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ABSTRACT 

Landslides are a common geologic feature in the Missouri River trench and along the 

valleys of Missouri River tributaries. These landslides are commonly found to develop in the 

Pierre Shale formation in this region. Pierre Shale is a weakly cemented marine clay shale 

developed in Cretaceous age by sediments from Epeiric Sea. This clay shale is well known 

for imposing engineering challenges in the form of slope instability and foundation 

difficulties because of its non-homogeneity and high plasticity. It is known as heavily 

overconsolidated shale which can fail due to minor disturbances. Based on the development 

of dams and transportation infrastructure in this area understanding the behavior of Pierre 

shale is extremely important to assess the stability of those structures. As the shale material 

in this area is already fissured and has the history of numerous landslides, its residual 

strength is considered over peak strength to efficiently represent its strength. This thesis 

investigates a possible range of the residual friction angle for the Pierre Shale. The Forest 

City landslide which occurred in the Missouri River trench is selected as a case study for this 

purpose. The residual friction angle values are evaluated by performing a deterministic back 

analysis of the slope in two and three dimensions. The deterministic two dimension analysis 

is performed in limit equilibrium and finite element methods using SLOPE/W and 

SIGMA/W softwares from GEOSTUDIO 2007. A deterministic three dimensional analysis is 

performed by using CLARA/W software. The values obtained from these analyses are 

compared and a reasonable value of 4 to 6.64 is selected to represent the residual friction 

angle values for the Pierre Shale. 
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CHAPTER 1. INTRODUCTION 

Landslides are a common geologic feature in the Missouri River trench, South Dakota. 

This river trench splits the state of South Dakota into two - east and west parts. The 

formation of this river trench about 135,000 to 70,000 years ago by melting of glaciers 

caused tremendous unloading in the nearby surfaces. This unloading effect resulted in the 

formation of a heavily overconsolidated clay shale material, termed as Pierre shale. Landslide 

activity in the Missouri river trench and along its tributaries is primarily found in the Pierre 

shale formation. The development of dams and transportation infrastructure such as 

highways and bridges in this region has resulted in initiating numerous studies about the 

influence of behavior of the Pierre Shale on the stability of these structures. An important 

aspect in understanding the behavior Pierre Shale is to know its geologic history which 

resulted in the formation of landslides and fractures in this area. Based on the geologic 

history of landslides in this region, understanding the residual shear strength behavior of 

Pierre shale is a key aspect. The peak shear strengths are generally estimated only in cases of 

first time failure of a slope. Since the geologic history of Pierre Shale shows that movements 

have already occurred in the Pierre shale formation, residual strengths are considered to 

represent its strength. Numerous examples are available in the literature which specifies that 

after clay soil has been subjected to large amount of shear strains its strength is reduced to 

residual value (Morgenstern 1977 and Skempton 1985). Knowledge about the residual 

strength of Pierre shale is particularly important because any small disturbances to this clay 

shale can cause the historic landslides to reactivate (Brooker and Peck 1993). 

Residual shear strengths can be determined by performing a back analysis of a landslide 

or by conducting laboratory tests. The effectiveness of the residual strength obtained from 

performing a back analysis is highly dependent on the efficiency of failure surface defined, 

geometry of the slope, soil model selected and the type of analysis performed. In this thesis, 

an attempt to find the possible range of the residual shear strength of Pierre shale is made by 

conducting a back analysis for the case of Forest City landslide along the Missouri River. 
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1.1 Problem Statement 

The main aim of this thesis is to investigate a possible range for the residual shear 

strength of Pierre Shale layer involved in the Forest City Landslide, South Dakota. This 

landslide is located in the Missouri River trench. To estimate the residual strength a back 

analysis of the Forest City landslide has been conducted. The back analysis has been 

conducted considering two dimensional and three dimensional effects of the slope in a limit 

equilibrium frame work to understand the variation of the strength obtained between 2D and 

3D analysis. Also, a 2D finite element analysis was conducted considering the stress-strain 

behavior of the soil layers involved. Based on these analyses results a possible range of the 

residual strength has been provided. 

1.2 Organization of the Thesis 

The entire thesis is divided into five chapters along with an appendix included at the end 

of the thesis. The first chapter consists of introduction. The second chapter is a review of 

literature of the Pierre Shale background, limit equilibrium and finite element slope stability 

analysis methods and extension of its mechanics to three dimensions etc. The third chapter 

explicitly describes about the Forest City landslide and its geologic history. Chapter four 

consists of the 2D and 3D deterministic analysis results and discussion of the results 

obtained. The last chapter provides conclusions and the scope for further research. This 

chapter is followed by appendix. 
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CHAPTER 2. LITERATURE REVIEW 

2.1 Introduction 

This section of the thesis provides a brief review of the methods used for two 

dimensional (2D) and three dimensional (3D) slope stability analysis. A comparison among 

the available 2D Limit Equilibrium methods (LEM) is reviewed along with a brief discussion 

on the extension of 2D method of slices to 3D method of columns. Background information 

about the soil layer - the Pierre Shale (weathered) in which the failure occurred is provided in 

this section and the details about the landslide are mentioned in the next section. Also, the 

simulation softwares used for 2D and 3D analyses are discussed here with an explanation 

provided for the type of soil models used. 

2.2 Slope Stability Analyses 

Slope stability analyses are mainly performed to assess the safety factor of a particular 

slope in a given geologic and physical conditions. For a slope to be stable the resisting forces 

in the slope must be sufficiently greater than the forces causing the failure (Duncan and 

Wright 2005). Stability analysis can be used for the following, 

1) To assess the safety of a structure in terms of its stability. 

2) To locate the critical failure surface and to know it shape of failure. 

3) To understand and numerically evaluate the sensitivity of stability to its geologic 

parameters and climatic conditions. 

4) To assess the movement of the slope. 

5) To assess remedial measures and aid in their design. 

To perform a slope stability analysis the geometry of the slope, external and internal 

loading, soil stratigraphy and strength parameters and variation of the ground water table all 

along the slope must be defined. In the current state of practice, there are many number of 

slope stability analysis methods available. However, the scope of this report is limited to a 

discussion on the limit equilibrium methods and finite element methods. 
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2.2.1 Limit equilibrium method 

 The limit equilibrium method of analysis is a well-established method and widely used 

by the geotechnical engineers. This method mainly provides an assessment of stability of the 

slope in terms of its safety factor. For determining the factor of safety of a particular slope 

the primary requirement is the strength properties of the soil material involved and does not 

consider its stress – strain behavior. The limit equilibrium method provides only an estimate 

of the stability of a slope but doesn’t provide any information about the magnitude of 

movement of the slope. 

2.2.1.1 Mechanics of two dimensional (2D) limit equilibrium analyses 

In limit equilibrium techniques, the slope stability is assessed by calculating the factor of 

safety of a slope. This value is determined for an infinite number of slip surfaces, but the 

value obtained for the most critical failure surface ( failure surface with the least factor of 

safety value), termed as Critical / Minimum Factor of safety signifies the stability. A Factor 

of safety value is defined as the ratio of available shear strength (s) in a slope to its 

equilibrium shear stress (Ƭ) i.e., the strength factor required just to maintain the stability of 

the slope (Duncan and Wright 2005). The factor of safety definition is represented in 

Equation 2-1. 

 F = s / Ƭ 2-1 

In this method, most of the slope stability analyses methods are statically indeterminate 

and assumptions about the distribution of internal forces acting on them are required to solve 

this redundancy. The assumptions differ for each limit equilibrium method. The factor of 

safety is found by the application of force and/or moment equilibrium. The static limit 

equilibrium methods have two different approaches (1) Single Free Body Procedures and (2) 

Method of Slices. In the Single Free body procedures the entire mass of the soil is considered 

to be in equilibrium and a single free body diagram is assumed for the entire mass. The 

infinite slope method, Swedish slip circle method and logarithmic spiral method are some of 

the examples of these methods. But this method imposes challenges in calculations when 
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used in case of a non-circular or a wedged slip surface. As most of the landslides observed in 

the real world fail with a non-circular failure surface, this method was not popularly used. 

The method of slices was adopted by many geotechnical engineers to overcome this 

disadvantage. The method of slices is appropriate to solve both circular and non-circular slip 

surfaces separately (Duncan and Wright 2005). In this method, the entire slip surface is 

divided into number of vertical slices and equilibrium equations are applied to each slice.. 

This method is illustrated in Figure 2-1. The figure represents a circular slip surface which is 

subdivided into slices and also a single slice (named as i
th

 slice in the figure) is shown with 

forces acting on it. For illustration purpose, the slice forces used in Bishop’s Simplified 

method are shown. The forces on the slices vary from one method to another method. In this 

figure, Wi represents the weight of the i
th

 slice, Si is the shear force at the base of the i
th

 slice, 

ai is the moment arm, αi is the inclination of the base of the slice. In the single slice figure, N 

represents the normal force acting in the base of the slice, Ei and Ei+1 represent the forces 

acting on the slides of the slices (shear stresses in between the slices are neglected in 

Simplified Bishop’s method). So, using these forces, resisting and driving moments are 

calculated and their ratio gives the factor of safety value. 

Some of the popular methods which follow the procedure of slices are the Ordinary 

Method of Slices (Swedish method of slices or Fellenius method 1927), Bishop’s Simplified 

procedure (Bishop 1955), Janbu’s method (1973), Spencer’s Method (1967), Morgenstern 

and Price Method (1965). Each of these methods do not satisfy all the three static equilibrium 

conditions of 1) equilibrium of forces in vertical direction, 2) equilibrium of forces in 

horizontal direction and 3) equilibrium of moments about any point. Hence, different 

assumptions are made for each procedure to get a balance of known equations and unknown 

quantities. The side force assumption is one of the main characteristics which distinguishes 

one limit equilibrium method from another (Griffiths and Lane 1999). 
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Figure 2-1: Typical representation of a circular slip surface subdivided into vertical slices and forces 

acting on it (adopted from Duncan and Wright 2005). 

Accuracy of the computational methods available is based on the extent to which it can 

satisfy the equilibrium conditions and its assumption on the inclination of side forces on each 

slice. According to Duncan and Wright (2005), the accuracy of the methods is described in 

Table 2-1. 

The maximum variation in the factor of safety values obtained by using the above 

mentioned methods taking into account their limitations is + 6% (Duncan and Wright 2005). 

As the Morgenstern – Price and the Spencer’s method satisfy both the moment and force 

equilibrium they are considered to be most accurate methods (Duncan and Wright 2005). 

Also, it is observed that both the methods result in identical factor of safety values (Duncan 

and Wright 2005 & Fredlund and Krahn 1977). Based on the accuracy for each method 

discussed, only Morgenstern-Price, Spencer’s method and Bishop’s method are used for 

conducting back analysis of the Forest City landslide in 2D in the further sections. 
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Table 2-1: Summary of 2D Limit Equilibrium methods for Slope stability analysis (after, Duncan 

and Wright (2005)) 

Method Accuracy and Limitations 

Ordinary method of slices 

(Fellenius 1927) 

  Gives a very low Factor of safety value in case of 

effective stress analyses for flat slopes with high 

pore water pressures. 

  Accurate only when Ø = 0 analyses 

  Accurate in case of total stress analyses with 

circular slip surfaces. 

Modified Swedish method 

(Corps of Engineers 1970) 

  Applicable for all types of slip surfaces 

  Factor of safety values are generally higher than 

the other methods which satisfy all the conditions of 

equilibrium. 

Bishop’s modified method  

(Bishop 1955) 

  Accurate only when circular slip surfaces are 

involved.  

  Factor of safety values differ 3% to 5% from the 

Ordinary method of slices. 

Janbu’s simplified method 

(Janbu 1968) 

  Accurate method satisfying all equilibrium 

conditions. 

  Applicable to any shape of failure surface 

  Results in a lower factor safety values than other 

methods satisfying all equilibrium equations. 

Spencer’s method  

(Spencer 1967) 

  Accurate method satisfying all equilibrium 

conditions. 

  Applicable to any shape of failure surface 

Morgenstern and Price method 

(Morgenstern and Price 1965) 

  Accurate method satisfying all equilibrium 

conditions. 

  Applicable to any shape of failure surface 
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2.2.2 Finite element method 

The finite element method was first introduced to geotechnical engineers in 1966 

Berkeley conference on stability of slopes and embankments by Clough and Woodward 

(1967). Unlike the limit equilibrium method, the finite element method considers linear and 

non-linear stress – strain behavior of the soil in calculating the shear stress for the analysis. In 

a finite element approach the slope failure occurs through zones which cannot resist the shear 

stresses applied. Hence, the results obtained from this analysis are considered to be more 

realistic compared to limit equilibrium method (Griffiths and Lane 1999). 

Finite element methods are well known for the estimating the realistic deformations of 

the slopes and embankments. Some of the advantages of using a finite element analysis over 

limit equilibrium methods are, 

1) The movement of the slopes at a particular location can be calculated. This helps in 

monitoring the movement of the slope. Also, soil stresses and pore water pressure 

responses to different external factors such as load, water level, reservoir level etc. 

can be calculated. 

2) Stability of the slope during staged construction such as step by step excavation or 

construction of embankments, levees etc. can be calculated by performing 

incremental analysis. 

The types of soil stress-strain relationships that can be used are linear elastic, 

elastoplastic, hyperbolic, Modified Cam Clay, elastoviscoplastic and multilinear elastic 

models. The selection of a particular stress-strain relationship depends on the state of the soil 

structure to be analyzed, its purpose of analysis and its laboratory and field properties 

available. The determination of soil properties in the field involves a large amount of 

uncertainty and so the application of finite element analyses imposes complexity on the 

stability problem (Griffiths and Lane 1999). 

Traditionally, the slope stability analysis with a finite element approach is performed by 

Strength reduction method (SRM). In this method, the factor safety is defined as the factor by 
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which the original shear strength parameters must be divided to bring the slope to be in 

failure mode (Griffiths and Lane 1999). Hence, the factor shear strength parameters (c´f and 

Ø´f) are shown as follows, 

 c´f = c´/ SRF 2-2 

 

 Ø´f = arctan (tan Ø´/ SRF) 2-3 

 

Where SRF is the Strength Reduction Factor. A systematic estimation is required for the 

SRF value to find out the value which will just cause the slope to fail. The SRF value, at 

which the slope will just to fail, is known as the factor of safety. The failure condition in this 

method could be when 1) the non-linear equation solver cannot achieve convergence after a 

few iterations, 2) sudden rate of change in displacement and 3) a failure mechanism is 

developed. However, this method has some limitations such as appropriate selection of 

constitutive model and geologic parameters, boundary conditions and defining a failure 

condition (Krahn 2007).  

Another approach to solve a slope stability problem by finite element method is to 

compute finite element stresses of the geotechnical structure and to implement them inside a 

limit equilibrium frame work to analyze its stability. It is known as finite element stress-

based approach (SLOPE/W 2010). So, in this approach the distribution of stresses in the 

ground are calculated by finite element analysis and then these stresses are used in a stability 

analysis. For the present case study involved in this thesis, this approach is followed. The 

software SIGMA/W is used for calculating the insitu stresses in the landslide and SLOPE/W 

is used for the slope stability analysis using the stresses calculated by SIGMA/W (SLOPE/W 

2010). A brief description of both SIGMA/W and SLOPE/W softwares are discussed in 

further sections.  The main advantages of this method are that there is no need to assume any 

interslice forces like in limit equilibrium methods, no convergence problems, computed 

ground stresses are close to reality and Soil-structure interaction effects are included etc.  
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2.2.3 Three dimensional slope stability analysis 

2.2.3.1 Extension of mechanics of two dimensional (2D) limits equilibrium analysis to 

three dimensions (3D)  

Though extensive studies are done in the area of two dimensional slope stability, slope 

failures that occur in nature have a three dimensional geometry. Hence understanding the 

variation of stability in a three dimensional view is important.  A large number of studies 

were done on 3D slope stability analysis since late 1960’s (Duncan 1996).The 3D analyses 

are commonly used in cases of a narrow failure surface, cuts or excavations, horizontal 

variation of ground water levels etc., (Hungr et al. 1989). The main difference of a three 

dimensional analysis from a two dimensional analysis is the consideration of spatial variation 

of the slope geometry and its geologic conditions. To render this purpose, the popular 2D 

limit equilibrium methods were extended into a third plane. The assumption made in 2D 

analysis i.e., dividing the sliding area into vertical slices has been extended as vertical 

columns and the method was commonly termed as the method of columns. Chen and 

Chameau (1983), Hungr (1987), Zhang (1988), Leshchinsky et al. (1985), Chang (2002), 

Hovland (1977), Baligh and Azzouz (1975) and others have contributed in this area of 

research. According to case study results published in Duncan (1996) for a particular slope 

the factor of safety for the most critical failure surface obtained from a 3D slope stability 

analysis is greater than the factor of safety obtained from 2D analyses. The factor of safety 

obtained from a 2D analysis is conservative and smaller than 3D (K. C. Zhang 2011). A 3D 

analysis considers the end effects of sliding surface, its lateral curvature and lateral non-

homogeneity in its framework. All these factors are neglected in a 2D framework. Hence 

factor of safety obtained from 3D analysis is greater than the factor of safety obtained from 

2D analysis (Hungr 1987). The Figure 2-2 represents forces acting on a typical column 

considered in a 3D slope stability analysis (method of columns). The forces acting on the 

column are similar to the forces acting on a single slice in 2D method of slices except that the 

forces are now considered in Z direction also. The forces shown here are based on direct 

extension of assumptions of Bishop’s simplified method (1955).  
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Figure 2-2: Forces acting on a single column (adopted from Hungr 1987). 

Hungr (1987) extended the Bishop’s simplified 2D method of analysis to a 3D method. 

The same assumption for the extension remained same as in 2D method – Vertical interslice 

forces are neglected. In the Figure 2-2 vertical inter column forces are neglected.  Horizontal 

force equilibrium conditions both in x and y direction are neglected in this method and only 

the vertical and moment equilibrium conditions are considered and were sufficient for 

attaining the equilibrium. A detailed explanation and derivation of the 3D factor of safety 

equation are discussed in Hungr (1987). This method tends to be conservative in case of 

some non-rotational, asymmetric surface and in cases sliding surfaces with rapid 

mobilization internal strength (Hungr et al. 1989 & Hendron and Patton 1985). Similar work 

was done by Huang and Tsai (2000) but its factor of safety showed variation with variation in 

the sliding direction of the slope. Along with Bishop’s simplified method, extensions have 

also been made to other 2D limit equilibrium methods such as Morgenstern-Price, Spencer’s 
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and Janbu’s method. Janbu’s method is reported as more conservative than the Bishop’s 

method (Hungr 1987). An algorithm was developed by Hungr to computerize this method 

and was implemented in a microcomputer program called CLARA/W. Further description 

about CLARA/W can be found in section 2.5.3. The Spencer’s method was extended from 

2D to 3D by Chen and Chameau (1982). It assumes that the inter column forces have same 

inclination through the sliding area and also the inter column forces are assumed to be 

parallel to the base of the column. An extension of the Morgenstern and Price method into a 

3D method was done by Cheng and Yip (2007) considering an asymmetrical sliding surface. 

A detailed formulation of this method using only force and moment equilibrium methods is 

shown in his paper. Bishop’s and Janbu’s method were also formulated by him in this paper 

based on the same assumptions. The advantage of these formulations is that it is highly 

applicable to nonsymmetrical surfaces and also considers transverse loads in 3D. In this 

thesis, for a 3D analysis of the Forest City landslide CLARA/W software formulated by 

Hungr (1987) is used.  

2.3 Soil Strength and Stability Analysis Conditions 

The most important part in slope stability analysis is selection of the shear strength 

properties of the soil. According to Lowe (1967) shear strength is the property which has 

greatest degree of uncertainty. An undrained analysis is a total stress analysis considering all 

the forces transmitted through interparticle contacts and water pressures. Undrained shear 

strength properties cohesion (c) and internal friction angle (ø) can be estimated by 

unconsolidated undrained triaxial test (UU), in situ tests and also consolidated drained test 

(CU) when considered with strength normalizing procedure (SHANSEP) (Ladd and Foott 

1974). In the drained analysis only the forces transmitted through the particle contacts are 

considered. The drained shear strength properties are estimated by consolidated drained test 

(CU), direct shear test, SPT and CPT by using few correlations. However, in either of the 

cases external water pressure if any should be considered. Undrained and Drained properties 

are only related to the internal pore pressures in the soil. 
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For a slope stability analysis the decision regarding type of analysis is governed by the 

condition of the construction. Stability of a slope during and at the end of construction is 

analyzed by using drained or undrained strengths, based on the permeability of the soil. In 

case of long terms stability analysis which commonly reflects the cases of swelling and 

consolidation, shear strengths are expressed in terms of its effective stresses. In case of a 

staged construction which mainly reflects the case of consolidation, drained shear strength 

properties are considered. In case of drawn down condition, if the drawdown occurs suddenly 

then the soil cannot completely drain the water level in it, so an undrained analysis is 

performed (Duncan and Wright 2005). In the present study, an effective stress analysis is 

conducted in all conditions. 

2.4 Constitutive Models for Finite Element Analysis 

2.4.1 Modified cam clay model 

 Based on the available laboratory and field data, Modified Cam Clay model was selected 

to represent the soil in the finite element analysis. This section consists of brief information 

about the modeling basics, assumption, limitations of this model. A Cam-Clay model is 

based on critical state soil mechanics frame work using effective stress parameters. This 

model is formulated by Atkinson and Bransby (1978) and Britto and Gunn (1987). 

The Figure 2-3 represents the variation of volume change with increase in pressure and 

elastic- hardening plastic curve respectively obtained from a one-dimensional consolidation 

test. This also depicts the analogy between the overconsolidation line in the volume-pressure 

relation to the initial linear elastic line in the stress-strain relation. When the 

overconsolidation line is rotated for 90⁰ it represents the elastic line in the stress-strain graph. 

Similar analogy is shown by the normal consolidation line and the hardening plastic line. 

Figure 2-4 graphically represents the definitions of the Cam-Clay parameters. The critical 

state line depicted in the graph is defined as a straight line joining (locus) all the critical 

points at each value of change in pressure. 
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Figure 2-3: (a) Shows the variation of volume with pressure and (b) Shows the stress- strain 

relationship (SIGMA/W 2010). 

 

 

Figure 2-4: Graphical representation of the definition of the cam-clay model parameters (SIGMA/W 

2010) 
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Where, p′ – Mean stress 

         q– Deviator stress 

  – Initial void Ratio 

The important parameters required for the analysis are as follows, M – Slope of the 

critical state line in p′-q plane, Γ – specific volume at critical state when p′ is 1.0, К – slope 

of the over consolidated line, λ – slope of the isotropic normal consolidation line and ν – 

Specific volume. These parameters can be directly obtained mainly by performing a one -

dimensional consolidation test and a triaxial compression test. Mentioned below are few 

equations which can be used to estimate these parameters. For calculation of M, the effective 

friction angle    obtained from any other insitu or laboratory testing can be related as 

follows. 

 
  

      

       
 

2-4 

 

    Cc / 2.303 2-5 

 

    Cr / 2.303       2-6 

 

To obtain the values of   and К, the values of compression index (Cc) and re-

compression index (Cr) obtained from the one-dimensional consolidation test through the 

void ratio (e) and pressure log10 (p) curve (e vs log10 (p) curve) are used as mentioned in 

Equations 2-5 and 2-6. 

2.5 Simulation Softwares Used in the Analysis 

In this report, GEOSTUDIO 2007 version is used for the purpose of two dimensional 

limit equilibrium and finite element analysis. In the GEOSTUDIO, SLOPE/W was used to 

perform the limit equilibrium analysis and both SIGMA/W and SLOPE/W were used for the 
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finite element analysis.  For 3D limit equilibrium analysis CLARA/W by O.Hungr (2001) 

was used.  

2.5.1 SLOPE/W 

SLOPE/W is a powerful commercially available tool for analyzing the stability of the 

slope. It is a component in the entire tool kit of GEOSTUDIO 2007. The first code for 

SLOPE/W was written by Fredlund and Krahn (1977). This software works on a limit 

equilibrium framework and includes methods such as the Morgenstern-Price, Spencer’s 

method, Bishop’s simplified method, Janbu’s generalized method and Ordinary method 

slices etc. A finite element stress-based can also be solved using this software. Factor of 

safety for different shapes of slip surfaces – Circular, noncircular and wedged surfaces can be 

determined. The soil models such as Mohr-Coulomb model, anisotropic strength model, 

SHANSEP model, bilinear models etc. are available for modeling the material properties of 

the different layers of the soil. User can also easily define a particular slip surface in the 

slope. This feature is mainly advantageous in post slope failure analyses. The main advantage 

of this program is its ability to be coupled with other programs such as SIGMA/W, SEEP/W, 

VADOSE/W etc. By integrating these programs for a particular analysis a slope can be 

analyzed considering the aspects of the insitu stress – strain behavior, earthquake 

acceleration factors, seepage factors etc. Stability of reinforced slopes can be assessed using 

this software. Different types of reinforcements – anchors, geo-fabrics, soil nails, piles, sheet-

piles etc. can be designed. Pseudostatic analysis and analysis for liquefaction stability can 

also be performed (SLOPE/W). 

Illustrative examples are provided in the SLOPE/W manual (2007) for verification of the 

analyses using SLOPE/W program. These examples show a detailed comparison of the 

analysis results from SLOPE/W with solutions obtained from the Stability charts developed 

by Bishop and Morgenstern in 1960’s, a comparison with published results and a comparison 

with theoretical calculations of earth pressures. The analyses results from SLOPE/W prove to 

be the same as the values obtained from the other methods, indicating that the results 

obtained using SLOPE/W program are reliable. 



17 

 

 

2.5.2 SIGMA/W 

SIGMA/W is a finite element software product mainly used for determination of stress-

deformations in earth structures. In addition, it is also used to model soil-structure 

interaction, staged constructions, consolidation analyses etc. SIGMA/W is a component of 

GEOSTUDIO 2007. It was designed in a way to analyze both simple and complex problems 

because of its available options for different analyses. Performing both simple linear elastic 

analysis and complex non-linear plastic analysis is possible using this software (SIGMA/W 

2010). The discretization into finite elements is done by creating a mesh over the cross 

section of geotechnical structure. Mesh generation is an automated process in SIGMA/W. A 

choice for the shape of mesh elements – Quadrilateral, triangular rectangular and mixed 

shapes are also available. Density of the mesh can be varied as required. Boundary conditions 

must also be defined for a SIGMA/W model. The available boundary conditions are Fixed X, 

Fixed Y and Fixed X/Y. Generally, for in calculating stresses for a slope stability problem 

the boundary for the base is selected as Fixed X/Y, as the displacement in both X and Y 

directions is not allowed at the base. The significance of SIGMA/W in slope stability 

analysis is that it can model the stress deformations along with the pore water pressures that 

arise due to stress change. Also, it readily provides a graphical representation of variation of 

the stress strain values with variation in loading, time, ground water level etc. In this thesis, 

for a finite element analysis of the Forest City landslide this program is coupled with 

SLOPE/W to obtain the safety factor calculated considering the stress – strain relationship of 

each soil layer.  

Illustrative examples are included in the SIGMA/W manual (2007) for verification of its 

formulation. These examples show that the values calculated using SIGMA/W program 

match with the values obtained from hand calculations and published values.   

2.5.3 CLARA/W 

CLARA/W is a 3D slope stability analysis program following limit equilibrium frame 

work. The algorithm for this program was written by Hungr (1987).  A 2D analysis can also 

be performed in this software. The complete area is defined by required number of cross 
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sections covering the entire extent of landslide. The profiles of these cross sections are 

interpolated to form a complete three dimensional slope. Figure 2-5 represents a typical 3D 

sliding surface obtained using CLARA/W. The mesh represents the plan view of the column 

assembly.  

Different shapes for the slip surfaces such as ellipsoidal, circular and wedge are available. 

This program also provides the facility of importing the cross section definitions from 

various formats. In this program, same soil properties have to be considered for each cross 

section. Variation can only be given in the definition of layers and the piezometric layer for 

each section. The analysis is performed using the method of columns, as discussed earlier. In 

the output of the analysis few checks regarding the number of active columns, percentage of 

unbalanced forces, number of rows and columns used for analysis etc. are always necessary 

to validate the result obtained.  

 

 

Figure 2-5: Typical CLARA/W representation of plan view of a 3D sliding surface (adopted from 

CLARA/W manual 2001)  
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CLARA/W is based on extension of four limit equilibrium methods into 3D. The first is 

Bishop’s Simplified method based on formulations given by Hungr (1987) and considering 

the limitations specified by Fredlund and Krahn (1977). Second, Janbu Simplified method is 

extended in same lines as the 2D method. Next, Spencer’s and Morgenstern-Price were also 

proposed by Lam and Fredlund (1993). All the four methods give similar results for 

rotational sliding surface geometries (CLARA/W manual 2001). The Janbu’s method usually 

yields lower factor of safety values compared to the other methods. Also, in some cases 

Spencer and Morgenstern-Price methods fail to converge. The Bishop’s Simplified method 

may be inaccurate in case of large horizontal external loads. But in CLARA/W the Bishop’s 

method has the facility of identifying the presence of lateral imbalance and can be balanced 

by a method described by Hungr (1997). Morgenstern-Price and Spencer’s method do not 

have this facility in CLARA/W. In this thesis, the stability analysis of the Forest City 

landslide was conducted using Bishop’s Simplified method, Morgenstern-Price and 

Spencer’s method. But as there was no convergence obtained by the analysis performed by 

the Morgenstern-Price and Spencer’s methods these methods were not reported in the 

analysis section. Trials to make them converge were also conducted by decreasing the mesh 

density but then the methods were failing for the necessary check of having the number of 

active columns analyzed to be greater than 1000. 

2.6 Background of Pierre Shale: 

Pierre Shale is marine clay from the Cretaceous age, 60 to 80 million years ago. This 

weakly cemented shale was deposited in and around the Cretaceous Epeiric Sea located in 

the central part of United States and Canada. It mainly consists of clay shale material along 

with layers of bentonite, smectite, clay stone, silt and sand stone. This shale is strong at depth 

but when exposed to the atmosphere it gets weakened by weathering and desiccation. 

Transgression and regression of the sea, volcanic ash deposition caused non-homogeneity of 

materials in the Pierre Shale. This non-homogeneity is noticed in the form of presence of 

varying thickness of bentonite layers from several feet to few millimeters thick (Tourtelot 

1962).  
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The Missouri River trench located South Dakota divides the state into east and west 

halves. It was formed in Sangamon time during Pleistocene glaciations about 135,000 to 

70,000 years ago as a result of melting of glaciers (Flint 1955). The melting glaciers on the 

east side of the river and due to erosion of the clay shale materials on the west side caused 

unloading of the nearby surface materials. Unloading and weathering of this shale produced 

heavily overconsolidated clay that readily fails due to minor disturbances. The weathering in 

this material was noticed in the form of formation of tension cracks, fractures and fissures 

triggering numerous landslides in this area. Early landslides were reported to be observed in 

Late Wisconsin times about 25,000 to 10,000 years ago (Crandell 1958). These landslides 

overtime filled the Missouri River trench with sediments of 60 to 100 ft. of alluvium. These 

alluvium sediments consist of poorly sorted gravel, silt and clay underlined by the Pierre 

Shale formation. Hence it is evident from the geologic history that this valley is prone to 

landslide activity and consists of fractures from ancient landslides. Based on this fact, to 

understand the behavior of Pierre shale understanding its residual strength behavior is 

extremely important. The construction of main stem dams along the Missouri River trench 

has significantly influenced many researchers to understand the residual strength behavior of 

the Pierre shale. A summary of results obtained for residual strength of Pierre Shale in 

various locations in and around the Missouri River trench are presented in Table 2-2.  

The values from the Law Engineering Company report (1976), Dames & Moore, Corps 

of engineers from SDDOT reported in the above table are mentioned in the Task I-B report 

of the Grenier and Woodward Consultants (1991) on the Forest city landslide. The Table 2-2 

gives a brief idea on the range of the residual shear strength values previously obtained by 

other researchers. According to values reported in the above table it is observed that the unit 

weight of the sheared shale ranges from 115 to 130 pcf. From Table 2, it can be observed that 

the residual frictional angle obtained varies from 3.1
o
 to 8.1

o
.  Further in this thesis, analysis 

of the Forest City landslide is shown in two dimensions and three dimensions to observe the 

variation of the residual strength of the Pierre Shale layer. 
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Table 2-2: Reported Residual friction angles for Pierre Shale (Schaefer 2002) and Wood ward 

Clyde company (1991) 

Reference Location Description C 

(pcf) 

Ø’ Test 

Performed 

Fleming, Spencer 

& Banks  

Oahe Dam  Shale remolded 0 Ranges from 

5.1
o
 to 7.4

o
 

RDS 

 precut 

Bump Forest city Shale remolded 0 6.4
o
 to 8.0

o
 RDS  

precut 

Bentonite layer 0 2.8
o
 to 4

o
 RDS precut 

Townsend & 

Gilbert 

Oahe Dam  Shale remolded 0 Ranges 3.1
o
 

to 3.3
o
 

Rts, RDS 

precut and Rgs 

precut 

Stark & Eid Reliance, 

SD 

Shale 0 6.5
o
 Rgs 

Oahe Dam Firm Shale 0 7.4
o
 Rgs 

Oahe Dam Bentonite Shale 0 6.0
o
 Rgs 

USACE Oahe Dam Weathered 

shale remolded 

0 3.8
o
 Rts 

Schaefer & Lones Forest City Failure Zone – 

distilled water 

0 7.2
o
 RDS 

Forest City Failure Zone – 

distilled water 

0 8.1
o
 RDS 

Law Engineering 

testing Company 

Forest City  Sheared Shale 135 7
o
  

  - 

Dames & Moore Forest City 

Landslide 

Sheared Shale 0 – 300 3.2
o
    

  - 

Corps of 

Engineers 

Oahe Dam Sheared Shale 0 – 300 8.5
o
  

  - 

SDDOT Forest City 

Landslide 

Sheared Shale 0 - 200 5
o
  

        - 

 

RDS precut = Reversal Direct Shear test (The undisturbed samples are precut horizontally to 

form the failure surface); 

 Rgs = Ring shear test;  

 Rts = Rotational shear test.  
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CHAPTER 3. CASE STUDY: FOREST CITY LANDSLIDE 

3.1 Introduction 

This section consists of a detailed description of the landslide. The Forest City landslide 

was selected for study due to the availability of extensive geotechnical data for the analysis. 

The geologic history of the landslide area and its stratigraphy are discussed here. A brief 

discussion on back analysis procedure for determining the residual shear strength properties 

of the failure causing layer at the time of failure is included in the discussion. Also, cross 

sections used for the 2D and 3D analyses are discussed in this section. Detailed figures 

showing the plan view of the cross sections used are included in the appendix. 

3.2 Forest City Landslide 

 A large landslide was reactivated in early 1960’s on the banks of the Oahe Reservoir, 

South Dakota where the U. S Highway 212 crosses the Oahe Reservoir via Forest City 

Bridge. This site is located about 50 miles north of Pierre, South Dakota. The location of the 

site is shown in the Figure 3-1. The Forest City Bridge was funded by the U.S Corps of 

Engineers and was built as a replacement to a bridge crossing the Missouri river 

approximately seven miles upstream. There was a requirement for replacement of the bridge 

because impoundment waters from the construction of the Oahe dam would cease the usage 

of the bridge. Oahe dam was being constructed about 50 miles downstream from the Forest 

City Bridge. The construction of the dam and bridge were completely nearly at the same 

period in 1958. The filling of the reservoir started in 1958. The normal operating pool level 

of 1585 ft was reached by 1962 and it reached 1600 ft by 1968. The highest reservoir level 

was marked to be at 1620 ft (Grenier and Woodward Consultants1991). 

Unknowingly the bridge was built on the toe of an ancient landslide located at the 

southern approach of the bridge. The bridge is shown in Figure 3-2. The rise in the elevation 

of the pool level reactivated the landslide (Schaefer 2002). Movements and distress were 

observed the 5000 ft approach roadway near the southern embankment (Figure 3-2). 



23 

 

 

Cracking of the pavement was found about 500ft from the end of the bridge. Many localized 

failures, surface tension cracks were observed near the southern embankment indicating that 

the entire mass was moving towards the bridge. This landslide was classified as a progressive 

landslide (Grenier and Woodward Consultants1991). However, the northern approach of the 

bridge was reported to be located on a relatively stable ground. The movements due to the 

landslide threatened the structural integrity of the bridge. The bridge at that time was an 

important commercial transportation link connecting the Cheyenne River Indian Reservation 

and Western cattle agriculture areas with eastern markets and commerce centers. The 

temporary or permanent closure of this bridge could have caused approximately 85 mile of 

detour (SDDOT 1981). 

 

Figure 3-1: Location of Forest City Landslide and Oahe Dam (Google earth view) 

   Extensive testing’s of the movements of the bridge was started in 1972. Continuous 

movements were observed until 1980 and remedial investigations were started in 1988. The 

stabilization measures included installation of stone columns in the abutment, unloading of 



24 

 

 

the driving force by cutting and installation of shear pins (Grenier and Woodward 

Consultants1991). 

 

Figure 3-2: Aerial photograph of the Forest City Landslide (adopted from Grenier and Woodward 

Consultants1991). 

A detailed report on the geotechnical investigations consisting of the borehole data, 

laboratory and field investigations are provided by the geotechnical testing firms – Law 

Engineering Testing Company (1976), Woodward – Clyde Consultants (1991), Aaron-Swan 

Associates and Grenier Ins (1991). These consulting firms were contracted by the South 

Dakota Department of Transportation for performing the required geotechnical investigation. 

Herein, the geotechnical data from these reports is directly adopted for the analysis purpose.  

3.3 Geologic History of the Landslide 

The site is located in the hilly area of the Missouri River trenches. It is situated on the 

west edge area of the Glaciated Missouri Plateau which is underlain by Pierre shale, 
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bentonite marine shale of the Cretaceous age. A description of the geologic history of the 

Pierre shale is included in Section 2.6. The blockade of the Cheyenne River and the other 

northeastward flowing rivers by the glacier created the existing Missouri river channel. The 

river trench formation lead to the removal of lateral support and a series of complex slump 

block failures were formed along the shoreline. The large longitudinal block failures along 

the shoreline also progressed upslope and thereby caused slump blocks moving towards the 

channel (Grenier and Woodward Consultants1991).Landslide activity is not uncommon in 

this area (Schaefer 2002). The surficial material as reported by the borehole data from the 

Corps of Engineers (1950), Law of Engineering Testing Company (1976) and the South 

Dakota DOT (Forest City landslide, Geotechnical Report, 1981) consists of glacial till 

materials with concentrations of gravel and boulders. A fill type material is also found along 

the abutment of the bridge which was placed at the toe of the bridge during the construction 

of the abutment of the bridge. A 5 to 10 ft thick layer of loess material is found near by the 

escarpment. All these materials are underlain by layers of weathered and firm Pierre shale. 

Extensive monitoring of the site for shear failure surfaces revealed that the failure surface is 

at or just above the contact of the weathered shale and fresh shale layer. 

To perform a stability analysis for the landslide a reasonable area representing the 

landslide characteristics has been selected by the SDDOT. The area ranges from the toe of 

the south end of the bridge abutment to the escarpment at the upper portion of the slide. The 

area beyond the escarpment is assumed to be stable (Forest city landslide, Geotechnical 

Report, SDDOT, 1981). The entire area of the landslide consists of numerous number of 

tension cracks filled with water. Although the presence of tension cracks and slide scars 

make the area to look like a series of sliding blocks, the central corridor area from the shore 

to the escarpment are considered as a single unit for the purpose of the analysis. The entire 

sliding mass tends to move northward away from the escarpment. The elevation of the 

central corridor ranges from 1550 ft to 1800 ft. Figure 3-3 shows the idealized section of the 

central corridor of the landslide modeled using SLOPE/W. 
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Figure 3-3:  SLOPE/W model of the Central corridor area of the Forest City landslide. 

3.4 Geologic Sections and Parameters of the Area 

For a 2D analysis the geologic section AA’ as shown in Figure A-1 in the appendix is 

considered. This section is considered to be representative of the overall landslide in 2D and 

ranges from the toe of the southern embankment to the main escarpment (SDDOT 1991). 

The area of the section is 4000 ft x 1900 ft. The stratigraphy of the section and the ground 

water table elevation are obtained using the borehole log data and the inclinometer data 

reported by the Woodward Clyde Consultants (1991). The geologic parameters assigned for 

each layer are shown in Table 3-1. The required geologic parameters are obtained from the 

Task I-A, Review of Available Data (1989) and Task I-B, Preliminary Evaluation of 

Landslide Stabilization (1989) reports prepared by Greiner, Inc. for the SDDOT. In case of 

the 3D analysis, the representative model is prepared by considering required number of 

cross sections over the entire landslide area. Each cross section is defined in the similar way 

as done in 2D analysis. All the soil layers and the piezometric line have to be defined at each 

cross section. The 3D profile is prepared by the software by interpolating among the layers in 

each defined cross section. CLARA/W is used for the 3D analysis. A description about 

CLARA/W is in section 2.5.3.  
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Table 3-1: Summary of the geologic parameters (Grenier and Woodward Consultants1991) 

S.No Soil Layers Unit 

weight,  m (pcf) 

Cohesion, c 

(psf) 

Ø
 
(degree) 

1. Fill 140 500 17 

2. Loess 130 500 19.3 

3. Till 130 500 19.3 

4. Weathered Shale 115 0 6 - 8 

5. Fresh Shale 120 1000 15 

 

3.5 Back Analysis for Residual Shear Strength Properties 

The slope instability in this case is due to reactivation of an old landslide (SDDOT 

1991). Hence, the behavior of the slide is governed by the residual strength properties. 

Residual properties can be obtained either by conducting the traditional back analysis or by 

laboratory testing. The reliability of the value obtained from back analysis is proportional to 

the confidence with which the pore water pressure and the location of the slip surface in a 

slope are known (Bromhead and Dixon1986). Because of extensive availability of 

instrumentation data in this case the defined slip surface and the ground water elevations 

reported are considered to be reliable (Schaefer 2002). In this study, a back analysis is 

performed to determine the residual friction angle (Ør) along the slip surface. Location of the 

slip surface is shown in Figure 3-3. The cohesion value is set to zero and the frictional angle 

value is varied to obtain a factor of safety of unity (1.0) (Duncan and Wright 2005). 

According to Banks (1971), the range of residual friction angle of Pierre shale is expected to 

be between 5
 
and 8. These values are obtained from direct shear tests in the laboratory.  
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Figure 3-4: A summary of residual friction angle obtained from direct shear strength test vs. liquid 

limit for various marine shales of the northwestern United States (obtained from Banks, 1971) 

(Grenier and Woodward Consultants1991). 
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CHAPTER 4. ANALYSIS 

4.1 Introduction 

This section presently the results of back analyses of the Forest City landslide to 

determine its residual shear strength properties (c

, Ør


) along the critical failure surface at the 

time of its failure. Based on the findings by the South Dakota Department of Transportation, 

the rise in reservoir levels following the completion of the Oahe dam played a significant role 

in the reactivation the landslide along with numerous other factors (Grenier and Woodward 

Consultants1991).To understand the effects of the rise in the water level on the residual 

friction angle of the failure causing layer (weathered shale), a parametric study was 

conducted to determine the effect of rise in the reservoir level on the residual friction angle. 

The analyses were performed using 2D limit equilibrium methods, 2D finite element method 

and 3D limit equilibrium method. Morgenstern – Price, Spencer and Bishop’s Simplified 

methods are considered in case of 2D limit equilibrium method.  Only Bishop’s Simplified 

method is considered in case of 3D limit equilibrium analysis because of convergence 

problems with Morgenstern-Price and Spencer’s methods. The reservoir level just after the 

completion of the construction of the Oahe dam was reported to be 1435 ft and reached its 

normal operating level of 1585 ft by 1962 and later raised to 1600 ft by 1972. The highest 

reservoir level was reported to be 1620 ft. Hence the reservoir levels of 1585 ft, 1600 ft and 

1620 ft were selected to perform the analyses. The ground water level has been varied 

proportionally with the reservoir level. 

4.2 Two dimensional analyses using Limit Equilibrium Method 

The geologic cross section selected for a 2D analysis is discussed in Section 3.4. A 2D 

view analyzes the vertical cross section with a unit width. The plan view of the section is 

included as Figure A-1 in the appendix. The analysis is performed in Morgenstern – Price, 

Spencer, Bishop’s Simplified methods. The software used for this purpose is SLOPE/W from 

GEOSTUDIO version 2007. Description of the software is included in Section 2.5.1.  
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First, the reservoir level considered to be 1585 ft. The ground profile of the slope 

consists of five different soil layers – the Fill, Loess, Till, Weathered shale and the fresh 

shale as shown in Figure 4-1 and the geologic parameters considered are as discussed in 

Table 3-1. In Figure 4-1 the blue dotted line represents the water level and the slip surface is 

shown starting from the layer of loess and further passing along the border of contact of the 

weathered shale and the firm shale. All the soil layers are modeled using the Mohr – 

Coulomb’s model. As there was no information about the variation of geologic parameters in 

the vertical direction, a linear-elastic behavior is considered. This soil model is kept constant 

for analyses performed at all the three water elevations.  

 

Figure 4-1: Slope/W representation of the slope at reservoir elevation of 1585 ft 

Figure 4-2 represents the analyzed cross section of the slope at a reservoir level of 1585 ft. 

The green colour shaded area represents the sliding surface area The Figure 4-2 represents 

the analysis using the Morgenstern – Price method. The residual friction angle obtained by 

this analysis is 6.21. The factors of safety values obtained by the other limit equilibrium 

methods at this particular friction angle value are tabulated in Table 4-1. This table shows the 

variation in the limit equilibrium methods for the Forest City landslide under same geologic 

conditions. 
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Figure 4-2: Slip surface at reservoir level of 1585 ft 

Table 4-1: Summary of Factor of safety values for 2D LEM analysis at reservoir level of   1585 ft 

Limit Equilibrium 

Method 

Reservoir Level 

(ft) 

Residual Friction 

Angle (Ør
’
) 

Factor of Safety 

(FOS) 

Morgenstern - Price  

1585 

 

 

6.21 

1.000 

Spencer 1.012 

Bishop’s Simplified 

Method 

1.181 

 

Second, the analysis is performed at the reservoir level of 1600 ft. The Figure 4-3 

represents the section. The cross section is same as the section used for the analysis at 

reservoir level of 1585 ft. The only variation is the reservoir level. Also, the ground water 

level is varied proportionally with the reservoir level.  
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Figure 4-3: Slope/W representation of the slope at reservoir elevation of 1600 ft 

  

Figure 4-4: Slip surface at reservoir level of 1600 ft 

Figure 4-3 represents the analyzed cross section of the slope at a reservoir level of 1600 ft. 

The green colour shaded area represents the sliding surface area The Figure 4-3and Figure 

4-2 represents the analysis using the Morgenstern – Price method. The residual friction angle 

obtained by this analysis is 6.61. The factors of safety values obtained by the other limit 

equilibrium methods at this particular friction angle value are tabulated in Table 4-2. This 

table shows the variation in the limit equilibrium methods for the Forest City landslide under 

same geologic conditions. 
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Table 4-2: Summary of Factor of safety values for 2D LEM analysis at reservoir level of 1600 ft 

Limit Equilibrium 

Method 

Reservoir Level 

(ft) 

Residual Friction 

Angle (Ør
’
) 

Factor of Safety 

(FOS) 

Morgenstern - Price  

1600 

 

6.61 

1.000 

Spencer 1.011 

Bishop’s Simplified 

Method 

1.187 

 

Third, the analysis is performed at the reservoir level of 1620 ft, the highest reservoir 

level. The Figure 4-5 represents this section. The cross section is same as the section used for 

the analysis at reservoir levels of 1585 ft and 1600ft. The only variation is the reservoir level.  

 

  

Figure 4-5: Slope/W representation of the slope at reservoir elevation of 1620 ft 
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Figure 4-6: Slip surface at reservoir level of 1620 ft 

Figure 4-6 represents the analyzed cross section of the slope at a reservoir level of 1620 

ft. The green colour shaded area represents the sliding surface area. The Figure 4-6 represents 

the analysis using the Morgenstern – Price method. The residual friction angle obtained by 

this analysis is 7.4. The factors of safety values obtained by the other limit equilibrium 

methods at this particular friction angle value are tabulated in Table 4-3. This table shows the 

variation in the limit equilibrium methods for the Forest City landslide under the same 

geologic conditions. 

Table 4-3: Summary of Factor of safety values for 2D LEM analysis at reservoir level of 1620 ft 

Limit Equilibrium 

Method 

Reservoir Level 

(ft) 

Residual Friction 

Angle (ør
’
) 

Factor of Safety 

(FOS) 

Morgenstern - Price  

1620 

 

 

7.4 

1.000 

Spencer 1.006 

Bishop’s Simplified 

Method 

1.186 
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4.3 Two Dimensional Analyses for Residual Shear Strength Properties 

Using Finite Element Method: 

Finite element analysis is done by including the stress-strain relationship of the soil 

layers in the traditional stability analysis. So to perform a slope stability analysis using the 

finite element method in GEOSTUDIO both SIGMA/W and SLOPE/W softwares are used. 

SIGMA/W is used for calculating the stress values and SLOPE/W is used for conducting the 

stability analysis as done in limit equilibrium methods. Traditionally the slope stability 

analysis using finite element method was done by the strength reduction method. In the 

strength reduction method an elastic-plastic analysis is performed by equally reducing the 

shear strength properties (c, Ør

) of all the soil layers by a particular factor i.e., weakening 

the soil artificially, until the slope fails (Griffiths and Lane 1999). This is done by using the 

stress redistribution type of analysis specified in SIGMA/W. However, the strength reduction 

method has some limitations as discussed by (Krahn 2007). Hence, it is a more preferred 

method to calculate the stresses using SIGMA/W and implement those stresses in a 

SLOPE/W model and perform the conventional trial slip surfaces stability analysis 

(SLOPE/W 2010). This method is known as the finite element stress based method and a 

detailed explanation of the method is included in SLOPE/W 2010 manual. 

In the present case study, a Modified Cam Clay model is considered to represent the 

soil model. The Modified Cam Clay model is discussed in Section 2.4.1. The procedure to 

perform the stability analysis specified in the SIGMA/W manual is followed. Initially, the in 

situ stress values are calculated for the cross section specified in Figure 4-7 using insitu type 

model in SIGMA/W. Next, the cross section with the stresses calculated is analyzed 

traditionally by SLOPE/W with the defined slip surface. The required factor of safety is 

obtained (Unity value in this case). Figure 4-8 represents the back analyzed model solved by 

SLOPE/W using initial stresses calculated from SIGMA/W. The geological parameters, 

elevation of the reservoir level and the slip surface are same those considered for the 2D limit 

equilibrium analysis. The analysis is performed at three different reservoir levels – 1585 ft, 

1600 ft and 1620 ft. The fixed X/Y boundaries conditions are implemented for all the finite 
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element models and a mesh element size of 400 ft. The shape of the mesh is defined by quads 

and triangles. 

 

 

Figure 4-7: Cross section at reservoir level of 1585 ft with finite element mesh for computing the 

insitu stresses 

 

Figure 4-8: Back analyzed section in SLOPE/W showing the obtained factor of safety 

Figure 4-7 and Figure 4-8 represent the finite element analysis performed at the reservoir 

level of 1585 ft. The residual friction angle value obtained at this reservoir elevation is 6.64. 
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Figure 4-9: Cross section at reservoir level of 1600 ft with finite element mesh for computing the 

insitu stresses 

 

 

Figure 4-10: Back analyzed section in SLOPE/W showing the obtained factor of safety 

Figure 4-9 and Figure 4-10  represent the finite element analysis at the reservoir level of 

1600 ft. The residual friction angle obtained is 7.165. 
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Figure 4-11: Cross section at reservoir level of 1620 ft with finite element mesh for computing the 

insitu stresses 

 

 

Figure 4-12: Back analyzed section in SLOPE/W showing the obtained factor of safety 

Figure 4-11 and Figure 4-12 represent the finite element analysis at the reservoir level of 

1620 ft. and the residual friction angle obtained is 7.81.  All the residual friction angle 

values obtained from the finite element analysis are shown in Table 4-4. 
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Table 4-4: Summary of Factor of safety values for 2D FEM analysis 

Finite Element 

Method 

Reservoir Level (ft) Residual Friction 

Angle (ør
’
) 

Factor of Safety 

(FOS) 

SIGMA/W 

Stress 

1585 6.640 1 

SIGMA/W 

Stress 

1600 7.165 1 

SIGMA/W 

Stress 

1620 7.810 1 

 

4.4 Three Dimensional Analysis Using Limit Equilibrium Method 

In this thesis CLARA/W software is used to conduct the 3D analysis slope stability 

analysis for the Forest city landslide. CLARA/W is a slope stability analysis software built 

using limit equilibrium framework and was described in Section 2.5.3. Both 2D and 3D 

analysis can be performed simultaneously. Morgenstern-Price, Spencer’s method, Bishop’s 

simplified method and Janbu methods are available in CLARA/W. Analyses are conducted in 

all these methods at reservoir elevations of 1585 ft, 1600 ft and 1620 ft only in 3D. The first 

task in the analysis is to create a 3D profile of the landslide. Figure A-2 represents the plan of 

the forest city area showing the locations of boreholes for investigation of roadway 

realignment. To create the 3D profile of the landslide, different cross sections in the range of 

landslide area are considered. A total of seven cross sections as shown in the Figure A-2 

(represented by red colored bold lines) are considered. Among these sections, the section 5 

was the same cross section used in 2D analysis in limit equilibrium and finite element 

methods in sections 4.2 and 4.3 respectively. Hence, profile of the section 5 is directly 

adopted from the 2D analysis. The profile of the sections 4 and 6 were prepared by using the 

borehole data from the nearby boreholes. The borehole data for the boreholes specified in 

this figure are in included in the geotechnical report provided by the Woodward Clyde 

Consultants (1991). But for sections 1, 2 and 7, no borehole information was available. So, 
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based on the details from the neighboring section i.e. section 3 for 1 and 2, and section 6 for 

7 the soil profiles were interpolated. 

Figure 4-13 represents the plan of the columns considered in the analysis of the landslide 

and the red colored solid lines represent the input cross sections same as in Figure A-2.  

Figure 4-14 to Figure 4-20 show the stratigraphic profiles of the seven sections selected to 

reasonably represent the extent of the landslide. All the sections were orthogonally 

interpolated i.e., linear interpolation between each pair of adjacent input points both in Y and 

X direction (CLARA/W 2001). In all the sections, the blue colored line among the other 

stratigraphic lines represents the piezometric line at each section. Because of unavailability 

of ground water levels at all the sections, a uniform ground water table is assumed in all the 

seven sections. The ground water level shown in Figure 4-14 to Figure 4-20 is related to the 

reservoir level of 1620 ft. As the input stratigraphic profiles remain constant for other two 

reservoir levels (1585 ft and 1600 ft) except for the elevation of the piezometric line, they are 

not documented in this thesis.  
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Figure 4-13: Plan of column assembly with input cross sections 

Figure 4-14: Stratigraphic profile of Section 1 in CLARA/W at reservoir elevation of 1585 ft 
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Figure 4-15: Stratigraphic profile of Section 2 in CLARA/W at reservoir elevation of 1620 ft 

 

Figure 4-16: Stratigraphic profile of Section 3 in CLARA/W at reservoir elevation of 1620 ft 
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Figure 4-17: Stratigraphic profile of Section 4 in CLARA/W at reservoir elevation of 1620 ft 

 

Figure 4-18: Stratigraphic profile of Section 5 in CLARA/W at reservoir elevation of 1620 ft 
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Figure 4-19: Stratigraphic profile of Section 6 in CLARA/W at reservoir elevation of 1620 ft 

 

Figure 4-20: Stratigraphic profile of Section7 in CLARA/W at reservoir elevation of 1620 ft 
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Figure 4-21: 3D slope surface of Forest city landslide created by CLARA/W 
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Figure 4-22: 3D model representing the wedged slip surface of Forest city landslide, created by 

CLARA/W 
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Figure 4-21 shows the 3D profile of the Forest city slope. In this figure the mesh shown 

represents the plan of the columns that are considered in the analysis. For 3D analysis the 

geologic properties for each soil layer are considered to be uniform in all the sections as 

CLARA/W’s framework for geologic parameters of the soil remain constant for all the 

sections. The geologic properties are the same as considered for the 2D analysis (Table 3-

1).The analysis is performed by defining the slip surface at each section. Figure 4-22 

represents the failure wedge surface. The area in the pink shaded region represents the entire 

extent and shape of the Forest city landslide. Figure 4-23 shows the program output of the 

analysis, using Morgenstern-Price method at a reservoir elevation of 1585 ft. In this, the plan 

view entire sliding area is shown with contours representing the soil layers. Under the single 

column output option, the factor of safety for each column in the entire sliding area can be 

obtained. Also, the factor of safety values obtained for other limit equilibrium methods - 

Spencer, Bishop and Janbu’s method can be obtained simultaneously. Same analysis was 

repeated by changing the reservoir levels to 1585 ft and 1600 ft.  Table 4-5 shows the 

factor of safety values obtained at each reservoir elevation for different limit equilibrium 

methods.  

 Table 4-5: Summary of the Factor of safety values obtained from 3D analysis  

Limit Equilibrium 

 Method 

Reservoir 

Level (ft) 

Residual Friction 

Angle (ør
’
) 

Factor of Safety 

(FOS) 

Bishop’s Simplified Method 1585 4.00⁰ 1.00 

Bishop’s Simplified Method 1600 4.70⁰ 1.00 

Bishop’s Simplified Method 1620 5.70⁰ 1.00 
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Figure 4-23: Summary of CLARA/W output at reservoir elevation of 1585 ft
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4.5  Discussion of the Results 

This section consists of discussion on the sensitivity of the residual friction angle in the 

weathered shale layer to the rise in the reservoir and ground water levels. A comparison of 

the factor of safety values obtained for the different analytical methods used in this study is 

included in this part.  

4.5.1 Comparison of the residual friction angle obtained in different methods 

Residual friction angle for Pierre Shale layer in the Forest City landslide are investigated 

in different methods of analysis to obtain its realistic ranges of values. Section 4.2 shows the 

analysis performed by 2D limit equilibrium methods – Morgenstern-Price, Spencer’s and 

Bishop’s Simplified methods. Section 4.3 shows the analysis performed by 2D FEM method 

using ground in situ stresses calculated by SIGMA/W. Section 4.4 shows the analysis results 

obtained from 3D limit equilibrium method – Bishop’s Simplified method. The friction angle 

shows an 8% increase when reservoir level in increased to 1600 ft from 1585 ft and an 

increase of 18% when raised to 1620 ft from 1585 ft. The stabilizing effect can be attributed 

to the trend observed. This trend indicates that the failure might have occurred when the 

reservoir was at 1585 ft and residual friction angle could be any one of the angle obtained at 

1585 ft reported in Table 4-6 depending on the method of analysis. Since the 3D method is 

known to be more realistic, 4° can be selected as the residual friction angle for the Pierre 

Shale in this case. Table 4-6 shows the residual friction angles obtained in 2D LEM, 2D FEM 

and 3D LEM using SLOPE/W, SIGMA/W and CLARA/W respectively. From the results, 

three important observations are made. First, a consistently increasing trend is observed in 

the friction angle values as the reservoir level increases. Second, the highest frictional angle 

value at a particular reservoir elevation is obtained by the 2D Finite element method and the 

least value is obtained by the 3D limit equilibrium method. Third, comparing 2D analyses 

methods the friction angle obtained by FEM is more than the friction angle obtained from 

LEM.  

The first trend of increase in friction angle values with a rise in reservoir level can be 

explained by the fact that the increase in the reservoir level adds counter weight near the toe 



50 

 

 

of the embankment to the moving land mass causing a stabilizing effect. For instance, in case 

of 2D FEM analysis as shown in Table 4-6 the residual friction angle value increases from 

6.64 to 7.165 and to 7.81 as reservoir levels changes to 1585 ft to 1600 ft and to 1620 ft 

respectively. The friction angle shows an 8% increase when reservoir level in increased to 

1600 ft from 1585 ft and an increase of 18% when raised to 1620 ft from 1585 ft. The 

stabilizing effect can be attributed to the trend observed. This trend indicates that the failure 

might have occurred when the reservoir was at 1585 ft and residual friction angle could be 

any one of the angle obtained at 1585 ft reported in Table 4-6 depending on the method of 

analysis. Since the 3D method is known to be more realistic, 4can be selected as the 

residual friction angle for the Pierre Shale in this case.  

The second trend is explained as follows - Among the methods of analysis presented in 

this thesis, the values obtained from the 3D analysis are observed to be low when compared 

to the 2D analysis results. The reason for this trend is that the 2D analysis does not consider 

the end effects of the slide and the shear resistance along the sides of the slide mass. Hence, 

the 2D analysis results are shown to be mostly greater than the 3D analysis results. The 2D 

analysis results yield a conservative estimate of the strength factors. According to Duncan 

(1996), Azzouz et al. (1981) and Leshchinsky and Huang (1992) neglecting the 3D effects in 

the analyses results in a very high back calculated shear strength values. In order discern the 

extent of the conservatism for this particular case study in terms of the factor of safety 

obtained from the 3D LEM analysis, a comparison of the factor of safety values obtained for 

the residual friction angles obtained in 2D LEM and FEM are calculated using CLARA/W 

software in 3D. The values obtained are tabulated in Table 4-7. Also, it is observed that the 

relative difference between 2D and 3D factor of safety values is decreasing. This trend is 

shown in Table 4-7. This could possibly due to the end effects in 3D analysis due to increase 

in the reservoir levels. 
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Table 4-6: Summary of the results obtained from the 2D and 3D analysis 

 

Reservoir Level (ft) 

 

Analytical  Method 

 

Residual Friction Angle (ør
’
) 

 

 

 

1585 

 

2D – LEM (Bishop’s 

Method) 

 

5.2 

2D – FEM (SIGMA/W 

stress) 

 

6.64 

3D – LEM (Bishop’s 

Method) 

 

4 

 

 

 

1600 

 

2D – LEM (Bishop’s 

Method) 

 

5.52 

2D – FEM (SIGMA/W 

stress) 

 

7.165 

3D – LEM (Bishop’s 

Method) 

 

4.7 

 

 

 

1620 

2D – LEM (Bishop’s 

Method) 

 

6.2 

2D – FEM (SIGMA/W 

stress) 

 

7.81 

3D – LEM (Bishop’s 

Method) 

5.7 

 

Table 4-6 shows that at reservoir level of 1585 ft, the residual friction angle value of 

5.2and 6.64
 
obtained from 2D LEM and 2D FEM respectively when incorporated in 3D 

LEM software CLARA/W give a factor of safety of  1.15 and 1.34 respectively. When 

compared to the original 3D LEM factor of safety value one obtained at Ør
 
= 4, these are 

15% and 34% more. So, at this particular reservoir elevation the factor of safety values 

obtained from 2D LEM and 2D FEM are 15% and 34% more conservative than the factor of 
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safety from 3D LEM analysis. Similarly at the other two reservoir elevations when 

calculated, the 2D LEM and 2D FEM safety factor values vary by 9% and 29% more from 

the 3D LEM analysis at 1600 ft reservoir level and by 6% and 23% more at 1620 ft of 

reservoir level. In general, a 2D analysis is appropriate for a slope stability analysis because 

it gives a conservative estimate of the factor of safety (Duncan 1996). A 3D analysis is 

recommended in cases of back analysis for designing of remedial measures for failed slopes 

(Stark and Eid 1998), slopes with complicated topography, and slopes with complex pore-

water pressure condition because effects from the spatial variation of these properties is 

important in the stability analysis. 

In Table 4-8 the factor of safety value for Morgenstern-Price method is back analyzed to 

be unity and then the residual friction angle values obtained from 2D spencer’s method and 

2D FEM are incorporated in the same SLOPE/W program and analyzed to get the factor of 

safety values for comparison purpose. A 3D analysis is not included in this comparison, as 

convergent solutions cannot be obtained using Morgenstern-Price and Spencer’s methods in 

3D analysis using CLARA/W. From Table 4-8 it is observed that the variation of factor of 

safety values between Morgenstern-Price and Spencer’s method is 1.6%, 1.1% and 0.6% at 

1585 ft, 1600 ft and 1620 ft of reservoir elevations respectively. The variation is minimal and 

ranges from 0.5% to 1.6%. Hence, this justifies the point that the Morgenstern-Price and 

Spencer’s gives approximately similar results as their assumptions for solving a slope 

stability analysis problem are the same and satisfy both force equilibrium and moment 

equilibrium conditions. The factor of safety values between Morgenstern-Price and 2D FEM 

varies as 6.3 %, 8 % and 5 % for the three reservoir levels. The variation ranges from 5 % to 

8 % indicating that the both the methods give approximately similar results. However, the 

FEM in a slope stability analysis is considered to be accurate (Griffiths and Lane 1999). This 

variation between the LEM and FEM factor of safety values could be due to different 

approaches followed by these methods for calculating the stress values. 
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Table 4-7: Summary of the factor of safety values obtained 3D analysis using CLARA/W 

Reservoir level (ft) Analytical 

Method 

Residual 

Friction Angle 

(ør
’
) 

FOS 

( 3D LEM – CLARA/W ) 

 

 

 

 

1585 

2D LEM 

(Bishop’s Method) 

 

5.2 

 

1.15 

2D FEM 

(SIGMA/W stress) 

 

6.64 

 

1.34 

3D LEM 

(Bishop’s Method) 

 

4 

 

1.00 

 

 

 

 

1600 

2D LEM 

(Bishop’s Method) 

 

5.52 

 

1.09 

2D FEM 

(SIGMA/W stress) 

 

7.165 

 

1.29 

3D LEM 

(Bishop’s Method) 

 

4.7 

 

1.00 

 

 

 

 

1620 

2D LEM 

(Bishop’s Method) 

 

6.2 

 

1.06 

2D FEM 

(SIGMA/W stress) 

 

7.81 

 

1.23 

3D LEM 

(Bishop’s Method) 

 

5.7 

 

1.00 

 

Laboratory tests were also performed to find out an estimate of the residual friction angle 

in the weathered shale layer. A comparison of the laboratory values with the values obtained 

from back analysis reported in this thesis is shown in Table 4-9. The values obtained from 

the back analysis are approximately 10 % less than the value reported by Schaefer (2002) and 

varies 2 % to 8 % with the values reported by Bump (1988) This variation between the 

residual friction angle values could be attributed to the insitu stresses in the field, sample 



54 

 

 

preparation for laboratory testing etc. The value reported by (Grenier and Woodward 

Consultants1991).is at reservoir elevation of 1585 ft. this value is in good agreement with the 

values obtained by both 2D LEM and 2D FEM at same reservoir elevation. 

Table 4-8: Summary of the factor of safety values obtained from 2D LEM and 2D FEM analyses 

Reservoir Level (ft) Analytical Method FOS 

 

 

 

 

1585 

2D LEM (Morgenstern – 

Price) 

 

1.000 

2D LEM (Spencer’s 

method) 

 

1.012 

2D FEM 

(SIGMA/W stress) 

 

1.063 

 

 

 

 

1600 

2D LEM (Morgenstern – 

Price) 

 

1.000 

2D LEM (Spencer’s 

method) 

 

1.011 

2D FEM 

(SIGMA/W stress) 

 

1.076 

 

 

 

 

1620 

2D LEM (Morgenstern – 

Price) 

 

1.000 

2D LEM (Spencer’s 

method) 

 

1.006 

2D FEM 

(SIGMA/W stress) 

 

1.049 
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Table 4-9: Residual friction angles obtained from laboratory testing and back analyses 

Reference Residual friction 

angle (ør′) 
Test Type 

Schaefer & Lohnes (2001) 7.20 to 8.10 RDS – reversal direct shear 

test 

Bump (1988) 6.40 to 8.00 RDS – reversal direct shear 

test 

SDDOT (1991) 6.3 Back analysis - STABL5M 

2D LEM – back analysis (in this 

thesis) 

6.21 to 7.40 2D LEM – back analysis 

(SLOPE/W) 

2D FEM – back analysis (in this 

thesis) 

6.64 to 7.81 2D FEM – back analysis 

(SIGMA/W) 

3D LEM – back analysis (in this 

thesis) 

4 to 5.7 3D LEM – back analysis 

(CLARA/W) 
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CHAPTER 5. CONCLUSIONS 

A parametric study was conducted to investigate the sensitivity of the residual friction 

angle value to the variation in the reservoir level and the ground water level. The reservoir 

level and the ground water level were varied proportionately ranging from the normal 

operating level of the reservoir, 1585 ft. to the highest reservoir level of 1620 ft. Also, the 

back analysis to obtain the residual friction angle value at different reservoir elevations was 

performed in 2D LEM (Morgenstern-Price, Spencer’s and Simplified Bishop’s method), 2D 

FEM (SIGMA/W stress method) and 3D LEM (Simplified Bishop’s method). A comparison 

of the residual friction angle values obtained from these analytical methods is reported. The 

following conclusions are based on the 2D and 3D slope stability analyses performed in the 

parametric study. 

1. The increase in the reservoir level has a stabilizing effect on the landslide and the 

effect is noticed in the increasing trend of the residual friction angle values obtained 

from the analyses, as the reservoir level increases from 1585 ft. to 1620 ft. This trend 

indicates that the failure might have caused at the reservoir elevation of 1585 ft. Based 

on the 2D analysis results the possible friction angle range could be between 6.21 and 

6.64 

2.  The variation in the factor of safety values obtained in 3D analysis and 2D analysis is 

attributed the end effects considered in the 3D analysis approach. A variation of 6 % to 

15 % increase in the factor of safety values is observed with 2D LEM –Simplified 

Bishop’s method of analysis and a variation of 30 % increase is observed with 2D 

FEM of analysis. 

3. The factor of safety values obtained using 2D FEM of analysis show an increase of 

approximately 5 % from the factor of safety values obtained by the 2D LEM. 

4. The residual friction angle values obtained from the 2D analysis are in good agreement 

with the reported laboratory values. 
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Finally, to select a possible range for residual friction angle value for Pierre shale the 

values obtained at reservoir level of 1585 ft can be considered because the least strength is 

obtained at this elevation. So, considering that the failure has triggered at this reservoir 

elevation the range of friction angles 4 to 6.64 is selected from the 2D and 3D analyses. 

The friction angle 4is selected from the 3D analysis and 6.64 is selected from the 2D FEM 

analysis. But for the design of remedial measures the residual angle obtained from a 3D 

analysis is known to be more reasonable than the angle from 2D analysis because the 3D 

analysis considers the 3D end effects. Ignoring these effects makes the friction angle 

obtained from a 2D analysis to be conservative. The residual friction angle value used by the 

South Dakota DOT to design remedial measures for this slope was reported to be 6.3 

(shown in Table 4-9) at reservoir elevation of 1585 ft. This value is in good agreement with 

the selected range of 4 to 6.64. 

5.1 Scope for Subsequent Research 

The results herein can be extended by, 

1. Performing a detailed back analysis using a 3D Finite element method and a 

comparative study can also be done with the values reported in this thesis to 

understand the effects of Finite element stresses in 3D. 

2. Conducting a study on the variation of pore water pressure as the reservoir level 

increases by conducting analysis using SEEP/W. Its variation in 2D and 3D can be 

studied and then its effect on the factor of safety values can be investigated. 

3. Performing 3D analysis using other commercial software such as PLAXIS (for FE 

analysis), FLAC 3D (for Finite difference analysis), ANSYS (for FE analysis) or 

any commercial FE softwares and 3D analysis can be conducted by other limit 

equilibrium methods (Only Bishop’s Simplified method is used in this study). 

4. A Reliability analysis on the factor of safety and residual friction angle values 

obtained in this thesis.  
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APPENDIX 

 

Figure A-1: Plan view of section AA′ (adopted from Grenier and Woodward Consultants1991) (not 

to scale) 
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Figure A -2: Plan showing the borehole locations and cross sections selected for the 3D analysis using CLARA/W (adopted from Grenier and Woodward Consultants1991) (not to scale)  
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