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The Influence of Valenced Images on Perceptual Learning 

Noah Sulman 

ABSTRACT  

This study aimed to determine whether the rate of perceptual learning in a 

vernier discrimination task could be influenced by affective images.  Forty-eight (30 

Female, 18 Male) subjects were instructed to indicate the direction of an offset over 620 

trials.  Subjects were primed with either negative, positive or neutral photographs before 

making the discrimination on all test trials.  Feedback regarding offset performance was 

provided on each trial.  Despite initial pilot data indicating that subjects primed with 

negative, arousing images improved performance over those primed with either neutral 

or positive images, there was ultimately no reliable advantage for any of the affective 

prime conditions.
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                                                            Chapter One 
 

Introduction 

Perceptual Learning 

 A complete account of the role of experience in perception is essential to our 

understanding of perception more generally.  Many research techniques used to evaluate 

the contributions of perceptual experience employ perceptual learning paradigms.  

Perceptual learning has been defined as: “[a]ny relatively permanent and consistent 

change in the perception of a stimulus array following practice or experience with this 

array….” (Gibson, 1969, p. 49).  The essential characteristic of perceptual learning is that 

it involves durable learning in response to an unchanged stimulus (Epstein,1967).  

Unstable percepts, adaptations, shifts in ocular dominance, and similar phenomena are 

excluded because of their ephemeral effects.      

Within Epstein’s (1967) conceptualization of the field, perceptual learning (PL) 

includes a variegated set of experimental paradigms.  Of those experiments that do not 

finely control experience, there are those that evaluate the contributions of long-term, 

pre-experimental experience to perceptual performance.  An example of this variety of 

investigation might involve subjects matching the apparent size of a penny in an 

apparatus to a hubcap at some distance.  Another type of PL experiment entails 

observations of perceptual performance while subjects are presented with conflicting 

learned cues, such as instructing subjects to estimate a distance in a stimulus array 

containing contradictory depth information.  Researchers have also tested the influence of 
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global changes to the visual system, epitomized in the classic studies of Kohler (1962) in 

which subjects wore prisms that inverted their view as they navigated real world 

environments.  Developmental studies, the last variety of PL study that involves the use 

of uncontrolled pre-experimental experience, seek to measure the influence of experience 

as it accrues over a lifetime.  The role of experience can be probed in this case by 

measuring the vulnerability of young and old to illusions and constancies. 

Researchers who seek finer control over the learning environment can employ any 

of a number of other approaches.  Enrichment techniques expose subjects to the to-be-

discriminated stimuli during a familiarization period.  It is essential within this approach 

that subjects be equally reinforced for all stimulus levels.  Classical learning studies in PL 

have paired a stimulus and a response (usually a naming or motor response). By pairing a 

particular response with an aversive stimulus (e.g. shock), researchers can investigate the 

role of motivation in perception.   

Of particular interest in the present context is the final variety of controlled 

experience experiment, the standard practice approach.  Within this paradigm, a subject is 

instructed to make a sensory discrimination, usually simple, over a series of many trials.  

Subjects are provided with some form of feedback regarding their performance while still 

engaged in the task.  The level of the stimulus signal will typically remain constant over 

test trials, so that improvements or decrements in performance can be properly measured. 

Since learning is instantiated throughout the brain and has a role in almost all 

behaviors, many researchers have suggested that PL cannot rightly be called perceptual at 

all (Pylyshyn, 1999).  Theorists who take an expansive view of the role of attention in 

visual processing, might interpret almost all PL as, at some level, a shift in attention.  
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Epstein argues that most disputes about whether improvements in discrimination 

performance constitute PL, or some other, more cognitive, learning, boil down to disputes 

regarding the definition of perception.  Two common criteria for defining a process as 

perceptual are immediacy and stimulus dependence.   The first criterion, immediacy, can 

be satisfied by implementing controls that minimize the influence of higher order 

judgments.  Discrimination tasks that involve dichotomous decisions regarding 

equiprobable stimulus classes can minimize the role of strategy.  The second criterion, 

stimulus dependence, indicates that variation in the behavior of the subject must be 

explainable in terms of stimulus properties.  The Thematic Apperception Test, for 

example, would not be considered perceptual because too little of the subjects verbal 

behavior is explained by the illustrations. 

PL tasks that involve psychophysical judgments, regardless of modality, can be 

controlled so as to increase the likelihood that learning is in fact perceptual.  PL is 

evident in a number of visual perception tasks, including motion discrimination 

(Matthews & Welch, 1997), spatial frequency discrimination (Fine & Jacobs, 2000), and 

hyperacuity tasks (Fahle, 1991).  Despite much progress towards understanding the 

perceptual and neural mechanisms underlying these improvements in performance, many 

questions regarding PL remain unanswered.  The role of attention in PL tasks remains an 

area of active inquiry. Seemingly conflicting results indicate the centrality of attention in 

certain perceptual tasks (Fahle, 2004) and its irrelevance in others (Watanabe et al., 

2002).  Questions remain regarding the locus of the changes that characterize PL (Gilbert 

et al., 2001).  Improvements in certain tasks demonstrate orientation specificity (Poggio, 

et al., 1992), while improvements in other tasks retain eye and location specificity (Fahle, 
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Edelman, Poggio, 1995; Karni & Sagi, 1991; Ahissar & Hochstein, 1997).  This poor or 

absent transfer of learning would seem to indicate that learning occurs early in visual 

signal processing.  However, despite the limited generalization of learning in one portion 

of the visual field to another, there is evidence that context shifts, in the form of 

configurational changes in patterns falling on other portions of the visual field, can 

attenuate PL in the trained region.  Some have hypothesized that horizontal connections 

from the portions of the visual cortex that represent other areas of the visual field play a 

modulatory role in PL (Crist et al., 1997). 

Perceptual Learning Mechanisms 

 Any of a number of neural mechanisms may underlie perceptual learning (Gilbert 

et al., 2001). The first possibility involves an increase in the area of cortex used to 

represent a specific stimulus dimension or portion of the visual field.  In some 

circumstances, recruitment of additional neuronal populations may permit enhanced 

processing by increasing the signal-to-noise ratio (Hoshino, 2004).  Within this 

essentially correlative hebbian model, PL results from either potentiation or depression of 

cell assemblies in response to the temporal relationship between the click-trains for each 

assembly.  This integration of larger populations of neurons permits greater 

representational fidelity along the relevant stimulus dimension. 

   An alternative account involves sharpened tuning curves (Sheinberg & 

Logothetis, 2002). The rate of a firing neuron changes in response to certain stimulus 

properties (e.g. linearity, orientation).  The peak of the spike frequency distribution 

represents the optimal level of some stimulus dimension relevant to the system in which 

the neuron is functioning.  Perceptual learning may involve a sharpening of that curve, so 
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that the neuron responds to an ever-narrower band of the relevant dimension.  For 

example, researchers have found that individual cells in the inferior temporal cortex are 

differentially responsive to a learned single view of an artificial object (Logothetis et al., 

1995).  This type of learning almost represents an anti-Hebbian view, in which each cell 

attempts to orthogonalize its representation relative to all other cells (Gilbert et al., 2001).  

In this way, the cells “spread” to represent a large portion of the stimulus dimension with 

each cell specialized to respond to an ever-narrower band of stimulation. 

A third possible mechanism involves increases in neural synchrony (Thorpe, 

2004).  Rather than using additional local neurons to encode and process the stimulus, 

distant neurons may support processing by firing in some temporal relation to the 

relevant dimension.   

In many theorists’ conceptualizations of PL, attention is given a central role in 

learning.  In some models, attention is required to identify the stimulus dimension 

relevant to required discrimination.  In others, attention serves as a time-marking 

mechanism that labels the moment at which the discrimination was made, so that learning 

can occur in relation to that specific operation.  Regardless of the specific function 

attributed to attention in these models, almost all accounts of perceptual learning leave a 

role for attention.  Perhaps the effects of attention in perceptual learning can be clarified 

using affective manipulations.  This study will present participants with valenced picture 

stimuli in an attempt to manipulate attention and determine the influence of emotionally-

driven attention to the PL task.  
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Emotion and Attention 

 Models of emotion have integrated evolutionary theory to great explanatory 

effect. Theorists have identified a number of domains in which emotion may have 

influenced fitness, but of particular interest are the areas of attention, perception, and 

learning. Research into evolution psychology was initially expansive and feckless, with a 

wide variety of untestable theories presented for varied behaviors. However, explicit 

criteria have been formulated to define the boundaries within which an emotion can be 

accurately labeled as an adaptation (Tooby & Cosmides, 1990).  For an emotion to be 

considered an adaptation, ancestral populations found themselves presented with a 

situation with great enough frequency as to constitute an “adaptive problem.”  This 

situation must be identifiable by situation-specific cues.  Additionally, these cues must be 

monitored by algorithms that detect situations and then react in a manner that increases 

fitness.  Clearly an account like this encounters difficulty when explaining emotions such 

as sentimentality or the distinction between envy and jealousy (Averill, 1997).  However, 

some emotions lend themselves to this type of analysis quite well.  Fear, it would seem, 

fulfills a clear adaptive function.  Threats in the environment were present in abundance 

and constituted an adaptive problem.  Moreover, these situations can be quickly detected 

utilizing visual cues. 

Emotions have an underlying physiological reality that has implications for the 

way the brain processes visual stimuli (Kandel et al., 2000).  Evolution has equipped 

humans with the ability to rapidly categorize visual stimuli into appetitive or aversive 

categories (Bar & Neta, 2006).  This categorization is incredibly fast and robust, capable 

of discriminating the emotional valence of images in the span of a single frame of video 
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(Maljkovic, Martini, & Farid, 2004).  Presenting subjects with threatening images (e.g. a 

snarling dog) activates brain systems associated with defense.  The role of the amygdala 

in regulating behavioral responses to the environment, while implicated for some time 

(Kluver & Bucy, 1937), has only recently begun to be truly understood. The 

hypothalamus controls expressions of fear in the peripheral nervous system.  In contrast, 

the amygdala is responsible for changes in the central nervous system in response to 

threatening stimuli.  The amygdala mediates both inborn as well as learned emotional 

responses in all sensory modalities (Kandel et al., 2000).  

 In a more concrete example, the sequence of responses initiated by the brain in 

response to a threatening face is becoming better understood.  In one account, the face is 

first encoded in the inferior temporal cortex, which processes facial expression and gaze 

direction in a preattentive manner (Soares & Ohman, 1993).  Typically, the inferior 

temporal cortex next signals the amygdala with the emotional content of the faces. The 

amygdala then activates appropriate behavioral, autonomic, and endocrinal responses.   

Additionally, there are also phylogenetically older connections from the thalamus 

to the amygdala.  These connections may provide a rapid track for processing threats 

without the elaboration that usually occurs in the temporal lobe.  These subcortical 

connections seem to provide coarse, but useful information regarding objects in the visual 

field. (Fendrick et al., 2001).   

Behavioral responses may include orienting behavior, flinching, or the tensing of 

muscles in preparation for a blow.  Autonomic responses include the activation of the 

sympathetic nervous system.  Activation of the sympathetic nervous system results in 

increased heart rate, decreased salivation, decreased digestion, and a host of other effects 
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on biological systems.  Endocrinal responses include stimulation of the HPA, or 

Hypothalamic-Pituitary-Adrenal, axis.  The HPA axis floods the blood supply with 

hormones that prepare the body for dealing with a threat.  Cortisol, adrenaline, and other 

hormones are involved in this threat signaling, preparation, and recovery (Kandel et al., 

2000).   

In a study using anterograde tracers in the amygdaloid complex of Macaca 

fascicularis, researchers discovered projections from the amygdala back to areas 

responsible for early visual processing, namely, TE and V1 (Frese & Amaral, 2005, 

Amaral et al., 2003).  Researchers hypothesize that these connections may modulate 

visual processing in response to threat-related stimuli.  These feedback-like projections 

could support a perceptual system designed to selectively amplify representations that 

provide vital information about the environment and, as a result, may guide behavior in 

threatening situations.  These connections, however, are only presumably excitatory.  The 

specific function of these reciprocal connections is yet to be elaborated. 

 Recent evidence suggests that the brain is biologically prepared to address certain 

threats common to our environment of adaptation, such as snakes, spiders, and other 

threatening creatures (Soares & Ohman, 1993). In a conditioning experiment, researchers 

presented participants with either neutral or aversive picture stimuli and demonstrated 

differences in conditioning effects that could only be explained via innate differences in 

processing speed.  Additionally, participants presented with masked threatening stimuli 

demonstrated a characteristic electrophysiological reaction greater than what was 

observed with masked neutral stimuli despite the fact that both presentations were 

subthreshold (Carretie et al., 2004).   



 

9  

While some have referred to the processes used to identify and prepare for 

threatening stimuli as automatic (e.g. Carratie et al., 2004) others, arguably correctly, 

refer to these processes as preattentive (e.g. Soares & Ohman, 1993; Compton, 2003).  

Preattentive is the preferred term because automatic processes are not governed by 

resource limitations, which are notoriously hard to operationalize.  Preattentive 

processing has a number of characteristics that distinguish it from automatic processing 

(Logan, 1992).  As one might assume, this processing occurs in the absence of attention. 

Preattentive processing is an obligatory processing of all information in the sensory field 

simultaneously.  Grouping by similarity and proximity are examples of this sort of 

process according to Logan.  Many early cognitive scientists did not maintain a 

distinction between preattentive and automatic processing, but recent evidence suggests 

that such a distinction might be useful.  If automatic processing is simply defined as 

processing in the absence of attention, then, of course, preattentive processing is 

automatic.  Logan identifies two problems with this definition (which he referred to as 

the “modal view”).  First, it defines automaticity negatively, without identifying the 

mechanisms and processes responsible for automatic processing.  Additionally, with 

respect to learned automaticity, it does not explain how attention can be withdrawn from 

cognitive acts that are repeated often enough to diminish their capacity demands.  For 

these reasons, and several others grounded in the traditional early- vs. late-selection 

literature, it is best to consider the processes responsible for attention to valenced stimuli 

as preattentive, rather than automatic.   

 Recent cognitive and information-processing approaches to human psychology 

have highlighted the informative aspect of affective information (Compton, 2003).  
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Researchers argue that since selective attention is used to pare down the wash of data 

across the senses and emotional significance often marks biologically important data, it is 

likely the mind uses emotional significance to identify objects that ought to be attended 

(almost always at the expense of others).  Emotional reactions to stimuli almost always 

involve the furthering or impeding of some biological goal (Arnold, 1960). 

 In order for emotional tagging of stimuli to have any utility in rapid deployment 

of selective attention, emotional processing of affective stimuli would need to occur quite 

quickly (Compton, 2003).  Evidence from electrophysiological studies indicated brain 

activity in the ventromedial prefrontal cortex 150ms after stimulus (spider image) onset 

(Carriete et al., 2004).  The ventromedial prefrontal cortex is believed to be involved in 

threat processing.  In this study the threatening stimuli were masked and the participants 

had no awareness of the threatening stimuli.  This would seem to provide additional 

evidence that threats are processed preattentively.  Psychophysiological studies which 

monitored biological indicators of threat detection (e.g. blood pressure, skin conductance, 

heart rate, corrugator activity) found a similar rapid response, with reliable changes 

within 500 ms of stimulus onset (Codispoti et al., 2001).  Codispoti and colleagues 

presented stimuli to participants for 500 ms and found similar patterns of emotionally-

linked physiological response as previous studies in which stimuli were presented for 6 s.  

It would seem as though biological preparedness for threats reaches asymptote quickly, 

remaining stable after the first 500 ms.  Researchers argue that this indicates that stimuli 

continue to be processed even after presentation.  It seems that not only the central 

nervous system, but the peripheral nervous system as well, can respond to emotional 

stimuli in well under one second.  This window of time that would permit selective 
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attention to utilize emotional significance as a source of information in situations that 

would require rapid responses. 

 Lesion studies involving bilateral simultaneous stimulation provide converging 

evidence that threat-related stimuli are preferentially processed (Vuilleumier & Schwartz, 

2001).  Two subjects with right parietal focal lesions demonstrated extinction of briefly 

presented stimuli in their left visual field.  However, when images of spiders were 

presented in the left visual field, subjects were able to correctly identify images as 

accurately as controls.  It should be noted that the spiders were matched with flowers in 

terms of low-level visual properties by rearranging the lines in the illustration.   

Emotional salience engages attention.  Codispoti et al. (2001) presented 

participants with an abrupt auditory probe while they were presented with affective 

stimuli.  The typical response to a 50 ms presentation of a 103 dB tone is a startle 

response, which almost always entails a blink.  By measuring blink suppression, 

researchers hoped to evaluate attentional involvement with the affective stimuli.  Blinks 

were inhibited longer for emotionally valenced, either pleasant or unpleasant, stimuli.  

However, when subject did blink, the magnitude of the startle reflex was greater when 

participants were presented with negative, as opposed to positive or neutral, stimuli.  

Similar results obtained in a study by Cuthbert et al. (1998).  Researchers concluded that 

affective information is used to modulate the startle reflex, leading to heightened startle 

reactions in the presence of negative, or threatening, stimuli.  Other evidence for a strong 

relationship between emotion and attention can be found in a study by Anderson & 

Phelps (2001).  Using a rapid serial visual presentation paradigm, researchers determined 

that the attentional blink is attenuated when the second target is emotionally salient.  
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Futhermore, this attenuation was not evident in a participant with damage to the 

amygdala.    

 A recent study by Phelps et al. (2006) may further illuminate this relationship 

between attention and emotion.  In an investigation of transient, covert attention, 

researchers presented participants with an orientation discrimination task using gabor 

patches of varying contrast.  The patches could be primed by a fearful or a neutral face in 

the center of the screen.  Participants had lower contrast thresholds when presented with 

the frightened, as opposed to the neutral face.  In a second experiment participants were 

presented with a neutral or fearful face cue in either a peripheral location or distributed 

about the screen.  The location of the peripheral cue changed across trials.  Participants 

had lower contrast thresholds with the frightened faces in both the peripheral and 

distributed conditions.  Interestingly, these results show independent contributions of 

emotion and spatial attention, such that the peripheral cue, in the quadrant of the screen 

where the target was to appear, resulted in the lower contrast threshold than the 

distributed cue, likely because the distributed cue spread attention evenly about the 

screen.  However, the distributed fearful cue still resulted in lower thresholds when 

compared to the distributed neutral cue.  Researchers conclude that reciprocal projections 

from the amygdala, which processes threats preattentively, loop back to the early visual 

areas of the extrastriate cortex, increasing the speed and accuracy of visual processing.  

Additionally, while the effects of emotion on perception may come about in this 

experiment via the moderating influence of transient, covert attention, there is evidence 

that emotion may have a potentiating effect on visual processing even in the absence of 

attention. When the cue was distributed evenly across the screen, so there was no cue for 
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covert attention to use to localize the target, there still were lower contrast thresholds.  

This study utilized fearful faces because fearful faces provide ambiguous information 

about the environment.  The information about the environment is ambiguous in so far as 

it signals a threat, but does not identify it.   

 Zeelenberg et al. (2006) recently found that emotionally significant words are 

recognized more accurately than neutral words in a two alternative forced choice 

experiment.  In this case, researchers wished to disentangle the relative contributions of 

sensitivity and bias in perceptual identification tasks involving emotional stimuli.  They 

conclude that bias is likely not a factor in preferential processing of emotionally changed 

stimuli. 

 A surprising role for human scents associated with fear was uncovered in a recent 

study by Chen (2006).  Researchers exposed female subjects in this memory experiment 

with human scent samples.  The samples were collected in the under arms of volunteers 

who viewed either horror movies or documentaries.  Subjects were presented with one of 

the two sample types while they completed an associative decision task.  The decision 

involved indicating whether the words in 320 word pairs were associatively related.  

When the words about which the decision was made were associative related, subjects 

exposed to the sample collected from subjects who viewed the horror movie performed 

more accurately than those exposed to the other sample.  There was an interaction 

between word pair condition and sweat exposure condition such that subjects exposed to 

the “threat sweat” were slower to respond when one of the words presented was not 

threat-related.   
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 Even something as seemingly idiosyncratic as the preference of common objects 

seems influenced by biological programs to detect threats (Bar & Neta, 2006).  

Researchers presented subjects with everyday objects that could either be characterized 

by long, gentle curves, sharp discontinuities, or control objects with both attributes.  

Objects were paired across conditions, such that tokens for a given object (e.g. a watch) 

would be contained in both the sharp and curved conditions.  An additional control 

condition showed abstract, meaningless shapes with either gentle curves or sharp angles.  

Of the real objects, objects with no sharp discontinuities were preferred first, followed by 

objects with both sharp and curved surfaces.  Objects with only sharp features were 

preferred least.  Curved abstract objects were preferred to sharp objects in the abstract 

condition, as well.  Bar & Neta conclude that this bias towards curved objects results 

from threatening impression carried by contour alone. 

 While bottom-up factors can account for part of the observed interactions between 

emotion and attention, it is likely that top-down influences are also present.  The pre-

frontal cortex, particularly in the ventromedial and dorsolateral areas, has shown rapid 

electrophysiological and hemodynamic responses to threatening stimuli (Carriete et al., 

2004).  Interestingly, there are reciprocal projections between the ventromedial pre-

frontal cortex and the amygdala, suggesting that each may be capable of modulating the 

effects of the other. 

Much evidence has been gathered in a clinical context regarding the sensitivity of 

subjects to valenced information as a function of certain individual differences variables.  

Fox (1993a) found that subjects high in state anxiety, as measured Spielberger’s STAI 

anxiety index (Spielberger et al., 1970) showed greater latencies in an emotional Stroop 
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task when presented with threatening or neutral words.  However, these same high-

anxiety subjects showed similar delays when presented with other non-threatening 

distractor conditions.  Fox concludes that, while threatening words do create more 

interference in anxiety-prone subjects, these subjects may suffer from a more general 

susceptibility to distraction or inability to maintain attentional focus.  In a separate study, 

Fox (1993b) also determined that those high in anxiety allocate attention towards 

threatening words, but only socially threatening words.  Words associated with a physical 

threat did not capture attention in anxious individuals. 

Research by Cohen et al. (1998) found subjects high in state anger, as measured 

by Spielberger’s State Trait Anger Expression Inventory, were more likely to experience 

interference in an emotional Stroop task when presented with anger-related words.   

Matthews et al. (2003) found that subjects who scored high on the STAI were more likely 

to be effectively cued to a target location by the fearful gaze of a face than the neutral 

gaze of the same face.  Similar benefits of a fearful over a neutral face did not obtain for 

subjects with low STAI scores.   

Recently, brain-imaging studies have provided additional evidence that 

personality variables might influence sensitivity to threatening information.  Bishop et al. 

(2004a, 2004b) presented subjects with a pair of houses and fearful faces simultaneously.  

Subjects were cued on each trial to indicate whether either the houses or faces were the 

same or different.  When the faces were unattended by subjects with low anxiety (as 

measured w/ STAI), amygdala response, assessed via fMRI, diminished.  However, when 

the faces were unattended by high anxiety subjects, there was no reduction in amygdala 

response. 
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 Not all research has supported the contention that threatening stimuli are 

processed preferentially.  In a visual search experiment by Tipples et. al (2002) 

researchers found no advantage for threatening stimuli.  Rather, the same benefits that 

obtained for detection of threatening animals amidst plants were also present for non-

threatening animals among plants.  In fact, the search slope for the non-threatening 

animals was lower than the search slope for the threatening animals.  The researchers go 

on to suggest that previous findings of enhanced processing of threat-related stimuli 

might be due to individual differences in sensitivity to threat-related information in the 

environment. 

There are a number of possible mechanisms by which emotion could inform 

attention.  Lang et al. (1998) conclude that projections from the amygdala to the sensory 

cortex, or visual processing centers specifically, might allow emotion to assign 

attentional priorities.  Attention might amplify signals, leading to more elaborate 

representations, in the appropriate brain areas (Compton, 2003).   

Another important distinction has emerged with respect to attentional capture, as 

opposed to sustained attention, and emotion.  Koster et al. (2004) wished to evaluate 

whether imminent threat captured or held attention.  Attention might be engaged by 

threats in the environment but not held.  Alternatively, attention might not be attracted to 

threats, but when it encounters them it may be difficult for subjects to move attention 

away.  The researchers presented subjects with a visual cue that signaled an aversive 

burst of white noise.  Previous studies have shown enhanced visual processing of stimuli 

that have acquired aversive associations (Armony & Dolan, 2002).  Subjects were 

instructed to indicate in which of two positions a target appeared as quickly as possible.  
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At the same time, the learned cue was presented in one of two positions.  Evidence 

obtained by manipulating both cue validity and onset demonstrated not only attentional 

capture by the cue, but also sustained attention.  While it was found that the conditioned 

stimulus both attracted and held attention in this study, the distinction remains an 

important one if the relationship between attention and emotion is to be fully elaborated. 

Lastly, while many studies have found that threatening stimuli result in greater 

attention than other emotional stimuli, some find more a complex and nuanced 

relationship.  Schimmack (2005) wished to evaluate three models of how negative 

affective stimuli might influence attention.  The first possibility he identifies is 

categorical negativity, in which negative stimuli attract attention simply because it is 

negative.  No distinctions are made between degrees of negativity or specific threat 

content.  A second possibility is that threats are detected more readily because of some 

evolutionary predisposition.  The third possibility he outlines suggests that arousal, and 

not valence, is the dimension underlying the capacity of emotional images to capture 

attention. In a series of experiments involving subjects either solving math problems or 

detecting bars above or below affective images, Schimmack found that arousal ratings of 

the images provided the best explanation of performance.  Comparisons of attentional 

capture for evolutionary threats (e.g. snakes) with other stimuli of matched arousal and 

valence revealed no reliable difference.  Additionally, comparisons within negative 

stimuli did reveal reliable differences between performance levels as a function of 

valence, or degree of negativity. 
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The relationship between emotion and attention is a complex one.  Investigations 

must consider whether attention is captured and/or held, possible individual differences in 

subjects, and whether image valence is confounded with other relevant image properties.  

Attention and Perceptual Learning 

  Certain types of perceptual learning require attention (Weiss, Edelman, Fahle, 

1993).  However, the specific role of attention remains ambiguous.  Three rather 

successful models will illustrate some of the competing explanations of PL.  One 

property of perceptual learning that needs to be fully addressed by any successful model 

its great specificity.  Training in what are usually very difficult tasks fails to generalize to 

novel tasks that differ along certain dimensions.  Each of the following models attempts 

to address the specificity with a slightly different approach.  Ahissar & Hochstein’s 

(2004) reverse hierarchy model focuses on top-down attentional effects, with a theoretical 

framework grounded in hierarchical receptive field structure.  In contrast, Dosher & Lu’s 

perceptual template model focuses on bottom up processes, with a focus on spatial vision 

considerations such as channel weighting (Petrov, Dosher, & Lu, 2005).  Watanabe & 

Seitz’s model diminishes the role of attention in perceptual learning, focusing instead on 

the neurochemical processes which underlie attention and reinforcement learning (Seitz 

& Watanabe, 2005).  

Reverse Hierarchy Theory 

The reverse hierarchy theory (RHT) of perceptual learning suggests that top-down 

attention is the critical element in improvements in certain perceptual tasks  (Ahissar & 

Hochstein, 2004; Ahissar, 1999).  Advocates of the RHT model argue that all the 

information necessary to perform the perceptual task in question is present in the 
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perceptual system at training.  Rather than providing additional information, training 

assists the participant in identifying task relevant information and ignoring irrelevant 

information.  A second key aspect of the model suggests that as a participant is trained, 

this search for differentiating features (in a discrimination task, for example) “cascades” 

from higher to lower forms of representation. This view of perception as a fundamentally 

hierarchical system which starts with primitive elements like discontinuities in the visual 

field, which then become contours, which then become features, which are grouped into 

objects, which then form scenes, is central to the RHT model.  Ahissar and Hochstein’s 

hierarchical view of visual perception finds a convincing anatomical basis in receptive 

field organization.  Evidence regarding the network of receptive fields indicates that as 

visual signals are processed, starting with a more or less retinotopic map in V1, they are 

converted to more and more abstract forms.  More of the visual field is represented in any 

given receptive field as these signals are processed.  However, more complex stimulus 

properties are required to activate a given receptive field (e.g. linearity or motion).  

Having established that these receptive fields, and the perceptual processes that they 

support, are arranged hierarchically and assuming that learning starts at the highest level 

of representation before working its way down, Ahissar and Hochstein assert that 

perceptual learning is conservative, with no learning occurring at a level lower than it 

needs to.  In tasks that provide high signal-to-noise ratios (e.g. object recognition), 

participants’ discriminations rely on high-level representations.  In situations with low 

signal-to-noise ratios, participants’ discriminations must rely on less refined 

representations.  The RHT suggests that location specificity is the result of the brain 

seeking the level of representation with the best signal noise to ratio, cascading down to a 
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level with a retinotopic isomorphism, and the training remaining trapped at that level.  

Easy perceptual tasks are learned at a high level, leading to almost no orientation or 

location specificity.  The last assumption of their model is that PL is attention driven, 

with attention selecting the appropriate level of representation and increasing its weight 

in determining responses.  

Perceptual Template Model 

 Dosher & Lu (1999) present an alternative explanation. The perceptual template 

model (PTM) provides three possible mechanisms of PL.  This quantitative model 

suggests improvements in performance in perceptual tasks are accomplished via stimulus 

enhancement, external noise reduction, and internal noise reduction.  Stimulus 

enhancement is characterized by increased signal strength from the relevant perceptual 

template.  External noise exclusion occurs when the template is tuned to exclude 

irrelevant information.  Internal, or multiplicative, noise is variation in the perceptual 

decision system whose level depends on the magnitude of the stimulus signal.  This is in 

contrast with the additive noise level, which is independent of the signal magnitude and is 

controlled via external noise exclusion.  Using an external noise paradigm, in which the 

subject must discriminate the orientation of a gabor patch presented between “sandwich” 

noise masks, researchers were able to investigate each of these possible mechanisms 

because each has a characteristic effect on the signal contrast-external noise contrast 

threshold function in a two threshold, two-criterion paradigm.  Dosher & Lu conclude 

that the improvements in their discrimination experiment are due to external noise 

exclusion and stimulus enhancement.  Those who advocate the PTM argue that because 

gains in one perceptual task do not interfere with performance in other, similar, tasks it is 
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unlikely that improvements result from changes in the early visual centers, rather, 

changes are likely to occur at an intermediate processing stage with relevant channels 

amplified (stimulus enhancement) and irrelevant channels dampened (external noise 

exclusion).  The PTM explains the mystery of location specificity by suggesting that the 

reweighting of channels may include the selection of a retinal location.  The same can be 

argued for orientation specificity.  

 Watanabe et al. (2001) found low level perceptual learning without higher level 

perceptual learning or conscious attention.   The researchers presented participants with a 

stimulus array that contained a rapid serial visual presentation (RSVP) task in the 

foreground and moving dots in the background.  At the moment the target was presented 

in the center of the RSVP portion of the screen, the motion of the dots was manipulated 

so they moved with 10% motion coherence.  Despite the fact that attention was focused 

centrally, towards the challenging RSVP task, participants showed increased motion 

discrimination sensitivity in the direction that was primed by the motion stimuli in a 

subsequent motion discrimination task.  Ahissar and Hochstein argue that these effects 

are more akin to adaptation than PL, however this increase in sensitivity was much more 

long lasting than most adaptation effects.   

Conditioning Model 

A model which attempts to explain these specificities is presented by Seitz & 

Watanabe (2005).  The authors suggest that the critical factor in determining what is and 

is not learned in perceptual learning tasks is temporal proximity.  When a reinforcement 

signal is provided to the subject, what is task-relevant or task-irrelevant can be learned 

with equal accuracy.  Studies which found a lack of task-irrelevant learning, failed to 
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provide any consistent relationship between the task-irrelevant features and the target.  In 

the previous study, the target always appeared simultaneously with a given motion 

direction.   Grounding their analysis in the conditioning literature, the researchers suggest 

that traditional reinforcement approaches can go a long way towards resolving the 

“stability-plasticity dilemma” in visual perception.  Perceptual learning, and similar 

issues regarding changes in perceptual performance as a function of learning or context, 

have been given short shrift because of the belief that perceptual skills are hard-wired 

after a critical period.  This seems reasonable because in a threat-filled world, stable 

percepts allow for rapid and unequivocal processing.  However, the balance between 

stability and plasticity can be effectively accounted for via reinforcement models.  Within  

this framework, the alerting portion of the attention system is responsible for this 

learning.  It is accomplished via the diffuse transmission of neuromodulatory chemicals, 

such as acetylcholine or norepinephrine.   

Additional evidence regarding the role of neuromodulators in perceptual learning 

can be found in a study by Dinse et al. (2003).  Researchers attempted to manipulate 

somatosensory representation of a tactile stimulus via administration of mementine and 

amphetamine.  Mementine blocks N-methyl-D-aspartate (NMDA) receptors, which are 

implicated in synaptic plasticity.  Much synaptic plasticity is accounted for in terms of 

long-term potentiation and depression (Agranoff et al., 1999).  Potentiation, or a 

reduction in the firing threshold of a neuron, is mediated in large part by NMDA 

receptors.    Amphetamine was chosen to accelerate learning because it activates the 

sympathetic nervous system and, with it, the HPA axis.  After administration, for three 

hours participants were exposed to a tactile stimulus on the tip of one of their fingers.  
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Both of these manipulations (administration and exposure) were placebo-controlled.  

Subject could not view their hand.  At the end of three hours, a two-point threshold 

discrimination was administered to both the exposed finger and another finger.  Those 

who were exposed to the amphetamine showed lower thresholds than an initial measure 

on the selected finger and no learning on another finger.  Moreover, somatosensory 

evoked potentials showed a greater distance between the represented points in the 

somatosensory cortex in the amphetamine condition.  There was no learning in the 

mementine condition.  Here we see an example of sensitization in perceptual task in the 

absence of feedback, with learning occurring in one neurochemical milieu and no 

learning in another.   

 While the first two models (RHT and PTM) may focus differently, some have 

suggested that both the top-down and bottom-up approaches are two sides of the same 

coin (Fahle, 2005).  Fahle argues that the specificities (location, orientation, spatial 

frequency, etc.) are likely to due to modifications in early or intermediate visual 

processing centers.  However, he continues, these modifications are controlled by top-

down attentional effects.  In a study by Li et al. (2004), researchers found that the 

neuronal responses of V1 to a stimuli set depended on the perceptual task undertaken by 

the primate subjects.  Primates were given a single type of stimulus that could be 

employed for either a bisection or a vernier acuity perceptual learning task.  Depending 

on which task was assigned in a particular block the response properties of the receptive 

field corresponding to the location of the stimulus changed.  Li and collegues argue that 

V1 maybe conceived of as an “adaptive processing unit”.  Information processing 

analyses revealed that neurons carried more information about a given stimulus property 
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when that attribute was critical for the discrimination task.  Similar psychophysical 

results can be found in Weiss et al. (1993).  Participants were trained to perform a 

discrimination task with two orthogonal offset stimuli.  In one condition, participants 

were told to discriminate the vertical offset stimuli.  In the other, participants were told to 

discriminate the horizontal offset stimuli.  After being trained to criterion, it was found 

that the PL did not generalize to the orthogonally oriented offset stimulus.  Apparently, 

attention is involved in which aspects of the stimulus array are represented in a more 

elaborate fashion. 

 Additional evidence regarding the interplay between bottom-up and top-down 

factors can be found in studies that manipulated feedback for participants in PL tasks.  

Herzog & Fahle (1997) presented participants with a challenging hyperacuity task, those 

who received feedback improved more rapidly than those who did not.  Even those who 

did not receive feedback showed some improvement over the course of the experiment.  

In a second experiment, Fahle cut the error signals in half.  Each participant was only 

aware of half of his or her errors, however, this feedback was enough to put their 

performance on level with those who received feedback for all their errors.  Feedback is 

evidently important for perceptual learning, but not essential.  This represents a challenge 

to reinforcement accounts of perceptual learning, in which feedback figures quite 

centrally. 

Reviewing what we have covered so far, emotional stimuli can induce rapid 

physiological changes in the brain, as well as the rest of the body.  It is possible that 

projections from the amygdala to the sensory cortex underlie the robust effects of 

emotion on visual attention.  Threatening stimuli are likely processed in a preattentive 
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manner.  Perceptual learning is characterized as long-lasting changes in the manner in 

which stimuli are processed.  The rate and nature of these changes are governed both by 

attention and task specificities.  

Valenced Stimuli and PL 

In a sense, PL and processing of affecting stimuli represent polar ends of a 

continuum.  Improvements in psychophysical discriminations involve extensive practice 

with highly artificial stimuli.  In contrast, processing of emotionally meaningful stimuli is 

rapid, preattentive, and likely has some fixed evolutionary basis.  The role of the limbic 

system in regulating automatic responses to valenced stimuli is highly conserved, 

indicating a relatively stable role (Kalat, 1998).  The biological and perceptual functions 

governed by these structures are fairly regular across mammals.  Studying the interplay 

between the rapid, unlearned, obligatory responses elicited when subject view emotional 

stimuli and the slow, learned, artificial changes of PL may help researchers chart the space 

between these poles. 

Affective manipulations permit a novel means of investigating the nature of 

attention and task specificity in PL, in so far as the processing of emotionally charged 

stimuli will permit strong manipulations of the conditions under which PL occurs.  The 

boundaries of PL are inchoate.  If varieties of PL performance were found to interact with 

processing of biologically relevant stimuli, as nearly all emotional stimuli are, this could 

inform the debate regarding the locus and best characterization of PL. 

 It stands to reason that if a PL task could be infused with affective content, 

researchers could modulate the rate of learning in the discrimination.  Enhanced processing 
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of affecting images and words is a pattern that emerges from the literature on emotional 

stimuli and perception (Compton, 2003).  Within the realm of emotional stimuli, negative 

or threat-related images are granted perceptual priority.  If processing is predisposed or 

biased towards emotional stimuli, the emotional properties of a PL stimulus or context 

could be manipulated to control rate of learning. 

 Emotionally salient stimuli could be integrated into standard PL paradigms in at 

least two ways.  The emotional content could be associated the PL task in time.  In this 

case, a discrimination could be either preceded or succeeded by valenced stimuli.  

Alternatively, the emotional content could be associated with the PL task in space.  

Within this approach, affecting images are integral to the learned discrimination.  The 

following three experiments explored the first of these possibilities. 
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     Chapter Two 

Pilot Experiment 1 

The influence of valenced images on perceptual learning of vernier stimuli. 

Priming subjects with affective images will likely impact the rate of learning in a 

psychophysical judgment.  Given the scheduling constraints of undergraduate 

participants, a PL paradigm that resulted in rapid gains was preferable.  Vernier acuity 

discriminations can be quickly learned (Fahle et al., 1995), and was selected to provide a 

sensitive discrimination against which to chart subjects’ progress.  Acuity tasks involve 

subjects making a fine spatial discrimination and have been shown to be highly learnable.  

Learning is retinotopic (Fahle, 2005), so a subject must maintain fixation on each trial. 

It was hypothesized that the rapidly presented threat-related prime activates an 

adaptive emotional response within subjects.  These rapid orienting responses will 

facilitate learning in the discrimination immediately following the negatively valenced 

prime.  In order to put the hypothesis to a strong test, images selected for the two 

conditions from the IAPS (Lang, Bradley & Cuthbert, 2005) were approximately matched 

for arousal.  Images for the negatively valenced condition were all selected for their threat 

content (e.g. snarling dog, man w/ gun, snake), whereas images selected for the control 

condition were positive in valance and selected to be stimulating but not threatening (e.g. 

mountain climbing, windsurfing, etc.). 

Method: 

 Subjects. 56 subjects (40 Female, 16 Male) were recruited from University of 

South Florida undergraduate classes.   
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 Materials:  The experiment was conducted using an Apple G4 computer running 

an experimental program created with RealBasic. As can be seen in figure 1, the acuity 

stimulus consisted of two lines, the bottom of which was offset to either the right or the 

left.  The magnitude of the offset ranged between .032 -.49° arc (1 to 15 pixels).  60 

threatening and 60 positively valenced, arousing primes were selected from the 

International Affective Picture System (Lang, Bradley, & Cuthbert, 2005).  The mean 

valence rating for images in the negative condition was 3.83 (SD = .90).  The mean 

valence rating for images in the positive condition was 7.24 (SD = .63).  The average 

arousal score for negative images was 5.74 (SD = .71).  The average arousal score for 

positive images was 4.92 (SD = 1.03).   

 Procedure:  After an initial calibration period lasting 30 trials during which the 

magnitude of the offset was varied, participants completed 12 blocks of 10 trials. Each 

participant was presented with a vernier acuity task in one of four corner locations on a 

computer monitor.  For any subject, the offset was presented in the same corner on all 

trials.  As can be seen in figure 1, in addition to the vernier stimulus presented 

peripherally, there was a “5” or “S” presented simultaneously in the center of the screen.  

Participants were prompted to indicate the direction of the offset, and then prompted to 

indicate the identity of the character presented centrally.  The magnitude of the offset was 

adjusted to a level where subjects were approximately 75% accurate.  

The sequence of stimuli during the calibration stage is illustrated in figure 2.  

Each trial began with a fixation stimulus, presented in the center of the screen. 

Immediately following the fixation, the target stimulus was presented.  Next, participants 

were prompted to indicate whether the offset was to the right or the left.  On all trials, any 
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offset errors were indicated with a buzzer.  Feedback was only provided regarding the 

offset task.  Each trial concludes with the subject indicating whether the centrally 

presented character was a “5” or an “S”.  The central fixation task increased the 

likelihood that the offset stimulus will remain at a constant location in the participants’ 

visual field.  Additionally, performance is at ceiling when the acuity stimulus is foveated, 

so peripheral presentation leaves room for improvements. 

Participants were presented with trials in either of two conditions.  In the threat 

condition, participants were presented with a threatening image 500ms prior to the target.  

In the non-threat condition, participants were presented with a positively valenced image 

for 500ms prior to each target.  Because of the limited number of threat-related images in 

the IAPS, the 60 sampled images in each valence category were presented twice each.  

However, the order of the images was completely randomized so that one image could 

appear two times before another image was presented even once.  It was hoped that this 

presentation order would minimize any adaptation effects.    

The sequence of stimuli in the threat-primed PL task is illustrated in figure 3.  The 

sequence was identical to the adjustment stage sequence, but contained a threatening or 

non-threatening prime following the fixation.  It was hypothesized that participants in the 

threat condition would learn the discrimination task faster than those in the neutral 

condition. 

Results: 

Due to high variability in performance levels and rates of improvement, 

observations from the first and second halves of the PL experiment were combined into 

two large blocks in order to stabilize means.  All subsequent analyses will treat learning 
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as the average performance in the second block minus the average performance in the 

first block. 

The percentage of trials in which subjects failed to report the identity of the 

central character for all trials, can be seen in figure 4.  Any trials in which the subjects did 

not correctly indicate the central character were excluded from subsequent analyses. In 

order to check that errors did not vary as a function of prime, an ANOVA was conducted 

with prime (positive, negative) as the between subjects factor and block (1, 2) as the 

within subjects factor.  There were no reliable effects on errors (block, F(1,54) = 1.562, 

MSe= .007, p = .23; prime, F(1,54) = .532, MSe = .02, p = .51; block x prime, F(1,54) = 

.133, p = .76). 

 Rate of learning was measured in this experiment by subtracting each subject’s 

accuracy level in the first half of the experiment from subject’s performance in the 

second half of the experiment.  Figure 5 shows the different amounts of learning.  

Subjects in the threat primed condition  (M = .07, SD = .081) learned more than subjects 

in the positively primed condition (M = .029, SD = .071), t(54) = 2.03, p  = .048. 

Discussion 

 As anticipated, subjects’ performance in the negatively primed condition was 

superior to subjects’ performance in the positively primed condition. This is evidence that 

PL performance maybe influenced by affective images. 

  However, several qualifications are in order.  This measure of learning, 

comparing performance in the first and second halves of the experiment, is very coarse.   

In this case, it was only utilized because subjects’ performances were quite noisy.  
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Additionally, while the arousal level of the images was approximately matched between 

conditions, it was not exactly so.  Lastly, it was the condition with superior accuracy, the 

threat condition, that had the higher mean arousal rating.  This confound will need to be 

addressed in future research. 

It is unfortunate that the subjects’ performance levels in this discrimination task 

were so variable.  This could be due to a number of factors.  First, the number of trials 

may be too low.  Subjects only completed the primed discrimination task on 120 trials.  

In contrast, subjects in the study by Phelps et al. (2006) completed 10 blocks of 120 

trials.  More observations may be needed.  While perceptual learning has been shown to 

develop over short periods of time, typically experiments take several hours for any 

individual subject.  Second, instructions may not have been sufficiently explicit.  Subjects 

seem to have had difficulty maintaining fixation in the experiment.  While the number of 

missed fixations did not vary as a function of block or prime, the number of errors was 

high.  Lastly, the positive images were quite arousing.  In an effort to put the threat 

priming hypothesis to its strongest test, images were selected for the positive condition 

that had high arousal ratings (e.g. windsurfing, teens on beach, skydiving). Utilizing 

neutral images as controls would likely have yielded larger effects.   

Pilot Experiment 2 

This study attempted to resolve certain deficiencies in the previous design by adding a 

neutrally valenced control condition, increasing the sample, and increasing the number of 

trials over which learning is assessed. 

Method 
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 Subjects: 69 (39 Female, 30 Male) subjects were recruited from University of 

South Florida undergraduate classes. 

 Materials:  The PL stimuli employed and program used to gather data were 

identical to those used in the previous study.  100 negatively valenced, 100 positively 

valenced, and 100 neutrally valenced primes were selected from the International 

Affective Picture System (Lang, Bradley, & Cuthbert, 2005).  The mean valence rating 

for images in the negative condition was 3.22 (SD = 1.0).  The mean valence rating for 

images in the positive condition was 7.19 (SD = .75). The mean valence rating for images 

in the neutral condition was 4.99 (SD = .25).  The average arousal score for negative 

images was 5.88 (SD = .70).  The average arousal score for positive images was 5.76 (SD 

= .78).  The average arousal score for the neutral condition was 3.44 (SD = .91). [I could 

summarize last 6 sentences in 1 table] 

 Procedure:    Procedures were the same in this experiment as in the prior, with the 

exception of the number of trials.  Whereas in the previous experiment subjects 

completed 150 total trials (120 test trials), in this experiment, subjects completed 350 

total trials (300 test trials).  The distance between the endpoints of the vernier stimuli 

were adjusted over the initial 50 trials.  As with the previous experiment, subjects were 

instructed to report both the direction of the offset and the centrally presented character. 

The magnitude of the offset was adjusted to a level where subjects were approximately 

75% accurate. 

Results 

 Despite adjustments, there were differences in baseline accuracy between the 

negative (M = .76), positive (M = .80), and neutral (M = .80) conditions.  Because of this 
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amount of learning was assessed for each subject by subtracting accuracy in a given 

primed block from performance in the initial unprimed block.  Figure 6 shows the 

percentage of missed fixations for each condition across the 6 primed blocks.  There were 

no reliable effects on errors (block, F(5,330) = 1.19, MSe= .006, p = .17; prime, F(2,66) = 

2.58, MSe = .126, p = .42; block x prime, F(2,66) = 1.68, p = .63).  Figure 7 shows 

normalized learning across blocks.  There was no reliable effect of prime on learning, 

F(2,66) = .564, MSe = .128, p  = .564.  There was an effect of block, F(5, 330) = 8.854, 

MSe = .004,  p  < .001.  As anticipated, there was a reliable block x prime interaction, 

such that subjects in the negative condition ended with a performance level that was 

reliably higher than either the positive or neutral conditions, F(10, 330) = 1.912, p =  

.043. 

Discussion 

 As would be expected given the results of pilot experiment 1, subjects in the 

negative prime condition showed higher rates of learning than subjects in either the 

neutral or positive conditions.  However, it should be acknowledged that subtracting 

initial performance from performance in a given block might result in between group 

differences from sources other than the primes.  It may be easier for subjects to improve 

from a low level of performance than it is when they perform at a higher level.  If this 

were the case, the gains shown by subjects in the negative condition could have resulted 

from their overall lower baseline, pre-prime performance level.  The next experiment 

attempted to bring subject performance to comparable levels between conditions by 

increasing the number of trials so that the correctives applied in this analysis will be 

unnecessary. 
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     Chapter Three 

       Experiment 

This experiment was similar to the second pilot experiment, but included 620 

trials instead of 350.  Additionally, this experiment provided feedback to subjects at the 

end of the calibration period regarding the number of fixations which they reported 

incorrectly. 

Method: 

 Subjects. 48 subjects were recruited from University of South Florida 

undergraduate classes.  All subject had normal or corrected-to-normal vision. 

 Materials: The prime stimuli, PL stimuli, and data gathering program were the 

same in this experiment as the second pilot experiment. 

 Procedure:  After an initial calibration period lasting 60 trials during which the 

magnitude of the offset was varied, participants completed 10 blocks of 50 primed trials 

followed by one unprimed block of 60 trials.  Additionally, when the subjects completed 

half of the primed trials, they were given a 5 minute break which they were required to 

utilize.   

The distance between the endpoints of the two offset lines was adjusted during the 

initial 60 trial calibration stage, as with the previous experiments. When the calibration 

period ended, subjects were informed as to percentage of trials in which the fixation was 

missed and encouraged to maintain fixation. 

Participants were presented with trials in one of three conditions.  Participants 

viewed either negative, positive, or neutral images for 500 ms prior to the target.  
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Because of the limited number of threat-related images in the IAPS, the 100 sampled 

images in each valence category were presented 5 times each.  However, the order of the 

images was completely randomized so that one image could appear multiple times before 

another image was presented once.  It was hoped that this presentation order would 

minimize any adaptation or familiarity effects.    

Results: 

Data for four subjects was thrown out because they missed more than 40% of the 

centrally presented characters.  Analyses were conducted both including and excluding 

these subjects and, while it did not change the reliability of any of the specific statistical 

tests, the following analysis excludes those subjects because they were clearing making a 

trade off between reporting the central character and direction of the offset. 

A graph of the percentage of trials in which subjects failed to report the identity of 

the central character for all trials, can be seen in figure 8.  Any trials in which the subjects 

did not correctly indicate the central character were excluded from subsequent analyses. 

In order to check that errors did not vary as a function of prime, an ANOVA was 

conducted with prime (positive, negative, neutral) as the between subjects factor and 

block (12 levels) as the within subjects factor.  While there were no reliable effects on 

errors (block, F(11,495) =.781, MSe= .008, p  = .66; prime, F(2,45) = 2.40, MSe = .177, p 

= .10; block x prime, F(22,495) = 1.26, p = .193), the effect of prime approached 

reliability.  Subjects seem to miss more of the fixations when presented with the valenced 

primes.  Any tradeoff between accuracy in the offset task and the fixation represents a 

serious problem when learning measured as conditional accuracy in the offset task.  If a 

subject were to fixate the offset and guess with respect to the central character, they 
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would appear accurate in that trials in which the identity of the character is reported 

inaccurately were excluded. 

 Figure 9 depicts accuracy for trials in which subject’s accurately identified the 

centrally presented character.  An ANOVA with prime (positive, negative, neutral) as the 

between subjects factor and block (12 levels) as the within subjects factor revealed a 

reliable effect of block, F(11, 495) = 4.12, MSe = .007, p = .002.  An effect of prime, 

F(2,45)  < 1, or a block x prime interaction, F(22, 495) < 1, failed to obtain. 

 In order to more fully explore the possibility of a tradeoff in performance between 

central character task and offset task, subjects were excluded from the analysis in order to 

control for the number of missed fixations between conditions.  This involved the 

removal of observations for three subjects in the negative condition and two subjects in 

the positive condition.  Without those subjects, the overall number of missed fixations 

was comparable between the positive (M = .104), negative (M = .104), and neutral (M = 

.100) conditions.  A graph of missed fixations, once the groups were trimmed to equalize 

performance can be seen in figure 10.  A graph of offset learning for the remaining 

subjects can be in seen in figure 11.  While any conclusions would be suspect because of 

the violation of the independence assumption of, a second ANOVA was run with same 

factors as the previous for the sake of thoroughness.  This ANOVA used the fixation 

equalized data set.  There was still an effect of block, F(11, 440) = 3.07, p = .001.  There 

was no effect of prime, F(2, 40) < 1, or a block x prime interaction, F(22, 440) < 1. 
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      Chapter Four 

   Discussion 

 While subject’s mean performance across blocks was higher in the negatively 

valenced condition than the positively valenced condition, considerable variability in 

individual performance levels prevent any conclusions regarding the contribution of the 

affective content to accuracy.   This stands in contrast to a study completed recently in 

which subjects’ learning of the same discrimination was influenced by valenced primes.   

It is unfortunate that the subjects’ performance levels in this discrimination task 

were so variable.  The number of trials may still be too low.  This study was designed to 

have twice as many trials as the longest previous experiment using this paradigm, but that 

does not guarantee enough observations.  The number of threatening images used in the 

study was limited to those sampled from the IAPS.  Subjects only completed the primed 

discrimination task on 500 trials.  In contrast, subjects in the study by Phelps et al. (2006) 

completed 10 blocks of 120 trials.  More observations may be needed.  While perceptual 

learning has been shown to develop over short periods of time, typically experiments take 

several hours for any individual subject.  Second, instructions may not have been 

sufficiently explicit.  Subjects seem to have had difficulty maintaining fixation in the 

experiment.  This remains a major problem for this type of task, despite repeated 

reminders for subjects.  While the number of missed fixations did not vary as a function 

of block or prime, the number of errors was still higher than ideal.  Presenting stimuli 

peripherally is just one technique of pulling performance away from ceiling.  Future 

research may need to employ sandwich masks, divide attention in a way that doesn’t 

involve attending to multiple spatial locations, or some similar manipulation. 
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Once performance was equalized between prime conditions by deleting data from 

subjects who missed too many fixations, one can see generally less noisy learning 

functions in figure 11.  While statistical tests cannot be employed because the differential 

removal of subjects from conditions renders analyses dependent, it is clear that, if one 

removes subjects who missed to many fixations, the learning task does not move toward 

superior learning in the negative condition.  

 Pilot experiment 1 only used positive and negative images.  In contrast, in the 

second pilot and the present experiment three valence conditions were employed.  It was 

anticipated that more valence levels in the priming stimuli would allow more detailed 

conclusions regarding the cause of differences observed in the valence conditions.  

Unfortunately, the data is equivocal.  No reliable differences were observed between the 

priming conditions in this final experiment.  Differences between the negative and 

positive conditions in the two pilot experiments would seem to indicate that the 

differences between conditions is due to benefits associated with viewing negative 

images, as opposed to costs associated with viewing positive or neutral images.  

However, such an explanation cannot be excluded.   Certain models of affect suggest that 

positive affect can be considered a sign that attention should be directed elsewhere 

(Carver, 2003).  If that were the case, performance differences would not be solely the 

result of the negative images.  Additional research has indicated that positive affect is 

associated with a broadening of visual attention, as measured by diminished performance 

in a flanker task (Rowe et al., 2006).  It has been suggested for some time that arousal or 

fear might result in a narrowing of attentional focus (Baddeley, 1972).  This could 
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conceivably explain the clear tradeoff between central character and offset accuracy in 

the negative prime conditions. 

 Many of the problems associated with the affective manipulation in this 

experimental design can be remedied by using techniques similar to those employed in 

PL research.  In much the same way that researchers who wish to learn about the role of 

experience in perception gain greater experimental control by creating wholly novel 

situations in which experience can be manipulated experimentally, affective 

manipulations can be more finely controlled by creating wholly new valenced 

associations in an artificial setting.  Subject can be trained to associate a given cue with 

either positive or negative consequences.  This minimizes the influence of personality 

variables, pre-experimental experience, or other individual differences variables which 

might influence reactions to affective cues.  Rather than presenting subjects with images 

that vary along numerous dimensions, stimuli can be selected which minimize variation.  

When looking for what may be small differences between valence conditions, sensitivity 

can be increased by directly manipulating the expectations of participants regarding the 

affective cue. 

 Overall, this experiment exemplifies many of the challenges researchers face 

when attempting to integrate paradigms associated with different areas of inquiry.  While 

affective manipulations may remain a viable tool for researchers to better understand the 

relationship between attention and PL, greater thought, care, experimental control will be 

requisite if reliable inferences are to be drawn. 
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Figure 1. Vernier stimulus used in pilot experiment 1. 
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Figure 2. Experiment 1 Sequence—Calibration Stage 
Fixation- 150ms 

 
Target- 100ms  

 
Initial Prompt- until response 

 
Second Prompt- until response 
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Figure 3. Experiment 1 Sequence—Valenced-prime Stage 
Fixation- 150ms 

 
Prime- 500ms 

 
Target- 100ms  

 
Initial Prompt- until response 

 
Second Prompt- until response 
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Figure 4. Graph showing missed fixations in Pilot Experiment 1 
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Figure 5.  Rate of Learning for subjects in Pilot Experiment 1 
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Figure 6.  Missed Fixations in Pilot Experiment 2. 
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Figure 7. Normalized learning in Pilot Experiment 2 
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Figure 8. Graph showing missed fixations in Experiment 3 
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Figure 9.  Performance for participants in the Experiment 
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Figure 10.  Missed Fixations in Experiment once subjects excluded to equalize 
performance 
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Figure 11.  Performance in the offset task for the Experiment once the groups were 
trimmed to equalize performance. 
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