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DNS  direct numerical simulations 
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E3   one dimensional energy spectrum 

E33  three dimensional energy spectrum 

E33(κ,0)  2 2 2
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, initial energy spectrum 
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F'  arbitrary fluctuating function 
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Fr  u/NL = Ri
-1/2

, Froude number 

g  acceleration due to gravity 

gj  S j Sa  , parameter used in solution for two active scalar case  

G  arbitrary function 

Gr  NL
2
/ν = Re/Fr, Grashof number 

H  depth of tank 

i  1 , imaginary number 

I  arbitrary integrand from method of stationary phase 

j  index used in summations, j = 1, 2, 3 are streamwise, spanwise and vertical 

directions, respectively 

k  wavenumber; standard notation for turbulent kinetic energy for k-ε model 

(Appendix B) 

kn  wavenumber in n-direction 

k  wavenumber vector 

KE0   initial kinetic energy 

Kρ  eddy diffusivity of density 
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KH  Kevlahan and Hunt (1997) 

L   length scale 

L0   length scale of largest eddy 

L3  longitudinal length scale in the vertical direction 

Lf  longitudinal integral scale (YW notation) 

Lu   integral length scale using velocity fluctuations in the u direction (YW notation) 

  longitudinal integral length scale  

LHDI  Lagrangian history direct interaction 

LVA  Lienhard and Van Atta (1990) 

m  Einstein index, holds similar values as j 

M  grid mesh size in stratified flow experiments 

*M    coefficient in RDT model equation 

ˆ
jM   nonlinear term in momentum equation 

Mn,m  identifier for individual components of nonlinear term M̂ corresponding to n row, 

m column of matrix 

n  Einstein index, holds similar values as j  

n  unit vector normal to surface 

N   
1/2

0 3g d dx    , buoyancy frequency 

O(n)  order n solution using perturbation method 

p   fluctuating pressure 

p̂   Fourier amplitude of pressure 

P  parameter in RDT model equation related to the Grashof number 

P̂   
2ˆ ˆ

m j j mk u k u k , convolution term in Poisson equation 

p1  Gr
-1

(1+Sc
-1

)2
, parameter used in buoyancy flux equation 

p2  Gr
-1

(1-Sc
-1

)2
, parameter used in buoyancy flux equation 

Pe  uL/D, Péclet number 

PE0  initial potential energy 

ΔPE  change in mean potential energy 
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q   
1/2

2 2

24sin p  , parameter used in buoyancy flux equation   

Q  parameter in RDT model equation related to the Schmidt number 

2

0 2q   initial turbulent kinetic energy 

r   PE0/KE0, energy ratio  

R  parameter in RDT model equations related to the decay of the nonlinear terms 

Rij   flux notation in numerical model 

Rw    
1/2

2 2

3 3u u     , vertical flux correlation coefficient 

ˆ
jr   Fourier amplitude used with integrating factor for nonlinear term analysis, 

corresponds to the Fourier amplitude of the velocity component 

Re   uL/ν, Reynolds number 

Rf  flux Richardson number 

Rρ  density ratio 

Ri  (NL/u)
2
 = Fr

-2
, Richardson number 

RDT  rapid distortion theory 

RMS  root mean square 

RNG  renormalization group 

S  salinity 

s  bounding surface of volume  

ŝ   Fourier amplitude used with integrating factor for nonlinear term analysis, 

corresponds to the Fourier amplitude of the buoyancy component 

Sc  ν/D, Schmidt number 

ScS  700, Schmidt number for salt 

ScT  7, Schmidt number for heated water 

t  time 

t   dimensionless eddy turnover time 

T  temperature 

T'   fluctuating temperature  

turbT   λ/uλ, time scale of turbulence (eddy turnover time) 
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meanT   N
-1

, time scale of mean flow (gravitational adjustment time) 

TFM  test field model 

TKE  turbulent kinetic energy 

u  velocity  

u0  velocity scale  

uλ  velocity scale of eddy with length λ 

ju   fluctuating velocity component in j-direction 

ˆ
ju   Fourier amplitude of the velocity component in j-direction 

ˆ
Su    0

ˆ /g S q N , Fourier amplitude for salt 

ˆ
Tu    0

ˆ /g T q N , Fourier amplitude for temperature 

0
ˆ

ju   initial conditions for Fourier amplitude of the velocity component in j-direction 

mU   mean flow velocity in m-direction 

V  volume  

w   
1/2

2 2

31 sin    , parameter in nonlinear term analysis 

W  Fourier amplitude of the velocity in RDT model equations  

xj  spatial coordinate in j-direction, where j = 1, 2, 3 and correspond to x, y and z 
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x  spatial vector that refers to coordinate system that follows mean flow 

YW  Yoon and Warhaft (1990) 
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αj  parameter used in solution for two active scalar case 
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ABSTRACT 

Mixing efficiency and nonlinear interactions in stratified turbulence were studied 

using rapid distortion theory (RDT). Mixing efficiency was predicted in strongly stratified 

flows for both one and two active scalars. The former used results of Hanazaki and Hunt 

(1996), while a new analytical solution was derived for the latter. Mixing efficiencies depend 

on the Schmidt number Sc, Grashof number Gr, and density ratio Rρ. A decrease in the 

mixing efficiency was observed as Sc increased for the one scalar case and as Rρ decreased 

for the two scalar case. RDT was also extended in an attempt to better predict behaviors in 

moderately stratified flows. Extensions using eddy viscosities, simulations, and modification 

of RDT input parameters were attempted and compared to experimental data, but magnitude 

and peak timing discrepancies in the vertical flux correlation coefficient curves remained. A 

different attempt at extending RDT was made by deriving expressions for the neglected 

nonlinear terms using an approach similar to Kevlahan and Hunt (1997). A model system 

including the expected form of the nonlinear terms showed that adjustment of coefficients in 

the nonlinear term had the ability to influence the period and decay of turbulent parameters.
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CHAPTER 1: GENERAL INTRODUCTION 

Significance and Problem Definition 

Stratification exists naturally in many geophysical flows. For example, lakes can be 

thermally stratified due to seasonal air temperature changes, and oceans can be stratified by 

heat, salt, or both depending on geographic location. Differences in the density of lighter 

warm water and the heavier cold or saline water lead to the formation of layers, and therefore 

a density gradient. The presence of stratification within a flow reduces the ability of scalars 

like nutrients, heat, or oxygen to be transported between layers (Fernando, 1991; Wuest et 

al., 1996). 

Engineers, limnologists, and oceanographers are often interested in quantifying how 

much transport, or mixing, occurs between layers of a stratified water body. This transport is 

quantified through the vertical density flux. In practice it is difficult to measure the vertical 

density flux directly, so often another parameter, the mixing efficiency, is estimated and used 

to obtain the flux. A constant mixing efficiency value of approximately 20% is generally 

used for lake or ocean applications (Ferrari and Polzin, 2005; Ravens et al., 2000). 

Simulations and laboratory experiments show that the mixing efficiency increases with 

stratification up to a maximum value (Rehmann and Koseff, 2004) and also decreases as the 

fluid becomes less diffusive (Rehmann and Koseff, 2004; Stretch et al., 2010). However, the 

dependency of the mixing efficiency on molecular effects, in terms of the Schmidt number Sc 

and Grashof number Gr, is not well understood. A better understanding of how fluid 

properties and flow conditions influence the mixing efficiency will lead to better estimates of 

the vertical flux. 

Turbulence models are based on equations for the conservation of mass and 

conservation of momentum and are commonly used to predict vertical fluxes or parameters 

like the mixing efficiency. Because these equations are nonlinear by nature and the system is 

not closed, assumptions and approximations must be applied for solutions to be reached. One 

such model, rapid distortion theory (RDT), can be applied to stratified flows. However, RDT 

neglects nonlinear terms present in the conservation equations by assuming that eddies are 

rapidly distorted by gravity before interacting with each other. 
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Turbulent events result in an energy cascade from large scale to small scale eddy 

structures where nonlinear interactions naturally occur during this process. While these 

interactions are recognized as having the potential to influence the vertical density flux, and 

consequently parameters like the mixing efficiency, quantitatively accounting for nonlinear 

interactions in turbulence models presents a mathematical challenge. In addition, many 

environmental flows existing in nature are moderately stratified where nonlinear motions 

have a greater influence than in strongly stratified flows (Imberger and Ivey, 1991). 

Quantitative representation of neglected nonlinear terms could improve the ability of 

turbulence models like RDT to better predict mixing and transport in geophysical flows. 

Objectives 

This work aims to (i) understand how mixing efficiency depends on fluid 

characteristics and flow types and (ii) evaluate rapid distortion theory with the expected form 

of the nonlinear terms to understand role of nonlinear effects. Mixing efficiencies will be 

determined and evaluated using analytical solutions for one and two active scalars, while an 

approach similar to Kevlahan and Hunt (1997) will be used to develop expressions for 

nonlinear terms neglected from rapid distortion theory.  

Thesis Organization  

Each of the following chapters pertains to different, yet related, aspects of turbulence 

in stratified flows. Chapter 2 includes a draft of the paper regarding mixing efficiency 

predictions using RDT which will be submitted to Dynamics of Atmospheres and Oceans. 

The extension of RDT through the addition of the neglected nonlinear terms to better predict 

characteristics of moderately stratified flows is included in Chapter 3. General conclusions of 

work completed and recommendations for future research are presented in Chapter 4. 
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 CHAPTER 2: ANALYTICAL MODEL OF MIXING EFFICIENCY OF 

TURBULENCE IN A STRONGLY FLOW 

A paper submitted to Dynamics of Atmospheres and Oceans 

Jennifer Jefferson
1,2

 and Chris Rehmann
1,3

 

Abstract 

The mixing efficiency of unsheared homogeneous turbulence in flows stratified by 

one or two active scalars was calculated with rapid distortion theory (RDT). For the case with 

one scalar the mixing efficiency η depends on the Schmidt number Sc = ν/D and the Grashof 

number Gr = NL
2
/ν, where ν is the kinematic viscosity, D is the molecular diffusivity, N is 

the buoyancy frequency, and L is proportional to the longitudinal integral length scale. For 

the case with two scalars, the efficiency also depends on the density ratio Rρ, which compares 

the density difference caused by temperature and the density difference caused by salt. In the 

one scalar case when Gr is large, η decreases as Sc increases. The mixing efficiency 

increases with Gr up to a maximum value, as shown in numerical simulations and 

experiments. The maximum mixing efficiency of approximately 30% for low Sc is consistent 

with simulations, while the maximum efficiency of 6% for heated water is consistent with 

laboratory measurements. However, RDT underpredicts the maximum efficiency for 

saltwater and also the value of Gr at which the efficiency becomes constant. The predicted 

behavior of the mixing efficiency for two active scalars is similar to that for one scalar, and 

the efficiency decreases as Rρ decreases, as in experiments and semi-empirical models. These 

calculations show that results from simulations with low Sc likely overestimate the efficiency 

of turbulence in strongly stratified flows in lakes and oceans. 

Introduction 

Understanding the transport of scalars such as heat, salt, nutrients, and pollutants in 

environmental flows is important for predicting climate, water quality, and the health of 

                                                 
1
 Graduate student and Associate Professor, respectively, Department of Civil, Construction and Environmental 

Engineering, Iowa State University. 
2
 Primary researcher and author. 

3
 Author for correspondence. 
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aquatic life. Because fluxes are difficult to measure directly, a common approach is to use a 

mixing efficiency to estimate an eddy diffusivity and obtain vertical fluxes (Osborn, 1980). 

Often a constant value is assumed for measurements in the ocean (Ferrari and Polzin, 2005) 

and lakes (Ravens et al., 2000). However, mixing and its efficiency depend on factors such as 

the strength of stratification, molecular diffusivity of the scalar, and the process generating 

the turbulence (Turner 1973, chapters 9-10), and questions remain about the magnitude of the 

mixing efficiency and its behavior in strong stratification. Here we use rapid distortion theory 

(RDT) to explore the behavior of the mixing efficiency in flows with strong stratification 

caused by either a single scalar or two stably-stratified scalars.  

Several quantities called mixing efficiency are used to study stratified flows, but their 

definitions vary. In devising a method to estimate the eddy diffusivity from measurements of 

turbulence microstructure, Osborn (1980) defined a flux Richardson number Rf  as the 

vertical buoyancy flux 0 3( / )g u    divided by the production of turbulent kinetic energy 

(TKE), where g is the acceleration due to gravity, 0 is a reference density, ′ is the 

fluctuating density, 3u  is the fluctuating velocity in the vertical (or x3) direction, and the 

overbar denotes an average. Ivey and Imberger (1991) generalized this definition of mixing 

efficiency by comparing the buoyancy flux to all sources of TKE.  Because the flux 

Richardson number measures the relative importance of terms in the TKE balance, it can 

vary widely during the evolution of a single turbulent event. For example, during 

restratification, which is a key feature of decaying turbulence in a stratified flow (Lienhard 

and Van Atta, 1990), it is negative.  

Another definition of mixing efficiency depends on the change in mean potential 

energy PE during a turbulent event. This change is a key quantity of interest to 

oceanographers (Gregg, 1987) because it measures the net effect of downgradient and 

upgradient fluxes on the background density profile. In experiments with a grid towed 

through a linearly stratified fluid, mixing efficiency has been defined as the ratio of PE, 

which is computed from density profiles measured before the tow and after the turbulence 

decays, to the work done to create the turbulence (Rehmann and Koseff, 2004). A similar 

definition can be applied to numerical simulations of homogeneous turbulence even though 
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the background density gradient does not change: Stretch et al. (2010) neglected fluxes from 

molecular diffusion along the background gradient and computed PE by integrating the 

buoyancy flux over the life of the turbulence, and they computed a mixing efficiency as 

PE divided by the initial TKE 
2

0 / 2q : 

3

00

2

0

 d

/ 2

g
u t

q








 




,  (2.1) 

where t is time. We use both this definition and the symbol  to distinguish it from the flux 

Richardson number based on terms in the TKE equation. 

The mixing efficiency depends on the strength of the stratification and the molecular 

diffusivity of the stratifying agent. In experiments with towed grids, the former is quantified 

by a Richardson number Ri formed with length and velocity scales of the grid and the 

buoyancy frequency N =  
1/2

0 3( / ) /g d dx  , while the latter is quantified by a Prandtl 

number or Schmidt number Sc = /D, where  is the kinematic viscosity and D is the 

molecular diffusivity. Mixing efficiencies are small at low Ri and rise to a peak of about 6% 

for grid turbulence in salt-stratified fluids and temperature-stratified fluids, which have ScS = 

700 and ScT = 7, respectively (Barrett and Van Atta, 1991; Britter, 1985; Rehmann and 

Koseff, 2004; Rottman and Britter, 1986). Simulations by Stretch et al. (2010) for Sc = 0.5 

follow a similar trend for low Ri but reach a peak efficiency of about 5 times larger than 

observed in the experiments. Stretch et al. (2010) proposed that accounting for the energy 

used to generate surface and internal waves in the experiments would increase the efficiency 

and reduce the difference. Also,  decreased with increasing Sc in their full simulations with 

Sc = 0.5, 1, and 2 and simulations with higher Sc that did not include nonlinear terms, but 

because the decrease occurs at high Ri, they argued that wave generation causes the peak 

efficiency differences. 

When the flow has stable distributions of two or more active scalars, the mixing 

efficiency can depend on another parameter. Field experiments (Nash and Moum, 2002), 

laboratory experiments (Jackson and Rehmann, 2003b; Martin and Rehmann, 2006), 

numerical simulations (Gargett et al., 2003; Smyth et al., 2005), and theoretical models 
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(Jackson and Rehmann, 2009) have shown that in strongly stratified flows a scalar with 

larger diffusivity, such as temperature, can be transported at larger rates than a scalar with 

smaller diffusivity, such as salt. This differential diffusion, which is different from double 

diffusion, causes the mixing efficiency to depend on the fraction of the density gradient 

caused by each scalar which is measured by the density ratio Rρ: 

3

3

/

/

dT dx
R

dS dx





   (2.2) 

where T is temperature, S is salinity,  is the thermal expansion coefficient,  is the haline 

contraction coefficient. When the transport of temperature exceeds the transport of salt, the 

mixing efficiency will increase as more of the stratification is caused by temperature—that is, 

when R increases (Jackson and Rehmann, 2003a). Laboratory experiments support this 

intuition: At low Ri, mixing efficiencies are similar for both low and high Rρ in more weakly 

stratified flows, but for higher Ri, the mixing efficiencies differ. In particular, in the 

experiments of Jackson and Rehmann (2003b) and Martin and Rehmann (2006), the 

maximum efficiency was approximately 4% for R = 0.4–0.8 but only 2.5% for Rρ = 0.02–

0.04.

We use an analytical model for unsheared homogeneous turbulence in a strongly 

stratified fluid to examine the magnitude and behavior of the mixing efficiency. The 

approach, rapid distortion theory, reproduces key features of turbulence in strongly stratified 

flows with one scalar (Hanazaki and Hunt, 1996) and two scalars (Jackson et al., 2005), and 

it allows parameters to be varied more easily than in direct numerical simulations. We 

compute the mixing efficiency with RDT for one and two scalar flows in the next section, 

then present the results and discuss the assumptions, relation to previous work, and 

applications before summarizing the main findings.  

Theory
4
 

Rapid distortion theory uses linearized equations for fluctuating velocities and 

scalars. This approximation results from assuming that eddies are distorted by gravitational 

adjustment before they can interact with each other. Hanazaki and Hunt (1996) quantified 

                                                 
4
 Matlab codes developed and used for one and two scalar cases are found in Appendix A. 
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this assumption by requiring that the Froude number Fr = u/N << 1, where  and u are 

length and velocity scales of an eddy. A low value of 
0 /Fr q N , where  is the 

longitudinal integral length scale, ensures small eddy Froude numbers when the Reynolds 

number Re is low or moderate, but when the Re is large, the Froude number criterion can be 

violated at high wavenumbers (Hanazaki and Hunt, 1996). Rapid distortion theory can also 

become less accurate at large times when the vortex mode, nonlinear motions with large time 

scales (Riley and Lelong, 2000), appears (Hanazaki and Hunt, 2004). As Jackson and 

Rehmann (2009) discussed, the vortex mode appears in experiments at dimensionless time τ 

= Nt = 20–30. 

Computing the mixing efficiency with equation (2.1) requires solving the equations 

for the vertical component of momentum and the scalars. For homogeneous turbulence with 

no mean velocity, the equations for the Fourier amplitudes of the vertical velocity, 

temperature, and salinity can be adapted from those in Jackson and Rehmann (2009):  

 
2

1 23 3
32

ˆ
ˆ ˆ ˆ1 S T

du
u u Gr u

d




 

 
    
 

, (2.3) 

 
1 2

3

ˆ
ˆ ˆ

1

T
T T

Rdu
u GrSc u

d R









  


,  (2.4) 

 
1 2

3

ˆ 1
ˆ ˆ

1

S
S S

du
u GrSc u

d R





 


  (2.5) 

where 0
ˆˆ / ( )Tu g T q N , 0

ˆˆ / ( )Su g S q N , and 3û  is the dimensional Fourier amplitude of 

the vertical velocity normalized by q0. The vertical wavenumber 3 and the magnitude  of 

the wavenumber vector are made dimensionless by the length scale L, which is related to the 

longitudinal integral length scale through the relationship 
1/2( 2)L   . Aside from the 

density ratio and the Schmidt numbers for temperature and salinity, another key 

dimensionless parameter is the Grashof number Gr = NL
2
/. Jackson et al. (2005) related Gr 

to the rate of dissipation of TKE, normalized by N
2
; the parameter /N

2
 is frequently 

used as a measure of the intensity of turbulence in stratified water bodies. Once the Fourier 

coefficients are obtained from (2.3)–(2.5), cospectra of vertical velocity and scalars can be 

computed with 
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   * * * *1 1
3 3 3 3 3 32 2

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) and ( , )T T T S S SE t u u u u E t u u u u   κ κ  (2.6)  

where the star indicates a complex conjugate. Integrating over all wavenumbers yields the 

vertical fluxes of temperature and salt 

3 3

3 3 3 3d and dT T T S S SF u u E F u u E        κ κ , (2.7) 

so that the buoyancy flux can be expressed as 
2 2

0 3 0 0( / ) ( )b T Sg u q NF q N F F      , where Fb 

is the dimensionless buoyancy flux. 

The mixing efficiency was computed for flows stratified by one scalar and two 

scalars. The one scalar case can be obtained by setting R = 0 and ˆ 0Tu   in (2.3)–(2.5). For 

this case, the work of Hanazaki and Hunt (1996), who solved for initially isotropic 

turbulence, can be used to write the dimensionless buoyancy flux as 

 1

3

1
22 2

0 0

sin
( ) (1 2 ) sin (1 2 ) 1 cos d dp

bF E e r q q r p q
q


 

    


          (2.8) 

where p1 = Gr
-1

(1+Sc
-1

)2
, p2 = Gr

-1
(1−Sc

-1
)2

,  
1/2

2 2

24sinq p  , r = PE0/KE0 is the 

initial potential energy divided by the initial kinetic energy, respectively, and θ is the angle 

between the wavenumber vector and the vertical direction. The dimensionless energy 

spectrum function is taken to be  

24 /21
( )

3 2
E e  



 . (2.9) 

Then from (2.1), the mixing efficiency for the one scalar case is 

3

2 4 2

0 0

( )sin
d d

sin / ( )

E

Gr Sc


 

   
 




   (2.10) 

where  

1 1 2

2 1

rSc

Sc


 
  

 
. (2.11) 

Either one of the two integrals in (2.10) can be evaluated in closed form, but integrating both 

numerically is simpler to obtain values of the efficiency.  



9 

 

The mixing efficiency for flows with stable distributions of two scalars is computed 

in a similar way. The Fourier coefficients are computed from equations (2.3)–(2.5) by 

assuming solutions of the form 

 
3

3

1

ˆ expj j

j

u A  


 ,    
3

1

ˆ expT j j

j

u B  


 ,    and    
3

1

ˆ expS j j

j

u C  


 , (2.12) 

where Aj, Bj, and Cj are coefficients and j are the roots of  

3 2( ) ( ) ( ) 0S T S T S T S T T S S Ta a a aa aa a a b aa a b a a               .  (2.13)   

Additional variables in (2.13) are defined as a = Gr
-12

, aT = (GrScT)
-12

, aS = (GrScS)
-12

, 

2 2

31 /b    , T  = −R/(R+1), and S  = −1/(R+1). Explicit expressions for the three 

roots—which consist of either three real roots or one real root and a complex conjugate 

pair—are cumbersome, but can be obtained with the procedure in section 1.11 of the 

National Institute of Standards and Technology (NIST) Digital Library of Mathematical 

Functions (2012). The coefficients can be related by substituting (2.12) into (2.4) and (2.5):   

and
T j S j

j j j j j j

j T j S

A A
B f A C g A

a a 

 
   

 
 (2.14) 

which hold for j = 1, 2, and 3. Applying the initial conditions gives 

3 30 1 2 3
ˆ ˆ( ,0)u u A A A   κ

  (2.15)   

0 1 1 2 2 3 3
ˆ ˆ( ,0)T Tu u f A f A f A   κ , (2.16) 

0 1 1 2 2 3 3
ˆ ˆ( ,0)S Su u g A g A g A   κ . (2.17) 

The solution of the system (2.15)–(2.17) is 

1 30 2 3
ˆA u A A   ,  (2.18) 

 2 0 1 30 3 3 1

2 1

1
ˆ ˆ ( )TA u f u A f f

f f
   


, (2.19) 

1 2 2 1 30 1 2 0 1 2 0
3

1 2 1 3 2 1 2 3 3 1 3 2

ˆ ˆ ˆ( ) ( ) ( )T Sf g f g u g g u f f u
A

f g f g f g f g f g f g

    


    
. (2.20) 

After the Fourier coefficients are assembled with (2.12) and (2.18)–(2.20), the spectra 

can be computed with (2.6); for simplicity the initial temperature and salinity fluctuations are 

assumed to be zero: 



10 

 

       

   

   

* *
1 1 1 2

* *
1 3 2 2

**
3 12 1

( ) ( )* * * *1
3 33 1 1 1 1 1 2 2 12

( ) ( )* * * *

1 3 3 1 2 2 2 2

( )( )* * * *

2 1 1 2 3 1 1 3

*

3 3

, ,0

              

              

             

t t

T

t t

tt

E t E e e

e e

e e

   

   

  

       

       

       

  

  

  

 

   


  

  



κ κ

   

 

* *
3 3 2 3

*
3 2

( ) ( )* * *

3 3 2 3 3 2

( )* *

3 2 2 3              ,

t t

t

e e

e

   

 

    

   

  



 




 (2.21) 

     

   

   

* *
1 1 1 2

* *
1 3 2 2

**
3 12 1

( ) ( )* * * *1
3 33 1 1 1 1 1 2 2 12

( ) ( )* * * *

1 3 3 1 2 2 2 2

( )( )* * * *

2 1 1 2 3 1 1 3

3 3

( , ) ,0

              

              

              

t t

S

t t

tt

E t E e e

e e

e e

   

   

  

       

       

       

 

  

  

 

   


  

  

κ κ

   

 

* *
3 3 2 3

*
3 2

( ) ( )* * * *

3 3 2 3 3 2

( )* *

3 2 2 3              .

t t

t

e e

e

   

 

     

   

  



  




 (2.22) 

Because the turbulence is taken to be isotropic initially, the energy spectrum is 

2

3
33 2 2

( )
( ,0) 1

4

E
E




 

 
  

 
 . (2.23) 

The coefficients in (2.21) and (2.22) are  

1 2 3

1 3 1 3
2

2 1

1 2 2 1
3

1 2 1 3 2 1 2 3 3 1 3 2

1 ,

( )
,

,

f f f

f f

f g f g

f g f g f g f g f g f g

  






  

  







    

  (2.24) 

and j = fjj and j = gjj with j = 1, 2, and 3 (no sum on j). After the fluxes are computed 

with (2.7), the mixing efficiency can be computed with (2.1).

Results 

One Active Scalar 

Fluxes computed with RDT oscillate with decaying amplitude (Figure 2.1). The flux 

alternates between downgradient and upgradient with a period of about 3N
-1

, and the periods 

for Gr = 10 and Gr = 1,000 are similar. The amplitude of the oscillation depends strongly on 

Gr, which indicates the importance of viscosity: For Gr = 10, the vertical flux is small by τ =  
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Figure 2.1: Time evolution of the buoyancy flux: ―, Sc = 0.7 and Gr = 1,000; --, Sc = 700 

and Gr = 1,000; – - –, Sc = 700 and Gr = 10.
5
 

20, but for Gr = 1,000 the amplitude at τ = 30 is about 6 times smaller than the maximum 

value during the evolution. The amplitude increases as Sc increases, or as effects of 

molecular diffusion of the stratifying agent decrease, but for higher values of Grashof 

number, differences caused by changes in the Schmidt number are small. 

When the Grashof number is large, the mixing efficiency decreases as the Schmidt 

number increases (Figure 2.2). As Gr → ∞, the quantity Gr
2
Sc also becomes large, and the 

second term in the denominator in (2.10) becomes small. Then, because the integral of the 

energy spectrum function over all wavenumbers is ½, the mixing efficiency approaches ∞. 

For no initial density fluctuations (r = 0), ∞ is 0.5 for small Schmidt number, and it equals 

0.25 for Sc = 1, which is typical of scalars used in direct numerical simulations. As Sc 

increases to values more representative of the ocean and lakes, ∞ is smaller: for heat in 

water, it is about 6%, and for salt in water it is about 0.1%. As the Grashof number and  

 

                                                 
5
 Matlab code used to generate figure: VortexModeCompare.m 
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Figure 2.2: Dependence of mixing efficiency on Schmidt number for one active scalar. 

RDT: ―, Gr = 10,000; --, Gr = 10; – - –, Gr = 1. Results from Stretch et al. (2010) for Ri = 

1,000: ▲, RDT simulation—Re  = 100; ○, DNS—Re = 100; □, DNS—Re = 200.
6
 

Schmidt number decrease, the mixing efficiency decreases below ∞, but as long as Gr
2
Sc > 

10
4
, the mixing efficiency is within 1% of the asymptotic value ∞.  

The mixing efficiency computed with RDT matches the predictions from numerical 

simulations at low Schmidt number, but the quantitative agreement weakens as Sc becomes 

large (Figure 2.2). To compare with results from direct numerical simulations (DNS) and 

RDT simulations (i.e., simulations of the governing equations with nonlinear terms 

neglected) of Stretch et al. (2010), the Grashof number was computed as 1/2Gr ReRi . For Sc 

< 2 efficiencies from the simulations, which have values of Gr of 3,162 and 6,324, are 

predicted well with the asymptotic value of the mixing efficiency for large Gr. Predictions 

from rapid distortion theory fall below the values from RDT simulations at higher Schmidt 

number; at Sc = 1,000, the value from RDT is 10 times smaller. The dependence on the 

                                                 
6
 Matlab code used to generate figure: Rfdriver_Fig34.m 
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Schmidt number is also different: Simulations show that ~ Sc
-1/2

 at high Sc (Stretch et al., 

2010), while RDT predicts ~ Sc
-1

, as can be seen in (2.11) when Sc >> 1. 

The dependence of mixing efficiency on Gr predicted using RDT is qualitatively 

consistent with the behavior of results from DNS, though some differences between the 

predictions from theory and results from previous work are apparent (Figure 2.3). As noted 

above, the mixing efficiency becomes a function of only Sc when Gr is large. For small Gr, 

the first term in the denominator of (2.10) is small, and the efficiency is approximately given 

by 

3
2 3

4 2 4

0 0 0 0

( )sin ( )
d d d sin d

/

E E
Gr Sc

Gr Sc

 
   

    
  

 



     . (2.25) 

Results from DNS also follow a Gr
2
 dependence at low Grashof number. While the 

maximum values of mixing efficiency from RDT are consistent with those from DNS for low 

Sc, RDT predicts that the mixing efficiency becomes constant at a value of Gr about 10 times 

smaller than that in DNS (Figure 2.3). For heated water (Sc = 7), RDT predicts the maximum 

mixing efficiency of about 6%, as observed in experiments, but for saltwater (Sc = 700), it 

produces mixing efficiencies about 10 times smaller than those from experiments. Although 

RDT predicts that the maximum efficiency for saltwater should be about 90 times smaller 

than that for heated water, the measured values lie between the limits. The measured mixing 

efficiencies from separate datasets increase with Gr, but efficiencies from RDT start 

increasing at much lower values of Grashof number. 
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Figure 2.3: Dependence of mixing efficiency on Grashof number for one active scalar. RDT: 

--, Sc = 0.5; ―, Sc = 7 (temperature); – - –, Sc = 700 (salt). DNS from Stretch et al. (2010) 

with Sc = 0.5: +, Re = 100; ×, Re = 200; ○, Re = 400. Experiments: ■, Rehmann and Koseff 

(2004)—salt; □, Rehmann and Koseff (2004)—temperature; ▲, Rottman and Britter 

(1986)—salt; , Britter (1985)—salt. The length scale L in the towed-grid experiments was 

computed as 1/2 1/2( / 2) ( / 2)L M     , where M is the grid mesh and  ≈ 0.5 is / M

estimated at x/M = 10 in the experiments of Yoon and Warhaft (1990).
 7

  

Two Active Scalars 

The behavior of the mixing efficiency in a flow stratified by two active scalars is 

similar to that in a flow with one active scalar (Figure 2.4). The efficiency increases with Gr 

to a constant value, and for Gr > 1 efficiencies for finite values of the density ratio lie 

between the efficiencies in the cases with each scalar alone (e.g., only temperature and only 

salt). The latter observation reflects the intuition and results in Jackson and Rehmann (2003a; 

2003b): When transport of heat exceeds transport of salt, the mixing efficiency will be higher 

when more of the density gradient is due to temperature (i.e., when R is larger). One 

interesting quantitative result is that when salt and temperature contribute equally to the  

                                                 
7
 Matlab code used to generate figure: Rfdriver_Fig1.m 
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Figure 2.4: Dependence of mixing efficiency on Grashof number for two active scalars: , 

Rρ → ∞ (temperature only); ―, Rρ = 1; --, Rρ = 0.1; – - –, Rρ = 0.01; □, Rρ = 0 (salt only).
8


density gradient (i.e., R = 1), the efficiency is much closer to the value for temperature only 

than the value for salt only.  

The mixing efficiency computed with RDT increases with density ratio as in 

experiments, but quantitative agreement does not occur until Rρ becomes large (Figure 2.5). 

The RDT curve shows how the efficiency varies from a flow with only salt (∞ = 7×10
-4

) to a 

flow with only temperature (∞ = 0.06); it has the same shape as the empirical expression 

developed by Martin and Rehmann (2006). While RDT and the empirical expression are 

within a factor of about 1.2 at high R, they differ by a factor of about 25 at low R. This 

result is consistent with the results from the one scalar case, in which RDT predict 

efficiencies better for heated water (R→ ∞) than for saltwater (R = 0).  

                                                 
8
 Matlab code used to generate figure: DDfluxdriver_Fig5.m 
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Figure 2.5: Dependence of mixing efficiency on density ratio: ―, RDT for differential 

diffusion; --, empirical efficiency expression by Jackson and Rehmann (2003a), and 

experiments by Martin and Rehmann (2006): ○, Rρ = 0; , Rρ = 0.02; □, Rρ = 0.04; , Rρ = 

0.04; ♦, Rρ = 0.21; ●, Rρ = 0.41; ▼, Rρ = 0.45; ■, Rρ = 0.76; ▲, Rρ = 1.2.
 9

 

Discussion 

Validity of Assumptions 

The flux caused by molecular diffusion along the background density gradient was 

neglected in calculating the potential energy change, but in flows with less energetic 

turbulence it could be important. The work of Stretch et al. (2010) can be extended to show 

that the mean potential energy of a volume V with bounding surface s evolves according to  

3 3 3

3

j j j

js s V V

dPE
g x u n ds g x D n ds g u dV g D dV

dt x x

 
 

 
       

      , (2.26) 

where ρ is the density and  n is a unit vector normal to the surface. For a rectangular tank 

with no-flux boundaries the first two terms on the right vanish. Then, the ratio of the last two 

terms is 

                                                 
9
 Matlab code used to generate figure: DDfluxdriver_Fig6.m 

(b) 
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  (2.27) 

where H is the water depth of the tank and Kρ is the eddy diffusivity of density. When D/K 

<< 1, the background flux from molecular diffusion can be neglected. For flows with one 

active scalar, values of this ratio computed from the measurements of Rehmann and Koseff 

(2004) are less than 0.03 for temperature and 0.01 for salinity. For flows with two active 

scalars, the maximum values of the ratio of molecular and eddy diffusivities is 0.02 for 

salinity, 0.25 for temperature, and about 1 using the eddy diffusivity for density and 

molecular diffusivity for temperature. In the cases with D/K ≈ 1, the background flux from 

molecular diffusion can increase the mixing efficiency. 

Our calculation of mixing efficiency requires integrating the fluxes over all times. 

However, at large times the vortex mode, which RDT does not capture, can appear (Hanazaki 

and Hunt, 2004). If the vertical flux has decayed by τ ≈ 30 (Jackson and Rehmann, 2009), 

then the vortex mode should not affect the results significantly. The fluxes shown in Figure 

2.1 suggest that if the vortex mode is important, it will occur in cases with larger Gr. For 

those cases, the predictions of RDT could be expected to be less accurate. However, the 

vortex mode requires the vertical velocity to be much smaller than the horizontal velocity 

(Hanazaki and Hunt, 2004), and for an inviscid, nondiffusive fluid RDT predicts  
1/2

2 2

3 1/u u 

< 0.5 for only about 15% of a buoyancy period early in the evolution. Therefore, the vortex 

mode may not a source of large uncertainty in these calculations even at high Gr. 

Comparison with Experiments and Simulations 

Mixing efficiencies for high Grashof numbers match the results from simulations of 

Stretch et al (2010) at low Sc but not at high Sc. Possible reasons for the differences include 

the presence of the vortex mode, the time of integration of the fluxes, and resolution at high 

Sc, but the discrepancy is puzzling. The vortex mode should not cause the differences 

because neither RDT nor the RDT simulations of Stretch et al. (2010), in which the nonlinear 

terms in the governing equations were neglected, can capture the vortex mode. The times 

over which the fluxes were integrated in computing the numerator in (2.1) differed between 
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our calculations and those of Stretch et al. (2010); while the theory allows fluxes to be 

integrated over the entire turbulent event, Stretch et al. (2010) used a finite integration time. 

However, at the high values of Gr which correspond to the simulations, RDT suggests that 

the fluxes are similar over a wide range of Sc (Figure 2.1). Therefore, if the integration time 

caused the differences at high Sc, it should also cause differences at low Sc.  The increasing 

differences between results from RDT and simulations as Sc increases suggests that 

inadequate resolution in the simulations might have caused spurious diffusion. However, 

because the neglect of nonlinear terms prevents a cascade from occurring and smaller scales 

from being generated, the simulations should remain well resolved if they are well resolved 

initially. 

Much of the difference between the predictions of RDT and results from experiments 

(Figure 2.3) is likely due to neglecting the nonlinear terms. Reynolds numbers based on the 

grid speed and mesh size were between 1,300 and 42,000 for all of the towed-grid 

experiments (Rehmann and Koseff, 2004); using the experiments of Yoon and Warhaft 

(1990) to estimate the relationships between the grid speed and TKE and between the mesh 

size and longitudinal integral length scale leads to Reynolds numbers 0q  on the order of 

65 to 2,100. The importance of inertia—or the effects of the nonlinear terms—is indicated by 

the collapse with Richardson number, which compares effects of buoyancy and inertia, 

evident in Figure 3 of Stretch et al. (2010) and the lack of collapse with Grashof number, 

which compares effects of buoyancy and viscosity, in Figure 2.3. Accounting for the effects 

of the neglected nonlinear terms, perhaps with the approach of Kevlahan and Hunt (1997), 

might improve the agreement between the theory and experiments.   

The efficiency predicted by RDT remained constant over a larger range of Gr than 

either measurements from laboratory experiments or results from numerical simulations 

(Figure 2.3). The Grashof number for the experiments is uncertain because of the relationship 

between the mesh size and the longitudinal integral length scale, though the estimates of Gr 

used to plot the data in Figure 2.3 are not likely to be off by two orders of magnitude. The 

Grashof number for the simulations of Stretch et al. (2010) corresponds exactly to the 

Grashof number in the theory because they used the same initial energy spectrum function. 
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Therefore, the quantitative discrepancy in the dependence on Gr may be caused by a physical 

process related to the neglect of the nonlinear interactions. 

Application to Limnology and Oceanography 

The RDT calculations support the suggestion from Stretch et al. (2010) that Schmidt 

number effects can cause differences between efficiencies from DNS and efficiencies from 

experiments which use values of Sc more appropriate for lakes and oceans. The maximum 

mixing efficiency for Sc = 0.5 using DNS was about 5 times larger than the maximum 

mixing efficiency in experiments with Sc = 700 (Stretch et al., 2010). The DNS and RDT 

simulations showed that the efficiency decreases with Sc, but our RDT calculations show that 

the decrease is even larger than suggested by Stretch et al. (2010). Applying results from 

simulations with low Sc to strongly stratified flows in lakes and oceans would likely 

overestimate the mean potential energy change. Furthermore, in flows with diffusively stable 

distributions of salt and temperature, the density ratio must also be considered.  

The asymptotic mixing efficiency ∞ provides a good estimate of the mixing 

efficiency for strongly stratified flows in lakes and oceans. As shown in the Results section, 

the efficiency is within about 1% of ∞ when Gr
2
Sc > 10

4
. For temperature-stratified flows, 

that condition corresponds to Gr > 40 or L > 6(/N)
1/2

, while for salt-stratified flows, it 

corresponds to Gr > 4 or  L > 2(/N)
1/2

. Many oceanic flows—such as flow in the 

thermocline, abyssal ocean, and bottom boundary layer on the continental shelf—have N > 

10
-3

 rad/s (Moum, 1997). Therefore, as long as L > 20 cm, the simple expression given by ∞ 

can be used to estimate the efficiency. Many flows observed in lakes and oceans have 

Grashof numbers large enough that the efficiency is approximately ∞ (Figure 2.6). While 

most of the flows in Figure 2.6 have temperature stratification with Gr > 40 or salt 

stratification with Gr > 4, the mixing efficiency of turbulence in the hypolimnion and 

thermoclines of lakes and ocean would depend on the Grashof number. Some caution should 

be used, however, because the comparison with DNS and laboratory experiments suggests 

that RDT underestimates the value of Gr at which the efficiency becomes constant. 

Many of the flows in Figure 2.6 have moderate stratification, or turbulent Froude 

numbers close to one. However, rapid distortion theory requires strong stratification, or Fr 

<< 1. Although some of the laboratory experiments and DNS have low Froude number, the  
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Figure 2.6: Turbulent Froude number and turbulent Reynolds number for DNS, laboratory 

experiments, and field measurements: +, towed grid experiments (Britter, 1985; Rehmann 

and Koseff, 2004; Rottman and Britter, 1986); ×, DNS (Stretch et al., 2010); ●, ocean 

thermocline (Yamazaki, 1990); ▲, inflow to stratified tidal channel (Gargett et al., 1984). 

Other sources: 
1
Imberger and Ivey (1991) and 

2
Stacey et al. (1999). The dashed line indicates 

the range of parameters for measurements in the thermocline of a lake (Saggio and Imberger, 

2001), and the dotted lines show contours of Grashof number.
10

 

high Froude numbers in others indicate the importance of inertia and help to explain the 

differences between RDT and observations (see previous section). The low Froude number 

for thermals either falling in weak stratification or impinging on a thermocline (Imberger and 

Ivey, 1991) may be suitable for RDT, but the large Reynolds numbers might decrease its 

accuracy. While most of the measurements of Saggio and Imberger (2001) in the thermocline 

of Lake Kinneret have Fr ≈ 1, some fall in the range of parameters most suitable for RDT. 

Similar observations apply to flow in a strongly stratified estuary (Etemad-Shahidi and 

Imberger, 2002) and flow in an estuarine embayment (Stevens, 2003). Applying RDT to a 

larger range of flows would require including the effects of the neglected nonlinear terms.  

                                                 
10

 Matlab code used to generate figure: RfPaperPlot2.m 
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Conclusions 

Rapid distortion theory was used to compute mixing efficiencies for an unsheared 

homogeneous flow stratified by one or two active scalars. For a flow stratified by one scalar, 

mixing efficiencies increase with Gr up to a maximum value and they decrease as Sc 

increases. Rapid distortion theory predicts maximum mixing efficiencies of approximately 

30% for low Sc, similar to results from DNS (Stretch et al., 2010), while maximum 

efficiencies of 6% for heated water are similar to those in laboratory experiments (Rehmann 

and Koseff, 2004). However, RDT underpredicts the maximum efficiency for saltwater and 

also the value of Gr at which the efficiency becomes constant. For flow stratified by two 

scalars, the mixing efficiency decreases as Rρ decreases, as in experiments and semi-

empirical models (Jackson and Rehmann, 2003a; Martin and Rehmann, 2006). Predictions 

agree with results from experiments best at higher Rρ, while they fall below the measured 

mixing efficiencies at low Rρ, when more of the density gradient is due to salinity. Although 

RDT is restricted to strongly stratified flows, it complements numerical simulations by 

allowing mixing efficiencies to be evaluated over a much larger range of Schmidt numbers 

and shows that results from DNS should be treated with caution when applied to lakes and 

oceans. Extending RDT to include nonlinear interactions should improve the agreement 

between the theory and observations and increase the usefulness of the theory.   
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CHAPTER 3: NONLINEAR INTERACTIONS IN STRATIFIED TURBULENCE 

Introduction 

Flows existing in the natural environment can exhibit a wide variety of different 

characteristics – from the permanent, weakly stratified conditions of Lake Baikal in Russia 

that result in weak mixing (Ravens et al., 2000) to the more stratified, energetic tidal channel 

in British Columbia where a significant amount of mixing takes place (Gargett and Moum, 

1995). Regardless, it is not physically possible to obtain field measurements for each and 

every scenario and as a result models become a valuable tool to predict behaviors in turbulent 

flows. However, the stratified conditions present in many environmental flows lie 

somewhere in between the two extreme cases of strong or weak stratification. Established 

models exist for weakly stratified flows and also for strongly stratified flows, but it is 

expected that their predictions become less accurate as the flow becomes more moderately 

stratified. Here we investigate modifications to the existing rapid distortion theory (RDT) 

model to improve its use for flows that have more moderate stratification.  

One way the degree of stratification can be quantified is through the Froude number 

Fr. Imberger and Ivey (1991) obtained field measurements from a variety of flow regimes 

seen in lakes (their Figure 3) and a wide range of Fr can be seen. While both large values 

(i.e., Fr > 1, weak stratification) and small values (i.e., Fr < 1, strong stratification) of Fr 

exist, many flows lie somewhere around Fr ≈ 1, indicating a more moderate level of 

stratification. In general, eddy diffusivity and two-equation models are commonly used for 

weakly stratified turbulence and RDT is used when strong stratification is present (Figure 

3.1). If RDT could be extended to better model more moderately stratified flows, its 

applicability for use in environmental flows would be greatly improved.  
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Figure 3.1: Commonly used turbulence models for given stratification conditions.
11

 

In the turbulence models commonly used for weakly stratified flows, the Reynolds 

stress 
m nu u   present in the Reynolds-averaged conservation of momentum equation is 

related to a new parameter called the turbulent eddy viscosity νt through a gradient-transport 

approximation (e.g., 1 3 1 3tu u u x     ) where primes denote fluctuating velocity 

components and the overbar indicates an ensemble average. This parameter is similar to the 

molecular viscosity of a fluid, but represents the turbulent nature of the flow and often holds 

a numerical value several orders of magnitude larger (Kundu and Cohen, 2008). In general, 

the eddy viscosity is composed of a velocity scale uλ and length scale λ representative of the 

largest, energy containing eddies (i.e., t u  ). The eddy viscosity model simply specifies 

this value, whereas two-equation models go one step further by specifying an equation to 

solve for each term. Fundamentally, the concept of an eddy viscosity is physically flawed 

because the viscosity is treated as a property of the flow not of the fluid (Tennekes and 

Lumley, 1972), but nonetheless two-equation models have been shown to accurately predict 

geophysical flows (Mellor and Yamada, 1982). Also, both of these models require the 

unphysical situation of a negative diffusivity to get an upgradient flux and, as a result, cannot 

predict the restratification process that occurs in stratified flows. 

Stratification can be found in water bodies such as oceans and lakes where density 

gradients are due to active scalars like salt, heat, or a combination of both. In this type of 

flow regime there are two time scales of interest, the mean flow time (
1meanT N ) and 

                                                 
11

 Figure location: ModelDiagram.pptx 
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turbulence time ( / turbT u ), where N is the buoyancy frequency. Flows can be described 

as more strongly stratified when the ratio of these two time scales is large: 

1/21
1




  turb

mean

T N
Ri

T u Fr
 (3.1) 

where Ri is the Richardson number. As Ri increases, turbulence is suppressed along with the 

vertical transport of the active scalars (Kundu and Cohen, 2008). Rapid distortion theory can 

be used for strongly stratified flows in weak turbulence, and it can predict restratification 

(Jackson et al., 2005). The main assumption in RDT is that in strongly stratified flows an 

eddy is rapidly distorted by gravity before it has time to completely turn over or, in other 

words, the mean flow time is much shorter than the turbulence time scale and the nonlinear 

terms are neglected. As a result, an energy cascade does not develop and nonlinear 

interactions between eddies are not considered. 

The governing equations for RDT originate from the conservation of mass, 

momentum, and buoyancy. The conservation equations are developed for the fluctuating 

quantities and are also linearized whereby the nonlinear terms (i.e., products of fluctuating 

terms) are neglected in order to reach closure. Negligible mean flow is also assumed. In 

Fourier representation, the governing equations are 

3 2

32

ˆ
ˆ ˆj j

j j

du k k
b k u

dt k
 

 
   
 

 , (3.2) 

2 2

3

ˆ
ˆˆ

db
N u Dk b

dt
    (3.3) 

where hats denote the Fourier amplitude of the buoyancy and velocity ju . The subscript j can 

hold the value of 1, 2, or 3 and indicates the directions x, y, and z, respectively. The above 

equations are also a function of time t, the wavenumber k, kinematic viscosity ν, and 

molecular diffusivity D, and they also include the Kronecker delta 3j  which is equal to one 

when j = 3 and zero when j ≠ 3. Hanazaki and Hunt (1996) provide an analytical solution 

based on (3.2) and (3.3) that will be used in this work. 

Turbulence is thought to be dominated by buoyancy forces at the large scale and 

dissipative, nonlinear processes at small scales (Lienhard and Van Atta, 1990, hereinafter 
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LVA; Kevlahan and Hunt, 1997, hereinafter KH). While many researchers acknowledge that 

nonlinear interactions can influence turbulence (Galmiche and Hunt, 2002; Liechtenstein et 

al., 2005), actually providing a quantitative expression for these neglected terms presents a 

significant theoretical, conceptual, and mathematical challenge. Isaza and Collins (2009) 

compared RDT and direct numerical simulations (DNS) for homogeneous shear flow and 

concluded that including a model for one of the nonlinear terms would improve the 

applicability of RDT at long times. The nonlinear term is composed of a random (i.e., 

stochastic) stirring term and a dampening term (Cambon and Scott, 1999), or in the case of 

strained flow, a ‘slow’ term which refers to nonlinear contributions at long times (Cambon 

and Scott, 1999; Isaza and Collins, 2009). Several stochastic closure models such as direct 

interaction approximation (DIA), Lagrangian history direct interaction (LHDI), eddy damped 

quasi-normal Markovian (EDQNM), or the test field model (TFM) attempt to resolve the 

nonlinearity instead of just completely neglecting the term, but these models are cumbersome 

and not frequently used (Graebel, 2007; Chapter 10). Some examples of stochastic model 

applications include work by Herring and Kerr (1993) to compare DNS to DIA and TFM in 

an attempt to better understand turbulence structure, Gotoh et al. (1993) who used DNS and 

DIA to compute turbulent diffusion for homogeneous, isotropic turbulence, and Cambon et 

al. (1997) who used EDQNM to evaluate nonlinear effects in homogenous rotating 

turbulence. Stochastic closure models like EDQNM use various applications of Green’s 

functions which describe the time evolution of turbulence (Cambon and Scott, 1999). 

Although these models are closed, there are several shortcomings: they do not capture the 

intermittency of turbulence, nonlinearities are overestimated, and turbulent structures (e.g., 

sheets, filaments, etc.) are not predicted (Frisch, 1995; Chapter 9). Other closure models, 

including renormalization group (RNG) analysis (Frisch, 1995; Chapter 9) and nonlinear 

mapping of fields (Kraichnan, 1991), are thought to potentially provide insight to the energy 

cascade and intermittency questions, respectively. One of the simplest closure models for 

turbulence represents the nonlinear term by an eddy viscosity. Use of an eddy viscosity to 

close RDT has been shown to predict kinetic energy variations in rotating sheared flow that 

agree with large eddy simulations (Cambon and Scott, 1999), but no application to stratified 

flows has been identified. Given this history of closure models, the work by KH takes on a 



26 

 

 

 

different perspective in that they provide an analytical expression for the nonlinear terms 

neglected from RDT.  

The research completed by KH works to gain a better understanding of the inherent 

limitations of RDT in its linear form for turbulence with strong irrotational straining. 

Through the addition of mathematical expressions for nonlinear terms to the linear RDT 

equations, KH discuss time scales for which RDT is valid and consequently when nonlinear 

interactions become important. Several scenarios were analyzed to provide more precise time 

frame definitions of when RDT is valid including the inviscid range, and more specifically 

possible contributions from ‘local’ and ‘global’ nonlinear sources, and the viscous range. 

Local nonlinear sources are described by the wavespace range from zero to some arbitrary 

transition value ζ and global contributions make up the remaining wavespace range from ζ to 

infinity (KH). The transition value lies between e
-Γt

 and one, where Γ is the strain rate. 

Further evaluation yields that the fastest growing nonlinear terms are those associated with 

advection (KH). Usage of the nonlinear expressions developed by KH for purposes of 

actually evaluating turbulence was not found. Several publications citing KH pertained 

specifically to strained flows and used the work by KH to confirm that the use of linear RDT 

was valid (Ayyalasomayajula and Warhaft, 2006; Godeferd et al., 2001; Teixeira, 2011). 

Other citations of KH reference their conclusion that straining motion prevents the formation 

of nonlinear motions and produces sheet-like turbulence structures rather than tube-like ones 

(Brethouwer et al., 2003; Elsinga and Marusic, 2010; Hunt et al., 2001). 

We use a numerical model for unsheared homogeneous turbulence in a stratified fluid 

and compare the results to experimental data from thermally stratified wind tunnel 

experiments. Initial investigations of RDT modifications and extensions using eddy 

diffusivity and two-equation model techniques are discussed in the Initial Investigations 

section. Mathematical expressions, using an approach similar to KH, for nonlinear terms 

relevant to stratified flows are derived and a model system of equations are developed and 

evaluated in the next section. To conclude, a summary of the main findings and 

recommendations for future work will be presented.  
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Initial Investigations 

Wind tunnel experiments completed by LVA and Yoon and Warhaft (1990, 

hereinafter YW) provide valuable documentation of turbulence measurements for thermally 

stratified flows. These experiments were completed for a series of different levels of 

stratification (i.e., series of different Fr values) and measurements were recorded at various 

stations throughout the wind tunnel. While several experiments have been completed in salt 

stratified water (Schmidt number Sc = 700), detailed measurements are easier to obtain for 

heated air (Sc = 0.7). Air tunnel experiments can reach larger temperature gradients (YW) 

and result in a steadier temperature profile (LVA). Because temperature in air has a larger 

molecular diffusivity than salt in water, the scalar field can be resolved more accurately and 

restratification is more clearly seen (LVA). The presence of a grid used to generate the 

turbulence inherently creates internal waves; however, wind tunnels can be designed to 

prevent this phenomenon (LVA).  Both LVA and YW were able to show quantitatively that 

no internal waves were present by evaluating phase measurements between the vertical 

velocity and temperature.  

Even though experiments completed by LVA and YW are both described as strongly 

stratified flows, differences exist between them (Figure 3.2). Both had approximately the 

same Reynolds number Re range, but the LVA experiments were completed at lower Fr (i.e., 

stronger stratification), where U is the mean velocity of the air flow and M is size of the mesh 

grid, respectively, used to generate the turbulence in the experiments. As a result of the 

stronger stratification in LVA experiments, buoyancy began to affect the turbulence much 

closer to the grid used to generate the turbulence (YW). In addition, the LVA experiments 

had higher initial temperature fluctuations than those completed by YW resulting in 

differences between the initial conditions. Stratified flows are highly sensitive to initial 

conditions (see Appendix B) and this difference is thought to be the reason why no 

upgradient fluxes appear in the LVA data even though they are actually more strongly 

stratified (YW). Experiments completed by YW span a wider range of stratification levels, 

from completely unstratified (i.e., the passive case) to a level slightly below that investigated 

by LVA, and therefore capture a more moderate degree of stratification. An upgradient flux 

appears for only the strongest degree of stratification evaluated by YW, as would be expected  
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Figure 3.2: Characteristics of YW (■) and LVA (●) experiments for Sc = 0.7.
12

 

when there are minimal initial temperature fluctuations. Regardless of the stratification 

strength, fluxes align up until a certain point before either restratifying or remaining 

downgradient (YW). YW acknowledge this behavior but do not draw any conclusions about 

what parameter or mechanism may cause an upgradient flux to occur or not. 

Investigations into the behavior of stratified flows have also been completed using 

another approach. Gerz and Yamazaki (1993) used DNS to evaluate turbulence generated 

from temperature differences, similar to what is seen in the ocean thermocline.  The 

simulations were completed for low Sc at Re ≈ 60 over a range of stratification numbers. The 

stratification number is related to the density gradient and used to describe the flow regime: 

When stratification numbers are greater than one turbulence is present and nonlinear 

interactions are considered to be small, whereas for stratification numbers less than one the 

flow is dominated by nonlinear interactions which cause large decay of the vertical heat flux 

over time (Gerz and Yamazaki, 1993). The vertical flux correlation coefficient curves 

presented by Gerz and Yamazaki (1993) show the oscillating pattern between mixing and 

restratification that occurs in stratified flows and also the decay of turbulence over time (their 

Figure 8). 

                                                 
12

 Figure location: Experimental Data Comparison.xlsx 
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To begin, we focus on the experiments of LVA and YW and compare the results to 

the original RDT model with nonlinear terms neglected (Figure 3.3). Three dimensionless 

parameters are required for input to RDT to generate vertical flux correlation coefficient 

curves: the Grashof number Gr which is a ratio of the buoyant to viscous forces, r which is 

the ratio of initial potential energy PE0 to initial kinetic energy KE0, and Sc. The vertical flux 

correlation coefficient Rρw, which describes the correlation between the vertical velocity 

fluctuation and the density fluctuation, oscillates and decays over dimensionless time τ, 

similar to behavior shown by Gerz and Yamazaki (1993). The magnitude and period length 

of the correlation curve produced by RDT agree quite well with the most strongly stratified 

YW dataset (Fr = 84.8) with exception of the peak timing. When using the same RDT model 

and comparing to the LVA data there is agreement at early times, but shortly thereafter both 

the peak timing and magnitude begin to differ. This lack of agreement could possibly be due 

to differences between model and experiment initial conditions. One goal of the extended 

model is to predict the lack of upgradient fluxes at large times (i.e., peak vertical flux 

correlation coefficient magnitude of approximately zero), as this particular behavior is 

represented in both experiments. Another goal of the extended model is to understand what 

parameter influences the period so better peak timing can be reached at larger times since the 

timing of the second peak is different for both data sets. 
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Figure 3.3: Comparison of RDT to experimental results: (a) YW (▲, Fr = 84.8; ●, Fr = 114; 

+, Fr = 127) to RDT (–, Gr = 1.25, r = 1.35 and Sc = 0.7) and (b) LVA (○, Fr = 17.1; □, Fr = 

21.8; ◊, Fr = 32.4) to RDT (–, Gr = 2.25 and r = 1.26 and Sc = 0.7).
 13
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 Matlab code used to generate figure: (a) hhanalytical.m (b) lva.m 
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Several unsuccessful extensions to RDT were made in an attempt to better reflect the 

experimental data. The attempts here make comparisons to the LVA experimental data 

primarily due to its availability. More detailed explanations regarding the different extension 

attempts and figures comparing the attempted models and experimental data can be found in 

Appendix B. 

 Modification of RDT input parameters 

For a given Schmidt number two additional parameters are required to be input to the 

RDT model: the Grashof number and the initial energy ratio. Various combinations of 

these parameters were investigated and the approximate magnitude and timing of either 

the first or second peak of the correlation coefficient curve could be predicted, but not 

both simultaneously. 

 Varying turbulent eddy diffusivity 

An equation relating the turbulent eddy diffusivity DT and time was established using 

LVA data. The relationship was then used to redefine the Gr input into the RDT model. 

Use of a varying diffusivity moves the correlation coefficient curve vertically to align 

better at earlier times, but does not reflect LVA data at long times where both peak 

timing and magnitude discrepancies exist. 

 Diffusivity simulations 

In an attempt to account for variations in the turbulent eddy diffusivity that may be a 

function of both the wavenumber and time, a new vertical density flux was computed 

numerically for each time step of the RDT model. Then, this unique value of the vertical 

density flux was then used to calculate a new turbulent eddy diffusivity for each time 

step. Predictions using this approach more closely match the original RDT solution for 

early times than the LVA data and results in a worse prediction of the correlation 

coefficient curve at large times.    

 k-ε model 

Moving away from RDT, briefly, the vertical density flux plotted as a function of time 

was predicted using the k-ε model (where k in this case stands for the turbulent kinetic 

energy, not wavenumber) and compared to LVA data. The magnitude of both curves lie 
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within the same general range and the overall decreasing trend of the data is similar, but 

the k-ε model does not accurately represent the trend of the measured data points.   

 Diffusivity simulations with k-ε model 

Combining the strategy of the diffusivity simulation with the k-ε model, a simulation is 

performed where the turbulent eddy viscosity (and ultimately the turbulent eddy 

diffusivity through use of Sc) is determined by multiplication of a length scale and a 

velocity scale. Again, this output more closely matches the trend of the original RDT and 

still does not reflect LVA data at large times. 

Given the approaches tried thus far, none of them reflect the observed behavior of the 

vertical flux correlation coefficient curve after approximately τ = 1.5 and in fact, many 

predict magnitude differences greater than that of the original RDT model. In order to more 

appropriately reflect a moderately stratified flow, the correlation coefficient curve would 

need to have a longer period and faster decay (i.e., smaller amplitude at larger times) which 

would result in better alignment with the peak timing of measured data for this condition. In 

stratified turbulence, dissipative effects become important at smaller scales which correspond 

to larger wavelengths (LVA). One aspect that we have not yet considered is accounting for 

non-local interactions between scales. At more moderate levels of stratification it is plausible 

that nonlinear effects become relevant at an earlier time, which may be why RDT has 

difficulty predicting the flux behavior for this type of flow.  

Addition of Nonlinear Term to RDT for Stratified Flow 

Instead of analyzing turbulence with strong irrotational straining, we attempt to apply 

the approach taken by KH to turbulence with strong stratification. KH begin with the 

equations of conservation of mass and conservation of vorticity and present Fourier 

representations of vorticity j  and velocity ju . Substitution of the Fourier representations 

into the conservation of vorticity equation yields an equation for the evolution of ˆ
j  with 

respect to time and is composed of both linear and nonlinear terms. This ‘new’ RDT equation 

is then made dimensionless and scaled for long-time solutions by assuming Γt >> 1. Under 

this assumption, the zeroth-order solution is reached by neglecting the nonlinear terms and 

applying an integrating factor. Continuing with the perturbation method, the first order 
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correction is made through the addition of the largest nonlinear terms. The nonlinear term is 

made up of several convolutions and only terms of the order te and larger are included. 

Computing the convolutions leads to expressions for the nonlinear terms.
14

 KH go on to 

evaluate the asymptotic behavior of the nonlinear integrals for turbulence scales in the 

inviscid range and discuss time frames of when the linear and nonlinear RDT solutions are 

valid for this flow. 

Our evaluation of stratified flows using RDT begins with equations for the 

conservation of mass, momentum, and buoyancy written in Einstein index notation where m 

and n are indices: 
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 (3.6) 

where primes ( ' ) denote fluctuating quantities of buoyancy and velocity. The mean flow 

velocity mU , as well as most other quantities in the above equations, vary with respect to the 

spatial coordinate xn where n =1, 2, 3 corresponds to the directions x, y, and z, respectively. 

The remaining terms include the density ρ, reference density 0 , pressure p, and the 

acceleration due to gravity g. Assuming there is negligible mean flow and that the turbulence 

is homogeneous, terms 2, 3, and 5 can be neglected from (3.5) and terms 2 and 5 neglected 

from (3.6). In the typical application of RDT, the momentum and buoyancy equations are 

linearized (i.e., term 4 in (3.5) and in (3.6) are neglected). However, since the purpose of this 

work is to evaluate the effect of nonlinear interactions they will remain. 

We must also consider the Poisson equation for the pressure fluctuation for future use 

in developing the Fourier coefficient equations: 

                                                 
14

 There appear to be a few discrepancies between the nonlinear terms presented in KH (1997) (their equations 

3.2a and 3.2b) and the set on nonlinear terms we arrived at using their approach. There are a couple of sign 

differences, a wavenumber vector that should be in shifted form from the convolution, and several terms of 

appropriate order that are not included. 
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where 3x indicates the vertical direction. The Poisson equation is obtained by applying 
m

x   

to the momentum equation (3.5) and using conservation of mass.  

The first step in obtaining the Fourier coefficient equations is to apply the Fourier 

transform,  

ˆ( , ) ( , ) iF t F t e d  
k

k x
x k k , (3.8) 

where i = 1 , to each term in the Poisson equation (3.7) , momentum (3.5), and buoyancy 

(3.6) equations. The Fourier transform converts an arbitrary fluctuating function F as a 

function of x, a vector that refers to a coordinate system that follows the mean flow, to a 

function of k, a wavenumber vector with three components:  

1 sin cosk k   , 2 sin sink k    and 3 cosk k  . (3.9) 

The corresponding directions and angles are shown in Figure 3.4 where θ is the angle 

between the wavenumber vector and the vertical and   lies in the horizontal plane. Recall 

that the dot product of the two vectors present in the exponent is equivalent to m mk x . 

 

 
Figure 3.4: Components of wavenumber vector.

15
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 Figure location: CoordSystemDiagram.pptx 
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After applying the Fourier transform to each term in the Poisson equation and 

simplifying though a series of steps, the following relationship is reached: 

3 3

2 2 2

ˆ ˆˆ ˆˆ ˆm j j mk u k uik b ik bp
P

k k k


     (3.10) 

where the convolution ( ) can be defined by the product of an arbitrary pair of functions F 

and G shifted across some range of wavenumbers 

( )( ) ( )( ) ( ) ( )F G k G F k F k G k k dk       . (3.11) 

Once the Fourier transform has been applied to each term in the momentum equation, 

the Poisson expression (3.10), which is a function of û , b̂ , and k, can be substituted into the 

momentum equation to eliminate the pressure term. Using similar techniques as those to 

simplify the Poisson equation, the resulting momentum and buoyancy equations are: 

23
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These equations are identical to the typical governing RDT equations (3.2) and (3.3) except 

for the presence of three additional terms resulting from the nonlinearity. The above 

equations are made dimensionless by 

0
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L
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where 0u  and L0 are the velocity and length scales of the largest eddies, κ is the 

dimensionless wavenumber, and t  is dimensionless eddy turnover time. These variables also 

combine to form more commonly recognized dimensionless parameters, namely the Froude 

number, Reynolds number, and Péclet number Pe: 

0u
Fr

NL
 , 0 0u L

Re


 and 0 0u L
Pe

D
 . (3.15) 

As in KH, we consider dimensionless time τ at long times since that is when nonlinear terms 

are anticipated to influence the turbulence evolution. We do this by setting 

0 0

0 0

tu NLt
Nt

Fr L u



   . (3.16) 
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After applying the above series of definitions (and dropping the prime notation), the 

dimensionless governing equations for RDT including the presence of nonlinear interactions 

are: 

3 2
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where the ˆ
jM  and B̂  expressions account for the nonlinear advection. The nonlinear terms 

have an appearance similar to that presented by KH (their equation (2.8)) in that a set of 

convolutions is present.  

The governing equations now need to be solved for the Fourier amplitudes ˆ
ju  and b̂ . 

We evaluate these equations first for a flow with Sc equal to 1 (i.e., ν = D and therefore, Re = 

Pe) at the first order O(1) whereby the nonlinear terms are initially neglected similar to the 

governing RDT equations presented in Hanazaki and Hunt (1996). In this case, the terms 

dependent on the buoyant and viscous forces (i.e., 
1Fr Re Gr ) can be removed by 

multiplying (3.17) and (3.18) by an integrating factor of exp ( 1 2 Gr ). If two new variables,

ˆ
jr  and ŝ , are defined by 

1 2

ˆ ˆ   Gr

j ju r e  , (3.21) 

1 2ˆ ˆ   Grb se   (3.22) 

then (3.17) and (3.18) become 
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Once ˆ
jr  and ŝ  are computed, then ˆ

ju  and b̂  can be determined from (3.21) and  

(3.22). A linear system of equations can be solved by trying solutions of the form 

ĵr e  , (3.25) 

ŝ e   (3.26) 

and in matrix form: 
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The system (3.27) has a non-zero solution only if  
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  (3.28) 

with four roots, or eigenvalues, of  = 0, 0, +iw and –iw where 

1/2
2

3

2
1w





 
  
 

 . (3.29) 

Thus, using the forms (3.25) and (3.26) combined with the trigonometric definitions 

cos( )
2

iw iwe e
w

 




  and sin( )
2

iw iwe e
w

i

 




  (3.30) 

the solution of equations for (3.23) and (3.24) is 

1 1 2 3
ˆ cos( ) sin( )r A A w A w    , (3.31) 

2 1 2 3
ˆ cos( ) sin( )r B B w B w    , (3.32) 

3 1 2 3
ˆ cos( ) sin( )r C C w C w    , (3.33) 

1 2 3
ˆ cos( ) sin( )s D D w D w    . (3.34) 

The coefficients, or eigenvectors Aj, Bj, Cj, and Dj,  in the above equations can be 

determined by relating them to each other by either substituting (3.31)–(3.34) to (3.23) and 

(3.24) or applying initial conditions (i.e., set 0  ) to (3.21) and (3.22). Equation (3.23) for j 

= 1 gives 
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1 3
2 32

1
A D

w

 


  , (3.35) 

1 3
3 22

1
A D

w

 


 , (3.36) 

1 0D  , (3.37) 

and (3.23) for j = 2 yields 

2 3
2 32

1
B D

w

 


  , (3.38) 

2 3
3 22

1
B D

w

 


 . (3.39) 

Equation (3.24) results in  

1 0C  , (3.40) 

2 3C wD , (3.41) 

3 2C wD . (3.42) 

Applying the initial conditions gives 

1 3
1 1 22 2

1
ˆ ( ,0)u A C

w

 



  , (3.43) 

2 3
2 1 22 2

1
ˆ ( ,0)u B C

w

 



  , (3.44) 

3 2
ˆ ( ,0)u C  , (3.45) 

2
ˆ( ,0)b D  . (3.46) 

Inserting the constants from (3.37)–(3.46) into the solution of equations (3.31)–(3.34) 

and then into the relationship defined by (3.21) and (3.22) the O(1) general solution for the 

Fourier coefficients is 

 
1 2

1 3
1 1 3 2 2

1 3

2

1
ˆ ˆ ˆ( , ) ( ,0) ( ,0) 1 cos( )

1ˆ                          ( ,0) sin( )

Gr

u e u u w
w

b w
w

   
    



 
 



 
  




 



, (3.47) 
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1 2

2 3
2 2 3 2 2

2 3

2

1
ˆ ˆ ˆ( , ) ( ,0) ( ,0) 1 cos( )

1ˆ                          ( ,0) sin( )

Gr

u e u u w
w

b w
w

   
    



 
 



 
  




 



, (3.48) 

1 2

3 3 cos sinˆˆ ˆ( ,0) ( ,0) ( ) ( ,0) ( )
Gr

u e u w b w w
 

    


  
 

, (3.49) 

1 2

3

1ˆ ˆˆ( ,0) ( ,0) sin( ) ( ,0)cos( )
Gr

b e u w b w
w

 

    
  

  
 

. (3.50) 

If there is no initial velocity field, then terms with 1̂( ,0)u  , 2
ˆ ( ,0)u  or 3

ˆ ( ,0)u   present will  

be neglected from (3.47)–(3.50). We will proceed under this assumption. 

Now that an O(1) solution has been obtained, the long-time behavior of the nonlinear 

terms can be evaluated. We will start with nonlinear term B̂  which corresponds to the 

buoyancy equation, see (3.20), and expand the repeated indices to  

1 1 2 2 3 3
ˆ ˆ ˆˆ ˆ ˆ ˆB i b u i b u i b u        . (3.51) 

The three individual terms that make up B̂  will be evaluated individually and be 

identified by 
1B̂ , 

2B̂ , and 
3B̂  where subscripts 1, 2, and 3 indicate the first, second, and third 

terms on the right hand side of (3.51). Each term is solved for by inserting the respective 

Fourier coefficient expressions from the O(1) solution, completing the convolution, and 

simplifying through use of the trigonometric identities. The components of B̂ are as follows, 

including evaluation over all wavespace per definition of the Fourier transform:  

    

1 2 1 22 ( )
2

3 2

1

0 0 0

1 1 3 3

2

1 ˆ ˆˆ ( ,0) ( ,0) sin
2

( )( ) 1
                             cos  

( )

                             sin ( ) sin ( )

Gr Gr

B i e b b e

w

w w w w d d d

    
 

    

   


 

    

    


   

  


 

         

  

,  (3.52) 

 

1 2 1 22 ( )
2

3 2

2

0 0 0

2 2 3 3

2

1 ˆ ˆˆ ( ,0) ( ,0) sin
2

( )( ) 1
                             sin                             

( )

                             sin ( )

Gr Gr

B i e b b e

w

w w

    
 

    

   


 



    


   

  


 

  

  

  sin ( )w w d d d        

 , (3.53) 
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1 2 1 22 ( )
2

3

3

0 0 0

1 ˆ ˆˆ ( ,0) ( ,0) sin 2
4

                            sin ( ) sin ( )

Gr Gr

B i e b b e w

w w w w d d d

    
 

    

    

    


     

         

  
  (3.54) 

where  

1/2
2

3

2
1 sinw






 
    

 
 , (3.55) 

1/2 1/2
2 2

3 3

2 2

( ) ( cos cos )
1 1

( ) ( )
w

     

   

      
       

    
. (3.56) 

and the prime and double prime notation distinguishes between the unshifted and shifted 

terms from the application of the convolution. Altogether, 

1 2 1 22 ( )
2

3

0 0 0

2 1 1 3 3

2

2
2 2 2 3 3

2

ˆ ˆˆ ( ,0) ( ,0)  

( )( )1
                       sin cos

2 ( )

( )( )
                       +sin sin - sin 2

( ) 2

Gr Gr

B ie b b e

w

w

    
 

   

   
 

 

   
  

 

    


  

   
  

 

    
  

 

  

                           sin ( ) sin ( ) .w w w w d d d             

 (3.57)  

Alternatively, if no initial buoyancy field is considered, then terms including ˆ( ,0)b 

will be neglected from the equations (3.47)–(3.50) and terms with 1̂( ,0)u  , 2
ˆ ( ,0)u  or 

3
ˆ ( ,0)u  will remain. For this case, the nonlinear term associated with the buoyancy equation 

will be of the form: 
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1 2 1 22 ( )
2

3

3

0 0 0

1 1 3 3
1 3 2 2

sin( )ˆ ˆ ( ,0) sin  

                       sin cos

( )( )1 cos( )
ˆ ˆ                             ( ,0) ( ,0)

( )

   

Gr Gr w
B ie u e

w

w
u u

w

    
 


  

 

   
   

 

    



 



 

   
     

  

  



2 2 3 3
2 3 2 2

3

                        +sin sin

( )( )1 cos( )
ˆ ˆ                             ( ,0) ( ,0)

( )

ˆ                           +cos ( ,0)cos( ) .

w
u u

w

u w d d d

 

   
   

 

      

 

   
     

  

     

 (3.58)  

Moving to the nonlinear term M̂ which appears in the momentum equation, see 

(3.19), we expand the repeated indices to generate a total of 12 convolutions: 





1 1 1 1 2 1 1 2 3 1 1 32

1 2 2 1 2 2 2 2 3 2 2 3

1 3 3 1 2 3 3 2 3 3 3 3

1 1 2 2 3 3

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆ ˆ ˆ                 

ˆ ˆ ˆ ˆ ˆ ˆ                 

ˆ ˆ ˆ ˆ ˆ ˆ                ( )

j

j

j j j

M i u u u u u u

u u u u u u

u u u u u u

i u u u u u u


     



     

     

  

      

     

    

     

  (3.59) 

The expansion of the nine terms inside the square brackets are labeled by the row and column 

position ( , )row columnM  and exclude the preceding quantity, 
2

ji  . The expansion of the three 

terms inside the curved brackets, terms 10, 11, and 12, respectively, for j = 1, 2, and 3 are 

labeled by term and corresponding value of j. These expansions have been placed below 

similar terms from within the square brackets. Furthermore, square brackets have been placed 

to separate quantities that are similar among all terms.
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1 2 1 22 ( )

22

1 1 3 33 2

(1,1) 2

0 0 0

sin 2 1ˆ ˆ( ,0) ( ,0) sin cos sin( )sin( )
2

Gr Gr

M e b b e w w d d d
w

    
     

          
 

    
    

          
  

    (3.60) 

 
  

 

1 2 1 22 ( )
2

1 1 3 33 2

10 2
1 0 0 0

sin 2 1ˆ ˆ( ,0) ( ,0) sin cos sin( )sin( )
2

Gr Gr

j

M e b b e w w d d d
w

    
     

          
 

    




   
          

  
    (3.61) 

   

 

1 2 1 22 ( )
2

1 1 2 2 3 33

(1,2) 2

0 0 0

sin 2 sin 2ˆ ˆ( ,0) ( ,0) sin
2 2

1
                    sin( )sin( )

Gr Gr

M e b b e

w w d d d
w

    
        

    
 

    

    
       

     
  

    


  
 (3.62) 

 
  

 

1 2 1 22 ( )
2

2 2 3 33

11 2
1 0 0 0

sin 2 sin 2 1ˆ ˆ( ,0) ( ,0) sin sin( )sin( )
2 2

Gr Gr

j

M e b b e w w d d d
w

    
      

         
 

    




    
          

  
    (3.63) 

 
1 2 1 22 ( )

2

3 2

(1,3) 1 1

0 0 0

sin 2 1ˆ ˆ( ,0) ( ,0) cos cos sin( )sin( )
2

Gr Gr

M e b b e w w w d d d
w

    
 


            

    


 
                

    (3.64) 

 

1 2 1 22 ( )
2

3 2

12
1 0 0 0

sin 2 1ˆ ˆ( ,0) ( ,0) cos cos sin( )sin( )
2

Gr Gr

j

M e b b e w w w d d d
w

    
 


          

    




 
              

    (3.65) 

   

 

1 2 1 22 ( )
2

1 1 2 2 3 33

(2,1) 2

0 0 0

sin 2 sin 2ˆ ˆ( ,0) ( ,0) sin
2 2

1
                              sin( )sin( )

Gr Gr

M e b b e

w w d d d
w

    
        

    
 

    

    
       

     
  

    


  
 (3.66) 

4
2
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1 2 1 22 ( )
2

1 1 3 33

10 2
2 0 0 0

sin 2 sin 2 1ˆ ˆ( ,0) ( ,0) sin sin( )sin( )
2 2

Gr Gr

j

M e b b e w w d d d
w

    
      

         
 

    




    
          

  
    (3.67) 

   

 

1 2 1 22 ( )

22

2 2 3 33 2

(2,2) 2

0 0 0

sin 2 1ˆ ˆ( ,0) ( ,0) sin sin sin( )sin( )
2

Gr Gr

M e b b e w w d d d
w

    
     

          
 

    
    

           
  

    (3.68) 

 
  

 

1 2 1 22 ( )
2

2 2 3 33 2

11 2
2 0 0 0

sin 2 1ˆ ˆ( ,0) ( ,0) sin sin sin( )sin( )
2

Gr Gr

j

M e b b e w w d d d
w

    
     

          
 

    




   
          

  
    (3.69) 

 
1 2 1 22 ( )

2

3 2

(2,3) 2 2

0 0 0

sin 2 1ˆ ˆ( ,0) ( ,0) cos sin sin( )sin( )
2

Gr Gr

M e b b e w w w d d d
w

    
 


            

    


 
                

    (3.70) 

 

1 2 1 22 ( )
2

3 2

12
2 0 0 0

sin 2 1ˆ ˆ( ,0) ( ,0) cos sin sin( )sin( )
2

Gr Gr

j

M e b b e w w w d d d
w

    
 


          

    




 
              

    (3.71) 

  

 

1 2 1 22 ( )

22

1 1 3 33 3

(3,1) 2

0 0 0

1ˆ ˆ( ,0) ( ,0) sin cos sin( )sin( )
Gr Gr

M e b b e w w d d d
w

    
     

          
 

    
    

           
  

    (3.72) 

 
  

 

1 2 1 22 ( )
2

1 1 3 33 3

10 2
3 0 0 0

1ˆ ˆ( ,0) ( ,0) sin cos sin( )sin( )
Gr Gr

j

M e b b e w w d d d
w

    
     

          
 

    




   
           

  
    (3.73) 

  

 

1 2 1 22 ( )

22

2 2 3 33 3

(3,2) 2

0 0 0

1ˆ ˆ( ,0) ( ,0) sin sin sin( )sin( )
Gr Gr

M e b b e w w d d d
w

    
     

          
 

    
    

           
  

    (3.74) 

 
  

 

1 2 1 22 ( )
2

2 2 3 33 3

11 2
3 0 0 0

1ˆ ˆ( ,0) ( ,0) sin sin sin( )sin( )
Gr Gr

j

M e b b e w w d d d
w

    
     

          
 

    




   
           

  
    (3.75) 

4
3
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1 2 1 22 ( )

2

3 2

(3,3) 3 3

0 0 0

sin 2 1ˆ ˆ( ,0) ( ,0) sin sin( )sin( )
2

Gr Gr

M e b b e w w w d d d
w

    
 


           

    


 
              

    (3.76) 

 

1 2 1 22 ( )
2

3 2

12
1 0 0 0

sin 2 1ˆ ˆ( ,0) ( ,0) sin sin( )sin( )
2

Gr Gr

j

M e b b e w w w d d d
w

    
 


         

    




 
             

    (3.77)

4
4
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The nonlinear terms, B̂ and M̂ , must be evaluated before the expressions can be 

inserted into (3.17) and (3.18).  The   integral, including the group of  m m  terms 

where wavenumber vector components from (3.9) have been inserted, can be solved directly 

and results in an expression dependent on   and  . For example, the first term inside the 

parentheses of (3.57) is: 

2

1 1 3 3

2

0

2

2

0

2

2

0

( )( )
cos

( )

( cos sin cos sin )( cos cos )
           cos

( )

( cos cos )
           cos ( cos sin cos sin )

( )

( co
           sin

d

d

d







   
 

 

         
 

 

   
       

 


 

  
 



     
 



 
     



  







2

s cos )

( )

  

 

 



  (3.78) 

A similar result is found for the second term inside the parentheses of (3.57) since the 

evaluation of 
2cos   and 

2sin  from 0 to 2π are equivalent.  

Using the method of stationary phase to evaluate the asymptotic behavior of the    

integral as τ → ∞, it is expected that the nonlinear terms will hold a form similar to 

 ( ) ( 4)sgn ( )( )

0

2
( ) ( ) ( )

( )

S Si G i Gi G

S

S

I F e d F e
G


     

   
 

  
   (3.79) 

where 
S    represents the stationary point (i.e., ( ) 0G    ), F and G are functions 

determined when forming the integrand from B̂ and M̂ , and the signum function (sgn) 

determines the sign of the exponential phase component (e.g., 4 ). Long-time behavior is 

of interest here because that is when nonlinear interactions are likely to influence the 

turbulence (Hanazaki and Hunt, 1996). The rationale behind the method of stationary phase 

is that contributions to the integral primarily come from the end points or from a ‘flat’ region 

near the stationary point of a function. Oscillations of the ( )G  function that occur between 

each of the end points and the stationary point will cancel out of the integral. KH also 

evaluated the asymptotic behavior for the nonlinear terms for strained flow, but the integrals 

were of a different form. 
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 The   integral, which involves various combinations of the initial velocity and 

buoyancy fields and convolution terms involving  and   , must be also be solved in order 

to complete the evaluation of the nonlinear terms. Initial conditions for isotropic turbulence 

will be generated using an approach similar to Rogallo (1981) where the initial conditions for 

the Fourier velocity are defined as: 

2 1 3
10 2 2 1/2

1 2

( )
ˆ

( )
u

  

  





 , (3.80) 

2 3 1
20 2 2 1/2

1 2

( )
ˆ

( )
u

  

  





 , (3.81) 

2 2 1/2

1 2
30

( )
û

  




   , (3.82) 

and 

1

1/2

2

( )
cos

4

iE k
e 



 
  
 

, (3.83) 

2

1/2

2

( )
sin

4

iE k
e 



 
  
 

.  (3.84) 

The specified energy spectrum function E(k) is shown in (2.9), γ1 and γ2 are the spatial phase 

distribution and   is the velocity component distribution. The distributions consist of 

random numbers between 0 and 2π (Rogallo, 1981). 

 Preliminary investigations to understand the influence of nonlinear terms were 

completed by numerically solving a model problem. The model system is representative of 

the form we anticipate to see once the nonlinear integrals are solved.
16

 The two model 

ordinary differential equations solved are  

2 * 1/2 sin( ) RtdW
A B PW M t Ct e

dt
         (3.85) 

* 1/2 sin( ) RtdB
W QB B t Ct e

dt
        (3.86) 

where these equations hold the same general form as (3.17) and (3.18), W and B represent the 

Fourier coefficients, and A, P and Q are coefficients related to the time scale, Grashof 

                                                 
16

 Matlab code developed for model problem is found in Appendix A. 
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number, and Schmidt number. The last term in each equation is the expected form of B̂ and 

M̂ where the parameters M
*
, B

*
, E, C, R, and ξ result from the nonlinear term approximation. 

Solving the set of ordinary differential equations in (3.85) and (3.86) for W and B, a 

comparison between extended and original (i.e., nonlinear terms neglected) RDT model 

equations can be made (Figure 3.5). Model operation was verified by evaluating a special 

case (e.g., E = 0) to ensure that predictions of the Fourier coefficients using the extended 

model agree with original RDT when no nonlinear terms were present (Figure 3.5a). The 

model values of P = 0.1 and Q = 0.01 correspond to Gr ≈ 10 and Sc ≈ 10, respectively. The 

influence of the nonlinear terms on the Fourier coefficient behavior is immediately seen 

through the introduction of arbitrary values for the nonlinear term parameters (Figure 3.5b). 

Further adjustment of the nonlinear terms through M
*
and B

*
, the relative frequency C, or the 

phase ξ results in amplitude and period changes to the Fourier coefficient curves (Figure 3.5c 

and Figure 3.5d). The signs present in front of the nonlinear terms also influence the 

behavior; when both signs are negative the curves shift to the left and the amplitude 

increases. However, when both signs are positive an increase in amplitude is still observed 

but the curves shift to the right. The +/- or -/+ combination in front of the nonlinear terms 

present in (3.85) and (3.86) resulted in significant amplitude changes, but no shift in the 

timing. Even though these variations in W and B do not provide a direct relationship to 

changes that may be seen in vertical flux correlation coefficient curves, it does imply that the 

addition of expressions for nonlinear terms has the ability to increase the decay of the Fourier 

coefficients, a prominent feature of moderately stratified flows seen in Figure 3.3. The 

presence of nonlinear terms also influences the turbulent parameter timing, specifically an 

increase in the period is observed.  
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Figure 3.5: Comparison of Fourier coefficient behavior between extended RDT (○ = W and ○ = B) and original RDT (― = W and 

― = B) with various parameter changes for A = 0.1, P = 0.1 and Q = 0.01: (a) E = 0, curves match; (b) M
*
 = B

* 
= 1, E = 0.1, C = R 

= 1, ξ = π/4; (c) M
*
 = B

* 
= 2, E = 0.1, C = 0.5, ξ = π/4, R = 1; (d) M

*
 = B

* 
= 2, E = 0.1, C = 0.5, ξ = π/2, R = 1.

17

                                                 
17

 Matlab code used to generate figure: RDTExModel.m 
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Conclusions 

Several attempts at modifying RDT from its original form to were made to better 

reflect moderately stratified flows. None of the initial attempts of RDT parameter 

modification, simulations, or extensions using other turbulence models were able to predict 

the peak timing or magnitude of the vertical flux at large times, which is when nonlinear 

interactions are expected to be more relevant in stratified flows. However, there are inherent 

challenges, although more mathematical in nature, of incorporating nonlinear terms into the 

governing RDT equations using an approach similar to KH. 

Evaluation of the model RDT equations implies that the addition of some form of a 

nonlinear term to each of the differential equations has the ability to influence the timing and 

magnitude of the fluxes. However, more insight into the exact form of the nonlinear term 

integrals is necessary. The stationary points would need to be determined for each of the 

different   integrals and method of stationary phase applied. Special care will need to be 

taken when imaginary numbers are present, as the stationary points may differ or 

contribution to the integral may come from other sources. The approach by Rogallo (1981) 

will need to be applied to generate initial conditions for the velocity field. In addition, an 

expression for the initial density field 0b̂  will need to be developed so that Rogallo’s 

approach can be applied. This should then result in one integrand, combined with the results 

from the stationary phase approximation, to be evaluated in terms of  .   

Once the nonlinear term integrals are evaluated, the O(Fr) ordinary differential 

equations can be solved analytically to get Fourier coefficients, 
(1)

3û  and 
(1)b̂ . From there, the 

cospectrum of vertical velocity and buoyancy can be constructed using the definition 

provided by Hanazaki and Hunt (1996): 

 * *1
3 3 32

ˆ ˆˆ ˆ( , )bE t bu b u κ   (3.87) 

where 
(0) (1)ˆ ˆ ˆb b Frb  and 

(0) (1)

3 3 3
ˆ ˆ ˆu u Fru  . The spectrum can then be integrated over all 

wavespace to obtain the fluxes and plotted at a function of time. Similarly, the extended RDT 

equations could also be solved numerically by developing differential equations and initial 
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conditions for the spectra and then integrated to get fluxes. Results can be compared to the 

DNS results by Gerz and Yamazaki (1993), and the experimental results by LVA and YW. 

 Extension of RDT through the addition of the normally neglected nonlinear terms will 

work to increase the applicability of this turbulence model to flows commonly seen in the 

environment. Nonlinear interactions influence the behavior of turbulent flows in terms of the 

amount of mass transferred and when restratification will occur. While other approaches are 

used to incorporate nonlinear interactions, such as the simpler eddy viscosity model to the 

more complicated stochastic modeling approaches, development of an analytical solution is 

desired for investigating behaviors and ease of use. 

 

  



51 

 

 

 

CHAPTER 4: GENERAL CONCLUSIONS 

Summary 

Understanding the behavior of turbulence in stratified flows is necessary for 

evaluation of the mixing and transport that occurs in lakes, oceans, and other geophysical 

flows. Rapid distortion theory (RDT) was used to obtain analytical expressions for vertical 

fluxes that were then used to determine the mixing efficiency for cases of one and two active 

scalars. The mixing efficiency η varied as a function of the Grashof number Gr, which 

measures the importance of buoyancy and viscosity, the Schmidt number Sc, which varies 

over three orders of magnitude from heated air to saltwater, and the density ratio Rρ, which 

compares the density changed caused by temperature and the density change caused by 

salinity in the case of two active scalars.  

Nonlinear interactions can potentially influence not only the mixing efficiency, but 

also the behavior of turbulence in general. Nonlinear interactions are accounted for in 

turbulence models in various ways or neglected, as in standard RDT. An approach similar to 

Kevlahan and Hunt (1997) was used to develop quantitative expressions for the nonlinear 

terms neglected from RDT. Predictions from a model system based on the expected 

asymptotic form of the nonlinear terms show that these terms do influence turbulence 

behavior. 

Significant Findings 

The research pertaining to mixing efficiency evaluation and extension of RDT to more 

moderately stratified flows resulted in several important contributions: 

 An analytical solution for the vertical density flux was derived for the two scalar case of 

salt and heat.  

 Results for the one scalar case show that when Gr is large, η decreases as Sc increases 

and that the mixing efficiency increases with Gr up to a maximum value, as in laboratory 

experiments and numerical simulations.  

 The maximum mixing efficiency of approximately 30% for low Sc is consistent with 

values from simulations, and the maximum efficiency of 6% for heated water is 
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consistent with laboratory measurements. However, RDT underpredicts the maximum 

efficiency for saltwater and the value of Gr at which the efficiency decreases. 

 For two active scalars, RDT predicts similar behavior as that for one scalar, and the 

efficiency decreases as Rρ decreases.  

 Initial attempts to extend RDT to moderately stratified flows through parameter 

modification, simulations, or extensions using other turbulence models were not able to 

predict the peak timing or lack of upgradient flux at large times as observed in 

experiments. Parameter modification could predict the approximate magnitude and 

timing of either the first or second peak of the correlation curve, but not both 

simultaneously. Simulations primarily affected the magnitude of correlation coefficient 

with minimal impact to peak timing. 

 Expressions for the nonlinear terms typically neglected from RDT governing equations 

were derived using an approach similar to Kevlahan and Hunt (1997).  

 A model system including the addition of the expected form of the nonlinear terms was 

developed to gain insight into how nonlinear interactions influence the period and decay 

of turbulence parameters. 

Future Work 

Further research includes evaluation of the integrals present in the nonlinear terms 

added on to the governing RDT equations. Explicit nonlinear expressions should then replace 

the expected form used in the model system. The updated system of equations could then be 

solved both analytically, similar to the approach used in Chapter 3, or numerically. Once the 

system of equations is solved, fluxes could be compared to simulations (Gerz and Yamazaki, 

1993) and experiments (Lienhard and Van Atta, 1990; Yoon and Warhaft, 1990).  Comparing 

the fluxes generated using the extended and original RDT models could provide further 

insight into the vortex mode and timing of when nonlinear effects are seen. Additional 

investigations could be made to further increase the applicability of the extended RDT 

model: for example, to flows with Sc ≠ 1, flows where initial velocity and buoyancy fields 

are present, or to inhomogeneous turbulence. Furthermore, fluxes computed using the 

extended RDT model could be used to determine the mixing efficiency.  
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APPENDIX A: MATLAB FUNCTIONS 

This research required extensive use of MATLAB to compute results presented in 

Chapter 2. Below are the codes to compute and evaluate mixing efficiencies and the produce 

the corresponding figures. 

RDT – One Active Scalar Case 

% File name: RFlux.m          

% Purpose: Compute the Richardson Flux number analytically using Hanazaki 
% and Hunt (1996) equation for vertical density flux (Eqn. 4.22, Page 
% 314)and solving the time integration analytically. 

  
% Date Created: 11.9.12 
% Date Modified: 3.2.13 

  
function Rf = func_RFlux(Gri,Sc) 

  
%  Set constants 
r = 0;            % r = peke = 3*eta0 

  
ntheta   = 100; 
thetamin = 0.0001; 
thetamax = pi; 
theta    = linspace(thetamin,thetamax,ntheta);  

  
nk  = 400; 
k   = linspace(0.0001,14,nk); 

  
[K,THETA] = meshgrid(k,theta); 
 

% Energy spectrum function  
Ek  = (K.^4.*exp(-K.^2/2))/(3*(2*pi)^(1/2)); 

 

% Equation for mixing efficiency  
g   = 0.5*((1-2*r*Sc)/(1+Sc))*... 
      (Ek.*(sin(THETA)).^3)./((sin(THETA)).^2+(K.^4.*Gri^2)/Sc); 

 

% Numerical integration of equation for mixing efficiency  

Rf  = trapz(k,(trapz(theta,g))); 

 

 

% File name: Rfdriver.m 

 
% Clean up 
clear; close all 

  
% Set conditions 
Sc    = [0.1 0.5 1 2]'; 
%Sc   = [0.1 0.5 1 3 7 10 20 50 100 200 700]'; 
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nSc   = length(Sc); 

  
Gri   = logspace(-5,1); 
%Gri  = [0.1 0.01 0.001 0.0001]; 
nGri  = length(Gri); 

  
Rf = NaN*ones(nGri,nSc); 

  
for i = 1:nGri 
    for j = 1:nSc 
        Rf(i,j) = func_RFlux(Gri(i),Sc(j)); 
    end 
end 
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RDT – Two Active Scalar Case 

% File name: DDFlux.m 

% Purpose: Compute the Richardson Flux number analytically for the two 
% active scalar case (i.e., differential diffusion). 

  
% Date Created: 1.11.13 

  
function Rf = func_DDFlux(Gri, Rrho) 

  
% Set conditions 
ScT         = 7; 
ScS         = 700; 

  
ntheta      = 30;     %Number of points to discretize theta 
thetamin    = 0; 
thetamax    = pi; 
dtheta      = (thetamax)/(ntheta-1); 
theta       = thetamin:dtheta:thetamax; 

  
nk      = 20;     %Number of points to discretize k 
kmin    = 0.001; 
kmax    = 10; 
k       = linspace(kmin,kmax,nk);     

  
% Analytical solution for cubic roots, DLMF Section 1.11 
[THETA,K] = meshgrid(theta,k); 

  
a  = Gri*K.^2; 
aT = Gri*(ScT)^(-1)*K.^2; 
aS = Gri*(ScS)^(-1)*K.^2; 
b  = sin(THETA).^2; 
gT = -Rrho/(1+Rrho); 
gS = 1/(1+Rrho); 

  
z3 = 1; 
z2 = a + aT + aS; 
z1 = a.*aT + a.*aS + aT.*aS + b; 
z0 = a.*aS.*aT-(aS*gT - aT*gS).*b; 

  
p  = (3*z1-z2.^2)./3; 
q  = (2*z2.^3-9*z2.*z1+27*z0)./27; 

  
D1 = -4*p.^3-27*q.^2; 

  
A  = ((-27/2)*q+(3/2)*sqrt(-3*D1)).^(1/3); 
B  = -(3*p)./A; 

  
rho = (-1/2)+(1/2)*sqrt(-3); 

  
%These 3 sigma values are the eigenvalues for system of u3, uT, uS eqns. 
sig1 = (1/3)*(A+B)-(1/3)*z2; 
sig2 = (1/3)*(rho*A+rho^2*B)-(1/3)*z2; 
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sig3 = (1/3)*(rho^2*A+rho*B)-(1/3)*z2; 

  
% Information for eigenvectors (A1, A2, A3, B1, B2, B3, C1, C2, C3) 
GT = repmat(gT,nk,ntheta); 
GS = repmat(gS,nk,ntheta); 

  
f1 = GT./(sig1+aT);        g1 = GS./(sig1+aS); 
f2 = GT./(sig2+aT);        g2 = GS./(sig2+aS); 
f3 = GT./(sig3+aT);        g3 = GS./(sig3+aS); 

  
a33 = (f1.*g2-f2.*g1)./(f1.*g2-f1.*g3-f2.*g1+f2.*g3+f3.*g1-f3.*g2); 
a3T = (g1-g2)./(f1.*g2-f1.*g3-f2.*g1+f2.*g3+f3.*g1-f3.*g2); 
a3S = -(f1-f2)./(f1.*g2-f1.*g3-f2.*g1+f2.*g3+f3.*g1-f3.*g2); 
a23 = (-f1-(f3-f1).*a33)./(f2-f1); 
a2T = (1-(f3-f1).*a3T)./(f2-f1); 
a2S = ((f1-f3).*a3S)./(f2-f1); 
a13 = 1-a23-a33; 
a1T = -a2T-a3T; 
a1S = -a2S-a3S; 

  
b33 = f3.*a33; 
b3T = f3.*a3T; 
b3S = f3.*a3S; 
b23 = f2.*a23; 
b2T = f2.*a2T; 
b2S = f2.*a2S; 
b13 = f1.*a13; 
b1T = f1.*a1T; 
b1S = f1.*a1S; 

  
c33 = g3.*a33; 
c3T = g3.*a3T; 
c3S = g3.*a3S; 
c23 = g2.*a23; 
c2T = g2.*a2T; 
c2S = g2.*a2S; 
c13 = g1.*a13; 
c1T = g1.*a1T; 
c1S = g1.*a1S; 

  
% Initial conditions 
E330 = (K.^2.*exp(-0.5*K.^2).*(sin(THETA)).^2)/(12*pi*sqrt(2*pi)); 

  
% Equations for spectra - assuming no initial temperature or salinity 
% fluctuations  
s1c1 = sig1+conj(sig1); 
s1c2 = sig1+conj(sig2); 
s1c3 = sig1+conj(sig3); 
s2c1 = sig2+conj(sig1); 
s2c2 = sig2+conj(sig2); 
s2c3 = sig2+conj(sig3); 
s3c1 = sig3+conj(sig1); 
s3c2 = sig3+conj(sig2); 
s3c3 = sig3+conj(sig3); 
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% Plot flux as a function of time 
nt     = 100;               %  Number of times to report the values 
tend   = 10*pi;             %  End time of the simulation 
dt     = tend/(nt-1);       %  Time increment (dimensionless) 
tspans = 0:dt:tend;         %  Time span (dimensionless) 

  
FT3 = NaN*ones(nt,1); 
FS3 = NaN*ones(nt,1); 

 
for it = 1:nt 
    tspan = tspans(it); 
ET3 = 0.5*E330.*((a13.*conj(b13)+conj(a13).*b13).*exp(s1c1.*tspan)+... 
                (a13.*conj(b23)+conj(a23).*b13).*exp(s1c2.*tspan)+... 
                (a13.*conj(b33)+conj(a33).*b13).*exp(s1c3.*tspan)+... 
                (a23.*conj(b13)+conj(a13).*b23).*exp(s2c1.*tspan)+... 
                (a23.*conj(b23)+conj(a23).*b23).*exp(s2c2.*tspan)+... 
                (a23.*conj(b33)+conj(a33).*b23).*exp(s2c3.*tspan)+... 
                (a33.*conj(b13)+conj(a13).*b33).*exp(s3c1.*tspan)+... 
                (a33.*conj(b23)+conj(a23).*b33).*exp(s3c2.*tspan)+... 
                (a33.*conj(b33)+conj(a33).*b33).*exp(s3c3.*tspan)); 

             
ES3 = 0.5*E330.*((a13.*conj(c13)+conj(a13).*c13).*exp(s1c1.*tspan)+... 
                (a13.*conj(c23)+conj(a23).*c13).*exp(s1c2.*tspan)+... 
                (a13.*conj(c33)+conj(a33).*c13).*exp(s1c3.*tspan)+... 
                (a23.*conj(c13)+conj(a13).*c23).*exp(s2c1.*tspan)+... 
                (a23.*conj(c23)+conj(a23).*c23).*exp(s2c2.*tspan)+... 
                (a23.*conj(c33)+conj(a33).*c23).*exp(s2c3.*tspan)+... 
                (a33.*conj(c13)+conj(a13).*c33).*exp(s3c1.*tspan)+... 
                (a33.*conj(c23)+conj(a23).*c33).*exp(s3c2.*tspan)+... 
                (a33.*conj(c33)+conj(a33).*c33).*exp(s3c3.*tspan)); 

                    
FT3(it) = 2*pi*squeeze(trapz(theta, trapz(k, ET3.*K.^2).*sin(theta))); 
FS3(it) = 2*pi*squeeze(trapz(theta, trapz(k, ES3.*K.^2).*sin(theta))); 

  
end 

  
% Integrate spectra analytically with respect to time 
TET3 = 0.5*E330.*((a13.*conj(b13)+conj(a13).*b13).*(-1./s1c1)+... 
                (a13.*conj(b23)+conj(a23).*b13).*(-1./s1c2)+... 
                (a13.*conj(b33)+conj(a33).*b13).*(-1./s1c3)+... 
                (a23.*conj(b13)+conj(a13).*b23).*(-1./s2c1)+... 
                (a23.*conj(b23)+conj(a23).*b23).*(-1./s2c2)+... 
                (a23.*conj(b33)+conj(a33).*b23).*(-1./s2c3)+... 
                (a33.*conj(b13)+conj(a13).*b33).*(-1./s3c1)+... 
                (a33.*conj(b23)+conj(a23).*b33).*(-1./s3c2)+... 
                (a33.*conj(b33)+conj(a33).*b33).*(-1./s3c3)); 

  
TES3 = 0.5*E330.*((a13.*conj(c13)+conj(a13).*c13).*(-1./s1c1)+... 
                (a13.*conj(c23)+conj(a23).*c13).*(-1./s1c2)+... 
                (a13.*conj(c33)+conj(a33).*c13).*(-1./s1c3)+... 
                (a23.*conj(c13)+conj(a13).*c23).*(-1./s2c1)+... 
                (a23.*conj(c23)+conj(a23).*c23).*(-1./s2c2)+... 
                (a23.*conj(c33)+conj(a33).*c23).*(-1./s2c3)+... 
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                (a33.*conj(c13)+conj(a13).*c33).*(-1./s3c1)+... 
                (a33.*conj(c23)+conj(a23).*c33).*(-1./s3c2)+... 
                (a33.*conj(c33)+conj(a33).*c33).*(-1./s3c3)); 

  
% Integrate k and theta numerically 
FT = 2*pi*squeeze(trapz(theta, trapz(k, TET3.*K.^2).*sin(theta))); 
FS = 2*pi*squeeze(trapz(theta, trapz(k, TES3.*K.^2).*sin(theta))); 

  
%Compute mixing efficiency 
Rf = 2*(FS - FT); 

 

 

% DDFluxdriver 

  
% Clean up 
clear; close all 

 
% Set conditions 
Rrho   = [0.001 0.01 0.1 1]'; 
nRrho  = length(Rrho); 

  
Gri    = logspace(-5,1); 
%Gri   = [10 5 3 2 1 0.9 0.7 0.5 0.3 0.1 0.05 0.01 0.001 0.0001]; 
nGri   = length(Gri); 

  
Rf = NaN*ones(nGri,nRrho); 

  
for i = 1:nGri 
    for j = 1:nRrho 
        Rf(i,j) = func_DDFlux(Gri(i),Rrho(j)); 
    end 
end 
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Extended RDT Model System 

% File name: RDTExModel.m 
% Purpose: Solve system of RDT differential equations numerically with  
% expected form of nonlinear terms included. 

  
% Date created: 3.31.13 

  
% Clean up 
clear; close all 

    
% Set parameters 
a = 2; 
p = 1; 
q = 1; 
c = 1; 
r = 1; 
ep = 0.1;     %For special case, set ep=0, then 'standard' and 'extended'                  

cases match 
M1 = 4; 
B1 = 4; 
x = pi/4;     %Phase 

  
b0 = 1; 

    
% Set constants 
tend   = 6;             %  End time of the simulation 
w0     = [0,b0];        %  Initial conditions 

  
% Solve the ODE 
[t,w]  = ode45('RDTExModelEqn',[0.001 tend],w0,[],a,p,ep,M1,c,r,q,B1,x); 

    
% Plot w and b 

  
% Original RDT is the 'standard' RDT where nonlinear terms are not  
% considered, see Equationsystem.m. 
load RDTOrig 

  
figure (1);hold on 
plot(t,w(:,1),'k',t,w(:,2),'r') 
plot(t0,w0(:,1),'ko',t0,w0(:,2),'ro')      %Compare to 'standard' RDT  
xlabel('Time, t') 
ylabel('Fourier Coeffient') 
box on 

 

 

function dw= RDTExModelEqn( t,w,flag,a,p,ep,M1,c,r,q,B1,x) 

  
dw(1)=-a^2*w(2)-p*w(1)+t^(-1/2)*ep*M1*cos(c*t+x)*exp(-r*t); 
dw(2)=w(1)-q*w(2)-t^(-1/2)*ep*B1*cos(c*t+x)*exp(-r*t); 
dw=dw'; 

  
end 



60 

 

 

 

APPENDIX B: MODEL EXTENSION ATTEMPTS  

Explanations of the different extension attempts and figures comparing the attempted 

models and experimental data as part of the initial investigations are presented here. 

Modification of RDT Input Parameters 

There are three dimensionless inputs to rapid distortion theory (RDT): the Grashof 

number Gr, Schmidt number Sc, and the initial ratio of potential and kinetic energy r. The 

Grashof number is the ratio of buoyant to viscous forces and can be expressed in a variety of 

forms 

2
1/2NL Re

Gr ReRi
Fr

    (B.1) 

where N is the buoyancy frequency, L is proportional to the longitudinal integral length scale, 

and ν is the kinematic viscosity. The other dimensionless parameters include the Reynolds 

number Re, the Froude number Fr, and the Richardson number Ri. The Schmidt number 

describes the ratio of kinematic viscosity to molecular diffusivity of a fluid: for example, Sc 

= 0.7 for heated air, 7 for heated water, and 700 for saltwater.   

 The first, most basic, attempt to better replicate moderately stratified conditions using 

RDT was done through iterations of Gr and r combinations. Selection of the input values was 

based on observed parameter behavior (Figure B.1 and Figure B.2). For a constant value of r, 

as Gr increases the vertical flux correlation coefficient curve shifts upward with the most 

significant vertical differences seen at early times (Figure B.1a).  For larger Gr the turbulence 

decays faster (Figure B.1b) likely due to the increased kinematic viscosity (i.e., faster 

diffusion of momentum). 

For constant Gr, the amplitude decreases as r increases (Figure B.2a). Similar to 

Figure B.1a, the vertical flux correlation coefficient correlation curves dampen as time 

progresses as a result of decaying turbulence. The initial density fluctuations must sort 

themselves out through restratification. When the flow is fully turbulent at r = 0, the flux is 

initially downgradient, but as it increases the restratification reduces the downgradient flux to 

a point that it is eventually upgradient. Changes to the vertical fluxes are shown in Figure 

B.2b. 
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Figure B.1: Comparison of (a)
18

 vertical flux correlation coefficient curves and (b)
19

 vertical 

flux curves for varying Gr:  Gr = 0.01 (
…

), Gr = 0.2 (▬), and Gr = 1 (▬ ▬) for r = 1.35 and 

Sc = 0.7. 

                                                 
18

 Matlab code used to generate figure: compare_plot_1.m 
19

 Matlab code used to generate figure: compare_plot_2.m 
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Figure B.2: Comparison of (a)
20

 vertical flux correlation coefficient curves and (b)
21

 vertical 

flux curves for varying energy ratios: r = 0 (
…

), r = 1.35 (▬), r = 3 (▬ ▬), r = 4.5 (+), and  r 

= 9 ( –●–) for Gr = 1.25 and Sc = 0.7. 

                                                 
20

 Matlab code used to generate figure: compare_plot_3.m 
21

 Matlab code used to generate figure: compare_plot_4.m 
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None of the Gr and r combinations input to RDT were able to predict the peak timing 

and magnitude of the experimental data (Figure B.3). The various combinations could either 

match the first or second peak of the experimental data, but not both simultaneously. This 

could indicate that the turbulent parameter responsible for the behavior change depends on 

time.  

 

Figure B.3: Comparison of LVA (○, Fr = 17.1; □, Fr = 21.8; ◊, Fr = 32.4) experiments, 

RDT (–, Gr = 1 and r = 1.35), and RDT with modified parameters (
…

) (a) Gr = 2.25 and r = 

1.35; (b) Gr = 2.25 and r = 1.65; (c) Gr = 1 and r = 1.65; (d) Gr = 1and r = 3 at Sc = 0.7.
22

 

  

                                                 
22

 Matlab code used to generate figure: lva.m 
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Varying Turbulent Diffusivity 

Nonlinear interactions represented through a turbulent eddy diffusivity was 

incorporated into RDT where its value was recalculated at each time step of the numerical 

model allowing it to change as a function of time. The turbulent eddy diffusivity DT used 

here is defined as 

 3

3

T

g
u T

flux TD
dTgradient

dx




    (B.2) 

and can be computed at each time step using Lienhard and Van Atta (1990) data for N = 2.42 

s
-1

 (their Table 1).Variables in the turbulent diffusivity definition include the acceleration due 

to gravity g, temperature T, vertical velocity u3 in the vertical direction x3, and fluctuating 

temperature T'. The turbulent diffusivity decreases over time (Figure B.4) and can be 

represented by:  

7 3 6 2 5 52.41 10 3.48 10 1.58 10 2.3 10TD t t t            . (B.3) 

 

Figure B.4: Relationship between turbulent diffusivity and time: ○, LVA data and --, best fit 

line.
23

 

                                                 
23

 MATLAB code used to produce figure: FigB4.m 
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The diffusivity relationship in (B.3) is unique to this particular data set and was used 

to redefine the Gr and Sc inputs to the numerical RDT model. As a result, N and the length 

scale L must be specified. The length scale for use in the numerical model can be determined 

using longitudinal integral length scale information from Yoon and Warhaft (1990) in 

combination with Lienhard and Van Atta (1990) data. The integral length scale using 

velocity fluctuations in the horizontal direction Lu provided in Yoon and Warhaft (1990) is 

calculated as: 

 
3 3

1
2 3

(0.1678 )

0.373
0.25

0.0508

u

m su

L m s

M M m

     (B.4) 

where u1 is the root mean square horizontal velocity and ε is the energy dissipation at 

measuring station A** for mesh size M (see Lienhard and Van Atta (1990) Table 1). The  

length scale ratio in (B.4) corresponds to a distance ratio downstream of the grid x/M of 

approximately 5 (see Yoon and Warhaft (1990) Figure 7b) which in turn corresponds to a 

longitudinal integral scale Lf ratio (Lf/M) of approximately 0.25 (per Yoon and Warhaft 

(1990) notation, see Figure 7a). For a mesh size of 0.0508 m, Lf = 0.0127 m. Substituting this 

value into the length scale and longitudinal integral scale relationship, the length scale for use 

in the numerical model is 

1/2 1/2

0.0127m 0.01m
2 2

L
 

 

   
     
   

 .  (B.5) 

Use of a varying diffusivity in the RDT model moves the correlation curve vertically, 

but still does not reflect the experimental data at long times (Figure B.5). The diffusivity 

relationship (B.3) was also multiplied by a range of scaling factors and no better alignment 

was achieved. The same eddy diffusivity relationship is applied to all spectra and it could be 

possible that the eddy diffusivity varies over both wavenumber space and time.  
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Figure B.5: Comparison of vertical flux correlation curves using RDT with constant 

diffusivity (
__

, Gr = 1 and r = 1.35), RDT with varying diffusivity (
…

, Gr = 1, r = 1.35, N = 

2.42 rad/s and L = 0.01m), and LVA experiments (○, Fr = 17.1 and N = 2.42 rad/s) for Sc = 

0.7.
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 MATLAB code used to produce figure: varD.m 
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Diffusivity Simulation 

In an attempt to reflect variations in DT that may be due to the wavenumber k and 

time t, a new vertical density flux was computed for each time step and then used to calculate 

a new DT.  Figure B.6 shows the overall concept of this approach. 

The general definition of DT used for this simulation is similar to (B.2), but 

computation of the vertical density flux R34 is computed numerically based on the spectra 

given inputs of Gr, Sc, N,  and TKE: 

 3

3 0 34

3 3 0

TKE

4
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g
u

u Rflux
D

gradient Ng

x x


 






 
 

   
  

    

 (B.6) 

where 0 ,  , and   are the reference, background, and fluctuating densities, respectively, 

and TKE can be computed directly from Lienhard and Van Atta (1990) data.  

Results using the above approach are shown in Figure B.7. Unfortunately, output 

more closely matches the original RDT solution and Lienhard and Van Atta (1990) data. 

Near τ ≈  3 the diffusivity simulation was unable to meet integration tolerances (i.e., the 

abrupt termination of the correlation curve). This numerical error was not explored further 

since the solution does not appear to reflect the experimental data. 

 

Figure B.6: Flowchart showing overall strategy for turbulent diffusivity simulation model.
25
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 Figure location: RDT Flow Chart.pptx 
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Figure B.7: Comparison of vertical flux correlation curves using RDT with constant 

diffusivity (
__

, Gr = 1 and r = 1.35), RDT simulation with varying diffusivity (
…

,Gr = 1, r = 

1.35, L = 0.01m and TKE = 0.04 m
2
/s

2
), and LVA experiment (○, Fr = 17.1 and N = 2.42 

rad/s) for Sc = 0.7.
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 MATLAB code used to produce figure: DTsim.m 
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k-ε Model 

Since the varying diffusivity and diffusivity simulation did not improve the ability of 

RDT to reflect the experimental data, an approach using the k-ε model was tried.  For this 

turbulence model, the velocity and length components of the turbulent eddy viscosity νt are 

solved for through two quantities: k (meaning turbulent kinetic energy in this application, not 

wavenumber) and the rate of dissipation of turbulent kinetic energy, ε. Transport equations 

for each quantity are developed and solved instead of just simply specifying the term νt as in 

eddy viscosity models. The k-equation for steady flow can be written as 

0

t

t

dk g
U

dx z

 


 


 


 (B.7) 

where σt = 1 is a specified coefficient, 
3/ x   is the background density gradient, and both  

energy generation and divergence of turbulent flux terms have been neglected (Rodi, 1987). 

The ε-equation for steady flow can be written as 

2 2

1 3 2

t

N c kd
U c c c

dx k



  

 


    (B.8) 

where c1ε = 1.44, c2ε = 1.92, and c3ε = 0.2 are specified coefficients and cμ is the 

proportionality coefficient (Rodi, 1987). The divergence of dissipative flux and one of the 

energy generation terms are neglected from (B.8). The terms on the right side of represent the 

other energy generation term and a destruction term, respectively. 

Lienhard and Van Atta (1990) provide ample data for comparison to the k-ε model, 

whereas Yoon and Warhaft (1990) do not. Initial conditions for k and ε were taken to be at 

the first measuring station (i.e., Lienhard and Van Atta (1990) location A**) for the case of N 

= 2.42 rad/s and M = 5.08 centimeter (see Lienhard and Van Atta (1990) Table 1). Figure B.8 

shows a comparison of the numerical model and experimental data. It can be observed that 

the flux decays over time and that the magnitude range is similar for both curves, but the k-ε 

model does not accurately represent the trend of the measured data points. The observation of 

decreasing flux values makes physical sense because at early times both horizontal and 

vertical velocities will be large, but as time increase the vertical velocity becomes smaller (as 

the turbulence decays) and the horizontal velocity dominates.  
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Figure B.8: Comparison of vertical density flux using the k-ε model numerical solution (
__

) 

and LVA experiment (○, Fr = 17.1 and N = 2.42 rad/s).
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 MATLAB code used to produce figures: ke.m 
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Diffusivity Simulation with k-ε model 

Combining the strategy from the previous two attempts, a simulation is performed 

using an eddy viscosity similar to that for the k-ε model, where the viscosity is determined by 

multiplying a length scale and a velocity scale. This approach works to avoid the production 

of negative diffusivity values. Similar to the previous diffusivity simulation model, initial 

conditions and inputs must be specified. For each time step, new fluxes are calculated along 

with an energy spectra, length scale, and velocity scale where the eddy viscosity and 

diffusivity can then be determined for each wavenumber k and time step. Pardon the notation 

overlap between the wavenumber and the standard turbulent kinetic energy symbol in the k-ε 

model. Figure B.9 shows the overall concept of this approach. 

The length scale L3 is represented by the longitudinal length scale in the vertical 

direction 

3 3
3

333 3

(0) (0)

22

E E
L

Ru u

 
 

 
 (B.9) 

where E3 is the one dimensional energy spectra at time equal to zero and R33 vertical velocity 

flux (Pope, 2000).  The one dimensional energy spectra is represented by 

3 332sin  E E k dkd    (B.10) 

 

Figure B.9: Flowchart showing overall strategy for turbulent diffusivity simulation model 

using k-ε model approach.
28
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 Figure location: RDT Flow Chart.pptx 
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where E33 is the three dimensional energy spectra. Substitution of (B.10) into (B.9) yields the 

length scale component for the eddy viscosity. The velocity scale can be obtained by taking 

the square root of the turbulent kinetic energy 

0 11 22 33u R R R    (B.11) 

where R11 and R22 are velocity fluxes in the corresponding directions. The length scale is then 

multiplied by the velocity scale to obtain the eddy viscosity and ultimately the turbulent 

diffusivity. Output using the above approach is shown in Figure B.10. Again, this output 

more closely matches the original RDT results and still does not reflect Lienhard and Van 

Atta (1990) data. It must be noted that this particular simulation model does not have a time 

limitation, unlike the first diffusivity simulation attempt. 

 
Figure B.10: Comparison of vertical flux correlation curves using RDT with constant 

diffusivity (
__

, Gr = 1 and r = 1.35), RDT simulation with varying diffusivity based on k-ε 

model approach  (
…

,Gr = 1, r = 1.35, L = 0.01m and TKE = 0.04 m
2
/s

2
), and LVA 

experiment (○, Fr = 17.1 and N=2.42 rad/s) for Sc = 0.7.
29
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