
 

 

ABSTRACT 

 

Title of Thesis:  BRED VECTORS, SINGULAR VECTORS, AND 

LYAPUNOV VECTORS IN SIMPLE AND COMPLEX 

MODELS 

 Adrienne Norwood, Doctor of Philosophy, 2015 

Directed by: Professor Eugenia Kalnay, Atmospheric and Oceanic 

Sciences Department 

 

We compute and compare three types of vectors frequently used to explore the 

instability properties of dynamical models, Lyapunov vectors (LVs), singular vectors 

(SVs), and bred vectors (BVs). The first model is the Lorenz (1963) three-variable model. 

We find BVs align with the locally fastest growing LV, which is often the second fastest 

growing global LV. The growth rates of the three types of vectors reveal all predict 

regime changes and durations of new regimes, as shown for BVs by Evans et al. (2004). 

The second model is the toy ‘atmosphere-ocean model’ developed by Peña and Kalnay 

(2004) coupling three Lorenz (1963) models with different time scales to test the effects 

of fast and slow modes of growth on the dynamical vectors. A fast ‘extratropical 

atmosphere’ is weakly coupled to a fast ‘tropical atmosphere’ which is strongly coupled 

to a slow ‘ocean’ system, the latter coupling imitating the tropical El Niño–Southern 

Oscillation. BVs separate the fast and slow modes of growth through appropriate 

selection of the breeding parameters. LVs successfully separate the fast ‘extratropics’ but 

cannot completely decouple the ‘tropics’ from the ‘ocean,’ leading to ‘coupled’ LVs that 

are affected by both systems but mainly dominated by one. SVs identify the fast modes 

but cannot capture the slow modes until the fast ‘extratropics’ are replaced with faster 

‘convection.’ The dissimilar behavior of the three types of vectors degrades the 



 

 

similarities of the subspaces they inhabit (Norwood et al. 2013). The third model is a 

quasi-geostrophic channel model (Rotunno and Bao 1996) that is a simplification of 

extratropical synoptic-scale motions with baroclinic instabilities only. We were unable to 

successfully compute LVs for it. However, randomly initialized BVs quickly converge to 

a single vector that is the leading LV. The last model is the SPEEDY model created by 

Molteni (2003). It is a simplified general atmospheric circulation model with several 

types of instabilities saturating at different time scales. Through proper selection of the 

breeding parameters, BVs identify baroclinic and convective instabilities. When the 

amplitude and rescaling period are further reduced, all BVs converge to a single vector 

associated with Lamb waves, something never before observed. 
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and 𝐼𝑊 =  40 minutes. (d) Dimension of the five zonal wind BVs computed 

using 𝛿0 = 1mm/s and 𝐼𝑊 =  40 minutes. All vectors are shown at the 500mb 

level. The BVs converge by the end of the second day. ....................................... 87 

Figure 5.6: Same as Figure 5.5 but at the surface. Thus (a) two temperature BVs 

computed using 𝛿0 = 0.001 K and 𝐼𝑊 =  40 minutes. (b) Dimension of the five 

temperature BVs computed using 𝛿0 = 0.001 K and 𝐼𝑊 =  40 minutes. (c) Two 

zonal wind BVs computed using 𝛿0 = 1 mm/s and 𝐼𝑊 =  40 minutes. (d) 

Dimension of the five zonal wind BVs computed using 𝛿0 = 1 mm/s and 𝐼𝑊 =

 40 minutes. The BVs merge into a single vector, the leading LV for this system.

............................................................................................................................... 88 

Figure 5.7: (a) Growth rates for the vectors associated with baroclinic instabilities 

(24HR), convection (6HR), and inertia gravity waves (40MIN). Although the 

global growth rate appears constant for the gravity waves, (b) demonstrates that it 

is not. This value is small relative to the other growth rates because in most 

regions around the world, the vector is not growing. ........................................... 89 
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Chapter 1 : Introduction 

 

1.1 Importance and theory of bred vectors, singular vectors, and Lyapunov vectors 

 

Weather and climate forecasts are encumbered with errors originating from inexact 

observations, numerical methods, and, very importantly, the instabilities inherent in the 

atmosphere-ocean system. Thus even with exact observations and a perfect model, the 

instabilities of a system will degrade and limit its predictability (Lorenz 1963, 1965). 

Much work has been done to characterize this innate chaos (e.g. Benettin et al. 1980; 

Toth and Kalnay 1993; Trevisan and Legnani 1995; Pazó et al. 2010) developing and 

improving upon the goal of identifying the unstable subspace that determines the fastest 

growing and/or the errors with the largest growing amplitude responsible for the 

deterioration of forecasts. 

In this thesis we compute and compare the three types of vectors frequently used to 

explore the instability properties of dynamical models, namely Lyapunov vectors (LVs), 

singular vectors (SVs) and bred vectors (BVs). Of the three types of vectors, the simplest 

and cheapest to compute are BVs, since they only require running the nonlinear model 

once for the control run and once for the perturbed solution corresponding to each bred 

vector. The difference between the perturbed and the control runs is periodically rescaled 

to the initial amplitude, and added to the control. It is easy to see that, by construction, 

leading (i.e. fastest growing) bred vectors are related to the (leading) LVs. In fact, for 
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very small amplitudes and very short rescaling windows, bred vectors align with the 

leading Lyapunov vector. 

SVs for a given time window are computed as the eigenvectors of the matrix 

representing the Tangent Linear Model (TLM), or propagator, left multiplied by the 

adjoint (ADJ) of the TLM. This matrix is Hermitian; thus the SVs form an orthogonal 

basis throughout the time window. The singular values are equal to the square root of the 

corresponding growth rate, 𝜎2, since the norm of the initial SV (ISV) propagated forward 

by the TLM and evolved into the final SV (FSV) grows by 𝜎 at the end of the time 

window; the FSV, integrated backward using the ADJ so that it evolves into the ISV, in 

turn also grows by 𝜎. The ISVs are very sensitive to the choice of both the norm and the 

optimization window (Errico and Vukicevic 1992). However, as the window length 

approaches infinity, the FSVs converge to the LVs orthonormalized in decreasing order 

of their growth rates. Correspondingly, when the window is extended backward toward 

negative infinity, the ISVs converge to the LVs orthonormalized in increasing order of 

their growth rates so that the (non-orthogonal) Lyapunov vectors can be computed from 

the complete sets of FSVs and ISVs (Trevisan and Pancotti 1998). Wolfe and Samelson 

(2007, WS07) extended Trevisan and Pancotti’s approach with a more efficient algorithm 

(used in this thesis) that computes the leading LVs as a function of the leading FSVs and 

ISVs only (section 1.4).  

Singular and bred vectors have been widely used for the creation of initial 

perturbations for ensemble forecasting, and their construction algorithms are widely 

described (e.g., Molteni and Palmer 1993, Toth and Kalnay 1997). Although the leading 

LV, the leading FSV, and the BVs of a dynamical model are strongly related and rather 
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easily determined, the non-leading LVs are much more difficult to isolate (see the 

algorithms of Benettin et al. 1980; Shimada and Nagashima 1979; Wolfe and Samelson 

2007; and Ginelli et al. 2007). 

In this thesis we determine the BVs, SVs, and LVs of two simple models using the 

WS07 algorithm, and compare their evolution in time and their characteristic behavior. 

The first is the Lorenz (1963) model. It has three degrees of freedom and well-known 

instability characteristics with one dominant time scale. The second is a toy ‘coupled 

atmosphere-ocean model’ with nine degrees of freedom composed of three Lorenz 

models, with a slow ‘ocean’ strongly coupled with a fast ‘tropical atmosphere,’ in turn 

weakly coupled with a fast ‘extratropical atmosphere’ (Peña and Kalnay 2004). The 

second model has two time scales, a slow one associated with ‘El Niño’ oscillations and a 

fast one associated with ‘extratropical weather.’ We then replace the ‘extratropical 

atmosphere’ with ‘convection’ causing the nine-variable model to have three time scales. 

Next we compute the BVs and SVs for a quasi-geostrophic model developed by Rotunno 

and Bao (1996) with over 14,000 degrees of freedom and instabilities of one time scale. 

The SVs fail to converge, rendering the use of the WS07 algorithm impossible, but 

results with the BVs provide strong evidence to the existence of a leading LV for the 

model. Finally we examine the BVs of the Simplified Parameterizations, primitivE-

Equation DYnamics (SPEEDY) model (Molteni, 2003) which has 135,240 degrees of 

freedom and instabilities of several time scales, including weather waves, convective 

instabilities, and inertia gravity waves. Again, results with the BVs lead to strong 

evidence for the existence of a leading LV, but it corresponds to horizontal inertia sound 
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waves (Lamb waves), meaning it may not be useful for initializing ensembles in weather 

forecasting. 

Some of the questions we attempt to address using these models are related to real 

weather and climate problems that have been noted in the past. For example, Lorenz 

(1996) addressed how to obtain LVs for a system that has more than one time scale and 

suggested a method very similar to breeding. Boffetta et al. (1998) used finite size 

Lyapunov exponents (which are close in construction to the bred vectors used here) to 

successfully separate quickly growing fast errors and slowly growing large errors. Toth 

and Kalnay (1997) computed twenty BVs for the NCEP operational system, each starting 

from different random initial perturbations, and identified approximately ten independent 

regions of instability in each hemisphere, where the majority of BVs converged to the 

same shapes, but with random signs. Since the construction of BVs is a nonlinear, finite 

time, finite amplitude generalization of the leading LV, it is clear that the BVs do not 

converge to a single leading LV unless their rescaling amplitude is very small. In fact, we 

will show that nonlinear BVs, those whose amplitudes and rescaling windows are large 

enough to cause a separation between them and the leading LV but small enough to 

remain pertinent to the instabilities of the system, converge to the locally fastest growing 

LV even if it is different from LV1 (that is, the leading Lyapunov vector). We also found 

that for systems with multiple time scales, it is possible to find BVs, under certain 

conditions SVs, and, when they can be computed, LVs that are associated with the fast 

and slow instabilities. More work is needed to ascertain if these results are applicable to a 

full weather-climate system.  
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The thesis is organized as follows: In the remainder of chapter 1 we describe the 

algorithms used to obtain the three types of vectors. Chapter 2 compares the BVs, SVs, 

and LVs in the classic Lorenz (1963) three-variable model, and discusses what these 

results imply for a system dominated by a single type of instability. (Many of the results 

of chapters 1 and 2 have been presented in Norwood et al. 2013.) Chapter 3 introduces 

the nine-variable toy coupled model and the corresponding BVs, SVs, and LVs, and their 

properties are presented and discussed. Chapter 4 discusses the results with the Rotunno 

Bao (1996) quasi-geostrophic (QG) model, a more complex model with a single type of 

instability similar to weather waves. Chapter 5 compares BVs found for the SPEEDY 

model (Molteni, 2003) and what these results imply for the existence of a leading LV in 

systems with instabilities of several time scales. Chapter 6 is a summary and discussion 

of the implications of these results for realistic, large atmospheric and oceanic models. 

 

1.2 Computation of bred vectors 

 

Of the three types of vectors, bred vectors are the easiest and fastest to compute. Toth 

and Kalnay (1993) first developed BVs as a way to capture the errors present in the initial 

conditions and how they grow within short- and medium-range weather forecasts. Their 

objective was to produce ensembles with a strongly growing spread that are 

representative of the largest instabilities, with minimal computational effort. Thus the 

nonlinear model is used to obtain these simple yet powerful vectors. 

One begins by integrating the nonlinear model, 𝑀, for a specified amount of time to 

obtain the control trajectory, 𝑥𝑐. A perturbation size, 𝛿0,and an integration window, 𝐼𝑊, 
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are chosen based upon the saturation amplitude and time scale for the mode of growth 

one wishes to target (see Peña and Kalnay 2004, PK04; S.-C. Yang et al. 2006a; and 

chapters 3 and 5). Nonlinear error growth rates are dominated by instabilities with 

different time scales, and thus are characterized by different saturation rates. The 

selection of different perturbation sizes and integration windows allows one to also study 

the effects of linear and nonlinear disturbances on error growth (see Evans et al. 2004 and 

chapter 2). The initial sizes of the perturbation and integration window are also known as 

the breeding rescaling amplitude and period, respectively. At every breeding cycle, a 

perturbation direction is determined, scaled to size 𝛿0, and added to the initial condition 

of the control, 𝑥𝑐(𝑡𝑖). Thus the initial condition for the perturbed trajectory is 

 

 

 

𝑥𝑝(𝑡𝑖) = 𝑥𝑐(𝑡𝑖) +  𝛿0 

𝑝(𝑡𝑖)

||𝑝(𝑡𝑖)||
, ( 1 ) 

 

where 
𝑝(𝑡𝑖)

||𝑝(𝑡𝑖)||
 is the direction of the perturbation at time 𝑡𝑖. The nonlinear model is then 

integrated forward starting from 𝑥𝑝(𝑡𝑖). At the end of the integration interval, the BV is 

obtained by subtracting the control trajectory from the perturbed trajectory at time 𝑡𝑖+𝐼𝑊: 

 

 𝑏𝑣(𝑡𝑖+𝐼𝑊) =  𝑥𝑝(𝑡𝑖+𝐼𝑊) −  𝑥𝑐(𝑡𝑖+𝐼𝑊). ( 2 ) 

 

The process is then repeated from (1) with 𝑝(𝑡𝑖+𝐼𝑊) = 𝑏𝑣(𝑡𝑖+𝐼𝑊) as the 

perturbation for the next integration interval. BVs can be computed at every time by 

looping through (1) and (2) beginning at successive initial points. Note that as the 



7 

 

rescaling amplitude 𝛿0 → 0, the BVs will converge to the leading Lyapunov vector, 

which is proportional to the leading asymptotic final singular vector. 

The main parameters of interest are the rescaling interval and perturbation 

amplitude because they directly relate to the dynamics of the system. Pazó et al. (2010) 

demonstrate that the choice of norm used to determine the perturbation size may have 

important implications on the effectiveness of the ensembles created from the BVs. Here 

we do not study the effect of the choice of norm on the results and simply use one norm 

for each model. We compute the local-in-time growth rates as 
1

𝑑𝑡∗𝐼𝑊
ln (

||𝑏𝑣||

𝛿0
), where 𝑑𝑡 is 

the integration time period. 

 

1.3 Computation of singular vectors 

 

Singular vectors are a set of perturbations that will maximize the perturbation growth 

for a chosen norm and optimization period. More precisely, the initial singular vectors are 

valid at the beginning of the optimization period, and they evolve into the final singular 

vectors at the end of the optimization period. SVs, although not as simple to compute as 

bred vectors, have a well-known, fairly simple algorithm for their calculation, and their 

usefulness in numerical weather prediction has been studied for several years (Buizza et 

al. 1993; Errico and Vukicevic 1992). 

With a nonlinear model, 𝑀, the tangent linear model (TLM), computed as 𝐌𝐢𝐣 =

𝜕𝑀𝑖

∂𝑥𝑗
, can be used to evolve perturbations linearly from time 𝑡𝑖 to time 𝑡𝑖+𝐼𝑊. The leading 

initial singular vectors are those perturbations that grow fastest during the optimization 
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period, so that a cost function, defined as the perturbation growth within the period 𝑡𝑖 to 

𝑡𝑖+𝐼𝑊, is 

 

 
𝐽 =

||𝜂(𝑡𝑖+𝐼𝑊)||
𝐐

2

||𝜉(𝑡𝑖)||
𝐏

2 =
𝜉(𝑡𝑖)

∗𝐌(𝑡𝑖, 𝑡𝑖+𝐼𝑊)∗𝐐∗𝐐𝐌(𝑡𝑖, 𝑡𝑖+𝐼𝑊)𝜉(𝑡𝑖)

𝜉(𝑡𝑖)∗𝐏∗𝐏𝜉(𝑡𝑖)
.  ( 3 ) 

 

𝜉(𝑡𝑖) denotes the ISV at time 𝑡𝑖 and 𝜂(𝑡𝑖+𝐼𝑊) denotes the final singular vector at time 

𝑡𝑖+𝐼𝑊 into which 𝜉(𝑡𝑖) evolves. Note that in (3), the initial and final perturbation 

amplitudes are defined with norms 𝐏 and 𝐐, respectively. 𝐌(𝑡𝑖, 𝑡𝑖+𝐼𝑊)∗ is the adjoint 

model (ADJ) that integrates the perturbations backward from time 𝑡𝑖+𝐼𝑊 to 𝑡𝑖. Errico and 

Vukicevic (1992) indicated that the SVs are very dependent on the choice of norm and 

the length of the optimization period. Also, maximizing (3) is equivalent to finding the 

leading eigenvector of the matrix 𝐌∗𝐌, where we have dropped the time dependence. 

This eigenvector, denoted as 𝜉1, will be the leading ISV with a growth of 𝜎1. To calculate 

all the eigenvectors corresponding to different perturbation growths, we set up the eigen-

equation 

 

 

𝐌∗𝐌𝚵 = 𝚵𝐒. ( 4 ) 

 

 

The jth column of matrix 𝚵 corresponds to the jth ISV, 𝜉𝑗, and the jth diagonal element of 

𝐒,contains its corresponding eigenvalue, 𝜎𝑗
2.  

Since 𝐌∗𝐌 is Hermitian, the matrix 𝚵, of right (initial) singular vectors of matrix 

𝐌, is unitary. The corresponding unitary matrix of left (final) singular vectors aligned 

along the columns of matrix 𝐇 satisfy 𝐌(𝑡𝑖, 𝑡𝑖+𝐼𝑊)𝚵(𝑡𝑖) = 𝐇(𝑡𝑖+𝐼𝑊)𝚺, where 𝚺 is a 

diagonal matrix of the singular values, 𝜎𝑗, in decreasing order. Thus 𝐇 contains the final 
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singular vectors (FSVs), obtained as the linear evolution of the ISVs contained in 𝚵, with 

a growth rate corresponding to their corresponding singular values, 𝜎𝑗. The jth FSV, 

denoted as 𝜂𝑗, is the jth column vector of 𝐇. We also note that the eigenvalues in (4) are 

the squares of the singular values. Therefore, by applying 𝐌∗𝐌 to 𝜉𝑗, it will grow (or 

decay) by a factor of 𝜎𝑗
2. 

The conversion between the initial (𝜉𝑗) and final (𝜂𝑗) SVs for a window from 𝑡𝑖 to 

𝑡𝑖+𝐼𝑊 is done applying the TLM and ADJ operators: 

 

 

 

𝐌(𝑡𝑖, 𝑡𝑖+𝐼𝑊)𝜉𝑗(𝑡𝑖) =  𝜎𝑗𝜂𝑗(𝑡𝑖+𝐼𝑊), ( 5 ) 

 

 

 

   

   

 

 

𝐌(𝑡𝑖, 𝑡𝑖+𝐼𝑊)∗𝜂𝑗(𝑡𝑖+𝐼𝑊) =  𝜎𝑗𝜉𝑗(𝑡𝑖). ( 6 ) 

 

 

In (5) and (6), the jth FSV, 𝜂𝑗, is derived by integrating 𝜉𝑗 forward in time, while the jth 

ISV is derived by integrating backward in time. From (5) we see transformation under the 

TLM will rotate 𝜉1 to the direction of 𝜂1 and cause its length to grow by 𝜎1. This gives 

the exact location of the fastest growing direction and its growth rate. This property is 

important when attempting to create fast growing perturbations for ensemble predictions. 

Since the construction of the TLM for the chosen optimization period depends on 

the background trajectory, it is not a constant operator for nonlinear dynamics. Thus its 

influence over a perturbation’s behavior is strongly controlled by the integration interval. 

The interval must be small enough for the tangent linear assumption to remain valid yet 

large enough to provide dynamically significant results. We note that Legras and Vautard 

(1996) named the initial SVs, 𝜉𝑗 , ‘forward SVs’ (because they are initialized in the 

future) and the final SVs, 𝜂𝑗 , ‘backward SVs’ (because they are initialized in the past). 
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The local growth of the initial SV when it is evolved with the TLM to time 𝑡𝑖+𝐼𝑊 is equal 

to the growth rate of the final SV when it is evolved with the ADJ to time 𝑡𝑖, and both are 

given by 
ln(𝜎𝑗)

𝑑𝑡∗𝐼𝑊
  (for their respective times). The growth rates of BVs are slightly smaller 

than those of the leading SVs, but as the integration time for the SVs increases, the 

leading final SV, 𝜂1, converges to LV1, the leading Lyapunov vector, which is similar to 

the BV (see chapter 2). 

The computation of the Lyapunov vectors in the following section is based on 

asymptotic initial (𝜉𝑗) and final (�̂�𝑗) SVs that were given enough time to converge to a 

single solution. In other words, the asymptotic SVs are the solutions obtained when 

computed with an ‘infinite’ integration window, with the initial state going infinitely far 

back into the past to obtain the FSVs and infinitely far forward into the future to obtain 

the ISVs. If the LVs were recurrently orthogonalized they would coincide with the FSVs 

(when integrating forward in time) and the ISVs (when integrating backward in time) 

(Trevisan and Pancotti, 1998). This result is the basis of the Wolfe and Samelson (2007) 

algorithm used to compute Lyapunov vectors, which is described below.  

 

1.4 Computation of Lyapunov vectors 

 

The leading (fastest growing) Lyapunov vector can be obtained by integrating the 

tangent linear model (TLM) for sufficiently long times starting from a random initial 

perturbation. Since all perturbations converge to the leading LV as integration time 

increases, this is a fairly simple and straightforward method to use. Benettin et al. (1980) 

and Shimada and Nagashima (1979) expanded this method to find a set of orthonormal 
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vectors in the tangent space of the trajectory that span the same subspaces as the LVs by 

recurrently orthonormalizing initially random perturbations. This orthogonalization, 

being norm dependent, is not preserved by the tangent linear flow. Thus an 

orthogonalized set of LVs computed at one time will not evolve into an orthogonalized 

set of LVs at some future time. For example, if the LVs generated by the Benettin et al. 

(1980) algorithm are integrated backward in time, all (except the first) will rotate toward 

the most rapidly decaying LVs since orthogonalization starting with the leading LV will 

produce projections onto the decaying LVs (WS07). Ginelli et al. (2007) developed an 

algorithm for covariant Lyapunov vectors (those which are invariant under the tangent 

and adjoint linear flow, i.e. LVs computed at a given time evolve into LVs at future and 

past times) by using the QR algorithm. In the same year, Wolfe and Samelson published 

their algorithm, building upon the work of Trevisan and Pancotti (1998), which 

efficiently combines asymptotic initial and final singular vectors to determine the 

coefficients of covariant LVs. Because we wish to compare LVs to BVs and SVs, it is 

simpler for us to use the method proposed by Wolfe and Samelson. We briefly describe 

the WS07 algorithm. 

Beginning from the TLM, 𝐌, it can be shown (Oseledec 1968) that the Lyapunov 

exponents, 𝜆𝑛, are the logarithms of the eigenvalues of 

 

 

 

 

𝑆+ =  𝑙𝑖𝑚
𝑡2→+∞

[𝐌(𝑡, 𝑡2)∗𝐌(𝑡, 𝑡2)]
1

2(𝑡2−𝑡), 
( 7a ) 

 
   

 

 

𝑆− =  𝑙𝑖𝑚
𝑡1→−∞

[𝐌(𝑡1, 𝑡)𝐌(𝑡1, 𝑡)∗]
1

2(𝑡−𝑡1), 
( 7b ) 
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where 𝐌∗ is the adjoint. According to Oseledec’s theorem, the norm-independent 

Lyapunov vectors, 𝜙𝑛, corresponding to these Lyapunov exponents exist. In other words, 

for almost every time 𝑡, integrating forward in time every vector y in the tangent space 

𝑆1
+(𝑡) of the attractor of the dynamical system grows asymptotically at the rate 𝜆1 with 

the exception of any y belonging to 𝑆2
+(𝑡). In this case, y grows asymptotically at the rate 

𝜆2, unless y belongs to 𝑆3
+(𝑡), and so on. As one integrates back in time, for almost every 

time 𝑡, every vector 𝑦 in the tangent space 𝑆𝑁
−(𝑡) of the attractor of the dynamical system 

grows asymptotically at the rate 𝜆𝑁, where 𝑁 is the number of degrees of freedom of the 

system, with the exception of any 𝑦 belonging to 𝑆𝑁−1
− (𝑡). In this case 𝑦 grows 

asymptotically at the rate  𝜆𝑁−1. One continues in this manner until there are 𝐿 Lyapunov 

vectors, 𝜙𝑛, growing (or decaying) at a rate of ±𝜆𝑛 as 𝑡 → ±∞, where 𝐿 is the number of 

distinct Lyapunov exponents. (Kuptsov and Parlitz 2012 discuss an algorithm for the case 

𝐿 ≠ 𝑁, but, like WS07, we shall assume the non-degenerative case.) Using this definition 

of Lyapunov vectors, one finds vectors that characterize dynamical instabilities both 

forward and backward in time. This definition most closely relates to that of 

characteristic Lyapunov vectors (Trevisan and Pancotti, 1998).  

The above theorem demonstrates the existence of the Lyapunov vectors and 

where to find them, but, unfortunately, it does not provide a straightforward algorithm to 

compute them. From section 1.3 we know singular vectors and their growth rates are 

computationally expensive but relatively straightforward to compute. Also note that as 

time approaches infinity in (7a), we obtain asymptotic values of the initial singular 

vectors, 𝜉𝑗. As time approaches infinity in (7b) we obtain asymptotic values of the final 
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singular vectors, 𝜂𝑗. Since they are asymptotically related to Lyapunov vectors, WS07 

exploit this relationship, and use SVs to compute LVs. Let �̂�𝑗 represent the asymptotic 

final singular vectors and 𝜉𝑗 represent the asymptotic initial singular vectors. Each set of 

SVs spans the space of the dynamical system. Thus 𝜙𝑛 can be written as a linear 

combination of either set: 

 

 

𝜙𝑛(𝑡) =  ∑ < 𝜉𝑖(𝑡), 𝜙𝑛(𝑡)

𝑁

𝑖=1

> 𝜉𝑖(𝑡), ( 8a ) 

 

 

𝜙𝑛(𝑡) =  ∑ < �̂�𝑗(𝑡), 𝜙𝑛(𝑡)

𝑁

𝑗=1

> �̂�𝑗(𝑡). ( 8b ) 

 

 As a consequence of errors aligning with the most unstable direction, if a vector is 

initialized in the distant past, and the model is integrated forward to the present, this 

vector will align with the most rapidly growing (leading) Lyapunov vector. Thus, 

�̂�1(𝑡) = 𝑐1
1𝜙1(𝑡) for some constant 𝑐1

1. �̂�2(𝑡) is orthogonal to �̂�1(𝑡), which means �̂�2(𝑡) 

must have a component that projects onto the second leading Lyapunov vector. Thus, 

�̂�2(𝑡) = 𝑐1
2𝜙1(𝑡) + 𝑐2

2𝜙2(𝑡); which implies for coefficients 𝑐𝑖
𝑗
, where 𝑖 is an index 

corresponding to the LV of interest and 𝑗 corresponds to the SV of interest, 

 

 

 

�̂�𝑗(𝑡) =  ∑ 𝑐𝑖
𝑗
𝜙𝑖(𝑡)

𝑗

𝑖=1

. ( 9 ) 
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But 𝜉𝑗(𝑡), which is initialized in the distant future and evolved back in time, will align 

with the most rapidly decaying Lyapunov vector, 𝜙𝑁(𝑡), where N is the degrees of 

freedom in the model. Thus for coefficients 𝑑𝑖
𝑗
, where 𝑖 is an index corresponding to the 

LV of interest and 𝑗 corresponds to the SV of interest, 

 

 

 

𝜉𝑗(𝑡) =  ∑ 𝑑𝑖
𝑗
𝜙𝑖(𝑡)

𝑁

𝑖=𝑗

. ( 10 ) 

 

Hence < 𝜙𝑖 , �̂�𝑗 > = 0 for 𝑖 >  𝑗 and < 𝜙𝑖 , 𝜉𝑗 > = 0 for 𝑖 < 𝑗. Consequently 

equations (8a) and (8b) can be rewritten as 

 

 

 

𝜙𝑛(𝑡) =  ∑ < 𝜉𝑖(𝑡), 𝜙𝑛(𝑡) > 𝜉𝑖(𝑡)

𝑁

𝑖=𝑛

 ( 11a  ) 

 

 

𝜙𝑛(𝑡) =  ∑ < �̂�𝑗(𝑡), 𝜙𝑛(𝑡) > �̂�𝑗(𝑡)

𝑛

𝑗=1

. ( 11b ) 

 

WS07 show that the n leading Lyapunov vectors can be found by solving 𝐷(𝑛)𝑦(𝑛) = 0, 

where 

 

 

 

𝐷𝑘𝑗
(𝑛)

=  ∑ < �̂�𝑘(𝑡), 𝜉𝑖(𝑡) >< 𝜉𝑖(𝑡), �̂�𝑗(𝑡) >

𝑛−1

𝑖=1

 𝑘, 𝑗 ≤ 𝑛, 
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𝑦𝑘
(𝑛)

= < �̂�𝑘(𝑡), 𝜙𝑛(𝑡) > 𝑘 = 1, … , 𝑛. 

The last n Lyapunov vectors come from solving 𝐶(𝑛)𝑥(𝑛) = 0, where 

 

 𝐶𝑘𝑖
(𝑛)

=  ∑ < 𝜉𝑘+𝑛−1(𝑡), �̂�𝑗(𝑡) >< �̂�𝑗(𝑡), 𝜉𝑖+𝑛−1(𝑡) >

𝑁

𝑗=𝑛+1

 𝑘, 𝑖 ≤ 𝑁 − 𝑛 + 1, 

 𝑥𝑘
(𝑛)

= < 𝜉𝑘+𝑛−1(𝑡), 𝜙𝑛(𝑡) > 𝑘 = 1, … , 𝑁 − 𝑛 + 1. 

 

Since Lyapunov vectors are characteristic of the instabilities of the system, and 

because they are invariant under the linearized flow, the above process does not need to 

be repeated at every time period (Trevisan and Pancotti 1998, WS07). Theoretically one 

would simply find the Lyapunov vectors once and use the TLM to propagate them 

forward through time. But in practice small, but inevitable, numerical errors stemming 

from the chaotic nature of the system cause all the vectors to rotate toward the leading 

LV, making it necessary to use the complete algorithm periodically. This is done every 

0.25 time units for the Lorenz (1963) and the Fast-Slow coupled model (Peña and 

Kalnay, 2004). The TLM is then used to compute the LVs for the intervening steps. Their 

local growth rates are computed using a centered difference approximation of equation 

(48) of WS07 
1

||𝜙||

𝑑||𝜙||

𝑑𝑡
. Using forward or backward difference schemes has little effect 

on the results. 
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1.5 Summary 

 

Each of the three types of vectors, bred, singular, and Lyapunov, is very important 

for studying dynamical instabilities. In general they have rather different characteristics, 

such as the way they grow. The differences among BVs, SVs and LVs is illustrated 

through the methods used to derive them. From their derivations one can see each 

requires the use of different information, to which some of the differences in their 

behavior can be attributed. For instance, BVs and FSVs require past information about 

the trajectory for their computation, while ISVs rely upon future information, and LVs 

require both past and future information. As will be seen, the variations in their 

calculations lead to slight variations in the spaces they inhabit, the sizes of their growth 

rates, and, in the case of ISVs, the behavior of their growth rates. 

It is still important to keep in mind that although these vectors are all somewhat 

different, they all describe the instabilities intrinsic in dynamical systems and are equal to 

one another under various limits. Thus BVs computed using short rescaling windows and 

small amplitudes align with the leading LV while SVs computed using infinitely long 

integration windows are orthonormalized LVs (Trevisan and Pancotti 1998). These 

similarities and differences will be explored more in the following chapters. 
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Chapter 2 : Results with the Lorenz 1963 Three-Variable Model 

 

2.1 Introduction: Characteristics of the Lorenz (1963) Model 

 

We first compute BVs, SVs, and LVs for the Lorenz (1963) model  

 

 

 

�̇� = 𝜎(𝑦 − 𝑥), 

 

 

 

 
   

 

 

𝑦 ̇ = 𝜌𝑥 − 𝑦 − 𝑥, ( 12 ) 

 
   

 

 

�̇� = 𝑥𝑦 − 𝛽𝑧,  

 

a simple model exhibiting chaos, whose behavior has been widely studied. We use the 

standard parameters for the Lorenz model with 𝜎 = 10, 𝜌 = 28, and 𝛽 =
8

3
. The model 

was integrated for 5000 time periods using a fourth-order Runge-Kutta scheme with a 

time period of 0.01, so that one unit of time in each of the corresponding graphs 

corresponds to 100 time periods, allowing sufficient spin-up time for the solution to 

converge to the attractor. 

This model has two regimes, a ‘cold’ regime, where both x and y values are 

negative, and a ‘warm’ regime, where both x and y values are positive. Lorenz (1963) 

indicated that regime changes (where the x and y variables switch signs) could actually be 

predicted using large values of the z variable while Evans et al. (2004) predicted regime 

changes using large growth rates of bred vectors. In this chapter we will compare 

properties of BVs, SVs, and LVs, including their ability to predict regime changes (as 

seen in Norwood et al. 2013). 
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2.2 Regime Change Predictive Power of BVs, SVs, and LVs 

 

 There are many works that use Lyapunov vectors to study the hyperbolicity of 

chaotic systems in general (e.g. H.-l. Yang et al. 2009 and Kuptsov 2013) and the Lorenz 

three-variable model in particular (e.g. Saiki and Kobayashi 2010 and Kobayashi and 

Saiki 2014). Here we wish to determine if Lyapunov vectors are useful predictors in this 

simple chaotic model. If they are, there would be reason to continue to study them for 

more complex systems. Figure 2.1 gives the growth rates of LV1, the leading Lyapunov 

vector, along the entire trajectory. Regions of fastest growth, anything greater than or 

equal to 6.4, are represented with red stars. Regions of decay (those with growth rates 

less than 0) are represented by blue stars. Intermediate values are represented by yellow 

and green stars. Below we show regions of fast growth are most important for regime 

change predictions. For clarity of graphical presentations, in the remainder of this section 

we will focus on the behavior of the trajectory in the interval between times 18 and 30, 

demarcated with vertical black lines in Figure 2.1; this shortened period includes a long 

regime as well as a few short regimes. Zooming in on this limited trajectory helps to 

underscore the details of the behavior of the three types of vectors, making them easier to 

compare. Clearly the first LV shares the property that large growth rates, indicated by red 

stars, signal a regime change as found by Evans et al. (2004). 

Figure 2.2 provides the growth rates for the three LVs, the fastest growing initial 

and final SVs, corresponding to the largest singular value, and the BVs for the 

abbreviated trajectory. These are the local growth rates for each of the vectors. Recall 
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from chapter 1, for integration window 𝐼𝑊 and integration time period 𝑑𝑡, which is 0.01 

for this model, these are computed as: 
1

||𝜙(𝑡)||

𝑑||𝜙(𝑡)||

𝑑𝑡
 for LV 𝜙; 

ln (𝜎(𝑡))

𝑑𝑡∗𝐼𝑊
 for singular value 

𝜎(𝑡); and 
1

𝑑𝑡∗𝐼𝑊
ln (

||𝑏𝑣(𝑡)||

𝛿0
) for initial rescaling amplitude 𝛿0. The Euclidean norm is used 

for all three types of vectors. The singular vectors are computed using both a short 

rescaling time period of 0.02 and a longer one of 0.24 units, corresponding to integration 

windows of 2 and 24, respectively. With a rescaling time period of 0.02 units, the ISVs 

and FSVs are very similar (Figure 2.2(d) and (e)). A time period of 0.24 units provides 

time for the leading initial and final SVs to sufficiently separate to see a marked 

difference in their behavior (Figure 2.2(g) and (h)). Table 2.1 provides the cutoff values 

for the thresholds for all the vectors of Figure 2.2. These values were tuned for each 

vector so the growth rates would best predict regime changes. LV1 and the BVs have the 

same cutoff of 6.4 because their local growth rates are very similar in behavior and size. 

While most of the thresholds indicate the local growth rate must be greater than or equal 

to the given value for the growth rate to provide information on regime changes, the 

given threshold for LV3 signals the rate must be below the given value. 

 

 

Figure 2.1: Control trajectory of the Lorenz (1963) model. (a) x-variable is plotted overlaid with the growth 

rates of LV1, the leading LV. The vertical black lines demarcate the time period (time 18-30) focused on 

(a) 

(b) 
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for the graphs in the remainder of the section. (b) The attractor with colored stars indicating the LV1 

growth rate range. 

 

 

Figure 2.2: Growth rates along the x trajectory of (a) LV1, (b) LV2, (c) LV3, (d) ISV, (e) FSV (both using 

an integration interval of 0.02 units) , (f) the linear BV rescaled every 0.02 units using an initial 

perturbation of 0.1, (g) ISV, (h) FSV (both using an integration interval of 0.24 units), and (i) the nonlinear 

BV rescaled every 0.08 units using an initial perturbation of 1. In general fast growth (decay in the case of 

LV3) signals a regime change with the SVs providing the best predictions. 

 

Table 2.1: Thresholds for the growth rates of the vectors of Figure 2.2. Values in parentheses are the 

integration windows (𝐼𝑊). Growth rates are tuned to best represent approaching regime changes within the 

Lorenz (1963) model. Thus rates above (below in the case of LV3) the given threshold typically signal an 

(a) (b) (c) 

(d) (e) (f) 

(g) (h) (i) 
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approaching regime change. Note LV1 and the BVs have the same thresholds because their local growth 

rates are very similar in behavior and size.  

Vector LV1 LV2 LV3 
BV 

(2) 

BV 

(8) 

ISV 

(2) 

FSV 

(2) 

ISV 

(24) 

FSV 

(24) 

Growth 

Rate 
6.4 7 -22 6.4 6.4 7.9 7.9 6.6 6.6 

 

The bred vectors are first computed using a perturbation of size 0.1 and rescaling 

interval of 0.02 units. The small amplitude and short resizing interval provide an accurate 

estimation of the linear evolution of the disturbances, and, as could be expected, these 

linear BVs are most similar to the leading LV, with an average correlation (cosine 

between the two vectors) of 0.996 for the entire trajectory. BVs are then computed using 

a perturbation of size 1 and a rescaling interval of 0.08 units. This provides an indication 

of the (somewhat) nonlinear evolution of the disturbances without the perturbations being 

overwhelmed by the nonlinearity of the model. Hence the first set of BVs is referred to as 

linear BVs while the second set is referred to as nonlinear BVs. 

LV1, LV2, the SVs, and the BVs use the same colors to indicate their relative 

growth rate thresholds used for predicting regime change (e.g. a large growth rate is 

indicated by red stars; decay is indicated by blue stars) since the behavior of their growth 

rates are comparable. Notice the values for the growth rates vary (Table 2.1), with the 

SVs having a slightly larger growth rate than the BVs and LV1. LV3 is a strongly 

decaying vector, so the opposite colors are used to indicate the intensity of the decay (e.g. 

slow decay is shown with blue diamonds; fast decay is indicated by red diamonds). 

Figure 2.2 demonstrates fast growth for LV1, the SVs, and BVs indicates a regime 

change will take place after the present orbit is completed. In fact LV1 and the linear BV 

show a ‘false alarm’ at time ~24, whereas the FSV is a superior predictor and has no false 
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alarms for this particular solution. Thus, although the LVs are valid globally and at all 

times, they can be used for local, finite time predictions, at least in this simple model. 

Moreover, the linear BV/LV1, as well as the SVs, also follows the second prediction rule 

found by Evans et al. (2004): longer periods of fast growth (i.e. a larger number of red 

stars) imply the upcoming regime will be longer. As a result of the time shift for the 

growth rates of the SVs (see section 1.3) the ISV optimized for 0.24 units has a growth 

rate that is a function of the absolute value of x: the closer x is to zero, the faster the 

growth of the ISV. This makes it an early predictor of regime change because it can take 

advantage of future information. By contrast, the ISV optimized for just 0.02 units has a 

growth rate essentially identical to the corresponding FSV, which in turn is close to the 

FSV obtained with an optimization window of 0.24 units. 

LV2 (Figure 2.2(b)), which is tangent to the attractor and has a global growth rate 

of zero, has a local growth rate that is very similar to that of LV1 (Figure 2.2(a)) and the 

BVs (linear: Figure 2.2(f), nonlinear: Figure 2.2(i)), and often grows faster than LV1 

locally, as, for example, at times 19 and 29. If the trajectory were extended it would be 

evident that LV2 begins to grow fastest two orbits before the regime is finished, in multi-

orbit regimes (those with more than one extreme value). But it would be difficult to use 

LV2 as a predictor since one would not know if the present regime has multiple orbits 

and the warning is in the second to last orbit of the regime or if the regime only has one 

orbit. Thus LV2 would give too many false predictions to provide a useful warning for 

regime changes. It would only be useful for predictions if combined with LV1 or a bred 

vector, which sometimes misses a regime change (such as at time 29) while LV2 never 

does. Such coupling is not necessary for the FSV which predicts each regime change 
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without false alarms or misses for this particular solution. Figure 2.2(c) provides the 

decay rate of LV3, whose behavior mirrors that of LV2’s growth, in the sense that it does 

not only decay fastest before a regime change but begins this behavior a couple of cycles 

before the actual change. 

 

2.3 Correlations among BVs, SVs, and LVs 

 

2.3.1 Comparisons of BVs, SVs, and LVs 

 

It is not surprising that the behavior of the growth rates exhibited by LV1, FSV, 

and the BVs are very similar. Any perturbation initialized in the past and integrated 

forward should approximate the same instabilities and errors, represented by LV1, the 

leading LV. As indicated before, the linear BV is very close to LV1 with an average 

correlation of 0.996 for the entire trajectory, and the nonlinear BV has a correlation with 

LV1 of 0.867. By comparison, the FSV computed over a time interval of 0.24 units, shifts 

toward LV1 but not completely with a correlation coefficient of just 0.757.  

The behavior of ISV and FSV are quite different from that of the BVs and the two 

leading LVs. Having no memory of the previous integration interval, the vectors change 

directions often and in an inconsistent manner. As the integration interval increases FSV 

slowly becomes more flow dependent and more aligned to LV1, but, as could be 

expected, the ISV becomes less correlated with LV1 as the integration interval increases 

(Table 2.2).  
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Table 2.2: Mean of the absolute value of the cosines between initial and final SVs with LV1. As expected, 

as the integration window, increases the FSV moves toward LV1 while the ISV moves away from LV1.  

𝐼𝑊 1 2 8 24 48 

ISV 0.64 0.63 0.58 0.51 0.45 

FSV 0.65 0.66 0.69 0.76 0.79 

 

What is most interesting when examining the correlations among the BVs are the 

comparisons between the nonlinear BV and the first and second LVs. The BVs become 

more collinear to the first two LVs preceding a regime change or when any of these 

vectors grow fastest (Figure 2.3). The linear and slightly nonlinear BVs are more 

positively correlated to LV1 than to LV2, losing their correlation with LV1 very rarely 

(Figure 2.3(a) and (d)). Thus the same patterns of behavior regarding their alignment 

with respect to the regime being entered also hold. Still, it was not anticipated that the 

BVs and LV2 would share the same space so frequently. In fact up to a certain point, as 

𝛿0 is held constant at 1 and the integration window increases, the BVs become less 

aligned with LV1 and more aligned with LV2 (Table 2.3). In addition, whenever LV2 

grows faster than LV1 the BVs align themselves more with LV2, as will be further 

illustrated. The usefulness of BVs is closely linked to the choices of 𝛿0 and IW. If 𝛿0 is 

held constant at 1 and IW increases beyond 24, the BVs are no longer dynamically 

significant. 
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Figure 2.3: Correlations between the nonlinear BV and LV1 and LV2. (a) Cosine between LV1 and the 

BV. Colored stars represent growth rates of LV1; (b) x-trajectory where pink stars indicate the BV and 

LV1 and nearly parallel before and after a regime change; (c) like (b) but on the attractor; (d) cosine 

between LV2 and the BV. Colored stars represent LV2 growth rates; (e) x-trajectory showing correlations 

between LV2 and the BV; (f) like (e) but on the attractor. The BV aligns with the LVs when the LVs grow 

fastest and upon entering and leaving a new regime.  

 

Table 2.3: Average absolute correlation between LV1 and LV2 with BVs for increasing integration 

windows. All have a 𝛿0 of 1. As IW increases BVs become more aligned with LV2. 

𝐼𝑊 2 8 24 48 

LV1 and BV 0.98 0.87 0.68 0.70 

LV2 and BV 0.75 0.78 0.88 0.83 

 

Finally we address the situation when LV2 and LV1 compete for being the fastest 

growing vector locally, and the response in the behavior of the BVs, since this 

competition between different dominant instabilities is very common in complex 

weather-climate models (e.g. Toth and Kalnay 1997). The construction of BVs suggests 

(a) (b) 
(c) 

(d) (e) 
(f) 
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that for small amplitudes and short rescaling intervals they should follow LV1, but what 

happens for a nonlinear BV when LV2 grows faster than LV1? Figure 2.4 shows, in red, 

those frequent times in which LV2 grows faster than LV1, and, in blue, the ‘expected’ 

behavior of LV1 growing faster than LV2, shown only when both LV1 and LV2 are 

growing. Figure 2.4(a) indicates that most of the time the nonlinear BV closely follows 

LV1, with an average absolute cosine of 0.87. However, Figure 2.4(b) shows that when 

LV2 grows faster than LV1, the BV gets attracted to the faster growing vector, and 

becomes more collinear to LV2. As soon as LV2 ceases to grow faster, the BV moves 

away from it. A similar behavior, although not as clear, can be detected with the BV 

aligning itself closer to LV1 when its growth dominates (blue stars). In summary, 

although BVs are created using a nonlinear generalization of the method used to 

construct the leading LV, they have no ‘loyalty’ to LV1 and instead will grow closer to 

the locally fastest growing Lyapunov vector. 

 

 

Figure 2.4: Ratio of LV2 and LV1’s growth rates. Red stars indicate LV2’s local growth rate is larger than 

LV1’s; blue stars indicate LV1’s local growth rate is larger than LV2’s, only shown when both vectors are 

growing. (a) Gives the correlation between LV1 and the nonlinear BV, and (b) gives the correlation 

(a) (b) 
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between LV2 and the nonlinear BV. BVs align with the fastest locally growing LV. Thus they abandon 

LV1 to grow closer to LV2 when LV2 grows faster than LV1. 

 

2.3.2 Comparisons among the LVs 

 

 The Wolfe and Samelson (2007) algorithm affords us the opportunity to closely 

examine and compare all of the LVs of this simple model. Figure 2.5(a) gives the norms 

of the LVs, whose global average approximates the Lyapunov exponents (LEs) of the 

model. Figure 2.5(b) shows the typical structure of the LVs. The direction of LV2 is 

always tangent to the flow while the orientations of LV1 and LV3 change with the flow. 

Because LV2 is always tangent to the flow, comparing the correlations between LV1 and 

LV3 with LV2 is the same as comparing the orientations of LV1 and LV3 with the 

direction of the flow. 
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Figure 2.5: (a) Norms of the LVs plotted with the Lyapunov exponents (LEs) of the Lorenz (1963) model. 

(b) LV1 (c) LV2 (d) LV3 from time 18 to time 20. Flow begins in the center of the plots, travels 

counterclockwise in the warm regime, crosses the center, and travels clockwise in the cold regime. 

 

LV1 and LV2 often inhabit the same space, and they are most closely aligned 

when LV2 grows fastest (Figure 2.6(a)). They are also approximately collinear before a 

regime change, and this alignment persists for some time after entering the new regime 

(Figure 2.6(b)). The two vectors are nearly orthogonal near the center of multi-orbit 

regimes and immediately before the regime change of single orbit regimes (Figure 2.6(b) 

and Figure 2.5(b), keeping in mind that orthogonality with LV2 is the same as 

orthogonality with the attractor). 

(a) 

(b) 

(c) (d) 
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Figure 2.6: Correlations between LV1 and LV2. (a) The cosine between LV1 and LV2 where the colored 

stars represent the local growth rate of LV2; (b) the stars represent the correlations between the two vectors 

along the x component; and (c) the correlations between the two vectors along the attractor. They are 

approximately collinear when LV2 grows fastest and before and after a regime change. 

 

 LV3 is very rarely aligned with LV1 or LV2 (Figure 2.7). The rare occasion is 

when it aligns with LV1 and LV2 upon entering a new regime that will last longer than 

three cycles. LV3, being the fastest decaying vector, clearly describes the stable 

subspace, where errors quickly decay, while LV1, being the fastest growing vector, 

clearly describes the unstable subspace, where errors quickly grow. Thus these rare 

occurrences when LV1 and LV3 align are times when the unstable and stable subspaces 

intersect. 

 

 

(a) (b) 
(c) 

(a) (b) 
(c) 
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Figure 2.7: Correlations between LV1 and LV3 (top row) and LV2 and LV3 (bottom row). (a) The 

correlations between LV1 and LV3 with LV1 growth. (b) The correlations between LV1 and LV3 on the x 

component and (c) the attractor. (d) The correlations between LV2 and LV3 with LV2 growth. (e) The 

correlations between LV2 and LV3 on the x component and (f) the attractor. 

 

2.4 Summary 

 

 The work of Evans et al. (2004) showed that the fast growth of bred vectors can 

be used to predict regime change and duration. From our results it is clear the growth 

rates of all three types of vectors, bred, singular, and Lyapunov, can be used to 

effectively predict regime changes within this simple three-variable model. SVs are the 

best predictors, never missing a regime change and never having a false prediction. ISVs 

provide earlier warnings than FSVs because they have the advantage of using future 

information. It is also clear that linear BVs, those with short rescaling windows and small 

amplitudes, are approximately equal to the leading LV, as they should be since they are 

linear approximations of LV1. Thus BVs, which are much easier to compute than even 

the leading LV since they do not require a linearization of the model, can be used to 

obtain LV1 as long as a small amplitude and short rescaling window are used. But as the 

rescaling amplitude and window increase enough for the BVs to become nonlinear but 

(d) (e) 

(f) 
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remain dynamically significant, the BVs shed their “allegiance” to LV1 and align with 

the locally fastest growing LV, which is often LV2. 

 LV2 and LV3 also have growth rates (decay rates in the case of LV3) that are 

strongly correlated with changes in the flow growing (decaying) fastest two orbits before 

a regime change. All of the LVs also approximately inhabit the same space at the onset of 

a long regime. BVs exhibited similar behavior becoming more aligned to the LVs 

preceding a regime change. Bred and Lyapunov vectors are also closely aligned with one 

another when any of these vectors grows fastest, which is often at the onset of a new 

regime. While these are very promising results, they do not guarantee the same effects 

will be seen in models with more than one mode of growth. Thus we move on to 

comparisons amongst these vectors in the Fast-Slow Coupled Model developed by Peña 

and Kalnay (2004). 
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Chapter 3 : Results with the Fast-Slow Coupled Model (Peña and 

Kalnay, 2004) 

 

3.1 Description of the Fast-Slow Coupled Model 

 

In 2004, Peña and Kalnay (PK04) developed a coupled model based upon the 

Lorenz (1963) model to determine the effects of fast and slow modes on the growth of 

bred vectors. In particular they wished to determine if bred vectors would be able to 

distinguish between the fast and slow modes, and indeed, they found it is possible to 

estimate not only the fast but the slow modes by choosing an amplitude and rescaling 

interval that targets each mode. Here we replicate their success with BVs and study the 

behavior of SVs and LVs. The equations for the three coupled Lorenz models given by 

PK04 are 

 

 

 

�̇�𝑒 =  𝜏𝑒𝜎(𝑦𝑒 −  𝑥𝑒) −  𝑐𝑒(𝑆𝑥𝑡 +  𝑘1) 

�̇�𝑒 =   𝜏𝑒𝜌𝑥𝑒 −  𝜏𝑒𝑦𝑒 −  𝜏𝑒𝑥𝑒𝑧𝑒 +  𝑐𝑒(𝑆𝑦𝑡 +  𝑘1) 

�̇�𝑒 = 𝜏𝑒𝑥𝑒𝑦𝑒 −  𝜏𝑒𝛽𝑧𝑒 − 𝑐𝑡𝑧𝑡 

 

 

 

 

 

( 13 ) 

�̇�𝑡 =  𝜎(𝑦𝑡 −  𝑥𝑡) −  𝑐(𝑆𝑋 + 𝑘2) −  𝑐𝑒(𝑆𝑥𝑒 +  𝑘1) 

�̇�𝑡 = 𝜌𝑥𝑡 −  𝑦𝑡 −  𝑥𝑡𝑧𝑡 +  𝑐(𝑆𝑌 + 𝑘2) +  𝑐𝑒(𝑆𝑦𝑒 +  𝑘1) 

�̇�𝑡 = 𝑥𝑡𝑦𝑡 −  𝛽𝑧𝑡 + 𝑐𝑧𝑍 +  𝑐𝑡𝑧𝑒 
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�̇� =  𝜏𝑜𝜎(𝑌 − 𝑋) − 𝑐(𝑥𝑡 +  𝑘2) 

�̇� =  𝜏𝑜𝜌𝑋 −  𝜏𝑜𝑌 −  𝜏𝑜𝑆𝑋𝑍 + 𝑐(𝑦𝑡 + 𝑘2) 

�̇� =  𝜏𝑜𝑆𝑋𝑌 −  𝜏𝑜𝛽𝑍 − 𝑐𝑧𝑍. 

 

The lowercase 𝑥, 𝑦, and 𝑧 represent the fast modes, with the 𝑒 and 𝑡 subscripts 

designating the quickly varying, small amplitude ‘extratropical’ and ‘tropical’ variables, 

respectively. The uppercase 𝑋, 𝑌, and 𝑍 represent the slowly varying, large amplitude 

‘ocean’ variables. Here the extratropics and tropics are weakly coupled in the horizontal 

(𝑐𝑒 = 0.08) and vertical (𝑐𝑡 = 0.08) directions while the tropics and ocean are strongly 

coupled in the horizontal and vertical directions (𝑐 = 𝑐𝑧 = 1). 𝜏𝑜 and 𝑆 are temporal and 

spatial scaling factors, respectively, for the ocean variables. Here 𝜏𝑜 = 0.1 and 𝑆 = 1. 

Thus the ocean has a time scale ten times as long as the time scale for the tropics and 

extratropics (when the extratropical temporal scaling factor, 𝜏𝑒 = 1) but the same 

amplitude (although a difference in time scale and coupling leads to a difference in the 

ocean’s amplitude, PK04). 𝑘1 = 10 and 𝑘2 =  −11 are ‘uncentering’ parameters chosen 

so all the systems are not completely in sync. The model was integrated using a fourth 

order Runge-Kutta scheme with a time period of 0.01 for 10 000 time periods. Thus one 

unit of time corresponds to 100 time periods. Such an arrangement leads to a ‘tropical’ 

subsystem that is completely dominated by changes in the ocean subsystem. Figure 3.1 

gives the typical attractors of this system. Figure 3.2 provides the x-trajectory of the three 

subsystems. For graphical clarity, the figures in section 3.2 will focus on the region 

demarcated by the vertical bars in Figure 3.2. 
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Note that because the extratropical atmosphere is only weakly coupled to the 

tropical atmosphere, its behavior is similar to the original Lorenz model, and it only 

introduces ‘weather noise’ in the strongly coupled ocean-tropical atmosphere subsystems. 

It is remarkable that although the ocean seems to be the driving system in its coupling 

with the tropical atmosphere, the coupling with the tropical atmosphere has a profound 

effect on the ocean: The ocean has ‘normal years’ with amplitudes that increase every 

year, and when the ocean x variable becomes larger than approximately 45, there is an 

abrupt change of regime with a single strong abnormal negative episode which we call an 

‘El Niño’ year because it takes place every 2–8 years (where a ‘year’ corresponds to 

roughly 
10

3
 time units). Many of the results pertaining to this setup were published in 

Norwood et al. 2013. 

 

 

Figure 3.1: Typical attractor for the coupled model. The plots are of the (a) extratropical, (b) tropical, and 

(c) ocean subsystems. The thickness of the arrows provides a qualitative representation of the strength in 

the coupling between the systems while the numbers provide the actual coupling parameters. 

(a) (b) (c) 

.08 1 
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Figure 3.2: X-trajectory of the extratropical, tropical, and ocean subsystems. The black vertical bars mark 

the section of the trajectories that will be the focus in the figures in section 3.2. 

 

3.2 Results with the Fast-Slow Coupled Model with Weather Noise 

 

3.2.1 Regime change predictive power of BVs, SVs, and LVs 

 

Following Peña and Kalnay (2004), we computed the fast and slow mode BVs by 

selecting appropriate breeding parameters. To target the fast mode we used a small initial 

perturbation of 0.05 and a small rescaling interval of 0.05 units. This BV is indeed very 

similar to LV1. In fact, they are approximately collinear, having an average correlation of 

0.99.  The SVs are determined for an optimization time of 0.05 time units, and their 

growth rates (both those of the initial and final SVs) signal regime changes in the fast 

extratropical atmosphere (Figure 3.3). (Section 2.2 has the formulas for the local growth 

rates for each vector. Again, the Euclidean norm is used for all three types of vectors with 

a 𝑑𝑡 of 0.01.) Interestingly some of the LVs can be assigned to a particular subsystem 

based upon their local growth rates. LV1, LV4 and LV8 clearly correspond to the 



36 

 

extratropics, with fast growth (decay in the case of LV8) signaling a regime change in 

this area (Figure 3.4(a), (b) and (c), respectively). 

To locate the slow mode bred vector we used a large initial perturbation of 40 

(smaller than the amplitude of the ocean but larger than that of the extratropical 

atmosphere). We chose a long rescaling interval of 0.35 time units, approximately 

equivalent to one month. With these dynamically appropriate magnitudes, the slow mode 

BV is a far better predictor of ocean regime changes (Figure 3.5) than its LV counterparts 

(Figure 3.6), seemingly because it is not influenced by the fast modes of the system, 

which saturate within a month (S.-C. Yang et al. 2006b). The LVs are not able to 

accomplish this separation. To further demonstrate the lack of influence of the fast modes 

of the model on the slow mode BV we split its growth rate into its components and 

compare this to the growth rates of the ocean LVs (Figure 3.7(a) and (b), respectively). 

Here the slow mode BV is completely dominated by the slow coupled ocean, while the 

LVs change on a much faster time scale than the ocean subsystem or the slow mode BV. 

This is a consequence of the coupling of the system which leads to ‘coupled’ LVs. Thus 

the large spikes in the growth of LV2 signals the few times where the tropical subsystem 

is able to break free of the ocean’s influence and begins to behave more like a traditional 

Lorenz model. The majority of the local minima of LV7 point toward changes in the 

ocean subsystem. The few false predictions are areas where the tropical subsystem enters 

a cold regime instead of the warm regime it typically enters as the ocean subsystem 

returns to normal. SVs were unable to detect the slow growing instabilities. Changing the 

integration window and even performing the singular value decomposition on only the 

slow mode did nothing to increase the SVs’ usefulness in the slow subsystem. 
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Figure 3.3: Growth rates of (a) the initial SVs and (b) the final SVs signal changes within the fast 

extratropical subsystem. ISVs offer slightly earlier predictions because they can take advantage of future 

information. 

 

 

Figure 3.4: Growth rates of (a) LV1, (b) LV4 and (c) LV8 on the x component of the extratropical 

subsystem. Faster growth (decay in the case of LV8) signals a regime change, but coupling decreases the 

predictive power of LV4 and LV8. 

 

(a) (b) 

(a) (b) (c) 
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Figure 3.5: Growth rate of the slow mode BV on the x-trajectory of the ocean subsystem. It is obtained 

using an initial perturbation of 40 and resized every 0.35 units. Its growth rate is most closely related to 

changes in the ocean subsystem. 

 

 

Figure 3.6: (a) LV2 growth, (b) LV3 growth, and (c) LV7 decay on the x component of the ocean 

subsystem. LV2 and LV3 are complements of one another where fast LV2 growth denotes the beginning of 

the last cycle of a ‘normal’ regime and fast LV3 growth denotes the beginning of the last cycle of an El 

Niño regime. Strong decay of LV7 indicates the coupled ocean subsystem is returning to normal. 

(a) (b) (c) 
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Figure 3.7: (a) Slow mode BV split into its ocean, tropical, and extratropical components, compared to (b) 

the ocean LVs. The LVs are still highly dependent upon changes in the extratropical and tropical 

subsystems because of coupling. 

 

The complete coupling of the tropics and ocean means vectors ascribed to these 

regions often provide information about more than one subsystem, but it is still possible 

to separate the slow coupled ocean LVs (Figure 3.6) from the LVs of the other two 

subsystems. Persistent growth of LV2 (Figure 3.6(a)) is a strong indicator of when the 

ocean is to enter an El Niño regime, but there is also short-lasting rapid growth (e.g. for 

𝑡 between 60 and 65) associated with regime changes in the fast atmospheres. Thus only 

the areas with the longest periods of growth should be considered if this is to be used to 

predict a cold regime. Note that the ‘prediction’ of returning to normal at 𝑡 ~73 is 

unusual and most likely predicts the return to an El Niño cycle that follows shortly 

thereafter. In order to better predict all changes in this system, LV2 should be paired with 

LV3 whose growth signals the system will soon return to normal (Figure 3.6(b)). Areas 

of rapid decay for LV7 signal that the system is returning to normal (Figure 3.6(c)). The 

growth of LV5, LV6, and LV9 may be useful for changes in the tropics, but this area is 

so erratic it is difficult to specifically ascertain what their growth rates indicate. Like the 

(a) (b) 
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ocean LVs, the tropical LVs also have varying degrees of connection with the ocean 

subsystem. 

LVs were the only ones out of the three types of vectors that were able to identify 

the existence of the tropical subsystem (Figure 3.8). The growth rates of LV5, LV6, and 

LV9 correspond to changes within the tropical subsystem. Unlike the LVs that are 

associated with the extratropical and ocean subsystems, the growth rates of LVs 

associated with the tropical subsystem do not signal regime changes. Instead fast growth 

typically indicates a local maximum or minimum value. Again, because of the strong 

coupling between the tropics and ocean, there are times (like the strong and prolonged 

growth in LV5 around 𝑡 ~ 53 in Figure 3.8(a)) when the growth rates correspond to 

changes within the ocean subsystem, but strong growth in these vectors typically 

corresponds to changes within the tropical subsystem. Table 3.1 provides the thresholds 

for the growth rates of all of the three types of vectors. The rates for ISV1 and FSV1 are 

listed as SV1 because they use the same growth rates. The fast mode BV is omitted 

because it is essentially the same as LV1. 

 

 

Figure 3.8: (a) LV5 growth, (b) LV6 growth, and (c) LV9 decay all correspond to changes within the 

tropical subsystem. Fast growth (decay in the case of LV9) typically indicates a local extremum, not a 

regime change as with the vectors that are associated with the other subsystems. 

(a) (b) (c) 
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Table 3.1: Thresholds of the growth rates for the three types of vectors in the coupled nine-variable model 

with an ‘extratropical’ subsystem. The growth rates are tuned to best represent changes within a particular 

subsystem. Green indicates the vectors correspond to changes within the “extratropics,” red indicates the 

“tropics,” and blue indicates the “ocean.” When growth rates are larger (smaller in the case of negative 

values) than the given threshold, that typically signals a change within the applicable subsystem. 

Vector SV1 LV1 LV4 LV8 LV5 LV6 LV9 LV2 LV3 LV7 Slow 

BV 

Growth 

Rate 

60 6.4 6.4 -23 1.9 1.9 -19 1.8 1.8 -13 1.1 

 

 

3.2.2 Correlations among BVs, SVs, and LVs 

 

Having more than one mode of growth somewhat changes the relationship among 

BVs, SVs, and LVs. Table 3.2 has the subsystem each LV corresponds to as a reference, 

which will be useful as the correlations between the vectors are discussed. As mentioned 

before, the average correlation between the fast mode BV and LV1, the leading LV, is 

0.99, but, as expected, the fast mode BV only sporadically aligns with LV4 and LV8. 

Unlike the three-variable model these alignments do not exclusively coincide with fast 

growth of the BVs or LVs, but there is a relationship between the ratios of LV4 and LV1 

growth and the BVs’ alignment with LV4. Like it happened with LV2 in the three-

variable model, when LV4 grows faster than LV1, the BVs approach LV4 (Figure 3.9). 

Coupling thwarts the BVs’ ability to become completely collinear with LV4 at all times 

when LV4 grows faster than LV1, but even at these times the correlation between the fast 

mode BV and LV4 reaches a local extremum. Hence the two become as close to one 

another as the model will allow. The relationship between the quickly decaying LV8 and 
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the BVs (and LV1) resembles that of the LV3/BV relationship from the three-variable 

model. That is LV8 aligns with the BV upon leaving the last orbit of a regime (Figure 

3.10 shown using LV1 instead of the BV since they are essentially equal in this case). 

Even with these patterns, the non-leading LVs and the BVs do not typically inhabit the 

same subspace. 

Although the growth rates of the SVs are able to accurately predict the regime 

changes of the fast extratropical subsystem (as they do for the Lorenz model, shown in 

section 2.2), they have very little in common with the BVs and LV1. (ISV has an average 

absolute correlation of 0.0411 with both; FSV has an average absolute correlation of 

0.137 with the fast mode BV and 0.136 with LV1.)  

Because of the strong coupling of the ocean and tropical subsystems leading to 

‘coupled’ LVs, the slow mode BV has little correlation with any of the LVs attached to 

the slower moving ocean, quite unlike the fast mode BV and LV1 which are 

approximately equal. In fact, the slow mode BV is nearly orthogonal to LV7 having an 

average correlation of -0.009. There is a slightly higher correlation between the slow 

mode BV with LV2 during the last cycle before a regime change. There is also a slightly 

higher correlation between the slow mode BV and LV3 upon entering an El Niño regime. 

Overall, the slow mode BV and LV2 and LV3 are nowhere near collinear, typically 

demonstrating a useful pattern with correlations starting upward of 0.75 (or less than -

0.75; Figure 3.11). 
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Table 3.2: Subsystem each Lyapunov vector corresponds to within the nine-variable model with 

extratropics chosen according to how well their growth rates match changes in the subsystem. 

Extratropics Tropics Ocean 

LV1 LV4 LV8 LV5 LV6 LV9 LV2 LV3 LV7 

 

 

Figure 3.9: Correlation between LV4 and the fast mode BV. Times when LV4’s growth rate is greater than 

that of LV1 are in red. Times when LV1’s growth rate is greater than LV4’s are in blue. Only times when 

both vectors are growing are shown. The fast mode BV grows closer to the LV that grows the fastest 

locally. 

 

Figure 3.10: Correlations between LV1 and LV8 on the x-trajectory of the extratropical subsystem. 
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Figure 3.11: Correlations between the slow-mode BV with (a) LV2 and (b) LV3. There is some alignment 

with LV2 during the last cycle before a regime change. The greatest alignment with LV3 occurs upon 

entering an El Niño cycle. 

 

3.2.3 Lyapunov vectors in the Fast-Slow Coupled Model 

 

Figure 3.12 shows the norms of the LVs versus time, and Table 3.3 provides the 

corresponding Lyapunov exponents (LEs, the slopes of the lines in Figure 3.12) for both 

the Lorenz model, discussed in chapter 2, and coupled models. Rather than replicating the 

behavior of the original Lorenz model in triplets, the coupling present in this model 

creates what we have interpreted as coupled LVs. There is one LV of extreme (global) 

growth that mimics the first LV of the three-variable model, one of moderate growth, one 

of essentially no growth like LV2 of the three-variable model, four of moderate decay 

and two of extreme decay like LV3 of the three-variable model. Despite their differences, 

they mainly behave in a manner similar to that of the LVs of the three-variable model, 

growing fastest and often aligning with one another before a regime change. The weak 

coupling between the extratropics and the other two subsystems causes these vectors not 

to be intensely influenced by changes in the other subsystems, and there is no question as 

(a) (b) 
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to which subsystem they correspond. Changes in the local growth rates of LV2, LV3, and 

LV7, on the other hand, correspond to changes in the ocean subsystem (as seen above in 

Figure 3.6). Thus the colors of the LVs in Figure 3.12(b), appointing the subsystem each 

vector corresponds to, were assigned according to how well their growth rates could be 

used as a predictor in said subsystem.  

 

 

Figure 3.12: (a) Norms of LVs for original Lorenz (1963) model and (b) the nine-variable model based 

upon 3 coupled Lorenz (1963) models. Green lines indicate LVs associated with the extratropical 

subsystem, red lines indicate LVs associated with the tropical subsystem, and blue lines indicate LVs 

associated with the ocean subsystem, separated according to how well their growth rates can be used as 

predictors for the subsystem. On longer time scales LV3 is neutral while LV4 is slightly decreasing. 

 

Table 3.3: Lyapunov exponents for the Lorenz (1963) and coupled models. 

 LE1 LE2 LE3 LE4 LE5 LE6 LE7 LE8 LE9 

Lorenz 0.91 0 -14.58       

Coupled 0.91 0.36 0 -0.15 -0.55 -0.82 -1.85 -14.09 -12.27 

  

The alignment of the Lyapunov vectors with one another was also compared 

(Figure 3.13). As expected there is some alignment of LV1 with LV4 and LV8 during an 

extratropical regime change but, unexpectedly, very little alignment between LV4 and 

(a) (b) 
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LV8. As seen in Figure 3.13, LV1 and LV4 align during the last cycle of a regime and 

upon entering a new regime. LV1 and LV8 align during the last cycle before a regime of 

three or more cycles. LV4 and LV8 are most closely aligned upon entering a regime that 

is four cycles or longer, although this is not true preceding the cycle beginning 𝑡 ~ 69.  

LV2 and LV3 become aligned when the ocean changes regime (Figure 3.14). LV6 (a 

tropical LV) and LV8 (an extratropical LV) are collinear with one another in the same 

areas, approximately, where LV7 (an ocean LV) experiences the fastest decay, that is 

when entering an El Niño ocean regime or warm tropical cycle (Figure 3.15). Thus, the 

LVs lack the ability to completely decouple the fast and slow modes when these modes 

are strongly coupled. 

 

 

Figure 3.13: Correlations between (a) LV1 and LV4, (b) LV1 and LV8, and (c) LV4 and LV8 shown on the 

extratropical x-trajectory. LV1 and LV4 align most frequently. 

 

(a) (b) (c) 
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Figure 3.14: Correlation between LV2 and LV3 on the x-trajectory of the ocean subsystem. The vectors 

align upon entering a new regime. 

 

 

Figure 3.15: Correlation between LV6 (an LV associated with the tropical subsystem) and LV8 (an LV 

associated with the ocean subsystem. The two are most closely aligned when the ocean returns to normal, 

which corresponds to regions of fastest decay in LV7 (see Figure 3.6). 

 

3.3 Results with the Fast-Slow Coupled Model with “Convection” Replacing the 

“Extratropical Atmosphere” 

  

While the above results are interesting, they only focus on a system with two 

modes of growth while the atmosphere-ocean system has several modes of growth. Thus 
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we will examine the nine-variable model in the case where the ‘weather noise’ of the 

extratropical subsystem is replaced with ‘convective noise.’ This is done by setting 𝜏𝑒 of 

equation ( 13 ) to 10. Thus the convective subsystem will change with a frequency that is 

ten times the frequency of changes within the tropical subsystem and 100 times the 

frequency of changes within the ocean subsystem. We will study the effects of this 

change with the coupling used to study the effects of ‘weather noise’ (𝑐𝑒 = 𝑐𝑡 = 0.08) 

and with a weaker coupling (𝑐𝑒 = 𝑐𝑡 = 0.008). The solutions are quite similar, so only 

the attractors corresponding to the original coupling are shown in Figure 3.16. Figure 

3.17 gives the x-trajectory for the three subsystems for both coupling coefficients. The 

vertical black lines denote the portions of the trajectories that will be the focus in the 

remainder of the figures of this section. 

 

 

Figure 3.16: The attractors of the nine-variable system with ‘convective noise.’ Changes within (a) the 

convective subsystem occur at a rate 10 times faster than changes within (b) the tropical subsystem, which 

changes at a rate that is 10 times faster than (c) the ocean subsystem. 

 

(a) (b) (c) 

.08 1 
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Figure 3.17: X-trajectory of the extratropical, tropical, and ocean subsystems for (a) coupling between the 

convective with the tropical subsystem equal to 0.08 and (b) coupling equal to 0.008. The black vertical 

bars mark the section of the trajectories that will be the focus in the figures in the remainder of this section.  

 

3.3.1 Regime Change Predictive Powers of BVs, SVs, and LVs 

  

 Just as in the fast-slow coupled model with weather noise, the growth rates of 

BVs, SVs, and LVs are attributed to changes within the three subsystems of the fast-slow 

coupled model with convective noise. With the original coupling of 0.08, we targeted the 

fast mode BVs by using a small perturbation amplitude of 0.1 and a short rescaling 

window of 0.05 units (Figure 3.18(a)). In order to determine the fast mode BV of the 

nine-variable model using the weaker coupling, the perturbation was cut in half to 0.05 

while the rescaling window remained 0.05 (Figure 3.18(b)). Their behavior is very 

similar providing regime change information for the convective subsystem with no 

perceived influence from the other two subsystems. 

We computed the SVs by using an integration interval of 0.05 units. FSV1 growth 

rates for both convective models signal the end of the current regime (Figure 3.19(b) and 

(d)). The ISVs provide a slightly earlier warning since they are able to take advantage of 

future information (Figure 3.19(a) and (c)). This time there are only two LVs associated 

(a) (b) 
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with the fastest growing mode in both of the convective models. The LVs provide earlier 

warnings of regime changes than the BVs and FSVs.  

We were also able to target the slow mode BV for each of the convective models 

(Figure 3.21). Both used a rescaling window of 0.35 units, but the slow mode BV for the 

model using the original coupling required a rescaling amplitude of 30 while the slow 

mode BV for the model using the weaker coupling required a slightly smaller rescaling 

amplitude of 25. Both behave in a similar manner, growing fastest and for longer periods 

of time during the last cycle of the current regime. They both also contain a lot of ‘noise,’ 

small areas of large growth within the regimes that do not correspond to changes within 

the ocean subsystem. 

 

 

Figure 3.18: Fast mode BV corresponding to changes within the convective subsystem of the nine-variable 

model with (a) the original coupling of 0.08 and (b) the weaker coupling of 0.008.  

 

(a) (b) 
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Figure 3.19: Growth rates of (a) the first initial and (b) the first final singular vector for the nine-variable 

model with the original coupling; growth rates of (c) the first initial and (d) the first final singular vector for 

the nine-variable model with the weaker coupling. Fast growth rates indicate the regime will change at the 

beginning of the next cycle. The initial singular vectors benefit from future information, giving earlier 

warnings than the final singular vectors. 

(a) (b) 

(c) (d) 



52 

 

 

Figure 3.20: (a) LV1 and (b) LV2 of the nine-variable convective model with the original coupling. (c) 

LV1 and (d) LV2 of the nine-variable model with the weaker coupling. The LVs provide earlier warnings 

to regime changes in the higher frequency convective subsystems than the BVs and FSVs. 

 

 

(a) (b) 

(c) (d) 

(a) (b) 
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Figure 3.21: Slow mode BV growth for (a) the nine-variable model with the original coupling and (b) the 

nine-variable model with the weaker coupling. Both grow fastest the last cycle before a regime change. 

 

Surprisingly, replacing the extratropical subsystem with the convective 

subsystem, enabled us to recognize SVs whose growth rates correspond to changes 

within the ocean subsystem (Figure 3.22). Three such SVs were found for the model 

using the original coupling of 0.08, and only one was found when the weaker coupling of 

0.008 was used. For the original coupling, the third singular vector grows fastest when 

entering a new regime. The eighth singular vector decays fastest the final cycle of a 

regime and throughout an El Niño cycle, while the ninth singular vector decays slowest 

when the ocean is returning to normal after an El Niño cycle. The eighth singular vector 

corresponding to the model with the weaker coupling behaves in the same manner as the 

eighth singular vector corresponding to the model with the original coupling: it decays 

fastest the last orbit preceding and throughout an El Niño regime. Thus a clear difference 
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in all the frequencies of growth in a system seems to be required for the SVs to 

differentiate between the different modes of growth. 

 

 

 

Figure 3.22: The first row gives growth/decay rates of the three FSVs computed for the convective system 

with the original coupling correspond to changes within the ocean subsystem: (a) FSV3 grows fastest when 

the ocean subsystem enters a new regime; (b) FSV8 decays fastest the last cycle before and throughout El 

Niño; and (c) FSV9 decays slowest when going from El Niño back to normal. (d) shows FSV8 decays 

fastest the last cycle before and during an El Niño event in the convective system with the weaker coupling. 

 

 There are also particular LVs whose growth rates correspond to changes within 

the slow moving ocean subsystem (Figure 3.23). In the convective system with coupling 

of 0.08 there are three, LV7, LV8, and LV9 (Figure 3.23(a), (b), and (c), respectively). 

LV7 and LV8 are better predictors, growing fastest and for long periods of time during 

the last orbit of the current regime. LV9 also grows fastest during the last orbit of the 

current regime, but it does so for a very short period of time. There is only one LV, LV7 

(a) (b) (c) 

(d) 
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(Figure 3.23(d)), associated with the slow moving ocean subsystem in the convective 

model with coupling of 0.008. It grows fastest upon entering an El Niño cycle, providing 

a very late warning, and during the last cycle of an El Niño event. 

Again, because of the strong coupling between the tropical and ocean subsystems, 

and the ocean being a driver for changes within the tropical subsystem, we are unable to 

find a BV whose growth rates correspond to changes within the tropical subsystem. There 

are, however, SVs and LVs whose growth rates correspond to changes within this system. 

Figure 3.24 illustrates how the growth and decay rates of these vectors match the tropical 

subsystem. FSV7 decays fastest for long periods of time when entering a new regime in 

the convective model with the original coupling of 0.08 (Figure 3.24(a)). FSV4, FSV5, 

and FSV6 grow fastest during local minimum and maximum values (Figure 3.24(b), (c), 

and (d)). None of the LVs found for either convective system have growth rates that can 

be used to predict regime changes within the tropical subsystem (Figure 3.25). Instead 

fast growth typically signals a local extremum. 

 It was also possible to find ‘coupled’ SVs (Figure 3.26) and LVs (Figure 3.27), 

those whose growth rates identify changes in both the tropical and ocean subsystems. 

Although almost all of the vectors that are assigned to the tropical subsystem show small 

influences from the ocean subsystem, just as almost all of the vectors that are assigned to 

the ocean subsystem show small influences from the tropical subsystem, the ‘coupled’ 

vectors differ in that their growth rates are not dominated by one subsystem or the other. 

Instead the length of time of the growth (decay in the case of FSV9 in Figure 3.26(b) and 

(d)) typically determines to which subsystem the growth rates refer. Thus the fast growth 

around 𝑡 ~ 6 and 𝑡 ~ 16 signal local minima in the tropical subsystem with the original 
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coupling. Prolonged fast growth around 𝑡 ~ 21 signals the approach of El Niño (Figure 

3.26(a) and (c) for FSV4; Figure 3.27(a) and (d) for LV4). Likewise, in the system with 

the weaker coupling, prolonged periods of growth (decay) signify changes within the 

ocean subsystem while shorter periods of growth (decay) indicate changes within the 

tropical subsystem. Table 3.4 provides a summary of the growth rates of all the vectors of 

the nine-variable model with “convection” and the original coupling between the 

convective and tropical subsystems of 0.08. Table 3.5 provides the same for the nine-

variable model with the weaker coupling of 0.008. 

 

 

Figure 3.23: LVs whose growth rates correspond to changes within the slow ocean subsystem. For the nine-

variable model with the original coupling of 0.08, (a) LV7, (b) LV8,  and (b) LV9’s prolonged and fast 

growth rates signal the current cycle will be the last in the regime, with LV7 being a more successful 

predictor. (c) LV9 growth in the nine-variable model with the weaker coupling of 0.008 gives very late 

warning for the onset of El Niño.  

 

(a) (b) (c) 

(d) 
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Figure 3.24: FSVs whose growth (decay) rates correspond to changes within the tropical subsystem. (a) 

FSV7 decay in the nine-variable model with the original coupling of 0.08. Prolonged, fast growth indicates 

the system is moving into a new regime. Short periods of fast growth often indicate a local maxima or 

minima. (b) FSV4 growth, (c) FSV5 growth, and (d) FSV6 growth in the nine-variable model with the 

weaker coupling of 0.008. Fast growth signals a local extremum for all vectors. 

 

 

(a) 

(b) (c) (d) 

(a) (b) (c) 
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Figure 3.25: (a) LV3, (b) LV5, and (c) LV6 growth in the convective system with coupling equal to 0.08. 

(d) LV3, (e) LV4, (f) LV7, and (g) LV8 growth in the convective system with coupling equal to 0.008. 

None of the LVs can be used as predictors of regime change. Fast growth typically indicates a local 

extremum. 

 

 

Figure 3.26: The ‘coupled’ FSV4 of the convective model with the original coupling on the (a) tropical 

subsystem and (c) ocean subsystem. Very long periods of fast growth signal regime changes in the ocean 

subsystem. Short periods of fast growth indicate local extremum within the tropical subsystem. The 

(d) (e) (f) (g) 

(a) (b) 

(c) (d) 



59 

 

‘coupled’ FSV9 of the convective model with the weaker coupling on the (b) tropical subsystem and (d) 

ocean subsystem are also shown. Very long periods of slow decay indicate a return to normal in the ocean. 

Shorter periods of slow decay point to changes within the tropical subsystem. 

 

 

 

Figure 3.27: The only 'coupled' LV of the convective system with coupling of 0.08 is LV4 shown on (a) the 

tropical and (d) the ocean subsystems. Fast growth around 𝑡 ~ 6 and 𝑡 ~ 16 signals local minima in the 

tropical subsystem. Prolonged fast growth around 𝑡 ~ 21 signals the approach of El Niño. LV5 and LV6 

are the ‘coupled’ LVs of the convective system with a coupling of 0.008. Fast growth within the normal 

regime of the ocean points to local extrema in the tropical subsystem while prolonged fast growth at 𝑡 ~ 30 

points to the onset of El Niño in the ocean subsystem. 

 

Table 3.4: Thresholds for the growth rates of the vectors of the nine-variable model with ‘convection’ and 

the original coupling of 0.08 between the ‘convective’ and ‘tropical’ subsystems. Green is for vectors 

associated with convection, red for those associated with the tropics, blue the ocean, and purple the coupled 

vectors associated with both the tropics and ocean. In strictly decaying vectors, typically fastest decay 

(a) (b) (c) 

(d) (e) (f) 
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corresponds to changes within a subsystem, but in the case of FSV9 (the starred vector) slowest decay 

corresponds to changes within the subsystem. 

Vector LV1 LV2 LV3 LV5 LV6 LV7 LV8 LV9 LV4 

Growth 

Rate 

70 75 1 1 1 2 1.5 2.5 1.5 

Vector Fast 

BV 

SV1  FSV7 Slow 

BV 

FSV3 FSV8 FSV9* FSV4 

Growth 

Rate 

40 800  -45 1.1 400 -91 -70 24 

 

Table 3.5: Same as Table 3.4 for the nine-variable model with ‘convection’ and the weaker coupling of 

0.008. 

Vector LV1 LV2 LV3 LV4 LV7 LV8 LV9 LV5 LV6 

Growth 

Rate 

75 72 2 1.5 0.5 1 1 1 1.5 

Vector Fast 

BV 

SV1 FSV4 FSV5 FSV6  Slow 

BV 

FSV8 FSV9* 

Growth 

Rate 

35 800 30 10 3  0.5 -81 -90 

 

 

3.3.2 Correlations among BVs, SVs, and LVs 

  

Table 3.6 contains the subsystem each LV and SV corresponds to as a reference. 

Instead of being almost equal, the leading LV and the fast mode BV often face opposite 

directions. Thus the average absolute correlation between the two is 0.874 when the 

coupling coefficient is 0.08 and 0.857 when the coupling coefficient is 0.008. The 

average absolute correlation between the fast mode BV and LV2 is 0.859 when the 

coupling coefficient is 0.08 and 0.849 when the coupling coefficient is 0.008. Unlike with 

the three-variable model, the BV’s local loyalty is not contingent upon LV2 growing 

faster than LV1 ( 
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Figure 3.28(a) and (c) and Figure 3.29(a) and (c)) or fast growth of LV1 ( 

Figure 3.28(b) and Figure 3.29(b)) or LV2 ( 

Figure 3.28(d) and Figure 3.29(d)). Reducing the perturbation to 10−5 and the 

rescaling window to 0.02 units in an attempt to make the BV more linear did nothing to 

increase the correlation between LV1 and the fast mode BV regardless of the coupling 

within the system. 

When the coupling is 0.08, the slow mode BV is often approximately collinear 

with LV7, LV8, and LV9, but there is no readily apparent pattern to their alignment. 

However, when the coupling is reduced to 0.008, the slow mode BV and LV9, which is 

associated with the ocean subsystem, align slightly during the last cycle before a regime 

change (Figure 3.30). Thus it seems a marked difference between the frequencies of the 

instabilities of a system and weak coupling between the fastest changing modes and the 

slowest changing modes are needed in order for the BVs and LVs corresponding to the 

slowest instabilities to agree. 

There seems to be no obvious reason for the sporadic alignment of the SVs with 

the fast mode BV, LV1, or LV2 as the SVs continue to change direction often and keep 

no memory of the previous windows. This is also true when the SVs that are closely 

related to the ocean subsystem are compared to the slow mode BVs and ocean LVs 

regardless of the coupling of the subsystems. Comparisons amongst tropical SVs and 

LVs and the ‘coupled’ SVs and LVs yielded similar results.  
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Table 3.6: Subsystem each LV and SV corresponds to within the nine-variable model with ‘convection’ 

chosen according to how well their growth rates match changes in the subsystem. 

 Convection Tropics Ocean Coupled 

ce =
 0.08 

LV1 LV2 LV3 LV5 LV6 LV7 LV8 LV9 LV4 

FSV1 FSV7 FSV3 FSV8 FSV9 FSV4 

ce =
 0.008 

LV1 LV2 LV3 LV4 LV7 LV8 LV9 LV5 LV6 

FSV1 FSV4 FSV5 FSV6 FSV8 FSV9 

 

 

 

Figure 3.28: The correlation between LV1 and the fast mode BV (with coupling coefficient 0.008) colored 

with stars indicating (a) when LV2 grows faster than LV1 and (b) the growth rates of LV1.  The correlation 

between LV2 and the fast mode BV colored with stars indicating (c) when LV2 grows faster than LV1 and 

(d) the growth rates of LV2. The BV does not exclusively align with LV2 when it grows faster than LV1 or 

when LV2 grows quickly in general. 

 

(a) (b) 

(c) (d) 



63 

 

 

Figure 3.29: The correlation between LV1 and the fast mode BV (with coupling coefficient 0.008) colored 

with stars indicating (a) when LV2 grows faster than LV1 and (b) the growth rates of LV1.  The correlation 

between LV2 and the fast mode BV colored with stars indicating (c) when LV2 grows faster than LV1 and 

(d) the growth rates of LV2. LV2 growing faster than LV1 does not imply the BV will become more 

aligned with LV2. The BV is more aligned with LV1 and LV2 when either grows fast, but this is not the 

only time the BV is aligned with either. 

 

(a) (b) 

(c) (d) 



64 

 

 

Figure 3.30: Correlation between the slow mode BV and LV9 when the coupling coefficient is 0.008 along 

the entire x-trajectory of the ocean subsystem. There is some alignment between the vectors during the last 

cycle before a regime change. When the nine-variable model had the ‘extratropical’ subsystem instead of 

‘convection,’ there was no significant agreement among LVs associated with the slow modes (which were 

slightly influenced by changes within the ‘tropical’ and sometimes ‘extratropical’ subsystems) and the slow 

mode BV. 

 

 

3.3.3 Correlations among LVs 

  

Figure 3.31 gives the norms of the LVs for the nine-variable model using a 

coupling of 0.08 (Figure 3.31(a)) and 0.008 (Figure 3.31(b)) while Table 3.7 provides the 

corresponding Lyapunov exponents. Both have two growing vectors, but unlike the three-

variable Lorenz (1963) model and the coupled model with an extratropical subsystem, 

there are no vectors with zero global growth. All of the other vectors are decreasing. Also 

note LV8 and LV9 should be the fastest decaying vectors, but LV3 and LV9 are actually 

the fastest decaying vectors. 
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LV1 and LV2 are often collinear, having an average absolute correlation of 0.884 

for the nine-variable model with a coupling of 0.08 between the convective subsystem 

and the tropical subsystem and an average absolute correlation of 0.895 when the 

coupling is 0.008. Many of the LVs often share the same space, but there is no useful or 

readily discernible pattern to their correlations. 

 

 

Figure 3.31: Norms of LVs for the nine variable model with the coupling between the convective and 

tropical and ocean subsystems equal to (a) 0.08 and (b) 0.008. Green lines mark LVs associated with the 

convective subsystem, red lines mark LVs associated with the tropical subsystem, and blue lines mark LVs 

associated with the ocean subsystem, separated according to how well their growth rates can be used as 

predictors for the subsystem. Oddly, LV3 is the second fastest decaying vector; LV3 and LV9 presumably 

decay faster with the weaker coupling because the effects of the fast convective system are lessened. 

 

Table 3.7: Lyapunov exponents for the nine-variable model with a convective subsystem with two different 

couplings between the convective and tropical subsystems. While the values are similar to one another, 

they are very different from the LEs of the nine-variable model with an extratropical subsystem (see Table 

3.3). 

 LE1 LE2 LE3 LE4 LE5 LE6 LE7 LE8 LE9 

ce = 0.08 6.82 3.06 -23.40 -1.84 -1.30 -1.53 -0.82 -14.32 -5.25e4 

ce = 0.008 6.86 3.74 -36.70 -1.33 -1.06 -1.19 -0.86 -8.46 -5.87e5 

 

(a) 
(b) 



66 

 

 

3.4 Summary 

  

Extending the work of Evans et al. (2004) and Peña and Kalnay (2004) it is clear 

the growth rates of BVs, SVs, and LVs can be used to predict regime changes and the 

three types of vectors can be used to target specific modes of growth with varying 

degrees of success. Regardless of the frequency of the fastest modes of growth in relation 

to the slowest modes, BVs can target each through careful selection of the perturbation 

amplitude and rescaling window (PK04). They are unable to recognize the existence the 

tropical subsystem, but this is because it is strongly coupled to the ocean subsystem, 

which completely governs the changes within the tropical subsystem. SVs are only able 

to recognize the tropical and ocean subsystems when the frequencies of each subsystem 

are different, as in the case when the weather noise is replaced with convection. LVs, on 

the other hand, are always able to spot each of the three subsystems. Unlike the BVs, they 

are unable to completely decouple the various modes of growth. Thus LVs whose growth 

rates strongly relate to changes within the ocean subsystem are sometimes influenced by 

changes within the tropical subsystem. Also, the LVs and SVs that are linked to the 

tropical subsystem cannot be used as predictors of regime changes, but only local 

extrema, at best. Interestingly, there are also ‘coupled’ LVs and SVs when the 

frequencies of each subsystem are different. These are vectors whose growth rates 

correspond to both the ocean and tropical subsystems while being dominated by neither. 

While this is an interesting trait of the SVs and LVs, BVs may be more useful in weather 

prediction because of their unique ability to isolate a particular mode of growth. 
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 Although each of the three types of vectors, bred, singular, and Lyapunov, has 

slightly different behaviors, because they describe the same instabilities they often align 

with one another. In general the alignments between BVs and LVs occur near regime 

changes in the subsystem to which they correspond. Hence, for example, the approximate 

alignment of the slow mode BV in the nine-variable model with weather noise with LV2 

and LV3. The same is true when LVs are compared to other LVs. The SVs sometimes 

align with the LVs, but these alignments are not directly related to changes within the 

subsystem. 

 In the standard three-variable Lorenz (1963) model we saw that BVs will align 

more with the locally fastest growing Lyapunov vector, which was often LV2. This is not 

true in the coupled model. With an extratropical subsystem, the fast mode BV will align 

as close to LV4 as the model will allow during those times when LV4 grows faster than 

LV1, but the BV does not fully break its loyalty to LV1.  With a convective subsystem 

the nearly parallel alignment of the fast mode BV to LV2 does not appear to rely upon 

the growth rates of LV2 at all. 

 Now that we have an idea of the behavior of bred, singular, and Lyapunov vectors 

in simple models, we want to see how they behave in a more complex case. We move 

now to a quasi-geostrophic model. While this model has many more degrees of freedom, 

like the Lorenz (1963) model, it has only a single mode of growth, in its case associated 

with baroclinic instability. 
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Chapter 4 : Experiments with a Quasi-Geostrophic Model 

 

4.1 Description of the Quasi-Geostrophic Model 

 

 The quasi-geostrophic (QG) model provides a simplification of extratropical 

synoptic scale motions by making approximations in the primitive equations that govern 

fluid motions. In particular, winds are approximated by their geostrophic values in the 

continuity equation and in the acceleration and advection terms of the momentum and 

thermodynamic equations, respectively. Also the static stability of the thermodynamic 

equations is replaced by basic state static stability (Holton 2004, pp. 147-151). With these 

approximations in place, the QG model presents a relatively realistic approximation of 

synoptic scale motions that contains advection, diffusion, relaxation, and Ekman 

pumping at the bottom level. The model described by Rotunno and Bao (1996) has 7 

levels on a 65 x 33 grid leading to 15,015 total degrees of freedom. The nondimensional 

form of the equation for a Boussinesq fluid on a 𝛽-plane is  

 

𝑞𝑡 + 𝛽𝜓𝑥𝑞𝑦 −  𝜓𝑦𝑞𝑥 = 0 

 

where potential vorticity, 𝑞, is given by  

 

𝑞 =  𝜓𝑥𝑥 +  𝜓𝑦𝑦 + [
𝜓𝑧

𝑆(𝑧)
]

𝑧

. 
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𝜓 is the geopotential, and 𝑆(𝑧) is the stratification parameter. Snyder et al. (2003) 

describe the forcing and dissipation included in the model. There is a single mode of 

growth for this system, baroclinic instability. This instability is associated with weather 

waves that transport heat poleward, compensating for the positive net radiative heating in 

the tropics and net cooling in high latitudes. 

 When solving these equations, it is assumed there are walls at the northern and 

southern boundaries, a frictionless lid at the upper vertical boundary, a well-mixed 

Ekman layer, and the 𝑥 direction is periodic. These assumptions bring the total degrees of 

freedom down to 14,336. The variables for the model are potential vorticity in the 5 inner 

layers and potential temperature at the top and bottom layers. This particular QG model 

has been used in several studies (e.g. Snyder et al. 2003; Snyder and Hamill 2003; S.-C. 

Yang et al. 2009a) and has even been considered in the context of data assimilation in the 

unstable subspace (Uboldi et al. 2005; Carrassi et al. 2007; Carrassi et al. 2008a, 2008b). 

Here we will study the dominant modes of growth in the “true” (sans the effects of model 

and observational errors) trajectory only. 

 

4.2 BV and SV Behavior 

 

 For this particular model, the dynamically relevant mode of growth (baroclinic 

instability) is best targeted with bred vectors. A range of perturbation amplitudes and 

rescaling windows can be used; here we use a rescaling amplitude of 1 and a rescaling 

window of 24 hours. Although the choice of norm changes some properties of the 

singular vectors (Palmer et al. 1998; Snyder and Joly 1998; S.-C. Yang et al. 2015), a 
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kinetic energy norm is used for all vectors. Figure 4.1(a) shows two of the five BVs 

computed using these parameters, one shown by color shading and the other by black 

contours. At the initial time these are simply random perturbations. Figure 4.1(b) gives 

the local ensemble dimension of all five BVs for this first time period, which is 

approximately five in the center of the domain and smaller near the walls that impose a 

constraint. Although the vectors are global, the ensemble dimension is computed locally, 

on a 5 x 5 grid using the method of Patil et al. (2001). The equation of the local ensemble 

dimension, 𝐸𝐷, is given by  

𝐸𝐷 =  
(∑ 𝜎𝑖)

𝑘
𝑖=1

2

∑ 𝜎𝑖
2 𝑘

𝑖=1

. 

 

𝜎𝑖 is the 𝑖𝑡ℎ singular value of the matrix BTB,  where the columns of B are the bred 

vectors, and 𝑘 is the total number of vectors, five in this case. Because we are interested 

in the local dimension, the entire BV was not used in matrix B; only the portion of the 

BV that was within two grid points of the point of interest was included. 

All 5 bred vectors quickly collapse into a single vector (Figure 4.2). By the fifth 

day the BVs have coalesced into a single vector, corresponding to the results of Corazza 

et al. (2003), but the tenth day is shown. It is clear there is only one vector describing the 

shape and growth of the instability. We also computed BVs using a rescaling window of 

24 hours and amplitudes of 0.25, 0.5, and 2. The growth rates for all three have the same 

general behavior, converging to an (approximate) constant value after the first few days 

(Figure 4.3(a)). The growth rates (whose computation is given in section 1.2, here using 

an integration of thirty minutes) are constrained by the overall growth of the system. 

Thus the bred vectors with larger amplitudes, being closer to the saturation level of the 
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QG system, have a smaller growth rate than the bred vectors with smaller amplitudes. 

Also, the growth rates approach a constant value because they are global rates. Locally 

the growth rates would vary greatly, but globally the total energy is constant, thus the 

growth rates converge to a constant value after merging. Figure 4.3(b) gives the local 

dimension of these four vectors. Again, they all converge to the same vector. There is 

only one type of instability for this model, and all small perturbations will eventually 

align with the leading LV (Oseledec 1968); thus this is the leading Lyapunov vector for 

this model.  

To compute the SVs, the Lanczos algorithm was used to solve the eigensystem (4) 

for the ISVs. Then (5) was used to compute the FSVs. The first final singular vector, 

FSV1, should align with the bred vectors/leading LV as the integration window is 

extended. Unfortunately the SVs for this model fail to converge. Figure 4.4 shows the 

first final SV computed using optimization windows of 96, 120, and 144 hours. The FSV 

computed using 120-hour window is shaded; those computed using 96- and 144-hour 

integration windows are the contours of Figure 4.4(a) and (b), respectively. These 

integration windows were chosen because the BVs converge within 5 days of the start of 

the breeding process. We had hoped the SVs would follow suit and converge within the 

first week. Unfortunately they do not. We extended the integration to eight days, always 

increasing in increments of 24 hours, but this did not improve the results. Although there 

are local regions of agreement among these vectors, in particular the region from 0° to 

2°E and the equator to 2°N, it is clear these are all different vectors. Note the opposite 

signs of the vectors in regional areas of agreement is unimportant since they were found 

by simply extending the integration window. If the WS07 algorithm were used successive 
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vectors would use previous information to ensure they are pointing in the same general 

direction. We also computed the second leading final singular vector, FSV2, and they 

also fail to converge within a week (Figure 4.5).  

   

 

Figure 4.1: (a) Potential vorticity at level 1 (where level 0 is the surface) for two random initial perturbation 

vectors. (b) The dimension of the five BVs initialized at this time. 

 

 

Figure 4.2: (a) Two of the five potential vorticity BVs computed using a perturbation amplitude of 1 and 

rescaling window of 24 hours the 10th day after initialization. (b) The local dimension of the five BVs is 

approximately 1 because the BVs converged to the single growing Lyapunov vector. 

(a) (b) 

(a) (b) 



73 

 

 

Figure 4.3: (a) Growth rates computed with a rescaling window of 24 hours and perturbation amplitudes of 

0.25, 0.5, 1, and 2. Growth rates are different because larger amplitudes are closer to nonlinear saturation, 

but they have the same general behavior. (b) Local dimension for these BVs is approximately 1, meaning 

they all converge to the leading LV. 

 

Figure 4.4: The first final SV on the 10th day. Shaded regions for both are FSV1 computed using a 120-hour 

integration window. (a) Contours are FSV1 computed with a 96-hour integration window. (b) Contours are 

FSV1 computed using a 144-hour integration window. Unlike the bred vectors (Figure 4.2), FSV1 fails to 

converge within the first 10 days. 

 

(a) 

(b) 

(a) (b) 
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Figure 4.5: The second leading final SV on the 10th day. Shaded regions for both are FSV2 computed using 

120-hour integration windows. (a) Contours are FSV2 computed using a 96-hour integration window. (b) 

Contours are FSV2 computed using a 144-hour integration window. FSV2 does not converge within this 

time frame. 

 

4.3 Summary 

 

Pires et al.  (1996) showed, with the Lorenz (1963) model, that errors aggregate 

on the unstable subspace of the model. This is the reason for the development of data 

assimilation in the unstable subspace (Trevisan and Uboldi 2004), which is exactly as it 

sounds: instead of doing the assimilation on the entire space, observation locations and 

updates to the analysis are restricted to the unstable subspace. Before this restriction can 

be accomplished one must first define the unstable subspace. Many of the studies using 

data assimilation in the unstable subspace use breeding (e.g. Carrassi et al. 2008a, 2008b) 

or orthogonal Lyapunov vectors (e.g. Trevisan and Uboldi 2004; Trevisan et al. 2010). 

Orthogonal Lyapunov vectors are relatively easy to compute but less physically 

meaningful than LVs which are invariant under the linearized flow (H.-l. Yang et al. 

(a) (b) 
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2010; Bosetti and Posch 2013; Posch 2013). Thus it would be useful if one could 

compute the more physically meaningful LVs. Unfortunately we did not have the 

computational resources to do so. 

It is clear the quasi-geostrophic model of Rotunno and Bao (1996) has a single 

leading Lyapunov vector. All of the bred vectors corresponding to the main mode of 

growth for the system coalesce into a single vector within the first 5 days of the 

integration. Even BVs computed using different perturbation amplitudes converge to this 

same vector (with the growth reduced for larger amplitudes by nonlinear saturation). The 

SVs fail to converge within this time period. It is possible that testing for convergence at 

different intervals, i.e. every 72 hours instead of every 24 hours, may aid convergence. It 

may also be that the SVs require a much longer integration time to allow for 

convergence. If they need time to experience most of the possible phase space, 6 days is 

much too short of an integration window to permit convergence. Regrettably longer 

integration windows are beyond the computational capabilities currently available to us. 

It is also possible that this particular reference state is making it difficult for the SVs to 

converge (S.-C. Yang 2005). Even though, theoretically, the choice of norm is 

unimportant as the integration window extends to infinity (Ginelli et al. 2007; WS07), 

numerically it is possible SV convergence may be sensitive to this choice, especially 

when more complex models are being considered. Consequently, because the singular 

vectors fail to converge within this time frame, it was impossible for us to use the WS07 

algorithm to compute the LVs. Ginelli et al. (2007) also developed an algorithm to 

compute physically relevant LVs, but it requires more memory than WS07 if one wants 

the actual LVs (and not just the angle between them; Ginelli et al. 2013).  
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Although the SVs did not converge in the allotted time, the BVs’ convergence 

offers an interesting result that warrants an examination of a more complex model. Here 

we have shown that the quasi-geostrophic model has a single leading LV because of the 

behavior randomly initialized BVs exhibit, something that could be expected from the 

fact that the QG model has only one type of instability, baroclinic, associated with 

weather waves. Is it possible to achieve similar results with a more complex model that 

contains not only baroclinic instability but other types of instabilities associated with 

convective and Lamb (sound waves) instabilities? 
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Chapter 5 : BVs and LVs with the SPEEDY Model 

 

5.1 Description of the SPEEDY Model 

 

 While the quasi-geostrophic model is a simplification of the atmospheric flow that 

only includes synoptic (weather) scale motions, the Simplified Parameterizations 

primitivE-Equation DYnamics (SPEEDY) model is an efficient but realistic hydrostatic 

general circulation model of the atmosphere. It was developed by Molteni (2003) and 

includes convection, clouds, large scale condensation, short- and longwave radiation, 

surface fluxes, and vertical diffusion. Hence SPEEDY has several types of instabilities 

triggered and saturating at different time scales. The full dynamic equations are solved on 

a 96 x 48 grid with 7 levels. Horizontal wind, temperature, and specific humidity are 

defined at all levels while precipitation and pressure are defined at the surface. This leads 

to 138,240 degrees of freedom. A result of the ease with which this highly realistic model 

can be run is its use in many studies seeking to improve upon or compare different 

aspects of the data assimilation process such as localization (e.g. Greybush et al. 2011), 

the assimilation of asynchronous observations (Harlim and Hunt 2008), methods to 

address model errors (e.g. Li et al. 2009b), the simultaneous estimation of observation 

errors and covariance inflation (e.g. Li et al. 2009a), and adaptive inflation (Miyoshi 

2011 and the sources therein). We are still interested in targeting the fastest growing 

instabilities of the model itself. Thus data assimilation techniques are not considered. We 

did not compute the SVs or LVs for this model because of computational constraints. 

Instead we focused on the study of the behavior of the BVs in order to elucidate basic 
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characteristics of the instabilities of this model, and the behavior of BVs in models with 

multiple types of instabilities, more representative of the real atmosphere. Just as with the 

quasi-geostrophic model, the kinetic energy norm was used to compute all of the bred 

vectors. 

 

5.2 Bred Vectors in the SPEEDY Model 

 

 Miyoshi (2005) computed bred vectors for this model to study the “errors of the 

day” (the day-to-day atmospheric variability and resulting errors introduced because of 

them). This was useful to check the reliability and accuracy of ensemble members. Here 

we are interested in the dynamics of a complex model, with more than one type of 

instability, itself. In chapter 3 we were able to use a fast-slow toy atmosphere-ocean 

model to take advantage of the nonlinear computation of BVs, which allows saturation of 

fast instabilities, to target fast or slow instabilities through the proper choice of the 

perturbation amplitude and rescaling window. By contrast, SVs and LVs are linear; so 

they can only completely isolate the fastest instability of the model. 

 This is not an exclusive property of simple models. In this chapter we show that 

we are able to replicate the results with this more complex and realistic model. For the 

following, we calculated 5 global bred vectors, all beginning from different random 

perturbations, for each set of breeding parameters. The local dimensions were computed 

using the method of Patil et al. (2001) as in Chapter 4. 
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5.2.1 Baroclinic Instabilities 

 

 We located the baroclinic instabilities by using an amplitude of 1 m/s (if using 

winds) or 1 K (if using temperatures) and a rescaling window of 24 hours. These BVs 

capture best disturbances associated with baroclinic instability within the mid-latitudes. 

Figure 5.1 shows the results for the 500mb zonal wind (using an amplitude of 1 m/s) and 

temperature (using an amplitude of 1 K) while Figure 5.2 displays the results for the 

surface wind and temperature. Figure 5.2(a) and (c) display two of the five vectors that 

were computed for the zonal wind and temperature fields, respectively. Figure 5.2(b) and 

(d) provide the local ensemble dimensions. The lower the ensemble dimension, the closer 

the BVs are to converging. Toth and Kalnay (1997) found that in areas of great instability 

a set of BVs will locally converge and most BVs typically have the same shape, even if 

they have opposite signs. For both variables displayed in Figure 5.1 and Figure 5.2, the 

ensemble dimension is highest in the tropics, because the tropics do not have baroclinic 

instability, and lowest in the extratropics, the Southern Hemisphere in particular. The 

Southern Hemisphere is much more zonally symmetric than the Northern Hemisphere, 

aiding the development of clearly defined waves and the growth of instabilities with 

regular shapes. This facilitates the convergence of BVs with locally low ensemble 

dimensions as we see at the 500mb and surface levels for the temperature (Figure 5.1(b) 

and Figure 5.2(b), respectively) and zonal wind fields (Figure 5.1(d) and Figure 5.2(d), 

respectively).  In the Northern Hemisphere, orographic forcing and the land-sea contrast 

distort the shape of the waves, hindering the ability of bred vector convergence. This is 

pronounced in the temperature fields at the 500mb level. There is a disturbance off the 
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northeast coast of the United States (Figure 5.1(a)); the ensemble dimension in that area 

is generally lower than that of the tropics but not as low as the Southern Hemisphere 

ensemble dimension (Figure 5.1(b)).  

Like the zonal wind fields, the temperature BVs have a higher local dimension 

around the equator and a lower local dimension in the Southern Hemisphere, although 

they exhibit more general agreement than the zonal wind BVs. There is a somewhat low 

local dimension in the winter hemisphere where there is a disturbance off the northeast 

coast of Canada. The same patterns generally hold at the 500mb level as well (Figure 

5.1). Overall there is slightly more agreement among the temperature BVs (a scalar 

value) than the zonal wind BVs (a portion of a vector value) and the ensemble dimension 

is higher in the tropics and lowest in the Southern Hemisphere. There is also a slight 

reduction in the local dimension of the 500mb zonal winds compared to the surface zonal 

winds.  
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Figure 5.1: (a) Two temperature BVs computed using 𝛿0 = 1 K and 𝐼𝑊 = 24 hours represented by shading 

and contours respectively. (b) Dimension of the five temperature BVs computed using 𝛿0 = 1 K and 𝐼𝑊 =

 24 hours. (c) Two of the five zonal wind BVs computed using 𝛿0 = 1 m/s and 𝐼𝑊 = 24 hours. (d) 

Dimension of the five zonal wind BVs computed using 𝛿0 = 1 m/s and 𝐼𝑊 = 24 hours. All vectors are 

shown at the 500mb level. The BVs exhibit the greatest agreement in the Southern Hemisphere. 

(a) (b) 

(c) (d) 
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Figure 5.2: Same as Figure 5.1 but at the surface. Thus (a) two temperature BVs computed using 𝛿0 = 1 K 

and 𝐼𝑊 = 24 hours. (b) Dimension of the five temperature BVs computed using 𝛿0 = 1 K and 𝐼𝑊 = 24 

hours. (c) Two zonal wind BVs computed using 𝛿0 = 1 m/s and 𝐼𝑊 = 24 hours. (d) Dimension of the five 

zonal wind BVs computed using 𝛿0 = 1 m/s and 𝐼𝑊 = 24 hours. The greatest agreement is in the Southern 

Hemisphere. 

 

5.2.2 Convective Instabilities  

 

 We used BVs to locate the convective instabilities by choosing a perturbation 

amplitude of 0.01 and a rescaling window of 6 hours. These BVs best capture the 

disturbances of the tropics where convection is most prominent. Again, there is very little 

(a) (b) 

(c) (d) 
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agreement among the five vectors computed using this combination (Figure 5.3 and 

Figure 5.4). There is some agreement of all vectors at both the 500mb and surface levels 

around the 180th meridian, where there are only regionally small disturbances within the 

model. The 500mb temperature BVs show the lowest ensemble dimension in this area. It 

is interesting to note that, in general, the local dimension of these vectors is lowest in the 

tropics and higher in the mid-latitudes which is attributed to the fact that convection is 

dominant in the tropics (Toth and Kalnay, 1997). This contrasts with the BVs used to 

target baroclinic instabilities which had greater general agreement in the mid-latitudes, in 

the Southern Hemisphere in particular, than in the tropics. The same basic pattern holds 

at the surface (Figure 5.4). 

 Also, these BVs attain some of their lowest local dimensions in areas of 

atmospheric disturbances (Toth and Kalnay, 1997). This is especially true of the 

temperature BVs in relation to the disturbance off the northeast coast of Australia (Figure 

5.3(c) and (d) at the 500mb level; Figure 5.4(c) and (d) at the surface). Thus the ensemble 

dimensions of the BVs associated with baroclinic instability and the BVs associated with 

convective instability achieve their respective minima in the regions of the instabilities 

they target. 
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Figure 5.3: (a) Two temperature BVs computed using 𝛿0 = 0.01 K and 𝐼𝑊 = 6 hours. (b) Dimension of the 

five temperature BVs computed using 𝛿0 = 0.01 K and 𝐼𝑊 = 6 hours. (c) Two zonal wind BVs computed 

using 𝛿0 = 1 cm/s and 𝐼𝑊 = 6 hours. (d) Dimension of the five zonal wind BVs computed using 𝛿0 = 1 

cm/s and 𝐼𝑊 = 6 hours. All vectors are shown at the 500mb level. The vectors agree most in the tropics. 

 

(a) (b) 

(c) (d) 
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Figure 5.4: Same as Figure 5.3 but at the surface. Thus (a) two temperature BVs computed using 𝛿0 = 0.01 

K and 𝐼𝑊 = 6 hours. (b) Dimension of the five temperature BVs computed using 𝛿0 = 0.01 K and 𝐼𝑊 = 6 

hours. (c) Two zonal wind BVs computed using 𝛿0 = 1 cm/s and 𝐼𝑊 = 6 hours. (d) Dimension of the five 

zonal wind BVs computed using 𝛿0 = 1 cm/s and 𝐼𝑊 = 6 hours. The ED reaches its minimum in the 

tropics. 

 

5.3.3 Convection Coupled with Lamb Waves with Very Small Amplitudes 

 

 Recall BVs are finite time approximations of the leading LVs, and with very 

small perturbation amplitude and rescaling window, they should become equal to the 

leading LV. Thus, we took a small amplitude of 0.001 and the minimum possible 

(a) (b) 

(c) (d) 
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rescaling window for this model of 40 minutes (one time period) in an attempt to find the 

leading Lyapunov vector. Figure 5.6(a) and (c) displays two of the five surface wind and 

temperature BVs, respectively, computed using this combination of breeding parameters. 

Figure 5.6(b) and (d) give the local dimensions of the five vectors. By the end of the 

second day, the vectors have indeed merged into a single vector. While the surface 

temperature BVs require two more breeding cycles to combine, it is clear the 500mb 

temperature BVs have merged into a single vector at this time (Figure 5.5(d)). This 

provides strong evidence that this is the leading LV for this model. It corresponds to the 

inertia gravity waves (equivalent to external inertia-gravity waves) excited by strong 

convection centered at the Warm Pool in the West Pacific. The instability that gives rise 

to the LV is the intense convection in the warm Maritime continent, which triggers Lamb 

(sound) waves, akin to external inertia gravity waves that propagate horizontally with the 

speed of sound (~300 m/s) so that they travel around the world in about one day. Because 

they propagate so quickly, they create a global leading LV.  

Inertia-gravity waves are not the customary targets of weather prediction models, 

but they are the fastest growing instabilities of the system, exactly what the leading LV 

detects. It is unlikely that this vector would be useful in the creation of ensembles in 

weather forecasting applications, but it may be useful in some other application.  
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Figure 5.5: (a) Two temperature BVs computed using 𝛿0 = 0.001 K and 𝐼𝑊 =  40 minutes. (b) Dimension 

of the five temperature BVs computed using 𝛿0 = 0.001 K and 𝐼𝑊 =  40 minutes. (c) Two zonal wind BVs 

computed using 𝛿0 = 1 mm/s and 𝐼𝑊 =  40 minutes. (d) Dimension of the five zonal wind BVs computed 

using 𝛿0 = 1mm/s and 𝐼𝑊 =  40 minutes. All vectors are shown at the 500mb level. The BVs converge by 

the end of the second day. 

(a

) 

(b

) 

(c

) 

(d

) 
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Figure 5.6: Same as Figure 5.5 but at the surface. Thus (a) two temperature BVs computed using 𝛿0 =

 0.001 K and 𝐼𝑊 =  40 minutes. (b) Dimension of the five temperature BVs computed using 𝛿0 = 0.001 K 

and 𝐼𝑊 =  40 minutes. (c) Two zonal wind BVs computed using 𝛿0 = 1 mm/s and 𝐼𝑊 =  40 minutes. (d) 

Dimension of the five zonal wind BVs computed using 𝛿0 = 1 mm/s and 𝐼𝑊 =  40 minutes. The BVs 

merge into a single vector, the leading LV for this system.  

 

(a) 
(b) 

(c) (d) 
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Figure 5.7: (a) Growth rates for the vectors associated with baroclinic instabilities (24HR), convection 

(6HR), and inertia gravity waves (40MIN). Although the global growth rate appears constant for the gravity 

waves, (b) demonstrates that it is not. This value is small relative to the other growth rates because in most 

regions around the world, the vector is not growing. 

 

The growth rates of the BVs (computed using the formula in section 1.2, here 

with an integration of forty minutes) associated with fast convection triggering inertia 

gravity waves differ greatly from the growth rates of the BVs associated with baroclinic 

and convective instabilities, as seen in Figure 5.7(a). Its values are so small (but not 

constant as Figure 5.7(b) demonstrates) because the vectors are only growing at the 

center of the disturbance and we measure the global growth. Hence the essentially zero 

values dampen the effects of the super growth at the center of the disturbance. 

 

5.3 Summary 

 

 Molteni’s (2003) SPEEDY model is a very successful simplification to general 

atmospheric circulations. It has several different types of instabilities with various 

saturation levels, making it a perfect model to test the behavior of bred vectors. Here we 

(a) (b) 
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see BVs are able to easily target three types of instabilities, baroclinic, convective, and 

inertia gravity waves triggered by convection, through proper selection of the breeding 

parameters. This result agrees with the results of S.-C. Yang et al. (2006b, 2008, 2009b) 

and Chikamoto et al. (2007) who used more complex models. Because BVs only require 

the use of the nonlinear model, they were the only vectors of the three kinds frequently 

computed to study dynamic instabilities that are currently feasible for this complex 

model. While we were unable to directly compute LVs, we can be fairly sure from the 

behavior of the BVs highlighting gravity waves that the leading LV exists for this 

weather model, contrary to the hypothesis of Toth and Kalnay (1997). Hence it may be 

worth the effort of finding the first few leading LVs in order to ascertain the information 

they can unlock about this simplified weather model. 
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Chapter 6 : Summary and Conclusions 

 

Lyapunov vectors, singular vectors, and bred vectors are the three types of vectors 

normally used to study instability properties of dynamical systems. Each can provide the 

general shape and growth rates of the instabilities inherent within a particular system. 

This is extremely important for numerical weather predictions for the instabilities are a 

major source of error, along with model and observation errors, leading to the 

degradation of forecasts. Efficiently eradicating, or precisely measuring, any one of these 

errors would be tremendously beneficial, and LVs, SVs, and BVs are currently the most 

promising weapon against errors stemming from instabilities intrinsic to dynamical 

systems. Lyapunov and singular vectors locate instabilities within a system through the 

use of the linearized equations of the model. Bred vectors use the full nonlinear model. 

Their differences in computation lead to differences in their ability to effectively target 

particular instabilities, and this thesis explored these differences.  

We began by expanding upon the work of Evans et al. (2004) and PK04 to reveal 

the growth rates of singular vectors and Lyapunov vectors can be used in the same 

manner as the growth rates of bred vectors to predict regime changes in a simple chaotic 

model. That is, fast growth implies a regime change, and the longer the BVs grow the 

longer the next regime will be. SVs are the most accurate when predicting regime 

changes in the Lorenz (1963) model. The LVs are also accurate in predicting regime 

changes. Not only are their local growth rates useful, but the correlation between LV1 

and LV2 can also be used to predict regime changes, as the two become nearly 

orthogonal to one another in the center of multi-orbit regimes, and at the point when x 
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changes signs for single orbit regimes of the Lorenz model. Although LV1, fast scale 

BVs, and FSV1 all have slightly different behavior, they all coalesce to approximately 

the same subspace during periods of fast growth, which also correspond to regime 

changes. This is expected since all three describe the errors growing fastest in the past; 

ISVs are not expected to be similar to any of these as they describe the errors of 

perturbations mostly outside the attractor, growing fastest in the immediate future as they 

rotate back to the attractor (Pazó et al., 2010). 

In fact, in the Lorenz model, LV1, the leading Lyapunov vector, is approximately 

equal to (linear) bred vectors that have a small amplitude of 0.1 and are rescaled every 

0.02 units, indicating that they both measure the same instabilities. LV1 has a large 

correlation with the (slightly) nonlinear bred vectors which have an initial perturbation of 

1 and are rescaled every 0.08 time units; LV2 is highly correlated with both of these BVs 

as well, and as the BVs become more nonlinear (yet still dynamically significant) they 

coincide more with LV2 and less with LV1. Also, although LV2 has zero global growth, 

locally its growth is frequently faster than that of LV1’s, and at these times the slightly 

nonlinear BV grows much closer to LV2.  

The coupling of the nine-variable model, and the introduction of two very 

different time scales, to represent a toy atmosphere-ocean model, obscures some of the 

clear cut relationships the LVs, SVs, and BVs shared in the simple Lorenz model, so that 

the correlations of the LVs become useless as predictors, but some of the relationships 

found above still hold. The local growth rates of the LVs are still useful in making 

predictions in the model, with certain LVs being more closely related to different modes 

of growth within the model, although increased coupling degrades these relationships. 
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Thus the Lyapunov vectors associated with the extratropical subsystem are not as 

influenced by changes in the tropical and ocean subsystems because the extratropics are 

only weakly coupled to the tropics. In contrast the Lyapunov vectors associated with the 

strongly coupled ocean subsystem have times when they are strongly influenced by 

changes in the tropical subsystem and even changes in the extratropical subsystem (which 

the ocean is implicitly coupled to by its connection with the tropical subsystem). The 

slower mode LVs’ inability to fully decouple the fast and slow subsystems may be a 

result of the fast changes of the extratropical subsystem being difficult to overcome or 

ignore. It may also be a deficiency of the algorithm to compute LVs which relies on 

linearized equations because these will always target the fastest growing errors. If the 

latter is the case, it is truly impressive that the vectors are able to detect the slower modes 

of growth as well as they do. 

Regardless, LVs are not nearly as efficient at separating the fast and slow modes 

of the coupled system as the bred vectors are, and this is an important result. Through 

careful selection of perturbation size and rescaling interval, BVs are able to efficiently 

decouple and identify the fast and slow modes of growth in the nine-variable model. Thus 

not only are they much easier to compute than LVs, they are better predictors of slow 

mode growth, which agrees with the experience of S.-C. Yang et al. (2006b, 2008, 

2009b) who derived the BVs associated with ENSO in fully coupled atmosphere-ocean 

global climate models (GCMs). Similarly, Chikamoto et al. (2007) were also able to 

derive the BVs associated with the Madden-Julian Oscillation as well as those associated 

with convective instabilities by using different BV amplitudes and rescaling periods. 
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SVs are not as useful as LVs or BVs in the coupled model with an extratropical 

subsystem. They are able to capture fast modes of growth, but are unable to decouple the 

slow modes from the fast modes in the same way the BVs, or even the LVs, are able to, 

failing to perceive their existence at all regardless of the optimization window used to 

compute them. 

When the extratropical subsystem of the nine-variable model is replaced with a 

fast changing “convective subsystem”, resulting in different frequencies for all three 

subsystems, the behaviors of the vectors change slightly again. The LVs retain the ability 

to separate all three subsystems, but there are some that are ‘coupled.’ They refuse to be 

dominated by either the tropical or ocean subsystems but instead manage to remain loyal 

to both. The length of the periods of growth of the ‘coupled’ vectors determine which 

subsystem the growth references. Thus long periods of growth correspond to changes 

within the ocean subsystem and shorter periods of growth correspond to changes within 

the tropical subsystem.  

The BVs are still unable to completely perceive the existence of the tropical 

subsystem, which is still controlled by changes within the ocean subsystem, but the SVs 

can now distinguish between all three subsystems. There are even ‘coupled’ SVs whose 

growth rates correspond to changes within the tropical and ocean subsystems. The 

amount of coupling between the convective and tropical subsystems changed the number 

of SVs and LVs that corresponded to each subsystem, but it does not significantly change 

the behavior of the three types of vectors. 

When studying the quasi-geostrophic model developed by Rotunno and Bao 

(1996), which is ruled by a single type of growth (baroclinic instability), it is evident that 
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there is a single leading LV since five initially random BVs merge into a single vector 

after a few days. Unfortunately, the SVs failed to converge within the same time period 

making it impossible to use the Wolfe-Samelson (2007) algorithm to compute the LVs. It 

is possible the SVs need an integration window long enough to test a significant portion 

of the phase space in order to allow for convergence. It is unlikely the algorithm of 

Ginelli et al. (2007) would fare better with this model since it also requires the 

convergence of a set of orthogonal vectors, although it is possible the QR decomposition 

would prove to be more robust and efficient than the singular vector decomposition 

WS07 is based upon. There have been minor comparisons of the two methods for 

obtaining LVs which are invariant under the linear flow in terms of theory (Kuptsov and 

Parlitz 2012) and computational costs (Ginelli et al. 2013), but no one has compared the 

two methods using a single model. Thus further testing is necessary to determine which 

of the two methods is best and under what circumstances. 

Finally we come to the most realistic of the models examined here, the SPEEDY 

model of Molteni (2003). It has the most degrees of freedom and instabilities of several 

time scales, and is similar to modern global atmospheric models. Through careful 

selection of the breeding parameters we were able to identify baroclinicity, convection, 

and external inertia-gravity waves. The Lamb waves (equivalent to external inertia-

gravity waves) are the fastest growing instabilities triggered by local tropical convection, 

propagating with the speed of sound, and the BVs associated with these waves quickly 

collapsed into a single global vector. This is most likely the leading LV for this model. 

Owing to SPEEDY being a reasonable approximation of atmospheric general circulation 

models (GCMs), this provides strong evidence of the existence of a single leading LV in 
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the earth’s atmosphere-ocean system as promised by Oselecec’s theorem (1968). The real 

earth’s leading LV would thus coincide with external inertia-gravity waves, meaning it 

would not be of any use for the weather prediction ensembles for which bred vectors 

were initially created (Toth and Kalnay 1993). 

These results have several significant implications for ‘real life’ atmospheric and 

oceanic models. The first is that each of the three vectors that have been used to study the 

dynamic behavior of unstable systems provides significant information, and, for the 

Lorenz three-variable model, the SVs are the best predictors of regime change. In 

contrast to LVs and SVs, BVs do not conserve their identity, but grow closer to the 

locally fastest growing LV, even when it is different from LV1, the leading LV. The BVs 

seem to follow the fastest local ‘growth of opportunity,’ which agrees with the experience 

in ensemble weather forecasting (Toth and Kalnay 1997). For the problem of instabilities 

that have different time scales, all three types of vectors can handle the fastest 

instabilities, but only BVs are able to completely separate the slow instabilities from the 

fast instabilities, and only if choosing long time scales and rescaling variables associated 

with the slow instabilities (PK04; S.-C. Yang et al., 2006, 2008, 2009; Chikamoto et al. 

2007; Hoffman et al. 2009). 

Previously, only orthogonal LVs were computed for systems, typically using 

Benettin et al. (1980) or Shimada and Nagashima (1979). The work of Wolfe and 

Samelson (2007) and Ginelli et al. (2007) made it possible to compute Lyapunov vectors 

(often referred to as covariant or characteristic Lyapunov vectors or CLVs) that are 

invariant under the linearized flow and correspond to the Lyapunov exponents of 

Oseledec’s multiplicative ergodic theorem (1968). Bosetti and Posch (2013), H.-l. Yang 
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et al. (2010), and Posch (2013) found (covariant or characteristic) LVs – all using the 

method of Ginelli et al. (2007) – are more physically meaningful than the orthogonal LVs 

found previously. Here we use the Wolfe–Samelson algorithm for computing LVs. It has 

proven to be very robust for simple models, and the results are promising for LVs’ 

abilities to characterize instabilities of various sizes. The work of Ginelli et al. (2007) 

also demonstrates LVs are useful in identifying local stable and unstable subspaces in 

simple systems. Froyland et al. (2013) expanded the algorithms of Ginelli et al. (2007) 

and WS07 to compute LVs for complex models. Kuptsov and Parlitz (2012) developed 

an algorithm similar to WS07 without some of the redundant computations while also 

completing a theoretical comparison of the methods, but no one has tested the algorithms 

using models with as many degrees of freedom as the quasi-geostrophic or SPEEDY 

models. Their work suggests that further studies are still needed to test the usefulness of 

LVs as predictors and the exact manner in which the algorithms distinguish between 

specific instabilities within systems containing different modes of growth. 

Of the three types of vectors, bred vectors are by far the easiest and cheapest to 

compute. They are also the most reliable, efficiently distinguishing between distinct 

modes of growth through appropriate selection of the perturbation amplitude and 

breeding window. The advantage of the BVs in identifying both the fast and the slow 

instabilities comes from the fact that they are computed with differences using the full 

nonlinear model. So for the limit of very small amplitude in the BVs’ rescaling, they 

become the same as the leading LVs. However, when larger amplitudes are used for 

rescaling, the fast perturbations become saturated, and the BVs capture slower, larger 

amplitude instabilities. If the fast instabilities have larger amplitudes than the slow 
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instabilities, as it happens with the El Niño Southern Oscillations (ENSO) coupled 

atmosphere-ocean instabilities, modifying the rescaling amplitude does not lead to the 

BVs recovering the slow instabilities. In this case it is still possible to use BVs to recover 

ENSO by using rescaling intervals that are long enough that the fast weather noise 

becomes saturated. S.-C. Yang et al. (2006, 2008, 2009b) was thus able to recover BVs of 

the ENSO instabilities by rescaling once a month, too long for weather instabilities but 

short enough for ENSO. Our results within the SPEEDY model also provide evidence of 

a single leading LV for atmospheric models. However, this global leading LV, similar to 

external inertia-gravity waves propagating with the speed of sound, may be irrelevant to 

real world numerical weather prediction as far as the creation of ensemble members is 

concerned.  

We have found that in simple models with one type of instability, LVs, SVs, and 

BVs provide the same information. If the BVs are computed with a small amplitude and 

short rescaling window they will equal the leading LV, which was used to determine the 

existence of the leading LV in the more complex QG and SPEEDY models. However, if 

the BVs are calculated with bigger amplitudes and longer windows, yet still relevant to 

the model, they will break free of the leading LV and align with the locally fastest 

growing vector. This is one of the reasons why BVs computed and used for ensembles in 

atmospheric models do not collapse into a single vector, as some atmospheric dynamics 

experts believed they would when Toth and Kalnay first developed them. 

Another major reason BVs that are used for ensembles in weather prediction do 

not coalesce into a single vector is because there is no global leading Lyapunov vector for 

each type of instability. This is clearest in the SPEEDY model where the BVs associated 
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with baroclinic and convective instabilities refused to converge, but it is also apparent in 

the toy atmosphere-ocean model. Here the LVs never succeeded in fully decoupling the 

slow modes of growth from the fast modes of growth like the BVs were able to do. They 

always contained remnants of the fast modes of growth, evidenced by their growth rates 

which were often influenced by changes in the faster subsystems (see chapter 3). So take 

a large system like the atmosphere or ocean where energetic baroclinically unstable 

waves are generated in several regions of the world simultaneously. Because the scales of 

the instabilities are an order of magnitude smaller than the size of the atmosphere, the 

unstable waves are generated, grow until they saturate, and then decay independently in 

different regions. So it is not surprising that a global leading LV associated with 

baroclinic waves cannot form. 

But does this mean LVs are useless? Unfortunately this thesis cannot definitively 

answer that question. Although there are more efficient algorithms for computing LVs, I 

do not have the computational resources to take advantage of them. It may be that the 

‘coupled’ nature of LVs is not a hindrance but instead allows them to glean information 

from a complex system that we hitherto cannot obtain.  Can LVs be determined that are 

associated with fast weather and slow coupled instabilities in a coupled atmosphere-

ocean model? If they can be, and these vectors are truly characteristic of the system, then 

they should behave in a manner similar to the LVs studied here which can still be used as 

predictors for the systems. Even if they are not characteristic of the dynamics of the 

system, but instead attributes of the model, could they still be useful in ensemble 

forecasting? These are just a few of the many questions waiting to be answered. 
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