
Graduate Theses and Dissertations Iowa State University Capstones, Theses and
Dissertations

2012

Automation and further development of the
borehole shear test
Theodore Bechtum
Iowa State University

Follow this and additional works at: https://lib.dr.iastate.edu/etd

Part of the Civil Engineering Commons

This Thesis is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital
Repository. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Iowa State University Digital
Repository. For more information, please contact digirep@iastate.edu.

Recommended Citation
Bechtum, Theodore, "Automation and further development of the borehole shear test" (2012). Graduate Theses and Dissertations.
12886.
https://lib.dr.iastate.edu/etd/12886

http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F12886&utm_medium=PDF&utm_campaign=PDFCoverPages
http://lib.dr.iastate.edu/?utm_source=lib.dr.iastate.edu%2Fetd%2F12886&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F12886&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F12886&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/theses?utm_source=lib.dr.iastate.edu%2Fetd%2F12886&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd?utm_source=lib.dr.iastate.edu%2Fetd%2F12886&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/252?utm_source=lib.dr.iastate.edu%2Fetd%2F12886&utm_medium=PDF&utm_campaign=PDFCoverPages
https://lib.dr.iastate.edu/etd/12886?utm_source=lib.dr.iastate.edu%2Fetd%2F12886&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digirep@iastate.edu


Automation and further development of the borehole shear test 
 

 

 

by 
 

 

 

Theodore David Bechtum 
 

 

 

 

 

 

 

A thesis submitted to the graduate faculty 

 
in partial fulfillment of the requirements for the degree of 

 
MASTER OF SCIENCE 

 

 

 

 

Major:  Civil Engineering (Geotechnical Engineering) 

 
Program of Study Committee: 

Jeramy Ashlock, Major Professor 

Vernon Schaefer 

Jon Matthews Rouse 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Iowa State University 

 
Ames, IA 

 
2012 



ii 

 

TABLE OF CONTENTS 

 

LIST OF TABLES vi 

 

LIST OF FIGURES vii 

 

ACKNOWLEDGMENTS xii 

 

ABSTRACT xiii 

 

CHAPTER 1. INTRODUCTION 1 

 1.1 Borehole Shear Test Description 2 
 

CHAPTER 2. LITERATURE REVIEW 5 

 2.1 Review of the Borehole Shear Test 5 

 2.2 Review of Liquefaction Analysis and Cyclic Soil Testing 8 

 

CHAPTER 3. AUTOMATION OF THE BOREHOLE SHEAR TEST 12 

 3.1 Testing Method and Automation Criteria 12 

 3.2 Mechanical Development of the Automated Borehole Shear Test 14 

  3.2.1 Stepper Motor 16 

  3.2.2 Normal and Shear Pressure Sensors 17 

  3.2.3 Pressure Selector Valve for Manual or Automated Operation 19 

  3.2.4 Computer Measurement and Control 19 

 3.3 Development of the Automated Borehole Shear Test Control  

  Program 20 

  3.3.1 Data Input and Output 20 

  3.3.2 Oversampling and Input Data Smoothing 21 

  3.3.3 Incorporation of Data into Control Program 22 

  3.3.4 Failure Envelope Criteria 23 

  3.3.5 Advancing to Subsequent Normal Stress 25 

  3.3.6 Saving Data Files 26 

  3.3.7 Post-processing Capabilities of the Control Program 27 

 3.4 Preliminary Field Testing with the Automated Borehole Shear Test 28 

  3.4.1 Test Results in Sandy Glacial Till 29 

  3.4.2 Test Results in Soft Clay 31 

  3.4.3 Discussion of Shear-Displacement Behavior 35 

  3.4.4 Conclusions from Preliminary ABST Field Tests 38 
 



iii 

 

CHAPTER 4. ABST SHEAR HEAD DISPLACEMENT  

 MEASUREMENTS 40 

 4.1 Displacement Measurement via Stepper Motor 42 

  4.1.1 Error in Stepper Motor Displacement Measurements 43 

  4.1.2 Compliance of Dynamometer Cylinders 46 

  4.1.3 Compliance of Pull Rods 49 

  4.1.4 Compliance of Pull Strap 50 

  4.1.5 Slippage at Rod Clamp 52 

  4.1.6 Settlement of Base Plate 53 

  4.1.7 Conclusions from Shear Head Displacement Measurement   53 

 4.2 Measuring Displacement via Additional Sensors 54 
  4.2.1 Measurement at Top of Pull Rods using String Potentiometer  

   or LVDT 54 

  4.2.2 Measurement at Shear Plates using String Potentiometer 57 

 

CHAPTER 5. DEVELOPMENT OF A NEW CYCLIC ABST 60 

 5.1 Modifications to the Control Program 63 

 5.2 Mechanical Modifications 64 

  5.2.1 Preliminary Apparatus Modifications 65 

  5.2.2 Double-Strap Shear Head Design 66 

 5.3 Dynamic Instrumentation  73 

  5.3.1 Preliminary Cyclic Displacement Measurements 74 

  5.3.2 Proposed Displacement and Acceleration Measurements 74 

  5.3.3 Proposed Force Measurement 75 

  5.3.4 Pore Water Pressure Measurement 75 

 5.4 Cyclic ABST Results 76 

  5.4.1 Laboratory Results in Compacted Loess 76 

  5.4.2 Field Tests in Sandy Glacial Till 78 

 5.5 Cyclic ABST Conclusions 81 

 

CHAPTER 6. NUMERICAL ANALYSIS OF THE BST 84 

  6.1 Development of Finite Element Model 84 

  6.1.1 Model Geometry 85 

  6.1.2 Model Meshing 86 

  6.1.3 Soil Properties and Constitutive Modeling 87 

  6.1.4 Boundary and Initial Conditions 88 

  6.1.5 Loading Conditions 89 

 6.2 Normal Stresses Resulting from the Shear Plate 90 

 6.3 Effect of Soil Mesh Density 91 



iv 

 

 6.4 Effect of Mesh Continuity between Shear Plate and Soil 93 

 6.5 Normal Stress and Shear Stress Distribution 95 

 6.6 Development of Strains in Soil 96 

 6.7 Numerical Model Conclusions 99 

CHAPTER 7. CONCLUSIONS 101 

 7.1 ABST and Cyclic ASBT Limitations 103 

 7.2 Recommendations for Future Research 104 

 

APPENDIX A. ABST PROGRAM USER GUIDE AND  

 TROUBLESHOOTING MANUAL 106 

  A.1 ABST Stand Alone Program User Guide 106 

  A.2 ABST Troubleshooting Manual 114 

 

APPENDIX B. MICROSOFT EXCEL POST-PROCESSING 118 

  B.1 Microsoft Excel ABST Post-processing Code 118 

  B.2 Microsoft Excel ABST Post-processing Code Output 124 

 

APPENDIX C. FIELD ABST RESULTS 126 

 C.1 ABST Results in Sandy Glacial Till 126 

 C.2 ABST Results in Soft Clay 129 

 

APPENDIX D. DIRECT SHEAR TESTS ON FIELD SAMPLES 133 

 D.1 Direct Shear Test Results in Sandy Glacial Till 133 

 D.2 Direct Shear Test Results in Soft Clay 136 

 

APPENDIX E. ABST DISPLACEMENT MEASUREMENTS 137 

 E.1 Rod, Shear Head, and Stepper Displacement 137 

 E.2 Rod, Clamp, and Cross-Plate Displacement with Fixed Rod Base 145 

 E.3 Supplementary ABST Stiffness Plots with Fixed Rod Base 153 
 

APPENDIX F. CYCLIC ABST DESIGN 154 

 F.1 Additions to the User Guide 154 

 F.2 Double-Strap Cyclic Shear Head Design 158 

 F.3 Cyclic ABST Stress Analysis Results 164 
 

APPENDIX G. CYCLIC ABST RESULTS  166 

 G.1 Laboratory Results in Compacted Loess 166 

 G.2 Field Results in Sandy Glacial Till 170 
 



v 

 

BIBLIOGRAPHY 178 
  



vi 

 

LIST OF TABLES 
 

Table 3.1:  Components used to automate the borehole shear test apparatus 

 Source:  Ashlock and Bechtum (2011)  14 

Table 3.2:  Glacial till ABST and laboratory direct shear test results 31 

Table 3.3:  Soft clay ABST and direct laboratory shear test results 32 

Table 6.1:  Soil properties for BST FEM analysis 87 

Table 6.2:  Drucker Prager hardening 87 

Table C.1:  Glacial till ABST results (Test 1) 126 

Table C.2:  Glacial till ABST results (Test 2) 127 

Table C.3:  Glacial till ABST results (Test 3) 128 

Table C.4:  Soft clay ABST results (Test 1) 129 

Table C.5:  Soft clay ABST results (Test 2) 130 

Table C.6:  Soft clay ABST results (Test 3) 131 

Table C.7:  Soft clay ABST results (Test 4) 132 

Table F.1:  Dimensions for double-strap design 159 

Table F.2:  Properties for materials in double-strap apparatus 159 

Table F.3:  Double-strap apparatus stress analysis results 164 

Table F.4:  Double-strap apparatus damping analysis 165 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vii 

 

LIST OF FIGURES 
 

Figure 1.1:  Components of manually operated borehole shear test device 

 Source: Handy Geotechnical Instruments, Inc. (2002) 2 

Figure 1.2:  Typical borehole shear testing procedure (Typical loading rate for  

 increasing shear displacement is 0.002 in/s) 3 

Figure 2.1:  Liquefaction potential for clean sand based on corrected SPT blow count 

 Source: Youd et al. (2001) 9 

Figure 3.1:  Automation components within electronics case 15 

Figure 3.2:  Automation component within existing BST case 15  

Figure 3.3:  Modified borehole shear test base plate 16 

Figure 3.4:  Automated borehole shear tester console case 18 

Figure 3.5:  ABST control program 24 

Figure 3.6:  Glacial till failure envelope for ABST at a depth of 27.5 inches 30 

Figure 3.7:  Glacial till failure envelope for direct shear test at a depth of 27.5 inches 30 

Figure 3.8:  Soft clay failure envelope at depth of 61 inches (Test 4) 34 

Figure 3.9:  Glacial till shear displacement behavior for ABST at a depth of 27.5 inches 35 

Figure 3.10:  Glacial till shear displacement behavior for direct shear test at depth  

 of 27.5 inches 36 

Figure 3.11:  Stress path for the borehole shear test and direct shear test with an initial 

 in situ stress condition assumed 37 

Figure 4.1:  Testing configuration for stepper displacement investigation 44 

Figure 4.2:  Stepper displacement vs. shear head displacement at 15 psi normal stress 46 

Figure 4.3:  Testing configuration for compliance investigation 47 

Figure 4.4:  Representative cylinder compliance curve 48 

Figure 4.5:  Comparison of measured and theoretical rod compliance 49 

Figure 4.6:  Representative strap and rod compliance curve 51 

Figure 4.7:  Investigation of slippage at the rod clamp 52 

Figure 4.8:  Comparison of rod displacement to shear head displacement for two 

 tests at 20 psi normal stress 55 

Figure 4.9:  Stress displacement behavior obtained for rod and shear head in steel tube 56 

Figure 4.10:  Stress displacement behavior obtained for rod and shear head in  

 compacted loess 57 

Figure 4.11:  Shear displacement behavior obtained with direct measurement of  

 shear head displacement using a string potentiometer 58 

Figure 5.1:  Laboratory cyclic ABST in air dry, compacted loess 66 

Figure 5.2:  Anticipated typical force-displacement response of soil in cyclic test 

 Source:  Ashlock (2012) 71 

Figure 5.3:  Stress-controlled cyclic ABST laboratory results 77 

Figure 5.4:  Comparison of stress-controlled cyclic ABST field results for boring 2 79 

Figure 6.1:  Monotonic BST soil model 86 

Figure 6.2:  Normal stress distribution in soil along shear plate width (0.25” mesh) 90 

Figure 6.3:  Normal stress distribution in soil along shear plate width (0.35” mesh) 91 

Figure 6.4:  Normal stress distribution in soil along shear plate width (0.90” mesh) 92 

 



viii 

 

Figure 6.5:  Normal stress distribution in soil along shear plate width (0.90” global  

 mesh) 93 

Figure 6.6:  Normal stress in soil adjacent to shear plate (Pascals) 94 

Figure 6.7:  Shear stress in soil adjacent to the shear plate (Pascals) 94 

Figure 6.8:  Total logarithmic shear strain contours in soil adjacent to shear plate 95 

Figure 6.9:  Total logarithmic shear strain extending radially from borehole 96 

Figure 6.10:  Plastic logarithmic shear strain contours in soil adjacent to shear plate 97 

Figure 6.11:  Shear stress extending radially from the borehole 98 

Figure 6.12:  Stress-strain relationship extending radially from the borehole 98 

Figure 6.13:  Shear modulus extending radially from the borehole 99 

Figure A.1:  Test save control set 107 

Figure A.2:  Stepper port 107 

Figure A.3:  Shear head movement controls 108 

Figure A.4:  Consolidation controls 109 

Figure A.5:  Monitoring set 109 

Figure A.6:  Shear stress record plot 110 

Figure A.7:  Tare controls 111 

Figure A.8:  Peak stress controls 111 

Figure A.9:  Lower shear head controls 112 

Figure A.10:  Failure envelope plot 113 

Figure A.11:  Failure envelope adjustments 114 

Figure A.12:  Stress record plot control 114 

Figure B.1:  Visual Basic code for ABST data processing 118 

Figure B.2:  Failure envelope from ABST post-processing code 124 

Figure B.3:  Plot of shear stress against stepper displacement from ABST  

 post-processing code 124 

Figure B.4:  Plot of shear stress against time from ABST post-processing code 125 

Figure C.1:  Shear record and failure envelope for ABST in glacial till (Test 1) 126 

Figure C.2:  Shear record and failure envelope for ABST in glacial till (Test 2) 127 

Figure C.3:  Shear record and failure envelope for ABST in glacial till (Test 3) 128 

Figure C.4:  Failure envelope for ABST in soft clay (Test 1) 129 

Figure C.5:  Failure envelope for ABST in soft clay (Test 2) 130 

Figure C.6:  Failure envelope for ABST in soft clay (Test 3) 131 

Figure C.7:  Failure envelope for ABST in soft clay (Test 4) 132 

Figure D.1:  Direct shear test results (Spangler: Test 1 ≈ 27.5 in.) 133 

Figure D.2:  Direct shear test results (Spangler: Test 2 ≈ 67.5 in.) 134 

Figure D.3:  Direct shear test results (Spangler: Test 3 ≈ 98.0 in.) 135 

Figure D.4:  Direct shear test results (Scholl Rd: Test 1 at 50-72 in.) 136 

Figure E.1:  Stepper displacement vs. actual shear head displacement at normal  

 stress of 7 psi 137 

Figure E.2:  Displacement at top of pull rod vs. actual shear head displacement at  

 normal stress of 7 psi 137 

Figure E.3:  Shear stress vs. stepper displacement at normal stress of 7 psi 138 

Figure E.4:  Shear stress vs. rod and shear head displacements at normal stress  

 of 7 psi 138 



ix 

 

Figure E.5:  Rod and strap elongation at normal stress of 7 psi 138 

Figure E.6:  Stepper displacement vs. actual shear head displacement at normal  

 stress of 10 psi 139 

Figure E.7:  Displacement at top of pull rod vs. actual shear head displacement at  

 normal stress of 10 psi 139 

Figure E.8:  Shear stress vs. stepper displacement at normal stress of 10 psi 140 

Figure E.9:  Shear stress vs. rod and shear head displacements at normal stress  

 of 10 psi 140 

Figure E.10:  Rod and strap elongation at normal stress of 10 psi 140 

Figure E.11:  Stepper displacement vs. actual shear head displacement at normal  

 stress of 15 psi 141 

Figure E.12:  Displacement at top of pull rod vs. actual shear head displacement at  

 normal stress of 15 psi 141 

Figure E.13:  Shear stress vs. stepper displacement at normal stress of 15 psi 142 

Figure E.14:  Shear stress vs. rod and shear head displacements at normal stress  

 of 15 psi 142 

Figure E.15:  Rod and strap elongation at normal stress of 15 psi 142 

Figure E.16:  Stepper displacement vs. actual shear head displacement at normal  

 stress of 20 psi 143 

Figure E.17:  Displacement at top of pull rod vs. actual shear head displacement at  

 normal stress of 20 psi 143 

Figure E.18:  Shear stress vs. stepper displacement at normal stress of 20 psi 144 

Figure E.19:  Shear stress vs. rod and shear head displacements at normal stress  

 of 20 psi 144 

Figure E.20:  Rod and strap elongation at normal stress of 20 psi 144 

Figure E.21:  Trend fit to relationship between cylinder compression and shear stress  

 for Test 1 with locking pliers used to reduce slippage 145 

Figure E.22:  Comparison of theoretical and measured rod elongation for Test 1 with  

 locking pliers used to reduce slippage 145 

Figure E.23:  Slippage between the clamp and rod for Test 1 with locking pliers 

 used to reduce slippage 146 

Figure E.24:  Comparison between predicted and measured cylinder compression for  

 Test 2 with locking pliers used to reduce slippage 147 

Figure E.25:  Comparison of theoretical and measured rod elongation for Test 2 with  

 locking pliers used to reduce slippage 147 

Figure E.26:  Slippage between the clamp and rod for Test 2 with locking pliers 

 used to reduce slippage 148 

Figure E.27:  Comparison between predicted and measured cylinder compression for  

 Test 1 without locking pliers 149 

Figure E.28:  Comparison of theoretical and measured rod elongation for Test 1 

 without locking pliers 149 

Figure E.29:  Slippage between the clamp and rod for Test 1 without locking pliers 150 

Figure E.30:  Comparison between predicted and measured cylinder compression for  

 Test 2 without locking pliers 151 

 



x 

 

Figure E.31:  Comparison of theoretical and measured rod elongation for Test 2  

 without locking pliers 151 

Figure E.32:  Slippage between the clamp and rod for Test 2 without locking pliers 152 

Figure E.33:  Investigation into the effect of location on cross-plate displacement  

 measurement with locking pliers used to reduce slippage 153 

Figure E.34:  Investigation of possible movement at the base of the fixed pull rod with 

 locking pliers used to reduce slippage 153 

Figure F.1:  DAQ channel controls 154 

Figure F.2:  Cyclic test controls 154 

Figure F.3:  Limit controls 154 

Figure F.4:  String pot indicators 154 

Figure F.5:  Peak stress controls 156 

Figure F.6:  Cyclic shear record graph 157 

Figure F.7:  Double-strap shear head 158 

Figure F.8:  Upper and lower hanger 160 

Figure F.9:  Pipes and box section 160 

Figure F.10:  Loading rod 161 

Figure F.11:  Shear head 161 

Figure F.12:  Shear plate 162 

Figure F.13:  Strap 162 

Figure F.14:  Piston 163 

Figure G.1:  Stress-controlled cyclic ABST results (5 psi normal stress:  Test 1) 166 

Figure G.2:  Stress-controlled cyclic ABST results (5 psi normal stress:  Test 2) 166 

Figure G.3:  Stress-controlled cyclic ABST results (5 psi normal stress:  Test 3) 167 

Figure G.4:  Stress-controlled cyclic ABST results (10 psi normal stress:  Test 1) 167 

Figure G.5:  Stress-controlled cyclic ABST results (10 psi normal stress:  Test 2) 168 

Figure G.6:  Stress-controlled cyclic ABST results (15 psi normal stress:  Test 1) 168 

Figure G.7:  Stress-controlled cyclic ABST results (15 psi normal stress:  Test 2) 169 

Figure G.8:  Displacement-controlled cyclic ABST results (5 psi normal stress: Test 1) 169 

Figure G.9:  Shear record from monotonic ABST with string potentiometer 

  (Boring 1: Depth of 2 feet) 170 

Figure G.10:  Failure envelope from monotonic ABST with string potentiometer 

 (Boring 1: Depth of 2 feet) 170 

Figure G.11:  Stress-controlled cyclic ABST results at 10 psi and shearing rate of 2 

 revolutions per second   171 

Figure G.12:  Stress-controlled cyclic ABST results at 10 psi and shearing rate of 0.2 

 revolutions per second   171 

Figure G.13:  Stress-controlled cyclic ABST results at 10 psi and shearing rate of 5 

 revolutions per second   172 

Figure G.14:  Stress-controlled cyclic ABST results at 10 psi and shearing rate of 7 

 revolutions per second   172 

Figure G.15:  Stress-controlled cyclic ABST results at 10 psi and shearing rate of 0.2 

 revolutions per second   173 

Figure G.16:  Stress-controlled cyclic ABST results at 10 psi and shearing rate of 5 

 revolutions per second   173 



xi 

 

Figure G.17:  Stress-controlled cyclic ABST results at 10 psi and shearing rate of 7 

 revolutions per second   174 

Figure G.18:  Displacement-controlled cyclic ABST results at 10 psi and shearing rate 

 of 7 revolutions per second   174 

Figure G.19:  Comparison of stress-controlled cyclic ABSTs at different shearing rates 

 for boring 1 175 

Figure G.20:  Comparison of stress-controlled cyclic ABSTs at different shearing rates 

 for boring 2 175 

Figure G.21:  Comparison of equivalent damping ratios from stress-displacement  

 loops at a normal stress of 10 psi in boring 1 176 

Figure G.22:  Comparison of equivalent damping ratios from stress-displacement  

 loops at a normal stress of 10 psi in boring 2 176 

Figure G.23:  Comparison of equivalent secant shear modulus values from  

 stress-displacement loops at a normal stress of 10 psi in boring 1 177 

Figure G.24:  Comparison of equivalent secant shear modulus values from  

 stress-displacement loops at a normal stress of 10 psi in boring 2 177 

 

 

 

 



xii 

 

ACKNOWLEDGEMENTS 

 

 I would to thank my advisor, Dr. Jeramy Ashlock, for his assistance throughout my graduate 

studies and his enthusiasm for engineering.  I am grateful for the many opportunities that he 

presented, which greatly increased my understanding of geotechnical engineering with laboratory, 

field, and analytical research experience.   

 Dr. Richard Handy provided many of the resources for this research.  His experience and 

knowledge provided significant help during the fabrication of the ABST and subsequent field testing, 

and he greatly improved the quality of this work.  Don Eichner provided significant assistance during 

the fabrication of the ABST.  Dr. Vernon Schaefer and Caleb Douglas provided assistance in drilling 

and sampling at Spangler lab.     

 I would also like to thank Dr. Vernon Schaefer for his assistance with field testing and his 

guidance throughout my graduate studies.  A special thanks also goes to Dr. Vernon Schaefer and Dr. 

Matt Rouse for serving on my committee. 

Additionally, I would like acknowledge Bing, Shibin, and Mohammad for sharing an office 

and advice for the last year or more. 

 Most of all, I would like to thank my wife, Alyson, for her continual support, encouragement, 

and understanding throughout this process.  Without her support, this would not have been possible.      

  



xiii 

 

ABSTRACT 

 The purpose of this work was to automate and further develop the borehole shear test (BST).  

The description of the successful automation procedure is presented, and investigations into soil 

displacement and cyclic BST loading are described.  Displacement and cyclic loading investigations 

were performed with additional instrumentation to measure soil displacement, and modifications were 

created for the basic testing procedure.  Numerical analysis was utilized to determine the stresses and 

strains created during a monotonic test in dry sand.  Automated monotonic testing was successfully 

performed on a variety of soil types.  Significant potential exists for a cyclic BST, and a starting point 

for future efforts to standardize and gain acceptance for the cyclic process is provided.  Findings 

include comparisons between the shear displacement behavior obtained with direct shear tests and 

borehole shear tests.  Additionally, cyclic stress records obtained with the automated BST are 

analyzed and found to correspond to expected soil behavior.        
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CHAPTER 1. INTRODUCTION 

  Accurate characterization of in situ soil behavior is currently one of the most important areas 

for advancing the state of knowledge in geotechnical engineering.  A number of analytical and 

computational models have been developed that can calculate soil response with greater precision 

than that with which the soil parameters can be measured.  As a result, an engineer’s ability to create 

an economical design while maintaining safety can be most effectively increased by improving the 

methods by which soil parameters are determined.  However, the costs related to subsurface 

investigations can quickly outweigh the benefits gained from accurate soil parameter determinations.  

Therefore, the development of improved testing methods needs to include simplicity and efficiency as 

primary considerations.  By utilizing simple and efficient methods, in situ soil parameters can be 

quickly and accurately determined by an engineer or technician with a reduced chance of error, and 

the costs related to an individual soil investigation can be reduced.     

In situ soil testing methods have been proven to increase the accuracy and economy of a 

variety of engineering designs that require knowledge of soil parameters.  Since in situ tests measure 

soil properties in place, the costs and efforts associated with collecting, transporting, and preserving a 

soil sample and testing it in a laboratory can be reduced or eliminated.  In addition, by measuring soil 

properties in situ, the effects of soil disturbance can be reduced, giving soil properties that more 

closely model actual soil behavior. A thorough geotechnical investigation can therefore combine 

laboratory testing with in situ testing to increase the accuracy of the soil parameters and provide a 

more economical design.   

Many in situ tests, such as the standard penetration test (SPT), rely upon empirical 

correlations to determine soil properties indirectly from indices rather than from direct measurements 

of the properties of interest.  The empirical correlations are commonly developed from comparisons 

between in situ test results and those from field or laboratory tests.  Although such empirical 

correlations can provide adequate results for many current engineering designs, they do not realize the 
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potential for in situ tests to increase the accuracy of an engineering design by direct measurement of 

the desired properties of the soil in its natural state. To provide advancements towards such direct in 

situ measurement of soil shear strength parameters, this thesis describes the automation and further 

development of an apparatus designed to allow direct measurement of soil shear strength in situ; the 

Borehole Shear Test (BST). 

1.1 Borehole Shear Test Description 

 The borehole shear test is performed with the apparatus shown in Figure 1.1, which was 

developed in the 1960’s by Dr. Richard Handy and his associates (Handy and Fox, 1967).  The test is 

able to determine the drained friction angle and cohesion of almost any soil type by essentially 

Figure 1.1:  Components of manually operated borehole shear test device 

Source:  Handy Geotechnical Instruments, Inc. (2002)  

Cross-plate 
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performing a direct shear test in situ.  The BST apparatus functions by lowering an expandable shear 

head into a suitably prepared borehole, such as one created by a 3-inch Shelby tube.  A desired 

normal stress is then applied to the soil by the shear head, and time (typically 5 to 15 minutes) is 

allowed for any excess pore water pressure caused by application of the normal stress to dissipate.  

After sufficient consolidation time has elapsed, an upward force is applied to the shear head by a 

hand-crank, and the shear strength (peak shear stress) is measured using a shear gauge and 

dynamometer.  The shear head is then lowered until the shear stress in the soil is reduced to nearly 

zero.  In the staged test configuration, a larger normal stress is then applied to the previously tested 

soil, and additional consolidation time (typically 5 to 10 minutes) is provided to allow the soil to 

drain.  Since the staged test is performed without relocating the shear head or removing the normal 

pressure, the drainage times will be cumulative for each normal stress and will allow for pore water 

pressure dissipation (Lutenegger and Tierney, 1986).   After the soil has drained, the shear head is 

raised and the peak shear stress is measured for the higher normal stress.  This process is repeated for 

a range of normal stresses as shown in Figure 1.2, and a failure envelope is constructed from a best-fit 

line passing through the measured normal and peak shear stresses.  From this failure envelope, the 

shear strength parameters φ’ and c’ can be determined.  

Shear strength 

data points 

c’ 

φφφφ’ Shear stress, τ 

Wait 

15 min 

Normal 

stress, σ’ 
5 min 5 min 5 min 

Figure 1.2:  Typical borehole shear testing procedure (Typical loading rate for increasing 

shear displacement is 0.002 in/s) 
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 The borehole shear test has the advantage of measuring shear strength parameters directly in 

situ without the need for laboratory testing or empirical correlations.  In addition, soil disturbance is 

minimized, since the soil being tested is not removed from the ground.  Although the testing surface 

will be slightly distorted from friction related to borehole preparation, this disturbance will likely be 

less than that of a laboratory specimen that has been extruded or remolded.  For these reasons, the 

borehole shear test has proved extremely useful for investigation of landslides, which require an 

accurate determination of the in situ shear strength (Handy, 1986).  Additionally, a soil’s shear 

strength parameters can be determined in under an hour, which is significantly faster than direct shear 

laboratory tests with clays.  Shortfalls of the borehole shear test include testing on a vertical plane 

rather than a horizontal plane and the potential for gravel to cause an erroneous shear strength 

measurement.  In addition, the determination of soil pore water pressure during testing can be difficult 

and often requires experience (Handy, 2002).   

It is the goal of this research to build on these advantages by further increasing the 

effectiveness and reliability of the borehole shear test by automating the process.  Additional 

applications, such as cyclic loading, have also been investigated, and preliminary designs and results 

are presented in this thesis. 

This thesis will present the automation process for the borehole shear test and compare the 

strength parameters obtained with the automated borehole shear test and direct shear test.  

Additionally, above ground shear displacement measurement methods will be investigated.  A cyclic 

borehole shear test and an investigation into the strains developed next to the shear head are also 

presented.   
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CHAPTER 2. LITERATURE REVIEW 

 A literature review is presented in this chapter to provide background information related to 

the BST.  Many of the test’s applications are presented, and the soil’s response under staged versus 

fresh testing is reviewed.  The effect of pore water pressure on the test results is examined, and the 

repeatability of the test is discussed.  This review will aid in the development of the automated 

borehole shear test (ABST), and will guide the implementation of modifications while also improving 

the interpretation of test results.    

 To provide background for the development of a cyclic borehole shear test (CBST), state-of-

the-art procedures for liquefaction analysis are described, and cyclic triaxial testing standards are 

discussed.   

2.1 Review of the Borehole Shear Test 

As demonstrated in multiple studies, the borehole shear test has proven to be a versatile and 

reliable in situ test.  The most straightforward application of the test is to determine the drained 

strength parameters φ’ and c’ in freely draining soils, such as sands.  The BST has also been utilized 

to obtain drained strength parameters in stiff clays.  The BST is particularly useful for slope stability 

analyses, because strength parameters are obtained at a single soil depth.  As a result, the spatial 

variation in strength parameters may be more accurately determined, enhancing the applicability of a 

probabilistic analysis of the slope’s stability (Handy, 1986).  The BST has also been utilized to study 

the unsaturated strength of soil in situ (e.g., Ashlock and Lu, 2012).  Miller et al. (1998) reported that 

as matric suction is increased, the BST shows an increase in friction angle and a decrease in cohesion.  

Theoretically, the friction angle should remain constant and the cohesion should increase with 

increasing matric suction (Lu and Likos, 2004).  However, the BST results are consistent with similar 

triaxial tests, and the results were utilized in Miller et al. (1998) to accurately predict drilled shaft 

uplift capacity.  The BST can also be used to model the decrease in strength as a borehole swells, 
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which can be applied to the design of drilled shafts, and the shear plates can be replaced with smooth 

plates to model soil-pile interaction (Handy et al., 1985).  

 When testing the soil, the shear strength is determined for each applied normal pressure.  

Elasticity theory indicates that shear stresses will dissipate much more quickly than normal stresses.  

As a result, the maximum shear stress will occur near the shear plate in a region that approximately 

experiences the applied normal pressure (Handy and Fox, 1967).       

 A staged testing method is typically utilized for the BST.  This method consists of 

determining the shear resistance of the soil at increasing normal pressures without changing the 

location of the shear head.  Staged testing has been shown to increase the speed and accuracy of the 

test (Handy and Fox, 1967).  However, an important concern regarding staged testing is whether the 

same shear plane is tested at increasing normal pressures, since a constant shear plane will potentially 

lead to residual shear strengths.  During or after shearing at a given normal pressure, the soil in the 

shear plane will reconsolidate.  This will increase the strength of this soil layer, and will cause the 

shear plane to move outward to the weaker, undisturbed material.  The shear plane moves outward 

because the consolidated-drained cohesion of the sheared material is greater than the consolidated-

drained cohesion in the adjacent undisturbed material.  The grooved teeth engage the soil and help 

cause the shear plane to move outward from the plate under increasing normal stress.  The 

reconsolidated layer typically becomes caked onto the shear plate.  In stiff soils, the shear plate’s 

teeth can often fail to fully engage the soil.  In this case, the measured strength will result from the 

friction between the disturbed and undisturbed soil (Lutenegger et al., 1978).  This behavior is 

referred to by Handy (2002) as progressive seating, and results in a failure envelope with a 45 degree 

slope and a negative cohesion.  In such situations, an adequate failure envelope might be obtained if 

the normal pressure could be increased sufficiently.  For this purpose, modified shear plates with a 

reduced area have been developed which allow for the measurement of strength in stiff soils.  
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However, use of the modified plates often requires the application of a normal stress in a fresh or 

undisturbed location, and therefore precludes staged testing.   

 Additional uses of the BST as described by Handy (2002) include indentifying 

overconsolidated behavior and pore water pressure effects.  If the soil is overconsolidated, a bilinear 

failure envelope will typically be obtained.  The normal pressure corresponding to the intersection is 

the horizontal preconsolidation pressure, and this value can be converted to the vertical 

preconsolidation pressure using the measured normally consolidated friction angle (Handy, 2002).  

Handy also suggests that the presence of excess pore water pressure can be identified by shear 

strengths that fall below the failure envelope at high normal pressures.  However, this behavior may 

also correspond to full expansion of the shear head, which limits the magnitude of normal stress 

applied to the soil.  

 Pore water pressures are an important consideration related to the borehole shear test.  In free 

draining materials such as sand, increased pore water pressure is immediately dissipated, and the 

drained strength parameters will result from the test.  In addition, unsaturated soils may yield drained 

strength parameters.  However, in saturated soils with a low permeability, such as clay, pore water 

pressures during consolidation, shearing, and after shearing must be considered.  For staged tests, at 

least ten minutes should be allowed for consolidation following an increase in normal pressure for all 

clay soils (Lutenegger and Tierney, 1986).  In addition, Lutenegger and Tierney (1986) showed that 

excess pore water pressures arising from application of normal stress to the soil are two to five times 

larger in fresh shearing locations than in staged testing.  In addition, the pore water pressure 

distribution on the shear plate is more uniform for staged testing.  Although the excess pore water 

pressures dissipate more quickly in fresh shearing locations, the overall time for consolidation is 

reduced in staged testing.  Significant pore water pressures may also be generated during the shearing 

phase.  These pore water pressures may be approximately triangularly distributed on the shear head 

with the maximum pore water pressure existing at the top of the plate.  As a result, the pore water 
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pressure at the center of the plate may provide the average pore water pressure and could be utilized 

to approximate the drained strength parameters (Lutenegger and Tierney, 1986).  However, this 

method is not universally accepted (Handy, 2002).  Lutenegger and Tierney (1986) also showed that 

approximately 20 minutes may be required to allow the excess pore water pressures to dissipate after 

shearing.  The difference between the total and effective friction angle and cohesion will change 

based on the stress history and overconsolidation ratio of the soil.  The tests performed by these 

researchers show minor differences between the effective and total strength parameters.      

 Research performed by Lutenegger and Timian (1987) demonstrated that strength parameters 

determined by experienced and inexperienced operators will have approximately the same mean and 

standard deviation.  In addition, they showed that there is no significant difference in measured 

strength parameters for fresh versus staged testing with standard shear plates, and that the coefficient 

of variation for cohesion is larger than the coefficient of variation for the friction angle.                    

2.2 Review of Liquefaction Analysis and Cyclic Soil Testing 

 Liquefaction is described as the transformation of a solid soil to a liquefied state, which 

typically occurs in saturated loose or medium dense cohesionless material (Youd et al., 2001).  Soils 

susceptible to liquefaction typically have poor drainage and contain some impermeable material.  

Liquefaction occurs due to rapid shearing of the soil that does not allow time for drainage.  This 

shearing causes pore water pressures to increase and the effective stresses in the soil to decrease.  In 

loose soil, liquefaction causes large cyclic deformations and a loss of shear strength.  In denser soils, 

cyclic strains can dilate the soil and prevent complete strength loss, giving rise to “cyclic mobility”.  

 The simplified procedure for determining liquefaction (Seed and Idriss, 1971) consists of an 

empirical relationship between the cyclic stress ratio (CSR) and a measure of the cyclic resistance 

ratio (CRR).  The CSR represents the seismic demand placed on the soil and is related to the peak 

horizontal acceleration at the ground surface, stresses due to overburden, and a reduction coefficient 

that accounts for flexibility of the soil.  CRR represents the ability of the soil to resist liquefaction and 
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can be expressed in terms of measurements from in situ tests, such as SPT, CPT, or shear wave 

velocity measurements, or laboratory tests such as cyclic triaxial or cyclic simple shear tests 

 Since costly specialized drilling methods are required to obtain an undisturbed cohesionless 

sample, in situ testing methods have become the state-of-the-art method for determining liquefaction 

potential (Youd et al., 2001).  Common in situ test methods that are utilized to determine liquefaction 

potential include the standard penetration test (SPT), cone penetration test (CPT), and shear wave 

velocity (VS).  Semi-empirical methods are utilized to determine the liquefaction potential based on 

SPT and CPT test results.  A plot of CSR against corrected blow count is used for the SPT tests, and a 

plot of CSR against corrected tip resistance is utilized for the CPT.  To develop the CRR curves, 

points are placed on these graphs according to the experienced earthquakes and in situ test results.  

These points are then identified as corresponding to liquefaction or nonliquefaction behavior, and 

Figure 2.1:  Liquefaction potential for clean sand 

based on corrected SPT blow count 

Source:  Youd et al. (2001) 
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CRR curves are drawn to separate liquefaction potential from nonliquefaction potential, as shown in 

Figure 2.1.  These CRR curves are then utilized to classify the liquefaction potential of other soils.  

The CRR curves correspond to a specified quantity of fines in the soil.  In addition, scaling factors are 

required to apply the curves to different earthquake magnitudes.  

 VS testing offers an advantage to CPT and SPT testing because both VS and CRR are 

influenced by void ratio, effective confining stress, stress history, and geologic age.  In addition, VS is 

a mechanical property of the soil related to the small-strain shear modulus, and the small-strain shear 

modulus is required for estimating dynamic soil response.  However, VS measurements are made at 

small strains, but pore water pressure buildup occurs at medium to high strains.  In addition, materials 

with small VS may not be identified if the measurement interval is too large (Youd et al., 2001).  

Seismic testing does not allow for the collection of samples.  As a result, borings are often created to 

classify the soil and identify material that may undergo liquefaction.  VS measurements also rely on 

semi-empirical CRR curves constructed on plots of CSR against overburden-stress-corrected shear 

wave velocity.  The CRR curves apply to a specified fines content and earthquake magnitude.   

 Additional methods have been developed for determining the liquefaction potential of soils in 

situ.  For example, previous studies have applied dynamic loading to the ground with a hydraulic 

shaker, and the resulting soil response was measured (Cox, 2006).    

Cyclic simple shear (CSS) tests can also be utilized to study liquefaction.  The CSR can be 

calculated from the ratio of cyclic shear stress to effective vertical consolidation stress.  This CSR 

value can be compared to the number of cycles to cause liquefaction, and the CSR required to cause 

liquefaction for a specified number of cycles may be classified as the soil’s CRR (Idriss and 

Boulanger, 2008).  Idriss and Boulanger (2008) indicated that the CRR determined from cyclic simple 

shear tests can be related to the field condition by considering the direction of loading and the 

coefficient of lateral earth pressure at rest.   



11 

 

 Cyclic loading is often applied in various laboratory tests to determine soil parameters that 

can be utilized to evaluate natural and engineered structures under dynamic loads.  For meaningful 

results, soil specimens should be consolidated to a condition that represents the field condition of 

interest before testing.  Cyclic tests can be performed with either stress or displacement control, and 

for cyclic triaxial testing, the loading equipment should be capable of applying a uniform sinusoidal 

load at a frequency of 0.1 to 2 Hz, according to ASTM D3999 (2011).  The cyclic loading will 

typically result in a hysteresis loop that can be utilized to determine the soil’s damping ratio and 

modulus.  The first half cycle should be loaded with a 0.5 to 1 Hz sinusoidal load.  In addition, 

hysteresis loop migration along the displacement axis may occur in soft to medium stiff soils.  This 

migration is caused by permanent deformation related to unbalanced cyclic loading or anisotropic 

consolidation.  In order to utilize a hysteresis loop for determining soil parameters, successive peaks 

on the loop must have a closure error of less than 0.0001 inches (ASTM 2011).       
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CHAPTER 3. AUTOMATION OF THE BOREHOLE SHEAR TEST 

Automation of the borehole shear test would provide users the ability to test multiple 

locations simultaneously while recording a complete shear stress versus displacement record of the 

soil, which is not typically obtained in the manual BST.  In addition, the need to estimate the 

maximum pressure from a continually varying dial on a pressure gauge could be replaced by a 

program that automatically and more accurately detects a peak or plateau in the shear stress and 

advances to the next normal stress.  As a result, the consistency and reproducibility of the borehole 

shear test would be increased, and the potential for errors related to individual interpretations would 

be reduced.  In addition, the ability of an automated system to provide quick, graphical shear records 

and failure envelopes could also efficiently convey information to individuals not familiar with soil 

mechanics. 

The automated borehole shear test (ABST) apparatus was created by modifying a standard 

borehole shear test (BST) unit.  As one of the design goals, other existing borehole shear units can be 

similarly retrofitted for automated functionality.   

3.1 Testing Method and Automation Criteria 

 The automated borehole shear test (ABST) was designed to run independently following 

advancement of a borehole and lowering of the shear head to the desired testing depth.  The shear 

head is placed at the desired depth by attaching 9.5 mm (3/8 in.) diameter threaded pull rods to the 

shear head and lowering the rods through the center of the ring gear (Figure 1.1).  A rod clamp is then 

utilized to hold the rods in position and transfer the tensile pull-rod force to the shear head, which in 

turn applies a vertical shearing stress to the borehole wall.     

An automation criterion was that the control program runs independently once the shear head 

is inserted to the desired depth and the control program is started.  The following steps are completed 

within the program to perform the test with the same procedure as the manual BST.  First, the initial 
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tare weight of the hanging shear head and rods is measured and stored for correction of the measured 

shear stresses.  The automated process then proceeds by applying the first normal stress specified in 

the program, and this normal stress is held constant for a user-defined period of consolidation.  After 

the excess pore pressure generated by application of the normal stress is allowed to dissipate in the 

consolidation phase, the shear head is raised at an adjustable speed, and the shear stress is 

automatically recorded and plotted.  The shear head will typically be raised at a rate of 0.002 in/sec 

by the stepper motor, which corresponds to two revolutions of the hand-crank and worm gear per 

second.  The program then automatically recognizes a peak or plateau in the shear stress according to 

user-specified parameters and terminates the shearing phase.  The maximum shear stress 

corresponding to the applied normal stress is then plotted in a shear stress-normal stress plot, and the 

shear head is lowered until a near-zero residual shear stress is reached.  The procedure is then 

repeated for the remaining user defined normal pressures, which typically consist of three to six 

increasing values.  The automation process described above allows users to reliably gather 

information according to predefined parameters, and also permits these parameters to be changed 

during the test to adjust for observed soil behavior.  The program is versatile, since nearly every 

aspect of the test can be controlled by the user.  This allows one to accurately investigate the effects 

of variable shear rates, consolidation times, and numerous other test parameters.   

After the failure envelope is constructed for a given test depth, the shear head is manually 

removed from the borehole by removing the rod clamp and lifting the pull rods (Figure 1.1).  The 

shear head is then cleaned and reinserted in the borehole to perform tests at any remaining depths.  A 

set of instructions for the borehole shear test provided with the apparatus provide more detailed 

information related to properly positioning the base plate and other aspects of the test (Handy, 2002).  

In addition, a user manual and troubleshooting guide were developed for the ABST and are included 

in Appendix A.   
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The automated borehole shear test is also designed to be fully functional if power is lost or 

one of the electronic components malfunctions.  The normal and shear stresses measured by 

electronic pressure transducers are simultaneously displayed on Bourdon dial pressure gages, and a 

removable hand crank is included with the device to operate the device in the traditional manual 

mode.  In such instances, the data acquisition device can still be used to record the stress records 

while shearing the soil with the hand crank. 

 3.2 Mechanical Development of the Automated Borehole Shear Test 

 This section describes the mechanical features added to the traditional borehole shear 

apparatus to create the automated borehole shear test device.  Since the original ABST apparatus was 

Table 3.1:  Components used to automate the borehole shear test apparatus 

Component Manufacturer Model Number 

16 bit, 1 MHz USB data 

acquisition device (DAQ) 
Omega OMB-DAQ-3000 

Din rails for mounting DAQ Omega OMB-PDQ10 

External power supply for DAQ Omega OMB-TR-2U 

Stepper motor Applied Motion Products HT17-075 

Stepper motor switching power 

supply 
Applied Motion Products PS150A24 

Stepper motor controller Applied Motion Products ST5-Si-NN 

RS-232 to USB Interface 

Converter 
TRENDnet TU-S9 

200 psi pressure sensor Omega PX309-200G5V 

300 psi pressure sensor Omega PX309-300G5V 

300 psi analog  electropneumatic 

pressure regulator 
Marsh Bellofram 

Bellofram Type 3110 Circuit 

Card Regulator, part 

#110TE0G300D0000 

Electronics case Pelican 1550 

Source:  Ashlock and Bechtum (2011) 
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developed with the desire to provide additional capabilities for future expansion and research, some 

of the components utilized may be replaced with more economical alternatives on production units 

(Ashlock and Bechtum, 2011).  Development of the computer program and computer-based 

Power supply 

Stepper motor controller 

Data acquisition device 

Figure 3.1:  Automation components within electronics case 

Pressure regulator 

Figure 3.2:  Automation component within existing BST case 
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measurement and control systems is presented in Section 3.3.  Table 3.1 provides a summary of the 

components used to automate the borehole shear test.  Figure 3.1 displays the automation components 

within the electronics Pelican case.  Figure 3.2 displays the automation component within the existing 

BST Pelican case.  

3.2.1 Stepper Motor 

An Applied Motion Products model HT17-075 high torque stepper motor is mounted inside a 

case on the Dynamometer cross-plate to allow for computer controlled shear stress application 

(Figure 3.3).  The case utilizes a rubber seal to protect the motor from the elements while in the field, 

and also acts as a heat sink.  The stepper case is attached to the cross-plate with a slotted PVC plate to 

allow for adjustment of the belt tension.  Shear stress is applied by means of a toothed belt that 

Stepper motor case 

Drive belt attached 

to worm gear 

Manual hand crank 

200 psi pressure sensor 

Dynamometer 

cross-plate 

Figure 3.3:  Modified borehole shear test base plate  
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connects the motor to the worm gear, which is mounted through two pillow blocks.  The opposite side 

of the worm gear is left open for attachment of the hand crank, which should only be attached during 

manual use.  The configuration shown in Figure 3.3 allows the base plate to fit in the existing BST 

Pelican case with only minor modifications to the case.  

 A 2:1 gear ratio was utilized for the stepper motor and worm gear.  Since the stepper motor 

will have two revolutions for every revolution of the worm gear, the motor torque is doubled when 

applied to the worm gear, which reduces binding in the system.  However, under unfavorable 

circumstances, the system may still bind.  A kill switch for the stepper motor is therefore located 

within the new electronics case that houses the data acquisition device, and the switch can be utilized 

to change the test from automatic to manual operation if binding is encountered.  This event rarely 

occurs, and further discussion is provided in Appendix A.   

3.2.2 Normal and Shear Pressure Sensors 

 A 300 psi pressure sensor was installed behind the console face of the existing BST case to 

measure the normal pressure applied to the soil (Figure 3.4).  Normal pressure is applied with CO2 

controlled by a regulator.  The shear pressure is measured with a 200 psi pressure sensor mounted on 

the base plate (Figure 3.3).  As downward forces are applied to the cross-pate during shear, the oil 

pressure in the dynamometer is increased, which is measured by the 200 psi sensor for determination 

of the shear stress.  Both pressure sensors require 9-30 volts DC excitation and output five volts DC 

at their maximum rated pressures.   

 The 200 psi pressure sensor exhibited significant noise during preliminary testing and steps 

were taken to provide cleaner, more accurate measurements.  Although the manufacturer claims that 

this is a three wire sensor and the fourth green wire is not needed, it was determined that grounding 

the green wire reduced the noise.  It is recommended that future ABST units utilize this approach for 

Omega pressure sensors.  Additional information regarding the proposed wiring and electrical scheme 

of the ABST was documented in the previous report on the automated borehole shear test’s 
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development (Ashlock and Bechtum, 2011).  In addition, it was found that the digital stepper motor 

wires created significant electrical noise in the shear stress measurement if the wires were bundled 

into the same cable.  Therefore, a separate, shielded coaxial cable with BNC connectors was utilized 

to transfer the 200 psi sensor’s shear stress measurement from the base plate to the electronics case.  

Filters and oversampling were also applied to the measured data to reduce noise.  Methods utilized by 

the computer to smooth the data are discussed in more detail within Section 3.3.     

 In addition to the 300 psi pressure sensor utilized to measure the normal pressure applied by 

the shear plates, an analog, electro-pneumatic pressure regulator was used to apply normal pressure 

with CO2.  This regulator requires 15-24 Volt DC power and a 0-10 Volt command signal.  The 

regulator also provides a 0-10 Volt analog output signal, which can be used to monitor the actual 

pressure applied.  If the pressure regulator’s monitor signal can be shown to have comparable 

precision, the 300 psi pressure sensor could potentially be eliminated from the design (Ashlock and 

Bechtum, 2011). 

         Figure 3.4:  Automated borehole shear tester console case 

Auto/Manual pressure selection valve 

300 psi pressure sensor 

Electro-pneumatic 

pressure regulator  
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3.2.3 Pressure Selector Valve for Manual or Automatic Operation 

 A new four-way ball valve allows the user to select whether the normal pressure will be 

applied automatically or manually (Figure 3.4). The valve functions by allowing either the manual or 

electro-pneumatic pressure regulator to supply the defined normal pressure, which is simultaneously 

measured by the 300 psi pressure sensor and the traditional Bourdon dial gage.   

3.2.4 Computer Measurement and Control 

An Omega OMB-DAQ-3000 USB data acquisition (DAQ) module was utilized for recording 

the normal and shear stresses applied to the soil during consolidation and shearing, and for sending 

the control signal to the electro-pneumatic pressure regulator.  The DAQ allows the measurement of 

eight differential inputs or 16 single-ended inputs.  Differential wiring can reduce noise related to a 

ground current, and it was determined during development that differential wiring provided 

noticeable reductions in the noise related to shear and normal stress measurements.  As a result, 

differential wiring is recommended for any additional expansions to the system.  In addition, it is 

recommended that each ground port on the DAQ be physically wired together to further reduce noise, 

as the grounding inside the unit is not optimal.  The DAQ is connected to a controlling computer with 

a USB cable and is controlled by the LabVIEW control program (National Instruments, 2009).   

An Applied Motion Products model ST5-Si-NN stepper motor controller was used to control 

the stepper motor within the LabVIEW control program using Serial Command Language.  A USB-

to-serial converter was used to create a virtual serial port for sending the commands to the stepper 

motor controller via the USB cable.   

The DAQ and stepper motor controller are placed inside an additional Pelican electronics 

case.  An Applied Motion Products 150 Watt, 24 Volt model PS250A24 power supply in the 

electronics case powers the pressure sensors, pressure regulator, and stepper motor.     
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3.3 Development of the Automated Borehole Shear Test Control Program 

LabVIEW is used to control and record data in the automated borehole shear test.  This 

section will focus on the control program’s development and intended function.  An ABST user’s 

guide is provided in Appendix A, which provides step-by-step instructions for carrying out an ABST 

test with the control program in the field.   

3.3.1 Data Input and Output   

Raw data in the form of voltages are collected in the LabVIEW control program from the 

DAQ to determine the shear stress displacement behavior of the soil. The data can be sampled at a 

user defined rate.  In initial versions of the program, the data was often sampled at 400 samples per 

second, and the program started a new sampling sequence every 100 samples.  Each group of 100 

samples was then averaged to give one representative value every quarter of a second.   

As discussed in the DAQ 3000 manual, increased accuracy can be achieved if the DAQ is 

used to oversample internally at a rate of 16,384 readings per returned sample, as this minimizes 

voltage transients caused by switching between the internal channels.  For the ABST, it is envisioned 

that a maximum of three channels will typically be required, since a string potentiometer will also be 

used to measure shear head displacement as discussed in Section 4.2.  Each voltage reading takes one 

microsecond, and each channel samples sequentially.  As a result, a total of 16,384 microseconds is 

required to sample each channel, and 0.05 seconds are required to sample all three channels.  This 

indicates that a maximum scan rate of 20 samples per second can be utilized within the program when 

using oversampling.  Since the failure envelopes obtained with previous versions of the program were 

benchmarked with laboratory results, the original generation rate of one shear value every quarter of a 

second was specified in the control program.  As a result, four oversampled values are obtained each 

second, providing smooth measurements with low noise. 

The resolution of the input data can be increased by selecting input voltage ranges that 

correspond to the expected stress measurements.  Since the DAQ has 16-bit resolution, the minimum 
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measureable voltage will correspond to the specified maximum voltage divided by 2
16

.  As a result, 

the smallest possible maximum input voltage should be specified in the program for the expected soil 

parameters of interest.  The maximum measureable soil shear stress in the current ABST design is 

approximately 50 psi at an input measurement of five volts, and this stress corresponds to a pressure 

sensor reading of 200 psi.  If a maximum shear stress of less than 20 psi is expected, then a maximum 

input range of two volts can be specified to improve the resolution of the stress measurements.  In 

general, a maximum input voltage of five volts can be specified to allow for measurements over the 

full range of the pressure sensors.   
 
   

In addition to the input measurements, a voltage signal is generated by the DAQ to control 

the pressure regulator.  This allows the user to programmatically control the normal pressure applied 

to the soil during the test iterations.  Additional output is sent to the stepper motor controller to 

control stepper motor operation using Serial Command Language (SCL) as discussed above. The 

SCL commands are used to start, stop, and change the speed and direction of the motor.  These 

changes can be made before and during the test.   

3.3.2 Oversampling and Input Data Smoothing 

 Oversampling and smoothing techniques were implemented to reduce the effects of electrical 

noise on the normal and shear stress records.  As described in Section 3.2.1 above, for each data point 

in the soil’s shear displacement record, the program collected 100 samples at a rate of 400 Hz, giving 

four data points per second.  In order to smooth the data by removing higher frequency electrical 

noise, a lowpass filter was added with a cutoff frequency of five Hz.  After the data is filtered, each 

100 samples are averaged to determine one representative value for the shear record each quarter 

second.  This process is then repeated until a peak shear stress is detected by the program.  After the 

peak shear stress is reached, the shear head is reversed until the initial tare shear stress is nearly 

reached, the normal pressure is incremented, and the process of consolidation delay followed by 

shearing of the soil is repeated.   
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 When oversampling is enabled, the DAQ will automatically sample at a high rate and obtain 

representative values by averaging a large number of voltage readings to achieve a chosen effective 

sampling rate with reduced noise.  The averaged reading is then recorded in the control program. By 

utilizing oversampling in the current version of the control program, filtering is not required and 

sampling parameters are simplified, which makes the program more streamlined and user friendly.       

3.3.3 Incorporation of Data into Control Program 

 As previously discussed, the shear stress is measured at a rate of four samples per second and 

used to construct the shear record of the soil for a given normal stress.  In the control program, the 

shear stress is plotted against time and against the displacement reported by the stepper motor, which 

is used as a measure of the shearing displacement.  The stepper internally monitors its absolute 

rotation, from which the displacement of the pull-rod clamp relative to the cross-plate is calculated 

and plotted in the shear record.  However, the stepper displacement is only an approximation of the 

actual displacement of the shear plates, as the stepper displacement does not account for elongation of 

the pull-rods and pull-strap, compression of the dynamometer cylinders and associated expansion of 

their internal rubber belloframs, or slippage of the rod clamp on the pull-rods.  A study aimed at 

developing measurements of the various stiffnesses within the apparatus with the goal of correcting 

the stepper displacement to obtain true shear plate displacement is discussed in Section 4.1. 

 The dynamometer cylinders convert the force applied to the cross plate into a proportional 

pressure which is measured by the 200 psi pressure sensor and dial gage mounted on the base plate. 

To determine the actual shear stress acting on the soil, the initial pressure caused by the hanging 

weight of the shear head and pull rods must be subtracted from the shear stress measured during 

shearing.  This is accomplished by measuring the stress applied to the 200 psi pressure sensor 

immediately after the test is begun and before the shear head is expanded to contact the borehole wall.  

This shear stress tare value is saved by the program and is automatically subtracted from measured 
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shear stress values to obtain the corrected shear stress. The corrected shear stress is then displayed in 

the program plots and exported in the data files.   

 During preliminary testing, it was discovered that a small amount of pressure is measured by 

the 300 psi pressure sensor even when the pressure regulator is given a zero pressure control signal.  

A tare measurement of the normal pressure sensor is therefore taken before the test begins, and this 

pressure is subtracted from the normal stresses measured while the shear measurements are recorded.  

The normal stress is sampled at the same rate as the shear stress, but only a single normal stress is 

required for each shear record to construct a failure envelope.  To account for any slight variation 

during testing, the measured normal stress records are averaged and plotted against maximum shear 

stress in order to construct the Mohr-Coulomb failure envelope.   

3.3.4 Failure Envelope Criteria 

 The soil’s shear displacement behavior is measured and plotted for each normal pressure at a 

rate of four points per second with each point corresponding to one iteration of a while-loop within 

the program.  A few different algorithms were developed to enable the program to detect a peak shear 

stress and therefore exit the while-loop. 

Three methods are used within the program for detecting the peak shear stress corresponding 

to a given normal stress, as shown in Figure 3.5.  The first method is a button that allows the user to 

manually advance the test to the next normal pressure based on their judgment of the shear 

displacement behavior.  However, the power of the program results from the ability to automate the 

entire process.  Therefore, algorithms were implemented to automatically detect a peak or a plateau in 

the shear stress based on specified criteria. A “peak” is identified when the shear stress falls below a 

user-defined percentage of the maximum measured shear stress with a default ratio of 80%.  Once a 

shear stress decreases below this limit, the program exits the while-loop which terminates the 

shearing phase and advances to the next normal pressure.  For failures which do not exhibit a peak but 

are characterized by a gradual increase in shear stress up to a constant value, the “plateau” method 
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is provided within the program to identify the maximum shear stress for the Mohr-Coulomb failure 

envelope.  An algorithm was developed which continually calculates the percent change in shear 

stress between the beginning and end of a user-defined shear displacement interval, termed the 

“plateau length”.  A continually updated section from the end of the shear displacement behavior is 

examined, and the percent difference between the samples at the beginning and end of the length is 

calculated.  If the calculated percent difference falls below a user-defined threshold, the program will 

then terminate the shearing while-loop and advance to the next normal stress.  

 During development of the control program, it was determined that the “plateau” method 

typically provides the most representative failure envelope.  Gravel and roots can occasionally be 

encountered, which cause the shear stress to quickly increase or decrease.  If the “peak” method is 

utilized, the program may prematurely advance without the actual peak shear stress being determined.  

However, if the “plateau” method is utilized, the shear stress will typically return to normal before the 

plateau length is reached, and the test will continue.  The “peak” method may be useful for clays that 

exhibit softening behavior.  If testing is performed in overconsolidated clay, a significant decrease in 

strength may occur shortly after the peak shear stress is reached, and this decrease can be readily 

recognized with the “peak” method.  The same is true for dense, sandy soils.  

3.3.5 Advancing to a Subsequent Normal Stress 

 After the peak shear stress is identified, the control program will exit the while-loop to 

terminate the shearing phase.  The program will then send a command to reverse the stepper motor in 

order to lower the shear head and reduce the shear stress to the initial tare value.  While the shear 

head is lowered, the shear stress is continually monitored, and the shear head movement is halted 

once the measured shear stress is less than a specified residual soil shear stress. However, if the halt 

command were simply sent to the motor when the measured shear stress reached the target tare value, 

the finite deceleration rate of the motor and the time required for one iteration of the controller loop 

would result in overshooting of the target stress. To avoid overshooting, the user can specify the 
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threshold that will cause the shear head to stop lowering.  For example, the halt command can be 

issued when the shear stress is 0.5 psi larger than the initial shear stress or tare value.  Once the 

criteria for lowering the shear head to a residual shear stress is met, the program will apply the next 

normal pressure and immediately begin a countdown timer for the second consolidation delay phase.  

 The application of normal pressure and consolidation time occurs in an outer loop that 

contains the majority of the program.  The number of iterations of this outer loop corresponds to the 

number of different normal pressures specified by the user.  As long as the final consolidation phase 

has not yet begun, the user can freely adjust the number of test points or modify the pending normal 

stress values and consolidation delay times during testing. Each desired normal pressure will 

correspond to one point on the failure envelope, and a minimum of three points should be used to 

construct the envelope.  

3.3.6 Saving Data Files 

 All data collected during a test is saved by the control program.  Specifically, the failure 

envelope points (peak shear stress and average normal stress), shear stress displacement behavior, 

stepper displacement, vector of sample times, and normal and shear stress tare values are recorded.  A 

more accurate displacement record is also saved in versions of the program that incorporate direct 

measurement of the shear head displacement as discussed in Section 4.2.  

 Two formats are used in the control program for exporting data.  The primary format is 

LabVIEW Measurement (LVM), which is a comma-delimited format with a .lvm extension.  LVM 

text files can be opened with standard text editor programs and imported into Microsoft Excel for 

interpretation.   In addition to the LVM format, data can be saved in smaller binary Matlab (MAT) 

format files with a .mat extension.  Data in MAT files is stored with pre-assigned variable names and 

the desired plots can therefore be quickly constructed.  However, conversion of data to the binary 

MAT format is not an intrinsic feature of LabVIEW and therefore required the use of subroutines 

created by the community of LabVIEW developers.  Unfortunately, the regular release of new 
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versions of both Matlab and LabVIEW often resulted in file incompatibilities, which required that the 

Matlab conversion routines be re-written with each new release.  Since the Matlab post-processing 

and plotting routines can be modified to use the text format LVM files which are fully supported by 

each new release of LabVIEW, the subroutine for exporting binary MAT format files will ultimately 

be removed from the program.        

 The current version of the control program allows both LVM and MAT data formats to be 

toggled on or off before the program is started, as shown in Figure 3.5.  When utilizing the LVM 

format, a folder location is specified, and separate files corresponding to the failure envelope, shear 

records, and tare values are written within this folder.  By utilizing text files as the primary method of 

saving information, unprocessed data files can be stored for long periods of time, and the possibility 

of the files becoming outdated or corrupt is reduced.  When the binary MAT format is utilized, the 

complete directory and filename including the .mat extension are specified by the user, and all of the 

data is saved in a single binary file with pre-defined variable names. 

3.3.7 Post-processing Capabilities of the Control Program 

 Once the peak shear stresses corresponding to each normal stress are measured, the values are 

plotted on the screen.  After at least three combinations of normal stress and peak shear stress are 

measured, a best-fit failure envelope is determined and plotted.  The location for this plot is shown in 

Figure 3.5.  The failure envelope is updated immediately after measurement of each peak stress, and 

the slope, y-intercept, and coefficient of determination of the best fit line through the data points are 

determined based on the least squares method.  From this statistical analysis, the friction angle, 

cohesion, and reliability in terms of the R
2
 value of the test are immediately determined and displayed 

on the screen.  In addition, the individual points used to construct the failure envelope can be toggled 

on and off throughout the test, and the statistics corresponding to the desired points will be 

automatically updated.  By toggling off a failure envelope point, the failure envelope is only modified 
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on the computer screen, and the complete set of normal and peak shear stresses are still exported to 

the data files.  

 Above the failure envelope plot, the shear stress is also plotted in real-time against stepper 

displacement and time in separate plots in the control program, as shown in Figure 3.5.  These plots 

can be used to monitor the performance of the test and aid in the identification of a peak shear stress.  

Like the data points in the best-fit failure envelope, the individual shear records corresponding to each 

normal pressure can also be toggled on and off by the user during the test.    

 In addition to display and analysis capabilities within the program, a Microsoft Excel macro 

was written in Visual Basic to process the LVM files.  This macro prompts the user to open the LVM 

files to be processed.  The macro will then delete any zeros appended to the end of the saved stress 

records.  Zeros may be appended to the stress records, since the control program saves stress records 

with the same number of rows.  A stress record that was developed in a short time will have zeros 

appended to the measured values until the number of rows is the same as that for the longest shear 

record. The macro then automatically creates plots of shear stress against stepper displacement, shear 

stress against time, and the best-fit Mohr-Coulomb failure envelope.  The statistical quantities 

corresponding to the failure envelope are also calculated by the macro.  A complete description and 

set of instructions for using the Excel macro are included in the user’s guide provided in Appendix A.  

The source code and examples of the output are included in Appendix B.      

3.4 Preliminary Field Testing with the Automated Borehole Shear Test  

Field testing was performed with the automated borehole shear test in order to verify the 

performance of the electro-mechanical components and control program.  Although many different 

methods may be used to create a borehole suitable for BST testing (Lutenegger, 1987), the best 

results are typically obtained when the test is performed in the cavity left by a 3-inch diameter Shelby 

tube.  Since Shelby tube samples are classified as “undisturbed”, they are suitable for performing 

shear strength tests in the laboratory. Additionally, the 3-inch sample size allows specimens to be 
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trimmed for performing tests on 2.5-inch diameter direct shear specimens or 1.4 to 2.8-inch diameter 

triaxial specimens, enabling a direct comparison between field and laboratory results.  To facilitate 

this comparison, direct shear tests were performed on 2.5-inch diameter specimens trimmed 

horizontally from Shelby tube samples in this study.  The resulting friction angle, cohesion, and shape 

of the shear stress displacement behavior plot are compared to those of the ABST.  In order to obtain 

results for a range of soil types, tests were performed in sandy glacial till and soft clay.   

3.4.1 Test Results in Sandy Glacial Till 

The glacial till was tested in situ using the ABST at the Spangler Geotechnical Laboratory at 

Iowa State University.  The soil tested had a typical USCS classification of SC-SM.  The borehole 

was advanced with a 5.5-inch solid-stem, continuous flight auger. Four 3-inch diameter Shelby tubes 

were pushed approximately 26 inches each. The four tubes were pushed from 4.0 to 29.5 inches, 27.5 

to 53.5 inches, 48.0 to 72.5 inches, and 78.0 to 101 inches.  After ABST tests were performed near 

the bottom of each tube’s cavity, the auger was used to ream the existing borehole before the next 

tube was pushed below the bottom of the borehole. It should be noted that the fourth tube was 

obtained from a second borehole located 24 inches away from the first, since a Shelby tube became 

stuck in the first borehole and could not be retrieved.  Automated borehole shear tests were performed 

near the bottom of the Shelby tube cavities at depths of 27.5, 67.5, and 98.0 inches after pushing the 

1
st
, 3

rd
, and 4

th
 tubes. Consolidation times for the ABST were 10 minutes for the first normal stress 

and five minutes for the remaining normal stresses.  The failure envelope (Figure 3.6) and shear 

displacement behavior (Figure 3.9) are provided for the test at 27.5 inches.  The remaining ABST 

results are provided in Appendix C.1.  The shear displacement behaviors for these sets of tests were 

determined with stepper displacements.  The stepper motor displacement will not accurately 

correspond to the shear head displacement, so the shapes of these records should not be taken as 

correct as discussed in Section 3.4.3. 
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Figure 3.6:  Glacial till failure envelope for ABST at a depth of 27.5 inches 

Direct shear tests were performed on the samples extruded from the Shelby tubes with the 

ISU DigiShear soil testing system from Geotac.  The tests were performed by shearing a horizontal 

surface in a fresh sample for each normal stress application.  The failure envelope (Figure 3.7) and 

shear displacement behavior (Figure 3.10) corresponding to a depth of 27.5 inches are provided 

below.  The remaining direct shear test results are provided in Appendix D.1.  The shear displacement 
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behavior obtained from the laboratory direct shear test at a normal stress of 10 psi and depth of 27.5 

inches potentially exhibited overconsolidated behavior, since the shear stress reduced toward a 

residual value after the peak shear stress was reached, as shown in Figure D.1.  Since it is standard 

practice for the BST to advance to the next normal stress shortly after a peak shear stress is reached, 

and the residual value was reached after a large displacement, overconsolidated behavior would not 

have been identified in the field ABST shear displacement behavior.  Dilation was also observed 

during the direct shear test at a normal pressure of 10 psi.  However, a bilinear failure envelope was 

not obtained in the BST which indicates that normally consolidated soil was tested. 

 The results of the ABST and direct shear tests are provided in Table 3.2.  These results 

indicate the ABST consistently measured a friction angle approximately four degrees larger than the 

direct shear test.  In addition, the cohesion measured with the direct shear test was typically twice as 

large as the cohesion measured with the ABST.  Possible sources for these discrepancies include 

sampling disturbance, which will lower the strength measured in the laboratory with the direct shear 

test and potential moisture loss before laboratory testing, which could create suction stresses and 

increase the apparent cohesion.  Strength anisotropy of the soil also could have led to deviations in 

the results, since the ABST shears the soil on a vertical plane, while the direct shear specimens were 

trimmed horizontally from the Shelby tubes. 

3.4.2 Test Results in Soft Clay 

 Soft clay was tested in order to investigate ABST results in soils that were potentially 

overconsolidated.  The tests were performed at the edge of an ISU research farm at the North end of 

Table 3.2:  Glacial till field ABST and laboratory direct shear test results 

Test Depth 

(in) 

ABST Friction 

Angle (˚) 

ABST cohesion 

(psi) 

DS Friction 

Angle (˚) 
DS cohesion (psi) 

27.5 36.6 4.5 31.1 9.3 

67.5 39.2 2.5 36.6 5.1 

98.0 38.2 2.3 34.9 3.4 
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Scholl Road in Ames, Iowa.  It was suspected that the soil may be overconsolidated due to lateral 

loading from freeze-thaw cycles in the soil.  The borings were created using a 5.5 inch diameter solid-

stem, continuous flight auger.  A Shelby tube was then pushed at the base of the borehole to create a 

cavity for testing the soil.  In addition, the Shelby tube samples were utilized to obtain specimens for 

laboratory direct shear tests.   

 Due to testing difficulties, two borings were utilized at the site.  After pushing a Shelby tube 

from 50 to 74 inches in the first borehole, the cavity swelled, and the shear head could not fit inside 

the cavity.  A 3.25 inch bucket-type hand auger was then used to increase the cavity size.  An ABST 

was then performed in the enlarged cavity, and the parameters provided in Table 3.3 were obtained.  

The shear head was then removed, cleaned, rotated 90 degrees, and the second test was performed at 

the same depth.  The failure envelopes for these tests are provided in Appendix C.2.  Due to the large 

diameter of the cavity, the shear head fully expanded at a specified normal stress of 30 psi.  The 

expanded shear head resulted in a peak shear stress that no longer increased in proportion to the 

normal stress, and the resulting point was therefore not included in the failure envelope as is standard 

procedure in such cases (Handy, 2002).  It should be noted that consolidation times were zero for the 

first test and the shear displacement behaviors were not saved, due to malfunctions of the preliminary 

version of the control program.  Recourse was made to an earlier version of the control program for 

the second test.  Although this corrected the problem of zero consolidation times, the shear 

displacement behaviors were also lost for the second test.   

Table 3.3:  Soft clay ABST and laboratory direct shear test results 

Borehole-

Test 

Test Depth 

(in) 

ABST Friction 

Angle (˚) 

ABST 

cohesion (psi) 

DS Friction 

Angle (˚) 
DS cohesion (psi) 

1-1
a
 68.0 25.2 -0.2 - - 

1-2 68.0 30.6 0.7 - - 

2-3 61.0 24.4 6.0 24.8 8.1 

2-4 61.0 22.3 4.0 - - 
a
 No consolidation delay time used 
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A second borehole was prepared 11 inches from the first borehole, and a Shelby tube was 

pushed from a depth of 50 to 72 inches.  For this set of tests, the shear head was inserted into the 

cavity before swelling prevented testing.  However, squeezing of the borehole prevented the shear 

head from being lowered fully to the base of the cavity, and testing was therefore performed at a 

depth of 61 inches. The parameters obtained from the two tests in the second borehole are provided in 

Table 3.3, and the shear displacement behaviors and failure envelopes are provided in Appendix C.2.   

 The significant cohesion observed in tests three and four indicate that the clay encountered at 

the site was likely overconsolidated.  However, test two indicates that the soil has a negligible 

cohesion and a friction angle over five degrees larger than test one.  It is expected that disturbance 

would at least partially destroy the soil’s structure.  Since the first borehole was expanded with an 

auger before testing, it is likely that the cavity walls experienced a larger amount of disturbance.  If 

overconsolidated clay existed at the site, a portion of the bonds that existed within the clay would 

have been destroyed, and the cohesion would potentially decrease.  In addition, the soil disturbance 

may have resulted in a material state that resembled a fully softened condition.  The strength of a fully 

softened soil corresponds to the peak shear strength obtained from a normally consolidated state 

(Skempton, 1970).  As a result, the cohesion of the sample would be negligible, and the friction angle 

may be larger than that of the undisturbed sample due to the bilinear failure envelope of an 

overconsolidated soil.   

The difference in strength parameters obtained in tests three and four can be interpreted based 

on differences in the applied shearing rate.  Test three utilized the standard shearing rate of 2 

revolutions per second (0.002 in./sec), and the failure envelope is curved.  This behavior is expected 

when the soil is partially undrained during the shearing stage of the test.  The shearing rate utilized in 

test four was therefore reduced to one-tenth the normal rate, or 0.0002 inches per second.  The slower 

testing rate utilized in test four resulted in a more linear failure envelope.  From examination of the 

strength parameters obtained from tests three and four, the friction angle and cohesion are seen to 
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decrease when the shearing rate is decreased.  This behavior may occur in an overconsolidated clay 

experiencing pore pressure generation during shearing.  Pore pressure generation during shearing is 

often responsible for increasing the measured cohesion.  In addition, if drainage is not allowed in 

overconsolidated clay, the pore water will experience negative pressure as the soil is sheared.  This 

will increase the effective stress in the soil, and as a result, the total-stress friction angle will be 

increased relative to the drained friction angle.  Although this behavior may not correspond to all 

overconsolidated clay soils, an undrained friction angle is typically larger than a drained friction angle 

in overconsolidated clays.  The strength parameters obtained with tests three and four therefore 

indicate that an undrained response was likely obtained in an overconsolidated clay.  Further 

reductions in the shearing rate would be required to determine if test four yielded a drained response, 

and there is a potential for future research on shearing rate effects. 

The preceding analysis is based on the assumption that the clay at the site was 

overconsolidated.  If overconsolidated clay was tested, a bilinear failure envelope would be expected.  

However, the measured failure envelope appears to be linear, and the first data point is indicative of 

partial seating and may therefore be ignored (Figure 3.8).  In addition, attempts to fit a bilinear 

Figure 3.8:  Soft clay failure envelope at depth of 61 inches (Test 4) 
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envelope to the data yield inadequate results.  Since the parameters represent overconsolidated soil 

according to the discussion above, data scatter or partial seating could potentially result in an inability 

to obtain a bilinear envelope.  However, an alternative interpretation of the results may classify the 

soil as normally consolidated.  If the reduced shearing rate still produced substantial pore pressures 

during shearing, then an apparent cohesion may have resulted in test four, and the true cohesion may 

be zero.  The decrease in the friction angle as the shearing rate was decreased could also have resulted 

from soil heterogeneity, as the shear head was rotated 90° between tests 3 and 4.      

3.4.3 Discussion of Shear-Displacement Behavior  

 Figure 3.9 displays a shear displacement behavior obtained with the automated borehole 

shear testing apparatus.  This test was performed in sandy glacial till at a depth of 27.5 inches.  Since 

the displacement of the shear head is measured by the stepper motor, this displacement is actually a 

measurement of vertical rod clamp displacement relative to the Dynamometer cross-plate.  The shear 

displacement behaviors obtained with the ABST show a characteristic initial increase in stiffness 

followed by a decrease as the shear stress increases to the peak value.  The ABST displacement 

Figure 3.9:  Glacial till shear displacement behavior for ABST at a depth of 27.5 

inches 
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Figure 3.10:  Glacial till shear displacement behavior for direct shear test at depth 

of 27.5 inches 
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measurements are believed to be initially affected by the nonlinear stiffening of the slender pull-strap 

as slack is taken up, as well as the expansion of the rubber bellofram membranes as the hydraulic oil 

pressure increases in the Dynamometer cylinders. The characteristic strain-stiffening region of the 

shear stress versus stepper displacement records is therefore believed to be non-representative of 

actual soil behavior.   

For comparison, Figure 3.10 displays the shear displacement behavior obtained from a direct 

shear test performed on the Shelby tube sample corresponding to Figure 3.9.  Since the typical direct 

shear results of Figure 3.10 exhibit a much higher initial slope and essentially continuous decrease in 

stiffness as shear stress is increased, the atypical shape of the ABST shear records are believed to 

result from the method used to measure shear displacements rather than the actual shear 

displacements themselves. As previously stated, the ABST uses the reported stepper motor 

displacement as a measure of the shearing displacement of the shear head.  However, the elongation 

of the pull-strap and pull-rods, compression of the Dynamometer cylinders with associated expansion 

of the bellofram membranes under increasing oil pressure, settlement of the baseplate due to soil 

15 psi 

10 psi 

20 psi 

Shear Stress vs. Shear Displacement  



37 

 

compliance, slippage of the clamp on the pull-rod, and drive belt and pulley slippage can all affect the 

stepper measurement.  As evidenced by the ABST results of Figure 3.9, these contributions are not 

negligible and should be accounted for to provide an accurate measurement of the soil’s shear 

displacement behavior if the stepper displacement is to be used.  Chapter 4 documents an 

investigation into the measurement of the ABST component compliances for correction of the stepper 

displacement to give the actual shear head displacement.  If the various compliances can be 

accurately and reliably characterized, a correction could then be applied to stepper displacements to 

obtain an accurate shear plate displacement record.  In addition to compliance predictions, an accurate 

measurement of displacement would also require an LVDT to measure the settlement of the base 

plate relative to the surrounding ground.  However, if the test was performed with the base plate 

resting on a hollow-stem auger extending above the ground, the base plate settlement would likely be 

negligible.   

Although accurate displacements could potentially be obtained by correcting the stepper 

displacement to give shear head displacement, smaller displacements will be required to fail the soil 

with the ABST when compared to a direct shear test, as shown in Figure 3.11.  Figure 3.11 displays 

Figure 3.11:  Stress path for the borehole shear test and direct 

shear test with an initial in situ stress condition assumed 
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the stress path for the BST and direct shear test if it is assumed that both tests start from the in situ 

stress condition.      

3.4.4 Conclusions from Preliminary ABST Field Tests 

Based upon the comparisons between field and laboratory tests, the ABST results in sandy 

glacial till are believed to be relatively accurate in terms of friction angle and somewhat less accurate 

in terms of cohesion.  Although the friction angles obtained with the direct shear test in glacial till are 

approximately four degrees lower than the friction angles obtained with the ABST, these relative 

measurements are expected, since disturbance will lower the measured strength of the material.  In 

addition, the increased cohesion measured with the direct shear test could potentially result from 

moisture loss before laboratory testing.  This moisture loss would cause suction and increase the 

apparent cohesion in the material.  However, reductions in strength due to disturbance are often relied 

upon in laboratory testing to compensate for relatively fast loading rates, since fast loading typically 

increases the strength of a material.  As a result, the strength parameters measured with the ABST 

may overestimate the soil’s strength due to loading rate effects.  

 The field ABST tests performed in soft clay were found to provide strength parameters that 

agreed well with the direct shear test (Table 3.3).  However, the stress conditions corresponding to 

these strength parameters are affected by pore pressures generated during loading.  The in situ ABST 

tests in soft clay indicated that pore water pressures were generated during shearing.  In order to 

examine whether partially undrained behavior is obtained in BST testing, the shearing rate can be 

reduced, and the change in cohesion and friction angle can be monitored.  If cohesion decreases as the 

shearing rate is decreased, it is likely that an undrained response was obtained for the faster loading 

case.  Since permeability in clay varies widely, it is not possible to recommend a single shearing rate 

for drained behavior that will be appropriate for all sites.  Engineering judgment must therefore be 

utilized when performing ABSTs in clay in order to judge whether the stress conditions for the 
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measured strength parameters correspond to a drained or undrained response.  Alternatively, a pore 

water pressure transducer could be implemented to directly monitor the pore water pressure. 
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CHAPTER 4. ABST SHEAR HEAD DISPLACEMENT 

MEASUREMENTS 

 The BST is an interface test and the shear strains in the soil are therefore unknown, similar to 

laboratory direct shear tests.  However, analytical solutions or finite element or difference analyses 

could be used to aid in the determination of the three-dimensional strain field in the soil 

corresponding to known stresses and displacements applied at the soil boundary by the shear plates.  

The number of potential applications for the automated borehole shear test (ABST) could be greatly 

increased if displacements of the shear plate could accurately be obtained.  For example, soil modulus 

values and cyclic stress-strain behavior could potentially be determined from ABST results.  If the 

soil stress-strain behavior can be accurately characterized, the ABST could offer significant 

advantages over common in situ tests such as SPT and CPT, which rely on empirical relationships for 

correlation to properties such as liquefaction resistance or constrained modulus.   

 As mentioned in the previous chapter, the compliances of the various BST components make 

it difficult to accurately determine the true displacement of the shear plates from measurements of the 

rod clamp or pull rod motion. Even if the pull rod displacement relative to the ground surface is 

known, the pull rods undergo elastic elongation in proportion to their total length while the pull strap 

(Figure 1.1) exhibits a nonlinearly increasing stiffness that varies with its initial amount of slack. 

Researchers have previously made use of BST shear displacements for various applications 

(e.g., Demartinecourt and Bauer, 1983, White and Handy, 2001, Suleiman et al., 2011).  However, the 

shear head displacement should be accurately determined for proper interpretation of such tests. 

 Three methods were investigated in this study for measuring the displacement of the ABST 

shear plates; 

1. The first method utilizes the existing stepper motor to determine the rotation 

of the worm gear.  This method is the simplest to implement, since no additional sensors are 
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required.  Demartinecourt and Bauer (1983) similarly attempted to measure shear 

displacement by counting the number of revolutions of the worm gear. However, all of the 

apparatus compliances discussed in Chapter 3 introduce errors into the measurements which 

must be accounted for when using this approach. A laboratory study aimed at correcting for 

these sources of error is described below. 

2. The second method for measuring ABST shear plate displacement is to 

directly measure the displacement at the top of the rod or rod clamp with a displacement 

transducer, then correct the measured displacements using calibrated compliances of the pull 

rods and strap. This method eliminates the influence of the Dynamometer cylinder 

(Bellofram) compliance. However, if the displacement measurement is not referenced to the 

ground surface, the settlement of base plate will also introduce errors in the measured 

displacements. This error may be negligible when the base plate rests on a hollow-stem 

auger. White and Handy (2001) used a dial gauge to measure pull rod displacement with a 

resolution of 0.0025 mm to determine soil preconsolidation pressure and elastic modulus, but 

the reference point for the dial gauge was not specified. Similarly, Suleiman et al. (2011) 

used a dial gauge to measure the displacement of the rod clamp relative to the base plate to 

obtain t-z curves for steel piles using smooth shear plates. These two studies did not address 

corrections for compliance of the various BST components, and the results therefore often 

exhibited a characteristic strain-stiffening upward curvature in the shear stress versus 

displacement curves. The severity of the curvature is dependent upon the initial prestress 

force applied to the pull rods and strap during test setup. The nonlinear strain-stiffening 

behavior will be illustrated below. 

3. The third method was to directly measure the displacement of the shear 

plates by connecting them to a string potentiometer (or string pot) at the base plate via high-

strength fishing line with swivels and wire leaders at the shear head. This method avoids the 
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errors associated with device compliance. If the string pot is referenced to the ground surface 

rather than the base plate, then the influence of settlement is also avoided.  Fishing line could 

potentially be replaced with piano wire to reduce creep within the line.  Laboratory tests 

indicated that creep and slippage at the knots of the fishing line may be significant, with 0.01 

to 0.05 inches of elongation in the line occurring after 15 minutes.  As a result, shear records 

that are obtained within a short interval of time will likely be more representative of actual 

soil displacement.  

The following sections will investigate the above methods in detail.        

4.1 Displacement Measurement via Stepper Motor 

The ABST stepper motor moves the shear head by rotating the worm gear and reports its 

absolute angular rotation to the control program.  As a result, a measure of shear plate displacement 

can potentially be determined directly from the ABST without the use of additional sensors. The 

stepper motor drive employs microstepping to obtain a resolution of 4000 steps per revolution. The 

2:1 gear ratio between the worm gear and stepper results in one revolution of the stepper motor per 

0.0005 inches of vertical displacement of the pull rod clamp relative to the cross plate. This results in 

a very high stepper motor displacement resolution of 0.125 µ-in. per step. However, the stress-

displacement relationships determined from the rotation of the worm gear typically exhibit a stiffness 

that first increases with displacement before eventually decreasing to zero at failure (Figure 3.9).  

This behavior is generally contradictory to the expected soil behavior routinely observed in typical 

laboratory direct shear tests, and likely results from the compliance of the components in the ABST 

apparatus as discussed above.  

To quantify the error associated with the stepper displacement, a direct-current displacement 

transducer (DCDT) was used to measure the actual movement of the shear head.  In addition, multiple 

displacement transducers were placed on the apparatus to measure the compliance of individual 

components as a function of pull rod force. The DCDTs were incorporated into the control program 
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by activating additional input channels and applying the transducer sensitivities to the measured 

voltages.  Separate data files were then exported for each transducer.       

As explained above, the stepper displacement is a measure of the rod clamp’s displacement 

relative to the Dynamometer cross-plate, but the compliance of the pull rods, pull straps, and 

Dynamometer cylinders will also affect the measured stepper displacement.  Any slippage between 

the rod and clamp will contribute further error towards the resulting estimate of shear head 

displacement.  Additionally, belt elongation or slippage of the pulleys used to turn the worm gear 

could lead to deviations, and these components should be accounted for if a correction could be 

developed.  To measure the compliance sources with the exception of belt elongation and pulley 

slippage, multiple displacement transducers were used simultaneously to determine the displacement 

of each of the apparatus components.  If each component’s compliance could be reliably measured, 

then the additional displacements caused by the measured pull-force could be subtracted from the 

stepper displacement to more accurately estimate the actual shear head displacement with no 

additional device instrumentation required.            

4.1.1 Error in Stepper Motor Displacement Measurements 

 As shown in Figure 3.9, the use of stepper motor displacements typically results in stress-

displacement curves that exhibit an initial increase in stiffness as the soil is sheared.  In order to 

determine whether this is a result of device compliance, displacement transducers were used to 

compare the actual shear plate movement to the stepper displacement.  Figure 4.1 shows a steel test 

frame that was fabricated to enable measurement of the ABST component compliances as well as the 

shear head displacement.  For these tests, smooth concrete plates were attached to the shear head in 

order to prevent damage to the teeth on the steel shear plates.  The shear head was lowered into a steel 

pipe welded to a steel support plate, and two vertical hollow steel tubes were used to support the BST 

base plate in a relatively rigid manner, so that elongation of the pull rods and compression of the 

Dynamometer cylinders could be measured.  A hole was drilled through the support plate to allow a 
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Figure 4.1:  Testing configuration for stepper displacement 

investigation 

DCDT on rod 

DCDT on 

shear head 

Shear head 

inside pipe 

DCDT to be attached to the bottom of the shear head to measure its displacement.  In addition, a 

DCDT was placed at the top of the pull rod to examine the accuracy of displacements measured at 

this point.  

 A range of normal stresses were applied through the shear head which was then raised using 

the stepper motor.  The static friction was overcome, causing the shear plates to slide against the 

metal pipe in kinetic friction, and the resulting shear stress-displacement curves were recorded along 

with displacements of the shear head and the top of the pull rod.  Appendix E.1 contains plots of the 

results corresponding to normal stresses of 7, 10, 15, and 20 psi in Figures E.1, E.6, E.11 and E.16, 
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respectively.  Comparison of these figures illustrates that deviations between the measured shear head 

displacements and those calculated from the stepper motor increase with increasing normal stress.  

This is expected, since larger normal stresses result in larger maximum shear stresses, which in turn 

cause increased elongation of the pull strap and pull rods as well as increased compression of the 

Dynamometer cylinders.  The stress-displacement curve corresponding to a normal stress of 15 psi is 

shown in Figure 4.2.  This test confirms that the stepper displacement is greater than the actual 

measured shear head displacement, primarily due to the Dynamometer cylinders being compressed 

and the initial slack being taken up from the pull strap.  The incremental displacements of the stepper 

and shear head become approximately equal beyond a shear head displacement of 0.02 inches. This 

can potentially be explained by the nonlinear stiffness of the pull strap and Dynamometer cylinders 

increasing until the static friction between and the concrete shear plates and steel tube is overcome at 

which point the shear plates begin to slide in kinetic friction against the steel tube.  The slope of the 

linear regression line is slightly greater than 1.0 beyond this point because the shear stress continues 

to increase (see e.g., Figure E.3), causing additional elastic elongation of the pull rod and pull strap. 

These results indicate that utilizing the stepper to measure displacement will result in an 

overestimation of the actual displacement by approximately 0.05 inches for this case.  Since the peak 

shear stress in BST soil tests is often reached after a shear head displacement of 0.1 inches (Figure 

4.11), this overestimation is significant.  The line corresponding to equal stepper and shear head 

displacement is also provided in Figure 4.2 for reference, illustrating the magnitude of the stepper 

displacement error.  Similar plots are shown for displacements measured at the top of the rod in 

Figures E.2, E.7, E.12, and E.17.  These figures show that the error is reduced if rod displacements 

rather than stepper displacements are used as the estimates of shear head displacement, since the 

influence of the Dynamometer cylinder compliance and rod clamp slippage is eliminated.  However, 

such an approach requires additional instrumentation and is more time-consuming than using the 

stepper displacement.  
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Figure 4.2:  Stepper displacement vs. shear head displacement at 15 

psi normal stress 
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A smooth red line is used to plot the subset of the measured data in Figure 4.2 where the 

incremental stepper and shear head displacements become approximately equal.  The least squares 

method was used to fit a trendline through this portion of the data, resulting in a coefficient of 

determination of R
2
=0.997. This indicates that the stepper motor rotation becomes an accurate 

measure of shear head displacement only after a certain point is reached, and this point can be shown 

to occur near the peak shear stress, as shown in the plots of Appendix E.1.  As a result, the stepper 

motor only gives accurate displacement measurements when the maximum shear stress is nearly 

reached, and the errors associated with the stepper displacements are significant.  However, by 

determining and accounting for the compliance curves of the apparatus components, the deviations 

between the shear head displacements and stepper displacements could potentially be corrected.  This 

possibility is examined in the following sections. 

4.1.2 Compliance of Dynamometer Cylinders 

 Since the cylinders compress as the pull rod force increases, the stepper motor elevation will 

decrease during shearing, and the absolute upward movement of the rod will be reduced while the 

relative displacement between the cross plate and rod (i.e. the stepper displacement) will increase.  As 

a result, it is necessary to account for the cylinder compliance if an accurate displacement at the shear 
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Figure 4.3:  Testing configuration for compliance investigation  
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head is to be determined from the stepper displacement.  If a force-displacement curve can be reliably 

measured for the cylinders, then the cylinder displacement corresponding to the pull rod force 

measured at any point in the shearing phase can be subtracted from the stepper displacement to obtain 

a corrected shear head displacement.   

Figure 4.3 presents the testing configuration utilized to isolate the compliance of the 

cylinders.  The base of the rod was fixed by threading it into the frame’s bottom support plate.  A 

DCDT was placed on the cross-plate to monitor displacement of the cylinders with increasing tensile 
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Figure 4.4:  Representative cylinder compliance curve 
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force in the pull rod.  Recall that the pull rod force measured by the Dynamometer cylinders and 

displayed on the base plate dial-gauge is in the form of a soil shear stress and is obtained by dividing 

the pull rod force by the shear plate contact area of 10 in
2
.  For direct interpretation of test data, the 

following results are therefore presented in terms of equivalent soil shear stress rather than pull rod 

force. The force in pounds can be obtained by simply multiplying the shear stress in psi by 10 in
2
. By 

simultaneously recording the equivalent applied shear stress and cross-plate displacement, a 

compliance curve is obtained for the cylinders.  If such a curve is repeatable, then the cylinder 

displacements experienced at a given shear stress can be subtracted from the stepper displacement to 

correct for cylinder compression.  Figure 4.4 displays a typical shear stress vs. cross-plate 

displacement curve obtained for the test setup of Figure 4.3, which represents the nonlinear 

compliance of the cylinders.  Since this curve is representative of the tests, a trendline was fit to the 

curve to obtain a calibrated compliance for use in correcting the stepper displacement.  Additional 

compliance curves for the cylinder are presented in Figures E.21, E.24, E.27, and E.30 of Appendix 

E.2.  The measurements in Figure 4.4 were obtained using a set of Vise-Grip locking pliers to supply 

additional compression at the rod clamp to reduce slippage.  As shown in Figure E.24 of Appendix 

E.2, this trendline adequately predicts cylinder compression when similar rod clamp slippage 
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Figure 4.5:  Comparison of measured and theoretical rod compliance 
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conditions are encountered.  However, if a Vise-Grip is not utilized, the trendline can produce errors 

of 0.01 inches (Figures E.27 and E.30).  Since the peak shear stress can be reached in some soils at 

displacements below 0.1 inches, this error is potentially significant.  From the results shown in 

Appendix E.2, it was determined that the cylinder compression is sensitive to the apparatus’s 

condition and varies based on slippage conditions.  The cylinder compliance is therefore not 

sufficiently repeatable.  In addition, Figure E.33 demonstrates that large deviations exist between the 

compliance curves determined with one DCDT at the edge of the cross-plate compared to two 

DCDTs located on either side of the cross-plate and averaged.  This conclusion is drawn from Figure 

E.33, since the cylinder compliance curve measured with one exterior DCDT gave displacements 

larger than those predicted with the trendline, and the curves measured with an average of two 

DCDTs on each side of the cross-plate gave displacements smaller than predicted with the trendline.  

This is caused by small plate rotations during shearing due to imperfect alignment of the pull rod and 

will likely lead to different cylinder compliance curves each time the ABST is assembled.   

4.1.3 Compliance of Pull Rods 

 In addition to nonlinear compression of the cylinders, elongation of the pull rods as shear 

stress is applied to the soil will result in deviations between the shear plate displacement and the 
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stepper displacement.  As the rod elongation will be elastic, it will only depend on the area, clamped 

length, Young’s modulus, and measured force. The elongation of the rods can thus be theoretically 

predicted and subtracted from the stepper displacement to correct for the pull rod compliance.   

 The test configuration shown in Figure 4.3 was used to test the adequacy of the theoretical 

calculation of rod elongation.  Since the base of the rod is fixed, the DCDT at the top of the rod will 

record the total elongation between the base and the rod clamp.  In addition, the upward displacement 

of the frame’s support plate was measured to account for any lack of perfect rigidity.  Figure 4.5 

shows the displacement measured at the top of the rod against the measured pull force, together with 

the theoretical rod elongation.  Similar plots are provided for additional tests in Figures E.22, E.25, 

E.28, E.31, and E.34 of Appendix E.2.  As shown in Figure 4.5, the measured ultimate rod 

displacement is close to the calculated value; a maximum deviation of approximately 0.001 inches 

exists between the measured and calculated elongation.  Since this deviation accounts for only one 

percent of the typical soil shear displacement at failure, the elastic solution could be utilized to correct 

for rod elongation with acceptable error.  However, this error corresponds to approximately a 

clamped length of two-thirds of one 0.5 meter long pull rod. For longer lengths of rod corresponding 

to typical testing depths of up to 30 feet, additional tests should be performed with longer rod lengths 

to verify the adequacy of the calculation.  Equation 4.1 presents the calculation of rod compliance.  

Within this equation, ∆ represents rod elongation, F represents force, E represents the rod’s Young’s 

Modulus, and A and L represent the rod’s area and length. 

 AE

L

F
=

∆
   (4.1) 

4.1.4 Compliance of Pull Strap 

 As the shear head is raised, the slender pull strap, which typically begins a test in a slightly 

compressed and buckled state, will straighten and elongate with a corresponding nonlinear stiffness 

increase, eventually becoming adequately straight and tensioned, responding more elastically.  This 
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Figure 4.6:  Representative strap and rod compliance curve 

process will further increase the deviation between stepper and shear plate displacements.  The test 

configuration presented in Figure 4.1 was utilized to investigate the effect of strap elongation on the 

measured displacement.  DCDTs were placed at the top of the rod and at the base of the shear head.  

The difference between the two DCDT measurements indicates the total rod and strap elongation.  

Since the rod elongation can be calculated as demonstrated in the previous section, the approximate 

strap elongation can be determined from the measurements.  A representative test result is provided in 

Figure 4.6, and additional plots are provided in Appendix E.1 in Figures E.5, E.10, E.15 and E.20.  

From these plots together with Figures E.2, E.7, E.12, and E.17, it can be determined that elastic 

deformation of the rod accounts for only about 10% of the total elongation, and the pull straps 

account for the other 90%.  In addition, the strap elongation is inconsistent at low shear stresses.  This 

inconsistent behavior is likely a result of the orientation and initial slack of the straps changing 

between tests.  The straps are very thin and can flex and twist, so they provide little lateral resistance 

by design.  Although these inconsistencies may be small, substantial accuracy is required for the 

measured displacements, since the peak shear stress in some soils may be reached below a 

displacement of 0.1 inches. 
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Figure 4.7:  Investigation of slippage at the rod clamp 
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4.1.5 Slippage at Rod Clamp 

 Since the stepper motor measures the movement of the clamp relative to the cross-plate, any 

slippage between the rod clamp and pull rod will lead to discrepancies between the stepper 

displacement and the shear head displacement.  The test configuration of Figure 4.3 was also utilized 

to investigate slippage by placing a DCDT on the clamp as well as the top of the pull rod.  If 

deviations between the two measurements exist, then slippage is occurring at the rod clamp.  Figure 

4.7 shows the results from a test performed to investigate slippage.  The solid black line of equality 

indicates the condition in which no slippage is occurring.  Additional plots from similar tests are also 

presented in Figures E.23, E.26, E.29, and E.32 of Appendix E.2.  Figure 4.7 and the plots provided 

in the Appendix indicate that the clamp experiences more displacement than the rod, and this result is 

consistent with slippage developing.  This slippage is typically limited to 0.002 inches.  However, the 

magnitude of slippage was inconsistent between the tests and would be difficult to predict.  In 

addition, attempts to increase the compression of the clamp did not have a significant effect on the 

results.  As a result, slippage will lead to deviations between the stepper and shear head displacements 

that cannot be quantified without additional instrumentation.   
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4.1.6 Settlement of Base plate 

 Any settlement of the base plate will also contribute to deviations between the stepper 

displacement and the shear head displacement.  As the base plate settles, the elevation of the stepper 

will be reduced.  This will lead to a stepper displacement that is larger than the shear head 

displacement.  Since settlement of the base plate depends on the soil properties, the magnitude of 

settlement will change based on the testing site and preparation of the ground surface before a test.  

As a result, typical base plate settlement cannot be accurately predicted, and a displacement 

transducer placed on the base plate is recommended to compensate for settlement.  Alternatively, the 

base plate can be placed on a hollow-stem auger extending above the ground surface, if available, to 

minimize settlement.       

4.1.7 Conclusions from Shear Head Displacement Measurement 

 Test results such as those shown in Figure 4.2 indicate that the stepper motor cannot 

adequately measure shear head displacement without corrections to account for the compliance of the 

various apparatus components.  If a correction is not utilized, the deviation between the stepper 

displacement and the shear head displacement may reach 0.05 inches.  Since the peak shear stress 

often occurs after a shear plate displacement of 0.1 inches for some soils, this error is significant. 

 By measuring the deformation of the apparatus components with increasing pull-rod force, a 

correction curve could be determined for the stepper motor.  However, the above efforts to determine 

a correction curve demonstrate that most of the apparatus components do not exhibit consistent 

compliance curves.  Specifically, the measured cylinder compliance is significantly impacted by the 

displacement transducer location.  In addition, the initial prestress load on the cylinders affects the 

displacement measurement.  The compliance of the strap is another component that is difficult to 

determine.  Although the strap displays a relatively consistent compliance at high stresses, the initial 

orientation of the strap has a great influence its initial compliance.  Slippage at the rod clamp, 

settlement of the base plate, and slippage of the drive belt or pulleys can further complicate the 
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corrections required for the stepper motor displacement.  The inconsistencies or errors related to each 

component’s compliance have the potential to be cumulative and could give misleading test results 

with poor repeatability.  As a result, accurately calculating the shear plate displacement from the 

measured stepper motor displacement is exceedingly difficult.  In addition, the compliance correction 

may change as the apparatus ages or is used in differing conditions.  Since accurately determining 

shear plate displacement with the stepper motor is not practical, investigations into utilizing 

additional instrumentation to measure the actual displacement are presented in the following section.        

4.2 Measuring Displacement via Additional Sensors 

 Two methods for determining the displacement of the shear plates with additional sensors 

were investigated.  The first method involves placing a displacement transducer at the top of the pull 

rod and assuming that the pull rod displacement will be approximately equal to the shear plate 

displacement.  This method has been utilized in past investigations of soil behavior.  The second 

method consists of attaching a string potentiometer directly to the shear head or shear plates.  This 

method will allow for the direct measurement of displacement without the apparatus compliance 

affecting the results.        

4.2.1 Measurement at Top of Pull Rods using String Potentiometer or LVDT 

 The test configuration shown in Figure 4.1 was utilized to determine the adequacy of 

approximating shear plate displacement with a displacement transducer placed at the top of the pull 

rods.  A DCDT was placed at the top of the pull rods and at the base of the shear head.  Concrete 

shear plates were utilized within a steel tube and various normal contact stresses were applied as 

detailed in Section 4.1.1.  A hole was drilled into the base of the support apparatus to allow a DCDT 

to be attached to the shear head.   

 Figure 4.8 contains a representative comparison of the rod displacement to the shear head 

displacement for a pair of tests with a 20 psi normal stress.  Similar plots from tests at other normal 

stresses are provided in Figures E.2, E.7, E.12, and E.17 of Appendix E.1.  The solid black line 
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Figure 4.8:  Comparison of rod displacement to shear head displacement 

for two tests at 20 psi normal stress 

indicates equal rod and shear head displacements.  As seen in the figures, the measured data are above 

the line of equality, indicating that elongation of the rod and strap causes noticeable deviation from 

the actual shear head displacement.  The difference between the pull rod displacement and shear head 

displacement depends on the applied normal stress, but is typically on the order of 0.01 inches.  This 

deviation accounts for approximately ten percent of the shear plate displacement at failure for typical 

soil tests.  In addition, since the majority of the deviation results from the initial removal of slack in 

the straps as demonstrated in Section 4.1.4, the initial shape of the measured curve exhibits significant 
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deviation from the actual shear head displacement. 

 As shown in Figure 4.8, the displacement of the rod is approximately equal to the 

displacement of the shear head after the initial slack is removed from the straps.  As the slack is taken 

up, however, the deviation from the actual shear plate displacements causes the same type of strain-

stiffening upward-curvature observed for stepper displacements and discussed in the previous 

sections. This can be seen directly in Figure 4.9, which demonstrates that an inflection point exists on 

the plot of stress against rod displacement after the initial slack is removed from the strap.  Beyond 

the inflection point, the stiffness decreases with additional displacement, and the shear displacement 

behavior beyond this point more closely follows the actual shear head displacement and thus 

corresponds to expected soil behavior.   

As previously discussed, the strap elongation and degree of stiffening is highly variable 

between tests.  Figure 4.8 displays the results from two successive tests at a normal pressure of 20 psi.  

The slack is removed after 0.001 inches of shear head displacement in the first test and after 0.005 

inches in the second test.  This indicates that a consistent correction for strap elongation cannot be 

applied to the displacement measurements.   

Figure 4.9: Stress displacement behavior obtained for rod and shear head in 

steel tube  
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Figure 4.10: Stress displacement behavior obtained for rod and shear head 

in compacted loess  

The test results provided in Figure 4.10 were obtained in the laboratory with a sample of 

compacted loess. The shear displacement behaviors were obtained by attaching a string potentiometer 

to the top of the pull rod in one test, then rotating the shear head 90 degrees, attaching the string 

potentiometer to the shear plates, and repeating the test.  As can be seen in the figure, there is a 

significant difference in the shape of the shear displacement behaviors obtained.  These test results 

further indicate that discrepancies will result when using the displacement at the top of the rod to 

approximate shear plate displacement at the borehole surface. Only the latter will offer results similar 

to laboratory direct shear tests, and thus enable proper interpretation of shear stress versus shear 

displacement behavior in borehole shear tests.  In addition, the stress-displacement plots obtained by 

directly measuring the movement of the shear plate indicate that the shear plates will not move until a 

threshold stress is reached.  This “sticking” behavior was also observed in later field tests employing 

the string potentiometer.      

4.2.2 Measurement at Shear Plates using String Potentiometer 

 By measuring displacement directly at the shear head or shear plates, a result that is not 

affected by the apparatus compliance can be obtained.  Figure 4.11 presents the ABST shear 
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Figure 4.11:  Shear displacement behavior obtained with direct 

measurement of shear head displacement using a string potentiometer 
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displacement behavior of a sandy glacial till, and the displacements in this figure were measured 

directly at the shear head.  The shear displacement behavior was obtained by securing a string 

potentiometer on the base plate of the ABST, and connecting the extensible cable to the shear head 

using fishing line and a set of leaders, hooks and swivels in a Y-configuration to enable connection to 

both shear plates.  As shown in the figure, the displacement errors which manifested as unusual 

strain-stiffening upward-curvature of the type presented in Figure 3.9 as well as other studies, such as 

White and Handy (2001) and Suleiman et al. (2011), are successfully removed, and the shear 

displacement behaviors are now similar to the direct shear test results of Figure 3.10. These findings 

are especially important for proper interpretation of BST measurements in the frameworks of pile t-z 

curves and soil elastic moduli as performed in the two aforementioned studies. 

 Although this method removes the displacement deviations created by the apparatus 

compliance, new difficulties are created, such as attaching the shear head to the string potentiometer, 

and the potential for any falling soil in the borehole to hit the fishing line and affect the measured 

displacement.  However, since this method provides a true shear displacement behavior, direct 

measurement of the shear plate displacement is recommended when accurate shear displacement 
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measurements are required. Since any settlement of the base plate can also contribute significantly to 

displacement error, it is further recommended that the string potentiometer be secured to a reference 

beam that is not attached to the base plate, and has its ends supported on the ground a suitable 

distance away.  
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CHAPTER 5. DEVELOPMENT OF A NEW CYCLIC ABST 

 Since the ABST can accurately record a complete record of shear stress versus displacement, 

the apparatus has the potential to measure a soil’s response to cyclic loading.  A cyclic borehole shear 

test could be useful for accurate in situ measurement of liquefaction potential in cohesionless soils or 

the cyclic softening and residual strength of clays and plastic silts.  Liquefaction occurs in loose 

saturated, cohesionless soils when the direction of applied stresses changes rapidly or the soil is 

subjected to ground vibration.  This type of loading rapidly densifies or deforms the soil, and pore 

water pressures increase for contractive soils.  Once pore water pressures equal the overburden 

pressure, the effective stress will vanish, and the soil will lose its strength.  If the BST shear head is 

rapidly raised and lowered in a cyclic manner within a saturated cohesionless soil, the rapid 

deformation created by the shear head may cause local liquefaction of the soil near the shear head.  

According to Seed and Lee (1966), the decrease in strength related to liquefaction may rapidly occur 

after only a few cycles in some soils or may require hundreds of cycles in others.  Since pore water 

pressures often increase to the overburden pressure over one or two stress cycles in loose sands, 

liquefaction may occur rapidly.  However, in dense sands, shear strength may decrease slowly as the 

pore water pressure is generated over time (Seed & Lee, 1966).  Liquefaction in loose sands could 

therefore be identified with a cyclic ABST if the measured shearing stress decreases to zero during a 

displacement controlled test.  In addition, a cyclic ABST could be utilized with a pore water pressure 

transducer to indicate when liquefaction is occurring under cyclic loading.  Once the pore water 

pressure equals the total stress, liquefaction has occurred within the soil. Alternatively, the excess 

pore pressure ratio ( /
u vc

r u σ ′= ∆ ) could be monitored, which is the ratio of excess pore pressure to 

initial vertical effective stress. When this ratio reaches unity, liquefaction has occurred. In dense 

sands, the pore water pressure may equal the total stress over a narrow range of time during cyclic 

loading.  This is referred to as partial liquefaction, and soil strength will continue to decrease with 
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time under further cyclic loading (Seed & Lee, 1966).  All BST units include a small porous stone 

embedded in one of the shear plates for use with an optional pressure transducer and readout box.  

Replacing the large external pressure transducer and readout box with a modern miniaturized pressure 

transducer would enable pore pressures to be recorded in the ABST control program.  

A cyclic ABST could be used to help study the effects of the total normal stress on 

liquefaction behavior during in situ cyclic shearing on a vertical plane.  In cyclic triaxial tests, 

liquefaction occurs when pore water pressures reach the total normal stress on the plane experiencing 

the maximum shear stress (Seed & Lee, 1966).  The ideal way to study liquefaction in situ would be 

to apply cyclic shear stresses on a horizontal plane or create a condition of cyclic simple shear. 

However, the shear stresses applied by the BST shear plates act on a vertical curved borehole surface, 

and because the BST is an interface test, the vertical shear stresses do not necessarily produce 

complementary shear stresses on horizontal planes adjacent to the shear plates. Since the maximum 

shear stress applied by the BST is in the vertical direction, liquefaction is expected to occur during a 

cyclic ABST when the pore water pressures increase to the total normal (horizontal) stress applied by 

the shear head.            

 As discussed in Section 2.2, the state of the art procedure for determining liquefaction 

potential is based on in situ test methods, since obtaining an undisturbed sample of granular material 

for cyclic testing is difficult and expensive.  Soil liquefaction potential is often investigated with SPT 

or CPT tests, and semi-empirical methods are utilized to determine liquefaction potential from these 

tests.  Alternatively, shear wave velocity can be measured in geophysical borehole or surface wave 

tests.  The shear wave velocity and CRR (see Chapter 2) are influenced by similar factors and are 

both related to the small-strain shear modulus (Youd et al., 2001).  Shear wave velocity tests also 

provide measurement of the small-strain shear modulus used for analyzing dynamic soil response, 

and therefore offer advantages over SPT and CPT tests.  However, shear wave velocity tests still rely 

on semi-empirical relationships between CSR and overburden stress-corrected shear wave velocity to 
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determine a soil’s potential for liquefaction.  CSR is the ratio of average shear stress on a horizontal 

surface to the initial vertical effective stress acting on a soil (
voav

CSR '/ στ= ). In addition, borings 

are often required to confirm the presence of liquefiable soils indicated in shear wave velocity tests, 

since physical samples are not recovered for surface wave or seismic CPT shear wave velocity tests 

(Youd et al., 2001).  

 As discussed above, the state of the art procedures for assessing liquefaction potential are 

developed from semi-empirical correlations, with CPT and SPT testing being the two most widely 

used measures of CRR.  A test that directly measures the soil’s response to cyclic loading in terms of 

engineering parameters, such as shear stress, pore pressure, and shearing displacement, as opposed to 

empirical indices would thus find immediate application in engineering practice.  Since an ABST 

with some modification could potentially measure the soil’s response to cyclic loading in terms of 

stress, pore pressure, and displacement, the effects of seismic excitation could be simulated, and soil’s 

liquefaction potential assessed in a mechanistic rather than empirical framework.   

 In addition to liquefaction potential, the cyclic ABST could potentially be used to study the 

general dynamic response of soils in terms of stress-strain hysteresis loops, which are used to 

characterize damping ratio and shear modulus over a range of loading levels and rates.  However, 

similar to direct shear laboratory tests, the ABST is currently capable of measuring shearing 

displacement but not shear strain, as the latter varies three dimensionally around the borehole and 

shear plates.  As the ABST currently measures both shear and normal stress, interpretation of the test 

results in terms of stress-strain relations requires a link between the displacements measured by the 

ABST and the shear strains resulting in the surrounding soil.  This problem may be approached 

through formulation of analytical solutions for displacements and strains in the three-dimensional soil 

mass corresponding to the boundary conditions applied by the shear plates in the BST. While such 

theoretical solutions in the form of cavity expansion theories have been successfully applied to 

interpretation of pressuremeter tests, the boundary conditions of the BST are non-axisymmetric and 
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therefore more complex than the pressuremeter test. Another approach that is well-suited to the 

geometric and material complexities of the problem is to use computational finite element or discrete 

element analyses of the interaction between the soil and BST shear head to understand the state of 

strain within the soil, which is the subject of Chapter 6.       

The present ABST device would require a number of modifications in order to perform a true 

cyclic test to measure the liquefaction potential or general dynamic response of a soil.  The apparatus 

would first need to be modified to apply a downward force.  Currently, the shear head cannot be 

loaded in compression, since loads are transferred to the shear plates through thin pull straps and 

slender pull rods.  In addition, the base plate is designed to provide a reaction for applying only an 

upward force.  

 This chapter describes a preliminary investigation to determine the feasibility of modifying 

the ABST to measure the in situ cyclic response of a soil.  Field and laboratory results are also 

provided, demonstrating the ability of the current ABST to measure cyclic loading with modifications 

to the ABST apparatus and control program.  The goal of this chapter is not to present the complete 

development of a functioning cyclic test for liquefaction analysis, as such a project would take many 

years to complete.  Rather, a basis for the cyclic ABST will be developed to lay the groundwork for 

future research projects.      

5.1 Modifications to the Control Program 

 To perform a cyclic test with the current stepper motor configuration, modifications to the 

control program are necessary primarily to change the displacement direction after a specified stress 

or displacement limit is reached.  When the stepper motor is replaced with a dynamic actuator in the 

future, the program will also need to incorporate displacement and stress feedback loops to control 

the excitation levels.  The control program for the cyclic ABST is very similar to that utilized for the 

traditional ABST, with some added algorithms and user controls.  Appendix F.1 provides additional 

instructions to the user manual for the operation of the cyclic ABST program.  
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The control program was first modified to enable performance of both stress-controlled and 

displacement-controlled tests.  The control type for a cyclic test is selected on the front panel of the 

program.  For both types of tests, the stress or displacement limits are entered by the user in the 

control program.  The shear stresses and displacements experienced by the apparatus are measured by 

the Dynamometer and a string potentiometer, respectively, and recorded inside a while loop in the 

program.  During each iteration of the while loop, the instantaneous shear or displacement value is 

compared to the specified limit.  If the measured value exceeds the specified boundary, the stepper 

motor is reversed, and the shear head moves in the opposite direction.   

 A “cyclic” toggle switch is placed on the front panel of the control program to specify 

whether a cyclic ABST or a traditional monotonic ABST will be performed.  Therefore, a single 

program can be utilized for both cyclic and monotonic tests.   

 A plot of shear stress against displacement is displayed during the cyclic test.  This plot can 

be used to monitor the soil’s response to the specified loading sequence.  In addition, the failure 

envelope is provided within the control program for monotonic tests as previously described.   

5.2 Mechanical Modifications 

 A true cyclic test would require application of positive as well as negative shear stress cycles, 

i.e. a dynamic loading centered about zero stress. For such tests, the ability of the ABST to provide 

downward and upward forces on the shear head is required.  However, multiple modifications would 

be required for the ABST to apply a downward force on the shear head.  Since the straps are not able 

to sustain compression, a method to transfer downward loads to the shear head will need to be 

developed.  Apparatus designs were considered and will be discussed in the following sections.   

 In addition to modifying the rods and shear head, the base plate will need to be replaced or 

modified to apply a downward force.  Currently, a ring gear that is rotated by the stepper motor raises 

a hollow ACME threaded rod which surrounds the pull rod.  The threaded rod then raises the rod 

clamp that is attached to the pull rod (Figure 1.1).  In order to apply a downward force, a clamp would 
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need to be placed at the base of the hollow screw in order to move the rods downward.   In addition, a 

restraint will need to be placed above the ring gear to prevent the ring gear from traveling up the 

hollow screw.  Although these modifications could be implemented, the stepper motor is not able to 

supply the required cyclic torque or displacement for frequencies up to 30 Hz of interest to typical 

seismic problems.  The loading capacity and maximum cycling rate of the stepper motor and gear-

train configuration are inadequate for the ultimate intended use of the cyclic ABST.  A design 

incorporating a servo-electrical or servo-hydraulic actuator will likely be required, which is beyond 

the scope of this study. 

5.2.1 Preliminary Apparatus Modifications 

 In order to perform preliminary cyclic tests with the current ABST device, a strut was placed 

between the strap hanger and the shear head.  This strut prevents buckling in the straps and allows 

downward forces to be transferred to the shear plates.  In addition, a rod clamp was placed below the 

cross-plate in order to provide a downward force.  The ring gear was also clamped to the cross-plate 

to help prevent upward movement of the ring gear, and a string potentiometer was used to measure 

displacement of the shear plates as described in Chapter 4.   

 This configuration was intended strictly as a temporary measure to determine if cyclic 

measurements with the ABST were a possibility.  The modifications allowed some internal 

movement between the base plate components.  However, since displacements were measured with a 

string potentiometer attached to the shear plates, an accurate stress-displacement record was obtained.  

This configuration was utilized for laboratory cyclic tests performed in an air-dry loess that was 

compacted in a 6 inch California bearing ratio (CBR) mold, as shown in Figure 5.1.  

In addition to the laboratory tests, cyclic field tests were performed using the string 

potentiometer for displacement measurement.  However, instead of using the strut, the field tests were 

performed with a positive static bias by loading the soil halfway to the failure shear stress, then 

cycling the shear stress about the halfway point while maintaining a positive upward shear stress and 
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tensile force in the pull rod.  As a result, design modifications were not required, since a net upward 

force was maintained throughout the entire test.  This method is similar to ASTM D3999 (2011) and 

ASTM D D5311 (2011), which specify that cyclic triaxial devices should be able to apply the cyclic 

load about an initial static stress. Without the use of the strut, this configuration cannot apply cyclic 

shear stresses centered about zero, as is common for cyclic simple shear laboratory tests.  However, 

this method allowed for the feasibility of the test to be investigated without requiring design 

modifications. 

5.2.2 Double-Strap Shear Head Design 

 In order to perform a true cyclic test with sinusoidal loading, the pull rods and shear head 

apparatus must be modified to apply a downward force.  The straps on the current shear head 

apparatus are only 0.03 inches thick and will buckle almost immediately under compression.  A few 

design alternatives were considered for the shear head. The first was a reinforced shear head with 

guides to keep the shear plates from rotating when a load is applied to the center of the shear head. 

Figure 5.1:  Laboratory cyclic ABST in air dry, compacted loess 
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For this design, however, it would be difficult to keep the shear plates from rotating relative to each 

other since load would be applied at the center of the shear head. The second design considered was a 

double-head design with a larger shear head used as a reaction for a smaller head to push against. A 

problem with this design is that the larger anchor head would not provide a fixed anchor point and 

could possibly liquefy or shear unintended soil layers unless anchored inside a hollow-stem auger. 

Finally, a new double-strap design was proposed that would maintain tension in an additional set of 

straps used to pull downward on the plates. 

 Figure F.7 of Appendix F illustrates the double-strap shear head design developed to apply 

shear stresses to the soil in both upward and downward directions.  The double-strap shear head uses 

a pipe to transfer an applied downward force to the bottom hanger.  The downward force will then 

create tensile forces in the bottom strap that will lower the shear head.  The straps will be pre-

tensioned to ensure that buckling does not occur in straps during loading.  If buckling did occur, the 

ability of the shear head to apply the desired force would not be compromised, since either the upper 

or lower strap will always be in tension and pulling the shear plates up or down.  However, buckling 

in the straps could potentially result in slack within the apparatus.  Since this slack will be taken up as 

the load is reversed, an inconsistent or unintended shearing displacement behavior may result.  An 

initial tension will therefore help ensure that forces are immediately applied to the soil upon load 

reversal. It should be noted that the box section does not contact the body of the shear head, but 

surrounds it and transfers the upward and downward loads to the hangars, which in turn apply cyclic 

loads to the shear plates through tension in the straps. Since the straps apply their load directly at the 

shear plates, this design avoids the problems of the movable shear plates buckling or racking the shear 

head if the cyclic force were applied directly to the body of the shear head.  

 To analyze the stresses created within the shear head apparatus during typical testing 

conditions, a finite element model was created in Abaqus 6.10.  The stress distributions will be used 
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to design the apparatus and ensure against material yielding. The following sections describe the 

development and results of the Abaqus model. 

 5.2.2.1 Geometry and Meshing 

 Parts were developed for the hangers, straps, pipe, shear head, shear plates, piston, and pull 

rod.  A sketch corresponding to each part is provided in Figures F.8 through F.14, and the dimensions 

for each part are provided in Table F.1 of Appendix F.2.  Each part was developed with as few 

generalizations as possible.  However, the shear head was approximated as a solid cylinder with a 

solid plate or end cap on each end of the cylinder (Figure F.11).  The true shear head cylinder is 

hollow, but the interface between the thin, hollow cylinder and the end caps led to meshing 

difficulties that were unable to be resolved.  Specifically, the meshes were highly distorted and 

consisted of very small elements.  To alleviate these problems, the shear head was approximated with 

a solid cylinder to help ensure stability in the final model.  Since the double-strap apparatus is 

designed to minimize torques on the shear head which would cause the shear plates to rotate, this 

approximation should have a limited impact on the stress analysis.  The pull rods were replaced with 

stout aluminum loading rods sized to withstand the required compressive forces and braced every 6 

feet to prevent buckling (Ashlock 2012).  The new double strap shear head was analyzed in detail, 

and the loading rods were only incorporated into a few of the finite element models in order to 

identify their effect on the final results. 

 The mesh for the solid parts consisted primarily of hexahedral elements.  Quadratic, fully 

integrated elements were used to provide accurate stress distributions.  The strap was the only 

component that was not modeled as a solid.  Due to its slenderness, the strap was modeled with linear 

shell elements.  Distortions of the mesh were minimized for all parts to provide accurate results.  In 

addition, a uniform, fine mesh size was used to help ensure accurate results without excessive 

computational demand.   

      



69 

 

 5.2.2.2 Material Properties 

 A material with properties corresponding to spring steel was defined for the strap, and a 

material with aluminum properties was defined for the loading rod.  The remaining parts utilized a 

material with the properties of stainless steel.  The properties of these materials are provided in Table 

F.2 of Appendix F.2.  The modulus of elasticity and density corresponding to each material are 

defined within the model.  The yield strength of each material is utilized to determine if the stresses 

resulting from the analysis will create excessive deformations or failure in the apparatus.   

 Rayleigh damping and critical damping ratios were both examined for modeling the damping 

of the apparatus materials.  A mass proportional Rayleigh damping factor was used in the analysis, 

and results for a range of damping factors were compared.  Stiffness proportional Rayleigh damping 

factors could not be applied to the model due to numerical instabilities.  The critical damping ratios 

could only be applied for linear perturbation steps, and these steps required that the shear plates were 

fixed in each degree of freedom.  To allow for a direct comparison between the different damping 

treatments, Rayleigh damping was therefore also analyzed with the plates fixed in each degree of 

freedom. The maximum stresses in the apparatus for the different damping treatments are presented in 

Table F.4.  After comparing the results from a variety of damping conditions, it was determined that 

errors in the maximum stress associated with the defined damping will be limited to approximately 6 

ksi.  Since this is less than ten percent of the yield strength in the shear head apparatus, the error is 

considered to be acceptable.           

    5.2.2.3 Initial Conditions 

 The initial boundary conditions defined for the model were maintained throughout each step 

of the analysis.  These boundary conditions consisted of fixing the nodes on the exterior of the shear 

plates against displacement in each degree of freedom except for the vertical direction.  Vertical 

springs and dashpots in parallel were then specified as a first-level model of the soil’s resistance.  

Each of the spring/dashpot elements had a stiffness of 2,000 lb/in and damping ratio of 10%.  These 
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values were based on previous shear stress-displacement backbone curves measured in monotonic 

(i.e. non-cyclic) ABSTs (Ashlock, 2012).  Since Abaqus requires specification of a damping 

coefficient rather than a damping ratio for the dashpot, Equation 5.1 was used to determine the 

damping coefficient (c) associated with the chosen viscous damping ratio (ζ).  In this equation, m 

represents the system’s mass of 6.54 kg, and ωn represents the system’s circular natural frequency, 

which was determined to be 327 rad/sec.  From Equation 5.1, a viscous damping coefficient of 428 

kg/s was calculated for the soil.  In addition, hysteretic damping was investigated by multiplying the 

right-hand side of Equation 5.1 by the ratio of natural frequency to excitation frequency.  This 

resulted in a damping coefficient of 743 kg/s for hysteretic damping at an excitation frequency of 30 

Hz.  The main difference between viscous and hysteretic damping models is that the viscous damping 

force is linearly proportional to excitation frequency, while the hysteretic damping force is 

independent of excitation frequency.  Table F.3 indicates that the hysteretic damping conditions result 

in lower system stresses.  As a result, viscous damping leads to a worst-case condition, and this 

condition will be utilized for the stress analysis.   

 
2

n
c mζ ω=    ( 5.1) 

The straps were also preloaded with an initial tensile force of 800 lb per strap, which would 

be applied by the pipe and box section assembly of Figure F.7.  As mentioned above, spring steel was 

utilized for the straps, which has a yield stress between 60 and 150 ksi depending on the particular 

grade.  The maximum soil shear stress measured by the monotonic BST is typically 20 psi, which 

corresponds to a pull-rod force of 200 lb at the top of the hanger (100 lb per strap).  If this maximum 

force is applied only to the upper hangar and straps while the initial tension of 800 lb in each strap is 

not changed (i.e. the amount of the 200 lb force taken up by the pre-compressed pipe is neglected), 

the straps will experience a net tensile stress of approximately 39 ksi, which is at most 65 percent of 

the yield strength.  However, this calculation is only a preliminary static analysis, and the dynamic 

loading effects will need to be closely examined.  In addition, an initial tensile force of 800 lb in each 
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strap will allow for load reduction under the superimposed dynamic loads without the straps buckling 

during the tests.  However, a method for removing this strap load after testing should be provided in 

order to prevent the possibility of significant tensile load reduction in the straps due to creep. 

 5.2.2.4 Loading Conditions 

 The maximum load applied to the shear head during typical monotonic testing conditions is 

200 lb, which corresponds to a shear stress of 20 psi on the soil surface, as shown in Figure 5.2.  In 

order to simulate potential dynamic loading conditions in the cyclic ABST, the maximum load of 200 

lb was applied as a sine wave at loading frequencies of 2 Hz and 30 Hz in the finite element model by 

scaling the load vector with time.  The dynamic load was applied to the top hanger.  In the simulation 

case that incorporated the loading rods, a sinusoidal, concentrated force of approximately 668 lbs was 

specified at the top of the loading rods to give the maximum force required to move the system.  The 

668 lb force applied to the loading rods was determined with a preliminary dynamic analysis that 

treated the rods as rigid bodies and assumed simple harmonic motion of the shear head with no soil 

resistance (Ashlock, 2012).  The 668 lb force applied at the top of the loading rods resulted in stresses 

and displacements that were comparable to the models that did not include a loading rod.  Therefore, 

the 668 lb force applied to the loading rods was used in later models.       

200

Force (lb) 

Displacement (in.) 

k0 

0.05 0.2 

ks 

Figure 5.2: Anticipated typical force-displacement response 

of soil in cyclic test 

Source:  Ashlock (2012) 
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5.2.2.5 Results 

 The maximum stresses generated in the double-strap apparatus under typical testing 

conditions are presented in Table F.3.  The stresses for each part are less than their corresponding 

yield strengths.  Therefore, significant plastic deformation is not expected to occur in the double-strap 

apparatus under typical testing conditions.  However, with an initial strap tension of 800 lb, the 

maximum stress in the pipe and shear plates is approximately 80 percent of the yield strength.  Since 

the yield strength will correspond to minor plastic deformation, a maximum stress of approximately 

50 to 60 percent of the yield strength would be more desirable.   

When the initial strap tension is reduced to 550 lb, the maximum stress in the pipe is reduced 

to approximately 60% of the yield strength, while the maximum stress in the shear plates remains at 

approximately 80% of the yield strength.  As a result, it may be necessary to use a material with 

larger yield strength for the shear plates.  If ASTM A-514 high strength steel is used, the maximum 

stress in the shear plates will be approximately 60% of the yield strength, and the probability of 

plastic deformation will be reduced.  However, it is likely that the soil will yield long before the shear 

plates, and hysteretic damping conditions resulted in reduced shear plate stresses.  The large 

calculated stresses on the outside of the shear plates are a result of the linear elastic soil behavior that 

results from the use of springs and dashpots with assumed damping conditions.  At large stresses, this 

linear elastic model will not properly represent yielding behavior in the soil, and a more sophisticated 

soil constitutive model incorporating hyperelasticity or plastic yielding should be used. 

Along with the stresses induced in the pipe and shear heads, the maximum stress in the straps 

was found to be 30% to 85% of the yield stress.  It is therefore important to choose a type of spring 

steel that has a yield strength larger than 100 ksi.  The maximum stress calculated in the hangers is 

approximately 20% of the yield strength, and that in the loading rods is approximately 10% of the 

yield strength.  However, reducing the cross-sectional area of the rods would also reduce their 

stiffness, which would make dynamic control of the shear head displacement more difficult. 
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From the above analysis, it can be concluded that an initial strap tension of 550 lb will result 

in acceptable stresses in the double-strap apparatus.  These lower stresses will also enable larger loads 

of up to 300 lb to be applied to the upper hanger.  It is likely that the maximum stresses calculated by 

Abaqus result from stress concentrations, since the maximum stresses often occurred at corners.  

These stress concentrations will result in a conservative comparison between the calculated stresses 

and the yield strengths, and can be reduced by rounding and filleting of corners.  The presence of 

stress concentrations in the simulation increases the confidence that the double-strap apparatus will 

not likely experience plastic deformations if an initial strap tension of 550 lb is utilized.   

The 550 lb strap tension was specified as an initial condition in Abaqus, and the model was 

brought to equilibrium before the dynamic load was applied.  However, the initial strap stress also 

causes compression of the pipes, which results in a smaller equilibrium force of 490 lb or equivalent 

stress of 21.0 ksi in the straps at the beginning of the dynamic analysis.  For the physical device, the 

tension in the straps should therefore be slowly increased to 490 lb before using the apparatus for 

testing.  This initial force can be determined from strain gauges on the straps, and the force can be 

applied with a screw mechanism in the lower section of the pipe, since space for an accelerometer is 

only required above the shear head.  As mentioned above, the strap tension should be removed after 

testing to prevent strap elongation due to creep.  Additionally, the initial strap tension of 490 lb will 

result in a minimum strap stress of 8.4 ksi under the action of the dynamic loads, which maintains 

tension in the straps throughout the test.               

5.3 Dynamic Instrumentation 

 Additional instrumentation will be required to convert the ABST from a monotonic test to a 

cyclic test.  Since the applied force and resulting displacement of the shear plates are the two primary 

measurements of importance for a cyclic test, methods for accurately measuring these variables will 

need to be developed.  Although an accurate measurement of force is provided in the current ABST, 

the transition to an actuator will remove the current Dynamometer design and require an alternative 
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method of measuring force.  Additionally, the dynamics of the loading rods will cause the load 

applied to the shear head to have a different magnitude and phase than that applied by the actuator to 

the top of the loading rods. To achieve the best accuracy, the actual force and motion delivered to the 

shear head should be measured and implemented in an actuator feedback control loop.       

5.3.1 Preliminary Cyclic Displacement Measurements 

 The investigation into the accuracy of ABST displacement measurements presented in 

Chapter 4 indicated that the stepper motor is inadequate for determining shear plate displacement for 

the present device.  In addition, displacement at the top of the pull rods deviates from displacement at 

the shear plates due primarily to strap elongation, but also to elastic elongation of the pull rods.  As a 

result, displacements must be measured directly from the shear head in order to obtain accurate 

displacement measurements of the shear plates.   

 In order to measure displacement at the shear head, fishing line was connected to the shear 

head and attached to a string potentiometer mounted on the ABST base plate.  The string 

potentiometer is spring loaded to minimize slack in the fishing line.  This method was employed at 

shallow depths in clean boreholes and found to provide accurate displacements for such conditions.  

In addition, the soil surface was excavated a few inches and leveled, and the base plate was then 

carefully positioned to minimize its settlement.  As discussed in the previous chapter, the string 

potentiometer should ideally be uncoupled from the base plate and secured to an external reference 

beam. 

5.3.2 Proposed Displacement and Acceleration Measurement 

  By connecting the string potentiometer to the shear plates with fishing line, errors in the 

measured displacement may be introduced into the system.  Water, drilling mud, and falling soil may 

cause errors in the measured soil displacement by moving the fishing line laterally, which would 

extend the string potentiometer cable.  In addition to measurement errors, placement of the fishing 

line will complicate the ABST test procedure. 
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 In order to simplify the test and minimize measurement errors, an accelerometer is proposed 

for measuring the motion of the shear head.  The accelerometer could be attached to the top of shear 

head within the pipe that transfers compressive loads in the double-strap design.  The box section on 

this pipe will nearly contact the end caps on the shear head, and rubber seals could be installed 

between the box section and end caps to prevent the accelerometer from being exposed to water.  

Additionally, an epoxy material could be utilized as a seal.  The rubber seal or flexible epoxy would 

not transfer significant loads to the shear head.  With proper attention to filtering and trend-removal 

techniques to reduce numerical error, the acceleration time-histories could be double-integrated to 

determine the shear head displacement.                 

5.3.3 Proposed Force Measurement 

 The force applied to the shear plates and resulting shear stresses applied to the soil could be 

measured with a variety of methods.  One of the simplest and most cost effective methods would be 

to install strain gauges on the steel pull straps attached to the shear plates.  These strain gauges could 

be used to monitor the stresses in the straps.  The gauges on the four pull straps could also be 

analyzed to determine whether the two shear plates apply equal loading to the soil.  The placement of 

the strain gauges will depend on the final design of the double-strap shear head, which is left for 

subsequent studies.     

5.3.4 Pore Water Pressure Measurement 

 The measurement of pore water pressure is important for examining the liquefaction potential 

of soil.  As discussed in Chapter 4, liquefaction can be indicated by the pore water pressure in the soil 

reaching the total stress or by the excess pore pressure ratio reaching unity.  In stress-controlled tests, 

the displacement will grow to large values upon liquefaction, while in displacement-controlled tests, 

the applied shear stress will decrease towards zero.  Pore pressure measurements will therefore allow 

for a more complete representation of soil behavior and liquefaction potential.  
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 When using the cyclic ABST to determine the damping ratio and shear modulus of soil, a 

transducer to measure pore water pressure would identify any generated pore water pressures during 

shearing.  These pore water pressures could be used to indicate the effective stress in the soil that 

corresponds to the stress-displacement behavior.   

 Since the proposed cyclic ABST could also be used for a monotonic test, pore water pressure 

measurements could also be useful for monitoring consolidation after the application of a normal 

stress.  In addition, pore water pressure changes during and after the shearing stage can be monitored.  

Pore pressure readings during the monotonic shearing stage would allow for the resulting strength 

parameters to be more easily interpreted as drained or undrained.        

5.4 Cyclic ABST Results 

 Preliminary cyclic ABST tests were performed in both laboratory and field settings.  The 

effects of normal stress and shearing rate were investigated to determine whether the cyclic ABST 

can potentially be used to obtain meaningful measurements of a soil’s cyclic behavior.  

5.4.1 Laboratory Results in Compacted Loess 

 The laboratory testing methods were intended to cycle the applied shear stresses about zero in 

both upward and downward directions.  Since this required the temporary modifications discussed in 

Section 5.2.1, the apparatus experienced internal movements and was unable to apply large 

downward loads.  Therefore, small upward and downward cyclic stresses of only 0.75 psi were 

applied to the soil.  The results for these tests are presented in Appendix G.1.  It should be noted that 

some of the tests did not exhibit a symmetric cyclic load about zero stress.  For example, Figure G.7 

shows maximum upward and downward shear stresses of approximately 1.3 and -0.4 psi, 

respectively.  This was due to a faulty tare value that led to an initial static shear stress bias of -0.4 

psi.  The shear stresses were then automatically cycled about this value by the ABST control program 

which resulted in hysteresis loops that are not symmetrical about zero shear stress.   
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 Figure 5.3 shows results from a compacted loess sample with an applied normal stress of 

5 psi that are representative of the laboratory results obtained.  The remaining test results are 

presented in Appendix G.1.  Based on these preliminary results, it is evident that the cyclic ABST can 

potentially produce useful results for cyclic loading of soils.  In addition, the results generally display 

the type of stress-displacement hysteresis loops that were expected for the cyclic tests.  However, 

displacement readings were inconsistent between tests, and the stiffness and damping characteristics 

also appear to be inconsistent and independent of the applied normal stress.  Based on many previous 

studies of dynamic soil behavior, it is expected that larger normal stresses will result in increased 

stiffness and decreased damping, which is indicated by steeper hysteresis loops with smaller areas.  

The inability of the current base plate assembly to properly apply a downward force is one reason for 

the observed inconsistencies, since the base plate assembly’s upward movement was restricted only 

by attaching clamps.  Additionally, since the base plate was only able to apply small downward loads 

and displacements, small errors in the initial shear stress tare value had noticeable effects on the 
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Figure 5.3:  Stress-controlled cyclic ABST laboratory results 
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results.  Additional research studies should focus on replacing the base plate with an actuator attached 

to a drill rig or reaction frame to apply larger and more consistent downward loads.      

5.4.2 Field Tests in Sandy Glacial Till 

 Field tests were performed with the cyclic ABST to further examine its ability to measure the 

cyclic response of soil in situ and to investigate whether an influence of shearing rate on modulus and 

damping could be measured.  Since the laboratory results indicate that the current base plate design is 

unable to apply consistent downward forces, tests were performed with a static shear stress bias.  The 

static bias tests were performed by first determining the shear strength corresponding to a given 

normal stress in a traditional monotonic test.  This shear strength was then used to decide upon 

appropriate cyclic stress limits for the test.   For example, Figure G.9 indicates that a shear strength of 

9 psi was supplied by the soil under an applied normal stress of 10 psi.  The stress limits were then 

chosen to be 1 and 8 psi for cyclic loading, so that the cyclic shear stress would not exceed the shear 

strength, nor be reduced to zero.  Cyclic stress limits were determined similarly for the other cyclic 

tests.  These stress limits were selected in order to obtain larger stress-displacement hysteresis loops 

than possible in the laboratory tests, so that the loops can be more easily compared.  

 The field tests were performed in a sandy glacial till with a USCS group name of clayey sand.  

Borings were made to a depth of 2 feet with a 3.25-inch diameter hand auger, and then a 2.5-inch 

outer diameter split-soil core sampler was driven a distance of 6 inches below the bottom of the 

borehole.  The recovered core consisted of relatively disturbed soil and was utilized to classify the 

soil.  The shield provided with the BST was then used to over-ream the cavity left by the core 

sampler.  The shield created a smooth 3-inch diameter cavity of appropriate size for testing with the 

ABST, and the cavity walls were carefully trimmed to minimize soil disturbance or smearing at the 

testing surface.  After the monotonic test was performed to determine the soil’s shear strength, the 

shear head was rotated 90 degrees and the cyclic tests were performed. 
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 Tests were performed in two separate boreholes separated by a distance of approximately five 

feet.  Appendix G.2 presents the results obtained from the cyclic tests performed in each borehole at 

varying shear rates.  Figure 5.4 contains plots of the cyclic response measured in the second borehole, 

in which the raw loops of Figures G.15 through G.17 were corrected to remove the migration caused 

by the static bias to enable calculation of loop areas. The loops were corrected by calculating the 

amount of migration between successive upper limits and then using this displacement difference to 

offset the top of the loop.  From this figure, it can be seen that the rate of shearing has a significant 

effect on the initial stiffness of the soil, since the upper stress limit is reached with less displacement 

as the loading rate is increased.  However, with subsequent cyclic loading, the stress-strain loops were 

essentially independent of the shearing rate.   

 In dynamic laboratory element tests, shear stress is typically plotted against shear strain to 

determine the shear modulus and damping ratio of a soil.  Since the shearing displacement can be 

obtained from the cyclic ABST, but the shear strain varies three dimensionally and is currently 

unknown, an “equivalent” damping ratio and shear modulus were determined from the stress-

Figure 5.4:  Comparison of stress-controlled cyclic ABST field results for boring 2 
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displacement plots.  These values should not be used for engineering designs, but are useful for 

analyzing the potential of the cyclic ABST.  From the test results, the equivalent secant shear 

modulus was calculated as the slope of the line passing through the loop endpoints.  The equivalent 

damping ratio (D) was determined from ASTM D3999 (2011) with Equation 5.2, where WD is the 

area of the entire loop and WS is the area of a right triangle with two of its vertices corresponding to 

the maximum stress and center of the loop.  The final vertex of the triangle has an x-coordinate 

corresponding to the maximum stress of the loop, and a y-coordinate corresponding to the center of 

the loop. 
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W
D

Wπ
=    (5.2) 

 Figures G.21 and G.22 in Appendix G.2 show the calculated damping ratio (D) versus loop 

number, and indicate that shearing rate did not have a significant effect on the measured equivalent 

damping ratio.  Figure G.23 and G.24 contain the equivalent secant shear modulus, which slightly 

increases as the shearing rate is increased.  The equivalent damping and modulus values presented in 

these figures were determined for each full loop obtained at the shearing rates tested.  Only those tests 

having cyclic stress limits of 1 and 8 psi were used to calculate the equivalent values.  Since the 

equivalent values are not significantly affected by the shearing rate, the cyclic ABST can be utilized 

effectively at the higher shearing rates for this particular clayey sand.  This will significantly increase 

the efficiency of the test, since individual tests can be performed in a short amount of time. 

 Figure G.18 presents results from a displacement-controlled test where the cyclic 

displacement limits are chosen based on the hysteresis loops observed in the previous stress-

controlled tests. For this soil, the shear stresses required to reach the specified displacement limits 

were observed to decrease with increasing loading cycles.  This behavior clearly indicates strain 

softening with increasing cycles, indicating that this particular soil’s strength decreases under large 
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cumulative strains. These results further demonstrate the potential usefulness of the cyclic ABST if an 

appropriate measure of shear strain can be determined. 

5.5 Cyclic ABST Conclusions 

 The foundation for future development of a working cyclic ABST was presented in this 

chapter.  The preliminary field and laboratory tests performed with the current cyclic ABST device 

demonstrated that future versions of the cyclic ABST have the potential to accurately measure the 

cyclic response and possibly quantify the liquefaction potential of a soil.  However, modifications 

need to be made to the cyclic ABST apparatus to allow for application of sinusoidal or random 

loading at frequencies up to 30 Hz for characterization of seismic response.  A double-strap shear 

head design that allows for the application of a downward force was analyzed using a dynamic finite 

element simulation, and stresses in the device under the proposed large cyclic loads were found to be 

within safe limits.  In addition to the shear head design, the base plate will need to be replaced with an 

actuator attached to a drill rig or other reaction frame to supply the required loads. Design of such an 

actuator and accompanying feedback control system is beyond the scope of this study, and is 

recommended for future research.        

 The cyclic ABST can apply shear stresses to soil in a vertical but not horizontal direction, 

except for special cases where a horizontal borehole can be created.  This is a known limitation of the 

traditional BST, and this limitation remains for the cyclic ABST.  For seismic and liquefaction 

problems, the primary case of geotechnical interest is that of vertically propagating, horizontally 

polarized shear waves, which cause horizontal cyclic stresses in a soil mass. Such stresses cannot be 

applied in situ by the proposed cyclic ABST, but are a case for further research. Similarly, complete 

in situ characterization of the properties of anisotropic soil will not be feasible without modification 

to enable application of horizontal shear stresses.  However, the vertical shear strength measured with 

the traditional BST was determined by Handy and Fox (1967) to often properly represent the strength 
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of the soil, and testing with the final cyclic ABST apparatus will allow investigations into the impact 

of anisotropic soil properties on cyclic response. 

 Although many of the discrepancies between a traditional cyclic test and the cyclic ABST can 

potentially be resolved, the migration of stress-displacement loops may be a lasting concern for the 

cyclic ABST.  According to ASTM D3999 (2011), the loop closure between two successive shear 

stress peaks must be less than an axial strain of 0.2 percent in a cyclic triaxial test, and large loop 

closures may be related to anisotropic consolidation.  Since it would be difficult to maintain isotropic 

consolidation for the cyclic ABST, loop closure may be a reoccurring difficultly for the test.  The 

stress-displacement loops in this study were corrected for migration to determine the “equivalent” 

damping ratio and shear modulus for the soil, but it is recommended that the device be modified with 

an actuator to enable true bi-directional loading with zero static bias.  Additional testing will be 

required with the final cyclic ABST to determine if correcting the loops for migration is an acceptable 

procedure.         

Additional studies will also be required to obtain measures of shear strain from the measured 

shear displacements, since the damping ratio and shear modulus are based on shear stress-strain 

response.  An appropriate computational framework for this task may be possible by using finite 

element or discrete element methods, which feature constitutive models that incorporate plasticity and 

coupled pore pressure generation.  In addition, the “equivalent” shear modulus and damping ratio 

presented herein for the cyclic ABST could be compared to the shear modulus and damping ratio 

determined from conventional cyclic triaxial tests.  These comparisons could be used to develop a 

correction for the “equivalent” displacement-related properties to obtain their strain-related 

counterparts. 

Despite the additional modifications required for the cyclic ABST, the present study has 

demonstrated the feasibility of the test to provide measurement of expected cyclic shear behavior for 

soils in situ.  With further modification, the cyclic ABST has the potential to directly determine the 



83 

 

liquefaction properties of a soil in situ in terms of mechanistic properties, such as stress, displacement 

and pore pressure, rather than the empirical indices used in modern engineering practice.  As a result, 

the cyclic ABST has significant potential to become a useful dynamic testing tool in the future. 
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CHAPTER 6. NUMERICAL ANALYSIS OF THE BST 

 It is desirable to perform a numerical analysis of the borehole shear test in order to better 

understand the strains that the soil experiences during shearing.  By understanding the stress-strain 

behavior, the strain-dependent shear modulus and damping ratio for a soil could be determined during 

a cyclic test.  In addition, an understanding of strains would allow for the soil’s liquefaction potential 

to be more accurately determined.   

A numerical analysis of the BST would also allow for an examination of the actual stress 

conditions imposed upon the soil during the test.  Although the BST has been shown to give soil 

friction angles that closely agree with laboratory test measurements, it is beneficial to understand the 

accuracy of the assumptions of uniform shear stress and normal stress distributions.  The actual three-

dimensional states of stress and strain from static and dynamic numerical analyses would be of use to 

future researchers.    

6.1 Development of Finite Element Model 

The process of developing a complete finite element model for a cyclic BST would be 

extensive if all device components and geometries as well as their interactions were modeled in 

addition to the coupled soil-water continuum behavior.  To provide a preliminary understanding of 

the BST-soil interaction, this study will focus on analysis of a monotonic BST in dry sand using the 

finite element program Abaqus (Dassault Systems, 2010).  The results from this static study cannot be 

utilized to determine the cyclic shear modulus or damping ratio, since these properties require a cyclic 

test.  However, the initial small-strain tangent modulus Gmax can be determined if a representative 

stress-strain relationship can be calculated for the soil. It is expected that stresses and strains will 

decrease with distance from the shear plates. Owing to the dependence of the small-strain shear 

modulus of soils on the state of stress, a three-dimensional distribution of shear modulus may 

potentially be obtained. Modeling the strains related to liquefaction will also require an analysis of 
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excess pore water pressures developed during cyclic testing in a saturated sand.  Such an analysis will 

require a coupled analysis of the solid matrix and pore fluid, with the ability to model pore pressure 

generation under dilation and contraction. Although this may be beyond the capabilities of the 

Abaqus finite element program, future studies may benefit from the use of finite difference codes 

with pore pressure generation capabilities. The present model therefore has limitations related to 

extending the capabilities of a cyclic BST for liquefaction studies, but will serve as a starting point for 

future studies.  Additionally, the model geometry and boundary conditions generated in the present 

study may be useful for future studies.  In the following analyses, the effects of mesh density will be 

investigated, and the nature of variation of the calculated stress and strain distributions in the soil 

around the shear head and borehole will be demonstrated.  

6.1.1 Model Geometry 

 The developed finite element soil model for a portion of a borehole in soil is shown in Figure 

6.1.  This model consists of a cube with a length, height, and width equal to nine inches.  The 

borehole diameter utilized is three inches, and the depth of the borehole is eight inches.   

Small, cubic dimensions were utilized for the model in order to obtain a very fine mesh 

without exceeding program limitations related to the allowable number of nodes.  In addition, small 

dimensions allow for a model with a very fine mesh to complete calculations in a reasonable amount 

of time.  If a cyclic test were investigated, “infinite elements” (also referred to as a “silent and 

absorbing boundary”) would need to be specified at the edges of the cube.  Since stress waves can 

rebound from the model boundaries and interfere with subsequent calculations during dynamic 

simulation, infinite elements would be necessary to absorb these waves at the perimeter of the model 

and help prevent interference.   

The shear plate geometry was not altered from the geometry utilized in the analysis of the 

double-strap shear head apparatus as presented in in Table F.1.  The base of the shear plates is located 

one inch above the base of the borehole in the monotonic BST model.  



86 

 

6.1.2 Model Meshing 

 The model part representing the soil consisted of hexagonal, 8-node linear brick elements.  

Although 20-node quadratic bricks would potentially allow for an even more accurate analysis, the 

software is not able to support the number of nodes that correspond to quadratic elements at the mesh 

densities desired.  A parametric study on the effect of mesh density is reported in Section 6.3.   

 The model of the shear plates also used hexagonal, 8-node linear brick elements.  In order to 

model the contact between the shear plates and the soil, the corresponding nodes on the shear plate 

and soil were tied together.  Although this contact treatment will not model slippage between the 

shear plates and soil or punching through the soil, it will approximate the testing conditions and allow 

for the stresses to be transferred from the shear plates to the soil.  The actual contact conditions 

between the shear plates and soil would be difficult to predict and likely change from test to test. 

Although substantial effort on modeling the contact is beyond the scope of this investigation, the 

mesh density of the shear plates was varied to identify whether mesh continuity between the shear 

plates and soil significantly affected the results.  This investigation is described in Section 6.4. 

Figure 6.1:  Monotonic BST soil model 
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6.1.3 Soil Properties and Constitutive Modeling 

 The monotonic BST model utilized moderately dense, dry sand as the material in the soil 

domain. The constitutive model selected for the sand was the elasto-plastic Drucker-Prager model.  

This model uses input parameters to define a yield surface having an elliptical shape in principal 

stress space.  At stress states inside this yield surface, linear elastic material behavior will occur as 

determined by the specified Young’s modulus and Poisson’s ratio.  At stress states on the yield 

surface, plastic deformation will occur.  A non-associative flow rule is used in the region of shear 

failure.  Associative flow occurs beyond the yield surface and below the failure envelope on the cap 

(Abaqus, 2010).  The Drucker-Prager model allows for the yield surface to be increased as plastic 

strain occurs through the use of hardening parameters which account for strain-hardening material 

behavior.  In addition, the Drucker-Prager model allows for small tensile stresses to be developed in a 

material.  This will lead to small irregularities between the actual and modeled soil behavior, since 

dry un-cemented sand will have essentially zero tensile strength.     

The Mohr-Coulomb constitutive model is another material option provided in the standard 

Abaqus interface.  In principle stress space, the Mohr-Coulomb constitutive model has a polygonal 

yield surface, whereas the Drucker-Prager model has a smooth elliptical yield surface.  There are 

additional minor differences between these two models, including the fact that the Mohr-Coulomb 

model does not consider the influence of the intermediate principal stress.   

The Drucker-Prager constitutive model was selected to model soil behavior because it was 

deemed to produce more appropriate results.  The Mohr-Coulomb model also failed to converge when 

Table 6.1:  Soil properties for BST FEM analysis 

Drucker-Prager 

Angle of Friction (°)      35 

Flow Stress Ratio        1 

Dilation Angle (°)         0 

Elastic 
Young's Modulus (psi)   5000 

Poisson's Ratio          0.3 

Table 6.2:  Drucker Prager hardening 

Plastic Strain Yield Stress (psi) 

        0 10.9 

0.058 12.0 

0.116 10.9 
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modeling a circular borehole, but this shortcoming was not present for square holes.   

Table 6.1 contains the material properties of the soil used for the Drucker-Prager plasticity 

model and elastic model.  Table 6.2 presents the parameters that were used to specify the hardening 

behavior of the constitutive model. A unit weight of 102 pcf was used for the soil.   

The flow stress ratio in the Drucker-Prager model specifies the ratio of flow stress in triaxial 

tension to flow stress in triaxial compression (Abaqus, 2010).  For this preliminary analysis, it was 

assumed that the tensile and compressive flow stresses were equal.  The dilation angle is used to 

quantify the inelastic volume change during shearing.  Since the sample is assumed to be moderately 

dense, a value of zero was used for the dilation angle, corresponding to a soil near the critical void 

ratio.  If the soil was very loose, this value would be negative.  However, negative values are not 

accepted by the constitutive model implemented in Abaqus.   

The Drucker-Prager model should only be used for analyses of the monotonic BST.  Both the 

Drucker-Prager and Mohr-Column constitutive models are not able to consider cyclic stress, large 

stress reversals, and pore water conditions (Lade, 2005).  Therefore, a more rigorous constitutive 

model should be used to model the cyclic ABST for general unsaturated and saturated conditions.   

In addition to the soil model, stainless steel material properties were specified for the shear 

plates.  These material properties were discussed in Chapter 5 and presented in Table F.2.  

6.1.4 Boundary and Initial Conditions 

 On the base of the soil cube, boundary conditions that fix the displacement of each node in 

the x, y, and z directions were specified.  These boundary conditions will prevent rigid body modes.  

Displacements were fixed normal to the external sides of the cube to represent the pressure that would 

be present from adjacent soil.  Displacements are typically not fixed in the vertical direction on the 

sides of a soil model in order to allow settlement. 

 Displacements were also fixed normal to the borehole while leaving the nodes free to move in 

the vertical direction.  These boundary conditions simulate a casing that may be utilized to prevent 
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caving in a non-cohesive soil.  As expected, convergence was not obtained without this boundary 

condition.  However, an actual casing would allow soil to compress and leave a gap between the 

borehole and casing.  With the nodes fixed in the normal direction, small tensile forces would be 

developed at the locations that would otherwise separate from the casing, leading to minor modeling 

errors.  In order to accurately model a borehole shear test with a borehole casing, the soil nodes 

adjacent to the shear plates were not fixed normal to the borehole, and the normal stress provided by 

the shear plates supported the borehole. 

 An initial effective stress was given to the soil in order to specify equilibrium.  If effective 

stresses are not specified, the model will find equilibrium and large settlements will typically result.  

The effective stress specified was equal to the soil unit weight multiplied by the soil depth, since the 

sand is dry.  An equilibrium step was utilized before the normal stress was applied to the plates in 

order to verify that excessive settlements did not occur. 

6.1.5 Loading Conditions   

  The loading applied to the soil consists of shear and normal stresses.  The normal stresses are 

applied during a step immediately after equilibrium is reached.  Shear stresses are then applied in a 

step after the normal stress application.   

 The normal stresses are applied as a uniform pressure on the flat back of the shear plates.  For 

this model, it was desired to create a normal stress of 20 psi in the soil.  As a result, a force of 100 

pounds was to be applied to the back of each plate, since the front of the plates has an area of five 

square inches.  The back of the shear plates has an area of 4.55 inches.  Therefore, in order to apply 

the desired force of 100 pounds, a uniform pressure of 22 psi was applied to the back of the plates.   

 The shear stresses are also applied as a uniform pressure on the back of the shear plates.  For 

this model, a shear stress of 10 psi was applied to the soil.  Since the friction angle specified is 35°, a 

shear stress of approximately 14 psi would be required to fail the soil under the specified normal 

stress of 20 psi.  In order to apply a shear stress of 10 psi to the soil, the approach described in the 
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previous paragraph was utilized to determine that a shear stress of 11 psi would need to be applied to 

the back of the shear plates.   

 In addition to the normal and shear stresses, gravity was applied to the entire model for every 

step.  By specifying the initial effective stresses in the soil, settlement did not result from the gravity 

loads.  

6.2 Normal Stresses Resulting from the Shear Plate 

 In order to ensure that the model is functioning as intended, the normal stress distribution in 

the soil adjacent to the shear plate can be compared to theoretical stress distributions in an elastic, 

non-cohesive material.  The theoretical stress distribution in an elastic material beneath a rigid contact 

is smallest at the center and increases to infinity at the edges. A real material such as sand cannot 

sustain the infinite stress, and yielding therefore occurs under the edges resulting in a saddle shape.  

Since there is a lack of cohesion and lateral confinement in sand, the stress at the edge of the 

foundation will increase to support the load (Das, 2010).   

Figure 6.2:  Normal stress distribution in soil along shear plate width (0.25” mesh) 

Shear Plate Position 
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 Figure 6.2 shows the normal stress distribution obtained across the width of the plate at its 

mid-height.  The normal stress distribution was obtained using cubic mesh elements with dimensions 

of 0.25 inches.  This was the finest mesh investigated.  From this figure, it can be seen that the sand 

possesses the expected normal stress distribution.  However, two deviations from the theoretical stress 

distribution exist.  These deviations include the increased stress beyond the edges of the shear plate 

and the slight tensile stresses outside the shear plate.  It is not expected that the theoretical normal 

stress distribution will perfectly match a finite element analysis, but the tensile stresses are a shortfall 

of this model.  These tensile stresses result from the constitutive model utilized and the fixed nodes 

along the borehole.  Although the tensile stresses are not desirable, the overall results are 

approximately equal to the theoretical distribution, and the model is considered to be acceptable.   

6.3 Effect of Soil Mesh Density 

 In order to increase the efficiency of future analyses of the BST model, it is desirable to 

determine the largest meshing element size that will give acceptable results.  The primary method 

Figure 6.3:  Normal stress distribution in soil along shear plate width (0.35” mesh) 
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used to judge the adequacy of the various models was to examine the normal stress distribution along 

the width of the shear plate.  

The results of Figure 6.2 were obtained with the finest mesh and are considered to be the 

benchmark.  The mesh element size utilized in this model approaches the minimum allowed by the 

program.  The maximum soil normal stress calculated by the program at the plate mid-height is 

approximately 18 psi, which differs from the expected stress of 20 psi by 10 percent.  It was found by 

integrating the stress along the outside of the curved shear plate that 87 pounds are applied normal to 

the soil surface.  As a result, the entire desired normal load of 100 lbs is not applied to the shear plate 

on the soil side.  It was also found that the shear plate is at equilibrium in the model.  The normal 

stress corresponding to an applied force of 87 pounds is 17.5 psi.  As a result, the mesh element size 

is deemed small enough to calculate representative shear stresses.  

If the cubic mesh element dimensions are increased to 0.35 inches, the normal stress 

distribution displayed in Figure 6.3 results.  This figure shows a maximum normal stress of 

approximately 16 psi.  As a result, there is a 10 percent stress reduction from the “correct” 

Figure 6.4:  Normal stress distribution in soil along shear plate width (0.90” mesh) 
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distribution.  However, this model can be run in approximately five minutes, and the analysis with the 

finest mesh takes over an hour to complete.  As a result, this model is much more efficient, and the 

normal pressure distribution is qualitatively the same. 

Figure 6.4 displays the normal stress distribution resulting from a cubic mesh element 

dimension of 0.90 inches.  This result is not acceptable, since the shape does not approximately match 

Figure 6.2.  Since a 10 percent difference between the “correct” and calculated normal stress for this 

investigation will be taken as acceptable, the ideal cubic mesh element dimension is 0.35 inches for 

the soil. 

6.4 Effect of Mesh Continuity between Shear Plate and Soil 

Since the contact between the shear plates and soil is modeled by connecting the shear plate 

nodes to the soil nodes, the effect of mesh continuity between the shear plate and soil was 

investigated.  Figure 6.3 was obtained for soil mesh elements with cubic dimensions equal to 0.35 

inches and shear plate cubic elements with dimensions of 0.25 inches.  Increasing the shear plate 

mesh element dimension to 0.35 inches to obtain continuity between the shear plate and soil gives the 

Figure 6.5:  Normal stress distribution in soil along shear plate width (0.90” global mesh) 
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Figure 6.6:  Normal stress in soil adjacent to shear plate (Pascals) 

results shown in Figure 6.5.  It is clear that the accuracy of the stress distribution corresponding to the 

model with continuity is reduced.  Accuracy is determined with a comparison to the “correct” 

distribution shown in Figure 6.2.  When mesh continuity did not exist, but the shear plate mesh was 

finer, a difference from the “correct” model of approximately 10 percent existed.  When the shear 

Figure 6.7:  Shear stress in soil adjacent to the shear plate (Pascals) 
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Figure 6.8:  Total logarithmic shear strain contours in soil adjacent to shear plate   

plate mesh size was increased to match the soil, a difference of 25 percent resulted.  As a result, mesh 

continuity between the shear plate and soil may be of secondary importance for the model.   

6.5 Normal Stress and Shear Stress Distributions 

 Figure 6.6 and 6.7 show the normal and shear stress distribution in the soil adjacent to the 

shear plate for a mesh with cubic elements having nominal dimensions of 0.35 inches.  According to 

the direct shear test and BST assumptions, the normal and shear stresses are uniformly distributed 

over the contact surface during shearing.  These figures demonstrate that normal stress and shear 

stress concentrations exist near the top of the shear plate, but amount to 1 to 3 psi for both normal and 

shear stress, compared to average normal and shear stresses of 16 and 7 psi, respectively. As a result, 

the assumption of a uniform stress distribution may be adequate, and research has shown that the 

strength parameters obtained from the BST are representative of the soil (Handy, 1967).  However, 

since the actual stress distributions across the shear plates are non-uniform, the strains will also be 

non-uniform.  Additional research is needed to determine whether a single representative average 
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strain can be determined for the soil adjacent to the shear plate in order to calculate modulus values 

and damping ratios from monotonic and cyclic BSTs.         

6.6 Development of Strains in Soil 

 In addition to analyzing the expected stress states, the model can be utilized to predict the 

strain that will be developed in the soil.  The objective of this section is to examine whether the 

analysis of shear strains is possible with the developed model.  By combining the calculated stresses 

and strains in the soil, modulus values for the soil could be determined.     

Figure 6.8 demonstrates that the shear strain distribution in the soil is non-uniform with the 

maximum shear strains occurring beyond the top of the shear plate.  This increase in strain is likely 

due to the “bulldozing” effect on soil in front of the shear plate.  This behavior was previously 

identified by Lutenegger as a potential source for increased pore water pressures near the top of the 

shear plate (Lutenegger, 1986). 

 Figure 6.9 displays the strain dissipation with increasing radial distance from the borehole.  

This figure indicates that the decrease in strain with radial distance will be approximately linear until 

Figure 6.9:  Total logarithmic shear strain extending radially from borehole  
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Figure 6.10:  Plastic logarithmic shear strain contours in soil adjacent to shear plate 

a small residual strain exists.  The majority of the strain will be dissipated at a distance of 

approximately 0.036 meters (1.4 in.) from the borehole.  Since the shear strains are very small, the 

engineering and logarithmic strains will be very close.   

 Figure 6.10 demonstrates that plastic shear strain accounts for approximately one-half of the 

total shear strain at the edges and above the plate.  According to Figure 6.10, failure along the edges 

of the shear plate begins to develop at an applied shear stress of only 10 psi.  The shear stress along 

the plate decreases at the sides and base of the plate.  Therefore, the plastic strain development at the 

sides and base of the plate is due to the shape of the yield surface in principal stress space.  This may 

lead to slightly different plastic strain calculations if a different constitutive model is utilized.  The 

plastic strains above the shear plate result from the increased shear stress at this location.     

 A model could be used in the future to investigate the relationship between stress and strain.  

Figure 6.11 displays the shear stress dissipation with radial distance, and Figure 6.12 displays the 

stress-strain relationship corresponding to Figure 6.11.  According to the Drucker Prager parameters 

provided  in  Tables  6.1  and  6.2,  elastic  behavior  is  occurring  in  the  soil, and as a result, a 
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linear stress-strain graph would be expected.  Additionally, the stresses can be combined with strain 

to determine the shear modulus for the soil, and the change in the calculated shear modulus with 

distance is provided in Figure 6.13.   

Figure 6.11:  Shear stress extending radially from the borehole   

Figure 6.12:  Stress-strain relationship extending radially from the borehole 
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6.7 Numerical Model Conclusions 

 This chapter presented a numerical analysis of the BST.  The model created for this analysis 

was developed with the main goal of analyzing stress states along the shear plate.  The normal stress 

in the soil increased towards the value of applied stress at the edges of the plate and decreased slightly 

towards the middle of the plate.  Since this result approximately corresponds to expected theoretical 

behavior for the stress distribution under a rigid flat plate on sand, the analysis is accepted as 

adequate.  In addition, a parametric study was completed to determine the most efficient mesh density 

for the model. 

 Additional studies will be able to use this model as a starting point for determining strains, 

since this chapter demonstrated that strains can be calculated with this static model.  Strains 

determined with a cyclic model can be utilized to determine the shear modulus and damping ratio of 

the soil.  However, the determination of accurate strains within a model for each BST or cyclic BST 

performed may be difficult, since soil properties that cannot be determined from the BST are often 

required in constitutive models.  Soil disturbance and heterogeneity will increase the difficulty related 

Figure 6.13:  Shear modulus extending radially from the borehole 
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to specifying accurate parameters in the model.  Different constitutive models will also lead to 

changes in the calculated strains within the soil.  In addition to difficulties related to parameter 

specification, the utilization of the cyclic BST may be hindered if soil strains can only be determined 

from a numerical analysis. 

 To overcome these difficulties, a range of soil properties and constitutive models can be 

studied using the finite element model described herein to determine corresponding strains in the soil.  

From these results, empirical or numerically based correlations could potentially be developed 

between the soil properties and the shear strain as a function of shear stress.  Alternatively, a shear 

influence depth could be correlated to the soil’s properties, and strain could be calculated from a 

measurement of shear displacement.  However, these correlations could only be properly developed if 

an equivalent, uniform shear strain for the soil can be determined. 

 In addition to an adequate determination of strain within the soil, pore water pressure effects 

will need to be investigated in future studies.  The generation of pore water pressures in saturated, 

granular soils will need to be considered in order to determine the strains that occur during 

liquefaction.  In addition, the suction effects in unsaturated soil may add increased complexity to the 

model’s development.                
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CHAPTER 7. CONCLUSIONS 

 The BST is an in situ test developed to determine the strength parameters of a soil.  Research 

has demonstrated that this test can be performed on all soil types.  However, the testing method and 

results should be further studied to better quantify the drainage conditions (i.e. drained, undrained, 

partially drained) corresponding to the measured shear strength parameters (Handy, 2002).  A unique 

feature of the BST is that the soil’s shear strength is measured directly, whereas many in situ soil tests 

rely on empirical correlations.  The BST has the potential to become one of the most useful in situ 

testing methods if disturbance to the borehole is minimized and pore water pressures during shearing 

can be better understood.  The current BST testing method requires the user to manually raise the 

shearing head and record the maximum shear stress corresponding to the applied normal stress.  As a 

result, the BST requires at least one individual to commit all their attention and field efforts to one 

testing process.  With automation, a single engineer could perform multiple tests or be free to 

complete additional tasks in the vicinity of the boreholes.   

This thesis described the development of a new automated borehole shear test (ABST) 

device, along with a software control/data acquisition program and a post-processing macro. The 

ABST will apply each normal stress, allow time for consolidation, record an entire shear stress record 

corresponding to each normal stress, automatically detect a peak or plateau in shear stress, then lower 

the shear head and apply the next normal stress. The Mohr-Coulomb shear strength envelope is 

automatically calculated in real-time as testing progresses, and suspicious data points can be omitted 

from the calculation. Although the ABST still requires the user to manually place the shear head into 

a borehole and supply the required pressure, the test can essentially run independently after this point.  

This creates the potential for multiple tests to be run simultaneously by a single user, and frees them 

to perform additional tasks such as visually inspecting soils while the test is running. Automation will 

reduce operator variability which will improve the consistency and repeatability of test results, and 

will enable the development of additional automated capabilities such as cyclic tests or creep tests. 
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 One advantage of the new ABST is the ability to obtain a record of the shear stress versus 

shearing displacement. However, it was shown in this study that use of the worm-gear rotation or 

LVDTs attached to the pull rods or rod clamp can give inaccurate measurements of shear plate 

displacements due to the compliance of various BST components. Specifically, it was shown that the 

deviation between displacement at the top of the rod and the shear plates results primarily from 

removal of slack in the straps.  Additional displacement deviations result at the stepper from 

compression of the dynamometer cylinders.  Attempts were made to compensate for these nonlinear 

compliances by measuring them experimentally.  However, the compliances were found to have low 

repeatability as they varied with each test setup.  Therefore, it is recommended that shear 

displacement measurement be performed directly at the shear head using additional instrumentation 

such as a string potentiometer.  Such an approach was shown to provide superior results in this study. 

 This study also presented experimental and computational studies of a new cyclic test, which 

could be useful for determining the liquefaction susceptibility or residual strength of soils.  In order to 

perform a cyclic test, the control program was modified to apply downward shear head 

displacements, and temporary device modifications were made to enable the application of a 

compressive force in the connecting rods.  Laboratory and field tests demonstrated that soil responses 

obtained from the cyclic ABST correspond to anticipated soil behavior.  Using the measured shear 

stress record as a function of displacement, secant shear modulus and damping values were calculated 

from corrected hysteresis loops.  With further development, it is anticipated that the cyclic ABST may 

provide an in situ alternative to laboratory cyclic triaxial and cyclic simple shear tests. 

 The cyclic ABST could potentially be utilized to perform tests that otherwise would be 

impossible or exceedingly expensive.  For example, an undisturbed sand sample cannot be extracted 

and preserved for laboratory testing without substantial effort.  If the borehole could be supported 

using a carefully designed shield or self-boring mechanism, a cyclic ABST could potentially be used 

to perform a cyclic test on undisturbed saturated cohesionless soils.  The cyclic ABST could therefore 
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be useful for characterizing the liquefaction potential of saturated sands, in addition to the dynamic 

modulus and damping behavior.   

In order to measure useful engineering design parameters with the cyclic ABST, a stiffer 

testing apparatus with a greatly increased cyclic loading capacity would be required.  To this end, a 

double-strap shear head design was developed which transfers downward forces directly to the shear 

plates, avoiding racking of the shear head that would result from a load applied directly to its body.  A 

dynamic finite element analysis was performed, demonstrating that the proposed shear head design is 

structurally sound.  In addition to developing a new cyclic testing apparatus, a procedure for 

converting the measured shear displacements to soil shear strains is also needed for stress-strain 

characterization.  For this purpose, a preliminary finite element analysis of the probe-soil interaction 

was performed under monotonic loading.  The model was found to give calculated normal stress 

distributions along the shear plate that were similar to the expected theoretical distributions.  In 

addition, reasonable calculated shear stress distributions were obtained, indicating that plastic strains 

are greatest at the leading edge of the shear plates.  Shear strains were also calculated to demonstrate 

the potential of the numerical model, which provides a starting point for additional studies aimed at 

quantifying cyclic shear strains in the soil based on the measured shear plate displacements.   

7.1 ABST and Cyclic ABST Limitations 

 As discussed above, automation of the borehole shear test brings improved efficiency and 

repeatability to the traditional manual test procedure.  The BST has been shown capable of accurately 

measuring soil strength parameters in situ, and research has indicated that the test gives accurate 

results in sand, silt, and clay.  However, the main limitation related to the BST is the lack of 

knowledge on the pore water pressures corresponding to the measured strength parameters.  Although 

the strength parameters are often accepted as drained, significant pore water pressures can potentially 

be developed in fine-grained soils during shearing.  A variety of methods, such as the examination of 

measured cohesion in normally consolidated clays, could help in assessing drainage conditions, but 
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additional factors such as suction and partial saturation may complicate the results.  As a result, the 

drainage condition is often unknown in clay soils, and the drained or undrained condition is simply 

assumed. This limitation also exists for the ABST, therefore further research is recommended to 

better understand drainage conditions in the test. 

 Current limitations related to the cyclic ABST are more substantial, and additional research 

will be required to develop a reliable test.  The current ABST apparatus is unable to apply a large 

downward force to the shear plates, and the loading frequency of the stepper is limited.  A more 

robust mechanism such as a servo-hydraulic actuator and stout compression rods will be required for 

performing cyclic tests at useful frequencies and load levels.  In addition, shear strains will need to be 

estimated from measured displacements of the shear plates and used with the stress record to 

determine the modulus and damping of the soil.  A preliminary numerical analysis was performed in 

this study to examine shear strains in the soil.  However, the model did not incorporate pore water 

pressure generation nor dynamic loading.  Borehole disturbance in saturated cohesionless soils and 

modeling error may also lead to differences between the calculated strains and the actual strains.   

7.2 Recommendations for Future Research 

 A main limitation or consideration for the ABST is the pore water pressure conditions 

corresponding to the measured strength parameters.  In soils with low permeability, partially drained 

conditions may exist during shearing, making interpretation of the strength parameters difficult.  

Additional research could incorporate a pore water pressure transducer on the shear plate.  Since the 

data acquisition system can be used to record the pore pressure record with time, the effective shear 

stress record could conceivably be determined by subtracting the pore pressure from the measured 

total shear stress.  Using this method, the pore pressure and drainage conditions corresponding to the 

strength parameters could be more clearly understood, and liquefaction behavior of cohesionless soils 

could be studied.  Previous research has indicated that the pore pressure distribution across the shear 

plates is non-uniform, with larger pore pressures near the top of the shear plate (Lutenegger and 
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Timian, 1986).  Additional studies are needed to determine whether a single representative value of 

pore pressure over the shear plate can be used for calculating the effective normal and shear stresses 

in the soil. 

 Additional research related to the cyclic ABST could be aimed at replacing the entire base 

plate assembly with a drill-rig-mounted actuator capable of upward and downward loads of 

approximately 1,000 lb at frequencies up to 30 Hz (Ashlock, 2012).  The double-strap shear head 

design developed in this thesis could be used with such an actuator and suitably braced compression 

rods to develop a new cyclic ABST apparatus.  Furthermore, a shield or casing could be designed to 

surround the shear head to prevent caving in cohesionless soils.   

 Full utilization of the cyclic ABST requires the measurement of shear strain, so that shear 

modulus and damping ratio can be determined in situ.  Cyclic strains could also aid in the evaluation 

of liquefaction potential in stress controlled tests using the concept of the threshold strain (NRC, 

1985).  The current cyclic ABST measures shear displacements with a string potentiometer.  

However, the resulting three-dimensional distribution of shear strains within the soil is presently 

unknown.  By performing a numerical analysis of the cyclic ABST, the strains in the soil could 

potentially be determined based on the measured shear stress, displacement, and soil properties.  This 

thesis presented a basic model for calculating the strains from a monotonic test in dry sand.  

Additional research is recommended to examine the effect of pore water pressure on the calculated 

strains in the model.  This is an important area of research, since the analysis of liquefaction potential 

will be highly dependent on the rate of generation of pore water pressures.  In addition, parametric 

studies could be performed to examine the effects of various soil properties and constitutive models 

on the calculated strains.  The results could potentially be used to develop a numerically-based 

correlation between soil type and the depth of shear stress influence.  If such a correlation could be 

developed reliably, strain values could potentially be calculated from the measured displacements in 

real time.     
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APPENDIX A. ABST PROGRAM USER GUIDE AND 

TROUBLESHOOTING MANUAL 

A.1 ABST Stand Alone Program User Guide 

 This ABST stand alone program user guide describes the procedure required for the basic test 

and the function of each control in the program.  A stand alone program was also developed in order 

to allow the selection of active input channels, and this program has a separate manual.   

This manual can be utilized to understand the function of the ABST control program but 

should be considered a supplement for the BST instructions provided with the manual (Handy, 2002).  

The stand alone program user guide supplied with a new ABST may be different from this guide, and 

the supplied guide should be utilized as the primary reference.  

A.1.1 Preparation 

 Before beginning the program, the laptop should be connected to the electronics Pelican case 

with the two supplied USB A Male to A Male cables.  The two gray multi-pin cables should be used 

to connect the electronics case to the base plate and BST console face.  A single cable with BNC 

connectors should also be used to connect the base plate to the electronics case.  A pure sine wave 

inverter or an inverter generator must be used as the power supply.  The power supply needs to have a 

capacity of 500 W, but the case will only draw what it requires.  After the electronics case is turned 

on, the stand alone program may be started.     

 All controls should be set to their appropriate value before starting the test to ensure that the 

desired testing conditions are met.  Most controls can be altered while the program is running, but 

care must be exercised to ensure that controls are altered at the desired point in the test.  This manual 

will help users become familiar with the proper use of controls that may be non-functional during 

certain points in the test. 



107 

 

In addition to manually initializing the controls, the file location for the measured data should 

be initially specified.  Figure A.1 displays the text save control set, and the following list describes 

the function of the controls in the set. 

• Save to Text:  Determines whether a 

text file will be saved. 

• Text Save Folder:  Determines the 

location of the text folder.  It is 

important not to add a .txt to the end of the path because a folder will be created at the desired 

location. 

With the retract option on the BST console face selected, a pressure larger than the maximum 

desired normal stress is to be supplied at the console.  This pressure can be increased simply by 

turning the knob clockwise. The automatic control option on the console face should then be selected 

with the pressure selector valve.  When the normal stress gauge returns to zero, the expand option is 

selected. 

The VISA resource name control (Figure A.2) specifies the port used 

for the stepper during the test.  The appropriate port can be found by right-

clicking My Computer in the Start Menu and selecting Properties.  The 

Device Manager is then selected under the Hardware tab.  The Ports section can then be expanded to 

determine the COM port of the USB-to-serial converter.   

A.1.2 Test Boring 

Before the test can be performed, a smooth borehole with a three inch diameter should be 

created.  There are no controls in the program related to the test boring, and the BST instructions 

should be referenced for more information (Handy, 2002).    

 

 

Figure A.1:  Text save control set   

Figure A.2: 

Stepper port 
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A.1.3 Insertion of the Shear Head 

The shear head should be inserted into the borehole according to the provided instructions 

(Handy, 2002).  Once the shear head is inserted to the appropriate depth and secured to the base plate, 

the shear head can be slightly raised or lowered with the raise/lower shear head control set.  In 

addition to positioning the shear head, this procedure is useful for ensuring that the apparatus is 

working properly. Figure A.3 displays a screen shot of this control set.  After the shear head is in the 

appropriate position, the Tare Normal Pressure control should be selected.  This step will record the 

initial normal pressure, and the initial stress will be subtracted from the measured values if the Tare 

control is selected.  After the Tare Normal Pressure control is selected, the button will be replaced 

with a Start Test button.  Start Test should be selected to start the 

automated test.  The following list describes the remaining controls in the 

raise/lower shear head control set.    

• Manual Speed Control:  Sets the angular velocity of the worm gear in 

revolutions per second.  This control can be changed in one-tenth 

increments by using the page up and page down keys located on the 

keyboard.  

• Stop Motor:  Prevents the shear head from being raised or lowered 

when the Manual Jog control is deactivated.  

• Reverse:  Determines whether the shear head is raised or lowered.  The 

head will be lowered when this control is activated.    

• Manual Jog:  Allows the user to rotate the worm gear at a speed 

specified by the Jog Speed control.  When activated, the head moves 

only when the Jog control is held by the user.  Only positive numbers 

should be entered into the Jog Speed control, and the Reverse control Figure A.3:  Shear 

head movement 

controls 



109 

 

should be used to determine the direction of movement.  

• Current Speed:  Displays the current angular velocity of the worm gear in revolutions per second.   

A.1.4 Application of Normal Stress 

After the Start Test button is selected, the first normal stress is applied to the soil. Figure A.4 

displays the consolidation control set, and the following list describes the purpose of the controls. 

• # of Points:  Enter the number of separate normal stresses to 

apply during the test.   

• Stress (psi):  Enter the value of each normal stress to apply. 

• Time to wait (min):  Specifies the consolidation time for each 

normal stress. 

• Current Normal Stress/Current delay time:  Displays the 

current normal stress and delay time being used in the test. 

The values in the consolidation control set should be set 

before starting the test.  The number of points, stresses, and times 

can be changed while the program is running.  However, it is 

important to have each point entered before the program either 

finishes the test or reaches the point of interest.  The program can be paused while the shear head is 

being lowered to the tare value, and the points can be altered while the program is paused to improved 

reliability. 

Figure A.5 displays the monitoring control set, and the following list describes the function of 

the controls. 

• Consolidation Time (sec):  Displays a countdown of 

the consolidation time remaining before the shear 

stress is applied.  When this time reaches zero, the 
Figure A.5:  Monitoring set 

Figure A.4:  Consolidation 

controls  
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shearing stage will automatically be initiated after of pause of approximately 10 to 20 seconds to 

clear the DAQ buffer. 

• End Consolidation:  Immediately aborts the current consolidation segment of the test and initiates 

the shearing stage following a brief pause of 10 to 20 seconds to clear the buffer. 

• Shear Stress and Normal Stress (psi): Displays the current stress being measured by the normal 

and shear pressure sensors.   

After the consolidation time has expired, the program will remain idle for a period of time 

before the shear stress is applied.  This idle time will be approximately equal to the consolidation time 

divided by 60.  For example, a consolidation time of 20 minutes will have an idle time of 

approximately 20 seconds before the shear stress is applied.  This time is utilized to clear the buffer 

before the shear record is measured. 

A.1.5 Application of Shearing Stress 

Shear stress will be automatically applied to the soil after the consolidation phase is 

completed.  Figure A.6 shows an example of the shear record plot that is generated as the shear head 

is raised.  Each shear stress record is plotted on the same graph.  The time record can be viewed by 

Figure A.6:  Shear stress record plot 
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selecting the shear stress time record tab.  The x and y axes in each plot within the program can be 

auto-scaled by right-clicking on the graph and selecting Auto Scale.  If Auto Scale is not selected, the 

axis limits can be specified by double clicking on the first or last axis label.   

Figure A.7 presents the tare control set. The Initial Shear (psi) 

indicator displays shear stress applied to the apparatus from self weight 

before a normal stress is applied.  The initial shear value is recorded 

immediately after the Start Test control is activated.     

Figure A.8 displays the control set that specifies how a peak shear stress will be automatically 

detected by the program.  The following list describes the controls utilized to select the peak shear 

stress.  All percentages throughout the program should be entered in percentage form.   

• Advance on Peak:  Allows the program to terminate the shearing phase if a peak is detected in the 

shear stress record.   

• % of Peak Stress to Trigger Advance:  The peak shear stress is continually monitored and 

compared to the current shear stress.  The shearing phase will be terminated if the current shear 

stress falls below this specified percentage of the peak shear stress. 

• Advance on Plateau:  Allows the program to terminate 

the shearing phase if a plateau is detected in the shear 

stress record.  The plateau is indicated by a shear stress 

that changes by less than a specified percentage over a 

specified distance. 

• Distance for Plateau (in):  Specifies the distance over 

which the shear head must be raised (based on stepper 

displacement) without a specified change in shear stress 

to advance the test. 

Figure A.7:  Tare 

controls 

Figure A.8:  Peak stress controls 
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• Percent Difference on Plateau:  Specifies the percent difference between the maximum and 

minimum values on the plateau that will allow the test to advance. 

• Advance Now:  Allows the user to immediately terminate the shearing phase and advance the test 

to the next normal pressure. 

• Reason for Previous Advance:  Displays the reason the test advanced to the next normal stress. 

The speed of the shear head can be modified by utilizing the same procedure that was used 

while the shear head was initially positioned.  Figure A.3 displays the screenshot of this control set.   

The test can be paused while shear stress is being applied and after the shear head is lowered.  

Figure A.3 displays the Pause control.  If the Pause control is activated, the program will pause at the 

next available point.  To perform an emergency stop, abort the test by clicking the stop icon in the 

toolbar and then run a new test quickly to stop the shear head movement.  This procedure should be 

used with caution because any measured data will be lost.  The stepper motor can also be shut off 

with the switch on the electronics case.  If this is done, the program will need to be restarted after 

turning the stepper power back on. 

A.1.6 Completing the Test 

Upon termination of the shearing phase for each peak shear stress, the shear head should be 

lowered until only a small residual shear stress remains.  Figure A.9 displays the control set that 

corresponds to lowering the shear head, and the following list describes the function of the controls. 

• Lower Head after each test:  Causes the shear head to be lowered automatically after each 

maximum shear stress is found.   

• Residual Shear Stress (psi):  Determines the difference between 

the current shear stress and the initial shear stress that will cause 

the shear head to stop lowering.  This value is used to maintain a 

small residual shear stress between tests as recommended by the Figure A.9:  Lower shear 

head controls 
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BST Instruction Manual and to avoid the stepper motor overshooting the initial tare stress and 

putting the rods into compression.  The recommended value of 0.5 psi should work well in most 

situations. 

• Manual:  Shear Head in Position:  Pressing this button will cause the shear head to stop lowering 

and immediately advance the test to the next normal stress. 

After the final data point is obtained, the normal stress will be automatically decreased to 

zero by the pressure regulator.  The shear head can be retracted by rotating the ‘auto-manual’ selector 

on the BST console face to manual and releasing the pressure manually.  The retract option can be 

selected on the BST console face when a pressure of approximately 5 psi is supplied. 

Once the shear head is retracted, the shear head can be removed and cleaned according to the 

BST instructions (Handy 2002).    

A.1.7 Results 

Figure A.10 displays the failure envelope shown on the front panel of the program.  The 

maximum shear stress for each normal stress is plotted on the chart, and a linear regression is 

performed.  The friction angle, cohesion, and R
2
 value are automatically updated after each data point 

is obtained. 

Figure A.11 displays a row of check-boxes that are used to turn on and off the different test 

points of Figure A.10, which is useful for eliminating suspect data points from the failure envelope 

calculation.  The points are 

arranged in chronological order 

from left to right.  The best fit 

shear strength parameters are re-

calculated each time a point is 

turned on or off.   

Figure A.10:  Failure envelope plot 
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Figure A.12 displays a similar row of check-boxes that are used to show or hide the plots of 

the various shear stress records.  The shear stress 

records also are arranged in chronological order.  

However, the line colors are associated with the 

number of active curves in the plot rather than the 

individual curves themselves.  As a result, the color of the 

individual curves will change when showing or hiding shear 

stress records on this plot. 

The Stop Plot Adjust control is used to stop the 

program after a test corresponding to each specified normal stress has been performed. This control 

allows the failure envelope to be manipulated until the user is satisfied.  It is important to stop the test 

by utilizing the Stop Plot Adjust control.  If the test is aborted by clicking the stop icon in the toolbar, 

the measured data will not be saved.  To run a new test, change the data folder names and click on 

the single rightward pointing arrow below the menu bar at the top of the screen.      

A.2 ABST Troubleshooting Manual 

The subdivisions within this section are organized according to the steps in the ABST test 

procedure.  Each subdivision presents suggestions or considerations for each step.  In addition, 

potential problems that may arise in each step are presented in list form with corresponding solutions.   

A.2.1 Initial Stage and Shear Head Positioning 

It is strongly recommended to check that the stepper responds during the initial phase of the test.  

If the wrong port is selected for the motor, the test will have to be reset. 

• Stepper Motor does not respond.   

o Ensure that the proper port or COM is selected in the program. 

o Check that the USB cables are properly attached to the data acquisition console. 

o Ensure that the data acquisition console is plugged in and turned on. 

Figure A.11:  Failure envelope 

adjustments 

Figure A.12:  Stress record 

plot control 
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A.2.2 Consolidation Phase 

• Specified normal pressure is not applied. 

o Turn in the pressure regulator knob on the BST console face to ensure adequate 

pressure is supplied for the desired normal stress. 

o Ensure that the compressed CO2 container is fully open. 

o Attach a full CO2 container to the BST console. 

A.2.3 Shear Phase 

The program automatically advances to the next normal stress after finding a peak or plateau in 

the shear record.  The Advance on Plateau and Advance on Peak controls can be turned off at any 

time, and the program can be manually advanced with the Advance Now control.  

• Shear stress is not applied as the head is raised. 

o The acme cylinder and rod clamp are not engaged. 

1. Quickly turn off the Advance on Peak and Advance on Plateau controls to 

ensure that the program does not read a maximum shear stress and advance 

to the next test point. 

2. Apply upward force on the acme cylinder and downward force on the rod 

clamp until the cylinder engages the rod clamp, and the rod begins to pull.  A 

near equal upward and downward force should be applied to ensure that a 

faulty stress is not recorded. 

3. Turn the Advance on Peak and Advance on Plateau controls on after the 

shear stress exceeds the maximum stress recorded while the cylinder was 

being engaged. 

o Slack needs to be taken out of the shear head apparatus. 

1. Turn off the Advance on Peak and Advance on Plateau controls until the 

slack is taken up. 
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2. Turn the controls back on after the shear stress exceeds the maximum stress 

recorded while slack was being taken out of the apparatus. 

• Shear record abruptly shows a plateau at an abnormally low shear stress. 

o It is likely that the shear head encountered an inconsistency in the borehole. 

1. Quickly turn off the Advance on Peak and Advance on Plateau controls to 

ensure that the program does not read a maximum shear stress and advance 

to the next test point. 

2. Wait for the shear stress to increase. 

3. If the shear stress record is not acceptable for multiple points, stop the test, 

adjust the shear head position, and restart the test. 

• The motor begins to bind while raising the head. 

o The motor cannot supply enough torque to raise the shear head. 

1. Quickly select the Pause program control to stop the motor and data 

acquisition. 

2. Use the switch on the Pelican electronics case to turn off the stepper motor. 

3. Attach the manual crank to the worm gear. 

4. Select the PAUSE control to continue recording data. 

5. Use the crank to raise the shear head at the desired rate.  

6. Use the Advance Now program control to record the maximum shear stress. 

7. Use the manual crank along with the program’s data logging capabilities to 

finish the test. 

o Binding of the motor most likely results from improper alignment.  The user should 

check that the pull rod is vertical and centered, ensure that the belt is properly 

positioned, and apply lubricant to the gears. 
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A.2.4 Shear Head Lowering 

• The motor continues to lower the head even though the minimum shear stress has been 

obtained. 

o The Residual Shear Stress program control is set too low or a faulty tare was 

recorded. 

1. Select the Manual:  Shear Head in Position program control.    

2. The Residual Shear Stress program control can be increased for subsequent 

tests to leave a small residual stress. 

To prevent damage to the apparatus, the program should be monitored throughout the test, 

especially while the shear head is being raised.  By ensuring that the test is progressing properly, the 

need to repeat tests can be avoided. 
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APPENDIX B. MICROSOFT EXCEL POST-PROCESSING 

B.1 Microsoft Excel ABST Post-processing Code 

Sub BSTSummary() 

 

Dim NormalStress(1 To 15) As Single 

Dim ShearStress(1 To 15) As Single 

MsgBox ("Open Failure Envelope File") 

 

strFileName = Application.GetOpenFilename("All Files,*.", , "File to process.") 

Workbooks.OpenText Filename:=strFileName _ 

, Origin:=437, StartRow:=1, DataType:=xlDelimited, TextQualifier:= _ 

xlDoubleQuote, ConsecutiveDelimiter:=False, Tab:=False, Semicolon:=False _ 

, Comma:=True, Space:=False, Other:=False, FieldInfo:=Array(1, 1), _ 

TrailingMinusNumbers:=True 

 

TestCount = 0 

Cells(23, 2).Select 

TCell = ActiveCell.Value 

 

Do 

    If IsEmpty(TCell) Then 

        Exit Do 

    Else 

        ActiveCell.Offset(0, 1).Select 

        TCell = ActiveCell.Value 

        TestCount = TestCount + 1 

    End If 

Loop 

 

Cells(23, 2).Select 

 

J = 1 

 

For J = 1 To TestCount 

 

ActiveCell.Value = VBA.Round(ActiveCell.Value, 1) 

ActiveCell.Offset(0, 1).Select 

 

Next J 

 

Cells(23, 2).Select 

 

J = 1 

 

For J = 1 To TestCount 

 

NormalStress(J) = ActiveCell.Value 

ActiveCell.Offset(0, 1).Select 

 

 Figure B.1:  Visual Basic code for ABST data processing 
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Next J 

 

J = 1 

Cells(24, 2).Select 

 

For J = 1 To TestCount 

ShearStress(J) = ActiveCell.Value 

ActiveCell.Offset(0, 1).Select 

 

Next J 

 

If TypeName(Selection) <> "Range" Then Exit Sub 

 

Set rngChtData = Selection 

 

Set mychtObj = ActiveSheet.ChartObjects.Add _ 

  (Left:=500, Width:=600, Top:=5, Height:=250) 

With mychtObj.Chart 

 

.ChartType = xlXYScatter 

.HasTitle = True 

.ChartTitle.Characters.Text = "Failure Envelope" 

.Axes(xlCategory, xlPrimary).HasTitle = True 

.Axes(xlCategory, xlPrimary).AxisTitle.Characters.Text = "Normal Stress (psi)" 

.Axes(xlValue, xlPrimary).HasTitle = True 

.Axes(xlValue, xlPrimary).AxisTitle.Characters.Text = "Shear Stress(psi)" 

.HasLegend = False 

 

Do Until .SeriesCollection.Count = 0 

    .SeriesCollection(1).Delete 

Loop 

   

    With .SeriesCollection.NewSeries 

        .Values = ActiveSheet.Range(Cells(24, 2), Cells(24, (2 + TestCount))) 

        .XValues = ActiveSheet.Range(Cells(23, 2), Cells(23, (2 + TestCount))) 

        .Name = "Failure Envelope" 

    End With 

     

.SeriesCollection(1).Trendlines.Add Type:=xlLinear, Name:="Linear Trend" 

 

    With .SeriesCollection(1).Trendlines(1) 

        .DisplayRSquared = True 

        .DisplayEquation = True 

    End With 

     

End With 

    

MsgBox ("Open Shear History File") 

 

 

 

 Figure B.1:  (continued) 
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strFileName = Application.GetOpenFilename("All Files,*.", , "File to process.") 

Workbooks.OpenText Filename:=strFileName _ 

, Origin:=437, StartRow:=1, DataType:=xlDelimited, TextQualifier:= _ 

xlDoubleQuote, ConsecutiveDelimiter:=False, Tab:=False, Semicolon:=False _ 

, Comma:=True, Space:=False, Other:=False, FieldInfo:=Array(1, 1), _ 

TrailingMinusNumbers:=True 

 

ColumnCount = TestCount * 2 

     

RowCount = 1 

Cells(23, 2).Select 

RCell = ActiveCell.Value 

 

Do 

    If IsEmpty(RCell) Then 

        Exit Do 

    Else 

        ActiveCell.Offset(1, 0).Select 

        RCell = ActiveCell.Value 

        RowCount = RowCount + 1 

    End If 

Loop 

         

LastCell = Cells(23, 2).Select 

     

N = 1 

 

For N = 1 To ColumnCount 

 

Do 

 

If IsEmpty(LastCell) Then 

    Exit Do 

Else 

    ActiveCell.Offset(1, 0).Select 

    LastCell = ActiveCell.Value 

End If 

 

Loop 

 

Do 

 

ActiveCell.Offset(-1, 0).Select 

 

If (ActiveCell.Value = 0#) Then 

    ActiveCell.Clear 

Else 

    ActiveCell.Offset(0, 1).Select 

    LastCell = ActiveCell.Value 

    Exit Do 

End If 

 
Figure B.1:  (continued) 
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Loop 

     

Next N 

 

If TypeName(Selection) <> "Range" Then Exit Sub 

 

Set rngChtData = Selection 

 

Set mychtObj = ActiveSheet.ChartObjects.Add _ 

  (Left:=650, Width:=600, Top:=5, Height:=300) 

With mychtObj.Chart 

 

.ChartType = xlXYScatterLinesNoMarkers 

.HasTitle = True 

.ChartTitle.Characters.Text = "Shear History" 

.Axes(xlCategory, xlPrimary).HasTitle = True 

.Axes(xlCategory, xlPrimary).AxisTitle.Characters.Text = "Distance (in)" 

.Axes(xlValue, xlPrimary).HasTitle = True 

.Axes(xlValue, xlPrimary).AxisTitle.Characters.Text = "Shear Stress (psi)" 

.Axes(xlValue).MaximumScaleIsAuto = True 

.Axes(xlValue).MinimumScale = Application.Min(0) 

 

Do Until .SeriesCollection.Count = 0 

    .SeriesCollection(1).Delete 

Loop 

   

N = 1 

 

For N = 1 To TestCount 

 

    With .SeriesCollection.NewSeries 

        .Values = ActiveSheet.Range(Cells(23, (N * 2) + 1), Cells((23 + RowCount), (N * 2) + 1)) 

        .XValues = ActiveSheet.Range(Cells(23, (N * 2)), Cells((23 + RowCount), (N * 2))) 

        .Name = NormalStress(N) & " psi" 

    End With 

     

Next N 

 

End With 

 

MsgBox ("Open Time History") 

 

strFileName = Application.GetOpenFilename("All Files,*.", , "File to process.") 

Workbooks.OpenText Filename:=strFileName _ 

, Origin:=437, StartRow:=1, DataType:=xlDelimited, TextQualifier:= _ 

xlDoubleQuote, ConsecutiveDelimiter:=False, Tab:=False, Semicolon:=False _ 

, Comma:=True, Space:=False, Other:=False, FieldInfo:=Array(1, 1), _ 

TrailingMinusNumbers:=True 

 

ColumnCount = TestCount * 2 

     

 
Figure B.1:  (continued) 
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RowCount = 1 

 

Cells(23, 2).Select 

RCell = ActiveCell.Value 

 

Do 

    If IsEmpty(RCell) Then 

        Exit Do 

    Else 

        ActiveCell.Offset(1, 0).Select 

        RCell = ActiveCell.Value 

        RowCount = RowCount + 1 

    End If 

Loop 

         

LastCell = Cells(23, 2).Select 

     

N = 1 

 

For N = 1 To ColumnCount 

 

Do 

 

If IsEmpty(LastCell) Then 

    Exit Do 

Else 

    ActiveCell.Offset(1, 0).Select 

    LastCell = ActiveCell.Value 

End If 

 

Loop 

 

Do 

 

ActiveCell.Offset(-1, 0).Select 

 

If (ActiveCell.Value = 0#) Then 

    ActiveCell.Clear 

Else 

    ActiveCell.Offset(0, 1).Select 

    LastCell = ActiveCell.Value 

    Exit Do 

End If 

 

Loop 

     

Next N 

 

If TypeName(Selection) <> "Range" Then Exit Sub 

 

 

 
Figure B.1:  (continued) 



123 

 

 

Set rngChtData = Selection 

 

Set mychtObj = ActiveSheet.ChartObjects.Add _ 

  (Left:=650, Width:=600, Top:=5, Height:=300) 

With mychtObj.Chart 

 

.ChartType = xlXYScatterLinesNoMarkers 

.HasTitle = True 

.ChartTitle.Characters.Text = "Time History" 

.Axes(xlCategory, xlPrimary).HasTitle = True 

.Axes(xlCategory, xlPrimary).AxisTitle.Characters.Text = "Time (s)" 

.Axes(xlValue, xlPrimary).HasTitle = True 

.Axes(xlValue, xlPrimary).AxisTitle.Characters.Text = "Shear Stress (psi)" 

.Axes(xlValue).MaximumScaleIsAuto = True 

.Axes(xlValue).MinimumScale = Application.Min(0) 

 

Do Until .SeriesCollection.Count = 0 

    .SeriesCollection(1).Delete 

Loop 

   

N = 1 

 

For N = 1 To TestCount 

 

    With .SeriesCollection.NewSeries 

        .Values = ActiveSheet.Range(Cells(23, (N * 2) + 1), Cells((23 + RowCount), (N * 2) + 1)) 

        .XValues = ActiveSheet.Range(Cells(23, (N * 2)), Cells((23 + RowCount), (N * 2))) 

        .Name = NormalStress(N) & " psi" 

    End With 

     

Next N 

 

End With 

 

End Sub 

 

 

 

 

 

 

 

 

Figure B.1:  (continued) 
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B.2 Microsoft Excel ABST Post-processing Code Output 

Figure B.2:  Failure envelope from ABST post-processing code 
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APPENDIX C. FIELD ABST RESULTS 

C.1 ABST Results in Sandy Glacial Till 

 

Table C.1:  Glacial till ABST results (Test 1) 

Location Northwest Corner of Spangler footing plot 

Depth 27.5 in 

Angle of Friction 36.6˚ 

Cohesion 4.5 psi 

Figure C.1:  Shear record and failure envelope for ABST in glacial till (Test 1) 

Shear Stress vs. Stepper Displacement  
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Table C.2:  Glacial till ABST results (Test 2) 

Location Northwest Corner of Spangler footing plot 

Depth 67.5 in 

Angle of Friction 39.2˚ 

Cohesion 2.5 psi 

Figure C.2:  Shear record and failure envelope for ABST in glacial till (Test 2) 

Shear Stress vs. Stepper Displacement  
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Table C.3:  Glacial till ABST results (Test 3) 

Location Northwest Corner of Spangler footing plot 

Depth 98.0 in 

Angle of Friction 38.2˚ 

Cohesion 2.3 psi 

 

Figure C.3:  Shear record and failure envelope for ABST in glacial till (Test 3) 
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C.2 ABST Results in Soft Clay 

 

Table C.4:  Soft clay ABST results (Test 1) 

Location Scholl Road  

Depth 68.0 in 

Angle of Friction 25.2˚ 

Cohesion -0.1 psi 

 

 

 

 

 

 

 

 

 

Figure C.4:  Failure envelope for ABST in soft clay (Test 1) 
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Table C.5:  Soft clay ABST results (Test 2) 

Location Scholl Road 

Depth  68 in 

Angle of Friction 30.7˚ 

Cohesion 0.6 psi 

 

 

 

 

 

 

 

 

 

Figure C.5:  Failure envelope for ABST in soft clay (Test 2) 
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Table C.6:  Soft clay ABST results (Test 3) 

Location Scholl Road 

Depth 61.0 in 

Angle of Friction 24.4˚ 

Cohesion 6.0 psi 

Figure C.6:  Failure envelope for ABST in soft clay (Test 3) 
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Note: Slow shearing rate of 0.2 rps (0.0002 in./sec) 

Table C.7:  Soft clay ABST results (Test 4) 

Location Scholl Road 

Depth 61.0 in 

Angle of Friction 22.3˚ 

Cohesion 4.0 psi 

 

Figure C.7:  Failure envelope for ABST in soft clay (Test 4) 

Shear Stress vs. Stepper Displacement  
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APPENDIX D. DIRECT SHEAR TESTS ON FIELD SAMPLES 

D.1 Direct Shear Test Results in Sandy Glacial Till 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure D.1:  Direct shear test results (Spangler: Test 1 ≈ 27.5 in.) 
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Figure D.2:  Direct shear test results (Spangler: Test 2 ≈ 67.5 in.) 
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Figure D.3:  Direct shear test results (Spangler: Test 3 ≈ 98.0 in.) 
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D.2 Direct Shear Test Results in Soft Clay 

 

Figure D.4:  Direct shear test results (Scholl Rd: Test 1 at 50-72 in.) 
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APPENDIX E. ABST DISPLACEMENT MEASUREMENTS 

E.1 Rod, Shear Head, and Stepper Displacement 
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displacement at normal stress of 7 psi 

Figure E.2:  Displacement at top of pull rod vs. actual shear head 
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Figure E.7:  Displacement at top of pull rod vs. actual shear head 
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Figure E.9:  Shear stress vs. rod and shear head displacements at 
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Figure E.10:  Rod and strap elongation at normal stress of 10 psi 
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Figure E.11:  Stepper displacement vs. actual shear head 

displacement at normal stress of 15 psi 

Figure E.12:  Displacement at top of pull rod vs. actual shear head 

displacement at normal stress of 15 psi 



142 

 

 
 

 
 

 

0

2

4

6

8

10

12

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

S
h

e
a

r 
S
tr

e
ss

 (
p

si
)

Stepper Displacement (in)

15 psi Normal Stress Test 1: 

Shear Stress vs. Stepper

Incremental stepper and shear head 

displacements approx. equal after this point

0

2

4

6

8

10

12

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

S
h

e
a
r 

S
tr

e
ss

 (
p

si
)

Displacement (in)

15 psi Normal Stress Test 1: 

Shear Stress vs. Displacement

vs. Rod

vs. Shear Head

Incremental rod and shear head 

displacements approx. equal after this point

-0.004

-0.002

0

0.002

0.004

0.006

0.008

0.01

0.012

0 20 40 60 80 100 120

R
o

d
 a

n
d

 S
tr

a
p

 E
lo

n
g

a
ti

o
n

 (
in

)

Force(lb)

15 psi Normal Stress Test 1: 

Rod and Strap Movement vs. Force

Theoretical (Rod Only)

Measured

Figure E.13:  Shear stress vs. stepper displacement at normal stress 

of 15 psi 

Figure E.14:  Shear stress vs. rod and shear head displacements at 

normal stress of 15 psi 

Figure E.15:  Rod and strap elongation at normal stress of 15 psi 
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Figure E.16:  Stepper displacement vs. actual shear head 

displacement at normal stress of 20 psi 

Figure E.17:  Displacement at top of pull rod vs. actual shear head 

displacement at normal stress of 20 psi 
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Figure E.18:  Shear stress vs. stepper displacement at normal stress 

of 20 psi 

Figure E.19:  Shear stress vs. rod and shear head displacements at 

normal stress of 20 psi 

Figure E.20:  Rod and strap elongation at normal stress of 20 psi 
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E.2 Rod, Clamp, and Cross-Plate Displacement with Fixed Rod Base 
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Figure E.21:  Trend fit to relationship between cylinder compression and shear stress for 

Test 1 with locking pliers used to prevent slippage  

Figure E.22:  Comparison of theoretical and measured rod elongation for Test 1 with 

locking pliers used to prevent slippage 
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Figure E.23:  Slippage between the clamp and rod for Test 1 with locking pliers used to 

prevent slippage 
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Figure E.24:  Comparison between predicted and measured cylinder compression for Test 2 

with locking pliers used to prevent slippage 

Figure E.25:  Comparison of theoretical and measured rod elongation for Test 2 with 

locking pliers used to prevent slippage 
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Figure E.26:  Slippage between the clamp and rod for Test 2 with locking pliers used to 

prevent slippage 
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Figure E.27:  Comparison between predicted and measured cylinder compression for Test 1 

without locking pliers 

Figure E.28:  Comparison of theoretical and measured rod elongation for Test 1 without 

locking pliers 
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Figure E.29:  Slippage between the clamp and rod for Test 1 without locking pliers 
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Figure E.30:  Comparison between predicted and measured cylinder compression for Test 

2 without locking pliers 

Figure E.31:  Comparison of theoretical and measured rod elongation for Test 2 without 

locking pliers 
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Figure E.32:  Slippage between the clamp and rod for Test 2 without locking pliers 
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E.3 Supplementary ABST Stiffness Plots with Fixed Rod Base 
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Figure E.33:  Investigation into the effect of location on cross-plate displacement 

measurement with locking pliers used to prevent slippage 

Figure E.34:  Investigation of possible movement at the base of the fixed pull rod with 

locking pliers used to prevent slippage 
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 Figure F.1:  DAQ channel controls 

APPENDIX F. CYCLIC ABST DESIGN 

F.1 Additions to the User Guide 

 Appendix A.1 presents the ABST stand alone program user guide.  This user guide outlines 

the function of the controls within the program and identifies when those controls should be utilized.  

The following sections describe additional controls that are present in the cyclic ABST control 

program.  Only the steps in the BST procedure that are associated with the additional cyclic controls 

will be described. 

 This user guide describes how to perform the test using a string potentiometer to measure 

displacement of the shear plates.  A string potentiometer can be connected to the shear head with 

fishing line, and the length of the line can be adjusted by adding or removing leaders.  This additional 

instrumentation can easily be incorporated into the ABST without significant changes to the 

apparatus.  However, the process of attaching the shear head to the string potentiometer with fishing 

line may become complicated under some circumstances.  For example, a deep boring or a drilling 

procedure that incorporates drilling mud may complicate the use of the string potentiometer.  As a 

result, it is proposed that an accelerometer be used to measure displacements when a new shear head 

apparatus is constructed (Section 5.3.2).        

F.1.1 Preparation 

 Since the cyclic ABST requires a method of measuring the displacement of the shear head, it 

is recommended that a string potentiometer be secured to the base plate and attached to the shear head 
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Figure F.2:  Cyclic 

test controls 

when the original apparatus is used.  The string potentiometer should then be wired to input channel 

two on the DAQ.  The front panel of the program can be used to activate or deactivate channel two 

and change the minimum and maximum voltage for the channel (Figure F.1).  The voltage range 

should be set as small as possible based on the expected displacement range to increase the 

measurement resolution.  Section 3.3.1 can be referenced for more information on selecting voltage 

ranges.  The power for the string potentiometer can be obtained from the power supply housed in the 

Pelican electronics case.  This program was developed for a 4-20 mA transducer output signal rather 

than a DC voltage device, since the sensitivity of the former is not affected by the power supply’s 

voltage.  However, it is important to check that the power supply’s voltage does not violate the 

maximum or minimum input voltage specified for the device. 

The Cyclic Test button shown in Figure F.2 should be activated 

(green light on) if a cyclic test will be performed.  If this control is not 

selected, a traditional automated BST will be performed.  Since the 

program has the capability for both cyclic and monotonic tests, the controls 

on the front panel that do not correspond to the selected test can be 

disregarded.  

If a cyclic test is to be performed, the controls shown in Figure F.3 

can be utilized to set the limits of the test.  The Limit Type control can be 

set to either Displacement or Shear Stress.  The desired stress or 

displacement limits should then be entered into the Upper Limit and Lower 

Limit boxes.  The displacement limits should be entered in inches and the 

stress boundaries in psi.   

 

 

Figure F.3:  Limit 

controls 

Figure F.4:  String 

pot indicators 
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F.1.2 Insertion of Shear Head 

 Since a string potentiometer is used for a cyclic ABST, it is beneficial to check the initial 

measurement of the string potentiometer.  If the initial measurement is too close to the limits of the 

device, fishing leaders can be added or removed to extend or retract the cable to acquire an initial 

condition with an adequate available range of motion.  

Figure F.4 shows the string pot (in) indicator that is used to check the initial string 

potentiometer measurement before the test is started.  This indicator will continually update with the 

current string potentiometer measurement throughout the test.  Indicators displaying the initial 

measurement and current string potentiometer displacements are also shown in Figure F.4.  Once an 

adequate initial cable extension for the string potentiometer is set, the Position Set button can be 

clicked (Figure F.2).  Once the Position Set control is selected, the normal stress tare can be obtained 

and the test begun.            

F.1.3 Application of Normal Stress 

 Only one normal stress should be utilized for each cyclic test.  If multiple normal stresses are 

to be tested, the shear head should be rotated or inserted to a new depth each time in order to test at a 

fresh location.  It is possible that staged testing could be used, 

since the shear failure plane in the soil may move outward 

upon application of a higher normal stress.  However, since 

the cyclic ABST is still in its infancy, it is not recommended 

that staged testing be performed with the cyclic ABST.    

F.1.4 Application of Shearing Stress 

 The Advance on Peak and Advance on Plateau 

buttons shown in Figure F.5 should be de-activated for a 

cyclic test (green lights off).  Once the test begins, the shear 

Figure F.5:  Peak stress controls 
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head will be raised until the Upper Limit (Figure F.3) is reached and then lowered until the Lower 

Limit is reached.  This process will be repeated for as many cycles as desired by the user.  The 

controls shown in Figure F.3 can be modified at any point during the shearing stage of the test.  Once 

the user has obtained the required stress cycles, the Advance Now button in Figure F.5 should be 

clicked.       

F.1.5 Results 

 The failure envelope plot should be disregarded for the cyclic ABST.  In addition to the 

graphs that exist for the monotonic test, a new graph is presented which plots shear stress against 

string potentiometer displacement (Figure F.6).  This plot should be used to monitor the adequacy of 

the results during testing.        

 

Figure F.6:  Cyclic shear record graph 
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F.2 Double-Strap Cyclic Shear Head Design 

 Figure F.7 displays the double-strap shear head apparatus design.  Table F.1 displays the 

dimensions and material types for the double-strap parts displayed in Figures F.8 through F.14.  Table 

F.2 presents the properties utilized in the Abaqus model for each material.  Figure F.7 was developed 

with AutoCad 2012, and Figures F.8 through F.14 were developed with Abaqus 6.10.   

 The hollow box section of the pipe will encase the cylindrical section of the shear head.  This 

box section will transfer compressive loads 

to the lower hanger without contacting the 

shear head.  In addition, the proposed 

accelerometer can be placed on the shear 

head inside the box section.  A rubber seal 

or flexible epoxy coating can be applied 

between the box section and the shear head 

end plates to prevent water from reaching 

the accelerometer.    

 

 

 

 

 

Straps 
Shear 

Plate 

Pipe 

Box Section 

of Pipe 

Hanger 

Figure F.7:  Double-strap shear head 

apparatus. 
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Table F.1:  Dimensions for double-strap design 

Part Dimensions (in)
a
 Material 

Hangers Radius = 2.5; Thickness = 1 Stainless Steel 

Pipe 
Pipe Section: Outer Radius = 0.875; Inner Radius = 0.5; Height = 10.45    

Box Section: Height =  2.2; Thickness = 2.2; Width = 1.78 
Stainless Steel 

Loading rod Outer Radius = 0.75; Inner Radius = 0.5
b
 Aluminum 

Shear head 
Cylinder Section: Radius = 1.865; Width = 1.78                                             

End Plates: Height = 2.38; Thickness = 1.89; Width = 0.185 
Stainless Steel 

Shear plates Height = 2.5; Thickness = 1.82; Center Width = 0.365; Radius = 1.317 Stainless Steel 

Strap Thickness = 0.78; Width = 0.03 Spring Steel 

Piston Radius = 0.25; Width 
c
 = 0.62 Stainless Steel 

a 
For Figures F.8 through F.14: Height = y dimension; Thickness = z dimension; Width = x dimension 

b
 Loading rod height used in Abaqus analysis was 30 feet 

c
 Apparatus width with piston (expanded) = 3.5 inches; Apparatus width without piston = 2.88 inches 

 

Table F.2:  Properties for materials in double-strap apparatus 

Material Young's Modulus (ksi) Poisson's Ratio Density (pcf) Yield Strength (ksi) 

Stainless Steel 26,000 0.30 490 75 

Spring Steel 30,500 0.30 490 60 to 150 

Aluminum 10,000 0.33 170 14 
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Figure F.8:  Upper and lower hanger 

Figure F.9:  Pipes and box section 
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Figure F.10:  Loading rod 

Figure F.11:  Shear head 
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Figure F.12:  Shear plate 

Figure F.13:  Strap 
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Figure F.14:  Piston 
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Table F.3:  Double-strap apparatus stress analysis results 
F

.3
 C

y
clic A

B
S

T
 S

tre
ss A

n
a
ly

sis R
esu

lts 

  Run 1 2 3 4 5 6 7 

R
u
n
 C

h
ar

ac
te

ri
st

ic
s 

Model Type 
Shear 

Head 

Shear    

Head 

Shear 

Head 

Shear 

Head 

Shear Head 

& Loading 

rods 

Expanded Shear 

Head & Loading 

rods 

Shear Head 

& Loading 

rods
d 

Mass Proportional 

Damping Factor for 

Material 

10  50 50      50 50             50 50 

Soil Damping 

Coefficient (kg/s) 
 0    0   428    428       428           428       428/743

 

Frequency of Load 

Scaling Sine Wave (Hz) 
 2    2   2 30 30             30 30 

Initial Strap Tension (lb)    800
a
    800   800    800       800           800        550

b
 

Peak Load Applied (lb)    200    200   200    200       668           668        668 

C
o
n
tr

o
ll

in
g
 P

ri
n
ci

p
al

 

S
tr

es
s 

(k
si

) 

Pipe    -52.2  -52.2  -52.2  -52.2  -60.6  -50.8     -46.1/-36.7 

Strap 53.6  53.6  53.6  55.1  63.8  45.0     50.8
c
/35.8 

Shear Plates +/-10.2 +/-10.2  +/-10.2  +/-17.4  +/-59.5  +/-59.5 +/-59.5/0.4 

Shear Head  -0.7  -0.7  -0.7  -0.8  -1.7  -2.9      -1.7/0.1 

Hangers   -13.5  -13.5  -13.5  -14.1  -14.1  -13.7    -14.1/15.0 

Loading rods N/A      N/A     N/A   N/A      +/- 1.2          +/- 1.2  +/- 1.2/0.7 

Piston N/A      N/A     N/A   N/A     N/A                0.1    N/A 
a 
Midpoint strap tension of 720 lb (30.7 ksi) at equilibrium condition 

b
 Midpoint strap tension of 490 lb (21.0 ksi) at equilibrium condition 

c
 Minimum stress of 8.4 ksi in axial direction 

d
 Viscous and hysteretic damping conditions compared: (viscous/hysteretic) 
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Table F.4:  Double-strap apparatus damping analysis 

  Run 1 2 3 

R
u
n
 C

h
ar

ac
te

ri
st

ic
s 

Model Type
a
 

Shear Head & 

Loading rod 

Shear Head & 

Loading rod 

Shear Head & 

Loading rod 

Mass Proportional Damping Factor 

for Material 
N/A  50 N/A 

Critical Damping Ratio        0.09 N/A                0.02 

Soil Damping Coefficient N/A N/A N/A 

Frequency of Load Scaling Sine 

Wave (Hz) 
30  30  30 

Initial Strap Tension          800         800  800 

Peak Load Applied (lb)        1000       1000  1000 

C
o
n
tr

o
ll

in
g
 P

ri
n
ci

p
al

 

S
tr

es
s 

(k
si

) 

Pipe  -65.7  -68.2  -66.7 

Strap  66.1  60.9  66.1 

Shear Plates  -1.6  -1.2  -1.6 

Shear Head  -1.7  -1.7  -1.7 

Hangers  -20.6  -22.6  -21.3 

Loading rods  1.5  1.5  1.7 
a
 Shear plates are fixed in each degree of freedom. 
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APPENDIX G. CYCLIC ABST RESULTS 

G.1 Laboratory Results in Compacted Loess 
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Figure G.2:  Stress-controlled cyclic ABST results (5 psi normal stress:  Test 2) 

Figure G.1:  Stress-controlled cyclic ABST results (5 psi normal stress:  Test 1) 
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Figure G.4:  Stress-controlled cyclic ABST results (10 psi normal stress:  Test 1) 
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Figure G.3:  Stress-controlled cyclic ABST results (5 psi normal stress:  Test 3) 
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Figure G.5:  Stress-controlled cyclic ABST results (10 psi normal stress:  Test 2) 
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Figure G.6:  Stress-controlled cyclic ABST results (15 psi normal stress:  Test 1) 
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Figure G.7:  Stress-controlled cyclic ABST results (15 psi normal stress:  Test 2) 
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Figure G.8:  Displacement-controlled cyclic ABST results (5 psi normal stress:  Test 1) 
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G.2 Field Results in Sandy Glacial Till 

Figure G.9:  Shear record from monotonic ABST with string potentiometer (Boring 1: Depth 

of 2 feet) 
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Figure G.10:  Failure envelope from monotonic ABST with string potentiometer (Boring 1: 

Depth of 2 feet) 
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Figure G.11:  Stress-controlled cyclic ABST results at 10 psi and shearing rate of 2 

revolutions per second 
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Figure G.12:  Stress-controlled cyclic ABST results at 10 psi and shearing rate of 0.2 

revolutions per second 
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Figure G.13:  Stress-controlled cyclic ABST results at 10 psi and shearing rate of 5 

revolutions per second 
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Figure G.14:  Stress-controlled cyclic ABST results at 10 psi and shearing rate of 7 revolutions 

per second 
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Figure G.16:  Stress-controlled cyclic ABST results at 10 psi and shearing rate of 5 

revolutions per second 
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Figure G.15:  Stress-controlled  cyclic ABST results at 10 psi and shearing rate of 0.2 

revolutions per second 
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Figure G.17:  Stress-controlled cyclic ABST results at 10 psi and shearing rate of 7 

revolutions per second 
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Figure G.18:  Displacement-controlled cyclic ABST results at 10 psi and shearing rate of 7 

revolutions per second 
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Figure G.20:  Comparison of stress-controlled cyclic ABSTs at different shearing rates for 

boring 2 
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Figure G.19:  Comparison of stress-controlled cyclic ABSTs at different shearing rates  for 

boring 1 
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Figure G.22:  Comparison of equivalent damping ratios from stress-displacement loops at a 

normal stress of 10 psi in boring 2 
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Figure G.21:  Comparison of equivalent damping ratios from stress-displacement loops at a 

normal stress of 10 psi in boring 1 
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Figure G.23:  Comparison of equivalent secant shear modulus values from stress-

displacement loops at a normal stress of 10 psi in boring 1 
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Figure G.24:  Comparison of equivalent secant shear modulus values from stress-

displacement loops at a normal stress of 10 psi in boring 2 
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