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SUMMARY

Differential games involve multi-person decision making under conflicts in the

context of dynamical systems. It has found many applications in a large range of

areas, including aeronautics, biology, ecology, economics, engineering, management

science, operations research, etc. Often, the decisions made by the players that join

the differential game are susceptible to uncertainties that are pervasive in realistic dif-

ferential game scenarios. Uncertainties entering the system can be divided into three

main categories, namely, external/environmental uncertainties, internal/dynamical

uncertainties and observation uncertainties.

The research effort in this dissertation pursues two main objectives. First, we

provide analytical and numerical methods to deal with environmental and dynamical

uncertainties. In particular, we solve pursuit-evasion games under different forms

of external flow fields to demonstrate how to cope with differential games under

environmental uncertainties.

Pursuit-evasion problems under external flow fields are generally hard to solve.

We start by focusing on finding the strategy of the pursuers in the problem of pursuit

and evasion between a set of targets and a team of pursuers distributed in the plane

subject to a time-varying flow field. The objective of the pursuers is to intercept the

moving targets which, however, are not affected by the presence of the environmental

disturbance. We first solve the multiple-pursuers-one-target problem by assigning

only one pursuer to chase a single target at every instant of time, based on a gen-

eralized Voronoi partition of the plane where “closeness” is measured by minimum

time-to-intercept. We then apply the scheme to multiple-target problems where the

pursuer assignment changes dynamically based on this partition during the pursuit.

xiii



Next, we address the differential game of pursuit and evasion between two players

in the presence of a spatial flow field, which is approximated by a time-invariant

affine function of the state. By utilizing standard techniques from differential game

theory, we characterize the regions of initial conditions that lead to capture, and we

analytically derive the optimal strategies of the pursuer and the evader within the

respective capture regions of the pursuers.

Pursuit-evasion games between multiple pursuers and one evader under general

spatiotemporal flow fields are also dealt with through a reachable set analysis and by

utilizing the numerical level set method. Conditions for the game to be terminated are

given in terms of reachable set inclusions. Level set equations are defined and solved

in order to generate the forward reachable sets of the pursuers and the evader. The

time-optimal trajectories and the corresponding optimal strategies are subsequently

retrieved from these level sets. We apply this reachability-based scheme to deal with

pursuit-evasion of multiple agents both in 2-dimensional and 3-dimensional spaces.

We also extend this scheme in a probablistic setting to deal with a two-player pursuit-

evasion game in the presence of stochastic environmental disturbances.

The second objective of this research is to present an efficient algorithm to solve

general two player differential game problems and extend it to a stochastic formulation

in order to tackle differential games under dynamical uncertainties. In particular, we

propose a Game-Theoretic Differential Dynamic Programming (GT-DDP) algorithm

in continuous time by providing a set of backward differential equations for the value

function expansion without assuming closeness of the initial nominal control to the

optimal control solution, and derive the update law for the controls. The effect of

the game-theoretic formulation in the feed-forward and feedback parts of the control

policies is analyzed by applying different control gains to a system affected by additive

noise. A stochastic version of GT-DDP algorithm is then derived to solve a differential

game under dynamical uncertainties modeled by a state-dependent Gaussian noise.

xiv



We present the update law for the minimizing and maximizing controls for both

players and provide a set of backward differential equations for the second-order

value function approximation. We find the extra terms in the backward propagation

equations that arise from the stochastic assumption compared with the original GT-

DDP and present the corresponding SGT-DDP algorithm.
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CHAPTER I

INTRODUCTION

1.1 Motivation and Goals

Differential games originate from game theory, which was introduced by von Neu-

mann and Morgenstern [151] in the mid ’40s. Differential games involve multi-person

decision making under conflicts in the context of dynamical systems. Since the pi-

oneer work of Isaacs in differential games [62], the theory has been developed from

its early focus on military pursuit-evasion problems and expanded towards a vari-

ety of areas, including aeronautics, biology, ecology, economics, engineering, man-

agement science, operations research, political science, psychology, to name just a

few [2, 17,38,44,67,97,106,157,161].

Each player involved in a differential game makes a decision based on its own

interests and those different interests may lead to conflict and/or cooperation. An

outcome is induced from the combined decisions of the players. What makes the

problem interesting is that the decision made by each player could affect the outcome

of all players. In this process, both the decision-making and the outcome of the

game may alter due to the change in the dynamics or the information each individual

have. The dynamics or the information each individual have can be easily affected by

uncertainties in the game. To be specific, the uncertainties that enter the system can

be divided into three main categories, namely, external/environmental uncertainties,

endogenous/dynamical uncertainties, and observation uncertainties. Owing to the

pervasive nature of uncertainties in realistic differential game scenarios, efforts should

be undertaken in dealing with differential games under uncertainties.

In this work, we focus on the modeling and analysis of differential games subject

1



to environmental and dynamical uncertainties. In particular, we single out pursuit-

evasion games to demonstrate how to deal with differential games under environmen-

tal uncertainties.

Pursuit-evasion games is a well-established branch of differential games with var-

ious applications in both military and civilian areas. It involves two sides with

conflicting interests, where one (or a group) of pursuers aim to catch one (or a

group) of evaders who try to avoid capture. Despite the plethora of work in this

area [17,28,47,50,52,57,62,97,113,130,134], few approaches have taken into consid-

eration how dynamic environmental conditions may affect the outcome of the game.

On the other hand, due to the rapid advancement of technology, autonomous vehicles

with various sizes have been developed for a wide range of tasks and many of them

are susceptible to external environmental disturbances. For instance, in a pursuit-

evasion game, when either the pursuer or the evader (or both) is a small autonomous

underwater vehicle (AUV) or small unmanned aerial vehicle (UAV), the presence of

dynamic sea currents or winds may significantly affect the vehicle motion. As a result,

during the pursuit-evasion of these vehicles, their optimal behaviors may be greatly

affected by the existence of external dynamically changing ambient weather and wind

conditions. Therefore, the decision mechanisms for the pursuer and the evader should

be explored such that they can act efficiently despite the presence of environmental

disturbances.

It is also very common in practice for dynamical systems to have dynamical un-

certainties, since most of the dynamic models used nowadays are only simplifica-

tions or approximations of the real systems, e.g., manipulators, aircraft and biped

robots [20, 45, 138, 153]. In order to deal with this problem, we need new tools to

obtain a dynamical model that takes into account the dynamical uncertainties. After

a relatively realistic model is achieved, an efficient method is required to solve the

follow-up differential game problem. In particular, we utilize the Differential Dynamic
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Programming (DDP) [63] technique and derive a game-theoretic version of DDP that

solves the Hamilton-Jacobi-Isaacs equation associated with a differential game prob-

lem. DDP is a well-known trajectory optimization method that iteratively finds a

locally optimal control policy starting from a nominal control and state trajectory.

Since its introduction in [63], there has been a plethora of variations and applications

of DDP within the controls and robotics communities. Starting with a differen-

tial game-theoretic formulation and application to bipedal locomotion [105], [104] to

receding horizon [144], and stochastic control formulations [147, 148], DDP has be-

come one of the standard methods for trajectory optimization with a broad range

of applications [1, 5, 6, 43, 145, 146, 148]. Our work focus on the derivation and

application of continuous-time Game-Theoretic DDP (GT-DDP). This differential

game-theoretic or min-max formulation is closely related to the H∞ control the-

ory [40, 41, 49, 71, 119, 149, 160]. The H∞ control theory aims to achieve robustness

of systems against model uncertainty. The basic idea is to keep the sensitivity γ of

the feedback control loop against a disturbance input small enough such that any

disturbance subject to modeling error can be suppressed if the gain of mapping from

the state error to the disturbance is bounded by 1/γ in terms of H∞ norm. It has

been shown [16] that the H∞ control problem can be recast as a min-max problem

subject to the Hamilton-Jacobi-Isaacs (HJI) equation of a value function. In this

min-max problem, the objective is to obtain a control that minimizes a given perfor-

mance index under worst possible disturbances or parameter variations. Therefore,

the GT-DDP algorithm we developed can also be utilized to solve H∞ control prob-

lems. H∞ optimization has also been extended in the form of robust H∞ control to

deal with uncertain systems [65,72,154,156].

In the next three sections, we focus on some of the recent advances in various

research topics relevant to the scope of this dissertation. In particular, we review the

major contributions in the literature on pursuit-evasion problems involving teams of
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autonomous vehicles. Subsequently, we review the differential dynamic programming

method in dealing with optimal control problems. Given the vast body of work related

to these popular research topics available in the literature, our literature review is

not meant to be exhaustive, but rather indicative of some recent trends in the fields

related to the scope of this dissertation.

1.2 Task Assignment Problem of Spatially Distributed Group
of Autonomous Agents and Voronoi Diagram Parti-
tions

A significant body of work in the field of multi-agent systems deals with distributed

control/task assignment problems. This class of problems can be traced back to steer-

ing behavior of autonomous mobile agents studied by Reynolds in [127, 128], which

discuss various motion coordination strategies of multi-agent systems such as flock-

ing, leader following, containment, motion alignment and separation, etc. In general,

motion coordination problems attempt to reach some global objective through co-

ordination of a group of autonomous vehicles in the context of a system theoretic

framework. The rendezvous problem for multi-agents problems, where the goal for

the participants is to meet with each other at some common spot, have been exam-

ined extensively in [59, 64, 103, 110, 126]. The dynamic routing problem that solves

automatic planning of optimal multi-vehicle routes to perform tasks generated by an

exogenous process have been studied in [24,118]. In [78], the performance of a multi-

agent risk-sensitive tracking system is evaluated by formulating the tracking problem

as an infinite horizon linear exponential quadratic Gaussian problem. UAV appli-

cations on motion coordination have been investigated in [89, 94, 95]. Multi-vehicle

control problems in the presence of a flow field have also been studied in [54,114,120].

An increased amount of attention has been directed to multi-agent systems to
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develop more general schemes to address broader classes of task assignment and dis-

tributed control problems. For example, potential function methods and Lyapunov-

based analysis have been utilized to deal with formation control and other consensus

problems for multi-agent systems, a survey of which can be found in [55]. In [4] a

game-theoretical formulation is utilized to address vehicle-target assignment problems

for teams of non-cooperative autonomous vehicles where collective team objectives

are achieved through optimization of utility functions. A scheme to deal with target

allocation problems for a teams of UAVs based on mixed integer-linear programming

techniques is introduced in [73]. Although the aforementioned approaches apply to

various problems with respect to multi-agent systems, the interactions of the environ-

ment with the agents is not taken into consideration, which places restrictions on the

applicability of these approaches in many real-world applications. In addition, these

general task assignment schemes usually come with a heavy computational cost that

restrain them from applications that require real-time decision making.

Another tool that is widely utilized in task assignment problems for multi-agent

systems is the so-called Voronoi diagram and its generalized forms. The concept of

Voronoi Diagram is discussed in [152]. A Voronoi diagram is a spatial partition of

a topological space formed by a set of generators with respect to some prescribed

distance metric. Each generator is associated with an element of the partition, which

is known as the Voronoi cell, such that each point within the Voronoi cell of a par-

ticular generator is closer to this generator than any other generators in terms of the

prescribed distance metric. A detailed discussion of Voronoi diagrams with different

types of distance metric can be found in [109] and the references therein. It has

found a large number of applications in fields related to mult-agent systems. For

instance, coverage control of a multi-agent network system is studied in [30], where a

locational optimization problem is solved with centroidal Voronoi partitions. A parti-

tioning problem with respect to the minimum time-to-reach of the agents is proposed
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in [9]. It was subsequently applied to a pursuer assignment problem in [14]. The

study of dynamic Voronoi diagram problems that deal with Voronoi-like partitioning

problems where the generators are moving rather than being stationary can be found

in [35, 36, 129]. In contrast to the standard Voronoi partitioning problem, where all

generators are stationary, a sequence of time-evolving Voronoi diagrams is obtained

as the solution of the dynamic partitioning problem. In particular, the authors in [35]

deal with a pursuer assignment problem between a set of pursuers and a set of evaders.

The evaders move in straight lines and are assumed to be slower than the pursuers.

The task is to find a rule that assignes each pursuer to an evader such that the evaders

can be captured in minimum time through the dynamic Voronoi diagram.

1.3 Multiplayer Pursuit-Evasion Problem

A discussion on the historical background of pursuit-evasion problems can be found

in [107]. Two player pursuit-evasion differential games were originally studied by

Isaacs in his seminal book [62], which extended the theory of zero-sum games in

classical game theory [90] to problems in the context of dynamical systems. The

main idea is to associate the solution of the differential game to that of a Hamilton-

Jacobi-Isaacs (HJI) equation. Pursuit-evasion between an agile pursuer and an evader

with a curvature constraint was studied in Isaacs’ Homicidal Chauffeur game [62]. A

reversed version of the Homicidal Chauffeur game, where the evader is agile and the

player has a curvature constraint, was recently studied in [46, 47]. Another similar

game, called the Game of Two Cars [97], focuses on two players, both having a finite

maximum turning radius. A general result for the pursuit-evasion problem with

curvature constraints was presented in [28]. Pursuit-evasion games with quadratic

costs and linear dynamics for the players is addressed in [57] by employing standard

linear optimal control techniques.

Stochastic pursuit-evasion games have also received attention over the recent years.
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A Markov pursuit-evasion game in the discrete time formulation is presented in [56].

The Markov chain approximation method is also utilized in [76] to deal with stochastic

differential games. A linear quadratic pursuit-evasion game is studied in [7]. A

stochastic version of the Homicidal Chauffeur game, a pursuit-evasion game between

an agile pursuer and an evader having a finite maximum turning radius, is addressed

in [113]. An analytical form of the value function in a two-player stochastic pursuit-

evasion game is found in [80].

Besides the HJI equation approach, another approach researchers have used when

dealing with pursuit-evasion problems is based on reachable set analysis [27,52,102].

According to this approach, the reachable state space of the pursuers and the evaders

is utilized to find the optimal controls of the pursuer and/or the evader. Reachability

set analysis has been applied in performing missile/sensor trade-offs in homing guid-

ance [131], in obtaining escape strategy under pursuit [158], and in finding pursuer

control under control constraints [26].

Some of the aforementioned problems have been extended to the case of multiple

players. Specifically, multiplayer pursuit-evasion games with quadratic costs and

linear dynamics are presented in [137], where the theory of nonzero-sum games in

classical game theory is extended to solve such problems. A multiplayer extension

of the classical Homicidal Chauffeur game [62] is discussed in [21] where a chain

formation of faster, yet less maneuverable, pursuers are utilized to ensure capture

of a single slower but agile evader. The group pursuit problems, pursuit-evasion

involving multiple players, are, in general, difficult problems to solve due to their

complexity [18,19,122]. Their solution is also based on the information the pursuers

and the targets/evaders have about each other, resulting in either cooperative or

non-cooperative strategies [14, 35,75,116,150,157].

A large number of group pursuit problems focus on the case where a group of
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pursuers go after a single evader. In particular, conditions for target interception be-

tween multiple pursuers and one evader in the simplest form is studied by Pshenichnyi

in [123]. The result is extended to simultaneous k-capture in [19] and ε-capture in [70]

where the capture occurs when some pursuer is within ε distance of the evader instead

of coinciding with the evader. Conditions for guaranteed evasion and the correspond-

ing evading strategies are studied in [25] and [61]. Pursuit-evasion between one evader

and countably many pursuers is investigated in [60]. In a relay pursuit, generalized

Voronoi diagrams are utilized to assign active pursuers dynamically. Capture of the

evader is achieved through a relay of the pursuers in a multi-pursuer/one-evader prob-

lem [9,14]. The idea has also been applied in [141] to deal with known environmental

disturbances and in [39] for cooperative relay tracking of targets. Some results exist

for cases with more general dynamics for the agents (pursuers/evaders), but extra as-

sumptions are made for the problem to be tractable. Pursuit-evasion between a group

of pursuers and one evader with linear time-varying dynamics is studied in [122], and

later on generalized to the case of multiple evaders in [15]. Group pursuit of a tar-

get under the so-called “soft” capture, where capture occurs only when at least one

pursuer and the target have identical orientation, velocity and acceleration, is inves-

tigated in [121] under linear time-invariant dynamics.

Despite the plethora of work in this area, few approaches have taken into consid-

eration how dynamic environmental conditions may affect the outcome of the game.

For instance, when either the pursuers or the evaders (or both) are small autonomous

underwater vehicles (AUV) or small unmanned aerial vehicles (UAV), the presence of

time-varying or spatially-varying sea currents or winds, respectively, may significantly

affect the vehicle’s motion. As a result, during pursuit-evasion, the optimal behavior

of the players, as is determined by the solution of a differential game, may be greatly

affected by the existence of an external dynamically changing flow field.

Some optimal control problem formulations have taken into account the effect
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of an external flow field. For example, in [96] the authors address the problem of

optimal guidance to a specified position of a Dubins vehicle [91] under the influence

of an external flow. The minimum-time guidance problem for an isotropic rocket

in the presence of wind has been studied in [12]. The problem of minimizing the

expected time to steer a Dubins vehicle to a target set in a stochastic wind field

has also been discussed in [3]. However, the same level of attention in the literature

has not been devoted to pursuit-evasion games with two (or more) competing agents

under the influence of external disturbances (e.g., winds or currents). Such problem

will be addressed later in this dissertation.

1.4 Differential Dynamic Programming

Differential Dynamic Programming (DDP) is a trajectory optimization method that

iteratively finds a locally optimal control policy. The method starts from a nom-

inal control and state trajectory and iterates on the backward propagation of the

value function and the forward propagation of state dynamics to update the control

and state trajectory. It utilizes locally-quadratic models of the dynamics and value

functions. The backward evolution law of the value function is found through an ex-

pansion of the Hamilton-Jacobi-Bellman equation associated with the optimal control

problem. Since its introduction in 1966 by Mayne [93], and the subsequent discussion

in [63] by Jacobson, several variations of DDP have been derived and applied exten-

sively to deterministic and stochastic systems in robotics, autonomous systems and

computational neuroscience. In particular, in [148] a discrete time DDP algorithm is

derived for nonlinear stochastic systems with state and control multiplicative noise,

and then applied to biomechanical models. The resulting algorithm, known as itera-

tive Linear Quadratic Gaussian (iLQG) control, relies on first order expansion of the

dynamics. Second-order expansion of stochastic dynamical systems with state and

control multiplicative noise is considered in [147]. The resulting algorithm, known as
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Stochastic Differential Dynamic Programming (SDDP), is a generalization of iLQG.

In [104], a discrete differential game problem is investigated through the extension of

the original DDP method and the proposed algorithm is applied to bipedal locomo-

tion. DDP has also been implemented in a receding horizon fashion reminiscent of

model predictive control to account for dimensionality issues [144]. The resulting dis-

crete time receding horizon DDP is applied for helicopter acrobatic maneuvers in [1].

In [5] random sampling techniques are proposed to improve the scalability of DDP.

In [43] an infinite horizon version of discrete time DDP is derived, and in [146], DDP

is applied to deterministic nonlinear systems with control limits and subsequently

implemented to control humanoid robot in simulation. DDP has also been used

with machine learning methods to deal with optimal control problems with learned

dynamics [101,115].

While DDP was initially derived for continuous-time problems, the bulk of the pre-

vious work on applications of DDP has mainly focused on discretep-time formulations

of continuous-time optimal control problems. The key idea in the aforementioned

discrete-time formulations is to first discretize the dynamics and then use Dynamic

Programming (DP) to derive the backward propagation equations for the zeroth, first

and second order approximation terms of the value function. Thus, instead of first

optimizing to find the optimal control and then discretizing the solution so that it can

be applied to a real physical system, in discrete-time DDP discretization is performed

first, which is followed by an optimization step to find the optimal control.

1.5 Comments on the Structure of the Dissertation

The contents of this dissertation are divided into four parts. The first part of this

dissertation (Chapter 1) contains a literature review on the following topics: 1) Task

assignment problems of spatially distributed group of autonomous agents and Voronoi
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Diagram Partitions, 2) Multiplayer pursuit-evasion problems and 3) Differential Dy-

namic Programming.

The second part of the disseration, comprised of Chapters 2-6, focuses on differ-

ential games under external disturbances. In particular, in Chapter 2 we address the

sequential pursuit problem between multiple pursuers and evaders in the presence

of environmental disturbances. In Chapter 3, we consider the differential game of

pursuit and evasion between two players on a plane under an external flow field. It

is assumed that the flow field is approximated by a time-invariant, spatially-affine

function. The goal is to find the region of initial conditions of both players that leads

to capture when both players act optimally, and derive the corresponding optimal

strategies of the two players when capture is guaranteed. In Chapter 4, we address

a multiple-pursuer-one-evader game in an external dynamic flow field without a pre-

specified structure. Due to the generality of the external flow, Issacs’ approach does

not readily yield feasible results. Instead, we adopt a reachability-based approach

and find the optimal trajectories of the players through the evolution of their reach-

able sets. In Chapter 5, We apply the reachability-based approach to a multiplayer

pursuit-evasion game under general flow field in a 3-dimensional space. In Chapter 6

this approach is extend in a probabilistic setting to deal with pursuit-evasion games

in the presence of stochastic environmental disturbances.

The third part of this dissertation (Chapters 7 and 8) deals with differential games

under dynamical uncertainties. In Chapter 7, we present the min-max Differential

Dynamic Programming (GT-DDP) algorithm to solve general differential game prob-

lems. The stochastic extension of the GT-DDP algorithm is derived to solve differ-

ential game problems whose dynamical uncertainties are modeled by state dependent

additive Gaussian noise. Finally, in Chapter 9, we conclude this disseration with a

summary of the contributions and we provide a discussion on future extensions of the

results presented in this research.
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1.6 Chapter Description

Next, we give a short description of each chapter of this dissertation.

• A Sequential Pursuer-Target Assignment Problem Under External

Disturbances

Pursuit-evasion problems under external flow fields are, in general, hard to solve.

In Chapter 2, we focus on finding the strategy of the pursuers in the problem of

pursuit and evasion between a set of targets and a team of pursuers distributed

in the plane subject to an environmental disturbance (e.g., wind, sea current).

The objective of the pursuers is to intercept the moving targets which, however,

are not affected by the presence of the flow field disturbance. We first solve the

multiple-pursuers-one-target problem by assigning only one pursuer to chase the

single target at every instant of time, based on a Voronoi-like partition of the

plane. During the pursuit, the pursuer assignment changes dynamically based

on this partition. We present an algorithm to efficiently update this Voronoi-

like partition on-line. We then deal with the original problem by assigning the

“closest” pursuer in the sense of time-to-capture to each of the targets and keep

the sequential pursuit until all targets have been captured. Simulations are

included to illustrate the theoretical results.

• Pursuit-Evasion Game in Linear Flow Fields

In Chapter 3, we address the differential game of pursuit and evasion between

two players in the presence of an external flow field. It is assumed that the two

players move on the plane using fixed but different speeds, and they are both

agile. That is, they steer by choosing at each instant their direction of travel and

abrupt heading changes are allowed. The external flow field is approximated

by a time-invariant affine function. By utilizing standard techniques from dif-

ferential game theory, we characterize the regions of initial conditions that lead
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to capture, as well as the regions that result in evasion when the two players

act optimally. We derive the optimal strategies of the pursuer and the evader

within the capture regions. Finally, we present numerical simulations of the

resulting pursuer and evader trajectories for several values of the parameters of

the external flow field.

• Pursuit-Evasion Game Under General Flow Fields

In Chapter 4, a reachability-based approach is adopted to deal with the pursuit-

evasion differential game between one evader and multiple pursuers in the pres-

ence of dynamic environmental disturbances (e.g., winds, sea currents). Con-

ditions for the game to be terminated are given in terms of reachable set in-

clusions. Level set equations are defined and solved to generate the forward

reachable sets of the pursuers and the evader. The time-optimal trajectories

and the corresponding optimal strategies are subsequently retrieved from these

level sets. The pursuers are divided into active pursuers, guards, and redundant

pursuers according to their respective roles in the pursuit-evasion game. The

proposed scheme is implemented on problems with both simple and realistic

time-dependent flow fields, with and without obstacles.

• Pursuit-Evasion Game Under 3-Dimensional Flow Fields

In Chapter 5 we deal with a pursuit-evasion differential game between multiple

pursuers and evaders in the 3-dimensional (3D) space under dynamic environ-

mental disturbances (e.g., winds, sea currents). We first recast the problem as a

pursuer assignment problem through a tessellation of the 3D space with gener-

alized Voronoi diagrams. Within each partition, the problem is reduced into a

multiple-pursuers/one-evader game. This problem is then addressed through a

reachability-based approach. We give conditions for the game to be terminated

in terms of reachable set inclusions. The reachable sets of the pursuers and the

13



evader are obtained by solving their corresponding level set equations through

the narrow band level set method. The time-optimal trajectories and corre-

sponding optimal strategies can be retrieved afterwards. The proposed scheme

is implemented on problems with both simple and realistic and complicated flow

fields.

• Pursuit-Evasion Game Under Stochastic Flow Fields

In Chapter 6, we address a two-player pursuit-evasion differential game in the

presence of stochastic environmental disturbances through an extension of the

reachability-based approach. We utilize the moment expansion method to de-

scribe the system with its mean and covariance propagation, which allows us

to construct mean and augmented reachable set through error ellipse of 2-

dimensional Gaussian process. We give conditions for the game to be terminated

in terms of augmented reachable set inclusions in a probabilistic setting. Level

set equations are defined and solved to generate the mean reachable sets of the

pursuer and the evader with respect to the mean dynamics. We then implement

the proposed scheme to a problem with a stochastic flow field.

• Game Theoretic Continuous Time Differential Dynamic Program-

ming

In Chapter 7, we derive a Game Theoretic Differential Dynamic Programming

(GT-DDP) algorithm in continuous time to solve a general differential game

problem. We provide a set of backward differential equations for the value

function expansion without assuming closeness of the initial nominal control

to the optimal control solution, and derive the update law for the controls.

We introduce the GT-DDP algorithm and analyze the effect of the game theo-

retic formulation in the feed-forward and feedback parts of the control policies.

Furthermore, we investigate the performance of GT-DDP through simulations
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on an inverted pendulum with conflicting controls and we apply the control

gains on a stochastic system to demonstrate the effect of the design of the cost

function to the feed-forward and feedback parts of the control policies.

• Stochastic Game Theoretic Continuous Time Differential Dynamic

Programming

A Stochastic Game Theoretic Differential Dynamic Programming (SGT-DDP)

algorithm is derived in Chapter 8 to solve a differential game under stochas-

tic dynamics. We present the update law for the minimizing and maximizing

controls for both players and provide a set of backward differential equations

for the second order value function approximation. We find the extra terms in

the backward propagation equations that arise from the stochastic assumption

compared with the original GT-DDP. We present the SGT-DDP algorithm and

analyze how the design of the cost function affects the feed-forward and feed-

back parts of the control policies under the game theoretic formulation. The

performance of SGT-DDP is then investigated through simulations on three ex-

amples, namely, a first order nonlinear system, the inverted pendulum and the

cart pole problems with conflicting controls. We conclude with some possible

future extensions.

• Conclusions and Future Research

In Chapter 9 we summarize our research efforts and highlight possible directions

for future research. Our emphasis is on exploring the possibility of applying the

reachable set analysis as a means to address problems involving teams of spa-

tially distributed autonomous vehicles under stochastic environmental distur-

bances. It would also be of interest to combine machine learning methods and

SGT-DDP algorithm efficiently to deal with differential game problems under

dynamical uncertainties.
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CHAPTER II

A SEQUENTIAL PURSUER-TARGET ASSIGNMENT

PROBLEM UNDER EXTERNAL DISTURBANCES

2.1 Introduction

Consider a scenario where a group of helicopters or small UAVs in a wind field are

trying to capture some vehicles moving on the ground, or a team of small marine

or underwater vehicles attempting to reach some ships which are large enough so

that the sea currents do not significantly affect their motions. Given such a group

of pursuers, we want to find a pursuit strategy to intercept the targets in minimum

time. Problems of this nature fall under the general class of group pursuit problems.

In order to solve this problem, in this Chapter we first focus on the multiple-pursuer-

one-target problem and propose a sequential pursuit strategy. By sequential (or

relay) pursuit we mean that for each target, only one pursuer is assigned to chase

the target at every instant of time. In addition to simplifying significantly the group

pursuit problem, a relay pursuit strategy may be desirable in cases where the power

or energy/fuel consumption of the agents is an important factor, when the agents

also play a dual role as guardians protecting a certain area, or in order to account for

possible deceptive strategies of an opponent. Then in the case of multiple targets, we

assign one pursuer to each of the target according to some reasonable criteria until

all the targets are captured.

For the multiple-pursuer-one-target problem, in contrast to most standard pursuit-

evasion problem formulations [14,61,66,70,74,121,123], where the effect of the envi-

ronment is not taken into consideration, in our problem setup (only) the pursuers are

affected by known exogenous environmental conditions (e.g., the winds or currents).
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Furthermore, as with all pursuit games, the solution of this problem depends on the

knowledge each pursuer has about the current and future position of the target. Note

that if the whole target trajectory is given a priori, the problem can be solved using

optimal control theory. In this Chapter it will be assumed that each pursuer has a

stroboscopic view of the target position. That is, each pursuer knows the current

position of the target but not its future position nor its velocity. Our objective is to

find the optimal assignment of which pursuer to go after the target at each instant of

time so as to reduce or minimize the capture time.

Our strategy to solve this problem will be based on the dynamic assignment of

the best pursuer to go after the target based on a Voronoi-like partition of the plane

called the Zermelo-Voronoi partition, or the Zermelo-Voronoi Diagram (ZVD) [9].

Such Voronoi-like diagrams have been previously introduced in [9, 10, 14] and use

time-to-intercept as the relevant distance metric. Essentially, a ZVD allows one to

succinctly encode the “isocost” surfaces of the associated minimum-time to intercept

problems emanating from the pursuer locations. The difficulty in our problem arises

from the fact that, owing to the presence of a wind field, a point in the plane can be

close to a pursuer in terms of Euclidean distance, but may not be close in terms of

minimum-time to intercept. As a result, standard Voronoi partitions for this problem

may lead to erroneous conclusions.

Our method in the multiple-pursuer-one-target problem can be extended naturally

to solve our original problem with multiple targets. Owing to the sequential pursuit

strategy, we only need to assign one pursuer to one of the targets at every instant of

time and the rest of the pursuers are free to go after other targets. What is left for

us is to propose the pursuer assignment laws in order to shorten the time duration

until the last target is captured.
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2.2 Preliminaries

Given a finite number of distinct points in the Euclidean plane, called the generators,

we associate their locations with a set of points in the plane, such that each point is

closer (with respect to a given distance metric) to its own generator than to any other

generator. The result is a tessellation of the plane into a set of regions associated

with the given generators. If we use a Euclidean distance metric, this tessellation

results in the ordinary Voronoi diagram (VD) generated by the given point set. The

corresponding regions are called the Voronoi cells of the tessellation [109].

Given an (ordinary) Voronoi diagram of a point set in a generic configuration (that

is, no three points are on the same line and no four points on the same circle), we may

join all pairs of generators whose Voronoi cells share a common edge. We thus obtain

a second tessellation consisting of only triangles, called the Delaunay triangulation

(DT) of VD. The Delaunay triangulation is the dual graph of the Voronoi diagram.

A circle circumscribing any Delaunay triangle contains no generator in its interior

[109]. This is the Delaunay property. Consider a triangulation of four points, as shown

in Fig. 1(a). If the two triangles in the triangulation do not meet this property, we

can change the triangulation into one that does (and hence construct the DT) simply

by flipping the common edge (see Fig. 1(b)). Thus, given any triangulation of a given

(a) A triangulation of 4 points (b) DT of the same points

Figure 1: Flip-edge method for generating the Delaunay triangulation.

point set, we can construct the DT by flipping the edges until no triangle violates the
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Delaunay property. This method of generating the DT of a given point set is called

the flip-edge method [129].

When we deal with pursuer-target problems, in many cases we want to know the

proximity relation between a set of agents, acting as pursuers, and a target on the

plane. The problem of obtaining this proximity relation can often be recast as a set

membership problem. For instance, the question of determining which of the agents

is closest (in terms of arrival time) to a static target at a particular instant of time,

reduces to a set membership problem, namely, one of forming the so-called Zermelo-

Voronoi Diagram (ZVD) [9], and then finding the cell in which the target resides at

the given time instant.

It is reminded that, given a finite number of agents at some time t, the ZVD

is a partition of the plane whose generalized distance is the minimum time for the

corresponding Zermelo navigation problem [159] from each agent’s current position

(the generator) to the agent’s terminal configuration. Thus, every cell is the collection

of all the points in the plane that can be reached by the associated agent faster than

any other agents in the agent set. We state the precise definition of ZVD below.

Definition 2.1 (Zermelo-Voronoi Diagram [9]) Given a set of n agents starting

from distinct initial positions, whose dynamics are given by

Ẋ i = ui + w(X i, t), X i(0) = X i
P0
, (1)

where X i = [xi, yi]T ∈ R2 denotes the position of the ith agent, ui ∈ R2 is the control

input of the ith agent and w(X i, t) ∈ R2 represents the environmental disturbance

(winds/currents), the Zermelo-Voronoi diagram (ZVD)1 (or Zermelo-Voronoi parti-

tion) is a set partition of the plane Z = {Z1, Z2, ..., Zn} such that

1Note that in [9] this is referred to as the dual Zermelo-Voronoi diagram, not to be confused with
the dual graph of the Zermelo-Voronoi diagram.
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i) R2 =
⋃n
i=1Zi,

ii) For any point in Zi, the ith agent will reach this point faster than any other

agent.

The sets Zi are the Zermelo-Voronoi cells for the partition.

As is shown in [9], given any Zi, Zj ∈ Z, i 6= j, i, j ∈ I, we have int(Zi)∩ int(Zj) =

∅.

The following proposition characterizes a useful property of the ZVD that will be

used later on.

Proposition 2.1 ( [9]) Let V = {Vi, i ∈ I}, where I = {1, 2, ..., n}, be the partition

of the ordinary Voronoi diagram with generators P = {Pi, i ∈ I}. Assume that the

dynamics of each agent initially placed at the generator positions are given by (1),

and assume that w = w(t). Let the one-to-one, continuous function F : R2 → R2 be

defined by

F (X) = fPi
(X), X ∈ Vi, i ∈ I, (2)

where

fPi
(X) = X +

∫ |X−Pi|

0

w(τ) dτ, i ∈ I. (3)

Then Zi = F (Vi) and thus ZVD is the image of VD under the mapping F .

In other words, there exists a homeomorphism between the ordinary Voronoi di-

agram and the Zermelo-Voronoi diagram with the same generators.

2.3 Problem Setup

In this section, we formulate the dynamic pursuit problem with multiple pursuers and

one target. Extension to problems with multiple targets is straightforward, as can

be seen later on. To this end, consider a group of n pursuers in the plane, denoted
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by the index set I = {1, 2, ..., n}, and assume that at time t = 0 the pursuers are

located at n distinct positions in the plane, designated by P0 = {X i
P0
∈ R2, i ∈ I}.

The kinematics of the ith pursuer, i ∈ I, are described by

Ẋ i
P = uiP + w(t), X i

P (0) = X i
P0
, (4)

where X i
P := [xiP , y

i
P ]T ∈ R2 denotes the position of the ith pursuer, uiP ∈ R2 is the

control input of the ith pursuer such that uiP ∈ UP , for all i ∈ I, and w(t) ∈ R2

represents the wind disturbance. The set UP consists of all piecewise continuous

functions whose range is included in the set UP = {u ∈ R2, |u| 6 ū}. It is assumed,

furthermore, that there exists 0 < w̄ < ū such that

|w(t)| 6 w̄, (5)

for all t > 0. The restriction on the magnitude of the wind disturbance is imposed in

order to ensure complete pursuer controllability, namely, that the pursuers are able

to reach any point on the plane in finite time. The absence of controllability leads to

complicated behavior and requires a more detailed analysis [13].

The objective of the pursuers is to intercept a target, whose kinematics is given

by

ẊT = uT , XT (0) = XT0 , (6)

where XT = [xT , yT ]T ∈ R2 is the position of the target, and uT is its control input

such that uT ∈ UT , which consists of all piecewise continuous functions whose range

is included in the set UT = {u ∈ R2, |u| 6 q̄}. Note that the target is not affected by

the wind field.

We assume that the pursuers do not know how the target maneuvers a priori.

Instead, they have accurate measurements of the current position of the target at
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every instant of time. One reasonable strategy for every pursuer is therefore to use

the Zermelo navigation law [14, 23] in order to intercept the target, that is, at every

instant of time, the pursuer approaches the target with the control law obtained by the

solution of the corresponding Zermelo navigation problem, assuming that the target

is stationary. This control law is optimal at t = 0 if the target remains stationary for

all t > 0 [23]. As discussed in [9], starting at time t = 0, the optimal time of arrival

T iZN of the ith pursuer from X i
P0

to XT0 is given by

T iZN = min{T > 0 : ūT − |XT0 −X i
P0
−
∫ T

0

w(τ) dτ | = 0} (7)

Then the Zermelo’s navigation control can be obtained by

uiZN = ū(cos θ∗i , sin θ
∗
i )

T, (8)

where

θ∗i = Arg

(
XT0 −X i

P0
−
∫ T i

ZN

0

w(τ) dτ

)
, (9)

for i ∈ I.

Assume that, at every instant of time, only one pursuer is chasing the target, i.e.,

at every time t > 0, there exists only one i ∈ I, such that uiP (t) = uiZN(t) whereas

ujP (t) = 0, for all j ∈ I, j 6= i. We call i the active pursuer at time t. Our goal is to

find a sequence of active pursuers to capture the target in the shortest possible time,

under the assumptions listed above.

To this end, define a mapping σ : [0,∞) 7→ I, where σ belongs to the set of all

the right continuous, piecewise constant functions, denoted as Σ, such that σ(t) = i

implies that, at time t, the ith pursuer is the active pursuer. We call σ the assignment

function [14].

Assume now that the sequence of active pursuers is given by i1, i2, . . . ∈ I, along
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with a sequence of times 0 < τ1 < τ2 < . . . such that the corresponding assignment

function is σ(t) = i1 for t = [0, τ1), σ(t) = i2 for t = [τ1, τ2), etc. For simplicity, we

will also write σ ≡ i to denote the fact that pursuer i was the only active pursuer. In

this case, no switching takes place. When a pursuer assignment changes, we say that

a switching occurs and the corresponding time τj is the switching time. Consequently,

we can describe the dynamics of the sequential pursuit problem as the switched system

Ẋ
σ(t)
P = u

σ(t)
ZN + w(t), X

σ(τj)
P (τj) = X

σ(τj)
P (τj−), (10)

Ẋk
P = w(t), Xk

P (τj) = Xk
P (τj−), k ∈ I\{σ(t)}, (11)

ẊT = uT . (12)

The initial conditions at t = 0 are given by X i
P (0) = X i

P0
, for all i ∈ I, and XT (0) =

XT0 .

Let ϕ(t;σ) be the solution of (10) for the given assignment function σ ∈ Σ. This

is a piecewise continuous trajectory such that ϕ(t;σ) = X
σ(t)
P (t) for all t ≥ 0. Note

that ϕ(t;σ) may be discontinuous at τ1, τ2, . . .. For some small enough ε > 0, we

define the capture time as Tc(σ) := inf{T ∈ [0,+∞) : |ϕ(T ;σ)−XT (T )| < ε}.

The pursuer-target assignment problem can then be restated as follows: Given a

target and a set of pursuers in the plane, determine an assignment function σmin ∈ Σ,

such that the capture time is as small as possible, assuming that only the current

position of the target is available. In other words, we seek an assignment function

that will minimize capture time under the assumption that each pursuer is using a

stroboscopic strategy [11,52,112] based on the target’s current location.

2.4 Analysis and implementation of the pursuer-target as-
signment problem

Before we proceed with the solution of the optimal pursuer assignment problem, we

first need to determine the condition on the target’s maneuverability such that there
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exists an assignment function leading to finite capture time. Below we provide a

sufficient condition for the existence of capture time.

The robust optimal line-of-sight navigation law (ROLS) steers a pursuer towards

a target at every instant of time, while maximizing the speed along the ensuing path.

This is the optimal strategy, among all control strategies that force the pursuer to

move along the current line-of-sight [11]. We can use this strategy to ensure capture

as follows. First, let Y i(t) = XT (t) − X i
P (t) be the vector from the pursuer to the

target. The ROLS navigation law of the ith pursuer can be expressed as [11]

uiROLS(t, Y i) =
√
ū2 − 〈w(t), ei2(t)〉2ei1(t)− 〈w(t), ei2(t)〉ei2(t), (13)

where

ei1(t) =
Y i(t)

|Y i(t)|
, ei2(t) = Sei1(t), i ∈ I, (14)

where S is the rotation matrix [ 0 −1
1 0 ].

The following result is adapted from [11].

Proposition 2.2 Let ε > 0, and assume that the dynamics of each pursuer is given

by (4) and the dynamics of the target is given by (6). Then, for each pursuer i, and

for all initial conditions X i
P0

and XT0, there exists a finite time T iROLS(X i
P0
, XT0) > 0

such that the i-th pursuer driven by the ROLS navigation law (13) enters the set

{X ∈ R : |X −XT (T iROLS)| 6 ε}, provided that

|〈w(t)− uT (t), ei1(t)〉| <
√
ū2 − w̄2, (15)

for all t > 0, where ei1(t) as in (14).

Proof. From equation (5) we have 〈w(t), ei2(t)〉 6 |w(t)| 6 w̄, which implies that

〈uiROLS(t, Y ), ei1(t)〉 =
√
ū2 − 〈w(t), ei2(t)〉2 >

√
ū2 − w̄2. (16)
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Using the control (13) in the ith pursuer dynamics, and subtracting it from the target

dynamics (6), we get

Ẏ i(t) = −uiROLS(t, Y i)− w(t) + uT (t). (17)

Since the ith pursuer moves along the line-of-sight, using (17) along with (15), it

follows that

d

dt
|Y i| = 〈Ẏ i, ei1(t)〉

= −〈uiROLS(t, Y ), ei1(t)〉 − 〈w(t)− uT (t), ei1(t)〉

< −
√
ū2 − w̄2 < 0.

Thus, the ROLS navigation law will drive the i-th pursuer to within an ε-ball of the

target in finite time.

The following corollary is therefore immediate from Proposition 2.2.

Corollary 2.1 Assume that (15) holds for all i ∈ I. Any sequential pursuit strategy

in which each active pursuer employs the ROLS navigation law (13) leads to capture

of the target by at least one pursuer.

Proposition 2.2 implies that the minimum-time intercept problem using Zermelo’s

navigation law in (8)-(9) always has a solution, for all initial conditions for the pur-

suers and the target. Furthermore, applying Zermelo’s navigation law instead of (13)

results in a smaller intercept time, that is, T iZN ≤ T iROLS for all i ∈ I. This, in turn,

implies that a sequential strategy that uses Zermelo’s navigation law for each pursuer

will eventually lead to capture. By imposing a somewhat stronger condition we can

actually prove the following result.

Proposition 2.3 Let ε > 0, and assume that the dynamics of each pursuer is given

by (4) and the dynamics of the target is given by (6). Then, for each pursuer i, and
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for all initial conditions X i
P0

and XT0, there exists a finite time T iZN(X i
P0
, XT0) > 0

such that the i-th pursuer driven by the robust Zermelo navigation law (8)-(9) enters

the set {X ∈ R : |X−XT (T iZN)| 6 ε}, regardless of the evader’s strategy and the form

of external wind field, if and only if

q̄ < ū− w̄, (18)

where q̄, ū, w̄ ∈ R represents the upper bound of target, pursuers, wind speed respec-

tively.

proof 2.4.1 To show (18) is the necessary condition, consider an extreme case where

one pursuer P is playing against the target T under a constant wind drift w =

w̄(XP0 −XT0)/|XP0 −XT0|, which is parallel to the line-of-sight between the initial

positions of the pursuer and the evader. Under this condition, the optimal strategy

of the two players are both to move along the initial line-of-sight with their respective

maximum speeds. Therefore, if (18) is not satisfied, then the pursuer will not be able

to capture the evader.

On the other hand, assume that (18) is satisfied. Let Y i(t) = XT (t) − X i
P (t) be

the vector from the i-th pursuer to the target. Assume that at time t = tk the i-th

pursuer and the target are located at positions X i
P (tk) and XT (tk) respectively. It

follows from (7) that the time-to-intercept of a stationary target at XT (tk) is given by

T iZNk
= min{T > 0 : ūT − |Y i(tk)−

∫ tk+T

tk
w(τ) dτ | = 0}. In particular,

∣∣∣∣∣Y i(tk)−
∫ tk+T i

ZNk

tk

w(τ) dτ

∣∣∣∣∣ = ūT iZNk
, (19)

and the corresponding optimal control law at tk is given by

uiZN(tk) =
1

T iZNk

(
Y i(tk)−

∫ tk+T i
ZNk

tk

w(τ) dτ

)
. (20)
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At the next time step t = tk + δt, we can easily compute that

X i
P (tk + δt) = X i

P (tk) +

∫ tk+δt

tk

w(τ) dτ +
δt

T iZNk

(
Y i(tk)−

∫ tk+T i
ZNk

tk

w(τ) dτ

)
,

and, similarly, XT (tk + δt) = XT (tk) + ukT δt, where ukT = uT (tk). Thus,

Y i(tk + δt) = XT (tk + δt)−X i
P (tk + δt)

= Y i(tk) + ukT δt−
∫ tk+δt

tk

w(τ) dτ − δt

T iZNk

Y i(tk) +
δt

T iZNk

∫ tk+T i
ZNk

tk

w(τ) dτ. (21)

The time-to-intercept at time step t = tk + δt is given by T iZNk+1
= min{T > 0 :

ūT − |Y i(tk + δt)−
∫ tk+δt+T

tk+δt
w(τ) dτ | = 0}. In particular,

|Y i(tk + δt)−
∫ tk+δt+T i

ZNk+1

tk+δt

w(τ) dτ | = ūT iZNk+1
. (22)

At this point, pick δt = ε/(ū+ w̄), where ε > 0 and assume that there exists k > 0

such that T iZNk
≤ δt, then from (20) one obtains

|Y i(tk)| = |uiZN(tk)T
i
ZNk

+

∫ tk+T i
ZNk

tk

w(t)dt|

≤ |uiZN(tk)|T iZNk
+ |w̄

∫ T i
ZNk

0

1dt|

≤ (ū+ w̄)T iZNk
≤ (ū+ w̄)δt

≤ (ū+ w̄)
ε

ū+ w̄
= ε.

This shows that the pursuer is in the ε ball centered at the evader’s position. In other

words, the capture has occurred.

Suppose now that T iZNk
> δt for all k > 0. In this case, using (21), and after

some algebraic manipulations, one obtains the following expression for the term in

27



the left-hand-side of (22)

Y i(tk + δt)−
∫ tk+δt+T i

ZNk+1

tk+δt

w(τ) dτ =
(
1− δt

T iZNk

)(
Y i(tk)−

∫ tk+T i
ZNk

tk

w(τ) dτ
)

−
∫ tk+δt+T i

ZNk+1

tk+T i
ZNk

w(τ) dτ + ukT δt.

Let

Θk = Y i(tk)−
∫ tk+T i

ZNk

tk

w(τ) dτ, (23)

and

Hk = −
∫ tk+δt+T i

ZNk+1

tk+T i
ZNk

w(τ) dτ + ukT δt. (24)

Then (22) can be written as follows

|αΘk +Hk| = ūT iZNk+1
, (25)

where α = 1− δt/T iZNk
> 0, whereas (19) can be written as follows

|Θk| = ūT iZNk
. (26)

Subtracting (25) from (26) yields

− ū∆Tk = |Θk| − |αΘk +Hk|, (27)

where ∆Tk = T iZNk+1
− T iZNk

.

We claim that ∆Tk < 0 for all k > 0 such that T iZNk
> δt. To this end, note that

using the triangle inequality, (27) yields −ū∆Tk ≥ |Θk| − α|Θk| − |Hk| = ūδt− |Hk|,

where we have made use of the fact that (1 − α)|Θk| = δt/T iZNk
|Θk| = ūδt. Hence,

|Hk| ≥ ū(∆Tk + δt).
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From (24) we also have

|Hk| =

∣∣∣∣∣ukT δt−
∫ tk+δt+T i

ZNk+1

tk+T i
ZNk

w(τ) dτ

∣∣∣∣∣
≤ |ukT |δt+

∣∣∣∣∣
∫ tk+δt+T i

ZNk+1

tk+T i
ZNk

w(τ) dτ

∣∣∣∣∣
≤ q̄δt+ w̄|∆Tk + δt|.

Thus, we get

ū(∆Tk + δt) ≤ |Hk| ≤ q̄δt+ w̄|∆Tk + δt|. (28)

If ∆Tk ≥ 0, for some k > 0 such that T iZNk
> δt, then it follows from the previous

expression that ū(∆Tk + δt) ≤ q̄δt+ w̄(∆Tk + δt) or that

(w̄ − ū)∆Tk ≥ (ū− q̄ − w̄)δt, (29)

which leads to a contradiction since the left-hand side of inequality (29) is non-positive

and the right-hand side is positive. It follows that T iZNk+1
− T iZNk

= ∆T < 0. This

implies that the sequence {T iZNk
}∞k=1 is strictly decreasing, and since it is also bounded

from below, it converges. Hence, limk→∞∆Tk = 0. Taking the limit as k → ∞ of

(28) yields ūδt ≤ (q̄ + w̄)δt or that ū ≤ q̄ + w̄, contradicting (18).

The next corollary follows immediately from the previous proposition.

Corollary 2.2 Assume that (18) holds for all i ∈ I. Any sequential pursuit strategy

in which each active pursuer employs the robust Zermelo’s navigation law (8)-(9)

leads to capture of the target by at least one pursuer.

Under the assumption of sequential (or relay) pursuit, and assuming that each ac-

tive pursuer chooses the Zermelo navigation law, we may now propose the following
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algorithm to assign the active pursuer:

Dynamic Assignment of Active Pursuer with Multiple Pursuers and

One Target

a) Construct the ZVD and assign the ith pursuer to be the active pursuer if the

target resides in the corresponding Zermelo-Voronoi cell Zi.

b) At every time step, update the ZVD and assign the jth pursuer to be the active

pursuer if the target resides in the corresponding Zermelo-Voronoi cell Zj.

c) Check the distance between the target and the active pursuer and repeat step

b) if the distance is bigger than ε. Otherwise, terminate the procedure and

return the assignment function.

2.5 Update algorithm to dynamically generate the ZVD

At every instant of time, we need the knowledge of the ZVD in order to determine

which cell the target resides in. In order to do this, we can either build a ZVD from

scratch at each time, or update the ZVD from the previous time step. Since at every

time interval, only one generator is moving relatively to the rest, it is reasonable to

expect that it will be more efficient to update the ZVD from the previous time step.

Hereby, we present an algorithm that updates the ZVD from one time step to the

next time step when a single pursuer has moved2.

From (2), we know that there exists an invertible, continuous transformation be-

tween the ordinary VD and the ZVD. Thus, our strategy for updating the ZVD is

to update the ordinary VD corresponding to the same generators first and then form

the ZVD through this transformation.

2This algorithm can also be applied to the case where more than one generator is moving.
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In order to update the ordinary VD we will, instead, update its dual graph, namely,

its Delaunay Triangulation. There exist several algorithms for updating DT in the

literature of computational geometry [34,51,79,92]. We will use a modification of the

algorithm introduced in [51] since it is relatively efficient and it fits our problem.

In order to update the DT from the previous time step to the current time step, a

straightforward way would be to put all the points in a queue and every time we push

a point out from the queue, we remove this point from the original triangulation and

then insert it back at the new location at the present time [69]. Each deletion and

insertion of the DT preserves the Delaunay property, so the procedure would yield

a valid DT. However, the procedure is not very efficient since even if all the points

remain static during the time interval, we still need to delete and insert all the points

to complete the update. Moreover, removing a point from a DT is a fairly expensive

process. As shown in [37], the algorithm to reconstruct the Delaunay Triangulation

after a point is removed is quadratic in the number of its neighbors.

Given the previous considerations, we propose an alternative approach to deal

with moving generators. We want the update algorithm to take advantage of the fact

that part of the DT structure has not changed from the previous time step. To this

end, denote by DTk, and DTk+1 the Delaunay Triangulation at time steps tk and tk+1

respectively. Assume that the corresponding generator sets are given by Pk and Pk+1.

Our goal is to update DTk into DTk+1 with as few deletions as possible. To this

end, we want to check first if we can generate DTk+1 from DTk using only the flip-

edge method. The flip-edge method can be applied when DTk is an embedding [51].

Recall that, given a point set, a triangulation is an embedding if the triangulation

associated with this point set has no overlapping triangles. If a triangulation is not

an embedding, we say that it is an unembedding. Fig. 2(a) shows a DT associated with

a given point set, and Fig. 2(b) shows the DT associated with a new point set, where

point 5 has changed its location. Some triangles overlap with each other in Fig. 2(b).
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Thus, the DT in Fig. 2(b) is an unembedding. Also notice that if an unembedding

occurs, there exists at least one triangle that has changed its orientation. For example,

the triangle with vertices 3, 4, and 5 in Fig. 2(a) has a clockwise orientation. In

Fig. 2(b), on the other hand, the orientation of the triangle with the same vertices

has counter-clockwise orientation, i.e., its orientation has changed.
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(a) Delaunay Triangulation of 9 gen-
erators.
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(b) Generator 5 changed its location
and caused unembedding.

Figure 2: Unembeding caused by relocation of a generator.

We introduce the orientation certificate to check whether DTk is an embedding or

not [51]. Given a triangle [i, j, k] in the triangulation, where i, j, k denote the indices

of the generators, define

CCW(p, q, r) =

∣∣∣∣∣∣∣∣∣∣
xp yp 1

xq yq 1

xr yr 1

∣∣∣∣∣∣∣∣∣∣
. (30)

Let {Pi, Pj, Pk} be the location of the vertices of the triangle [i, j, k] at the previous

time step, and let {P ′i , P ′j , P ′k} be the position of the vertices of the same triangle

at the current time. Then the orientation certificate of this triangle is passed if

CCW(Pi, Pj, Pk) and CCW(P ′i , P
′
j , P

′
k) have the same sign. The orientation certificate

is passed for a triangulation if the certificate is passed for all its triangles.

If the orientation certificate is passed, we can simply use the flip-edge method to

32



update the DT. Otherwise, we need to remove the points that cause the unembedding

and then check the orientation certificate until it is passed. After this iteration, we

obtain a triangulation with no overlaps, and we can then use the flip-edge method to

transform it into a DT. Finally, we insert the removed points to their current locations

and form DTk+1. The difference between this procedure and the method introduced

in [51] is that in the latter reference the authors remove the points randomly to get

the triangulation candidate, whereas in our case we only remove the moving points

since they are the only possible generators that may cause unembedding.

The algorithm for updating the Zermelo-Voronoi diagram from the previous time

step to current time step is given in Algorithm 1.

Algorithm 1 Update Zermelo Voronoi Diagram

Input: Coordinates Pk−1 of the generators at the previous time step and the
corresponding Delaunay triangulation DT, coordinates Pk of point set at current
time step.
Output: Updated Zermelo Voronoi Diagram and Delaunay Triangulation at the
current time step.

1: procedure Update DT(DT,Pk−1,Pk)
2: while the triangulation DT is not embedded under current coordinates Pk

do
3: Update DT by removing one of the points that cause the unembedding (in

our case the active pursuer);
4: store the current coordinates of removed points into set R;
5: end while
6: if R is not empty then
7: flip the remaining triangulation into a Delaunay triangulation;
8: end if
9: for i = 0 to length(R) do

10: Update DT by inserting the ith point in R into the triangulation;
11: end for
12: Transform DT into an ordinary Voronoi diagram VD;
13: Transform VD into the ZVD at current time through the coordinate transfor-

mation (2).
14: return ZVD and DT.
15: end procedure

To remove a point from the standard Delaunay Triangulation, we use the deletion
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method introduced in [33] and to insert a point into the DT, we choose the algorithm

given in [69]. Both these algorithms have complexity O(nlogn). The flip-edge algo-

rithm introduced in [31] has worst case complexity O(n2), but in practice, it is much

faster.

2.6 Sequential Pursuit of Multiple Targets

In this section, we deal with the dynamic pursuit problem with multiple pursuers and

targets. Consider a group of n pursuers in the plane, denoted by {P1, P2, ..., Pn}, and

m targets, denoted by {E1, E2, ..., Em}. The kinematics of the ith pursuer, i ∈ I, are

described by (4).

The objective of the pursuers is to intercept some targets. It is assumed in this

chapter that after a pursuer intercepts a target, he is still capable of going after other

targets. The cases where each pursuer can only capture one target (e.g. missiles) can

be discussed in follow-up work. The kinematics of the jth target is given by

Ẋj
T = ujT , Xj

T (0) = Xj
T0
, (31)

where Xj
T = [xjT , y

j
T ]T ∈ R2 is the position of the jth target, and ujT is its control input

such that ujT ∈ U
j
T , which consists of all piecewise continuous functions whose range

is included in the set U j
T = {v ∈ R2, |v| 6 q̄j}. Note that the targets are not affected

by the wind field.

At this point, we are ready to extend our pursuer assignment algorithm in the

multiple-pursuers-one-target case to the problem with multiple targets. In particular,

we present two different methods to assign the pursuers to the targets. The first

method is given as follows.

Dynamic Assignment of Active Pursuer with Multiple Pursuers and

Targets - Method I
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a) Construct the ZVD and for every target in the target set, pair the ith pursuer

to this target if the target resides in the corresponding Zermelo-Voronoi cell Zi.

When one pursuer is paired to multiple targets, it always goes after the target

whose current location can be reached by the pursuer in the shortest time.

b) At every time step, update the ZVD and the locations of the pursuers and

the targets. For each target, pair the jth pursuer to it if the target resides in

the corresponding Zermelo-Voronoi cell Zj. Again, if one pursuer is paired to

multiple targets at some time step, the pursuer will be assigned to the target

whose current location can be reached by the pursuer in the shortest time under

Zermelo’s control law.

c) Check the distance between each target and its assigned pursuer and terminate

the procedure if all the distances are smaller than ε. Otherwise, remove the

targets whose distances are smaller than ε from the target set and return to

step b).

In the previous algorithm, we simply pair each target to its closest pursuer, in

the sense that this pursuer can reach the current location of the target faster than

any other pursuer. This method may cause one pursuer to be assigned with multiple

targets, and some targets may not be actively pursued until other targets have been

captured. When the number of pursuers is larger than the number of targets, we can

avoid the situation by applying the following algorithm.

Dynamic Assignment of Active Pursuer with Multiple Pursuers and

Targets - Method II

a) Construct the ZVD from the pursuer set.

b) Pair each target with the ith pursuer if the target resides in the corresponding

Zermelo-Voronoi cell Zi.
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c) For each pursuer paired with only a single target, assign this pursuer to that

target. If one or more pursuers are paired with multiple targets, for each of these

pursuers, assign it to the corresponding paired target whose current location can

be reached by the pursuer in the shortest time and discard the pairs between

this pursuer and the rest of the targets, and go to d). Otherwise, assign every

pursuer to its paired target and go to e).

d) Generate a new ZVD Z ′ form the pursuer set excluding those pursuers that are

already assigned to targets and for every target that has not been paired, pair it

with the jth pursuer if the target resides in the corresponding Zermelo-Voronoi

cell Z ′j. Go to c).

e) At every time step, update the ZVD with respect to the full pursuer set. Update

the locations of the pursuers and the targets. Check the distance between each

target and its assigned pursuer and if all the distances are smaller than ε,

terminate the procedure. Otherwise, remove the targets whose distances with

its assigned pursuers are smaller than ε from the target set and return to step

b).

Both algorithms have their advantages and disadvantages. The first algorithm

does not have a restriction on the number of pursuers, but when the number of

pursuers is relatively large, multiple targets may still be assigned to one pursuer

and the unassigned pursuers are not utilized to reduce the time-to-capture of all the

targets. For the second algorithm, each evader is chased by a pursuer at every instant

of time in order to reduce the time-to-capture of all the targets under our assumption

of sequential pursuit.

The following corollary gives us a condition for our multiple-pursuer-multiple-

target assignment schemes to terminate in finite time.
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Corollary 2.3 Assume that

maxj∈{1,...,m}(q̄j) < ū− w̄, (32)

then any sequential pursuit strategy in which each active pursuer employs the robust

Zermelo’s navigation law (8)-(9) leads to capture of all the targets by at least one

pursuer.

Proof. Since maxj∈{1,...,m}(q̄j) < ū − w̄, it follows that q̄j < ū − w̄, for all

j ∈ {1, . . . ,m}. By Corollary 2.2, each evader can be captured by at least one pursuer

in finite time. Therefore, for a finite number of evaders, our sequential pursuit schemes

can be terminated in finite time.

2.7 Simulation Results

In this section, we first present an example of multiple-pursuers-one-target problem to

illustrate the update of the ZVD and the active pursuer along the time. We then deal

with the problems with multiple pursuers and targets by applying the two methods

we proposed earlier to show how our algorithms work and make a comparison between

the two proposed alternatives.

We consider a scenario with multiple pursuers and one target. The target is

moving in a straight line according to equation (6), where uT (t) = [−0.4,−0.5]T.

Assume that there exist 12 pursuers, which are initially located at distinct positions

determined by P0. The wind field that affects the pursuers is given by

w(t) =

 −0.2− 0.2 cos(t)

0.3

 .
Figure 3-5 illustrates the trajectories of the pursuers in the wind and the moving

target. Specifically, Fig. 3 shows the ZVD formed by the pursuers at t = 0. As seen
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in this figure, i = 4 is the active pursuer since the target falls in the Zermelo-Voronoi

cell of X4
P . Figure 4 illustrates the trajectories of the target and the pursuers in

the time interval [0, τ1], where τ1 = 2.6 is the switching time. The Zermelo-Voronoi

Diagram at t = τ1 is also presented here to show that the target is about to leave the

Zermelo-Voronoi cell of X4
P and enter another cell. Figure 5 illustrates the trajectories

of the target and the pursuers from t = τ1 to capture time Tc = 5.0, as well as the

Zermelo-Voronoi Diagram at t = Tc. In this last time interval the target is assigned

to i = 5.
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Figure 3: Zermelo-Voronoi Diagram formed by pursuers at t = 0, X4
P is the active

pursuer

For comparison, note that when only one pursuer tries to capture the target, the

shortest possible time is Tc = 7.5. In that case there is only a single active pursuer,

namely, X4
P .

Next, we deal with the problem with 12 pursuers and 3 evaders. The initial

positions of the targets are given by X1
T0

= [3; 5], X2
T0

= [6; 7], X3
T0

= [4.5; 6]. Each
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Figure 4: Zermelo-Voronoi Diagram formed by pursuers at the first switch time
t = 2.6, and trajectories of pursuers and target for t ∈ [0, 2.6).

target moves in a straight line with velocity [0.4, 0.5]T. The wind field that affects the

pursuers is the same as in the previous example.

Figures 6 through 10 depict the trajectories of the pursuers and targets when the

first algorithm is applied. Figure 6 illustrates the initial pairing between the pursuers

and the evaders. In particular, Target 1 and 3 are paired with Pursuer 2 and Target

2 is paired with Pursuer 4. Pursuer 2 goes after Target 1 in the beginning since the

time it takes for Pursuer 2 to arrive at the location where Target 1 resides in is smaller

than the time to arrive at the initial location of Target 3. Pursuer 4 chases Target 2

since it is the only target paired with this pursuer. At time s1 = 0.70, Target 3 switch

its pair from Pursuer 2 to 5, because it enters the Zermelo-Voronoi cell of Pursuer 5

at this time step. The trajectories of the players in the time interval [0, s1] are shown

in Fig. 7 . At time s2 = 1.35, the original Target 1 is captured by Pursuer 2 and

removed from the target set. The trajectories of the pursuers and targets in the time
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Figure 5: Zermelo-Voronoi Diagram formed by pursuers at the capture time Tc = 5.0,
and trajectories of pursuers and target for t ∈ [2.6, 5.0], X5

P is the active pursuer.

interval [s1, s2] are shown in Fig. 8. Note that the targets are renumbered at this

point since one of the targets is captured at s2. One of the two remaining targets is

captured at time s3 = 1.70 and the corresponding trajectories in [s2, s3] are shown in

Fig. 9 . Figure 10 depicts the trajectories of the pursuers and the last evading target

from s3 to s4 = 3.90, when the last target is captured by Pursuer 5.

The pursuit process under the second algorithm is presented in Fig. 11 to 14. As

shown in Fig. 11, Pursuer 2, 4 and 5 are assigned to Target 1, 2 and 3, respectively,

at t = 0. Both Target 1 and 3 are in the Zermelo-Voronoi cell of Pursuer 2 in the

beginning and Pursuer 2 is assigned with Target 1 since it can reach the location of

Target 1 faster than that of Target 3 through Zermelo’s navigation law. Hence, Target

3 needs to be assigned to a pursuer in the pursuer set excluding Purser 2 and 4 by

the rule in the algorithm, which leads to Pursuer 5. The original Target 1 is captured

by Pursuer 2 at t1 = 1.35. The trajectories of the players in [0, t1] are illustrated in
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Figure 6: Pursuers and evaders at t = 0. Pursuer 2 is paired with Target 1 and 3.
Purser 4 is paired with Target 2. Red curves represents the ZVD at t = 0.

Fig. 12. The second target is captured by Pursuer 4 at t2 = 1.70 and the plot in the

time interval [t1, t2] is depicted in Fig. 13. Fig. 14 shows the plot of the time period

between t2 and t3 = 3.05, when the last target is captured by Pursuer 5.

Comparing the results by applying the two algorithms, we can see that the second

algorithm takes less time to capture all the targets. The reason is that since we assign

a single active pursuer to each of the targets in the second algorithm, the 5th pursuer

who captured the 3rd target in the end is already assigned to this target at the start

of the pursuit process, whereas in the case of the first algorithm, the 3rd target is

paired with the 2nd pursuer in the beginning and it was not actively pursued by any

pursuer in a short time period until it enters a Zermelo-Voronoi cell of an inactive

pursuer. Notice, however, that there is a possibility for more pursuer to be assigned

in the second algorithm without reducing the time duration to capture all the targets.

In this case, the fuels spent by the extra pursuers are essentially wasted.
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Figure 7: Trajectories of pursuers and evaders in [0, s1]. Pursuer 2 goes after Target
1 during this period. Target 3 enters the Zermelo-Voronoi cell of Pursuer 5 at this
time step and it will be paired with Pursuer 5 henceforth. ZVD at time s1 is depicted
in red curves.
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Figure 8: Trajectories of players in [s1, s2]. The target to the left in cyan is captured
by Pursuer 2 at time s2. Red curves represents the ZVD at s2.
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Figure 9: Trajectories of players in [s2, s3]. The target to the right in magenta is
captured by Pursuer 4 at time s3. Red curves represents the ZVD at s3.
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Figure 10: Trajectories of players in [s3, s4]. The only target left is captured by
Pursuer 5 at time s4. Red curves represents the ZVD at the terminal time s4.
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Figure 11: Pursuers and evaders at t = 0. Pursuer 2, 4 and 5 are assigned to Target
1, 2 and 3, respectively. Each target and its corresponding active pursuer are depicted
by opposite colors for easier recognition, e.g., Target 3 is in yellow and Pursuer 5 is
in blue. Red curves represents the ZVD at t = 0.
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Figure 12: Trajectories of players in [0, t1]. The target to the left in cyan is captured
by Pursuer 2 at time t1. Red curves represents the ZVD at t1.
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Figure 13: Trajectories of players in [t1, t2]. The target to the right in magenta is
captured by Pursuer 4 at time t2. Red curves represents the ZVD at t2.
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Figure 14: Trajectories of players in [t2, t3]. The only target left is captured by
Pursuer 5 at time t3. Red curves represents the ZVD at the terminal time t3.
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CHAPTER III

PURSUIT-EVASION GAMES IN LINEAR FLOW FIELDS

3.1 Introduction

In this Chapter, we consider the differential game of pursuit and evasion between two

players on a plane under an external flow field. It is assumed that the pursuer and the

evader move with constant but different speeds, and they are both agile, that is, they

are allowed to change their bearings instantaneously. To simplify the analysis, it will

be assumed that the flow field is approximated by a time-invariant, spatially-affine

function. Our goal is to find the region of initial conditions of both players that leads

to capture when both players act optimally, and derive the corresponding optimal

strategies of the two players when capture is guaranteed.

3.2 Problem Formulation

3.2.1 Problem Setup

Consider a pursuer and an evader moving on a plane under the influence of an external

flow field. Both players are agile, which means that they are allowed to alter the

direction of their velocity vector instantaneously. The goal of the pursuer is to capture

the evader in finite time, whereas the objective of the evader is to avoid interception

indefinitely. Capture (termination of the game) occurs when the distance between

the pursuer and the evader is less than a constant `. The pursuer and the evader

move with constant speeds, denoted by vP and vE, respectively. In this work, we will

assume that vP > vE. The equations of motion for the pursuer and the evader in the
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inertial reference frame are thus given by

ẋP = vP cosφ+ w1(xP , yP ), (33)

ẏP = vP sinφ+ w2(xP , yP ), (34)

ẋE = vE cosψ + w1(xE, yE), (35)

ẏE = vE sinψ + w2(xE, yE), (36)

where (xP , yP ) and (xE, yE) denote the positions of the pursuer and the evader, re-

spectively, φ, ψ ∈ [−π, π] are the control of the pursuer and the evader, respectively,

vP and vE represent the maximum speed of the pursuer and the evader, and w1(·, ·)

and w2(·, ·) are the components of an external spatially varying flow field along x-axis

and y-axis, respectively.

3.2.2 Differential Game Formulation in the Reduced Space

In order to simplify the analysis, it will be assumed that the external flow field is

approximated by time-invariant affine functions. Specifically, let

w1(x, y) = α1x+ β1y + γ1, (37)

w2(x, y) = α2x+ β2y + γ2, (38)

where αi, βi, γi ∈ R, i = 1, 2 are prescribed constants. By choosing a new reference

frame whose origin is at the pursuer, the kinematic equations can be represented in

a two-dimensional space space. In particular, let x = xE − xP and y = yE − yP be

the relative distance between the evader and the pursuer along the x-axis and y-axis,

respectively. The kinematics equations in terms of x and y are given by

ẋ = vE cosψ − vP cosφ+ α1x+ β1y, (39)

ẏ = vE sinψ − vP sinφ+ α2x+ β2y. (40)

47



Define the reduced state as x = [x, y]
T
. The equations can then be written compactly

as

ẋ = vEv− vPu + w(x), (41)

where v = [cosψ, sinψ]
T

and u = [cosφ, sinφ]
T

are the controls, and where the wind

field is given by

w(x) = Ax + γ, (42)

where

A =

α1 β1

α2 β2

 , γ =

γ1

γ2

 . (43)

The game terminates when capture occurs, that is, when the evader is in the interior

of a ball B of radius ` centered at the pursuer’s current location, given by B =

{x ∈ R2 : |x| ≤ `}. The terminal surface is the manifold in the state space which,

once penetrated, determines termination of the game. The terminal surface C is

thus the circle centered at the origin of radius `, i.e., C = {x ∈ R2 : |x| = `}.

Accordingly, the state space E is the portion of the x, y-plane exterior to C, that is,

E = {x ∈ R2 : |x| ≥ `}.

Under this setup, the first question we want to answer is whether the game can

terminate given any initial condition of x(0) ∈ E , that is, we want to find the region

in the state space such that the evader can be captured by the pursuer if their initial

relative coordinates fall inside this region. This region is denoted as the capture zone.

The region of the initial coordinates of the state which leads to escape of the evader

is the escape zone. To this end, we formulate the problem as a game of kind [62],

that is, the game has finitely many outcomes. In particular, when capture occurs,

i.e., the terminal surface is penetrated by the evader’s relative trajectory, we assign

the value +1 to the payoff, whereas when the trajectory never reaches the terminal

surface, we say that escape is achieved and assign −1 to the payoff. The outcome is
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neutral [62] if the trajectory of the evader intersects the terminal surface, but it does

not penetrate it. In this case, we assign 0 to the payoff. Therefore, the payoff is given

by

J(x(t0), φ(·)ψ(·)) =


+1, for escape,

0, for neutral outcome,

−1, for capture.

(44)

Our goal is to find the region of the initial conditions that leads to capture or

escape with conflicting actions of the pursuer’s control φ and the evader’s control ψ

that minimize/maximize the payoff (44) under the dynamic equations (39) and (40).

After identifying the capture and escape zones, our next objective will be to solve

a game of degree [62] within the capture zone. Within the capture zone the problem

has a continuous outcome; we wish to obtain the optimal relative trajectory of the

evader, along with the corresponding optimal control of the pursuer and the evader.

The cost for this problem is the time-to-capture tc.

3.3 Problem Analysis

3.3.1 Effect of External Field

Before we proceed with the formulation of the differential game of kind, some discus-

sion that can help the reader intuitively understand the types of solutions one may

expect to obtain is in order. From (41) and (42) it is clear that in the reduced state

space the system is described by a linear differential equation, controlled by v and u.

Broadly speaking, the objective of the pursuer is to make |x| → 0 (i.e., stabilization

to the origin), whereas the objective of the evader is to ensure that this does not occur

(and, ideally, make perhaps |x| → ∞ as time increases). The problem of controlla-

bility/stabilizability of a linear system with bounded controls has been extensively

studied in the literature [22,81,132,143]. The main result in this context states that
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global stabilizability with bounded controls is possible only if all the eigenvalues of

the matrix A have non-positive real part. However, this is a global result that holds

for all initial conditions. In our problem we restrict our analysis to a region locally

around the origin where capture can occur even if the matrix has eigenvalues with

positive real part. An alternative point of view to clarify this difference is to consider

the following: Since the flow field is approximated by an affine function, the solution

of the problem will depend on the relative contributions of the flow field term Ax+γ

and the contribution by both players, namely, vEv − vPu. Since the latter term is

uniformly bounded whereas the former term increases without bound, it is clear that,

if the relative distance between the players is very large, the external flow field will

be too strong to be overcome by the (constrained) control actions of either player. In

that case, the trajectories of both players will tend to follow the vectorfield directions

of the external flow.

3.3.2 The Game of Kind

In this subsection, we follow the standard approach of the game of kind introduced

in [62]. First, we focus on identifying the usable part of the terminal surface. The UP

is the subset of C in which the pursuer can cause termination immediately when both

players act optimally. The remaining points on C form the nonuseable part, that is,

termination will not occur even if the trajectory reaches this part of C under optimal

play (i.e., when both players act optimally). The part of C that separates the usable

part and the nonuseable part of C is called the boundary of the usable part (BUP).

In order to find the usable part, we parameterize C with the variable s according

to

x = ` cos s, y = ` sin s. (45)

Let r be the Euclidean norm of the state x, that is, let r2 = x2 + y2 = |x|2. Taking
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the time derivative on both sides, we have

rṙ = x(vE cosψ − vP cosφ+ +α1x+ β1y)

+ y(vE sinψ − vP sinφ+ α2x+ β2y). (46)

For points on C, equation (46) can be rewritten as

`ṙ = ` cos s(vE cosψ − vP cosφ+ α1` cos s+ β1` sin s)

+ ` sin s(vE sinψ − vP sinφ+ α2` cos s+ β2` sin s). (47)

The usable part of C is specified by the condition

min
φ

max
ψ

ṙ(x) < 0, x ∈ C, (48)

which implies that the relative trajectory is able to penetrate the terminal surface C.

From (47) and (48) we have that, for x ∈ C,

min
φ

max
ψ

ṙ(x)

= min
φ

max
ψ
{cos s(vE cosψ − vP cosφ+ α1` cos s+ β1` sin s)

+ sin s(vE sinψ − vP sinφ+ α2` cos s+ β2` sin s)}

= max
ψ
{vE cos(s− ψ)}+ min

φ
{−vP cos(s− φ)}

+ (α1` cos s+ β1` sin s) cos s+ (α2` cos s+ β2` sin s) sin s

= vE − vP + `[α1 cos2 s+ (β1 + α2) sin s cos s+ β2 sin2 s]. (49)
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Collecting terms and using standard trigonometric identities yields

= vE − vP + `[α1
1 + cos 2s

2
+ (β1 + α2)

sin 2s

2
+ β2

1− cos 2s

2
]

= vE − vP +
`

2
(α1 + β2) +

`

2
[(α1 − β2) cos 2s+ (β1 + α2) sin 2s]. (50)

Let σ =
√

(α1 − β2)2 + (β1 + α2)2. When σ = 0, we have α1−β2 = 0 and β1+α2 = 0.

Hence, whether the game can terminate depends on the sign of vE−vP +`(α1 +β2)/2.

Specifically, when vE−vP +`(α1 +β2)/2 < 0, the usable part of the terminal surface is

C itself, whereas when vE − vP + `(α1 + β2)/2 > 0, the game will not terminate under

any initial conditions of the pursuer and the evader, which means that the evader

always escapes. In the latter case the whole state space E is the escape zone.

Henceforth, we assume that σ 6= 0. Then (48) and (50) imply that

min
φ

max
ψ

ṙ = vE − vP +
`

2
(α1 + β2) +

`σ

2
sin(θ + 2s) < 0, (51)

where θ is given by

sin θ =
α1 − β2

σ
, cos θ =

β1 + α2

σ
. (52)

From (51) we reach the following conclusion:

Proposition 3.1 In the reduced space the game will not terminate if

2(vP − vE)− `(α1 + β2)

`σ
< −1, (53)

where σ =
√

(α1 − β2)2 + (β1 + α2)2.

Proof. From (51), we have

sin(θ + 2s) <
2(vP − vE)− `(α1 + β2)

`σ
. (54)

52



Let

ζ =
2(vP − vE)− `(α1 + β2)

`σ
. (55)

Clearly, when ζ < −1, the inequality (54) has no solution for s. That is, when (53)

is satisfied, the game will not be able to terminate since no usable part exists under

this condition.

Corollary 3.1 When ζ ≥ 1 the usable part is the whole terminal surface C.

Remark 3.1 Note that (53) is a “controllability”-like condition that relates the el-

ements of the matrix A and the bounds of the velocities of both the players so that

capture is possible.

Henceforth, we assume that −1 ≤ ζ < 1. Under this assumption, the BUP is

determined from sin(θ + 2s) = ζ. This yields four solutions in [0, 2π), denoted by s1,

s2, s3 = s1 + π, s4 = s2 + π. Hence, the BUP contains four points on C, represented

by Pi = (cos si, sin si), i = 1, . . . , 4.

A typical illustration of the terminal surface, which is divided into the usable and

nonusable parts by the BUP, which consists of four points on the terminal surface, is

shown in Figure 15.

Now we turn to the construction of the barrier [62]. The barrier is a surface in

the state space that consists of initial conditions for which the outcome is neutral.

One property of the barrier is that it is never crossed by either the pursuer or the

evader during optimal play. In particular, the barrier emanates from the BUP and is

tangent to C at the BUP. We denote the barrier by S. At each point on S we define

the normal vector ν = [ν1, ν2]
T ∈ R2 extending into the escape zone.
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Figure 15: The terminal surface C of the game is given by a circle of radius `. The
circle is separated by the BUP (4 points on the circle parameterized by s1 through s4)
into the usable part (black lines) and the nonusable part (red lines). Every barrier
meets the terminal surface at the BUP tangentially.

The Isaacs equation for the game of kind for this problem becomes

0 = min
φ

max
ψ
{ν1(vE cosψ − vP cosφ+ α1x+ β1y)

+ ν2(vE sinψ − vP sinφ+ α2x+ β2y)}

= max
ψ
{vE(ν1 cosψ + ν2 sinψ)}+ min

φ
{−vP (ν1 cosφ+ ν2 sinφ)}

+ ν1(α1x+ β1y) + ν2(α2x+ β2y)

= vEρ− vPρ+ ν1(α1x+ β1y) + ν2(α2x+ β2y), (56)

where ρ =
√
ν2

1 + ν2
2 and the corresponding optimal control of the pursuer and the
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evader on the barrier are specified by

cosφ∗ =
ν1

ρ
, sinφ∗ =

ν2

ρ
, (57)

cosψ∗ =
ν1

ρ
, sinψ∗ =

ν2

ρ
. (58)

From [62], it follows that νi, i = 1, 2, satisfy the differential equations

ν̇i = −
∑
j

νj
∂fj(x, φ

∗, ψ∗)

∂xi
, i = 1, 2, (59)

where fj, j = 1, 2, stands for the right-hand side of (39) and (40), respectively. We

take these equations and the original equations under the optimal control φ∗ and

ψ∗, and reverse the time direction by replacing t with τ = tc − t to obtain the

Retrogressive Path Equations (RPE). These are the differential equations with respect

to the retrograde time τ and indicate the fact that the game will be solved backwards

in time starting from the terminal surface C. Denoting with (˚) the derivative with

respect to τ , the retrograde evolution of the states and the vector ν can be established

as:

x̊ = (vP − vE)
ν1

ρ
− α1x− β1y,

ẙ = (vP − vE)
ν2

ρ
− α2x− β2y,

ν̊1 = α1ν1 + α2ν2,

ν̊2 = β1ν1 + β2ν2.

(60)

By the definition of the BUP and the barrier, it is clear that the barrier starts

at the BUP towards the state space E in a retrogressive sense. Moreover, the two

surfaces meet tangentially, since no penetration occurs at the BUP and the vectorfields

of both players are tangential to the barrier. Pick any s̄ ∈ {s1, s2, s3, s4}. The initial
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conditions for the RPEs are thus given by

x(τ = 0) = ` cos s̄,

y(τ = 0) = ` sin s̄,

ν1(τ = 0) = cos s̄,

ν2(τ = 0) = sin s̄.

(61)

By integrating (60) subject to (61) we obtain

ν(τ) = eA
>τν(τ = 0), (62)

x(τ) = e−Aτx(τ = 0) +

∫ τ

0

e−A(τ−ξ)b(ξ) dξ, (63)

where

b(τ) = (vP − vE)
ν(τ)

|ν(τ)|
. (64)

After we substitute the solution of ν(τ) and the initial conditions to the solution

of x, we obtain

x(τ) = `e−Aτ

cos s̄

sin s̄

+ (vP − vE)e−Aτ
∫ τ

0

e(A+A>)ξ

|ν(ξ)|

cos s̄

sin s̄

 dξ. (65)

By plotting the trajectories of (65) given the four initial conditions of the BUP, we can

determine whether these are valid barriers and whether the state space E is separated

by the barriers.

If E is indeed separated by the barriers, then the regions of E that contains the

usable part of the terminal surface will form the capture zone, and the rest of the

regions associated with the nonusable part of the terminal surface will form the escape

zone. Otherwise, the whole state space is either the capture zone or the escape zone.
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3.3.3 Game of Degree in the Capture Region

Now that we have identified the capture region, we aim at determining the optimal

trajectory of x inside this region by solving a game of degree. We assume that within

the capture region the pursuer tries to minimize capture time, whereas the evader

tries to maximize capture time. Hence, within the capture region the performance

index is

J =

∫ tc

0

dt, (66)

To this end, we define the value function V(x), which satisfies the HJI equation

0 = min
φ

max
ψ
H(x,Vx), (67)

where the Hamiltonian H is given by

H = 1 +
∂V
∂x

(
vE cosψ − vP cosφ+ α1x+ β1y

)
+
∂V
∂y

(
vE sinψ − vP sinφ+ α2x+ β2y

)
. (68)

Let Vx = ∂V
∂x

, Vy = ∂V
∂y

, then (67) can be rewritten as

0 = 1 + Vx(α1x+ β1y) + Vy(α2x+ β2y)

+ min
φ
{−vP (Vx cosφ+ Vy sinφ)}+ max

ψ
{vE(Vx cosψ + Vy sinψ)}. (69)

Hence, the optimal controls φ∗ and ψ∗ are given by

cosφ∗ =
Vx
µ
, sinφ∗ =

Vy
µ
,

cosψ∗ =
Vx
µ
, sinψ∗ =

Vy
µ
,

(70)
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where µ =
√
V2
x + V2

y . Plugging (70) back into the Hamiltonian, we get the optimal

Hamiltonian

H∗ = 1 + (vE − vP )µ+ Vx(α1x+ β1y) + Vy(α2x+ β2y). (71)

The RPEs can then be expressed as

x̊ = (vP − vE)
Vx
µ
− α1x− β1y, (72)

ẙ = (vP − vE)
Vy
µ
− α2x− β2y, (73)

V̊x = α1Vx + α2Vy, (74)

V̊y = β1Vx + β2Vy. (75)

On the terminal surface C, we have V = 0. Along with the parameterization of C by

x = ` cos s, y = ` sin s, we get

0 =
∂V
∂s

= `(−Vx sin s+ Vy cos s).

Upon solving these equations, we further get, for some δ > 0,

Vx(τ = 0) = δ cos s, Vy(τ = 0) = δ sin s. (76)

By substituting (76) into the expression for H∗, we can solve for δ to obtain

δ =
1

vP − vE − `(α1 cos2 s+ (β1 + α2) sin s cos s+ β2 sin2 s)
. (77)
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Integrating the RPE’s (72) through (75) subject to the initial conditions (76) yields

Vx(τ)

Vy(τ)

 = eA
>τ

δ cos s

δ sin s

 , (78)

and hencex(τ)

y(τ)

 = e−Aτ

` cos s

` sin s

+ (vP − vE)e−Aτ
∫ τ

0

e(A+A>)ξ

µ(ξ)

δ cos s

δ sin s

 dξ. (79)

3.4 Simulation Results

In this section, we present numerical simulations to illustrate the previous analysis.

In the following cases, we vary the matrix in (42) while we keep `, vP and vE fixed

to compute different types of barriers under different flow fields. Henceforth, we let

` = 0.1, vP = 1.0, vE = 0.9. For the parameters of the flow field in the inertial frame,

we set γ1 = γ2 = 0.

Case 1: A =

 0 10

−5 0

 . This matrix has two pure imaginary eigenvalues (center).

In this case, σ = 5, ζ = 0.4 and the corresponding values for the BUP are s1 =

0.2058, s2 = 1.3650, s3 = 3.3474 and s4 = 4.5066. As shown in Figure 16(a), the

trajectories of the RPEs emanating from P1 and P3 are inside B; these two trajectories

are outside the state space E . Hence, they are not valid barriers and are discarded.

On the other hand, the trajectories emanating from P2 and P4 are valid barriers.

They have spiral-like shapes but they fail to separate the state space into two parts.

The whole state space is a capture zone; regardless of the initial conditions of the two

players, capture is guaranteed. The dashed magenta lines in Figure 16(a) show the

optimal trajectories in relative coordinates with respect to different initial positions

on the usable part of the terminal surface. Although the barrier does not separate

the state space into capture and escape zones, it is still not crossed during optimal
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play, which gives us some information as to how the optimal trajectories look like.

The barrier also marks a discontinuity in the value function.

Given the initial positions for the evader and the pursuer as xE(0) = [−0.764, 0.337]

and xP (0) = [−0.524, 0.336], respectively, the optimal trajectories of the evader and

the pursuer in the inertial frame are depicted in Figure 16(b). These trajectories are

consistent with the external flow field represented by the black arrows. The results

suggest that both players are trying to take advantage of the flow field, in this case.

Intuitively, this makes sense. Since the matrix A has purely imaginary eigenvalues,

the uncontrolled system trajectories are circles around the origin. The flow field does

not give an advantage to either the pursuer or the evader. It is then reasonable that

under optimal controls of both players, the trajectories in the reduced state move in

spiral-like patterns, as confirmed in Figure 16(a).
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Figure 16: Barriers and optmal trajectories of pursuit-evasion problem when A =
[0, 10;−5, 0].

Case 2: A =

1.4020 −1.0772

1.4770 0.7756

 . In this case, the eigenvalues are a complex

conjugate pair with positive real part (unstable spiral). These values correspond

to σ = 0.7431, ζ = −0.2390 and the corresponding parameters for the BUP are
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s1 = 5.6612, s2 = 1.1901, s3 = 2.5196, s4 = 4.3317. As depicted in Figure 17(a), and

similarly to the first case, the trajectories of the RPEs emanating from P2 and P4 are

inside B and are thus discarded. The trajectories starting from P1 and P3 intersect C

after some time, and thus the trajectories after the intersection are discarded. In this

case, the barrier separates the capture zone from the escape zone. The capture zone

is represented by the shaded region in Figure 17(a). All the remaining space outside

the circle is the escape zone.

The optimal trajectories of the evader and the pursuer in the inertial frame are

depicted in Figure 17(b) with initial positions xE(0) = [−0.20, 0.683] and xP (0) =

[−0.230, 0.579], respectively. Notice that in this case, there is a small region of relative

initial positions for the pursuer and the evader such that capture occurs.
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Figure 17: Barriers and optmal trajectories of pursuit-evasion problem when A =
[1.4020,−1.0772; 1.4770, 0.7756].

In this case the matrix A has two complex eigenvalues with positive real parts,

which implies that the origin is an unstable spiral. The trajectories of the uncontrolled

system would result in |x| → ∞ as time goes on. In this case, the flow field gives an

advantage to the evader. Indeed, as shown in Figure 17(a), the capture zone is very

small compared to the escape zone.
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Case 3: A =

 0.3188 −0.4336

−1.3077 0.3426

 . In this case and the next one, both matrices

have two real eigenvalues, one positive and the other negative. However, these two

cases generate totally different shapes of capture and escape regions. In this case,

σ = 1.7415, ζ = 0.7687 and the corresponding parameters for the BUP are s1 =

2.0023, s2 = 2.6964, s3 = 5.1439, s4 = 5.8380. As can be seen in Figure 18(a), the

barriers emanating from P1 and P3 are inside the ball B and are thus discarded. The

remaining valid barriers are illustrated by green and blue lines emanating from P2

and P4, respectively. These two barriers fail to divide the state space into capture and

escape zones. However, this does not imply that the whole state space is a capture

zone. The dashed magenta lines in Figure 18(a) are the optimal trajectories of the

relative coordinates emanating from different initial positions on the usable part of the

terminal surface. These magenta lines fail to cover the whole state space, suggesting

that there exist some initial conditions of the pursuer and the evader such that the

game will not terminate, and the evader escapes.

Notice in Figure 18(a) that the optimal trajectories emanating from two very close

positions, namely, R1 and R2, end up separating from each other after some time.

The reason that such phenomenon occurs is that around the point of separation, there

exists a critical point of the system described by (72) and (73). To verify the existence

of this critical point, we integrate (72) through (75) backwards in time starting from

R1 and R2 for 10 seconds and plot the values of the right-hand side of (72) and

(73) (or equivalently the velocity components) with respect to time. The results are

shown in Figure 19, where the blue and dashed red lines correspond to the trajectories

emanating from R1 and R2, respectively. Around t = 6, the blue lines gets really close

to zero, which indicates the existence of a critical point in this neighborhood. After

t = 6, both blue lines take negative values, whereas both red lines take positive values.

In other words, the velocity vectors of the trajectory emanating from R1 and R2 take
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almost opposite direction from one another, which leads to the situation shown in

Figure 18(a).

Typical optimal trajectories of the evader and the pursuer in the inertial frame

with initial positions xE(0) = [0.785, 0.499] and xP (0) = [0.926, 0.747] are depicted

in Figure 18(b).
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Figure 18: Barriers and optmal trajectories of pursuit-evasion problem when A =
[0.3188,−0.4336;−1.3077, 0.3426].
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Figure 19: Velocity components of the system (72) and (73), where the blue and
dashed red lines are with respect to the trajectories emanating from R1 and R2,
respectively.

Case 4: A =

1 2

2 1

 . In this case, σ = 4, ζ = 0 and the corresponding param-

eters for the BUP are s1 = 0, s2 = π/2, s3 = π and s4 = 3π/2. As illustrated in
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Figure 20(a), all four trajectories emanating from P1, P2, P3 and P4 are valid bar-

riers. They separate the state space into two capture zones and two escape zones,

depicted in the figure by the two shaded regions and the two white regions, respec-

tively. Typical optimal trajectories of the evader and the pursuer in the inertial frame

with initial positions xE(0) = [0.951,−0.852] and xP (0) = [1.265,−1.165] are shown

in Figure 20(b).
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Figure 20: Barriers and optmal trajectories of pursuit-evasion problem when A =
[1, 2; 2, 1].

In both Cases 3 and 4, the matrix A has one positive eigenvalue and one negative

eigenvalue. Hence, the origin is a saddle point, and in some part of the plane the flow

field points towards the origin (helping the pursuer), whereas in other parts it points

away from the origin (thus giving an advantage to the evader), as indicated by the

black vector fields in Figures 18(b) and 20(b). This suggests that the pursuer tries to

steer the game in the part of the space that the flow field is beneficial to him and the

evader does the same, i.e., tries to steer the state to the parts of the state space that

are more helpful to him. In this case, the game will terminate (or not) depending on

whether the pursuer can capture the evader before the latter moves in the part of the

space that the former has an advantage.
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These strategies of the pursuer and the evader are supported by the trajectories

depicted in Figures 18(a) and 20(a). Specifically, we observe in Figure 20(a) that

although the barriers fail to specify all the boundaries of the capture zone, the state

space is indeed divided into different parts, with the capture zone covered by the

optimal trajectories emanating from the usable part of the terminal surface, and the

escape zone indicated by the blank space on the left and right side of the figure.
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CHAPTER IV

PURSUIT-EVASION GAMES IN GENERAL FLOW

FIELDS

4.1 Introduction

In this Chapter we consider a multi-pursuer/one-evader pursuit-evasion game in an

external dynamic flow field that is assumed to be known. Due to the generality of the

external flow, Isaacs’s approach is not readily applicable. Instead, we follow a different

approach and we find the optimal trajectories of the players through a reachable

set method. Specifically, we utilize the level set method [111, 133] to generate the

reachable sets of both the evader and the pursuers and to retrieve the corresponding

optimal control actions at the current location of the agents by backward propagation

of their respective reachable sets.

Level set methods have been previously applied by Tomlin et al. to solve pursuit-

evasion games [66,99]. Ref. [66] aims at solving a non-zero sum pursuit-evasion game

where the evader and each individual pursuer are assigned their own value functions.

The authors of Ref. [99] first decrease the degrees of freedom of the problem by

reformulating it in terms of the relative distance between the pursuer and the evader.

The level set method is then applied to solve the corresponding Hamilton-Jacobi-

Isaacs (HJI) equation that governs the backward reachable set from the target set

in order to solve the differential game. Our approach differs from that in Refs. [99]

since we do not attempt to solve the pursuit-evasion game directly by solving the

corresponding HJI equation. Instead, we generate the forward reachable sets of the

players, and find the optimal time-to-capture as the first instance when the reachable

set of the evader is fully covered by the reachable set of the pursuer [102]. We then
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identify the first rendezvous point of the players and retrieve the optimal trajectories

and controls of both players through backtracking of their respective trajectories

[86, 88]. The reason we follow this approach instead of the more direct approach

in Ref. [99] is due to the dimensionality the problem. When introducing complex

dynamic environmental effects into the system, the pursuit-evasion problem cannot

be reduced to a problem described solely in terms of the relative distance between

the pursuer and the evader, unless some very restrictive assumptions are imposed on

the structure of the external flow field [142]. In other words, in order to deal with

a pursuit-evasion problem between one pursuer and one evader taking place in the

presence of a general flow field, the level set method needs to be implemented on a

fourth-dimensional state space. The computational cost of level set methods is very

high when the dimension exceeds three or four [98]. On the other hand, the forward

reachable set approach is quite efficient, since the propagated level sets all remain two-

dimensional. The approach works even for realistic flows with dynamic currents whose

speed can be much larger than the vehicle speeds [83], and can also treat dynamic

obstacles [84]. Finally, since the generation of the reachable sets of each player can

be done independently of the other players, the solution can be implemented in a

decentralized manner using parallel computing.

4.2 Problem Formulation

We consider a pursuit-evasion game in the presence of an external flow field with n

pursuers and a single evader. Henceforth, we will refer to the pursuers and the evader

collectively as “agents.” The dynamics of the pursuers Pi (i = 1, . . . , n), are given by

Ẋ i
P = uiP + w(X i

P , t), X i
P (t0) = X i

P0
, (80)

where X i
P := [xiP , y

i
P ]T ∈ D ⊂ R2 denotes the position of the i-th pursuer. Here D

denotes a compact subset of R2 and uiP is the control input (i.e., velocity) of the i-th
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pursuer such that uiP ∈ U iP , for all i ∈ I, and I = {1, 2, . . . , n} stands for the index set

of the pursuers. The set U iP consists of all piecewise continuous functions whose range

is included in the set U i
P = {ui ∈ R2, |ui| 6 ūi}, where | · | represents the Euclidean

norm and ūi, i ∈ I, are constants. If uiP ∈ U iP , we say that uiP is an admissible control

for the i-th pursuer. In (80), w(X, t) ∈ R2 represents an exogenous dynamic flow,

but it could also represent an endogenous drift owing to the nonlinear dynamics of

the agent. It is reasonable to assume that the magnitude of this flow (e.g., winds or

currents) is bounded from above by some constant, that is, there exists a constant w̄

such that |w(X, t)| ≤ w̄, for all (X, t) ∈ D × [t0,∞).

The objective of the pursuers is to intercept the evader, whose kinematics is given

by

ẊE = uE + w(XE, t), XE(t0) = XE0 , (81)

where XE = [xE, yE]T ∈ D ⊂ R2 is the position of the evader, and uE is its control

input (i.e., velocity) such that uE ∈ UE, where UE consists of all piecewise continuous

functions whose range is included in the set UE = {v ∈ R2, |v| 6 v̄}. When uE ∈ UE,

we say that uE is an admissible control of the evader.

The game begins at time t = t0 with initial positions XE0 and X i
P0
, (i ∈ I), for

the evader and the pursuers, respectively, and terminates when the evader coincides

with at least one of the pursuers, in which case capture occurs. That is, capture

implies that there exists i ∈ I and a terminal time T ≥ t0 such that X i
P (T ) = XE(T ).

Equivalently, the game terminates if, for any admissible control of the evader uE ∈ UE,

there exists a set of admissible controls (u1
P , . . . , u

n
P ) ∈ U1

P × · · · × UnP of the pursuers

such that X i
P (T ) = XE(T ) for some i ∈ I and some time T ≥ t0. The pursuers aim to

minimize the time-to-capture if possible, whereas the evader prefers to avoid capture

for as long as possible.

Let X̄ = [XT
E, X

1T
P , X

2T
P , . . . , X

nT
P ]T ∈ R2(n+1) denote the state of the game. The

game begins at initial time t0 = 0 with initial positions X̄0 = [XT
E0
, X1T

P0
, X2T

P0
, . . . , XnT

P0
]T,
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and terminates when at least one of the pursuers reaches the location of the evader.

The terminal time T of the game is defined by

T = inf{t ∈ R+ : X i
P (t) = XE(t), i ∈ I}. (82)

Let J(γ1
P , γ

2
P , . . . , γ

n
P , γE) = T be the cost function of the game, where γiP , γE :

R+×R4 7→ R2 denote the feedback strategies of the pursuers and the evader, respec-

tively, namely γiP (t, X̄(t)) and γE(t, X̄(t)), where X̄(t) is the solution of the system

of equations

Ẋ i
P = γiP (t, X̄(t)) + w(X i

P , t), i ∈ I (83)

ẊE = γE(t, X̄(t)) + w(XE, t), (84)

subject to X̄(0) = X̄0. It is assumed that each player has perfect knowledge of the

dynamics of the system represented by (80) and (81), the constraint sets U i
P and UE,

the cost function J , as well as the initial state X̄0. It is also assumed that the value

V of the game [62] exists, that is,

V = min
γ1P ,...,γ

n
P

max
γE

J = max
γE

min
γ1P ,...,γ

n
P

J. (85)

Note that pursuit-evasion games of the form addressed here are a specific class of dif-

ferential games for which the Isaacs condition [62] holds owing to the separability of

the dynamics and the cost, and hence the value of the game exists [42]. The objective

is to find the open-loop representation of the optimal strategies of the pursuer and

the evader. In particular, we utilize a reachability-based method to obtain optimal

controls u?P (t) = γ?P (t, X̄?(t)) and u?E(t) = γ?E(t, X̄?(t)), with X̄? denoting the corre-

sponding optimal state trajectory of the system (83)-(84) with strategies γi?P (t, X̄?(t))

and γ?E(t, X̄?(t)).
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4.3 Problem Analysis

4.3.1 Reachable Sets

In order to solve the differential game introduced in the previous section, that is, in or-

der to find the conditions for capture and to derive the corresponding optimal controls

and trajectories of both players, we make use of reachable set analysis. Reachable

sets provide a quick snapshot of all possible future trajectories of the agent and thus

succinctly encode all possible future positions of the agent under any possible control

action. Knowledge of the reachable sets of the pursuer and the evader can then be

used to draw conclusions about the potential meeting of the two at some future time

(or not). In this chapter we use this intuition behind the information conveyed by the

reachable set of each player to solve the pursuit-evasion problem under minimal as-

sumptions about the maximum number of players and the environment they operate

in. Since the computation of the reachable sets for each player can be done inde-

pendently from the other players, the proposed method is decentralized and scales

well with the number of players, something that is not the case with more traditional

approaches that require directly the solution of a HJI partial differential equation (see

also discussion at the end of Section 4.1).

We start this section with some basic definitions and facts about reachable sets

that will be useful throughout the chapter.

Definition 4.1 (Ref. [136]) The reachable set R(X0, t) at time t ≥ t0 of a system

of the form (80) or (81) starting at initial condition X(t0) = X0 is the set of all the

points that can be reached by the agent at time t.

In particular, the reachable set of the i-th pursuer at time τ ≥ t0, denoted by

Ri
P (X i

P0
, τ), is the set of all points X ∈ R2, such that there exists a trajectory

satisfying (80) for all t ∈ [t0, τ ] with XP (t0) = X i
P0

and XP (τ) = X. Similarly,

the reachable set RE(XE0 , τ) of the evader at time τ ≥ t0 is the set of all points
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X ∈ R2 such that there exists a trajectory satisfying (81) for all t ∈ [t0, τ ] with initial

condition XE(t0) = XE0 and terminal condition XE(τ) = X.

Definition 4.2 (Ref. [86]) The boundary of the reachable set is the reachability front.

The reachability fronts of the i-th pursuer and the evader at time t ≥ t0 will be

denoted by ∂Ri
P (X i

P0
, t) and ∂RE(XE0 , t), respectively.

Definition 4.3 Given the reachable sets of the pursuers, we define the usable reach-

able set of the evader at time t ≥ t0 as

R?
E(XE0 , t) =

{
X ∈ D : X = XE(t) and XE(τ) 6∈

n⋃
i=1

Ri
P (X i

P0
, τ), ∀τ ∈ [t0, t]

}
. (86)

From this definition, it is clear that R?
E(XE0 , t) ⊆ RE(XE0 , t). The definition

implies that R?
E(XE0 , t) is the set of all terminal points of the evader at time t, whose

trajectories do not pass through any reachable sets of the pursuers at any time in the

interval [t0, t]. In other words, R?
E(XE0 , t) is the set of terminal points of all “safe”

evader trajectories.

Suppose now that at some time tc > t0, and for some i ∈ I, we have that

RE(XE0 , tc) ⊆ Ri
P (X i

P0
, tc). It follows that, for each uE ∈ UE, there exists uiP ∈ U iP

such that X i
P (tc) = XE(tc). In other words, capture of the evader is guaranteed at

time tc by the i-th pursuer. Note that R?
E(XE0 , tc) = ∅ in this case.

If, on the other hand, for some te > t0, we have that R?
E(XE0 , te) 6= ∅, then it

follows that there exists uE ∈ UE such that capture can be avoided in the time interval

[t0, te], no matter how the pursuers choose their (admissible) controls. In other words,

if R?
E(XE0 , te) 6= ∅, the game will not terminate in the time interval [t0, te].

The previous observations lead to the following theorem, which is the main the-

oretical result of this chapter. It is used later on in order to develop an efficient

numerical algorithm for solving the pursuit-evasion game with multiple pursuers in

the presence of a known dynamic flow field.
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Theorem 4.1 Let T = inf{t ∈ [t0,+∞) : R?
E(XE0 , t) = ∅}. If T < ∞, then capture

is guaranteed for any time greater than T , while the evader can always escape within

a time smaller than T . Hence, T is the time-to-capture if both players play optimally.

Furthemore, let Xf denote the location where the evader is captured by at least one

of the pursuers. Then we have that

Xf ∈ X =

{
X ∈ D : X = XE(T ) and XE(τ) 6∈

n⋃
i=1

Ri
P (X i

P0
, τ),∀τ ∈ [t0, T )

}
. (87)

Proof. Since U i
P is compact and convex for all i ∈ I, it follows that, for each

(t,X) ∈ [t0,∞)×D, the sets {u + w(X, t) : u ∈ U i
P} are compact and convex for all

i ∈ I. Also, since by assumption uiP (t) and w(X, t) are bounded for all X ∈ D and

t <∞, the solution of (80) exists on [t0, tf ], for all tf <∞. Therefore, by Filippov’s

Theorem [48], the reachable sets Ri
P (X i

P0
, t) are compact, for all t ∈ [t0, tf ] and i ∈ I.

Similarly, RE(XE0 , t) is compact, for all t ∈ [t0, tf ].

Since R?
E(XE0 , T ) = ∅, it follows from Definition 4.3 that for any trajectory XE(·)

of the evader that satisfies (81) subject to an admissible evading control uE ∈ UE, there

exists τ ∈ [t0, T ] such that XE(τ) ∈
n⋃
i=1

Ri
P (X i

P0
, τ). Therefore, XE(τ) ∈ Rk

P (Xk
P0
, τ),

for some k ∈ I. In other words, there exists at least one admissible control ukP ∈ UkP

for the k-th pursuer, such that Xk
P (τ) = XE(τ). Therefore, regardless of the strategy

of the evader, it can be captured by the k-th pursuer at some time τ ∈ [t0, T ]. This

implies that capture is guaranteed for any time greater than or equal to T .

On the other hand, since T is the first time such that R?
E(XE0 , T ) = ∅, it follows

that R?
E(XE0 , t) 6= ∅ for all t0 ≤ t < T . Hence, for any t ∈ [t0, T ), there exists

Xt ∈ R?
E(XE0 , t). That is, Xt = XE(t) and XE(τ) 6∈

n⋃
i=1

Ri
P (X i

P0
, τ) for all τ ∈ [t0, t],

for some trajectory XE(·) of the evader, defined over the interval [t0, t]. This means

that XE(·) does not pass through the reachable set of any pursuer. Hence, for any

t ∈ [t0, T ), there exist uE ∈ UE such that XE(t) = Xt, and for all τ ∈ [t0, t] and
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i ∈ I, there exists no uiP ∈ UP . It follows that the evader can always avoid capture

before time T . From the two previous statements, we conclude that T is the optimal

time-to-capture.

To complete the proof we just need to show that Xf ∈ X . For any point X ∈ X ,

it is clear that X ∈ RE(XE0 , T ) and no pursuer can capture the evader at X prior

to time T . This implies that X should be the destination of the evader if the latter

aims to maximize its time-to-capture. Furthermore, at least one of the pursuers needs

to reach X in order to capture the evader. Hence, the point X = Xf , where Xf is

defined as the location where the evader is captured by at least one of the pursuers.

This completes the proof.

The previous theorem gives us a criterion for capture of the evader, that is, capture

is guaranteed when R?
E(XE0 , t) = ∅ for some t ∈ [t0,∞). Also notice from (86) that,

in general, R?
E(XE0 , t) can be generated by keeping track of the reachable sets of the

pursuers and the evader at all time prior to the capture time. However, when we

add some constraints with respect to the speeds of the players, we can replace this

criterion with an instantaneous condition which is easier to check and implement.

Before we state and prove this result, the following lemma is needed.

Lemma 4.1 Let ū = ūi for all i = 1, . . . , n denote the maximum speed of a pursuer,

and let v̄ denote the maximum speed of the evader, respectively, and assume that

v̄ < ū. If there exists some time ts ≥ t0 such that XE(ts) ∈ RP (XP0 , ts), then

XE(t) ∈ RP (XP0 , t) for all t ≥ ts.

Proof. Since XE(ts) ∈ RP (XP0 , ts) for some time ts ≥ t0, it follows that there

exists uP ∈ UP such that XP (ts) = XE(ts). By assumption, we have v̄ < ū. Therefore,

for any uE ∈ UE that starts from XE(ts) at time ts, the pursuer by choosing uP = uE,

which is admissible since v̄ < ū, can ensure that XP (t) = XE(t) for all t ≥ ts. Hence,

XE(t) ∈ RP (XP0 , t) for all t ≥ ts.
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This lemma essentially states that when the maximum speed of the evader is

smaller than the maximum speed of all the pursuers, then once the evader enters the

reachable set of a pursuer, it can never leave this reachable set. We are now ready to

present the simplified condition on the capture of the evader as follows.

Proposition 4.1 When v̄ ≤ min
i∈I

ūi, the set R?
E(XE0 , t) satisfies

R?
E(XE0 , t) = RE(XE0 , t)\

n⋃
i=1

Ri
P (X i

P0
, t), (88)

for all t ≥ t0. In such cases, the condition R?
E(XE0 , t) = ∅ is equivalent to the

condition

RE(XE0 , t) ⊆
n⋃
i=1

Ri
P (X i

P0
, t). (89)

Proof. By Definition 4.3, for any X ∈ R?
E(XE0 , t), we have that X ∈ RE(XE0 , t)

and X 6∈
n⋃
i=1

Ri
P (X i

P0
, t). Therefore,

R?
E(XE0 , t) ⊆ RE(XE0 , t)\

n⋃
i=1

Ri
P (X i

P0
, t). (90)

Let now

X ∈ RE(XE0 , t)\
n⋃
i=1

Ri
P (X i

P0
, t). (91)

It follows that there exists a trajectory XE(·) of the evader, defined over the interval

[t0, t] such that X = XE(t). Furthermore, XE(t) 6∈
n⋃
i=1

Ri
P (X i

P0
, t). We claim that

XE(τ) ∈ RE(XE0 , τ)\
n⋃
i=1

Ri
P (X i

P0
, τ), for all τ ∈ [t0, t]. Since, trivially, XE(τ) ∈

RE(XE0 , τ) it only suffices to show that XE(τ) 6∈
n⋃
i=1

Ri
P (X i

P0
, τ), for all τ ∈ [t0, t].

Suppose, on the contrary, that there exist τ ∈ [t0, t] and i ∈ I such that XE(τ) ∈

Ri
P (X i

P0
, τ). Since v̄ ≤ min

i∈I
ūi, it follows that once the evader enters the reachable

set of a pursuer, it can never leave the reachable set of this pursuer. Hence, XE(σ) ∈
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Ri
P (X i

P0
, σ) for all σ ≥ τ , contradicting (91). It follows that X ∈ R?

E(XE0 , t) and thus

RE(XE0 , t)\
n⋃
i=1

Ri
P (X i

P0
, t) ⊆ R?

E(XE0 , t). (92)

From (90) and (92) it follows that R?
E(XE0 , t) = RE(XE0 , t)\

n⋃
i=1

Ri
P (X i

P0
, t). The

equivalence of condition R?
E(XE0 , t) = ∅ with (89) follows immediately.

In the case where v̄ ≤ min
i∈I

ūi the optimal time-to-capture is the first time instant

when the union of the reachable sets of the pursuers
n⋃
i=1

Ri
P (X i

P0
, τ) completely covers

the reachable set of the evader RE(XE0 , t). If v̄ > ūi, for some i ∈ I (the relative

maximum speed of the evader is larger than that of the i-th pursuer), the relation (88)

may not always hold. Some admissible evader trajectories may temporarily enter the

reachable set of the i-th pursuer and exit later on. This is not allowable. To eliminate

this possibility, in such cases R?
E(XE0 , t) can be determined by treating the reachable

set of the i-th pursuer as a dynamic “forbidden” region for the evader [84, 88]. That

is, whenever the reachable set of the evader intersects the reachable set of any of

the pursuers, we can either stop the evolution of the intersected part of the evader’s

reachable set or let it evolve at the same speed as the reachable set of the pursuer.

This way, we can ensure that the terminal points of the admissible trajectories of the

evader that temporarily enter the reachable set of the pursuer and exit later on are

not included in the usable reachable set of the evader.

4.4 Numerical Construction

4.4.1 Level Set Method

In order to construct the reachable sets of the pursuers and the evader, we apply the

level set method [111, 133]. The level set method is a convenient mathematical tool

to track the evolution of the reachability front. It evolves the reachability front by

embedding it as a hyper-surface in a higher dimension, where time is the additional
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dimension. Automatic handling of merging and splitting of fronts and other topo-

logical changes are made possible by this higher dimensional embedding. The level

set formulation provides an implicit representation of the front, which offers several

advantages over an explicit representation [111, 133]. For example, implicit func-

tion representations are widely used for describing closed and multi-valued curves,

for point classification (such as determining whether a point is inside or outside an

interface) and for finding intersection points and offsets.

The choice of implicit function is not unique in order to represent a curve. The

signed distance function is one of the most common choices and will be utilized in

this chapter. Its definition is given as follows.

Definition 4.4 The signed distance function ϕ(X) with respect to a set R is defined

as

ϕ(X) =


min
Y ∈∂R

|X − Y |, if X 6∈ R,

− min
Y ∈∂R

|X − Y |, if X ∈ R.
(93)

Recall that, for any c ∈ R, the c-level set of a ϕ is the set {X : ϕ(X) = c}.

We hereby utilize the signed distance function from the reachable set to track the

evolution of the fronts of the reachable sets of all agents. This is achieved by expressing

the reachable front at time t as the zero-level set of the corresponding signed distance

function. Assuming that the signed distance function with respect to the i-th pursuer

reachable setRi
P (X i

P0
, t) at time t is φiP (X, t), then the evolution of the reachable front

∂Ri
P (X i

P0
, t) is governed by the viscosity solution of the Hamilton-Jacobi equation

[82,86]

∂φiP (X, t)

∂t
+ ū|∇φiP (X, t)|+∇φiP (X, t)w(X, t) = 0, X ∈ D ⊂ R2, (94)

with initial condition φiP (X, t0) = |X − X i
P0
|. Note that Ri

P (X i
P0
, t) = {X ∈ D :

76



φiP (X, t) ≤ 0} and ∂Ri
P (X i

P0
, t) = {X ∈ D : φiP (X, t) = 0}.

Similarly, the reachable front ∂RE(XE0 , t) of the evader is computed by solving

the Hamilton-Jacobi equation

∂φE(X, t)

∂t
+ v̄|∇φE(X, t)|+∇φE(X, t)w(X, t) = 0, X ∈ D ⊂ R2, (95)

with initial condition φE(X, t0) = |X − XE0|, where φE(X, t) is the signed distance

function with respect to the reachable set RE(XE0 , t) of the evader at time t.

In the case where the condition in Proposition 4.1 is not satisfied, we need to track

∂R?
E(XE0 , t) in order to determine the optimal time-to-capture. Instead of propagat-

ing ∂R?
E(XE0 , t) directly, we propagate an intermediate reachable front ∂R̃E(XE0 , t)

which can be computed by solving the following modified version of the Hamilton-

Jacobi equation

∂φ̃E(X, t)

∂t
+ ṽ(t) |∇φ̃E(X, t)|+∇φ̃E(X, t)w(X, t) = 0, X ∈ D ⊂ R2, (96)

where

ṽ(t) =


min
i∈I

ūi, if
n⋃
i=1

φiP (X, t) < 0,

v̄, otherwise,

(97)

and initial condition φ̃E(X, t0) = |X −XE0|.

The main idea here is to treat the reachable sets of the pursuers as moving ob-

stacles and propagate R̃E(XE0 , t) with the maximum speed of the evader v̄ for the

parts that fall outside the union of the reachable sets of the pursuers, and to keep

pace with the propagation of the reachable set of the slowest pursuer when the front

of the evader enters any reachable set of the pursuers. By doing this, we can make

sure that the front of the evader does not grow out of the union of the reachable sets
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of the pursuers. The parts of the reachable front of the evader that do not encounter

the reachable sets of the pursuers remain unaffected by the change of speed from v̄ to

ṽ, since these changes are only performed for points inside the reachable sets of the

pursuers.

Let R̃E(XE0 , t) = {X ∈ D : φ̃E(X, t) ≤ 0}. At every time instant t, by con-

struction, R̃E(XE0 , t) excludes all the points X such that X = XE(t) and X 6∈
n⋃
i=1

Ri
P (X i

P0
, t), while X ∈

n⋃
i=1

Ri
P (X i

P0
, τ), for some τ ∈ [t0, t). It follows that

R?
E(XE0 , t) = R̃E(XE0 , t)\

n⋃
i=1

Ri
P (X i

P0
, t).

Moreover, since Ri
P (X i

P0
, t) = {X ∈ D : φiP (X, t) ≤ 0}, the usable reachable set

of the evader can also be represented in a form that is more suitable for numerical

calculations, that is,

R?
E(XE0 , t) = {X ∈ D : φ̃E(X, t) ≤ 0 and

n⋃
i=1

φiP (X, t) ≥ 0}.

4.4.2 Classification of Pursuers

For problems with a large number of pursuers it is quite possible that optimal capture

may not involve all pursuers. That is, not all pursuers need to go after the target

at the same time. In Ref. [14], for instance, a sequential pursuit strategy was in-

troduced, according to which only a single pursuer participates in the pursuit of the

target/evader, although the specific pursuer may change dynamically as the game

evolves. In certain applications, such as when the pursuers are subject to energy or

fuel limitations, or when they play a dual role as pursuers and guards of a certain

region of responsibility, it may be beneficial that some of the pursuers remain inac-

tive. In group pursuit problems involving several pursuers, we may therefore classify

the pursuers according to their level of involvement as either redundant, active, or
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guards. Below we elaborate on the motivation of this classification.

Redundant Pursuers. When we formulate a multiple-pursuers/one-evader pursuit-

evasion game, depending on the initial positions of the pursuers and the evader, there

may be some pursuers that do not affect the outcome of the pursuit.

Definition 4.5 A pursuer Pk is redundant if, given the pursuer set {P1, . . . , Pn},

the optimal time-to-capture T is the same as the optimal time-to-capture T̃ given the

pursuer set {P1, . . . , Pn}\Pk.

From the point of view of the pursuers, it is important to identify any redundant

pursuers, since fuel or energy saving may result by placing these redundant pursuers

on standby, and deploy them only if the evader shows up in their vicinity, or when it

is absolutely necessary to ensure capture.

Through the reachable set approach, we can find the minimum number of pursuers

needed to capture an evader under optimal time-to-capture pursuit. One way to

identify any redundant pursuers is, for each pursuer, to compare the two optimal

values of time-to-capture with and without this pursuer. If these two values turn out

to be equal to each other, then this pursuer is redundant.

When the condition v̄ ≤ min
i∈I

ūi is satisfied, the following method to determine the

redundant pursuers is more practical. Specifically, the j-th pursuer is redundant if

RE(XE0 , T ) ⊆
n⋃

i=1,i 6=j
Ri

P (X i
P0
, T ), where T is the optimal time-to-capture given the

pursuer set {P1, . . . , Pn}. For instance, Figures 21 and 22 show two pursuit-evasion

problems restricted in the domain D = [0, 25]× [0, 25]. The initial positions of the two

pursuers and the evader are depicted by the green, red and blue dots, respectively.

The maximum speeds of the pursuers and the evader are given by ū1 = ū2 = 2, v̄ = 1.

The vector field of the flow field is shown in the background in black. In the first

problem there are two pursuers P1 and P2 against one evader, while in the second

problem an additional pursuer, P3, is added to the pursuer team.
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In this example, and all subsequent ones (unless stated otherwise), it will be

assumed that the pursuers have larger maximum speed than the evader. In the

absence of an external field, and under simple motion by all players, it is known that

the evader can always avoid capture if it has a speed advantage over the pursuers [124].

In the presence of an external field, however, this may not always be the case. Later

on, we provide an example, where the evader is captured even when all pursuers have

maximum speed that is smaller than the speed of the evader. Please also note that,

similarly, an evader may be able to avoid capture from a team of pursuers that have

a speed advantage in the presence of an external flow field.

All examples in this section are subject to a linear flow field approximated by an

affine function w(X) = A(X −Xs), where

A =

 0.2 0.3

−0.15 0.1

 , Xs =

15

15

 . (98)

This wind field can be seen as a flow generated from a single singularity point located

at Xs, with its characteristics captured by A. Also, the front of the reachable set of

the evader is depicted in dashed blue color in each of the following examples so that

it can be easily distinguished from the front of the reachable sets of the pursuers.

The evolution of the reachability fronts between two pursuers and one evader are

depicted in Figure 21. The usable reachable set of the evader is illustrated by the light

blue area in each of the subfigures. Notice that it is known from Theorem 4.1 and

shown in this example that the capture point Xf is the point in the reachability set

of the evader that is not covered by the union of the reachability sets of the pursuers

until the capture time T .

For the example shown in Figure 22, pursuer P3 turns out to be a redundant

pursuer since the optimal time-to-capture of the evader is the same regardless of

whether P3 exists or not. If we remove P3 and its corresponding reachable set at time
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T , we can recover the case presented in Figure 21, that is, the outcome of the game

is not changed by the presence of pursuer P3.
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Figure 21: Evolution of the reachability fronts between two pursuers and one evader.

Once a redundant pursuer is identified, it can be removed from the set of the

active pursuers. It is important to note, however, that we cannot remove two or more

redundant pursuers at the same time. Instead, we have to re-identify the redundant

pursuers after one redundant pursuer is removed. The reason is that a redundant

pursuer may not remain redundant after another redundant pursuer is removed. One

such example is shown in Figure 23, where pursuers P4 and P5 guard the same shaded

subset of the evader’s reachable set, which is the subset of the reachable set of the

evader not covered by the union of the reachable sets of pursuers P1, P2 and P3. In

this scenario pursuers P4 and P5 are both redundant. However, if we remove both at

81



0 5 10 15 20 25
0

5

10

15

20

25

x

y P1 P2

P3

E

Xf

Figure 22: Level sets of three pursuers and one evader at time T . Here Xf denotes
the capture point.

the same time, then the reachable set of the evader cannot be fully covered by the

reachable sets of the remaining pursuers, resulting in the extension of the time-to-

capture. On the other hand, if we re-identify the redundant pursuers after we have

removed one of these two pursuers, the other pursuer will not be a redundant pursuer

in the updated, reduced set of pursuers.

Active Pursuers and Guards. Henceforth, we assume that all pursuers are not

redundant, otherwise, we can identify and remove any redundant pursuers one by one

until no redundant pursuers are left as explained previously. Under this assumption,

we can further divide the pursuer set into two distinct subsets. One subset consists of

all the active pursuers, while the second subset contains pursuers that do not chase

the evader, but without their presence there would be no guarantee of capture. The

pursuers in the latter subset are called the guards. Once the capture point Xf is

found, the active pursuers can be identified as the pursuers whose boundary of the
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Figure 23: Level sets of five pursuers and one evader at time T . Pursuers P4 and P5

are each redundant pursuer by definition, but they cannot be removed together.

reachable sets at time T intersects Xf , while the rest of the pursuers are guards.

The classification of the pursuer set into active pursuers and guards can be demon-

strated by the situation depicted in Figure 24. For this problem ū1 = ū2 = ū3 = ū4 =

ū5 = 2, v̄ = 1. As is shown in this figure, the reachable sets of pursuers P1, P2 and P3

at time T coincide at Xf . These three pursuers need to reach Xf at time T to ensure

capture of the evader. Hence, these are the active pursuers. On the other hand,

pursuer P4 cannot reach Xf within time T , but its reachable set covers a portion of

the reachable set of the evader. Therefore, P4 acts as a guard of the shaded region

depicted in Figure 24 so that the evader cannot use a control to escape from that

area.

It is also worth noting that if one would like to account for the possibility that the

evader may not maneuver optimally, then the process of classifying active pursuers

and guards should be repeated at each time step. Otherwise, a pursuer that has been
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initially classified as a guard might remain inactive even if the evader moves towards

it and away from the active pursuers (e.g., the shaded area in Figure 24).
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Figure 24: Level sets of four pursuers and one evader at time T . Pursuers P1, P2

and P3 are active pursuers, and P4 is a guard. Capture occurs at point Xf .

4.4.3 Time-Optimal Paths

In this section, we present a method to retrieve the optimal controls of the evaders

and the active pursuers, as well as their corresponding optimal trajectories.

When we deal with multiple pursuers (n > 1), the first goal is to find the optimal

trajectories of the active pursuers along with their corresponding optimal controls.

Since the active pursuers can reach Xf at time T , it is clear that Xf resides on

the boundary of their reachable sets, otherwise capture would have occurred earlier.

Therefore, when the φiP ’s are differentiable, the optimal trajectory for each active
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pursuer satisfies

dX i∗
P

dt
= ūi

∇φiP
|∇φiP |

+ w(X i∗

P , t), i ∈ IA, (99)

where IA ⊆ I denotes the index set of the active pursuers. The corresponding optimal

controls of the active pursuers are thus

ui∗P = ūi
∇φiP
|∇φiP |

, i ∈ IA. (100)

As for the evader, there are two possible outcomes after the termination of the

evolution of the reachable sets of the pursuers and the evader. One possibility is that

at the terminal time T , Xf resides on ∂R̃E(XE0 , T ) (or ∂RE(XE0 , T ) when v̄ ≤ min
i∈I

ūi

). In this case it follows that the boundary of the reachable set of the evader is not

fully covered for all t < T . When differentiable, the optimal trajectory of the evader

is then unique and it satisfies the differential equation

dX
∗
E

dt
= v̄
∇φE

|∇φE|
+ w(X

∗

E, t). (101)

The corresponding optimal control for the evader is given by

u∗E = v̄
∇φE

|∇φE|
. (102)

It may also happen that Xf lies in the interior of R̃E(XE0 , T ) (or the interior of

RE(XE0 , T ) when v̄ ≤ min
i∈I

ūi). This situation occurs when there exists tc ∈ (t0, T )

such that ∂RE(XE0 , t) ⊂
n⋃
i=1

Ri
P (X i

P0
, t), for all t ∈ [tc, T ]. However, some part of

the interior of RE(XE0 , t) may not be covered until time T . In this case, the optimal

control of the evader is not necessarily unique. In particular, the control of the evader
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can be chosen from the set

U∗E =

{
uE ∈ UE : X satisfies (81) and X(τ) 6∈

n⋃
i=1

Ri
P (X i

P0
, τ),∀τ ∈ [t0, T ]

}
. (103)

It follows that an optimal control for the evader is valid, as long as it can bring the

evader to Xf at time T , without getting captured by any of the pursuers prior to

time T .

4.5 Simulation Results

We present simulation results for the multiple-pursuer/one-evader pursuit-evasion

problem under a realistic flow field, and for different initial conditions for the pursuers

and the evader.

We first consider a state-dependent wind field approximation generalized from the

Rankine model of a vortex [29]:

w(X) = w0 +
ns∑
i=1

ωiAi(X −Xsi), (104)

where

ωi =
1

max{r2
si
, |X −Xsi |2}

. (105)

In (104), ns is the number of flow singularities, Xsi is the location of the i-th flow

singularity and rsi denotes the singularity radius, and Ai is a 2 × 2 matrix, whose

structure captures the local characteristics of the i-th flow singularity. The model

approximates the velocity field of a vortex with a linear vector field inside a disk and

the velocity outside of the disk decreases as the inverse squared distance to the center

of the disk.
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We set the number of flow singularities to ns = 3. The locations of the flow sin-

gularities are Xs1 = [18, 18]T, Xs2 = [12, 19]T, Xs3 = [14, 12]T, and the corresponding

radii are rs1 = 3, rs2 = 2, rs3 = 3, respectively. We also let w0 = [0.2,−0.3]T. The

local wind field matrices are given by

A1 =

 0 3

−1.5 0

 , A2 =

4 2

0 −2

 A3 =

 2 1

−2 2

 .
In the first example, we formulate a three-pursuers/one-evader problem. The three

pursuers are initially located at X1
P0

= [13, 13]T, X2
P0

= [16, 14]T and X3
P0

= [14, 17]T,

respectively. Their corresponding maximum speeds are given by ū1 = 1.5, ū2 = 1.2

and ū3 = 0.5. The initial location of the evader is given by XE0 = [14, 15]T and its

maximum speed is v̄ = 1. Note that, in this example, the maximum speed of the

evader is larger than the speed of one of the pursuers. Therefore, we need to propagate

the intermediate reachability front of the evader in order to recover R?
E(XE0 , t).

The optimal time-to-capture is T = 4.25. P1 is the only active pursuer in this

case, whereas P2 and P3 are guards. Notice that the optimal time-to-capture in the

case of only P1 and P2 against E is T12 = 5.33. Similarly, the optimal time-to-capture

in the case of P1 and P3 against E is T13 = 5.04. Therefore, P2 and P3 are not

redundant. Also, the optimal time-to-capture between P1 and E is T1 = 5.38. It

can be observed from this example, and in accordance with the Definition 4.5 that

the optimal time-to-capture is reduced as more (non-redundant) pursuers join the

pursuit. The reachable fronts of the pursuers and the evader at time T , as well as the

corresponding optimal trajectories of the active pursuer and the evader are shown in

Figure 25. The red, cyan and green color curves represent the reachable fronts of the

pursuers at the terminal time. As before, black arrows on the background represent

the external flow field. In the figure Xf denotes the capture point.
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Figure 25: The optimal trajectory and the intermediate reachability front of the
evader are shown in dashed blue. The optimal trajectory of the active pursuer is
shown in green.

For the next example we keep all the initial conditions unchanged, but we mod-

ify the maximum speed of the third pursuer from ū3 = 0.5 to ū3 = 2. After this

change, the condition v̄ ≤ min
i∈I

ūi is satisfied. By Proposition 4.1, it suffices to update

RE(XE0 , t) instead ofR?
E(XE0 , t) and show condition (89). As illustrated in Figure 26,

simultaneous capture of the three pursuers is required at the optimal time-to-capture

T = 1.31. Optimal trajectories of the three pursuers are depicted to demonstrate the

capture of the evader. The terminal position of the evader Xf is denoted by the black

dot. The optimal trajectory of the evader is not shown since it is not unique and can

be picked from (103).

Next, we consider the case where max
i∈I

ūi < v̄. In particular, we consider four

pursuers with maximum speed ū1 = ū2 = ū3 = ū4 = 0.9 and an evader with maximum

speed v̄ = 1. The initial positions of the pursuers are given as X1
P0

= [13, 13]T,

X2
P0

= [15, 13]T, X3
P0

= [15, 15]T and X4
P0

= [13, 15]T, whereas the evader is initially
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Figure 26: Optimal trajectories of the three active pursuers in green, red, cyan.
Red, cyan and green closed curves represent the reachable fronts of the pursuers at
the terminal time.

located at XE0 = [14, 14]T. The flow field is the same one as in the previous example.

Capture in this case occurs at T = 1.99 and the corresponding optimal trajectories

of the active pursuers are shown in Figure 27.

The next example intents to demonstrate the effect of the flow field in the game

outcome. To this end, consider a pursuit-evasion game between four pursuers and

one faster evader. The initial positions of the pursuers are given as X1
P0

= [13, 13]T,

X2
P0

= [15, 13]T, X3
P0

= [15, 15]T and X4
P0

= [13, 15]T, whereas the evader is initially

located at XE0 = [14, 14]T. The maximum speed of the pursuers are set as ū1 = ū2 =

0.65, ū3 = ū4 = 0.95, and the evader’s maximum speed is set to v̄ = 1. The flow field

is given by w(X) = A(X − xs), where

A =

 −0.2 0.3

−0.15 −0.1

 , Xs =

17

17

 . (106)
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Figure 27: Optimal trajectories of the three active pursuers and the reachable fronts
of the pursuers at the terminal time.

For this case, capture occurs at T = 1.71, as illustrated in Figure 28. In contrast, the

evader escapes in the absence of an external flow field. This is demonstrated in Figure

29 where a snapshot of the level sets at t = 4.11 is shown. Notice that at that time

instant, the evader reaches the point Y without being captured. The evader can keep

avoiding capture after that time since it is faster and Y is outside the convex hull of

the pursuers. This example shows that the presence of the flow field can change the

outcome of the game and hence it is imperative that its effect is quantified and be

included, if needed, in the game formulation.

We finally apply our algorithm to a pursuit-evasion problem taking place inside

a smooth water channel with a circular island obstacle. The external flow enters the

rectangle region shown in Figure 30(a) from the left edge and drift past a circular

island, which induces vortices downstream. The island is centered at [4.5, 1.5] and

has radius 0.5. More details regarding the simulation of this flow field can be found
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Figure 28: Reachable fronts of the pursuers and usable reachable front of the evader
at the terminal time, and optimal trajectories of the two active pursuers in green and
red.

in Ref. [ [86]]. Through this example, we demonstrate that the proposed algorithm

can handle scenarios with arbitrary spatio-temporal flow fields and that the algorithm

can be naturally extended to deal with obstacles in a flow field.

The initial positions of the pursuers and the evader are set as X1
P0

= [1, 2]T,

X2
P0

= [3, 1]T and XE0 = [6, 1]T, respectively. Their corresponding maximum speeds

are given by ū1 = 4.5, ū2 = 3 and v̄ = 1. Since min{ū1, ū2} > v̄, we simply evolve the

reachability sets of both players. When the reachability front of any one of the players

encounters the obstacle, we stop the evolution of the parts on the reachability front

that would otherwise go through the obstacle to ensure that the optimal path we find

later on is guaranteed to be a collision-free path. Capture occurs at time T = 1.44

and the optimal paths of the pursuers in magenta and the evader in cyan are depicted

in Figure 30(c). Their corresponding reachability fronts are also illustrated in green,

red and blue colors. Snapshots of the reachability fronts of the pursuer and the evader

91



10 12 14 16 18

10

12

14

16

18

20

x

y

P1 P2

P3P4

Y

Figure 29: Reachble fronts of the pursuers and usable reachable front of the evader
at t = 4.41. Case of faster evader without flow field.

at time t = 0.5 and t = 1 are included in Figures 30(a) and 30(b) to demonstrate the

evolution of the reachability fronts.

In order to demonstrate the feedback nature of the proposed strategies, in Fig-

ures 31 we show the result of a game with just two players, one pursuer and one evader,

in which the evader employs a suboptimal strategy. Specifically, while the pursuer

determines its control action at each instant of time using the reachability set analysis

outlined in Section 4.3, in Figure 31 (left) the evader implements a constant bearing

strategy given by uE = v̄[cos(π/2), sin(π/2)]T. Capture occurs at T = 0.93, whereas

if the evader had acted optimally, capture would have occurred at T = 1.08, which

is the value of this game. Figure 31 (right) shows another similar scenario where

the evader uses the (also suboptimal) strategy uE = v̄[cos(π/4), sin(π/4)]T. In this

case capture occurs at T = 1.04, somewhat better than before, but still less than the
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Figure 30: Evolution of the reachability fronts and optimal trajectories at the optimal
time-to-capture. Black arrows on the background represent the time-varying external
flow field.

optimal value of T = 1.08. For both of these examples, the flow field is affine, given

by w(X) = A(X −Xs), where

A =

 0 0.3

−0.15 0

 , Xs =

5

5

 . (107)

For this example the maximum speeds are ū = 4 and v̄ = 1 and the initial conditions

are XP0 = [2, 2]T and XE0 = [4, 4]T for the pursuer and the evader, respectively.
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Figure 31: Evolution of the reachability fronts and optimal trajectories at the optimal
time-to-capture. In this case evader plays suboptimally.
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CHAPTER V

PURSUIT-EVASION GAMES UNDER 3-DIMENSIONAL

FLOW FIELDS

5.1 Introduction

There is a plethora of work in the literature that deal with multiplayer pursuit-evasion

problems. In general, these are difficult problems to solve analytically, owing to the

delicate nature of the problem itself [62]. Different techniques have been utilized to

simplify and subsequently deal with this problem. Single integrator kinematics are

commonly assumed in most multiplayer pursuit problems. Under such assumption,

the pursuit problem can be further divided into group-pursuit and relay-pursuit prob-

lems. A group-pursuit problem refers to the case where several (or all) pursuers act

simultaneously to capture the targets, whereas a relay-pursuit problem considers the

case where for each target, only one pursuer actively chases it. In the category of

group-pursuit, conditions for target interception between multiple pursuers and one

evader in the simplest form is studied by Pshenichnyi in [123]. The result is ex-

tended to simultaneous k-capture in [19] and ε-capture in [70] where capture occurs

when some pursuer is within an ε distance from the evader. Conditions for guaranteed

evasion and the corresponding evading strategies are studied in [25] and [61]. Pursuit-

evasion between one evader and countably many pursuers is investigated in [60]. In

terms of relay-pursuit problems, generalized Voronoi diagrams have been utilized to

assign active pursuers dynamically to capture the evader, capture therefore is achieved

through a relay of the pursuers in a multi-pursuer/one-evader problem [9, 14]. The

idea has also been applied in [141] to deal with known environmental disturbance

and in [39] for cooperative relay tracking of targets. Some results exist for cases with
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more general dynamics for the agents (pursuers/evaders), but extra assumptions are

made for the problem to be tractable. Pursuit-evasion between a group of pursuers

and one evader with linear time-varying dynamics is studied in [122] and later on

was generalized to the case of multiple evaders [15]. Group pursuit of a target under

the so-called ‘soft’ capture where capture occurs only when at least one pursuer and

the target have identical orientation, velocity and acceleration is investigated in [121]

under linear time invariant dynamics. A multiplayer extension of the classical Homi-

cidal Chauffeur game [62] is discussed in [21], where a chain formation of faster, yet

less maneuverable, pursuers is utilized to ensure capture of a single slower, but agile

evader. However, no optimality analysis of such strategy is given.

In this Chapter, we consider a multi-pursuer/multi-evader pursuit-evasion prob-

lem of agents having the single integrator kinematics under known external dynamic

flow field in the 3D Euclidean space. The reason we coinsider dynamic environmental

conditions is that the presence of time-varying or spatially-varying flows may signif-

icantly affect the vehicle’s motion and corresponding strategy. This is the case, for

example, when either the pursuers or the evaders (or both) are small autonomous

underwater vehicles (AUV) or small unmanned aerial vehicles (UAV). We solve this

problem through a two-step approach. We first recast the problem as a partition

of the pursuer set and assign each pursuer to an evader. Subsequently, the origi-

nal problem is separated into sub-games between multiple pursuers and one evader.

We find the optimal trajectories of the agents in each sub-game through a reachable

set method. Specifically, we utilize the level set method [111, 133] to generate the

reachable sets of both the evader and the pursuers and to retrieve the corresponding

optimal control actions at the current location of the agents by backward propagation

of their respective reachable sets.
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5.2 Problem Formulation

We consider a pursuit-evasion game under an external flow field between n pursuers

and m evaders. Henceforth, we will refer to the pursuers and the evader collectively

as “agents”. The dynamics of the pursuers Pi, i ∈ I, and the evaders Ej, j ∈ J ,

where I = {1, 2, . . . , n} and J = {1, 2, . . . ,m}, are given by

Ẋ i
P = uiP + w(X i

P , t), X i
P (t0) = X i

P0
, (108)

Ẋj
E = ujE + w(Xj

E, t), Xj
E(t0) = Xj

E0
, (109)

where X i
P ∈ D ⊂ R3 denotes the position of the i-th pursuer and Xj

E ∈ D ⊂ R3

denotes the position of the j-th evader. Here D denotes a compact subset of R3 and

uiP is the control input (i.e., velocity) of the i-th pursuer such that uiP ∈ U iP , for

all i ∈ I. The set U iP consists of all piecewise continuous functions whose range is

included in the set U i
P = {ui ∈ R3, |ui| 6 ūi}, where | · | represents the Euclidean

norm and ūi, i ∈ I, are constants. If uiP ∈ U iP , we say that uiP is an admissible

control for the i-th pursuer. Similarly, ujE is the control input of the j-th evader such

that ujE ∈ U jE, where U jE consists of all piecewise continuous functions whose range

is included in the set U j
E = {vj ∈ R3, |vj| 6 v̄j}. We say that ujE is an admissible

control of the j-th evader if ujE ∈ U jE. In (80), w(X, t) ∈ R3 represents an exogenous

dynamic flow, but it could also represent an endogenous drift owing to the nonlinear

dynamics of the agent. It is reasonable to assume that the magnitude of this flow is

bounded from above by some constant, that is, there exists a constant w̄ such that

|w(X, t)| ≤ w̄, for all (X, t) ∈ D × [t0,∞).

The pursuers aim to intercept the evaders and minimize the overall time-to-capture

if possible, whereas the evaders prefer to avoid capture for as long as possible. The

game begins at time t = t0 with initial positions X i
P0
, (i ∈ I), and Xj

E0 , (j ∈ J ), for

the pursuers and the evaders, respectively, and terminates when each evader coincides
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with at least one of the pursuers, in which case capture occurs. That is, capture

implies that for each j ∈ J , there exists ij ∈ I and a terminal time T j ≥ t0 such that

X ij

P (T j) = Xj
E(T j). The overall time-to-capture is then denoted as T o = maxj∈J T

j.

Equivalently, the game terminates if, for each j ∈ J and any admissible control of

the j-th evader ujE ∈ U jE, there exists a set of admissible controls (uk1P , . . . , u
knj
P ) ∈

Uk1P × · · · × U
knj
P such that X i

P (T j) = Xj
E(T j) for some i ∈ {k1, . . . , knj

} and some

time T j ≥ t0.

We assume in this paper that each pursuer can capture at most one evader, that

is, once a pursuer captures an evader, it does not re-enter the game to chase another

evader. Such assumption is valid in cases where the pursuers are disposable (such

as missiles) or the amount of pursuers is abundant. Subject to this assumption, and

in accordance with the previous notion of capture, it can be seen that a necessary

condition for the game to terminate is n > m. In other words, there should be more

pursuers than evaders for all the evaders to be captured. Henceforth, we assume that

this condition holds, that is, there are more pursuers than evaders.

The original problem is intractable due to the existence of the external flow field

and the large number of possible pairings between the evaders and the pursuers.

Therefore, instead of attempting to solve this problem head on, we propose to de-

compose the problem into two steps. In the first step, we apply a partition to the set of

pursuers by assigning each pursuer to an evader at the beginning of the game. In the

second step, the pursuit-evasion game between each evader and its assigned (paired)

pursuers is solved to obtain the optimal trajectories and controls of the pursuers and

the evader. The problems in these two steps are formally stated as follows.

Problem 5.1 Given the system described by (108) and (109), find a partition {Ij, j ∈

J } of the pursuer set I such that i ∈ Ij if T ∗(X i
P0
, Xj

E0) ≤ T ∗(X i
P0
, Xk

E0
), ∀k ∈ J ,

where T ∗(X i
P0
, Y ) denotes the minimum time-to-reach from X i

P0
to Y for some Y ∈ R3

under the dynamics of the i-th pursuer.
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Problem 5.2 For some j ∈ J , consider a pursuit-evasion game in the presence of

an external flow field between multiple pursuers Pi, i ∈ Ij and one evader Ej. The

dynamics of the pursuers are given by (108), where i ∈ Ij. The pursuers aim to

intercept the evader whose dynamics is given by (109). Without loss of generality, let

Ij = {1, . . . , k} and let E denote Ej for abbreviation. The game begins at initial time

t0 = 0 with initial positions X̄0 = [XT
E0
, X1T

P0
, X2T

P0
, . . . , XkT

P0
]T, and terminates when at

least one of the pursuers reaches the location of the evader. The objective is to find

the open-loop representation of the optimal strategies of the pursuers and the evader.

5.3 Problem Analysis

5.3.1 Pursuer Assignment

As mentioned in Section 5.2, we decompose the problem into two steps, where the

first step assigns each pursuer to an evader, and the second step solves the pursuit-

evasion game between each evader and its assigned pursuers in the precense of the

external flow field.

In this subsection, we focus on the first step, that is, obtaining a pursuer assign-

ment such that each pursuer is paired with an evader. To this end, we introduce the

following Proposition.

Proposition 5.1 Given the system described by (108) and (109), and the partition

{Ij, j ∈ J } of the pursuer set I introduced in Problem 5.1, then given i ∈ I, i is

within the partition Ij if tij = min
k∈J

tik, where tik := inf{t ∈ [t0,∞) : Xk
E0
∈ Ri

P (X i
P0
, t)},

that is, tik is the first time such that Xk
E0

is inside Ri
P (X i

P0
, t).

proof 5.3.1 It can be easily seen that the proposition is true as long as tij = T ∗(X i
P0
, Xj

E0).

In other words, let {I ′j, j ∈ J } be a partition of the pursuer set I such that i ∈ I ′j

if tij = min
k∈J

tik. Then {I ′j} coincides with {Ij} when tij = T ∗(X i
P0
, Xj

E0). Therefore, it

suffices to show that tij = T ∗(X i
P0
, Xj

E0).
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To this end, consider the definition of Ri
P (X i

P0
, t). Since Ri

P (X i
P0
, t) contains all

the points the i-th pursuer can reach at time t starting from X i
P0

, and since tij is defined

as the first time such that Xj
E0 ∈ Ri

P (X i
P0
, tij), it can be seen that tij is the minimum

time-to-reach from X i
P0

to Xj
E0. In other words, tij = T ∗(X i

P0
, Xj

E0). If ad absurdum

assume that tij 6= T ∗(X i
P0
, Xj

E0), then we have two cases to consider. One is tij <

T ∗(X i
P0
, Xj

E0) and the other is tij > T ∗(X i
P0
, Xj

E0). Suppose that tij < T ∗(X i
P0
, Xj

E0).

It clearly contradicts with the fact that T ∗(X i
P0
, Xj

E0) is the minimum time-to-reach

from X i
P0

to Xj
E0. On the other hand, if tij > T ∗(X i

P0
, Xj

E0), it follows that Xj
E0 ∈

Ri
P (X i

P0
, T ∗(X i

P0
, Xj

E0)) which happens at a time prior to tij. This contradicts the

definition tij = inf{t ∈ [t0,∞) : Xj
E0 ∈ Ri

P (X i
P0
, t)}. Finally, the assumption tij 6=

T ∗(X i
P0
, Xj

E0) leads to a contradition and thus tij = T ∗(X i
P0
, Xj

E0).

The previous proposition provides us with a guideline to obtain the partition of

the pursuer set through propagation of the reachable sets of the pursuers. Specifically,

we propose the algorithm to find the partition {Ij, j ∈ J } of the pursuer set I as

follows.

Pursuer Assignment

For each pursuer i ∈ I:

a) Propagate its reachable set from the initial position and time.

b) Stop the propagation when an evader (say Ek) enters the reachable set of this

pursuer.

c) Place i in the cell Ik.

We hereby assume that there is always a sufficient number of pursuers such that

Ij 6= ∅, for all j ∈ J . This assumption ensures that each evader can be actively

chased by at least one of the pursuers.
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5.3.2 Multiple-Pursuers/One-Evader Game

In this subsection, we utilize the reachable set analysis to find the conditions for

capture and to derive the corresponding optimal controls and trajectories of the agents

in the sub-game between multiple pursuers and one evader. Reachable sets provide

a quick snapshot of all possible future trajectories of the agent and thus succinctly

encode all possible future positions of the agent under any possible control action.

Knowledge of the reachable sets of the pursuer and the evader can then be used to

draw conclusions about the potential meeting of the two at some future time (or not).

In this paper we use this intuition behind the information conveyed by the reachable

set of each player to solve the pursuit-evasion problem under minimal assumptions

about the maximum number of players and the environment they operate in. Since

the computation of the reachable sets for each pursuer can be done independently

from the other pursuers, the proposed method is decentralized and scales well with the

number of pursuers, something that is not the case with more traditional approaches

that require directly the solution of a HJI partial differential equation [17].

The evader plays a game with the set of pursuers and we would like to find the

set of terminal points of all “safe” evader trajectories, that is, the set of all terminal

points of the evader at time t, whose trajectories do not pass through any reachable

sets of the pursuers at any time in the interval [t0, t]. The formal definition of such

set is given as follows.

Definition 5.1 Given the reachable sets of the pursuers, we define the usable reach-

able set of the evader at time t ≥ t0 as

R?
E(XE0 , t) =

{
X ∈ D : X = XE(t) and XE(τ) 6∈

n⋃
i=1

Ri
P (X i

P0
, τ),∀τ ∈ [t0, t]

}
.

(110)

From this definition, it is clear that R?
E(XE0 , t) ⊆ RE(XE0 , t). The definition
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implies that R?
E(XE0 , t) is the set of all terminal points of the evader at time t, whose

trajectories do not pass through any reachable sets of the pursuers at any time in the

interval [t0, t].

The following theorem is originated from this definition and is used later on to

develop an efficient numerical algorithm for solving the pursuit-evasion game between

multiple pursuers and one evader in the presence of a known dynamic flow field.

Theorem 5.1 Let T = inf{t ∈ [t0,+∞) : R?
E(XE0 , t) = ∅}. If T < ∞, then capture

is guaranteed for any time greater than T , while the evader can always escape within

a time smaller than T . Hence, T is the time-to-capture if both players play optimally.

Furthemore, let Xf denote the location where the evader is captured by at least one

of the pursuers. Then we have that

Xf ∈ X =

{
X ∈ D : X = XE(T ) and XE(τ) 6∈

n⋃
i=1

Ri
P (X i

P0
, τ),∀τ ∈ [t0, T )

}
. (111)

proof 5.3.2 The proof follows similarly to the proof of Theorem 4.1, and it is omitted.

The previous theorem gives us a criterion for capture of the evader, that is, capture

is guaranteed when R?
E(XE0 , t) = ∅ for some t ∈ [t0,∞). Also notice from (110) that,

in general, R?
E(XE0 , t) can be generated by keeping track of the reachable sets of the

pursuers and the evader at all time prior to the capture time. However, when we

add some constraints with respect to the speeds of the players, we can replace this

criterion with an instantaneous condition which is easier to check and implement.

Before we state and prove this result, the following lemma is needed.

Lemma 5.1 Let ū = ūi for all i = 1, . . . , n denote the maximum speed of a pursuer,

and let v̄ denote the maximum speed of the evader, respectively, and assume that

v̄ < ū. If there exists some time ts ≥ t0 such that XE(ts) ∈ RP (XP0 , ts), then

XE(t) ∈ RP (XP0 , t) for all t ≥ ts.
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proof 5.3.3 The proof is identical to Lemma 4.1.

This lemma essentially states that when the maximum speed of the evader is

smaller than the maximum speed of all the pursuers, then once the evader enters the

reachable set of a pursuer, it can never leave this reachable set. We are now ready to

present the simplified condition on the capture of the evader as follows.

Proposition 5.2 When v̄ ≤ min
i∈I

ūi, the set R?
E(XE0 , t) satisfies

R?
E(XE0 , t) = RE(XE0 , t)\

n⋃
i=1

Ri
P (X i

P0
, t), (112)

for all t ≥ t0. In such cases, the condition R?
E(XE0 , t) = ∅ is equivalent to the

condition

RE(XE0 , t) ⊆
n⋃
i=1

Ri
P (X i

P0
, t). (113)

proof 5.3.4 The proof is identical to the proof of Proposition 4.1, and is thus omitted.

This proposition essentially shows that in the case where v̄ ≤ min
i∈I

ūi, the optimal

time-to-capture can be determined as the first time instant when the union of the

reachable sets of the pursuers
n⋃
i=1

Ri
P (X i

P0
, τ) completely covers the reachable set of

the evader RE(XE0 , t).

5.4 Numerical Construction

5.4.1 Narrow Band Level Set Method

Upon constructing the reachable sets of the pursuers and the evaders by numerically

solving their corresponding HJ equations, one may be tempted to utilize the fast

marching method [133], which is a well-known and efficient approach to track the

evolution of a closed surface as a function of time with speed in the normal direction

along the propagating surface. However, one prerequisite to using the fast marching

method is that each grid point should not be revisited after the level set propogation.
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This prerequisite is not satisfied in our problem due to the existence of the external

flow field. Such phenomenon can be demonstrated in the following 2-dimensional

example [12]. Reachable sets of the pursuer at time t = 1, 3, 5 are depicted in Figure

32. As shown in Figure 32(a), the pursuer start at P0 = [81, 50]T at time t = 0.

Therefore, P0 ∈ RP (P0, 0). However, P0 6∈ RP (P0, 1), as is depicted in Figure 32(a),

where the orange region represents the reachable set of the pursuer at time t = 1. The

initial position of the pursuer is still outside the reachable set at t = 3, as shown in

Figure 32(b). Later on, at t = 5, P0 reenters the reachable setRP (P0, 5), as illustrated

in Figure 32(c). This indicates that P0 is revisited by the reachable set.

(a) (b) (c)

Figure 32: a) Reachable set of pursuer at time t = 1. b) Reachable set of pursuer at
time t = 3. c) Reachable set of pursuer at time t = 5.

The previous observation forces us to utilize a more sophisticated method to con-

struct the reachable sets while retaining some level of efficieny. In particular, we apply

the narrow band level set method [111,133]. The level set method evolves the reacha-

bility front by embedding it as a hyper-surface in a higher dimension, where time is the

additional dimension. The level set formulation provides an implicit representation

of the front, which offers several advantages over an explicit representation [111,133].

The standard level set method would initialize with a mesh grid and update the value

on every grid point to correspond to the motion of the surface. Instead of this full

matrix approach, we adopt a more efficient method known as the narrow band ap-

proach that perform update of value in a neighborhood of the zero level set. This
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approach can save a lot of computation effort with regard to the operation on the

entire computational domain. Furthermore, the time step in the narrow band method

can be adaptively chosen with respect to the maximum velocity field achieved within

the narrow band.

We utilize signed distance function as per choice of implicit function to represent

curves. Its definition is given in (93). Assuming that the signed distance function

with respect to the i-th pursuer reachable set Ri
P (X i

P0
, t) at time t is φiP (X, t), then

the evolution of the reachable front ∂Ri
P (X i

P0
, t) is governed by the viscosity solution

of the Hamilton-Jacobi equation [82,85,86]

∂φiP (X, t)

∂t
+ ū|∇φiP (X, t)|+∇φiP (X, t)w(X, t) = 0, X ∈ D ⊂ R3, (114)

with initial condition φiP (X, t0) = |X − X i
P0
|. Note that Ri

P (X i
P0
, t) = {X ∈ D :

φiP (X, t) ≤ 0} and ∂Ri
P (X i

P0
, t) = {X ∈ D : φiP (X, t) = 0}.

Similarly, the reachable front ∂RE(XE0 , t) of the evader is computed by solving

the Hamilton-Jacobi equation

∂φE(X, t)

∂t
+ v̄|∇φE(X, t)|+∇φE(X, t)w(X, t) = 0, X ∈ D ⊂ R3, (115)

with initial condition φE(X, t0) = |X − XE0|, where φE(X, t) is the signed distance

function with respect to the reachable set RE(XE0 , t) of the evader at time t.

In the case where the condition in Proposition 5.2 is not satisfied, we need to track

∂R?
E(XE0 , t) in order to determine the optimal time-to-capture. Instead of propagat-

ing ∂R?
E(XE0 , t) directly, we propagate an intermediate reachable front ∂R̃E(XE0 , t)

which can be computed by solving the following modified version of the Hamilton-

Jacobi equation

∂φ̃E(X, t)

∂t
+ ṽ(t) |∇φ̃E(X, t)|+∇φ̃E(X, t)w(X, t) = 0, X ∈ D ⊂ R3, (116)
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where

ṽ(t) =


min
i∈I

ūi, if
n⋃
i=1

φiP (X, t) < 0,

v̄, otherwise,

(117)

and initial condition φ̃E(X, t0) = |X −XE0|.

The main idea here is to treat the reachable sets of the pursuers as moving ob-

stacles and propagate R̃E(XE0 , t) with the maximum speed of the evader v̄ for the

parts that fall outside the union of the reachable sets of the pursuers, and to keep

pace with the propagation of the reachable set of the slowest pursuer when the front

of the evader enters any reachable set of the pursuers. By doing this, we can make

sure that the front of the evader does not grow out of the union of the reachable sets

of the pursuers. The parts of the reachable front of the evader that do not encounter

the reachable sets of the pursuers remain unaffected by the change of speed from v̄ to

ṽ, since these changes are only performed for points inside the reachable sets of the

pursuers.

Let R̃E(XE0 , t) = {X ∈ D : φ̃E(X, t) ≤ 0}. At every time instant t, by con-

struction, R̃E(XE0 , t) excludes all the points X such that X = XE(t) and X 6∈
n⋃
i=1

Ri
P (X i

P0
, t), while X ∈

n⋃
i=1

Ri
P (X i

P0
, τ), for some τ ∈ [t0, t). It follows that

R?
E(XE0 , t) = R̃E(XE0 , t)\

n⋃
i=1

Ri
P (X i

P0
, t).

Moreover, since Ri
P (X i

P0
, t) = {X ∈ D : φiP (X, t) ≤ 0}, the usable reachable set

of the evader can also be represented in a form that is more suitable for numerical

calculations, that is,

R?
E(XE0 , t) = {X ∈ D : φ̃E(X, t) ≤ 0 and

n⋃
i=1

φiP (X, t) ≥ 0}.
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5.4.2 Pursuer Classification

For problems with a large number of pursuers it is very likely that not all pursuers are

involved in the optimal capture. In certain applications, such as when the pursuers

are subject to energy or fuel limitations, or when they play a dual role as pursuers

and guards of a certain region of responsibility, it may be beneficial that some of the

pursuers remain inactive. In group pursuit problems involving several pursuers, we

may therefore classify the pursuers according to their level of involvement as either

active or inactive.

In particular, we can divide the pursuer set into two distinct subsets. One subset

consists of all the active pursuers, while the second subset contains the inactive pur-

suers that do not chase the evader. We also refer to the pursuers in the latter subset

as guards, since they remain inactive during the optimal pursuit when the evader

stays along its optimal trajectory or join the chase if the evader plays suboptimally

and deviates from its original trajectory. Once the capture point Xf is found, the

active pursuers can be identified as the pursuers whose boundary of the reachable

sets at time T intersects Xf , while the rest of the pursuers are guards.

The classification of the pursuer set into active pursuers and guards can be demon-

strated by the situation depicted in Figure 33(a). As is shown in this figure, the

reachability fronts of pursuers P1, P2 and P3 at the capture time T coincide at the

terminal position Xf . These three pursuers need to reach Xf at time T to ensure

capture of the evader. Hence, these are the active pursuers. On the other hand, pur-

suer P4 cannot reach Xf within time T , but its reachable set covers a portion of the

reachable set of the evader. This can been seen in Figure 33(b) where the reachable

set of pursuer P4 is removed to show that the reachable set of the evader is not fully

covered by the union of reachable sets of P1, P2 and P3 at time T . Therefore, P4 acts

as a guard.
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XT

Uncovered 
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(b)

Figure 33: a) Level sets of four pursuers and one evader at time T . b) Level sets of
three pursuers and one evader at time T . Level set of pursuer P4 is removed to show
the reachable set of the evader is not fully covered by the union of reachable sets of
P1, P2 and P3.

5.4.3 Time-Optimal Paths

In this section, we show how the optimal controls of the evaders and the active

pursuers, as well as their corresponding optimal trajectories can be retrieved from

the computed level sets.

We first consider the active pursuers. Since they can reach Xf at time T , it is clear

that Xf resides on the boundary of their reachable sets, otherwise capture would have

occurred earlier. Therefore, when the φiP ’s are differentiable, the optimal trajectory

for each active pursuer satisfies [85]

dX i∗
P

dt
= ūi

∇φiP
|∇φiP |

+ w(X i∗

P , t), X i∗

P (0) = X i
P0
, i ∈ IA, (118)

where IA ⊆ I denotes the index set of the active pursuers. The corresponding optimal

controls of the active pursuers are thus

ui∗P = ūi
∇φiP
|∇φiP |

, i ∈ IA. (119)
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In order to find the optimal trajectories of the active pursuers, we propagate backward

the dynamics (118) starting from Xf until it reaches X i
P0
, i ∈ IA.

As for the evader, there are two possible outcomes after the termination of the

evolution of the reachable sets of the pursuers and the evader. One possibility is that

at the terminal time T , Xf resides on ∂R̃E(XE0 , T ) (or ∂RE(XE0 , T ) when v̄ ≤ min
i∈I

ūi

). In this case it follows that the boundary of the reachable set of the evader is not

fully covered for all t < T . When differentiable, the optimal trajectory of the evader

is then unique and it satisfies the differential equation

dX
∗
E

dt
= v̄
∇φE

|∇φE|
+ w(X

∗

E, t). (120)

The corresponding optimal control for the evader is given by

u∗E = v̄
∇φE

|∇φE|
. (121)

It may also happen that Xf lies in the interior of R̃E(XE0 , T ) (or the interior of

RE(XE0 , T ) when v̄ ≤ min
i∈I

ūi). This situation occurs when there exists tc ∈ (t0, T )

such that ∂RE(XE0 , t) ⊂
n⋃
i=1

Ri
P (X i

P0
, t), for all t ∈ [tc, T ]. However, some part of

the interior of RE(XE0 , t) may not be covered until time T . In this case, the optimal

control of the evader is not necessarily unique. In particular, the control of the evader

can be chosen from the set

U∗E =

{
uE ∈ UE : X satisfies (109) and X(τ) 6∈

n⋃
i=1

Ri
P (X i

P0
, τ), ∀τ ∈ [t0, T ]

}
. (122)

It follows that an optimal control for the evader is valid, as long as it can bring the

evader to Xf at time T , without getting captured by any of the pursuers prior to

time T .
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5.5 Simulation Results

We present in the section simulation results for the multiplayer pursuit-evasion prob-

lem under two distinct flow fields.

We first consider a state-dependent wind field that resembles the shape of hurri-

canes whose wind field snapshot can be found in [108]. Let X = [x, y, z]T ∈ R3, this

much simplified approximation model is generated:

w(X) =

√
z

h
A(X −Xs), X ∈ D (123)

where

A =


0.2 0.3 0

−0.15 0.1 0

0 0 0

 . (124)

In (123), Xs = [55, 40, 0] denotes the location of the flow singularity and D = [0, 128]3

represents the 3D space. Also in (123), h = 128 denotes the height of the 3D space,

and Ai is a 3 × 3 matrix, whose structure captures the local characteristics of the

flow singularity. Notice that due to the designated value of A, the flow field along z

axis is zero. Also, for each fixed z, the flow field in the xy-plane approximates the

velocity field of a vortex with a linear vector field from the Rankine model [29]. The

multiplier
√
z/h scales the magnitude of the flow field along the z axis so that the

flow intensifies as the height increases. The vector field of the external flow field is

depicted in Figure 34.

In the first example, we formulate a five-pursuers/two-evaders problem. At time

t0 = 0, the three pursuers are located at X1
P0

= [60, 20, 30]T, X2
P0

= [70, 60, 50]T,

X3
P0

= [90, 80, 70]T, X4
P0

= [50, 80, 60]T and X5
P0

= [25, 70, 45]T, respectively. Their

corresponding maximum speeds are given by ū1 = 30, ū2 = 30, ū3 = 40, ū4 = 50
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Figure 34: An analytical flow field that approximates a hurricane.

and ū5 = 40. The initial locations of the evaders are given by X1
E0

= [50, 50, 40]T,

X2
E0

= [70, 90, 75]T and their maximum speed are v̄1 = 20, v̄2 = 15, respectively. Note

that, in this example, the maximum speed of the evaders is smaller than the speed

of the pursuers. Therefore, we only need to propagate the reachability front of the

evaders and pursuers in order to recover R?
E(XE0 , t).

We start the simulation by propagating the reachability front of each pursuer until

it coincides with one of the evaders to decide which evader the pursuer is assigned to.

In this example, P1, P2 and P5 are assigned to evader E1 and P3, P4 are paired with

E2.

Then for each subgame, we utilize the reachable set algorithm to find the optimal

terminal time for the evader to be captured by the pursuers. The optimal time-

to-capture for the first subgame between P1, P2, P5 and E1 is T1 = 1.20 and the

optimal time-to-capture of the second subgame is T2 = 0.76. So the overall time-to-

capture is To = 1.20. The reachable fronts of the pursuers and the evaders at their

corresponding capture time, as well as the optimal trajectories of the active pursuers

and the evaders are shown in Figure 35. The red, yellow and purple color surfaces

111



represent the reachable fronts of the pursuers P1, P2 and P5 at the terminal time

T1, respectively. The union of the reachable sets of these pursuers fully cover the

reachable set of the evader E1 at time T1 denoted by the blue surface and the evader

is captured at XT1 . The red dashed and blue lines represent the optimal trajectories

of the pursuers and evaders respectively. Black arrows on the background represent

the external flow field.

P1

P2

P3

P4P5

E1

E2

XT1

XT2

Figure 35: Pursuit-evasion between 5 pursuers and 2 evader in an analytical flow
field.

We then apply our algorithm to a pursuit-evasion problem with respect to the

Matlab default wind dataset. The external flow field generated from this dataset

is depicted in Figure 36. Through this example, we demonstrate that the proposed

algorithm can handle scenarios with complex spatial flow fields.

The initial positions of the pursuers and the evaders are set as X1
P0

= [45, 20, 30]T,

X2
P0

= [55, 45, 45]T, X3
P0

= [50, 70, 35]T, X4
P0

= [45, 95, 40]T and X1
E0

= [70, 40, 40]T,
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Figure 36: A realistic flow field from Matlab.

X2
E0

= [60, 90, 30]T, respectively. Their corresponding maximum speeds are given by

ū1 = 40, ū2 = 30, ū3 = 30, ū4 = 35 and v̄1 = 15, v̄2 = 20. After propagation of

reachable sets of the pursuers, it is determined that P3, P4 will go after E1 while

E2 will be actively chased by P1 and P2. Capture of E1 occurs at time T1 = 1.00

and E2 is captured at time T2 = 0.98. the optimal paths of the pursuers and the

evaders are depicted in Figure 37. The reachability fronts of the pursuers P1 through

P4 are illustrated in purple, green, red and yellow colors. Similarly, the reachability

fronts of the evaders E1, E2 are depicted by blue and magenta surfaces. The optimal

trajectories of the pursuers and evaders are shown as red dashed and blue lines,

respectively.
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P2
P3

P4

E1

E2 XT1

XT2

Figure 37: Pursuit-evasion between 4 pursuers and 2 evader in a realistic wind field.
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CHAPTER VI

PURSUIT-EVASION GAMES UNDER STOCHASTIC

FLOW

FIELDS

6.1 Problem Formulation

Consider a pursuit-evasion game in an external stochastic dynamic flow field with a

single pursuer P and a single evader E. Henceforth, we will refer to the pursuer and

the evader collectively as “agents”. The dynamics of the pursuer P is given by

dXP (t) = uP (t)dt+W (XP (t), dt, dwP ), XP (0) = XP0 , (125)

where XP (t) = [xP (t), yP (t)]T ∈ R2 denotes the position of the pursuer, uP (t) ∈ R2

is the control input of the pursuer that satisfies the piecewise constraint uP (t) ∈

UP , where UP = {u ∈ R2, |u| 6 ū}, and | · | represents the 2-norm. In (125),

W (XP (t), dt, dwP ) represents the instantaneous dynamic flow. It is further assumed

that the instantaneous flow field takes the form

W (X, dt, dw) = F (X)dt+G(X)dw, X ∈ R2, (126)

where w = [w1, w2]T and w1, w2 denote two independent standard Wiener processes.

F (X) : R2 → R2 and G(X) : R2 → R2×2 are two state dependent functions.

The goal of the pursuer is to capture an evader, whose kinematics is given by

dXE(t) = uE(t)dt+W (XE(t), dt, dwE), XE(0) = XE0 , (127)
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where XE(t) = [xE(t), yE(t)]T ∈ R2 is the position of the evader, and uE(t) is its

control input such that uE(t) ∈ UE, where UE = {v ∈ R2, |v| 6 v̄}. It is assumed that

v̄ < ū for simplicity of the analysis. Also note that wP in (125) and wE in (127) are

independent Wiener processes in the form of w.

Let X = [XT
E, X

T
P ]T ∈ R4 denote the state of the system. The game begins at

initial time t0 = 0 with initial positions X0 = [XT
E0
, XT

P0
]T, and terminates when there

exists some time T such that ‖XP (T )−XE(T )‖ ≤ ε for some ε > 0, where ‖·‖ denotes

the Euclidean norm. Here T is called the terminal time.

Let J(γP , γE) = E
[∫ T

0
1dt
]

be the cost function of the game, where γP , γE : R+ ×

R4 7→ R2 denote the feedback strategies of the pursuer and the evader, respectively,

such that γP (t,X ) = uP (t) and γE(t,X ) = uE(t). We assume that each player has

perfect knowledge of the dynamics of the system represented by (125) and (127), the

constraint sets UP and UE, the cost function J , as well as the initial state X0. It is

also assumed that the value V of the game [62] exists, that is,

V = min
γP

max
γE

J = max
γE

min
γP

J. (128)

The objective of this chapter is to characterize the capture condition of the pursuit-

evasion game through a reachability-based approach. Henceforth, we consider the

open-loop representation of the optimal strategies of the pursuer and the evader. In

particular, we consider the control of the pursuer uP ∈ UP , where UP consists of

all piecewise continuous functions, whose range is included in UP , and call uP an

admissible control of the pursuer. Similarly, the control uE is an admissible control

of the evader if uE ∈ UE, which consists of all piecewise continuous functions whose

range is included in UE.
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6.2 Problem Analysis

6.2.1 Moment Expansion

Consider the pursuer dynamics given by (125). We can divide the variable XP to a

deterministic part and a random fluctuation [77]. In particular, let

XP = X̄P + ξP , (129)

where X̄P := E [XP ] denotes the mean of XP and ξP is a random variable with

zero mean. The corresponding equations of the time-evolution of XP and linear

approximation of ξP are given by

dX̄P (t) = (F (X̄P (t)) + uP )dt, X̄P (0) = XP0 , (130)

dξP (t) = D(X̄P (t))ξP (t)dt+G(X̄P (t))dw, ξP (0) = 02×1, (131)

where D(X̄P (t)) = ∂F
∂X

(X̄P (t)) represents the Jacobian of F . The decomposition of the

state variable makes it easy to describe how the mean and variance of the probability

distribution of XP evolves. The evolution of the mean of XP is readily given by (130)

and the change of the covariance matrix ΣP can be calculated as

dΣP

dt
= DΣP + ΣPD

T +GGT, ΣP (0) = 02×2, (132)

where the arguments of the functions ΣP , D and G are omitted for brevity.

It is worth mentioning that ξP (t) follows a Gaussian distribution due to the fact

that the linear dynamics (125) preserve Gaussian distributions [68].

We can apply a similar analysis to the evader, and let

XE = X̄E + ξE. (133)
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Then the ordinary differential equations that govern the mean X̄E and covariance

matrix ΣE of ξE can be obtained as

dX̄E(t)

dt
= F (X̄E(t)) + uE, X̄E(0) = XE0 , (134)

dΣE

dt
= DΣE + ΣED

T +GGT, ΣE(0) = 02×2. (135)

6.2.2 Reachable Sets

In the deterministic setting, a reachable set at a given time is defined as the set of

points that can be visited by the agent at a particular time [136]. In particular, the

reachable set of the pursuer at time t ≥ 0, denoted by RP (XP0 , t), is the set of all

points X ∈ R2 such that there exists a trajectory satisfying (125), with initial position

XP0 and terminal position X at time t. Similarly, the reachable set RE(XE0 , t) of the

evader at time t ≥ 0 is the set of all points X ∈ R2 such that there exists a trajectory

satisfying (127), with initial position XE0 and terminal position X at time t.

However, in the stochastic setting, that is, when the dynamics of the agent is

driven by stochastic differential equations, then this agent has a non-zero probability

to reach any point within the domain of interest (R2 in our case) due to the fact that

w ∼ N (0, I) and the support of the normal distribution N (0, I) is R2. Therefore, the

reachable set defined in the deterministic setting may not be a good indicator for our

problem.

Instead, we follow the decomposition approach presented in the previous sub-

section and describe the reachable set of each agent as the mean reachable set and

its random fluctuation. The mean reachable sets of each agent for our problem are

defined as the deterministic reachable sets of the pursuer and the evader whose dy-

namics are given by (130) and (134), respectively. The variance of the reachable sets

are determined by (132) and (135), respectively.

Here we give some formal definitions about reachable sets that will be useful in
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the follow-up analysis.

Definition 6.1 (Ref. [136]) The mean reachable set of the pursuer at time t ≥ t0,

denoted by R̄P (XP0 , t), is the set of all points X ∈ R2, such that there exists a

trajectory satisfying (130) for all τ ∈ [t0, t] with XP (t0) = XP0 and XP (t) = X.

In other words, the mean reachable set of the pursuer at time t ≥ t0 is the set of

all the points that can be reached by the pursuer at time t under the dynamics (130).

Similarly, the mean reachable set R̄E(XE0 , t) of the evader at time t ≥ t0 is the set of

all the points that can be reached by the evader at time t under the dynamics (134).

Definition 6.2 (Ref. [87]) The boundary of the mean reachable set is the mean reach-

ability front.

The mean reachability fronts of the pursuer and the evader at time t ≥ t0 are

denoted by ∂R̄P (XP0 , t) and R̄E(XE0 , t), respectively.

Definition 6.3 The augmented reachable set of the pursuer at time t ≥ t0 is defined

as

R̃P (XP0 , t) =
⋃

X∈R̄P (XP0
,t)

OXP , (136)

where OXP = {Y ∈ R2 : gP (Y ) ≤ α}, and

gP (Y ) =

(
(Y (1)−X(1)) cos(AP ) + (Y (2)−X(2)) sin(AP )

σP1

)2

+

(
(Y (1)−X(1)) sin(AP ) + (Y (2)−X(2)) cos(AP )

σP2

)2

.

Here σP1 =
√
λP1 and σP2 =

√
λP2, where λP1 and λP2 represent the two eigenval-

ues of the covariance matrix ΣP (t), and AP = arctan(vP (2)/vP (1)), where vP is the

eigenvector of ΣP (t) that corresponds to the largest eigenvalue. Also, α is a design

parameter that can be varied to reflect different levels of confidence intervals.
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Similarly, the augmented reachable set of the evader at time t ≥ t0 is defined as

R̃E(XE0 , t) =
⋃

X∈R̄E(XE0
,t)

OXE , (137)

where OXE = {Y ∈ R2 : gE(Y ) ≤ α}, and

gE(Y ) =

(
(Y (1)−X(1)) cos(AE) + (Y (2)−X(2)) sin(AE)

σE1

)2

+

(
(Y (1)−X(1)) sin(AE) + (Y (2)−X(2)) cos(AE)

σE2

)2

.

Here σE1 =
√
λE1 and σE2 =

√
λE2, where λE1 and λE2 represent the two eigenvalues of

the covariance matrix ΣE(t). AE = arctan(vE(2)/vE(1)), where vE is the eigenvector

of ΣE(t) that corresponds to the largest eigenvalue.

Notice that OXP in Definition 6.3 is also known as a error ellipse (or confidence

ellipse) [58, 135] for a 2-dimensional Gaussian distribution. The error ellipse rep-

resents an iso-contour of the Gaussian distribution, and allows one to visualize a

2-dimensional confidence interval. The problem then is how to find α, such that the

scale of the resulting ellipse corresponds to a prespecified confidence level. This rela-

tionship can be found through the cumulative distribution function of the chi-squared

distribution [8]. Each value of α corresponds to a confidence ellipse with probability

β. Their relation can be found by checking the chi-squared distribution table [155].

For instance, the value α = 5.991 corresponds to a 95% confidence ellipse. That is,

pick any X ∈ R̄P (XP0 , t), there exists a control uP ∈ UP such that X can be reached

by the pursuer at time t with dynamics (130) and control uP . Then the terminal

position at time t under dynamics (125) and control ūP will reside in the region OXP

centered at X with 95% probability. Henceforth, we fix the value of α to be 5.991 in

all the examples.

The previous discussion is demonstrated in Figure 38. In this example the agents
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are subject to the flow field

W (X, dt, dw) = A(X −Xs)dt+Bdw, (138)

where

A =

 0.2 0.3

−0.15 0.1

 , Xs =

15

15

 , B =

0.25 0

0 0.25

 .
The vector field in the background depicts the deterministic part of the flow field.

The green curve represents the mean reachability front of the pursuer at time t = 2,

and the gray region corresponds to the augmented reachable set of the pursuer. The

magenta ellipse and its interior denotes the 95% error ellipse with respect to X1.

0 5 10 15
x

5

10

15

20

y P

X1

Augmented Reachabl set

Mean Reachabl set

Error
ellipse

Figure 38: Mean and augmented reachable sets of the pursuer at t = 2. A 95%
confidence ellipse centered at X1 is also shown.

Figure 39 shows a Monte Carlo simulation of 100 trajectories with dynamics (125)

and the flow field specified by (138). The initial position is at X0 = [12, 12]T and the

nominal control is given by uP = [2 cos(π/4), 2 sin(π/4)]T. A 95% confidence ellipse

centered at the terminal position with respect to the mean dynamics (130) is also
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illustrated as the gray shaded region. As can be seen in the figure, more than 95%

of all the terminal position samples fall in this confidence ellipse, which is consistent

with our previous analysis.

X0

Figure 39: A 95% confidence ellipse in gray that contains most of the terminal
positions (cyan points) of the Monte Carlo simulation.

Suppose that at some finite time tc, the condition R̃E(XE0 , tc) ⊆ R̃P (XP0 , tc) holds.

Then for any admissible control of the evader uE ∈ UE in the time interval [0, tc], the

terminal position XE(tc) ∈ R̃E(XE0 , tc) ⊆ R̃P (XP0 , tc) with at least 95% probability.

This implies that there is a high probability for the existence of an admissible control

uP ∈ UP of the pursuer such that ‖XP (tc)−XE(tc)‖ ≤ ε.

On the other hand, if there exists some finite time te, such that R̃E(XE0 , te) *

R̃P (XP0 , te), the evader can find a control uE ∈ UE to reach the vicinity of R̃E(XE0 , te)

excluding R̃P (XP0 , te) and avoid capture in the time interval [0, te] with a high prob-

ability, no matter how the pursuer chooses his own admissible control.

These observations lead to the following proposition.

Proposition 6.1 Let

T = inf{t ∈ R : R̃E(XE0 , t)\R̃P (XP0 , t) = ∅}.
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Then T is the expected optimal time-to-capture with probability β2.

Proof. We start the proof by introducing two events. Let A = {XE(T ) ∈

R̃E(XE0 , T )} and B = {XP (T ) ∈ R̃P (XP0 , T )}. Since R̃P (XP0 , T ) =
⋃
X∈R̄P (XP0

,T )OXP

by Definition 6.3, and for each X ∈ R̄P (XP0 , T ) and its corresponding admissible

control ūP in [0, T ], there is a β probability for the terminal position at time t under

dynamics (125) and control ūP to be in the region OXP centered at X. Thus, it can be

deduced that P (A) = 95%. Similarly, P (B) = β. Furthermore, since the construc-

tion of R̃E(XE0 , T ) is independent from the evader and vise versa, it follows that the

events A and B are independent. Therefore, P (A ∩ B) = P (A)P (B) = β2.

Now that we have found the probability for events A and B to happen at the

same time, we can restrict our analysis to the case where {XE(T ) ∈ R̃E(XE0 , T )}

and {XP (T ) ∈ R̃P (XP0 , T )}. Since R̃E(XE0 , t)\R̃P (XP0 , t) = ∅, it follows that for

any point X ∈ R̃E(XE0 , T ) that can be visited by the evader at time T through

an admissible evading control uE ∈ UE, it is also true that X ∈ R̃P (XP0 , T ). In

other words, there exists an admissible control of the pursuer uP ∈ UP such that

‖XP (T )−XE(T )‖ = ε. Therefore, regardless of the strategy it picks, the evader can

be captured by the pursuer at some time t ≤ T .

On the other hand, since t = T is the first time such that R̃E(XE0 , t)\R̃P (XP0 , t) =

∅ is satisfied, it follows that R̃E(XE0 , t)\R̃P (XP0 , t) 6= ∅ for all 0 ≤ t < T . Hence,

for all t ∈ [0, T ), there exists Xt ∈ R̃E(XE0 , t) such that Xt 6∈ R̃P (XP0 , t). In other

words, for any time t ∈ [0, T ), there exist an admissible control for the evader to

reach Xt such that Xt cannot be visited by the pursuer at time t. It follows that the

evader can be expected to avoid capture before time T .

From the previous statements, we can conclude that T is the expected optimal

time-to-capture with β2 probability.
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6.3 Numerical Solution

6.3.1 Level Set Method

In order to construct the mean reachable sets of the pursuers and the evader and

their corresponding augment reachable sets, we utilize the level set method.

The mean reachability front ∂R̄P (XP0 , t) of the pursuer is governed by the viscosity

solution of the Hamilton-Jacobi (HJ) equation

∂φP (X, t)

∂t
+ ū |∇φP |+ w(X, t)∇φP = 0, (139)

with initial condition φP (X, 0) = |X −XP0|. Moreover, the mean reachable set of the

pursuer coincides with the region(s) where φP is non-positive. Similarly, the mean

reachability front ∂R̄E(XE0 , t) of the evader is given by the HJ equation

∂φE(X, t)

∂t
+ v̄ |∇φE|+ w(X, t)∇φE = 0, (140)

with initial conditions φE(X, 0) = |X −XE0|.

After the mean reachable set of the pursuer at some time t is obtained through

level set propagation, the augmented reachable set of the pursuer at time t can be

subsequently achieved by substituting each mesh grid point X inside the mean reach-

able set with the error ellipse OXP defined in (136). The covariance matrix ΣP (t) that

is required to generated the error ellipse can be calculated from forward integration of

equation (132). The aforementioned method to generate the augmented reachable set

can be simplified as follows. Instead of extending all mesh grid points inside the mean

reachable set with their corresponding error ellipses, we can obtain the augmented

reachable set by substituting only the grid points in the mean reachability front with

their error ellipse counterparts. The reason this approach works is that the error

ellipse with respect to the points in the interior of the mean reachable set will still be
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in the interior of the resulting augmented reachable set. The augmented reachable

set of the evader at time t can be generated in a similar manner. Afterwards, the

expected optimal time-to-capture can be found as the first time such that the aug-

mented reachable set of the evader is fully covered by the augmented reachable set of

the pursuer, as described in Proposition 6.1.

6.4 Simulation Results

In this section, we present simulation results of the two-player pursuit-evasion problem

under an external stochastic flow field. The external wind field is approximated by

W (X, dt, dw) = A(X −Xs)dt+Bdw,

where A ∈ R2×2 and Xs ∈ R2, σ ∈ R are constant values. The deterministic part of

this wind field can be seen as a flow generated from a single singularity point located

at Xs, with its characteristics captured by A. We set

A =

 0.2 0.3

−0.15 0.1

 , Xs =

15

15

 , B =

0.25 0

0 0.25

 .
The initial conditions of the pursuer and the evader are given by XP0 = [12, 12]T

and XE0 = [14, 14]T. The maximum speeds of the pursuer and the evader are set

to ū = 3 and v̄ = 1, respectively. At time t = 1.88, the augmented reachable set

of the evader, depicted as the dark gray region, is fully contained in the augmented

reachable set of the pursuer, depicted as the light gray region. The result generated

by the method in this paper is shown in Figure 40. Therefore, the expected optimal

time-to-capture T = 1.88 with a 90.25% probability.
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Figure 40: Augmented reachable sets with 95% confidence level of the pursuer and
the evader at t = 1.88 in light and dark gray, respectively.
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CHAPTER VII

GAME THEORETIC CONTINUOUS TIME

DIFFERENTIAL DYNAMIC PROGRAMMING

7.1 Introduction

Differential game-theoretic or min-max formulations are important extensions of op-

timal control having direct connections to robust and H∞ nonlinear control theory.

Despite the plethora of work in this area, min-max algorithms for trajectory opti-

mization have only very recently been derived, and have been applied to humanoid

robotic control problems [105], [104]. In addition, although the initial derivation of

DDP [63] is in continuous time, most of work on trajectory optimization, including

the min-max DDP formulation in [105], [104], relies on either discrete time nonlinear

systems or discretized versions of systems that are initially expressed in continuous

time.

Given all this existing work in the area of trajectory optimization based on DDP,

our contribution in this chapter is the derivation of Game-Theoretic DDP (GT-DDP)

in continuous time. We provide a set of backward differential equations that are

easy to implement and derive the optimal policies for the two players/controllers.

Furthermore, we investigate the effect that the min-max formulation has in the feed-

forward and feedback parts of the optimal control policies.

With respect to the initial treatment of DDP in the book by D. H. Jacobson and D.

Q. Mayne [63] our analysis and derivation of GT-DDP avoids a restrictive assumption

of the initial derivation. This assumption was also discussed in a review paper of [63]

published in 1971 by Michael K. Sain [32]. In particular, the fundamental assumption

in the derivation of continuous-time DDP in [63] is that the nominal control ū is close
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to the optimal control u∗. This assumption allows the expansion of the terms in

the Hamilton-Jacobi-Bellman(HJB) Partial Differential Equation (PDE) around u∗

instead ū and results in the cancelation of terms that depend on Hu∗ = 0, where Hu∗

stands for the partial derivative of the Hamiltonian with respect to the control input.

GT-DDP does not rely on the assumption regarding the closeness of the nominal

controls ū and v̄ to u∗ and v∗, respectively, and therefore the quadratic expansions

of the terms in the HJB PDE are computed around the nominal controls ū, v̄ and

not the optimal control u∗, v∗. In this case, the term Hu is not necessarily equal to

zero.

7.2 Problem Formulation

We consider the following min-max problem:

V (x(t0), t0) = min
u

max
v

{
φ(x(tf ), tf ) +

∫ tf

t0

L(x,u,v, t)dt

}
, (141)

subject to the dynamics

dx

dt
= F(x,u,v, t), x(t0) = x0, (142)

where V stands for the optimal performance index starting from x0 at time t0, x(t) is

an n-dimensional vector function of time describing the state of the dynamic system

at t ∈ [0, tf ]. L and φ are scalar functions of their arguments, where L(x,u,v, t) is

the running cost and φ(x(tf ), tf ) is the terminal cost. Finally, u is an m-dimensional

vector function that represents the stabilizing control of the system, whose objective

is to minimize the performance index, whereas v is a q-dimensional vector function

representing the destabilizing control of the system that tries to maximize the per-

formance index.

In continuous time, the analysis starts with the Hamilton-Jacobi-Bellman Isaacs
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(HJBI) partial differential equation. More precisely, we have:

−∂V (x, t)

∂t
= min

u
max

v

{
L(x,u,v, t) + Vx(x, t)TF (x,u,v, t)

}
, (143)

under the boundary condition

V (x, tf ) = φ(x(tf ), tf ). (144)

Given an initial/nominal trajectory of the state and control (x̄, ū, v̄), and letting

δx = x− x̄, δu = u− ū, δv = v− v̄, the linearized dynamics can be represented as

dx

dt
= F (x̄ + δx, ū + δu, v̄ + δv, t), (145)

dδx

dt
= Fx(x̄, ū, v̄, t)δx + Fu(x̄, ū, v̄, t)δu + Fv(x̄, ū, v̄, t)δv. (146)

The main idea here is to take expansions of the terms in both sides of the equation

(143) around the nominal state and control trajectories (x̄, ū, v̄) to derive the update

law for the stabilizing control, destabilizing control and backward differential equa-

tions for the zeroth, first and second order approximation terms of the value function.

Starting with the left-hand side of (143) we have:

∂V (x, t)

∂t
=
∂V (x̄, t)

∂t
+
∂V T

x

∂t
δx +

1

2
δxT

∂Vxx
∂t

δx. (147)

We also have

dV (x̄, t)

dt
=
∂V (x̄, t)

∂t
+ V T

x

dx

dt
=
∂V (x̄, t)

∂t
+ V T

x F (x̄, ū, v̄, t). (148)

Thus, we get
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∂V (x̄, t)

∂t
=

dV (x̄, t)

dt
− V T

x F (x̄, ū, v̄, t). (149)

Similarly,

∂Vx(x̄, t)

∂t
=

dVx(x̄, t)

dt
− VxxF (x̄, ū, v̄, t). (150)

Finally, the partial time derivative of the Hessian of the value function takes the

form:

∂Vxx(x̄, t)

∂t
=

dVxx(x̄, t)

dt
−

n∑
i=1

V (i)
xxxF

(i), (151)

where V
(i)
xxx denotes the Hessian matrix of the i-th element of Vx and F (i) denotes the

i-th element of F (x̄, ū, v̄, t). Henceforth, the arguments for the functions V, F , etc,

are omitted for brevity, and they are evaluated at the nominal trajectory (x̄, ū, v̄)

unless otherwise specified.

The left-hand side of (143) then becomes

−∂V (x, t)

∂t
= −dV

dt
− dV T

x

dt
δx− 1

2
δxT

dVxx
dt

δx

+ V T

x F + δxTVxxF +
1

2
δxT

( n∑
i=1

V (i)
xxxF

(i)

)
δx. (152)

Now we turn to the expansion of the right-hand side of (143).

L(x,u,v, t)

= L(x̄ + δx, ū + δu, v̄ + δv, t)

= L+ LT

xδx + LT

uδu + LT

vδv +
1

2

[
δxT δuT δvT

]
Lxx Lxu Lxv

Lux Luu Luv

Lvx Lvu Lvv



δx

δu

δv

 .
(153)
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By expanding Vx(x, t), we have

Vx(x, t) = Vx(x̄ + δx, t) = Vx + Vxxδx +
1

2
U , (154)

where U ∈ Rn and each element of U is defined as

U (i) = δxTV (i)
xxxδx.

The dynamic equation is expanded up to the first order, that is,

F (x,u,v, t) = F (x̄ + δx, ū + δu, v̄ + δv, t)

= F + Fxδx + Fuδu + Fvδv. (155)

Therefore, the right-hand side of (143) can be expressed as

min
u

max
v

[
L(x,u,v, t) + V T

x F (x,u,v, t)

]

= min
δu

max
δv

[
L+ LT

xδx + LT

uδu + LT

vδv +
1

2


δx

δu

δv


T 
Lxx Lxu Lxv

Lux Luu Luv

Lvx Lvu Lvv



δx

δu

δv


+ V T

x F + V T

x Fxδx + V T

x Fuδu + V T
x Fvδv + δxTVxxF + δxTVxxFxδx + δxTVxxFuδu

+ δxTVxxFvδv +
1

2
UTF + o(δxTδx)

]
. (156)

Note that the term 1
2
UTF can be written as follows
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1

2
UTF =

1

2

n∑
i=1

(
δxTV (i)

xxxδxF
(i)

)
=

1

2
δxT

( n∑
i=1

V (i)
xxxF

(i)

)
δx.

After equating (152) with (156), and canceling repeated terms, we obtain

− dV

dt
− δxT

dVx
dt
− 1

2
δxT

dVxx
dt

δx

= min
δu

max
δv

{
L+ LT

xδx + LT

uδu + LT

vδv +
1

2


δx

δu

δv


T 
Lxx Lxu Lxv

Lux Luu Luv

Lvx Lvu Lvv



δx

δu

δv


+ V T

x Fxδx + V T

x Fuδu + V T

x Fvδv + δxTVxxFxδx + δxTVxxFuδu + δxTVxxFvδv

}
= min

δu
max
δv

{
L+ δxTQx + δuTQu + δvTQv +

1

2
δxTQxxδx +

1

2
δuTQuuδu

+
1

2
δvTQvvδv + δuTQuxδx + δvTQvxδx + δuTQuvδv

}
, (157)
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where

Qx = F T

xVx + Lx,

Qu = F T

uVx + Lu,

Qv = F T

vVx + Lv,

Qxx = Lxx + 2VxxFx,

Quu = Luu,

Qvv = Lvv,

Qux = F T

uVxx +
1

2
Lux +

1

2
LT

xu,

Qvx = F T

vVxx +
1

2
Lvx +

1

2
LT

xv,

Quv =
1

2
Luv +

1

2
LT

vu.

(158)

To find the optimal control δu∗ and δv∗, we compute the gradients of the expres-

sion in (157) with respect to δu and δv, respectively, and make them equal to zero

to obtain:

δu∗ = −Q−1
uu

(
Quxδx +Quvδv +Qu

)
, (159)

δv∗ = −Q−1
vv

(
Qvxδx +Qvuδu +Qv

)
, (160)

where Qvu = QT
uv.

Notice that δv is still in the previous expression of δu∗. We need to replace the

δv term in (159) with (160) and solve for δu∗. Similarly, we can solve for δv∗. The

final expressions for δu∗ and δv∗ are specified as follows:

δu∗ = lu + Luδx and δv∗ = lv + Lvδx, (161)
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with the feed-forward gains lv, lu and feedback gains Lv,Lu defined as:

lu = −
(
Quu −QuvQ

−1
vvQvu

)−1(
Qu −QuvQ

−1
vvQv

)
, (162)

lv = −
(
Qvv −QvuQ

−1
uuQuv

)−1(
Qv −QvuQ

−1
uuQu

)
, (163)

Lu = −
(
Quu −QuvQ

−1
vvQvu

)−1(
Qux −QuvQ

−1
vvQvx

)
, (164)

Lv = −
(
Qvv −QvuQ

−1
uuQuv

)−1(
Qvx −QvuQ

−1
uuQux

)
. (165)

In many applications in engineering, we can design the cost function. In order to

see the effect that the design of the cost function has in the feed-forward and feedback

gains, we recall that Quu = Luu and Qvv = Lvv. Moreover, since Luu,Lvv are design

parameters, we can choose them such that Luu > 0 and Lvv < 0. Note also that the

positive definiteness of Luu and negative definiteness of Lvv are required since the

role of the first controller/player is to minimize the cost while the role of the second

controller/player is to maximize it. Given new Quu > 0 and Qvv < 0 we have the

following expressions

Quu −QuvQ
−1
vvQvu > 0⇒

(
Quu −QuvQ

−1
vvQvu

)−1

> 0, (166)

Qvv −QvuQ
−1
uuQuv < 0⇒

(
Qvv −QvuQ

−1
uuQuv

)−1

< 0. (167)

The matrix inequalities (166) and (167) show that the feed-forward and feedback

part of the control policies of the two players will operate such that the first player

aims to reduce the cost while the second player aims to increase it. An interesting

characteristic of trajectory optimization methods such as DDP is that they provide

the locally optimal state trajectory, optimal feed-forward control and locally opti-

mal feedback gains. Here we show how the feed-forward and feedback parts of the
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correction terms δu and δv depend on the design of the cost function. In the simu-

lation section we demonstrate the effect of the cost function on the feed-forward and

feedback parts of the minimizing control policy for different values of Lvv.

7.2.1 Derivation of the Backward Propagation of the Value Function

The next step is to substitute the optimal control (159) and disturbance (destabilizing

control) (160) to the HJBI equation (143) in order to find the update law of the value

function and its first and second order partial derivatives. Specifically, we have:

− dV

dt
− δxT

dVx
dt
− 1

2
δxT

dVxx
dt

δx

= L+ δxTQx + δu∗TQu + δv∗TQv + δu∗TQuxδx +
1

2
δu∗TQuuδu

∗ + δu∗TQuvδv
∗

+
1

2
δv∗TQvvδv

∗ + δv∗TQvxδx +
1

2
δxTQxxδx

= L+ δxTQx +

(
lu + Luδx

)T

Qu +

(
lv + Lvδx

)T

Qv +

(
lu + Luδx

)T

Quxδx

+

(
lv + Lvδx

)T

Qvxδx +
1

2
δxTQxxδx +

(
lu + Luδx

)T

Quv

(
lv + Lvδx

)
+

1

2

(
lu + Luδx

)T

Quu

(
lu + Luδx

)
+

1

2

(
lv + Lvδx

)T

Qvv

(
lv + Lvδx

)
. (168)

After collecting terms on the right-hand side of (168) as zeroth order, first order

and second order expressions of δx, we can equate the coefficients of δx on the left-

hand side and right-hand side of (168) and readily obtain the backward propagation

equations with respect to the value function and its first and second order partial

derivatives. These backward differential equations are expressed as follows

−dV

dt
= L+ lTuQu + lTvQv +

1

2
luQuulu + lTuQuvlv +

1

2
lTvQvvlv,

−dVx
dt

= Qx + LT

uQu + LT

vQv +QT

uxlu +QT

vxlv + LT

uQuulu + LT

uQuvlv

+ LT

vQvulu + LT

vQvvlv,

−dVxx
dt

= 2LT

uQux + 2LT

vQvx + 2LT

vQvuLu + LT

uQuuLu + LT

vQvvLv +Qxx.

(169)
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In many applications in engineering the cost function is designed such that the terms

Lvu = LT
uv = 0. In this case the differential equations for the backward propagation

of the value function are simplified as follows

−dV

dt
= L+ lTuQu + lTvQv +

1

2
luQuulu +

1

2
lTvQvvlv,

−dVx
dt

= Qx + LT

uQu + LT

vQv +QT

uxlu +QT

vxlv + LT

uQuulu + LT

vQvvlv,

−dVxx
dt

= 2LT

uQux + 2LT

vQvx + LT

uQuuLu + LT

vQvvLv +Qxx.

(170)

The backward differential equations in (169) and (170) are different with respect

to the corresponding backward equations in the discrete time formulation of min-max

DDP in [105] and [104]. Besides the form of the backward differential equations, one

of the major differences between the discrete and continuous time formulations is on

the specification of the terms Quu and Qvv. In the continuous case these terms are

specified by Luu and Lvv and therefore they are completely specified by the user. This

is not the case with the discrete time formulation of min-max DDP (see equations

(10) and (11) in [104]) in which the terms Quu and Qvv are also functions of Vxx,

besides Luu and Lvv . The result of this observation is that for the discrete time

case the positive definiteness of Quu and the negative definiteness of Qvv along the

nominal trajectories are not guaranteed. As we show in our derivation, this is not the

case with the continuous time formulation of GT-DDP and therefore the continuous

version is numerically more stable that the discrete time.

7.3 Terminal Condition and the Minimax DDP Algorithm

In this section, we first specify the terminal condition for the backward differential

equations with respect to the value function and its first and second order partial

derivatives. Then we put all the pieces together and present the algorithm of minimax

DDP.

At the final time, we have (144). By taking the Taylor series expansions around
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x̄(tf ) we get

φ(x(tf ), tf ) = φ(x̄(tf ) + δx(tf ), tf )

≈ φ(x̄(tf ), tf ) + δx(tf )
Tφx(x̄(tf ), tf ) + δx(tf )

Tφxx(x̄(tf ), tf )δx(tf ).

(171)

Therefore, the boundary conditions at t = tf for the backward differential equations

are

V (tf ) = φ(x̄(tf ), tf ),

Vx(tf ) = φx(x̄(tf ), tf ),

Vxx(tf ) = φxx(x̄(tf ), tf ).

(172)

The GT-DDP algorithm is provided in Algorithm 2.

Algorithm 2 GT-DDP Algorithm

Input: Initial condition of the dynamics x0, initial stabilizing control ū and
destabilizing control v̄, final time tf , multiplier γ and a positive constant ε.
Output: Optimal stabilizing control u∗, optimal destabilizing control v∗ and the
corresponding optimal gains lu,Lu, lv,Lv.

1: procedure Update Control(x0, ū, v̄, tf )
2: while φ(x̄(tf ), tf ) > ε do
3: Get the initial trajectory x̄ by integrating controlled dynamics forward

with x0, ū and v̄;
4: Compute the value of V, Vx, Vxx at tf according to (172);
5: Integrate backward the Riccati equations (169);
6: Compute lu,Lu, lv,Lv from (162) through (165);
7: Integrate (146) forward by replacing δu and δv with (lu + Luδx) and

(lv + Lvδx), respectively, to get δx(t);
8: Compute δu = lu + Luδx and δv = lv + Lvδx;
9: Update control u∗ = u∗ + γδu, where γ ∈ [0, 1];

10: Set ū = u∗ and v̄ = v̄∗;
11: end while
12: return u∗, v∗, lu,Lu, lv,Lv.
13: end procedure
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7.4 Simulation Results

In this section, we apply our algorithm to two systems, namely, the inverted pendulum

and the two-player pursuit-evasion game under external flow field. The dynamics of

the first problem is affine in control and the cost is quadratic in control, whereas in

the second problem, the dynamics is nonlinear in control and the cost function is

non-quadratic.

7.4.1 Inverted Pendulum Problem

We first apply our algorithm on the inverted pendulum with conflicting controls.

In particular, the dynamics is given by Iθ̈ + bθ̇ − mg` sin θ = u − v, where the

parameters are chosen in the simulations as m = 1Kg, ` = 0.5m, b = 0.1, I = ml2,

g = 9.81Kg · m/sec2. Our goal is to bring the pendulum from the initial state

[θ, θ̇] = [π, 0] to [θ, θ̇] = [0, 0]. The cost function is given by J = x(tf )
TQfx(tf ) +

∫ tf
0

(uTTRuu− vTRvv), where x = [θ, θ̇]TT , Qf =

100, 0

0, 5

 and Ru = 0.1, Rv = 0.2.

We set the initial control to be u ≡ 0, v ≡ 0, the terminal time to be tf = 0.5

and the multiplier γ = 0.8. As can be seen in Figure 41, the cost converges in 4

iterations. We include 10 iterations to ensure convergence. Figure 42 presents the

optimal controls of u and v at the 10th iteration, as well as the corresponding optimal

trajectories of the states θ, θ̇.

7.4.2 Inverted Pendulum Problem with Stochastic Disturbances

In this subsection, we utilize GT-DDP to guide the inverted pendulum to the desired

state under the presence of stochastic disturbance that acts in the same channel as

the control. Our goal is to analyze in simulation how the min-max formulation of GT-

DDP affects the resulting feedfoward and feedback parts of the minimizing control

policy. To this end, we consider the dynamics of the form Iθ̈+bθ̇−mg` sin θ = u+ω,
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Figure 41: Cost per iteration of the inverted pendulum with conflicting controls.

where ω is a Gaussian noise with mean 0 and variance σ2. The task for GT-DDP is

to drive the inverted pendulum from the initial state [θ, θ̇] = [π, 0] to the final state

[θ, θ̇] = [0, 0].

For our simulations, we set σ = 4 and pick Rv = 10, 0.2, 0.13 for comparison.

For every value of Rv, we run the system with our modified control for 100 times.

In Figure 43(a), we have three colored plots, where magenta, blue and cyan plots

correspond to the case of Rv = 10, 0.2 and 0.13, respectively. The plot of each color

depicts the mean of 100 trajectories of θ with respect to time and we draw an error

bar at every time step. Each error bar has a distance of the standard variance at

that time step above and below the curve. Similarly, in Figure 43(b), we illustrate

the mean and standard deviation of 100 trajectories of θ̇ with respect to time for the

different values of Rv.

Our simulations reveal the role of the min-max formulation of GT-DDP. In par-

ticular, Figures 43(a) and 43(b) illustrate that as Rv decreases, both the feed-forward

and feedback parts of the control policy change. The feed-forward control steers the

mean trajectory towards the desired state early for smaller values of Rv. In addi-

tion, the locally optimal feedback gains reduce the variability of the trajectories as
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Figure 42: Optimal controls u and v in black at the bottom and the corresponding
initial trajectories of the states θ, θ̇ in dashed blue at the top. Red lines represent the
desired terminal states.

Rv decreases. The aforementioned observations indicate the interplay between the

feed-forward and feedback part of the minimizing control policy under GT-DDP for-

mulation and show how this formulation results in robust policies that shape both

the mean and variance of optimal trajectories. We believe that these findings are

important not only for the areas of engineering and robotics but also for modeling

risk sensitive behaviors of bio-mechanical and neuromuscular systems.

7.4.3 Two-player Pursuit Evasion Game Under External Flow Field

Next, we apply the proposed algorithm to a two-player pursuit-evasion (PE) game

subject to an external flow field. In this problem, one pursuer and one evader par-

ticipates in a game on the plane under the environmental disturbance, namely, an

external flow field. The terminal time tf is fixed. The objective of the pursuer is to

minimize the terminal distance between the two players, whereas the evader tries to

maximize this value. Hence, the controls of the pursuer and the evader, represented
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Figure 43: Mean and error bar protrait of the states in the inverted pendulum
problem with disturbances.

by u and v, can be considered as the stabilizing and destabilizing control, respectively.

The dynamics of the system is given by

ẋP = vP cos u + w1(xP , yP , t),

ẏP = vP sin u + w2(xP , yP , t),

ẋE = vE cos v + w1(xE, yE, t),

ẏE = vE sin v + w2(xE, yE, t),

where (xP , yP ) and (xE, yE) denote the positions of the pursuer and the evader, re-

spectively. vP and vE represents the maximum speed of the pursuer and the evader,

respectively. w1 and w2 are the components of an external spatial-temporal flow field

along x-axis and y-axis, respectively. The full state of the systems is represented by

x = [xP , yP , xE, yE]. Let ∆x(t) = xP (t) − xE(t) and ∆y(t) = yP (t) − yE(t). Then the

distance between the pursuer and the evader at the terminal time can be specified by
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√
∆x(tf )2 + ∆y(tf )2. The problem of

min
u

max
v

√
∆x(tf )2 + ∆y(tf )2

is equivalent to

min
u

max
v

1

2

[
∆x(tf )

2 + ∆y(tf )
2

]
,

which is further equivalent to

min
u

max
v

1

2

[
∆x(tf )

2 + ∆y(tf )
2 − c

]
, (173)

for any constant c.

Let c = (∆x(0)2 +∆y(0)2). This c is a constant because the initial states x(0) and

y(0) are constants and given a-priori. By substituting c in (173), we can reformulate

the cost function as

min
u

max
v

J

= min
u

max
v

1

2

([
∆x(tf )

2 + ∆y(tf )
2

]
−
[
∆x(0)2 + ∆y(0)2

])
= min

u
max

v

∫ tf

0

d

dt

[
1

2
[(xP − xE)2 + (yP − yE)2]

]
dt

= min
u

max
v

∫ tf

0

(
L1(x,u,v) + L2(x,u,v)

)
dt,
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where

L1(x,u,v) = (xP − xE)(vP cos u + w1(xP , yP , t))

− (xP − xE)(vE cos v + w1(xE, yE, t)),

L2(x,u,v) = (yP − yE)(vP sin u + w2(xP , yP , t))

− (yP − yE)(vE sin v + w2(xE, yE, t)).

The parameters vP , vE are specified as vP = 1, vE = 0.8 in our simulation. The

initial condition is [xP (0), yP (0), xE(0), yE(0)] = [0, 0, 1, 1].

Firstly, we consider the case where no external flow field exists, that is, w1(t) =

w2(t) ≡ 0. It is well known in differential games that without the external flow

field, the optimal controls for both players will move along their common line-of-sight

(LoS), while the pursuer move towards the evader and the evader moves away from

the pursuer [62]. The LoS is defined as the line passing through the pursuer’s and

evader’s instantaneous positions. We want to recover this result in our simulation to

verify the correctness of the algorithm. To this end, we start with the nominal control

ū ≡ 0 and v̄ ≡ 0. The final time is fixed at tf = 2. In this case, we set γ = 1. The

convergence of the cost is achieved in 4 iterations, as shown in Figure 44(d). The

optimal controls of the pursuer and the evader are illustrated in Figures 44(b) and

44(c), respectively. It is shown that u = v ≡ 0.7854, which coincides with the angle

π/4 such that both players can move along the LoS. The optimal trajectories of both

players are depicted in Figure 44(a) and they indeed move along the LoS.

Next we investigate the case where the external wind field is a function of both

time and state. In this case, we set

w1(x, y, t) = 0.1 sin(t)x− 0.2y,

w2(x, y, t) = −0.1x+ 0.4 cos(t)y.
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Figure 44: (a) Optimal trajectory of the pursuer in dashed red, and the evader in
blue in subfigure 1. (b) Optimal controls u of pursuer (c) Optimal controls v of the
evader (d) Cost per iteration.

We start with the nominal control ū ≡ 0.7 and v̄ ≡ 0.7. The final time is still fixed

at tf = 2. Other parameters also remain the same as in the simulation without the

flow field. The optimal controls are presented in Figure 45(b) and 45(c) respectively.

Optimal trajectories of the pursuer and the evader are also shown in Figures 45(a).

They are different from the trajectories in Figure 44(a) due to the external flow field.

Figure 45(d) depicts the cost per iteration. For the reference, we present in Figure

46 the time-varying spacial flow field at time t = 0, 0.5, 1, 1.5 and 2.
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Figure 45: (a) Optimal trajectory of the pursuer in dashed red, and the evader in
blue. (b) Optimal controls u of pursuer (c) Optimal controls v of the evader (d) Cost
per iteration.
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Figure 46: Time-varying spacial flow field at time t = 0, 0.5, 1, 1.5 and 2.
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CHAPTER VIII

STOCHASTIC GAME THEORETIC CONTINUOUS TIME

DIFFERENTIAL DYNAMIC PROGRAMMING

8.1 Introduction

Over the recent years, autonomy has become one of the most active areas of research,

with many applications in the areas of robotics, automotive and aerospace systems.

From the different computational frameworks used to achieve autonomy in engineered

systems, stochastic trajectory optimization plays a key role since it provides a frame-

work for computing the best possible action in the presence of exogenous stochastic

disturbances. While there has been an extensive amount of work on stochastic and

deterministic trajectory optimization, most of the prior work in this area has been

on discrete time representations. In cases where the initial problem formulation is in

continuous time, the previous approach is to discretize the problem formulation at

hand and then perform optimization in discrete time.

In this Chapter, we derive a method for stochastic trajectory optimization us-

ing the framework of Differential Dynamic Programming (DDP) [63]. We address

the problem of stochastic trajectory optimization in continuous time and present an

algorithm that relies on first order expansion of the dynamics and second order ex-

pansion of the value function. In particular, we derive the equations for the backward

propagation of the value function for the case of stochastic differential games. The re-

sulting algorithm has the attractive characteristics of DDP in terms of scalability and

numerical efficiency, while it also features robustness to deterministic and stochastic

disturbances due to stochastic min-max formulation.

147



8.2 Problem Formulation

We consider the problem of a differential game between two players

V (x(t0), t0) = min
u

max
v

J(x,u,v)

= min
u

max
v

E
[
φ(x(tf )) +

∫ tf

t0

L(x,u,v)dt

]
, (174)

subject to the stochastic dynamics

dx = f(x,u,v, t)dt+ G(x)dw, x(t0) = x0, (175)

where V stands for the value function (expected cost-to-go), the term J represents

the performance index, and x ∈ Rn represents the state of the dynamical system.

The term u ∈ Rp stands for the input of the minimizing player, whose objective is

to minimize the performance index. Similarly, v ∈ Rq represents the input of the

maximizing player, which tries to maximize the performance index. The function

L : Rn×Rp×Rq 7→ R is the running cost and φ : Rn 7→ R is the terminal cost, where

the terminal time tf is a prescribed constant. The term dw represents an increment of

a m-dimensional Wiener process (standard Brownian motion), and G : Rn 7→ Rn×m

is introduced to scale dw and match the dimension of f : Rn×Rp×Rq ×R 7→ Rn. It

is assumed that dw ∼ N (0, Im×mdt).

Denote by U the admissible feedback control set of the minimizing player, that is,

U = {u : [t0, tf ]× Rn 7→ Rp,u(τ, ·) is Fτ -measurable, ∀τ ∈ [t, tf ], and u(·,x)

is Lebesgue measurable, ∀x ∈ Rn}. Similarly, the admissible feedback control set of

the maximizing player is given by V = {v : [t0, tf ]×Rn 7→ Rq,v(τ, ·) is Fτ -measurable,

∀τ ∈ [t, tf ], and v(·,x) is Lebesgue measurable, ∀x ∈ Rn}. Here Ft denotes the cor-

responding filtration with respect to the Brownian motion, which can be interpreted

as representing all historical information available up to time t about the stochastic
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process.

We assume that the Isaacs’ condition is satisfied, that is,

V = min
u

max
v

J(x,u,v) = max
v

min
u
J(x,u,v). (176)

Next we derive the stochastic min-max DDP framework.

8.3 Optimal Control Variations

Given a nominal mean trajectory of the state and initial controls (x̄, ū, v̄), and letting

δx = x− x̄, δu = u− ū, δv = v− v̄, from

d(x̄ + δx) = f(x̄ + δx, ū + δu, v̄ + δv)dt+ G(x̄ + δx)dw

≈ (f(x̄, ū, v̄) +∇xfδx +∇ufδu +∇vfδv)dt+ (G(x̄) + Gxδx)dw, (177)

dx̄ = f(x̄, ū, v̄)dt, (178)

we obtain

dδx = (∇xfδx +∇ufδu +∇vfδv)dt+ (G(x̄) + Gx(δx))dw, (179)

where Gx(δx) = [∇xG
(1)δx, . . . ,∇xG

(m)δx] and G(j) denotes the j-th column vector

of G, j = 1, . . . ,m. The arguments of the functions in the previous derivation are

omitted when they are evaluated along the nominal trajectory (x̄, ū, v̄).

In order to derive the update law for the minimizing and maximizing controls, we

start our analysis with Bellman/Isaac’s principle, which states

V (xt, t) = min
u

max
v

E
[ ∫ t+dt

t

L(x,u,v)dt+ V (xt+dt, t+ dt)

∣∣∣∣xt], (180)
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where the subscript t and t+ dt are introduced to denote the evaluation of the vari-

ables at time t and t+ dt, respectively.

The main idea is to take expansions of the terms in both sides of equation (180)

around the nominal state and control trajectories (x̄, ū, v̄) to find the update equa-

tions for the minimizing control, maximizing control and backward differential equa-

tions for the zeroth, first and second order approximation terms of the value function.

Starting with the left-hand side of (180), the second order expansion of the cost-to-go

function around a nominal trajectory x̄ is obtained as follows

V (xt, t) = V (xt + x̄t − x̄t, t) = V (x̄t + δxt, t)

≈ Vt +∇xVtδxt +
1

2
δxT

t∇xxVtδxt,
(181)

where Vt = V (x̄t, t). As for the right-hand side of (180), the first term is approximated

as follows

E
[∫ t+dt

t

L(x,u,v)dt

∣∣∣∣xt] ≈ L(xt,ut,vt)dt

= L(x̄t + δxt, ūt + δut, v̄t + δvt)dt. (182)

This expression can be approximated as

Ldt+ (∇xLδx +∇uLδu +∇vLδv)dt

+
1

2


δxt

δut

δvt


T 
∇xxL ∇xuL ∇xvL

∇uxL ∇uuL ∇uvL

∇vxL ∇vuL ∇vvL



δxt

δut

δvt

 dt, (183)

where the function L and its derivatives in the last equation are all evaluated at

(x̄t, ūt, v̄t) and thus omitted for simplicity of notation. Henceforth, all the terms are

evaluated at (x̄t, ūt, v̄t), unless specified otherwise.
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Before we expand the term E [V (xt+dt, t+ dt)] around x̄t+dt and make it compati-

ble with the left-hand side of (180), we need to find an expression for δxt+dt in terms

of δxt. Indeed, from (179), we get

δxt+dt = δxt + (∇xfδxt +∇ufδut +∇vfδvt)dt+ (G + Gx(δxt))dw, (184)

where Gx(δxt) = [∇xG
(1)δxt, . . . ,∇xG

(m)δxt].

Returning to the expansion of E[V (xt+dt, t+ dt)|xt], and letting

Vt+dt = V (x̄t+dt, t+ dt), we have

E
[
V (xt+dt, t+ dt)

∣∣∣∣xt] = E
[
V (x̄t+dt + δxt+dt, t+ dt)

∣∣∣∣xt] (185)

By expanding the last term, we obtain

E
[
Vt+dt +∇xVt+dtδxt+dt +

1

2
δxT

t+dt∇xxVt+dtδxt+dt

∣∣xt]
= Vt+dt +∇xVt+dt

[
δxt + (∇xfδxt +∇ufδut +∇vfδvt)dt

]
+

1

2

[
δxt + (∇xfδxt +∇ufδut +∇vfδvt)dt

]T∇xxVt+dt

·
[
δxt + (∇xfδxt +∇ufδut +∇vfδvt)dt

]
+

1

2
tr
(
∇xxVt+dt(G + Gx(δxt))(G + Gx(δxt))

T
)
dt, (186)

where tr(·) denotes the trace of a matrix. In the previous derivation, we make use of

the fact that dw ∼ N (0, Im×mdt).

We proceed by taking expansions of all the terms. First, note that we can write

tr
(
∇xxVt+dtGx(δxt)G

T
)

= tr
(
GT∇xxVt+dtGx(δxt)

)
=

( m∑
j=1

G(j)T∇xxVt+dt∇xG
(j)

)
δxt,

(187)
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and similarly, the following expression follows

tr
(
∇xxVt+dtGGx(δxt)

T
)

=

( m∑
j=1

G(j)T∇xxVt+dt∇xG
(j)

)
δxt,

tr
(
∇xxVt+dtGx(δxt)Gx(δxt)

T
)

= δxT

t

( m∑
j=1

∇xG
(j)T∇xxVt+dt∇xG

(j)

)
δxt.

(188)

From (187) and (188), equation (186) can be rewritten as an explicit function of δxt,

δut and δvt. After combining (183) with (186) and grouping the terms with respect

to δxt, δut and δvt, we can represent the right-hand side of (180) in a compact form,

that is,

E
[∫ t+dt

t

L(x,u,v)dt+ V (xt+dt, t+ dt)

∣∣∣∣xt]
= Vt+dt +Q0dt+∇xVt+dtδxt +

(
Qxδxt +Quδut +Qvδvt

)
dt

+
1

2
δxT

t∇xxVt+dtδxt +
1

2


δxt

δut

δvt


T 

Qxx Qxu Qxv

Qux Quu Quv

Qvx Qvu Qvv



δxt

δut

δvt

 dt, (189)

where

Q0 = L+
1

2
tr(∇xxVt+dtGGT),

Qx = ∇xL+∇xVt+dt∇xf +
m∑
j=1

G(j)T∇xxVt+dt∇xG
(j),

Qu = ∇uL+∇xVt+dt∇uf ,

Qv = ∇vL+∇xVt+dt∇vf
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and the second partials,

Qxx = ∇xxL+∇xf
T∇xxVt+dt∇xfdt+ 2∇xxVt+dt∇xf +

m∑
j=1

∇xG
(j)T∇xxVt+dt∇xG

(j),

Quu = ∇uuL+∇ufT∇xxVt+dt∇ufdt,

Qvv = ∇vvL+∇vf
T∇xxVt+dt∇vf

and the mixed partials,

Qux = ∇uxL+∇ufT∇xxVt+dt +∇ufT∇xxVt+dt∇xfdt,

Qvx = ∇vxL+∇vf
T∇xxVt+dt +∇vf

T∇xxVt+dt∇xfdt,

Quv = ∇uvL+∇ufT∇xxVt+dt∇vfdt,

Qxu = QT

ux, Qxv = QT

vx, Qvu = QT

uv.

All the parameters in the previous expressions are henceforth denoted as the Q-

functions. The reason we single out Vt+dt, ∇xVt+dtδxt and 1
2
δxT

t∇xxVt+dtδxt instead of

joining them in the Q-functions will become clear later on, as we derive the backward

differential equations with respect to the value function and its derivatives.

In order to find the optimal control updates δu∗t and δv∗t , we take the derivative of

(189) with respect to δut and δvt, respectively, and set them equal to zero to obtain

δu∗t = −Q−1
uu

(
Quxδx +Quvδvt +Qu

)
, (190)

δv∗t = −Q−1
vv

(
Qvxδx +Qvuδut +Qv

)
. (191)

By replacing the δvt term in (190) with (191) and solving for δu∗t , we can eliminate

δvt in the expression of δu∗t . We can solve for δv∗t in a similar manner and obtain

δu∗t = lu + Luδx and δv∗t = lv + Lvδx, (192)
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with the feed-forward gains lv, lu and feedback gains Lv,Lu defined as:

lu = −
(
Quu −QuvQ

−1
vvQvu

)−1(
Qu −QuvQ

−1
vvQv

)
, (193)

Lu = −
(
Quu −QuvQ

−1
vvQvu

)−1(
Qux −QuvQ

−1
vvQvx

)
, (194)

lv = −
(
Qvv −QvuQ

−1
uuQuv

)−1(
Qv −QvuQ

−1
uuQu

)
, (195)

Lv = −
(
Qvv −QvuQ

−1
uuQuv

)−1(
Qvx −QvuQ

−1
uuQux

)
. (196)

8.4 Backward Propagation of the Value Function

Notice that the feed-forward and feedback gains are functions of the value function

and its first and second order partial derivatives with respect to x. Therefore, we need

to find a way to obtain these values, and this is presented in the following proposition.

Proposition 8.1 The value function and its first and second order partial derivatives

with respect to x can be determined by the backward ordinary differential equations as

follows

−dV

dt
= Q0 + lTuQu + lTvQv +

1

2
lTuQuulu + lTuQuvlv +

1

2
lTvQvvlv,

−d(∇xV )

dt
= Qx + LT

uQu + LT

vQv +QT

uxlu +QT

vxlv + LT

uQuulu + LT

uQuvlv

+ LT

vQvulu + LT

vQvvlv,

−d(∇xxV )

dt
= Qxx + 2LT

uQux + 2LT

vQvx + 2LT

vQvuLu + LT

uQuuLu + LT

vQvvLv, (197)
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where the Q-functions are in the form

Q0 = L+
1

2
tr(∇xxVtGGT),

Qx = ∇xL+∇xVt∇xf +
m∑
j=1

G(j)T∇xxVt∇xG
(j),

Qu = ∇uL+∇xVt∇uf ,

Qv = ∇vL+∇xVt∇vf ,

Qxx = ∇xxL+ 2∇xxVt∇xf +
m∑
j=1

∇xG
(j)T∇xxVt∇xG

(j),

Quu = ∇uuL,

Qvv = ∇vvL,

Qux = ∇uxL+∇ufT∇xxVt,

Qvx = ∇vxL+∇vf
T∇xxVt,

Quv = ∇uvL,

Qxu = QT

ux, Qxv = QT

vx, Qvu = QT

uv, (198)

subject to the terminal conditions

V (tf ) = φ(x̄(tf ), tf ), ∇xV (tf ) = ∇xφ(x̄(tf ), tf ),

∇xxV (tf ) = ∇xxφ(x̄(tf ), tf ). (199)

Proof. In order to find the update law of the value function and its first and

second order partial derivatives, we need to substitute the optimal minimizing control
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(190) and maximizing control (191) in the expansion of (180). To be specific, we have:

Vt +∇xVtδxt +
1

2
δxT

t∇xxVtδxt

= Vt+dt +Q0dt+∇xVt+dtδxt +Qxdtδxt +Qudtδut +Qvdtδvt

+
1

2
δxT

t∇xxVt+dtδxt +
1

2


δxt

δut

δvt


T 

Qxxdt Qxudt Qxvdt

Quxdt Quudt Quvdt

Qvxdt Qvudt Qvvdt



δxt

δut

δvt

 (200)

which is equal to

Vt+dt +Q0dt+∇xVt+dtδxt +Qxdtδxt +Qudt
(
lu + Luδxt

)
+Qvdt

(
lv + Lvδxt

)
+

1

2
δxT

t∇xxVt+dtδxt +
1

2
δxT

tQxxdtδxt +
(
lu + Luδxt

)
TQuvdt

(
lv + Lvδxt

)
+
(
lu + Luδxt

)
TQuxdtδxt +

(
lv + Lvδxt

)
TQvxdtδxt

+
1

2

(
lu + Luδxt

)
TQuudt

(
lu + Luδxt

)
+

1

2

(
lv + Lvδxt

)
TQvvdt

(
lv + Lvδxt

)
. (201)

In the previous equation we utilize the conditions Qxu = QT
ux, Qxv = QT

vx, and

Qvu = QT
uv.

After grouping terms on the right-hand side of (201) as zeroth order, first order

and second order expressions of δxt, we can equate the coefficients on the left-hand

side and right-hand side of (201) and get

Vt = Vt+dt +Q0dt+ lTuQudt+ lTvQvdt+
1

2
luQuuludt+ lTuQuvlvdt+

1

2
lTvQvvlvdt,

∇xVt = ∇xVt+dt +Qxdt+ LT

uQudt+ LT

vQvdt+QT

uxludt+QT

vxlvdt

+ LT

uQuuludt+ LT

uQuvlvdt+ LT

vQvuludt+ LT

vQvvlvdt,

∇xxVt = ∇xxVt+dt +Qxxdt+ 2LT

uQuxdt+ 2LT

vQvxdt+ 2LT

vQvuLudt

+ LT

uQuuLudt+ LT

vQvvLvdt.

(202)
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By moving Vt+dt, ∇xVt+dt and∇xxVt+dt to the left-hand side of (202), and dividing

both sides with dt, (202) can be rewritten as

−dVt
dt

= Q0 + lTuQu + lTvQv +
1

2
luQuulu + lTuQuvlv +

1

2
lTvQvvlv, (203)

−d∇xVt
dt

= Qx + LT

uQu + LT

vQv +QT

uxlu +QT

vxlv + LT

uQuulu + LT

uQuvlv

+ LT

vQvulu + LT

vQvvlv, (204)

−d∇xxVt
dt

= Qxx + 2LT

uQux + 2LT

vQvx + 2LT

vQvuLu + LT

uQuuLu + LT

vQvvLv. (205)

Letting dt approach 0 in (203) through (205), we readily obtain (197). Similarly, the

expressions of the Q-functions are turned into (198).

At the final time, we have V (x(tf ), tf ) = φ(x(tf )). By taking the expansions

around x̄(tf ) we get

φ(x(tf )) = φ(x̄(tf ) + δx(tf ))

≈ φ(x̄(tf )) +∇xφ(x̄(tf ))δx(tf ) + δx(tf )T∇xxφ(x̄(tf ))δx(tf ). (206)

Therefore, the boundary conditions at t = tf for the backward differential equa-

tions are represented by (199), and this completes the proof.

Now that we have found a method to obtain the value function and its first and sec-

ond order partial derivatives with respect to the state through backward propagation,

we put all the pieces together and provide the Stochastic Game Theoretic Differen-

tial Dynamic Programming (SGT-DDP) algorithm in a pseudocode form shown in

Algorithm 3.

The cost function is chosen depending on the application. The roles of minimizing

and maximizing controls in the control design are determined by the choices of the

Hessian of L with respect to the controls. In order to see this feature, recall thatQuu =

∇uuL and Qvv = ∇vvL. Furthermore, since ∇uuL and ∇vvL are design parameters,
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Algorithm 3 Pseudocode of the SGT-DDP Algorithm

Given:

- Stochastic dynamics dx = f(x,u,v, t)dt+ G(x)dw

- Initial condition of the dynamics x0

- Initial minimizing control ū and maximizing control v̄

- Terminal time tf

- Multiplier γ

- A constant N

1: procedure Update Control(x0, ū, v̄, tf , γ, N)
2: for i counting from 1 to N do
3: Get the initial mean trajectory x̄ by integrating the deterministic part of

the controlled dynamics forward with x0, ū and v̄;
4: Find the value of V, Vx, Vxx at tf according to (199);
5: Compute the quadratic approximation of the value function V, Vx, Vxx in

[0, tf ] by integrating backward the equations (197);
6: Compute lu,Lu, lv,Lv according to equations (193) through (196) with the
Q-functions as computed in (198);

7: Get δx(t) through δxt+dt = δxt + (∇xfδxt + ∇ufδut + ∇vfδvt)dt while
replacing δu and δv with (lu + Luδx) and (lv + Lvδx), respectively;

8: Compute δu = lu + Luδx and δv = lv + Lvδx;
9: Update control u∗ = u∗ + γδu, where γ ∈ [0, 1] is chosen as the learning

rate;
10: Set ū = u∗ and v̄ = v̄∗;
11: end for
12: return x∗, u∗, v∗, lu,Lu, lv,Lv.
13: end procedure
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they can be chosen such that ∇uuL is positive definite and ∇vvL is negative definite.

Such design makes sure that the role of the controller u is to minimize the cost whereas

the controller v aims to maximize it. Since Quu > 0 and Qvv < 0, we can deduce

that

(
Quu−QuvQ

−1
vvQvu

)−1

> 0, and

(
Qvv−QvuQ

−1
uuQuv

)−1

< 0. Combining these

two matrix inequalities and the form of the feed-forward and feedback gains of the

control policies in (193) through (196), it can be seen that the controls are updated

such that the control u tends to reduce the cost while the control v tends to increase

it.

8.5 Simulation Results

In this section, we apply the proposed SGT-DDP algorithm to three systems. The

first system is a one-dimensional system, the second one is the inverted pendulum and

the third one is the cart pole problem. More precisely, the first system is governed

by an equation of the form

dx = ax2dt+ udt+ vdt+ bx2dw. (207)

Our task is to bring the state from x0 = 0 to the target position xf = 2 and the cost

function can be expressed as

V (x(t0), t0) = min
u

max
v

E
[
φ+

∫ tf

t0

(Ruu2 −Rvv
2)dt

]
,

where φ = (x(tf ) − xf )
2. The value of the tuning parameters are set as a = 0.005,

Ru = 10−3 and Rv = 10−2. We vary the value of b to simulate different intensities of

the noise. The left plot in Fig. 47 illustrates the state space trajectories for different

values of the variance of the noise while the right plot portraits the convergence

behavior of the algorithm. In Fig. 47(a), instead of running the controlled system

many times for different realizations of noise and then calculate the mean, we simply
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zero the noise term and run the system only once. The mean of 100 trajectories of the

state with feedback minimizing and maximizing controls under stochastic disturbance

where b = 0.4 is depicted in Fig. 47(c). An error bar is also drawn at every time step.

Each error bar has a distance of the standard deviation among 100 trajectories at

that time step above and below the curve.
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Figure 47: (a) State trajectories for noise with different value of variance. Green,
purple, yellowm orange and light blue curves corresponds to cases where b =
0, 0.2, 0.4, 0.6, 1, respectively. (b) Cost per iteration under one of the noise profiles. (c)
State trajectories with feedback minimizing and maximizing controls under stochastic
disturbance in blue, red line represents the goal position.

In the second system we use the inverted pendulum, the dynamics of which is
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given by

dx =

 x(2)

(mg`/I) sin x(1)− (b/I)x(2) + (1/I)(u + v)

 dt+

 0

αx(1)

 dw, (208)

where x = [θ, θ̇]T and the parameters are chosen as m = 1 Kg, ` = 0.5 m, b = 0.1,

I = ml2, g = 9.81Kg · m/ sec2 and α = 1. Our goal is to bring the pendulum from

the initial state [θ, θ̇] = [π, 0] to the target position [θ, θ̇] = [0, 0]. The cost function

is given by

J = x(tf )
TQfx(tf ) +

∫ tf

0

(uTRuu− vTRvv) dt, (209)

where

Qf =

100, 0

0, 5

 . (210)

For the simulation, we set Ru = 0.1 and Rv = 0.12, 0.2, 1 to observe how the change

of control authority of the maximizing control affects the outcome of the simulation.

Notice here that in all the cases, we set Ru < Rv, which indicates that the minimizing

control is penalized less than the maximizing control. In other words, the minimizing

control u has more control authority than the maximizing control v and thus the

minimizing control should be able to bring the expected trajectory to the goal state

despite the best effort of the maximizing control. Such phenomenon can be shown in

the follow-up simulation.

We set the initial control to be ū ≡ 0, v̄ ≡ 0, the terminal time to be tf = 1

and the multiplier γ = 0.8. For each value of Rv, we run the inverted pendulum

system with feedback minimizing control for 1000 times. In Fig. 48(a), we have three

colored plots, where cyan, magenta and dark yellow plots correspond to the case of

Rv = 0.13, 0.2 and 10, respectively. The plot of each color contains the mean of the

trajectories of θ with respect to time and an error bar with a distance of the standard
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deviation above and below the curve is drawn at every time step. Similarly,, the mean

and standard deviation of the trajectories of θ̇ for these values of Rv are shown in

Fig. 48(b).
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Figure 48: (a) Plots of mean and standard deviation of 1000 trajectories of θ. Cyan,
magenta and yellow plots correspond to the case of Rv = 0.13, 0.2 and 10, respectively.
(b) Plots of mean and standard deviation of 1000 trajectories of θ̇. Cyan, magenta
and yellow plots correspond to the case of Rv = 0.13, 0.2 and 10, respectively.

It can be observed from Fig. 48 that the feed-forward and feedback parts of the

control policy alters as Rv changes. In particular, as Rv decreases, the feed-forward

control steers the mean trajectory towards the desired state earlier. Moreover, the

optimal feedback gains reduce the variability of the trajectories when Rv gets small.

It indicates that the game theoretic formulation can give rise to robust policies that

shape both the mean and variance of optimal trajectories.

Furthermore, we compare the performance of the feedback control emerged from

our algorithm with the control that comes from the deterministic game theoretic

DDP in [139]. This time, we fix Rv = 1 and α = 4. The other parameters remain

unchanged. The result is shown in Fig. 49, where the orange plots depict the mean

and error bar of the state trajectories subject to the feedback control originated from

the algorithm in this section, and the blue plots are associated with the deterministic

game theoretic DDP. The SGT-DDP algorithm returns a control that drives the
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mean trajectory towards the desired state earlier. One explanation of this behavior

is presented as follows. Recall from (197) that

−d(∇xxV )

dt
= Qxx + 2LT

uQux + 2LT

vQvx + 2LT

vQvuLu + LT

uQuuLu + LT

vQvvLv.

(211)

Let Qvv = ∇vvL be negative definite. Then the more authority the maximizing

control has (the smaller Qvv is), the larger the right-hand side of (211) becomes.

Similarly, by the expression of Qxx, as the state dependent noise gets larger, the right-

hand side of (211) also increases. Therefore, the noise and the maximizer affects to

the update of ∇xxV in a similar fashion. Hence, it is expected that the enhancement

of the control authority of the maximizing control and the inclusion of noise in SGT-

DDP result in similar behavior, as we have shown in Figs. 48 and 49.
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Figure 49: (a) Comparison of plots of mean and standard deviation of 1000 trajec-
tories of θ with respect to the SGT-DDP and the GT-DDP control in orange and
blue, respectively. (b) Comparison of plots of mean and standard deviation of 1000
trajectories of θ̇ with respect to the SGT-DDP and the GT-DDP control in orange
and blue, respectively.

In the next example, we consider the cart pole problem with conflicting controls

under stochastic disturbances. This is an underactuated mechanical system and the
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corresponding dynamics is given by

ẋ = f(x) +G(x)(u + v + dw), (212)

where

f(x) =



x(2)

m sin x(3)(−` ˙x(4)
2

+ g cos x(3))

M +m sin2 x(3)

x(4)

−m`x(4)2 cos x(3) sin x(3) + (M +m)g sin x(3)

`(M +m sin2 x(3))


, (213)

and

G(x) =



0

1

M +m sin(x(3))2

0

cos(x(3))

`(M +m sin(x(3))2)


, (214)

The state x = [x, ẋ, θ, θ̇]T where x represents the displacement of the cart and θ stands

for the angle of the pole. ` = 0.5 is the length of the pole, M = 10 is the mass of

the cart and m = 1 is the mass of the pole, and g = 9.8 is the gravitational constant.

The cost function is in the form

J = (x(tf )− xf )TQf (x(tf )− xf ) +

∫ tf

0

(uTRuu− vTRvv)dt, (215)

where Qf = diag([0, 500, 5000, 50]). The other parameters in the cost function are

given by Ru = 0.01, Rv = 0.1. The minimizing control u aims to bring the system

from the initial state x0 = [0, 0, π, 0]T to the desired state xf = [0, 0, 0, 0]T, whereas the

maximizing control v attempts to stop this from happening. Note that the terminal

displacement is actually not restricted to reach 0 since Qf (1, 1) = 0 when we design
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Figure 50: Mean and standard variance of 100 trajectories of the four states with
respect to time under conflicting controls in blue. The red lines represents the goal
states θ = 0.

the cost function. The initial controls are set to be ū ≡ 0, v̄ ≡ 0, the terminal time

tf = 3 and the multiplier γ = 0.3. The mean of 100 trajectories of the states under

conflicting feedback controls and stochastic disturbances are depicted in Fig. 50 in

blue and error bars of the standard deviation are drawn around the mean trajectories.
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CHAPTER IX

CONCLUSIONS AND FUTURE WORK

9.1 Conclusions

In a differential game setting, decisions made by the players as well as the outcome of

the game are susceptible to uncertainties in the game. The uncertainties that enter the

system can be divided into three main categories, namely, external/environmental un-

certainties, endogenous/dynamical uncertainties and observation uncertainties. Due

to the pervasive nature of uncertainties in realistic differential game scenarios, it has

become a pressing task to find various methods to deal with differential games under

uncertainties. In this dissertation, we present analytical and numerical methods to

address pursuit-evasion games under different forms of environmental uncertainties.

The area of pursuit-evasion games is an important special case of general differential

games and the methods introduced in pursuit-evasion games could also be generalized

to other fields of differential games.

In Chapter 2, under the assumption that at most one pursuer is actively chasing a

moving target at every instant of time, we have proposed a target-pursuer assignment

strategy to capture several moving targets by a set of pursuers in a wind field. We

take advantage of the fact that the problem of assigning a pursuer to the moving

target can be associated with a dynamically changing Zermelo-Voronoi partitioning

problem. This partition assigns to each pursuer the points that can be intercepted

faster than any other pursuer, using the minimum-time Zermelo’s navigation law. We

utilize the Zermelo-Voronoi diagram (ZVD) to dynamically assign the active pursuers

at each instant of time.

In Chapter 3, we deal with a differential game between two players in a plane
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subject to a linear spatial flow field. Under the assumption that the flow field is

approximated by a time-invariant affine function, we reformulate the problem as a

game of kind and characterize the initial conditions that secure capture of the evader,

as well as the initial conditions that lead to escape of the evader, when both players act

optimally. The optimal controls of both players inside the capture zone are derived,

and numerical simulations with different parameters of the flow field are presented to

illustrate the corresponding capture and escape zones.

A differential game between an evader and multiple pursuers in a general spa-

tiotemporal flow field is discussed in Chapter 4. It is shown that the game terminates

when the usable reachable set of the evader becomes the empty set for the first time.

A simplified condition for capture of the evader can be derived when the maximum

speed of the evader is less than the maximum speed of each pursuer. The level set

method is adopted to compute and propagate the reachable sets of all the players.

Depending on whether a pursuer contributes to the outcome of the game, whether it

chases the evader directly, or whether it guards some part of the reachable set of the

evader so that the evader does not detour from its optimal trajectory, the pursuers

can be respectively classified into redundant pursuers, active pursuers, or guards. The

optimal trajectories and controls of the pursuers and the evader are retrieved by back-

ward propagation along the corresponding levels of the reachable sets. The proposed

solution scheme is demonstrated by applying it to multi-player, pursuit-evasion games

taking place in realistic strong and time-dependent external flow fields, including a

case with an obstacle.

The scheme presented in Chapter 4 is extended in Chapter 5 to address pursuit-

evasion games between multiple pursuers and evaders in a 3D space setting. The

problem is divided into a pursuer assignment problem, where a partition of the pursuer

set is formed to pair the pursuers with the evaders, and the subsequent sub-game

between each evader and its assigned pursuers. The reachable set analysis is utilized
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for both problems and the level set method is adopted to propagate the reachable

sets of all the players. The pursuer assignment problem is achieved by pairing each

pursuer with the evader that first enters the reachable set of this pursuer among all

the evaders. On the other hand, the sub-game between multiple pursuers and one

evader terminates when the usable reachable set of the evader becomes the empty

set for the first time. The optimal trajectories and controls are retrieved through

backward propagation of the reachable sets. The method is applied to multiplayer

pursuit-evasion games in an artificial flow field and a realistic wind field.

In Chapter 6, a differential game between a pursuer and an evader in an external

stochastic flow field is considered. A moment decomposition method is utilized to

divide the state into a deterministic part and a random fluctuation. Then the mean

and augmented reachable sets are introduced to help the analysis of the problem

through a reachability-based method. It is shown that the expected optimal time-

to-capture can be found as the first time when the augmented reachable set of the

pursuer fully contains that of the evader. The level set method is adopted to generate

the mean reachable sets of both players, and the augmented reachable sets can be

subsequently obtained through an extension method with error ellipses. Our scheme

is applied to a pursuit-evasion game in a stochastic flow field.

Most of the system models we are dealing with nowadays, whether the model of

an aircraft or a robot, are only approximate models and are thus affected by the

dynamical uncertainties. As part of this thesis, we also propose algorithms whose

roots can be found in the DDP method in order to deal with some differential games

under dynamical uncertainties. In Chapter 7, we consider a differential game problem

involving two conflicting controls. By taking a Taylor series expansion of the HJBI

equation around a nominal trajectory, we find the update law of both controls/players,

as well as the backward propagation equations of the zeroth, first and second order

approximation terms of the value function. The resulting GT-DDP algorithm, is
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derived by using expansion of the dynamics in continuous time. We test the GT-

DDP on two distinct systems: one is the inverted pendulum with conflicting controls

where both controls are affine in dynamics and quadratic in running cost, the other is

the pursuit-evasion game subject to an external flow field, where both controls enter

in trigonometric form in the dynamics as well as the running cost. Finally, we utilize

the optimal gains we get from the algorithm to guide an inverted pendulum subject to

noise to its desired state and demonstrate the effect of the design of the cost function

to the feed-forward and feedback parts of the control policies.

In Chapter 8, we address a differential game problem with two conflicting con-

trols under stochastic dynamics, where the dynamical uncertainty is modeled as a

state-dependent Gaussian noise. Starting from the Bellman-Isaacs equation, we take

expansions of the value function and its derivatives around a nominal trajectory and

find the update law of the minimizing and maximizing controls of both players, as

well as the backward differential equations of the approximation of the value function

up to the second order. We present the SGT-DDP algorithm and analyze the effect of

the game theoretic formulation in the feed-forward and feedback parts of the control

policies. The SGT-DDP algorithm is tested on three distinct systems: one is a first-

order nonlinear system and the other two are the inverted pendulum and cart pole

problems with conflicting controls. We investigate how the intensity of the stochastic

noise affects the behavior of the controls and the corresponding trajectories.

Next, we highlight some potential directions for future research that build upon

some of the results presented in this dissertation.

9.2 Projected Reachable Set Approach in Pursuit-Evasion
Games

Up until now, we have only applied the reachability-based approach to pursuit-evasion

games with simple kinematics where the control input is the velocity directly. How-

ever, this approach is not limited to such cases. When the dimension of the state
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space is larger than that of the maneuver space, defined as the 2-dimensional or 3-

dimensional Euclidean space in which the players moves, and the termination of the

problem is determined by the relative positions between the pursuer and the evader,

then we can project the reachable sets of the players in the maneuver space. Capture

is guaranteed when the projected reachable set of the evader at some time is fully

covered by the projected reachable set of the pursuer.

The projected reachable sets has been utilized in [100] to solve collision avoidance

problems, where a pursuit-evasion game involving two identical vehicles moving in

the plane is considered. The dynamics of the system is given by Ẋ = f(X, u, v),

where X ∈ R3 includes two relative planar locations and one relative heading. Col-

lision occurs if the relative distance between the pursuer and the evader is smaller

than a prescribed distance. The backward reachable set, which is the set of all initial

conditions that leads to collision, is introduced in the paper to help solving the col-

lision avoidance problem. The backward reachable set can be computed by solving a

modified Hamilton-Jacobi-Isaacs (HJI) equation

∂φ(X, τ)

∂τ
+ min{0, H(X,∇φ(X, τ))} = 0, (216)

where τ = −t and the Hamiltonian

H(X, p) = min
u∈U

max
v∈V

pTf(X, u, v). (217)

The terminal condition is given by φ(X, 0) = φ0(x). Note that (216) is solved from

time 0 backwards to some τ = −t < 0. The backward reachable set can be represented

as

G(t) = {X ∈ R3|φ(X,−t) ≤ 0}. (218)

The previous method requires to solve the HJI equation in three dimension. An
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alternative way is to project the true reachable set of a high dimensional system

into a collection of lower dimensional subspaces, where computation is less expensive

and reconstruct an over-approximation of the full reachable set from these lower

dimensional reachable sets. For the problem in [100], a two-dimensional projection

of the reachable set with index ij ∈ {12, 13, 23} is governed by the following HJI

equation

∂φij(Yij, τ)

∂τ
+H(Yij,∇φij(Yij, t)) = 0,

φij(Yij, 0) = πij[φ0](Yij),

(219)

with Hamiltonian

H(Yij, p) = min
Yk∈Fk(G,Yij)

pifi(Yi, Yj, Yk) + pjfj(Yi, Yj, Yk), (220)

where πij[·] is a projection such that πij[X] = [Xi, Xj]
T. The function p(x) =

∇(π−1
ij [φij](x, t)) is the gradient of the projections implicit surface function, and

pi, pj, pk are its components. The set valued slice function Fk(M, Yij) for some

M∈ R3 and Yij ∈ R2 is defined as

Fk(M, Yij) = {Yk ∈ R|∃X ∈M s.t. πij[X] = Yij and πk[X] = Yk}. (221)

In the case of pursuit-evasion problems under general flow fields, the dynamics of

the system cannot be represented by relative locations in general. As a result, the

dimension of the HJI equation for backward propagation of reachable sets is normally

too large for the level set method to work efficiently. Hence, the reachability-based

approach we proposed is more suitable for this task. For example, consider two

Dubins vehicles [117] in a place under external flow fields, each vehicle has three

degrees of freedom and the joint state space is of dimension six. Instead of solving
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a HJI equation in dimension six directly, we can separate the two players and for

each player, we project its reachable set on the plane and propagate the projected

reachable set to reduce the computational complexity from propagating the original

reachable set. Then the evader is guaranteed to be captured by the pursuer when

there exist some time such that the projected reachable set of the evader is fully

covered by that of the pursuer.

In the pursuit-evasion game formulation we have been dealing with, the goal is

to minu maxv T , that is, the pursuer aims to minimize the time-to-capture whereas

the evader tries to maximize the time-to-capture. This problem can be solved by a

reachability-based approach, where the termination of the game is related to reachable

set inclusions. For this purpose, we need to propagate the time-dependent reachable

sets of the pursuer and the evader. Now, consider a generalization of the pursuer eva-

sion game, where the objective is to minu maxv τ , where τ =
∫ T

0
p(t) and p(t) ∈ L1(R).

If p(t) = 1, the problem is reduced to the original time-optimal problem. When

p(t) = |u(t)|, it becomes a fuel-optimal problem and when p(t) = u(t)Tu(t), an

energy-optimal problem is formed. Also note that dτ
dt

= p(t). To solve this general-

ized problem, we need to replace the metric t used in the original problem with the

generalized metric τ . After such transformation, the boundary of the reachable set

of the pursuer at τ can be represented by the zero-level set of an implicit function

ψ(τ,X). We propose to find the partial differential equation that governs this implicit

function ψ(τ,X) and solve the pursuit-evasion game under generalized metric.

9.3 Differential Games under Dynamical Uncertainties with
Learned Dynamics

Most of the system models, whether the model of a plane or a robot, are only ap-

proximate and are affected by the dynamical uncertainties. A possible direction is

to learn the difference between the real model and the analytic model via machine

learning methods, such as Locally Weighted Projection Regression (LWPR), and to
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apply Game Theoretic Differential Dynamic Programming (GT-DDP) [139, 140] on

the learned model to solve differential games under dynamic uncertainties. LWPR

is a nonparametric local learning algorithm for nonlinear function approximation in

high dimensional spaces through a combination of weighted locally linear regression

models.

Different learning methods can be applied to learn the dynamics uncertainties of

differential games, such as Gaussian Process [125] and neural networks [53]. Each

learning method has its own advantages and disadvantages, so in practice, the learn-

ing method should be selected on a case-by-case basis. In order to achieve robust

performance, we can augment the learned dynamics with some disturbances apply

the GT-DDP algorithm on the new differential game problem to find the optimal

controls and feedback gains. The next step is to establish a method that can inte-

grate the learning part and the control part together to enhance the performance of

the algorithm.
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[158] Zanardi, C., Hervé, J.-Y., and Cohen, P., “Escape strategy for a mobile

robot under pursuit,” in IEEE International Conference on Systems, Man and

Cybernetics, vol. 4, (Vancouver, BC, Canada), pp. 3304–3309, 1995.
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