being that: standard graph partitioning problem asks for

disjoint balanced partitions, whereas the partitions that we need to create typically have

overlap in order to satisfy the requirement that each subgraph be completely contained

within at least one partition. Graph partitioning is very well-studied and a number of

packages are available that can partition large graphs efficiently, METIS perhaps being

the most widely used [108].

Despite the similarities, graph partitioning algorithms turn out to be a bad fit for

the subgraph packing problem, because it is not easy to enforce the constraint that each

subgraph of interest be completely contained in a partition. One option is to start with

a disjoint partitioning returned by a graph partitioning algorithm, and then “grow” each

of the partitions to ensure that constraint. However, we also need to ensure that the en-

larged partitions obey the bin capacity constraint, which is hard to achieve since different

partitions may get enlarged by different amounts.

We instead take the following approach (Algorithm 7). We over partition the graph

using a standard graph partitioning algorithm (we use METIS in our implementation)

into a large number of fine-grained partitions. We then grow each of those partitions as

needed. This requires that for each query vertex in the fine grained partition, we check is

its k-hop neighborhood lies within the partition. If not, we replicate the required nodes

in the partition. This ensures that each subgraph of interest is fully contained in one

of the partitions, and finally use the shingle-based bin packing heuristic to pack those

132

Algorithm 7: Graph Partitioning-based algorithm.
Input : Graph G(V,E); Num of over partitions k
Output: Bins B
//Over partition G into k partitions.;
P ←Metis(G); where |P| = k;
for p ∈ P do

for qv ∈ p do
if ! (k − hop neighborhood) ∈ p then

Grow: Replicate the required nodes adding them to p;
end

end
end
//Compute Shingles for each grown partition;
for i = 1 to |P | do

si = ComputeShingles(pi);
end
//Sort the partitions based on shingle values (si) ;
Sort(P);
B = BinPackingAlgo(P);
return B;

partitions into bins. While packing, we also keep track of the nodes that are owned by the

bin (or partition) and the ones that are replicated (ghosts) from other bins, to maintain the

invariant of keeping each subgraph of interest fully in the memory of one of the partitions.

5.3.2.3 Clustering-based Algorithms

The subgraph packing problem also has similarities to clustering, since our goal can

be seen as identifying similar (i.e., overlapping) subgraphs and grouping them together

into bins. We developed two heuristics based on the two commonly used clustering tech-

niques.

Agglomerative Clustering-based Algorithm. Agglomerative clustering refers to a class

133

of bottom-up algorithms that start with each item being in its own cluster, and recursively

merge the closest clusters till the requisite number of clusters is reached. For handling

large volumes of data, a threshold-based approach is typically used where in each step,

pairs of clusters that are sufficiently close to each other are merged, and the threshold is

slowly increased. Next we sketch our adaptation of this technique to subgraph packing.

We start with computing a set of shingles for each subgraph and ordering the

subgraphs in the shingle order. This is done in order to reduce the number of pairs

of clusters that we consider for merging; in other words, we only consider those pairs

for merging that are sufficiently close to each other in the shingle order. The function

createAggClusters() in Algorithm 8 does the actual scanning of sets and merges close

by sets together. The algorithm uses two parameters, both of which are adapted during the

execution: (1) τ , a threshold that controls when we merge clusters, and (2) l, that controls

how many pairs of clusters we consider for merging. In other words, we only merge a

pair of clusters if they are less than l apart in the shingle order, and the Jaccard distance

between them is less than τ . The set of merged clusters are available as AC.

To reduce the number of parameters, we use a sampling-based approach in the

function setThreshold() in Algorithm 8, to set τ at the beginning of each iteration. We

choose a random sample of the eligible pairs (we use 1% sample), compute the Jaccard

distance for each pair, and set τ such that 10% of those pairs of clusters would have dis-

tances below τ . We experimented with different percentage thresholds, and we observed

that 10% gave us the best mix of quality and running time.

After computing τ , we make a linear scan over the clusters that have been con-

structed so far. For each cluster, we compute its actual Jaccard distance with the l clusters

134

Algorithm 8: Agglomerative Clustering-based algorithm.
Input : Set of subgraphs SG = {SG1, ..., SGq}
Input : Merge size l (Number of pairs to be considered for merging.)
Output: Agglomerative Clusters (Bins) AC
//Compute Shingles of each subgraph;
for i = 1 to q do

si = ComputeShingles(SGi);
end
/*Sort the subgraphs based on their shingle values (S = {s1, s2, ..sq})*/;
Sort(SG) ;
Done=false;
//Create an empty set of agglomerative clusters;
AC ← φ;
while !Done do

τ = setThreshold();
numMerges = createAggCluster(SG,AC, τ, I);
if numMerges = 0 then

Done=True;
break;

end
//adjust the merge size if required;
I = adjustMergeSize();
//Re-Compute Shingles of each merged cluster;
m = |AC|;
for i = 1 to m do

si = ComputeShingles(ACi);
end
//Sort clusters based on their shingle values (si). Sort(AC) ;
SG = AC;

end
return AC;

135

that follow it. If the smallest of those distances is less than τ , then we merge the two

clusters and re-compute shingles for the merged cluster (this is done by simply picking

the minimum of the two values for each shingle position). This is only done if the merged

cluster does not exceed the bin capacity (pairs of clusters whose union exceeds bin capac-

ity are also excluded from the computation of τ).

During computation of τ , we also keep track of the number of pairs excluded be-

cause the size of their union is larger than the bin capacity. If those pairs form more 50%

of sampled pairs, then we increase l (adjustMergeSize()) to increase the pool of eligible

pairs. Since this usually happens towards the end when the number of clusters is small,

we do this aggressively by increasing l by 50% each time. The algorithm halts when it

cannot merge any pair of clusters without violating the bin capacity constraint.

K-Means-based Algorithm. K-Means is perhaps the most commonly used algorithm for

clustering, and is known for its scalability and for constructing good quality clusters. Our

adaptation of K-means (Ref Algorithm 9) is sketched next.

We start by picking k of the subgraphs randomly as centroids. We then make a

linear scan over the subgraphs and for each subgraph, we compute the distance to each

centroid using the function computeDistance(). We assign the subgraph to the centroid

with which it has the highest intersection (in other words, we assign it to the centroid

whose size needs to increase the least to include the subgraph). This is only done if the

total size of the vertices in the cluster does not exceed BC. After assigning the subgraph

to the centroid, we recompute the centroid (UpdateCentroid()) as the union of the old

centroid and the subgraph. The function also keeps track of multiplicities of the vertices

136

Algorithm 9: KMeans Clustering-based algorithm.
Input : Set of subgraphs SG = {SG1, ..., SGq}; Bin Capacity BC
Input : k: The number of K-Means Clusters; MAX: maximum iterations
Output: Bins B
//Create an empty centroid set KC ← φ;
//Randomly pick k subgraphs and assign them as the k-centroids;
while (Sizeof(KC) < k) do

//Generate a random number from 1 to k i=GenerateRandom(k);
KC = KC

⋃
SGi

end
//Scan over the set of subgraphs and assign them to nearest centroid;
AssignmentMap← φ;
for i = 1 to q do

if !(SGi ∈ KC) then
Max = −∞;
CentroidAssigned =0;
for j=1 to k do

dist = computeDistance(SGi,KCj , BC);
if (Max < dist) then

Max = dist;
CentroidAssigned = j;

end
end
UpdateCentroid(SGi,KCCentroidAssigned);
AssignmentMap.Put(i,CentroidAssigned);

end
end
//Update assignments iteratively to improve clustering;
numIterations=0;
while numIterations < MAX do

for i = to q do
CurrentAssignment = AssignmentMap.Get(i);
for j = 1 to k do

SwapGain = ComputeGain(i, CurrentAssignment, j);
if (SwapGain > 0) then

Swap(i, CurrentAssignment, j);
end

end
end
numIterations++;

end
B = BinPackingAlgo(KC);
return B; 137

Algorithm 10: ComputeDistance()
Input : Subgraph SG; Centroid C; Bin Capacity BC
Output: Distance between SG and C
if |SG ∪ C| > BC then

return -∞
else

return |SG ∩ C|
end

in the centroid at all times (i.e., for each vertex in a centroid, we keep track of how many

of the assigned subgraphs contain it).

As with K-Means, we make repeated passes over the list of subgraphs in order to

improve the clustering. In the subsequent iterations, for each subgraph, we check if it may

improve the solution using the function ComputeGain(). If the swap gain is positive, i.e.

there is a net decrease in the sum of the size of the centroids involved in the swap, we

reassign the subgraph to a different centroid, using the multiplicities to remove it from

one centroid and assign it to the other centroid (Swap()). Finally the k cluster obtained

are packed into bins (or partitions).

Having to choose a value of k a priori is one of the key disadvantages of K-Means.

We estimate a value of k based on the subgraph sizes and the bin capacity. If at the end

of first iteration, we discover that we are left with too many unassigned subgraphs, we

increase the value of k and repeat the process till we are able to find a good clustering.

5.3.3 Handling Very Large Subgraphs

Most machines today, even commodity machines, have large amounts of RAM

available, and can easily handle very large subgraphs, including 2-hop neighborhoods

of high-degree nodes in large-scale networks. However, in the rare case of a subgraph

138

0.71	

0.72	

0.73	

0.74	

10%	 20%	 30%	 40%	 50%	

Av
er
ag
e	
LC
C	
	

Sample	 Size	

Web-‐NotreDame	
Random	 Node	 Sampling	 Random	 Walk	 Sampling	
Actual	 LCC	 value	

0.1	

0.12	

0.14	

0.16	

10%	 20%	 30%	 40%	 50%	

Av
er
ag
e	
LC
C	

Sample	 Size	

Web-‐Google	
Random	 Node	 Sampling	 Random	 Walk	 Sampling	
Actual	 LCC	 value	

Figure 5.7: Effect of Graph Sampling

extraction query where one of the subgraphs extracted is too large to fit into the memory

of a single machine, we have two options. The first option is to use disk-resident process-

ing, by storing the subgraph on the disk and loading it into memory as needed. The user

program may need to be modified so that it does not thrash in such a scenario. We note

here that our flexible programming model makes it difficult to process the subgraph in a

distributed fashion (i.e., by partitioning the subgraph across a set of distributed machines);

if this scenario is common, we may wish to enforce a vertex-centric programming model

within NSCALE, and that is something we plan to consider in future work.

139

The other option, that we currently support in NSCALE and is arguably better suited

for handling large subgraphs, is to use sampling to reduce the size of the subgraph. We

currently assume that the subgraph skeleton (i.e., the network structure of a subgraph) can

be held in the memory of a single machine during GEP; this is needed to support many of

the effective random sampling techniques like forest fire or random walks (independent

random sampling can be used without making this assumption) [109], [110]. The key

idea here is to construct a random sample of a subgraph during GEP, if the size of the

subgraph is estimated to be larger than the bin capacity. We provide built-in support

for two random sampling techniques: random node selection, and random walk-based

sampling. The former technique chooses an independent random sample of the nodes to

be part of the subgraph, whereas the latter technique does random walks starting with the

query vertex and including all visited nodes in the sample (till a desired sample size is

reached). NSCALE also provides a flexible API for users to implement and provide their

own graph sampling/compression technique. The random sampling is performed at the

reduce stage in GEP where the subgraph skeleton is first constructed.

Figure 5.7 shows the effect of using our random node and random walk-based sam-

pling algorithms on the accuracy of the local clustering coefficient (LCC) computation.

We plot the average LCC computed on samples of different sizes for two different data

sets, and compare them to the actual result. Each data point is an average of 10 runs. We

also show the standard deviation error bars. For the random node-based sampling tech-

niques, the standard deviation across multiple random runs decreases and the accuracy

increases as the sampling ratio increases (as seen in that figure). This is not surprising

since the estimated LCC through this technique is an unbiased estimator for the true aver-

140

age LCC (although it has a very high variance). For the random walk-based sampling, the

numbers do not show any consistent trend since the set of sampled nodes does not have

any uniformity guarantees and in fact, the set of sampled nodes would be biased towards

the high degree nodes (and the effect on the estimated LCC would be arbitrary since the

degree of a node is not directly correlated with the LCC for that node).

5.4 Distributed Execution Engine

The NSCALE distributed execution engine runs inside the reduce stage of a MapRe-

duce job (Figure 5.5). The map stage takes as input the original graph and the vertex-to-

partition mappings that are computed by the GEP module, and it replicates and shuffles

the graph data so that each of the reducers gets the data corresponding to one of the par-

titions. Each reducer constructs the graph in memory from the data that it receives, and

identifies the subgraphs owned by it (the vertex-to-partition mappings contain this infor-

mation as well). It then uses a worker thread pool to execute the user computation on

those subgraphs. The output of the graph computation is written to HDFS.

5.4.1 Execution modes

The execution engine provides several different execution modes. The vector bitmap

mode associates a bit-vector with each vertex and edge in the partition graph, and enables

parallel execution of user computation on different subgraphs. The batched bitmap mode

is an optimization that uses smaller bitmaps to reduce memory consumption, at the ex-

pense of increased execution time. The single bit bitmap mode associates a single bit with

141

each vertex and edge, consuming less memory but allowing for only serial execution of

the computation on the subgraphs in a partition.

Vector Bitmap Mode. Here each vertex and edge is associated with a bitmap, whose size

is equal to the number of subgraphs in the partition. Each vector bit position is associated

with one subgraph and is set to 1 if the vertex or the edge participates in the subgraph

computation. A master process on each partition schedules a set of worker threads in

parallel, one per subgraph. Each worker thread executes the user computation on its

subgraph, using the corresponding bit to control what data the user computation sees.

Specifically, our BluePrints API implementation interprets the bitmaps to only return the

elements (vertices or edges or attributes) that the callee should see. The use of bitmaps

thus obviates the need for state duplication and enables efficient parallel execution of

user computation on subgraphs. For consistent and deterministic execution of the user

computation, each worker thread can only update the state of the query-vertex contained

in its subgraph. We discuss the details of this consistency mechanism in greater detail in

Section 5.4.3.

Figure 5.8 shows an example bitmap setting for the subgraphs extracted in Fig-

ure 5.3. In Bin 2, subgraphs 2 and 3 share nodes 6 and 7 which have both the bits in the

vector bitmap set to 1 indicating that they belong to both the subgraphs. All other nodes

in the bins have only one of their bits set, indicating appropriate subgraph membership.

Batching Bitmap Mode. As the system scales to a very large number of subgraphs per

reducer, the memory consumed by the bitmaps can grow rapidly. At the same time, the

maximum parallelism that can be achieved is constrained by the hardware configuration,

142

Bin 2: SG-2, SG-3Bin 1: SG-1,SG-4

2

5 10

4 8 10 6

11

7

2

1 0

1 0
1 0

0 1 0 1

1 1

1 0

1 1

1 1

1 0

Figure 5.8: Bitmap based parallel execution

and it is likely that only a small number of subgraphs can actually be processed in parallel.

The batching bitmap mode exploits this by limiting up front the number of subgraphs that

may be processed in parallel. Specifically, we batch the subgraphs into batches of a fixed

size (called batch-size), and process the subgraphs one batch at a time. A bitmap of length

batch-size is sufficient now to indicate to which subgraphs in the batch a vertex or a node

contributes. After a batch is finished, the bitmaps are re-initialized and the next batch

commences.

The key question is how to set the batch size. A small batch size may impact the

parallelism and may lead to an increased total execution time. A small batch size is also

susceptible to the straggler effect, where the entire batch completion is held up for one

or a few subgraphs (leading to wasted resources and low utilization). A very large batch

size, on the other hand, can lead to high memory overheads for negligible reductions in

total execution time.

Figures 5.9(a) and 5.9(b) show the results of a set of experiments that we ran to

understand the effect of batch size on total execution time and the amount of memory

consumed. As we can see, a small batch size indeed leads to underutilization of the

143

available parallelism and consequently higher execution times. However, we also observe

that beyond a certain value, increasing the batch size further did not lead to significant

reduction in the execution time. We do a small penalty for batching that can be attributed

to the overhead of reinitializing bitmaps across batched execution and to minor straggler

effects. However, there is a wide range of parameter values where the execution time

penalty is acceptable, and the total memory consumed by the bitmaps is low. Based on

our evaluation, we set the batch size to be 3000 for most of our experiments; a lower

number should be used if the hardware parallelism is lower (these experiments were done

on a 24-core machine), and a higher number is warranted for machines with more cores.

Single-Bit Mode. To further reduce the memory overhead associated with bit vectors,

we provide a single bit execution mode wherein each node and edge is associated with a

single bit which is set if the node participates in the current subgraph computation. The

subgraphs are processed in a serial order, one at a time, with the bits re-initialized after

each computation is finished. This mode is supported to cater to distributed computation

on low end commodity machines, but it is not expected to scale to large graphs.

5.4.2 Bitmap Implementation

Given the central role played by bitmaps in our execution engine, we carefully

analyzed and compared different bitmap implementations that are available for use in

NSCALE.

Java BitSet. Java BitSet Java provides a standard BitSet class that implements a vector

of bits that grows as needed. The Java BitSet class internally uses an array of ”longs”

144

0	
500	
1000	
1500	
2000	
2500	
3000	
3500	
4000	
4500	

0	
50	

100	
150	
200	
250	

24
	

10
0	

50
0	

10
00
	

20
00
	

50
00
	

70
00
	

10
00
0	

20
00
0	

30
00
0	

10
85
77
	

M
em

or
y	
Fo
ot
pr
in
t	 (
M
B)
	

Ex
ec
u4

on
	 T
im

e	
(S
ec
s)
	

Batch	 Size	

With	 Batching	 No	 Batching	 	 Bitmap	 Mem	 Reqd	

LCC:	 For	 108577	 Subgraphs	

(a)

0	
2000	
4000	
6000	
8000	
10000	
12000	
14000	

0	
200	
400	
600	
800	

1000	
1200	
1400	

24
	

10
0	

50
0	

10
00
	

20
00
	

50
00
	

70
00
	

10
00
0	

20
00
0	

30
00
0	

32
57
29
	

M
em

or
y	
Fo
ot
pr
in
t	 (
M
B)
	

Ex
ec
u4

on
	 T
im

e	
(S
ec
s)
	

Batch	 Size	

No	 Batching	 	 With	 Batching	 Bitmap	 Mem	 Reqd	

LCC:	 For	 325729	 Subgraphs	

(b)

Figure 5.9: Effect of batching on execution time and memory footprints on two dif-
ferent graph datasets.

and provides generic functionality while maintaining some additional state in terms of an

integer and a boolean. The overhead of this extra state is ignorable for large bitmap sizes

(5000 and above).

LBitSet. LBitSet To reduce the memory overhead of the Java BitSet class, we imple-

mented the LBitSet class using an array of ”Longs” which actually takes less space than

an array of ”longs” if values stored in the array are small. Depending on the bitmap size,

an appropriate size of array is chosen. To set a bit, the Long array is considered as a con-

145

Bitmap
size

Java Bit-
Set

L BitSet C BitSet
(Init)

C BitSet
(1)

C BitSet
(2)

C BitSet
(25%)

70 54 39 134 138 142 204
144 63 39 134 138 142 278
3252 484 254 134 138 142 3386
5000 632 321 134 138 142 5134

Table 5.1: Memory footprints in Bytes for different bitmap constructions and bitmap
sizes in bits. For CBitSet, the table shows the initial memory footprint and how it
increases when 1 bit is set, 2 bits are set and 25% bits are set (#bits set indicate the
#subgraphs the vertex is part of).

tiguous set of bits and the appropriate bit position is set to 1 using binary bit operations.

To unset a bit, the corresponding bit index position is set to 0.

CBitSet. The CBitSet Java class has been implemented using hash buckets. Each bit index

in the bitmap hashes (maps) to a unique bucket which contains all the bitmap indexes that

are set to 1. To set a bit, the bit index is added to the corresponding hash bucket. To

unset a bit, the bit index is removed from the corresponding hash bucket if it is present.

This bitmap construction works on the lines of set association, wherein we can hash onto

the set and do a linear search within it, thereby avoiding allocation of space of all bits

explicitly.

We conducted a micro-benchmark comparing these bitmap implementations to get

an estimate of the memory overhead for each bitmap, using a memory mapping utility. Ta-

ble 5.1 gives an estimate of the memory requirements per node for each of these bitmaps.

Memory footprints for CBitSet shown in the table include a column for the initial allot-

ment when the bitmaps are initialized. At run time, when bits are set, this would increase

(by about 4 bytes per bit set). The table shows the increase in CBitSet memory as 1, 2, and

25% bits are set. The number of bits set in each bitmap is indicative of the overlap among

146

them. As we can see, CBitSet would have a lesser memory footprint if the overlap is

less. In other cases LBitSet has the least memory footprint. A more detailed performance

evaluation of the different bitmap implementations can be found in Section 5.6.3.

5.4.3 Support for Iterative Computation.

NSCALE can naturally handle iterative tasks as well where information must be

exchanged across subgraphs between iterations. Below we briefly sketch a description of

NSCALE’s iterative execution model.

Execution model. NSCALE uses the Bulk Synchronous Protocol (BSP), used by Pregel,

Giraph, GraphX, and several other distributed graph processing systems. The analysis

task is executed in a number of iterations (also called supersteps) with barrier synchro-

nization steps in between the iterations. Since subgraphs of interest typically overlap,

the main job of the barrier synchronization step is to ensure that all the updates made by

the user program locally to the query vertices are propagated to other subgraphs contain-

ing those vertices. During barrier synchronization, after each superstep, the information

exchange between subgraphs co-located on the same physical partition is done through

shared state updates (saving the overhead of message passing). Information exchange

between subgraphs on different physical partitions is done using message passing which

is amenable to optimizations such as batching of all updates for a particular partition

together, to reduce the overhead.

Consistency model. To provide deterministic execution of iterative computation, the up-

dating of state is closely linked to the query-vertex ownership in NSCALE. Each partition

147

in NSCALE owns a disjoint set of query-vertices and each worker thread is responsible

for one query-vertex and its neighborhood. We only allow updating the state of the query-

vertex in each subgraph by the worker thread that owns (or is currently associated with)

the query vertex. The state of the query-vertex updated in the current superstep is available

for consumption by other subgraphs in the next superstep. This BSP-based consistency

model thus does away with the requirement of any explicit locking-based synchronization

and its associated overheads making the system easy to parallelize and scalable for large

graphs.

We note that, this restriction on the consistency model is equivalent to the restric-

tions imposed by the other vertex-centric graph processing frameworks, and does not

preclude any iterative execution task that we are aware of.

Implementation details. The barrier synchronization required by the BSP execution

model can be achieved using any mechanism for reliably maintaining centralized state that

can be accessed by different partitions (e.g., one option on YARN is Zookeeper). Further,

the message passing model for information exchange between partitions can be built using

an in-memory distributed and fault tolerant key-value store like Cassandra [111] or a

distributed in-memory key-value cache such as Redis [112], as we do not envision the

messages to be very large. The number of components (or partitions) of the distributed

key-value store (or cache) can be set equal to the number of partitions in NSCALE with

one component co-located with each partition to minimize the network overhead. Each

query vertex would mark its updated state in the key-value store that is co-located with

the partition to which the query vertex belongs, keyed by the query-vertex ID.

148

1 2

5 4

6 3

Bin 1 Bin 2

1 2

5 4

6

1 2

5 4

3

1 2

5 4

6

1 2

5 4

3Super Step 1

Barrier Synchronization

L:1; L':1

L:6; L':1

L:5;L':4

L:2

L:4

L:1 L:2; L':1

L:3; L':2

L:5

1 2

5 4

6

1 2

5 4

3

L:1

L:1

L:4

L:1

L:1

L:1 L:1

L:2

L:4

Original Graph

K:V
1:1
6:1
5:4

K:V
2:1
3:2
4:1

L:4; L':1

1 2

5 4

6

1 2

5 4

3

L:1; L':1

L:1; L':1

L:4;L':1

L:1

L:3

L:1 L:1; L':1

L:2; L':1

L:4
K:V
1:1
6:1
5:1

K:V
2:1
3:1
4:1

L:1; L':1

Super Step 2

L:1

1 2

5 4

6

1 2

5 4

3

L:1

L:1

L:1

L:1

L:1

L:1 L:1

L:1

L:1 L:1

Barrier
Synchronization

Figure 5.10: Iterative execution of global connected components algorithm on an
example graph on NSCALE.

149

In our current implementation, we use Redis for both barrier synchronization using a

counter and for message passing. We explain the step-by-process with an example for

computing global connected components. Note that, for this application, each vertex in

the graph is a query vertex and the set of its 1-hop neighbors constitutes a subgraph of

interest.

Example. Figure 5.10 shows an example execution of the global connected components

algorithm using multiple supersteps. The figure shows an input graph with vertex IDs

as labels of vertices. The GEP phase in NSCALE extracts the subgraphs for each query

vertex and instantiates them in two bins (Bin 1 and 2) in an overlapped fashion. Each

partition is associated with a disjoint set of query-vertices that it owns. The colored

vertices are the query vertices and the other vertices are copies created to enforce the

1-hop neighborhood guarantee. A key-value store shard is also co-located with each

partition. Every vertex has an initial label value L (its vertex ID).

In superstep 1, each query vertex accesses the labels of its one-hop neighbors and

computes the minimum label and assigns a new value to its own label; the new label is

stored in a temporary copy denoted L′. Also each query vertex inserts an entry in the

local shard of the distributed K-V store with its ID as the key and its new state (L′) as

the value. Superstep 1 is followed by barrier synchronization during which the updated

values in L′ are copied into L for each query vertex, and all non query-vertices in the

partition are updated with the values in the distributed key-value store. This is where

the message passing takes place between partitions, which is handled by the distributed

key-value store under the hood. For improved performance, we use multiple threads to

read and write to the Redis key-value cache. In superstep 2, each query vertex repeats

150

the same procedure and updates its L′ values and the key-value store entries. In the sub-

sequent barrier synchronization phase, all the vertices converge to the same label hence

terminating the iterations.

5.5 Experimental Evaluation

We performed an extensive experimental evaluation of different design facets of

NSCALE and also compared it with three popular distributed graph programming plat-

forms. We briefly discuss some additional implementations details of NSCALE here, and

describe the experimental setup.

Implementation Details. NSCALE has been written in Java (version “1.7.0 45”) and de-

ployed on a YARN cluster. The framework implements and exports the generic BluePrints

API to write graph computations. The GEP module takes the subgraph extraction query,

the bin packing heuristic to be used, the bin capacity, and an optional parameter for graph

compression/sampling (if required). The YARN platform distributes the user computation

and the execution engine library using the distributed cache mechanism to the appropriate

machines on the cluster. The execution engine has been parametrized to vary its execu-

tion modes, and use different batch sizes and bitmap construction techniques. Although

NSCALE has been designed for the cloud, its deployability and design features are not tied

to any cloud-specific features; it could be deployed on any cluster of machines or a private

cloud that supports YARN or Hadoop as the underlying data-computation framework.

Data Sets. We conducted experiments using several different datasets, majority of which

have been taken from the Stanford SNAP dataset repository [113] (see Table 5.2 for details

151

Dataset # Nodes # Edges Avg De-
gree

Avg
Clust
Coeff

Triangles Diameter

EU Email Comn
Network

265214 840090 3.16 0.0671 267313 14

Notre Dame Web
Graph

325729 2,994,268 9.19 0.2346 8910005 46

Google Web
Graph

875713 10,210,078 11.66 0.5143 13391903 21

Wikipedia Talk
Network

2,394,385 10,042,820 4.2 0.0526 9203519 9

LiveJournal Social
Network

4,847,571 137,987,546 28.5 0.2741 285730264 16

Orkut Social Net-
work

3,072,441 234,370,166 76.3 0.1666 627584181 9

ClueWeb Graph 428,136,6131,448,223,018 3.38 0.2655 4372668765 11

Table 5.2: Dataset Statistics

and some statistics).

• Web graphs: We have used three different web graph datasets: Notre Dame Web

Graph, Google Web Graph, and ClueWeb09 Dataset; in all of these, the nodes

represent web pages and directed edges represent hyperlinks between them.

• Communication/Interaction networks: We use: (1) EU Email Communication

Network, generated using email data from a European research institution for a pe-

riod from October 2003 to May 2005; and (2) The Wikipedia Talk network, created

from the talk pages of registered users on Wikipedia until Jan 2008.

• Social networks: We also use two social network datasets: the Live Journal social

network and Orkut social network.

• Small-scale synthetic graphs. For comparing against the optimal algorithm, we

generated a set of small-scale synthetic graphs (100-1000 nodes, 500-20000 edges)

152

using the Barabasi-Albert preferential attachment model.

Graph Applications. We evaluate NSCALE over 6 different applications. Three of them,

namely, Local Clustering Coefficient (LCC), Motif Counting: Feed-Forward Loop (MC),

and Link Prediction using Personalized Page Rank (PPR), are described in Section ??. In

addition, we used:

• Triangle Counting (TC): Here the goal is to count the number of triangles each

vertex is part of. These statistics are very useful for complex network analysis [114]

and real world applications such as spam detection, link recommendation, etc.

• Counting Weak Ties (WT): A weak tie is defined to be a pattern where the center

node is connected to two nodes that are not connected to each other. The goal with

this task is to find the number of weak ties that each vertex is part of. Number of

weak ties is considered an important metric in social science [115].

In addition to the above graph applications that involve single-pass analytics, we

also evaluated NSCALE using a global iterative graph application, computing the con-

nected components, as described in Section 5.4.3.

Comparison platforms. We compare NSCALE with three widely used graph program-

ming frameworks.

• Apache Giraph [85]. The open source version of Pregel, written in Java, is a vertex-

centric graph programming framework and widely used in many production systems

(e.g., at Facebook). We deploy Apache Giraph (Version 1.0.0) on Apache YARN with

Zookeeper for synchronization for the BSP model of computation. Deploying Apache

153

Giraph on YARN with HDFS as the underlying storage layer enables us to provide a

fair comparison using the same datasets and graph applications.

• GraphLab [116]. GraphLab, a distributed graph-parallel API written in C++, is an

open source vertex-centric programming model that supports both synchronous and

asynchronous execution. GraphLab uses the GAS model of execution wherein each

vertex program is decomposed into gather, apply, and scatter phases; the framework

uses MPI for message passing across machines. We deployed GraphLab v2.2 which

supports OpenMPI 1.3.2 and MPICH2 1.5, on our cluster.

• GraphX [59]. GraphX is a graph programming library that sits on top of Apache

Spark. We used the GraphX library version 2.10 over Spark version 1.3.0 which was

deployed on Apache YARN with HDFS as the underlying storage layer.

Evaluation metrics. We use the following evaluation metrics to evaluate the perfor-

mance of NSCALE.

• Computational Effort (CE). CE captures the total cost of doing analytics on a

cluster of nodes deployed in the cloud. Let T = {T1, T2, ..., TN} be the set of tasks

(or processes) deployed by the framework on the cluster during execution of the

analytics task.

Also, let ti be the time taken by the task Ti to be executed on node i. We define

CE =
∑N

i=1 ti. The metric captures the cost of doing data analytics in terms of

node-secs which is appropriate for the cloud environment.

• Execution Time. This is the measure of the wall clock time or elapsed time for

executing an end-to-end graph computation on a cluster of machines. It includes

154

the time taken by the GEP phase for extracting the subgraphs as well as the time

taken by the distributed execution engine to execute the user computation on all

subgraphs of interest.

• Cluster Memory. Here we measure the maximum total physical memory used

across all nodes in the cluster.

Experimental Setup. We use two 16 node clusters wherein each data node has 2 4-

core Intel Xeon E5520 processors, 24GB RAM and 3 2 TB disks. The first cluster runs

Apache YARN (MRv2 on Cloudera’s CDH version 5.1.2) and Apache Zookeeper for

coordination. Each process on this cluster runs in a container with a max memory ca-

pacity restricted to 15GB with a maximum of 6 processes per physical machine. We run

NSCALE, Giraph and GraphX experiments on this cluster. The second cluster supports

MPI for message passing and uses a TORQUE (Terascale Open-Source Resource and

QUEue) Manager. We run GraphLab in this cluster and restrict the max memory per

process on each machine to 15GB for a fair comparison.

For all our baseline comparisons and scalability experiments, we have used the

shingle-based bin packing heuristic as the GEP algorithm for packing subgraphs into

bins. We have chosen shingle-based bin packing as it finds good quality solutions effi-

ciently, while consuming fewer resources as compared to the other heuristics. Also, for

smaller graphs such as NotreDame web graph, Google web graph, etc., where the filtered

structure can fit onto a single machine, we used the centralized GEP solution (Ref Case

1, Section 5.3.1). On the other hand, for larger graphs such as the Clue Web graph, we

use the distributed GEP solution (Ref Case 2 Section 5.3.1).

155

5.6 Experimental Results

5.6.1 Baseline Comparisons

We begin with comparing NSCALE with Apache Giraph and GraphLab for different

datasets for the five different applications. For four of the applications (LCC, MC, TC,

WT), the subgraphs of interest are specified as 1-hop neighborhoods of a set of query

vertices which could be chosen randomly or specified using query-vertex predicates. On

the other hand, Personalized Page Rank (PPR) is computed on the 2-hop neighborhood

of a set of query vertices. For a fair comparison with all the other baselines, we choose

each vertex as a query-vertex for NSCALE and run the the first four applications (LCC,

MC, TC, WT) on their 1-hop neighborhoods in a single pass. For the Personalized page

rank application we choose different number of source (or query) vertices for different

datasets. The Personalized page rank is computed with respect to these source vertices on

their 2-hop neighborhoods in all frameworks.

Tables 5.3 and 5.4 show the results for the baseline comparisons. Since all of these

applications require access to neighborhoods, Apache Giraph runs them using multiple

iterations. In the first superstep it gathers neighbor information using message passing

and in the second superstep, it does the required graph computation (for PPR, Giraph

needs two supersteps to gather the 2-hop neighborhoods).

As we can see, for most of the graph analytics tasks, Giraph does not scale to larger

graphs. It runs out of memory (OOM) a short while into the map phase, and does not

complete (DNC) the computation.

156

Dataset
Local Clustering Coefficient

NSCALE Giraph GraphLab GraphX
CE
(Node-
Secs)

Cluster
Mem
(GB)

CE
(Node-
Secs)

Cluster
Mem
(GB)

CE
(Node-
Secs)

Cluster
Mem
(GB)

CE
(Node-
Secs)

Cluster
Mem
(GB)

EU Email 377 9.00 1150 26.17 365 20.1 225 4.95
NotreDame 620 19.07 1564 30.14 550 21.4 340 9.75
GoogleWeb 658 25.82 2024 35.35 600 33.5 1485 21.92
WikiTalk 726 24.16 DNC OOM 1125 37.22 1860 32
LiveJournal 1800 50 DNC OOM 5500 128.62 4515 84
Orkut 2000 62 DNC OOM DNC OOM 20175 125

Dataset
Motif Counting: Feed-Forward Loop

NSCALE Giraph GraphLab GraphX
CE
(Node-
Secs)

Cluster
Mem
(GB)

CE
(Node-
Secs)

Cluster
Mem
(GB)

CE
(Node-
Secs)

Cluster
Mem
(GB)

CE
(Node-
Secs)

Cluster
Mem
(GB)

EU Email 279 8.76 1371 24.43 285 20.8 4125 7.2
NotreDame 524 18.02 1923 28.98 575 21.6 10875 15.6
GoogleWeb 812 23.64 2164 37.27 625 31.9 DNC -
WikiTalk 991 29.34 DNC OOM 1150 36.81 DNC -
LiveJournal 1886 51 DNC OOM 4750 130.74 DNC -
Orkut 2024 63 DNC OOM DNC OOM DNC -

Dataset
Per-Vertex Triangle Counting

NSCALE Giraph GraphLab GraphX
CE
(Node-
Secs)

Cluster
Mem
(GB)

CE
(Node-
Secs)

Cluster
Mem
(GB)

CE
(Node-
Secs)

Cluster
Mem
(GB)

CE
(Node-
Secs)

Cluster
Mem
(GB)

EU Email 264 15.36 1012 26.10 250 21.1 240 4.5
NotreDame 477 17.62 1518 30.16 425 22.7 270 9
GoogleWeb 663 25.86 1978 35.39 550 31.3 1230 21
WikiTalk 715 21.29 DNC OOM 975 32.22 1590 30.2
LiveJournal 1792 49.34 DNC OOM 4750 129.61 4335 74
Orkut 1986 61.32 DNC OOM DNC OOM 13875 115

Table 5.3: Comparing NSCALE with Giraph, GraphLab and GraphX

157

Dataset
Identifying Weak Ties

NSCALE Giraph GraphLab GraphX
CE
(Node-
Secs)

Cluster
Mem
(GB)

CE
(Node-
Secs)

Cluster
Mem
(GB)

CE
(Node-
Secs)

Cluster
Mem
(GB)

CE
(Node-
Secs)

Cluster
Mem
(GB)

EU Email 278 7.34 1472 25.49 281 20.4 4215 7.3
NotreDame 390 13.26 2024 29.99 400 20.6 11795 16.6
GoogleWeb 555 21.60 2254 39.26 525 30.7 DNC -
WikiTalk 592 18.18 DNC OOM 925 31.71 DNC -
LiveJournal 1762 48.32 DNC OOM 4625 126.71 DNC -
Orkut 1972 60.45 DNC OOM DNC OOM DNC -

Dataset
Personalized Page Rank on 2-hop Neighborhood

NSCALE Giraph GraphLab GraphX
#Source
Ver-
tices

CE
(Node-
Secs)

Cluster
Mem
(GB)

CE
(Node-
Secs)

Cluster
Mem
(GB)

CE
(Node-
Secs)

Cluster
Mem
(GB)

CE
(Node-
Secs)

Cluster
Mem
(GB)

EU Email 3200 52 3.35 782 17.10 710 28.87 9975 85.5
NotreDame 3500 119 9.56 1058 31.76 870 70.54 50595 95
GoogleWeb 4150 464 21.52 10482 64.16 1080 108.28 DNC -
WikiTalk 12000 3343 79.43 DNC OOM DNC OOM DNC -
LiveJournal 20000 4286 84.94 DNC OOM DNC OOM DNC -
Orkut 20000 4691 93.07 DNC OOM DNC OOM DNC -

Table 5.4: Comparing NSCALE with Giraph, GraphLab and GraphX

Hence these baseline comparisons have been shown on relatively smaller graphs.

The cluster logs confirmed that the poor scalability of Giraph for such applications is

due to the high message passing overhead between the vertices, characteristic of vertex-

centric approaches like Giraph, and high memory requirements due to duplication of state

at each vertex.

Compared to Giraph, GraphLab performs a little better. For smaller graphs such as

NotreDame and Google Web, GraphLab’s performance is comparable to NSCALE and for

some applications like Local Clustering Coefficient, it is a little better than NSCALE in

terms of CE . However, in all cases, GraphLab consumes much more cluster memory

depending on the graph partitioning mechanism and the replication factor it uses, the latter

158

of which varies with the number of machines on which the job is executed. Like Giraph,

GraphLab too does not scale to larger graphs for neighborhood-centric applications.

GraphX does well for 1-hop graph applications such as LCC and TC on smaller

graphs both in terms of memory and CE (node-secs). However as the graph size increases,

CE grows rapidly and surpasses that of NSCALE, quite significantly. For applications

such as MC and WT, GraphX performs poorly as these applications require explicit edge

information between the 1-hop neighbors of the query-vertex which necessitates joins and

triplet aggregations across the vertex and edge RDDs, leading to poor scalability for larger

graphs for such applications. For similar reasons, the performance of GraphX further

deteriorates for 2-hop neighborhood applications such as PPR and it does not complete

for any of the larger graph datasets (Web-Google and beyond).

Tables 5.5 and 5.6 show the performance gain of NSCALE, over Giraph, GraphLab

and GraphX both in terms of CE and cluster memory consumption. Even for the smaller

graphs, depending on the type of application and the size of neighborhood, NSCALE per-

forms 3X to 22X better in terms of CE , and consumes a lot less (up to 5X less) total cluster

memory as compared to Giraph.

GraphLab follows a similar trend. As can be seen, for all the five applications, as the

graph size increases, both CE and required memory increase sharply, and GraphLab fails

to complete, running out of memory, for real world graphs such as WikiTalk, Orkut and

Live Journal. Even for relatively smaller graphs, the performance difference is significant,

especially for 2-hop applications such as Personalized Page Rank where GraphLab is up

to 13X slower and consumes up to 8X more memory.

159

Dataset
Local Clustering Coefficient

Giraph GraphLab GraphX
CE (Node-
Secs)

Cluster
Mem(GB)

CE (Node-
Secs)

Cluster
Mem(GB)

CE (Node-
Secs)

Cluster
Mem(GB)

EU Email 3.05X 2.9X 0.96X 2.23X 0.66X 0.55X
NotreDame 2.52X 1.58X 0.88X 1.12X 0.54 0.51
GoogleWeb 3.07X 1.36X 0.91X 1.29X 2.25X 0.84X
WikiTalk - - 1.54X 1.54X 2.56X 1.32X
LiveJournal - - 3.05X 2.57X 2.50X 1.68X
Orkut - - - - 10.08X 2.01X

Dataset
Motif Counting: Feed-Forward Loop

Giraph GraphLab GraphX
CE (Node-
Secs)

Cluster
Mem(GB)

CE (Node-
Secs)

Cluster
Mem(GB)

CE (Node-
Secs)

Cluster
Mem(GB)

EU Email 4.91X 2.78X 1.02X 2.37X 14.78 0.82X
NotreDame 3.66X 1.60X 1.09X 1.19X 20.75X 0.86X
GoogleWeb 2.66X 1.57X 0.76X 1.34X - -
WikiTalk - - 1.16X 1.25X - -
LiveJournal - - 2.51X 2.56X - -
Orkut - - - - - -

Dataset
Per-Vertex Triangle Counting

Giraph GraphLab GraphX
CE (Node-
Secs)

Cluster
Mem(GB)

CE (Node-
Secs)

Cluster
Mem(GB)

CE (Node-
Secs)

Cluster
Mem(GB)

EU Email 3.83X 1.69X 0.94X 1.37X 0.90X 0.29X
NotreDame 3.18X 1.71X 0.89X 1.28X 0.56X 0.51X
GoogleWeb 2.98X 1.36X 0.82X 1.21X 1.85X 0.81X
WikiTalk - - 1.36X 1.51X 2.22X 1.41X
LiveJournal - - 2.65X 2.62X 2.41X 1.49X
Orkut - - - - 6.98X 1.87X

Table 5.5: Performance (X) improvement of NSCALE over Giraph, GraphLab and
GraphX; a “-” indicates that the other system ran out of memory or did not com-
plete.

160

Dataset
Identifying Weak Ties

Giraph GraphLab GraphX
CE (Node-
Secs)

Cluster
Mem(GB)

CE (Node-
Secs)

Cluster
Mem(GB)

CE (Node-
Secs)

Cluster
Mem(GB)

EU Email 5.29X 3.47X 1.01X 2.77X 15.16X 0.99X
NotreDame 5.18X 2.26X 1.02X 1.55X 30.24X 1.25X
GoogleWeb 4.06X 1.81X 0.94X 1.42X - -
WikiTalk - - 1.56X 1.74X - -
LiveJournal - - 2.62X 2.62X - -
Orkut - - - - - -

Dataset
Personalized Page Rank

Giraph GraphLab GraphX
CE (Node-
Secs)

Cluster
Mem(GB)

CE (Node-
Secs)

Cluster
Mem(GB)

CE (Node-
Secs)

Cluster
Mem(GB)

EU Email 15.03X 5.10X 13.65X 8.61X 191.82X 25.52X
NotreDame 8.89X 3.32X 7.31X 7.37X 425.16X 9.93X
GoogleWeb 22.59X 2.98X 2.32X 5.03X - -
WikiTalk - - - - - -
LiveJournal - - - - - -
Orkut - - - - - -

Table 5.6: Performance (X) improvement of NSCALE over Giraph, GraphLab and
GraphX; a “-” indicates that the other system ran out of memory or did not com-
plete.

GraphX performs better for smaller graphs for applications such as LC and TC.

However, for relatively larger graphs, NSCALE is up to 10X better in terms of CE and

consumes up to 2X less memory. For MC and WT applications, NSCALE is up to 30X

better in terms of CE and consumes up to 1.25X less memory for smaller graphs. For

larger graphs GraphX fails to complete. The most significant difference is seen for PPR

where NSCALE performs up to 425X better in terms of CE and consumes up to 25X lesser

memory for smaller graphs. Again, for larger graphs GraphX fails to complete.

The improved performance of NSCALE can be attributed to the NSCALE com-

putation and execution models which (1) allow a user computation to access the entire

subgraph state and hence do not require multiple iterations avoiding the message passing

161

overhead, and (2) avoid duplication of state at each vertex reducing memory requirements

drastically. Further, the extraction and loading of required subgraphs by the GEP module

helps NSCALE to scale to larger graphs using minimal resources.

5.6.2 GEP Evaluation

Comparing subgraph bin packing (SBP) algorithms. We first evaluated the the per-

formance and quality of the bin packing-based algorithms: First Fit, First Fit Decreasing

and Shingle Based bin packing on the LiveJournal data set.

Figure 5.11(a) shows the number of bins required to partition the subgraphs as

we vary the number of subgraphs specified by the query (using predicates on the query

vertices). The number of bins increases as the number of subgraphs increases for all

the three heuristics. We see that the First Fit algorithm requires the maximum number

of bins as expected whereas the shingle-based packing algorithm performs the best in

terms of packing the subgraphs into a minimum number of bins. This is due to the fact

that the shingle-based bin packing algorithm orders the subgraphs based on neighborhood

similarity thereby taking maximum advantage of the overlap amongst them.

To ascertain the cost of data analytics we study the effect of bin packing on the com-

putation effort CE . Figure 5.11(b) shows that the CE for the First Fit algorithm is the max-

imum making it the most expensive, while the CE for shingle-based packing algorithm

is the minimum making it the most cost effective bin packing solution. Figures 5.11(c),

5.11(d) show the execution (elapsed) time and the total cluster memory usage for binning

and execution with respect to these three heuristics and different number of subgraphs.

The First Fit has the best execution time and the shingle-based bin packing algorithm has

162

an execution time which closely follows that of the First Fit algorithm. On the other hand,

the First Fit Decreasing algorithm takes the largest execution time. This can be attributed

to the fact the First Fit is expected to produce the most uniform distribution of subgraphs

across the bins and the First Fit Decreasing is likely to produce a skewed distribution

(packing a large number of smaller subgraphs in later bins) leading to larger execution

times due to the straggler effect.

We further study the distribution of the number of subgraphs (or query-vertices)

packed per bin and the distribution of running times of each instance of a execution engine

on a bin (partition). Figures 5.11(e),5.11(f) show the box plots with whiskers for both

the distributions. As expected the First Fit algorithm has the most uniform distribution

across the bins in both cases. The shingle-based packing algorithm also performs well and

provides a distribution almost as good as the First Fit algorithm, while First Fit Decreasing

has the most skewed distribution in both cases, which also explains the highest end-to-end

execution timings for the heuristic. We thus see that the shingle-based packing algorithm

performs the best in terms of minimizing the # bins and CE , having low execution times

and almost uniform bin distributions thus minimizing the straggler effect.

To summarize, our results showed that our shingle-based packing algorithm per-

forms much better in terms of minimizing the # bins and CE . It also has low execution

times and almost uniform bin distributions thus minimizing the straggler effect.

We next compare the shingle-based bin packing heuristic with the two clustering-

based algorithms, and the METIS-based algorithm. Figures 5.12(a), 5.12(b) and 5.12(c)

show the performance of the four subgraph packing approaches for three different real-

world datasets.

163

0	

5	

10	

15	

20	

25	

30	

35	

325729	 162865	 65145	

#	
Bi
ns
	 (P

ar
++

on
s)
	

#	 of	 Subgraphs	

First	 Fit	 First	 Fit	 Decreasing	 Shingle	 Ordering	

(a)

0	

200	

400	

600	

800	

1000	

1200	

1400	

1600	

325729	 162865	 65145	

Co
m
pu

ta
(o

n	
Eff

or
t	

	 (N
od

e	
Se
cs
)	

#	 Subgraphs	

First	 Fit	 First	 Fit	 Decreasing	 Shingle	 Ordering	

(b)

0	

100	

200	

300	

400	

500	

600	

700	

325729	 162865	 65145	

Ex
ec
u&

on
	 T
im

e	
(S
ec
s)
	

#	 Subgraphs	

First	 Fit	 First	 Fit	 Decreasing	 Shingle	 Ordering	

(c)

0	
5	

10	
15	
20	
25	
30	
35	
40	

325729	 162865	 65145	

To
ta
l	 C
lu
st
er
	 M

em
or
y	

Re
qu

ire
d	
(G
B)
	

#	 Subgraph	

First	 Fit	 First	 Fit	 Decreasing	 Shingle	 Ordering	

(d)

0	

20000	

40000	

60000	

80000	

100000	

120000	

140000	

First	 Fit	 First	 Fit	 Decr	 Shingle	 Ordering	

#	
Q
ue

ry
	 V
er
)c
es
	

Distribu)on	 of	 Query-‐Ver)ces	 in	 Bins	

(e)

0	

100	

200	

300	

400	

500	

First	 Fit	 First	 Fit	 Decr	 Shingle	 Ordering	

Ex
ec
u&

on
	 &
m
e	
in
	 (S
ec
s)
	 Distribu&on	 of	 Bin	 Execu&on	 &mes	

(f)

Figure 5.11: For the different shingle based subgraph packing heuristics, we com-
pare: (a) #bins required; (b) total computational effort required; (c) total elapsed
time (wall clock time) for running the LCC computation on the subgraphs; (d) total
cluster memory required for GEP and execution of the LCC computation; (e)-(f)
distribution of # subgraphs and of execution engine running times over the bins

We see that K-Means provides generally found solutions with minimum number

of bins, but takes much longer and consumes significantly more memory. The shingle-

based solution finds almost as good solutions, but is much more efficient. METIS-based

164

0	
10	
20	
30	
40	
50	
60	
70	
80	

EU-‐Email	 Web-‐NotreDame	 Web-‐Google	 Live	 Journal	

#	
Bi
ns
	

Shingle	 Based	 AgglomeraGve	 	 KMeans	 MeGs	

(a)

1	

10	

100	

1000	

10000	

100000	

1000000	

EU-‐Email	 Web-‐NotreDame	 Web-‐Google	 Live	 Journal	

Ti
m
e	
(m

se
cs
)	 (
Lo
g	
Sc
al
e)
	

Shingle	 Based	 Agglomera@ve	 	 KMeans	 	 Me@s	

(b)

0	

500	

1000	

1500	

2000	

2500	

3000	

EU-‐Email	 Web-‐NotreDame	 Web-‐Google	 Live	 Journal	

M
em

or
y	
(M

B)
	

Shingle	 Based	 AgglomeraCve	 	 KMeans	 	 MeCs	

(c)

Figure 5.12: Comparison of shingle based subgraph packing heuristics with the other
bin packing heuristics; we compare: (a) #bins required; (b) total time taken for bin
packing; (c) memory required.

partitioning does poorly both in terms of binning quality and the efficiency (notice the log

scale in Figure 5.12(b)), and we did not consider it for the rest of experimental evaluation.

To better evaluate the performance of the heuristics, we also compared them with

an optimal algorithm (OPT), that constructs an Integer Program for the problem instance,

and uses the Gurobi Optimizer to find an optimal solution. Unfortunately, even after many

hours on a powerful server per problem instance, OPT was unable to find a solution for

most of our small-scale synthetically generated problem instances; for 14 of 64 synthetic

datasets, it found either an optimal solution or reasonable bounds, and we have plotted

those in Figure 5.13(a) (the x-axis is sorted by the value of the best solution found by

OPT). We note that the only instances where OPT found the optimal solution (i.e., where

165

(a) (b)

Figure 5.13: Comparing subgraph packing heuristics to (a) the optimal solution and
(b) each other, for synthetic graphs

upper bound = lower bound) were solutions with 2 or 4 bins. As we can see, for almost all

of these problem instances, our K-Means heuristics was able to match the OPT solution.

Overall, the reason K-Means performs so well can be attributed to the fact that it

explores the solution space more extensively and in general, does more pair-wise com-

parisons between the sets (corresponding to the subgraphs). The behavior was consistent

across a wide range of experiments that we did. The shingle-based heuristic, on other

other hand, restricts the comparisons to subgraphs that are close in the shingle order, and

thus may miss out on pairs of sets that have high overlap. At the same time, we want

to note that KMeans takes much longer to run and consumes significantly more memory,

whereas the shingle-based heuristic is much faster and finds solutions with comparable

quality. Figure 5.13(b) compares the K-Means heuristics against the other two heuristics

for all 64 datasets. The results are consistent with the results we saw on the real-world

datasets – K-Means is consistently better than both of those heuristics, but the shingle-

based heuristic comes quite close to its performance.

166

Distributed GEP evaluation. Figures 5.14(a), 5.14(b), and 5.14(c) compare the dis-

tributed implementation of the GEP module with the centralized version (we use Live-

Journal dataset for this purpose, which is small enough for a centralized solution, and we

use 6 machines in the distributed case).

We see that, for a small number of extracted subgraphs, the time taken by the cen-

tralized solution is comparable to the time taken by the distributed solution. However as

we scale to a large number of subgraphs, the distributed solution scales much better, and

more importantly, the maximum memory required on any single machine is much lower,

thus removing a key bottleneck of the centralized solution. The binning quality of the

centralized solution is somewhat better, which is to be expected, and hence it would still

be preferable to run the GEP phase in a centralized fashion. However the gap is not sig-

nificant, and for large graphs where running GEP in a centralized fashion is not feasible,

distributed GEP generates reasonable solutions.

Figures 5.14(d), 5.14(e) and 5.14(f) show the effect of increasing the number of

machines used for distributed GEP on the time taken, memory required per machine and

the quality of binning solution provided in terms of number of bins required, for three

data sets. We see that our distributed GEP mechanism exhibits good scaling behavior

without compromising much on the quality of binning. It can thus handle very large

graphs quite effectively. Note that the number of query vertices was set to 3M, so the

relative performance for the different graph does not correlate with the original graph

sizes (in particular, ClueWeb has low average degree, hence requires fewer bins for the

same number of neighborhoods).

167

0	

500	

1000	

1500	

2000	

2500	 25000	 250000	 500000	 1000000	 2500000	 5000000	

Ti
m
e	
(S
ec
s)
	

#	 Subgraphs	

Distributed	 GEL	 Centralized	 GEL	

(a)

0	

10	

20	

30	

40	

2500	 25000	 250000	 500000	 1000000	 2500000	 5000000	

#	
Bi
ns
	

#	 Subgraphs	

Distributed	 GEL	 Centralized	 GEL	

(b)

0	

2000	

4000	

6000	

8000	

10000	

2500	 25000	 250000	 500000	 1000000	 2500000	 5000000	

M
ax
	 M

em
or
y	
pe

r	 M
/C
	

(M
B)
	

#	 Subgraphs	

Distributed	 GEL	 Centralized	 GEL	

(c)

0	

500	

1000	

1500	

2	 4	 6	 8	 10	

Ti
m
e	
fo
r	 D

is
tr
	 G
EL
	 (S
ec
s)
	

#	 Machines	

Distributed	 GEL	 Scalability	
Live	 Journal	 	 Orkut	 ClueWeb	

(d)

0	

2000	

4000	

6000	

8000	

2	 4	 6	 8	 10	 M
em

or
y	
pe

r	 m
ac
hi
ne

	 (M
B)
	

#	 Machines	

Distributed	 GEL	 Scalability	
Live	 Journal	 	 Orkut	 ClueWeb	

(e)

0	

20	

40	

60	

80	

2	 4	 6	 8	 10	

#	
Bi
ns
	 R
eq

ui
re
d	

#	 Machines	

Distributed	 GEL	 Scalability	
Live	 Journal	 	 Orkut	 ClueWeb	

(f)

Figure 5.14: GEP architecture: (a)-(c) Comparison of centralized and distributed
GEP architectures; (d)-(f) Distributed GEP architecture: Impact on graph extrac-
tion and packing time, max memory required per bin, and #bins required for pack-
ing with increase in number of machines.

168

5.6.3 Execution Engine Evaluation

Effect of choosing different execution modes. In Figure 5.15(a), we plot the total

running times for the single-bit serial (SEM) and vector bitmap parallel (PEM) execution

modes, for the LiveJournal graph, for 25000 extracted subgraphs. We see that for 70

partitions, the performance of the two modes is comparable since each partition does a

small amount of work. However as the number of partitions decreases, PEM performs

much better compared to SEM which times out as the number of partitions becomes very

small. On the other hand, SEM uses a single bit bitmap per vertex or edge and hence

requires significantly less memory, and may be useful when we have a large number of

low memory machines available for graph computation.

Bitmap constructions. Figures 5.15(b), 5.15(c) compare the different bitmap imple-

mentations for different numbers of partitions (the setup is the same as above, and hence

decreasing number of partitions implies increasing number of subgraphs per partition).

Java BitSet and LBitSet perform better than CBitSet in terms of execution time, while

LBitSet consumes the least amount of memory as the number of subgraphs in each par-

tition increases. As mentioned in Section 5.4.2, CBitSet is useful in cases where the

overlap between subgraphs is minimum, requiring a small number of bits to be set. We

use LBitSet for most of our experiments.

169

0	

100	

200	

300	

400	

500	

600	

70	 46	 27	 17	 13	 8	 6	

Ex
ec
u&

on
	 &
m
e	
in
	 S
ec
s	

#	 Par&&ons	 (Bins)	

PEM	 (Vector	 Bitmap)	 SEM	 (Single	 bit	 bitmap)	
TO	 TO	

(a)

200	

220	

240	

260	

280	

300	

70	 35	 23	 17	 13	 11	 Ex
ec
u&

on
	 &
m
e	
in
	 S
ec
s	

#	 Par&&ons	 (Bins)	

JavaBitSet	 LBitSet	 CBitSet	

(b)

0	

1000	

2000	

3000	

4000	

5000	

6000	

70	 35	 23	 17	 13	 11	

M
em

or
y	
Re

qd
	 in
	 M

B	

#	 Par11ons	 (Bins)	

JavaBitSet	 LBitSet	 CBitSet	

(c)

0	
200	
400	
600	
800	
1000	
1200	
1400	

0	
10	
20	
30	
40	
50	
60	
70	

10
00
00
	

50
00
0	

25
00
0	

14
28
5	

10
00
0	
76
92
	
55
55
	
50
00
	
33
33
	
25
00
	 Ex

ec
u&

on
	 &
m
e	
in
	 S
ec
s	

#	
Pa

r&
&o

ns
	 (B

in
s)
	 	

#	 Subgraphs	 (1-‐hop	 Neighborhoods)	

#	 Bins	 Total	 Running	 Time	 (secs)	

(d)

0	

20	

40	

60	

80	

100	

Mo*f	 Coun*ng	
on	 Live	 Journal	

LCC	 on	 Live	
Journal	

LCC:	 Web-‐
Google	

%
	 C
E	
	

Performance	 Breakdown	
GEP	 Time	 Graph	 Loading	 Exec	 Time	

(e)

0	
50	
100	
150	
200	
250	
300	
350	

0	

2000	

4000	

6000	

8000	

LiveJournal	 OrKut	 ClueWeb	

Cl
us
te
r	 M

em
or
y	
(G
B)
	

CE
	 (N

od
e-‐
Se
cs
)	

CE	 	 Elapsed	 Time	 Cluster	 Memory	

MC	 ComputaCon	

(f)

Figure 5.15: (a) Effect of different execution modes on the running time; (b)-(c) Ef-
fect of different bitmap implementations on the memory footprints and the running
times of the execution engine; (d) End-to-End running time and #partitions required
for different numbers of subgraphs; (e) Performance breakdown of different stages
of NSCALE for graphs of different sizes and different applications; (f) Scalability:
NSCALE performance over large graphs.

170

5.6.4 System Evaluation

End-to-End testing. We evaluate the overall performance of the system for a fixed

bin capacity (8GB) for the LiveJournal graph. We vary the number of subgraphs to be

extracted from the underlying graph and study the effect on the number of bins required

to pack them into memory using the shingle-based bin packing heuristic. We measure

the total end-to-end running time of the LCC computation on each of these subgraphs in

PEM mode using LBitSet bitmap construction. Figure 5.15(d) shows that as the number

of subgraphs increases, the system distributes the computation on a larger number of bins

and scales well with respect to the increase in the total running time with increase in

number of subgraphs which includes the time required by the GEP phase and the actual

graph computation by each instance of the execution engine on each partition.

Performance breakdown. Figure 5.15(e) shows the breakdown in terms of the %CE

required for the different stages of NSCALE. The figure shows the performance for two

different applications: LCC and Motif Counting and two different graphs: LiveJournal

and Web-Google. For the smaller graphs like Web-Google, the % time taken for execu-

tion is comparable to the graph loading time. For larger graphs like LiveJournal, the %

graph loading time dominates all other times as it includes the time taken to read the disk

resident graph and associated data, filter and shuffle based on the partitioning obtained

from GEP. In all cases, GEP constitutes a small fraction of the total time and is the

crucial component that enables the efficient execution of the graph computation on

the materialized subgraphs in distributed memory using minimal resources. As

can be seen in the baseline comparisons, without the GEP phase, other vertex-centric ap-

171

proaches have a very high CE as compared to NSCALE for the same underlying datasets

and graph computations.

NSCALE performance for larger graphs. To ascertain the scalability of NSCALE we

conducted experiments with larger datasets for the Motif Counting application. Fig-

ure 5.15(f) shows the results for the scalability experiments on the Social LiveJournal

graph, the Orkut social network graph, and the largest of our datasets, the ClueWeb graph

(428M nodes, 1.5B edges). The results show the CE in node-secs and total cluster mem-

ory required in GB. The results indicate that NSCALE scales well for ego-centric graph

computation applications over larger graphs unlike other vertex-centric approaches such

as Apache Giraph and GraphLab.

5.6.5 Evaluation of Support for Iterative Applications.

We evaluated the support for iterative applications using the global connected com-

ponents application.

Performance breakdown. We studied the performance breakdown for the connected

components application across different iterations over two different datasets (LiveJour-

nal and Orkut). Figures 5.16(a), 5.16(b), 5.16(c), and 5.16(d) show the performance

breakdown in terms of compute time, synchronization time (time spent waiting at the bar-

riers), and message passing time (time spent in updating the key-value store and fetching

updated values from the key-value store). We studied the performance breakdown for two

different scenario, where the graph was partitioned across 5 or 10 machines (we adjusted

the bin capacity parameter to find the setting which forced NSCALE to use the appropri-

172

ate number of machines). As expected, with 5 partitions, the synchronization overhead

is more as compared to the message passing overhead since the number of ghost vertices

that require message passing is smaller. In comparison, with 10 partitions, the message

passing overhead is more as the number of ghost vertices is relatively higher. The syn-

chronization overhead is less as each partition does less work and inter-partition skew is

smaller.

Performance comparison. Figures 5.16(e) and 5.16(f) compare the performance of

NSCALE against GraphX and GraphLab for the connected components application in

terms of the running time (Wall Clock time) and CE (node-secs) on 10 machines. As

we can see, our relatively unoptimized implementation compares favorably to both, and

in fact, outperforms GraphX in some of the cases. Overall, GraphLab performs better

in terms of both runtime and CE for both graph datasets. This superior performance of

GraphLab for iterative computations can be attributed to its highly optimized MPI-based

message passing layer, as well as its implementation in C++.

5.6.6 Discussion.

In summary, our comprehensive experimental evaluation illustrates that NSCALE has

comparable performance to the other graph processing frameworks for iterative tasks

like connected components, while vastly outperforming them for more complex analy-

sis tasks. Although NSCALE is able to scale better than the other systems we compared

against for most of the tasks and it uses fewer resources in general, there is certainly a limit

to the graph sizes that our current implementation can handle given limited resources,

173

0	

500	

1000	

1500	

2000	

2500	

3000	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

Ru
n$

m
e	
(m

se
cs
)	

#	 Itera$ons	

Live	 Journal:	 10	 Par$tons	
Compute	 3me	 Message	 passing	 Synchroniza3on	

(a)

0	

1000	

2000	

3000	

4000	

5000	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

Ru
nn

in
g	
'm

e	
(m

se
cs
)	

#	 Itera'ons	

Live	 Journal:	 5	 Par''ons	
Compute	 Time	 Message	 Passing	 SynchronizaAon	

(b)

0	

2000	

4000	

6000	

8000	

10000	

12000	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

Ru
nn

in
g	
Ti
m
e	
(m

se
cs
)	

#	 Itera3ons	

Orkut:	 5	 Par33ons	
Compute	 3me	 Message	 passing	 Synchroniza3on	

(c)

0	

1000	

2000	

3000	

4000	

5000	

6000	

1	 2	 3	 4	 5	 6	 7	 8	 9	 10	

Ru
nn

in
g	
Ti
m
e	
(m

se
cs
)	

#	 Itera3ons	

Orkut:	 10	 Par3tons	
Compute	 3me	 Message	 passing	 Synchroniza3on	

(d)

0	

1000	

2000	

3000	

4000	

NScale	 GraphX	 GraphLab	

CE
:	 N

od
e-‐
Se
cs
	

Connected	 Components	 Performance	

Live	 Journal	 Orkut	

(e)

0	

100	

200	

300	

400	

NScale	 GraphX	 GraphLab	

Ru
nn

in
g	
Ti
m
e	
(S
ec
s)
	

Connected	 Components	 Performance	
Live	 Journal	 Orkut	

(f)

Figure 5.16: Connected components: (a-d) Performance break down for different
iterations; (e-f) Performance comparison with GraphX and GraphLab in terms of
running time and CE (node-secs).

and those can be seen or extrapolated from our reported numbers (e.g., NSCALE wouldn’t

be able to do LCC on a graph with 250M edges without at least 62 GB of cluster memory).

However, NSCALE can process the partitions in sequence on a single machine (for such

one-pass analytics tasks) by loading them one by one, thus the maximum memory needed

174

at any specific time point can be lower (at the expense of increased wall-clock time). On

the other hand, for iterative tasks, NSCALE’s limits mirror those of Giraph or GraphLab

in that, there must be enough cluster memory to load all the partitions. Some of the

recent graph processing systems like X-Stream and GraphChi do not have this restriction

because of their use of disk-based processing; in future work, we plan to investigate how

the NSCALE programming model may be adapted to such settings.

5.7 NSPARK: Porting NSCALE on Apache Spark

The NSCALE framework currently runs on the Apache Yarn platform as the under-

lying mechanism of distribution of data and computation. The GEP phase in NSCALE is

based on Apache Hadoop and has been implemented as a multistage Map-Reduce job

(Ref Section 5.3.1). The NSCALE runtime is distributed as a library on the cluster and

runs as an embedded process inside the reducers of the final stage Map-Reduce job. As

has been seen in the experimental evaluation, NSCALE provides great benefits in terms of

scalability, performance and an intuitive API as compared to other existing vertex-centric

approaches.

Having successfully built and evaluated NSCALE over the Apache YARN-Hadoop

framework, we further explored the feasibility of porting our generalized framework for

large-scale graph analytics over other big data platforms. Apache Spark [43] has emerged

as a popular big data analytics platform in the recent past. It provides a unique ability to

prune large datasets through a series of coarse-grained transformations and hold them in

distributed memory for further analysis providing great performance benefits especially

175

for iterative analysis tasks. It uses a lineage graph to achieve fault tolerance without

resorting to intermediate state materialization as is done in Hadoop MapReduce. As such,

it is a viable platform for big data data analytics which provides transparent distribution

of data and computation and fault tolerance at scale.

5.7.1 Challenges Involved

As we have seen in our experimental evaluations, GraphX, a graph analytics library

that sits atop the Spark platform, does not scale well for large-scale graphs. It emulates

the vertex-centric programming frameworks thus suffering from the same limitations. The

storing of the vertex and edge information as separate immutable RDDs further aggravates

the problem of aggregating neighborhood state and executing user computation on it. We

therefore need a system that can accrue the benefits of fault-tolerant in-memory computa-

tion on large distributed data sets as provided by Spark while providing a scalable solution

for complex subgraph-centric graph analysis tasks. The unique set of challenges that re-

quired to be addressed for porting NSCALE on Spark can be summarized as follows:

• Providing an efficient mechanism for extracting the user-defined subgraphs from

the underlying raw graph data using a series of coarse-grained transformations sup-

ported by the Spark API.

• Designing and developing an appropriate abstraction for holding the extracted sub-

graphs in a distributed setting while minimizing the memory footprint for the same.

• Designing an intuitive API for enabling users to specify the subgraphs of interest

and the user computation that runs on these subgraphs.

176

• Building an efficient execution model that would execute the user computation on

the extracted subgraphs in distributed memory without incurring the overheads of

the vertex-centric approaches.

• Providing support for both one pass and iterative analytics while keeping in mind

the limitations of the Spark execution model arising due to the immutability of the

RDDs.

5.7.2 Our Approach

We followed a three-phase approach for designing and building an initial prototype

for NSPARK. We explain the details of the NSPARK architecture and functionality in

these three phases discussed below:

Phase 1: Building the GEP phase in NSPARK. The NSCALE GEP phase has been im-

plemented on Apache Spark using a series of RDD transformations in Scala. We describe

the detailed steps below:

• Starting from a raw edge list representation of the underlying graph data we have

designed and built a series of coarse-grained transformations that construct and

extract the relevant subgraphs of interest instantiated in memory as a Spark RDD.

• These subgraphs are then provided as input to the shingle-based bin-packing algo-

rithm that we discussed earlier in this chapter (Ref Section 5.3.2). The bin packing

algorithm has been ported to Scala and groups together subgraphs based on neigh-

borhood similarity to minimize the memory foot print of the subgraphs held in

177

distributed memory. The final output of the bin packing algorithm is a query-vertex

(or subgraph)-to-partition mapping.

• Once this mapping information is obtained, it is then joined with the subgraph

structural information that we had extracted earlier to produce a memory efficient

distributed instantiation of the extracted subgraphs. We discuss the details of that

in phase 2 below.

Phase 2: Instantiating the subgraphs in distributed memory. We had built a graph li-

brary in NSCALE that provided the data structures for holding the subgraphs in memory

as well as the bitmap implementations required for the distributed and parallel execution

of user computation. The graph library exported the popular BluePrints API, a generic

API, that binds to a large number of graph database backends (e.g., Neo4j) and is used

by many open source graph processing frameworks. Implementing the BluePrints API

thus enables the use of existing toolkits and programs over large graphs. To carry forward

this advantage we ported the same graph library to NSPARK. Once the BluePrints-based

graph library was available within the NSPARK environment we used the following steps

to instantiate the subgraphs of interest in distributed memory.

• The subgraph structural information extracted in Phase 1 was joined with the subgraph-

to-partition information obtained from the bin packing algorithm within a coarse-

grained map transformation. This enabled us to group the subgraphs using the

partition number as the grouping key.

• The graph library API was used within the transformation to construct a graph

178

object for each partition. Each graph object now contains a set of subgraphs that

had been binned together into a partition by the bin packing algorithm.

• The final output of this phase was a Spark RDD containing a set of BluePrint graph

objects as described above, ready for executing user computation by the execution

engine.

Phase 3: Executing user computation. We have ported the NSCALE execution engine

written in Java to NSPARK with some modifications. These modifications include some

design changes to the Master-worker architecture of the execution engine which enable it

run within the Spark coarse grained transformations, take the RDD graph objects as input

for executing user computation and provide an output RDD to store the results of user

computation. We explain the details of the execution phase below:

• We use the graph object Spark RDD obtained from phase 2 as input and apply a map

transformation. The execution engine is instantiated within the map transformation

creating a separate instance for each graph object within the RDD. This design

choice seamlessly enables us to use the Spark platform functionality to create an

instantiation of a distributed execution engine.

• Within each instantiation of the execution engine the Master process of the exe-

cution engine spawns several worker threads within a thread pool whose size is

governed by the underlying hardware of the machine running the Spark executor

instance.

• The worker threads execute the compute function written by the user (using the

179

BluePrints API) on the subgraphs within each graph object of the RDD. The bitmap

implementation provided by our library controls the scope of computation for each

worker thread while enabling the parallel execution of user computation on sub-

graphs that have been stored in an overlapped fashion in memory.

• The design choice of using the bit map based NSCALE execution engine within

the NSPARK framework thus enables the distributed execution of user computation

while minimizing memory consumption by exploiting overlap among the neighbor-

hoods of interest.

• The NSPARK design draws from a unique performance advantage of the underlying

Spark platform. Once an RDD is created, it can be persisted in memory and be

repeatedly used for different analysis tasks. The NSPARK design benefits from

this wherein the graph RDD object created by the GEP phase can be persisted and

used as input for several graph analytics tasks thus amortizing the cost of GEP

phase across different analytics tasks. This also gives us the ability to meaningfully

compose more complex tasks as chains wherein the output of a previous task can

be directly fed as input to the next tasks in the chain.

5.7.3 Experimental Evaluation

We have tested the NSPARK prototype system using two real world data sets and

four applications that had been used to evaluate NSCALE. Fig 5.17 shows the results for

the performance comparisons of NSPARK with NSCALE. Comparing the performance of

NSPARK with NSCALE in terms of computational effort (CE- node secs) for two differ-

180

ent data sets Web NotreDame and Web Google (Ref Figures 5.17(a), 5.17(b)), we see that

NSPARK performs a little better which can be attributed to a better performance of the

GEP phase on the Spark platform as compared to a multistage map reduce implementation

in hadoop. As far as the memory consumption is concerned (Ref Figures 5.17(c), 5.17(d)),

NSPARK consumes a little more memory than NSPARK. We used a single executor in-

stance for our experiments with 35GB of memory and 15GB of driver memory. The

maximum virtual memory actually used by the Spark instance was 25.3GB across all

experimental runs.

Figure 5.17(e) shows the performance breakdown of the different components of

NSPARK in terms of the computational effort. We see that similar to NSCALE the user

computation is still the major part of the computational effort as compared to the GEP

phase. GEP phase in NSPARK has been further broken down into subgraph extraction,

bin packing and the actual construction of the graph RDD object. Finally we compare the

performance of NSPARK with NSCALE and GraphX. We see that our implementation of

NSPARK performs much better than GraphX which can be attributed to a better design of

the abstractions that hold the graph in memory and a better execution model which can

take advantage of overlapped execution.

We have evaluated our NSPARK prototype on the Apache Spark platform. In this

prototype we focus on one pass analytics to ascertain the feasibility and functionality of

the port. Support for iterative applications can be added on similar lines as NSCALE while

using techniques that minimize the memory footprints keeping the immutability of the

RDDs in mind. Since the extension to iterative applications is not a fundamental limita-

tion of the NSPARK design we leave this extension as a future exercise.

181

0	

200	

400	

600	

800	

LCC	 MC	 TC	 PR	

CS
	 (N

od
e-‐
Se
cs
)	

Web	 NotreDame	
NScale	 NSpark	

(a)

0	

200	

400	

600	

800	

1000	

LCC	 MC	 TC	 PR	

CE
	 (N

od
e-‐
Se
cs
)	

Web	 Google	
NScale	 NSpark	

(b)

0	

5	

10	

15	

20	

25	

30	

LCC	 MC	 TC	 PR	

Cl
us
te
r	 M

em
or
y	
(G
B)
	

Web	 NotreDame	
NScale	 NSpark	

(c)

0	

5	

10	

15	

20	

25	

30	

LCC	 MC	 TC	 PR	

Cl
us
te
r	 M

em
or
y	
(G
B)
	

Web	 Google	
NScale	 NSpark	

(d)

0%	

20%	

40%	

60%	

80%	

100%	

Web	 NotreDame	 Web	 Google	

Performance	 Breakdown	 LCC	 	 NSpark	

User	 Computa;on	

Graph	 RDD	 	

Bin	 Packing	

Subgraph	 Extrac;on	

(e)

0	

1000	

2000	

3000	

4000	

5000	

Web-‐Google	 WikiTalk	 Live	 Journal	

CE
	 (N

od
e-‐
Se
cs
)	

Local	 Clustering	 Coefficient	
NScale	 NSpark	 GraphX	

(f)

Figure 5.17: NSPARK Performance : (a-b) Computational Effort (CE (node-
secs)) comparison with NSCALE; (c-d) Cluster memory (GB) comparison with
NSCALE; (e) Performance breakdown of NSPARK. (f) Performance comparison
with NSCALE and GraphX.

182

5.8 Conclusion

Increasing interest in performing graph analytics over very large volumes of graph

data has led to much work on developing distributed graph processing frameworks in

recent years, with the vertex-centric frameworks being the most popular. Those frame-

works are, however, severely limited in their ability to express and/or efficiently execute

complex and rich graph analytics tasks that network analysts want to pose. We argue

that both for ease-of-use and efficiency, a more natural abstraction is a subgraph-centric

framework, where the users can write computations against entire subgraphs or multi-hop

neighborhoods in the graph. We show how this abstraction generalized the vertex-centric

programming framework, how it is a natural fit for many commonly used graph analytics

tasks, and how it leads to more efficient execution by reducing the communication and

memory overheads. We also argue that the graph extraction and loading phase should be

carefully optimized to reduce the number of machines required to execute a graph ana-

lytics task, because of the non-linear relationship between that parameter and the total

execution cost; we developed a novel framework for solving this problem, and we show

that it can lead to significant savings in total execution time. Our comprehensive exper-

imental evaluation illustrates the ability of our framework to execute a variety of graph

analytics tasks on very large graphs, when Apache Giraph, GraphLab and GraphX fail to

execute them on relatively small graphs.

183

Chapter 6: Conclusion and Future Directions

6.1 Conclusion

This dissertation focuses on building cost-effective cloud-based big data manage-

ment systems. We demonstrate that our techniques affect a substantial reduction in the

cost of data processing in the cloud in a variety of application domains for different real

world datasets.

The first part of the dissertation focusses on reducing the cost of transactional work-

loads using workload-aware data placement and replication techniques. We model the

workload as a hyyergraph and show that our compression technique enables us to scale

to large workloads and database sizes. Our in-graph replication mechanism enables us

to further reduce the number of distributed read transactions while still providing a user-

defined level of availability for all data items. We provide an incremental solution to deal

with changes in workload while minimizing the amount of data migration as compared

to a complete repartitioning of the workload. We have built an effective routing mecha-

nism that can take full advantage of the workload-aware data placement while efficiently

dispatching transactions to appropriate partitions.

Our experimental evaluation of SWORD deployed on an Amazon EC2 cluster

demonstrates that our hypergraph-based workload representation and use of in-graph

184

replication based on access patterns, lead to a much better quality data placement as

compared to other data placement techniques. We show that our scaling techniques result

in orders-of-magnitude reductions in the partitioning overheads including the workload

partitioning time, cost of distributed transactions, and query routing times for data sets

consisting of up to a billion tuples. Our incremental repartitioning technique effectively

deals with the performance degradation caused by workload changes using minimal data

movement. We also show that our techniques provide graceful tolerance to partition fail-

ures compared to other data placement techniques.

The second part of the dissertation describes how resource consolidation and pro-

gressive analytics can be used as effective means of reducing the cost of analytics over

large volumes of data in the cloud. Specifically, we design, build and evaluate two sys-

tems: NOW! and NSCALE, to validate the effectiveness of these techniques in two differ-

ent application domains.

NOW! is a progressive analytics system for large-scale data in the relational domain.

NOW! allows users to communicate progressive samples to the system and provides plat-

form support for efficient and deterministic query processing over these samples. Further,

it provides repeatable semantics and provenance to data scientists. The progressive com-

putation in the system is realized using an unmodified temporal streaming engine, by

reinterpreting the temporal event fields as progress. NOW! has been built as a progressive

data-parallel computation framework for the cloud which provides support for progres-

sive SQL over big data on Azure. Our large-scale experiments show orders of magnitude

performance gains affecting substantial reduction in the cost of analytics in the cloud.

NSCALE is a framework for subgraph-centric data analytics on large-scale graph

185

structured data in the cloud. The core contributions of this work are: (1) A subgraph-

centric programming model that allows users to write programs against and declaratively

specify subgraphs of interest; (2) Platform support for extracting the subgraphs of interest

from the underlying raw graph data; (3) Use of a cost-based optimizer to pack the ex-

tracted subgraphs of interest in as few containers (i.e. memory) as possible to minimize

resource allocation making the framework amenable to execution in cloud environments

and (4) A distributed execution engine which uses novel techniques to reduce memory

footprint by utilizing the overlap among the subgraphs of interest. Our comprehensive

experimental evaluation of NSCALE against the state-of-the-art graph analytics systems

such as Apache Giraph, GraphLab, GraphX for a variety of applications and real world

large-scale datasets, illustrates the scalability and efficiency of our framework as com-

pared to these frameworks.

6.2 Limitations

All the above mentioned systems have been built and extensively evaluated as pro-

totypes. We now mention some of the current limitations of these systems:

• SWORD. The workload-aware data placement mechanism in SWORD has a few

limitations. First, it does not take into account the heterogeneity of the machines

on which the data is partitioned. Optimizing data placement in presence of hetero-

geneity is a current area of research and could lead to reduction of straggler effects

and further improvement in performance for transactional workloads. Second, the

routing mechanism requires set cover computation for each incoming query in or-

186

der to direct it to the appropriate partitions. Since this is an expensive computation

an incremental approach that reuses work across different set cover computations

could further improve the routing efficiency of the system. We leave both these

optimizations for further enhancing performance as future work.

• NOW!. We have extensively tested the system wherein we resort to complete in-

memory data flow and analytics which requires failures to cascade back to source

data. Although restarting a job on failure is a cheap and practical solution, HA with

low recovery time is a desirable feature in some cases. Since our primary focus

was on supporting the progressive model over large-scale relational data, we have

proposed several techniques for providing high availability (HA) and resilience to

failures in NOW! and left the evaluation of such fine-grained HA using existing

techniques that apply to our setting, as future work.

• NSCALE As our comprehensive experimental evaluation shows, NSCALE is able

to scale better than the other systems we compared against for most of the tasks,

and it uses fewer resources in general. There is certainly a limit to the graph sizes

that our current implementation can handle given limited resources, and those can

be seen or extrapolated from our reported numbers (e.g., NSCALE wouldn’t be

able to do LCC on a graph with 250M edges without at least 62 GB of cluster

memory). However, NSCALE can process the partitions in sequence on a single

machine (for such one-pass analytics tasks) by loading them one by one, thus the

maximum memory needed at any specific time point can be lower (at the expense

of increased wall-clock time). For iterative tasks, the limits of NSCALE should

187

mirror those of Giraph or GraphLab since the NSCALE framework is equivalent to

those vertex-centric frameworks for such tasks. In other words, the graph must fit

in distributed memory (XStream and GraphChi do not have this restriction because

of their use of disk-based processing) and the total number of iterations should be

reasonable (to keep the network communication low).

6.3 Future Directions

In the near future we envision a dominance of cloud-based storage and compute sys-

tems due to the economies of scale. These systems would provide a plethora of services

that would be used in an environment that is characterized by the ubiquity of mobile de-

vices and platforms that are becoming ever more powerful. Anytime, anywhere services

that transcend geographic boundaries bring with them a host of challenges for distributed

data storage, interactive querying and analysis of ever increasing volumes of data. Some

of these include building data management systems for the next generation that support

the real-time ingest and analysis of large volumes of streaming data to derive both deep

insights such as business intelligence, climate change and also actionable results in real

time for applications such as short term weather prediction, anomaly detection, cyber

attack prevention, financial trade, etc.

We believe that SWORD, NOW! and NSCALE are a step in the right direction to-

wards designing systems that enable resource consolidation in a cloud computing envi-

ronment and providing efficient and cost effective solutions for data querying and analysis

on large-scale data in the cloud. With the above mentioned scenario in mind we discuss

188

below a broad set of future directions for the work that has been presented in this disser-

tation:

6.3.1 Multi-tenancy and Workload Consolidation

In this dissertation we have considered workload-aware data partitioning and repli-

cation for transactional workloads for providing Database-as-a-Service in cloud comput-

ing environments. This work focusses on workloads that run against a database service

in a single tenant environment in the cloud. However, as we are aware the cloud can

be a multi-tenant environment and therefore the next step in the direction would be to

provide support for consolidating the workload to affect a smarter data placement in an

environment that supports multi-tenancy.

Workload-aware data placement in a multi-tenant environment has its own sets of

challenges for the cloud service provider. These include meeting the SLAs for different

client workloads while minimizing the costs accrued for utilizing the underlying cloud

infrastructure. This would require us to explore methods of modeling multiple workloads

from different clients each with its own characteristic access patterns and service require-

ments. Modeling this as a consolidated workload while meeting the individual require-

ments of individual workloads to affect an appropriate data placement that minimizes the

cost accrued by the service provider while doing this at scale would be a challenging

problem to address.

189

6.3.2 Progressive Analytics in the Graph Analytics Domain

We have shown the benefits of progressive analytics over big data in the relational

domain in this dissertation. An interesting direction for future work would be to explore

ways of bringing the same benefits to the graph analytics domain. We have taken some

initial steps towards building a simple prototype system for progressive analytics on large-

scale graphs that enables users to execute an analysis task on user-defined progressive

samples of graph data to produce early results.

There are a number of challenges that would need to addressed while building such

a system, some which are: (1) enabling users to choose/encode a custom sampling strat-

egy depending on the analysis task, (2) developing and building platform support for an

algebra for progressive graph operators to enable users to compose meaningful progres-

sive analysis tasks, and (3) providing support for appropriate execution models (vertex-

centric, subgraph-centric, sample-centric, etc.) for executing user computation on the

samples in distributed memory producing progressive results. We believe that such a sys-

tem would be a step in the right direction in addressing the challenges associated with

reducing the cost of data analytics on large-scale graph structured data in the cloud.

6.3.3 Addressing Disruptions from Hardware Improvements

We envision disruptions coming from rapid improvements of hardware technolo-

gies that would bring significant improvement to storage access costs, caching mecha-

nisms, network throughput and latencies and the compute capabilities of mobile devices.

Together, these improvements would open up exciting new research challenges and ne-

190

cessitate revisiting the design of query optimizers, schedulers, data flow, placement and

communication mechanisms in large-scale data analysis platforms and querying engines

in a distributed environment. We believe that addressing these challenges would be essen-

tial in maintaining the viability of such large-scale data management systems in presence

of the improvements in the underlying hardware that these systems have been built and

deployed on.

191

Bibliography

[1] D. J. Dewitt and J. Gray. Parallel database systems: the future of high performance

database systems. Communications of the ACM, 1992.

[2] J. Gray and L. Lamport. Consensus on Transaction Commit. ACM Transactions

on Database Systems, 2003.

[3] E. P. C. Jones, D. J. Abadi, and S. Madden. Low overhead concurrency control for

partitioned main memory databases. In SIGMOD, 2010.

[4] R. Kallman, H. Kimura, J. Natkins, A. Pavlo, A. Rasin, S. Zdonik, E. P. Jones,

S. Madden, M. Stonebraker, Y. Zhang, J. Hugg, and D. J. Abadi. H-store: a high-

performance, distributed main memory transaction processing system. PVLDB,

2008.

[5] J. Baker, C. Bond, J. Corbett, J. J. Furman, A. Khorlin, J. Larson, J. M. Leon, Y. Li,

A. Lloyd, and V. Yushprakh. Megastore: Providing Scalable, Highly Available

Storage for Interactive Services. In CIDR, 2011.

192

[6] C. Curino, Y. Zhang, E. P. C. Jones, and S. Madden. Schism: a workload-driven

approach to database replication and partitioning. PVLDB, September 2010.

[7] D. Cohn, L. Atlas, and R. Ladner. Improving Generalization with Active Learning.

Mach. Learn., 15, 1994.

[8] M. D. McKay, R. J. Beckman, and W. J. Conover. Comparison of Three Methods

for Selecting Values of Input Variables in the Analysis of Output from a Computer

Code. Technometrics, 21, 1979.

[9] O. Maron and A. W. Moore. Hoeffding races: Accelerating model selection search

for classification and function approximation. In NIPS, 1993.

[10] J. M. Hellerstein and R. Avnur. Informix under control: Online query processing.

Data Mining and Knowledge Discovery Journal, 2000.

[11] C. Jermaine, S. Arumugam, A. Pol, and A. Dobra. Scalable approximate query

processing with the dbo engine. SIGMOD ’07.

[12] J. M. Hellerstein, P. J. Haas, and H. J. Wang. Online aggregation. In SIGMOD,

1997.

[13] S. Chaudhuri, G. Das, and U. Srivastava. Effective use of block-level sampling in

statistics estimation. In SIGMOD, 2004.

[14] A. Doucet, M. Briers, and S. Senecal. Efficient block sampling strategies for se-

quential monte carlo methods. Journal of Computational and Graphical Statistics,

2006.

193

[15] P. J. Haas and J. M. Hellerstein. Join algorithms for online aggregation. In IBM

Research Report RJ 10126, 1998.

[16] V. Raman, B. Raman, and J. M. Hellerstein. Online dynamic reordering for inter-

active data processing. VLDB ’99.

[17] T. Condie, N. Conway, P. Alvaro, J. M. Hellerstein, K. Elmeleegy, and R. Sears.

Mapreduce online. In NSDI, 2010.

[18] A. Quamar, K. A. Kumar, and A. Deshpande. SWORD: Scalable Workload-aware

Data Placement for Transactional Workloads. In EDBT, 2013.

[19] K. A. Kumar, A. Quamar, A. Deshpande, and S. Khuller. SWORD: workload-

aware data placement and replica selection for cloud data management systems.

VLDB J., 23(6):845–870, 2014.

[20] A. Quamar, A. Deshpande, and J. Lin. NScale: Neighborhood-centric Large-Scale

Graph Analytics in the Cloud. CoRR, abs/1405.1499, 2014.

[21] A. Quamar, A. Deshpande, and J. Lin. NScale: Neighborhood-centric Analytics

on Large Graphs. PVLDB, 7(13):1673–1676, 2014.

[22] A. Quamar, A. Deshpande, and J. Lin. NScale: Neighborhood-centric Large-Scale

Graph Analytics in the Cloud. VLDB J., 2015.

[23] A. L. Tatarowicz, C. Curino, E. P. C. Jones, and S. Madden. Lookup Tables: Fine-

Grained Partitioning for Distributed Databases. In ICDE, 2011.

194

[24] N. Bruno, S. Chaudhuri, A. C. Konig, V. R. Narasayya, R. Ramamurthy, and

M. Syamala. Autoadmin project at Microsoft Research: Lessons learned. IEEE

Data Eng. Bull., 2011.

[25] K. A. Kumar, A. Deshpande, and S. Khuller. Data placement and replica selection

for improving colocation in distributed environments. CoRR, 2012.

[26] A. Pavlo, C. Curino, and S. Zdonik. Skew-aware automatic database partitioning

in shared-nothing, parallel OLTP systems. In SIGMOD, 2012.

[27] A. Lakshman and P. Malik. Cassandra: Structured storage system on a P2P net-

work. In PODC ’09.

[28] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows,

T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: a distributed storage system

for structured data. In OSDI ’06.

[29] R. Nehme and N. Bruno. Automated partitioning design in parallel database sys-

tems. In SIGMOD, 2011.

[30] B. Kemme, R. Jiménez-Peris, and M. Patiño-Martı́nez. Database Replication. Syn-

thesis Lectures on Data Management. Morgan & Claypool Publishers, 2010.

[31] B. Kemme and A. Gustavo. Database replication: a tale of research across com-

munities. PVLDB, September 2010.

195

[32] R. J. Peris, M. P. Martnez, B. Kemme, and G. Alonso. How to Select a Replica-

tion Protocol According to Scalability, Availability, and Communication Overhead.

IEEE Symposium on RDS, 2001.

[33] J. Gray, P. Helland, P. E. O’Neil, and D. Shasha. The Dangers of Replication and a

Solution. In SIGMOD, 1996.

[34] J. R. Peris, M. P. Martinez, G. Alonso, and B. Kemme. Are quorums an alternative

for data replication? ACM TODS, 28(3) 2003.

[35] N. Pansare, V. R. Borkar, C. Jermaine, and T. Condie. Online aggregation for large

mapreduce jobs. PVLDB, 2011.

[36] N. Laptev, K. Zeng, and C. Zaniolo. Early accurate results for advanced analytics

on mapreduce. PVLDB 2012.

[37] S. Agarwal, B. Mozafari, A. Panda, H. Milner, S. Madden, and I. Stoica. BlinkDB:

Queries with Bounded Errors and Bounded Response Times on Very Large Data.

In EuroSys, 2013.

[38] B. Chandramouli, J. Goldstein, and A. Quamar. Scalable progressive analytics on

big data in the cloud. Technical report, MSR. http://aka.ms/Jpe5f5.

[39] B. Li, E. Mazur, Y. Diao, A. McGregor, and P. J. Shenoy. A platform for scalable

one-pass analytics using mapreduce. In SIGMOD 2011.

196

http://aka.ms/Jpe5f5

[40] D. J. Abadi, Y. Ahmad, M. Balazinska, M. Cherniack, J. Hwang, W. Lindner, A. S.

Maskey, E. Rasin, E. Ryvkina, N. Tatbul, Y. Xing, and S. Zdonik. The design of

the Borealis stream processing engine. In CIDR, 2005.

[41] S. Melnik, A. Gubarev, J. J. Long, G. Romer, S. Shivakumar, M. Tolton, and T. Vas-

silakis. Dremel: interactive analysis of web-scale datasets. PVLDB 2010.

[42] A. Hall, O. Bachmann, R. Büssow, S. Gănceanu, and M. Nunkesser. Processing a

trillion cells per mouse click. PVLDB, 2012.

[43] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin,

S. Shenker, and I. Stoica. Resilient distributed datasets: a fault-tolerant abstraction

for in-memory cluster computing. NSDI’12.

[44] M. Zaharia, T. Das, H. Li, Hunter T., S. Shenker, and I. Stoica. Discretized Streams:

Fault-tolerant Streaming Computation at Scale. In SOSP, 2013.

[45] G. Malewicz, M. H. Austern, A. J.C Bik, J. C. Dehnert, I. Horn, N. Leiser, and

G. Czajkowski. Pregel: a system for large-scale graph processing. In SIGMOD,

2010.

[46] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein.

Distributed GraphLab: A Framework for Machine Learning in the Cloud. PVLDB,

2012.

[47] R. Cheng, J. Hong, A. Kyrola, Y. Miao, X. Weng, M. Wu, F. Yang, L. Zhou,

F. Zhao, and E. Chen. Kineograph: Taking pulse of a fast-changing and connected

world. In EuroSys, 2012.

197

[48] S. Salihoglu and J. Widom. GPS: A Graph Processing System. In SSDBM, 2013.

[49] G. Wang, W. Xie, A. J. Demers, and J. Gehrke. Asynchronous Large-Scale Graph

Processing Made Easy. In CIDR, 2013.

[50] J. McAuley and J. Leskovec. Learning to Discover Social Circles in Ego Networks.

In NIPS, 2012.

[51] J. Seo, J. Park, J. Shin, and M. S. Lam. Distributed socialite: A datalog-based

language for large-scale graph analysis. PVLDB, 2013.

[52] Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda, and J. McPherson. From ”Think

Like a Vertex” to ”Think Like a Graph”. PVLDB, 2013.

[53] Y. Simmhan, A. G. Kumbhare, C. Wickramaarachchi, S. Nagarkar, S. Ravi, C. S.

Raghavendra, and V. K. Prasanna. Goffish: A sub-graph centric framework for

large-scale graph analytics. CoRR, 2013.

[54] J. Seo, S. Guo, and M. S. Lam. Socialite: Datalog extensions for efficient social

network analysis. In ICDE, 2013.

[55] D. Nguyen, A. Lenharth, and K. Pingali. A lightweight infrastructure for graph

analytics. In SOSP, 2013.

[56] I. Hoque and I. Gupta. LFGraph: Simple and Fast Distributed Graph Analytics. In

TRIOS, 2013.

198

[57] M. Curtiss, I. Becker, T. Bosman, S. Doroshenko, L. Grijincu, T. Jackson, S. Kun-

natur, S. Lassen, P. Pronin, S. Sankar, G. Shen, G. Woss, C. Yang, and N. Zhang.

Unicorn: A System for Searching the Social Graph. Proc. VLDB Endow., 2013.

[58] A. Roy, I. Mihailovic, and W. Zwaenepoel. X-stream: Edge-centric graph process-

ing using streaming partitions. In SOSP, 2013.

[59] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and I. Stoica.

GraphX: graph processing in a distributed dataflow framework. In OSDI, 2014.

[60] hMetis: a hypergraph partitioning package,

http://glaros.dtc.umn.edu/gkhome/metis/hmetis/overview.

[61] C. Ayka, B.Cambazoglu, and U. Bora. Multi-level direct k-way hypergraph parti-

tioning with multiple constraints and fixed vertices. J. Parallel Distrib. Comput.,

2008.

[62] X. Wang, A. Smalter, J. Huan, and G. H. Lushington. G-hash: towards fast kernel-

based similarity search in large graph databases. In EDBT, 2009.

[63] R. J. Peris and M. P. Martinez. How to select a replication protocol according to

scalability, availability and communication overhead. In SRDS, 2001.

[64] S. Chaudhuri, R. Motwani, and V. Narasayya. On Random Sampling over Joins.

In SIGMOD, 1999.

[65] P. J. Haas and J. M. Hellerstein. Ripple joins for online aggregation. In SIGMOD

1999.

199

[66] B. Chandramouli, J. Goldstein, and A. Quamar. Scalable progressive analytics on

big data in the cloud. PVLDB, 2013.

[67] M. H. Ali, C. Gerea, B. S. Raman, B. Sezgin, T. Tarnavski, T. Verona, P. Wang,

P. Zabback, A. Ananthanarayan, A. Kirilov, M. Lu, A. Raizman, R. Krishnan,

R. Schindlauer, T. Grabs, S. Bjeletich, B. Chandramouli, J. Goldstein, S. Bhat,

Ying Li, V. Di Nicola, X. Wang, David Maier, S. Grell, O. Nano, and I. Santos.

Microsoft CEP Server and Online Behavioral Targeting. In VLDB, 2009.

[68] M. A. Hammad, M. F. Mokbel, M. H. Ali, W. G. Aref, A. C. Catlin, A. K. El-

magarmid, M. Y. Eltabakh, M. G. Elfeky, T. M. Ghanem, R. Gwadera, I. F. Ilyas,

M. S. Marzouk, and X. Xiong. Nile: A Query Processing Engine for Data Streams.

In ICDE, 2004.

[69] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom. Models and issues in

data stream systems. In PODS, 2002.

[70] C. Jensen and R. Snodgrass. Temporal specialization. In ICDE, 1992.

[71] R. S. Barga, J. Goldstein, M. H. Ali, and M. Hong. Consistent streaming through

time: A vision for event stream processing. In CIDR, 2007.

[72] E. Ryvkina, A. Maskey, M. Cherniack, and S. B. Zdonik. Revision processing in a

stream processing engine: A high-level design. In ICDE, 2006.

[73] B. Chandramouli, J. Goldstein, and S. Duan. Temporal analytics on big data for

web advertising. In ICDE, 2012.

200

[74] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters.

In OSDI, 2004.

[75] P. Upadhyaya, Y. Kwon, and M. Balazinska. A latency and fault-tolerance opti-

mizer for online parallel query plans. In SIGMOD, 2011.

[76] A. Rowstron, D. Narayanan, A. Donnelly, G. O’Shea, and A. Douglas. Nobody

ever got fired for using hadoop on a cluster. In HotCDP, 2012.

[77] Y. Kwon, M. Balazinska, B. Howe, and J. Rolia. SkewTune: mitigating skew in

mapreduce applications. In SIGMOD, 2012.

[78] T. White. Hadoop: The Definitive Guide. 2009.

[79] The LINQ Project. http://aka.ms/rjhi00.

[80] Daytona for Azure. http://aka.ms/unkcbq.

[81] R. Barga, J. Ekanayake, and W. Lu. Iterative mapreduce research on Azure. In SC,

2011.

[82] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon. Net-

work motifs: Simple building blocks of complex networks. Science, 2002.

[83] L Backstrom and J Leskovec. Supervised random walks: Predicting and recom-

mending links in social networks. In WSDM, 2011.

[84] L. Akoglu, M. McGlohon, and C. Faloutsos. OddBall: spotting anomalies in

weighted graphs. In PAKDD, 2010.

201

[85] Apache Giraph http://giraph.apache.org.

[86] J. Huang., D. J. Abadi, and K. Ren. Scalable SPARQL Querying of Large RDF

Graphs. In PVLDB, 2011.

[87] N. Kashtan, S. Itzkovitz, R. Milo, and U. Alon. Efficient sampling algorithm for

estimating subgraph concentrations and detecting network motifs. Bioinformatics,

2004.

[88] P. Gupta, A. Goel, J. Lin, A. Sharma, D. Wang, and R. Zadeh. Wtf: The who to

follow service at twitter. In WWW, 2013.

[89] D. Shasha, J. T. L. Wang, and R. Giugno. Algorithmics and applications of tree

and graph searching. In PODS, 2002.

[90] X. Yan, P. S. Yu, and J. Han. Graph Indexing: A Frequent Structure-based Ap-

proach. In SIGMOD, 2004.

[91] J. Cheng, Y. Ke, W. Ng, and A. Lu. Fg-index: towards verification-free query

processing on graph databases. In SIGMOD, 2007.

[92] P. Zhao, J. X. Yu, and P. S. Yu. Graph Indexing: Tree + Delta less than equal to

Graph. In VLDB, 2007.

[93] L Zou, L Chen, J. X. Yu, and Y. Lu. A Novel Spectral Coding in a Large Graph

Database. In EDBT, 2008.

[94] J. R. Ullmann. An Algorithm for Subgraph Isomorphism. J. ACM, 1976.

202

[95] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento. A (Sub)Graph Isomorphism

Algorithm for Matching Large Graphs. IEEE Trans. Pattern Anal. Mach. Intell.,

2004.

[96] H. Shang, Y. Zhang, X. Lin, and J. X. Yu. Taming Verification Hardness: An

Efficient Algorithm for Testing Subgraph Isomorphism. VLDB, 2008.

[97] H. He and A. Singh. Graphs-at-a-time: Query Language and Access Methods for

Graph Databases. In SIGMOD, 2008.

[98] Y. Tian and J. M. Patel. TALE: A Tool for Approximate Large Graph Matching.

In ICDE, 2008.

[99] M. Mongiov, R. D. Natale, R. Giugno, A. Pulvirenti, A. Ferro, and R. Sharan.

Sigma: a set-cover-based inexact graph matching algorithm. J. Bioinformatics and

Computational Biology, 2010.

[100] J. Lee, W. S. Han, R. Kasperovics, and J. H. Lee. An in-depth comparison of

subgraph isomorphism algorithms in graph databases. In PVLDB, 2013.

[101] BluePrints API: https://github.com/tinkerpop/blueprints/wiki.

[102] Gremlin: http://github.com/tinkerpop/gremlin/wiki.

[103] Furnace: https://github.com/tinkerpop/furnace/wiki.

[104] J. M. Pujol, V. Erramilli, G. Siganos, Xiaoyuan Y. 0001, N. Laoutaris, P. Chhabra,

and P. Rodriguez. The Little Engine(s) That Could: Scaling Online Social Net-

works. In SIGCOMM, 2010.

203

[105] A. Rajaraman and J. D. Ullman. Mining of Massive Datasets. 2011.

[106] T. Izumi, T. Yokomaru, A. Takahashi, and Y. Kajitani. Computational complexity

analysis of set-bin-packing problem. IEICE TRANSACTIONS on Fundamentals of

Electronics, Communications and Computer Sciences, 81(5):842–849, 1998.

[107] A Rajaraman and J.D. Ullman. Mining of Massive Datasets. Cambridge University

Press, 2011.

[108] Metis: http://glaros.dtc.umn.edu/gkhome/metis.

[109] J. Leskovec and C. Faloutsos. Sampling from large graphs. In SIGKDD, 2006.

[110] A. Daniel Popescu, A. Balmin, V. Ercegovac, and A. Ailamaki. PREDIcT: Towards

Predicting the Runtime of Large Scale Iterative Analytics. Proc. VLDB Endow.,

2013.

[111] A. Lakshman and P. Malik. Cassandra: A Decentralized Structured Storage Sys-

tem. SIGOPS Oper. Syst. Rev.

[112] Redis http://redis.io/.

[113] Stanford Network Analysis Project: https://snap.stanford.edu.

[114] M. N. Kolountzakis, G. L. Miller, R. Peng, and C. E. Tsourakakis. Efficient triangle

counting in large graphs via degree-based vertex partitioning. Internet Mathemat-

ics, 2012.

[115] M. S. Granovetter. The strength of weak ties. American Journal of Sociology,

1973.

204

[116] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein.

Distributed graphlab: A framework for machine learning in the cloud. PVLDB,

2012.

205

	List of Tables
	List of Figures
	Introduction
	Cloud-Based Big Data Management Systems
	Scaling Transactional Applications
	Big Data Analytics in the Relational Domain
	Data Analytics on Large-Scale Graphs
	Thesis Contributions
	Scalable Workload-Aware Data Placement for Transactional Workloads
	Progressive Analytics on Big Data in the Cloud
	Neighborhood-centric Analytics on Large-scale Graphs in the Cloud

	Organization

	Related Work
	Scaling Transactional Workloads
	Workload-aware Data Placement
	Replication

	Progressive Analytics on Big Data in the Cloud
	Approximate Query Processing
	MR Framework Variants
	Distributed Stream Processing
	Interactive Full-Data Analytics

	Data Analytics on Large-scale Graph Structured Data
	Vertex-centric Approaches.
	Existing Subgraph-centric Approaches.
	Other Graph Processing Frameworks.

	Scalable Workload-aware Data Placement for Transactional Workloads
	Introduction
	SWORD Overview
	System Architecture
	Workload Modeling

	System Design
	Hypergraph Compression for Scaling
	Incremental Repartitioning
	Workload-aware Replication
	Fine-grained Quorums
	Query Routing

	Experimental Evaluation
	System Implementation
	Experimental Setup
	Hypergraph Compression Analysis
	Effect of Workload Change
	Routing Efficiency and Quality
	Fine-grained Quorum Evaluation
	Dealing with Failures

	Conclusion

	Progressive Analytics on Big Data in the Cloud
	Introduction
	Background
	Prism semantics & construction
	Logical Progress and Progress Intervals
	Progressive Operators and Queries
	Summary of Benefits of the Prism Model
	Implementing Prism
	PI Assignment
	Performance Optimizations

	Now! Architecture and Design
	Overview
	Progress-aware Data Flow & Computation
	Support for Multi-stage

	Discussion and Extensions
	High availability (HA)
	Straggler and Skew Management

	Evaluation
	Implementation Details
	Experimental Setup
	Experiments and Results

	Conclusion

	Neighborhood-centric Analytics on Large-scale Graphs in the Cloud
	Introduction
	NScale Overview
	Application Scenarios
	NScale Programming Model
	System Architecture

	Graph Extraction and Packing
	Subgraph Extraction
	Subgraph Packing
	Handling Very Large Subgraphs

	Distributed Execution Engine
	Execution modes
	Bitmap Implementation
	Support for Iterative Computation.

	Experimental Evaluation
	Experimental Results
	Baseline Comparisons
	GEP Evaluation
	Execution Engine Evaluation
	System Evaluation
	Evaluation of Support for Iterative Applications.
	Discussion.

	NSpark: Porting NScale on Apache Spark
	Challenges Involved
	Our Approach
	Experimental Evaluation

	Conclusion

	Conclusion and Future Directions
	Conclusion
	Limitations
	Future Directions
	Multi-tenancy and Workload Consolidation
	Progressive Analytics in the Graph Analytics Domain
	Addressing Disruptions from Hardware Improvements

	Bibliography

