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SUMMARY

Legged robotic platforms offer an attractive potential for deployment in hazardous sce-

narios that would be too dangerous for human workers. Legs provide a robot with the

ability to step over obstacles and traverse steep, uneven, or narrow terrain. Such conditions

are common in dangerous environments, such as a collapsing building or a nuclear facility

during a meltdown. However, identifying the physical motions that a legged robot needs to

perform in order to move itself through such an environment is particularly challenging. A

human operator may be able to manually design such a motion on a case-by-case basis, but

it would be inordinately time-consuming and unsuitable for real-world deployment.

This thesis presents a method to decompose challenging large-scale motion planning

problems into a high-level planning problem and a set of parallel low-level planning prob-

lems. We apply the method to quasi-static bipedal locomotion planning. The method is

tested in a series of simulated environments that are designed to reflect some of the chal-

lenging geometric features that a robot may face in a disaster scenario. We analyze the

improvement in performance that is provided by the high- and low-level decomposition,

and we show that completeness is not lost by this decomposition.
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CHAPTER 1

INTRODUCTION

Legged Locomotion

Mobile robot platforms are poised to have a transformative effect on human society due to

their potential for automating a wide variety of physical labor and performing dangerous

tasks without risk to human lives. Traditional mobile robot platforms depend on a set of

wheels whose axles are fixed with respect to the chassis of the robot. Such systems tend

to have severely limited mobility in an unaccommodating environment, because even a

small obstacle can be an insurmountable barrier. By comparison, legged robotic platforms

have broader mobile capabilities, because they can reconfigure the way they contact their

environment in order to overcome obstacles.

Interest in legged robotic platforms has been growing as they become an increasingly

viable technology. Potential applications include household assistance [1], search and res-

cue [2], disaster relief [3], humanitarian aid (such as defusing mines) [4], as well as science

and exploration in dangerous areas on Earth [5] and all the way into outer space [6, 7, 8].

A variety of mechanical designs have been conceived to carry out the broad range of

potential applications. Bipedal robots are often designed to reflect human proportions,

with the aim of allowing these robots to function in environments originally designed for

humans [1, 9, 10, 11], although not all bipedal robots resemble humans [12, 13]. Another

popular design is quadrupedal robots, which tend to resemble dogs or high-agility animals

like cheetahs [14, 15, 16]. More legs might also be used [4, 6, 8] for enhanced stabil-

ity, often at the cost of increasing the mechanical complexity and occupying more space.

Some platforms may also leverage the advantages of both legs and traditional wheels by

incorporating wheels into their legged designs [17, 18].
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Figure 1.1: Robots with various mobility characteristics. Left: PR2 by Willow Garage, a
traditional mobile manipulator. Right: Atlas by Boston Dynamics, a bipedal humanoid.
Bottom: RoboSimian by NASA’s Jet Propulsion Laboratory, a quadruped with wheels on
its knees and feet.

2



However, before the value of these designs can be realized in practice, algorithms are

needed that can tap into the physical capabilities of the platforms. Conventional teleop-

eration methods tend to be too limited or burdensome for human operators to use while

contending with the complexity of coordinating all the robot’s moving parts. These robots

need to maintain balance and avoid collisions while performing their tasks, which requires

a level of precision that cannot be expected of a human operator. Offloading the cogni-

tive burden of making decisions about motions from the human operator onto autonomous

algorithms would make the operation of legged robots more tenable in practice.

Multi-Stage Planning

To improve the autonomy of complex robotic systems, we can turn to planning. The field of

planning aims to produce strategies or sequences of actions that satisfy a set of constraints

while accomplishing a goal. In the context of robot planning, these constraints usually

emerge from the robot’s initial state, the physical model of the robot and its environment,

and the objectives given to the robot. The goal of motion planning in particular is to gen-

erate sequences of feasible joint motions that can bring the robot from a start configuration

to a goal configuration. With a motion planning method that is able to utilize the full kine-

matic capabilities of a legged platform, we can make the deployment of legged robots more

practical while tapping into their full potential.

However, planning methods tend to struggle with problems that are both high-dimensional

and heavily constrained. Legged robots tend to require many joints, making them high-

dimensional systems. In order to successfully move themselves, legged robots also need

to keep their balance, maintain environmental contact, and avoid collisions, making them

heavily constrained. Even worse, legged robots are hybrid continuous-discrete dynamic

systems which further complicates the matter since hybrid planning tends to be consider-

ably more challenging than purely continuous or purely discrete planning.

A common approach for making this type of planning problem tractable is to break

3



it down into stages or hierarchies. This is especially common when combining task and

motion planning, which is another type of high-dimensional, heavily-constrained, hybrid

continuous-discrete planning problem [19, 20, 21, 22]. This approach has also been applied

to legged locomotion planning [23, 24, 25, 26].

By creating abstractions of the planning problem, it is possible to quickly solve high-

level aspects of the problem before needing to address the computationally expensive low-

level details where all of the dimensions and constraints of the problem need to be con-

sidered. Decomposing the problem into these high-level and low-level stages allows us to

solve problems that might otherwise be intractable, while still utilizing the full physical

capabilities of the robot.

Thesis Statement

Autonomous motion planning offers an effective way to utilize the full kinematic capa-

bilities of a robot platform and to maximize the value of deploying robots in challenging

environments. The more autonomy that can be achieved in determining a robot’s actions,

the less burden is suffered by human operators and engineers; this creates a lower barrier

to real-world deployment and a higher ceiling of effectiveness for robots.

We can achieve greater levels of autonomy by decomposing the planning problem into

high- and low-level stages. If the high-level stage can quickly evaluate and resolve the

big-picture problem, then it can provide guidance to the low-level stage, resulting in faster

convergence towards finding a solution.

Overview of Thesis

This thesis presents three related contributions to the field of motion planning:

• The Randomized Possibility Graph (RPG) which is a formalization of route-based

motion planning methods [27],

4



• a proof-of-concept implementation of the RPG, applied to bipedal humanoid motion

planning on arbitrary terrain, and

• a theoretical proof of probabilistic completeness, as well as a convergence analysis

which predicts that the RPG can improve the likelihood of finding a solution under

certain conditions [28]. Those conditions are provided by the analysis.

The next chapter provides a brief overview of prior approaches used for legged locomo-

tion planning, with an emphasis on the particular methods that this thesis will build upon.

Chapter 3 describes the Randomized Possibility Graph (RPG) concept, which is the cen-

tral contribution of this thesis. Chapter 4 details how the RPG can be applied to bipedal

locomotion planning. Chapter 5 examines the probabilistic completeness of the RPG when

applied to semi-unstructured environments. Finally, Chapter 6 concludes the work and

discusses potential future applications for the RPG.
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CHAPTER 2

RELATED WORK

A variety of algorithms for locomotion planning have been developed in the last few

decades, each with distinct strengths and weaknesses. In this section, we will review some

of the most popular algorithms pertaining to legged locomotion planning with an emphasis

on the concepts which this thesis will build upon. We begin with the highest-level approach

to locomotion planning and then end with the lowest-level approaches, reflective of how

the RPG reasons about the overall planning problem.

Route Planning

Prior to the development of legged robots, mobile manipulation platforms would use motor-

ized wheels in order to move through their environments. This form of locomotion would

usually be holonomic, lending itself nicely to basic randomized sampling methods, like

Probabilistic Roadmaps (PRM) [29] and Rapidly-exploring Random Trees [30]. Legged

locomotion is a heavily constrained process wherein the feasibility constraint manifold

is a lower dimension than the robot’s configuration space; as a result, basic randomized

sampling methods cannot directly handle the problem. However, certain simplifications to

the dynamics model can approximate legged locomotion as a low-dimensional holonomic

process, allowing basic randomized sampling methods to be applied. We refer to such

high-level approaches as route planning.

One way to approach route planning is to cast the entire walking process as holonomic

by enveloping all possible walking motion within a bounding box. This can be done in

a two-stage planner [23] where the collision geometry of the lower body is encapsulated

in a bounding cylinder while the upper body collision geometry is ignored. PRM or RRT

methods can be used on the bounding cylinder to find a route for the robot. The fact
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that the cylinder is collision-free guarantees that the agent can follow the path without

its legs colliding with the environment. The second stage of the planner accounts for the

upper body by adjusting the trajectories of the arm joints to avoid obstacles that were not

accounted for by the bounding cylinder. The naive use of a bounding box means that this

approach is not complete with respect to the full kinematics of the robot. Using a solid

cylinder around the entire lower body is especially problematic since it will not allow the

robot to step over any obstacles or change elevation.

The bounding box concept can be modified to use multiple bounding boxes [31, 32]

where one bounding box can encapsulate the upper body while each foot is given an inde-

pendent bounding box. The bounding box for the upper body is lifted above the ground

while the bounding boxes for each foot reach down to the ground to ensure that the ran-

domly sampled path has suitable footholds. This decoupling between bounding boxes en-

ables the planner to find ways to step over 3D obstacles on the ground. However, it is still

unable to utilize the full kinematics of the robot, because the bounding box of the upper

body overestimates the necessary clearance. As an example, the planner could not figure

out how to duck under an overhanging obstacle, even if the robot is capable of doing so.

Bounding box route planning methods are inherently limited in their ability to utilize

the full physical capabilities of the platform, because they rely on inner approximations

of the robot’s constraint manifold. Instead, it is possible to create an outer approximation

which overestimates what the robot can do. For example, it is possible to reduce the col-

lision geometry to just the root geometry and use a randomized sampling method to find

a path that allows the root geometry to move from a start to a goal configuration like the

reachability-based planner of Tonneau, et. al. [33]. The reachability-based planner also

takes into account whether the environment provides a set of reachable contact points that

are adequate for static equilibrium along the route. Since a large set of contacts is often

available, a heuristic is used downselect. After a route is found, Tonneau, et. al. attempt

to interpolate motions along the route which move the robot’s hands and feet between the
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contacts identified along the route. However, since the feasibility of the route is based on

an outer approximation, there is no guarantee that the interpolation will work. In the case

of a failure, the process is redone from scratch with the hope that the randomization will

succeed on the next attempt.

It is possible to use both an inner and an outer approximation as guidance within a

single planning problem. This is shown by Shimizu and Sugihara [34]. Depending on

which approximation is satisfied, the high-level planner can query an appropriate planner,

whether that be a footstep planner or a multi-modal motion planner. We formalize and

generalize this idea via the Randomized Possibility Graph [27].

Footstep Planning

Some of the earliest work in legged locomotion planning used dynamic programming on a

search tree with a discrete set of primitive stepping motions [35]. When a robot stands on

one foot, there is a continuous region of feasible foot placements relative to the stance foot

that the other foot (the swing foot) can reach. However, taking a discrete set of samples

from this region, as shown in Fig. 2.1, and limiting the tree search to use these candidate

foot placements allows a finite branching factor when planning forward over the possible

actions. The feasible whole body trajectories for each candidate footstep can be precom-

puted, allowing the search tree to be expanded without any expensive whole body inverse

kinematics operations.

This approach is able to generate footstep plans quickly enough for online use [36].

It can also be applied to environments with stairs [24]. This approach is complete with

respect to the discretized action set. It is also globally optimal with respect to arbitrary cost

functions when an admissible heuristic is used to guide an A* search [24]. Route planning

methods that used an outer estimate of the system dynamics could be used in a heuristic to

guide the search.

However, this discretized approach is not optimal nor complete with respect to the full
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Figure 2.1: Example of the feasible left step region, Fleft, being discretized by a set of
samples.

kinematics of the robot platform. Using a discrete set of primitive steps inherently limits

how the robot may utilize its kinematics to navigate around obstacles. Some augmented

versions of the classic footstep planning approach include an adaptive local search to sup-

plement the discrete branching [37]. This way, when the terrain is pathological enough that

the discretized set of footsteps is insufficient to find a feasible footstep sequence, the plan-

ner can do a local search to find feasible footholds. This allows a wider range of feasible

steps to be accounted for while still maintaining a finite branching factor. Despite being

adaptive, it is still not complete with respect to the full kinematic capabilities of the robot,

because it does not search for paths through the full configuration space of the robot.

Multi-modal Motion Planning

Instead of simplifying the planning problem with bounding boxes or a discrete set of action

primitives, it is possible to decompose the problem based on “modes”. In [25, 38], a mode is

defined by a fixed set of contact points between the robot and its environment. Each unique

mode has its own feasibility constraint manifold. When it is possible for the constraint

manifolds of two different modes to intersect, those modes are considered adjacent. There

are two prominent Multi-modal Motion Planning methods presented by Hauser et. al.:

Mutli-modal PRM [25] and Random-MMP [39].

9



The basic workflow of Multi-modal PRM is to first sample transition configurations—

which lie in the intersections of adjacent modes—and then find feasible paths through each

individual mode that can link together those transition configurations. When finding paths

through the individual modes, a constrained PRM is constructed for each mode, hence the

name Multi-modal PRM. The modes themselves are identified by searching for feasible

combinations of contact points between the robot and the environment. Traditionally, the

points on the robot and the environment that are allowed to be used for contact are pre-

determined and provided as input to the planner, or the environment is constructed in a

way that allows more contact points to be sampled over time (for example, using a height

map). The combinatorial complexity of all the different modes that could be considered

may become enormous and not scale well to difficult problems. This motivates the use of

Incremental-MMPRM which focuses the search over a small selection of candidate modes.

When the set of candidate modes are exhausted, the set is expanded. In the worst case

scenario, this behavior degrades into the basic MMPRM algorithm. The candidate modes

can be selected in a variety of ways, for example if a set of modes lead from the start to

the goal via mode-adjacency and each adjacent pair contains a feasible transition configu-

ration, then the set of modes would be a promising choice. This heuristic is referred to as

Search Among Feasible Transitions.

A more broadly applicable Multi-modal Motion Planning algorithm is Random-MMP.

This algorithm draws its inspiration from RRT-based methods by building trees rather than

building a graph like PRM. Random-MMP is a more general algorithm which applies to

any problem where new modes can be sampled within the proximity of an existing mode.

Similar to RRT, Random-MMP can grow trees by taking uniformly random samples of

states (and occasionally a sample from the goal, to improve performance) and extending

the existing tree towards that state, performing any necessary mode transitions along the

way. A more ideal growth behavior would be based on the Expansive Space Tree (EST) [40,

41] method. In this ideal method, samples are taken uniformly from the locally reachable
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space instead of uniformly over the entire state space. This allows the trees to be grown

more reliably instead of frequently running into infeasible states.

Both of these Multi-modal Motion Planning methods have the characteristic of being

probabilistically complete. This is an important feature for allowing the planners to solve

problems that are arbitrarily complex or difficult, and it is the key advantage that these

methods have over all other approaches. However, an important disadvantage of these

methods is performance. Depending on the difficulty of the problem, the run-time may be

on the order of minutes or hours, in contrast to most locomotion planning methods which

aim to run at a real-time rate.
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CHAPTER 3

RANDOMIZED POSSIBILITY GRAPH

For a robot to perform useful work autonomously in a complex environment, it must be able

to determine ways that it can move itself from a start configuration to a goal configuration

without violating the laws of physics or inflicting damage on itself or its environment.

These requirements that are placed on the robot are known as feasibility constraints. The

space of all configurations which satisfy the constraints is called the feasibility constraint

manifold. For complex robotic systems, this manifold tends to be lower-dimensional than

the configuration space and is often defined implicitly rather than explicitly, making it

difficult to know its exact geometry.

Motion planning methods ordinarily operate by constructing graphs or trees which con-

sist of configurations that fully exist within the feasibility constraint manifold of the action

they are performing. Remaining within this manifold is a reasonable requirement to place

on the graph, because any vertices or edges which lie outside of the manifold are, by defini-

tion, invalid—which may mean it is physically impossible, or simply harmful to the robot

or its surroundings. Unfortunately, for a humanoid robot to remain on the constraint man-

ifold, expensive calls to a whole body inverse kinematics (IK) solver must be performed

[42, 43, 44]. This results in a critical bottleneck if a broad area needs to be explored before

finding a solution.

The key idea of the Randomized Possibility Graph (RPG) is to explore the possibility of

an action first, instead of immediately committing to costly whole body inverse kinematics

queries. Therefore, the problem is broken down into two stages: A high-level stage which

explores possibilities P , and a low-level stage which attempts to generate motionsM. The

high-level graph generated during P will guide the efforts of the low-level planners used

byM.
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The governing logical principles behind the RPG have a theoretical grounding in Pos-

sibility Theory [45], but the concepts are intuitive enough that a knowledge of Possibility

Theory is not necessary to proceed. It is enough to understand that the possibility of any

given action e can be labelled with “impossible”, “possible”, or “indeterminate” depending

on whether it satisfies the necessary conditions (CN ) or the sufficient conditions (CS) that

are assigned to it:

e.label =


“impossible” if CN(e) is false

“possible” if CS(e) is true

“indeterminate” otherwise

(3.1)

If we design necessary and sufficient conditions that can be checked much more quickly

than querying the original constraint manifold, we can then construct a Randomized Possi-

bility Graph, whose states (vertices) are connected by either “possible” or “indeterminate”

edges, and expand it very efficiently for whole body motion planning.

Sufficient vs. Necessary Conditions

To construct the RPG, we must first design sufficient and necessary conditions for the fea-

sibility constraint manifold of the action whose possibilities we are exploring. We should

design the conditions to be quick to test in order to reduce the computational cost of ex-

ploration. The conditions should also use as few parameters as is reasonable, because

randomized search methods tend to be more effective in low-dimensional search spaces.

Suppose we have a 2D constraint manifold, C, which exists in a 3D state space (Fig.

3.1). Let the xy-plane be a low-dimensional feature space which contains the essential

information for navigating C. We denote the projection of C by CP . Even with a flattened-

out projection, identifying which points are inside or outside of the manifold may still be

costly or difficult, because the boundary of CP may consist of functions that are expensive
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Figure 3.1: Visual depiction of an abstract constraint manifold, C and its projection. The
manifold is projected, CP , from 3D space onto a plane. “Sufficient” CS and “Necessary”
CN boundaries are fitted within and around the projection of the manifold. Elements inside
the green box are definitely “Possible”. Elements outside of the yellow box are definitely
“Impossible”. Elements inside the yellow box but outside of the green box are “Indetermi-
nate” because they might or might not lie on the projection. Identifying whether a point
lies inside or outside of CS or CN may be considerably faster than identifying whether it
lies inside or outside of CP .
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to compute or hard to fully define. However, suppose a box, circle, or some other simple

shape can be fit withinCP such that it is guaranteed that every point within the simple shape

also lies within the manifold projection. Such a shape would be a suitable representation of

the sufficient condition manifold, CS . Any point lying inside of CS also lies inside of CP

and should be labelled with “possible”. Similarly, if CP can be bounded by a simple shape,

CN , such that CP ⊆ CN , then CN would qualify as the necessary condition manifold. Any

point lying outside of CN should be labelled with “impossible”. Finally, any point inside

of CN but outside of CS should be labelled with “indeterminate”.

Higher Dimensions

The systems we are interested in have feasibility constraint manifolds higher than 2. As a

result, there are additional considerations that need to be taken into account. For example,

in Figure 3.2a the feasibility constraints form two disconnected manifolds, C1 and C2, but

their projections overlap to form CP . When constructing CS for this scenario, we need to

guarantee that every pair of connected points in CS can map to a pair of connected points in

C1 or C2. To ensure this, we choose a slice through the constraint manifolds and consider

its projection as shown by the blue shadow in Figure 3.2b. The manifolds determined by

the sufficient conditions must then fit inside the projection of this slice.

On the other hand, the necessary conditions do not need any additional consideration

when used in higher dimensional scenarios. The only strict requirement for the necessary

conditions is that they envelop the entire projection of the constraint manifold. In some

cases, such as Figure 3.2d, this may mean that two connected points in CN map to discon-

nected points in C. Whenever possible, this should be avoided, perhaps by changing the

necessary condition function or changing the space that the constraint manifolds are being

projected to.
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(a) Disconnected manifolds in higher dimensions
might produce a fully connected projection.

(b) We can project a slice of the higher dimen-
sional manifold such that points that are con-
nected within the projection can map to points
that are connected within the higher dimensional
manifold.

(c) The sufficient conditions must be designed to
fit within the projections that map to full con-
nected subsets of the constraint manifolds.

(d) The necessary conditions must still envelop
the entire projection CP .

Figure 3.2: In higher dimensions, additional considerations are needed when constructing
sufficient conditions.
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Mapping from Low to High

Given a set of sufficient conditions that corresponds to connected subsets within the fea-

sibility constraint manifolds, any low-dimensional points which satsify the sufficient con-

ditions can be mapped directly to predetermined high-dimensional points within the fea-

sibility constraint manifolds. Paths between these connected low-dimensional points are

guaranteed to map to paths within the high-dimensional feasibility constraint manifold, as

depicted in Figure 3.3. While the low-dimensional points in the sufficient condition mani-

folds may be able to map to an infinite continuum of other points in the feasibility constraint

manifolds, the other high-dimensional points are not important for navigation, which is the

central purpose behind the low-dimensional approximations. If the robot’s goal configura-

tion is outside of the constraint manifold subset that the sufficient conditions map to, then

this will be accounted for during the low-level planning stage discussed in the next section.

Low-dimensional points that only satisfy the necessary conditions are not as conve-

nient. We do not immediately know what high-dimensional points they might map to, or

whether such high-dimensional points even exist. To accommodate challenging scenarios,

we consider a region around each of these indeterminate low-dimensional points instead

of focusing on the exact points themselves. These regions are extruded into cylinders as

illustrated in Figure 3.4, and we sample points within the intersection of the cylinder and

the feasibility constraint manifold. Due to the ambiguity of whether these sampled points

will be able to connect to each other, we expect to take an arbitrary number of samples until

paths can be found or a resource limit is reached. Unlike the sufficient conditions, we do

not know a priori whether a path will exist between these sampled points. The next section

discusses how we search for paths between these points.

Probabilistic Conditions

For heavily constrained high-dimensional systems, a low-dimensional projection might

wash away a considerable amount of information that would be relevant for guarantee-
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Figure 3.3: Connected points within each sufficient condition manifold can map directly to
connected points in the full feasibility constraint manifolds.

18



Figure 3.4: When mapping from the necessary condition manifold to the full feasibility
constraint manifolds, we consider a region around the low-dimensional point and extrude
a cylinder (orange) into the high-dimensional space, then attempt to sample points within
the intersection of the feasibility constraint manifolds and the cylinder.
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ing feasibility of a route. There may be fine details in the environment that would strongly

impact feasibility, but these details would not be captured by a projection which is low-

dimensional enough to be suitable for defining a route. For example, the terrain in some

region of the map might not offer adequate footing for a walking robot, but this would go

unnoticed if the necessary conditions operated solely on the transformation of the robot’s

root link.

To overcome this limitation, we can design probabilistic conditions which utilize ran-

domized sampling to test the necessary or sufficient conditions in a higher-dimensional

parameter space than what the low-level route exists in. We can search for values for ad-

ditional parameters by taking samples within range limitations and using gradient descent

methods when available. For example, the necessary conditions might sample the ground

for feasible foot placements within a reachable region of the robot’s root transform. If a set

of values is found that satisfies the condition, then the high-level search can proceed. If no

set of values is found within a conservative number of attempts, then the high-level search

should abandon extending that route and attempt to extend a different route.

Since the values of the additional parameters are at least partially determined through

randomness, their satisfaction is probabilistic rather than deterministic. A route which

failed to satisfy a probabilistic necessary condition may still be revisited later if the high-

level route planner randomly selects it again for expansion. As explained later in Sec-

tion 3.2, a randomized sampling planner will be used for the high-level exploration. When

choosing which existing route to extend towards a new location in the environment, the

high-level planner does not take into consideration any of the “additional” parameters that

are sampled by any probabilistic conditions. In other words, the high-level planner is not

concerned with whatever foot placement locations may have been sampled along each ex-

isting route; it only cares about the distances within the low-dimensional projection in

which the routes are defined. Therefore, we exclude the additional parameters from the data

structure of the high-level graph. However, an efficient implementation may cache these
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values elsewhere for later use in the low-level stage, which is described in Section 3.2.

RPG Definition and Construction

In the previous section, we introduced the concepts of CN and CS , the necessary and suf-

ficient (respectively) condition manifolds which occupy a lower dimensional space than

the state space. We define E = P (X) to be the “possibility exploration space” where X

is the state space of the robot, and in this paper P : X → SE(3) maps from the robot’s

state to the SE(3) transformation of the robot’s root link. In general, P is chosen to be a

projection operator such that CS ⊆ CN ⊆ P (X). We will use E as the search domain for

the possibility exploration stage P .

Definition 1. A Randomized Possibility Graph is a tuple

RPG = (ΓP ,ΦM,ΩM,ΓM)

where,

• ΓP = (VP , EP) is a graph where VP is a set of vertices which are elements of E , and

EP is a set of directed edges, each with a “possible” or “indeterminate” label,

• ΦM : EP × EP → Xk is an operator which takes two edges and produces a set of

k > 0 states,

• ΩM : X × EP × X → Xf is an operator which maps two states with a possibility

edge in between them into a discretized trajectory of f ≥ 0 states, where f = 0

implies failure to find a trajectory,

• ΓM = (VM, EM) is a graph where VM is a set of vertices which are elements of X ,

and EM is a set of directed edges which indicate feasible paths between the vertices

of VM.

21



(a) The RPG is initialized with just a start vertex
and goal vertex. The pale green regions are ar-
eas where CS is satisfied, pale yellow is where
CN is satisfied, and gray is where CN is vio-
lated. These colored regions represent informa-
tion which is not directly known to the algorithm,
so it must be searched via randomized sampling.

(b) A randomized sampling motion planner has
constructed ΓP to find a path from the start to
the goal through E . This provides a guide route,
which is highlighted in cyan.

(c) The dotted regions represent the ranges of πS
or πN for each edge along the guide route. The
πS regions are thin because we are guaranteed to
find a solution directly along the routes whereCS
is satisfied. Conversely, πN may need to search
a broader area to find a solution. ΦM is applied
to the edges of the guide route, generating sets of
states (black dots) where the ranges of the plan-
ners overlap.

(d) States and whole body paths (black dots and
edges) are generated by ΩM using the guide
route and the states generated by ΦM. These el-
ements are put into ΓM until a complete whole
body path is found from the start to the goal.

Figure 3.5: Illustration of the RPG procedure
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(𝑒1, … , 𝑒𝑁) 
Guide Route 

𝑋𝑓(𝑒1) 

𝑋0(𝑒1) 

𝑋𝑓(𝑒𝑁) 

𝑋0(𝑒𝑁) 

… 

Route Planner High-level Graph 
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Threads 

𝜉1 

𝜉𝑁 

𝜉2 

𝜉𝑁−1 

… 

𝑃(𝜉𝑖) 

𝜉𝑆 
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Figure 3.6: Workflow of a Randomized Possibility Graph. At the top is Stage P which
generates a Guide Route. The Guide Route is then fed through the StageMwhich is shown
on the bottom. Stage M decomposes the Guide Route into a set of low-level planning
problems which run in parallel. The results of the low-level planning queries are aggregated
in ΓM, and their projections are passed back up to ΓP to assist in identifying more routes
if a solution has not been found yet.
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The graph ΓP is used to solve the first stage, P , which explores possibilities. ΓP can

be constructed using a sample-based motion planner, such as PRM [29] or RRT [30]. If

CN or CS have a small volume within E , then a projection-based sampler may be needed,

such as CBiRRT [46] where CN and CS are treated as task constraints. Alternatively, CN

and CS can be treated as “hard” and “soft” task constraints respectively (meaning that CN

is required but CS is preferred) which would make the method in [47] more applicable. For

this paper, we use the “hard” and “soft” constraint approach, and we refer to this high-level

planner as ΠP .

We initiate ΓM with one or more “start” states, V start
M , and one or more “goal” states,

V goal
M . ΓP is initiated with the projections of these states, P (V start

M ) and P (V goal
M ). The

high-level motion planner of choice, ΠP , is used to find a route (e1, ..., en ∈ EP) which

connects a start projection to a goal projection while remaining within CN . The solved path

generated by ΠP represents a guide route, similar to the “guide trajectories” of [33]. An

illustration of this process can be seen in Figs. 3.5a-3.5b. The guide route is used to focus

the efforts of the next stage,M.

Provided the guide route found by P , we want to use ΩM to examine each segment of

the route to see if it can be realized in X . We define ΩM as:

ΩM(x0i , ei, x
f
i ) =


πS(x0i , ei, x

f
i ) if CS(ei)

πN(x0i , ei, x
f
i ) if CN(ei) ∧ ¬CS(ei)

where πS and πN are sub-planners which produce full state space trajectories given a sub-

start state (x0i ), a sub-goal state (xfi ), and an edge (ei) ofEP which is used as a “guide”. The

“guide” edge may be used to compute a heuristic, determine footstep locations, or focus

randomized samples, depending on the nature of the planner. We choose πS such that it is

guaranteed to quickly find a solution along routes where the sufficient conditions CS are

satisfied. πN is a whole body motion planner, ideally with a probabilistic completeness

guarantee. πN can be applied to edges which satisfy the necessary conditions CN even if
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the sufficient conditions are not satisfied, but it is not guaranteed to return a solution.

To find a feasible continuous motion through state space, we need to choose xfi and

x0i+1 to be equal. Define X0(ei) to be the set of states that can be used as sub-start states,

x0i , for ΩM(x0i , ei, x
f
i ), and Xf (ei) to be the set that can be used as sub-goal states, xfi . We

can then define ΦM(ei, ei+1) = Xf (ei) ∩X0(ei+1). Using ΦM to determine the endpoints

(sub-starts and sub-goals) used by ΩM ensures that the RPG is able to create continuous

state trajectories. Note that ΦM(e0, e1) = V start
M ∩X0(e1), and ΦM(en, en+1) = Xf (en) ∩

V goal
M . ΦM is illustrated by the black dots in the overlapping dotted regions of Fig. 3.5c.

Determining X0(e) and Xf (e) will depend on the implementation of πS and πN , but most

planners have either a discrete set of permissible endpoints or a continuous set that can

be sampled from. In practice, many planners allow multiple start and goal states to be

specified per query.

The overall procedure for planning with the RPG is to generate a guide route (e1, ..., en ∈

EP) by constructing ΓP with ΠP and feeding that route through ΦM and then through ΩM.

Whenever ΩM identifies feasible state trajectories, the states and edges of those trajectories

are added to ΓM. A solution is found when ΓM contains a path from a start to a goal state.

The procedure is illustrated in Figure 3.5 and diagrammed in Figure 3.6.

Depending on the implementation of πN , it may take an indeterminable amount of time

to produce a solution. Moreover, it might not be able to produce a solution for some ei if

the edge is not a truly feasible guide route. Rather than waiting for ΩM to return a result of

success or failure, the stage P can search for alternative guide routes by deleting any of the

indeterminate edges of the guide route from ΓP and then continuing to grow ΓP in parallel

toM. This parallelism allows the RPG to avoid being bottlenecked by challenging routes

when alternatives exist. When elements are added to ΓM, their projections can be added to

ΓP as “possible“ elements to assist the ongoing high-level search.
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CHAPTER 4

BIPEDAL LOCOMOTION PLANNING

In this chapter, we detail how the RPG concept can be applied to bipedal locomotion plan-

ning. Stage P requires a set of sufficient conditions and a set of necessary conditions which

can be inspected at a high level while searching for a route. These conditions must be outer

and inner (respectively) approximations of the robotic system’s feasibility constraints.

Once a candidate route is discovered, stage M requires a low-level planning routine

that can examine segments of the route and return feasible whole body motions whenever a

route is viable. The low-level planner should take advantage of the full configuration space

available to the robot in order to ensure that none of the robot’s kinematic capabilities are

overlooked.

Designing High-level Conditions

To design the high-level conditions, we first consider the physical feasibility constraints

of the problem. For this work, we limit the scope of the problem to only use quasi-static

(as opposed to dynamic) motions. This leaves us with the following set of feasibility con-

straints:

• Avoid collisions

• Maintain quasi-static balance

• Enforce kinematic constraints to maintain contact points

• Remain within joint torque and position limits

In this section, we discuss how to simplify these constraints into a set of sufficient

conditions and a set of necessary conditions which can be applied to bipedal locomotion
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across arbitrary terrain. In Section 3.2 we introduce the concept of the possibility explo-

ration space, E , the space that gets explored in order to find a possible route.

The choice of what constitutes E may vary between the problems that the RPG is being

applied to. For bipedal locomotion planning, we choose E to be the SE(3) transform of

the robot’s root link. Therefore, the conditions must be designed so that they can be tested

based on the root link transformation of the robot.

For the conditions to have the best possible effect, the sufficient conditions should be

an inner approximation of the constraint manifold that is as loose as possible while still

guaranteeing the viability of the route through E . The necessary conditions should be an

outer approximation of the constraint manifold that is as restrictive as possible while still

guaranteeing that they do not rule out regions of E that are actually viable.

Collision Avoidance Conditions

Most robots in operation today—especially legged robots—are actuated with strong mo-

tors, controlled by a stiff PD control loop. If an unintentional collision occurs between one

of the robot’s links and the environment, this is almost certain to result in severe damage,

either to the robot or to the environment: either by breaking the object that the robot col-

lides with, by causing the robot to topple over, or by burning out a motor due to excessive

internal torquing. Even if the robot uses a compliant controller when colliding with ob-

jects, the unexpected external force could throw it off balance, or the very presence of the

obstacle could prevent the robot from reaching its goal.

The collision geometry of a robot is ordinarily defined by a set of meshes or geometric

primitives which are specified per each rigid body that belongs to the robot. The positions

and orientations of these rigid bodies (such as the foot, torso, hand, head, and everything

in between) are a function of the robot’s full set of joint positions, plus the SE(3) trans-

formation of the root link (in our case, the robot’s pelvis). Clearly this means that robot’s

collision geometry is a function of all the robot’s joint positions, plus root transform.
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(a) Minimal geometry used for
necessary conditions (Yellow).

(b) Expanded geometries used for sufficient condi-
tions. Each foot has a set of geometries attached to it
(blue for the left and pink for the right), allowing these
conditions to work on uneven terrain, and to step over
small obstacles.

Figure 4.1: Collision geometries used for the (a) necessary and (b) sufficient conditions.
Since (b) occupies more space, the constraint manifold for the sufficient conditions is
smaller—and therefore more restrictive—than the manifold for the necessary conditions.

Since E is defined by only the transform of the root link, the necessary conditions for

collision avoidance should only consider the subset of the overall collision geometry that is

a function of the root transform, but otherwise invariant for all joint positions. This ensures

that the necessary condition does not rule out any routes that may be viable by using some

non-standard set of joint positions. At the same time, it ensures that the planner does not

waste effort on any clearly impossible routes, such as a route that passes through a wall or

an excessively thin passage.

The collision geometry used for the sufficient conditions must guarantee that consec-

utive vertices in ΓP have enough free space that there is guaranteed to be a feasible path

through configuration space that allows the root link to move from the SE(3) transform

of one vertex to the next. To accomplish this, we use an “expanded” collision geometry

similar to [31, 32, 48] where a set of inflated boxes are attached to each foot, illustrated in
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Figure 4.1b. As long as a route edge contains a sequence of feasible alternating left-right-

left foot placements where

• each subsequent foot placement is reachable from the previous, and

• these expanded collision geometries do not intersect the environment when posi-

tioned at each foot placement

then there is guaranteed to be a feasible walking trajectory along the route segment. This

guarantee can be ensured by pre-determining a set of parameterized primitive trajectories

which move exclusively within the bounds of the expanded collision geometries. Alterna-

tively, the dimensions of the boxes can be generated to accommodate a set of parameterized

primitive trajectories.

Note that this sufficient condition for collision avoidance presupposes that we have a

sequence of foot placements sampled along the route edge. The procedure for sampling

foot placements is discussed later in Section 4.2. When testing the possibility of an edge e,

the operation CS(e) should sample foot placements along e and then store that information

in a cache mapped to e to avoid repeated effort later on. Also note that even if two connected

edges both satisfy CS , their combined route might not necessarily satisfy CS , because the

foot placements leading up to their shared vertex might not be able to reach each other

(although the probability of this is low). If such a case arises, the vertex where the edges

meet can be treated as an infinitesimally short indeterminate edge and use stageM to find

a whole body trajectory to connect the two edges.

To accommodate sloped terrain, the bottom segment of the expanded collision geometry

can be given rotational joints that reflect the behavior of the robot’s ankle joints as shown

in Figure 4.2. This allows the expanded geometry to accurately evaluate the available free

space above the foot placements.
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Figure 4.2: The bottom segment of each expanded collision geometry has a two-axis rev-
olute joint which allows it to conform to slopes while the other segments of the geometry
can remain upright.

Footstep Feasibility Constraints

The simplified collision geometries are effective for navigating around environmental ob-

stacles, but they are not adequate as sufficient or necessary conditions on their own. If the

floor of an environment has large gaps, clutter, or changes in elevation, then a collision-free

path might still be infeasible due to an absence of viable foot placements. Here we discuss

the conditions for a foot placement to be feasible, which include:

• Inclination limitations

• Support geometry

• Free space

Slope limitations are determined by the coefficient of friction between the robot’s foot
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sole and the region of contact. An in-depth analysis of how friction impacts static equi-

librium for an arbitrary set of contact points can be found in [49]. However, since we are

interested specifically in flat-footed bipedal robots, there are a number of simplifications

which can be made. Bipedal robots transition between double-support phases (standing on

two feet) and single-support phases (standing on one foot). During a single-support phase,

the entirety of the robot’s weight rests on one foot. Given a static coefficient of friction,

µs, in order for static equilibrium to be maintained, it can be shown that the maximum in-

clination of the contacts is tan−1(µs). Any hypothetical foot placements whose inclination

exceeds this value should be rejected.

Since the foot placements are to be use for quasi-static motions, we also need to con-

sider constraints on their support geometries. Quasi-static motions require a support poly-

gon with non-zero area, or else static stability cannot be ensured. The support polygon is

the convex hull of the robot’s contact points, projected down along the direction gravity.

Note that in the general case, the full support region could extend beyond this projected

polygon [49], but in the case of flat-footed bipedal walking the most constrained phases for

the support region are the single-support phases, during which the support region does per-

fectly coincide with the traditional support polygon. Since the most constrained limitations

on the support region must be satisfied for the overall problem to be satisfied, it is sufficient

to use the traditional support polygon simplification with no loss of completeness.

If the support polygon has zero area, it would imply that the robot is dynamically bal-

ancing on a sharp edge or curved surface. However, quasi-static motion requires the robot

to be statically stable at any given moment during the motion. Therefore, any hypothetical

foot placements whose support area would be very small must be rejected. To encourage

more stable foot placements, it is a good idea to initially inflate the lower bound on the

required area and gradually reduce it if suitable foot placements are not being found.

Other characteristics of the support geometry can be considered, like the distance of the

centroid from the closest edge. A larger distance from the nearest edge would correspond to
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Figure 4.3: Support geometry (red) of a hypothetical foot placement (transparent blue) on
top of a cinder block.

a more broadly distributed (and therefore more stable) support base. Figure 4.3 illustrates

the support polygon of a single footstep.

While the bottom of the foot must have adequate contacts to support the weight of the

robot, the rest of the foot’s geometry must not intersect any of the environment’s geometry.

When testing sufficient conditions, the expanded geometries of Figure 4.1b should be used

at each foot placement. For necessary conditions, only the collision geometries that are

rigidly attached to the bottom of the foot should be tested, as illustrated in Figure 4.4.

If these minimal foot geometries intersect the environment, then the foot placement is

physically impossible, no matter what the configuration of the rest of the robot may be.

Whether testing the necessary or sufficient conditions, the minimal collision geometries of

sequential foot placements must not intersect each other, since that would be equivalent to

a self-collision.
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Figure 4.4: Minimal geometries of the left (blue) and right (pink) feet. A necessary condi-
tion for a hypothetical foot placement to be feasible is for these geometries to be collision-
free when placed there.

Foot Placement Sampling

Given an arbitrary geometric representation of an environment, there may not be a closed-

form expression for the locations of viable foot placements. To overcome this, we would

like to employ a sampling method that can quickly produce a suitable discrete set of foot

placements to consider while planning. Furthermore, we would like the sampling method

to scale well to large environment models, so the samples should be concentrated in regions

that are likely to assist in finding a solution. If samples are taken in regions of the environ-

ment which cannot be reached by the robot, then it would be a waste of computational time

and resources.

In this section, we detail a method for sampling viable foot placements. The approach

here builds on the reachability-based method described by [33]. The limitations of this

method are discussed in Section 4.2.3.
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Figure 4.5: An approximation of the space that can be reached by either of the robot’s legs
using any foot rotation, represented by an octree. The approximation is an outer bound on
the reachable space, meaning that there may be some space included in the octree which is
not actually reachable, but none of the reachable space is left out. This ensures that we do
not overlook any possible foot placements.

Reachability

The reachable space of a limb seldom has a closed-form representation, except for limbs

with particularly simple kinematics. In the general case, there is no inherently obvious way

to characterize a limb’s reachable space. In order to search for feasible foot placements

within an environment that is represented by a set of meshes or geometric primitives, we

would like a geometric representation of the reachable space which we can check for inter-

sections with the environmental geometries.

The geometric representation should include the entirety of the reachable space to en-

sure that our foot placement search does not diminish the overall completeness of our lo-

comotion planner. Furthermore, we expect to do many thousands of searches for foot

placements, so the representation should also allow for efficient collision checking. Using
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an octree, like in the work of [33], would satisfy both of these requirements. An example

illustration of an octree representation of the reachable space of a bipedal robot’s legs can

be seen in Figure 4.5.

If we use an RRT-based sampling method for the possibility exploration stage P , then

each time we extend the graph through E , we will be extending from a location which

is potentially reachable from the start or goal configurations. If we always extend from

potentially reachable regions, then we can have some confidence that the new frontiers

being explored may also be reachable from the start or goal.

Plane Sampling and Adjustment

Given a suitable representation of the reachable space, we can find sets of points, Pintersection,

where the reachable space intersects with the geometry of the environment. The distribu-

tion of these points may vary depending on the layout of the environment, the geometric

features, and the methods used for intersection detection. In our implementation, FCL [50]

was used.

Figure 4.6 illustrates examples of what the distribution of intersection points between

the reachable space octree and an environment may look like. It is worth noting that

higher concentrations of intersection points do not correspond to greater availability of

foot placements—in fact, more often the opposite relationship is true, since higher con-

centrations of intersections usually emerge from geometric features like curves and edges

which are less likely to accommodate foot placements than flat ground. Therefore, it is

important that our foot placement identification method does not get inadvertently biased

towards searching around high concentrations of intersection points.

To ensure that the reachable space is searched fairly, take a point, ptarget, within the

reachable space and find the Nneighbors closest intersection points, Pneighbors (see Fig. 4.7b),

where Nneighbors is a user-defined value (in our implementation, we use 10). From Pneighbors,

we randomly select sets of triples until one of the sets can define a suitable plane. For a
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Figure 4.6: Examples of points which are found by intersecting the reachable space ge-
ometry (see Fig. 4.5) with various environment geometries. The intersection points are
illustrated as small blue spheres. Depending on the layout and geometric representation
of the environment, some regions might be densely packed with intersection points while
other regions are sparsely packed. This variability in density is accounted for by sampling
from planes determined by the intersection points instead of using the intersection points
directly.
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plane to be suitable, the three points that define it must not be collinear. Additionally, the

plane’s angle of inclination (the angle between the plane’s normal vector and the direction

of gravity) must not exceed tan−1(µs). The function IsSuitablePlane used in Algo-

rithm 1, line 9 tests to ensure that the triplet of points is not collinear and that the plane they

form does not exceed the maximum inclination.

Algorithm 1: Sampling foot placements. R is the reachable space described in Sec-
tion 4.2.1. Env is the environment geometry. F is the simplified foot geometry.
1 Function SampleFootPlacement(R, Env)
2 Pintersection ← SampleIntersection(R, Env);
3 for i in [1, NSampleAttempts] do
4 ptarget ← SampleRandomTranslation(R);
5 Pneighbors ← FindClosestNeighbors(Pintersection, ptarget, Nneighbors);
6 for j in [1, NPlaneAttempts] do
7 Pplane ← SampleTriplet(Pneighbors);
8 for k in [1, NMaxIterations] do
9 if not IsSuitablePlane(Pplane) then

10 break;

11 psample ← SampleRandomSE2(Pplane);
12 if IsFeasiblePlacement(psample) then
13 return psample;

14 SetPosition(F , psample);
15 Pcollisions ← SampleIntersection(F , Env);
16 if IsEmpty(Pcollisions) then
17 continue;

18 pswap ← GetFurthestFromPlane(Pcollisions, Pplane);
19 pclosest ← FindClosestNeighbor(Pplane, pswap);
20 Swap(pswap, pclosest);

21 return null;

The function SampleRandomSE2 randomly samples a SE(2) point on the plane such

that the center of the foot placement is within the triangular boundary of the three intersec-

tion points—the rotation is randomly sampled from [0, 2π) around the normal axis of the

plane. This point defines a hypothetical foot placement on the plane. An illustration of the

hypothetical placement sampling can be seen in Figure 4.7d.

We check for collisions between the environment and a simplified foot geometry (a thin
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(a) Find intersection points between the
environment and the reachable space.

(b) Randomly sample a point within the
reachable space and find a set of N clos-
est intersection points.

(c) Randomly select triplets out of the
set of N closest points until one of the
triplets provides a viable plane.

(d) Place a simple foot geometry ran-
domly on the plane within the boundary
of the three points. Check for collisions
between this foot placement sample and
the environment.

(e) Replace one of the plane points with
the collision point (from the previous
step) which is furthest from the plane.

(f) Again, sample a foot placement and
check for collisions.

(g) Again, Replace one of the plane
points with the furthest collision point
from the previous step.

(h) Viable foot placement has been
identified.

Figure 4.7: Illustration of the iteration process. The transparent green I-beams are a cross
section of the environmental features being investigated. Blue spheres represent the inter-
section points between the environment and the reachable space. The yellow sphere is a
point randomly sampled within the reachable space. Orange spheres are points that are
being used to construct hypothetical planes. The blue box is a hypothetical foot placement
sample.
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rectangle) located at the hypothetical foot placement. If collisions exist, then we take the

collision point which is furthest from the plane and use it to determine a new sampling

plane. Whichever point from the previous plane is closest to the collision point is replaced

by it, forming a new plane and triangle as seen in Figure 4.7e. This process is repeated

until the simplified foot geometry no longer intersects the environment.

Once a collision-free plane is found, we continue to sample potential foot placements

on the plane until one of those foot placements satisfies the feasibility constraints described

in Section 4.1.2. This rejection sampling approach has shown to be effective on a diverse

range of geometric features, but has limitations which will be discussed in Section 4.2.3.

Performance Enhancements

Using a purely random-sampling based approach is effective at identifying unanticipated

foot placements, but an important disadvantage is that it tends to produce a sloppy and in-

consistent pattern of samples. If a bipedal robot always walks using a strangely distributed

set of foot placements, its walking behavior will be inefficient—not to mention, aestheti-

cally unappealing.

Rather than relying only on random samples, it can be a good idea to seed the sam-

pling with a few “ideal” positions, and the method can test if a viable foot placement is

available near that position. To incorporate this into the algorithm, modify the function

SampleRandomTranslation (Algorithm 1, line 4) to initially return the seeded posi-

tions before producing random samples.

Similarly, the function SampleRandomSE2 (Algorithm 1, line 11) can be seeded to

return positions that are close to the centroid of the Pplane triangle, which have a higher

likelihood of providing an adequate support geometry. Additionally, biasing the samples

to be oriented in the direction that the robot is facing may improve the usefulness of the

samples.
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Figure 4.8: Examples of foot placement samples that were taken on a variety of environ-
mental features.
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(a) 40% of foot length (b) 80% of foot length

(c) 100% of foot length (d) 110% of foot length

Figure 4.9: Two parallel bars can be used as a viable foot placement, depending on how far
apart the bars are. As they get further apart, the availability of valid foot placements drops
off.

Limitations

The key limitation of this sampling approach is that it relies on the ability to find a viable

foot placement by performing rejection sampling on a plane. The method will struggle

to identify pathological foot placements that have a low probability of being randomly

sampled. Additionally, there may be geometric features which are capable of offering a

viable foot placement in ways that are not tested for by this sampling method.

Low Probability Placements

Suppose two parallel bars have a distance between them that is close to the length of the

foot. The foot would need to be placed somewhat precisely across the bars in order to con-

stitute a viable foot placement. The probability of randomly sampling a precise placement

is low, and shrinks rapidly as the necessary amount of precision grows. Figure 4.9 illus-

trates how the margin for viability shrinks at distances that exceed the foot length. Other
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Figure 4.10: Experimental data for the parallel bar feature of Figure 4.9. The x-axis is the
variation in distance between the bars, represented as a percentage of the foot length. For
each data point, 1000 queries were made. The following parameters for Algorithm 1 were
used: NSampleAttempts = 40, NPlaneAttempts = 10, NMaxIterations = 20. A query is successful as
soon as one viable foot placement is found and fails if all iterations are exhausted without
one being found.

geometric features can also exhibit this behavior, although the probability of such features

occurring in general is low, because a slight perturbation to the dimensions of the geometric

feature could make the foot placement either much easier to find or no longer valid at all.

Figure 4.10 shows experimental results for the parallel bar case.

Unrecognizable Placements

In addition to features with a low probability of being sampled, there are potential foot

placements that have zero probability of being randomly sampled, or simply cannot be

recognized by this sampling method. These foot placements tend to be in features that are
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Figure 4.11: Concave-upwards features may be able to provide viable foot placements, but
those placements cannot be recognized by the random sampling method.

concave-upwards where the topmost opening of the concave feature is wider than the sole

of the robot’s foot.

In the M-shaped feature of Figure 4.11, the robot could place its foot inside of the

concave region with the “toes” (front edge) of the foot nested in the center corner of the M

while the bottom of the foot lies flat against either of the interior faces of the M. However,

our sampling method will not recognize it, because we assume that only the bottom of the

foot will be in contact and that only friction on the bottom of the foot will be used to resist

the component of gravity that is perpendicular to the surface normal. Since the interior faces

of the M-shape exceed the maximum inclination, their planes are not examined for a viable

foot placement—and even if they were, there would only be an infinitesimal probability

of sampling a foot placement where the toes of the foot are perfectly touching the center

corner of the M.

Elevation Projection

In 3D environments that exhibit significant elevation changes, the route exploration stage

needs to be able to rise and fall with the terrain. The foot placement sampling method can be

used to facilitate this. When attempting to expand ΓP towards a target, if the current vertex

fails to sample a viable foot placement, the vertex can be shifted up and/or down until a

viable foot placement is identified, or until the vertex has exceed a maximum distance from
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its parent vertex, at which point the extension procedure should terminate. This process is

analogous to the projection operation used in CBiRRT [46] when moving a random sample

onto the feasibility constraint manifold.

In some cases, it may be equally possible to project a vertex upwards or downwards.

In such cases, the direction which would bring the vertex closer to its target should be

preferred, since that is more likely to help to connect subtrees together.

When performing the projection operation, it is important to remember testing for colli-

sions with the minimal geometry of the necessary conditions depicted in Figure 4.1a. Oth-

erwise, the projection operation might accidentally allow the robot to phase down through

a floor or up through a ceiling.

Whole Body Motion Planning

For the overall RPG to work, we also need to define πSM and πNM as described in Section 3.2.

These should be motion planning methods which can take advantage of evaluations of

the sufficient and necessary conditions, respectively. In this section, we will describe an

implementation of a whole body motion planning method to suit πNM. A planner that is

suitable for πSM is then shown to be a special case of πNM which is applicable whenever the

sufficient conditions CS are satisfied.

Modes and Transitions

Multi-modal motion planning methods like MMPRM [25] and Random-MMP [39] use

the concept of modes to define discrete changes in feasibility constraints. The feasibility

constraint manifold of a mode σ is given by Fσ, and represents the set of all configurations

which satisfy the feasibility constraints of mode σ. In the work of Hauser, et. al. modes

are determined by sets of contact points. A transition between modes occurs any time a

new contact point is created or an old one is broken. When a system transitions from one

mode, σ, to another, σ′, its feasibility constraint manifold undergoes a discrete change from
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Fσ to Fσ′ . The space of valid transition configurations between σ and σ′, T σ′
σ , is given by

Fσ ∩ Fσ′ . If T σ′
σ is non-empty, then σ and σ′ are considered to be adjacent modes.

Since we are concerned specifically with flat-footed quasi-static bipedal locomotion, we

can reduce the modes that are being considered into three categories: left-support, right-

support, and double-support, based on whether the robot’s weight is being supported purely

by the left foot, supported purely by the right foot, or distributed between the two. A left-

support or right-support mode can only transition to a double-support mode where the prior

support foot remains in the same position. A double-support mode can only transition to

a left- or right-support mode where the new support foot remains in the same position.

Figure 4.12 illustrates the different categories of modes, as well as the transitions between

them.

The purpose of a multi-modal motion planner is to find a feasible joint trajectory—

which can transition between discrete modes—that moves the robot system from a start

configuration to a goal configuration. The feasibility constraints of each mode are de-

scribed by the four conditions mentioned in Section 4.1. By decomposing the search into

an exploration of modes and the transitions between them, we can generate whole body

motion plans while accounting for discrete changes in the system’s feasibility constraint

manifolds.

In our application, the multi-modal planner will be initialized with route information

from stage P of the RPG. It will also contain a foot placement sampling phase which

facilitates the creation of modes. A simple overview diagram of the process can be seen in

Figure 4.13.

Transition Sampling

When handling a multi-modal motion planning problem, there may be many dozens, hun-

dreds, or even thousands of modes to consider, but only a very small subset of them might

actually be needed for a solution. Exploring all of the modes is likely to waste a consider-
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(a) A left-support mode. All weight is on the
left foot, and the right foot is free to move un-
constrained.

(b) A transition to or from a left-support mode.
All weight is on the left foot, and the right foot
is constrained to a specific location on the floor.

(c) A right-support mode. All weight is on the
right foot, and the left foot is free to move un-
constrained.

(d) A transition to or from a right-support mode.
All weight is on the right foot, and the left foot
is constrained to a specific location on the floor.

(e) A double-support mode. The weight is dis-
tributed between both feet, and both feet are
constrained to specific locations on the floor.

Figure 4.12: Examples of the three categories of modes and transitions between them. The
green polygon represents the support polygon of the current mode.
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Figure 4.13: Workflow of the multi-modal motion planner. Dotted lines represent work
paths that are only taken once there has been a large buildup in cost and more foot place-
ments may be needed in order to find a solution.

able amount of time and effort. Instead, we recommend using strategies that maximize the

expected value of the search effort.

In [38], Hauser and Latombe discuss a search strategy called Search among feasible

transitions (SAFT). The observation made Hauser and Latombe is that transitions between

modes are the most-constrained segments of a solution and therefore the least likely (and

most difficult) to be found. If a feasible transition configuration exists between two modes

σ and σ′, then its existence lends credibility to the hypothesis that a feasible path exists

from a configuration in σ to a configuration in σ′. A similar observation is made by Bretl

et. al. in [51].

Since transitions between modes are the primary bottleneck of a multi-modal motion

planner, we recommend focusing on identifying feasible transition configurations between

modes, until there exists a sequence of such transitions that would be able to connect the

start configuration to the goal configuration. After that, single-mode motion planning meth-

ods can be used to find feasible paths between transition configurations. If the planner
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struggles to find the necessary single-mode paths, then more transition configurations can

be sampled until a solution is found.

However, the number of transitions that may be available for consideration could scale

as badly as O(M2) where M is the current number of potential modes. Instead of uni-

formly sampling all transitions, we recommend first pruning transitions, and then focusing

sampling effort on transitions that have a high likelihood of both existing and leading from

the start to the goal.

Pruning Transitions

There are a number of ways that infeasible transitions can be pruned to avoid wasting time

on trying to sample them. First, any transitions which violate necessary conditions can be

immediately pruned. The easiest necessary condition to test for is an outer approximation

of the reachable space,R. If the distance between the foot placements of the modes exceeds

an upper bound on the radius ofR, then that transition can be immediately ruled out.

If the distance is within the upper bound, then inverse kinematics can be used to deter-

mined whether the foot placements can reach each other. If an analytical (a.k.a. closed-

form) inverse kinematics solution is available for the robot’s kinematic model, then we can

definitively determine when the foot placements are not reachable. When only an iterative

inverse kinematics solution is available, then a failed attempt to find a solution can be taken

to indicate a low likelihood of a feasible configuration existing, but it cannot prune out the

transition entirely. Instead of pruning the transition, we would simply assign it a very low

priority when choosing which transitions to sample.

Two more examples of necessary conditions can be seen in Figure 4.14. If the robot’s

foot geometries would intersect when located at the modes’ foot placements, then there is

no way a feasible transition can exist. Similarly, if the foot placements would require the

legs to intersect each other, then no feasible transition can exist.

Other methods also exist for pruning configurations. In [52] Hauser et. al. propose
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(a) The foot placements for these modes force
the feet to intersect, so this transition would be
infeasible no matter what the robot’s configura-
tion is.

(b) While trying to satisfy the constraints of
both modes, the legs cannot avoid intersecting
each other.

Figure 4.14: Examples of cases where feasible transition configurations are guaranteed to
not exist.
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using a classifier for the feasibility of transitions. The classifier would be computed offline

and would provide a quick estimate for the likelihood of a transition existing for any given

pair of modes. This would also enable a fuzzy search [53] approach to the overall problem,

by using sampling attempts to gradually adjust the estimated likelihood of hypothetical

transitions that lead from the start to the goal.

Prioritizing Transition Samples

Even after pruning infeasible transitions, there may still be an overwhelming number of

transitions to consider. Here we describe a recommended approach for prioritizing which

transitions get sampled. The goal of this prioritization is to maximize the expected likeli-

hood that the transition sampling effort will lead to a solution.

Hauser et. al. describe a priority queue of transitions [25, 38] where transitions at the

top of the queue get sampled first, and the priority of each transition drops as sample at-

tempts fail. A cost-based approach is described in [25] where the cost of a transition grows

as attempts to sample it fail. This way, we can identify the lowest-cost transition sequence

and focus the sampling effort along that sequence. This offers a holistic evaluation of the

expected value of transition samples. In this section, we suggest some modifications to

the costs described in [25]. These changes mostly relate to evaluating the cost of finding

a solution rather than the evaluating what the quality of that solution would be once it is

found.

First, we construct an adjacency graph where each mode is a vertex and each transition

is an edge. The initial “cost” of each edge is measured by the cubed distance between

the two foot placements belonging to the transition. The cubed distance is used instead

of a simple linear distance because using the linear distance would encourage the robot

to always take the largest possible steps, as illustrated in Figure 4.15. Taking the largest

possible steps has several disadvantages:

• Large steps tend to be inefficient since they require greater balance effort;
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(a) Sideview of the lowest cost path of a straight walk when using linear distance for the edge cost.

(b) Sideview of the lowest cost path of a straight walk when using cubed distance for the edge cost.

(c) Backview of Figure 4.15a. (d) Backview of Figure 4.15b.

Figure 4.15: Using the cubed distance to measure the cost of a transition encourages the
planner to examine moderately sized steps before resorting to the largest possible steps.
Blue (lower) dots represent the graph vertex of a left-support mode, and pink (upper) dots
represent the graph vertex of a right-support mode. Orange boxes refer to the foot place-
ment samples that are currently available to the planner.

51



• they are more difficult to control, because they force the robot to hug the edge of the

feasibility constraint manifold;

• they are difficult to search for, because they exist very close to the space of infeasible

configurations.

Each time a transition Ti is sampled, we increment a counter, S(Ti), for that transition.

When calculating the cost, we multiply the cubed distance between the feet by S(Ti) in

order to penalize transitions which have failed to find a feasible configuration. Note that

S(Ti) should be initialized to 1, even before any sample attempts have been made. Mul-

tiplying the edge cost by the number of failed sample attempts will force the planner to

seek alternative paths whenever the edges along the preferred path are consistently failing

to find feasible transition configurations.

Sometimes a feasible transition sequence may contain a small number of transitions

which are particularly difficult to sample configurations for, but which will provide a feasi-

ble solution if queried enough times. To account for this, any edges which have successfully

sampled a feasible configuration are assigned zero cost. This way, the planner can focus its

efforts onto the small number of bottlenecks that may be preventing a solution from being

found.

Once every transition in a sequence has successfully sampled at least one configura-

tion, the single-mode planning can begin (described in Section 4.4.3). However, there may

be cases where two adjacent transitions cannot be connected by a feasible path due to in-

termediate obstacles, or other constraints. Therefore, if the single-mode planning phase

struggles to find valid paths between the transition configurations that have been found, it

may be necessary to sample configurations along an alternative transition sequence. This

motivates us to add a penalty, p, to transitions which are already being examined in the

single-mode phase instead of assigning them zero cost.

Given a function S(T ) which returns the number of attempts that have been made to

sample transition T , a function D(T ) which computes the distance between the foot place-
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ments of T , a function U(T ) which returns a boolean which is true if T is being used in the

single-mode planning phase (and false otherwise), and a function Q(T ) which returns the

set of configurations that have been successfully sampled in T , we can define the cost of T ,

C(T ), with the following expression:

C(T ) =


S(T )D3(T ) + p if U(T ),

S(T )D3(T ) if ¬U(T ) ∧Q(T ) = ∅,

0 otherwise

We recommend choosing the value of p to equal or exceed the highest cost of any

transition T ∗ for which U(T ∗) is false. This helps ensure that the transition sampling phase

will focus on alternative transition sequences instead of continuing to sample sequences

which already have a set of feasible transition configurations that lead from the start to the

goal.

Single-mode Planning

Once there exists a sequence of feasible transition configurations that lead from the start

to the goal, the single-mode planning phase can be invoked. Planning within a single

mode can be accomplished by any traditional motion planning method that can account

for kinematic and geometric constraints. The Multi-modal PRM described in [25] uses a

PRM-based planner called SBL [54].

Here we recommend using a variation of Constrained Bidirectional RRT (CBiRRT)

[46], which grows trees bidirectionally from a set of start vertices and a set of goal vertices

while remaining on a feasibility constraint manifold. Each transition configuration is a start

or goal vertex.

We alternate the trees that we grow based on the expected likelihood of a solution being

found that uses the tree. Similarly to how we select which transitions are sampled, we take

a holistic approach to evaluating which trees to grow. We construct an adjacency graph
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with modes as the vertices and transitions as the edges. Transitions which are empty (i.e.

do not currently contain a valid configuration sample) are not given an edge in the graph.

The path through the adjacency graph which has the lowest cost determines which modes

are sampled. If no path exists, then this phase exits and returns to transition sampling.

The cost of each edge in the graph is a function of the transition associated with the

edge and the modes that the transition connects. Costs should be assigned in a way that

encourages the use of modes that are likely to assist in finding a solution while avoiding

modes that are struggling to progress towards a solution.

The function S(σ) keeps track of the number of attempts to extend trees within mode σ.

The function Z(T, σ) is a boolean function that returns true under the following conditions:

• There exists a configuration within transition T that is connected to a tree that leads

to an overall start or overall goal configuration through mode σ, and

• the mode σ only contains vertices that connect to an overall start configuration or

only contains vertices that connect to an overall goal configuration, not both.

If either of these conditions is violated, then Z(T, σ) returns false. Illustrations of Z(T, σ)

can be seen in Figure 4.16 and Figure 4.17.

These functions can be used to define the cost that gets assigned to each edge of the

adjacency graph in the single-mode planning phase. Consider transition T ji which is the

transition that connects modes σi and σj . First we define a sub-cost function for each mode:

c(T ji , σi) =


0 if Z(T ji , σi),

S(σi) otherwise

We can then use this sub-cost to define the full cost of the edge associated with T ji :

C(T ji ) = D3(T ji )[c(T ji , σi) + c(T ji , σj)]
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Note that T ji ≡ T ij because quasi-static motions are always reversible.

We can see in Figure 4.16a that c(T 1
0 , σ0) = c(T 2

0 , σ0) = 0. This is because a valid

path through configuration space already passes through transitions T 1
0 and T 2

0 using mode

σ0, so it would cost us no further search effort to find a solution that passes through those

transitions. The same argument can be made in Figure 4.16b for T 2
0 and T 3

0 . Setting the

costs of those transitions to zero incentivizes the single-mode planner to choose modes that

will bridge the gap between the already existing start and goal trees.

However, there is a pitfall that we avoid by enforcing the second condition of Z(T, σ).

In Figure 4.16c without the second condition, we would have a situation where a zero-cost

mode sequence would exist, even if there is no way for the start and goal trees to connect

to each other within σ0. Since it is impossible for any other path to have a lower cost

than zero, the adjacency graph would always choose to search σ0 for a connection between

the start and goal—ignoring all other alternatives—even if σ0 does not contain a viable

path between the start and goal trees. The second condition of Z(T, σ) prevents this from

happening. Initially, σ0 would be favored for a search because the mode sequences leading

up to and away from σ0 would have zero cost, but every time a search is attempted in σ0,

the value of S(σ0) would rise. Eventually the cost associated with σ0 would be high enough

that the adjacency graph would choose an alternative mode sequence.

Once the lowest-cost sequence of modes is selected, we use CBiRRT within the selected

modes. The trees that get used by the CBiRRT query are those which are growing from

the previous and next transitions of each mode. These trees persist between each cycle of

the planner. After every mode in the sequence has been searched, the planner returns to the

transition sampling phase. Once a single tree exists that contains both the start configuration

and the goal configuration, a complete solution has been found, and the low-level whole

body motion planner has succeeded.
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(a) Z(T 1
0 , σ0) = Z(T 2

0 , σ0) = true Z(T 3
0 , σ0) = false

(b) Z(T 1
0 , σ0) = false Z(T 2

0 , σ0) = Z(T 3
0 , σ3) = true

(c) Z(T 1
0 , σ0) = Z(T 2

0 , σ0) = Z(T 3
0 , σ0) = false

Figure 4.16: Blobs represent the feasibility constraint manifolds of modes. Black dots
represent transition configurations, and lines represent the trees that have grown from them.
Trees that are connected to an overall start configuration are colored blue, and trees that are
connected to an overall goal configuration are colored red; otherwise they are black.
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(a) Z(T 1
0 , σ0) = Z(T 2

0 , σ0) = Z(T 3
0 , σ0) = false

(b) Z(T 1
0 , σ0) = Z(T 2

0 , σ0) = Z(T 3
0 , σ0) = false

(c) Z(T 1
0 , σ0) = Z(T 2

0 , σ0) = Z(T 3
0 , σ0) = false

Figure 4.17: Continuation of Figure 4.16 showing more examples of how Z(T, σ) is eval-
uated.
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Incremental Footstep Sampling

Before transitions can be sampled or modes can be searched, a set of viable foot placements

needs to be provided to the whole body motion planner. An initial set of foot placements

can be found by sweeping the reachable space, R, along the guide route provided by the

high-level stage P of the RPG. If the foot placements that were sampled during stage P

were cached, then those can also be recycled into the whole body motion planner.

Depending on the complexity of the terrain, the probability of successfully sampling

a foot placement may be low in some regions. If the initial set of foot placements are

not sufficient for the transition sampling stage to find a candidate transition sequence, then

it will be necessary to immediately sample for more foot placements. Another sweep of

foot placement samples along the route may be enough to fill in the missing gaps, but a

more focused search may be more effective. For example, we can create two sets of foot

placements: one which is reachable from the start configuration, and one which is reachable

from the goal configuration. Then we can focus foot placement samples along the shortest

route between the two sets of foot placements. If sampling along that shortest route fails to

yield a candidate transition sequence, then the region of sampling can be expanded until a

candidate sequence is found.

In some cases, it may be possible to find a candidate sequence of transitions to sample

from, but they struggle to find a feasible sequence of transition configurations, which is

necessary to begin the single-mode planning phase. When this happens, it may help to

sample additional foot placements, which might yield transitions that can more easily find

feasible configurations. These new samples can be focused near transitions which have a

high S(T ) cost. When a transition T has a high S(T ) cost, it indicates that T is frequently

being chosen as a high-value transition despite consistently failing to find a valid transition

configuration. This usually corresponds to a bottleneck near the foot placements of T , and

the bottleneck may be alleviated by providing additional foot placements in the region.

Similarly, the single-mode planning phase might also get stuck when confronted with
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complex terrain. High values of S(σ) can also be taken to indicate a bottleneck. Sampling

foot placements near modes that have a high rate of sample attempts may provide easier

alternative modes for the transition sampling and single-mode planning phases.

Each time more foot placements are added to the search, the complexity of the planning

problem can scale up significantly. The transition sampling phase and single-mode plan-

ning phase both use a cost evaluation to focus the search effort along modes that are likely

to provide a solution, but introducing new foot placements may produce many new modes

that are initially evaluated as being low-cost. These new modes might distract the planner

from continuing to search older modes that are close to finding a solution. Therefore, the

introduction of new foot placements should be reserved for situations where the lowest-cost

mode or transition sequences have risen beyond levels that are considered acceptable.

Primitives

Rather than relying only on randomly sampled configurations, we can use predetermined

configurations and trajectories (which we will call “primitives”) to improve the quality

of motions that are found by the planner while also reducing the amount of search time

required to find solutions. To maximize their utility, the primitives should be parameterized

so that they can adapt to a range of situations.

Primitive Configurations

To assist in the transition sampling phase, it can be helpful to have a set of primitive config-

urations to seed the random search with. Whole body inverse kinematics (IK) solvers can

adapt the primitive configurations to satisfy the constraints of the transition. If the set of

primitives fails to find a solution, then samples can be randomized within a neighborhood

of the primitive configurations. In the worst case, uniform samples of the joint space can

be used, but uniformly random samples tend to be harder for an IK solver to adapt to the

kinematic constraints of the transition than a set of high-quality primitives.
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Primitive Trajectories

RRT-based methods are usually most effective in a wide open (expansive) free space.

CBiRRT allows the RRT approach to work on low-dimensional (non-expansive) constraint

manifolds, but at a cost: configurations need to be projected onto the constraint manifold

using potentially costly inverse kinematics operations. Seeding CBiRRT’s random sam-

pling with configurations along a set of high-quality primitive trajectories can improve the

likelihood of CBiRRT finding viable motions while also reducing the amount of IK effort

required.

Chestnutt et al [37] use a set of adaptive parameterized primitive trajectories to define

a discrete set of actions that can be utilized by a traditional search algorithm. The use of

primitive trajectories in a randomized sampling method is described by Hauser et al in [25].

We can define the sufficient collision geometry of Figure 4.1b to fully encapsulate the

robot’s actual collision geometry while moving through all variations of the primitive tra-

jectories. We can then identify the range of foot placements pairs which are reachable by

any variation of the primitive trajectories as RS . If a pair of foot placements lies within

RS , allows the sufficient collision geometry to not intersect the environment, and provides

an adequate contact support base, then we can guarantee that a primitive trajectory will

find a feasible motion using those foot placements. Fundamentally, this is what allows the

performance gains provided by the sufficient condition checking of the RPG.

Post-Processing

The quality of an output trajectory can be evaluated based on various criteria, such as the ef-

ficiency, stability, and “naturalness” of the motions. The quality of output that gets returned

by randomized samplers tends to be relatively low compared to most other locomotion

planning methods, since randomized samplers are primarily concerned with finding any

feasible plan within arbitrarily complex environments, rather than finding a high-quality

plan. There are several ways to improve low-quality plans after they have been returned.
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Shortcutting

A common approach to reducing random noise and improving efficiency in the output of a

randomized planner is to find straight-line shortcuts between pairs of output configurations.

This is not as straight-forward to apply on multi-modal plans, but it can offer considerable

improvements.

Since the single-mode planning phase is greedy in the way it looks for a solution, it

gives little consideration to the potential redundancy of the foot steps that it might be taking.

This could cause it to step backward and forward repeatedly or to needlessly veer off to the

side. Given an output trajectory with a sequence of modes which are known to lead to a

solution, it may be possible to eliminate some of the foot steps that are used by the solution.

We can essentially redo the transition sampling phase, but now we limit our search to only

use the modes that were returned by the planner’s output. This time we can focus the

transition sampling to reduce the number of steps instead of maximizing the likelihood of

finding a solution, since we already know that a solution can be found. The number of

modes and transitions that need to be considered is likely to be orders of magnitude smaller

than the original problem, making this search much less costly. When new transitions are

found, we can attempt to connect those transition configurations to the trajectory of the

original solution using CBiRRT.

After attempting to eliminate some of the foot steps, there may still be a considerable

amount of random noise in the trajectory itself. This can also be reduced by shortcutting:

1. Randomly select a waypoint in the trajectory;

2. Find the set of all other trajectory waypoints which share its mode;

3. Randomly select a waypoint from the set that is not adjacent to the first waypoint;

4. Attempt a “straight-line” (or geodesic) connection between the two waypoints.
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This procedure can be repeated until some criteria is met, e.g. a certain number of attempts

are made or a time limit is reached.

Optimization

After shortcutting has been performed, the trajectory may be suitable for local optimization.

A number of trajectory optimization approaches have been applied to locomotion planning,

although many of them are designed to find trajectories and foot placements simultaneously

[48, 55] and may be too limited in scope to apply to the kinds of plans that we will generate.

In our case, we want optimization methods that are general enough to handle arbitrary

foot placements and environment obstacles. A good candidate for our purposes is CHOMP

[56, 57] which was designed with high-quality locomotion planning via local optimization

in mind.

Empirical Results

To test the performance and effectiveness of the RPG applied to bipedal locomotion plan-

ning, we constructed several virtual environments with a variety of challenging geometric

features. In particular, we wanted to simulate environments where a height map represen-

tation (commonly used by traditional footstep planners) would be inadequate to accurately

capture the environment’s geometry. We also do not prescribe surfaces for the robot to walk

on; this is left entirely for the planner to determine for itself. For implementation simplic-

ity, all features in the environments are assumed to be rigid and unbreakable with a single

coefficient of friction. Results were gathered on an Intel R© Xeon R© Processor E3-1290 v2

(8M Cache, 3.70 GHz) with 16GB of RAM.

In Figure 4.18 we present a simple scenario to test the planner’s ability to find a plan

that can mount and then immediately dismount a pair of beams that are obstructing the

robot’s path. Each beam is relatively thin, but they can provide a stable foothold if the

foot is spread across both. This allows us to test the planner’s ability to identify and utilize

62



Figure 4.18: I-Beam Hallway. The robot is tasked with getting from one side of a hallway
to the other. In the middle is a pair of I-beams that it needs to climb over. The blue and red
markers represent the start and goal (respectively).

unorthodox foot placements.

Figure 4.19 is another simple scenario, this time designed to test the robot’s ability to

navigate across unstructured terrain with sharp changes in elevation and inclination. The

center of the environment is littered with cinder blocks at various angles, which makes it

difficult for the planner to find a direct path across them. The cinder blocks are assumed to

be rigidly fixed in place and capable of supporting the robot’s weight.

A more holistic test scenario is presented in Figure 4.20. We call this the “Jungle Gym”

scenario, since it is an obstacle course which is loosely based off of features that may be

found in a jungle gym. The robot’s objective is to traverse from the southeast platform to

the northwest platform. In the full version of the scenario, there are two viable routes that

the robot may choose from. To see how the absence of this choice affects the performance

results, we also test a version without the bars to walk across (Figure 4.20b) and a version
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Figure 4.19: Cinder Blocks. The robot is tasked with getting from one side of a passage to
the other. In the middle of the passage is a pit filled with tightly packed cinder blocks. The
blue and red markers represent the start and goal (respectively).

Table 4.1: High-level performance results for the five scenarios using 100 trials each. Time
measurements are given in seconds. The tests used a 1-hour timeout, after which a trial is
considered a failure.

Scenario Avg Time (Std Dev) Success Rate
I-Beam Hallway (Figure 4.18) 30.59 (64.91) 100%

Cinder Blocks (Figure 4.19) 148.74 (375.90) 99%

Full Jungle Gym (Figure 4.20a) 1444.89 (813.77) 95%

Spiral Route (Figure 4.20b) 992.70 (685.02) 96%

Stair Route (Figure 4.20c) 2031.50 (917.95) 89%
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Table 4.2: Performance results for each component of the Jungle Gym Scenario when they
are tested independently. Each result is based off of 100 trials. A 1-hour timeout is used,
after which a trial is considered a failure.

Component Avg Time (Std Dev) Success Rate
I-Beam 255.71 (135.84) 100%

Stairs 602.16 (498.21) 99%

Monkey Bars 803.69 (558.24) 97%

Spiral Steps 832.30 (677.08) 95%

without the I-beam (Figure 4.20c).

Table 4.1 lists the overall performance results for the five scenarios. Unsurprisingly, the

I-Beam Hallway has the fastest performance since it is the simplest scenario. The Cinder

Block Scenario is the second fastest; while it does have the most jagged terrain out of all

the scenarios, it can be solved with a relatively small number of footsteps.

The Jungle Gym scenarios take significantly longer to solve than the two small-scale

scenarios. This is due to a combination of the challenging nature of its terrain and the

distance that the robot needs to travel from the start to the goal. Table 4.2 shows the

breakdown of the time it takes to solve each environmental component individually, when

dedicating all computational resources to each one.

• The I-Beam is a relatively simple feature, but crossing it is challenging due to its

narrowness: the robot needs to side-step or cross-step its way from one side to the

other. It is not preprogrammed with primitives for either of those actions, so it must

figure out how to perform them on the fly.

• The steepness of the stairs makes it impossible for the robot to walk up them for-

wards, because its shin would always collide with the next step. Instead, it must

figure out how to turn its feet to the side and walk up at an angle. It may sometimes

choose to face backwards while climbing up.

• The monkey bars are a challenging feature, since they require fairly precise foot
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(a) Full Scenario

(b) Spiral Route: Monkey bars are removed.
The only viable route is up the spiral steps.

(c) Stair Route: I-beam is removed.
The only viable route is up the stairs.

Figure 4.20: Variations of the Jungle Gym Scenario. The objective is for the robot to
traverse from the blue marker in the southeast platform to the red marker in the northwest
platform. In the full scenario, the robot may either (1) walk up the stairs on the east side
and then walk across the monkey bars on the north side, or (2) walk across the I-beam on
the south side and then up the spiral steps on the west side. We also test two variations on
this environment to see how the robot performs when it no longer has a choice for which
route to take.
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(a) Crossing the I-Beam

(b) Crossing the Monkey Bars

Figure 4.21: Illustrations of the robot crossing two of the Jungle Gym components.
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placements, and each foot placement has a relatively small support polygon.

• The spiral steps are much more open than the stairs, but they require more precise

foot placements. They also require larger steps, which are inherently more difficult

for the planner to solve.

The average times required by the Spiral Route (Figure 4.20b) and Stair Route (Fig-

ure 4.20c) are similar to the sums of the average times required to solve their components.

This would suggest that the method should scale fairly well on increasingly complex sce-

narios, as long as the planner can find a way to decompose the scenarios using the necessary

and sufficient conditions.

The time required by the full Jungle Gym Scenario is roughly the average of the time

required by the two routes when they are split apart. This can be attributed to the fact

that the planner’s resources are being split evenly between investigating these two different

options, since it does not know a priori which one will be easier to solve. Despite its

resources being split between the two, the time that it takes is an average between the two

instead of a sum of the two, because it is able to evaluate them in parallel and terminate

once the easier one is solved.
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CHAPTER 5

PROBABILISTIC COMPLETENESS FOR SEMI-UNSTRUCTURED

ENVIRONMENTS

In this section, we examine the probabilistic completeness properties of the RPG method

when applied to “semi-unstructured” environments. We define “semi-unstructured” to

mean an environment that contains obstacles with arbitrary geometry, but where the walk-

able ground is flat and even. The restriction to flat and even ground is to ensure that all

possible foot placements can be uniformly sampled, which allows the foot placement stage

to be proven probabilistically complete. Unlike the procedure described in Section 4.2,

we sample footstep locations on the flat ground in a way similar to the Task Space Region

(TSR) method [58]. In the previous section, we discussed applying the RPG to arbitrary

environments, but for that we used a foot placement sampling method which cannot guar-

antee uniform sampling—a necessary condition for the proof in this section. In the future,

a more refined foot placement sampling method may be developed which can guarantee

uniform sampling. For now, we limit the scope of our completeness analysis to flat ground

so that we can directly utilize the TSR sampling method which allows for uniform random

sampling.

In the theoretical examination, we consider a simplified algorithm which we will call

the Worst-case RPG (w-RPG). The w-RPG exhibits the worst-case behavior of the ordi-

nary RPG algorithm, which is what the ordinary algorithm would degenerate into when

none of its built-in performance optimizations are effective. Since the ordinary RPG will

have strictly better performance, the analysis of w-RPG represents a lower bound on the

worst-case performance of the ordinary algorithm. Therefore, if the w-RPG is proven to be

probabilistically complete, then the RPG is as well.

In addition to the proof of probabilistic completeness, we analyze a user-chosen param-

69



(a) ρ = 0 (b) ρ = 5Rmax

Figure 5.1: Illustration of the effect that the parameter ρ has on the Mode Sampling stage.
The task for the robot is to pass underneath the set of three bars. Cyan and magenta boxes
represent left and right (respectively) foot placement samples, and changing the value for ρ
affects the size of the sampling region. Rmax is the length of the largest step that the robot
can take.

eter, ρ (see Figure 5.1), which affects the rate of convergence. This analysis provides hints

for choosing a value for ρ that will provide reliable convergence. We also provide empiri-

cal data from simulation trials where the parameter is varied to demonstrate its quantitative

impact.

Probabilistic Completeness

A process is considered probabilistically complete if the probability of it failing to find a

solution when one exists converges asymptotically to zero as the number of samples it uses

goes to infinity, i.e. the probability of failure can be written as:

Pr[FAILURE] ≤ α exp(−βN) (5.1)

where α and β are positive constants greater than zero, and N is the number of samples

being used by the process.

In pathological environments, α or β might be infinitesimal, in which case infinite sam-

ples would be needed to converge to a finite probability of finding a solution. Section 5.7.1

discusses the circumstances that lead to this for the w-RPG. In such cases, the w-RPG on

70



its own would not be adequate to find a solution.

Modes

Bipedal robots are hybrid dynamic systems (see Ames et al. [59, 60] for examples of de-

tailed hybrid system models for bipeds) which exhibit sequences of discrete modes. In the

scope of this section, a mode is defined by the placement of the support foot (or feet, in the

case of double-support modes). Each mode corresponds to a set of feasibility constraints

which determine whether a given configuration is physically viable for that mode. A mode

takes the following form:

σ =


xf ∈ R3 | f ∈ {Left,Right} if Single-Support

(xLeft ∈ R3, xRight ∈ R3) if Double-Support

where xf represents a foot placement consisting of two translational dimensions and one

rotational dimension (for the yaw of the foot).

Worst-case Randomized Possibility Graph

For the analysis of this section, we consider a simplified version of the RPG scheme which

we will call w-RPG. The simplified version discards the use of sufficient conditions and the

performance benefits that come with them, so performance of w-RPG represents the worst-

case performance of RPG. Using only the necessary conditions allows for more straightfor-

ward theoretical analysis and helps to establish an upper bound on the probability of failing

to find a solution when one exists. There are three stages to w-RPG:

Possibility Exploration Instead of growing trees, we explore possibilities by sampling

NP points in the Possibility Exploration Space E , which in this context is SE(3). Within

the manifold of E is a submanifold called CN which represents the points in E where the
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(a) An example 3D representation of the
space that can be reached by the left foot
from a fixed location of the right foot (ma-
genta arrow).

(b) An example of how the reachable spaces
of two different foot locations can intersect.
The interior cylinder is a subset of the left-
foot locations that can be reached from both
right-foot locations.

Figure 5.2: 3D illustrations of what a reachable space might look like for a bipedal sys-
tem. Magenta arrows represent right-foot placements. Cyan and yellow regions are the
corresponding reachable left-foot locations. The axes represent x/y translation and yaw.

simplified set of necessary conditions are satisfied. Any random samples which are not

inside of CN are rejected from the sample set. We then perform an O(NP
2) operation

attempting to connect every pair of points with a “straight line”. When a route through CN

is found that might be able to connect the start and goal states, this route is sent to the next

stage: Mode Sampling.

Mode Sampling We sample modes uniformly near the route produced by the Possibility

Exploration stage. The elements of the route are projected from SE(3) to R2, keeping only
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the (x, y) values from the route. Then Nσ left and right foot placements are uniformly

sampled within a radius ρ of each projected vertex along the route. The union of these

circles is referred to as Fσ. The orientations of the foot placements are uniformly sampled

from [0, 2π).

Once the foot placements are sampled, we perform anO(Nσ
2) operation to test whether

each pair of foot placements can reach each other. Each foot placement is assigned a single-

support mode based on whether it is viable as a left- or right-foot placement. Each pair of

foot placements that can reach each other are assigned a double-support mode.

Multi-modal PRM Once a discrete set of modes have been sampled, Multi-modal PRM

as described in [25] is used to find valid whole body paths through the modes.

Completeness of Mode Sampling

To have a viable sequence of modes, each mode in the sequence must be adjacent to the

mode that comes before and after it. For two modes to be adjacent, their feasible spaces

must intersect. A quick way to test for adjacency is to consider the kinematic reachability

of one foot with respect to the other foot. For flat and even terrain, the reachable space is a

function of the (x,y) position and yaw, θ, of the support foot. An illustration of what such

a space might look like can be found in Fig. 5.2a. We assume that the reachable space is a

subset of SE(2), containing at least one ball of radius ε > 0.

For a sequence of modes to be valid, the foot placement of each single-support mode

must be simultaneously reachable from the single-support modes that come before and

after it, like the cylinder shown in Fig. 5.2b. The following lemma will help us show that

there exists a region of foot placements wherein every placement is reachable from every

member of a region of placements of the other foot.

Lemma 1. Suppose we have a 2D shape, s (Fig. 5.3a). Consider the set of all possible

translations of this shape within a circle of fixed radius r, S = {σ ∈ Trans(s,x) | |x| < r}
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(a) (b) (c)

Figure 5.3: (a) A slice, s, of the reachable area for the left foot when the right foot is at the
black dot. (b) Samples of the set S created by translating s around within a small radius.
(c) The shape ∩S created by the intersection of all elements within S. This is the same as
the original shape, but contracted by circles around the border whose radii are equal to the
maximum radius of the translations.

where Trans(s,x) translates the shape s by vector x (Fig. 5.3b).

Then the shape of the intersection of all elements in S, ∩S, is equal to the shape of s

contracted by circles of radius r densely packed around its border (Fig. 5.3c).

Proof. Define bs to be the boundary of s. The elements of s can be divided into two sets:

α = {x ∈ s | d(x, bs) ≥ r} and β = {x ∈ s | d(x, bs) < r} where d(x, bs) computes the

smallest distance between x and bs.

An element x ∈ s will not exist in the shape of ∩S if and only if at least one shape in

S was transformed by a distance greater than d(x, bs). Otherwise x cannot be outside the

border of any shape in S.

By definition, the elements x ∈ α have the property d(x, bs) ≥ r, and every element of

S was translated by less than r, so all of the elements of α must remain in ∩S.

Conversely, the elements x ∈ β have the property d(x, bs) < r. Since S contains

elements which have been transformed by a distance up to r in every direction, the elements

of β cannot remain in ∩S. Moreover, the elements of β are the same elements that would

be covered by circles of radius r which are densely packed around bs. An illustration of
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this effect can be seen in Fig. 5.3.

The effect of lemma 1 can be generalized to the 3D shape of Fig. 5.2a by continuously

applying it to slices along the θ axis. If the original shape represented the space that is

reachable from xf , then the contracted shape would then represent the set of foot locations

that can be reached from any location within a cylinder centered around xf .

Now we can derive an upper bound on the probability of failing to sample a set of

modes that can enable the system to reach the goal from the start, if such a set of modes

exists. Assume there exists some solution, which is a function that outputs a configuration

and a mode as a function of time:

γS : [0, tf ] 7−→ RNC × Σ

whereNC is the dimension of the configuration space and Σ is the set of all possible modes.

The configuration output will vary continuously, but the sequence of modes through [0, tf ]

will be discrete and finite. Figure 5.4a displays an environment with the foot placements

of a hypothetical solution that allows the robot to traverse from the bottom left to top right.

We will now show that this selection of foot placements is not unique, and that uniform

random sampling is a probabilistically complete way of finding a suitable sequence of

modes to connect the start and the goal states.

Theorem 1. Let there be a sequence ofM single-support modes {σ1, ..., σM} that are suffi-

cient to connect a start state xstart = (qstart, σstart) to a goal state xgoal = (qgoal, σgoal). (Note

that double-support modes exist between the single-support modes within the solution, but

the double-support modes are not relevant to this theorem.)

Then the probability that Nσ uniform samples of placements for each foot will fail to

find a set of modes that can connect xstart to xgoal is at most

M (1− βm)Nσ (5.2)

75



(a) Cyan and magenta arrows represent the foot
placements of a hypothetical solution

(b) Magenta regions represent areas that the right
foot can reach for each given left foot placement.

(c) Dark teal regions represent areas that the left
foot can reach from any right foot placement
within each magenta ball. The lighter teal border
shows the original reachable shape, before being
contracted.

(d) Each ball represents the foot placements that
can be reached from any foot placement within
the previous and next ball.

Figure 5.4: An environment consisting of regions where foot placements are valid (white)
and invalid (striped). Foot placements may be invalid due to holes in the ground or obstacles
on the ground.
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where 0 < βm ≤ 1 is a problem-dependent constant.

Proof. For a sequence of alternating single-support modes {σ1, ..., σM} to be valid, it is

necessary for σi+1 to be reachable from σi. Moreover, due to the symmetry of reachability,

it is also necessary for σi to be reachable from σi+1.

The space of foot placements that are reachable from σi is given by the set R(σi).

Therefore, for each mode σ2i+1, i = 0, ..., bM−1
2
c we can identify a range of alternative foot

placements by taking the intersection Σ2i+1 = R(σ2i) ∩ R(σ2i+2). The foot placement

for σ2i+1 can be replaced by any element in Σ2i+1 without affecting the validity of the

mode sequence, because all elements in Σ2i+1 are reachable from the modes that come

both before and after σ2i+1. Examples of Σ2i+1 can be seen in the overlapping magenta

regions of Fig. 5.4b.

Let us construct a cylinder named ς2i+1 of radius r2i+1 within each Σ2i+1 for i =

0, ..., bM−1
2
c (see Fig. 5.2b for a 3D illustration of such a cylinder, and Fig. 5.4b for

an overhead view of a sequence of cylinders). For each ς2i+1, the set of foot placements

which are reachable by every member of the cylinder will be ∩R(ς2i+1). From Lemma

1, we know that the shape of this intersection will be the ordinary shape of reachability

but contracted by circles of r(ς2i+1) densely packed around the border. These contracted

regions are illustrated in Fig. 5.4c. The cylinder also has a height, ∆θ2i+1, which is chosen

in conjuncture with r2i+1 such that the cylinder fits inside of Σ2i+1.

Now for i = 1, ..., dM−1
2
e choose the largest cylinder available within the intersection

{∩R(ς2i−1)} ∩ {∩R(ς2i+1)}} and call it ς2i. Note that σ0 and σM+1 are the start and goal

(respectively) single-support modes which are given by the problem query. It is sufficient

to have ς0 ≡ {σ0} and ςM+1 ≡ {σM+1}, because both of those modes are provided without

any sampling.

We now have a sequence of cylinders ςi, i = 1, ...,M where as long as at least one foot

placement from each cylinder is sampled, the set of samples will be sufficient for finding a

valid solution that connects the start and goal states. Each cylinder is defined by its radius,
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ri and height, ∆θi. These parameters would ideally be chosen such that they maximize

the volume of the smallest cylinder in the set. Choose rm and ∆θm to be the radius and

height of the cylinder with minimal volume. The volume of this minimal cylinder is then

πr2m∆θm.

Suppose we are given a planar region to sample from, Fσ. Yaw values can simply be

sampled from the range [0, 2π]. This gives us a sampling volume of 2π|Fσ|. If the x/y

translations of the foot placements within each ςi all lie in Fσ, and we take Nσ independent

samples of left-support modes and Nσ samples of right-support modes from Fσ, then we

get

Pr[FAILURE] ≤ Pr[Some cylinder ςi is not sampled]

≤
M∑
i=1

Pr[Cylinder ςi is not sampled]

=
M∑
i=1

(
1− πr2i∆θi

2π|Fσ|

)Nσ
≤M

(
1− πr2m∆θm

2π|Fσ|

)Nσ
which gives us

Pr[FAILURE] ≤M

(
1− r2m∆θm

2|Fσ|

)Nσ
(5.3)

If we then take

βm =
r2m∆θm
2|Fσ|

we know that 0 < βm ≤ 1 because rm and ∆θm are non-zero (except in pathological

cases), and the volume of the sampling space must be at least as large as the volume of the

smallest cylinder in order to satisfy the assumption that Fσ covers all foot placements in

each set ςi. Therefore, substituting βm into equation 5.3 gives us the expression in equation

5.2.
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Figure 5.5: Illustration for the proof of Lemma 2. The white area represents CN while gray
is E \ CN . R is the minimum distance between the path γP and the edge of CN .

Completeness of Possibility Exploration

Now we consider the Possibility Exploration stage, where we find samples that exist in

the necessary condition manifold, CN , and connect them in a graph using geodesics ([61]

provides useful implementation details for sampling points in SE(3) and connecting them).

We derive an upper bound for the probability that NP samples will fail to provide a route

that can be used by the Mode Sampling stage to find adequate mode samples for a solution.

This proof is largely derived from the proofs of probabilistic completeness presented by

[62] and [63], but we also account for the need to obtain an adequate sampling of foot

placements, which was not a requirement for prior proofs.

As before, assume a solution exists in the form:

γS : [0, tf ] 7−→ RNC × Σ
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We can transform this function into

γP (s(t)) = ProjE (γS(t))

where ProjE (x) is a function that projects a state x into the Possibility Exploration Space,

and s(t) parameterizes γP by arclength instead of time.

Definitions: We denote dγP (s, r) to compute the arclength distance between points

γP (s) and γP (r) along the curve γP . We define Br(s) to be the set of all points in E within

a ball of radius r centered at γP (s). Recall that E is the “Exploration Space” from which

we randomly sample points to see if they satisfy the necessary conditions. In the context of

this paper, E is equal to SE(3) where the translational dimensions are bounded by a box.

dγP therefore computes a distance in SE(3). For more information on distance metrics in

SE(3), see [61].

Lemma 2. Let γP : [0, L] −→ E be a path that connects pstart = ProjE (xstart) and pgoal =

ProjE (xgoal). Let R = inf0≤s≤L r(γP (s)) be the minimum distance of the path to the edge

of the necessary condition manifold CN .

Then the probability that NP uniform samples of CN will fail to yield a path that can

connect from pstart to pgoal is no greater than

L

ε

(
1− π3ε6

6|CN |

)NP
(5.4)

where 0 < ε ≤ R/2, and |CN | is the volume of the necessary condition manifold.

Proof. Let n = dL/εe. We can then find a set of points {p0 = pstart, p1, ..., pn = pgoal ∈

γP | ∀i, dγP (pi, pi+1) ≤ ε}. Note that

BR/2(pi+1) ⊆ BR(pi), for i = 0, ..., n− 1. (5.5)

This follows from the triangle inequality and the inequality |γP (s) − γP (r)| ≤ dγP (s, r).
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Assume we have the points a ∈ Bε(pi) and b ∈ Bε(pi+1)). If we enforce ε ≤ R/2, then

Bε(pi) ⊆ BR/2(pi), and equation 5.5 guarantees that both a, b ∈ BR(pi). Therefore, there

is guaranteed to be a geodesic line segment ab that lies entirely within CN and connects

the points a and b, because every point in BR(pi) lies within CN due to the definition of R.

This property is illustrated in Fig. 5.5.

This observation tells us that it is sufficient to have at least one sample point in each ball

Bε(pi), i = 1, ..., n− 1 for the Possibility Exploration stage to find a path that connects the

start point to the goal point, as long as ε ≤ R/2. We can sample SE(3) from R6 without loss

of generality using an Euler angle representation of orientation. Therefore the volume of

the balls to be sampled can be computed based on a 6-ball: π3ε6/6. TakingNP independent

samples from CN , we find

Pr[FAILURE] ≤ Pr[Some ball is not sampled]

≤
n−1∑
i=1

Pr[Ball Bε(pi) is not sampled]

≤ L

ε

(
1− π3ε6

6|CN |

)NP (5.6)

Definition: dxy(σ, p) computes the distance across the xy-plane between the foot loca-

tion corresponding to the mode σ and the point p.

Lemma 3. As in Lemma 2, γP : [0, L] −→ E is a path that connects pstart and pgoal. Let hm

represent the greatest distance of any foot placement in the union ∪ςi, i = 1, ...,M from

the point on the path γP which is closest to that mode:

hm = sup
σ∈∪iςi

inf
s∈[0,L]

dxy(σ, γP (s)) (5.7)

Given a value of ρ ≥ 2hm (see Fig. 5.6), the probability that NP uniform samples of CN
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Figure 5.6: Illustration of the parameter hm. Teal and magenta balls represent the cylin-
drical regions of acceptable foot placements, ςi, from Sec. 5.3, and gray dots represent
the foot placements that are used by the hypothetical solution of γS . Small black dots are
points in the Possibility Exploration Space E .

will not be adequate to sample the modes needed for a solution is no greater than

L

ε

(
1− π3ε6

6|CN |

)NP
(5.8)

where 0 < ε ≤ ρ/4 and |CN | is the volume of the necessary condition manifold.

Proof. As in the proof for Lemma 2, let us define a set of n = dL/εe points p0 =

pstart, p1, ..., pn = pgoal along γP such that dγP (pi, pi+1) ≤ ε for each i = 0, ..., n− 1.

Suppose we choose ρ such that ρ ≥ 2hm. This condition is easily enforced using known

information by setting ρ to be at least double the furthest distance that the robot can step,

which we will refer to as Rmax. Additionally, suppose we enforce ε ≤ ρ/4. Define sm to

be the minimizer for s in equation 5.7. Define pm to be the point from the set {p0, ..., pn−1}

that is closest to the value sm. We know that pm cannot be further than ρ/4 from sm, or else

another ball would have been placed in the sequence, and that new ball would be closer to
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sm than pm, which would contradict the definition of pm. Therefore, no point in Bρ/4(pm)

can be further from γP (sm) than ρ/2.

Define σm to be the maximizer for σ in equation 5.7. If xm is the translational location

of the foot placement for σm, then xm has a distance hm from γP (sm). Therefore, the

triangle inequality tells us that the furthest distance that xm could possibly have from pm

is δm ≤ ρ/2 + hm ≤ ρ. Since xm is the furthest possible foot placement, all other foot

placements in the union of ς1, ..., ςM must be within a distance δj ≤ δm ≤ ρ of every point

within some ball Bε(pi), i = 0, ..., n − 1, as long as ε ≤ ρ/4. Figure 5.6 illustrates this

property.

Therefore, as long as ρ ≥ 2hm and ε ≤ ρ/4, it is sufficient to have at least one sample

point in each ball Bε(pi), i = 1, ..., n− 1 for Fσ in the Mode Sampling stage (see Sec. 5.3)

to cover all the modes of ς1, ..., ςM . The probability of failing to sample each ball at least

once is no greater than
L

ε

(
1− π3ε6

6|CN |

)NP

Theorem 2. Let γP : [0, L] −→ E be a path that connects pstart and pgoal. Given R as

defined by Lemma 2, hm as defined by equation 5.7, and ρ ≥ 2hm, the probability that NP

uniform samples of CN will fail to yield a path that can lead to a solution is no greater than

L

ε

(
1− π3ε6

6|CN |

)NP
(5.9)

where ε = min(R/2, ρ/4), and |CN | is the volume of the necessary condition manifold.

Proof. Using Lemmas 2 and 3, we have established that if we have the conditions ε ≤ R/2

and ε ≤ ρ/4 where ρ ≥ 2hm, it is sufficient to have at least one sample in each ball

Bε(pi), i = 0, ..., n− 1 in order to produce a graph that achieves two properties:

1. The graph contains at least one path from pstart to pgoal which passes entirely through

CN ,
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2. The region covered by circles of radius ρ, centered at each vertex along one of the

paths from pstart to pgoal will cover the entirety of {ς1, ..., ςM}.

Therefore, we choose ε = min(R/2, ρ/4), and then the probability that one of the balls

Bε(pi) will fail to be sampled is no greater than the expression given by equation 5.9.

Overall Completeness

The success of the Mode Sampling stage requires the Possibility Exploration stage to suc-

ceed in finding a viable candidate path. Similarly, the success of the Multi-modal PRM

stage requires the Mode Sampling stage to succeed in finding a set of modes that can reach

from the start to the goal. Here we prove that the combination of these dependent processes

is probabilistically complete given that the individual processes are each probabilistically

complete.

Lemma 4. Consider the randomized processes A and B. Suppose B depends on A such

that B can only succeed after A has succeeded. Given Pr[Ā] ≤ aF and Pr[B̄|A] ≤ bF ,

then the probability of both processes failing, Pr[Ā ∪ B̄], is no greater than aF + bF .

Proof. Define the probability of process A succeeding as Pr[A] and the probability of it

failing as Pr[Ā]. If process B cannot succeed unless process A succeeds, then we know

Pr[B̄|Ā] ≡ 1.0 and Pr[A|B] ≡ 1.0. If we are also given Pr[Ā] ≤ aF and Pr[B̄|A] ≤ bF ,

we can derive the following:

Pr[Ā ∪ B̄] = Pr[Ā] +
(
1− Pr[Ā]

)
Pr[B̄|A]

≤ aF + bF

(5.10)

Theorem 3. The probability of the overall process of the w-RPG failing to find a solution

will asymptotically converge to zero as the number of samples used for each stage in the

process goes to infinity.
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Proof. Consider the Possibility Exploration stage to be process A and the Mode Sampling

stage to be process B. From Theorems 1 and 2, we get the following expressions:

aF ≤
L

ε

(
1− π3ε6

6|CN |

)NP
bF ≤M

(
1− r2m∆θm

2|Fσ|

)Nσ (5.11)

We can use the inequality (1− x) ≤ e−x, for x ≥ 0 to change these expressions to:

aF ≤
L

ε
exp

(
− π3ε6

6|CN |
NP

)
bF ≤M exp

(
−r

2
m∆θm
2|Fσ|

Nσ

) (5.12)

Observing that α1 exp (−β1) + α2 exp (−β2) ≤ α exp(−β) where α = α1 + α2 and

β = min(β1, β2) and combining Lemma 4 with the expressions in equation 5.12, we can

get

Pr[Ā ∪ B̄] ≤
(
L

ε
+M

)
exp (−β)

β = min

(
π3ε6

6|CN |
NP ,

r2m∆θm
2|Fσ|

Nσ

) (5.13)

Therefore, as both NP and Nσ go to infinity, the probability of their combined pro-

cess failing asymptotically approaches zero, making the combined process probabilistically

complete.

This argument can be repeated recursively by viewing the combined process of Pos-

sibility Exploration and Mode Sampling as a single process upon which the Multi-modal

PRM stage depends. Since Multi-modal PRM is known to be probabilistically complete,

adding it as a dependent process onto another probabilistically complete process allows the

overall process to still be probabilistically complete.
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Analysis

The expressions which have been derived to prove the probabilistic completeness of the

w-RPG also reveal that the multi-stage procedure can offer a better rate of convergence for

success than a single-stage procedure would. The parameter ρ is used to restrict the region

from which foot placements are sampled during the Mode Sampling stage. This focuses

the mode sampling around the candidate route found in the Possibility Exploration stage,

ensuring that the samples are conducive toward finding a solution as illustrated in Fig. 5.1.

As ρ approaches infinity, the behavior is analogous to eliminating the Possibility Explo-

ration stage altogether and instead merely sampling foot placements uniformly throughout

the environment. In this section, we show how the earlier proofs predict an improvement in

convergence. We also show simulation results which empirically reinforce this prediction.

Theoretical Analysis

Recall that Fσ is the union of circles with radius ρ, centered around the dL/εe − 1 vertices

of the projected route from the Possibility Exploration stage. This gives us an upper bound

on the area covered by Fσ:

|Fσ| ≤
L

ε
πρ2 ≤ 4Lπρ

Substituting this into equation 5.3 forFσ, we get an upper bound on the likelihood of failure

for Mode Sampling in terms of ρ:

Pr[Mode Sampling Failure] ≤M

(
1− r2m∆θm

8Lπρ

)Nσ
(5.14)

which implies that minimizing ρ will maximize the rate of convergence for the Mode Sam-

pling stage.

However, there are limits to how small ρ can be shrunk for the formula to hold. In

particular, the proof for Theorem 1 depends on the assumption that Fσ covers the cylin-
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ders associated with the parameters ri and ∆θi. If Fσ is shrunk to no longer cover those

cylinders, then the formula will not hold and we can no longer guarantee probabilistic com-

pleteness or asymptotic convergence. To ensure the formulae hold, the proof for Theorem

2 suggests ρ ≥ 2Rmax as a lower bound.

It is worth noticing that the formula also predicts the existence of pathological cases

which cannot be reliably solved by the w-RPG. Specifically, if rm or ∆θm have a value

close to zero, then it implies that the solution requires a sample from a manifold with

nearly zero volume in SE(2). The probability of randomly sampling a point on such a

manifold is close to zero, so we could not expect this approach to reliably work, much like

the well-known “narrow passage problem” [64]. There would need to be some additional

information provided to the planner that would allow it to find samples on that smaller

manifold. For example, [37] used evaluations of the terrain data to adjust infeasible footstep

locations. Similarly, an infinitesimal value for R from Lemma 2 would imply that the robot

must pass through an extremely narrow passage between obstacles, and would require a

potentially infinite number of samples to find the feasible path.

Empirical Results

To empirically test the effects of ρ, we constructed three simple scenarios and ran simulated

tests while varying the value of ρ. Screenshots of the scenarios can be seen in Fig. 5.7. A

plot of the results is shown in Fig. 5.8. For the “Stepping Stones” and “Checkers” scenarios,

the robot needs to find a sequence of foot placements that can get it across a wide gap. In

such cases, Mode Sampling is the primary bottleneck, and equation 5.14 plays the dominant

role. This gives us performance results which reflect the theoretical predictions of the lower

bound.

In contrast, the “Pass Under” scenario requires the robot to pass underneath a sequence

of three bars. The floor is clear of holes or obstructions, leaving it wide open for the robot to

place its feet anywhere. Furthermore, the overall floor space of the environment is relatively
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(a) Stepping Stones Scenario

(b) Checkers Scenario

(c) Pass Under Scenario

Figure 5.7: Three scenarios used for simulation tests. In (a) and (b), the robot must get
across a gap by taking advantage of narrow stepping stones. In (c), the robot must pass
underneath a sequence of bars.
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Figure 5.8: Average performance results from three scenarios, illustrating the relationship
between ρ and the rate of convergence. The y-axis shows the average time for each sce-
nario, scaled by the data point with the smallest value. The x-axis shows how ρ was varied,
scaled byRmax, the furthest distance that the robot is able to step.
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small. These factors result in a scenario where Mode Sampling is a less demanding stage.

Instead, the physical obstacle of the overhanging bars results in a narrow passage, making

R the deciding variable for ε in equation 5.9. Smaller values for ρ may still offer some

marginal performance improvements, but it does not appear to be exponential as it is for

the other two scenarios.

While the theoretical analysis proposes a value of ρ = 2Rmax to optimize performance

while guaranteeing probabilistic completeness, the empirical data suggests that a value in

the range 1
2
Rmax ≤ ρ ≤ Rmax might be best for performance in practice. A potential

strategy could be to schedule the value of ρ so that it begins with a high-performance value

and then grows up to the theoretical lower bound over time. It is also plausible that a

different proof for Lemma 2 may be able to use a less strict condition than ρ ≥ 2Rmax.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

There are considerable challenges inherent to deploying legged robotic platforms on com-

plex terrain. Generating motion plans for legged robots involves finding configuration paths

that traverse sequences of kinematic and geometric constraint manifolds with varying di-

mensionality and narrow intersections. Furthermore, each manifold is determined by a

selection of contact points in the environment, and in general there is an infinite continuum

of feasible contacts to choose from. In large scale environments with arbitrary geometry,

the problem of choosing contact points and finding feasible paths through the resulting

constraint manifolds may be especially daunting.

To address these challenges, this thesis presented a combined high- and low-level mo-

tion planning structure called the Randomized Possibility Graph (RPG). Along with sets of

necessary and sufficient conditions for bipedal walking and a method for quickly sampling

feasible foot placements within a limited region, the RPG is able to find feasible bipedal

walking trajectories through arbitrary environments without the need for any special geo-

metric representations to facilitate foot placement sampling.

Summary of Contributions

Randomized Possibility Graph: We introduce a method for tackling large-scale motion

planning problems in challenging environments. The problem is first addressed at a high-

level using the fewest number of dimensions possible. With this high-level representation,

we search for a guide route rather than computing a whole body motion plan. The edges

of the guide route may meet either a set of necessary conditions or a set of sufficient con-

ditions. The satisfaction of these conditions gives us additional insight to the feasibility of

the guide route. They also provide a natural way to decompose the overall problem into a
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set of parallelizable motion planning queries. These queries are passed to a set of low-level

whole body motion planners which can then determine a feasible joint space trajectory that

follows along the guide route. While the low-level planners are searching for feasible tra-

jectories, the high-level planner can continue to search for alternative guide routes, in case

an easier route can be found. The RPG is a formalization and extension of prior route-based

motion planning methods.

Foot Placement Sampling: We present a novel method for the rapid randomized sam-

pling of foot placements in arbitrary 3D environments. The method is shown to work on

a variety of geometric features, including disconnected surfaces and curved surfaces. It is

fast enough that the time it requires is insignificant in comparison to the overall planning

effort. It also alleviates the need for specialized representations of walkable surfaces, such

as height maps or well-conditioned meshes.

Bipedal Locomotion Planning: We implemented sets of sufficient and necessary con-

ditions for performing quasi-static bipedal locomotion planning in arbitrary environments.

This serves as a proof-of-concept for the RPG to be applied to bipedal locomotion plan-

ning. The implementation works on environment models that may use arbitrary geometric

representations.

Probabilistic Completeness Analysis: We derive a proof of probabilistic completeness

for the RPG when applied to “semi-unstructured” environments. This leads to an analysis

which indicates that the RPG can provide an exponential improvement in the overall plan-

ner’s rate of convergence towards finding a feasible solution. We also provide an analysis

of the conditions that are necessary to ensure the improvement in convergence.
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Future Work

There are many challenges still remaining before legged robots can be fully effective in

real-world deployment.

Dynamics: In completely unstructured environments, there may be obstacles that can

only be traversed using dynamic motions, such as jumping or jogging. It should be possible

to extend the RPG concept to generate plans for classes of dynamic motions if we can

determine sets of necessary and sufficient conditions for those motions. Complex dynamic

motions could be evaluated by extending the dimensionality of the high-level stage of the

RPG to account for root velocity or system momentum. A kinodynamic motion planner

[65] may be used for the high-level planner, ΓP , to account for acceleration constraints.

For the low-level planners, ΩM, we may utilize an extreme locomotion planning framework

[66] which is designed to convert a root transform and system momentum trajectory (along

with a set of available foot placements) into a sequence of feasible dynamic motions. The

evaluation of the high-level conditions for these dynamic actions can be interlaced with

the evaluation of high-level conditions for quasi-static motions, creating plans that can

transition between performing quasi-static and dynamic motions as needed.

Learning: While the current implementation may be applicable to a wide range of en-

vironments, its performance is not suitable for real-time deployment except in extremely

simple scenarios which could just as easily be solved using a more specialized method.

However, the complete autonomy of this method could make it suitable as a basis for a

learning algorithm to collect data from. A large set of arbitrary environments could be fed

to the RPG to solve, and then a learning algorithm could identify common primitive ac-

tions that emerge from the solutions. These learned behaviors could then be collected in a

library and recycled by the RPG to improve future performance. This combination of ran-

dom sampling and learned behaviors could offer a planner that has both high performance

93



and broad applicability. Since the method does not require a human in the loop, there is

minimal overhead in the learning process.

Foot Placement Recognition: The foot placement sampling method presented here is

able to identify feasible foot placements that may have eluded prior methods, but there

are certain features for which it fails to recognize feasible foot placements. The funda-

mental shortcoming of the method is that it relies on rejection sampling, which assumes

the existence of a continuous region of feasible locations. In reality, there may be corner

cases where an exact placement is needed, which cannot be randomly sampled. A more

analytical approach to identifying the foot placements may be able to catch such corner

cases.

N-Limbs: We expect that the RPG method could extend naturally to robots that can use

an arbitrary number of limbs to contact the environment. The principle limitation of apply-

ing the RPG to a given problem is the production of necessary and sufficient conditions.

It may be possible to automatically learn these conditions by evaluating the system model

while performing a variety of primitive actions and identifying inner and outer approxima-

tions of the feasibility constraints. This would dramatically reduce the barrier to entry of

applying the RPG to arbitrary robot models.

Uncertainty remains a particularly challenging problem in real-world deployment. In

this thesis, we assume that full world knowledge is both available and accurate, but these

assumptions would be violated during any realistic deployment. It may be possible to

design probabilistic conditions that allow the planner to favor choices that have higher

certainty associated to them. It may also be possible to use the RPG to generate sets of

contingency plans along various alternative routes in case the primary plan turns out to be

infeasible.
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