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Enduring Changes In Reward Mechanisms After Developmental Exposure To Cocaine: The Role 

Of The D2 Receptor 

Kirstie H. Stansfield 
 

ABSTRACT 
 

During adolescent brain maturation, there are likely sensitive periods where 

environmental conditions, including drug exposure, may influence development by modifying 

neuronal connections.  Altering neuronal function may produce different phenotypes than 

expected under normal conditions that may influence subsequent responding to drugs of abuse 

after the brain is fully mature. Experiment one investigated the relationship between novelty 

preference and cocaine place preference in adolescent and adult rats. High responding 

adolescent rats displaying greater free choice novelty exploration (but not forced novelty 

locomotion) expressed decreased cocaine place conditioning compared to low responding rats. 

No relationship was found in adult rats. Experiment two evaluated novelty-induced behaviors in 

adulthood after adolescent cocaine exposure. Repeated cocaine administration produced greater 

stress and anxiogenic behavioral responses to novelty in adult rats.  Repeated alcohol 

administration produced less-inhibited novelty-induced behaviors in adulthood. Experiment three 

and four evaluated the consequence of developmental cocaine exposure on the rewarding 

efficacy of cocaine in adolescence and adulthood.  Additionally, the interaction of D2 receptors 

and the rewarding efficacy of cocaine were investigated.  After developmental cocaine exposure, 

adolescent and adult rats demonstrate decreased rewarding efficacy to cocaine.  Importantly, 

blockade of the D2 receptor prevents cocaine-induced neurochemical changes, potentially 

regulating the behavioral and neurochemical alterations that occur after repeated drug use that 

increases the likelihood of dependence.  Together, these data implicate both short and long-term 



 

vi 

behavioral adaptations that occur after developmental cocaine exposure that may result in a 

predisposition to develop adulthood drug dependence.
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Chapter One 

Introduction 

Adolescence is a period when the brain is undergoing many complex changes that can 

exert long-term influences on decision making and cognitive processes (for review, see (Spear 

2000)).  It is also a period of experimentation, and Estroff (Estroff, Schwartz et al. 1989) has 

reported that illicit drug use can begin as early as age 12, with peak periods of initiation between 

ages 15 and 19.  The mean age of illicit drug initiation in adults categorized as having a 

substance use disorder is 16 years old, with initiation rare after age 20 (Anthony 1991).  In fact, 

initiation rates are so high that more than half (54%) of high school seniors have had at least one 

experience with an illicit compound (Johnston LD 2002).   During the 1990’s, there was a steady 

rise in the frequency of cocaine use in teenagers, by 2003, 4.3% of eighth graders, 5.7% of tenth 

graders, and 8.2% of high school seniors reported frequent use of cocaine (Johnston LD 2002).  

The fact that initiation of cocaine use is so dramatic during the adolescent period is particularly 

disconcerting given that the escalation of cocaine use appears more rapidly among teenagers 

than adult users, suggesting a greater addictive potential during adolescence than in adulthood 

(Estroff, Schwartz et al. 1989).  Generally, adults who initiate drug use during adolescence are 

more likely to have higher lifetime rates of drug use and progress to dependency more rapidly 

than those who began drug use in adulthood (Helzer JE 1991; Kandel, Yamaguchi et al. 1992; 

Clark DB 1998).   Moreover, adolescents demonstrate a more abrupt progression of illicit drug 

use and development of substance use disorders than adults (Warner, Kessler et al. 1995), 

suggesting that this ontogenetic period renders the adolescent more vulnerable to addiction.   

 Development of the central nervous system (CNS) during adolescence may play a key 

role in the increased likelihood to initiate drug use (for review, see (Spear 2000).  Moreover, 

disruption of development of the CNS may result in subsequent long-term increases in the 

probability of drug use and dependence. During adolescence, critical neural structures involved in 
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substance abuse are regulated primarily by the limbic system which is associated with emotional 

and impulsive behaviors (for review, see (Spear 2000; Chambers RA 2003).  Adolescence is a 

critical period of transition from a more emotional regulation of the structures that mediate 

substance abuse to a more mature cortical regulatory mechanism (Spear 2000). During 

adolescence, the primary dopaminergic (DAergic) projections to the nucleus accumbens septi 

(NAcc) extend from the ventral tegmental area (VTA), and are predominately modulated by the 

amygdala (Oades and Halliday 1987). However in adulthood, this previously amygdaloid-

modulated system receives projections from the medial prefrontal cortex (mPFC) this 

developmental transition is critical in the functional nature of the system (Cunningham, 

Bhattacharyya et al. 2002).  The development of this system allows for a transition from more 

emotionally directed behavior to more contextually regulated behavior. Because adolescents lack 

sufficient cortical regulation (provided by the mPFC), their behavior tends to be more impulsive 

and guided by emotion than adults, increasing the chances of risky behaviors (e.g. initiating drug 

use) (Campbell, Lytle et al. 1969; Chambers RA 2003).  Additionally, repeated administration of 

cocaine during this period may cause a functional change in accumbal dopamine (DA) levels by 

altering amygdalar modulation of accumbal DA release and/or altering the functional 

role/development of the mPFC input; consequently, leading to an increased risk of dependency 

during adulthood.  These ontogenetic changes, with the fact that adolescence is a key period of 

drug initiation, together, make a powerful argument for treating adolescence as a key time period 

for investigating the development of drug addiction.  

Theories of Addiction 

Anhedonia Hypothesis:  Over the years, many different theories have been proposed to explain 

the mysteries of drug addiction.  One of the initial beliefs about addiction was that early in the 

process, drug use was maintained due to subjective euphoric effects and with subsequent 

repeated exposure; homeostatic neuroadaptations lead to tolerance and dependency.  Further, 

following these compensatory changes, withdrawal becomes extremely unpleasant, and often the 

individual would reestablish drug use again to avoid the negative symptoms associated with 

withdrawal. 
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This theory has been known by a variety of names such as:  pleasure-pain, hedonic 

homeostasis, hedonic dysregulation, positive-negative reinforcement and reward allostasis 

(Solomon 1980; Koob, Caine et al. 1997; Koob and Le Moal 1997; Koob and Le Moal 2001). The 

basic principle of this theory is that a drug user initiates drug use to get the positive highs and 

after the neuroadaptations, to avoid the negative lows associated with withdrawal.  The 

dependence on the drug to feel “normal” is presumed to sustain regular and addictive use.  This 

theory has limitations in that it fails to explain drug relapse.  Drug addicts often relapse into drug-

taking again, even after they have been abstinent and free from the effects of withdrawal.  Also, 

the absence of withdrawal symptoms does not protect against future relapse, as so many drug 

rehabilitation survivors can confirm.  To summarize, conditioned feelings of withdrawal do not 

seem to be sufficiently strong enough or reliable enough to serve as the principle explanation of 

relapse (Robinson and Berridge 1993).   

Aberrant Learning Theory:  Another more recent theory of addiction that has gained a 

considerable amount of attention investigates the role of learning in the transition to addiction.  

For example, cues that predict the availability of rewards can powerfully activate brain reward 

circuitry [e.g. NAcc] in both non-human animals (Schultz, Dayan et al. 1997) and humans 

(Knutson, Adams et al. 2001), sometimes even better than the reward itself.  Animals that are 

trained in the conditioned place preference paradigm (CPP) will spend more time in the 

environment which was previously paired with the drug (Tzschentke 2000) and less time in the 

unpaired chamber.  Also, rats that were differentially trained to lever press for either cocaine and 

an auditory stimulus or water and a different auditory stimulus, showed discrete populations of 

accumbal neurons that were selectively activated by cocaine-associated stimuli but not water-

associated stimuli (Carelli and Ijames 2001).  Rats were able to discriminate between the auditory 

stimuli cues for cocaine and water and therefore were anticipating and/or expecting the reward, 

as evidenced by the activation of neurons in the NAcc.  This learning theory ascertains that the 

change from recreational use to addiction involves a transition from behavior originally controlled 

by explicit and cognitively guided expectations produced by the memory of drug pleasure to 

compulsive drug use.  
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 However, this fails to explain why drug cues become overpowering.  Humans exhibit 

many habits in every day life, but there is a noticeable difference in this type of behavior as 

compared to the compulsive actions of drug addicts.  This is a very insightful theory; however it 

fails to explain why compulsive behaviors become dominant over everyday activities, which leads 

to the next theory of addiction.   

Incentive-Sensitization Theory:  One contemporary theory of addition, labeled incentive-

sensitization, focuses on how drug cues trigger excessive incentive motivation for drugs, leading 

to compulsive drug seeking, drug taking and relapse (Robinson and Berridge 1993).  The main 

idea being that drugs of abuse change specific connections and circuits in brain systems, 

specifically accumbal-related areas, that mediate motivational functioning and learning, the 

emphasis of incentive salience.  As a consequence, these neural circuits may become enduringly 

hypersensitive (or sensitized) to specific drug effects and to drug-associated stimuli (Schultz, 

Dayan et al. 1997).  This drug-induced change is called neural sensitization (Berridge and 

Robinson 1998).  Berridge and Robinson (Berridge and Robinson 1998) have proposed that this 

sensitized system leads psychologically to excessive attribution of incentive salience to drug-cues 

causing craving for drugs.  The incentive-sensitization view suggests that addiction is a disorder 

of incentive motivation due to drug-induced sensitization of neural systems that mediate stimulus 

salience; therefore drug craving and use can be triggered by the presence of drug cues whose 

enhanced salience increases the likelihood of addictive behaviors (Robinson and Berridge 1993).  

This theory is appropriate for explaining the occurrence of findings such as the effects of novel 

and aversive stimuli increasing accumbal DA levels (Bradberry, Gruen et al. 1991; Imperato, 

Angelucci et al. 1992).                               

 In summary, all three of these theories contribute much insight to aid in the 

understanding of drug addiction.  However, just one theory cannot seem to explain addiction in its 

entirety, but possibly a combination of them can give a more accurate representation of what is 

occurring along the complex path to addiction. 
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Novelty Preference 

 The frequency of substance use disorders is elevated in adults diagnosed with several 

psychological disorders (Reiger DA 1990; Anthony 1991; Helzer JE 1991; Bucholz 1999; Blanco, 

Moreyra et al. 2001).  Adolescents with similar disorders are also more likely to be diagnosed with 

substance use disorders (Swadi 1999; Zeitlin 1999; Shaffer, Forman et al. 2000).  The fact that 

these mental disorders and adolescence are associated with substance use disorders suggests 

that common brain mechanisms may trigger drug susceptibility and potentially, addiction.  These 

biological/neurochemical substrates might manifest into a behavioral trait or traits present in 

adolescents.  Defective impulse control is a behavioral trait that characterizes psychiatric and 

substance use disorder groups (Swadi 1999; Moeller, Barratt et al. 2001; Rogers and Robbins 

2001). Adolescence is marked by high levels of risk taking behavior relative to individuals of other 

ages.  Human adolescents exhibit a disproportional amount of reckless behavior, sensation 

seeking and risk taking (Arnett 1999; Trimpop RM 1999).  Not only is novelty seeking and high 

risk behaviors during adolescence present in humans, but also non-human animals (Douglas, 

Varlinskaya et al. 2003; Stansfield, Philpot et al. 2004). Adolescent mice engage in greater risk 

taking during exploration of a plus-maze (Macri S 2002) and exhibit hyperactivity on several 

behavioral measures (Adriani, Chiarotti et al. 1998; Adriani and Laviola 2000).  Furthermore, 

studies have demonstrated a strong correlation between novelty preference and impulsive 

reactivity with both the rewarding efficacy of psychomotor stimulants and self-administration rates 

in animals (Hooks, Colvin et al. 1992; Klebaur, Bevins et al. 2001). High sensation seeking (HS) 

rats show higher rates of amphetamine and cocaine-induced locomotor activity and will self-

administer these drugs more readily than low sensation seeking (LS) rats (Hooks, Jones et al. 

1991).  Moreover, HS rats seem to participate in far greater risk taking behaviors and show much 

higher behavioral and neurochemical responses in reaction to environmental stressors or 

pharmacological challenges than LS rats (Bevins RA 1997; Klebaur, Bevins et al. 2001).  Taken 

together, these data suggest a relationship between sensation-seeking and novelty-

seeking/impulsivity, making it more likely that adolescent’s will become involved in risky behaviors 
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which may include drug use, initiation and increased vulnerability to the rewarding properties of 

these drugs.   

Conditioned Place Preference 

 CPP is a behavioral paradigm used to measure the motivational and rewarding/ aversive 

properties of a variety of stimuli including:  water, food, sucrose, access to conspecifics, novelty, 

access to copulation and drugs of abuse (i.e. cocaine, alcohol, nicotine, LSD) (for review, see 

(Bardo and Bevins 2000).  In this procedure, a stimulus (for example: cocaine) is paired to an 

environment with distinct visual and tactile cues and at a different time point, a neutral stimuli (i.e. 

saline injection) is paired with a different environment with different visual and tactile cues.  After 

several pairings (typically 4-8 total exposure to both chambers), the animals are allowed to freely 

explore both environments and time spent in the drug-paired chamber is compared to the saline-

paired chamber.  If the animal spends significantly more time in the drug paired chamber 

compared to the saline paired chamber, it is determined to be a CPP, and the drug is considered 

to be appetitive, however, if the animal spends significantly less time in the drug paired chamber 

compared to the saline paired chamber, this is considered a conditioned place aversion (CPA) 

and the drug is considered aversive.   

 Many studies have confirmed the CPP-inducing effects of amphetamine and cocaine in 

rats and mice.  Most of these studies have used adult rats or mice; however, cocaine-induced 

CPP has been demonstrated in 10-, 17-, 35- and 45-day old rats (Pruitt, Bolanos et al. 1995; 

Badanich, Adler et al. 2006) and 21-day old mice (Laviola, Dell'Omo et al. 1992) and 

amphetamine-induced CPP has been demonstrated in 14-day old mice (Laviola, Dell'Omo et al. 

1994).  Reward measured by CPP has also been demonstrated for the psychostimulants and DA 

reuptake blockers (-)-amphetamine (Timar, Gyarmati et al. 1996), cocaethylene (Schechter 

1995), Methamphetamine (Cunningham and Noble 1992), GBR12783 (Le Pen, Duterte-Boucher 

et al. 1996), nomifensine (Martin-Iverson, Ortmann et al. 1985), methylphenidate (Clark DB 1998; 

Sellings, McQuade et al. 2006) and bupropion (Ortmann 1985).  The above studies demonstrate 

that drugs that cause an increase in extracellular DA produce CPP, however, the attempts to 
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determine DA receptor subtypes responsible for mediating the DAergic effect have yielded 

inconsistent findings.   

 Researchers have determined that drugs that yield increased extracellular DA are 

rewarding, however, to elucidate DA’s role in this behavior, drug conditioning that decreases 

extracellular DA needs to be evaluated. A conditioned place aversion (CPA) has been 

demonstrated for the D1 antagonists SCH 23390, SCH 39166 and A-69024 (Shippenberg and 

Herz 1987; Shippenberg, Bals-Kubik et al. 1991; Cervo and Samanin 1995; Funada and 

Shippenberg 1996), a high dose of the atypical neuroleptic Olanzapine (Meil and Schechter 1997) 

and the DA release inhibitor CGS 10746B (Calcagnetti and Schechter 1991).  Taken together, 

these results suggest that elevated extracellular DA is rewarding, whereas decreased 

extracellular DA is aversive, further implicating DAergic mechanisms in initiation and possibly 

maintenance, of drug dependence. 

Mesolimbic DA Pathway and Reward 

Ventral Tegmental Area (VTA):  The mesolimbic system begins in the ventral tegmental area 

(VTA) and projects through the medial forebrain bundle to the amygdala, lateral septum, bed 

nucleus of the stria terminalis, hippocampus, and the NAcc (Oades and Halliday 1987).  The VTA 

is subdivided into two compartments, which are determined by the localization of cell bodies in 

the VTA and their projection areas.  Thus, the paranigral DA neurons project to the NAcc and are 

associated with reward and locomotor activity (Le Moal and Simon 1991) and the parabrachial 

DA neurons project to cortical structures that are involved with the modulation of cognitive 

functions (Williams and Goldman-Rakic 1998). Electrical self-stimulation of the VTA has generally 

shown an increase in DA release and metabolism in the NAcc and medial prefrontal cortex 

(mPFC) (Fiorino, Coury et al. 1993).  The VTA is important as extracellular DA regulates neuronal 

release in downstream targets via activation of DA autoreceptors.  Thus, simulation of DAergic 

neurons in the VTA causes an increase of extracellular DA, which subsequently activates the D2 

autoreceptor, which inhibits firing in the VTA and downstream accumbal and cortical targets.   

 Different drugs of abuse have effects on DA along the mesolimbic pathway; however, not 

all drugs have the same effect on different regions.  For example, animals will self administer 
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ethanol directly into the VTA (Rodd ZA 1998) but interestingly enough, animals will self-

administer cocaine into NAcc (McBride, Murphy et al. 1999), but not the VTA (De La Garza, 

Callahan et al. 1998).  This shows that although the mesolimbic pathway mediates the rewarding 

effects of certain drugs, their primary action occurs at different points of the pathway, and 

possibly by different mechanisms/pathways (e.g. reuptake inhibition vs. stimulation of pre- or 

postsynaptic receptors).  Even though the NAcc has been of primary interest in examining the 

DAergic modulation of acute administration of DAergic agonists (e.g. cocaine and amphetamine), 

the VTA is important when investigating long term changes in accumbal neuron sensitivity after 

chronic DAergic agonist exposure as it has been demonstrated that VTA autoreceptors sensitivity 

changes after repeated exposure to psychostimulants (Henry, Hu et al. 1998). 

NAcc:  The NAcc is located in the basal forebrain, rostral to the preoptic area and immediately 

adjacent to the septum and is innervated by DA-secreting terminal boutons from neurons of the 

VTA (Skagerberg, Lindvall et al. 1984).  The accumbens contains two functionally distinct 

subcompartments:  the shell and core (for review see, (Rodd ZA 1998; Kelley 2004)).  The shell is 

strongly interconnected with the hypothalamus and VTA and is important in regulating ingestive 

behaviors (Rodd ZA 1998).  Reciprocal DAergic innervations from the VTA to the accumbens 

shell modulate motivational salience and contribute to establishing learned associations between 

motivational events and concurrent environmental perceptions (Bassareo and Di Chiara 1999).  

In contrast, the core is anatomically associated with the anterior cingulate and orbitofrontal cortex 

and appears to be a primary site that mediates the expression of learned behaviors in response 

to stimuli predicting motivationally relevant events (Kelley 2004). The involvement of the core in 

expressing adaptive behavior depends not on DAergic afferents, but rather, on glutamatergic 

afferents from the PFC (Di Ciano, Cardinal et al. 2001). 

 The output from the NAcc is projected to the ventral pallidum, which has been postulated 

to be responsible for motor execution of goal directed behaviors.  It has been hypothesized that 

the NAcc serves as an interface between limbic and motor systems (Nauta, Smith et al. 1978).  

Importantly, stimulation of DA receptors in the NAcc will reinforce behavior [e.g. animals will lever 

press for electrical stimulation of the NAcc (Olds and Fobes 1981).  Animals will also lever press 
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for direct infusions of DA and amphetamines directly into the NAcc, and some evidence has 

shown that animals will directly self-administer cocaine into the shell, but not the core of the NAcc 

(McKinzie, Rodd-Henricks et al. 1999).   DA levels in the NAcc can be measured by in vivo 

microdialysis, a technique that samples extracellular cerebral spinal fluid.  Many studies have 

found that administration (either self-administration or experimenter administration) of cocaine 

and amphetamine increases the levels of extracellular DA in the NAcc (Hoebel, Monaco et al. 

1983).  As mentioned earlier, the NAcc not only mediates reward, but other salient (e.g. aversion) 

stimuli as well (Salamone 1992).  For example, footshock and tail pinch increase accumbal DA 

release in rats as measured by in vivo microdialysis.  Moreover, presentation of a cue previously 

paired with drug administration increases accumbal DA, as does exposure to a novel stimulus or 

novel environment (De Leonibus, Verheij et al. 2006), indicative that the NAcc not only mediates 

rewarding stimuli, but also aversive and salient stimuli.    

 Extensive research has demonstrated complex mechanisms regulating not only the 

accumbens in reward, but also other aversive and attentional stimuli and extracellular DA; 

suggesting the possibility that drug use may not be maintained just because it is rewarding, but 

because it is conditioned. 

DA:  There are several neurotransmitters that have a considerable effect on brain activity.  One 

that seems to be of major interest in regards to the effects of drugs of abuse including cocaine is 

DA.  DA is synthesized from tyrosine and is broken down into 3,4-dihydroxyphenylacetic acid 

(DOPAC) and homovanillic acid (HVA) (Lindvall and Bjorklund 1974). DA acts via G protein-

coupled receptors in a typical neuromodulatory fashion (Missale, Nash et al. 1998).  These 

neuromodulatory actions are characterized by large temporal and spatial dimensions (Greengard 

2001), that surpass the immediate surroundings of the synapse to include distant somatodendritic 

and presynaptic receptors following diffusion of the transmitter through the extracellular space 

(Gonon 1997).    DA neurons are characterized by two patterns of activity:  a tonic single-spike 

mode, and a phasic, bursting mode (Grace 2000).  Tonic firing is reflected by steady state levels 

of extracellular DA and is responsible for basal DAergic concentrations, whereas phasic, burst 

firing is characterized by more rapid changes in extracellular DA that may be triggered by 
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rewarding, aversive or salient stimuli (Schultz 1998; Bradberry and Rubino 2004).  Once 

released, DA diffuses throughout the extracellular fluid from which it is slowly cleared either by 

reuptake (e.g. dopamine transporter [DAT] or metabolism (e.g. COMT or MAO).  Many 

researchers have concluded that DA plays an important role in mediating the reward value of 

food, drink, sex, drugs of abuse, and brain stimulation (for review, see (Bardo 1998). Although the 

exact mechanisms are still unknown, it is believed that drugs of abuse seize the reward circuitry 

that mediates responding to natural reinforcers such as food (Hernandez and Hoebel 1988) and 

sex (Damsma, Pfaus et al. 1992). The most compelling evidence that supports this theory is that 

animals self-administer chemicals that mimic DA (i.e., direct DA receptor agonists) or increase 

extracellular DA (i.e., indirect agonists) directly into the brain (e.g. NAcc).  Moreover, in operant 

procedures, the response contingent delivery of DA agonists directly into the NAcc can serve as a 

reinforcer for that response.  Hoebel et al. demonstrated that rats self-administer D-amphetamine, 

which increases extracellular DA, within the NAcc (Hoebel, Monaco et al. 1983).  In addition, 

Carlezon has demonstrated that rats self-administer DA reuptake blockers and that rats acquire 

and maintain self-administration of direct DA receptor agonists into the NAcc (Carlezon, Devine et 

al. 1995; McBride, Murphy et al. 1999).  Using place-preference procedures, the rewarding 

effects of direct and indirect DA agonists (e.g. amphetamine and cocaine) have been shown.  

Importantly, animals do not self-administer DA antagonists that decrease extracellular DA, and 

decrease responding for DAergic agonists when co-administered with DA antagonists (Bari and 

Pierce 2005). It has been hypothesized that long term elevations of mesolimbic DA by chronic 

cocaine exposure results in neuroadaptations within the mesolimbic DA system that manifest 

behaviorally as a transition from casual drug use to dependency (Chao and Nestler 2004). Two 

critical targets for these long-term adaptations are the DAT and D2 receptors, which mediate 

function and number of DAT in DAergic neurons (Mayfield and Zahniser 2001). 

D2 & DAT:  Dopamine receptors have been classified into two categories, D1-like (i.e. D1 and 

D5) and D2-like (i.e. D2, D3 and D4 receptors). Although D1-like receptors are located 

exclusively postsynaptically, D2-like are located postsynaptically and presynaptically, where they 

serve as autoreceptors, modulating membrane excitability, DA synthesis, DA release and 
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membrane transporter density (Wolf and Roth 1987; Santiago and Westerink 1991).  D1 and D2 

receptors are G-protein coupled and differ in their activity on the signal transduction pathway, 

3′,5′-cyclic adenosine monophosphate (cAMP) (Birnbaumer and Brown 1990). Activation of D1 

receptors stimulates adenylate cyclase via Gs [which stimulates protein kinase A (PKA)], while 

activation of D2 receptors inhibits adenylate cyclase via Gi (i.e. inhibition of PKA) (Kebabian and 

Calne 1979; Birnbaumer and Brown 1990).  In contrast, activation of D1 and D2 receptors exert 

similar influences on the protein kinase C (PKC) pathway where stimulation of the D1 (Giambalvo 

and Wagner 1994) or D2 receptor results in a reduction of PKC levels (Iannazzo, Sathananthan 

et al. 1997).  Although stimulation of D1 receptors following cocaine administration is critical in the 

rewarding effects of the drug, it is likely that long-term adaptations to chronic cocaine exposure 

are mediated by the stimulation of D2 autoreceptors which are involved in regulating synaptic DA 

levels (Wolf and Roth 1987; Santiago and Westerink 1991) and therefore, D2 receptors represent 

an important area of investigation in the development of addiction. 

 One of the presynaptic mechanisms regulated by the presynaptic autoreceptor are the 

DAT (Mayfield and Zahniser 2001).  The DAT are the target of some drugs of abuse (e.g. 

amphetamine and cocaine), and may mediate the rewarding and reinforcing aspects of these 

drugs.  Stimulants like cocaine and methylphenidate competitively inhibit DAT resulting in 

increased synaptic concentration of DA released from axon varicosities and dendrites, prolonged 

interaction of DA with both its postsynaptic and presynaptic receptors and behavioral activation. 

 Several studies have demonstrated that repeated cocaine administration results in 

increased DAT in the NAcc (Daws, Callaghan et al. 2002).  DAT serve to remove DA from the 

synaptic cleft into the presynaptic terminal and therefore are important in regulating synaptic DA 

levels.  Altering DAT densities results in modification of DA transmission by affecting DA 

reuptake: with increased DAT resulting in decreased synaptic DA, and decreased DAT number 

resulting in elevated synaptic DA levels (Zhang, Coffey et al. 1997).  To demonstrate the 

importance of DAT and drug addiction, drug reward and reinforcement were investigated in DAT 

knockout mice.  Contrary to expectations, DAT knockout mice still self-administer cocaine and 

exhibit conditioned place preference for cocaine (Hall, Li et al. 2002), which led to the 
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reevaluation of the DA hypothesis.  However, complete deletion of DAT causes adaptive changes 

in DA homeostasis, including alterations in DA synthesis, storage, extracellular levels, and 

receptor expression and functions (Caron 1996).  These adaptive changes may significantly alter 

normal reward pathways.  Recently a knockin mouse line was generated carrying a functional 

DAT that is insensitive to cocaine (Chen, Tilley et al. 2006).  In these mice, cocaine suppressed 

locomotor activity, did not elevate extracellular DA in the NAcc, and did not produce a conditioned 

place preference. 

 Importantly, changes in PKC activity have been demonstrated to alter DAT density in rats 

(Kitayama, Dohi et al. 1994) and humans (Vaughan, Huff et al. 1997).  The activation of 

intracellular signaling proteins, specifically PKC, regulates the surface expression of DAT 

(Mayfield and Zahniser 2001).  Inhibition of PKC by D2 receptor activation prevents the 

internalization of DAT, maximizing the number of active transporters on the membrane surface, 

and attenuating synaptic DA levels (Pristupa, McConkey et al. 1998).  Conversely, increased 

PKC activity in the absence of D2 receptor stimulation results in increased DAT internalization, 

fewer active transporters and consequently greater synaptic DA levels (Huff, Chio et al. 1998).  In 

vivo studies have demonstrated that repeated cocaine-induced increases in striatal uptake were 

attenuated by pretreatment with pimozide, a D2-antagonist (Parsons, Schad et al. 1993).  

Moreover, acute or chronic exposure to a D2 receptor antagonist decreases DA transport into 

striatal tissue in vitro and local administration of a D2 antagonist reduces DA uptake in vivo 

(Meiergerd, Patterson et al. 1993; Rothblat and Schneider 1997).  Clearance of DA in vivo has 

been shown to decrease in the striatum, NAcc and PFC following administration of a selective 

D2- but not D1- antagonist (Cass and Gerhardt 1994).  Meiergerd (Meiergerd, Patterson et al. 

1993) demonstrated that DA uptake velocity is increased after agonist activation of D2 receptors, 

and is subsequently blocked by a selective D2 receptor antagonist.  Taken together, these 

modifications in DAT number by D2 receptor mediated PKC activity indicate the critical role of D2 

receptor/ DAT interactions in the regulation of synaptic DA levels and implicate D2 receptor 

activity as a potential target for the manifestation of long term adaptations in the mesolimbic DA 

system that manifest behaviorally as addiction following repeated cocaine. 
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Cocaine & Mesolimbic DA system 

 When cocaine is administered, it reaches all areas of the brain, but readily binds to 

specific areas within the reward pathway (i.e., NAcc and VTA).  In a normally functioning 

individual, DA is released from the presynaptic cell into the synaptic cleft where it either binds to 

the postsynaptic cell or reuptaken into the presynaptic cell by DAT.  When cocaine is 

administered, it binds with high-affinity to the DAT, which in turn, inhibits reuptake into the 

presynaptic cell, therefore increasing the amount of DA present in the synaptic cleft. Acute doses 

of cocaine have been shown to increase accumbal DA levels from 200-1170% for 80 to 100 

minutes depending upon the dose (Kuczenski, Segal et al. 1991; Camp, Browman et al. 1994; 

Strecker, Eberle et al. 1995; Reith, Li et al. 1997).  As shown from previous research, acute 

administration of cocaine, regardless of dose but following a dose response curve, produces 

significant and long lasting increases in extracellular levels of DA in the mesolimbic DA system.  

Similar findings have been shown in preadolescent and adolescent animals (Philpot and Kirstein 

1998; Badanich, Adler et al. 2006). 

 Repeated administration of psychostimulants results in behavioral sensitization or 

reverse tolerance in an enhanced behavioral response to a subsequent drug challenge 

(Vanderschuren and Kalivas 2000).  Consequently, rats who have repeatedly administered 

cocaine over at least 7 days, will show an elevated locomotor reaction in response to the drug 

which prevails up to seven days after cessation of the drug (Cass and Zahniser 1993).  

Sensitization not only occurs behaviorally, but neurochemically.  Repeated drug exposure 

produces changes and adaptations at a cellular level which in turn alters the functioning of the 

entire pathway in which those neurons work (Kleven, Woolverton et al. 1988).  These changes 

lead to the complex processes of tolerance, dependence and of course, sensitization (Wise 1980; 

Koob and Le Moal 1997). Sensitization is characteristic of repeated intermittent cocaine 

administration, whereas tolerance (defined as a smaller effect from a given dose of drug after 

previous exposure to that drug) occurs after continuous infusion of cocaine (Post 1980).  Rats 

injected once a day with cocaine show enhanced inhibition of DA uptake, whereas rats getting a 

continuous infusion of cocaine show attenuated inhibition of DA uptake by cocaine (Izenwasser 
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and Cox 1992).  Also, there seems to be different degrees of sensitization, such that longer times 

between cocaine injections produce greater sensitization (Post 1980). Sensitization, tolerance 

and dependence also result in functional adaptations such as increased cAMP pathway activity, 

increased calcium regulatory element binding protein (CREB) and also increased changes in 

immediate early genes (e.g. FosB) (Nestler and Aghajanian 1997). 

 Repeated administration of cocaine also produces significant changes in DA during 

withdrawal.   In vivo microdialysis studies in the NAcc have shown that once self-administration of 

cocaine has ended, basal DA levels decrease significantly during this withdrawal period (Parsons, 

Smith et al. 1991).  Taken together, these studies in adult animals show that repeated cocaine 

administration results in complicated changes in the DA mesolimbic pathway that continue long 

after drug use has stopped, and processes such as these may be implicated in craving and 

relapse.  

Several researchers have demonstrated the importance of D2 receptors and DAT in the 

mediation of cocaine reward.  D2 antagonists block the ability of cocaine to support a CPP 

(Adams, Careri et al. 2001).  Additionally, D2 antagonists administered systemically not only 

decrease cocaine self-administration, but reduce the breakpoint to self-administer cocaine 

(Roberts, Loh et al. 1989; Barrett, Miller et al. 2004).  The NAcc shell may mediate these effects 

as direct infusions of a D2 antagonist also decrease cocaine self-administration (Bari and Pierce 

2005).  These studies demonstrate that blockade of the D2 receptor decreases the rewarding and 

reinforcing efficacy of cocaine.  Additionally, some researchers have been unable to establish a 

CPP in DAT knockout mice (Sora, Hall et al. 2001) whereas Sora et al. has demonstrated a CPP 

in DAT knockout (Sora, Wichems et al. 1998).  Moreover, inhibition of DAT reduces cocaine self-

administration (Lindsey, Wilcox et al. 2004) and decreased DAT binding has been associated 

with decreased cocaine self-administration (Wee, Carroll et al. 2006), indicating a role of DAT in 

the mediation of reward and reinforcement of cocaine. Importantly, chronic cocaine administration 

has been shown to upregulate DAT (Daws, Callaghan et al. 2002), and mice exhibiting an 

overexpression of DAT find cocaine more rewarding than wild-type mice (Donovan, Miner et al. 

1999) implicating the importance of DAT density in the rewarding efficacy of cocaine. 
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Mesolimbic DA pathway and Behavior during adolescence 

 Adolescence is an important developmental period.  It is also the period of initiation and 

maintenance of drug use and potentially drug addiction.  Sexual maturation in the male rat 

encompasses postnatal days (PND) 30 through 55; this is the indicator to denote adolescence 

(Odell 1990) and the reason for selecting these ages to investigate.  Very few models of 

adolescent drug addiction in animals have been developed to examine the remarkable 

differences between adolescents and adults.  

 Novelty seeking and high-risk behaviors seem to be highly associated with adolescence.  

Along this unique stage of development, distinct social, behavioral and neurochemical changes 

emerge, to assist with the important life events that will occur.  For example, learning and 

acquiring skills necessary to permit survival away from parental caretakers (Spear 2000).  This 

phenomenon being evolutionary adaptive as a means to avoid inbreeding (Schlegel A 1991). 

 In order for a successful transition from childhood to adulthood, an important aspect to 

gaining independence is when adolescents shift their social orientations from adults to peers 

(Steinberg 1989) and typically spend a significant amount of time interacting with their peers  as 

opposed to adults.  Adolescence is also marked by high levels of risk taking behavior relative to 

individuals of other ages.  Human adolescents as a group exhibit a disproportional amount of 

reckless behavior, sensation seeking and risk taking (Trimpop RM 1999).  Risk taking in 

adolescents poses some negative consequences such as accidents, pregnancy, AIDS, suicides 

and drug dependence (Irwin 1989).  Although risk taking may be hazardous, it can also be 

beneficial.  Risk taking and exploratory type behaviors allow an individual to explore adult 

behavior and may also serve (as mentioned above) as a protective evolutionary factor.  

Adolescent increase in risk taking and novelty seeking may trigger adolescent departure from the 

parental units by giving incentive to explore novel areas away from home and thus avoiding 

inbreeding via dispersal of the offspring during sexual development (Schlegel A 1991).   

 Similar to humans, adolescent rats are behaviorally different from younger and older rats. 

Periadolescent rats have been reported to be more hyperactive and inattentive (Spear and Brake 

1983), exhibit greater novelty-preference (Stansfield and Kirstein 2006) and have reduced 
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responsiveness to some of the effects of alcohol (Silveri and Spear 1998), amphetamine 

(Bolanos, Glatt et al. 1998), and cocaine (Laviola, Wood et al. 1995).   In the CPP paradigm, 

adolescent rats show a preference for nicotine, whereas the adult rats did not (Vastola, Douglas 

et al. 2002).  Also, it has been demonstrated that adolescent rats showed a preference for 

moderate doses of alcohol and cocaine, whereas the adults had no preference (Philpot, Badanich 

et al. 2003; Badanich, Adler et al. 2006). Many behavioral alterations that are age-specific seen in 

human adolescents are observed in adolescent rats from PND 30 to PND 42, making adolescent 

animal models very useful to evaluate neurochemical and behavioral changes due to drug use 

during this important stage of development.  

Impact of cocaine during adolescence 

 Few studies have examined the DAergic neuroadaptations that take place after repeated 

exposure to cocaine during adolescence, not only a developmental period during which drug use 

initiation is widespread, but also a critical period for the remodeling of the mesolimbic and 

mesocortical brain regions and their neuronal DA projections (for review, see (Spear 2000)).  

Rosenberg & Lewis (Rosenberg and Lewis 1995) were among those researchers who saw a 

common developmental pattern in the overproduction and subsequent pruning of synaptic 

connections during the period preceding adulthood.  The D1 and D2 receptors have been of 

major focus for years in regards to overproduction and pruning as these receptors increase in 

density in the first few weeks of life (Hartley and Seeman 1983).  Subsequently, Teicher et al 

have demonstrated receptor overproduction and elimination in both the striatum and prefrontal 

cortex (Teicher, Andersen et al. 1995; Andersen, Thompson et al. 2000).  In addition, alterations 

in receptor binding and sensitivity in various neurotransmitter systems have been reported during 

adolescence (Trauth, Seidler et al. 1999) along with changes in the myelination of neurons 

(Hamano, Iwasaki et al. 1996).  Importantly, DAT are overproduced and pruned during 

adolescence as the striatum transitions to its adult state in rats (Moll, Mehnert et al. 2000) and 

humans (Haycock, Becker et al. 2003). As DAT density increases during adolescence, enhanced 

reuptake reduces the extracellular levels of DA (Andersen and Gazzara 1993) and a subsequent 

upregulation of postsynaptic receptors, and their second messenger systems take place 
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(Andersen 2002).  These developmental differences may not only predispose adolescents to be 

more vulnerable to the rewarding effects of drugs of abuse, but may leave them more vulnerable 

to addiction after drug exposure due to interference with the normal synaptic pruning that takes 

place in the transition from adolescence to adulthood. 

Conclusion 

During brain maturation, there are likely sensitive periods (i.e. adolescence) where environmental 

conditions, including drug exposure, may influence development by modifying neuronal 

connections and subsequently altering function.  Aberrant levels of stimulation by drug exposure 

may produce different phenotypes than expected under normal developmental conditions that 

may influence subsequent responding to drugs of abuse after the brain is fully mature.  More 

specifically, given that repeated cocaine in the adult rat yields increased DAT densities following 

cocaine exposure, and D2 autoreceptors have been implicated in this process, it is hypothesized 

that as adolescent rats have greater DAT and D2 receptors than adults, that artificially elevating 

DA levels (i.e. cocaine) will interfere with the normal pruning of these connections, thereby 

changing responsivity to rewarding stimuli in adolescence and adulthood.   Elucidating the 

mechanisms by which addictive drug exposure (e.g. cocaine) during adolescence renders the 

adult more vulnerable to drug abuse is of utmost importance in a society that has a striking 

percentage of adolescents who experiment with cocaine.  
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Chapter Two 

Does Novelty Preference Behavior Correlate With The Rewarding Efficacy Of Cocaine In 

Adolescent And Adult Rats? 

Abstract 

Adolescence is a time of high-risk behavior and increased exploration.  This developmental 

period is marked by a greater probability to initiate drug use and is associated with an increased 

risk to develop addiction and adulthood dependency.   Human adolescents are predisposed 

toward an increased likelihood of risk taking behaviors (Zuckerman 1986), including drug use or 

initiation. The aim of this study was investigate the relationship between differences in response 

to forced and free choice novelty and the susceptibility to the rewarding effects of the drug in the 

adolescent and adult rat. The present findings demonstrate that adolescent animals displaying 

greater free choice novelty exploration expressed decreased cocaine place conditioning 

compared to animals demonstrating decreased free choice novelty exploration; suggesting that 

LR adolescent rats demonstrate an increased rewarding efficacy to cocaine compared to HR 

adolescent rats.  No differences were detected between forced novelty exposure and cocaine 

place conditioning.  No differences were detected between forced novelty exposure and cocaine 

place conditioning in adult rats.  Additionally, no relationship was found in adult rats between free 

choice novelty exploration and cocaine place conditioning.  It seems a dissociation exists 

between forced novelty exposure and free choice novelty exploration in adolescent rats, 

suggesting that stress-induced locomotion and novelty-seeking behavior are different 

biobehavioral phenomena and might be activated by different neural and hormonal substrates. 

Future studies need to evaluate the neurochemical differences between individual behavioral 

traits during development that predispose them to initiate and maintain drug use. 
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Introduction 

 Adolescence is a period when the brain is undergoing many complex changes that can 

exert long-term influences on decision making and cognitive processes (for review, see (Spear 

2000).  It is also a period of experimentation, and Estroff (Estroff, Schwartz et al. 1989) has 

reported that illicit drug use can begin as early as age 12, with peak periods of initiation between 

ages 15 and 19.  The mean age of illicit drug initiation in adults categorized as having a 

substance use disorder is 16 years old, with initiation rare after age 20 (Anthony 1991).  In fact, 

initiation rates are so high that more than half (54%) of high school seniors have had at least one 

experience with an illicit compound (Johnston LD 2002).   During the 1990’s, there was a steady 

rise in the frequency of cocaine use in teenagers, by 2003, 4.3% of eighth graders, 5.7% of tenth 

graders, and 8.2% of high school seniors reported frequent use of cocaine (Johnston LD 2002).  

The fact that initiation of cocaine use is so dramatic during the adolescent period is particularly 

disconcerting given that the escalation of cocaine use appears more rapidly among teenagers 

than adult users, suggesting a greater addictive potential during adolescence than in adulthood 

(Estroff, Schwartz et al. 1989).  Generally, adults who initiate drug use during adolescence are 

more likely to have higher lifetime rates of drug use and progress to dependency more rapidly 

than those who began drug use in adulthood (Helzer JE 1991; Kandel, Yamaguchi et al. 1992; 

Clark DB 1998).   Moreover, adolescents demonstrate a more abrupt progression of illicit drug 

use and development of substance use disorders than adults (Warner, Kessler et al. 1995), 

suggesting this ontogenetic period renders the adolescent more vulnerable to addiction.   

 The frequency of substance use disorders is elevated in adults diagnosed with several 

psychological disorders (Regier, Farmer et al. 1990; Anthony 1991; Helzer JE 1991; Bucholz 

1999; Blanco, Moreyra et al. 2001).  Adolescents with similar disorders are also more likely to be 

diagnosed with substance use disorders (Swadi 1999; Zeitlin 1999; Shaffer, Forman et al. 2000).  

The fact that these mental disorders and adolescence are associated with substance use 

disorders suggests common brain mechanisms may trigger drug susceptibility and potentially, 

addiction.  These biological/neurochemical substrates might manifest into a behavioral trait or 

traits present in adolescents.  Defective impulse control is a behavioral trait that characterizes 
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psychiatric and substance use disorder groups (Swadi 1999; Moeller, Barratt et al. 2001; Rogers 

and Robbins 2001). Adolescence is marked by high levels of risk taking behavior relative to 

individuals of other ages.  Human adolescents exhibit a disproportional amount of reckless 

behavior, sensation seeking and risk taking (Arnett 1999; Trimpop RM 1999).  Novelty seeking 

and high-risk behaviors during adolescence are not only present in humans, but also non-human 

animals (Adriani, Chiarotti et al. 1998; Spear 2000; Douglas, Varlinskaya et al. 2003; Stansfield, 

Philpot et al. 2004; Stansfield and Kirstein 2006). Importantly, studies have demonstrated a 

strong correlation between novelty preference and impulsive reactivity with both the rewarding 

efficacy of psychomotor stimulants and self-administration rates in animals (Hooks, Colvin et al. 

1992; Klebaur, Bevins et al. 2001).  Researchers utilize two novelty preference paradigms:  

forced novelty exposure and free choice novelty exploration.  Forced novelty exposure measures 

stress induced locomotor activity in a novel open field whereas free choice novelty exploration 

measures either frequency to approach a novel object or total time spent with a novel object in a 

familiarized environment (Stansfield and Kirstein 2006). High responder (HR) adult rats to forced 

novelty show enhanced sensitivity to drug stimulant effects, higher rates of amphetamine and 

cocaine-induced locomotor activity and will self-administer these drugs more readily than low 

responder (LR) rats (Piazza, Deminiere et al. 1989; Hooks, Jones et al. 1991; Cools, Ellenbroek 

et al. 1997).  Moreover, HR rats seem to participate in far greater risk taking behaviors and show 

much higher behavioral and neurochemical responses in reaction to environmental stressors or 

pharmacological challenges than LR rats (Bevins RA 1997; Klebaur, Bevins et al. 2001). Pelloux 

et al. demonstrated that HR to forced novelty exposure consumed less oral amphetamine 

compared to LR (Pelloux, Costentin et al. 2004).  Additionally, Pelloux and colleagues 

demonstrated that novelty preference is positively correlated with consumption of a low 

concentration morphine solution (Pelloux, Costentin et al. 2006). Taken together, these data 

suggest a relationship between novelty-seeking and drug use, making it more likely that 

adolescent’s will become involved in risky behaviors which may include drug use, initiation and 

increased vulnerability to the rewarding properties of these drugs.   
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Few studies thus far have examined the relationship between individual differences in 

novelty preference and the propensity to find drugs of abuse rewarding [using the conditioned 

place preference (CPP) paradigm] in both adolescent and adult animals which may subsequently 

render the animal more vulnerable to drug dependence. CPP is a behavioral paradigm used to 

measure the motivational and rewarding/ aversive properties of a variety of stimuli including:  

water, food, sucrose, access to conspecifics, novelty, access to copulation and drugs of abuse 

(i.e. cocaine, alcohol, nicotine, LSD) (for review, see (Bardo and Bevins 2000)).  In this 

procedure, a stimulus (for example: cocaine) is paired with an environment with distinct visual 

and tactile cues and at a different time point, a neutral stimulus (i.e. saline injection) is paired with 

a different environment with different visual and tactile cues.  After several pairings (typically 4-8 

total exposures to both chambers), the animals are allowed to freely explore both environments 

and time spent in the drug-paired chamber is compared to the saline-paired chamber. Bardo et al. 

demonstrated that HR adult rats to forced novelty exposure show greater amphetamine induced 

CPP compared to LR adult rats (Bevins RA 1997). Moreover, forced novelty exposure was 

positively correlated with oral consumption of amphetamine.  In addition, the magnitude of 

morphine place conditioning is positively correlated with free choice novelty exploration but not 

forced novelty exposure (Chambers RA 2003). 

The aim of this study was to investigate the relationship between individual differences in 

response to forced and free choice novelty and the susceptibility to the rewarding effect of the 

drug in the adolescent and adult rat.  For this purpose, the current study compares both 

adolescent and adult reactivity to novelty using both forced novelty exposure and free choice 

novelty exploration with subsequent evaluation of cocaine place preference. 

Methods 

 Forty male Sprague-Dawley (Harlan Laboratories, Indianapolis, IN) rats, offspring of 

established breeding pairs in the laboratory (University of South Florida, Tampa) were postnatal 

day (PND) 30  (µ=134 grams) at the beginning of the study.  No more than one male per litter per 

age was used in a given condition.  Pups were sexed and culled to 10 pups per litter on PND 1.  

Pups remained housed with their respective dams in a temperature and humidity-controlled 
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vivarium on a 12:12 h light: dark cycle (07:00 h/19:00 h) until PND 21, on PND 21 pups were 

weaned and male littermates were group housed throughout the entire experiment.  Animals were 

experimentally naive until the beginning of the study (PND 30). The care and use of animals was 

in accordance with local standards set by the Institutional Animal Care and Use Committee and 

the NIH Guide for the Care and Use of Laboratory Animals (Health 1989). 

Procedure:  Beginning on PND 30 or 61, animals were tested on a black plastic circular platform 

(116 cm diameter) standing 70 cm from the ground, with a white plastic barrier (48 cm height) 

enclosing the arena (100 cm diameter).  A video camera was suspended directly over the table 

and recorded the animal's behavior using a Noldus Behavioral Tracking System (Noldus, 

Netherlands).   

Over a period of four consecutive days, each rat (PND 30-33 or 61-64) was placed in the 

open field in one of four randomly selected zones and allowed to freely explore the novel 

environment for five minutes. This procedure was performed twice a day for a total of 8 

habituation trials. Immediately following the 8th trial, animals were removed for 1 minute while a 

single novel object (approximately 16 cm high) was attached to the center of the table (trial 9).  

Rats were placed in a random zone and allowed to explore the familiar environment and novel 

object for five minutes.  Forced novelty exposure (i.e. total distance moved (TDM) in an 

inescapable novel environment) and free choice novelty exploration (i.e. frequency to approach 

the novel object in a familiarized environment) were measured.  

Animals were trained in the CPP paradigm from either PND 34-42 or 64-72 and tested on 

PND 43 or 73.  Animals were trained using a two-chambered apparatus made of clear Plexiglas 

with a clear Plexiglas cover.  Two compartments (21 cm wide x 18 cm long x 21 cm high) 

separated by a removable wall were used for conditioning.  The two chambers provided distinct 

visual (vertical or horizontal black and white bands) and tactile (wire or sandpaper flooring) cues 

to establish an association when paired with either saline or cocaine (10.0mg/kg, i.p.).  This study 

utilized a biased design.  A video-based tracking system (EthoVision, Noldus Information 

Technologies) was used to record and quantify the data.   
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 Animals were tested in the CPP apparatus for 15 minutes (wall removed for free access 

to both chambers) 24 hours prior to the first training session to determine initial preferences for 

either the horizontal or the vertical striped chamber.  In a biased design, the two chambers were 

designated post-hoc as preferred or aversive, based on the compartment that the animal spent 

the most and least time in, respectively.  Following baseline recording, the animals were trained 

over a period of 8 days.  Each day (between 0900 and 1100 hr) the animals received either saline 

or cocaine and were confined to the preferred or aversive chamber, respectively, for 15 minutes.  

For all animals, the order of chamber exposure was alternated daily.  Animals were tested 

approximately 16-18 hours after their last training session.  Animals were placed in the apparatus 

with the wall removed and tested for 15 minutes to determine the conditioned effects of repeated 

drug exposure.  Preference was assessed using a difference score derived by subtracting the 

total time spent in the initially preferred chamber from the total time spent in the initially aversive 

chamber on test.  Before each trial and test period, the apparatus was cleaned with 70% EtOH to 

remove any lingering odor cues.  All floors were washed with soap and water and left to dry for 24 

hours before subsequent use. 

Data Analyses: Data analyses were performed with Graphpad Prism (Graphpad, CA).  The data 

were expressed as the means +/- SEM, and the significance level was set at p=0.05. A 

correlation was used to analyze the relationship between novelty measures and drug sensitivity 

as measured by CPP.  In addition, four t-tests were used to assess differences between LR/HR 

rats and cocaine place conditioning. A significance level of .05 was used for all analyses. 

Results 

 The present findings reveal no correlation between forced novelty exposure and cocaine 

place conditioning (r=-0.2681, p>0.05, see Figure 1), in addition, no cocaine place conditioning 

differences between LR and HR adolescent rats were found [t(9)=1.296, p>0.05, see Figure 2].    

Interestingly, free choice novelty exploration correlated with cocaine place conditioning (r=-

0.5059, p<0.05, see Figure 3).  Adolescent animals displaying greater free choice novelty 

exploration expressed decreased cocaine place conditioning compared to animals demonstrating 

decreased free choice novelty exploration [t(8)=2.256, p<0.05, see Figure 4); suggesting that LR 
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adolescent rats demonstrate an increased rewarding efficacy to cocaine compared to HR 

adolescent rats. 

    
Figure 1:  Adolescent animals that demonstrate greater forced novelty-induced locomotor activity 
demonstrated a reduced but not significant cocaine place preference compared to animals 
showing decreased novelty-induced locomotor activity.  
 

 

Figure 2: Adolescent animals that demonstrate greater forced novelty-induced locomotor activity 
demonstrated a reduced but not significant cocaine place preference compared to animals 
showing decreased novelty-induced locomotor activity. 



 

25 

 

Figure 3:  Adolescent animals that demonstrate greater free choice novelty-induced exploration 
demonstrated a significantly reduced rewarding efficacy to cocaine compared to animals showing 
decreased novelty-induced exploration. 
 

 

Figure 4:  Adolescent animals that demonstrate greater free choice novelty-induced exploration 
demonstrated a significantly reduced rewarding efficacy to cocaine compared to animals showing 
decreased novelty-induced exploration 
  

No correlation was detected between forced novelty exposure and cocaine place 

conditioning in adult rats (r=-0.280, p>0.05, see Figure 5); in addition, no cocaine place 

conditioning differences between LR and HR adult rats were found [t(8)=0.8518, p>0.05, see 

Figure 6].  Moreover, no correlation was detected in adult rats between free choice novelty 

exploration and cocaine place conditioning (r=0.0079, p>0.05, see Figure 7); in addition, no 
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cocaine place conditioning differences between LR and HR adult rats were found [t(11)=0.1971, 

p>0.05, see Figure 8]. 

 

Figure 5:  Adult animals that demonstrate greater forced novelty-induced locomotor activity 
demonstrated a reduced but not significant cocaine place preference compared to animals 
showing decreased novelty-induced locomotor activity. 
 

 

Figure 6:  Adult animals that demonstrate greater forced novelty-induced locomotor activity 
demonstrated a reduced but not significant cocaine place preference compared to animals 
showing decreased novelty-induced locomotor activity. 
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Figure 7:  No relationship was found in adult rats between free choice novelty-induced exploration 
and the rewarding efficacy of cocaine. 
 

 
 
 
Figure 8:  No relationship was found in adult rats between free choice novelty-induced exploration 
and the rewarding efficacy of cocaine. 
 

Discussion 

Previous work in adult animals has demonstrated that a preference for novelty is 

indicative of a facilitated acquisition of drug use (Bevins RA 1997).  Adolescent animals and 

humans who prefer novelty are more likely to use/ abuse drugs and individuals who initiate use in 

adolescence will progress to dependency more rapidly than those who began drug use in 

adulthood (Helzer JE 1991; Kandel, Yamaguchi et al. 1992; Clark DB 1998). The aim of the 
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present study was to investigate the relationship between individual differences in response to 

novelty [i.e. forced novelty exposure and free choice novelty exploration] and the expression of 

cocaine place preference [i.e. rewarding efficacy of cocaine] in the adolescent and adult rat.  

The present data provide evidence that LR adolescent (but not adult) rats to free-choice 

novelty exploration exhibit greater cocaine place conditioning; suggesting that these animals 

exhibit an increased rewarding efficacy to cocaine compared to HR adolescent rats. These data 

suggest the possibility that HR adolescent rats based on free choice novelty exploration are less 

responsive to cocaine place preference than LR rats.   No differences between forced novelty 

exposure and cocaine place conditioning were detected between HR/LR adolescent or adult rats. 

These results are in agreement with several other researchers (Erb and Parker 1994; Kosten and 

Miserendino 1998) who did not find differences between adult HR and LR to forced novelty 

exposure with amphetamine place conditioning, and in fact, demonstrated that the magnitude of 

place conditioning tended to be lower in HR rats than LR adult rats (Erb and Parker 1994; Gong, 

Neill et al. 1996), as seen with the current study. 

It seems that a dissociation exist between forced novelty exposure and free choice 

novelty exploration in adolescent rats, suggesting that stress-induced locomotion and novelty-

seeking behavior are different biobehavioral phenomena and are likely activated by different 

neural and hormonal substrates.  Interestingly, the relationship between free choice novelty 

exploration and cocaine place conditioning differs between adolescent and adult rats suggesting 

individual differences in free choice novelty exploration may be an important behavioral 

characteristic that predisposes adolescents to engage in cocaine use and demonstrate increased 

vulnerability to drug dependence. 

These findings with place conditioning differ from studies that examine acquisition of self-

administration. Researchers have demonstrated that HR adult rats to forced novelty exposure will 

self-administer psychostimulants more readily than LR adult rats (Piazza, Deminiere et al. 1989) 

and also demonstrate increased free choice nicotine consumption (Klebaur, Bevins et al. 2001; 

Abreu-Villaca, Queiroz-Gomes Fdo et al. 2006).  However, Bardo et al. recently reported that 

responses to forced novelty exposure weakly predict responding for amphetamine (Cain, Saucier 
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et al. 2005).    The first possibility for these discrepancies could be due to methodological 

differences (see (Kosten and Miserendino 1998) for review).  In brief, acquisition of self-

administration typically uses low doses of drug whereas place-conditioning studies use higher 

doses.  Moreover, place-conditioning procedures use fewer trials than self-administration 

paradigms, so possible differences between HR/LR learning rates or habituation may confound 

the findings.  In addition, the place conditioning methods employed in the present study may not 

have been sensitive enough to detect differences between LR and HR rats whereas self-

administration procedures allow for greater sensitivity of individual differences between animals.  

In addition, due to higher locomotor activity in HR rats, they may visit both chambers of the CPP 

box more during test compared to LR rats, which could interfere with their expression of place 

preference (Gong, Neill et al. 1996).  If the facilitated acquisition of self-administration of 

psychostimulants is due to greater locomotor activity expressed by HR rats and not due to the 

enhanced rewarding efficacy of the drug, the implications suggest that the neural mechanisms for 

psychostimulant reward and locomotor activity are distinguishable.  Some evidence suggests that 

reward and locomotor systems are discrete.  Several researchers (Robinson and Berridge 1993) 

have argued that the reward system is mediated by the mesolimbic pathway which projects from 

the ventral tegmental area to the nucleus accumbens whereas the locomotor system is mediated 

by the nigrostriatal pathway which projects from the substantia nigra to the striatum (Oades and 

Halliday 1987).  Hemby et al. reported an increase in locomotor activity but no place conditioning 

from intra-accumbal cocaine (Hemby, Jones et al. 1992).  In addition, intra-accumbal injections of 

neurotensin block the locomotor effect but not self-administration of cocaine (Robledo, 

Maldonado et al. 1993).  If the mechanisms by which psychostimulants induce hyperactivity are 

separable from those by which they produce place conditioning, HR rats might show an increased 

response to the locomotor activating effects of these drugs, but not to the rewarding attributes. 

The present data provide evidence that LR adolescent rats to free-choice novelty 

exploration exhibited greater cocaine place conditioning than HR adolescent rats.  These data 

provide useful information about behavioral differences in adolescent rats in response to cocaine 

that could provide a neurochemical mechanism to investigate.  Failure of these findings to 
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support self-administration studies suggests that caution be used in generalizing between these 

paradigms believed to measure similar processes.  Place conditioning studies measure the 

rewarding efficacy of stimuli whereas self-administration studies measure the reinforcing efficacy 

of stimuli (for review (Bardo and Bevins 2000), see).  Animals that demonstrate facilitated 

acquisition of psychostimulant self-administration (i.e. HR rats) may, in fact, be less responsive to 

the rewarding efficacy of these drugs and need to self-administer higher doses to obtain similar 

behavioral and neurochemical effects that LR would obtain at lower doses.  Bardo et al. 

demonstrated that even though forced novelty exposure activity weakly predicted responding for 

amphetamine, free choice novelty exploration improved this predictive model (Cain, Saucier et al. 

2005).  Future studies need to evaluate the neurochemical differences between individual 

behavioral traits in the adolescent that may predispose them to initiate and maintain drug use. 
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Chapter 3 
 
Chronic Cocaine Or Ethanol Exposure During Adolescence Alters Novelty-Related Behaviors In 

Adulthood 

Abstract 
 
 Adolescence is a time of high-risk behavior and increased exploration.  This 

developmental period is marked by a greater probability to initiate drug use and is associated with 

an increased risk to develop addiction and adulthood dependency and drug use at this time is 

associated with an increased risk.   Human adolescents are predisposed toward an increased 

likelihood of risk taking behaviors (Zuckerman, 1986), including drug use or initiation.  In the 

present study, adolescent animals were exposed to twenty days of either saline (0.9% sodium 

chloride), cocaine (20 mg/kg) or ethanol (1 g/kg) i.p. followed by a fifteen-day washout period.  All 

animals were tested as adults on several behavioral measures including locomotor activity 

induced by a novel environment, time spent in the center of an open field, novelty preference and 

novel object exploration. Animals exposed to cocaine during adolescence and tested as adults 

exhibited a greater locomotor response in a novel environment, spent less time in the center of 

the novel open field and spent less time with a novel object, results that are indicative of a stress 

or anxiogenic response to novelty or a novel situation.  Adolescent animals chronically 

administered ethanol and tested as adults, unlike cocaine-exposed were not different from 

controls in a novel environment, indicated by locomotor activity or time spent with a novel object.  

However, ethanol-exposed animals approached the novel object more, suggesting that exposure 

to ethanol during development may result in less-inhibited behaviors during adulthood.   The 

differences in adult behavioral responses after drug exposure during adolescence are likely due 

to differences in the mechanisms of action of the drugs and subsequent reward and/or stress 

responsivity.  Future studies are needed to determine the neural substrates of these long lasting 

drug-induced changes. 
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Introduction 

 Adolescence is a developmental time period that is characterized by the occurrence of 

high-risk behavior and increased exploration.  This ontogenic period is unique as the brain is 

undergoing many changes that can have a lasting impact on behavior and cognitive processing 

(for review see (Spear, 2000).  Drug use initiation rates are higher during the adolescent period 

than in any other developmental period.  In general, adults who initiate drug use during 

adolescence are more likely to have higher lifetime rates of drug use and progress to dependency 

more rapidly than those who began drug use in adulthood (Clark DB, 1998; Helzer JE, 1991; 

Kandel, Yamaguchi, & Chen, 1992).    

  Novelty reactivity/ preference is a behavioral trait studied in human and animal models 

used as a predictor of drug use and potential dependence.  A strong relationship between the 

rewarding aspects of psychomotor stimulants, self-administration rates and novelty preference 

has been established in animals (Hooks, Colvin, Juncos, & Justice, 1992; Klebaur, Bevins, Segar, 

& Bardo, 2001).  Rats classified as high responders (HR) to novelty [i.e. exhibit greater locomotor 

activity in a novel environment] exhibit higher rates of amphetamine and cocaine-induced 

locomotor activity and self-administer these drugs more readily than low responders (LR) to 

novelty rats [i.e. exhibit decreased locomotor activity in a novel environment] (Hooks, Jones, 

Smith, Neill, & Justice, 1991).  HR rats engage in greater risk taking behaviors and demonstrate 

higher behavioral and neurochemical alterations in response to environmental stressors or 

pharmacological challenges (Bevins RA, 1997; Klebaur et al., 2001).  Moreover, dopaminergic 

responsivity differs between adolescent and adult HR or LR rats (Stansfield & Kirstein, 2005). 

Overall, these data indicate an association between novelty-seeking and risk-taking behaviors, 

indicating that high novelty seeking individuals will be more likely to engage in risky behaviors 

that can have considerable long term consequences, such as initiating drug use. 

 The central nervous system is still developing during adolescence and insults (e.g. 

chronic drug use) to the brain during this period may play an important role in the increased 

likelihood to maintain drug use during adulthood (for review, see (Spear, 2000). In adult animals, 

repeated drug exposure produces changes and adaptations at a cellular level that alters the 
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functioning of the entire neural pathway (Kleven, Woolverton, Schuster, & Seiden, 1988). These 

changes result in the development of complex adaptation such as tolerance, dependence and 

sensitization (Koob & Le Moal, 1997; Wise, 1980). Chronic cocaine exposure results in functional 

adaptations such as increased cAMP pathway activity, increased cAMP regulatory element 

binding protein (CREB) and increased changes in immediate early genes (e.g. FosB) (Nestler & 

Aghajanian, 1997). In addition, chronic ethanol exposure has been implicated with changes in 

various postreceptor events of the cAMP signal transduction cascade (i.e., Gs protein, protein 

kinase A, and CREB) (for review, see (Uddin & Singh, 2006) Rats injected once a day with 

cocaine show increased inhibition of dopamine (DA) uptake (Izenwasser & Cox, 1992), whereas 

rats receiving a continuous infusion of cocaine exhibit attenuated inhibition of DA uptake by 

cocaine, suggesting changes in duration of drug exposure subsequently induce differential neural 

changes. (Izenwasser & Cox, 1992).   Moreover, repeated administration of cocaine produced 

significant changes in DA during withdrawal.   In vivo microdialysis studies in the NAcc have 

shown that once self-administration of cocaine has ended, basal DA levels decrease significantly 

during this withdrawal period (Parsons, Smith, & Justice, 1991). .  Taken together, these studies 

in adult animals show that repeated cocaine and ethanol administration results in complex 

changes in the DA mesolimbic pathway and molecular and cellular changes in the brain that 

continue long after drug use has stopped.  These changes could subsequently impact behavioral 

phenotypes and lead to a greater vulnerability to drug dependency. 

 Enduring changes in sustained attention and anhedonia after chronic adolescent ethanol 

exposure have recently been reported (Slawecki, 2006).  Additionally, adolescent ethanol 

consumption impairs tone conditioning in both male and female rats whereas adult administration 

had no long term effects (Smith et al., 2006).  These studies are among the first to identify 

behavioral deficits in adulthood resulting from chronic ethanol exposure in adolescence.  To 

examine long lasting effects of chronic drug exposure during adolescence on novelty induced 

behavior in adulthood, the present study assessed responses to a novel context or novel object in 

a familiar environment.  Novelty reactivity was assessed using locomotor activity in the novel 

environment  (i.e. total distance moved on trial 1), total time spent in center of the open field, 
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novelty preference (i.e. time spent with the novel object) and novel object exploration (i.e. total 

number of approaches to the novel object). The purpose of this study was to determine long-term 

behavioral effects of adolescent exposure to ethanol or cocaine following withdrawal into 

adulthood. The purpose of the present study was to determine long lasting behavioral differences 

in adult animals after repeated ethanol or cocaine administration during adolescence.  

Methods 

 Forty male Sprague-Dawley (Harlan Laboratories, Indianapolis, IN) rats, offspring of 

established breeding pairs in the laboratory (University of South Florida, Tampa) were postnatal 

day (PND) 30 (µ=134 grams) at the beginning of the study.  No more than one male per litter per 

age was used in a given condition.  Pups were sexed and culled to 10 pups per litter on PND 1.  

Pups remained housed with their respective dams in a temperature and humidity-controlled 

vivarium on a 12:12 h light: dark cycle (07:00 h/19:00 h) until PND 21, on PND 21 pups were 

weaned and male littermates were group housed throughout the entire experiment.  Animals were 

experimentally naive until the beginning of the study (PND 30). The care and use of animals was 

in accordance with local standards set by the Institutional Animal Care and Use Committee and 

the NIH Guide for the Care and Use of Laboratory Animals (Health, 1989). 

Drug Pretreatment:  Four experimental groups were included in this study.  Beginning on PND 30, 

animals were injected once per day with either saline [0.9% sodium chloride, i.p., n=9] cocaine 

hydrochloride [20.0 mg/kg, i.p., n=10] or ethanol [1.0 g/kg, i.p., n=9] in their homecages from PND 

30 to 50.  To insure injection handling had no effect on saline controls, a naïve control group 

[n=9] was included that remained uninjected for those 20 days.  Following 20 days of drug 

exposure, animals were withdrawn into adulthood (PND 51-69) when they were tested for novelty 

preference.  

Procedure:  Beginning on PND 66, animals were tested on a black plastic circular platform (116 

cm diameter) standing 70 cm from the ground, with a white plastic barrier (48 cm height) 

enclosing the arena (100 cm diameter).  A video camera was suspended directly over the table 

and recorded the animal's behavior using a Noldus Behavioral Tracking System (Noldus, 

Netherlands).   
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Over a period of four consecutive days, each rat (PND 66-69) was placed in the open 

field in one of four randomly selected zones and allowed to freely explore the novel environment 

for five minutes. This procedure was performed twice a day for a total of 8 habituation trials. 

Immediately following the 8th trial, animals were removed for 1 minute while a single novel object 

(approximately 16 cm high) was attached to the center of the table (trial 9).  Rats were placed in a 

random zone and allowed to explore the familiar environment and novel object for five minutes.  

Locomotor activity induced by a novel environment (i.e. total distance moved (TDM) on trial 1), 

time spent in the center of an open field, novelty preference (i.e. time spent in proximity of the 

novel object) and novel object exploration (i.e. frequency to approach the novel object) were 

measured.  Novelty preference was defined as time spent within 10.16 cm of the object on trial 9.   

Data Analyses:  Data analyses were performed with Graphpad Prism (Graphpad, CA).  The data 

were expressed as the means +/- SEM, and the significance level was set at P=0.05.  T-tests 

revealed that naïve and saline pretreated animals did not differ on all measures of activity 

[t(13)=0.876, p>0.05 and t(15)=0.707, p>0.05, respectively] therefore, naïve and saline animals 

were grouped for all subsequent analyses. Locomotor activity induced by a novel environment 

(i.e. TDM on trial 1) was analyzed using two-way repeated measures ANOVA with subsequent 

PLSD post hoc analyses to determine differences across time points and drug conditions.  

Moreover, three separate one-way ANOVA were performed on time spent in the center of an 

open field, novelty preference (i.e. time spent with the novel object) and novel object exploration 

(i.e. frequency to approach a novel object) to assess the effects of adolescent drug exposure. 

Subsequent post hoc analyses (Dunnett’s) were used to isolate differences between drug 

conditions.  

Results 

Cocaine pretreatment: The present findings demonstrate that animals pretreated with cocaine 

during adolescence exhibited significantly greater locomotor activity induced by a novel 

environment (i.e. TDM) during the first minute of exposure to the novel environment than did 

naïve/saline pretreated animals [F(4,30)=16.71, p<0.05] and spent significantly less time in the 

center of the open field in the first minute than did naïve/saline animals [F(2,34)= 6.498, p<0.05, 
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dD(2,34)=1.85].  No differences across locomotor activity were detected following the first minute 

of exposure.  Therefore, chronic exposure to cocaine during adolescence increases novelty-

induced locomotor activity immediately following exposure to a novel environment and decreases 

time spent in the center compared to the periphery of the open field in adulthood (see figure 9 & 

10). 

 

Figure 9:  Adolescent animals pretreated with cocaine (grey square) moved significantly more 
during the first minute of the first exposure to the novel environment as adults than did 
naïve/saline (black triangle) or ethanol pretreated animals (dashed line). * = differs from 
naïve/saline or ethanol. 
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Figure 10:  Adolescent animals pretreated with ethanol (hatched lines) or cocaine (horizontal 
lines) spent significantly less time in the center of the open field as adults compared to 
naïve/saline animals.  *= differs from naïve/saine.  
 
 When tested for novelty preference, animals pretreated with cocaine during adolescence 

spent significantly less time with the novel object (i.e. decreased novelty preference) compared to 

naïve/saline or ethanol pretreated adult animals [F(2,31)=3.306, p<0.05], [dD(2,31)=21.95 ] but 

did not differ in novel object exploration (i.e. frequency to approach the novel object) compared to 

saline/naïve or ethanol pretreated rats. Therefore, chronic cocaine during adolescence results in 

adult animals who spend less time interacting with a novel stimulus compared to naïve/saline or 

ethanol pretreated adolescents (see figure 11).  Because cocaine exerts anorexic effects that 

might affect activity measures, weights were analyzed across pretreatment conditions.  Results 

indicate that chronic cocaine exposure during adolescence did not significantly alter growth and 

therefore growth restriction is an unlikely cause of the observed differences in novelty reactivity 

[t(38)= 0.2936, p>0.05], (see figure 12).  

 

 
Figure 11:  Adolescent animals pretreated with cocaine (horizontal lines) spent significantly less 
time with the novel object on trial 9 as adults compared to naïve/saline (white bar) or ethanol 
pretreated animals (hatched lines).    * = differs from naïve/saline or ethanol. 
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Figure 12:  Adolescent exposure to cocaine compared to saline does not significantly restrict 
growth due to anorexic effects of high doses of cocaine. 
 
Ethanol pretreatment: Animals exposed to chronic ethanol during adolescence spent significantly 

less time in the center of the open field on trial 1 [F(2,34)= 6.498, p<0.05] and exhibited greater 

novel object exploration than did naïve/saline animals or those exposed to cocaine during 

adolescence [F(2,30)=3.775, p<0.05] [dD(2,30)=3.825] and compared to naïve/saline pretreated 

animals.  Additionally, alcohol pretreated animals did not differ in locomotor activity induced by a 

novel environment, novelty preference or total distance moved on test compared to saline/naïve 

or cocaine pretreated rats. Chronic ethanol exposure during adolescence increases the tendency 

of animals to engage in more exploratory or novelty seeking behaviors (see figure 10 & 13). 
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Figure 13:  Pretreatment with ethanol (hatched lines) results in significantly more approaches to a 
novel object during adulthood than naïve/saline (white bar) or cocaine (horizontal lines) 
pretreated animals.  * = differs from naïve/saline or cocaine. 
 

High & low novelty preference: To assess the effects of adolescent drug exposure on the 

phenotypic expression of novelty reactivity in adulthood, a median split was performed on all 

animals and the distribution of phenotypes assessed for each treatment. Interestingly, adolescent 

animals pretreated with cocaine had fewer LR for both novelty preference and novel object 

exploration (37% and 30%, respectively) than HR (63% and 70%, respectively).  In contrast, 

adolescent cocaine pretreated animals had fewer LR for locomotor activity induced by a novel 

environment compared to HR (33% and 66%, respectively).  This demonstrates that in both the 

novelty-preference and novel object exploration behavioral measures, repeated cocaine during 

adolescence produces a predisposition towards LR in adulthood, whereas animals exhibit a 

tendency towards being a HR when measured on novel environment locomotor activity (see table 

1). 
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Table 1:  Adolescent exposure to cocaine predisposes a greater percentage of adult animals to 
be considered LR measured by novelty-preference and novel object exploration. 

 

Discussion 

  Previous work in humans has demonstrated that individuals who abuse drugs during 

adolescence are more likely to be dependent on drugs in adulthood (Clark DB, 1998).  In 

addition, novelty preference has been demonstrated to be indicative of a facilitated acquisition of 

drug use (Klebaur et al., 2001). The aim of the present study was to examine chronic drug 

exposure (e.g. cocaine or ethanol) during adolescence on the subsequent novelty-induced 

activity (e.g. TDM on trial 1 and time spent in the center of the open field) and novelty preference 

(e.g. time spent and approaches) in adulthood.    
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 The present data provide evidence for long-term behavioral changes that endure after 

chronic drug administration during adolescence. Repeated exposure to cocaine during 

adolescence modifies the novelty-induced behavioral phenotype in adulthood.  Both the novelty-

preference and novel object exploration behavioral measures following repeated cocaine during 

adolescence produces a predisposition towards LR in adulthood, whereas animals exhibit a 

tendency towards being a HR when measured on novel environment locomotor activity; 

suggesting that animals are more at risk to engage in drug use in adulthood after adolescent drug 

exposure due to an alteration in the behavioral phenotype that increases the vulnerability to 

engage in drug use.    Importantly, adult animals exposed to cocaine during adolescence, 

exhibited greater locomotor activity induced by a novel environment during the first minute of 

exposure, decreased time spent in the center of a novel environment and decreased novelty 

preference, which may be indicative of increased stress or anxiety or enhanced neophobia in 

adulthood after adolescent cocaine. Van den Buuse et. al (van den Buuse, Van Acker, Fluttert, & 

De Kloet, 2001) have demonstrated that exposure to the novelty of an open field causes an 

increase in blood pressure, heart rate, body temperature and exploratory locomotor activity, 

results indicate that an increase in locomotor activity in a novel environment is stressful or 

anxiogenic. Cocaine has been shown to produce anxiety in human and animal models, either 

during cocaine administration or during withdrawal.  Increased aversion for the illuminated area of 

the mouse black and white test box model after cocaine exposure was demonstrated by Costall 

and colleagues (Costall B, 1989), in addition to increased defensive withdrawal in rats after 

cocaine exposure (Yang, Gorman, Dunn, & Goeders, 1992) and a decrease in the number of 

entries into and time spent in the open arms of an elevated plus maze in mice (Yang et al., 1992).  

Moreover, following withdrawal from repeated cocaine, animals demonstrated an increase in 

anxiogenic responses in the elevated plus-maze (Sarnyai et al., 1995) and enhanced startle-

induced ultrasonic distress vocalizations (Barros HM, 1996).  These data are somewhat 

counterintuitive as cocaine use and abstinence can induce anxiety in humans and anxiogenic 

responses in animals and therefore may decrease the appetitive value or motivation for the drug.  

Some researchers have speculated that the controlled activation of the hypothalamic-pituitary-
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adrenal (HPA) axis may serve as an arousing stimulus to the animal, very much like novelty 

seeking behaviors (Goeders, 2002).  Importantly, these studies only investigated the short-term 

effects of withdrawal after drug exposure whereas the current study examined at a longer 

withdrawal period.  Future studies should investigate additional long-term behavioral changes 

including anxiety related behavioral measures after cessation of chronic cocaine exposure.   

  The present study also established that adults who were chronically treated with ethanol 

during adolescence spent less time in the center of the open field during the first minute of trial 1 

and had significantly greater novel object exploration, however, these animals did not exhibit a 

general increase in locomotor activity while the novel object was present.  These results suggest 

that exposure to ethanol during development may result in less-inhibited behaviors during 

adulthood, and not just a general nonspecific increase in locomotor activity.  In humans, several 

researchers have effectively established a relationship between novelty and/or impulsive 

behaviors and alcoholism (Dom G, 2006).  However, it can be difficult to establish whether high 

responders to novelty precede alcohol use or are the result of chronic alcohol use.   

These data are interesting as it seems that depending on the mechanism of action of the 

drug, a different set of behavioral responses are revealed.  This is likely due, in part, to 

differences in the neurotransmitter systems affected.  For example, cocaine is a strong 

catecholamine reuptake inhibitor and has been shown to alter responses in the HPA axis (Kuhn & 

Francis, 1997). Alternatively, ethanol not only affects DA, but also impacts GABA and long-term 

ethanol use in adults causes an overall inhibition of the CNS.  Long-term exposure to drugs of 

abuse during adolescence may permanently alter neurocircuitry, making animals more vulnerable 

to drug use or relapse in adulthood possibly due to behavioral characteristics that facilitate this 

action.  

 The present data demonstrate that adolescent animals exposed to drugs of abuse exhibit 

differential behavioral reactivity in response to novelty as adults, however, the current study only 

examined a moderate washout period (i.e. 16 days ); it is speculated that these behavioral effects 

are lasting and will endure throughout adulthood, however, future studies are needed to 

determine if this is the case.  Importantly, not only have differences been observed between male 
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and female rats in a novel object conditioned place preference paradigm (Douglas, Varlinskaya, & 

Spear, 2003); LR and HR male and female rats differ in the acquisition of sucrose-reinforced 

responding (Klebaur et al., 2001), stressing the importance that future studies should address 

differences between male and female animals (possibly due to estrous) and their responsivity to 

novelty and drugs of abuse.   

 Novelty preference and risk taking behaviors have been associated with both an 

increased propensity to self-administer drugs of abuse and increase drug intake (Bevins RA, 

1997; Hooks et al., 1991).  The current study demonstrates that chronic adolescent exposure to 

alcohol may increase responding to novelty as measured by novel object exploration, which 

subsequently may render the animal more likely to engage in continued drug use [i.e. relapse 

(see figure 5)].   However, these ethanol-pretreated adolescents also spent less time in the center 

of an open field on trial 1 compared to naïve or saline pretreated animals, suggesting that these 

animals may be more anxious in the novel environment.  Young animals exposed to stress (i.e. 

maternal separation) exhibited greater ethanol intake as adults as well as exhibiting greater 

stress responses (Huot, Thrivikraman, Meaney, & Plotsky, 2001; Ploj, Roman, & Nylander, 2003), 

suggesting that the reinforcing efficacy of ethanol increases in animals more reactive to stress.  

Interestingly, chronic adolescent exposure to cocaine produced increased locomotor activity in a 

novel environment, which based on previous studies suggests that this behavioral characteristic 

would predispose the animal to drug self-administration (Bevins RA, 1997; Hooks et al., 1991).  

Conversely, cocaine pretreated animals demonstrated decreased time spent in the center of the 

open field on trial 1 and decreased novelty preference, it is possible this is an anxiogenic 

response in these animals compared to naïve or saline pretreated animals and may facilitate drug 

use.  An increase in cocaine self-administration has been observed in stressed or anxious 

animals (Covington & Miczek, 2005; Marquardt, Ortiz-Lemos, Lucion, & Barros, 2004), and 

chronic cocaine causes an increase in anxiety (Hayase, Yamamoto, & Yamamoto, 2005; Rogerio 

& Takahashi, 1992; Wood & Lal, 1987) providing an explanation for why adolescents exposed to 

cocaine (who subsequently may be more stressed or anxious) may be more likely to engage in 
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continued drug use.  Future studies need to isolate the rewarding efficacy of drugs of abuse in LR 

and HR animals to novelty.    

It is important to mention the difficulty in interpreting the current data as predictive of 

adolescent specific addiction in the absence of data collected from animals that were exposed to 

drug in adulthood.  Future studies need to address this possibility.  Regardless, the differences in 

behavioral reactivity in adulthood could have implications in the susceptibility to relapse.  Some 

addiction theories state that during drug administration, strong connections between drug cues 

and the drug experience are strengthened, (possibly modulated by DA) consequently, increasing 

the likelihood that an individual will relapse when exposed to these drug cues at a later point 

(Robinson & Berridge, 1993).  Moreover, this could be amplified if drug use occurs during 

adolescence as the brain is still developing.  The transition from adolescence to adulthood is a 

critical developmental period involving the maturation of the mesocorticolimbic circuitry, where not 

only the development of this system, but the alteration of this system due to pharmacological 

insult may produce alterations in response to stress and subsequent increased novelty-seeking, 

and risk taking behaviors which could result in drug use initiation or relapse (Chambers RA, 2003; 

Douglas et al., 2003; Spear, 2000).  
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Chapter Four 

Enduring Changes In Reward Mechanisms After Developmental Exposure To Cocaine. 

Abstract 

Adolescence is a time of high-risk behavior and increased exploration.  This 

developmental period is marked by a greater probability to initiate drug use and is associated with 

an increased risk to develop adulthood dependency. During brain maturation, there are likely 

sensitive periods (i.e. adolescence) where environmental conditions, including drug exposure, 

may influence development by modifying neuronal connections and subsequently altering 

function.  Aberrant levels of stimulation by drug exposure may produce different phenotypes than 

expected under normal developmental conditions that may influence subsequent responding to 

drugs of abuse after the brain is fully mature. The aim of the present study was to investigate the 

consequences of repeated developmental cocaine exposure on the subsequent rewarding 

efficacy of cocaine in adolescence and adulthood. The present findings reveal that after 

developmental exposure to cocaine, adolescent and adult rats exhibit decreased rewarding 

efficacy to both a moderate and a high dose of cocaine.  Additionally, pretreatment with cocaine 

seems to render both adolescent and adult rats behaviorally sensitized to cocaine compared to 

saline pretreated controls. The present data provide evidence for short and long-term behavioral 

adaptations that occur after developmental cocaine exposure. Developmental exposure to 

cocaine decreases place conditioning in both the adolescent and adult rat, indicating 

developmental cocaine exposure changes the rewarding efficacy of cocaine.  Future studies need 

to determine the neurochemical substrates altered by developmental exposure to cocaine. 
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Introduction 

 Adolescence is a stage of life when the brain is undergoing many complex changes that 

can exert long-term influences on decision making and cognitive processes (for review, see 

(Spear, 2000). It is also a period of experimentation, and Estroff (Estroff et al., 1989) has reported 

that illicit drug use can begin as early as age 12, with peak periods of initiation between ages 15 

and 19.  The mean age of illicit drug initiation in adults categorized as having a substance use 

disorder is 16 years old, with initiation rare after age 20 (Anthony, 1991). Initiation rates are so 

high that more than half (54%) of high school seniors have had at least one experience with an 

illicit compound (Johnston LD, 2002). During the 1990’s, there was a steady rise in the frequency 

of cocaine use in teenagers, by 2003, 4.3% of eighth graders, 5.7% of tenth graders, and 8.2% of 

high school seniors reported frequent use of cocaine (Johnston LD, 2002).  The fact that initiation 

of cocaine use is so dramatic during the adolescent period is particularly disconcerting given that 

the escalation of cocaine use appears more rapidly among teenagers than adult users, 

suggesting a greater addictive potential during adolescence than in adulthood (Estroff et al., 

1989).  Generally, adults who initiate drug use during adolescence are more likely to have higher 

lifetime rates of drug use and progress to dependency more rapidly than those who began drug 

use in adulthood (Clark DB, 1998; Helzer JE, 1991; Kandel et al., 1992).   Moreover, adolescents 

demonstrate a more abrupt progression of illicit drug use and development of substance use 

disorders than adults (Warner et al., 1995), suggesting that this ontogenetic period renders the 

adolescent more vulnerable to addiction.   

Repeated administration of psychostimulants can result in behavioral sensitization expressed as 

an enhanced behavioral response to a subsequent drug challenge (Vanderschuren and Kalivas, 

2000).  Consequently, rats who have repeatedly administered cocaine over several days, will 

show an elevated locomotor reaction in response to the drug which prevails after cessation of the 

drug (Cass and Zahniser, 1993).  Sensitization not only occurs behaviorally, but neurochemically.  

Repeated drug exposure produces changes and adaptations at a cellular level which in turn alters 

the functioning of the entire pathway in which those neurons work (Kleven et al., 1988).  These 

changes lead to the complex processes of tolerance, dependence and of course, sensitization 
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(Koob and Le Moal, 1997; Wise, 1980). Repeated exposure to psychostimulants has been shown 

to induce long-lasting changes in dopamine (DA) neurons including decreases in DA levels and 

its metabolites, decrease in tyrosine hydroxylase activity, decrease in DA metabolism, either an 

increase or decrease in stimulated release, morphological degeneration of nerve terminals and 

decreases in Vmax for [3H]DA (Bassareo and Di Chiara, 1999; Borison and Diamond, 1979; 

McCabe et al., 1987) (Kalivas and Duffy, 1988; Kalivas et al., 1988; Karoum et al., 1990; Peris et 

al., 1990). Changes in D2 receptor binding site densities have also been reported; Goeders and 

colleagues reported decreased D2 binding sites in the striatum and an increase in the nucleus 

accumbens septi (NAcc) immediately following 15 days of cocaine injections (Goeders and 

Kuhar, 1987).  Additionally, an increase in NAcc D2 binding sites has been reported 24 hours but 

not one week following 8 days of cocaine injections (Peris et al., 1990). Sensitization, tolerance 

and dependence also result in functional molecular adaptations such as increased cAMP 

pathway activity, increased cAMP regulatory element binding protein (CREB) and also increased 

changes in immediate early genes (e.g. FosB) (Nestler and Aghajanian, 1997).  Repeated 

administration of cocaine also produces significant changes in DA during withdrawal.   In vivo 

microdialysis studies in the NAcc have shown that once self-administration of cocaine has ended, 

basal DA levels decrease significantly during this withdrawal period (Parsons et al., 1991).  Taken 

together, these studies in adult animals show that repeated cocaine administration results in 

complicated changes in the DA mesolimbic pathway that continue long after drug use has 

stopped, and processes such as these may be implicated in craving and relapse.  Similar to 

humans, adolescent rats are behaviorally different from younger and older rats. Periadolescent 

rats have been reported to be more hyperactive and inattentive (Spear and Brake, 1983), exhibit 

greater novelty-preference (Stansfield and Kirstein, 2006) and either reduced responsiveness to 

some of the effects of alcohol (Silveri and Spear, 1998), amphetamine (Bolanos et al., 1998), and 

cocaine (Laviola et al., 1995).  Recently, several researchers have reported hypersensitivity to the 

locomotor activating effects of cocaine (Caster et al., 2005; Frantz et al., 2007), decreased 

sensitization and decreased activity overall compared to adults (Frantz et al., 2007). In the 

conditioned place preference (CPP) paradigm, adolescent rats show a preference for nicotine, 
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whereas the adult rats did not (Vastola et al., 2002).  Also, it has been demonstrated that 

adolescent rats showed a preference for moderate doses of alcohol and cocaine, whereas the 

adults had no preference (Badanich et al., 2006; Philpot et al., 2003).  Many behavioral 

alterations that are age-specific seen in human adolescents are observed in adolescent rats, 

making these animal models very useful in the evaluation of neurochemical and behavioral 

changes caused by drug exposure during this important stage of development.   During brain 

maturation, there are likely sensitive periods (i.e. adolescence) where environmental conditions, 

including drug exposure, may influence development by modifying neuronal connections and 

subsequently altering function.  Aberrant levels of stimulation by drug exposure may produce 

different phenotypes than expected under normal developmental conditions that may influence 

subsequent responding to drugs of abuse after the brain is fully mature. Elucidating the 

mechanisms by which addictive drug exposure (e.g. cocaine) during adolescence renders the 

adult more vulnerable to continued use is of utmost importance in a society that has a striking 

percentage of adolescents who experiment with cocaine.                                                                      

The aim of the present study was to investigate the consequences of repeated developmental 

cocaine exposure on the subsequent rewarding efficacy of cocaine in adolescence and 

adulthood.  

Methods 

One hundred sixty-four male Sprague-Dawley rats (Harlan Laboratories, Indianapolis, 

IN), offspring of established breeding pairs in the laboratory (University of South Florida, Tampa) 

were postnatal day (PND) 30 (µ=134 grams) at the beginning of the study.  No more than one 

male per litter per age was used in a given condition.  Pups were sexed and culled to 10 pups per 

litter on PND 1.  Pups remained housed with their respective dams in a temperature and 

humidity-controlled vivarium on a 12:12 h light: dark cycle (07:00 h/19:00 h) until PND 21, on 

PND 21, pups were weaned and male littermates were group housed throughout the entire 

experiment.  Animals were experimentally naive until the beginning of the study (PND 30). The 
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care and use of animals was in accordance with local standards set by the Institutional Animal 

Care and Use Committee and the NIH Guide for the Care and Use of Laboratory Animals (Health, 

1989). 

Procedure: Groups were designated as: S-S (saline pretreatment-saline CPP), S-C (saline 

pretreatment-cocaine CPP), C-S (cocaine pretreatment-saline CPP) or C-C (cocaine 

pretreatment-cocaine CPP).  Beginning on PND 30, animals were injected once per day with 

either saline [0.9% sodium chloride, i.p.] or cocaine hydrochloride [10 mg/kg or 20 mg/kg, i.p.] in 

their homecages from PND 30 to 40. Following 10 days of drug exposure, animals either 

immediately began behavioral training (i.e. CPP) to determine their place preference for a 

moderate (i.e. 10 mg/kg, i.p.) or high (i.e. 20 mg/kg, i.p.) dose of cocaine during adolescence 

(PND 41-50) or were withdrawn into adulthood (PND 60-69) when they began the same 

behavioral testing. For behavioral studies, rats were placed in a place conditioning apparatus 

(either in the large test chamber [21 cm wide x 36 long x 21 cm high] or in one compartment [21 

cm wide x 18 cm long x 21 cm high]) for each session which took place for 15 minutes once daily 

for an 8 day period (either PND 41-50 or PND 60-69). To determine if cocaine pretreatment 

during the adolescent period produced a sensitized behavioral response to cocaine, an additional 

group of animals were tested for locomotor activity in response to a low dose of cocaine  (i.e. 5 

mg/kg, i.p.) after developmental saline or cocaine pretreatment (10 mg/kg, i.p) during 

adolescence (PND 51) or adulthood (PND 70).  

 

Figure 14: Adolescent rats were pretreated with saline or cocaine and tested for their saline or 
cocaine preference in adolescence. 
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Figure 15: Adolescent rats were pretreated with saline or cocaine and tested for their saline or 
cocaine preference in adulthood.  
 
Conditioned Place Preference:  Animals were trained using a two-chambered apparatus made of 

clear Plexiglas with a clear Plexiglas cover.  Two compartments (21 cm wide x 18 cm long x 21 

cm high) separated by a removable wall were used for conditioning.  The two chambers provided 

distinct visual (vertical or horizontal black and white bands) and tactile (wire or sandpaper 

flooring) cues to establish an association when paired with either saline or cocaine.  A video-

based tracking system (EthoVision, Noldus Information Technologies) was used to record and 

quantify the data.   

 Animals were tested in the CPP apparatus for 15 minutes (wall removed for free access 

to both chambers) 24 hours prior to the first training session to determine an initial preference for 

either the horizontal or the vertical striped chamber.  In a biased design, the two chambers are 

designated post-hoc as preferred or aversive, based on the compartment that the animal spends 

the most and least time in, respectively.  Following baseline recording, the animals were trained 

over a period of 8 days.  Each day (between 0900 and 1100 hr) the animals received either saline 

or cocaine and were confined to the preferred or aversive chamber, respectively, for 15 minutes.  

For all animals, the order of chamber exposure was alternated daily.  Animals were tested 

approximately 16-18 hours after their last training session.  Animals were placed in the apparatus 

with the wall removed and tested for 15 minutes to determine the conditioned effects of repeated 

drug exposure.  Preference was assessed using a difference score derived by subtracting the 

total time spent in the initially preferred chamber from the total time spent in the initially aversive 

chamber on test.  Before each trial and test period, the apparatus was cleaned with 70% ethanol 

to remove any lingering odor cues.  Floors were washed with soap and water and air-dried for 24 

hours before subsequent use.  
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Data Analyses:  Data analyses were performed with Graphpad Prism (Graphpad, CA).  The data 

were expressed as the means +/- SEM, and the significance level was set at p=0.05. Four 

separate two-way analyses of variance (ANOVA) were performed on CPP preference scores for 

both adolescent and adult animals after repeated saline or cocaine to assess the effects of 

adolescent drug exposure induced by a moderate (i.e. 10mg/kg) or high (i.e. 20mg/kg) dose of 

cocaine. One-sample t-tests were performed on all preference scores to determine differences 

from zero to assess cocaine preference.  Subsequent post hoc analyses were used to isolate 

differences between drug conditions. In addition, two two-way repeated ANOVA were performed 

on locomotor activity across time between saline and cocaine pretreated animals to determine 

differences in sensitized locomotor activity.  Subsequent post hoc analyses were used to isolate 

differences between drug conditions. 

Results 

Adolescent CPP:  The present findings demonstrate that animals pretreated with saline during 

development exhibited a significant preference for a moderate dose of cocaine [S-C: t(7)=3.423, 

p<0.05] in adolescence, an effect expected as cocaine has been shown to be rewarding at this 

dose in adult rats. Interestingly, after developmental exposure to cocaine, adolescent animals did 

not exhibit a preference for a moderate dose of cocaine [C-C: t(6)=0.057, p>0.05] suggesting that 

developmental exposure decreases the rewarding efficacy of cocaine during this developmental 

period.  Both control groups did not exhibit a preference for saline [S-S: t(6)= 0.5807, p>0.05, C-

S: t(6)=0.05700, p>0.05].  The two-way ANOVA revealed an interaction between drug 

pretreatment and place conditioning during adolescence [F(1,27)= 4.214, p<0.05].  Post-hoc’s 

revealed that animals place preference for saline (S-S) or cocaine (S-C) differed significantly after 

saline pretreatment [t(13)=2.418, p<0.05], demonstrating the rewarding efficacy of cocaine 

(10mgkg) in adolescent rats.  Moreover, adolescent rats pretreated with saline and tested for 

cocaine place preference (S-C) exhibited a significant difference from animals pretreated with 

cocaine and tested for saline (C-S) or cocaine (C-C) place preference [t(13)= 1.979, p<0.05 and 

t(15)=3.422, p<0.05, respectively], suggesting that developmental exposure decreases the 

rewarding efficacy of cocaine during this developmental period. (see Figure 16).  These 
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differences suggest that enduring changes take place after repeated cocaine during 

development; changing the rewarding efficacy of cocaine in the adolescent animal.  

 
Figure 16: Saline pretreated adolescent rats demonstrated a significant preference for cocaine 
(i.e. 10mg/kg), whereas cocaine pretreated rats did not demonstrate a preference.  Additionally, 
animals tested for saline (S-S) or cocaine (S-C) preference differed significantly after saline 
pretreatment. Moreover, saline pretreated adolescent rats tested for cocaine (S-C) preference 
differed significantly from cocaine-pretreated rats tested for saline (C-S) or cocaine (C-C) 
preference. 
# = differs from zero 
* = differs from all other bars 

 

Due to the possibility that developmental cocaine exposure changes the dose response 

curve of the rewarding efficacy of cocaine, a separate group of animals were pretreated with 

cocaine (i.e.10 mg/kg) and tested for their place preference to a high dose of cocaine (20 mg/kg).  

Control animals (S-S) did not exhibit a significant saline place preference [t(6)=0.5807, p>0.05] 

whereas saline pretreated adolescent animals demonstrated a significant cocaine place 

preference (S-C) [t(6)=4.277, p<0.05], demonstrating not only a preference for a moderate but 

also a high dose of cocaine.  Importantly, adolescent rats did not demonstrate a place preference 

for a high dose of cocaine after developmental exposure [C-C: t(9)=1.251, p>0.05], an effect seen 

when tested with a moderate dose of cocaine, suggesting that increasing the dose does not 

potentiate the rewarding efficacy after developmental exposure.  A one-way ANOVA and 

subsequent post hoc tests (i.e. Tukey’s Multiple comparison) revealed significant differences 

between pretreatment groups (i.e. S-C and C-C) [F(2,21)=4.605, p<0.05] (see Figure 17).  These 
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data suggest that developmental cocaine exposure renders the adolescent less responsive to the 

rewarding properties to not only a moderate but also to a high dose of cocaine. 

 
Figure 17: Saline pretreated adolescent rats demonstrated a significant preference for cocaine 
(i.e. 20mg/kg), whereas cocaine pretreated rats did not demonstrate a preference.  Additionally, 
animals tested for saline (S-S) or cocaine (S-C) preference differed significantly after saline 
pretreatment. Moreover, saline pretreated adolescent rats tested for cocaine (S-C) preference 
differed significantly from cocaine-pretreated rats tested for saline (C-S) or cocaine (C-C) 
preference. 
# = differs from zero 
* = differs from all other bars 

 

Due to the possibility that developmental cocaine exposure sensitizes animals to the 

neurochemical and behavioral effects of cocaine, saline or cocaine (i.e. 10 mg/kg) pretreated 

adolescent rats locomotor activity in response to cocaine (i.e. 5 mg/kg) was assessed.  Cocaine 

pretreated rats, when challenged with a low dose of cocaine and placed in an open field, 

demonstrated greater locomotor activity compared to animals pretreated with saline 

[F(1,21)=4.286, p<0.05] [time point 15 minutes: t(20)=2.069, P<0.05], suggesting that 

developmental cocaine exposure results in sensitized behavioral responding to subsequent 

cocaine exposure (see Figure 18).  These results suggest that both the cocaine-induced 

increases in locomotor activity and the lack of place preference for either a moderate or high dose 

of cocaine after developmental cocaine exposure may be due to dissociation of the locomotor 

and reward pathways, whereby animals are hyper-responsive to the psychostimulant induced 

locomotor activating effects but are hypo-responsive to the reward activating properties of the 

drug.  
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Figure 18: Cocaine pretreated adolescent rats, when challenged with a low dose of cocaine (i.e. 
5mg/kg) and placed in an open field, demonstrated greater locomotor activity compared to 
animals pretreated with saline. 
* = differs from saline pretreated 
 

Adult CPP:  The present findings demonstrate that adult animals pretreated with saline during 

adolescence exhibit a significant place preference for a moderate dose of cocaine [S-C: 

t(9)=5.171, p<0.05] an expected effect as cocaine has been shown to be rewarding at this dose in 

adult rats.  As seen above with adolescent rats (see Figure 16), developmental cocaine exposure 

changed the rewarding efficacy of cocaine lasting into adulthood [C-C:  t(11)=0.4940, p>0.05]. 

Both control groups did not exhibit a place preference for saline [S-S: t(10)= 0.7213, p>0.05, C-S: 

t(7)=0.4516, p>0.05].  The two-way ANOVA revealed an interaction between drug pretreatment 

and CPP test during adulthood [F(1,37)= 9.746, p<0.05]. Post-hoc’s revealed that animals tested 

for saline (S-S) or cocaine (S-C) place preference differed significantly after pretreatment with 

saline [t(19)=2.707, p<0.05], demonstrating the rewarding efficacy of cocaine during adulthood.  

Moreover, saline pretreated adolescent rats tested for cocaine place preference (S-C) were 

significantly different from cocaine pretreated rats tested for saline (C-S) or cocaine (C-C) place 

preference [t(16)= 3.182, p<0.05 and t(20)=3.203, p<0.05, respectively] (see Figure 19). These 

differences suggest that enduring changes take place after developmental cocaine exposure; 

decreasing the rewarding efficacy of cocaine in the adult animal.   



 

55 

 

Figure 19: Saline pretreated adolescent rats demonstrated a significant preference for cocaine 
(i.e. 10mg/kg) in adulthood, whereas cocaine pretreated adolescent rats did not demonstrate a 
preference in adulthood.  Additionally, animals tested for saline (S-S) or cocaine (S-C) preference 
differed significantly after saline pretreatment in adulthood. Moreover, saline pretreated 
adolescent rats tested for cocaine (S-C) preference differed significantly from cocaine pretreated 
rats tested for saline (C-S) or cocaine (C-C) preference in adulthood. 
# = differs from zero 
* = differs from all other bars 
 

Due to the possibility that developmental cocaine exposure changes the dose response 

curve of the rewarding efficacy of cocaine in adulthood, a separate group of animals were 

pretreated with cocaine (i.e.10 mg/kg) and tested for their place preference to a high dose of 

cocaine (20 mg/kg) in adulthood. Control animals (S-S) did not exhibit a significant saline place 

preference [t(10)=0.7213, p>0.05] whereas saline pretreated adolescent animals demonstrated a 

significant cocaine place preference (S-C) in adulthood [t(9)=2.632, p<0.05], demonstrating not 

only a place preference for a moderate but also a high dose of cocaine. Importantly, adult rats did 

not demonstrate a place preference for a high dose of cocaine after developmental exposure [C-

C: t(9)=1.230, p>0.05], an effect seen when tested with a moderate dose of cocaine, suggesting 

that increasing the dose does not potentiate the rewarding efficacy after developmental exposure. 

A one-way ANOVA and subsequent post hoc tests (i.e. Tukey’s Multiple comparison) revealed 

significant differences between pretreatment groups (i.e. S-C and C-C) [F(2,21)=4.605, p<0.05] 

(see Figure 20). These data suggest that developmental cocaine exposure renders the adult less 

responsive to the rewarding properties to not only a moderate but also to a high dose of cocaine. 
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Figure 20:  Saline pretreated adolescent rats demonstrated a significant preference for cocaine 
(i.e. 20mg/kg) in adulthood, whereas cocaine pretreated adolescent rats did not demonstrate a 
preference in adulthood.  Additionally, animals tested for saline (S-S) or cocaine (S-C) preference 
differed significantly after saline pretreatment in adulthood. Moreover, saline pretreated 
adolescent rats tested for cocaine (S-C) preference differed significantly from cocaine pretreated 
rats tested for saline (C-S) or cocaine (C-C) preference in adulthood. 
# = differs from zero 
* = differs from all other bars 

 

Due to the possibility that developmental cocaine exposure sensitizes animals to the 

neurochemical and behavioral effects of cocaine, saline or cocaine (i.e. 10 mg/kg) pretreated 

adult rats locomotor activity in response to cocaine (i.e. 5 mg/kg) was assessed.  Cocaine 

pretreated adult rats, when challenged with a low dose of cocaine and placed in an open field, 

demonstrated greater locomotor activity compared to animals pretreated with saline 

[F(1,23)=4.286, p<0.05] [time point 15 minutes: t(11)=2.240, P<0.05], suggesting that 

developmental cocaine exposure results in sensitized behavioral responding to subsequent 

cocaine exposure (see Figure 21) in adulthood.  These results suggest that both the cocaine-

induced increase in locomotor activity and the lack of place preference for either a moderate or 

high dose of cocaine in adulthood after developmental cocaine exposure may be due to 

dissociation of the locomotor and reward pathways, whereby animals are hyper-responsive to the 

psychostimulant induced locomotor activating effects but are hypo-responsive to the reward 

activating properties of the drug.    
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Figure 21: Cocaine pretreated adolescent rats, when challenged with a low dose of cocaine (i.e. 
5mg/kg) and placed in an open field in adulthood, demonstrated greater locomotor activity 
compared to animals pretreated with saline. 
* = differs from saline pretreated 
 

Discussion 

Previous work in humans has demonstrated that individuals who abuse drugs during 

adolescence are more likely to be dependent on drugs in adulthood (Clark DB, 1998). The aim of 

the present study was to investigate the consequences of repeated developmental cocaine 

exposure on the subsequent rewarding efficacy of cocaine in both adolescence and adulthood.   

 The present data provide evidence for short and long-term behavioral adaptations that 

occur after developmental cocaine exposure. Developmental exposure to cocaine decreases 

place conditioning in both the adolescent and adult rat, indicating developmental exposure 

changes the rewarding efficacy of cocaine.  A decreased rewarding efficacy of cocaine could be 

due to an increase in the anxiogenic properties of the drug.  Cocaine has been shown to produce 

anxiety in human and animal models, either during repeated administration or during withdrawal.  

Increased aversion for the illuminated area of the mouse black and white test box model after 

cocaine exposure was demonstrated by Costall and colleagues (Costall B, 1989), in addition to 

increased defensive withdrawal in rats after cocaine exposure (Yang et al., 1992) and a decrease 

in the number of entries into and time spent in the open arms of an elevated plus maze in mice 

(Yang et al., 1992).  Moreover, following withdrawal from repeated cocaine, animals 
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demonstrated an increase in anxiogenic responses in the elevated plus-maze (Sarnyai et al., 

1995) and enhanced startle-induced ultrasonic distress vocalizations (Barros HM, 1996).  These 

data are somewhat counterintuitive as cocaine use and abstinence can induce anxiety in humans 

and anxiogenic responses in animals and therefore may decrease the appetitive value or 

motivation for the drug.  Some researchers have speculated that the controlled activation of the 

hypothalamic-pituitary-adrenal axis may serve as an arousing stimulus to the animal and increase 

the conditionability and subsequent use of cocaine.  Importantly, these studies only investigated 

the short-term effects of withdrawal after drug exposure whereas the current study examined at a 

longer withdrawal period.  Future studies should investigate additional long-term behavioral 

changes including anxiety related behavioral measures after cessation of repeated 

developmental cocaine.   

The present data suggest that developmental cocaine exposure produced a sensitized 

behavioral response to subsequent drug exposure (i.e. increased locomotor activity) compared to 

saline pretreated controls in both adolescent and adult rats. Repeated administration of 

psychostimulants can result in behavioral sensitization expressed as an enhanced behavioral 

response to a subsequent drug challenge (Vanderschuren and Kalivas, 2000).  Behavioral 

sensitization has been demonstrated in both adolescent and adult rats (Karler et al., 1990; 

Laviola et al., 1995; Robinson and Berridge, 1993), suggesting that repeated cocaine exposure 

produces long lasting neuronal changes that have enduring effects on behavior and possibly drug 

dependence. 

These results suggest that both the cocaine-induced increase in locomotor activity and 

the lack of cocaine place conditioning for either a moderate or high dose of cocaine in 

adolescence or adulthood after developmental exposure may be due to a hyper-responsive 

nigrostriatal system and a hypo-responsive mesolimbic system. It seems a dissociation exists 

between locomotor activation and cocaine place conditioning, suggesting that behavioral 

sensitization and reward mechanisms are different biobehavioral phenomena and might be 

activated by different neural and hormonal substrates. Several researchers (Robinson and 

Berridge, 1993) have argued that the reward system is mediated by the mesolimbic pathway 
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which projects from the ventral tegmental area to the nucleus accumbens whereas behavioral 

sensitization and locomotor activation is mediated by the nigrostriatal pathway which projects 

from the substantia nigra to the striatum (Oades and Halliday, 1987).  Hemby et al. reported an 

increase in locomotor activity but no place conditioning from intra-accumbal cocaine (Hemby et 

al., 1992).  In addition, intra-accumbal injections of neurotensin block the locomotor effect but not 

self-administration of cocaine (Robledo et al., 1993).  If the mechanisms by which 

psychostimulants induce hyperactivity are separable from those by which they produce place 

conditioning, developmental cocaine exposure may increase responding to the locomotor 

activating effects of these drugs, but decrease responding to the rewarding attributes.  

Repeated psychostimulant administration during adolescence has been reported to 

change the rewarding efficacy of cocaine in adulthood.  Methylphenidate exposure in 

adolescence decreases the rewarding efficacy of cocaine in adulthood (Andersen et al., 2002; 

Carlezon et al., 2003).  In addition, periadolescent nicotine exposure reduces cocaine reward in 

adult mice (Kelley and Middaugh, 1999). Other researchers have reported that developmental 

exposure to methylphenidate facilitates acquisition of i.v. cocaine self administration in adulthood 

(Brandon et al., 2001).  An increase in self-administration may be due to a decrease in the 

rewarding efficacy of stimuli whereby a higher rate of responding is necessary to maintain similar 

physiological states as control animals.  In addition, developmental exposure to methylphenidate 

also decreases the rewarding efficacy of natural reinforcers (i.e. sucrose) and sexual behaviors 

(Bolanos et al., 2003).  These behavioral data suggest that repeated psychostimulant exposure in 

adolescence modifies the responsivity to stimuli in adulthood, signified by decreased sensitivity to 

reward.  Self-reports from human addicts suggest that the rewarding efficacy of stimuli, including 

drugs of abuse, decrease after repeated use.  The belief that decreased rewarding efficacy of 

drugs will reduce the likelihood to continue drug use is contradictory to self-reports of drugs 

addicts who continue to engage in drug use despite little to no pleasure after use. 

During brain maturation, there are likely sensitive periods (i.e. adolescence) where 

environmental conditions, including drug exposure, may influence development by modifying 

neuronal connections and subsequently altering function.  Aberrant levels of stimulation by drug 
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exposure may produce different phenotypes than expected under normal developmental 

conditions that may influence subsequent responding to drugs of abuse after the brain is fully 

mature.  

Neuroadaptations after developmental cocaine exposure may cause depressive-like 

signs such as anhedonia (decreased ability to experience reward), dysphoria (feelings of 

unwellness) or despair (feelings of giving up).  Exposure to methylphenidate in adolescence 

produces an increased expression of the transcription factor, CREB (cAMP response element 

binding protein) within the NAcc in adulthood.  An increase in intra-accumbal CREB activity has 

been linked with decreased cocaine reward and increased cocaine aversion in place conditioning 

studies and the development of depressive-like behaviors in the forced swim test (Pliakas et al., 

2001).  Activation of CREB also induces an increase in dynorphin activity at the kappa opioid 

receptor, which has been linked with dysphoria and anhedonia (Carlezon et al., 1998).   

Repeated cocaine has also been shown to increase CREB (Brenhouse et al., 2007) and 

immobility in the forced swim test (Barron et al., 2005; Magalhaes et al., 2004) in the adult rat. 

These data suggest that individuals may engage in drug use due to a hypo-responsive reward 

system and by doing so may alleviate the symptoms of anhedonia and dysphoria. Elucidating the 

mechanisms by which addictive drug exposure during adolescence renders the adult more 

vulnerable to continued drug use is of utmost importance in a society that has a striking 

percentage of adolescents who experiment with cocaine. 

It is important to mention the difficulty in interpreting the current data as predictive of 

adolescent specific addiction in the absence of data collected from animals that were exposed to 

drug in adulthood.  Future studies need to address this possibility.  Regardless, the changes in 

the rewarding efficacy of cocaine in adulthood have implications for the susceptibility to maintain 

drug use.  
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Chapter Five 
 

Enduring Changes In Reward Mechanisms After Developmental Exposure To Cocaine: The Role 

Of The D2 Receptor 

Abstract 
 
Adolescence is a developmental period marked by greater probability to initiate drug use and is 

associated with an increased risk to develop adulthood dependency. During brain maturation, 

there are likely sensitive periods (i.e. adolescence) where environmental conditions, including 

drug exposure, may influence development by modifying neuronal connections and subsequently 

altering function.  Aberrant levels of stimulation by drug exposure may produce different 

phenotypes than expected under normal developmental conditions that may influence 

subsequent responding to drugs of abuse after the brain is fully mature. More specifically, adult 

rats demonstrate increased dopamine transporter densities following cocaine exposure. Due to 

the fact that D2 autoreceptors have been implicated in this process, it is hypothesized that as 

adolescent rats have greater dopamine transporters and D2 receptors than adults, artificially 

elevating dopamine levels by inhibiting reuptake will interfere with the normal pruning of these 

connections, thereby changing responsivity to rewarding stimuli in adolescence and adulthood. 

The aim of the present study was to investigate the consequences of repeated developmental 

cocaine exposure on the subsequent rewarding efficacy of cocaine in adolescence and 

adulthood.  Additionally, co-administration of cocaine with a D2 antagonist during adolescence 

was investigated to determine the interaction of D2 receptors and the rewarding efficacy of 

cocaine in both adolescence and adulthood. After developmental exposure to cocaine, 

adolescent and adult rats exhibit decreased rewarding efficacy to both a moderate and a high 

dose of cocaine.  Most significantly, blockade of the D2 receptor prevents cocaine-induced 

neurochemical changes, potentially regulating the behavioral and neurochemical alterations that 

occur after repeated drug use that could increase the likelihood of abuse and dependence. 
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Introduction 

 Adolescence is a period when the brain is undergoing many complex changes that can 

exert long-term influences on decision making and cognitive processes (for review, see (Spear, 

2000).  It is also a period of experimentation, and Estroff (Estroff et al., 1989) has reported that 

illicit drug use can begin as early as age 12, with peak periods of initiation between ages 15 and 

19.  The mean age of illicit drug initiation in adults categorized as having a substance use 

disorder is 16 years old, with initiation rare after age 20 (Anthony, 1991).  In fact, initiation rates 

are so high that more than half (54%) of high school seniors have had at least one experience 

with an illicit compound (Johnston LD, 2002).   During the 1990’s, there was a steady rise in the 

frequency of cocaine use in teenagers, by 2003, 4.3% of eighth graders, 5.7% of tenth graders, 

and 8.2% of high school seniors reported frequent use of cocaine (Johnston LD, 2002).  The fact 

that initiation of cocaine use is so dramatic during the adolescent period is particularly 

disconcerting given that the escalation of cocaine use appears more rapidly among teenagers 

than adult users, suggesting a greater addictive potential during adolescence than in adulthood 

(Estroff et al., 1989).  Generally, adults who initiate drug use during adolescence are more likely 

to have higher lifetime rates of drug use and progress to dependency more rapidly than those 

who began drug use in adulthood (Helzer JE, 1991; Kandel et al., 1992; Clark DB, 1998).   

Moreover, adolescents demonstrate a more abrupt progression of illicit drug use and 

development of substance use disorders than adults (Warner et al., 1995), suggesting that this 

ontogenetic period renders the adolescent more vulnerable to addiction.    

Repeated administration of psychostimulants can result in behavioral sensitization 

expressed as an enhanced behavioral response to a subsequent drug challenge (Vanderschuren 

and Kalivas, 2000).  Consequently, rats who have repeatedly administered cocaine over several 

days, will show an elevated locomotor reactivity in response to the drug which prevails after 

cessation of the drug (Cass and Zahniser, 1993).  Sensitization not only occurs behaviorally, but 

neurochemically.  Repeated drug exposure produces changes and adaptations at a cellular level 

which in turn alters the functioning of the entire pathway in which those neurons work (Kleven et 

al., 1988).  These changes lead to the complex processes of tolerance, dependence and 
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sensitization (Wise, 1980; Koob and Le Moal, 1997). Repeated exposure to psychostimulants has 

been shown to induce long-lasting changes in dopamine (DA) neurons including decreases in DA 

levels and its metabolites, decrease in tyrosine hydroxylase activity, decrease in DA metabolism, 

either an increase or decrease in stimulated release, morphological degeneration of nerve 

terminals and decreases in Vmax for [3H]DA (Borison and Diamond, 1979; McCabe et al., 

1987):(Kalivas and Duffy, 1988; Kalivas et al., 1988; Karoum et al., 1990; Peris et al., 1990). One 

important presynaptic mechanism regulated by the D2 autoreceptor are the dopamine 

transporters (DAT) (Mayfield and Zahniser, 2001).  The DATs are the target of some drugs of 

abuse (e.g. amphetamine and cocaine), and may mediate the rewarding and reinforcing aspects 

of these drugs.  Several studies have demonstrated that repeated cocaine administration results 

in increased DAT in the nucleus acumens septi (NAcc) (Daws et al., 2002).  Importantly, 

changes in protein kinase C (PKC) activity have been demonstrated to alter DAT density in rats 

(Kitayama et al., 1994) and humans (Vaughan et al., 1997).  The activation of intracellular 

signaling proteins, specifically PKC, regulates the surface expression of DAT (Mayfield and 

Zahniser, 2001).  Inhibition of PKC by D2 receptor activation prevents the internalization of DAT, 

maximizing the number of active transporters on the membrane surface, and attenuating synaptic 

DA levels (Pristupa et al., 1998).  Conversely, increased PKC activity in the absence of D2 

receptor stimulation results in increased DAT internalization, fewer active transporters and 

consequently greater synaptic DA levels (Huff et al., 1998). Acute or chronic exposure to a D2 

receptor antagonist decreases DA transport into striatal tissue in vitro and local administration of 

a D2 antagonist reduces DA uptake in vivo (Meiergerd et al., 1993; Rothblat and Schneider, 

1997).  Clearance of DA in vivo has been shown to decrease in the striatum, NAcc and prefrontal 

cortex following administration of a selective D2- but not D1- antagonist (Cass and Gerhardt, 

1994). Taken together, these modifications in DAT number by D2 receptor mediated PKC activity 

indicate the critical role of D2 receptor/ DAT interactions in the regulation of synaptic DA levels 

and implicate D2 receptor activity as a potential target for the manifestation of long term 

adaptations in the mesolimbic DA system that manifest behaviorally as dependency following 

repeated cocaine. 
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Similar to humans, adolescent rats are behaviorally different from younger and older rats. 

Periadolescent rats have been reported to be more hyperactive and inattentive (Spear and Brake, 

1983), exhibit greater novelty-preference (Stansfield and Kirstein, 2006) and have reduced 

responsiveness to some of the effects of alcohol (Silveri and Spear, 1998), amphetamine 

(Bolanos et al., 1998), and cocaine (Laviola et al., 1995).   In the conditioned place preference 

(CPP) paradigm, adolescent rats show a preference for nicotine, whereas the adult rats did not 

(Vastola et al., 2002).  Also, it has been demonstrated that adolescent rats showed a preference 

for moderate doses of alcohol and cocaine, whereas the adults had no preference (Philpot et al., 

2003; Badanich et al., 2006).  Many behavioral alterations that are age-specific seen in human 

adolescents are observed in adolescent rats, making these animal models very useful in the 

evaluation of neurochemical and behavioral changes due to drug use during this important stage 

of development.   During adolescence, environmental conditions, including drug exposure, may 

influence brain development and function. Few studies have examined the DAergic 

neuroadaptations that take place after repeated exposure to cocaine during adolescence, not 

only a developmental period during which drug use initiation is widespread, but also a critical 

period for the remodeling of the mesolimbic and mesocortical brain regions and their neuronal DA 

projections (for review, see (Spear, 2000)).  Rosenberg & Lewis (Rosenberg and Lewis, 1995) 

were among those researchers who saw a common developmental pattern in the overproduction 

and subsequent pruning of synaptic connections during the period preceding adulthood.  The D1 

and D2 receptors have been of major focus for years in regards to overproduction and pruning as 

these receptors increase in density in the first few weeks of life (Hartley and Seeman, 1983).  

Subsequently, Teicher et al have demonstrated receptor overproduction and elimination in both 

the striatum and prefrontal cortex (Teicher et al., 1995; Andersen et al., 2000).  In addition, 

alterations in receptor binding and sensitivity in various neurotransmitter systems have been 

reported during adolescence (Trauth et al., 1999) along with changes in the myelination of 

neurons (Hamano et al., 1996).  Importantly, DAT are overproduced and pruned during 

adolescence as the striatum transitions to adult state in rats (Moll et al., 2000) and humans 

(Haycock et al., 2003). As DAT density increases during adolescence, enhanced reuptake 
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reduces the extracellular levels of DA (Andersen and Gazzara, 1993) and a subsequent 

upregulation of postsynaptic receptors, and their second messenger systems take place 

(Andersen, 2002).  These developmental differences may not only predispose adolescents to be 

more vulnerable to the rewarding effects of drugs of abuse, but may leave them more vulnerable 

to dependence after drug exposure due to interference with the normal synaptic pruning that 

takes place in the transition from adolescence to adulthood.  Given that repeated cocaine in the 

adult rat yields increases DAT densities and D2 autoreceptors have been implicated in this 

process, it is hypothesized that as adolescent rats have greater DAT and D2 receptors than 

adults, artificially elevating DA levels (i.e. cocaine) will interfere with the normal pruning of these 

connections, thereby changing responsivity to rewarding stimuli in adolescence and adulthood.  

By virtue of developmental elevations in dopaminergic regulatory mechanisms (D2 & DAT) it is 

hypothesized adolescents will exhibit unique adaptations following repeated exposure to cocaine 

that render them more vulnerable to cocaine use in adulthood.   The aim of the present study was 

to investigate the consequences of developmental cocaine exposure with or without concurrent 

blockade of the D2 receptor on the subsequent rewarding efficacy of cocaine in both adolescence 

and adulthood.  

Methods 

One hundred sixty-two male Sprague-Dawley (Harlan Laboratories, Indianapolis, IN) rats, 

offspring of established breeding pairs in the laboratory (University of South Florida, Tampa) were 

postnatal day (PND) 30 (µ=134 grams) at the beginning of the study.  No more than one male per 

litter per age was used in any given condition.  Pups were sexed and culled to 10 pups per litter 

on PND 1.  Pups remained housed with their respective dams in a temperature and humidity-

controlled vivarium on a 12:12 h light: dark cycle (07:00 h/19:00 h) until PND 21, on PND 21 pups 

were weaned and male littermates were group housed throughout the entire experiment.  Animals 

were experimentally naive until the beginning of the study (PND 30). The care and use of animals 

was in accordance with local standards set by the Institutional Animal Care and Use Committee 

and the NIH Guide for the Care and Use of Laboratory Animals (Health, 1989). 
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Procedure:  Beginning on PND 30, rats were injected once per day with either vehicle (tartaric 

acid, i.p.) or pimozide (1.0 mg/kg, i.p) followed 3 hours later with either saline [0.9% sodium 

chloride, i.p.] or cocaine hydrochloride [10 mg/kg, i.p.] (Parsons et al., 1993) in their homecages 

from PND 30 to 40.  Groups are referred to as VS-S (vehicle-saline pretreated: saline CPP), PS-S 

(pimozide-saline pretreated: saline CPP), VS-C (vehicle-saline pretreated: cocaine CPP), PS-C 

(pimozide-saline pretreated: cocaine CPP), VC-C (vehicle-cocaine pretreated: cocaine CPP), PC-

C (pimozide-cocaine pretreated: cocaine CPP). Following 10 days of drug exposure (i.e. vehicle 

or pimozide followed by saline or cocaine), animals either immediately began behavioral training 

(i.e. CPP) to determine their place preference for cocaine (i.e. 10 mg/kg, i.p.) during adolescence 

(i.e. PND 41-50) or were withdrawn into adulthood (i.e. PND 60-69) [see Figure 2] when they 

began the same behavioral testing. For behavioral studies, rats were placed in a CPP apparatus 

(either in the large test chamber [21 cm wide x 36 long x 21 cm high] or in one compartment [21 

cm wide x 18 cm long x 21 cm high]) for each session which took place for 15 minutes once daily 

for an 8 day period (either PND 41-50 or PND 60-69). 

 

Figure 22: Adolescent rats were pretreated with saline or cocaine and tested for their saline or 
cocaine preference in adolescence. 
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Figure 23: Adolescent rats were pretreated with saline or cocaine and either vehicle or pimozide 
and tested for their saline or cocaine preference in adolescence. 
 

 
 
Figure 24: Adolescent rats were pretreated with saline or cocaine and tested for their saline or 
cocaine preference in adulthood. 
 

 
Figure 25: Adolescent rats were pretreated with saline or cocaine and either vehicle or pimozide 
and tested for their saline or cocaine preference in adulthood. 
 
Conditioned Place Preference:  Animals were trained using a two-chambered apparatus made of 

clear Plexiglas with a clear Plexiglas cover.  Two compartments (21 cm wide x 18 cm long x 21 

cm high) separated by a removable wall were used for conditioning.  The two chambers provided 

distinct visual (vertical or horizontal black and white bands) and tactile (wire or sandpaper 

flooring) cues to establish an association when paired with either saline or cocaine. A video-

based tracking system (EthoVision, Noldus Information Technologies) was used to record and 

quantify the data.   

 Animals were tested in the CPP apparatus for 15 minutes (wall removed for free access 

to both chambers) 24 hours prior to the first training session, a biased design was used to 

determine an initial preference for either the horizontal or the vertical striped chamber.  In a 

biased design, the two chambers are designated post-hoc as preferred or aversive, based on the 

compartment that the animal spends the most and least time in, respectively.  Following baseline 

recording, the animals were trained over a period of 8 days.  Each day (between 0900 and 1100 

hr) the animals received either saline or cocaine and were confined to the preferred or aversive 



 

68 

chamber, respectively, for 15 minutes.  For all animals, the order of chamber exposure was 

alternated daily.  Animals were tested approximately 16-18 hours after their last training session.  

Animals were placed in the apparatus with the wall removed and tested for 15 minutes to 

determine the conditioned effects of repeated drug exposure.  Preference was assessed using a 

difference score derived by subtracting the total time spent in the initially preferred chamber from 

the total time spent in the initially aversive chamber on test.  After each trial and test period, the 

apparatus was cleaned with 70% ethanol to remove any lingering odor cues.  Floors were 

cleaned with soap and water and allowed to air-dry for 24 hours before subsequent use.  

Data Analyses:  Data analyses were performed with Graphpad Prism (Graphpad, CA).  The data 

were expressed as the means +/- SEM, and the significance level was set at p=0.05. One-sample 

t-tests were used to assess drug preferences and analyses of variance (ANOVA) were used to 

determine group differences between conditions. Two separate two-way ANOVA were performed 

on place preference scores for both adolescent and adult animals after saline or cocaine 

exposure to assess the effects of developmental drug exposure.  Additionally, two separate two-

way ANOVA were performed on cocaine place preference scores for adolescent and adult rats 

after repeated vehicle or pimozide followed by either saline or cocaine exposure to assess the 

effects of developmental cocaine exposure with concurrent blockade of the D2 receptor on the 

rewarding efficacy of cocaine in adolescence and adulthood.  Additionally, two separate t-tests 

were performed to assess differences between control drug conditions (i.e. pretreatment with 

vehicle or pimozide followed with saline and tested for saline place preference). One-sample t-

tests were performed on all preference scores to determine differences from zero to assess 

cocaine preference.  Subsequent post hoc analyses were used to isolate differences between 

drug conditions.  

Results 

Adolescent CPP:  The present findings demonstrate that saline pretreated adolescent rats 

expressed a significant place preference for cocaine [S-C:  t(7)=3.423, p<0.05], an expected 

effect as cocaine has been shown to be rewarding at this dose in adult rats.  Interestingly, after 

developmental cocaine exposure, adolescent animals did not exhibit a significant cocaine place 
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preference [C-C: t(6)=0.057, p>0.05] suggesting that developmental exposure modifies the 

rewarding efficacy of cocaine during adolescence.  Both control groups did not exhibit a saline 

place preference [S-S: t(6)= 0.5807, p>0.05, C-S: t(6)=0.05700, p>0.05].  

A two-way ANOVA revealed an interaction between drug pretreatment (i.e. saline or 

cocaine) and CPP test (i.e. cocaine) during adolescence [F(1,27)= 4.214, p<0.05]. Post-hoc’s 

revealed that animals place preference for saline (S-S) or cocaine (S-C) differed significantly after 

saline pretreatment [t(13)=2.418, p<0.05], demonstrating the rewarding efficacy of cocaine 

(10mgkg) in adolescent rats. Moreover, adolescent rats pretreated with saline and tested for 

cocaine place preference (S-C) exhibited a significant difference from animals pretreated with 

cocaine and tested for saline (C-S) or cocaine (C-C) place preference [t(13)= 1.979, p<0.05 and 

t(15)=3.422, p<0.05, respectively] (see Figure 26), suggesting that developmental exposure alters 

the rewarding efficacy of cocaine during this developmental period. 

 

Figure 26: Saline pretreated adolescent rats demonstrated a significant preference for cocaine 
(i.e. 10mg/kg), whereas cocaine pretreated rats did not demonstrate a preference.  Additionally, 
animals tested for saline (S-S) or cocaine (S-C) preference differed significantly after saline 
pretreatment. Moreover, saline pretreated adolescent rats tested for cocaine (S-C) preference 
differed significantly from cocaine-pretreated rats tested for saline (C-S) or cocaine (C-C) 
preference. 
# = differs from zero 
*= differs from all other bars 

These differences suggest enduring changes that occur after developmental cocaine 

exposure that render the adolescent animal less responsive to the rewarding efficacy of cocaine.  
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To assess the role of D2 receptors in the mediation of cocaine reward, cocaine place preference 

was assessed in the adolescent rat after concurrent administration of cocaine and a D2 

antagonist. 

Adolescence- Developmental Blockade of D2 Receptors:  No differences were detected between 

control conditions (i.e. VS-S and PS-S) [t(15)=0.1430, p>0.05] and control animals did not exhibit 

a preference for saline [VS-S: t(7)=0.039, p>0.05 and PS-S t(8)=0.1493, p>0.05] (see Figure 27). 

 

Figure 27: No differences were detected between control conditions and control animals did not 
exhibit a preference for saline. 

 

Data reveal that rats pretreated with VS or PS demonstrate a significant cocaine place 

preference [VS-C:  t(7)=3.157, p<0.05 and PS-C: t(4)-3.898, p<0.05, respectively] suggesting that 

pretreatment with vehicle or pimozide alone did not change the rewarding efficacy of cocaine.  

Importantly, vehicle-cocaine pretreated adolescent animals did not demonstrate a significant 

cocaine place preference [VC-C:  t(5)=2.099, p<0.05], suggesting that the vehicle used in this 

study did not affect cocaine place preference, and more importantly, replicating previous data in 

adolescence suggesting that developmental cocaine exposure changes the rewarding efficacy of 

cocaine.  Most significantly, cocaine-pimozide pretreated adolescent animals demonstrated a 

significant place preference for cocaine [t(5)=3.977, p<0.05.] (see Figure 28), an effect not seen 

with concurrent administration of  vehicle and cocaine alone, suggesting that blockade of the D2 

receptor prevents cocaine-induced neurochemical changes, potentially regulating the behavioral 
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and neurochemical alterations that occur after repeated drug use that could increase the 

likelihood of abuse and dependence. 

A two-way ANOVA revealed an interaction between drug pretreatment (i.e. VS, PS, VC, 

PC) and CPP test (i.e. 10 mg/kg cocaine) during adolescence [F(1,25)= 5.072, p<0.05].  Post-

hoc’s revealed that cocaine preference scores differed between animals pretreated with 

pimozide-saline (PS-C) and vehicle-cocaine (PC-C) [t(9)=4.277, p<0.05], in addition, animals 

pretreated with vehicle-saline (VS-C) and vehicle-cocaine (VC-C) demonstrated different cocaine 

preference scores on test [t(12)=3.618, p<0.05] (see Figure 28).  

 

Figure 28: Vehicle-saline and pimozide-saline pretreated adolescent rats demonstrate a 
significant preference for cocaine.  Additionally, vehicle and cocaine pretreated adolescent rats 
did not demonstrate a significant preference for cocaine.  Most significantly, pimozide-cocaine 
pretreated adolescent animals demonstrate a significant preference for cocaine during 
adolescence.  A two-way ANOVA revealed an interaction between drug pretreatment (i.e. VS, 
PS, VC, PC) and CPP test (i.e. 10mg/kg cocaine) during adolescence.  Post-hoc’s revealed that 
cocaine preference scores differed between animals pretreated with pimozide-saline (PS-C) and 
vehicle-cocaine (PC-C), in addition, animals pretreated with vehicle-saline (VS-C) and vehicle-
cocaine (VC-C) demonstrated different cocaine preference scores on test. 
# = differs from zero 
*= differs from all other bars 
 

Adult CPP:  The present findings demonstrate that saline pretreated adolescent rats expressed a 

significant cocaine place preference in adulthood [S-C: t(9)=5.171, p<0.05], an expected effect as 

cocaine has been shown to be rewarding at this dose in adult rats. Developmental cocaine 

exposure changed the rewarding efficacy of cocaine in adult rats [C-C:  t(11)=0.4940, p>0.05]. 
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Both control groups did not exhibit a saline place preference [S-S: t(10)= 0.7213, p>0.05, C-S: 

t(7)=0.4516, p>0.05].   

A two-way ANOVA revealed an interaction between adolescent drug pretreatment (i.e. 

saline or cocaine) and CPP test (i.e. cocaine) during adulthood [F(1,37)= 9.746, p<0.05].  Post-

hoc’s revealed that animals place preference for saline (S-S) or cocaine (S-C) differed 

significantly after saline pretreatment [t(19)=2.707, p<0.05], demonstrating the rewarding efficacy 

of cocaine (10 mg/kg) in adult rats.  Moreover, adolescent rats pretreated with saline and tested 

for cocaine place preference (S-C) exhibited a significant difference from animals pretreated with 

cocaine and tested for saline (C-S) or cocaine (C-C) place preference [t(16)= 3.182, p<0.05 and 

t(20)=3.203, p<0.05, respectively] (see Figure 29). 

 

Figure 29: Saline pretreated adolescent rats demonstrated a significant preference for cocaine 
(i.e. 10mg/kg) in adulthood, whereas cocaine pretreated adolescent rats did not demonstrate a 
preference in adulthood.  Additionally, animals tested for saline (S-S) or cocaine (S-C) preference 
differed significantly after saline pretreatment in adulthood. Moreover, saline pretreated 
adolescent rats tested for cocaine (S-C) preference differed significantly from cocaine pretreated 
rats tested for saline (C-S) or cocaine (C-C) preference in adulthood. 
# = differs from zero 
*= differs from all other bars 
 

These differences suggest enduring changes that occur after developmental cocaine 

exposure that render the adult animal less responsive to the rewarding efficacy of cocaine.  To 
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assess the role of D2 receptors in the mediation of cocaine reward, cocaine place preference was 

assessed in the adult rat after concurrent administration of cocaine and a D2 antagonist.  

Adulthood- Developmental Blockade of D2 Receptors:  No differences were detected between 

control conditions (i.e. VS-S and PS-S) [t(14)=0.8213, p>0.05] and control animals did not exhibit 

a preference for saline [VS-S: t(8)=1.225, p>0.05 and PS-S t(7)=2.335, p>0.05] (see Figure 30). 

 

Figure 30: No differences were detected between control conditions and control animals did not 
exhibit a preference for saline. 
 

Data reveal that adolescent rats pretreated with VS or PS demonstrate a significant cocaine place 

preference [VS-C:  t(8)=2.29, p<0.05 and PS-C:  t(4)=2.81, p<0.05, respectively] in adulthood, 

suggesting that pretreatment with vehicle or pimozide alone did not change the rewarding efficacy 

of cocaine.  Importantly, vehicle-cocaine pretreated adolescent rats did not demonstrate a 

significant cocaine place preference [VC-C: t(7)=0.524, p>0.05] in adulthood, suggesting that the 

vehicle used in this study did not affect cocaine place preference, and more importantly, 

replicating previous data in adolescence suggesting that developmental cocaine changes the 

rewarding efficacy of cocaine in adulthood.  Most significantly, cocaine-pimozide pretreated 

adolescent rats demonstrated a significant cocaine place preference (see Figure 31), an effect 

not seen with concurrent administration of vehicle and cocaine alone. 

A two-way ANOVA revealed an interaction between drug pretreatment in adolescence 

(i.e. VS, PS, VC, PC) and CPP test (i.e. 10 mg/kg cocaine) in adulthood [F(1,29)= 5.031, p<0.05].  

Post-hoc’s revealed that cocaine preference scores differed between animals pretreated with 
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pimozide-saline (PS-C) and vehicle-cocaine (PC-C) [t(14)=3.257, p<0.05], in addition, rats 

pretreated with vehicle-saline (VS-C) and vehicle-cocaine (VC-C) demonstrated different cocaine 

preference scores on test [t(15)=3.145, p<0.05] (see Figure 30).  These data suggest that even 

though enduring changes take place after developmental cocaine exposure, the blockade of the 

D2 receptor prevents cocaine-induced neurochemical changes, potentially regulating the 

behavioral and neurochemical alterations that occur after repeated drug use that could increase 

the likelihood of abuse and dependence.   

 

Figure 31: Vehicle-saline and pimozide-saline pretreated adolescent rats demonstrate a 
significant preference for cocaine in adulthood.  Additionally, vehicle and cocaine pretreated 
adolescent rats did not demonstrate a significant preference for cocaine.  Most significantly, 
pimozide-cocaine pretreated adolescent animals demonstrate a significant preference for cocaine 
during adulthood.  A two-way ANOVA revealed an interaction between adolescent drug 
pretreatment (i.e. VS, PS, VC, PC) and CPP test (i.e. 10mg/kg cocaine) during adulthood.  Post-
hoc’s revealed that cocaine preference scores differed between animals pretreated with 
pimozide-saline (PS-C) and vehicle-cocaine (PC-C), in addition, animals pretreated with vehicle-
saline (VS-C) and vehicle-cocaine (VC-C) demonstrated different cocaine preference scores on 
test. 
# = differs from zero 
* = differs from all other bars 
 

Discussion 

 The present data provide evidence for short and long-term behavioral adaptations that 

occur after developmental cocaine exposure. Developmental exposure to cocaine decreases 

place conditioning in both adolescent and adult rats, indicating developmental exposure changes 

the rewarding efficacy of cocaine.  A decreased rewarding efficacy of cocaine could be due to an 

increase in the anxiogenic properties of the drug.  Cocaine has been shown to produce anxiety in 

human and animal models, either during repeated administration or during withdrawal.  Increased 
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aversion for the illuminated area of the mouse black and white test box model after cocaine 

exposure was demonstrated by Costall and colleagues (Costall B, 1989), in addition to increased 

defensive withdrawal in rats after cocaine exposure (Yang et al., 1992) and a decrease in the 

number of entries into and time spent in the open arms of an elevated plus maze in mice (Yang et 

al., 1992).  Moreover, following withdrawal from repeated cocaine, animals demonstrated an 

increase in anxiogenic responses in the elevated plus-maze (Sarnyai et al., 1995) and enhanced 

startle-induced ultrasonic distress vocalizations (Barros HM, 1996).  These data are somewhat 

counterintuitive as cocaine use and abstinence can induce anxiety in humans and anxiogenic 

responses in animals and therefore may decrease the appetitive value or motivation for the drug.  

Some researchers have speculated that the controlled activation of the hypothalamic-pituitary-

adrenal axis may serve as an arousing stimulus to the animal and increase the conditionability 

and subsequent use of cocaine.  Importantly, these studies only investigated the short-term 

effects of withdrawal after drug exposure whereas the current study examined at a longer 

withdrawal period.  Future studies should investigate additional long-term behavioral changes 

including anxiety related behavioral measures after cessation of repeated developmental cocaine.  

Repeated psychostimulant administration during adolescence has been reported to 

change the rewarding efficacy of cocaine in adulthood.  Methylphenidate exposure in 

adolescence decreases the rewarding efficacy of cocaine in adulthood (Andersen et al., 2002; 

Carlezon et al., 2003).  In addition, periadolescent nicotine exposure reduces cocaine reward in 

adult mice (Kelley and Middaugh, 1999). Other researchers have reported that developmental 

exposure to methylphenidate facilitates acquisition of i.v. cocaine self administration in adulthood 

(Brandon et al., 2001).  An increase in self-administration may be due to a decrease in the 

rewarding efficacy of stimuli whereby a higher rate of responding is necessary to maintain similar 

physiological states as control animals.  In addition, developmental exposure to methylphenidate 

also decreases the rewarding efficacy of natural reinforcers (i.e. sucrose) and sexual behaviors 

(Bolanos et al., 2003).  These behavioral data suggest that repeated psychostimulant exposure in 

adolescence modifies the responsivity to stimuli in adulthood, signified by decreased sensitivity to 

reward.  Self-reports from human addicts suggest that the rewarding efficacy of stimuli, including 
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drugs of abuse, decrease after repeated use.  The belief that decreased rewarding efficacy of 

drugs will reduce the likelihood to continue drug use is contradictory to self-reports from drugs 

addicts who continue to engage in drug use despite little to no pleasure after use. 

Neuroadaptations after developmental cocaine exposure may cause depressive-like 

signs such as anhedonia (decreased ability to experience reward), dysphoria (feelings of 

unwellness) or despair (feelings of giving up).  Exposure to methylphenidate in adolescence 

produces an increased expression of the transcription factor, CREB (cAMP response element 

binding protein) within the NAcc in adulthood.  An increase in intra-accumbal CREB activity has 

been linked with decreased cocaine reward and increased cocaine aversion in place conditioning 

studies and the development of depressive-like behaviors in the forced swim test (Pliakas et al., 

2001).  Activation of CREB also induces an increase in dynorphin activity at the kappa opioid 

receptor, which has been linked with dysphoria and anhedonia (Carlezon et al., 1998).   

Repeated cocaine has also been shown to increase CREB (Brenhouse et al., 2007) and 

immobility in the forced swim test (Magalhaes et al., 2004; Barron et al., 2005) in the adult rat. 

These data suggest that individuals may engage in drug use due to a hypo-responsive reward 

system and by doing so may alleviate the symptoms of anhedonia and dysphoria.  Elucidating the 

mechanisms by which addictive drug exposure during adolescence renders the adult more 

vulnerable to continued drug use is of utmost importance in a society that has a striking 

percentage of adolescents who experiment with cocaine. 

Importantly, the present data suggest that the blockade of D2 receptors with concurrent 

developmental cocaine administration prevent the neurochemical changes that have been 

suggested to occur after adolescent cocaine exposure, behaviorally expressed as decreased 

cocaine place conditioning that would potentially increase abuse potential.   Stimulation of D1 

receptors following cocaine administration seems to be critical in the rewarding effects of the 

drug, although it is likely that long-term adaptations to chronic cocaine exposure are mediated by 

the stimulation of D2 autoreceptors which are involved in regulating synaptic DA levels (Wolf and 

Roth, 1987; Santiago and Westerink, 1991).  Several researchers have demonstrated the 

importance of D2 receptors and DAT in the mediation of cocaine reward. D2 antagonists block 
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the ability of cocaine to support a place preference (Adams et al., 2001).  Additionally, D2 

antagonists administered systemically not only decrease cocaine self-administration, but reduce 

the breakpoint to self-administer cocaine (Roberts et al., 1989; Barrett et al., 2004).  The NAcc 

shell may mediate these effects as a direct infusion of a D2 antagonist also decreases cocaine 

self-administration (Bari and Pierce, 2005). These studies demonstrate that blockade of the D2 

receptor decreases the rewarding and reinforcing efficacy of cocaine, however, few studies have 

examined the consequences of long-term cocaine induced changes that are altered after 

blockade of D2 receptors.  Uhl et al. demonstrated that blockade of D1 or D2 receptors prevents 

the development of cocaine induced behavioral sensitization (Karler et al., 1990) Importantly, in 

vivo studies have demonstrated that repeated cocaine-induced increases in striatal uptake were 

attenuated by pretreatment with pimozide, a D2-antagonist (Parsons et al., 1993).  

Taken together, these studies in adult animals treated in adolescence, demonstrate that 

cocaine exposure results in complicated changes in the DA mesolimbic pathway that continue 

long after drug use has stopped, and processes such as these may be implicated in drug 

dependence, craving and relapse. These data suggest that blockade of the D2 receptor prevents 

cocaine-induced neurochemical adaptations, potentially regulating the behavioral and 

neurochemical alterations that occur after repeated drug use that increase abuse liability.  These 

data implicate D2 receptor activity as a potential target for the manifestation of long term 

adaptations in the mesolimbic DA system that manifest behaviorally as dependency following 

developmental cocaine exposure. 
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Chapter Six 

General Discussion 

Development of the central nervous system (CNS) during adolescence may play a key 

role in the increased likelihood to initiate drug use (for review, see (Spear 2000)).  Moreover, 

disrupting the development of the CNS may result in subsequent long-term increases in the 

probability of drug use and dependence. During adolescence, critical neural structures involved in 

substance abuse are regulated primarily by the limbic system, which is associated with emotional 

and impulsive behaviors (for review, see (Spear 2000; Chambers RA 2003)).  Adolescence is a 

critical period of transition from a more emotional regulation of the structures that mediate 

substance abuse to a more mature cortical regulatory mechanism (Spear 2000). During 

adolescence, the primary dopaminergic projections to the nucleus accumbens septi (NAcc) 

extend from the ventral tegmental area (VTA), and are predominately modulated by the amygdala 

(Oades and Halliday 1987). However in adulthood, this previously amygdaloid-modulated system 

receives projections from the medial prefrontal cortex (mPFC); this developmental transition is 

critical in the functional nature of the system (Cunningham, Bhattacharyya et al. 2002).  The 

development of this system allows for a transition from more emotionally directed behavior to 

more contextually regulated behavior. Because adolescents lack sufficient cortical regulation 

(input by the mPFC), their behavior tends to be more impulsive and guided by emotion than 

adults, increasing the chances of risky behaviors (e.g. initiating drug use) (Campbell, Lytle et al. 

1969; Chambers RA 2003).  Additionally, repeated administration of cocaine during this period 

may cause a functional change in accumbal dopamine levels by altering amygdalar modulation of 

accumbal DA release and/or altering the functional role/development of the medial prefrontal 

cortex input; consequently, leading to an increased risk of dependency during adulthood.  These 

ontogenetic changes, with the fact that adolescence is a key period of drug initiation, together, 

make a powerful argument for treating adolescence as a key time period for investigating the 

development of drug addiction. 
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 The frequency of substance use disorders is elevated in adults diagnosed with several 

psychological disorders (Regier, Farmer et al. 1990; Anthony 1991; Bucholz 1999; Blanco, 

Moreyra et al. 2001).  Adolescents with similar disorders are also more likely to be diagnosed with 

substance use disorders (Swadi 1999; Zeitlin 1999; Shaffer, Forman et al. 2000).  The fact that 

these mental disorders and adolescence are associated with substance use disorders suggests 

that common brain mechanisms may trigger drug susceptibility and potentially, addiction.  These 

biological/neurochemical substrates might manifest into a behavioral trait or traits present in 

adolescents.  Defective impulse control is a behavioral trait that characterizes psychiatric and 

substance use disorder groups (Swadi 1999; Moeller, Barratt et al. 2001; Rogers and Robbins 

2001). Adolescence is marked by high levels of risk taking behavior relative to individuals of other 

ages. Along this unique stage of development, distinct social, behavioral and neurochemical 

changes emerge, to assist with the important life events that will occur.  For example, learning 

and acquiring skills necessary to permit survival away from parental caretakers (Spear 2000).  

This phenomenon being evolutionary adaptive as a means to avoid inbreeding (Schlegel A 1991). 

 In order for a successful transition from childhood to adulthood, an important aspect to 

gaining independence is when adolescents shift their social orientations from adults to peers 

(Steinberg 1989) and typically spend a significant amount of time interacting with their peers as 

opposed to adults. Risk-taking in adolescence poses some negative consequences such as 

accidents, pregnancy, AIDS, suicide and drug dependence (Irwin 1989; Spear, Kirstein et al. 

1989).  Although risk-taking may be hazardous, it can also be beneficial.  Risk-taking and 

exploratory type behaviors allow an individual to explore adult behavior and may also serve (as 

mentioned above) as a protective evolutionary factor.  Adolescent increase in risk-taking and 

novelty seeking may trigger adolescent departure from the parental units by giving incentive to 

explore novel areas away from home and thus avoiding inbreeding via dispersal of the offspring 

during sexual development (Schlegel A 1991).   

Novelty-seeking behaviors are an innate behavior in both human and non-human 

adolescents. Importantly, studies have demonstrated a strong correlation between novelty 

preference and the rewarding efficacy of psychomotor stimulants and self-administration rates in 
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animals (Hooks, Colvin et al. 1992; Klebaur, Bevins et al. 2001). High novelty seeking rats show 

higher rates of amphetamine and cocaine-induced locomotor activity and will self-administer 

these drugs more readily than low novelty seeking rats (Hooks, Colvin et al. 1992).  Moreover, 

high novelty seeking rats seem to participate in far greater risk-taking behaviors and show much 

higher behavioral and neurochemical responses in reaction to environmental stressors or 

pharmacological challenges than low novelty seeking rats (Bevins RA 1997; Klebaur, Bevins et 

al. 2001). Additionally, adolescent animals classified as high responders to novelty based on 

activity in a novel environment and also by time spent with a novel object in a familiar 

environment exhibited greater morphine place conditioning in adulthood compared to low 

responders to novelty (Zheng, Tan et al. 2004).  The present data provide evidence that LR 

adolescent (but not adult) rats to free-choice novelty exploration exhibit greater cocaine place 

conditioning; suggesting that these animals exhibit an increased rewarding efficacy to cocaine 

compared to HR adolescent rats.   It seems that a dissociation exists between forced novelty 

exposure and free choice novelty exploration in adolescent rats, suggesting that stress-induced 

locomotion and novelty-seeking behavior are different biobehavioral phenomena and might be 

activated by different neural and hormonal substrates.  Interestingly, the relationship between free 

choice novelty exploration and cocaine place conditioning differs between adolescent and adult 

rats suggesting individual differences in free choice novelty exploration may be an important 

behavioral characteristic that predisposes adolescents to engage in cocaine use and demonstrate 

increased vulnerability to drug dependence.  Findings with place conditioning differ from studies 

that examine acquisition of self-administration. Researchers have demonstrated that HR adult 

rats to forced novelty exposure will self-administer psychostimulants more readily than LR adult 

rats (Piazza, Deminiere et al. 1989) and also demonstrate increased free choice nicotine 

consumption (Klebaur, Bevins et al. 2001; Abreu-Villaca, Queiroz-Gomes Fdo et al. 2006).  

However, Bardo et al. recently reported that responses to forced novelty exposure weakly predict 

responding for amphetamine (Cain, Saucier et al. 2005).  
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If the facilitated acquisition of self-administration of psychostimulants is due to greater 

locomotor activity expressed by HR rats and not due to the enhanced rewarding efficacy of the 

drug, the implications suggest that the neural mechanisms for psychostimulant reward and 

locomotor activity are distinguishable.  Some evidence suggests that reward and locomotor 

systems are discrete.  Several researchers (Robinson and Berridge 1993) have argued that the 

reward system is mediated by the mesolimbic pathway which projects from the ventral tegmental 

area to the nucleus accumbens whereas the locomotor system is mediated by the nigrostriatal 

pathway which projects from the substantia nigra to the striatum (Oades and Halliday 1987).  

Hemby et al. reported an increase in locomotor activity but no place conditioning from intra-

accumbal cocaine (Hemby, Jones et al. 1992).  In addition, intra-accumbal injections of 

neurotensin block the locomotor effect but not self-administration of cocaine (Robledo, 

Maldonado et al. 1993).  If the mechanisms by which psychostimulants induce hyperactivity are 

separable from those by which they produce place conditioning, HR rats might show an increased 

response to the locomotor activating effects of these drugs, but not to the rewarding attributes. 

Failure of these findings to support self-administration studies suggests that caution be 

used in generalizing between these paradigms believed to measure similar processes.  Place 

conditioning studies measure the rewarding efficacy of stimuli whereas self-administration studies 

measure the reinforcing efficacy of stimuli (for review see, (Bardo and Bevins 2000).  Animals that 

demonstrate facilitated acquisition of psychostimulant self-administration (i.e. HR rats) may, in 

fact, be less responsive to the rewarding efficacy of these drugs and need to self-administer 

higher doses to obtain similar behavioral and neurochemical effects that LR would obtain at lower 

doses. 

 Few studies have examined the DAergic neuroadaptations that take place after repeated 

exposure to cocaine during adolescence, not only a developmental period during which drug use 

initiation is widespread, but also a critical period for the remodeling of the mesolimbic and 

mesocortical brain regions and their neuronal DA projections (for review, see (Spear 2000)).  

Rosenberg & Lewis (Rosenberg and Lewis 1995) were among those researchers who saw a 

common developmental pattern in the overproduction and subsequent pruning of synaptic 
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connections during the period preceding adulthood.  The D1 and D2 receptors have been of 

major focus for years in regards to overproduction and pruning as these receptors increase in 

density in the first few weeks of life (Hartley and Seeman 1983).  Subsequently, Teicher et al 

have demonstrated receptor overproduction and elimination in both the striatum and prefrontal 

cortex (Teicher, Andersen et al. 1995; Andersen, Thompson et al. 2000).  In addition, alterations 

in receptor binding and sensitivity in various neurotransmitter systems have been reported during 

adolescence (Trauth, Seidler et al. 1999) along with changes in the myelination of neurons 

(Hamano, Iwasaki et al. 1996).  Importantly, DAT are overproduced and pruned during 

adolescence as the striatum transitions to its adult state in rats (Moll, Mehnert et al. 2000) and 

humans (Haycock, Becker et al. 2003). As DAT density increases during adolescence, enhanced 

reuptake reduces the extracellular levels of DA (Andersen and Gazzara 1993) and a subsequent 

upregulation of postsynaptic receptors, and their second messenger systems take place 

(Andersen 2002).  These developmental differences may not only predispose adolescents to be 

more vulnerable to the rewarding effects of drugs of abuse, but may leave them more vulnerable 

to addiction after drug exposure due to interference with the normal synaptic pruning that takes 

place in the transition from adolescence to adulthood. 

 The present data provide evidence for long-term behavioral changes that endure after 

chronic cocaine administration during adolescence. Repeated exposure to cocaine during 

adolescence modifies the novelty-induced behavioral phenotype in adulthood.  Both the novelty-

preference and novel object exploration behavioral measures following repeated cocaine during 

adolescence produces a predisposition towards LR in adulthood, whereas animals exhibit a 

tendency towards being a HR when measured on novel environment locomotor activity; 

suggesting that animals are more at risk to engage in drug use in adulthood after adolescent drug 

exposure due to an alteration in the behavioral phenotype that increases the vulnerability to 

engage in drug use.  Importantly, adult animals exposed to cocaine during adolescence, exhibited 

greater locomotor activity induced by a novel environment during the first minute of exposure, 

decreased time spent in the center of a novel environment and decreased novelty preference, 

which may be indicative of increased stress or anxiety or enhanced neophobia in adulthood after 
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adolescent cocaine. Van den Buuse et. al (van den Buuse, Van Acker et al. 2001) have 

demonstrated that exposure to the novelty of an open field causes an increase in blood pressure, 

heart rate, body temperature and exploratory locomotor activity, results indicate that an increase 

in locomotor activity in a novel environment is stressful or anxiogenic. Cocaine has been shown 

to produce anxiety in human and animal models, either during cocaine administration or during 

withdrawal. Future studies should investigate additional long-term behavioral changes including 

anxiety related behavioral measures after cessation of chronic cocaine exposure.   

  Interestingly, chronic adolescent exposure to cocaine produced increased locomotor 

activity in a novel environment, which based on previous studies suggests that this behavioral 

characteristic would predispose the animal to drug self-administration (Hooks, Jones et al. 1991; 

Bevins RA 1997).  Conversely, cocaine pretreated animals demonstrated decreased time spent in 

the center of the open field on trial 1 and decreased novelty preference, it is possible this is an 

anxiogenic response in these animals compared to naïve or saline pretreated animals and may 

facilitate drug use.  An increase in cocaine self-administration has been observed in stressed or 

anxious animals (Marquardt, Ortiz-Lemos et al. 2004; Covington and Miczek 2005), and chronic 

cocaine causes an increase in anxiety (Wood and Lal 1987; Rogerio and Takahashi 1992; 

Hayase, Yamamoto et al. 2005) providing an explanation for why adolescents exposed to cocaine 

(who subsequently may be more stressed or anxious) may be more likely to engage in continued 

drug use.    

Repeated psychostimulant administration during adolescence has been reported to 

change the rewarding efficacy of cocaine in adulthood (as seen in experiment 3).  Moreover, 

methylphenidate exposure in adolescence decreases the rewarding efficacy of cocaine in 

adulthood (Andersen, Arvanitogiannis et al. 2002; Carlezon, Mague et al. 2003).  In addition, 

periadolescent nicotine exposure reduces cocaine reward in adult mice (Kelley and Middaugh 

1999). Other researchers have reported that developmental exposure to methylphenidate 

facilitates acquisition of i.v. cocaine self administration in adulthood (Brandon, Marinelli et al. 

2001).  An increase in self-administration may be due to a decrease in the rewarding efficacy of 

stimuli whereby a higher rate of responding is necessary to maintain similar physiological states 
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as control animals.  In addition, developmental exposure to methylphenidate also decreases the 

rewarding efficacy of natural reinforcers (i.e. sucrose) and sexual behaviors (Bolanos, Barrot et 

al. 2003).  These behavioral data suggest that repeated psychostimulant exposure in 

adolescence modifies the responsivity to stimuli in adulthood, signified by decreased sensitivity to 

reward.  Self-reports from human addicts suggest that the rewarding efficacy of stimuli, including 

drugs of abuse, decrease after repeated use.  The belief that decreased rewarding efficacy of 

drugs will reduce the likelihood to continue drug use is contradictory to self-reports from drugs 

addicts who continue to engage in drug use despite little to no pleasure after use. 

Neuroadaptations after developmental cocaine exposure may cause depressive-like 

signs such as anhedonia (decreased ability to experience reward), dysphoria (feelings of 

unwellness) or despair (feelings of giving up).  Exposure to methylphenidate in adolescence 

produces an increased expression of the transcription factor, CREB (cAMP response element 

binding protein) within the NAcc in adulthood.  An increase in intra-accumbal CREB activity has 

been linked with decreased cocaine reward and increased cocaine aversion in place conditioning 

studies and the development of depressive-like behaviors in the forced swim test (Pliakas, 

Carlson et al. 2001).  Activation of CREB also induces an increase in dynorphin activity at the 

kappa opioid receptor, which has been linked with dysphoria and anhedonia (Carlezon, Thome et 

al. 1998).   Repeated cocaine has also been shown to increase CREB (Brenhouse, Howe et al. 

2007) and immobility in the forced swim test (Magalhaes, Summavielle et al. 2004; Barron, White 

et al. 2005) in the adult rat. These data suggest that individuals may engage in drug use due to a 

hypo-responsive reward system and by doing so may alleviate the symptoms of anhedonia and 

dysphoria.  Elucidating the mechanisms by which addictive drug exposure during adolescence 

renders the adult more vulnerable to continued drug use is of utmost importance in a society that 

has a striking percentage of adolescents who experiment with cocaine. 

Stimulation of D1 receptors following cocaine administration seems to be critical in the 

rewarding effects of the drug, although it is likely that long-term adaptations to chronic cocaine 

exposure are mediated by the stimulation of D2 autoreceptors which are involved in regulating 

synaptic DA levels (Wolf and Roth 1987; Santiago and Westerink 1991).  Several researchers 
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have demonstrated the importance of D2 receptors and DAT in the mediation of cocaine reward.  

D2 antagonists block the ability of cocaine to support a place preference (Adams, Careri et al. 

2001).  Additionally, D2 antagonists administered systemically not only decrease cocaine self-

administration, but reduce the breakpoint to self-administer cocaine (Roberts, Loh et al. 1989; 

Barrett, Miller et al. 2004).  The NAcc shell may mediate these effects as a direct infusion of a D2 

antagonist also decreases cocaine self-administration (Bari and Pierce 2005). These studies 

demonstrate that blockade of the D2 receptor decreases the rewarding and reinforcing efficacy of 

cocaine, however, few studies have examined the consequences of long-term cocaine induced 

changes that are altered after blockade of D2 receptors.  Uhl et al. demonstrated that blockade of 

D1 or D2 receptors prevents the development of cocaine induced behavioral sensitization (Karler, 

Chaudhry et al. 1990) Importantly, in vivo studies have demonstrated that repeated cocaine-

induced increases in striatal uptake were attenuated by pretreatment with pimozide, a D2-

antagonist (Parsons, Schad et al. 1993). Importantly, the present data suggest that the blockade 

of D2 receptors with concurrent developmental cocaine administration prevent the neurochemical 

changes that have been suggested to occur after adolescent cocaine exposure, behaviorally 

expressed as decreased cocaine place conditioning that would potentially increase the likelihood 

of drug use and dependence.  

Taken together, these studies in adult animals demonstrate that developmental cocaine 

exposure results in complicated changes in the DA mesolimbic pathway that continue long after 

drug use has stopped, and processes such as these may be implicated in drug dependence, 

craving and relapse. These data suggest that blockade of the D2 receptor prevents cocaine-

induced neurochemical changes, potentially regulating the behavioral and neurochemical 

alterations that occur after repeated drug use that increases the likelihood of dependence.  These 

data implicate D2 receptor activity as a potential target for the manifestation of long term 

adaptations in the mesolimbic DA system that manifest behaviorally as dependency following 

developmental cocaine exposure. 

 



 

86 

 
 
 
 
 
 

References 
 
Abreu-Villaca, Y., E. Queiroz-Gomes Fdo, et al. (2006). "Individual differences in novelty-seeking 

behavior but not in anxiety response to a new environment can predict nicotine 
consumption in adolescent C57BL/6 mice." Behav Brain Res 167(1): 175-82. 

Adams, J. U., J. M. Careri, et al. (2001). "Differential effects of dopamine antagonists on 
locomotor activity, conditioned activity and conditioned place preference induced by 
cocaine in rats." Behav Pharmacol 12(8): 603-11. 

Adriani, W., F. Chiarotti, et al. (1998). "Elevated novelty seeking and peculiar d-amphetamine 
sensitization in periadolescent mice compared with adult mice." Behav Neurosci 112(5): 
1152-66. 

Adriani, W. and G. Laviola (2000). "A unique hormonal and behavioral hyporesponsivity to both 
forced novelty and d-amphetamine in periadolescent mice." Neuropharmacology 39(2): 
334-46. 

Andersen, S. L. (2002). "Changes in the second messenger cyclic AMP during development may 
underlie motoric symptoms in attention deficit/hyperactivity disorder (ADHD)." Behav 
Brain Res 130(1-2): 197-201. 

Andersen, S. L., A. Arvanitogiannis, et al. (2002). "Altered responsiveness to cocaine in rats 
exposed to methylphenidate during development." Nat Neurosci 5(1): 13-4. 

Andersen, S. L. and R. A. Gazzara (1993). "The ontogeny of apomorphine-induced alterations of 
neostriatal dopamine release: effects on spontaneous release." J Neurochem 61(6): 
2247-55. 

Andersen, S. L., A. T. Thompson, et al. (2000). "Dopamine receptor pruning in prefrontal cortex 
during the periadolescent period in rats." Synapse 37(2): 167-9. 

Anthony, J. C., Helzer, J.E. (1991). "Syndromes of drug abuse and dependence." Psychiatric 
Disorders in America: 116-154. 

Arnett, J. J. (1999). "Adolescent storm and stress, reconsidered." Am Psychol 54(5): 317-26. 
Badanich, K. A., K. J. Adler, et al. (2006). "Adolescents differ from adults in cocaine conditioned 

place preference and cocaine-induced dopamine in the nucleus accumbens septi." Eur J 
Pharmacol. 

Bardo, M. T. (1998). "Neuropharmacological mechanisms of drug reward: beyond dopamine in 
the nucleus accumbens." Crit Rev Neurobiol 12(1-2): 37-67. 

Bardo, M. T. and R. A. Bevins (2000). "Conditioned place preference: what does it add to our 
preclinical understanding of drug reward?" Psychopharmacology (Berl) 153(1): 31-43. 

Bari, A. A. and R. C. Pierce (2005). "D1-like and D2 dopamine receptor antagonists administered 
into the shell subregion of the rat nucleus accumbens decrease cocaine, but not food, 
reinforcement." Neuroscience 135(3): 959-68. 

Barrett, A. C., J. R. Miller, et al. (2004). "Effects of dopamine indirect agonists and selective D1-
like and D2-like agonists and antagonists on cocaine self-administration and food 
maintained responding in rats." Neuropharmacology 47 Suppl 1: 256-73. 

Barron, S., A. White, et al. (2005). "Adolescent vulnerabilities to chronic alcohol or nicotine 
exposure: findings from rodent models." Alcohol Clin Exp Res 29(9): 1720-5. 

Barros HM, M. K. (1996). "Withdrawal from oral cocaine in rats:  ultrasonic vocalizations and 
tactile startle." Psychopharmacology 125: 379-384. 

Bassareo, V. and G. Di Chiara (1999). "Differential responsiveness of dopamine transmission to 
food-stimuli in nucleus accumbens shell/core compartments." Neuroscience 89(3): 637-
41. 

Belluzzi, J. D., R. Wang, et al. (2005). "Acetaldehyde enhances acquisition of nicotine self-
administration in adolescent rats." Neuropsychopharmacology 30(4): 705-12. 



 

87 

Berridge, K. C. and T. E. Robinson (1998). "What is the role of dopamine in reward: hedonic 
impact, reward learning, or incentive salience?" Brain Res Brain Res Rev 28(3): 309-69. 

Bevins RA, K. J., Bardo MT (1997). "Individual differences in response to novelty, amphetamine-
induced activity and drug administration in rats." Behavioral pharmacology 8(2-3): 113-
123. 

Birnbaumer, L. and A. M. Brown (1990). "G proteins and the mechanism of action of hormones, 
neurotransmitters, and autocrine and paracrine regulatory factors." Am Rev Respir Dis 
141(3 Pt 2): S106-14. 

Blanco, C., P. Moreyra, et al. (2001). "Pathological gambling: addiction or compulsion?" Semin 
Clin Neuropsychiatry 6(3): 167-76. 

Bolanos, C. A., M. Barrot, et al. (2003). "Methylphenidate treatment during pre- and 
periadolescence alters behavioral responses to emotional stimuli at adulthood." Biol 
Psychiatry 54(12): 1317-29. 

Bolanos, C. A., S. J. Glatt, et al. (1998). "Subsensitivity to dopaminergic drugs in periadolescent 
rats: a behavioral and neurochemical analysis." Brain Res Dev Brain Res 111(1): 25-33. 

Borison, R. L. and B. I. Diamond (1979). "Kainic acid animal model predicts therapeutic agents in 
Huntington's chorea." Trans Am Neurol Assoc 104: 67-9. 

Bradberry, C. W., R. J. Gruen, et al. (1991). "Individual differences in behavioral measures: 
correlations with nucleus accumbens dopamine measured by microdialysis." Pharmacol 
Biochem Behav 39(4): 877-82. 

Bradberry, C. W. and S. R. Rubino (2004). "Phasic alterations in dopamine and serotonin release 
in striatum and prefrontal cortex in response to cocaine predictive cues in behaving 
rhesus macaques." Neuropsychopharmacology 29(4): 676-85. 

Brandon, C. L., M. Marinelli, et al. (2001). "Enhanced reactivity and vulnerability to cocaine 
following methylphenidate treatment in adolescent rats." Neuropsychopharmacology 
25(5): 651-61. 

Brenhouse, H. C., M. L. Howe, et al. (2007). "Differential activation of cAMP response element 
binding protein in discrete nucleus accumbens subregions during early and late cocaine 
sensitization." Behav Neurosci 121(1): 212-7. 

Bucholz, K. K. (1999). "Nosology and epidemiology of addictive disorders and their comorbidity." 
Psychiatr Clin North Am 22(2): 221-40. 

Cain, M. E., D. A. Saucier, et al. (2005). "Novelty seeking and drug use: contribution of an animal 
model." Exp Clin Psychopharmacol 13(4): 367-75. 

Calcagnetti, D. J. and M. D. Schechter (1991). "Conditioned place aversion following the central 
administration of a novel dopamine release inhibitor CGS 10746B." Pharmacol Biochem 
Behav 40(2): 255-9. 

Camp, D. M., K. E. Browman, et al. (1994). "The effects of methamphetamine and cocaine on 
motor behavior and extracellular dopamine in the ventral striatum of Lewis versus Fischer 
344 rats." Brain Res 668(1-2): 180-93. 

Campbell, B. A., L. D. Lytle, et al. (1969). "Ontogeny of adrenergic arousal and cholinergic 
inhibitory mechanisms in the rat." Science 166(905): 635-7. 

Carelli, R. M. and S. G. Ijames (2001). "Selective activation of accumbens neurons by cocaine-
associated stimuli during a water/cocaine multiple schedule." Brain Res 907(1-2): 156-61. 

Carlezon, W. A., Jr., D. P. Devine, et al. (1995). "Habit-forming actions of nomifensine in nucleus 
accumbens." Psychopharmacology (Berl) 122(2): 194-7. 

Carlezon, W. A., Jr., S. D. Mague, et al. (2003). "Enduring behavioral effects of early exposure to 
methylphenidate in rats." Biol Psychiatry 54(12): 1330-7. 

Carlezon, W. A., Jr., J. Thome, et al. (1998). "Regulation of cocaine reward by CREB." Science 
282(5397): 2272-5. 

Caron, M. G. (1996). "Images in neuroscience. A mouse knockout." Am J Psychiatry 153(11): 
1387. 

Cass, W. A. and G. A. Gerhardt (1994). "Direct in vivo evidence that D2 dopamine receptors can 
modulate dopamine uptake." Neurosci Lett 176(2): 259-63. 



 

88 

Cass, W. A. and N. R. Zahniser (1993). "Cocaine levels in striatum and nucleus accumbens: 
augmentation following challenge injection in rats withdrawn from repeated cocaine 
administration." Neurosci Lett 152(1-2): 177-80. 

Caster, J. M., Q. D. Walker, et al. (2005). "Enhanced behavioral response to repeated-dose 
cocaine in adolescent rats." Psychopharmacology (Berl) 183(2): 218-25. 

Cervo, L. and R. Samanin (1995). "Effects of dopaminergic and glutamatergic receptor 
antagonists on the acquisition and expression of cocaine conditioning place preference." 
Brain Res 673(2): 242-50. 

Chambers RA, T. J., Potenza MN (2003). "Developmental neurocircuitry of motivation in 
adolescence:  a critical period of addiction vulnerability." American journal of psychiatry 
160(6): 1041-1052. 

Chao, J. and E. J. Nestler (2004). "Molecular neurobiology of drug addiction." Annu Rev Med 55: 
113-32. 

Chen, R., M. R. Tilley, et al. (2006). "Abolished cocaine reward in mice with a cocaine-insensitive 
dopamine transporter." Proc Natl Acad Sci U S A 103(24): 9333-8. 

Clark DB, K. L., Tarter RE (1998). "Adolescent versus adult onset and the development of 
substance use disorders in males." Drug Alcohol Dependence 49: 115-121. 

Cools, A. R., B. A. Ellenbroek, et al. (1997). "Differences in vulnerability and susceptibility to 
dexamphetamine in Nijmegen high and low responders to novelty: a dose-effect analysis 
of spatio-temporal programming of behaviour." Psychopharmacology (Berl) 132(2): 181-
7. 

Costall B, K. M., Naylor RJ, Onaivi ES (1989). "The actions of  nicotine and cocaine in a mouse 
model of anxiety." Pharmacology biochemistry and behavior 33(1): 197-203. 

Covington, H. E., 3rd and K. A. Miczek (2005). "Intense cocaine self-administration after episodic 
social defeat stress, but not after aggressive behavior: dissociation from corticosterone 
activation." Psychopharmacology (Berl) 183(3): 331-40. 

Cunningham, C. L. and D. Noble (1992). "Methamphetamine-induced conditioned place 
preference or aversion depending on dose and presence of drug." Ann N Y Acad Sci 
654: 431-3. 

Cunningham, M. G., S. Bhattacharyya, et al. (2002). "Amygdalo-cortical sprouting continues into 
early adulthood: implications for the development of normal and abnormal function during 
adolescence." J Comp Neurol 453(2): 116-30. 

Damsma, G., J. G. Pfaus, et al. (1992). "Sexual behavior increases dopamine transmission in the 
nucleus accumbens and striatum of male rats: comparison with novelty and locomotion." 
Behav Neurosci 106(1): 181-91. 

Daws, L. C., P. D. Callaghan, et al. (2002). "Cocaine increases dopamine uptake and cell surface 
expression of dopamine transporters." Biochem Biophys Res Commun 290(5): 1545-50. 

De La Garza, R., 2nd, P. M. Callahan, et al. (1998). "The discriminative stimulus properties of 
cocaine: effects of microinfusion of cocaine, a 5-HT1A agonist or antagonist, into the 
ventral tegmental area." Psychopharmacology (Berl) 137(1): 1-6. 

De Leonibus, E., M. M. Verheij, et al. (2006). "Distinct kinds of novelty processing differentially 
increase extracellular dopamine in different brain regions." Eur J Neurosci 23(5): 1332-
40. 

Di Ciano, P., R. N. Cardinal, et al. (2001). "Differential involvement of NMDA, AMPA/kainate, and 
dopamine receptors in the nucleus accumbens core in the acquisition and performance of 
pavlovian approach behavior." J Neurosci 21(23): 9471-7. 

Dom G, H. W., Sabbe B (2006). "Differences in impulsivity and sensation seeking between early- 
and late-onset alcoholics." Addictive behavior 31(2): 298-308. 

Donovan, D. M., L. L. Miner, et al. (1999). "Cocaine reward and MPTP toxicity: alteration by 
regional variant dopamine transporter overexpression." Brain Res Mol Brain Res 73(1-2): 
37-49. 

Doremus, T. L., S. C. Brunell, et al. (2003). "Anxiogenic effects during withdrawal from acute 
ethanol in adolescent and adult rats." Pharmacol Biochem Behav 75(2): 411-8. 

Douglas, L. A., E. I. Varlinskaya, et al. (2003). "Novel-object place conditioning in adolescent and 
adult male and female rats: effects of social isolation." Physiol Behav 80(2-3): 317-25. 



 

89 

Erb, S. M. and L. A. Parker (1994). "Individual differences in novelty-induced activity do not 
predict strength of amphetamine-induced place conditioning." Pharmacol Biochem Behav 
48(3): 581-6. 

Estroff, T. W., R. H. Schwartz, et al. (1989). "Adolescent cocaine abuse. Addictive potential, 
behavioral and psychiatric effects." Clin Pediatr (Phila) 28(12): 550-5. 

Fiorino, D. F., A. Coury, et al. (1993). "Electrical stimulation of reward sites in the ventral 
tegmental area increases dopamine transmission in the nucleus accumbens of the rat." 
Behav Brain Res 55(2): 131-41. 

Frantz, K. J., L. E. O'Dell, et al. (2007). "Behavioral and neurochemical responses to cocaine in 
periadolescent and adult rats." Neuropsychopharmacology 32(3): 625-37. 

Funada, M. and T. S. Shippenberg (1996). "Differential involvement of D1 and D2 dopamine 
receptors in the expression of morphine withdrawal signs in rats." Behav Pharmacol 7(5): 
448-453. 

Gerald, M. S. and J. D. Higley (2002). "Evolutionary underpinnings of excessive alcohol 
consumption." Addiction 97(4): 415-25. 

Giambalvo, C. T. and R. L. Wagner (1994). "Activation of D1 and D2 dopamine receptors inhibits 
protein kinase C activity in striatal synaptoneurosomes." J Neurochem 63(1): 169-76. 

Goeders, N. (2002). "The HPA axis and cocaine reinforcement." Psychoneuroendocrinology 
27(13-33). 

Goeders, N. E. and M. J. Kuhar (1987). "Chronic cocaine administration induces opposite 
changes in dopamine receptors in the striatum and nucleus accumbens." Alcohol Drug 
Res 7(4): 207-16. 

Gong, W., D. B. Neill, et al. (1996). "Locomotor response to novelty does not predict cocaine 
place preference conditioning in rats." Pharmacol Biochem Behav 53(1): 191-6. 

Gonon, F. (1997). "Prolonged and extrasynaptic excitatory action of dopamine mediated by D1 
receptors in the rat striatum in vivo." J Neurosci 17(15): 5972-8. 

Grace, A. A. (2000). "The tonic/phasic model of dopamine system regulation and its implications 
for understanding alcohol and psychostimulant craving." Addiction 95 Suppl 2: S119-28. 

Greengard, P. (2001). "The neurobiology of dopamine signaling." Biosci Rep 21(3): 247-69. 
Hall, F. S., X. F. Li, et al. (2002). "Cocaine mechanisms: enhanced cocaine, fluoxetine and 

nisoxetine place preferences following monoamine transporter deletions." Neuroscience 
115(1): 153-61. 

Hamano, K., N. Iwasaki, et al. (1996). "A quantitative analysis of rat central nervous system 
myelination using the immunohistochemical method for MBP." Brain Res Dev Brain Res 
93(1-2): 18-22. 

Hartley, E. J. and P. Seeman (1983). "Development of receptors for dopamine and noradrenaline 
in rat brain." Eur J Pharmacol 91(4): 391-7. 

Hayase, T., Y. Yamamoto, et al. (2005). "Persistent anxiogenic effects of a single or repeated 
doses of cocaine and methamphetamine: interactions with endogenous cannabinoid 
receptor ligands." Behav Pharmacol 16(5-6): 395-404. 

Haycock, J. W., L. Becker, et al. (2003). "Marked disparity between age-related changes in 
dopamine and other presynaptic dopaminergic markers in human striatum." J Neurochem 
87(3): 574-85. 

Health, N. I. o. (1989). "Guide for the care and use of laboratory animals (DHEW Publication 
No.86-23)." U.S. Government printing office Washington, DC. 

Helzer JE, B. M., McEvoy LT (1991). "Alcohol abuse and dependence, in psychiatric disorders in 
America:  The epidemiologic catchment area study." New York, Free Press: 81-115. 

Hemby, S. E., G. H. Jones, et al. (1992). "Conditioned locomotor activity but not conditioned 
place preference following intra-accumbens infusions of cocaine." Psychopharmacology 
(Berl) 106(3): 330-6. 

Henry, D. J., X. T. Hu, et al. (1998). "Adaptations in the mesoaccumbens dopamine system 
resulting from repeated administration of dopamine D1 and D2 receptor-selective 
agonists: relevance to cocaine sensitization." Psychopharmacology (Berl) 140(2): 233-42. 



 

90 

Hernandez, L. and B. G. Hoebel (1988). "Food reward and cocaine increase extracellular 
dopamine in the nucleus accumbens as measured by microdialysis." Life Sci 42(18): 
1705-12. 

Hoebel, B. G., A. P. Monaco, et al. (1983). "Self-injection of amphetamine directly into the brain." 
Psychopharmacology (Berl) 81(2): 158-63. 

Hooks, M. S., A. C. Colvin, et al. (1992). "Individual differences in basal and cocaine-stimulated 
extracellular dopamine in the nucleus accumbens using quantitative microdialysis." Brain 
Res 587(2): 306-12. 

Hooks, M. S., G. H. Jones, et al. (1991). "Response to novelty predicts the locomotor and 
nucleus accumbens dopamine response to cocaine." Synapse 9(2): 121-8. 

Huff, R. M., C. L. Chio, et al. (1998). "Signal transduction pathways modulated by D2-like 
dopamine receptors." Adv Pharmacol 42: 454-7. 

Huot, R. L., K. V. Thrivikraman, et al. (2001). "Development of adult ethanol preference and 
anxiety as a consequence of neonatal maternal separation in Long Evans rats and 
reversal with antidepressant treatment." Psychopharmacology (Berl) 158(4): 366-73. 

Iannazzo, L., S. Sathananthan, et al. (1997). "Modulation of dopamine release from rat striatum 
by protein kinase C: interaction with presynaptic D2-dopamine-autoreceptors." Br J 
Pharmacol 122(8): 1561-6. 

Imperato, A., L. Angelucci, et al. (1992). "Repeated stressful experiences differently affect limbic 
dopamine release during and following stress." Brain Res 577(2): 194-9. 

Infurna, R. N. and L. P. Spear (1979). "Developmental changes in amphetamine-induced taste 
aversions." Pharmacol Biochem Behav 11(1): 31-5. 

Irwin, C. E., Jr. (1989). "Risk taking behaviors in the adolescent patient: are they impulsive?" 
Pediatr Ann 18(2): 122, 124, 125 passim. 

Izenwasser, S. and B. M. Cox (1992). "Inhibition of dopamine uptake by cocaine and nicotine: 
tolerance to chronic treatments." Brain Res 573(1): 119-25. 

Johnston LD, O. M. P., Bachman JG (2002). "Monitoring the future national results on adolescent 
drug use:  overview of key findings." National Institute of Drug Abuse Publication No. 03-
5374. 

Kalivas, P. W. and P. Duffy (1988). "Effects of daily cocaine and morphine treatment on 
somatodendritic and terminal field dopamine release." J Neurochem 50(5): 1498-504. 

Kalivas, P. W., P. Duffy, et al. (1988). "Behavioral and neurochemical effects of acute and daily 
cocaine administration in rats." J Pharmacol Exp Ther 245(2): 485-92. 

Kandel, D. B., K. Yamaguchi, et al. (1992). "Stages of progression in drug involvement from 
adolescence to adulthood: further evidence for the gateway theory." J Stud Alcohol 53(5): 
447-57. 

Karler, R., I. A. Chaudhry, et al. (1990). "Amphetamine behavioral sensitization and the excitatory 
amino acids." Brain Res 537(1-2): 76-82. 

Karoum, F., R. L. Suddath, et al. (1990). "Chronic cocaine and rat brain catecholamines: long-
term reduction in hypothalamic and frontal cortex dopamine metabolism." Eur J 
Pharmacol 186(1): 1-8. 

Kebabian, J. W. and D. B. Calne (1979). "Multiple receptors for dopamine." Nature 277(5692): 
93-6. 

Kelley, A. E. (2004). "Memory and addiction: shared neural circuitry and molecular mechanisms." 
Neuron 44(1): 161-79. 

Kelley, A. E. (2004). "Ventral striatal control of appetitive motivation: role in ingestive behavior 
and reward-related learning." Neurosci Biobehav Rev 27(8): 765-76. 

Kelley, B. M. and L. D. Middaugh (1999). "Periadolescent nicotine exposure reduces cocaine 
reward in adult mice." J Addict Dis 18(3): 27-39. 

Kitayama, S., T. Dohi, et al. (1994). "Phorbol esters alter functions of the expressed dopamine 
transporter." Eur J Pharmacol 268(2): 115-9. 

Klebaur, J. E., R. A. Bevins, et al. (2001). "Individual differences in behavioral responses to 
novelty and amphetamine self-administration in male and female rats." Behav Pharmacol 
12(4): 267-75. 



 

91 

Kleven, M., W. Woolverton, et al. (1988). "Behavioral and neurochemical effects of repeated or 
continuous exposure to cocaine." NIDA Res Monogr 81: 86-93. 

Knutson, B., C. M. Adams, et al. (2001). "Anticipation of increasing monetary reward selectively 
recruits nucleus accumbens." J Neurosci 21(16): RC159. 

Koob, G. F., S. B. Caine, et al. (1997). "Opponent process model and psychostimulant addiction." 
Pharmacol Biochem Behav 57(3): 513-21. 

Koob, G. F. and M. Le Moal (1997). "Drug abuse: hedonic homeostatic dysregulation." Science 
278(5335): 52-8. 

Koob, G. F. and M. Le Moal (2001). "Drug addiction, dysregulation of reward, and allostasis." 
Neuropsychopharmacology 24(2): 97-129. 

Kosten, T. A. and M. J. Miserendino (1998). "Dissociation of novelty- and cocaine-conditioned 
locomotor activity from cocaine place conditioning." Pharmacol Biochem Behav 60(4): 
785-91. 

Kuczenski, R., D. S. Segal, et al. (1991). "Amphetamine, cocaine, and fencamfamine: relationship 
between locomotor and stereotypy response profiles and caudate and accumbens 
dopamine dynamics." J Neurosci 11(9): 2703-12. 

Kuhn, C. and R. Francis (1997). "Gender difference in cocaine-induced HPA axis activation." 
Neuropsychopharmacology 16(6): 399-407. 

Laviola, G., G. Dell'Omo, et al. (1992). "Ontogeny of cocaine hyperactivity and conditioned place 
preference in mice." Psychopharmacology (Berl) 107(2-3): 221-8. 

Laviola, G., G. Dell'Omo, et al. (1994). "d-amphetamine conditioned place preference in 
developing mice: relations with changes in activity and stereotypies." Behav Neurosci 
108(3): 514-24. 

Laviola, G., R. D. Wood, et al. (1995). "Cocaine sensitization in periadolescent and adult rats." J 
Pharmacol Exp Ther 275(1): 345-57. 

Le Moal, M. and H. Simon (1991). "Mesocorticolimbic dopaminergic network: functional and 
regulatory roles." Physiol Rev 71(1): 155-234. 

Le Pen, G., D. Duterte-Boucher, et al. (1996). "Place conditioning with cocaine and the dopamine 
uptake inhibitor GBR12783." Neuroreport 7(18): 2839-42. 

Levin, E. D., A. H. Rezvani, et al. (2003). "Adolescent-onset nicotine self-administration modeled 
in female rats." Psychopharmacology (Berl) 169(2): 141-9. 

Lindsey, K. P., K. M. Wilcox, et al. (2004). "Effects of dopamine transporter inhibitors on cocaine 
self-administration in rhesus monkeys: relationship to transporter occupancy determined 
by positron emission tomography neuroimaging." J Pharmacol Exp Ther 309(3): 959-69. 

Lindvall, O. and A. Bjorklund (1974). "The organization of the ascending catecholamine neuron 
systems in the rat brain as revealed by the glyoxylic acid fluorescence method." Acta 
Physiol Scand Suppl 412: 1-48. 

Logue A.W, P.-C. T. (1985). "The effect of food deprivation on self-control." Behavioural 
Processes 10: 355-368. 

Logue, A. W. (1985). "Conditioned food aversion learning in humans." Ann N Y Acad Sci 443: 
316-29. 

Macri S, A., W, Chiarotti F, Laviola G (2002). "Risk-taking during exploration of a plus-maze is 
greater in distant than in juvenile or adult mice." Animal Behaviour 64: 541-546. 

Magalhaes, A., T. Summavielle, et al. (2004). "Effects of postnatal cocaine exposure and 
environmental enrichment on rat behavior in a forced swim test." Ann N Y Acad Sci 1025: 
619-29. 

Marquardt, A. R., L. Ortiz-Lemos, et al. (2004). "Influence of handling or aversive stimulation 
during rats' neonatal or adolescence periods on oral cocaine self-administration and 
cocaine withdrawal." Behav Pharmacol 15(5-6): 403-12. 

Martin-Iverson, M. T., R. Ortmann, et al. (1985). "Place preference conditioning with 
methylphenidate and nomifensine." Brain Res 332(1): 59-67. 

Mayfield, R. D. and N. R. Zahniser (2001). "Dopamine D2 receptor regulation of the dopamine 
transporter expressed in Xenopus laevis oocytes is voltage-independent." Mol Pharmacol 
59(1): 113-21. 



 

92 

Mazur, J. E. and D. Coe (1987). "Tests of transitivity in choices between fixed and variable 
reinforcer delays." J Exp Anal Behav 47(3): 287-97. 

McBride, W. J., J. M. Murphy, et al. (1999). "Localization of brain reinforcement mechanisms: 
intracranial self-administration and intracranial place-conditioning studies." Behav Brain 
Res 101(2): 129-52. 

McCabe, R. T., G. R. Hanson, et al. (1987). "Methamphetamine-induced reduction in D1 and D2 
dopamine receptors as evidenced by autoradiography: comparison with tyrosine 
hydroxylase activity." Neuroscience 23(1): 253-61. 

McKinzie, D. L., Z. A. Rodd-Henricks, et al. (1999). "Cocaine is self-administered into the shell 
region of the nucleus accumbens in Wistar rats." Ann N Y Acad Sci 877: 788-91. 

Meiergerd, S. M., T. A. Patterson, et al. (1993). "D2 receptors may modulate the function of the 
striatal transporter for dopamine: kinetic evidence from studies in vitro and in vivo." J 
Neurochem 61(2): 764-7. 

Meil, W. M. and M. D. Schechter (1997). "Olanzapine attenuates the reinforcing effects of 
cocaine." Eur J Pharmacol 340(1): 17-26. 

Missale, C., S. R. Nash, et al. (1998). "Dopamine receptors: from structure to function." Physiol 
Rev 78(1): 189-225. 

Moeller, F. G., E. S. Barratt, et al. (2001). "Psychiatric aspects of impulsivity." Am J Psychiatry 
158(11): 1783-93. 

Moll, G. H., C. Mehnert, et al. (2000). "Age-associated changes in the densities of presynaptic 
monoamine transporters in different regions of the rat brain from early juvenile life to late 
adulthood." Brain Res Dev Brain Res 119(2): 251-7. 

Nauta, W. J., G. P. Smith, et al. (1978). "Efferent connections and nigral afferents of the nucleus 
accumbens septi in the rat." Neuroscience 3(4-5): 385-401. 

Nestler, E. J. and G. K. Aghajanian (1997). "Molecular and cellular basis of addiction." Science 
278(5335): 58-63. 

O'Dell, L. E., A. W. Bruijnzeel, et al. (2004). "Nicotine withdrawal in adolescent and adult rats." 
Ann N Y Acad Sci 1021: 167-74. 

Oades, R. D. and G. M. Halliday (1987). "Ventral tegmental (A10) system: neurobiology. 1. 
Anatomy and connectivity." Brain Res 434(2): 117-65. 

Odell, W. (1990). "Sexual Maturation in the rat." 183-210. 
Olds, M. E. and J. L. Fobes (1981). "The central basis of motivation: intracranial self-stimulation 

studies." Annu Rev Psychol 32: 523-74. 
Ortmann, R. (1985). "The conditioned place preference paradigm in rats: effect of bupropion." Life 

Sci 37(21): 2021-7. 
Parsons, L. H., C. A. Schad, et al. (1993). "Co-administration of the D2 antagonist pimozide 

inhibits up-regulation of dopamine release and uptake induced by repeated cocaine." J 
Neurochem 60(1): 376-9. 

Parsons, L. H., A. D. Smith, et al. (1991). "Basal extracellular dopamine is decreased in the rat 
nucleus accumbens during abstinence from chronic cocaine." Synapse 9(1): 60-5. 

Pawlak, C. R. and R. K. Schwarting (2002). "Object preference and nicotine consumption in rats 
with high vs. low rearing activity in a novel open field." Pharmacol Biochem Behav 73(3): 
679-87. 

Pelloux, Y., J. Costentin, et al. (2004). "Differential effects of novelty exposure on place 
preference conditioning to amphetamine and its oral consumption." Psychopharmacology 
(Berl) 171(3): 277-85. 

Pelloux, Y., J. Costentin, et al. (2006). "Novelty preference predicts place preference conditioning 
to morphine and its oral consumption in rats." Pharmacol Biochem Behav 84(1): 43-50. 

Peris, J., S. J. Boyson, et al. (1990). "Persistence of neurochemical changes in dopamine 
systems after repeated cocaine administration." J Pharmacol Exp Ther 253(1): 38-44. 

Perry, J. L., E. B. Larson, et al. (2005). "Impulsivity (delay discounting) as a predictor of 
acquisition of IV cocaine self-administration in female rats." Psychopharmacology (Berl) 
178(2-3): 193-201. 

Philpot, R. M., K. A. Badanich, et al. (2003). "Place conditioning: age-related changes in the 
rewarding and aversive effects of alcohol." Alcohol Clin Exp Res 27(4): 593-9. 



 

93 

Philpot, R. M. and C. L. Kirstein (1998). "The effects of repeated alcohol exposure on the 
neurochemistry of the periadolescent nucleus accumbens septi." Neuroreport 9(7): 1359-
63. 

Piazza, P. V., J. M. Deminiere, et al. (1989). "Factors that predict individual vulnerability to 
amphetamine self-administration." Science 245(4925): 1511-3. 

Pliakas, A. M., R. R. Carlson, et al. (2001). "Altered responsiveness to cocaine and increased 
immobility in the forced swim test associated with elevated cAMP response element-
binding protein expression in nucleus accumbens." J Neurosci 21(18): 7397-403. 

Ploj, K., E. Roman, et al. (2003). "Long-term effects of maternal separation on ethanol intake and 
brain opioid and dopamine receptors in male Wistar rats." Neuroscience 121(3): 787-99. 

Post, R. M. (1980). "Intermittent versus continuous stimulation: effect of time interval on the 
development of sensitization or tolerance." Life Sci 26(16): 1275-82. 

Poulos, C. X., A. D. Le, et al. (1995). "Impulsivity predicts individual susceptibility to high levels of 
alcohol self-administration." Behav Pharmacol 6(8): 810-814. 

Powell, S. B., M. A. Geyer, et al. (2004). "The balance between approach and avoidance 
behaviors in a novel object exploration paradigm in mice." Behav Brain Res 152(2): 341-
9. 

Pristupa, Z. B., F. McConkey, et al. (1998). "Protein kinase-mediated bidirectional trafficking and 
functional regulation of the human dopamine transporter." Synapse 30(1): 79-87. 

Pruitt, D. L., C. A. Bolanos, et al. (1995). "Effects of dopamine D1 and D2 receptor antagonists on 
cocaine-induced place preference conditioning in preweanling rats." Eur J Pharmacol 
283(1-3): 125-31. 

Regier, D. A., M. E. Farmer, et al. (1990). "Comorbidity of mental disorders with alcohol and other 
drug abuse. Results from the Epidemiologic Catchment Area (ECA) Study." Jama 
264(19): 2511-8. 

Reiger DA, F. M., Rae DS, Lock BZ, Keith SJ, Judd LL, Goodwin FK (1990). "Comorbidity of 
mental disorders with alcohol and other drugs of abuse." JAMA 264: 2511-2518. 

Reith, M. E., M. Y. Li, et al. (1997). "Extracellular dopamine, norepinephrine, and serotonin in the 
ventral tegmental area and nucleus accumbens of freely moving rats during intracerebral 
dialysis following systemic administration of cocaine and other uptake blockers." 
Psychopharmacology (Berl) 134(3): 309-17. 

Roberts, D. C., E. A. Loh, et al. (1989). "Self-administration of cocaine on a progressive ratio 
schedule in rats: dose-response relationship and effect of haloperidol pretreatment." 
Psychopharmacology (Berl) 97(4): 535-8. 

Robinson, T. E. and K. C. Berridge (1993). "The neural basis of drug craving: an incentive-
sensitization theory of addiction." Brain Res Brain Res Rev 18(3): 247-91. 

Robledo, P., R. Maldonado, et al. (1993). "Neurotensin injected into the nucleus accumbens 
blocks the psychostimulant effects of cocaine but does not attenuate cocaine self-
administration in the rat." Brain Res 622(1-2): 105-12. 

Rodd ZA, M. D., Dagon CL, Murphy JM, McBride WJ (1998). "Intracranial self-administration of 
ethanol into the posterior VTA by Wistar rats." Soc. Neurosci. Abst 24: 1479. 

Rogerio, R. and R. N. Takahashi (1992). "Anxiogenic properties of cocaine in the rat evaluated 
with the elevated plus-maze." Pharmacol Biochem Behav 43(2): 631-3. 

Rogers, R. D. and T. W. Robbins (2001). "Investigating the neurocognitive deficits associated 
with chronic drug misuse." Curr Opin Neurobiol 11(2): 250-7. 

Rosenberg, D. R. and D. A. Lewis (1995). "Postnatal maturation of the dopaminergic innervation 
of monkey prefrontal and motor cortices: a tyrosine hydroxylase immunohistochemical 
analysis." J Comp Neurol 358(3): 383-400. 

Rothblat, D. S. and J. S. Schneider (1997). "Regionally specific effects of haloperidol and 
clozapine on dopamine reuptake in the striatum." Neurosci Lett 228(2): 119-22. 

Salamone, J. D. (1992). "Complex motor and sensorimotor functions of striatal and accumbens 
dopamine: involvement in instrumental behavior processes." Psychopharmacology (Berl) 
107(2-3): 160-74. 



 

94 

Santiago, M. and B. H. Westerink (1991). "The regulation of dopamine release from nigrostriatal 
neurons in conscious rats: the role of somatodendritic autoreceptors." Eur J Pharmacol 
204(1): 79-85. 

Sarnyai, Z., E. Biro, et al. (1995). "Brain corticotropin-releasing factor mediates 'anxiety-like' 
behavior induced by cocaine withdrawal in rats." Brain Res 675(1-2): 89-97. 

Schechter, M. D. (1995). "Cocaethylene produces discriminative stimulus properties in the rat: 
effect of cocaine and ethanol coadministration." Pharmacol Biochem Behav 51(2-3): 285-
9. 

Schlegel A, B. I. H. (1991). "Adolescence: an anthropological inquiry." New York, Free Press. 
Schramm-Sapyta, N. L., R. W. Morris, et al. (2006). "Adolescent rats are protected from the 

conditioned aversive properties of cocaine and lithium chloride." Pharmacol Biochem 
Behav 84(2): 344-52. 

Schultz, W. (1998). "Predictive reward signal of dopamine neurons." J Neurophysiol 80(1): 1-27. 
Schultz, W., P. Dayan, et al. (1997). "A neural substrate of prediction and reward." Science 

275(5306): 1593-9. 
Sellings, L. H., L. E. McQuade, et al. (2006). "Characterization of dopamine-dependent rewarding 

and locomotor stimulant effects of intravenously-administered methylphenidate in rats." 
Neuroscience 141(3): 1457-68. 

Shaffer, H. J., D. P. Forman, et al. (2000). "Awareness of gambling-related problems, policies and 
educational programs among high school and college administrators." J Gambl Stud 
16(1): 93-101. 

Shippenberg, T. S., R. Bals-Kubik, et al. (1991). "Neuroanatomical substrates mediating the 
aversive effects of D-1 dopamine receptor antagonists." Psychopharmacology (Berl) 
103(2): 209-14. 

Shippenberg, T. S. and A. Herz (1987). "Place preference conditioning reveals the involvement of 
D1-dopamine receptors in the motivational properties of mu- and kappa-opioid agonists." 
Brain Res 436(1): 169-72. 

Shram, M. J., D. Funk, et al. (2006). "Periadolescent and adult rats respond differently in tests 
measuring the rewarding and aversive effects of nicotine." Psychopharmacology (Berl) 
186(2): 201-8. 

Silveri, M. M. and L. P. Spear (1998). "Decreased sensitivity to the hypnotic effects of ethanol 
early in ontogeny." Alcohol Clin Exp Res 22(3): 670-6. 

Skagerberg, G., O. Lindvall, et al. (1984). "Origin, course and termination of the mesohabenular 
dopamine pathway in the rat." Brain Res 307(1-2): 99-108. 

Slawecki, C. J. (2006). "Two-choice reaction time performance in Sprague-Dawley rats exposed 
to alcohol during adolescence or adulthood." Behav Pharmacol 17(7): 605-14. 

Smith, L. N., C. G. McDonald, et al. (2006). "Long-term changes in fear conditioning and anxiety-
like behavior following nicotine exposure in adult versus adolescent rats." Pharmacol 
Biochem Behav. 

Solomon, R. L. (1980). "The opponent-process theory of acquired motivation: the costs of 
pleasure and the benefits of pain." Am Psychol 35(8): 691-712. 

Sora, I., F. S. Hall, et al. (2001). "Molecular mechanisms of cocaine reward: combined dopamine 
and serotonin transporter knockouts eliminate cocaine place preference." Proc Natl Acad 
Sci U S A 98(9): 5300-5. 

Sora, I., C. Wichems, et al. (1998). "Cocaine reward models: conditioned place preference can be 
established in dopamine- and in serotonin-transporter knockout mice." Proc Natl Acad Sci 
U S A 95(13): 7699-704. 

Spear, L. P. (2000). "The adolescent brain and age-related behavioral manifestations." Neurosci 
Biobehav Rev 24(4): 417-63. 

Spear, L. P. and S. C. Brake (1983). "Periadolescence: age-dependent behavior and 
psychopharmacological responsivity in rats." Dev Psychobiol 16(2): 83-109. 

Spear, L. P., C. L. Kirstein, et al. (1989). "Cocaine effects on the developing central nervous 
system: behavioral, psychopharmacological, and neurochemical studies." Ann N Y Acad 
Sci 562: 290-307. 



 

95 

Stansfield, K. H. and C. L. Kirstein (2005). "Neurochemical effects of cocaine in adolescence 
compared to adulthood." Brain Res Dev Brain Res 159(2): 119-25. 

Stansfield, K. H. and C. L. Kirstein (2006). "Effects of novelty on behavior in the adolescent and 
adult rat." Dev Psychobiol 48(1): 10-5. 

Stansfield, K. H., R. M. Philpot, et al. (2004). "An animal model of sensation seeking: the 
adolescent rat." Ann N Y Acad Sci 1021: 453-8. 

Steinberg, L. (1989). "Pubertal maturation and parent adolescent distance:  an evolutionary 
perspective." 

Strecker, R. E., W. F. Eberle, et al. (1995). "Extracellular dopamine and its metabolites in the 
nucleus accumbens of Fischer and Lewis rats: basal levels and cocaine-induced 
changes." Life Sci 56(6): PL135-41. 

Swadi, H. (1999). "Individual risk factors for adolescent substance use." Drug Alcohol Depend 
55(3): 209-24. 

Teicher, M. H., S. L. Andersen, et al. (1995). "Evidence for dopamine receptor pruning between 
adolescence and adulthood in striatum but not nucleus accumbens." Brain Res Dev Brain 
Res 89(2): 167-72. 

Timar, J., Z. Gyarmati, et al. (1996). "Differences in some behavioural effects of deprenyl and 
amphetamine enantiomers in rats." Physiol Behav 60(2): 581-7. 

Trauth, J. A., F. J. Seidler, et al. (1999). "Adolescent nicotine exposure causes persistent 
upregulation of nicotinic cholinergic receptors in rat brain regions." Brain Res 851(1-2): 9-
19. 

Trimpop RM, K. J., Kirkaldy B (1999). "Comparing personality constructs of risk-taking behavior." 
Personality and individual differences 26: 237-254. 

Tzschentke, T. (2000). "The medial prefrontal cortex as a part of the brain reward system." Amino 
Acids 19(1): 211-219. 

Uddin, R. K. and S. M. Singh (2006). "Ethanol-responsive genes: identification of transcription 
factors and their role in metabolomics." Pharmacogenomics J. 

van den Buuse, M., S. A. Van Acker, et al. (2001). "Blood pressure, heart rate, and behavioral 
responses to psychological "novelty" stress in freely moving rats." Psychophysiology 
38(3): 490-9. 

Vanderschuren, L. J. and P. W. Kalivas (2000). "Alterations in dopaminergic and glutamatergic 
transmission in the induction and expression of behavioral sensitization: a critical review 
of preclinical studies." Psychopharmacology (Berl) 151(2-3): 99-120. 

Varlinskaya, E. I. and L. P. Spear (2004). "Acute ethanol withdrawal (hangover) and social 
behavior in adolescent and adult male and female Sprague-Dawley rats." Alcohol Clin 
Exp Res 28(1): 40-50. 

Varlinskaya, E. I. and L. P. Spear (2004). "Changes in sensitivity to ethanol-induced social 
facilitation and social inhibition from early to late adolescence." Ann N Y Acad Sci 1021: 
459-61. 

Vastola, B. J., L. A. Douglas, et al. (2002). "Nicotine-induced conditioned place preference in 
adolescent and adult rats." Physiol Behav 77(1): 107-14. 

Vaughan, R. A., R. A. Huff, et al. (1997). "Protein kinase C-mediated phosphorylation and 
functional regulation of dopamine transporters in striatal synaptosomes." J Biol Chem 
272(24): 15541-6. 

Warner, L. A., R. C. Kessler, et al. (1995). "Prevalence and correlates of drug use and 
dependence in the United States. Results from the National Comorbidity Survey." Arch 
Gen Psychiatry 52(3): 219-29. 

Wee, S., F. I. Carroll, et al. (2006). "A reduced rate of in vivo dopamine transporter binding is 
associated with lower relative reinforcing efficacy of stimulants." 
Neuropsychopharmacology 31(2): 351-62. 

Williams, S. M. and P. S. Goldman-Rakic (1998). "Widespread origin of the primate mesofrontal 
dopamine system." Cereb Cortex 8(4): 321-45. 

Wilmouth, C. E. and L. P. Spear (2004). "Adolescent and adult rats' aversion to flavors previously 
paired with nicotine." Ann N Y Acad Sci 1021: 462-4. 



 

96 

Wise, R. A. (1980). "Action of drugs of abuse on brain reward systems." Pharmacol Biochem 
Behav 13 Suppl 1: 213-23. 

Wolf, M. E. and R. H. Roth (1987). "Dopamine neurons projecting to the medial prefrontal cortex 
possess release-modulating autoreceptors." Neuropharmacology 26(8): 1053-9. 

Wood, D. M. and H. Lal (1987). "Anxiogenic properties of cocaine withdrawal." Life Sci 41(11): 
1431-6. 

Yang, X. M., A. L. Gorman, et al. (1992). "Anxiogenic effects of acute and chronic cocaine 
administration: neurochemical and behavioral studies." Pharmacol Biochem Behav 41(3): 
643-50. 

Zeitlin, H. (1999). "Psychiatric comorbidity with substance misuse in children and teenagers." 
Drug Alcohol Depend 55(3): 225-34. 

Zhang, L., L. L. Coffey, et al. (1997). "Regulation of the functional activity of the human dopamine 
transporter by protein kinase C." Biochem Pharmacol 53(5): 677-88. 

Zheng, X. G., B. P. Tan, et al. (2004). "Novelty-seeking behavior and stress-induced locomotion 
in rats of juvenile period differentially related to morphine place conditioning in their 
adulthood." Behav Processes 65(1): 15-23. 

Zuckerman, M. (1986). "Sensation seeking and the endogenous deficit theory of drug abuse." 
NIDA Res Monogr 74: 59-70. 

 
 

 



 

97 

 

 

 

 

About the Author 

 Kirstie Stansfield was born in Hitchin, Great Britain before moving to the United States at 

age 11 and becoming a U.S. Citizen in 1998. Ms. Stansfield is the daughter of Dr. and Mrs. 

Stansfield who are wonderful and caring parents.  Ms. Stansfield received a Bachelors Degree in 

Psychology from The University of North Carolina at Greensboro in 2001 and an M.A. in 

Psychology from the University of South Florida in 2005.  Ms. Stansfield was an instructor at USF 

since 2004 and taught courses such as Behavioral Pharmacology, Drugs and Behavior and 

Motivational Psychology.  Ms. Stansfield has ridden horses most of her life and competed in 

dressage and eventing for 7 years. She is also the proud owner of two wonderful adopted 

greyhounds and a rescued cat. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


	University of South Florida
	Scholar Commons
	2007

	Enduring changes in reward mechanisms after developmental exposure to cocaine: The role of the D2 receptor
	Kirstie H. Stansfield
	Scholar Commons Citation


	Microsoft Word - FINAL DISSERTATION.doc

