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ABSTRACT 

Recycled asphalt shingles (RAS) have been used in road pavement construction for a number 

of years primarily on low volume roads.  The use of RAS represents economic and 

environmental opportunities as it provides as good or better performance when processed and 

proportioned appropriately than commonly used asphalt mixtures.   The primary components of 

RAS are asphalt, mineral filler, mineral granules, and felt.  The effect of RAS fibers on an 

asphalt mixture’s dynamic modulus, which is a key input in the Mechanistic-Empirical Pavement 

Design Guide (MEPDG) and one of the critical properties of asphalt mixtures affecting flexible 

pavement responses that are related to its performance, are still uncertain.  

The National Pooled Fund Study #1208 conducted a series of researches to investigate 

various issues related to RAS utilization. Thirteen mix designs with RAS contents ranging from 

zero to six percent were developed and constructed in Indiana, Iowa, Minnesota, and Missouri. 

Field produced mixtures were procured and sent to Iowa State University Asphalt Lab for 

laboratory dynamic modulus tests.  The testing results are used to evaluate two commonly used 

dynamic modulus predictive models, the Witczak and Hirsch models. Two versions of Witczak 

models, which were developed in 1999 and 2006, are evaluated in this research. It was found that 

the Witczak models were not very effective in estimating the modulus values of RAS mixtures 

and thus modifications were made to the models to account for the effects of RAS. The study did 

determine out that the commonly used dosage of RAS in asphalt mixtures does not affect the 

prediction accuracy of the Hirsch model, however updates were made to improve the Witczak 

model’s accuracy.  
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CHAPTER 1: INTRODUCTION 

BACKGROUND 

Environmental and economic concerns are important components in decision making 

processes of infrastructure construction projects. With the fact that the global crude petroleum 

price has increased rapidly in the past decade, liquid asphalt price has grown dramatically and is 

more than $500/ton in 2010 [1]. As a product derived from petroleum distillation, asphalt is 

becoming less available and more expensive because the crude petroleum is being used to 

produce other products and restricted supply. Pavement engineers have been considering 

substitutions of virgin asphalt for the past few years. Recycling of wasted materials such as 

recycled asphalt pavement (RAP) and recycled asphalt shingles (RAS) provide possible solutions 

to address this issue. These recycled materials can be used in roadway construction in order to 

reduce the dependence on virgin asphalt binder. 

RAS has been utilized in road paving practices for over 20 years. In the early 1990s, hot mix 

asphalt (HMA) pavements containing RAS were experimentally used in the State of 

Pennsylvania. A 0.93 mile four-lane highway was constructed with mix containing 5 percent 

RAS in July, 1991 which is the first road paved with RAS [2]. In the same year, the Minnesota 

Department of Transportation (Mn/DOT), the Minnesota Office of Environmental Assistance 

(OEA), and the University of Minnesota started a research project to investigate the effectiveness 

of pavements containing RAS and the influences of shingle products on mix properties. This 

study recommended a maximum RAS content of 5 percent to be used. This recommendation was 

legislated as a state specification in 1995[3]. Disney World in Orlando, Florida, built its parking 

lots with a high RAS content of 10 percent in the early 1990s. This pavement has performed very 

well for the past 20 years [4]. RAS can be recycled from either manufacturer’s scrap or building 

reroofing process. Materials from manufacturer’s scrap are known as pre-consumer shingles or 

manufacturer’s shingles. Materials from reroofing projects are known as post-consumer or tear-

off shingles. It is estimated that approximately 1 million tons of pre-consumer shingles and 10 

million tons of post-consumer shingles are generated in the United States every year [5]. Most of 

them are deposited into landfills. Environmental issues related to this are considerable and 

become one of the motivations of utilization of recycled shingles in pavement construction. 

Some state agencies have allowed RAS to be used with certain maximum percentages in HMA. 
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Most states agencies limit the use of RAS to 5% by weight of the total aggregate. Figure 1 shows 

the states that currently allow the utilization of RAS in HMA. In a 2011 supplemental 

specification, the State of Ohio allows the use of either manufacturer’s RAS or tear-off RAS 

depending on the particular pavement courses [6]. It should be noticed that the Ohio only allows 

the using of manufactured RAS in Figure 1.  

 

Figure 1: States in the United States Allowing Using of RAS [7] 

 

Dynamic complex modulus (E
*
) is a measure of the stiffness of viscoelastic materials. It is 

one of the most important HMA properties which are used to examine pavement responses such 

as stress, strain, and deflection in the Mechanistic-Empirical Pavement Design Guide (MEPDG). 

The MEPDG is a pavement design and performance predicting method developed by the 

National Cooperative Highway Research Program (NCHRP) in 2002 to address shortcomings in 

current pavement design methods [8]. The MEPDG uses mechanical principles to calculate 

aforementioned pavement responses. Empirical models are used to predict pavement 

performance from the pavement responses. There are many E* predictive models developed by 

various empirical and mechanical methods such as statistical regression, artificial neural 

networks, ultrasonic direct test method, and so on. The Witczak and Hirsch models are the most 
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well-known procedures among them. The Witczak Model is an empirical model developed by 

Matthew W. Witczak in 1972 [9]. Revisions were made to the model in 1995, 1999, and 2006.  

The model is based on a sigmoidal function which is used to describe the relationship between 

the dynamic modulus and loading rate. Aggregate gradation, volumetric properties of mixtures, 

and binder rheological properties are addressed in the Witczak Model. The Hirsch Model was 

developed by Y.J. Hirsch in the 1960s [10]. The Hirsch Model is a semi-empirical model based 

on the law of mixture. There are several versions of the Hirsch Model. Christensen, Pellinen, and 

Bonaquist conducted research in 2003 that evaluates various Hirsch models and recommends the 

most effective model to be used.  

PROBLEM STATEMENT 

The MEPDG was adopted as a pavement design guide by the American Association of State 

Highway and Transportation Officials (AASHTO) in April, 2011. With the promoted 

implementation of the MEPDG design procedures, pavement engineers’ interest in a quick, easy, 

and accurate method of obtaining dynamic modulus value are increasing. Laboratory dynamic 

modulus testing is usually conducted to obtain the E* value directly from a subject mix. 

However, the testing requires a series of expensive sampling and testing equipment, experienced 

lab personnel, and a relative long waiting time before knowing the results. The E* predictive 

models were developed as an alternative method of obtaining the dynamic modulus values. The 

E* values can be easily calculated from other basic properties of aggregate, binder, and mixture 

without a specifically designed E* experiment. The predictive models do not require any lab 

equipment and the values can be estimated instantly. However, there are many factors that can 

affect the dynamic modulus of mixes and are not addressed in the E* predictive models. When 

these factors come into effect, the predicting accuracies of the models will decrease. RAS is one 

of the factors that are not addressed by the Witczak and Hirsch Model. The research is motivated 

by the needs of a reliable E* predictive method for mixes containing RAS.  

OBJECTIVES 

The demonstration projects for National Pooled Fund Study 1208 that were constructed in 

the Summers of 2008, 2009, and 2010 are contained in this thesis. The objective of the pooled 

fund study is investigating issues related to the use of RAS including effects on laboratory 

testing properties and field performance in different scenarios as well as issues in processing, 
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transportation, and storage of RAS. Mix designs for each demonstration project were developed 

individually for specific objectives. The Indiana demonstration project was developed to 

investigate different effects of RAS on HMA and warm mix asphalt using foaming technology. 

The demonstration project in Iowa was designed to study the influences of RAS content on 

performance. The Minnesota demonstration project was constructed for the purpose of 

comparing the effects of manufactured RAS and tear-off RAS. The Missouri DOT constructed 

the demonstration project to study the effects of RAS grind size. Various laboratory tests were 

performed to fulfill the objectives listed above. Some of the testing results are drawn to complete 

the following objectives for this research: 

 Evaluate the predictive accuracies of the 1999 and 2006 Witczak Models, and the 

Hirsch Model; 

 Identify factors that affect the predictive accuracies of the E* models; 

 Examine if the E* predictive models need to be calibrated to account for the effects of 

RAS; 

 Develop modified E* predictive models as needed; and 

 Evaluate the effectiveness of the modified models. 

METHODOLOGY 

The mix designs were developed by SUPERPAVE design procedures. The testing materials 

were produced in the field and sampled randomly. Laboratory tests were conducted by following 

the corresponding ASTM and/or AASHTO standards. The dynamic modulus values were tested 

in the laboratory. The input parameters in the E* predictive models were collected from QA/QC 

reports, lab testing results, and mix designs. Statistical analyses including Analysis of Variance 

(ANOVA) and Student’s t-test were performed to identify significant factors affecting the model 

accuracy and comparing multiple levels of significant factors. A non-linear regression approach 

based on the least square method was used to develop the modified models. The effectiveness of 

a model is evaluated by its goodness-of-fit and differences in master curves between the 

predicted E* values and the lab results. 

ORGANIZATION 

This thesis is divided into five chapters including the introduction (Chapter 1), literature 

review (Chapter 2), experimental plan (Chapter 3), evaluation and modification of the Witczak 
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and Hirsch Models (Chapter 4), and conclusions and recommendations (Chapter 5). Chapter 1 

provides brief descriptions of the background, addressed issues, objectives, and methodology. 

Chapter 2 discusses previous studies that have been conducted on recycled asphalt shingles, 

dynamic modulus, and the Witczak and Hirsch E* predictive models. Chapter 3 outlines the 

experimental plan and testing procedures. Chapter 4 summarizes the results of evaluations for the 

original and modified E* predictive models as well as a detailed description of the modeling 

process. Chapter 5 states the conclusions of the study and provides recommendations for future 

research. 
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CHAPTER 2: LITERATURE REVIEW 

ASPHALT SHINGLES 

Asphalt shingles are the most widely used material for building roofs. Compared to other 

roofing materials, such as wood shakes, metal, concrete, or clay, asphalt shingles are less 

expensive and easier to install and replace. Asphalt shingles are typically classified into two 

types, organic and fiberglass, depending upon the materials used to produce the base felt. The 

base felts for organic asphalt shingles are made from cellulosic fibers from woods or paper 

wastes. The fiberglass shingles use fiberglass as the primary component of their base felts. The 

manufacturing processes for both organic and fiberglass shingles are very similar. Firstly, felts 

are saturated with liquid asphalt. Secondly, additional asphalt layers are attached to cover both 

sides of the felts in order to make them waterproof. Finally, shingles are surfaced with mineral 

granules. Powdered limestone is usually added to asphalts as mineral stabilizer. Fibers can be 

used as fibrous stabilizer in fiberglass asphalt shingles. The purposes of adding stabilizers to 

shingles are to improve their fire resistance and weatherability. The procedures for producing 

organic and fiberglass asphalt shingles are specified in ASTM D225 and ASTM D3462 [11]. 

Asphalts used in producing shingles are stiffer and more viscous than the virgin asphalts that are 

commonly used in road pavements. An “air-blown” process is applied to prepare the asphalts for 

shingles. Air is injected into oxidizer with petroleum residue which was preheated to 400 °F (204 

°C) at a constant rate of 0.008 to 0.026 m
3
/sec/Mg. Oxygen reacts with asphalt molecules 

causing increase in the apparent molecular weight. The oxidization process increases the 

asphalt’s softening point and viscosity while decreasing its penetration [12]. 

Shingles typically consist of asphalt binder, aggregate, and fibers. The proportion of each 

component varies with shingle type and manufacturer. The most valuable component of shingles 

is asphalt. In general, organic shingles have higher asphalt contents and lower fiber contents 

compared to fiberglass shingles. Post-consumer shingles from reroofing construction contain 

more asphalt than pre-consumer shingles, due to weathering caused loss of surface granules. The 

largest component of shingles is aggregate including the ceramic granules, headlap granules, 

backsurfacer sand, and the stabilizer. Aggregates contained in shingles are very fine aggregates 

that pass the No.12 (1.7mm) sieve [12]. The typical shingle compositions are summarized in 
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Table 1. The percentages in Table 1 are based on total weight of shingle products. The shingle 

aggregate compositions and particle sizes are presented in Table 2. 

Table 1: Typical Shingle Composition [11] 

Material Organic Shingles Fiberglass Shingles 

Asphalt Binder 30-35% 15-20% 

Aggregate 30-50% 30-50% 

Fibers/Mineral Fines 15-35% 20-35% 

 

Table 2: Shingle Aggregate Compositions and Size [11] 

Component 

Typical Quantity 

percent by weight of 

sample 

Typical Size 

Ceramic Granules 10-20% 
passing No.12 

retained No.40 

Headlap Granules 15-25% Same as above 

Backsurfacer Sand 5-10% 
passing No.40 

retained No.140 

Stabilizer 15-30% 
90% passing No.100 

70% passing No.200 

 

Shingle Recycling 

Roofing waste can contain 10 to 15% (by weight) extraneous matters other than asphalt 

shingles, such as metal flashing, wood sheathing, paper, and nails [13]. Shingle wastes from 

manufacturers are relatively pure, whereas, Tear-off shingles must be cleaned before further 

processing. Debris in tear-off shingles can be cleaned by manual or mechanical separations [14]. 

Asbestos containing materials (ACM) are strictly controlled due to the hazard to worker health. 

Federal law requires ACM in recycled materials do not exceed 1% by weight [15]. Both tear-off 

shingles and manufacturer’s scrap have to be reduced into finer particles. Finer processed 

shingles are easier to transport and mix with asphalt mixtures. Georgia DOT requires all shingle 

scraps to pass the 12.5mm (1/2”) sieve [16]. The Texas DOT requires 95% of shingle scraps to 

pass 1/2” sieve. In most current practices, shingles are reduced to less than 1/2”. Processed 

asphalt shingles are recommended to use in a short range of time due to the storage and handling 

difficulties. Large clumps of asphalt can form and cause transportation and mixing problems, 

because shingle stockpiles can consolidate with time. Fine aggregate can be added to processed 
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shingles to alleviate the formation of asphalt clumps. This could reduce the asphalt content of 

processed shingles and has to be taken into account during mix design calculations [17]. 

Previous Researches and Practices of RAS Utilization 

Early RAS research focused on studying pre-consumer asphalt shingles. Many state agencies 

historically allowed only pre-consumer shingles to be used. In recent years, the research focus 

has shifted to post-consumer asphalt shingles because of the increased pricing of asphalt. The 

combination of RAS and RAP were studied in several recent research projects. 

Minnesota’s Shingle Scrap Research [3] 

A report prepared for the Minnesota Department of Transportation in October, 1996 studied 

the properties and performance of asphalt containing RAS pavements. In early the 1990s, three 

test sections were built on the Willard Munger recreational trail, Highway T.H.25 at south of 

Mayer and Highway 17 at Scott County respectively. Only pre-consumer RAS were studied in 

this research. Pavement conditions after 4 to 6 years from the completion of projects showed 

RAS content up to 7% by aggregate weight would not adversely impact pavement performance.  

Laboratory tests indicated the asphalt penetration at 77 °F of recovered binder containing RAS 

were less than those of binder without RAS. However, the stiffness increase of the asphalt binder 

due to RAS did not lead to significant low-temperature cracking problems. The Willard Munger 

recreational trail also included a test section containing recycled rubbers. A severe raveling issue 

was found for the rubber section. 

Mn/DOT RAS/RAP Research [18] 

A comprehensive research funded by the Minnesota Department of Transportation studied 

the effects of RAP and RAS on mixture lab testing results and field performance. Shingles 

studied in this research include both manufacturer’s scrap and tear-off shingles. Mixture testing 

samples were made from lab produced mixes. Three or five percent RAS were added with 0%, 

15%, 25%, and 30% RAP to make the mixtures for lab testing. Mixtures that contained RAP 

alone were also tested. Materials for binder testing were extracted from mixtures through a 

solvent centrifuge process described in ASTM D5404. Six field projects were observed to 

compare the pavement performance via resistance to different types of cracking and pavement 

permanent deformation. The following findings were found: 
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 The binder grading results showed both high and low temperature performance 

grades increased as the virgin to total binder ratio decreased. This correlation has R
2
 

value of 0.77 for the low temperature grade and 0.88 for the high temperature grade, 

respectively. Binders extracted from mixtures that contained tear-off shingles were 

found to be stiffer than binders from mixtures that contain manufacturer’s scrap. The 

stiffness difference between tear-off shingles and manufacturer’s scrap is larger for 

higher RAP contents. 

 For 5% RAS content, the |  | values for samples containing tear-off shingles are 

higher than those for samples containing manufacturer’s scrap at the high frequency 

end of master curves. At the low frequency end, the differences between the two 

types of shingles are not obvious. For 3% RAS content, the difference between tear-

off shingles and manufacturer’s scrap is limited. Dynamic modulus test results also 

showed the virgin to total asphalt content–stiffness correlation was valid at a high 

temperature (100 °F). 

 Asphalt Pavement Analyzer (APA) results indicated that pavement with recycled 

materials tended to have less rutting, 

 Moisture sensitivity test (Lottman) results indicated that RAS and RAP increased 

pavement moisture sensitivity which could potentially increase the risk of moisture 

damage cracking. 

 Comparisons between laboratory and field produced mixtures showed that asphalt 

mixtures prepared in the lab exhibited a higher stiffness than those prepared in the 

field. 

 Pavement condition survey results indicated that the pavement performance of mixes 

containing tear-off shingles and manufacturer’s scrap contained pavement are very 

similar. 

Laboratory Evaluation of Post-consumer RAS Contained HMA Mixture [19] 

A conference paper prepared for the Association of Asphalt Paving Technologists (AAPT) 

2011 annual meeting evaluated the influences of post-consumer RAS on various lab tests results. 

The binder and mixture materials were from an Illinois Tollway project on I-90 west of Chicago. 

The evaluated lab tests include DSR and bending beam rheometer (BBR) test for asphalt binders; 

as well as dynamic modulus, beam fatigue, and disc shaped compact tension (DCT) testing for 
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asphalt mixtures. In this project, RAS was used in combination with fractionated recycled 

asphalt pavement (FRAP). Eight mix designs with total recycled material content from 25% to 

50% were developed. Mixes with 5% RAS were compared to the mixes with the same amount of 

recycled material but containing 0% RAS. Lab results indicated the RAS increases asphalt binder 

stiffness. The stiffening effect was significant when lower FRAP contents were used. Binder 

high temperature performance grades were increased by adding 5% RAS to mixtures with total 

recycled materials less than 40%.For recycled materials more than 40%, the stiffening effect of 

RAS is not obvious. Dynamic modulus test results showed the mixture high temperature |  | 

values increased as additional FRAP was added. No significant improvements of |  | values 

were observed for recycled material percentages higher than 40%.The paper also indicated that 

the utilization of RAS and FRAP in asphalt pavement did not caused more fatigue damage. 

Oregon State University RAP/RAS Study [20] 

Oregon State University conducted a research project to investigate the effects of various 

proportions of RAP and tear-off shingles on binder high and low temperature grades. The report 

was published in February, 2010. Seven mix designs were studied with 0% or 5% RAS and RAP 

percentages ranging from 0% to 50% by the weight of total mixture. The study determined that 

5% RAS alone increased the recovered binder high and low temperature performance grades. 

Adding 10 to 30 percent RAP to mixes with 5% RAS could increase binder grades at both high 

and low temperatures. However, additional RAP above 30% did not cause further improvements 

of binder performance grades. The results agreed with the Cascione et al. study. 

DYNAMIC MODULUS 

Dynamic modulus, E*, is the absolute value of the complex dynamic modulus, which is the 

stress-to-strain ratio of linear viscoelastic materials under a continuous sinusoidal loading. It can 

be computed as the amplitude of the sinusoidal stress divided by the maximum recoverable 

strain:  

|  |  
  

  
 

Equation 1 

 

where |  |   dynamic modulus, 
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    maximum stress, and 

    maximum strain 

 

When the strain is at a small level which is less than 100 micro-strain (με), the asphalt stress-

strain relationship is considered linear viscoelastic [21]. For linear viscoelastic materials, 

material responses are time dependent. The corresponding strain occurs a period of time after a 

load is applied. The time lag is defined as the phase angle (Φ). For perfectly elastic materials, Φ 

equals to 0; and for perfect viscous materials, Φ equals to 1. The phase angle can be calculated 

by Equation 2 [22]:  

  
  

  
     

Equation 2 

 

where    phase angle, 

    lag time between stress and strain cycles, and 

    time of one strain cycle. 

 

Figure 2 demonstrates this process. The term “perfectly elastic” means material strain reacts 

to stress instantaneously. In other words, the material achieves its maximum strain at exactly the 

same time that the maximum stress is applied. The term “perfectly viscous” means the maximum 

strain occurs at the same time the minimum stress is applied. For any given time, the material 

stress to strain ratio is the complex dynamic modulus. The complex dynamic modulus can be 

mathematically expressed by Equation 3 [23]: 

   
 

 
 

          

            
 

Equation 3 

where the parameters are defined previously. 
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Figure 2: Stress and Strain of Typical Viscoelastic Material under Sinusoidal Loading 

 

The dynamic modulus is a measure of relative stiffness for viscoelastic materials. Asphalt 

mixtures that have higher dynamic moduli tend to deform less under a traffic loading than 

mixtures with lower dynamic modulus. At high temperatures, less deformation is related to better 

resistance to rutting. At low temperatures, high dynamic modulus pavements achieve high 

internal stresses which could result in greater susceptibility to low-temperature cracking. 

Dynamic Modulus Testing 

Coffman and Pagen at Ohio State University developed the first dynamic modulus protocol 

in the 1960’s [22]. It was accepted as an ASTM standard in 1979. The designation is D3496 in 

ASTM standards and TP62 in AASHTO specifications. The protocol came up with the idea of 

testing the dynamic modulus of viscoelastic materials from a triaxial test under a uniaxial 

sinusoidal stress. The stress could be either compressive or tensile; most dynamic tests were 

conducted with compressive stresses. Shear stress can also be used to determine the dynamic 

complex modulus for asphalt binders with a dynamic shear rheometer. The binder dynamic shear 

complex modulus is denoted as G
*
; the testing procedures are specified in AASHTO D7175, 

standard test method for determining the rheological properties of asphalt binder using a 

dynamic shear rheometer [24]. The binder dynamic modulus is assumed to be 3 times of the G
*
 

based on experiences [10]. For mixture dynamic modulus testing, AASHTO specification 

requires a servo-hydraulic testing machine to apply the sinusoidal loading. A Superpave 
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Gyratory Compactor (SGC) is used to compact             (height by diameter) asphalt 

cylinder with air void content not exceeding     from the specified target air void content. A 

Testing specimen is cored and cut to             from the compacted asphalt specimen. 

Sample axial deformation is measured with linear variable differential transformers (LVDT). 

Samples are often tested at several temperatures. At each temperature, dynamic moduli are taken 

for multiple loading frequencies typically varying from 0.1Hz to 25Hz, in a strain controlled 

mode of loading. Loading is adjusted to obtain 50 to 150με.The permanent deformation of 

specimen is often controlled to less than 1500με [25]. The testing results are generally presented 

as master curves. 

Dynamic Modulus Master Curve 

Asphalt mixture dynamic modulus varies with temperature and loading frequency. The 

comparisons of testing results are complicated, especially when the testing temperatures are 

different. The dynamic modulus master curve provides a direct visual expression of dynamic 

modulus results. Comparisons between two sets of dynamic modulus results can be possible 

[26].The standard dynamic testing procedure elaborated by ASTM D3497 recommends using 

three temperatures (5, 25, and 40ºC). At each temperature, |  | values are tested at three 

frequencies (1, 4, 16Hz). In order to develop more precise master curve, five temperatures (-9, 

4.4, 21.1, 37.8, and 54.4ºC) with six frequencies (25, 10, 5, 1, 0.5, and 0.1Hz) at each 

temperature are usually used for dynamic modulus testing. According to the research conducted 

by Li and Williams [36], testing |  | values at three temperatures (4.4, 21.1, and 37.8ºC) did not 

change the shape of master curves constructed by data from the nine temperatures. In practice, 

engineers are interested in pavement properties in the worst scenarios. The lowest temperatures 

at most places of U.S. are far below the lab low temperature test. Master curve also provides 

estimations of dynamic moduli out of the lab testing range. The 2002 NCHRP pavement design 

guide uses asphalt dynamic moduli determined from master curves [27]. 

The|  | master curve can be constructed at a reference temperature or frequency based on the 

time-temperature superposition principle. Asphalt exhibits higher E* values at low temperatures 

or high loading frequencies. Therefore, an E* value tested at a lower temperature could equal to 

an E* value tested at a higher temperature but at a lower frequency. Therefore, E* values tested 

at different temperatures and frequencies can be transferred to a single reference temperature or 
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frequency. Often times, dynamic modulus testing can be easily done at multiple frequencies. 

Changing the test temperature is usually time consuming and thus costly. As a result, researchers 

usually test dynamic modulus at few temperatures but many different frequencies. The transition 

from frequency to temperature is much easier than from temperature to frequency. A number that 

is used to equalize frequencies at different temperatures is called a shift factor, a(T). Equation 4 

shows the mathematical definition of this shift factor: 

   
 

    
                           

Equation 4 

where fr = reduced frequency (loading frequency at the reference temperature), 

f = loading frequency, and 

a(T) = shift factor. 

 

The Shift factor is 1 at the reference temperature; and the log(a(T)) is therefore 0.The “2002 

Guide for the Design of New and Rehabilitated Pavement Structures” uses a sigmoidal function 

shown below to construct a master curve fitting line [27]: 

    |  |    
 

              
 

Equation 5 

where |  |   dynamic modulus, 

    time for loading at the reference temperature (reduced time), 

   minimum modulus value, 

     maximum modulus value, and 

     parameters describing the shape of the sigmoidal function. 

 

The parameters that are used to represent the master curve including                can be 

solved by using Excel Solver Function to match the calculated E* values from the sigmoidal 

function with the lab tested E* values. Figure 3 illustrates the shifting of E* values and 

construction of master curve. 
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Figure 3: Master Curve Construction 

 

Witczak E* Predictive Model 

The early Witczak’s dynamic modulus predictive model was developed in 1972. The model 

was based on non-linear polynomial regression of laboratory E* values. The early model was 

established from 29 mixtures with 87 total data points. Several revisions were made ensuring 

twenty years. The current MEPDG pavement design program uses the Witczak model developed 

in 1999 for E* estimation. The 1999 Witczak model is developed from 205 laboratory mixtures 

including 171 unmodified asphalt binders and 34 modified binders that produced 2750 data 

points. The newest Witczak model was published in 2006 including 7400 data points from 346 

HMA mixtures [9]. 

The 1999 Witczak model is the most widely used version of Witczak model because of the 

application of the MEPDG program in pavement design. This model predicts E* values of HMA 

mixtures from 8 input parameters that characterize aggregate gradation, asphalt binder behavior, 

binder–aggregate interaction, and loading condition. An R
2
 of 0.96 and Se/Sy of 0.24 were 

observed for this model on a logarithm scale. The model is shown in Equation 6 [23]: 
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Equation 6 

where |  |   dynamic modulus (psi), 

   bitumen viscosity (10
6
Poise), 

   loading frequency (Hz), 

    air void content (%), 

       effective bitumen content(% by volume), 

     cumulative % retained on the 19-mm (3/4inch) sieve, 

     cumulative % retained on the 9.5-mm (3/8inch) sieve, 

    cumulative % retained on the 4.75-mm (No.4) sieve, and 

      % passing the 0.075-mm (No.200) sieve. 

 

Laboratory viscosity tests can only be done at high temperatures that allow asphalt binders to 

flow. Asphalt binders at low temperatures are difficult to test directly. The viscosity-temperature-

susceptibility (VTS) method allows estimation of asphalt’s viscosity at any temperature from lab 

tested viscosities at several temperatures from laboratory testing can be easily done. It should be 

noticed that this log-log to log linearity is only applicable for conventional type “S” asphalt 

cement. There are several ways to obtain the laboratory viscosities. Viscosities can be tested 

directly with the rotational viscometer by following ASTM D2983. The viscosities can be also 

estimated from binder penetration test results and dynamic shear rehometor (DSR) test results. 

The penetration–viscosity relation is expressed in Equation 7 [28]:  

 

                                                

Equation 7 

where     viscosity (Poise), and 

     penetration for 100 g, 5 seconds loading (0.1 mm). 
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The penetration viscosities were used prior to the DSR testing being available. This empirical 

equation is developed from regression of 17 test sections with 766 data points. The R
2
 value is 

0.377 in normal scale and 0.927 in logarithm scale [23]. The Equation 8 is commonly used now 

[9]:  

  
|  |

  
 

 

    
        

Equation 8 

where    viscosity (Poise), 

|  |  asphalt binder shear modulus (Pa), and 

   asphalt binder phase angle. 

One problem that is brought up regarding the 1999 Witczak model is that the binder stiffness 

is characterized by viscosity which does not take into consideration of the effects of loading 

frequency. Frequency is treated as another independent input variable in the predictive equation. 

However, binder viscosity is frequency dependent. Changes in loading frequencies also induce 

viscosity changes of the binder. The scenario intimated by the 1999 Witczak model that binder 

viscosity can remain the same while loading frequency varies may never happen in reality. This 

contradiction was addressed and modified by the 2006 Witczak model which uses the dynamic 

shear complex modulus (|  |), and phase angle ( ), from DSR tests instead of viscosity to 

characterize binder stiffness. The G* values at each temperature and loading frequency and the 

corresponding   values can be estimated by constructing a master curve based on asphalt binder 

DSR results. The 2006 Witczak predictive equation is expressed in Equation 9 [9]: 
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Equation 9 
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where     dynamic modulus (psi), 

      aggregates (by weight of the total aggregates) passing through no. 200 sieve (%), 

        cumulative aggregates (by aggregates weight) retained on no. 4 sieve (%), 

       cumulative aggregates (by aggregates weight) retained on the 3/8” sieve (%), 

       cumulative aggregates (by aggregates weight) retained on the 3/4” sieve (%), 

    air voids (by volume of the mix) (%), 

       effective binder content (by volume of the mix) (%), 

|  
 |   dynamic shear modulus of binder (psi), and 

    phase angle of binder associated with |  
 | (degree). 

 

Hirsch E* Predictive Model 

The Hirsch dynamic modulus predictive model is a semi-empirical method based on various 

modified law of mixtures developed by Y.J. Hirsch in the 1960s. There are two versions of the 

law of mixtures presented in Equations 10 and 11 [10]: 

             

Equation 10 

   ⁄      ⁄      ⁄  

Equation 11 

 

Where Ec is the composite material property, v1 and v2 are the volume fractions of component 

phase 1 and 2 of the composite material, respectively, and E1 and E2 are the material properties of 

component phase 1 and 2, respectively. The principle of the law is that a composite material 

property can be treated as a combination of the properties of its components. The influence of 

each component is proportional to its volume fraction. Phases of composite material can be 

arranged either in parallel, or series, or even a combination of both. The Hirsch model uses the 

combined arrangement of phases. The schematic expression of Hirsch model is shown in Figure 

4 (a). Figure 4 also shows some important the variations of the Hirsch model. 
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Figure 4: Schematic Representation of Hirsch Model and Four Modified Versions [10] 

 

In Figure 4, Va’ is the volume fraction of aggregate excluding the contact volume and 

mineral filler, Vc is the aggregate contact volume, Vv is the volume fraction of air voids, and 

Vm is the mastic volume. The subscripts “p” and “s” refer to the arrangement type “parallel” and 

“series”, respectively. Christensen, Pellinen, and Bonaquist did evaluations on various versions 

of Hirsch model and found out the alternate version in Figure 4(e) was the most accurate model. 

The alternate version of Hirsch model can be mathematically represented as Equation 12 [10]: 

                         
   

  
 

        

    
    

Equation 12 

 

where Ec = modulus of asphalt mixture, 

Ea = aggregate modulus, 

Em = mastic modulus, and 

(a) Hirsch model 
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Pc = aggregate contact volume fraction. 

 

Other parameters are as defined before. The aggregate contact volume can be calculated by 

Equation 13 [10]: 

   
    

      

    
   

    
      

    
   

 

Equation 13 

where VMA’= voids in the mineral aggregate, 

VFM = voids filled with mastic, and 

P0, P1, and P2= empirically determined constants 

 

Several Hirsch model equations were constructed and evaluated by Christensen and his 

colleagues.  The final model for predicting mixture dynamic modulus is presented by the 

following functions [10]: 
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Equation 14 
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Equation 15 

where parameters are defined previously. 

 

In Equation 14, the term VFA which is the volume of voids filled by asphalt is equivalent to 

VFM in Equation 15. The dynamic modulus of the asphalt binder is considered 3 times binder 

shear modulus (|  |      ). The aggregate modulus is estimated as 4,200,000 psi with standard 

error of 6.5%.  The unit of predicted mixture dynamic modulus (|  |   ) is pounds per square 

inch.  
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Previous Evaluation of the Witczak and Hirsch E
*
 Predictive Models 

This section contains the main findings of several studies on accuracies of the Witczak and 

Hirsch dynamic modulus predictive models. Many researchers have compared the efficiencies of 

Witczak and Hirsch models. Pavement projects studied cover the majority of the United States 

climate regions. An overseas project from Argentina is also included. 

University of Minnesota Study [29] 

Clyne, Li, Marasteanu, and Skok from the University of Minnesota tested the dynamic 

complex modulus and phase angle of asphalt mixtures from Mn/ROAD test cells. Mixtures from 

cells 33, 34, and 35 at Mn/ROAD used the same mix design with different types of asphalt.  

Sample cylinders for cells 33, 34, and 35 were made by field produced loose mixes. Cores were 

taken at cell 21 which was paved 6 years before the other cells and therefore loose mix was not 

available. This project also included two polymer modified asphalts. Table 3 summarizes the 

source material properties and Table 4 summarizes the mixture gradations. 

Table 3: Material Properties [29] 

Cell 21 33 34 35 

Binder 

Type 
120/150 PG 58-28 PG 58-34 PG 58-40 

Polymer 

Modified? 
No No Yes Yes 

Sample 

Type 
Core Loose Mix Loose Mix Loose Mix 

Paving Date  07-1993 08-1999 08-1999 08-1999 
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Table 4: Mixture Gradation [29] 

  Percent Passing 

Sieve Size, 

mm 

Sieve Size, 

in. 

Cell 21 Cell 33 Cell 34 Cell 35 

19 3/4 100 100 100 100 

16 5/8 99    

12.5 1/2 96 94 94 94 

9.0 3/8 88 86 86 86 

4.75 #4 70 66 66 66 

2.36 #8  54 54 54 

2.0 #10 58    

1.0 #20 44    

0.45 #40 26    

0.25 #80 9    

0.0075 #200 4.3 4.7 4.7 4.7 

 

Figure 5 through Figure 8 show master curves constructed based on the laboratory dynamic 

modulus results and the 1995 and 2000 Witczak’s predictive models. 

 

Figure 5: Master Curve Comparison for Cell 21 [29] 
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Figure 6: Master Curve Comparison for Cell 33 [29] 

 

 

Figure 7: Master Curve Comparison for Cell 34 [29] 
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Figure 8: Master Curve Comparison for Cell 35 [29] 

 

The master curve comparisons show that the Witczak model made relatively accurate 

predictions at intermediate and low temperatures for cells 21 and 35. At the high temperature 

range, the Witczak model did not fit the lab data. For mixtures from cells 33 and 34, the Witczak 

predictive model is poor to fit the lab results. The 2000 Witczak model tends to predict lower 

dynamic modulus values at high temperatures than those tested. 

North Carolina State University Study [30] 

This research performed by Y. Richard Kim et al. [30] studied dynamic complex modulus of 

mixtures made from materials that were commonly used in North Carolina. The study includes 

42 different mix designs with two types of asphalt binder. The laboratory results were compared 

with the 2000 Witczak predictions as well as the Hirsch predictions. In the final report, accuracy 

of the predictive model is quantified by the percent of error which is the difference between lab 

result and model prediction divided by the lab result. Figure 9 and Figure 10 show the results of 

comparisons. 
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Figure 9: Summary of Percent Error in Dynamic Moduli for Witczak’s Prediction [30] 

 

Figure 10: Summary of Percent Error in Dynamic Moduli for Hirsch’s Prediction [30] 

The results indicate that the Witczak model fits lab observations better at lower temperatures 

than high temperatures. Similar model efficiencies were found at 35°C and 54.4°C. However, the 

Hirsch model showed very low accuracy of prediction at 10°C. The authors explained this as a 

result of extrapolating binder viscosities at 10°C instead of testing directly. 

Christensen, Pellinen and Bonaquist [10] 

This study evaluated three different versions of the Hirsch model using 206 data points 

collected from the Federal Highway Administration’s Accelerated Loading Facility (ALF) 

project, the Mn/Road project, and the WesTrack project. The three Hirsch models included the 

“simple version”, the “mastic version” which accounts for the mineral filler’s effects on mixture 
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stiffness, and the “transition zone version” which is modified for the effects of film thickness. 

The authors found out that a R-square value of 0.968 were observed for all three of the models. 

Taking into account for the effects of mineral filler and film thickness did not improve the model 

efficiency. In addition, a comparison between the Hirsch model and Witczak models were also 

made. The comparison result is shown in Figure 11. 

 

Figure 11: Predicted and Measured E* Values [10] 

 

Figure 11 indicates the accuracies of Witczak and Hirsch models are on similar scales. At 

low temperatures, the Hirsch model tends to be more effective. 

University of Florida Study [31] 

The study is focusing on the efficiency of Witczak model (1999) on predicting the dynamic 

modulus of Florida mixtures. Twenty eight commonly used mixtures in the state of Florida were 

studied. Three methods were used to obtain binder viscosities including: 1. directly test asphalt 

viscosities with Brookfield viscometer; 2. calculate viscosities by shear modulus and phase angle 

values from DSR test; 3. use empirical A and VTS parameters recommended by Witczak and 

Fonseca for mix/laydown condition. The results are shown in Figure 12 through Figure 14 

respectively. 
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Figure 12: Witczak Model Accuracy (RTFO Condition, Viscosity from RV Test) [31] 

 

Figure 13: Witczak Model Accuracy (RTFO Condition, Viscosity from DSR Test) [31] 
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Figure 14: Witczak Model Accuracy (Mix/Laydown condition) [31] 

 

The results indicate the Witczak model well simulates the trend of dynamic modulus values. 

The best fitting lines parallelly deviate from the lines of equality. By applying a multiplier or 

shift factor for each method, the Witczak model showed high accuracy on predicting dynamic 

modulus values for Florida mixtures. It should be noticed that using DSR test results to estimate 

a binder’s viscosity results in lower predicted dynamic modulus values. 

Argentina Study [32] 

Materials studied in this research contain both lab produced mixtures and field cores. Field 

cores were taken from 17 sections around Rosario in the Littoral region of Argentina containing 

42 types of mixtures. Eight laboratory mixtures were designed and compacted to sample 

cylinders using Marshall Procedures. Lab data were used to evaluate the 2000 Witczak model, 

the Hirsch clarify model, and the Heukelomp and Klomp equation developed in 1964. Figure 15 

through Figure 18 show the dynamic modulus values predicted by the Witczak and Hirsch 

models versus laboratory results on log-log scale for lab produced mixtures and field mixes, 

respectively. 
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Figure 15: Comparison of Values Using the Witczak Predictive Equation [32] 

 

Figure 16: Comparison of Values Using the Hirsch Model [32] 
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Figure 17: Comparison of Values Using the Witczak Predictive Equation [32] 

 

Figure 18: Comparison of Values Using the Hirsch Model [32] 

 

The results indicate that the Witczak and Hirsch models have the similar accuracy predicting 

dynamic moduli of Argentina mixtures. Both of the models have good prediction at lower 

temperatures. At high temperatures, the predicted E* values tend to be larger than the measured 

values. 
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Effects of Fibers on Asphalt Concrete Mixture Dynamic Modulus 

This section summarizes the findings of two research projects: Serfass and Samanos’ study 

[33], and a Wuhan University of Technology study [34]. Four types of manufactured fibers were 

studied by Serfass and Samanos, and three types of manufactured fibers were studied by the 

Wuhan University of Technology. The conclusions of two studies are agreed showing that 

different fibers have notable strengthening effects on mixture dynamic modulus values. 

Serfass and Samanos Study [33] 

The comprehensive study performed various laboratory tests on mastics, mortars, and asphalt 

concretes. Two types of mixtures were tested: thin course mixes, and porous mixes. Static and 

dynamic moduli tests were performed only for the thin course mixes. Pavement conditions 

surveys were also conducted. Pavement skid resistance, sand patch depth, and cracking 

information were collected over more than ten years. The fibers studied included chrysotile, rock 

wool, glass wool, and cellulose.  Some of the research conclusions were: 

 Fibers could reduce the loss of binder in coating mastic, thus increasing a pavement’s 

resistance to moisture, aging, and fatigue damage; 

 Attention needs to be paid on rutting resistance for thin wearing courses; and 

 The static and dynamic modulus values of fiber-modified asphalt mixtures are 

distinctly higher than mixtures that use the same binders but without fibers. 

Wuhan University of Technology Study [34] 

The three types of fibers used in this study were cellulose, polyester and mineral fibers. 

Unconfined dynamic modulus tests were performed at five temperatures from -10°C to 54.4°C, 

and nine frequencies ranging from 0.1 Hz to 25 Hz.  The results indicate adding fibers to asphalt 

mixtures can increase HMA dynamic modulus values. Lower phase angles at lower temperatures 

and higher phase angles at higher temperatures were observed for fiber-modified asphalt 

mixtures. Asphalt mixtures containing fibers tend to have lower loss modulus values at medium 

temperatures. 
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CHAPTER 3: EXPERIMENTAL PLAN AND TESTING METHODS 

EXPERIMENTAL PLAN AND TESTING MATERIALS 

Experimental materials were procured from the national pooled fund study #1208 testing 

sections. The national pooled fund study #1208 conducted a comprehensive research on 

application of RAS in asphalt pavement including the study of mixture and binder properties, 

issues in RAS processing and storage, and pavement field performance. Missouri is the lead state 

of the pooled fund study. Participating states include California, Colorado, Indiana, Iowa, Illinois, 

Minnesota, and Missouri. This research studied the materials produced for the Indiana, Iowa, 

Minnesota, and Missouri projects. For each state project, a control section that does not contain 

any shingles was constructed. Mixtures containing different types and percentages of RAS were 

produced as experimental sections. RAP was used with RAS in the Minnesota, Indiana, and 

Missouri sections. Iowa mixtures used RAS alone as the virgin asphalt replacement material. 

Minnesota testing sections used both tear-off and manufactured RAS. RAS used in other states 

are all tear-off RAS. The gradations of RAS in Missouri mixes are different; one is ground finer 

than the other. Only one type of RAS was used in Iowa and Indiana projects. Warm mix asphalt 

(foaming method) was studied in the Indiana project. Detailed material information for each state 

project is covered in this chapter.  

Field produced loose mixtures and extracted binders were provided to the Iowa State 

University (ISU) Asphalt Lab in Ames by the state agencies. Sample cylinders were compacted 

with Superpave procedures to test dynamic moduli. Five replications were prepared for each mix. 

Three replications were prepared for each extracted binder to test shear moduli and phase angles. 

One frequency sweep test was also conducted for each type of binder. A table of experimental 

plan is presented below in Table 5. Due to not enough material, three samples were made for the 

mix #11 instead of five samples which were prepared for other mixes.  
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Table 5: Experimental Plan 

Project 
Mix 

Number 
Mix Description 

Dynamic 

Modulus 
DSR 

DSR 

frequency 

sweep 

Minnesota 

1 5% Mfr. RAS
1 

xxxxx
2 

xxx x 

2 
5% Tear-off 

RAS 
xxxxx xxx x 

3 Control Mix xxxxx xxx x 

Iowa 

4 Control Mix xxxxx xxx x 

5 4% RAS xxxxx xxx x 

6 5% RAS xxxxx xxx x 

7 6% RAS xxxxx xxx x 

Missouri 

8 Control Mix xxxxx xxx x 

9 5% Fine RAS xxxxx xxx x 

10 5% Coarse RAS xxxxx xxx x 

Indiana 

11 Control Mix xxx xxx x 

12 
 3% RAS & 

HMA 
xxxxx xxx x 

13 
3% RAS & 

WMA 
xxxxx xxx x 

1: manufactured Recycled Asphalt Shingle 

2: each “x” states for one experiment replication 

 

Minnesota DOT Demonstration Project 

The Minnesota demonstration project is located at the Mn/Road Cold Weather Road 

Research Facility in Albertville, Minnesota. The project is 3.5 miles long with 18 test sections on 

the passing and driving shoulders of westbound I-94 mainline. A plan view of test cells is shown 

in Figure 19. Mix laid down in Cell 20 contains 30% RAP and serves as the control section. 

Mixes of Cells 5, 6, 13, and 14 contain 5% manufactured RAS. Mixes of Cells 15 to 23 contain 5% 

tear-off RAS. Each cell is 500 feet long including a 50 feet transition area. All cells are 3 inches 

thick with a granular base, except for Cell 5 is paved on top of a HMA base. Construction of test 

sections was completed in September, 2008 [35]. 

The Minnesota demonstration project used a 12.5mm (1/2 inch) NMAS (nominal maximum 

aggregate size) aggregate gradation for all test mixes. The aggregate gradations are shown in 

Table 6 and Figure 20. The gradations of mixes containing 5% RAS are similar to each other. 

The control mix gradation contains more coarse aggregates than the mixes containing RAS. All 
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mixes used the same performance grade (PG) 58-22 virgin binder. The asphalt content is 17.1% 

for the manufactured RAS and 23% for the tear-off RAS. The RAP used in control section has an 

asphalt content of 6%. The total asphalt content for all mixes is 5%. The loose mixes received by 

ISU Asphalt Lab are from randomly chosen from Cells 5, 6, 15, 18, 19, and 22. Control mix 

from Cell 20 was also received and tested by the ISU Asphalt Lab.  
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Figure 19: Plan View of MnROAD Test Cells [35] 
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Table 6: Minnesota Demonstration Project Sieve Analysis Results 

SIEVE 

%PASS 

Control 

Mix 

Mfr. RAS 

Mix 

Tear-off 

RAS Mix 

1" 100 100 100 

3/4" 100 100 100 

1/2" 95 91 86 

3/8" 89 84 73 

#4 66 58 39 

#8 52 45 28 

#10 48 43 26 

#16 36 34 21 

#30 23 22 14 

#40 17 16 10 

#50 12 10 7 

#100 4 4 2 

#200 1 1.3 1 

 

 

Figure 20: Aggregate Gradation Chart for Minnesota Demonstration Project Gradations 

 

Iowa DOT Demonstration Project 

The Iowa DOT demonstration project is located on Highway 10 west of Pavlina, Iowa. The 
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test sections. Every test section has a 2 inch thick surface course underlying by a granular base. 

Figure 22 shows a plan view of the demonstration project sections. Four types of mixes were 

randomly assigned to the four test sections as shown in Figure 22.The mixes were designed with 

the same aggregate gradations and virgin binders, but different RAS contents ranging from 0% to 

6%. The Iowa demonstration project used a 12.5mm NMAS for mix design and a PG64-22 

binder for the virgin asphalt. The aggregate gradation is summarized in Table 7 and 

schematically presented in Figure 23. The total asphalt content is 5.5%, and the virgin binder 

content is varying with the amount of shingle in each mix. Figure 21 shows how much virgin 

binder is replaced by the asphalt in the recycled shingles. The figure indicates that adding 4% to 

6% RAS to asphalt mix can reduce the use of virgin asphalt by 15% to 20%. 

 

Figure 21: RAS Content and Virgin Binder Replacement for Iowa Test Sections 
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Figure 22: Plan View of Iowa Demonstration Project Test Sections [35] 
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Table 7: Iowa Demonstration Project Sieve Analysis Results 

SIEVE 
%PASS 

0%RAS 4%RAS 5%RAS 6%RAS 

1" 100 100 100 100 

3/4" 100 100 100 100 

1/2" 94 95 94 93 

3/8" 84 85 87 84 

#4 66 67 71 66 

#8 46 45 48 44 

#10 43 41 44 40 

#16 34 31 33 30 

#30 23 20 22 20 

#40 17 15 16 14 

#50 11 9 9 9 

#100 3 3 3 3 

#200 0.6 0 1 0.6 

 

 
Figure 23: Aggregate Gradation Chart for Iowa Demonstration Project 
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on pavement performance and the economic feasibility of incorporating ground tire rubber (GTR) 

and asphalt mixes containing RAS and RAP. Three test sections were paved as shown in Figure 

24. A PG 64-22 asphalt was selected as the virgin binder. The virgin binder was modified with 

GTR and a vestenamer polymer to achieve a 70-22 performance grade. The control section 

contains 15% RAP and 0% RAS. Test section 2 contains 5% fine ground RAS which 100% of 

RAS particles pass the 3/4 inch sieve and 95% particles pass the #4 sieve. Test section 3 contains 

5% coarse ground RAS which 100% RAS particles pass 1/2 inch sieve. Both test sections 2 and 

3 contain 10% RAP so that all mixes have 15% recycled materials. The same aggregate 

gradations were designed for the three test sections. Figure 25 shows the designed aggregate 

gradation. The sieve analysis results are summarized in Table 8. The design asphalt content was 

5.3%. Test sections containing 5% RAS used 3.7 virgin binders content to achieve the design 

binder content. 

 

 

Figure 24: Plan View of Missouri Demonstration Project Test Sections [35]  
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Figure 25: Aggregate Gradation 0.45 Power Chart for Missouri Demonstration Project 

Table 8: Missouri Demonstration Project Sieve Analysis Results 

SIEVE 

%PASS 

Control 

Mix 

5% Fine 

RAS  

5% Coarse 

RAS 

1" 100.0 100.0 100.0 

3/4" 100.0 99.2 100.0 

1/2" 92.8 94.1 94.2 

3/8" 85.0 85.7 85.6 

#4 52.7 49.1 51.4 

#8 27.3 26.0 26.7 

#10 24.0 23.3 23.6 

#16 16.8 17.0 16.4 

#30 11.0 11.6 10.8 

#40 8.9 9.5 8.9 

#50 7.2 7.8 7.3 

#100 4.2 4.5 4.4 

#200 1.5 1.3 1.3 

 

Indiana DOT Demonstration Project 

The Indiana DOT demonstration project was completed in July, 2009. The project is located on 

U.S. Route 6 east of Nappance, Indiana. The overall construction is 13.6 lane miles. A 1.5 inch 

surface layer was placed on top of a previously existing asphalt surface with an underlying 
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concrete pavement. The demonstration project was developed to evaluate the performance of 

incorporation of RAS and warm mix asphalt in asphalt concrete pavements. Three test sections 

were constructed as shown in Figure 26. The control section used a hot mix asphalt containing 

15% fractionated recycled asphalt pavement (FRAP). Test section 2 used the same hot mix 

asphalt with 3% RAS. A foaming method was applied to produce warm mix asphalt which is laid 

down in test section 3. The test section 3 also contains 3% RAS. The same aggregate gradation 

was designed for different test sections as shown in Figure 27. The sieve analysis results are 

summarized in Table 9. A PG 70-22 asphalt was selected as the virgin binder. The design binder 

content was 6.2%. Test sections containing 3% RAS used 5.4% virgin binder content to achieve 

the design total binder content. 

 

Figure 26: Plan View of Indiana Demonstration Project Test Sections [35] 
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Table 9: Indiana Demonstration Project Sieve Analysis Results 

SIEVE 

%PASS 

Control 

Mix 

3% RAS 

HMA 

3% RAS 

WMA 

1" 100.0 100.0 100.0 

3/4" 100.0 100.0 100.0 

1/2" 100.0 99.9 100.0 

3/8" 96.6 94.6 96.0 

#4 75.7 72.1 73.5 

#8 53.7 50.1 51.5 

#10 49.5 46.3 47.7 

#16 35.8 33.6 34.3 

#30 22.2 21.2 21.2 

#40 16.1 15.9 15.7 

#50 10.5 10.9 10.7 

#100 3.8 4.4 4.2 

#200 0.5 0.6 0.6 

 

 

Figure 27: Aggregate Gradation 0.45 Power Chart for Indiana Demonstration Project 
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LABORATORY TESTING DESIGN 

Dynamic Modulus Test 

The dynamic modulus tests were performed with a universal testing machine (UTM) in a 

environmental chamber shown in Figure 28. The UTM has a hydraulically driven load frame 

which can provide a maximum load of 25kN (5620lbs) at various frequencies. The magnitude 

and frequency of applied load can be precisely controlled. The applied sinusoidal load was 

carefully selected to maintain a sample strain level of 85 to 110με to ensure a measurable strain 

and prevent excessive damage to sample. Excessive unrecoverable deformation can be achieved 

if the strain is too high. The testing was conducted following ASTM D3496. The standards 

requires             (height by diameter) asphalt cylinder cored from a       

      cylinder compacted by the Superpave Gyratory Compactor (SGC). Extra time and costs 

are needed to core an asphalt cylinder. According to Robinette and Williams’ study (2006), the 

dynamic modulus test results of cored and directly compacted samples are not significantly 

different.  More than 70 samples were made for this research including trial samples to determine 

the required mass for target air void and samples for testing dynamic modulus. In order to lower 

the cost and make the laboratory work more practical, the 150mm by 100mm cylinders in this 

research were compacted by the SGC with a special mold designed specifically for samples in 

this size. The sample strain was tested with three evenly spaced LVDTs attached on the side of 

the sample. 

The statistical design of dynamic modulus experiment is split plot. Dynamic moduli were 

tested at 4°C, 21°C, and 37°C and nine frequencies (0.1, 0.2, 0.5, 1, 2, 5, 10, 20, and 25Hz) at 

each temperature for each sample. Therefore, each sample was tested with 27 treatment 

combinations. The 13 types of mixtures form the whole plots. Mixture type is the whole plot 

factor. Five samples were made from each mixture to form the sub plots. The sub plot factor is 

the individual cylinder. Thus, the variability caused by mixture type and treatments can be 

determined. The variability between the five replications for each mixture can be also calculated 

and separated from the total error, increasing the chance to identify the significant differences 

between different types of mixtures. 
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Figure 28: Universal Testing Machine and Environmental Chamber 

Direct Shear Rehometer (DSR) Test 

The DSR tests were conducted to model the asphalt rheological properties. Testing materials 

were extracted from field mixes of the pooled fund study demonstration projects by following 

AASHTO Designation TP2-94, Standard Test Method for the Quantitative Extraction and 

Recovery of Asphalt Binder from Hot Mix Asphalt (HMA). The extraction method uses asphalt 

solvents blended with ethanol to separate the asphalt binder from aggregates. The commonly 

used asphalt solvents are n-Propyl Bromide, Trichloroethylene, and Toluene. Asphalt binder is 

recovered through a centrifuge. The extractions were performed by the Minnesota DOT. The 

referenced standard for DSR testing is ASTM D7175, Standard Test Method for Determining the 

Rheological Properties of Asphalt Binder using a Dynamic Shear Rheometer. Two DSR 

experiments were designed for different research interests elaborated in following paragraphs. 

Binder High Temperature Grading 

DSR tests were performed to determine asphalt binder high temperature grade by following 

the Superpave test specifications. Because the asphalt binders were extracted from field 

produced mixtures which were short-term aged, the grading procedures followed the Superpave 

grading method for rolling thin film oven (RTFO) aged asphalt material. DSR tests were 
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conducted with a dynamic shear rheometer shown in Figure 29. At least three temperatures were 

tested for each sample in order to grade the asphalt.  

 

Figure 29: AR1500 Dynamic Shear Rheometer 

Frequency Sweep 

DSR frequency sweep tests were designed to construct master curves of binder complex 

shear modulus (G*) and phase angle (Φ). The master curves characterize binder rheological 

properties over a wide range of temperature or frequency. The master curves can be used to 

estimate binder G* and Φ values at any interested temperature and frequency. The G* and Φ for 

each binder were tested at seven temperatures and 15 frequencies 
1
 ranging from 0.1Hz to 50Hz 

for each temperature. The seven testing temperatures are 13, 21, 29, 37, 46, 58, and 70°C. 

Because the binders were tested over a large temperature range, different sample sizes were 

selected. The 25mm diameter samples were tested at 46, 58 and 70°C. The required stress to 

maintain a measurable strain level of a 25mm sample at low temperature exceeds the machine 

capacity. Therefore, the 8mm diameter sample size was selected to test the G* and Φ values at 

13, 21, 29, and 37°C. The dynamic rheological properties were tested by measuring the required 

                                                 
1
15 frequencies: 0.1, 0.158, 0.251, 0.398, 0.631, 1, 1.585, 2.512, 3.981,6.31, 10, 15.849, 25.121, 39.809, and 

50Hz. 
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shear stress to achieve a preset strain level. The strain level should be large enough so that it is 

measurable and also small enough so that the required stress does not exceed the capacity of the 

testing device or damage the sample. The controlled strain level for the 8mm sample is 0.1% and 

for the 25mm sample is 10%.   
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CHAPTER 4: EVALUATION AND MODIFICATION OF WITCZAK AND HIRSCH 

MODELS 

Many previous studies, such as studies conducted by University of Minnesota [29], 

Christensen, Pellinen, and Bonaquist [10], North Carolina State University [30], University of 

Florida [31], and Marinez and Angelone [32] have shown that the Witczak and Hirsch models 

have reasonable accuracy to predict the dynamic modulus of HMA mixtures. The Witczak model 

uses four input parameters (    ,     ,   
2, and     

3) to characterize aggregate gradation, two 

parameters (Va
4
 and Vbeff

5
) to describe mixture volumetric property, and two parameters 

(frequency and viscosity, or shear modulus and phase angle
6
) to include the binder rheological 

behavior. In the Hirsch model, three input parameters including voids in mineral aggregate 

(VMA), voids filled by asphalt (VFA), and binder shear modulus are considered as the factors 

that are used to estimate a mixture dynamic modulus. The primary components of RAS include 

asphalt, granules (passing #12 screen), dust (passing #200 screen), and fibers. The asphalt in 

RAS is manufactured through an “air-blown” process and exposed to long-term weathering. 

Therefore, the asphalt usually has a higher stiffness than typical asphalt used in asphalt mixtures. 

The effects of shingles in HMA include a change in aggregate gradation and volumetric 

properties, an increase in binder viscosity and shear modulus, a decrease in binder’s phase angle, 

and a stiffening effect introduced by fibers. The changes in gradation, volumetrics, and binder 

rheology can be explained by the original Witczak and Hirsch models. However, both models do 

not include the effects of fibers. In this chapter, two versions of the Witczak model (1999 and 

2006 versions) and the latest Hirsch model are evaluated to determine the accuracy of predicting 

mixture dynamic modulus caused by the fibers in shingles. Modifications were made to account 

for this effect using the results of aforementioned tests in Chapter 3. 

  

                                                 
2    ,     ,   : cumulative percent of aggregate mass retaining on 3/8”, 3/4”, and U.S. #4 (4.75mm) sieves 
3    : percent of aggregate mass passing U.S. #200 (0.075mm) sieve 
4
Va is the air content of compacted mixture

 

5
Vbeff is the effective bitumen content by volume 

6
Frequency and viscosity are used in the 1999 Witczak Model, shear modulus and phase angle are used in the 

1999 Witczak Model 
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ORIGINAL MODEL EVALUATION 

A total number of 1701 dynamic modulus values were observed from 13 mixes to evaluate 

the 1999 Witczak Model. The comparisons between predicted and tested E* values on both 

normal and logarithm scales are plotted in Figure 30 and Figure 31, respectively. The plotted 

points lined up along the line of equality, except for the data of the Iowa mixes are above the line 

of equality. This indicates the 1999 Witczak Model tends to overestimate the E* of Iowa mixes. 

The overall linear trend line matches the line of equality showing a high prediction accuracy of 

the 1999 Witczak Model. On a normal scale, the overall variability becomes larger when the 

model is used to predict larger E* values which is referring to the scenario that the pavement is 

subjected to a lower temperature or higher loading rate. The model tends to overestimate the E* 

values of Iowa mixes and underestimate the Minnesota mixes. Each project has a distinct linear 

trend line. On the logarithm scale, the overall variability becomes smaller when the predicted E* 

values are larger. Compared to the overall variability, the variability within each project is small. 

The overall variability includes the variability between projects and the variability within each 

project. Variability in accuracies of predictions arises from differences in materials, asphalt plant 

operations, RAS contents, and sampling and testing errors. The effects of different RAS contents 

do not result in the variability between projects.  The coefficient of determination, R
2
, is 0.86 on 

a normal scale, and 0.87 on a logarithm scale. The standard error ratio, Se/Sy, is 0.37 for a 

normal and 0.36 for a logarithm scale. A commonly used criterion of measuring a model’s 

goodness-of-fit is given in Table 10. According to the subjective criteria, the goodness-of-fit for 

the1999 Witczak Model is good.  

Table 10: Subjective Classification of the Goodness-of-Fit Statistical Parameters [37] 
Criteria R2 Se/Sy 

Excellent >0.90 <0.350 

Good 0.70 – 0.89 0.36 – 0.55 

Fair 0.40 – 0.69 0.56 – 0.75 

Poor 0.20 – 0.39 0.76 – 0.90 

Very Poor <0.19 >0.90 
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Figure 30: Lab Tested vs. Witczak Model (1999) Predicted E* Values on Normal Scale 

 

Figure 31: Lab Tested vs. Witczak Model (1999) Predicted E* Values on Logarithm Scale 

Because of material shortages of the recovered asphalt binders from Minnesota tear-off RAS 
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#2 and #6. Therefore, 1431 dynamic modulus values from lab tests were observed to evaluate the 

2006 Witczak Model. The comparisons between predicted and tested E* values on both the 

normal and logarithm scales are plotted in Figure 32 and Figure 33, respectively. The linear trend 

lines in both Figure 32 and Figure 33 are above the line of equality. This indicates the 2006 

Witczak Model tends to overestimate the E* values in general. Compared to the 1999 Witczak 

Model, the trend for each project is not that obvious. However, the linear trend line for each 

project is still distinct. This indicates a large portion of overall variability is caused by the 

differences between projects. On the normal scale, the overall variability becomes larger when 

the model is trying to predict larger E* values. However, on the logarithm scale, the overall 

variability becomes smaller when the predicted E* values are larger. The variability within each 

project is smaller than the overall variability. The 2006 Model has a R
2
 value of 0.44 and Se/Sy 

of 0.75 on logarithm scale. The prediction accuracy of the 2006 Witczak Model is fair. 

 

Figure 32: Lab Tested vs. Witczak Model (2006) Predicted E* Values on Normal Scale 
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Figure 33: Lab Tested vs. Witczak Model (2006) Predicted E* Values on Logarithm Scale 

The evaluation of the Hirsch model includes 1431 dynamic modulus values. The comparison 

between predicted and tested E* values are plotted in Figure 34 and Figure 35 on normal and 

logarithm scales, respectively. On both figures, the linear trend line is very close to the line of 
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mixtures. There is not distinct trend for each project. Different projects have similar variability. 

Figure 34 shows the Hirsch model tends to overestimate the E* values for Iowa mixes, and 

underestimate the Minnesota mixes. However, the differences between prediction accuracies of 

different projects are very small. This indicates that the differences between projects do not 

contribute too much variability to the total error. The R
2
 values of the Hirsch model on normal 

and logarithm scales are 0.90 and 0.83, respectively. The corresponding Se/Sy values for the 

normal and logarithm scales are 0.31 and 0.41 respectively. Therefore, according to Table 10, the 

goodness-of-fit of Hirsch model is excellent on a normal scale, and good on a logarithm scale. 
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Figure 34: Lab Tested vs. Hirsch Model Predicted E* Values on Normal Scale 

 

Figure 35: Lab Tested vs. Hirsch Model Predicted E* Values on Logarithm Scale 
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lowest. The three models tend to overestimate mixture dynamic moduli in general. The 

accuracies of both Witczak models are dependent upon different projects. The differences 

between projects do not have significant impact on prediction accuracies of the Hirsch model. 

On the tested vs. predicted E* figures (Figure 30 through Figure 35), the mixes containing 0%, 

3%, 4%, 5%, and 6% RAS are denoted by rhombus, cross, circle, triangle, and rectangle symbols, 

respectively. For each project, the plotted points with the same denotation are concentrated with 

a distinct trend line. This indicates the differences between RAS contents have impacts on the 

prediction accuracies of the three models. Analysis of Variance (ANOVA) tables with the ratio 

of model predicted E* to lab tested E* as the response are given in Table 11 through Table 13for 

the 1999 Witczak, 2006 Witczak, and Hirsch models, respectively. Three main factors are RAS 

content, treatment type, and project. The results show that RAS content in each model has a p-

value less than 0.0001. It indicates the RAS content is a significant factor that can affect the 

value of model predicted E* divided by the lab tested E* values which is referring to the 

prediction accuracy of a predictive model. A prediction accuracy value of 1 indicates the 

predicted value is exactly the same as the actual value. The prediction accuracy decreases as this 

number deviates from 1. 

Table 11: ANOVA Table for Witczak 1999 Model 

Source 
Degree of 

Freedom 

Sum of 

Squares 
F Ratio Prob>F 

RAS% 4 119 393 <.0001 

Treatment 26 120 46 <.0001 

Project 3 42 104 <.0001 

 

Table 12: ANOVA Table for Witczak 2006 Model 

Source 
Degree of 

Freedom 

Sum of 

Squares 
F Ratio Prob>F 

RAS% 4 390 183 <.0001 

Treatment 26 1775 86 <.0001 

Project 3 110 38 <.0001 
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Table 13: ANOVA Table for Hirsch Model 

Source 
Degree of 

Freedom 

Sum of 

Squares 
F Ratio Prob>F 

Project 3 37.12814 6.0789 0.0004 

Treatment 29 165.25453 2.7990 <.0001 

RAS% 4 22.96658 2.8202 0.0240 

 

Student’s t-tests results were conducted to determine whether or not two levels with a set of 

mixtures for each state are statistically different. The t-test results are summarized in Table 15. 

The results show that every project has different prediction accuracy for the 2006 Witczak Model. 

For the 1999 Witczak Model, only the prediction accuracies for Missouri and Indiana projects do 

not have significant differences. However, four out of six comparisons in the Hirsch Model 

prediction accuracies of different projects do not have significant differences. This indicates that 

the Witczak models are more sensitive to different material types and manufacturing processes. 

The average prediction accuracy of the Witczak models for mixes containing 6% RAS is lower 

than mixes containing 0% RAS. Significant differences are also detected between 0% and 6% 

RAS contents. The average prediction accuracies for mixes containing 4% and 5% RAS are 

lower than that of mixes containing 0% RAS. Significant differences between 0% and 4% RAS, 

and 0% and 5% RAS are detected for the 1999 Witczak Model. This indicates that adding 

shingles to HMA decreases the prediction accuracy of the Witczak models. The 1999 Witczak 

Model is more sensitive to RAS content. This research involves only 13 mixes with 5 RAS 

contents. However, more research work is needed to verify this statement. Some of the Hirsch 

predictions show significantly different accuracies. However, there is not an obvious trend in the 

mean accuracies. The Hirsch prediction accuracy for 0% RAS is not significantly different from 

that of 5% and 6% RAS contents. The effects of shingles on the prediction accuracy of Hirsch 

Model cannot be identified. A larger database with more levels of RAS contents is needed to 

evaluate the shingle effects on the Hirsch Model accuracy.  
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Table 14: Mean of Model Prediction Accuracy  

Model Level Mean 

1999 

Witczak 

0% 1.21216 

3% 1.14153 

4% 1.43447 

5% 1.27868 

6% 2.15744 

2006 

Witczak 

0% 3.36279 

3% 2.45701 

4% 4.5773 

5% 3.38944 

6% 5.2273 

Hirsch 

0% 1.31907 

3% 1.685497 

4% 1.31907 

5% 1.223297 

6% 1.525975 

 

Table 15: Student-t Test Results for Model Prediction Accuracy 

Model 
Project Comparison RAS% Comparison 

Comparison Significant Difference Comparison Significant Difference 

Witczak 

1999 

MN vs. IA Yes 0% vs. 3% Yes 

MN vs. MO Yes 0% vs. 4% Yes 

MN vs. IN Yes 0% vs. 5% Yes 

IA vs. MO Yes 0% vs. 6% Yes 

IA vs. IN Yes 3% vs. 4% Yes 

MO vs. IN No 3% vs. 5% Yes 

   
3% vs. 6% Yes 

   
4% vs. 5% Yes 

   
4% vs. 6% Yes 

   
5% vs. 6% Yes 

Witczak 

2006 

MN vs. IA Yes 0% vs. 3% Yes 

MN vs. MO Yes 0% vs. 4% No 

MN vs. IN Yes 0% vs. 5% No 

IA vs. MO Yes 0% vs. 6% Yes 

IA vs. IN Yes 3% vs. 4% Yes 

MO vs. IN Yes 3% vs. 5% Yes 

   
3% vs. 6% No 

   
4% vs. 5% Yes 

   
4% vs. 6% Yes 

   
5% vs. 6% No 
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Table 15: Student-t Test Results for Model Prediction Accuracy (Continued) 

Hirsch 

MN vs. IA No 0% vs. 3% Yes 

MN vs. MO Yes 0% vs. 4% Yes 

MN vs. IN Yes 0% vs. 5% No 

IA vs. MO Yes 0% vs. 6% No 

IA vs. IN Yes 3% vs. 4% No 

MO vs. IN No 3% vs. 5% Yes 

   
3% vs. 6% No 

   
4% vs. 5% Yes 

   
4% vs. 6% No 

   
5% vs. 6% No 

 

MODELING METHDOLOGY 

The philosophy of modifying the E* predictive models for shingle effects is identifying the 

prediction accuracy variability caused by differences of RAS contents. The prediction accuracy 

for each pair of predicted and tested E* values can be measured by their difference (e.g. 

predicted E* - tested E*) or ratio (e.g. predicted E*/ tested E*).  The prediction accuracies are 

affected by errors in measuring the true dynamic moduli of HMA mixtures, and inaccuracies of 

the predicted E* values. The E* measurement errors can be caused by systematic errors which 

are due to the inaccuracies of testing apparatuses, and variability in sampling and testing 

procedures. The inaccuracies of the predicted E* result from incorrect values of input parameters 

and the inaccuracies of the models themselves. The three E* predictive models have 12 different 

input parameters characterizing aggregate gradation, binder rheology, and mixture volumetric 

properties. The parameters for aggregate gradation and mixture volumetrics were calculated or 

directly observed from testing results. The parameters to describe binder rheology were obtained 

from asphalt rheological models. Errors in lab testing and models can result in inaccurate input 

parameter values, too. The models themselves can be inaccurate because of incorrect 

assumptions that are made to construct the model, missing factors that have effects on the 

prediction results, and limitations of databases that were used to develop the models. The 

Witczak models assume the relation between E* and loading frequency is depicted by a sigmoid 

function. The Hirsch Model is based on the assumption that the law of mixture can be applied to 

HMA. In the Hirsch Model, the dynamic modulus of an asphalt binder is assumed to be three 

times the binder shear modulus. Although these assumptions provide high accuracy for 

simulations, errors of the simulations still exist. Missing effective factors include RAS content, 
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aggregate stiffness, and other factors that have effects on the E* values. The coefficients of a 

model are determined by regression of lab tested E* values. The size and diversity of a database 

can affect a model’s applicability. The objective of this chapter is to determine the effects of 

different RAS contents on the model prediction accuracies. Three steps were taken to approach 

this objective: firstly, determine the input parameters; secondly, calibrate the predictive models 

using E* of the control mixes to eliminate the project variability in prediction accuracies; and 

thirdly, modify the predictive models with RAS content as a factor if possible. 

Model Input Parameters 

At the beginning of this Chapter, the 12 input parameters related to aggregate gradation, 

volumetrics, and binder rheology are introduced.  The 12 input parameters include cumulative 

aggregate percentage retained on #4 (ρ4), 3/8” (ρ38), and 3/4” (ρ34) sieves, fine content (ρ200), 

voids in mineral aggregate (VMA), voids filled by asphalt (VFA), effective binder volume 

content (Vbeff), air voids (Va), dynamic shear modulus of binder (G*), phase angle of binder (δ), 

loading frequency (f), and binder viscosity (η). The aggregate gradation parameters, ρ4, ρ38, ρ34, 

and ρ200, are obtained from the sieve analysis tests for quality assurance and quality control 

(QA/QC). The results of the sieve analysis tests are provided in the experimental plan in Chapter 

2. The mixture volumetric parameters, VMA, VFA, Va, and Vbeff, are calculated from the 

specific gravities of aggregate (Gsb), asphalt binder (Gb), mixture (Gmm), and compacted sample 

cylinder (Gmb). The Gsb and Gmm values for each type of mix are procured from the mix design of 

each project. The specific gravity of asphalt binder is estimated from the pooled fund study 

literature to be 1.038 for all types of binder in this research. Cylinder bulk specific gravity values 

were observed from lab tests following the standard test procedures specified in AASHTO T166. 

The volumetric properties are summarized in Table 16. The binder rheological properties are 

predicted by the viscosity-temperature susceptibility (A-VTS) method and the master curves for 

binder shear modulus and phase angle. 
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Table 16: Volumetric Properties of Compacted Sample Cylinder 

Sample 

Number 
Project Mix Description Gsb Gmb Gmm Va VMA VFA Vbeff 

1 MN 5% Mfr. RAS 2.697 2.348 2.527 7.1 17.2 58.8 10.1 

2 MN 5% Mfr. RAS 2.697 2.342 2.527 7.3 17.4 58.1 10.1 

3 MN 5% Mfr. RAS 2.697 2.346 2.527 7.2 17.3 58.3 10.1 

4 MN 5% Mfr. RAS 2.697 2.348 2.527 7.1 17.2 58.7 10.1 

5 MN 5% Mfr. RAS 2.697 2.345 2.527 7.2 17.3 58.4 10.1 

6 MN 5% Tear-off RAS 2.697 2.378 2.547 6.7 16.3 59.0 9.6 

7 MN 5% Tear-off RAS 2.697 2.379 2.547 6.6 16.3 59.4 9.7 

8 MN 5% Tear-off RAS 2.697 2.369 2.547 7.0 16.6 57.9 9.6 

9 MN 5% Tear-off RAS 2.697 2.374 2.547 6.8 16.5 58.7 9.7 

10 MN 5% Tear-off RAS 2.697 2.366 2.547 7.1 16.7 57.6 9.6 

11 MN 30% RAP 2.697 2.355 2.527 6.8 17.1 60.3 10.3 

12 MN 30% RAP 2.697 2.359 2.527 6.6 17.0 61.1 10.4 

13 MN 30% RAP 2.697 2.352 2.527 6.9 17.2 60.0 10.3 

14 MN 30% RAP 2.697 2.350 2.527 7.0 17.3 59.6 10.3 

15 MN 30% RAP 2.697 2.349 2.527 7.1 17.4 59.1 10.3 

16 IA 0% RAS 2.617 2.275 2.443 6.9 17.8 61.3 10.9 

17 IA 0% RAS 2.617 2.270 2.443 7.1 18.0 60.7 10.9 

18 IA 0% RAS 2.617 2.279 2.443 6.7 17.7 62.2 11.0 

19 IA 0% RAS 2.617 2.273 2.443 7.0 17.9 60.9 10.9 

20 IA 0% RAS 2.617 2.271 2.443 7.0 18.0 61.1 11.0 

21 IA 4% RAS 2.617 2.298 2.464 6.7 17.0 60.6 10.3 

22 IA 4% RAS 2.617 2.289 2.464 7.1 17.3 59.1 10.2 

23 IA 4% RAS 2.617 2.298 2.464 6.7 17.0 60.6 10.3 

24 IA 4% RAS 2.617 2.288 2.464 7.1 17.4 59.2 10.3 

25 IA 4% RAS 2.617 2.291 2.464 7.0 17.3 59.5 10.3 

26 IA 5% RAS 2.617 2.293 2.460 6.8 17.2 60.5 10.4 

27 IA 5% RAS 2.617 2.283 2.460 7.2 17.6 59.0 10.4 

28 IA 5% RAS 2.617 2.280 2.460 7.3 17.7 58.7 10.4 

29 IA 5% RAS 2.617 2.299 2.460 6.6 17.0 61.2 10.4 

30 IA 5% RAS 2.617 2.290 2.460 6.9 17.3 60.2 10.4 

31 IA 6% RAS 2.617 2.277 2.451 7.1 17.6 59.7 10.5 

32 IA 6% RAS 2.617 2.272 2.451 7.3 17.8 58.9 10.5 

33 IA 6% RAS 2.617 2.273 2.451 7.3 17.7 58.8 10.4 

34 IA 6% RAS 2.617 2.287 2.451 6.7 17.2 61.1 10.5 

35 IA 6% RAS 2.617 2.277 2.451 7.1 17.6 59.7 10.5 

36 MO 15% RAP 2.630 2.295 2.471 7.1 17.0 58.2 9.9 

37 MO 15% RAP 2.630 2.293 2.471 7.2 17.1 57.9 9.9 

38 MO 15% RAP 2.630 2.301 2.471 6.9 16.8 59.1 9.9 
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Table 16: Volumetric Properties of Compacted Sample Cylinder (Continued) 

39 MO 15% RAP 2.630 2.295 2.471 7.1 17.0 58.2 9.9 

40 MO 15% RAP 2.630 2.298 2.471 7.0 16.9 58.6 9.9 

41 MO 5% Fine RAS 2.632 2.295 2.547 6.8 17.3 60.6 10.5 

42 MO 5% Fine RAS 2.632 2.298 2.547 6.7 17.1 61.2 10.5 

43 MO 5% Fine RAS 2.632 2.294 2.547 6.8 17.3 60.6 10.5 

44 MO 5% Fine RAS 2.632 2.293 2.547 6.8 17.3 60.4 10.5 

45 MO 5% Fine RAS 2.632 2.293 2.547 6.8 17.3 60.4 10.5 

46 MO 5% Coarse RAS 2.632 2.293 2.527 6.5 17.3 62.8 10.9 

47 MO 5% Coarse RAS 2.632 2.287 2.527 6.7 17.5 61.8 10.8 

48 MO 5% Coarse RAS 2.632 2.281 2.527 7.0 17.8 60.9 10.8 

49 MO 5% Coarse RAS 2.632 2.284 2.527 6.8 17.6 61.4 10.8 

50 MO 5% Coarse RAS 2.632 2.274 2.527 7.2 18.0 59.8 10.8 

51 IN 15% RAP 2.647 2.301 2.468 6.8 18.3 63.0 11.5 

52 IN 15% RAP 2.647 2.292 2.468 7.1 18.6 61.6 11.5 

53 IN 15% RAP 2.647 2.299 2.468 6.8 18.4 62.7 11.5 

54 IN 3% RAS&HMA 2.618 2.279 2.448 6.9 18.3 62.4 11.4 

55 IN 3% RAS&HMA 2.618 2.277 2.448 7.0 18.4 62.1 11.4 

56 IN 3% RAS&HMA 2.618 2.285 2.448 6.7 18.1 63.3 11.5 

57 IN 3% RAS&HMA 2.618 2.275 2.448 7.1 18.5 61.7 11.4 

58 IN 3% RAS&HMA 2.618 2.276 2.448 7.0 18.5 61.9 11.4 

59 IN 3% RAS&WMA 2.618 2.299 2.463 6.6 17.6 62.3 11.0 

60 IN 3% RAS&WMA 2.618 2.293 2.463 6.9 17.8 61.4 10.9 

61 IN 3% RAS&WMA 2.618 2.294 2.463 6.9 17.8 61.4 10.9 

62 IN 3% RAS&WMA 2.618 2.294 2.463 6.9 17.8 61.4 10.9 

63 IN 3% RAS&WMA 2.618 2.296 2.463 6.8 17.8 61.7 11.0 

 

Viscosity (η) 

Binder viscosities are calculated from DSR tests results through Equation 16 The procedures 

to test high temperature performance grade of RTFO aged binder were applied. Binder shear 

modulus and phase angle values were observed at temperatures ranging from 58°C to 82°C with 

increments of 6°C. Three or four viscosity values were tested for each type of binder. The A-

VTS method is used to predict the binder viscosities at the interested temperatures which are the 

temperatures that the dynamic moduli of compacted samples were tested. The A-VTS method 

assumes that the binder viscosity is linearly related to temperature on a log-log to log scale. The 

expression of the method is presented in Equation 17. The VTS coefficients, A and VTS, are 

summarized in Table 17 and graphically presented in Figure 36. 
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Equation 16 

where η = viscosity (Poise), 

 |  |= binder complex shear modulus (Pa), and 

δ = phase angle. 

 

                          

Equation 17 

where A, VTS = VTS coefficients, 

 tr = temperature (°Rankin), and  

 η = viscosity (centipoises). 

Table 17: VTS Coefficients of Recovered Asphalt Binder 

Mix Number Project Description A VTS 

BC-21 

MN 

 5% Mfr. RAS 10.53205 -3.50984 

BC-22 5% Tear-off RAS 10.88701 -3.63714 

BC-23 30% RAP 11.05463 -3.70279 

BC-24 

IA 

0% RAS 11.05398 -3.69434 

BC-25 4% RAS 10.5888 -3.52328 

BC-26 5% RAS 10.35324 -3.43054 

BC-27 6% RAS 9.783821 -3.22009 

BC-28 

MO 

15% RAP 10.92817 -3.64293 

BC-29 5% Fine RAS  9.692357 -3.18057 

BC-30 5% Coarse RAS  9.842163 -3.23768 

BC-31 

IN 

15% FRAP 10.96405 -3.65855 

BC-32 3% RAS&HMA 10.77171 -3.58458 

BC-33 3% RAS&WMA 10.83753 -3.60935 
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Figure 36: VTS Curves of Recovered Asphalt Binder 

 

Complex Shear Modulus (G*) 

DSR frequency sweep tests were performed at multiple temperatures and frequencies. Binder 

complex shear modulus master curves are developed by shifting G* values at different 

temperatures to a reference temperature using shift factors (a(T)). The selected reference 

temperatures are the interested temperatures, 4°C, 21°C, and 37°C. Figure 37 shows the actual 

observed G* values for binder extracted from Iowa 0% RAS mix. The G* curves are horizontally 

moved by factoring the actual testing frequencies with a(T) to achieve a smooth curve as shown 

in Figure 38. Figure 37 and Figure 38 provide an example of the master curve construction 

process. Master curves for other recovered binders were constructed and included in the 

Appendix. The a(T) values at 37°C are summarized in Table 18.  At reference temperature, the 

corresponding frequencies of G* values are the actual testing frequencies. It is not necessary to 

factor the frequencies at the reference temperature. Therefore, the shift factor at the reference 

temperature is equal to 1. To calculate the shift factors for 4°C or 21°Creference temperatures, 

simply divide each shift factor for the 37°C reference temperature by the shift factor at 4°C or 

21°C for the 37°C reference temperature. Lab G* tests were not performed at 4°C because it 

takes significantly longer time to lower the water bath temperature to 4°C than other 

0.70

0.72

0.74

0.76

0.78

0.80

0.82

0.84

0.86

2.77 2.78 2.79 2.80 2.81

Log(log(η)) 

Log(Tr) 

MN-5%Mfr.RAS
MN-5%Tear-off RAS
MN-30%RAP
IA-0%RAS
IA-4%RAS
IA-5%RAS
IA-6%RAS
MO-15%RAP
MO-5%Fine RAS
MO-5%Coarse RAS
IN-15%RAP
IN-3%RAS&HMA
IN-3%RAS&WMA



63 

 

 

temperatures. As shown in Figure 39, the log shift factor values are linearly correlated to 

temperature. The shift factor at 4°C is estimated for each recovered binder. The G* used for E* 

predictive models is the corresponding G* of a particular frequency and temperature on the 

master curve.  

 

Figure 37: Lab Tested G* Values of Asphalt Binder Recovered from Iowa 0% RAS Mix 

 

Figure 38: G* Master Curve for Mix BC24 (Reference Temperature is 37ºC) 
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Figure 39: Shift Factors for Mix BC-25 

 

Table 18: G* Shift Factors for Recovered Binders at Reference Temperature of 37 ºC 

Mix Number A(4ºC) A(9ºC) A(13ºC) A(21ºC) A(29ºC) A(37ºC) 

BC-21 2243 736 550 56 6.7 1 

BC-23 3172 1700 550 55 7.0 1 

BC-24 4804 1400 480 50 6.5 1 

BC-25 5666 1600 550 52 6.0 1 

BC-27 2972 908 550 55 7.0 1 

BC-28 6638 3000 1000 80 8.5 1 

BC-29 12066 3000 900 90 8.0 1 

BC-30 4804 3500 1200 95 8.0 1 

BC-31 7278 2000 650 60 7.0 1 

BC-32 8674 2500 700 60 7.5 1 

BC-33 7667 2000 700 65 7.5 1 

 

Phase Angle (δ) 

Models to estimate the value of phase angle are developed using the same method as the 

aforementioned method to estimate G*. Figure 40 shows an example of the phase angle master 

curves at reference temperature equal to 4ºC, 21ºC, and 37ºC. The determined phase angle shift 

factors are summarized in Table 19. 
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Figure 40: Phase Angle Master Curves for Asphalt Binder Recovered from Mix BC24 

 

Table 19: Phase Angle Shifting Factors at Reference Temperature of 37 ºC 

Mix Number A(9ºC) A(13ºC) A(21ºC) A(29ºC) A(37ºC) A(4ºC) 

BC-21 11162 5500 280 15 1 56396 

BC-23 15000 3900 250 15 1 39709 

BC-24 10000 2600 160 12 1 49180 

BC-25 19000 4000 200 14 1 95693 

BC-27 17585 8000 350 16 1 96286 

BC-28 22000 5500 250 14 1 72175 

BC-29 75000 15000 400 18 1 511328 

BC-30 120000 22000 600 20 1 49180 

BC-31 17000 4000 220 14 1 91124 

BC-32 25000 5500 250 16 1 139583 

BC-33 30000 6500 270 15 1 173797 

 

Witczak Model 

The Witczak models are developed form of a sigmoid function. The basic form of the 

sigmoid function is shown in Equation 18 The shape of the sigmoid function is controlled by the 

four fitting parameters: δ, α, β, and γ. In this function, δ is the smallest E* value. In a scenario 

that HMA is subjected to a very high temperature and a slow moving traffic, the E* of the HMA 

is very close to δ. In this situation, the stiffness of asphalt binder is very low which the stiffness 

of HMA is governed by the aggregate and mixture volumetric properties. Equation 19 is the 
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developed form of δ in the 1999 Witczak Model. In the 2006 Witczak Model, the form of  δ is 

written as Equation 20 The value of δ + α is the theoretical largest E*. Therefore, α represents 

the largest change of E* that a HMA pavement can have. The developed forms of α for 1999 and 

2006 Witczak models are shown in Equation 21 and Equation 22, respectively. Parameter δ and 

δ + α define the lower and upper bounds of the sigmoid curve. Parameter β and γ are empirical 

constants that are used to define the shape of the curve.  

 

    |  |    
 

              
 

Equation 18 

where |  | = dynamic modulus, 

     reduced time, and 

 δ, α, β, γ = fitting parameters. 

 

                                     
                       

         (
     

        
) 

Equation 19 

where      = percent mass of aggregates passing through a #200 sieve, 

    = cumulative percent mass of aggregates retained on a # 4 sieve, 

    = air voids, and 

       = effective binder content by volume of the mix. 

 

              (|  
 |       )

 (                         
                  

 

                    
             (

     

        
)) 

Equation 20 

where |  
 | = dynamic shear modulus of the binder, 
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     = cumulative percent mass of aggregates retained on a 3/8” sieve, and 

     ,   ,   , and       = as previously defined. 

 

                                             
             

Equation 21 

where     = cumulative percent mass of aggregates retained on a¾” sieve, and 

    , and    = as previously defined.  

 

                  (
     

        
)                    

          

Equation 22 

where    ,    ,   , and       = as previously defined. 

 

The independent variable tr is the multiplicative inverse of the reduced frequency (fr). The 

reduced frequency is the equivalent frequency of an E* value at reference temperature. Reduced 

frequency is calculated using the real frequency factored by a shift factor (a(T)) which is 

determined by the binder rheological properties using the viscosity-temperature superposition 

method. Therefore, the variable tr represents the binder stiffness effect on the mixture stiffness. 

Because the asphalt binder stiffness is dependent on temperature and loading frequency, tr is also 

a simulation factor for the temperature and traffic loading rate. In the 1999 Witczak Model, tr is a 

function of the loading rate and the binder viscosity as shown in Equation 23 In the 2006 

Witczak Model, the stiffness of asphalt binder is calculated from the binder complex shear 

modulus and phase angle by Equation 24 Substitute tr in Equation 18 by Equation 23 and 

Equation 24, a general form of the Witczak model can be obtained in Equation 25 The values of 

parameter b, g1, and g2 are equal to -0.604414, -0.313351, and -0.393532 for the 1999 Witczak 

Model. In the 2006 Witczak Model, the values of the three parameters, b, g1, and g2, are -0.7814, 

-0.5785, and 0.8834, respectively. 

 

                        

Equation 23 



68 

 

 

where f = loading frequency, 

 η = asphalt binder viscosity, 

 a, b = fitting parameters, and 

 tr = as previously defined. 

 

             |  |          

Equation 24 

where Φ = phase angle, 

 a, b = fitting parameters, and 

tr, |G*| = as previously defined. 

 

    |  |    
 

                     
 

Equation 25 

where x1 = frequency in the 1999 Witczak Model or binder complex shear modulus in 

the 2006 Witczak Model, 

x2 = binder viscosity in the 1999 Witczak Model or phase angle in the 2006 Witczak 

Model, 

b, g1, g2 = fitting parameters, and 

|E*|, δ, α = as previously defined. 

 

Therefore, dummy variables can be added to the δ, α, b, g1 and g2 terms to change the shape 

of the sigmoid function to match the laboratory tested E* values. The E* values of the control 

mixes which contain 0% RAS are used to determine the coefficients of the 0%-RAS-effect 

calibration variable DIN, DIA, DMN, and DMO in Equation 26 After the coefficients of DIN, DIA, 

DMN, and DMO were determined, Equation 26 can be used to calculate the predicted E* which the 

prediction accuracy variability from project differences is eliminated. The values of the 

coefficients in Equation 26 are determined through non-linear multiple variable regression of the 

lab data; and the results are listed in Table 20 for the 1999 Witczak Model and Table 21 for the 

2006 Witczak Model.  
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Equation 26 

 

where DIN = 1 for Indiana mixes and 0 for others, 

 DIA = 1 for Iowa mixes and 0 for others, 

 DMN = 1 for Minnesota mixes and 0 for others, 

 DMO = 1 for Missouri mixes and 0 for others, 

 CδIN, CδIA, CδMN, CδMO, CαIN, CαIA, CαMN, CαMO, CbIN, CbIA, CbMN, CbMO, Cg1IN,  

Cg1IA, Cg1MN, Cg1MO, Cg2IN, Cg2IA, Cg2MN, Cg2MO = coefficient of the dummy variable 

DIN, DIA, DMN, and DMO, and 

δ,α,|E*|, x1, x2, |Gb*|,b, g1, g2= as previously defined. 
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Table 20: Regression Results of 0%-RAS-Effect for the 1999 Witczak Model 

Parameter Estimation Standard Error P-value 

CδIN -2.4475 3.21572 0.4488 

CδIA -2.4136 2.18329 0.2709 

CδMN -0.3767 1.56535 0.8102 

CδMO -2.1956 1.56179 0.1621 

CαIN 2.41062 3.25415 0.461 

CαIA 2.45945 2.25627  0.2776 

CαMN 0.30519 1.68828 0.8568 

CαMO 2.14614 1.5788 0.1763 

CbIN -0.8283 0.60855 0.1773 

CbIA -0.4255 0.42872 0.3228 

CbMN 0.10558 0.5454  0.8468 

CbMO -0.7409 0.31634 0.0206 

Cg1IN -0.0531 0.05045 0.2962 

Cg1IA -0.0357 0.0524  0.4972 

Cg1MN -0.1367 0.12542 0.2776 

Cg1MO -0.0674 0.02645  0.0120 

Cg2IN 0.02603 0.04846  0.5927 

Cg2IA 0.05663 0.0487 0.2469 

Cg2MN -0.0917 0.12768  0.4737 

Cg2MO -0.0144 0.02681  0.5923 
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Table 21: Regression Results of 0%-RAS-Effect for the 2006 Witczak Model 

Parameter Estimation Standard Error P-value 

CδIN -2.084 1.61254 0.2 

CδIA -4.4766 3.35436 0.1843 

CδMN -0.8869 0.39381 0.0259 

CδMO -1.4828 1.05076 0.1605 

CαIN 2.32134 1.81791  0.2053 

CαIA 3.92956 3.41124  0.2514 

CαMN 0.52512 0.4388 0.2335 

CαMO 1.87323 1.31158 0.1556 

CbIN 0.09357 0.52829 0.8599 

CbIA -6.6804 0.5422 <0.0001 

CbMN -3.5158 1.34441 0.0099 

CbMO 1.72603 0.52612 0.0013 

Cg1IN 0.16969 0.08427 0.0474 

Cg1IA 0.3434 0.05092 <0.0001 

Cg1MN 0.04846 0.09017 0.5918 

Cg1MO 0.08525 0.10586  0.4221 

Cg2IN -0.4511 0.25582 0.0816 

Cg2IA 2.86933 0.51064 <0.0001 

Cg2MN 2.00793 0.64926 0.0024 

Cg2MO -1.012 0.05708 <0.0001 

 

Figure 41 through Figure 44show the prediction accuracies of the Witczak models that 

calibrations are made to eliminate the project variability. Compared to Figure 30 through Figure 

33, the linear trend lines for different projects tend to approach each other. This indicates that the 

Witczak models tend to have the same prediction accuracies for different projects. The real 

variability in prediction accuracies caused by changes in RAS contents is more detectable. The 

calibrated models will be further modified to account for the effects of the RAS content. 
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Figure 41: Project Effects Calibrated 1999 Witczak Model Accuracy on Logarithm Scale 

 

Figure 42: Project Effects Calibrated 1999 Witczak Model Accuracy on Normal Scale 
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Figure 43: Project Effects Calibrated 2006 Witczak Model Accuracy on Logarithm Scale 

 

 

Figure 44: Project Effects Calibrated 2006 Witczak Model Accuracy on Normal Scale 
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g2c terms to simulate the effects of RAS content. Lab tested E* values for each level of RAS 

content are used to determine the coefficients of the RAS effect variable D3%, D4%, D5%, and D6% 

in Equation 27 The results of the regression analyses are shown in Table 22 and Table 23 for the 

1999 and 2006 Witczak models, respectively. The prediction accuracies of modified Witczak 

models are shown in Figure 45 through Figure 48 on both normal and logarithm scales. The 

scatters on Figure 45 through Figure 48 are concentrated along the line of equality indicating the 

modified models have high accuracy of prediction. The modified 1999 Witczak Model achieves 

an R
2
 value of 0.99 on a logarithm scale and 0.98 on a normal scale. The corresponding Se/Sy 

values are 0.11 and 0.15 for the logarithm and normal scales, respectively. The R
2
 of the 

modified 2006 Witczak Model is 0.99 on a logarithm scale or 0.98 on a normal scale. The Se/Sy 

value is 0.08. According to Table 10, both the modified 1999 and 2006 Witczak models arrive at 

excellent goodness-of-fit. 

 

 

Figure 45: Modified 1999 Witczak Model Accuracy on Logarithm Scale 
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Figure 46: Modified 1999 Witczak Model Accuracy on Normal Scale 

 

Figure 47: Modified 2006 Witczak Model Accuracy on Logarithm Scale 
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Figure 48: Modified 2006 Witczak Model Accuracy on Normal Scale 
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Equation 27 

where D3% = 1 for mixes containing 3% RAS and 0 for others, 

 D4% = 1 for mixes containing 4% RAS and 0 for others, 

 D5% = 1 for mixes containing 5% RAS and 0 for others, 

 D6% = 1 for mixes containing 6% RAS and 0 for others, 

 Cδ3%, Cδ4%, Cδ5%, Cδ6%, Cα3%, Cα4%, Cα5%, Cα6%, Cβ3%, Cβ4%, Cβ5%, Cβ6%, Cγ3%,  

Cγ4%, Cγ5%, Cγ6%, Cc3%, Cc4%, Cc5%, Cc6% = coefficient of the dummy variable D3%,  

D4%, D5%, and D6%, and 

|  |, |  
 |       δ  α  β 

 γ
  
  as previously defined. 
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Table 22: Regression Results of RAS-Effect for the 1999 Witczak Model 

Parameter Estimation Standard Error P-value 

Cδ3% -1.6934 3.43166  0.6221 

Cδ4% 2.338807 0.346263 <0.0001 

Cδ5% 1.298827 0.02642 <0.0001 

Cδ6% 2.371782 0.747357 0.0019 

Cα3% 1.735896 3.466848 0.617 

Cα4% -2.52605 0.368664 <0.0001 

Cα5% -1.25625 0.031908 <0.0001 

Cα6% -2.37209 0.839104 0.0054 

Cb3% -0.05575 0.50377  0.9120 

Cb4% 0.63665 0.141449 <0.0001 

Cb5% 0.487354 0.013035 <0.0001 

Cb6% 0.918556 0.305215 0.0031 

Cg13% 0.028509 0.035197 0.4187 

Cg14% -0.09271 0.028679 0.0015 

Cg15% 0.022702 0.006049 0.0002 

Cg16% 0.012533 0.052773  0.8126 

Cg23% 0.024398 0.034317 0.4777 

Cg24% -0.20079 0.03225 <0.0001 

Cg25% 0.01138 0.005911 0.0546 

Cg26% -0.02292 0.054009 0.6719 

 

Statistics in Table 22 indicates that the coefficients with p-value greater than 0.05 include 

Cδ4%, Cδ5%, Cδ6%, Cα4%, Cα5%, Cb4%, Cb5%, Cb6%, Cg14%, Cg15%,and Cg24%. It is noticed that p-

values of coefficients for 3% RAS content are greater than 0.05. None of the 3% RAS calibration 

factors are considered statistically significant factors. The coefficients for 5% RAS except for 

Cg25%are considered statistically significant with a confidence level of 95%. The 5%RAS 

coefficients also have the lowest standard errors. This resulted from the large sample size of the 

laboratory tested E* values for mixes containing 5% RAS. The overall trend of the p-value for 

parameters except for g2 is decreasing with increasing RAS content. This indicates that a RAS 

content of 3% may not be large enough to cause significant decrease in the prediction accuracy 

of the 1999 Witczak model. The p-values of the g2 coefficients except for Cg24% are greater than 
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0.05. There is not an obvious trend in the p-values. Although the standard error is very small, 

Cg25% is still not a significant factor. This indicates that the RAS content may not have an effect 

on the parameter g2. The conclusions need to be verified by a larger sample space. 

 

Table 23: Regression Results of RAS-Effect for the 2006 Witczak Model 

Parameter Estimation Standard Error P-value 

Cδ3% 1.56497 0.540942 0.0041 

Cδ4% 0.60657 1.63964  0.7120 

Cδ5% 0.83865 1.093461  0.4434 

Cδ6% 2.182726 0.907241 0.0175 

Cα3% -1.95661 0.618857 0.0017 

Cα4% -0.63047 1.672241 0.7068 

Cα5% -0.8366 1.116441 0.4539 

Cα6% -0.82806 0.230407 0.0005 

Cb3% -0.52857 1.046937 0.6141 

Cb4% -1.81861 1.567145 0.2479 

Cb5% 0.574334 0.99932 0.5657 

Cb6% 5.866697 1.676873 0.0006 

Cg13% -0.17666 0.094207 0.0618 

Cg14% -0.00774 0.970961 0.9937 

Cg15% -0.06169 0.250851  0.8058 

Cg16% -0.07247 1.35486 0.9574 

Cg23% 0.848671 0.509028 0.0966 

Cg24% 1.1913 0.97377 0.2233 

Cg25% -0.01117 0.373595  0.9762 

Cg26% -2.5251 0.569046 0.1099 

  

Statistics in Table 23 show that the coefficients having a p-value greater than 0.05 include 

Cδ3%, Cδ6%, Cα3%, Cα6%, and Cb6%. The general p-value trend for the δ, α, and b coefficients are 

decreasing with increasing RAS content. There are no distinct trends for the p-values of the g1 

and g2 coefficients. This indicates that RAS content less than 5% may not result in significant 
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decrease in the prediction accuracy of the 2006 Witczak Model. Adding shingles to HMA may 

not change the g1 and g2 parameters in the model. 

Hirsch Model 

The Hirsch model is developed from the Hirsch’s law of mixture. The basic equation is 

Equation 28 The model contains four empirical constants, Ea, p0, p1, and p2. The values of the 

four constants determined by Christensen (2003) are 4,200,000, 20, 0.58, and 650 for Ea, p0, p1, 

and p2, respectively. Dummy variables which are used to simulate different projects are added to 

the four constants in order to match the lab testing results. The 0%-RAS-effect calibration 

equations for Ea, p0, p1, and p2 are shown in Equation 29 through Equation 32 Lab tested E* 

values for mixes containing 0% RAS are used to determine the value of each coefficient. The 

regression results are shown in Table 24. Figure 49 shows the prediction accuracies of the 

calibrated Hirsch Model. There are no distinct linear trend lines for different projects. Variables 

are added to the calibrated Ea, p0, p1, and p2 to account for the effects of the RAS. The modified 

predicted E* values are calculated by Equation 28 with modified Ea, p0, p1, and p2as shown in 

Equation 33 to Equation 36 Lab E* values for each RAS content are used for regression of the 

modified Hirsch function. The coefficients of the dummy variables are determined and 

summarized in Table 25. Figure 50 shows the lab tested E* vs. the predicted E* from the 

modified Hirsch model. Data points on Figure 50 are concentrated along the line of equality. The 

R
2
 of the modified Hirsch model is 0.97 and the Se/Sy value is 0.19 on a normal scale. On a 

logarithm scale, the model achieves R
2
 value of 0.51 and Se/Sy value of 0.76. According to 

Table 10, the goodness-of-fit for the modified Hirsch model is excellent on normal scale and fair 

on logarithm scale. 

 

                         
   

  
 

        

    
    

   
    

      

    
   

    
      

    
   

 

Equation 28 

where Ec = mixture modulus, 

 Ea = aggregate modulus, 
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 Em = mastic modulus, 

 Va’ = volume fraction of aggregate excluding the contact volume and mineral filler, 

 Vm = volume fraction of mastic, 

 Vv = volume fraction of air voids, 

 VMA’ = voids in mineral aggregate, 

 VFM = voids filled by mastic, and 

P0, P1, P2 = empirical constant. 

 

                                                

Equation 29 

where Eac = 0%-RAS-effect calibrated Ea, 

 DIN = 1 for Indiana mixes and 0 for others, 

 DIA = 1 for Iowa mixes and 0 for others, 

 DMN = 1 for Minnesota mixes and 0 for others, 

 DMO = 1 for Missouri mixes and 0 for others, and 

CEaIN, CEaIA, CEaMN, CEaMO = coefficient of the dummy variable DIN, DIA, DMN, and 

DMO. 

 

                                           

Equation 30 

where P0c = 0%-RAS-effect calibrated P0, 

CEaIN, CEaIA, CEaMN, CEaMO = coefficient of the dummy variable DIN, DIA, DMN, and 

DMO, and 

 DIN, DIA, DMN, DMO = as previously defined. 

 

                                             

Equation 31 

where P1c = 0%-RAS-effect calibrated P1, 

 CP1IN, CP1IA, CP1MN, CP1MO = coefficient of the dummy variable DIN, DIA, DMN, and  

DMO 
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 DIN, DIA, DMN, DMO = as previously defined. 

 

                                            

Equation 32 

where P2c = 0%-RAS-effect calibrated P2, 

CP2IN, CP2IA, CP2MN, CP2MO = coefficient of the dummy variable DIN, DIA, DMN, and 

DMO 

 DIN, DIA, DMN, DMO = as previously defined. 

Table 24: Regression Results of 0%-RAS-Effect for Hirsch 2006 Model 

Parameter Estimation Standard Error P-value 

CEaIN 0.090722 584201.6 1 

CEaIA -0.05654 571286.4 1 

CEaMN -0.10356 424926.4 1 

CEaMO 0.194212 276180.1 1 

CP0IN 249.0332 367.5947 0.4982 

CP0IA -23.3469 272.2187 0.9317 

CP0MN -3.91492 218.532  0.9857 

CP0MO 139.2855 240.595 0.5627 

CP1IN 0.012657 0.079471 0.8735 

CP1IA 0.100167 0.064257 0.1193 

CP1MN 0.133187 0.052335 0.0110 

CP1MO 0.074322 0.036013 0.0392 

CP2IN 69.14189 437.4 0.8744 

CP2IA 2063.315 1300.127 0.1127 

CP2MN 3078.152 1540.125 0.0458 

CP2MO 755.1289 396.8387  0.0573 
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Figure 49: Lab Tested vs. Hirsch Predicted E* Values Calibrated for 0%-RAS-Effect 

 

                                            

Equation 33 

where P0c’ = modified P0, 

       modified Ea, 

 D3% = 1 for mixes containing 3% RAS and 0 for others, 

 D4% = 1 for mixes containing 4% RAS and 0 for others, 

 D5% = 1 for mixes containing 5% RAS and 0 for others, 

 D6% = 1 for mixes containing 6% RAS and 0 for others, 

 CP03%, CP04%, CP05%, CP06% = coefficient of the dummy variable D3%, D4%, D5%,  

and D6%, and 

 P0c as previously defined. 
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Equation 34 

where P1c = modified P1, 

CP13%, CP14%, CP15%, CP16% = coefficient of the dummy variable D3%, D4%, D5%, and 

D6%, and 

D3%, D4%, D5%, D6%, P1c = as previously defined. 

 

   
                                          

Equation 35 

where P2c = modified P2, 

 CP23%, CP24%, CP25%, CP26% = coefficient of the dummy variable D3%, D4%, D5%,  

and D6%, and 

 D3%, D4%, D5%, D6%, P1c as previously defined. 

 

                                             

Equation 36 

where Eac’ = modified Ea, 

 CEa3%, CEa4%, CEa5%, CEa6% = coefficient of the dummy variable D3%, D4%, D5%,  

and D6%, and 

 D3%, D4%, D5%, D6%, Eac = as previously defined. 

 

Table 25: Regression Results of RAS-Effect Calibration Parameters for Hirsch Model 

Parameter Estimation Standard Error P-value 

CEa3% 0.852332 650984 1 

CEa4% 0.298186 885596.7 1 

CEa5% 0 356120.7 1 

CEa6% 0.400577 1623160 1 

CP03% -53.876 486.252 0.9118 

CP04% 0.73575 416.533 0.9986 

CP05% 659.784 364.327 0.0704 
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Table 25: Regression Results of RAS-Effect Calibration Parameters for Hirsch Model 

(Continued) 

Parameter Estimation Standard Error P-value 

CP06% 22.6821 589.209 0.9693 

CP13% 0.1109 0.09217 0.2291 

CP14% 0.02706 0.09873  0.7840 

CP15% 0.12435 0.05287 0.0188 

CP16% 0.01392 0.13396 0.9172 

CP23% 2324.44 1288.15 0.0714 

CP24% 910.952 2422.94 0.7070 

CP25% 5513.72 3011.19 0.0673 

CP26% 0.852332 650984 1 

 

 

Figure 50: Lab Tested vs. Predicted E* Values of Modified Hirsch Model 

The p-values of Ea coefficients in Table 25 that are equal to 1 indicating the all Ea 

coefficients are not significant factors. The estimations of coefficient values are very small 

compared to the value of Ea which is 4,200,000. Parameter Ea is the assumed aggregate modulus. 

The addition of shingles in HMA does not change the modulus of aggregate. There is only one p-
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value in Table 25 that is less than 0.05 indicating that the coefficients to simulate the shingle 

effects are not significant factors. A RAS content which is smaller than 6% may not result in bias 

in the Hirsch prediction of E* values of RAS mixtures 

MODIFIED MODEL EVALUATION 

The aforementioned R
2
 and Se/Sy values of the modified Witczak and Hirsch models 

indicate the three E* predictive models achieve excellent goodness-of-fit for this database 

containing 1701 data points. This section discusses the prediction efficiencies of modified 

Witczak and Hirsch models in terms of model accuracy and reliability. Dynamic modulus master 

curves and the plots of laboratory versus predicted E* are constructed to evaluate the model 

accuracy. Statistics of the dummy variable coefficients are analyzed to discuss the reliability of 

each parameter estimation and the correlations of parameters. 

Model Efficiency Evaluation 

Laboratory dynamic modulus values are tested at different temperatures and frequencies. In 

this section, the accuracies of modified Witczak and Hirsch models are evaluated at the 

corresponding temperatures and frequencies. Dynamic modulus master curves are often used to 

simulate HMA E* behavior over a wide range of temperatures. Therefore, master curves are used 

to discuss the model accuracies at different temperatures. The lab vs. predictve plots are 

developed at each loading frequency to evaluate the model accuracies at different frequencies.  

Witczak Model 

Dynamic modulus master curves are constructed for mixes containing shingles in order to 

evaluate the prediction accuracy of the modified Witczak models. A typical E* master curve has 

three components: upper tail, lower tail, and linear range. At the two tails of the curve, E* values 

are approaching a constant simulating extreme climate and traffic loading. The upper tail 

simulates HMA behavior under a fast moving traffic in a very cold winter day. The lower tail 

simulates the opposite situation. The accuracies of the model predicted master curve on the upper 

and lower tails are related to the accuracies of predicting HMA permanent deformation and 

thermal cracking, respectively. In between of the two tails, the slope of the master curve 

approaches a constant. The E* is changing with a constant rate on log to log scale. The accuracy 

of this range is related to the prediction accuracy of asphalt fatigue cracking. The original and 

modified 2006 and 1999 Witczak master curves in Figure 51 to Figure 59 conform very closely 



86 

 

 

to the lab master curves at the upper tail. The differences between the upper tails of the original 

and modified 1999 Witczak models and the modified 2006 Witczak Model are very small. The 

original 2006 Witczak Model tends to overestimate E* values at every range. The master curves 

of the 1999 Witczak Models are closer to the lab master curves than the 2006 Witczak models. 

Compared to the original Witczak models, the accuracies of modified models are increased at the 

upper tail and the linear range. However, Figure 51 to Figure 59 show low model accuracies on 

the lower tail. On the lower tail, the modified 1999 Witczak Model achieves better match with 

the lab curve for mix BC25, 26, 32, and 33. For the 2006 Witczak Model, the modified model 

has increased accuracy on the lower tail for mix BC29, 30, 32, and 33. For other mixes, 

modifications of original models do not increase the model accuracies. It should be noticed that 

E* values at the lower tail is very small. Small differences in two sets of E* values can cause 

significant difference in the lower tails of the developed master curves. In testing E* at high 

temperatures, the variability in test results is large and causes the inaccurate prediction of E* at 

lower tail of master curve. 

 

 

Figure 51: Witczak Model Master Curves for Minnesota Mfr. RAS Mix (Mix BC21) 
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Figure 52: Witczak Model Master Curves for Minnesota Tear-off RAS Mix (Mix BC22) 

 

 

Figure 53: Witczak Model Master Curves for Iowa 4% RAS Mix (Mix BC25) 
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Figure 54: Witczak Model Master Curves for Iowa 5% RAS Mix (Mix BC26) 

 

 

Figure 55: Witczak Model Master Curves for Iowa 6% RAS Mix (Mix BC27) 
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Figure 56: Witczak Model Master Curves for Missouri 5% Fine RAS Mix (Mix BC29) 

 

 

Figure 57: Witczak Model Master Curves for Missouri 5% Coarse RAS Mix (Mix BC30) 
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Figure 58: Witczak Model Master Curves for Indiana 3% RAS&HMA Mix (Mix BC32) 

 

Figure 59: Witczak Model Master Curves for Indiana 3% RAS&WMA Mix (Mix BC33) 
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Figur includes nine individual plots of the tested results vs. the 1999 Witczak predictions of 

E* for the nine loading frequencies in laboratory testing. The data are plotted on a normal scale. 

The variability in predicting E* increases as the predicted E* increases. The scatters for the 

modified 1999 Witczak Model are closely distributed along the line of equality. The spreads of 

scatters for the original 1999 Witczak Model are wider indicating the variability in prediction 

accuracy for the original model is larger than that for the modified model. The linear trend lines 

of the original model predictions has a slope greater than 1 showing that the original model tends 

to overestimate the E* value. There effects of different frequencies on the prediction accuracies 

are not be able to visually identify from the plots in Figur. 

 

 

Figure 60: Lab E* vs. Predicted E* of Witczak 1999 Model 
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Figure 60: Lab E* vs. Predicted E* of Witczak 1999 Model (Continued) 
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Figure 60: Lab E* vs. Predicted E* of Witczak 1999 Model (Continued) 
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increases. The original model obtains heavily biased E* values with large variability. Compared 

to the original model, the modified model has higher accuracy and precision. There effects of 

different frequencies on the prediction accuracies are not be able to visually identify from the 

plots in Figure 61. 

 

 

Figure 61: Lab E* vs. Predicted E* of Witczak 2006 Model 
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Figure 61: Lab E* vs. Predicted E* of Witczak 2006 Model (Continued) 
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Table 61: Lab E* vs. Predicted E* of Witczak 2006 Model (Continued) 
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The R
2 

values in Table 26 provide numerical evaluation of the model accuracies at each 

frequency level. Negative R
2
 value means the differences between predicted and tested E* values 

are larger than the variability of the lab E*, which indicates the model is significantly biased. 

Therefore, the original 2006 Witczak Model has significantly biased predictions of E*. The R
2
 

for the original 1999 Witczak Model tends to be increased when the frequency increases. 

Calibration of the original Witczak models significantly improves predicting accuracy and 

precision. The R
2
 values for the modified Witczak model are greater than 0.95 at every 

frequency level. 

Table 26: Coefficient of Determination of the Witczak Models 

Frequency 

R
2
 Values 

Witczak 

1999 

Modified Witczak 

1999 

Witczak 

2006 

Modified Witczak 

2006 

0.1 0.78 0.97 *
7
 0.96 

0.2 0.77 0.98 * 0.97 

0.5 0.8 0.98 * 0.98 

1 0.83 0.98 * 0.98 

2 0.84 0.98 * 0.95 

5 0.86 0.98 * 0.99 

10 0.87 0.98 * 0.99 

20 0.96 0.98 * 0.98 

25 0.88 0.98 * 0.98 

     
 

Hirsch Model 

The upper tails of the Hirsch model master curves in Figure 62 to Figure 68 conforms very 

closely to the lab master curves. At the linear range, the original Hirsch model tends to 

overestimate E* values. The modified Hirsch model achieves improved accuracy for mix BC21, 

25, 29, 30, 32, and 33. At the lower tail, the original Hirsch model has overwhelming biased 

predictions which can be more than 1000 times the E* values estimated from lab master curves. 

The modified Hirsch Model has more accurate predictions at the lower tail for mix BC25. For 

other mixes, the prediction accuracy of the modified Hirsch Model is equal to, or lower than that 

of the original model.  

                                                 
7
 * represents a very low coefficient of determination that the model becomes extremely unreliable. 
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Figure 62: Hirsch Model Master Curves for Mix BC21 

 

 

Figure 63: Hirsch Model Master Curves for Mix BC25 
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Figure 64: Hirsch Model Master Curves for Mix BC27 

 

 

Figure 65: Hirsch Model Master Curves for Mix BC29 
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Figure 66: Hirsch Model Master Curves for Mix BC30 

 

 

Figure 67: Hirsch Model Master Curves for Mix BC32 
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Figure 68: Hirsch Model Master Curves for Mix BC33 
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Figure 69: Lab E* vs. Predicted E* of Hirsch Model 
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Figure 69: Lab E* vs. Predicted E* of Hirsch Model (Continued) 
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Figure 69: Lab E* vs. Predicted E* of Hirsch Model (Continued) 

Table 27: Coefficient of Determination of the Hirsch Model 

Frequency 
R2 Values 

Hirsch Modified Hirsch 
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0.5 0.89 0.97 

1 0.89 0.97 

2 0.89 0.98 

5 0.9 0.98 

10 0.9 0.97 

20 0.91 0.96 

25 0.85 0.91 
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5%, and 6% RAS contents. The δ calibration coefficient for RAS content of 3% is negative. 

However, the standard error for 3% RAS is large indicating 3% RAS content may not change the 

δ parameter in the predictive equation. Figure 42 indicates that a decreased α in the 1999 

Witczak Model needs to be used to predict E* when more than 4% RAS is added to HMA. 

Negative α calibration coefficients are obtained for 4%, 5%, and 6% RAS contents. The α 

calibration coefficient for RAS content of 3% is positive. However, the standard error for 3% 

RAS is large indicating 3% RAS content may not change the α parameter in the predictive 

equation. Figure 43 shows the b parameter in the 1999 Witczak Model needs to be increased to 

predict E* when more than 4% RAS is added to HMA. Positive b calibration coefficients are 

obtained for 4%, 5%, and 6% RAS contents. The b calibration coefficient for RAS content of 3% 

is negative. However, the standard error for 3% RAS is large indicating 3% RAS content may 

not change the b parameter in the predictive equation. The g1 and g2 calibration coefficients in 

Figure 44 for 3%, 5%, and 6% RAS contents are positive. The g1 and g2 calibration coefficients 

for 4% RAS are negative. The standard errors of g1 and g2 calibration coefficient for 3% and 6% 

RAS contents are large. The effects of 3% and 6% RAS contents on g1 and g2 parameters are not 

able to be identified. Therefore, the addition of shingles in HMA results in increased δ and 

decreased α parameters. The effects on the g1 and g2 parameters are not significant. Modification 

of the 1999 Witczak Model is recommended when a 4% or more RAS content is used. 

 

Figure 70: δ Calibration Coefficient for the 1999 Witczak Model 
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Figure 71: α Calibration Coefficient for the 1999 Witczak Model 

 

Figure 72: b Calibration Coefficient for the 1999 Witczak Model 
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Figure 73: g1 Calibration Coefficient for the 1999 Witczak Model 

 

Figure 74: g2 Calibration Coefficient for the 1999 Witczak Model 
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other coefficient is increased; and a negative number indicates the opposite. The correlation 

ratios for coefficients of different RAS contents in Figure 46 are equal to zero indicating the 

calibration coefficients of different RAS contents are independent. Strong correlations are found 

within coefficients at each RAS content level. High correlation ratios of the δ and α coefficients 

indicate that δ and α are linearly correlated. The b, g1, and g2 coefficients for 3%, 4%, and 6% 

RAS have approximately perfectly linear correlations with absolute values of correlation ratios 

greater than 0.95. For 5% RAS, the coefficients are still correlated with a much lower correlation 

ratio. The chart also indicates that increase of δ will result in decreases of α, g1, and g2 and 

increase of b. An increase of α causes decreases of b and increases of g1 and g2. An increase of b 

will cause decreases of g1 and g2. An increased g1 will cause an increased g2.



 

 

 

1
0
9
 

Cδ3% Cδ4% Cδ5% Cδ6% Cα3% Cα4% Cα5% Cα6% Cb3% Cb4% Cb5% Cb6% Cg13% Cg14% Cg15% Cg16% Cg23% Cg24% Cg25% Cg26%

Cδ3% 1.00 0.00 0.00 0.00 -1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 -0.99 0.00 0.00 0.00 -0.98 0.00 0.00 0.00

Cδ4% 1.00 0.00 0.00 0.00 -1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 -0.97 0.00 0.00 0.00 -0.96 0.00 0.00

Cδ5% 1.00 0.00 0.00 0.00 -0.95 0.00 0.00 0.00 0.81 0.00 0.00 0.00 -0.36 0.00 0.00 0.00 -0.55 0.00

Cδ6% 1.00 0.00 0.00 0.00 -1.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 -0.98 0.00 0.00 0.00 -0.98

Cα3% 1.00 0.00 0.00 0.00 -1.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.98 0.00 0.00 0.00

Cα4% 1.00 0.00 0.00 0.00 -1.00 0.00 0.00 0.00 0.97 0.00 0.00 0.00 0.97 0.00 0.00

Cα5% 1.00 0.00 0.00 0.00 -0.63 0.00 0.00 0.00 0.51 0.00 0.00 0.00 0.74 0.00

Cα6% 1.00 0.00 0.00 0.00 -1.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00 0.99

Cb3% 1.00 0.00 0.00 0.00 -0.98 0.00 0.00 0.00 -0.98 0.00 0.00 0.00

Cb4% 1.00 0.00 0.00 0.00 -0.96 0.00 0.00 0.00 -0.95 0.00 0.00

Cb5% 1.00 0.00 0.00 0.00 -0.12 0.00 0.00 0.00 -0.31 0.00

Cb6% 1.00 0.00 0.00 0.00 -0.98 0.00 0.00 0.00 -0.97

Cg13% 1.00 0.00 0.00 0.00 0.99 0.00 0.00 0.00

Cg14% 1.00 0.00 0.00 0.00 0.97 0.00 0.00

Cg15% 1.00 0.00 0.00 0.00 0.60 0.00

Cg16% 1.00 0.00 0.00 0.00 0.99

Cg23% 1.00 0.00 0.00 0.00

Cg24% 1.00 0.00 0.00

Cg25% 1.00 0.00

Cg26% 1.00

 

Table 28: Coefficient Correlation Chart for the 1999 Witczak Model 
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2006 Witczak Model 

The δ calibration coefficients are all positive values as shown in Figure 75. The α calibration 

coefficients are all negative values as shown in Figure 76. The absolute value of the δ coefficient 

for 6% RAS is greater than other RAS contents, while the absolute value of α coefficient is 

approximately the same as that of 4% RAS and 5% RAS. The coefficients for 4% and 5% RAS 

contents have large standard errors compared to the value of the coefficients indicating the 

effects of 4% and 5% RAS contents on the parameter δ and α are not significant. The b 

calibration coeffcicients in Figure 77 for 3% and 4% RAS contents are negative. The coefficient 

values at 3%, 4%, and 5% RAS contents are small compared to their standard errors. The 6% 

RAS  has a significant positive effect on the b parameter in the model. Figure 78 show very 

small g1 calibration coefficients at 4%, 5%, and 6% RAS contents compared to their standard 

errors. Adding shingles to HMA may not cause changes in  the g1 parameter. Figure 79 indicates 

the g2 calibration coefficient for 5% RAS is almost zero. The 6% RAS has a significant larger 

negative calibration coefficient than other RAS contents. To summarize, adding shingles to 

HMA increases the δ and decreases the α values in the 2006 Witczak Model. The g1 parameter 

does not affected by addition of shingles in HMA. Modification of the original model is 

recommended when 6% or more RAS is used.  

 

Figure 75: δ Calibration Coefficient for the 2006 Witczak Model 
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Figure 76: α Calibration Coefficient for the 2006 Witczak Model 

 

Figure 77: b Calibration Coefficient for the 2006 Witczak Model 
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Figure 78: g1 Calibration Coefficient for the 2006 Witczak Model 

 

Figure 79: g2 Calibration Coefficient for the 2006 Witczak Model 

Table 29 shows that the δ and α calibration coefficients are strongly correlated. An increased 

δ will result in a decreased α. The δ coefficient is negatively correlated to the b coefficient. The α 

coefficient is positively correlated to the g1 coefficient. The coefficient b is negatively correlated 

to the g2 coefficient. Coefficients of different RAS contents are independent to each other.
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1
1
3
 

Cδ3% Cδ4% Cδ5% Cδ6% Cα3% Cα4% Cα5% Cα6% Cb3% Cb4% Cb5% Cb6% Cg13% Cg14% Cg15% Cg16% Cg23% Cg24% Cg25% Cg26%

Cδ3% 1.00 0.00 0.00 0.00 -0.99 0.00 0.00 0.00 0.33 0.00 0.00 0.00 -0.95 0.00 0.00 0.00 0.08 0.00 0.00 0.00

Cδ4% 1.00 0.00 0.00 0.00 -1.00 0.00 0.00 0.00 0.26 0.00 0.00 0.00 -0.90 0.00 0.00 0.00 0.33 0.00 0.00

Cδ5% 1.00 0.00 0.00 0.00 -0.96 0.00 0.00 0.00 0.44 0.00 0.00 0.00 -0.59 0.00 0.00 0.00 -0.29 0.00

Cδ6% 1.00 0.00 0.00 0.00 -1.00 0.00 0.00 0.00 -0.14 0.00 0.00 0.00 -0.99 0.00 0.00 0.00 0.87

Cα3% 1.00 0.00 0.00 0.00 -0.19 0.00 0.00 0.00 0.92 0.00 0.00 0.00 -0.23 0.00 0.00 0.00

Cα4% 1.00 0.00 0.00 0.00 -0.25 0.00 0.00 0.00 0.89 0.00 0.00 0.00 -0.35 0.00 0.00

Cα5% 1.00 0.00 0.00 0.00 -0.55 0.00 0.00 0.00 0.70 0.00 0.00 0.00 0.41 0.00

Cα6% 1.00 0.00 0.00 0.00 0.21 0.00 0.00 0.00 0.99 0.00 0.00 0.00 -0.91

Cb3% 1.00 0.00 0.00 0.00 -0.53 0.00 0.00 0.00 -0.91 0.00 0.00 0.00

Cb4% 1.00 0.00 0.00 0.00 -0.64 0.00 0.00 0.00 -0.82 0.00 0.00

Cb5% 1.00 0.00 0.00 0.00 -0.97 0.00 0.00 0.00 -0.98 0.00

Cb6% 1.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 -0.60

Cg13% 1.00 0.00 0.00 0.00 0.14 0.00 0.00 0.00

Cg14% 1.00 0.00 0.00 0.00 0.09 0.00 0.00

Cg15% 1.00 0.00 0.00 0.00 0.92 0.00

Cg16% 1.00 0.00 0.00 0.00 -0.86

 

Table 29: 2006 Witczak Modification Coefficient Correlation Table
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Hirsch Model 

Regression statistics in Table 25 show that values of the Ea calibration coefficients are very 

small with significantly large standard errors. The absolute values of the coefficients are less 

than 1. Considering the value of Ea is 4,200,000 in the original Hirsch model, addition of 

shingles in HMA does not change the assumed aggregate modulus. The p0 calibration coefficient 

for 5% RAS in Figure 80 is positive. However, the coefficients for other RAS contents are very 

small. Figure 81 and Figure 82 show RAS has positive effects on the p1 and p2parameters. The 

effects are very small at 6% RAS content. To summarize, the addition of RAS in HMA does not 

significantly decrease the prediction accuracy of the original Hirsch model.  

 

 

Figure 80: p0 Calibration Coefficient for the Hirsch Model 

 

Figure 81: p1 Calibration Coefficient for the Hirsch Model 
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Figure 82: p2 Calibration Coefficient for the Hirsch Model 
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CHAPTER 5: CONCLUSIONS AND RECOMMENDATIONS 

The research was conducted to evaluate the accuracies of the commonly used dynamic 

modulus (E*) predictive models when recycled asphalt shingles are used in producing asphalt 

mixtures. The E* predictive models evaluated in this research are the 1999 Witczak Model, the 

2006 Witczak Model, and the Hirsch Model. Modifications were proposed for the Witczak 

models. Model parameter statistics indicate that the Hirsch Model is not sensitive to mixtures 

RAS containing and thus modification of the Hirsch model is not necessary.  

The mixes tested in this study were procured from demonstration projects of the National 

Pooled Fund Study #1208 which was conducted for the purpose of evaluating the effects of RAS 

on laboratory testing properties and field performances of asphalt mixtures. In the study, thirteen 

mixes were produced for four different demonstration projects constructed by state agencies 

including Indiana, Iowa, Minnesota, and Missouri. The Indiana mixes include two three percent 

RAS mixes of which one of them used a foaming warm mix asphalt technology and a control 

mix which contains 15 percent FRAP. The Iowa mixes include a control mix which does not 

contain any RAS and three experimental mixes with four, five, and six percent RAS contents. 

The Minnesota mixes include a control mix containing 30 percent FRAP, and two experimental 

mixes containing five percent manufactured and tear-off RAS, respectively. The Missouri mixes 

include a control mix containing 15 percent RAP, a mix containing ten percent RAP and five 

percent fine ground RAS, and a Mix containing ten percent RAP and five percent coarse ground 

RAS. The asphalt used in the Missouri demonstration project contains ground tire rubber and a 

vestenamer polymer to improve the binder performance grade from 64-22 to 70-22. Loose 

mixtures were obtained in the field and compacted to test cylinders in the laboratory for dynamic 

modulus testing. Asphalts were recovered from the field mixes through a centrifugal extraction 

method for the DSR tests. The DSR tests results were used to estimate the values of input 

parameters regarding binder rheological properties. The laboratory E* values were compared 

with the calculated E* values from the predictive models. A statistical analysis was performed on 

the accuracies of the models to determine if there were significant differences in mixes 

containing different percentages of RAS from different demonstration projects. Modifications of 

the original predictive models were made to change the empirically determined coefficients by 

introducing dummy variables to consider the use of RAS. Non-linear multiple variable 

regressions based on the least square method were performed to determine the coefficients of the 
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dummy variables. A statistical analysis was conducted to evaluate the effectiveness of the 

coefficients and their correlations. Based on the aforementioned analysis, the following 

conclusions are drawn in the ensuing sections.  

Prediction Accuracies of the Original E* Predictive Models 

The 1999 Witczak Model 

The 1999 Witczak Model tends to overestimate E* values for mixes containing RAS. The 

master curves constructed on the model predicted E* values closely confirm the master curves 

constructed on the laboratory tested E* values at the low temperatures, while the master curves 

diverge at the high temperatures. These results are in agreement with Clyne et al. [29] and Kim 

et al. [30]. Birgisson et al. [31] indicated in their study on the influences of different binder 

viscosity measuring methods on the accuracy of the 1999 Witczak Model leads to 

underestimating E* values. However, this research shows a disagreement as the predictive 

accuracy of the 1999 Witczak Model is significantly affected by the projects, RAS contents, and 

environmental condition. Statistically significant differences were detected between every pair of 

projects and RAS contents suggesting modification is needed to account for the effects of the 

projects and shingles. Loading condition does not affect the model’s prediction accuracy. The 

overall goodness-of-fit is statistically considered good. 

The 2006 Witczak Model 

The 2006 Witczak Model tends to overestimate the E* values. The master curves constructed 

on the model predicted E* values show the E* values are overestimated at every temperature 

range. The goodness-of-fit of the 2006 Witczak Model is fair. Statistically significant differences 

in predicting accuracies were detected between every pair of projects. The statistical analysis 

indicates the model has the same accuracy level of predicting E* values for mixes containing 0 

percent RAS and four or five percent RAS. However, the predictive accuracy for mixes 

containing four percent RAS is significantly different from mixes containing five percent RAS. 

The predictive accuracy level for mixes containing six percent RAS is found to be the same as 

mixes containing three or five percent RAS. However, significant difference in model accuracies 

was detected between mixes containing three and five percent RAS. Significant differences were 

found for other comparisons. Failure to detect significant differences in the aforementioned 
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comparisons may be a result from variability in lab testing results. However, modification is 

needed to account for the effects of RAS and projects. 

The Hirsch Model 

The Hirsch Model tends to overestimate the E* values at the high temperatures. Master 

curves constructed by the Hirsch Model predictions closely conform to the laboratory data at low 

temperatures and diverge at high temperatures. The goodness-of-fit of the Hirsch Model is 

excellent. Demonstration project factor is a significant factor affecting the predicting accuracy of 

the model. Statistical differences in model accuracies of the Hirsch Model were detected between 

mixes containing zero and four percent RAS, zero and five percent RAS, three and five percent 

RAS, and four and five percent RAS. There is not a rational relationship between the prediction 

accuracy and RAS content for the Hirsch Model.  

Modified E* Predictive Models 

The three modified E* predictive models have high accuracies of predicting at low and 

intermediate temperatures and considerably lower accuracies at high temperatures. The modified 

models have the same level of predictive accuracies under different loading rates. 

The Modified 1999 Witczak Model 

The calibrated modified 1999 Witczak Model is presented in Equation 37. The values of the 

introduced parameters are listed in Table 30 and Table 31. The R
2
 value of the model is 

improved from 0.87 to 0.99 on a logarithm scale by the calibration.  

   |  |
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Table 30: Project Effect Calibration Parameters for the Modified 1999 Witczak Model 

Project δ α b g1 g2 

Indiana -2.4475 2.41062 -0.8283 -0.0531 0.02603 

Iowa -2.4136 2.45945 -0.4255 -0.0357 0.05663 

Minnesota -0.3767 0.30519 0.10558 -0.1367 -0.0917 

Missouri -2.1956 2.14614 -0.7409 -0.0674 -0.0144 

 

Table 31: RAS Content Calibration Parameters for the Modified 1999 Witczak Model 

RAS% δ α b g1 g2 

0 0 0 0 0 0 

3 -1.6934 1.7359 -0.0558 0.02851 0.0244 

4 2.33881 -2.5261 0.63665 -0.0927 -0.2008 

5 1.29883 -1.2563 0.48735 0.0227 0.01138 

6 2.37178 -2.3721 0.91856 0.01253 -0.0229 

 

The Modified 2006 Witczak Model 

The calibrated modified 2006 Witczak Model is presented in Equation 38. The values of the 

introduced parameters are listed in Table 32 and Table 33. The R
2
 value of the model is 

improved from 0.75 to 0.99 on a logarithm scale by the calibration.  
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Table 32: Project Effect Calibration Parameters for the Modified 2006 Witczak Model 

Project δ α b g1 g2 

Indiana -2.084 2.32134 0.09357 0.16969 -0.4511 

Iowa -4.4766 3.92956 -6.6804 0.3434 2.86933 

Minnesota -0.8869 0.52512 -3.5158 0.04846 2.00793 

Missouri -1.4828 1.87323 1.72603 0.08525 -1.012 

 

Table 33: RAS Content Calibration Parameters for the Modified 2006 Witczak Model 

RAS% δ α b g1 g2 

0 0 0 0 0 0 

3 1.56497 -1.9566 -0.5286 -0.1767 0.84867 

4 0.60657 -0.6305 -1.8186 -0.0077 1.1913 

5 0.83865 -0.8366 0.57433 -0.0617 -0.0112 

6 2.18273 -0.8281 5.8667 -0.0725 -2.5251 

 

The Modified Hirsch Model 

The finalized modified Hirsch Model is presented in Equation 39 and Equation 40. The 

values of the introduced parameters are listed in Table 34 and Table 35. The calibration of the 

model improves the R
2
 value from 0.90 to 0.97. The improvement of the R

2
 value is primarily 

from calibrations addressing the project effects. 
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Table 34: Project Effect Calibration Parameters for the Modified Hirsch Model 

Project Ea p0 p1 p2 

Indiana 0.09072 249.033 0.01266 69.1419 

Iowa -0.0565 -23.347 0.10017 2063.32 

Minnesota -0.1036 -3.9149 0.13319 3078.15 

Missouri 0.19421 139.286 0.07432 755.129 

 

Table 35: RAS Content Calibration Parameters for the Modified Hirsch Model 

RAS% Ea p0 p1 p2 

0 0 0 0 0 

3 0.85233 -53.876 0.1109 2324.44 

4 0.29819 0.73575 0.02706 910.952 

5 0 659.784 0.12435 5513.72 

6 0.40058 22.6821 0.01392 0.85233 

 

Influences of RAS on Parameters of the E* Predictive Models 

Adding Shingles to asphalt mixtures requires an increase in δ and b values and a decrease in 

the α value in the 1999 and 2006 Witczak models for improved prediction of E* values. Strong 

linear correlations exist in parameter δ, α and b. There are no rational relationships between the 

RAS content and the parameters g1 and g2. Shingles do not have significant effects on the 

parameter Ea, p0, p1, and p2 in the Hirsch Model. 

Recommendations 

 A low RAS content of less than three percent does not require modification of the 1999 

Witczak Model. When a RAS content of four percent or higher is used, it is recommended to 

use the modified 1999 Witczak Model. 

 The modified 2006 Witczak Model is recommended to use when a mix contains six percent 

RAS or more. 

 The δ term in the Witczak models should be increased and α term should be decreased 

correspondently when RAS is used in asphalt mixture. 

 The b constant in the Witczak models should be increased for RAS. 

 The g1 and g2 constants in the Witczak models do not need to be modified for RAS. 
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 The Hirsch Model does not need to be modified for shingles’ effects. 

 Different projects affect the calibration coefficients and need to be developed if the modified 

models are used for other projects. 

 The modified models were developed from a limited database containing 13 different mixes. 

The experiments were not specifically designed for the purposes of this research. Mixes 

containing certain percentages of RAS such as three percent, four percent, and six percent 

can be only found in one project. The mutual variability of the project and the certain RAS 

contents cannot be determined. Future research should be conducted to verify the effects of 

RAS on the 1999 and 2006 Witczak models as well as other E* predictive models that are 

not included in this research. In addition, comprehensive research should be conducted to 

investigate the accuracies of the E* predictive models when different methods are used to 

obtain values of the input parameters such as the binder shear modulus, phase angle, and 

viscosity. This includes developing a standardized procedure to calibrate the model input 

parameters.  
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APPENDIX A: DYNAMIC MODULUS RESULTS 

Table 36: Dynamic Modulus Test Results for Mix BC-21 

  
Dynamic Modulus, kPa 

 

  
Mix BC-21, Minnesota Demonstration Project, 5% Mfr. RAS 

 
Temp., C Freq., Hz Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 CV, % 

4 25 15763 15688 15505 15636 15745 0.66 

4 20 15299 15365 15089 15291 15320 0.70 

4 10 14228 14260 13929 14180 14304 1.04 

4 5 13165 13172 12786 13075 13259 1.40 

4 2 11760 11688 11342 11703 11929 1.83 

4 1 10728 10734 10223 10672 10936 2.47 

4 0.5 9727 9702 9188 9732 10005 3.07 

4 0.2 8470 8528 7884 8549 8784 3.96 

4 0.1 7600 7662 6984 7745 7907 4.65 

21 25 7192 7118 7708 6544 6938 5.95 

21 20 6828 6795 7301 6146 6656 6.14 

21 10 5851 5784 6280 5230 5741 6.47 

21 5 4985 4960 5345 4407 4886 6.83 

21 2 3982 3991 4291 3479 3889 7.45 

21 1 3355 3361 3590 2864 3214 8.16 

21 0.5 2724 2767 3021 2386 2678 8.36 

21 0.2 2210 2164 2347 1813 2033 9.56 

21 0.1 1771 1767 1972 1508 1646 9.91 

37 25 2412 2409 2514 2460 2246 4.16 

37 20 2302 2277 2320 2235 2109 3.75 

37 10 1847 1845 1816 1718 1652 4.88 

37 5 1407 1413 1476 1374 1337 3.68 

37 2 1042 1049 1069 974 947 5.18 

37 1 833 842 778 689 680 10.04 

37 0.5 632 622 651 576 574 5.63 

37 0.2 519 493 461 404 399 11.70 

37 0.1 382 451 350 303 298 17.69 
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Table 37: Dynamic Modulus Test Results for Mix BC-22 

  
Dynamic Modulus, kPa 

 

  
Mix BC-22, Minnesota Demonstration Project, 5% Tear-off 

RAS 
 

Temp., C Freq., Hz Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 CV, % 

4 25 16508 16642 16825 15743 16480 2.51 

4 20 16040 16195 16390 15322 16050 2.53 

4 10 14833 14682 15126 14278 14831 2.10 

4 5 13569 13655 13692 13053 13523 1.91 

4 2 11914 12004 11967 11557 11938 1.53 

4 1 10704 10772 10679 10423 10768 1.34 

4 0.5 9533 9521 9498 9371 9550 0.75 

4 0.2 8009 8110 7965 7970 8137 1.00 

4 0.1 6928 7000 6959 7050 7055 0.80 

21 25 7280 6288 7217 8057 7211 8.70 

21 20 6884 5751 7486 7390 6892 10.02 

21 10 5949 4807 6360 6315 5931 10.69 

21 5 5040 4222 5269 5282 5068 8.76 

21 2 3985 3313 4150 4215 4035 9.19 

21 1 3335 2744 3404 3496 3294 9.08 

21 0.5 2598 2336 2816 2936 2791 8.69 

21 0.2 2054 2048 1985 2124 2160 3.31 

21 0.1 1636 1760 1594 1698 1785 4.76 

37 25 2485 2137 2744 2482 2478 8.76 

37 20 2345 2010 2558 2374 2335 8.51 

37 10 1875 1477 1960 1840 1847 10.36 

37 5 1410 1059 1530 1397 1461 13.28 

37 2 954 687 1069 1034 965 15.95 

37 1 651 449 726 728 745 18.65 

37 0.5 488 337 604 540 547 20.14 

37 0.2 351 253 427 356 357 17.85 

37 0.1 197 136 266 341 342 35.16 
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Table 38: Dynamic Modulus Test Results for Mix BC-23 

  
Dynamic Modulus, kPa 

 

  
Mix BC-23, Minnesota Demonstration Project, 30% RAP 

 
Temp., C Freq., Hz Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 CV, % 

4 25 15865 15771 15857 15846 15862 0.25 

4 20 15390 15126 15480 15476 15434 0.96 

4 10 14105 13937 14145 14127 14086 0.59 

4 5 12807 12596 12811 12876 12825 0.85 

4 2 11143 10937 11188 11145 11201 0.96 

4 1 9909 9831 9908 9918 9897 0.36 

4 0.5 8713 7737 9630 8720 8751 7.69 

4 0.2 7325 5935 7694 7303 7951 10.76 

4 0.1 6269 5072 6609 6244 6816 10.89 

21 25 6421 5339 7141 6397 6386 10.15 

21 20 6486 5070 6480 6137 6131 9.59 

21 10 5551 4101 5459 5114 5087 11.36 

21 5 4611 3434 4408 4217 4175 10.70 

21 2 3524 2456 3354 3184 3230 12.99 

21 1 2789 1866 2691 2547 2563 14.58 

21 0.5 2064 1499 2226 2005 2012 13.94 

21 0.2 1563 1146 1438 1506 1445 11.34 

21 0.1 1215 891 1122 1173 1106 11.36 

37 25 1711 1792 1812 1890 1870 3.90 

37 20 1651 1654 1662 1781 1718 3.31 

37 10 1274 1222 1264 1269 1316 2.63 

37 5 912 828 958 952 1019 7.52 

37 2 592 510 670 723 638 12.87 

37 1 372 305 441 475 493 18.63 

37 0.5 249 206 366 415 367 27.71 

37 0.2 190 151 269 261 254 23.01 

37 0.1 150 121 214 169 187 20.93 
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Table 39: Dynamic Modulus Test Results for Mix BC-24 

  
Dynamic Modulus, kPa 

 

  
Mix BC-24, Iowa Demonstration Project, 0% RAS 

 
Temp., C Freq., Hz Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 CV, % 

4 25 15407 15309 15380 15385 15412 0.27 

4 20 14990 14978 14997 14998 14990 0.05 

4 10 13741 13961 13861 13865 13870 0.56 

4 5 12853 12608 12724 12723 12692 0.69 

4 2 11261 11157 11235 11242 11269 0.40 

4 1 10158 10042 10131 10130 10166 0.49 

4 0.5 9061 8987 9044 9047 9065 0.35 

4 0.2 7674 7674 7685 7684 7673 0.08 

4 0.1 6708 6709 6706 6709 6681 0.18 

21 25 6426 7088 6687 7096 6091 6.49 

21 20 6047 6689 6318 6715 5788 6.38 

21 10 5097 5703 5348 5708 4872 6.91 

21 5 4251 4826 4493 4819 4054 7.62 

21 2 3280 3806 3502 3792 3111 8.80 

21 1 2640 3131 2851 3123 2496 9.98 

21 0.5 2110 2538 2306 2546 1991 10.85 

21 0.2 1543 1931 1712 1919 1447 12.73 

21 0.1 1203 1545 1355 1537 1122 14.15 

37 25 2237 2782 2567 2814 2416 9.53 

37 20 2098 2611 2340 2619 1995 12.29 

37 10 1613 2040 1802 2042 1504 13.57 

37 5 1218 1575 1382 1575 1132 14.71 

37 2 820 1099 952 1093 776 15.83 

37 1 576 793 680 786 537 17.37 

37 0.5 435 596 512 588 413 16.52 

37 0.2 295 407 359 403 282 16.81 

37 0.1 219 297 262 294 212 15.67 
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Table 40: Dynamic Modulus Test Results for Mix BC-25 

  
Dynamic Modulus, kPa 

 

  
Mix BC-25, Iowa Demonstration Project, 4% RAS 

 
Temp., C Freq., Hz Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 CV, % 

4 25 15336 15378 14973 15501 15570 1.51 

4 20 15018 15082 14548 15084 15198 1.69 

4 10 13813 13948 13393 14048 14318 2.45 

4 5 13007 12921 12173 12959 13124 2.95 

4 2 11521 11558 10721 11656 11849 3.78 

4 1 10492 10452 9543 10577 11149 5.52 

4 0.5 9480 9462 8716 9404 10236 5.69 

4 0.2 8249 8275 7560 8710 8225 5.02 

4 0.1 7387 7340 6549 7983 7323 6.97 

21 25 7113 7027 7209 6477 6974 4.09 

21 20 6948 6635 6689 6094 6633 4.72 

21 10 5967 5704 5718 5129 5667 5.46 

21 5 5175 4871 4783 4293 4812 6.63 

21 2 4164 3883 3817 3327 3817 7.94 

21 1 3532 3161 3210 2731 3162 9.03 

21 0.5 2716 2627 2489 2506 2694 4.03 

21 0.2 1992 2052 1833 2000 2059 4.59 

21 0.1 1625 1639 1494 1694 1655 4.67 

37 25 2161 2083 2100 1822 2161 6.80 

37 20 1984 2001 2019 1734 1946 6.01 

37 10 1539 1593 1515 1289 1587 8.30 

37 5 1188 1184 1164 1046 1218 5.74 

37 2 830 854 780 753 849 5.50 

37 1 601 670 511 540 607 10.64 

37 0.5 462 486 406 453 470 6.63 

37 0.2 327 399 268 301 331 14.85 

37 0.1 221 284 230 249 249 9.81 
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Table 41: Dynamic Modulus Test Results for Mix BC-26 

  
Dynamic Modulus, kPa 

 

  
Mix BC-26, Iowa Demonstration Project, 5% RAS 

 
Temp., C Freq., Hz Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 CV, % 

4 25 12702 14036 12711 13034 12360 4.95 

4 20 12391 13579 12348 12669 11917 4.93 

4 10 11326 12446 11353 11675 11086 4.57 

4 5 10766 11813 10009 10620 9653 7.83 

4 2 9652 10391 8787 9303 8380 8.37 

4 1 8723 9246 7643 8456 7787 7.94 

4 0.5 7961 7805 7126 7562 7008 5.55 

4 0.2 6757 6164 6131 6413 6379 3.94 

4 0.1 5932 5294 5328 5573 5674 4.73 

21 25 6276 5692 6891 6341 6258 6.76 

21 20 6290 5347 6322 6063 5886 6.63 

21 10 5128 4518 5582 5190 5182 7.47 

21 5 4376 4032 4797 4427 4190 6.61 

21 2 3502 3362 3577 3516 3521 2.29 

21 1 2921 2769 2996 2938 2981 3.09 

21 0.5 2396 2190 2355 2433 2781 8.90 

21 0.2 2194 1836 1629 1947 1843 10.86 

21 0.1 1823 1515 1292 1605 1542 12.23 

37 25 2146 2181 2496 2297 2333 6.05 

37 20 2158 2035 2332 2146 2008 6.00 

37 10 1704 1604 1776 1785 1597 5.32 

37 5 1341 1194 1403 1342 1420 6.64 

37 2 969 811 981 1052 1051 10.09 

37 1 748 592 681 818 814 13.07 

37 0.5 544 416 609 588 732 19.71 

37 0.2 430 330 417 446 509 15.11 

37 0.1 290 248 380 401 353 19.08 
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Table 42: Dynamic Modulus Test Results for Mix BC-27 

  
Dynamic Modulus, kPa 

 

  
Mix BC-27, Iowa Demonstration Project, 6% RAS 

 
Temp., C Freq., Hz Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 CV, % 

4 25 12559 13694 13249 13307 13248 3.10 

4 20 12254 13312 12849 12930 12826 2.95 

4 10 11141 12251 11824 11832 11848 3.39 

4 5 10478 11439 10823 10758 10250 4.17 

4 2 9310 10104 9552 9522 8774 5.07 

4 1 8358 9042 8541 8503 8067 4.17 

4 0.5 7746 7801 7467 7609 7342 2.51 

4 0.2 6586 6279 6388 6489 6641 2.27 

4 0.1 5805 5502 5540 5775 5873 2.93 

21 25 5404 5597 5654 5655 5651 1.93 

21 20 5142 5402 5352 5323 5319 1.85 

21 10 3926 4506 4503 4588 4972 8.32 

21 5 3425 3809 3872 3874 4027 5.92 

21 2 2489 3021 3053 3052 3466 11.51 

21 1 1984 2501 2510 2585 2891 13.10 

21 0.5 1437 2070 2068 2072 2644 20.74 

21 0.2 1437 1777 1346 1699 1740 12.16 

21 0.1 1245 1316 1113 1383 1520 11.55 

37 25 1708 2266 2277 2285 2489 13.27 

37 20 1872 1894 2196 2127 2063 7.03 

37 10 1582 1549 1706 1658 1730 4.73 

37 5 1277 1208 1382 1370 1362 5.67 

37 2 885 884 993 1054 1053 8.76 

37 1 755 721 757 783 786 3.48 

37 0.5 544 522 658 699 650 12.60 

37 0.2 445 426 467 516 503 8.02 

37 0.1 320 347 433 402 422 12.71 
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Table 43: Dynamic Modulus Test Results for Mix BC-28 

  
Dynamic Modulus, kPa 

 

  
Mix BC-28, Missouri Demonstration Project, 15% RAP 

 
Temp., C Freq., Hz Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 CV, % 

4 25 18977 18985 19308 18392 18813 1.76 

4 20 18550 18611 18962 18062 18482 1.74 

4 10 17611 17598 17883 17100 17635 1.62 

4 5 16667 16673 16713 16427 16447 0.82 

4 2 15296 15336 15446 15205 15062 0.95 

4 1 14296 14279 14254 14137 14307 0.48 

4 0.5 13279 13302 13239 12852 13509 1.80 

4 0.2 11935 12013 11691 11723 12256 1.94 

4 0.1 11011 11038 10734 10817 11334 2.12 

21 25 11121 10608 11851 11160 11270 3.96 

21 20 10901 10278 11157 10762 10821 2.97 

21 10 9420 9182 10151 9774 9746 3.83 

21 5 8420 8314 8964 8651 8642 2.91 

21 2 7019 7377 7465 7337 7388 2.36 

21 1 6152 6504 6599 6472 6441 2.61 

21 0.5 5248 5715 5757 5638 5640 3.62 

21 0.2 4774 4667 4362 4666 4678 3.37 

21 0.1 4149 4014 3750 4002 4043 3.68 

37 25 5043 5033 5073 5016 4968 0.77 

37 20 4845 4725 4873 4813 4791 1.17 

37 10 4011 3964 3990 4011 3895 1.22 

37 5 3278 3135 3333 3281 3189 2.45 

37 2 2478 2376 2498 2469 2379 2.38 

37 1 1894 1879 1934 1901 1791 2.84 

37 0.5 1480 1430 1513 1486 1479 2.03 

37 0.2 1169 1055 1095 1091 1012 5.35 

37 0.1 914 809 934 847 712 10.55 
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Table 44: Dynamic Modulus Test Results for Mix BC-29 

  
Dynamic Modulus, kPa 

 

  
Missouri Demonstration Project, 5% Fine RAS/10% RAP 

 
Temp., C Freq., Hz Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 CV, % 

4 25 17163 17080 16865 17084 17131 0.68 

4 20 16765 16774 16384 16755 16747 1.01 

4 10 15961 15923 15723 15955 15943 0.63 

4 5 15140 15152 14959 15151 15142 0.56 

4 2 14163 14132 13858 14097 14108 0.87 

4 1 13339 13341 13094 13289 13323 0.79 

4 0.5 12501 12537 11550 13250 12541 4.85 

4 0.2 11511 11459 10320 12331 11505 6.27 

4 0.1 10666 10636 9622 11580 10635 6.52 

21 25 9988 9986 9784 10042 10038 1.06 

21 20 9626 9615 9460 9670 9626 0.84 

21 10 8785 8785 8425 8761 8690 1.76 

21 5 7895 7915 7557 7912 7917 2.02 

21 2 6815 6852 6623 6888 6860 1.56 

21 1 6153 6102 5873 6163 6110 1.95 

21 0.5 5435 5491 5166 5481 5396 2.46 

21 0.2 4681 4679 4260 4675 4659 4.03 

21 0.1 4091 4140 3781 4128 4103 3.73 

37 25 4817 5058 5014 5043 5063 2.08 

37 20 4828 4607 4729 4858 4791 2.08 

37 10 4210 3969 3939 4155 4143 2.96 

37 5 3613 3299 3415 3556 3595 3.85 

37 2 2916 2723 2793 2888 2852 2.73 

37 1 2456 2291 2288 2431 2450 3.61 

37 0.5 2013 1906 2005 2050 2112 3.73 

37 0.2 1646 1544 1590 1638 1630 2.63 

37 0.1 1308 1239 1373 1365 1403 4.85 
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Table 45: Dynamic Modulus Test Results for Mix BC-30 

  
Dynamic Modulus, kPa 

 

  
Missouri Demonstration Project, 5% Coarse RAS/10% RAP 

 
Temp., C Freq., Hz Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 CV, % 

4 25 15651 15919 15953 16073 15933 0.97 

4 20 15318 15629 15601 15679 15588 0.91 

4 10 14365 14721 14685 14748 14804 1.18 

4 5 13800 13817 13864 13869 13484 1.17 

4 2 12691 12657 12669 12746 12268 1.52 

4 1 11744 11766 11746 11734 11628 0.47 

4 0.5 10900 10986 10954 10369 11291 3.06 

4 0.2 9810 9864 9822 9356 10167 2.96 

4 0.1 9134 9156 9158 8514 9343 3.50 

21 25 9935 9827 10019 10077 10014 0.97 

21 20 9773 9508 9725 9581 9727 1.17 

21 10 8617 8708 8717 8806 8736 0.78 

21 5 7735 7926 7918 7730 7904 1.29 

21 2 6539 7179 6825 6527 6773 3.92 

21 1 5775 6403 6084 5772 6025 4.34 

21 0.5 4878 5613 5383 5293 5397 5.08 

21 0.2 4421 4578 4555 4353 4512 2.11 

21 0.1 3831 3971 4010 3813 3997 2.41 

37 25 3958 5002 4629 4548 4628 8.27 

37 20 3966 4592 4429 4499 4428 5.53 

37 10 3340 3906 3728 3764 3772 5.77 

37 5 2801 3232 3225 3246 3129 6.00 

37 2 2224 2472 2532 2628 2490 6.06 

37 1 1807 2035 2063 2123 2100 6.27 

37 0.5 1503 1701 1699 1836 1697 7.03 

37 0.2 1171 1336 1400 1329 1346 6.54 

37 0.1 911 1106 1138 1086 1121 8.59 
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Table 46: Dynamic Modulus Test Results for Mix BC-31 

  
Dynamic Modulus, kPa 

 

  
Indiana Demonstration Project, 15% 

RAP/HMA 
 

Temp., C Freq., Hz Sample 1 Sample 2 Sample 3 CV, % 

4 25 18757 19174 18262 2.44 

4 20 18453 18775 17958 2.24 

4 10 17317 17568 16913 1.91 

4 5 16163 16395 15669 2.31 

4 2 14513 14772 14217 1.92 

4 1 13390 13405 13104 1.28 

4 0.5 12182 12125 12058 0.51 

4 0.2 10692 10500 10755 1.25 

4 0.1 9733 9437 9735 1.78 

21 25 11111 10925 11085 0.91 

21 20 10562 10308 10527 1.31 

21 10 9245 9123 9298 0.97 

21 5 8396 8243 8330 0.92 

21 2 7135 7150 6973 1.39 

21 1 6179 6231 6084 1.21 

21 0.5 5345 5322 5257 0.85 

21 0.2 4381 4207 4380 2.31 

21 0.1 3758 3512 3760 3.89 

37 25 5002 4869 4964 1.38 

37 20 4762 4610 4878 2.84 

37 10 3977 3801 3937 2.36 

37 5 3210 3031 3296 4.26 

37 2 2452 2251 2485 5.27 

37 1 1872 1793 1950 4.18 

37 0.5 1493 1361 1610 8.38 

37 0.2 1179 975 1141 9.91 

37 0.1 945 690 917 16.42 
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Table 47: Dynamic Modulus Test Results for Mix BC-32 

  
Dynamic Modulus, kPa 

 

  
Indiana Demonstration Project, 3% RAS/HMA 

 
Temp., C Freq., Hz Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 CV, % 

4 25 17301 16961 16421 16994 16946 1.87 

4 20 16764 16419 15978 16473 16435 1.72 

4 10 15458 15271 14876 15299 15291 1.42 

4 5 14371 14095 13576 14176 14166 2.12 

4 2 12675 12453 11849 12413 12528 2.54 

4 1 11526 11281 10839 11198 11074 2.27 

4 0.5 10621 10113 9541 10101 9965 3.84 

4 0.2 9342 8735 8262 8708 8492 4.62 

4 0.1 8399 7827 7421 7818 7521 4.89 

21 25 9152 9141 8644 9190 9390 3.03 

21 20 8827 8793 8400 8785 9047 2.66 

21 10 7770 7721 7443 7958 7688 2.39 

21 5 6782 6841 6592 6891 6619 1.98 

21 2 5668 5658 5396 5495 5629 2.14 

21 1 4855 4849 4637 4706 4797 1.99 

21 0.5 4104 4116 3817 4082 4178 3.45 

21 0.2 3335 3273 3167 3242 3201 2.01 

21 0.1 2771 2720 2667 2715 2705 1.37 

37 25 3776 3803 3545 3850 3815 3.24 

37 20 3627 3619 3475 3639 3608 1.87 

37 10 2933 3015 2688 2962 3004 4.59 

37 5 2444 2419 2083 2387 2416 6.41 

37 2 1800 1769 1529 1749 1755 6.32 

37 1 1370 1328 1168 1339 1337 6.12 

37 0.5 1069 1022 926 1027 1025 5.20 

37 0.2 760 723 587 819 724 11.82 

37 0.1 588 481 570 624 465 12.67 
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Table 48: Dynamic Modulus Test Results for Mix BC-33 

  
Dynamic Modulus, kPa 

 

  
Indiana Demonstration Project, 3% RAS/WMA 

 
Temp., C Freq., Hz Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 CV, % 

4 25 18962 19192 19175 19209 19145 0.52 

4 20 18604 18766 18786 18738 18751 0.39 

4 10 17460 17626 17633 17639 17613 0.43 

4 5 16286 16460 16541 16467 16469 0.58 

4 2 14710 14986 14993 15022 14940 0.85 

4 1 13580 13766 13804 13843 13842 0.80 

4 0.5 12689 12424 12631 12677 12615 0.85 

4 0.2 11455 10675 11131 11174 11143 2.52 

4 0.1 10383 9542 10017 10096 10033 3.02 

21 25 9329 9796 10026 9866 9868 2.70 

21 20 9024 9497 9614 9460 9482 2.41 

21 10 8163 8292 8326 8296 8342 0.85 

21 5 6999 7293 7307 7333 7291 1.91 

21 2 5747 6081 6072 6031 6022 2.31 

21 1 4975 5181 5226 5144 5156 1.86 

21 0.5 4251 4373 4361 4435 4371 1.53 

21 0.2 3227 3554 3580 3488 3562 4.22 

21 0.1 2659 2955 3000 2951 2979 4.85 

37 25 3382 4233 4015 4091 4235 8.85 

37 20 3581 3923 3938 3926 3887 3.96 

37 10 2962 3208 3192 3148 3161 3.17 

37 5 2428 2502 2560 2565 2540 2.25 

37 2 1804 1817 1867 1871 1851 1.63 

37 1 1313 1303 1496 1457 1415 6.16 

37 0.5 1035 928 1161 1154 1093 8.97 

37 0.2 721 674 828 842 782 9.28 

37 0.1 609 487 617 579 588 9.04 
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APPENDIX B: DSR TEST RESULTS 

Table 49: DSR Test Results 

  
Temperature, C 

  
58 64 70 76 82 

Mix Test δ, ° G*, Pa δ, ° G*, Pa δ, ° G*, Pa δ, ° G*, Pa δ, ° G*, Pa 

BC21 

1 72.44 12510 75.31 5654 78.11 2624 80.54 1302 
  

2 72.62 11980 75.50 5468 78.19 2619 80.68 1266 
  

3 72.91 11715 75.68 5374 78.39 2531 80.80 1248 
  

BC22 

1 74.95 12460 78.00 5399 80.78 2436 83.15 1157 
  

2 74.11 14170 77.22 6223 80.07 2858 82.58 1349 
  

3 74.26 13350 77.30 5914 80.15 2693 82.61 1275 
  

BC23 

1 78.54 9254 81.41 4001 83.87 1795 
    

2 78.73 8641 81.60 3724 84.00 1683 
    

3 78.71 9429 81.59 4044 84.00 1835 
    

BC24 

1 75.72 18190 78.98 7790 81.90 3391 84.29 1563 
  

2 75.84 17800 79.15 7505 82.00 3340 84.40 1527 
  

3 76.06 18340 79.34 7680 82.17 3377 84.51 1554 
  

BC25 

1 70.07 21240 73.48 9534 76.80 4396 79.78 2095 
  

2 69.95 21400 73.29 9722 76.59 4515 79.57 2160 
  

3 69.90 21220 73.16 9733 76.47 4489 79.51 2106 
  

BC26 

1 64.50 35160 67.71 16510 71.20 7800 74.60 3790 77.73 1846 

2 64.30 36700 67.50 17340 71.02 8194 74.51 3921 77.65 1950 

3 64.22 37660 67.38 18060 70.86 8586 74.31 4130 77.54 2018 

BC27 

1 60.80 51000 63.50 25230 66.74 12420 70.22 6085 73.65 3054 

2 60.77 48100 63.60 23440 66.80 11525 70.24 5660 
  

3 60.19 59140 62.92 29180 66.13 14295 69.54 7052 73.02 3489 

BC28 

1 72.62 30580 75.76 13120 78.83 5736 81.50 2632 83.76 1261 

2 72.57 30460 75.74 13045 78.82 5685 81.52 2587 83.79 1230 

3 72.51 31060 75.63 13320 78.69 2616 81.42 2616 83.70 1242 

BC29 

1 
  

61.83 52200 64.52 25720 67.65 12590 71.03 6160 

2 
  

62.72 39360 65.30 20620 68.38 10150 71.70 4930 

3 
  

62.92 44720 65.45 22170 68.38 11060 71.47 5567 

BC30 

1 
  

64.76 35600 67.63 17295 70.96 8326 74.29 4100 

2 
  

64.67 36600 67.53 17840 70.98 8470 74.01 4265 

3 
  

64.72 36300 67.07 18790 70.51 8942 72.85 4755 

BC31 

1 75.23 24370 78.21 10795 81.20 4608 83.63 2090 
  

2 75.03 23100 78.30 9720 81.27 4185 83.67 1936 
  

3 74.90 25450 78.22 10595 81.20 4580 83.65 2110 
  

BC32 

1 70.33 33500 73.61 14945 76.95 6718 80.01 3082 82.54 1462 

2 70.32 34140 73.68 15060 77.07 6683 80.05 3130 82.64 1461 

3 70.45 31900 73.85 13910 77.18 6238 80.19 2874 82.75 1375 

BC33 

1 71.19 29220 74.59 12785 77.95 5677 80.79 2652 83.22 1239 

2 71.02 30870 74.50 13300 77.84 5992 80.75 2780 83.16 1317 

3 70.81 32380 74.31 14045 77.72 6205 80.75 2804 83.04 1386 
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APPENDIX C: DSR FREQUENCY SWEEP TEST RESULTS 

Table 50: DSR Frequency Sweep Test Results for Mixes BC-21, 23, 24, and 25 

  
Mix 

Temp. 

C 
Freq. 

Hz 

BC-21 BC-23 BC-24 BC-25 

G*, Pa Φ G*, Pa Φ G*, Pa Φ G*, Pa Φ 

9 0.100 
  

7336000 46.4

0 
12250000 42.0

0 
8991000 40.5

2 9 0.126 
  

8288000 45.6

2 
13610000 41.2

9 
9933000 39.9

5 9 0.158 
  

9327000 44.9

2 
15150000 40.5

5 
11070000 39.3

4 9 0.200 
  

10530000 44.1

9 
16830000 39.8

4 
12220000 38.8

2 9 0.251 
  

11800000 43.5

1 
18720000 39.1

3 
13370000 38.3

5 9 0.316 
  

13210000 42.8

3 
20690000 38.4

5 
14740000 37.8

4 9 0.398 
  

14730000 42.1

7 
22710000 37.8

2 
16160000 37.3

6 9 0.501 
  

16310000 41.5

6 
25000000 37.1

7 
17850000 36.8

5 9 0.631 
  

18160000 40.9

1 
27530000 36.5

3 
19760000 36.3

2 9 0.794 
  

20170000 40.2

6 
30160000 35.9

0 
21720000 35.8

2 9 1.000 
  

22300000 39.6

5 
33020000 35.2

9 
23580000 35.4

0 9 1.259 
  

24710000 39.0

2 
36080000 34.6

9 
25780000 34.9

5 9 1.585 
  

27210000 38.4

2 
39450000 34.0

7 
28210000 34.4

8 9 1.995 
  

29940000 37.8

1 
42990000 33.4

8 
30680000 34.0

4 9 2.512 
  

32890000 37.2

3 
46870000 32.9

0 
33460000 33.5

8 9 3.162 
  

36190000 36.6

2 
50860000 32.3

6 
36510000 33.0

8 9 3.981 
  

39720000 36.0

4 
55220000 31.8

0 
39720000 32.6

2 9 5.012 
  

43480000 35.4

7 
59810000 31.2

5 
43100000 32.1

8 9 6.310 
  

47440000 34.9

0 
64710000 30.7

1 
46790000 31.7

4 9 7.943 
  

51770000 34.3

2 
70050000 30.1

7 
50760000 31.2

9 9 10.000 
  

56520000 33.6

5 
75760000 29.7

5 
54970000 30.8

0 9 12.590 
  

61590000 32.9

5 
81150000 29.0

8 
59340000 30.3

0 9 15.849 
  

67090000 32.6

6 
87560000 28.4

5 
64070000 29.9

7 9 19.953 
  

72850000 31.9

6 
94160000 28.0

3 
69070000 29.5

6 9 25.121 
  

79150000 31.3

8 
10090000

0 

27.5

5 
74450000 29.2

6 9 31.623 
  

85730000 30.7

1 
10830000

0 

27.0

1 
80060000 28.7

0 9 39.809 
  

92550000 30.1

8 
11600000

0 

26.3

8 
86220000 28.1

6 9 50.000 
  

99780000 29.5

6 
12390000

0 

25.7

7 
92680000 27.7

2 13 0.100 3495000 47.5

0 
3767000 50.4

4 
6696000 45.8

5 
4899000 44.2

5 13 0.158 4420000 46.2

2 
4934000 48.9

9 
8541000 44.3

2 
6194000 43.0

4 13 0.251 5622000 45.0

0 
6251000 47.7

0 
10640000 42.9

4 
7633000 41.9

7 13 0.398 7048000 43.8

7 
7926000 46.3

9 
13140000 41.6

2 
9397000 40.9

1 13 0.631 8827000 42.7

3 
10030000 45.0

7 
16230000 40.3

0 
11530000 39.8

8 13 1.000 10970000 41.6

0 
12600000 43.7

8 
19890000 39.0

2 
14100000 38.8

7 13 1.585 13510000 40.5

5 
15750000 42.4

9 
24220000 37.7

6 
17170000 37.8

6 13 2.512 16580000 39.3

9 
19480000 41.2

3 
29220000 36.6

0 
20770000 36.8

5 13 3.981 20210000 38.2

4 
24000000 39.9

9 
35180000 35.4

4 
24970000 35.9

0 13 6.310 24630000 37.1

9 
29350000 38.7

3 
41890000 34.3

1 
30000000 34.9

1 13 10.000 29680000 36.1

5 
35550000 37.4

0 
49690000 33.0

7 
35730000 34.0

7 



141 

 

 

Table 50: DSR Frequency Sweep Test Results for Mixes BC-21, 23, 24, and 25 (Continued) 

Temp. 

C 
Freq. 

Hz 

Mix 

BC-21 BC-23 BC-24 BC-25 

G*, Pa Φ G*, Pa Φ G*, Pa Φ G*, Pa Φ 

13 15.849 35510000 35.1

4 
42970000 36.3

2 
58730000 32.1

3 
42460000 32.9

1 13 25.121 42360000 34.1

4 
51690000 35.2

3 
69200000 31.0

0 
50100000 32.1

9 13 39.809 50300000 33.1

6 
61750000 33.8

4 
80790000 29.7

8 
59200000 31.2

3 13 50.000 54710000 32.6

8 
67230000 33.1

3 
86980000 29.2

6 
63950000 30.7

1 21 0.100 900600 54.0

9 
896400 58.1

2 
1732000 54.1

4 
1364000 50.9

1 21 0.158 1184000 53.0

2 
1193000 56.9

1 
2287000 52.6

6 
1766000 49.7

8 21 0.251 1555000 51.9

4 
1602000 55.6

3 
2989000 51.2

1 
2273000 48.6

9 21 0.398 2023000 50.8

6 
2126000 54.3

8 
3859000 49.8

1 
2914000 47.6

1 21 0.631 2621000 49.7

7 
2798000 53.1

2 
4967000 48.4

2 
3708000 46.5

6 21 1.000 3377000 48.6

4 
3650000 51.8

8 
6349000 47.0

7 
4691000 45.5

2 21 1.585 4332000 47.5

2 
4736000 50.6

5 
8041000 45.7

6 
5901000 44.4

8 21 2.512 5504000 46.4

5 
6118000 49.4

0 
10120000 44.5

2 
7385000 43.4

6 21 3.981 6956000 45.3

9 
7859000 48.0

4 
12630000 43.2

8 
9209000 42.4

3 21 6.310 8746000 44.3

4 
9963000 46.7

4 
15650000 41.9

4 
11440000 41.4

8 21 10.000 10970000 43.5

1 
12670000 45.5

3 
19350000 40.5

4 
14090000 40.6

3 21 15.849 13600000 42.2

0 
15950000 44.2

0 
23810000 39.6

1 
17290000 39.3

4 21 25.121 16830000 41.0

8 
19950000 42.9

7 
29070000 38.1

9 
21050000 38.5

5 21 39.809 20770000 40.0

8 
24810000 41.5

5 
35290000 37.0

0 
25640000 37.6

4 21 50.000 22960000 39.5

7 
27580000 40.8

8 
38760000 36.3

8 
28160000 37.0

8 29 0.100 222100 59.4

3 
200100 64.7

1 
417000 61.1

5 
373200 56.4

4 29 0.158 299800 58.5

5 
281000 63.4

6 
570400 59.8

5 
498700 55.3

0 29 0.251 404800 57.7

0 
386000 62.3

9 
774400 58.5

5 
662300 54.2

3 29 0.398 544200 56.8

2 
528200 61.3

4 
1041000 57.2

9 
870800 53.2

0 29 0.631 728000 55.8

6 
720500 60.2

5 
1393000 56.0

1 
1137000 52.2

0 29 1.000 969300 54.8

7 
976200 59.1

3 
1852000 54.7

3 
1483000 51.2

4 29 1.585 1284000 53.8

9 
1315000 58.0

2 
2444000 53.4

7 
1924000 50.3

2 29 2.512 1688000 52.9

7 
1759000 56.9

3 
3199000 52.2

2 
2481000 49.4

3 29 3.981 2207000 52.0

3 
2343000 55.7

5 
4160000 50.9

5 
3189000 48.4

9 29 6.310 2865000 51.0

2 
3097000 54.3

7 
5366000 49.5

8 
4049000 47.4

8 29 10.000 3715000 50.0

3 
4111000 53.2

8 
6903000 48.1

3 
5180000 46.6

0 29 15.849 4784000 49.1

2 
5389000 51.9

7 
8824000 47.0

5 
6564000 45.6

2 29 25.121 6162000 48.0

8 
7038000 50.6

6 
11200000 45.7

6 
8281000 44.6

3 29 39.809 7850000 47.0

3 
9086000 49.3

4 
14110000 44.5

9 
10400000 43.6

9 29 50.000 8842000 46.6

7 
10340000 48.7

6 
15830000 43.8

6 
11630000 43.3

1 37 0.100 57080 64.6

4 
44810 70.9

1 
98940 67.1

6 
101800 61.7

1 37 0.158 79240 63.3

7 
64880 69.5

5 
139400 65.8

8 
139100 60.5

5 37 0.251 110500 62.2

9 
91900 68.3

4 
195100 64.6

5 
189000 59.4

7 37 0.398 149700 61.3

7 
128600 67.1

9 
269600 63.5

0 
255000 58.4

6 37 0.631 204400 60.7

1 
179700 66.2

0 
373100 62.3

4 
343100 57.5

0 37 1.000 280300 59.8

1 
252600 65.2

3 
511200 61.2

1 
460100 56.5

5 37 1.585 379800 59.0

0 
355700 64.1

8 
695300 60.1

0 
613600 55.6

5 
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Table 50: DSR Frequency Sweep Test Results for Mixes BC-21, 23, 24, and 25 (Continued) 

Temp. 

C 
Freq. 

Hz 

Mix 

BC-21 BC-23 BC-24 BC-25 

G*, Pa Φ G*, Pa Φ G*, Pa Φ G*, Pa Φ 

37 2.512 509400 58.24 493800 63.19 941500 59.00 811400 54.82 

37 3.981 685100 57.44 678100 62.18 1265000 57.85 1071000 53.98 

37 6.310 916400 56.63 927400 60.96 1699000 56.60 1408000 53.06 

37 10.000 1223000 55.65 1271000 60.13 2269000 55.41 1847000 52.23 

37 15.849 1623000 54.86 1718000 59.11 2999000 54.27 2409000 51.39 

37 25.121 2153000 54.02 2321000 58.21 3951000 53.00 3136000 50.53 

37 39.809 2840000 53.24 3113000 57.38 5181000 51.90 4050000 49.89 

37 50.000 3261000 52.89 3591000 56.92 5926000 51.27 4584000 49.55 

 

Table 51: DSR Frequency Sweep Test Results for Mixes BC-27, 28, 29, and 30 

  
Mix 

Temp. 

C 
Freq. 

Hz 

BC-27 BC-28 BC-29 BC-30 

G*, Pa Φ G*, Pa Φ G*, Pa Φ G*, Pa Φ 

9 0.100 
        

9 0.126 
  

22950000 33.58 26650000 28.45 26540000 28.34 

9 0.158 
    

28720000 28.02 28770000 27.90 

9 0.200 
  

26950000 32.52 30950000 27.60 30870000 27.52 

9 0.251 
    

33200000 27.22 33020000 27.17 

9 0.316 
  

31750000 31.48 35310000 26.89 35570000 26.80 

9 0.398 
    

37900000 26.53 37950000 26.47 

9 0.501 
  

37230000 30.49 40790000 26.17 40720000 26.14 

9 0.631 
    

43580000 25.84 43470000 25.83 

9 0.794 
  

43320000 29.57 46640000 25.53 46410000 25.53 

9 1.000 
    

49890000 25.22 49400000 25.25 

9 1.259 
  

50300000 28.68 53250000 24.92 52610000 24.98 

9 1.585 
    

56630000 24.64 56180000 24.70 

9 1.995 
  

58140000 27.82 60510000 24.37 59860000 24.44 

9 2.512 
    

64330000 24.10 63630000 24.17 

9 3.162 
  

66840000 27.01 68480000 23.84 67650000 23.92 

9 3.981 
    

72680000 23.61 71960000 23.75 

9 5.012 
  

76530000 26.20 77110000 23.41 76530000 23.51 

9 6.310 
    

81800000 23.16 81110000 23.29 

9 7.943 
  

87530000 25.43 86540000 22.91 86000000 23.05 

9 10.000 
    

91540000 22.50 90930000 22.65 

9 12.590 
  

99470000 24.49 97250000 22.27 96760000 22.56 

9 15.849 
    

102900000 22.22 102500000 22.28 

9 19.953 
  

112200000 24.17 109200000 21.90 108300000 22.06 

9 25.121 
    

115300000 21.69 114900000 21.89 

9 31.623 
  

127400000 22.90 122100000 21.27 121800000 21.57 

9 39.809 
    

128900000 21.05 128500000 21.18 
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Table 51: DSR Frequency Sweep Test Results for Mixes BC-27, 28, 29, and 30 (Continued) 

Temp. 

C 
Freq. 

Hz 

Mix 

BC-27 BC-28 BC-29 BC-30 

G*, Pa Φ G*, Pa Φ G*, Pa Φ G*, Pa Φ 

9 50.000   134200

000 

22.65 135800

000 

20.78 135300

000 

20.91 

13 0.100 5389000 38.64 11470000 38.40 16110000 31.34 16250000 31.06 

13 0.158 6545000 37.70 14100000 37.04 19080000 30.37 19240000 30.15 

13 0.251 7912000 36.81 16860000 35.89 22110000 29.56 22220000 29.41 

13 0.398 9542000 35.97 20110000 34.78 25540000 28.80 25800000 28.68 

13 0.631 11450000 35.19 23860000 33.73 29510000 28.10 29850000 27.99 

13 1.000 13710000 34.46 28340000 32.69 34060000 27.42 34340000 27.36 

13 1.585 16260000 33.77 33270000 31.73 39130000 26.80 39470000 26.75 

13 2.512 19280000 33.09 38990000 30.79 44790000 26.22 45090000 26.22 

13 3.981 22830000 32.41 45520000 29.88 51140000 25.72 51600000 25.67 

13 6.310 26860000 31.77 52840000 29.01 58160000 25.23 58730000 25.23 

13 10.000 31510000 31.22 61270000 28.22 65890000 24.55 66630000 24.75 

13 15.849 36750000 30.53 70590000 27.31 74910000 24.19 75520000 24.33 

13 25.121 42930000 29.99 81160000 26.45 84800000 23.69 85390000 23.74 

13 39.809 50080000 29.29 92660000 25.60 95710000 23.09 96450000 23.07 

13 50.000 53910000 28.99 98710000 25.15 101400

000 

 

22.81 102100

000 

 

22.84 

21 0.100 1802000 44.18 3316000 47.12 5934000 37.41 5956000 36.99 

21 0.158 2258000 43.18 4220000 45.62 7161000 36.28 7159000 36.01 

21 0.251 2826000 42.21 5314000 44.19 8617000 35.23 8612000 35.07 

21 0.398 3488000 41.35 6625000 42.86 10280000 34.30 10260000 34.22 

21 0.631 4299000 40.50 8219000 41.57 12220000 33.42 12160000 33.43 

21 1.000 5274000 39.70 10130000 40.35 14460000 32.63 14390000 32.68 

21 1.585 6447000 38.93 12410000 39.18 17050000 31.87 16970000 31.96 

21 2.512 7843000 38.19 15090000 38.03 20010000 31.16 19920000 31.28 

21 3.981 9510000 37.48 18260000 36.90 23400000 30.55 23300000 30.63 

21 6.310 11500000 36.80 21990000 35.83 27230000 29.94 27190000 30.00 

21 10.000 13880000 36.22 26320000 34.85 31610000 29.19 31610000 29.41 

21 15.849 16630000 35.40 31330000 33.79 36750000 28.78 36690000 28.80 

21 25.121 19890000 34.72 37070000 32.92 42500000 28.21 42470000 28.35 

21 39.809 23830000 34.12 43970000 31.93 49090000 27.59 49020000 27.64 

21 50.000 25970000 33.80 47570000 31.34 52640000 27.30 52590000 27.42 

29 0.100 580900 49.25 836800 55.58 1990000 43.55 1971000 43.37 

29 0.158 749100 48.21 1114000 54.06 2492000 42.26 2455000 42.25 

29 0.251 956500 47.26 1466000 52.60 3083000 41.10 3036000 41.21 

29 0.398 1217000 46.36 1913000 51.17 3803000 40.00 3739000 40.20 

29 0.631 1540000 45.51 2474000 49.79 4661000 38.98 4577000 39.25 

29 1.000 1939000 44.69 3174000 48.44 5665000 38.05 5569000 38.35 

29 1.585 2432000 43.90 4047000 47.13 6861000 37.18 6754000 37.50 

29 2.512 3038000 43.14 5129000 45.86 8283000 36.44 8157000 36.70 

29 3.981 3777000 42.41 6459000 44.60 9968000 35.70 9809000 35.96 

29 6.310 4676000 41.70 8060000 43.40 11840000 35.05 11750000 35.24 
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Table 51: DSR Frequency Sweep Test Results for Mixes BC-27, 28, 29, and 30 (Continued) 

Temp. 

C 
Freq. 

Hz 

Mix 

BC-27 BC-28 BC-29 BC-30 

G*, Pa Φ G*, Pa Φ G*, Pa Φ G*, Pa Φ 

29 10.000 5768000 40.94 10040000 42.09 14140000 34.21 14040000 34.52 

29 15.849 7111000 40.29 12430000 41.14 16880000 33.66 16710000 33.88 

29 25.121 8724000 39.57 15330000 39.82 20000000 33.06 19880000 33.22 

29 39.809 10710000 38.96 18770000 38.81 23660000 32.45 23510000 32.54 

29 50.000 11810000 38.64 20760000 38.28 25650000 32.16 25570000 32.25 

37 0.100 189600 53.75 199300 62.80 629000 49.70 605200 49.60 

37 0.158 251000 52.62 278400 61.45 811600 48.38 779700 48.43 

37 0.251 328400 51.64 372500 60.31 1033000 47.21 991800 47.33 

37 0.398 426400 50.73 504700 58.87 1313000 46.09 1259000 46.28 

37 0.631 552400 49.89 679200 57.52 1655000 45.03 1593000 45.25 

37 1.000 710800 49.11 907700 56.20 2073000 44.02 2004000 44.26 

37 1.585 909300 48.35 1207000 54.90 2587000 43.06 2506000 43.33 

37 2.512 1163000 47.61 1591000 53.60 3208000 42.12 3118000 42.46 

37 3.981 1479000 46.92 2096000 52.27 3982000 41.02 3854000 41.66 

37 6.310 1879000 46.24 2717000 51.02 4909000 40.18 4746000 40.85 

37 10.000 2369000 45.40 3506000 49.65 5993000 39.38 5820000 39.96 

37 15.849 2989000 44.87 4524000 48.39 7325000 38.61 7137000 39.23 

37 25.121 3763000 44.24 5788000 47.05 8915000 37.87 8727000 38.49 

37 39.809 4713000 43.57 7377000 45.73 10810000 37.19 10620000 37.84 

37 50.000 5282000 43.29 8326000 45.19 11910000 36.88 11690000 37.56 

 

Table 52: DSR Frequency Sweep Test Results for Mixes BC-31, 32, and 33 

  
Mix 

Temp. 

C 
Freq. 

Hz 

BC-31 BC-32 BC-33 

G*, Pa Φ G*, Pa Φ G*, Pa Φ 

9 0.100 
      

9 0.126 15000000 39.38 21390000 36.47 16400000 37.53 

9 0.158 16630000 38.67 23510000 35.87 18190000 36.87 

9 0.200 18300000 38.01 25810000 35.28 19890000 36.32 

9 0.251 20200000 37.35 28100000 34.76 21840000 35.74 

9 0.316 22210000 36.70 30710000 34.22 23940000 35.17 

9 0.398 24300000 36.09 33470000 33.71 26150000 34.63 

9 0.501 26700000 35.46 36410000 33.21 28570000 34.09 

9 0.631 29200000 34.86 39670000 32.70 31220000 33.55 

9 0.794 32000000 34.25 43200000 32.21 33940000 33.04 

9 1.000 34840000 33.68 46900000 31.73 36920000 32.53 

9 1.259 38030000 33.10 50740000 31.28 40180000 32.02 

9 1.585 41210000 32.57 55030000 30.81 43600000 31.53 

9 1.995 44840000 32.00 59480000 30.35 47180000 31.07 

9 2.512 48610000 31.47 64180000 29.91 50970000 30.64 
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Table 52: DSR Frequency Sweep Test Results for Mixes BC-31, 32, and 33 (Continued) 

Temp. 

C 
Freq. 

Hz 

Mix 

BC-31 BC-32 BC-33 

G*, Pa Φ G*, Pa Φ G*, Pa Φ 

9 3.162 52580000 30.94 69170000 29.46 55290000 30.20 

9 3.981 56870000 30.41 74620000 29.01 59600000 29.77 

9 5.012 61440000 29.88 80330000 28.57 64260000 29.39 

9 6.310 66100000 29.38 86370000 28.14 69170000 28.94 

9 7.943 71090000 28.87 92630000 27.72 74340000 28.51 

9 10.000 76730000 28.35 99330000 27.29 79780000 28.09 

9 12.590 82220000 27.78 106400000 26.86 85710000 27.69 

9 15.849 88180000 27.28 113900000 26.47 91780000 27.23 

9 19.953 94450000 26.86 121600000 26.05 98660000 26.66 

9 25.121 101000000 26.34 130000000 25.60 105800000 26.30 

9 31.623 108100000 25.77 139000000 25.11 113100000 25.75 

9 39.809 115600000 25.24 148200000 24.57 120800000 25.38 

9 50.000 122900000 24.63 157200000 24.05 128000000 24.82 

13 0.100 7531000 44.11 11320000 40.51 8534000 41.61 

13 0.158 9462000 42.65 13890000 39.31 10660000 40.31 

13 0.251 11700000 41.30 16900000 38.18 12980000 39.16 

13 0.398 14410000 39.99 20420000 37.08 15790000 38.03 

13 0.631 17610000 38.72 24620000 36.01 19100000 36.93 

13 1.000 21280000 37.51 29550000 34.98 22990000 35.86 

13 1.585 25710000 36.30 35240000 33.98 27570000 34.82 

13 2.512 30820000 35.13 41690000 33.03 32840000 33.88 

13 3.981 36660000 34.02 49150000 32.08 38950000 33.00 

13 6.310 43560000 32.89 57810000 31.16 45860000 32.09 

13 10.000 51370000 31.78 67700000 30.35 53720000 30.93 

13 15.849 60330000 30.73 78570000 29.41 63070000 30.25 

13 25.121 70420000 29.59 90850000 28.44 73620000 29.33 

13 39.809 81800000 28.49 105100000 27.49 85260000 28.33 

13 50.000 87840000 27.92 112700000 27.03 91580000 27.83 

21 0.100 2039000 52.57 3296000 48.16 2433000 49.17 

21 0.158 2646000 51.16 4186000 46.91 3133000 47.88 

21 0.251 3437000 49.73 5303000 45.68 3993000 46.65 

21 0.398 4414000 48.34 6686000 44.47 5046000 45.46 

21 0.631 5635000 46.97 8348000 43.33 6346000 44.32 

21 1.000 7139000 45.62 10390000 42.20 7928000 43.20 

21 1.585 8965000 44.30 12850000 41.09 9850000 42.13 

21 2.512 11210000 42.99 15810000 39.99 12170000 41.04 

21 3.981 13920000 41.69 19300000 38.91 14970000 39.95 

21 6.310 17150000 40.43 23500000 37.84 18310000 38.92 

21 10.000 20990000 39.19 28380000 36.78 22230000 37.66 

21 15.849 25610000 37.86 34210000 35.72 26930000 36.66 

21 25.121 31030000 36.72 40890000 34.75 32450000 35.70 
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Table 52: DSR Frequency Sweep Test Results for Mixes BC-31, 32, and 33 (Continued) 

Temp. 

C 
Freq. 

Hz 

Mix 

BC-31 BC-32 BC-33 

G*, Pa Φ G*, Pa Φ G*, Pa Φ 

21 39.809 37350000 35.54 48960000 33.83 38960000 34.75 

21 50.000 40810000 34.90 53260000 33.33 42540000 34.24 

29 0.100 489800 60.08 901400 54.80 622600 56.56 

29 0.158 664500 58.82 1189000 53.59 833700 55.36 

29 0.251 897500 57.54 1567000 52.39 1108000 54.05 

29 0.398 1197000 56.27 2041000 51.24 1461000 52.78 

29 0.631 1594000 54.97 2643000 50.11 1909000 51.57 

29 1.000 2113000 53.64 3404000 48.98 2477000 50.44 

29 1.585 2773000 52.32 4360000 47.85 3185000 49.37 

29 2.512 3616000 50.96 5549000 46.74 4083000 48.28 

29 3.981 4681000 49.63 7032000 45.62 5203000 47.18 

29 6.310 6009000 48.31 8851000 44.54 6595000 46.00 

29 10.000 7657000 47.08 11060000 43.30 8309000 44.63 

29 15.849 9714000 45.52 13800000 42.26 10460000 43.77 

29 25.121 12220000 44.32 17080000 41.21 13100000 42.63 

29 39.809 15310000 43.02 21130000 40.21 16250000 41.55 

29 50.000 17060000 42.38 23370000 39.64 18070000 41.06 

37 0.100 114000 66.38 240500 60.65 157600 62.64 

37 0.158 158000 65.26 330000 59.35 215600 61.44 

37 0.251 219900 64.12 447300 58.26 298300 60.17 

37 0.398 305200 62.97 602500 57.23 401300 59.22 

37 0.631 421600 61.80 801500 56.20 538500 58.17 

37 1.000 578000 60.65 1064000 55.16 723700 57.23 

37 1.585 782300 59.51 1411000 54.10 975200 56.11 

37 2.512 1060000 58.32 1855000 53.08 1296000 55.02 

37 3.981 1424000 57.12 2423000 52.06 1716000 53.94 

37 6.310 1901000 55.92 3151000 51.00 2246000 52.89 

37 10.000 2517000 54.59 4080000 50.03 2937000 51.62 

37 15.849 3327000 53.22 5257000 48.77 3823000 50.66 

37 25.121 4361000 51.95 6741000 47.82 4927000 49.46 

37 39.809 5680000 50.55 8582000 46.69 6353000 48.53 

37 50.000 6484000 49.88 9648000 46.20 7184000 48.11 
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