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ABSTRACT 

 

It has been widely accepted that weather has a significant impact on road safety. The 

large body of literature points out that weather is an environmental factor that affects both 

frequency and severity of crashes. Research has shown that especially adverse weather 

conditions are associated with increase in the numbers of crashes and rates. Furthermore, the 

prevailing weather conditions may influence the severity outcome of a crash. However, 

weather may be a factor that modifies crash conditions and not the major cause of a crash. 

Thus, any interactions between the prevailing weather conditions and other crash specific 

variables especially on crash severity should be taken into account.  

In view of the above, the purpose of this thesis is to investigate the interaction effects 

of the prevailing weather conditions in combination with other crash characteristics on crash 

severity. To do so, a study on two different corridors in Iowa was conducted. Specifically, 

road segments from two different facilities, an Interstate route (I-80) and a US route (US-34), 

were selected and the corresponding crash severity was examined by estimating discrete 

outcome models. 

The estimation results show that adverse weather conditions when interacting with 

other crash attributes influence crash severity. Among the weather conditions, temperature 

below freezing, precipitation (type and amount) and wind (speed and direction) were found 

to contribute to the severity outcome of crash. However, the combination of the prevailing 

weather conditions and route classification may have diverse effects on crash severity. For 
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instance, adverse weather was found to reduce the probability of very severe crashes on the 

interstate study corridor, while the opposite effect was observed on the US route corridor.  

The results of this thesis could provide transportation agencies with useful insights 

about the maintenance and operation activities that should be undertaken on different 

roadway facilities, especially under adverse weather conditions.  Finally, the findings of this 

study can have potential implications in driver education as well as informing road users 

about the various effects of weather on safety with an emphasis on safe driving under 

inclement weather. 
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 INTRODUCTION CHAPTER 1.

1.1 Background Summary and Problem Statement 

Road crashes currently constitute one of the world’s leading causes of death. 

According to the World Health Organization (WHO), approximately 1.24 million people die 

and another 20 to 50 million are involved in non-fatal injury crashes globally on an annual 

basis. These findings rank road crashes as the eighth leading cause of death in today’s world 

(WHO, 2013). In the United States (U.S.), 32,367 people died and around 2.22 million were 

injured in 2011 (NHTSA, 2012). Only in the state of Iowa, 360 people lost their lives and 

28,396 were injured in a total of 48,713 crashes that occurred on the state’s roadway network 

in 2011 (Iowa Department of Transportation, 2012). 

It has been well established that the factors that contribute to a road crash can be 

categorized into three major groups: a) driver conditions and behavior; b) roadway design 

and environment; and c) vehicle. Weather is one of the factors (typically classified into group 

b) that have a significant effect on road safety, since weather conditions partly determine the 

road conditions and driver’s behavior (SWOV, 2012). Specifically, weather can affect both 

the collision and casualty rates by affecting road surface and environment conditions (for 

example, reduction in pavement friction, impaired visibility, etc.) and drivers’ behavior (for 

example, difficulty in vehicle steering and handling, lost control, etc.). The previous effects 

are also more intense in case of adverse weather conditions which can be considered as a 

chronic hazard for road users (Andrey et al., 2003), especially in countries with long periods 

of winter such as Canada or the north and central states of the U.S. 
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Based on the above context, the influence of weather conditions on road safety has 

attracted the attention of several researchers in recent years. Specifically, numerous papers 

have been published on the effect of weather parameters (such as temperature, precipitation, 

etc.) on the frequency and severity of crashes. These studies are described in Chapter 2 of 

this thesis. Nevertheless, most of those studies examined the effect of weather conditions as a 

single variable among all the other factors that can affect a crash. However, one should not 

ignore that weather conditions (such as temperature) may be a modifier factor of crash 

conditions and not a major cause (see Andreescu and Frost, 1998). Thus, any interaction 

effects between the weather conditions and other crash specific variables (such as type of 

collision, vehicle speed, road classification, etc.) may be ignored when considering the 

weather conditions as a single variable. Therefore, there is a need to study the interaction 

effects of weather conditions along with other crash specific factors on crash severity on 

different types of facilities in a bid to fully investigate the combination of factors influencing 

crash severity. 

The need for such study in Iowa is of particular importance as winter weather related 

crashes in the state are very frequent. Historical data shows that during the winters of 

1995/1996 to 2004/2005 approximately one-third of all crashes that occurred on rural, state-

maintained highways in Iowa, were winter weather-related. Moreover, approximately half of 

the rural Interstate crashes were winter-weather related (Hans, et al., 2011). Furthermore, the 

Iowa Department of Transportation (Iowa DOT) spends significant amount of its budget on 

winter maintenance operations and also, regularly invests funds to examine the safety and 

mobility impacts of winter weather. 
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1.2 Research Objectives and Tasks 

The main objective of this thesis is to investigate the interaction effects of weather 

conditions and other crash-specific factors on crash severity. Moreover, an objective of this 

thesis is to constitute a case study of different roadway facilities of the Iowa network.  

Thus, this study aims to provide with results that could be used to better understand the 

influence of the prevailing weather conditions in combination with other crash attributes on 

crash severity, based also on the type of facility where the crash occurred. These results 

could give useful insights and recommendations, firstly to road users in adjusting their 

driving behavior and secondly to agencies (e.g. the local DOT) in forming their maintenance 

and operational activities according to the prevailing weather conditions, especially during 

periods of inclement weather. 

The following presents the main tasks of this thesis: 

Task 1: Literature Review 

Past work on the impact of weather on road safety is reviewed and synthesized. The 

main focus is placed on two major areas. First, studies that investigated the effect of the 

weather conditions on crash frequency and severity are examined. Thus, a summary and 

critical synthesis of the findings is performed. Secondly, a review of the different 

methodologies and data collection techniques that have been applied in past road safety 

studies and especially in those related to weather effects is conducted. Thus, a list of 

applicable approaches and methodologies to accomplish the research objectives of this thesis 

is created. 
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Task 2: Selection of the Study Area and Period, Data Collection and Integration 

The area of study is selected based on the characteristics of the corridors and the 

number of crashes (sample size). Specifically, two corridors: a 4-lane divided facility (I-80) 

and a 2-lane undivided facility (US-34) are selected. The analysis period is from 2009 to 

2011. Then, four types of information are collected. Information regarding the crashes (crash 

data) is collected by the Iowa DOT crash datasets. Information regarding the prevailing 

weather conditions (weather data) is obtained from the nearest RWIS stations. Roadway and 

Traffic Data is acquired from the Iowa DOT GIMS files and the records of ATR stations. 

After all the (separate) datasets are analyzed and processed, the integration of all data is 

performed. Eventually, a single dataset for each corridor is created. Those datasets are the 

inputs of the statistical analysis. 

Task 3: Selection of Methodology 

The most suitable statistical methodology is selected based on the review and 

synthesis that will be performed in Task 1. Specifically, discrete outcome probability models 

are selected as the most appropriate method in order to approach the thesis objective. After 

the selection, the mathematical background and properties of these methods are studied. 

Task 4: Statistical Analysis of Data 

Two different types of discrete outcome probability models are created for each 

corridor of study, namely a binary probit model and a multinomial logit model. The 

probabilities of different crash severity levels are considered as dependent variables. The 

models are evaluated based on the signs and significance of their explanatory variables and 
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their overall fit. Finally, the findings are interpreted based on the sign of the coefficients and 

their elasticities. 

Task 5: Conclusions, Limitations and Recommendations 

In Task 5, conclusions that could be useful to road users and traffic agencies are 

drawn. Furthermore, the limitations of this study are summarized and critically viewed. 

Finally, recommendations for future research are offered. 
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 LITERATURE REVIEW CHAPTER 2.

This chapter presents a synthesis of the literature on the impact of weather on road 

safety. First, a general overview of the relationship between weather and safety is provided. 

The second section discusses the impact of the most common weather elements (i.e., 

precipitation, temperature, etc.) on safety. The third section of this chapter reviews different 

methodologies and data collection techniques that have been adopted by researchers in the 

past. Finally, the review concludes with a summary and critical discussion of the reviewed 

findings of the published research in the area.  

2.1 Overview 

It is widely accepted that weather has an influence on road safety since the weather 

conditions partly determine the road conditions and driver’s behavior (SWOV, 2012). There 

is a large body of literature on the impact of weather conditions on road safety. Relative 

references go as back as in 1950’s (Hermans et al., 2006). It is also noteworthy that recent 

studies have examined the interaction between weather and road safety within the recent 

climate change debate and have studied the corresponding countermeasures that should be 

established (Koetse & Rietveld, 2009; Andersson & Chapman, 2011) 

Weather is an environmental factor that affects collision and casualty rates.  Various 

weather conditions can be safety threats, such as reduced road friction, which leads to more 

slippery roads, limited visibility and other adversities that can make vehicle handling very 

difficult and dangerous. Such situations are more frequent during adverse weather conditions, 

such as heavy rainfalls and snowstorms.  



7 

Weather conditions can influence traffic as well. Empirical findings suggest that 

traffic volume is usually lower during inclement weather than during “normal” conditions. 

Also, the presence or expectation (based on weather forecasts) of unfavorable weather 

conditions may affect the mode choice and driver behavior, something which can 

consequently affect road safety. Furthermore, in cases of adverse weather conditions vehicle 

speeds are typically lower, while congestion may be also observed. For example, in cases of 

low visibility while people usually drive slower, but keep shorter space headways, which can 

increase the risk of crashes (SWOV, 2012). However, it has been shown that under such 

conditions crashes are more frequent but less severe (Khattak et al., 1998; Koetse & Rietveld, 

2009). 

The majority of papers in the literature examine the effect of adverse weather on the 

frequency and the severity of crashes in various types of facilities (Khattak et al., 1998; 

Knapp et al. 2000). Qiu & Nixon (2008) presented a systematic review and meta-analysis on 

the effect of adverse weather on road crashes. The major finding of that work was that most 

precipitation events were associated with a considerable increase in both crashes and crash 

rates, with snow having a greater effect than rain. 

A number of recent studies have also addressed the issues of road maintenance over 

the winter period and mainly the appropriate activities during events of adverse weather (e.g. 

snowstorms). The objective of such studies was to assess the effectiveness of the (winter or 

other) maintenance policies examining crash frequency (Usman et al., 2010, 2012a). 

Furthermore, an ongoing study sponsored by the Iowa Department of Transportation aims to 

“identify locations of possible interest systematically with respect to winter weather-related 

safety performance based on crash history” (Hans et al., 2011). 
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Based on the above context, in the next section the author briefly presents the major 

research findings regarding the impact of the various weather elements, such as precipitation 

and temperature on road safety. 

2.2 The Impact of Various Weather Elements on Road Safety 

2.2.1 Precipitation 

Precipitation is the most cited weather parameter in the road safety literature. Past 

research mainly considers rainfall and snowfall as precipitation. In almost all studies, 

precipitation was found to have a significant effect on the frequency and severity of crashes. 

For a systematic review and meta-analysis of studies associated with precipitation refer to 

Qiu & Nixon (2008). 

Andrey (2010) noted that “empirical investigations indicate that collision rates 

usually increase during precipitation by 50-100% relative to normal seasonal conditions. As 

well, collision rate increases tend to be higher during snowfall than rainfall, although snow-

related collisions tend to be associated with fewer fatalities”. 

In addition, a consistent finding among a number of studies is that increases in crash 

risk are often most elevated during rainfalls following dry spells, during freezing rain and in 

cases of the first snowfalls of the season. Apart from the amount of precipitation, intensity 

(amount of precipitation over time) seems to have an effect (Andrey & Yagar, 2003; 

Eisenberg, 2004; Eisenberg & Warner, 2005; Keay & Simmonds, 2006). 

The following two subsections address the major findings regarding the impact of 

rainfall and snowfall on safety. 
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2.2.1.1 Rainfall 

Rainfall constitutes a driving hazard for a number of reasons. First, during rainfalls 

road users are likely to face problems with visibility. This phenomenon is also more intense 

during night, since the reflection of lights on a road with accumulated water makes the 

detection of the road and the objects near to it more difficult (Brodsky & Hakkert, 1988). 

However, the most important factor related to rainfall is that of aquaplaning. In other 

words, the more the rainfall the less the friction of road surface is. This can lead to dynamic 

aquaplaning, which constitutes a very serious threat for safety. Indeed, when the road has 

been dry for a long period, even a drizzle can lead to viscous aquaplaning if drops of oil and 

dust, together with water, produce a thin liquid film on the road surface (SWOV, 2012). 

Nevertheless, the chance of aquaplaning is lower when rain gets heavier or during the last of 

a series of rain events. This is because the surface is swept clean after a significant amount of 

water has been fallen. 

Considering the above, a number of studies have addressed these lagged effects of 

rainfall. For example, Eisenberg (2004) concluded that the amount of rain on a previous day 

affects the number of crashes on a given day. Whereas, crash risk is greater when there is a 

long dry spell between two events of rainfall. The latter is also supported by Keay & 

Simmonds (2006). 

Despite the previous specific patterns regarding crash frequency and risk, the effect of 

rainfall on crash severity is more controversial. As mentioned previously, adverse weather 

may lead to more but less severe crashes. However, this finding is more obvious in cases of 

snow (which will be discussed in a following subsection) than in rainfall. For example, Qiu 
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& Nixon (2008) in a meta-analysis of published work argued that most precipitation events 

(including rainfalls) are associated with “considerable increased crash risk, a somewhat lesser 

increase in injury rates and minor increase in fatal risk”. On the other hand, Edwards (1998) 

found that during rainfall, crashes with minor injuries were relatively more frequent than 

crashes with serious injuries. According to the author, average speeds are lower during 

rainfall, and as a result the outcome of a crash is less serious. 

Eisenberg (2004) argued that the risk of fatal crashes during rainfall decreases. In 

other words, rainfall has a negative association with the number of fatal crashes. However, 

this was the case when monthly data was analyzed. When the analysis was extended to daily 

data, the effect of rainfall in fatal crashes was positive.     

2.2.1.2 Snowfall 

The second type of precipitation which has been addressed in numerous studies is 

snowfall. A lot of emphasis regarding this weather parameter has been given especially in 

regions with heavy winters, such as the Nordic countries (Peltola & Kantonen, 1987; 

Schendersson, 1988), Canada (Andrey, 2010) and some states in the United States (Knapp et 

al., 2000). 

Research has shown that driving during a snowstorm is difficult, since the visibility is 

worse, and also the accumulated snow may be frozen on the road, a fact that makes the road 

surface slippery and thus vehicle handling difficult. Furthermore, when wind is present 

during a snowstorm the situation may be even worse, since wind can cause blowing snow 

effect or impair the visibility of drivers (Usman et al., 2012a). 
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Regarding crash frequency during snowfall, a Finnish study (Peltola & Kantonen, 

1987), led to the conclusion that around one third of crashes occurred when there was snow 

(or ice) on the road. Similar findings were revealed by a study in Sweden (Schendersson, 

1988), which showed crash risk increased rapidly during light or moderate snowfall rates. In 

North America, Andreescu & Frost (1998) argued that even for days of light snowfall with 

less than 1 inch of snow, there was an increase in the mean number of crashes in comparison 

with dry days in Montreal, Canada, while Ahmed et al. (2012) suggested that crash frequency 

during snow season months (October-April) was more than double than during dry season 

months (May-September) in Colorado. Finally Eisenberg (2004) suggested that snow 

exhibited an inverted U-relationship with respect to crash risk. In other words, crash rates 

appear to peak around median level of snow and then decrease for heavier snowfall. 

Turning to the effect of snowfall on crash severity Qiu & Nixon (2008) stated that 

“there is a debate on whether injury rate decreases during snowfall”. Indeed, Frindstorm et al. 

(1995) found negative coefficients when they examined the monthly number of days with 

snow for different crash types. While this finding is contradictory to intuitive sense, possible 

explanations might be the reduced exposure, the increased visibility at night and the 

adaptation of driving habits to such weather conditions (Hermans et al., 2006).  

Following Eisenberg (2004), it seems that snow has a positive effect on non-fatal 

(injury) and property-damage-only (PDO) crashes, but negative effect on fatal crashes. 

Likewise, Andrey (2010) argued that the risk of minimal or minor injury is 89% higher 

during snowfall as compared to seasonal dry conditions, when he studied Canadian data for a 

period of nineteen years (1984-2002). The lower risk for a fatality during snowfall could be 
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attributed to lower speeds, the more careful driving during snowstorms and winter 

maintenance activities which are taken by agencies. 

2.2.2 Temperature 

While there is a large number of published studies addressing the effect of 

precipitation (rainfall and snowfall) on road safety, there are only a few studies that have 

examined the effect of temperature on road crashes. 

High temperatures may have a psychological effect on drivers (SWOV, 2012). 

According to a German study (DVR, 2000), emotions rise with temperature, people are more 

irritable to others, they get tired, they lose their concentration and their reaction time 

increases. All the aforementioned factors can affect road safety. For example, a French study 

by Laaidi & Laaidi (2002) as cited by SWOV (2012) found an increased number of crashes 

during heat waves. The authors argued that people possibly drive at other times of the day 

than they use to and that they sleep shorter or less deeply because of the high night-time 

temperatures. 

In line with past research, Stern & Zehavi (1989), conducted a study in Israel, a 

country with Mediterranean climate and hot and long summer periods, and found that the 

possibility of a crash is higher for higher temperatures. Moreover, the results showed that 

single-vehicle crashes are more likely to occur. Similar findings have been reported in two 

studies in Greece (Yannis et al., 2008; Karlaftis & Yannis, 2010). However, it should be 

noted that the previous studies (in Israel and Greece) used data which was from the 1980’s 

and 1990’s, when a significant percentage of vehicles had no air conditioning systems, a fact 

which may bias the results. 
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Note that while interpreting the effect of temperature on road safety one should take 

into consideration the fact that the mobility (exposure) is higher (e.g. more recreational trips 

etc.), during periods with good weather and high temperatures (spring, summer). 

Furthermore, the frequency of crashes may increase due to the higher mobility of more 

vulnerable groups of road users, such as riders and pedestrians.  

Finally, it should be noted that a review of studies that focused on winter weather 

crashes can reveal results contradictory to the above findings. For example, Andreescu & 

Frost (1998) found that temperature had a negative effect on winter road crashes in Canada. 

However, the authors noted that this relationship was inverted during summer. Similar results 

are reported in other Canadian studies (Karim et al., 2012; Usman et al., 2012a). 

2.2.3 Wind 

Research has shown that wind can have significant effect on road safety. Edwards 

(1994) argued that high winds can significantly increase crash risk. Similarly, Laaidi & 

Laaidi (2002) found a positive relationship between wind variation and the total number of 

crashes. Moreover, wind is a serious hazard for large vehicles. For example gusts of wind can 

push high vehicles such as vans, trucks and buses off course and, under extreme conditions 

can even cause them to roll over (SWOV, 2012). Baker & Reynolds (1992) examined the 

wind-induced crashes that occurred during a specific storm event on the 25
th

 day of January 

1990, in the UK. They found that the 47% of those crashes accounted for rollovers, the 19% 

for ran-off-road, while the 16% for collision with trees. What is more, the 66% of the 

observed 400 fatal or injury crashes was associated with heavy vehicles. Extensive research 

has also investigated the effect of wind direction (and especially of cross-winds) on vehicle 
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movement and road safety (Baker, 1986; Coleman & Baker, 1990; Baker, 1993). Finally, 

wind can magnify adverse weather conditions, such as snowstorms (Usman et al., 2012a). 

2.2.4 Visibility (Fog) 

Visibility plays an important role in road safety. Reduced visibility can impair 

driver’s vision and make driving difficult and dangerous. Perry & Symons (1991) argued that 

among all adverse conditions drivers experience more fear in fog, which affects visibility. 

Fog leads to a reduction in visibility because light is diffused by the fog droplets. When this 

happens, people generally drive slower, but also keep shorter space headways. This, in 

combination with the decreased field of vision, increases the risk of crashes (SWOV, 2012).  

2.3 Data Collection Techniques and Methodological Approaches 

This section of the chapter presents the main types of data and the corresponding 

sources, which are cited in the road safety literature and in particular, in studies which 

examine the effect of weather conditions on crashes. Finally, the section concludes with a 

brief review of the most common methodological approaches that researchers have utilized in 

an effort to investigate the impact of various factors on road safety.     

2.3.1 Data Types, Sources and Level of Aggregation   

Road safety is affected by various factors that can be classified into three major 

categories: infrastructure and environment, vehicle and user. For this reason, past studies 

have typically used the following types of data: crash data, roadway data (road geometry, 

classification, etc.), weather and exposure (traffic volume) data. 
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Crash data can be obtained by datasets that authorities process and maintain. For each 

reported crash, officials should fill a detailed report describing the circumstances under 

which the crash occurred (e.g. crash time and location, severity and type of crash, type and 

number of involved vehicles, driver attributes etc.). 

Data associated with the roadway characteristics (e.g. geometry, functional 

classification, number of lanes etc.) are usually available in the archives of the corresponding 

agencies, which own the facility. State agencies collect and inventory such data. 

Weather data can be obtained by multiple sources. In the majority of the studies, 

weather data was provided by weather stations which were installed on specific locations, 

such as airports (Automated Surface Observing Systems - ASOS or Automated Weather 

Observing Systems - AWOS) throughout a country. Furthermore, historical data can be 

found in the records of local weather offices or services. In the United States, possible 

sources of weather data are the National Weather Service (NWS), the National Oceanic and 

Atmospheric Administration (NOAA) and especially for the state of Iowa, the Iowa 

Environmental Mesonet, which is administered by the Department of Agronomy of the Iowa 

State University.  

Weather data can be acquired from Road Weather Information Systems (RWIS) as 

well. RWIS are installed on specific locations of the roadway network and monitor air and 

surface conditions, such as temperature, precipitation, wind etc. A number of studies have 

employed data from RWIS (Usman et al., 2010, 2012a, b; Knapp et al., 2000). RWIS can 

provide relevant and real-time data, since these stations are installed on or near the roadway 
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and have as a sole purpose the collection of real-time information about weather conditions 

(Ahmed et al., 2012). 

Traffic data, such as volumes (AADT, VMT, etc.), speeds and vehicle classification 

is usually obtained from Automatic Traffic Recorders (ATR). ATRs, similarly to RWIS, are 

installed on specific locations of the network and are equipped with loop detectors, which 

can monitor the traffic conditions. Many studies have used data from ATRs (Knapp et al., 

2000; Stout & Souleyrette, 2005). Apart from ATRs, Automatic Vehicle Identification (AVI) 

systems can also provide traffic information. Recent studies have employed traffic data from 

AVIs (Ahmed et al., 2012; Abdel-Aty et al., 2012). 

However, real traffic data may not be always available. For this reason, proxies for 

exposure have been used in studies. For example, El-Basyouni & Kwon (2012) used the 

annual number of registered passenger vehicles as a proxy in order to investigate the impact 

of weather factors on collision frequency and severity in Edmonton Canada. Yannis et al. 

(2008) obtained traffic information collected from a toll station in the Athens region in a 

similar study. Finally, a number of studies (Brijs et al., 2008; Karlaftis & Yannis, 2010; 

Karim et al., 2012) have employed dummy variables associated with months, days of the 

week or holidays in an effort to capture seasonality and potential time-effects but also in an 

effort to control for exposure. In specific, Brijs et al. (2008) argued that “day-of-the-week 

dummies can be seen as some kind of proxy variable when real traffic exposure information 

is missing” after their investigation of the effect of weather on daily collision counts in the 

Netherlands. 
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The level of data aggregation is also a significant factor that may influence the final 

outcomes of a study. Following Hermans et al. (2006), three levels of aggregation can be 

discerned: the macro-level (one observation each year), the meso-level (one observation each 

day) and the micro-level (one observation each fraction of day). Although all levels of 

aggregation have their advantages and disadvantages, the higher the level of aggregation is 

the more information may be lost. For example, Hermans et al. (2006) argued that while 

monthly studies can capture the seasonal influence, they cannot capture the traffic volume 

patterns which are mainly daily or hourly related. As such, these studies may not be 

appropriate for measuring weather influences due to oversimplification. Usman et al. (2012a) 

have also confirmed the above statements when quantifying the safety effect of winter road 

maintenance. 

However, it should be noted that there is no consensus regarding the analysis periods 

among all studies. In other words, there are studies which used monthly data (Fridstorm et 

al., 1995; Shankar et al. 1995), while others used daily data (Keay & Simmonds, 2006; Brijs 

et al., 2008) or hourly data (Hermans et al., 2006). Furthermore, Eisenberg (2004) analyzed 

both monthly and daily data and found that data format may lead to different results 

regarding the effect of precipitation on road crashes. 

Finally, some studies have distinguished the analysis period into seasons, such as dry 

versus snowy or winter versus non-winter (Ahmed et al., 2012), while others, especially 

those focused on the effect of adverse weather, considered specific events (e.g. a storm) as 

one analysis period (Knapp et al., 2000; Usman et al., 2012a; Jung et al., 2012). 
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2.3.2  Methodological Approaches   

This subsection presents the most common methodological approaches that have been 

used in road safety research and especially in studies of the effect of weather on road crashes. 

However, it should be noted that the various methodologies along with the studies where 

these have been employed are discussed in brief. The reader can refer to each study for more 

details about the corresponding methodology. 

2.3.2.1 Count Data Models 

Road crashes seem to occur randomly in time and space. Furthermore, crashes are 

assumed to be Poisson distributed (Lord et al., 2005; Hermans et al., 2006). Thus, Poisson 

regression models have been widely used in order to examine road crashes. However, 

Poisson distribution is a one-parameter distribution and assumes that the variance equals the 

mean. This property though is not always fulfilled, especially when crashes are studied. This 

is due to the overdispersion (i.e., the presence of extra variation) of data. 

Another widely used methodological approach in road safety is the Negative 

Binomial regression model. This method assumes that crashes follow the Negative Binomial 

distribution, which is a generalization of the Poisson distribution, but it does not assume the 

mean to be equal to the variance. Thus, any overdispersion issues are addressed. In addition, 

other types of distribution, such as the Negative Multinomial Distribution or the Poisson 

Lognormal Distribution have been employed in some studies in order to handle 

overdispersed data (Miranda-Moreno et al., 1995; Caliendo et al., 2007). Furthermore, when 

examining road crashes it is very often that there are study observation periods (e.g. days, 
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hours or storm events) with no crashes. In these cases, Zero-Inflated models have been used 

in order to address the preponderance of zeros (Shankar et al., 2004; Hermans et al., 2006).   

2.3.2.2 Multivariate and Multilevel Models 

A number of studies have used multivariate or multilevel models. For example, El-

Basyouni and Kwon (2012) developed a Multivariate Poisson Lognormal (MVPL) model in 

order to assess time and weather effect on collision frequency, while Usman et al. (2012b) 

used three different multilevel structures: a Multilevel Multinomial Logit (MML), a 

Multilevel Nested Binary Logit (MBL) and a Multilevel Ordered Logit (MOL) in order to 

study conditional probabilities of collisions. Moreover, some studies (Ahmed et al., 2012; El-

Basyouny & Kwon, 2012) utilized the Bayesian methodology and its properties in order to 

estimate the parameters of the models. 

The use of different modeling frameworks and the comparison of their efficiency in a 

study is also very common in the literature. For example, Miranda-Moreno et al. (1995) 

compared the performance of three models: a traditional Negative Binomial, a 

Heterogeneous Negative Binomial and a Poisson Lognormal model and found that the 

Poisson Lognormal and the Heterogeneous Negative Binomial models had better fit than the 

traditional Negative Binomial. Similarly, Caliendo et al. (2007) compared three different 

distributions: the Poisson distribution, the Negative Binomial distribution and the Negative 

Multinomial distribution. The authors eventually argued that the Negative Multinomial 

distribution was the most appropriate one for modeling longitudinal collision data. On the 

other hand, Hermans et al. (2006) argued that a Negative Binomial Regression model was 

better than a Poisson Regression model, a Zero-Inflated Poisson model and a Zero-Inflated 

Negative Binomial model. Finally, Usman et al. (2012b) suggested that among the three 
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different model structures (as mentioned earlier), the Multilevel Multinomial Logit (MML) 

models provided better predictions. 

2.3.2.3 Time-series Analyses 

In a large body of literature safety data is available on a time-series dimension, i.e., 

the variables examined are available over a (long) period of time. A time-series of count data 

is a sequence of non-negative integer observations over time (Karlaftis & Yannis, 2010). 

Several models for the analysis of time-series of count data is available, but the Integer 

Autoregressive Moving Average (INARMA) class of models has found wide application in 

many studies. For a list of studies along with the methodologies incorporated in the analysis 

of time-series data the reader can refer to Karlaftis & Yannis (2010). 

Based on the above context, Brijs et al. (2008) elaborated Integer Value 

Autoregressive models in order to investigate the effect of weather on daily crash counts. The 

authors also performed correction for first order serial autocorrelation. Finally, they 

compared the results of the INAR models with other “traditional models”, such as Poisson 

Regression models and Negative Binomial Regression models and found that the INAR 

models were better than the Negative Binomial models, while the Poisson Regression models 

were the worst of all. Furthermore, the authors argued that the autocorrelation present in the 

data was significant. 

A similar methodological approach was also adopted by Karlaftis and Yannis (2010), 

when studied daily crash data related to Athens, Greece. The authors also used lagged 

variables, which are variables with values related to a previous day of a given day, in order to 
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address any lagged effect of the explanatory variables. This approach was also adopted by 

Eisenberg (2004). 

2.3.2.4 Discrete (Ordered or Unordered) Data Models  

Ordered probit modeling has been widely used for investigating the impact of various 

factors on the severity of crashes (for example, Khattak et al., 1998; Deng et al., 2012; Jung 

et al., 2012).This method is usually selected because it captures the ordinal nature of the 

severity. For example, police officers typically use the KABCO scale when reporting the 

severity of a crash at the scene of a crash. KABCO scale categorizes crashes based on the 

severity as follows: Fatal Injury crash (K), Incapacitating (Major) Injury crash (A), Non-

incapacitating (Minor) Injury crash (B), Possible Injury and No Injury (C) or Property 

Damage Only (PDO) crash (O). On the other hand, the Abbreviate Injury Scale (AIS) is 

widely used in hospital records. AIS represents the “threat to life” associated with an injury. 

AIS scale uses numbers (0-6) to code crash severity, with number 6 to correspond to a fatal 

crash, 5 through 1 to an injury crash and 0 to a PDO crash (Sinha & Labi, 2007). In either 

case, analysis techniques for ordered data can be applied.  

However, the use of ordered probability models may raise some issues. This is 

because ordered models do not have the flexibility to capture the effect of the explanatory 

variables on the interior category probabilities, for example A, B or C severity levels (based 

on the KABCO scale). For this reason, Washington et al. (2011) argued that one should be 

cautious in the selection of ordered models when examines crash severities. Unordered 

discrete data models, such as multinomial or nested logit models do not place any such 

restrictions and are preferred for modeling crash severity (for example, see Usman et al., 

2012b). 
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Table 2.1 provides a summary of the data and methodological approaches that have 

been applied in previous studies listed in chronological order. which examine the effect of 

weather conditions on the frequency and severity of crashes. 

2.4 Summary 

This chapter first reviewed previous work on the effect of weather on the frequency 

and severity of crashes. It was found that weather elements, such as precipitation and 

temperature affect road safety in various ways. In the majority of the studies, weather 

elements associated with adverse conditions were found to have a negative effect mainly on 

the frequency of crashes, but they seemed to result in a less severe injury outcome (i.e., 

crashes are more frequent but less severe under adverse conditions). A number of studies also 

concluded that (high) temperature has positive effect on road crashes, especially during 

summer. Nevertheless, the effect of temperature on road crashes may be negative during 

winter periods. Other weather elements such as wind and visibility were found to have a 

negative effect on road safety, especially when they interact with precipitation (such as a 

snowfall event accompanied with heavy wind). 

Next, this chapter reviewed the types of data and methodological approaches that 

have been used in past studies. In the majority of the studies, data was obtained from multiple 

sources, such as appropriate datasets (crash and roadway data) and records of specific 

stations (weather and traffic data). In cases where data was not available in the desired 

format, proxies were used. Some studies have also addressed the potential impacts that the 

level of data aggregation may have on the final outcomes of a study. Turning to 

methodology, different approaches have been used. These approaches range from simple 
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regression models to multilevel frameworks or advanced techniques associated with time-

series analysis (such as INAR models). On the other hand, the severity of crashes has been 

analyzed by ordered probability models which address the ordinal nature of crash severity.  

The next chapter will present the different datasets (crash, roadway, weather, traffic) 

that used in the analysis along with their corresponding sources. Furthermore, the procedures 

of data processing and integration will be described. 
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 DATA DESCRIPTION AND INTEGRATION CHAPTER 3.

This chapter describes the data that were utilized in this thesis. In particular, four 

different types of data were incorporated in the analysis: Crash Data, Weather Data, 

Roadway and Traffic Data. The area of study and the main sources for each type of data will 

be described, followed by an extensive description of the integration process that was carried 

out in order to create the final comprehensive dataset. 

3.1 Study Area 

Two different corridors were selected as the study area of this thesis. The first 

corridor is located on Interstate 80 (I-80). The analysis section starts at the intersection of I-

80 with the IA-117 and ends at the intersection of I-80 with IA-149. It has a total length of 

64.61 miles (103.97 Km). The second corridor is located on US-34, starting at the 

intersection of US-34 with US-71 and ending at the intersection of US-34 with I-35. It has a 

total length of 65.32 miles (105.13 Km). Tables 3.1 and 3.2 show the basic roadway and 

traffic attributes of the two corridors as obtained from the Geographic Information 

Management System (GIMS) files of the Iowa Department of Transportation (DOT) for each 

year of the analysis period (see also Section 3.2.3). It should be mentioned that the tables 

present the weighted means and standard deviations (based on the length of each segment) of 

the values of all the road segments that constitute the aforementioned corridors. 
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Table 3. 1: Roadway and Traffic Variables of I-80 corridor 

Attribute Mean (Standard Deviation) or Percentage 

  2009 2010 2011 

Number of Lanes                                                

4/5/6  91.4/3.9/4.7 91.4/3.9/4.8 90.7/3.4/5.9 

Median Width (ft.) 49.96 (0.65) 49.96 (0.65) 49.96 (0.65) 

Road Width (shoulders 

not included) (ft.) 

24.71 (2.84) 24.72 (2.86) 24.79 (2.98) 

Right Shoulder Width (ft.) 9.98 (0.30) 9.98 (0.30) 9.98 (0.30) 

Left Shoulder Width (ft.) 6.00 (0.11) 6.00 (0.11) 6.00 (0.11) 

Speed Limit (MPH) 70.00 (0.00) 70.00 (0.00) 70.00 (0.00) 

PSI rating 1.45 (1.44) 1.45 (1.44) 1.45 (1.44) 

Slope -0.68 (0.73) -0.68 (0.73) -0.68 (0.73) 

IRI (in/mi) 79.84 (33.92) 79.84 (33.92) 79.85 (33.98) 

AADT (veh/day) 26,442.63 (12,18.30) 27,764.46 (1,623.48) 27,669.90 (1,602.19) 

Truck AADT (veh/day) 9,053.63 (181.86) 8,663.65 (287.15) 8,764.71 (167.20) 

 

Table 3. 2: Roadway and Traffic Variables of US-34 corridor 

Attribute Mean (Standard Deviation) or Percentage 

  2009 2010 2011 

Number of Lanes                                         

2/3/4/5/6/7  76.8/15.0/6.7/1.1/0.3/0.2 76.8/15.0/6.7/1.1/0.3/0.2 76.8/15.0/6.7/1.1/0.3/0.2 

Median Width (ft.) N/A N/A N/A 

Road Width (shoulders 

not included) (ft.) 27.15 (6.49) 27.15 (6.49) 27.15 (6.49) 

Right Shoulder Width 

(ft.) 
9.19 (1.88) 9.19 (1.88) 9.31 (1.79) 

Left Shoulder Width 

(ft.) 
9.03 (2.01) 9.03 (2.01) 9.15 (1.94) 

Speed Limit (MPH) 54.41 (3.36) 54.41 (3.36) 54.41 (3.36) 

PSI rating 2.55 (1.52) 2.55 (1.52) 2.55 (1.52) 

Slope -0.96 (1.12) -0.96 (1.12) -0.96 (1.12) 

IRI (in/mi) 77.47 (33.34) 77.47 (33.34) 77.47 (33.34) 

AADT (veh/day) 3,102.26 (1,377.74) 3,156.88 (1,401.00) 3,148.14 (1,385.99) 

Truck AADT 

(veh/day) 
518.27 (100.89) 527.37 (101.99) 525.67 (101.08) 

 

Table 3. 2: Roadway and Traffic Variables of US-34 corridor 

 

Table 3. 1: Roadway and Traffic Variables of I-80 corridor 
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As shown in Table 3.1, the I-80 corridor represents a divided facility with an average 

median width of 49.96 feet. In addition, it has four lanes along the 91.4% of its length. Based 

on this information this corridor is considered as a four-lane divided facility. The posted 

speed limit of the route is 70 mph, while its total Annual Average Daily Traffic (AADT) is 

greater than 26,000 veh/day, in all three years of the analysis period. Table 3.1 also provides 

additional information about the slope of the corridor and the pavement condition (Pavement 

Service Index –PSI and International Roughness Index –IRI).  

On the other hand, the US-34 corridor has no median and two lanes along the 76.8% 

of its total length (shown in Table 3.2). Thus, it is considered as a two-lane undivided facility 

for the purpose of this thesis. Furthermore, it has an average posted speed limit of 54.44 mph. 

Finally, the average total AADT is greater than 3,000 veh/day. 

Considering the above, the two facilities have different characteristics in terms of 

number of lanes, presence of median, speed limit and traffic conditions. One of the objectives 

of this thesis is to investigate whether these differences in the geometric and operational 

characteristics contribute to the severity outcome of crashes.  

3.2 Data Description 

3.2.1 Crash Data 

The Iowa DOT collects information regarding the crashes that occur on all public 

roads of the State. According to the Iowa Accident Report Form (2010) as shown in 

Appendix A, all crashes that resulted in fatalities or injuries and the property damage only 

crashes with a value of more than $1,500 should be recorded. The records are stored in 
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comprehensive datasets maintained by the agency. Those datasets can provide information 

for each crash such as, but not limited to: location/time, severity level and crash type, 

environmental and roadway conditions, driver and vehicle characteristics. Furthermore, 

crashes are geo-coded and the crash locations are saved in GIS format.  

A number of 1,036 crashes occurred in the study area over the period 2009-2011. 

Specifically, 828 of those were located on I-80 corridor (average crash rate 0.429 crashes per 

million VMT) and 208 on the US-34 corridor (average crash rate 0.930 crashes per million 

VMT). The following tables show the descriptive statistics of various attributes of those 

crashes. This information was acquired by the aforementioned crash datasets and will be 

considered for further analysis. 

 

Table 3.3 (continued) 

Attribute  Percentage 

CRASH SEVERITY   

Fatal/Major Injury/Minor Injury/Possible-Unknown 

Injury/PDO 

1.3/2.8/7.0/10.6/78.3 

MONTH   

Jan/Feb/Mar/Apr/May/Jun/Jul/Aug/Sep/Oct/Nov/Dec 17.8/10.3/4.8/5.0/7.5/8.2/6.0/5.0/5.0/6.3/8.3/15.9 

YEAR   

2009/2010/2011 35.2/37.2/27.5 

DAY OF WEEK   

Sun/Mon/Tue/Wed/Thur/Fri/Sat 14.3/15.0/14.5/12.8/12.0/15.6/15.9 

LIGHTING   

Daylight/Darkness/Dawn/Dusk 54.2/39.4/3.6/2.7 

LOCATION OF FIRST HARMFUL EVENT   

On Roadway/Shoulder/Median/Roadside/Outside Traffic 

Way/Unknown/NR 

60.3/7.7/8.5/5.4/0.5/4.5/13.2 

RURAL OR URBAN ROAD   

Rural/Urban 92.8/7.2 

NUMBER OF VEHICLES INVOLVED   

1/2/3/5/6 66.0/29.7/2.7/1.0/0.3/0.2 

CONTRIBUTING CIRCUMSTANCES-

ENVIRONMENT 

  

None Apparent/Weather Conditions/Physical 

Obstruction/Pedestrian Action/Glare/Animal/Previous 

Accident/Other/Unknown/NR 

44.9/33.2/0.5/0.1/0.2/4.2/1.7/0.8/0.1/14.1 

Table 3. 3: Descriptive Statistics of the Attributes of Crashes on I-80 
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Table 3.3 (continued) 

Attribute  Percentage 

LIGHT   

Daylight/Dusk/Dawn/Dark(roadway lighted)/Dark(roadway 

unlighted)/Dark(unknown lighting 

conditions)/Unknown/NR 

50.4/2.3/2.7/2.1/26.8/0.8/0.1/14.6 

SURFACE CONDITIONS   

Dry/Wet/Ice/Snow/Slush/Water/Other/Unknown/NR 37.9/10.1/22.1/13.0/1.0/0.1/0.2/0.7/14.6 

FIRST HARMFUL EVENT   

No Collision Event: Overturn-rollover/Jackknife/Other non-

collision event                                                                     

13.5/3.0/5.7 

Collision with: vehicle in traffic/vehicle in or from other 

roadway/Parked Motor Vehicle/Animal/Other                                                     

28.0/1.1/1.1/19.0/2.7 

Collision with fixed object: Bridge-

Overpass/Underpass/Culvert/Guardrail/Concrete 

Barrier/Tree/Pole/Sign Post/Ditch/Curb-Island-

Median/Tree/Pole/Other fixed object/Unknown  

3.7/0.2/0.2/6.7/0.1/0.7/0.4/1.8/2.1/0.2 

MANNER OF CRASH/COLLISION   

Non-collision/Head-on/Rear-end/Broadside/Sideswipe, 

same direction/Sideswipe, opposite direction/Unknown/ NR 

55.4/1.4/11.5/0.6/15.7/1.9/1.1/12.3 

MAJOR CAUSE   

Animal/Crossed Center Line 18.9/3.3 

FTYROW: From Parked Position/Other 0.1/1.4 

Driving Too Fast For Conditions/Exceeded Authorized 

Speed/Made Improper Turn/Followed Too Close/Operating 

the Vehicle in an Inappropriate Manner/Swerving-Evasive 

Action/Over-correcting, Over-steering/Downhill 

Roadway/Equipment Failure 

20.4/0.2/0.1/2.7/1.0/14.7/1.6/0.1/1.3/ 

Ran off road: Right/Straight/Left 12.2/0.1/9.5 

Lost Control/Inattentive or Distracted Driver/Vision 

Obstructed/Oversized Load, Vehicle/Other Improper 

Action/Other No Improper Action/Unknown 

4.6/0.8/0.2/0.2/2.4/2.1/1.6 

VISION OBSCUREMENT   

Not Obscured/Hillcrest/Moving Vehicles/Blinded by Sun or 

Headlights/Blowing Snow/Fog, smoke, 

dust/Other/Unknown/NR 

77.4/0.1/0.2/0.1/3.3/0.1/1.3/2.1/15.2 

 

 

Table 3.4 (continued) 

Attribute Percentages 

CRASH SEVERITY   

Fatal/Major Injury/Minor Injury/Possible-Unknown 

Injury/PDO 

1.4/4.8/5.3/17.8/70.7 

MONTH   

Jan/Feb/Mar/Apr/May/Jun/Jul/Aug/Sep/Oct/Nov/Dec 7.7/9.1/6.7/3.4/9.1/5.8/9.6/6.3/11.1/8.2/13.0/10.1 

Table 3. 4: Descriptive Statistics of the Attributes of Crashes on US-34 
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Table 3.4 (continued) 

Attribute Percentages 

YEAR   

2009/2010/2011 30.3/38.0/31.7 

DAY OF WEEK   

Sun/Mon/Tue/Wed/Thur/Fri/Sat 7.7/18.8/16.3/15.4/14.9/15.9/11.1 

LIGHTING   

Daylight/Darkness/Dawn/Dusk 63.9/31.7/1.0/3.4 

LOCATION OF FIRST HARMFUL EVENT   

On Roadway/Shoulder/Roadside/Outside Traffic 

Way/Unknown/NR 

82.2/1.4/0.5/2.4/1.0/12.5 

RURAL OR URBAN ROAD   
Rural/Urban 67.3/32.7 

NUMBER OF VEHICLES INVOLVED   

1/2/3 39.4/57.7/2.9 

CONTRIBUTING CIRCUMSTANCES-

ENVIRONMENT 

  

None Apparent/Weather Conditions/Physical 

Obstruction/Glare/Animal/Other/NR 

58.1/11.5/1.4/1/10.6/1/16.3 

LIGHT   

Daylight/Dusk/Dawn/Dark(roadway lighted)/Dark(roadway 

unlighted)/Dark(unknown lighting conditions)/NR 

58.2/3.8/1.9/5.3/14.4/1.4/14.9 

SURFACE CONDITIONS   

Dry/Wet/Ice/Snow/Slush/Other/Unknown/NR 62.0/9.1/5.8/6.3/0.5/0.5/1/14.9 

FIRST HARMFUL EVENT   

No Collision Event: Overturn-rollover/Other non-collision 

event                                                                     

3.8/0.5    

Collision with: vehicle in traffic/vehicle in or from other 

roadway/Animal/Other                                                     

52.9/6.3/28.4/0.5 

Collision with fixed object: Bridge-Overpass/Ditch/Curb-

Island-Median/Tree/Pole/Other fixed object/Unknown  

0.5/3.8/0.5/1.0/1.0/0.5/0.5 

MANNER OF CRASH/COLLISION   

Non-collision/Head-on/Rear-end/Angle, oncoming left 

turn/Broadside/Sideswipe, same direction/Sideswipe, 

opposite direction/Unknown/ NR 

28.4/2.9/16.3/7.2/17.8/8.7/6.3/4.8/12.0 

MAJOR CAUSE   

Animal/Ran Traffic Signal/Ran Stop Light/Crossed Center 

Line 

28.4/0.5/4.8/9.1 

FTYROW: From Stop Sign/Making Left Turn/From 

Driveway/Other 

5.8/5.8/1.4/2.9 

Travelling Wrong Way/Driving Too Fast For 

Conditions/Made Improper Turn/Followed Too 

Close/Operating the Vehicle in an Inappropriate 

Manner/Swerving-Evasive Action/Over-correcting, Over-

steering/Equipment Failure 

0.5/1.9/2.4/9.1/0.5/4.3/1.4/1.0 

Ran off road: Right/Straight/Left 2.4/0.5/4.8 

Lost Control/Inattentive or Distracted Driver/Vision 

Obstructed/Unknown 

3.4/1.0/1.0/1.0 

VISION OBSCUREMENT   

Not Obscured/Moving Vehicles/Frosted Windows-

Windshield/Blowing Snow/Fog, smoke, dust/Unknown/NR 

77.9/1.4/0.5/1.0/0.5/2.9/15.9 
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3.2.2 Weather Data 

The weather information that was used in this thesis was acquired from the Road 

Weather Information Systems (RWIS), which are installed along the two study corridors. A 

total number of 62 RWIS are installed on specific locations of the roadway network in Iowa 

(mainly on primary roads).  

As mentioned in Chapter 2, RWIS monitor air and surface conditions such as, 

temperature, precipitation, wind etc. Moreover, RWIS have the ability to automatically 

update their records each time a change in the weather conditions occurs (e.g. a drop in 

temperature, the beginning of a precipitation event etc.). This ability combined with the 

proximity to the roadway can provide real time information about the current conditions of 

the road. All the recorded information is collected by the Iowa DOT and is stored in 

comprehensive datasets.  

For the purpose of this thesis, the author utilized information coming from six RWIS 

(Figure 3.1): three along the I-80 (located in Colfax, Grinnell and Williamsburg) and three 

along the US-34 (located in Red Oak, Creston and Osceola) over the analysis period 2009-

2011. The information that was extracted and included in the analysis as variables is the 

following: Temperature, Dew Point Temperature, Relative Humidity (RH), Precipitation 

Type, Precipitation Rate (from which the Accumulated Amount of Precipitation was 

derived), Average Wind Speed, Wind Speed Gust, Average Wind Direction and Average 

Wind Speed Gust. Tables 3.5 and 3.6 provide the descriptive statistics of the weather 

variables over the analysis period related to corridors I-80 and US-34, respectively. 
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Figure 3. 1: Locations of RWIS in the Area of Study 

 

 

Weather Parameter  Mean (Standard Deviation) or 

Percentage 

Min Max 

Temperature (C) 5.27 (13.14) -27.58 36.38 

Dew Point Temperature (C) 1.25 (11.87) -30.52 30.70 

Relative Humidity (%) 77.71 (17.37) 15.50 99.09 

Type of Precipitation 

 N/A N/A    No Precipitation/Rain/Snow 61.9/11.8/26.3 

Total Accumulated Amount of Precipitation 2.43 (10.28) 0.00 128.79 

Wind Speed (Km/hr) 15.42 (9.57) 0.08 47.83 

Wind Speed Gust(Km/hr) 22.11 (13.18) 1.00 64.08 

Wind Direction  

 N/A N/A    N/NE/E/SE/S/SW/W/NW 5.9/11.4/12.3/12.2/13.5/13.7/12.2/18.9 

Wind Gust Direction 

 N/A N/A    N/NE/E/SE/S/SW/W/NW 5.4/12.5/11.7/12.0/12.3/12.0/13.4/20.7 

N/A: not applicable 

 

Table 3. 5: Descriptive Statistics of the Weather Variables related to Crashes on I-80 



33 

 

Weather Variable  Mean (Standard Deviation) or 

Percentage 

Min Max 

Temperature (C) 10.18 (12.56) -20.01 33.11 

Dew Point Temperature (C) 4.13 (10.88) -26.41 25.00 

Relative Humidity (%) 69.69 (20.49) 28.67 99.08 

Type of Precipitation 

 N/A N/A No Precipitation/Rain/Snow 82.6/6.4/11.0 

Total Accumulated Amount of Precipitation 0.80 (4.79) 0.00 48.36 

Wind Speed (Km/hr) 14.81 (10.81) 0.00 71.00 

Wind Speed Gust(Km/hr) 23.22(15.49) 0.00 122.89 

Wind Direction  

 N/A N/A N/NE/E/SE/S/SW/W/NW 6.1/12.7/13.3/16.0/21.0/9.4/7.7/13.8 

Wind Gust Direction 

 N/A N/A N/NE/E/SE/S/SW/W/NW 3.9/11.0/16.0/13.3/19.3/11.6/7.2/16.0 

N/A: not applicable 

3.2.3 Roadway Data  

As mentioned in section 3.1, information about the roadway and traffic conditions 

was acquired from the GIMS files of the Iowa DOT. GIMS files provide detailed roadway 

information about all Iowa roads, such as segment ID, road classification, geometric 

characteristics (such as median type and width), speed limit, AADT and so forth. In the 

GIMS files all the Iowa roads are divided into segments with similar characteristics. A new 

segment starts wherever there is a change in any of the road conditions or geometry (e.g. 

AADT, speed limit, median width etc.). For instance, a specific corridor (e.g. I-80) is divided 

into a finite number of segments which share common characteristics and when a change 

occurs (e.g. a change in the AADT after an interchange) then a new segment (with a new ID) 

begins. A detailed description of the information that is included in the GIMS file can be 

found in the “Base Record Road and Structure Data Manual” provided by the Office of 

Transportation Data of the Iowa DOT (Iowa DOT, 2001). 

Table 3. 6: Descriptive Statistics of the Weather Parameters related to Crashes on US-34 
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The Iowa DOT updates the GIMS files every year in order to keep track of any 

changes occur in the roadway system. Furthermore, GIMS files are in GIS format 

(shapefiles) and thus they can be used and processed in any software with a GIS interface 

(e.g. ArcMap, TransCAD, etc.). For the purpose of this thesis, the author utilized information 

about the traffic conditions (AADT and Truck AADT) recorded in the GIMS files for the 

period 2009-2011. Figure 3.2 shows a map with a visual representation of the variations in 

the AADT along the two corridors of study as of year 2011. 

 

Figure 3. 2: Variations in the AADT along the two study corridors (as of 2011) 

 

3.2.4 Traffic Data  

Automatic Traffic Recorders (ATRs) collect information related to traffic conditions, 

such as speeds, volumes (AADT, Vehicle Miles Travelled (VMT), etc.) and vehicle 
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classification. These recorders are installed on specific locations of the network and are 

equipped with loop detectors which can monitor traffic conditions. The Iowa DOT has 

installed a number of more than 100 ATRs on the roadways of the State.  

The Office of Transportation Data of the Iowa DOT in cooperation with the Federal 

Highway Administration (FHWA) releases an annual ATR report at the beginning of each 

year. The report contains traffic information that has been collected from ATRs during the 

previous year. Apart from the numerical information (i.e., AADT, etc.) the report includes a 

number of graphs which show the hourly, daily and monthly variations, as percentages of the 

AADT. These variations are given for roads of different classification (interstate, primary 

and secondary) and environment (rural or municipal). A typical form of these graphs is 

presented in Figure 3.3. It is noteworthy that the traffic is significantly higher during the 

summer months (percentages of AADT larger than 100%). 

 

Figure 3. 3: Typical Form of a Graph with the Variations of AADT 
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In this thesis the author utilized the information that was provided by the ATR reports 

and referred to the analysis period, in order to capture any seasonal variations of the AADT. 

Specifically, the author considered the monthly variations (percentages of the AADT) for the 

Interstate (I-80) and Primary (US-34) roads and adjusted accordingly the values of the 

AADT and Truck AADT that were acquired from the GIMS files. For more information on 

this process, the reader may refer to the section 3.3.4. 

3.3 Data Integration 

According to FHWA, data integration is the method by which multiple datasets 

coming from various sources can be combined or linked together and can be applied to solve 

problems (FHWA, 2010). In this section, the author is going to present the process of data 

integration in order to create the final dataset with all the variables that were used in the 

analysis.  

For the purpose of this thesis a number of different datasets coming from various 

sources (as described previously) had to be integrated in order all the required information to 

be put together and constitute a unique dataset which was the final input of the analysis. To 

do so, couple of different software (ArcMap 2010, MS Excel 2010, MS Access 2010) was 

used during the various stages of the process. Figures 3.4 and 3.5 present the detailed 

flowchart of the stages of the process. The color in each box of the chart indicates the 

software that was used in each stage. 



37 

 

Create a Base Map in 

ArcMap 

Select the Road 

Segments that 

Constitute the Two 

Corridors of Study 

 

Roadway & Traffic 

Data 
Crash Data Weather Data 

Extract the Necessary 

Information (e.g. 

Traffic) Related to the 

Two Corridors from 

GIMS 

Identify the Crashes 

that Occurred on the 

Two Corridors 

Integrate All the 

Attributes of Each 

Crash in a Unique 

Attribute Table 

Calculate the Distance 

of each Crash Location 

from each RWIS  

Calculate the Adjusted 

Values of AADT based 

on the Monthly 

Percentages of the ATR 

Reports and the Date 

(Month) of each Crash 

Dataset with Crash-

Roadway-Traffic Data 

(Intermediate Dataset) 

Identify the Closest 

RWIS to the Two 

Corridors 

Acquire the Records of 

the Selected RWIS  

Convert the Values of 

the Weather Conditions 

of Interest 

Dataset with Weather 

Data  

(Intermediate Dataset) 

DATA COLLECTION 

Figure 3. 4: Process of Data Integration (Initial Datasets to Intermediate Datasets) 
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Figure 3. 5: Process of Data Integration (Intermediate Datasets to Final Dataset) 
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3.3.1 Creating a Base Map 

The base map with the two corridors of study was created in ArcMap 2010. To do so, 

the author first imported a basemap layer from Bing Maps and focused on the state of Iowa. 

Then, a layer of the GIMS files which contains the whole roadway network of Iowa with the 

corresponding information for each road segment (as mentioned previously) was created. 

Furthermore, the layer with the RWIS locations was imported. The next step was to select the 

road segments (as coded in the GIMS files) for the two corridors of study (I-80 and US-34). 

In this task, the tool of the “Interactive Selection Method” was used. This process created 

two new layers: one for I-80 and one for US-34. It is noteworthy that this was done for each 

year of the analysis period (2009-2011). Thus, three base maps were created. Figure 3.6 

presents as screenshot of an ArcMap file (base map). 

 

 

Figure 3. 6: Base Map and Selection of the Two Corridors 



40 

3.3.2 Roadway and Traffic Data 

All the GIMS information related to the two corridors of study (such as geometric 

characteristics, AADT etc.) is saved in the attribute tables of the corresponding layers. A 

screenshot of a typical attribute table of a GIMS file is shown in Figure 3.7. An attribute 

table can be also exported in a dbf format file and then opened and easily processed in MS 

Excel.  

 

3.3.3 Crash Data Integration 

The first task of the crash data integration was to identify those crashes that occurred 

along the two corridors during the analysis period. As mentioned previously, the location 

(along with the other attributes) of each recorded crash is saved in GIS format. Thus, the 

crash points can be projected on each year’s base map by importing the corresponding 

Figure 3. 7: A Typical Attribute Table of a GIMS file 
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shapefile with the geographic coordinates of crash locations. Figure 3.8 presents a map which 

shows the crash points of the year of 2010. 

 

The previous map shows all crashes that happened in Iowa during 2010. From those crashes, 

the crashes located along the two corridors of interest were selected. To do this, the “Select 

by Location” method in ArcMap was used. Specifically, the author selected the features 

(crashes) from the layer zshp_2010 (layer with crash locations) with a source layer, the layer 

of the corridor I-80 (or US-34). As a spatial selection method, the method which selects 

features that are within a specific distance (offset distance) of the source layer feature was 

used. In this particular case, the offset distance was set to be at 20 meters. The author did so, 

Figure 3. 8: Crash Points of the Year 2010 
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in order to capture any cases of crashes that occurred on the corridor of interest, but their 

exact location was not recorded correctly due to several reasons: 1) vehicle run off the road 

after crash; 2) GPS device accuracy; 3) changes in the road systems (or cartography); and 4) 

cloud cover (Gao, 2012). Figure 3.9 presents a screenshot of the method in ArcGIS. 

 

Once the crashes for each corridor were selected and the corresponding layers were 

created (one for I-80 and one for US-34), the next step was to integrate all the attributes for 

each crash in a unique table. Furthermore, the information for each crash should be joined 

with the information (from the GIMS file) of the corresponding road segment on which the 

crash was assigned. The first task was done by using the “Join by Attributes” method of 

ArcMap. For the second task, the “Spatial Join” method was used. 

Figure 3. 9: Selection of Crashes with the “Select by Location” Method in ArcGIS 
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All the parameters of each recorded crash are saved in separate tables (files) 

according to the kind of information that they provide. For the purpose of this thesis, the 

author utilized information from tables that provide the following information: 

 Crash Point Parameters (table zshp) 

 Location/Time Crash Parameters (table zltp) 

 Severity Level Crash Parameters (table zsev) 

 Environmental Crash Parameters (table zenv) 

 Roadway Crash Parameters 1 (table zrda) 

 Roadway Crash Parameters 2 (table zrdb) 

 Crash Type Parameters 1 (table zcta) 

 Driver Crash Parameters (table zdrv) 

 Vehicle Crash Parameters (table zveh) 

The parameter that all the aforementioned tables share is the “CRASH KEY”. The 

“CRASH KEY” is a “unique identifier” for each crash. Thus, all the information from each 

separate table can be joined together based on the “CRASH KEY”.  

The task of joining the separate tables and creating a comprehensive dataset with the 

crash attributes of interest of the selected crashes (for each year of the analysis period) was 

done in ArcMap. Specifically, the necessary tables into the already created ArcMap file were 

imported and the “Join by Attributes” method was used, as mentioned previously. Of course, 

the join was based on the “CRASH KEY”, which is the common field in each table. Figure 

3.10 presents the “pop-up” window of this method in ArcMap. 
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It should be noted that all the tables were joined to the layers with the selected crashes 

that had been created in a previous step. Thus, the attribute tables of the crash layers had all 

the information of interest for each selected crash. A screenshot of an attribute table of a 

crash layer is shown in Figure 3.11. 

The next step was to integrate the crash attributes with the information of the 

corresponding road segments (e.g. AADT) to which the selected crashes were assigned. This 

was done by using the “Spatial Join” Method of ArcMap. This method joins data from two 

layers based on spatial location. Moreover, in the resulting attribute table the distance 

between the joined features is given. In this case, lines (road segments) were joined to points 

(crashes). Thus, at the end of the process the distance of each crash from each road segment 

was calculated. That was actually the offset distance which was mentioned previously. Figure 

3.12 presents a screenshot of the method’s window in ArcMap.  

Figure 3. 10: “Join by Attributes” Method Window in ArcMap 
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Figure 3. 11: Sample of an Attribute Table of a Crash Layer 

. 

 

 

 

 

 

 

 

 

 

Figure 3. 12: “Spatial Join” Method Window in ArcMap 
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The author also noted that the distance between the features of the joined layers was 

provided and  used the “Spatial Join” method in order to calculate the distance of each crash 

from each RWIS (by joining the crash layers to the RWIS layers). That distance was used in 

a following step of the weather data processing. 

Following the previous process comprehensive datasets with the crash and road 

segment attributes of the crashes that occurred on the two corridors of study during the 

period 2009-2011 were created.  

The next step was to export these datasets to MS Excel in order to start the numerical 

processing and create the intermediate dataset with the Crash-Roadway-Traffic Data (see 

Figure 3.4). At this point, it should be noted that a very careful post-screening procedure was 

followed in order to eliminate any crashes which were included in the datasets due to errors 

in the selection and join process. Finally, it should be mentioned that only the crashes that 

were recorded to have occurred on the mainline of the two corridors were included in the 

(intermediate and final) datasets. Crashes that were recorded on the ramps were eliminated 

from the next steps of the analysis.   

3.3.4 Intermediate Dataset with Crash-Roadway-Traffic Data 

The datasets that were created in ArcMap included all the required crash, roadway 

and traffic information. Traffic information included the AADT (total and truck) of the road 

segments as recorded in the GIMS files. However, any seasonal variations of traffic during 

the year are not captured by AADT. For this reason, the author decided to adjust the values 

of the AADT that GIMS files provide based on the monthly percentages of variation that 

were reported in the annual ATR reports (see Section 3.2.4). 
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The adjustment process was simple. Specifically, the annual value of the AADT was 

multiplied by the corresponding percentage of the month when each crash happened. For 

instance, if a crash happened in January of 2009, then the adjusted AADT is the AADT of 

the road segment of the crash (as reported in GIMS 2009) multiplied by the percentage for 

January 2009 (as reported in the ATR report of 2009) for the specific classification (interstate 

or primary) and environment (rural or urban) of the road segment. The calculations were 

done in MS Excel 2010. Figure 3.13 presents a sample spreadsheet of the process. 

 

The previous process for all the selected crashes during the period of study resulted in 

an intermediate crash-roadway-traffic dataset. That dataset was finally integrated with the 

Figure 3. 13: Sample of Excel Spreadsheet of the AADT Adjustment Process 
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other intermediate dataset of the weather data, in order to get the comprehensive dataset with 

all the information that was used as input in the analysis. 

3.3.5 Weather Data Processing 

The next step was to create the second intermediate dataset with the weather data. 

First of all, once the two corridors of study were selected (in ArcMap), the closest RWIS to 

whose records would be incorporated in the analysis were identified. As already mentioned, 

records from six RWIS were used. Specifically, the closest RWIS to the I-80 corridor were 

located at Colfax (sysid: 512053), Grinnell (sysid: 512022) and Williamsburg (sysid: 

512048). On the other hand, the closest RWIS to the US-34 corridor were those of Red Oak 

(sysid: 512038), Creston (sysid: 512013) and Osceola (sysid: 512035). 

The Iowa DOT provided the author with raw records of the selected RWIS for the 

period 2009-2011. Figure 3.14 presents the typical form of a raw dataset from RWIS (as is 

opened in MS Excel 2010). For this reason, extensive data processing was required. 

The main steps of the weather data processing were as follows: 

i. Organizing the raw datasets of each RWIS (e.g. cleaning and sorting) by year. 

ii. Converting the raw data into the appropriate format (e.g. convert GMT to 

local time, convert temperature to degrees of C or F, etc.). 

iii. Creating the intermediate datasets (for each year and RWIS) with the weather 

records from the first available day to the last available day of the year 

(sometimes the records of some days are missing due to instrument 

malfunctions). 
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3.3.5.1 Organizing the Raw Datasets 

An initial processing and organizing of the raw datasets was required, since the 

datasets were in a raw format, as it is shown in Figure 3.14. During the process of organizing, 

all the records (rows of the datasets) were sorted by time (oldest to newest). Furthermore, the 

all the information (columns) which would not be used in the analysis or were incomplete 

was removed. Finally, it is noteworthy that the number of rows in each spreadsheet was 

really large (in some cases was larger than 500,000) for the three years of the analysis period. 

This was due to the fact that (as mentioned in section 3.2.2) a RWIS has the ability to 

automatically update its records each time a change in the weather conditions occurs. Thus in 

some cases a new record (row in the spreadsheet) was observed every two (or even less than 

Figure 3. 14: Typical Form of a Raw Dataset from RWIS 
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one) minutes, whenever rapid changes in the weather conditions occurred. For this reason, 

the records were split by year for each RWIS. That also made the MS Excel files smaller in 

size and easier in processing.  

3.3.5.2 Converting the Raw Data 

The data still remained in a format which was not appropriate for statistical analysis, 

even after the first step of processing. For instance, the temperature records were not in 

degrees C (or F) but in 0.01 degrees C, while the precipitation rate was in 0.025 mm/hr, and 

not in mm/hr (or in/hr). Furthermore, the reference time of each record was the GMT and not 

the local time. Thus, the records could not be related directly to each crash and integrated 

with the dataset of the Crash-Roadway-Traffic Data. For this reason, the appropriate 

conversions had to be done. 

First the time of each record was converted from GMT to local. In other words, the 

time was actually “moved” 6 hours before (or 5 hours during the daylight saving period – 

summer time). For the values of the weather conditions, the conversion table of Figure 3.15 

which was provided by the Iowa DOT was used. 

3.3.5.3 Intermediate Dataset with Weather Data 

After the conversion process was finished, the author was able to create the 

intermediate dataset with the weather data. Specifically, an intermediate dataset for each year 

and each RWIS was created. These datasets included all the weather variables that were 

processed in the previous step and would be used in the analysis.  

In particular, the weather variables were: 



51 

1. Temperature (in degrees C and F) 

2. Dew Point Temperature (in degrees C and F) 

3. Relative Humidity (RH %) 

4. Precipitation Intensity (categorical) 

5. Precipitation Rate (in mm/hr and in/hr) 

6. Average Wind Speed (in Km/hr and mi/hr) 

7. Wind Speed Gust (in Km/hr and mi/hr) 

8. Wind Speed Average Direction (in degrees) 

9. Wind Speed Gust Average Direction (in degrees) 

A sample of an intermediate dataset with the weather data is presented in Figure 3.16. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. 15: Conversion Table (Source: Iowa DOT) 



52 

3.3.6 Integrating the Two Intermediate Datasets 

The last task of the data integration process was to integrate the information of the 

two intermediate datasets. As base for this integration the time of each crash was used. The 

main steps of this process (as also shown in Figure 3.5) were: 

i. Assigning each crash to the nearest RWIS 

ii. Identifying in the datasets of the weather data, the records for a period of an 

hour before the time of each crash 

iii. Deriving the average values for the prevailing weather conditions for a period 

of an hour prior to each crash (i.e., hourly weather conditions) 

Figure 3. 16: Sample of an Intermediate Dataset with Weather Data 
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3.3.6.1 Assigning Each Crash to the Nearest RWIS 

The process of assigning the crashes to their nearest RWIS was based on the distance 

between the location of each crash (crash point) and the location of the corresponding RWIS 

on the corridor of the crash. As mentioned in a previous step, the distance between each crash 

point to each RWIS was calculated in ArcMap. These distances were included in the dataset 

with the crash data (Figure 3.17). 

 

The rule that was used for the assigning was the following: 

Figure 3. 17: Fields of the Computed Distances between Crash Points and RWIS locations 
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 Each crash was assigned to the nearest RWIS if its distance from that was less 

than 10 miles (16 Km). 

 If a crash point had a distance of more than 10 miles from each of the two 

nearest RWIS, then the crash was assigned to both RWIS. In this case, for the 

derivation of the average weather values, a weighted average was used. 

 

 

 

 

 

 

 

 

The previous rule is depicted graphically in Figure 3.18. In other words, the crashes 

(green points) that were located inside the circles (radius = 10 miles) were assigned to one 

RWIS (that of the center of the circle). The crashes located outside of the circles were 

assigned to the two nearest RWIS. 

Note that there is not a standard rule for assigning crash locations to weather stations 

in the literature, but rather researchers have selected a rule that was convenient based on the 

Figure 3. 18: Assigning Rule (Graphical Illustration) 
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availability of the weather stations, the area and purpose of the study. For instance, Hermans 

et al. (2006) assigned each crash to the nearest weather station in a Dutch nationwide study. 

In a similar way, Shankar et al. (2004) assigned each of the one-mile segments of their study 

area to the nearest weather station.  On the other hand, some authors prefer to combine 

reports from different weather stations. Usman et al. (2012a, b) used the arithmetic mean of 

the values of the weather parameters that were recorded by different weather stations which 

were located within an (arbitrarily) defined 60 Km buffering zone around each route of their 

study. Finally, Jung et al. (2012) tried to approximate real-time weather values by applying 

an inverse squared distance rule to the weather records of the nearest three stations to each 

crash location.  

In this thesis, the aforementioned rule (Figure 3.18) was decided, based on the spatial 

distribution of the RWIS and the local climate conditions. 

3.3.6.2 Identifying the Records for a Period of an Hour prior to each Crash 

The next step was to identify the records in the datasets with the weather data from 

which the average (hourly) weather conditions would be derived for a period of an hour prior 

to each crash. This task was performed in MS Access 2010.  

During this process, the datasets with the weather data were first imported into MS 

Access (for each year and RWIS). Then, having already assigned each crash to the 

corresponding RWIS, the time of each crash was used in order to create queries. Specifically, 

SQL Queries which selected all the records in the dataset for a period of an hour prior to each 

crash were used. Figure 3.19 presents a sample code for a SQL query that was used. It should 

be noted that for the crashes which had been assigned to two RWIS, the query was performed 
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in the datasets of both RWIS. At the end of the process all the required records in order to 

derive the average prevailing weather conditions had been extracted. 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.6.3 Deriving the Average Prevailing Weather Conditions 

The datasets that were created in MS Access were opened in MS Excel in order to 

derive (i.e., calculate) the average values of the prevailing weather conditions for an hour 

prior to each crash. For the calculations the “subtotal” tool of Excel was used (see Figure 

3.20). 

The “subtotal” tool can be found on the “Data” ribbon of Excel. This option allows 

the user to calculate various values (such as averages, summaries, maximum, minimum, etc.) 

Figure 3. 19: Sample Code for SQL Query in MS Access 2010 
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related to specific parts (subtotals) of a spreadsheet. In this particular case, each subtotal 

included all the weather records during the period of an hour prior to each crash. Thus, unless 

some records were missing, in each spreadsheet there were as many subtotals as the number 

of crashes assigned to the specific RWIS for the specific year. 

Weather Conditions (Variables) 

From this process the hourly values for the following weather conditions (that used as 

variables in the analysis) were derived: 

 Average Temperature (C) 

 Average Dew Point Temperature (C) 

Figure 3. 20: The “Subtotal” Tool of MS Excel 2010 
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 Average Relative Humidity (RH) 

 Type of Precipitation  

 Total Accumulated Amount (Height) of Precipitation (mm) 

 Average Wind Speed (Km/hr) 

 Average Wind Speed Gust (Km/hr) 

 Average Wind Direction (Km/hr) 

 Average Wind Gust Direction (Km/hr) 

The “average option” of the “subtotal” tool for the weather conditions was used, for 

the variables where average values could be used (temperature, wind speed etc.). The 

precipitation though should be treated in a different manner. As far as the precipitation type 

is concerned, there were cases where during a period of an hour, two or even three different 

types of precipitation were observed. For instance, the records might show no precipitation 

during the first quarter of an hour, rain during the following 10 minutes and snow for the rest 

of the hour! In such cases, the most prevailing type of precipitation was assumed (e.g. snow 

in the previous example). 

Regarding the amount of precipitation, the author decided to use the total 

accumulated height of precipitation that fell during the hourly period. As mentioned 

previously, the Precipitation Rate was obtained from the RWIS records. That variable was in 

mm/hr (after the necessary conversions). Based on the values of this variable, the 

precipitation height was calculated. For the calculation, the precipitation rate was multiplied 

by the duration of the event (i.e., the period between two consecutive records in my dataset). 

In other words, the following formula was used: 
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                     (3.1) 

  

where:  PcHeight = Amount (Height) of Precipitation during the last hour (mm) 

 PcRate = Rate of Precipitation (mm/hr) 

 PcDuration = Duration of Precipitation Event (min) 

From the previous calculation a new column was created in the spreadsheets. Then, 

by applying the “subtotal” tool, but using the “sum option” at this time, the total amount 

(height) of precipitation that fell during the period of an hour prior to each crash was 

computed.  

It should be mentioned here that the previous average values correspond to each crash 

and thus could be integrated with the rest of information for each crash. However, that 

applied only to the crashes which were assigned to one RWIS. For the crashes which were 

assigned to two RWIS the weighted average of those values (based on distance) should be 

calculated. In order to do that, the following formula was used: 

            
                     

        
        

                     
        

 (3.2) 

 

where:  W.V. = Weighted Value of the Weather Parameter 

 ValueA = Value of the Parameter as Reported in RWIS A 

 CrashDist.A = Distance between the Crash Location and RWIS A 

 ValueB = Value of the Parameter as Reported in RWIS B 
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 CrashDist.B = Distance between the Crash Location and RWIS B 

 TotDist. = Distance between RWIS A and B 

Finally, it should be noted that for the cases where the records from only one of the 

two RWIS were available, only the available values were used. 

3.3.7 Creating the Final Dataset – Input for the Analysis 

Once the processing of the weather data was finished, all the required parameters for 

each crash had been determined. These parameters were related to crash attributes, traffic 

conditions and weather conditions of the roadway. Thus, the final dataset which constituted 

the input for the statistical analysis could be created. 

In order to create the final dataset, all the data from the different spreadsheets was 

integrated by using the “CRASH KEY” of each crash as base for the integration. Eventually, 

two datasets were created, one for the I-80 corridor and one for the US-34 corridor, which 

contained all the crashes along with their corresponding parameters over the period 2009-

2011. Figure 3.21 presents a part of the dataset of I-80 corridor. Each row in the dataset 

refers to a crash and each column to a specific crash parameter. The columns are colored 

according to the type of their parameters (e.g., location/ time, traffic, weather, etc.). 

The aforementioned datasets were then utilized in the statistical analysis that will be 

the subject of the following chapter. 
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3.4 Summary 

In most of the transportation related studies, large amounts of data have to be 

processed and integrated in order the required datasets for the analysis to be created. A 

common problem is that the data come from different sources and can be in different format. 

In this thesis, four different types of data are considered for two Iowa corridors: Crash Data, 

Weather Data, Roadway and Traffic Data.  

This chapter described the four different types of data and the procedure of 

integrating them in a final comprehensive dataset. The final dataset will be further analyzed 

Figure 3. 21: Part of the Final Dataset (Input) 

 



62 

using statistical techniques. The next chapter will present the statistical methods that will be 

applied to address the thesis’ objectives.  
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 METHODOLOGY CHAPTER 4.

This chapter describes the statistical methodology that was adopted in this thesis.  

4.1 Overview 

A short review of the methodological approaches that have been applied to estimate 

crash frequency and severity in past studies associated was presented in Chapter 2. For a 

more comprehensive review of the used methodologies on the estimation of crash frequency 

the reader may refer to Lord & Mannering (2010). 

The main objective of this thesis (as outlined in Chapter 1) is to investigate the effect 

of the prevailing weather conditions along with other crash attributes on the severity of 

crashes. As already mentioned in Chapter 2 (Section 2.3.2), discrete (ordered or unordered) 

data models have been widely used in assessing the impact of various factors on crash 

severity. As explained in that section, crash severity can be analyzed as a discrete variable 

that takes values based on the level of the severity outcome (i.e., fatal injury crash, major 

injury crash, etc.). Thus, discrete outcome models are suitable for examining crash severity. 

However, it should be noted that while ordered models are more appealing and predominant 

in the literature of crash severity because of the inherent ordered nature of severity, one 

should be cautious in their use since they do not have the flexibility to capture the effect of 

the explanatory variables on the interior category (i.e., that of minor injury crashes) 

probabilities. On the other hand, unordered discrete models do not pose any such restrictions 

and thus may be preferable (Washington et al., 2011).   
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Considering the above, two different types of unordered discrete outcome models 

were selected for the purpose of this thesis. Specifically, a binary probit model and a 

multinomial logit model (MNL) were estimated in order to investigate the effect of the 

weather conditions along with other crash attributes on the severity of crashes (injury/no-

injury in the case of the binary model, and three injury severity outcome in the case of the 

MNL) on each of the two study corridors during the analysis period 2009-2011. 

4.2 Discrete Outcome Models 

In modeling (unordered) discrete outcomes it is convenient to define a linear function 

of covariates (i.e., explanatory variables) that affect specific discrete outcomes (as the 

various levels of crash severity in the current case). 

Following Washington et al. (2011), let Tin be a linear function that determines the 

discrete outcome i (i.e., severity level) for the observation n (i.e., crash), such that: 

                 (4.1) 

where: βi  =  a vector of estimable parameters for outcome i 

Χin = the vector of the observable characteristics (i.e., crash attributes) that 

determine the outcome of observation n 

εin = an error term that accounts for any unobserved effects (e.g. omitted 

variables) 

If now I denotes all possible discrete outcomes for observation n, the probability Pn(i) 

of the observation n to have a specific discrete outcome i (i  I) is given by the equation: 
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   ( )    (       )         (4.2) 

Equation (4.2) can be modified by substituting Equation (4.1) as: 

   ( )    (                     )         (4.3) 

In the case of this thesis, Pn(i) actually denotes the probability of a specific crash n to 

have a specific severity outcome i, based on the crash attributes Χin and their estimated 

parameters βi . 

4.2.1 Binary Probit Model 

A model that considers only two discrete outcomes is called binary model. 

Furthermore, if the error term εin (see Equations 4.1 and 4.3) is assumed to be normally 

distributed, then the model is a binary probit model. In this case, Equation 4.3 can be written 

as: 

   ( )    (                     )   (4.4) 

where 0 and 1 denote the two outcomes. 

In other words, Equation 4.4 estimates the probability of outcome 0 occurring for 

observation n, where ε0n   and ε1n  are normally distributed with mean equal to zero, variances 

  
  and   

  respectively, and covariance    . However, since the subtraction of two normally 

distributed variates produces a normally distributed variate, it can be assumed that the 

difference ε0n - ε1n   follows a normal distribution with mean zero and variance       
  

   
       (Washington et al., 2011).   
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Thus, the probability Pn(0)  is given by the formula: 

   ( )    (
            

 
)   (4.5) 

where Φ( ) the standardized cumulative normal distribution. 

The vector of parameters β is estimated by using maximum likelihood methods. For a 

binary probit model the log-likelihood is: 

    ∑(       (
            

 
)   (  

 

   

    )   (
            

 
)) (4.6) 

where δ0n is equal to 1 if the observed discrete outcome for observation n is 0 and 

zero otherwise. 

4.2.2 Multinomial Logit Model 

In cases where more than two discrete outcomes are considered, multinomial models 

can be applied. Multinomial Logit Models (MNL) is a type of discrete models in which the 

errors in the equations associated with each discrete outcome follow a Gumbel distribution. 

Following Washington et al. (2011), in a multinomial case the term             in 

Equation 4.3 can be replaced with the highest value (maximum) of all other        . Thus, 

Equation 4.3 can be rewritten as:  

   ( )    (              
      

(         ) )   (4.7) 
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If all εIn  are independently and identically Gumbel distributed random variates with 

modes ωIn and scale parameter (common) η, the maximum of             follows a Gumbel 

distribution with mode: 

  

 
  ∑   (      )   (4.8) 

 

If ε’n  is a disturbance term associated with the maximum of all possible discrete 

outcomes  i and has mode zero and scale parameter η  then the maximum of all possible 

discrete outcomes  i  is associated with the parameter and covariate product  

       
 

 
  ∑   (      )   (4.9) 

It can be then proven (see Johnson and Kotz (1970) as cited by Washington et al. 

(2011)) that Equation 4.9 can be written as: 

   ( )    (                          )  (4.10) 

where Pn(i) is the probability of observation n to have a specific discrete outcome i. 

Since the difference between two independently distributed Gumbel variates with 

common scale parameter η is logistic distributed, Equation 4.10 can be written as: 

   ( )   
 

     [ (              )]
  (4.11) 

Substituting with Equation 4.9 and rearranging the terms Equation 4.11 gives: 
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   ( )   
   [ (     )]

   [ (     )]     [  ∑   (      ) ]
  (4.12) 

After all, the standard multinomial logit (MNL) formulation (where η    ) is written 

as: 

   ( )   
   (     )

∑    (     )  
  (4.13) 

For the estimation of the vector of parameters β, the log-likelihood function is now: 

    ∑ (∑     [        ∑    (     )
  

]

 

   

)

 

   

 (4.14) 

where I  is the total number of outcomes and δin is equal to 1 if the observed discrete 

outcome for observation n is i and zero otherwise. 

Finally, as Washington et al. (2011) argue the choice of Gumbel distribution has to do 

with computational convenience. In fact, Gumbel distribution is pretty similar to normal 

distribution. 

4.2.3 Statistical Evaluation 

The statistical significance of each parameter in a discrete outcome model (either a 

binary probit or a MNL model) can be assessed by considering a one-tailed t-test. This test 

examines if the estimated parameter β for a specific variable is significantly different from 

zero. The test statistic is assumed to follow a t-distribution and its value is: 

    
   

    ( )
   (4.15) 

where S E  (β) is the standard error of the parameter. 
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It is noteworthy though that for the case of MNL models, the use of t-statistics is not 

precisely correct, since the MNL model is derived from a Gumbel distribution and not a 

normal. However, in practice the results of t-test can provide a reliable approximation of the 

true significance (Washington et al., 2011). 

The overall fit of a discrete outcome model is usually assessed by the ρ2 statistic (also 

known as McFadden ρ2 statistic). The ρ2 statistic is: 

       
  ( )

  ( )
   (4.16) 

where: LL(β)  =  the log-likelihood at convergence with parameter vector β 

LL(0)  =  the initial log-likelihood with all parameters set to zero 

Since a perfect model has likelihood function of one (thus LL(β)   ), a ρ2 of one 

means that the model predicts the outcomes with certainty (i.e., a perfect model). In fact, ρ2 

takes values between zero and one, with closer to one values to be desirable (similarly to R2 

of the linear regression). 

Finally, a disadvantage of ρ2  is that improves as additional parameters are included in 

the model (Washington et al., 2011). For this reason, an adjusted (corrected) ρ2  is used that 

takes into account the number K of the model’s parameters:  

                
  ( )   

  ( )
   (4.17) 
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4.2.4 Interpretation of Findings  

4.2.4.1 Elasticity 

Elasticity is used to assess the impact of a specific variable in the outcome 

probabilities. Following Washington et al. (2011), elasticity is computed from the partial 

derivative of each observation n (n subscripting omitted): 

     

 ( )
  

  ( )

    
   

   

 ( )
  (4.18) 

where: P(i)  =  the probability of outcome i 

xki  =  the value of the variable k  for outcome i 

For a MNL model Equation 4.18 can be written as: 

     

 ( )
 [    ( )]        

(4.19) 

Elasticity values give the percent effect that a 1% change in xki (when xki  is a 

continuous variable) has on the outcome probability P(i). If the value of elasticity is less than 

one, then the variable is said to be inelastic. In that case, a 1% change in xki  will result in less 

than 1% change in probability P(i). On the other hand, a variable with an elasticity value 

greater than one is considered elastic. A 1% change of an elastic variable causes a greater 

than 1% change in the outcome probability. 

The previous apply to cases of small changes in continuous variables and thus these 

elasticities are also called point elastictities. In cases of large changes (e.g. doubling of the 

value of the variable) non-negligible errors may occur. 
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When considering an indicator variable (i.e., a variable that takes on the values 0 or 1) 

a pseudoelasticity can be computed (Washington et al. 2011): 

     

 ( )
  

E  [ (    )]∑    (      )  

E  [ (    )]∑    (      )    ∑    (      )     

   (4.20) 

where: In  =  is the set of alternate outcomes with xki  in the function determining the 

outcome 

I =  the set of all possible outcomes 

The interpretation of the pseudoelasticity value is similar to that of elasticity, namely 

it is the percent effect that a change from zero to one in the indicator variable has on the 

outcome probability P(i). 

Finally, the aforementioned elasticities are direct elasticities, since they capture the 

impact that a change in a variable which determines the likelihood of an outcome i has on the 

probability of the same outcome i. If the effect on the probability of another outcome 

different than i is of interest (let j be that outcome), then a cross elasticity should be 

computed: 

     

 ( )
   ( )        

(4.21) 

 

It should be noted that in case of a variable that is included in more than one utility 

functions, then the  net effect of the variable can be determined by considering both direct 

and cross elasticities that are estimated for the variable of interest. 
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4.2.4.2 Marginal Effects 

Another way to assess the impact of a specific variable on the outcome probabilities 

is by estimating marginal effects. Marginal effects measure the effect of a “one unit” change 

in xki (when xki  is a continuous variable) has on the outcome probability P(i), as shown in 

Equation 4.22. Marginal effects are easier in the interpretation, especially for indicator or 

integer variables (Washington et al. 2011). For instance, in case of an indicator variable, 

marginal effects measure the impact on the outcome probabilities of a change in the 

variable’s value from zero to one. 

The marginal effect on the probability of an outcome i is given by the formula:  

      

 ( )
  

  ( )

    
  (4.22) 

4.3 Summary 

This chapter presented the mathematical background of the statistical methodology 

(discrete outcome models) that was used for analyzing the data collected for this thesis. The 

estimation results and major findings along with their interpretation will be provided in the 

next chapter.  
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 STATISTICAL DATA ANALYSIS CHAPTER 5.

This chapter presents the estimation results of the two types of crash severity models 

(binary probit and multinomial logit) that were developed for each study corridor. The 

discussion includes a description (and review of the theoretical background) of the different 

types of variables that were utilized in this thesis, the statistical evaluation of each model, 

and the interpretation of findings. 

5.1 Types of Variables 

Following Miller and Miller (2004) as a random variable (or simple variable) X is 

called a real-valued function defined over the elements of a sample space S. Under a more 

tangible perspective, one could say that a variable is actually an action of measuring, 

recording or computing a number. For instance, if variable X corresponds to the 1-hr average 

temperature prior to a crash that happened on the I-80 corridor of this study, it could be stated 

that: 

X = the act or recording (or more precisely computing) the 1-hr average temperature 

prior to a crash. 

All the possible numbers that this act can produce (i.e., all the possible values that this 

variable can take) constitute the sample space of X and are denoted with SX. For instance, 

regarding the case of temperature the sample space could include any real number or SX = (-

, +). In fact, it is intuitive that the temperature under normal conditions cannot be greater 

(or lower) than a specific value, e.g. greater than 50 
o
C (or lower than -40 

o
C). 
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5.1.1 Continuous Variables 

In statistics, a variable is considered continuous when it can take on any value within 

a range of values (Washington et al., 2011). For instance, the 1-hr average temperature prior 

to a crash of the previous example, the 1-hr average wind speed prior to a crash, or the 

adjusted Truck ADT of the road segment where the crash occurred, are continuous variables. 

Most of the variables associated with the prevailing weather conditions during a crash (i.e., 

temperature, precipitation amount, wind speed, etc.) and were used in this thesis are 

continuous variables. For describing continuous variables statistics as the mean, the standard 

deviation, minimum, maximum etc. are commonly used. 

5.1.2 Discrete Variables 

A discrete variable is a variable that can take only on specific integer values or else 

have a discrete sample space (Miller & Miller, 2004). In other words, the act associated with 

a discrete variable can produce only integer values (i.e., -1, 0, 1, 2, …).  

In this thesis, discrete variables constitute the majority of the used variables. For 

instance if: Y is the act or recording the severity level of a crash, then Y is a discrete random 

variable, then its sample space could be SY = {1, 2, 3, 4, 5}, where: 

1: corresponds to a fatal injury crash 

2: corresponds to a major injury crash 

3: corresponds to a minor injury crash 

4: corresponds to a possible/unknown injury crash 
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5: corresponds to a property damage only (PDO) crash 

Moreover, variable Y is also called ordered variable since its possible values reveal 

an order. For instance, as the value of Y increases, the severity level of the crash is lower. 

Another type of discrete variable that was used in this thesis is unordered variables. 

For instance if Z is associated with the act of recording the manner of crash/collision, then it 

could be SZ = {1, 2, 3, 4}, where: 

1: corresponds to a non-collision crash (i.e., overturn/rollover) 

2: corresponds to a head-on collision 

3: corresponds to a rear-end collision, etc. 

In this case, the values of the sample space are not associated with any order, but they 

just denote a specific attribute (e.g., the manner of collision). Finally, these variables are also 

called categorical since their values are associated with a specific category (i.e., a rear-end 

crash). 

It might not be meaningful to compute the mean or standard deviation for discrete 

variables (especially in case of an unordered variable). Instead the frequency or relative 

frequency (i.e., percentage) of each value can be used in describing a discrete variable. 

5.1.3 Count Variables 

This category includes the variables which are produced by a counting action. For 

instance, as a count variable could be considered the act of recording the number of vehicles 

that were involved in a crash. Certainly, a count variable can take only non-negative integer 
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values, thus its sample space should be S = {0, 1, 2, …}.  In this thesis, count variables were 

the number of vehicles that were involved in a crash or the ADT of the road segment in 

vehicles per day (note though that the adjusted ADT based on the month is a continuous 

variable and not a count). Although mean or standard deviation can be computed, they might 

not always be meaningful for a count variable, thus frequencies can be also used for the 

description of this type of variables. 

5.1.4 Indicator Variables 

An indicator (also known as dummy) variable is a binary variable since it can take on 

the values 0 or 1, thus its sample space is S = {0, 1}. Indicator variables are usually 

associated with the presence of a specific condition or event, or the validity of a statement.  

In other words, an indicator variable could represent a response as Yes/No or True/False.  

Let consider a variable named “PDO” which is associated with whether a crash had a 

property damage only outcome. In that case, if 1: accounts for a PDO crash and 0: for an 

injury crash, then if “PDO=1”, the crash of interest had a property damage only outcome. 

The sample space of that variable is SPDO = {0, 1}. 

All the types of the aforementioned variables (continuous, discrete, count) can 

produce indicator variables. For instance, an indicator variable could be associated with 

whether the 1-hr average temperature prior to a crash was lower than 0
o
C (the 1-hr average 

temperature is a continuous variable) or whether the type of the crash was rear-end (type of 

crash is a discrete variable) or whether two or more vehicles were involved in the crash (the 

number of vehicles is a count variable). 
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5.1.5 Interaction Variables 

The main objective of this thesis was to investigate the interaction effects of weather 

conditions and other crash parameters on crash severity. For this reason, interaction variables 

were created. 

An interaction variable is based on the combination of two or more variables. This 

combination is usually made by the multiplication of the values of the variables of interest. 

For instance, if it is of interest whether a crash occurred under snowfall and dark lighting 

conditions, the corresponding interaction variable can be created by multiplying the 

(indicator) variable associated with snowfall by the (indicator) variable associated with dark 

lighting conditions. In that case, if the resulting interaction variable takes the value of 1, then 

the specific crash occurred under snowfall and dark lighting conditions. It should be noted 

that in the previous case both indicator variables should take the value of 1 (i.e., both 

conditions should be true). Actually, one could say that interaction variables are associated 

with joint events. 

An indicator variable can be created by the combination of any type of variables. For 

instance, an indicator variable (e.g., rural road) could be multiplied by a continuous variable 

(e.g., 1-hr precipitation amount) and give an interaction variable associated with the 1-hr 

precipitation amount that had fallen prior to crash which occurred on a rural road. Thus, an 

interaction variable could be either binary or continuous or even discrete. 

The main variables that were used in this thesis along with their sample spaces and 

main descriptive statistics are listed in Appendix B. 
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5.2 Estimation Results 

Two different types of discrete outcome models were developed during the statistical 

analysis of data. Specifically, a binary probit and a multinomial logit model were estimated 

for each of the corridors of study. In both models, different levels of crash severity were 

considered as discrete outcomes. Moreover, various types of variables (see Section 5.1) 

related to the prevailing weather conditions (for a period of an hour prior to each crash) and 

other crash attributes were used as explanatory variables. All models were estimated using 

the statistical software NLOGIT 4.0. It should also be noted that the models were estimated 

based on the complete set of observations. In other words, any observations with missing 

data (i.e., weather variables or crash attributes) were skipped. 

The following present the estimation results and the interpretation of the key findings 

for each model. For the exact outputs of the software the reader may refer to Appendix C. 

5.2.1 I-80 Corridor 

5.2.1.1 Binary Probit Model 

A binary probit model for the I-80 corridor was estimated first. That model 

considered two discrete outcomes: 0: if the crash had a Property Damage Only (PDO) 

outcome and 1: if the crash had an injury outcome (i.e., fatal, major, minor or 

possible/unknown injury). It should be noted that the PDO crashes constituted the 78.3% of 

the sample, while 21.7% of crashes were injury crashes (see also Table 3.3). 

Table 5.1 presents the estimation results of the binary probit model for crash severity 

on I-80 corridor. 
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Table 5. 1: Binary Probit Model Estimation Results for Crash Severity on I-80 Corridor 

Variable Variable 

Type 

Estimated 

Parameter 

t-

statistic 

Marginal 

Effects 

Constant  -0.483 -4.425  

Overturn/Rollover Indicator 0.880 5.610 0.291 

Driving Too Fast for Conditions and Wind of 

Non-Parallel Direction to the Direction of 

Vehicle Movement 

Indicator 0.338 2.301 0.099 

Crash during a Snowfall Event in December Indicator 0.323 1.624 0.096 

February Indicator 0.317 1.782 0.094 

Single Vehicle Crash under Temperature 

below 0
o
C  

Indicator -0.568 -3.954 -0.136 

Crash during a Rainfall Event between 5:00 

pm to 10:00 pm 

Indicator -0.801 -2.156 -0.145 

Snowfall Event and Wind of Cross Direction 

to the Direction of Vehicle Movement 

Indicator -0.454 -1.737 -0.099 

Collision with Animal Indicator -0.992 -5.127 -0.194 

Average Wind Speed Continuous -0.015 -2.578 -0.004 

Number of Observations 795  

Log-Likelihood at convergence -368.287  

Restricted Log-likelihood -415.190  

adj-ρ
2
 0.089  

 

The binary probit model included one continuous variable and eight indicator 

variables (six of those were interaction variables). All the variables were significant at the 

95% confidence level apart from the indicator variable related to a crash during a snowfall 

event, which was significant at the 90% confidence level (as indicated by the values of the t-

statistic). Variables with a positive parameter (coefficient) increase the probability of an 

injury outcome, while those with a negative coefficient increase the probability of a PDO 

outcome (or equivalently decrease the probability of an injury outcome). 

Overall, four of the explanatory variables were found to increase the probability of an 

injury outcome (i.e., had positive parameters). Specifically, the probability of an injury 

outcome increases (by 0.291 according to the marginal effects) in crashes involving an 

Table 5. 1: Binary Probit Model Estimation Results for Crash Severity on I-80 Corridor 
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overturn or rollover, regardless of the prevailing weather conditions. This finding makes an 

intuitive sense by taking into account the intensity of such collisions. A crash whose reported 

major cause was driving too fast for conditions and also occurred under wind direction non-

parallel to the vehicle movement may lead to an injury outcome.  This finding could be 

attributed to the effect which may have the combination of the vehicle speed with the wind 

direction on the aerodynamic resistance and consequently, to the manner of crash (i.e., 

sideswipe, overturn etc.). However, more investigation is necessary in order to draw any safe 

conclusion. Finally, a crash under snowfall conditions that occurred in December and any 

crash occurred in February (regardless of the weather conditions) seem to lead to injury 

outcomes as well. These findings are likely picking up the adverse weather conditions during 

winter on road safety. 

On the other hand, five variables were found to increase the probability of a PDO 

outcome (i.e., had negative parameters). Three of them were interaction variables associated 

with adverse weather conditions (e.g., temperature below 0
o
C, rainfall or snowfall events). 

This finding is in line with past literature (cite some studies) and can be attributed to the 

increased alertness of the drivers during adverse weather conditions. A collision with animal 

has an increased probability (by 0.194) of resulting in a PDO outcome. This can make 

intuitive sense if one considers that animals are sat a disadvantage when colliding with 

vehicles. Finally, an interesting finding is that as the average wind speed increases the 

probability of a PDO crash increases as well. This is the only continuous variable of the 

model and has an elasticity equal to - 0.18. Thus a 1% increase in wind speed leads to a 

0.18% decrease in the probability of an injury crash (or equivalently 0.18% increase in the 
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probability of a PDO crash). This effect may be attributed to the aerodynamics resistance 

(similarly with the effect of the wind direction). 

5.2.1.2 Multinomial Logit Model 

Three different levels of crash severity were considered in the multinomial logit 

(MNL) model: property damage only (PDO), possible/unknown injury and fatal/major/minor 

injury. The advantage of the MNL model is that it can consider more than two outcomes. 

Thus, more individual levels of severity can be investigated. In this case, three levels were 

selected based on the distribution of crash severity. Specifically, 78.3% of the observed 

crashes were PDOs, 10.6% were Possible/Unknown injuries and the 11.1% were 

Fatal/Major/Minor Injuries (see Table 3.3). 

After the final model was specified a comprehensive analysis and interpretation of 

findings were performed by considering the signs of the parameters and the elasticities of the 

variables. 

Table 5.2 presents the estimation results of the MNL model for crash severity on I-80 

corridor, while Table 5.3 presents the values of the elasticity for each variable included in the 

model. 

 

Table 5.2 (continued) 

Variable Variable 

Type 

Estimated 

Parameter 

t-

statistic 

PDO Function    

Single Vehicle Crash under Temperature below 0
o
C  Indicator 1.288 3.622 

Average Wind Speed (Km/hr) Continuous 0.023 2.218 

Table 5. 2: Multinomial Logit Model Estimation Results for Crash Severity on I-80 

Corridor 
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Table 5.2 (continued) 

Variable Variable 

Type 

Estimated 

Parameter 

t-

statistic 

Snowfall Event and Wind of Cross Direction to the  

   Direction of Vehicle Movement 

Indicator 0.823 1.586 

Crash during Rainfall between 5:00 pm to 10:00 pm Indicator 1.539 2.028 

    

Possible/Unknown Injury Function    

Constant  -1.581 -7.349 

Collision with Animal Indicator -2.316 -3.174 

Single Vehicle Crash under Temperature below 0
o
C  Indicator 1.005 2.366 

Overturn/Rollover Indicator 1.312 4.002 

Driving Too Fast for Conditions and under Wind  

   Speed between 13.9 and 24.5 Km/hr 

Indicator 0.662 1.700 

    

Fatal/Major/Minor Injury Function    

Constant  -1.568 -7.574 

Overturn/Rollover Indicator 1.744 5.035 

Rural Road and 1-hr Precipitation Amount (in mm) Continuous -0.069 -1.465 

Driving Too Fast for Conditions and Wind of Non- 

   Parallel Direction to the Direction of Vehicle  

   Movement 

Indicator 1.318 4.185 

November Indicator -1.105 -1.804 

October Indicator -1.164 -1.576 

Number of Observations 770 

Log-Likelihood at convergence -467.744 

Restricted Log-likelihood -516.326 

adj-ρ
2
 0.085 

 

 

Table 5. 3 (continued) 

Variable Elasticity (%) 

 PDO Possible/Unknown 

Injury 

Fatal/Major/Minor 

Injury 

PDO Function    

Single Vehicle Crash under Temperature  

   below 0
o
C  

31.49* -63.73 -63.73 

Table 5. 3: Direct and Cross Elasticities of the Variables included in the MNL Model for 

I-80 Corridor 
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Table 5. 3 (continued) 

Variable Elasticity (%) 

 PDO Possible/Unknown 

Injury 

Fatal/Major/Minor 

Injury 

Average Wind Speed (Km/hr) 0.27* -0.07 -0.07 

Snowfall Event and Wind of Cross 

Direction to the Direction of Vehicle  

   Movement 

15.11* -49.45 -49.45 

Crash during Rainfall between 5:00 pm to  

   10:00 pm 

23.43* -73.51 -73.51 

    

Possible/Unknown Injury Function    

Collision with Animal 13.08 -88.84* 13.08 

Single Vehicle Crash under Temperature  

   below 0
o
C  

-11.74 141.11* -11.74 

Overturn/Rollover -17.70 205.61* -17.70 

Driving Too Fast for Conditions and under  

   Wind Speed between 13.9 and 24.5 

Km/hr 

-8.22 77.92* -8.22 

    

Fatal/Major/Minor Injury Function    

Overturn/Rollover -27.11 -27.11 316.92* 

Rural Road and 1-hr Precipitation Amount  

   (in mm) 

0.01 0.01 -0.11* 

Driving Too Fast for Conditions and Wind  

   of Non-Parallel Direction to the 

Direction  

   of Vehicle Movement 

-18.64 -18.64 203.96* 

November 9.07 9.07 -63.88* 

October 9.22 9.22 -65.90* 

* Direct Elasticity 

 

Three (utility) functions (associated with each possible outcome) of the form of 

Equation 4.1 were estimated in this model. Eventually, the function associated with the PDO 

outcome included four explanatory variables (three indicator variables and a continuous one). 

The function associated with the possible/unknown injury outcome included four indicator 

variables, while the function of the fatal/major/minor injury outcome included five variables 



84 

(four indicator and a continuous one). Similarly to binary probit models, a positive sign of a 

parameter indicates an increase in the probability of observing the outcome whose function 

includes that variable, while a negative sign indicates a decrease in that probability. 

However, apart from the signs one should also consider any net effects on the probabilities in 

cases of variables that are included in more than one function. 

According to Table 5.2, the variable related to a single vehicle crash occurred under 

temperature below 0
o
C was significant for the PDO and possible/unknown injury outcomes. 

The positive parameter shows that, while temperature below 0
o
C may pose a driving hazard, 

the severity outcome of a single vehicle crash occurred under those conditions is not very 

severe. This could be attributed to the alertness of the driver and the lower vehicle speed due 

to the adverse conditions (such as snow or ice on the road) that are associated with such low 

temperatures. Finally, this variable has inelastic effects on the probability of the various 

severity levels, since a change on its value from 0 to1 leads to changes in the probabilities of 

the severity outcomes lower than 100% (see Table 3.3). 

The effect of wind on road safety has been established in a number of papers (Baker 

& Reynolds, 1992; Edwards, 1994; SWOV, 2012). Higher wind speeds constitute a driving 

hazard especially for specific types of vehicles such as trucks, buses, or motorcycles. The 

effect of wind should be mainly associated with the aerodynamics of the vehicle movement. 

Furthermore, Usman et al. (2012a) argued that severe winds can magnify the adverse weather 

conditions, such as a snowstorm.  In the MNL model (as also in the binary probit) the effect 

of wind speed was found to be significant. Specifically, higher wind speeds were found to 

increase the probability of a PDO crash. However, this effect was inelastic, since an increase 

in the average wind speed by 1% leads to a 0.27% increase in the probability of a PDO 
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outcome and 0.07% decrease in the probability of injury outcomes. Moreover, vehicle speed 

in combination with wind speed may contribute to the severity outcome of a crash. 

Specifically, a crash that occurred under conditions of high wind speed and its cause (as 

stated in crash report) was driving too fast for conditions was found to result in a 

possible/unknown injury outcome (with a 77.92 % increase in the corresponding probability).  

Apart from speed, the direction of wind seems to be significant as well. A number of 

studies have been published on the effect of wind direction (especially related to cross winds) 

on the behavior of vehicles (Coleman & Baker, 1990; Baker, 1993). As also in the binary 

probit model, winds of cross direction during a snowfall event were found to increase the 

probability of a PDO crash. For the case of I-80, a wind of direction N-S (or S-N) was 

considered to be a wind of cross direction, since the major direction of the corridor is E-W 

(or W-E). This finding can be attributed to the negative effect of the wind direction on the 

movement of vehicle; for example, cross winds (especially sudden gusts) may cause 

deviations from the direction of movement. Furthermore, cross winds during precipitation 

events (such as snowfall) may affect visibility. The effect of this variable is inelastic since a 

change in the variable’s value leads to changes in the probabilities lower than 100%.  

Nevertheless, a crash with reported cause driving too fast for conditions in 

combination with wind of non-parallel direction to the direction of movement (i.e., of any 

direction different from E-W or W-E) is more likely to have a fatal/major/minor injury 

outcome. It is also noteworthy that the effect of this variable is elastic since the 

corresponding elasticity is equal to 203.96. This finding could be attributed to the type (and 

the intensity) of the harmful event (such just an overturn/rollover or a sideswipe) that these 

conditions may cause. 
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Rainfall events in combination with time of the day may contribute to the severity 

outcome of a crash. Specifically, a crash that occurred during an evening rainfall event 

(between 5:00 pm and 10:00 pm) is more likely to be a PDO crash (with a 23.43% increase 

in probability). As cited in the literature, rainfall events during night constitute a driving 

hazard, since the reflection of lights on the accumulated water makes the detection of the 

road and the objects in near vicinity more difficult (Brodsky & Hakkert, 1988). However, 

even in this case the severity outcome of a crash under rainfall during evening hours seems to 

be less severe as with most cases of a crash during inclement weather. In addition, an 

interesting finding was that as the 1-hr precipitation amount on a rural road increases, the 

probability of a fatal/major/minor injury outcome decreases. Specifically, for an increase in 

the precipitation amount by 1% on a rural road the probability of a fatal/major/minor injury 

crash decreases by 0.11%. This finding can make an intuitive sense if the adjustment of 

speed and the alertness of driver are taken into consideration.  

In the binary probit model, a collision with animal was found to reduce the 

probability of an injury crash, regardless of the weather conditions. In the MNL model, the 

variable associated with a collision with animal was found to reduce the probability of a 

possible/unknown injury outcome. Specifically, a collision with animal reduces the 

probability of a possible/unknown injury outcome by 88.84%.  An obvious explanation is 

that animals are normally more vulnerable than vehicles.  

An event of an overturn or rollover is associated with injury outcomes, regardless of 

the weather conditions. Specifically, the corresponding variable has positive parameters in 

the functions of possible/unknown injury and fatal/major/minor injury outcomes. It is also 

noteworthy that the effect of this variable is elastic with changes in the outcome probabilities 
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greater than 100%. This probably has to do with the intensity of this type of events (i.e., 

overturns). However, more investigation on adequate samples of crashes associated with this 

type of event in combination with the prevailing weather conditions is recommended. 

Finally, weather conditions are associated with the month of the year. Thus, indicator 

variables related to months were considered in this model. Specifically, October and 

November were found to reduce the probability of a crash with a highly severe outcome. This 

finding could be attributed to the fact that the weather conditions change during that period 

(e.g. temperature drops, snowfalls start) and the duration of the day (and thus of the daylight) 

is getting shorter. The aforementioned changes probably make the drivers more careful, thus 

crashes of high severity are less likely. Also, it should be mentioned that road users who are 

more vulnerable to severe crashes, such as motorcyclists or pedestrians, make fewer trips 

during that period of year. 

In conclusion, both the binary probit and multinomial logit models for crash severity 

on I-80 corridor lead to similar findings. However, the multinomial logit model maybe 

preferable for the analysis of crash severity because it provides with the flexibility to 

consider more than two severity outcomes. Thus, a multinomial logit model can better 

investigate the effect of specific factors on the interior categories of severity (Washington et 

al., 2011), as the possible/unknown injury outcome in this thesis. This advantage outweighs 

binary probit models which can consider only two outcomes (e.g. injury / no injury).  

 Overall, the major finding is that adverse weather conditions such as temperature 

below 0
o
C, rainfall and snowfall events were found to be associated with crashes of lower 

severity, such as PDO. This finding is in alignment with existing literature. Furthermore, 

wind speed and direction was found to play a role in the severity outcome of a crash, 
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especially when the cause of the crash was reported to be due to inappropriate vehicle speed 

(driving too fast for conditions). Moreover, variables associated with specific types of 

crashes such as overturn/rollover or collision with animal were found to be significant 

regardless of the weather conditions under they occurred. Finally, specific months (October 

and November) were found to lead to less severe crash probably because of the change in 

road users’ habits. 

5.2.2 US-34 Corridor 

The corresponding models for the US-34 corridor were estimated following exactly 

the same process as in the estimation of the models for the I-80 corridor. The results of the 

estimation process and the key findings are presented in the following. 

5.2.2.1 Binary Probit Model 

The binary probit model was estimated before the MNL model (as in the case of I-80 

corridor). On the US-34 corridor, PDO crashes constituted the 70.7% of total crashes, while 

injury crashes accounted for the 29.3% (see Table 3.4). 

Table 5.4 presents the results of the binary probit model for crash severity on US-34 

corridor. 

 

Table 5.4 (continued) 

Variable Variable 

Type 

Estimated 

Parameter 

t-

statistic 

Marginal 

Effects 

Constant  -1.463 -4.848  

Crash during a Snowfall Event and Dark  

   Lighting Conditions 

Indicator -1.024 -1.744 -0.249 

Table 5. 4: Binary Probit Model Estimation Results for Crash Severity on US-34 

Corridor 
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Table 5.4 (continued) 

Variable Variable 

Type 

Estimated 

Parameter 

t-

statistic 

Marginal 

Effects 

Crash with  2 or more Vehicles Involved under  

   Temperature below 0
o
C  

Indicator 0.652 2.313 0.242 

Rural Road and Average Wind Speed (Km/hr) Continuous 0.025 2.610 0.009 

Wind of Non-Parallel Direction to the Direction  

   of Vehicle Movement 

Indicator 0.537 1.811 0.166 

Crash between 6:00 am and 9:00 am Indicator 0.729 2.419 0.275 

August Indicator 1.566 3.719 0.562 

Number of Observations 172  

Log-Likelihood at convergence -91.002  

Restricted Log-likelihood -107.791  

adj-ρ
2
 0.091  

 

The binary probit model of the US-34 corridor included six variables. Five of those 

were indicator and one was continuous. All the parameters were significant at the 95% 

confidence level. From those variables, only one was found to decrease the probability of an 

injury outcome. Specifically, a crash during a snowfall event and under dark lighting 

conditions is more likely to have a PDO outcome. Moreover, based on the marginal effects 

the decrease in the probability of an injury crash under these conditions is equal to 0.249. 

The aforementioned variable was the only variable related with adverse weather 

conditions that was found to reduce crash severity. All the other variables associated with 

inclement weather were found to increase the probability of injury outcomes. Specifically, 

crashes with two or more vehicles involved under temperature below 0
o
C were found to lead 

to injury outcomes, with an increase of 0.242 in the corresponding probability. In addition, an 

increase in the 1-hr average wind speed in combination with rural environment was found to 

increase the probability of an injury crash. That effect though is inelastic (elasticity = 0.14). 
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Moreover, wind direction seems to influence crash severity. Specifically, winds of direction 

non-parallel to the direction of vehicle movement were found to lead to severe outcomes, 

with an increase of 0166 in the corresponding probability. Finally, crashes that occurred 

during morning hours and crashes that occurred in August were found to have injury 

outcomes.  

5.2.2.2 Multinomial Logit Model 

The estimation of the binary probit model was succeeded by the estimation of the 

multinomial logit (MNL) Model. As in the case of I-80 corridor, the purpose of the 

estimation of the MNL model was the investigation of more than two severity outcomes. 

Specifically, the same three severity outcomes with I-80 were considered: property damage 

only (PDO), possible/unknown injury and fatal/major/minor injury. As shown in Table 3.4, 

70.7% of the observed crashes had a PDO outcome, 17.8% had a possible/unknown outcome 

and 11.5% had fatal/major/minor injury outcome. 

Table 5.5 presents the estimation results of the MNL model for crash severity on US-

34 corridor, while Table 5.6 presents the values of the elasticity for each variable included in 

the model. 

 

Table 5. 5 (continued) 

Variable Variable 

Type 

Estimated 

Parameter 

t-

statistic 

PDO Function    

August Indicator -2.377 -3.573 

Crash  between 6:00 am and 9:00 am Indicator -1.314 -2.599 

Rural Road and Average Wind Speed (Km/hr) Continuous -0.029 -1.836 

Table 5. 5: Multinomial Logit Model Estimation Results for Crash Severity on US-34 

Corridor 
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Table 5. 5 (continued) 

Variable Variable 

Type 

Estimated 

Parameter 

t-

statistic 

    

Possible/Unknown Injury Function    

Constant  -2.300 -7.270 

Crash under Temperature below 0
o
C  Indicator 0.913 2.309 

    

Fatal/Major/Minor Injury Function    

Constant  -2.796 -6.836 

Crash under Temperature below 0
o
C  Indicator 0.913 2.309 

Logarithm of Truck-AADT of the road segment  

   where crash occurred and Wind of Non-Parallel  

   Direction to the Direction of Vehicle Movement 

Continuous 0.205 2.617 

Crash under Dark Lighting Conditions Indicator -1.864 -2.370 

Number of Observations 181 

Log-Likelihood at convergence -128.348 

Restricted Log-likelihood -148.169 

adj-ρ
2
 0.114 

 

 

Table 5.6 (continued) 

Variable Elasticity on 

 PDO Possible/Unknow

n Injury 

Fatal/Major/Mino

r Injury 

PDO Function    

August -68.12* 243.40 243.40 

Crash  between 6:00 am and 9:00 am -45.89* 101.33 101.33 

Rural Road and Average Wind Speed  

   (Km/hr) 

-0.11* 0.16 0.16 

    

Possible/Unknown Injury Function    

Crash under Temperature below 0
o
C  -16.91 107.05* -16.91 

    

Fatal/Major/Minor Injury Function    

Crash under Temperature below 0
o
C  -11.67 -11.67 120.10* 

Table 5. 6: Multinomial Logit Model Estimation Results for Crash Severity on US-34 

Corridor 
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Table 5.6 (continued) 

Variable Elasticity on 

 PDO Possible/Unknow

n Injury 

Fatal/Major/Mino

r Injury 

Logarithm of Truck-AADT of the road  

   segment where crash occurred and Wind  

   of Non-Parallel Direction to the  

   Direction of Vehicle Movement 

-0.08 -0.08 0.27* 

Crash under Dark Lighting Conditions 18.19 18.19 -81.67* 

* Direct Elasticity 

 

The results of the multinomial logit (MNL) model were almost similar to the results 

of the binary probit model. The main differences were: the consideration of all the crashes 

that occurred under temperature below 0
o
C (and not only multivehicle crashes as in the 

binary probit model), the interaction variable of Truck ADT with the wind of non-parallel 

direction to the direction of vehicle movement that was found significant for the 

fatal/major/minor injury utility function and finally the finding that a crash under dark 

lighting conditions is less likely to have a fatal/major/minor injury outcome.  

In the MNL model any crash that occurred under temperature below 0
o
C was more 

likely to be of an injury outcome. Moreover, the effect of this variable to the 

fatal/major/minor injury outcome was found elastic with a net elasticity (direct and cross 

elasticity combined) greater than 100%. On the other hand, the net elasticity of the 

possible/unknown injury outcome was less than 100% (inelastic effect). This finding is 

contradictory to the finding of I-80 corridor regarding the temperature. Nevertheless, it 

should be noted that in the case of the I-80 corridor only single vehicle crashes were 

considered in the models. In the case of US-34 corridor though, any crash was considered in 
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the MNL model. However, the majority of crashes on US-34 corridor (around 60%) were 

multivehicle crashes. Thus, one could speculate that a multivehicle crash under temperature 

below 0
o
C on an undivided facility (as US-34) is more likely to be of high severity. This 

could be attributed to the absence of median and the higher possibility of crashes between 

vehicles travelled on different directions. Especially, in cases of temperature below 0
o
C 

where the possibility of presence of snow or ice on the road surface is high, such kind of 

crashes (e.g. head-on crashes) mainly caused by the loss of vehicle control are expected to be 

higher severity. Furthermore, speculations about the efficiency of (different) maintenance 

policies that are applied on routes of different classification (i.e., more emphasis on interstate 

routes) could also be made. 

The Truck-AADT of the road segment in combination with winds of non-parallel 

direction was found to have a negative effect on crash severity. Specifically, as the logarithm 

of the Truck-AADT increases the probability of a Fatal/Major/Minor outcome increases as 

well (elasticity 0.27). This finding could be attributed to the negative effect that wind 

direction (and especially cross winds) may have on the safety of large vehicles. Also that 

type of winds may cause specific types of crashes (e.g. overturns) which usually have more 

severe outcomes.  

Finally, crashes under dark lighting conditions tend to be of lower severity. This 

could be explained by the increased alertness of the drivers, especially in cases of no lighted 

road segments. 

The rest of the variables of the MNL model were also included in the binary probit 

model. The most interesting finding is that the increase of wind speed on a rural road reduces 
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the probability of a PDO outcome (elasticity = -0.11). This finding is contradictory to the 

finding about wind speed of the I-80 corridor. Moreover, crashes occurred in August and 

crashes in the morning hours were found to have a lower probability of a PDO outcome. It is 

also noteworthy that both variables had elastic effects, with the variable related to August to 

have an elasticity equal to 243.40. 

Overall, especially for the case of US-34 corridor, both models gave similar results. 

Thus, one could argue that the simpler binary probit model could suffice. However, it should 

be noted that apart from the flexibility of the investigation of more than two outcomes, the 

MNL model had also a better fit (i.e., larger adjusted-ρ
2
) in the case of US-34 corridor. 

Finally, it should be noted that the models of US-34 were estimated on smaller sample than 

the models of I-80. Thus, one could say that the results of US-34 may be less reliable. 

5.3 Summary 

This chapter presented the results of the statistical data analysis of this thesis. First, 

the background of the different types of variables that were used in the analysis was 

provided. Then, the results of the discrete outcome models that were estimated for each 

corridor of study were discussed. 

In general, both types of models gave similar results for the same corridor. As far as 

the I-80 corridor is concerned, adverse weather conditions were found to increase the 

probability of low severity crashes. Furthermore, wind (speed and direction) was proven as a 

significant weather factor that has multiple (interaction) effects on crash severity. On the 

other hand, the results of the US-34 corridor were somewhat contradictory to those of the I-
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80 corridor. However, the number of observations on US-34 was smaller than that of I-80, 

thus the results of US-34 corridor are less reliable. 

Based on the aforementioned results, conclusions and recommendations about the 

implication of the study’s findings and future research were made. Those conclusions and 

recommendations along with the limitations of this study will be discussed in the following 

chapter. 
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 CONCLUSIONS, LIMITATIONS, AND CHAPTER 6.

RECOMMENDATIONS 

6.1 Summary 

This thesis investigated the interaction effects of weather conditions and other crash-

specific factors on crash severity. For this purpose, crashes that occurred on two different 

Iowa corridors of similar lengths were selected. The two corridors represented a four-lane 

divided facility (I-80) and a two-lane undivided facility (US-34). The analysis period covered 

the years from 2009 to 2011. The selection was based on the number of crashes that occurred 

on those corridors in order to constitute an adequate analysis sample and also their proximity 

to Road Weather Information Systems (RWIS) for obtaining weather-related data. 

Four different types of data were utilized in the analysis: crash data (from the Iowa 

DOT crash datasets), weather data (from RWIS), roadway data (from the Iowa DOT GIMS 

files) and traffic data (from ATRs). The data was processed and integrated in a unique dataset 

for each corridor that was the input for the statistical analysis. Furthermore, interaction 

variables were created based on that data. Those variables related crash-specific factors to the 

prevailing weather conditions for a period of one hour prior to each crash. Discrete outcome 

models (a binary probit model and a multinomial logit model) were estimated to investigate 

the interaction effects of weather conditions and other crash- specific factors on different 

levels of crash severity for each of the two corridors. The estimation results of those models 

were analyzed and interpreted and finally conclusions were drawn. 
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6.2 Key Findings 

The following summarize the major findings of this thesis: 

I-80 Corridor 

Adverse weather conditions influence crash severity, especially due to their 

interaction with other crash variables. In most of the cases though, the outcome of a crash 

under inclement weather is more likely to be of low severity. For instance, single vehicle 

crashes under temperature below 0
o
C are more like to result in a PDO or possible/unknown 

injury outcome. Furthermore, precipitation events, especially when they are associated with 

impaired visibility, may lead to less severe crashes. Specifically, crashes under snowfall 

conditions concurrently with wind of cross-direction or crashes during rainfall events at night 

(or late afternoon) were found to lead to a PDO outcome. Finally, an increase in the 

precipitation amount on a rural road is associated with a decrease in the probability of 

fatal/major/minor injury outcomes.  The previous findings are also supported by existing 

literature and can be attributed mainly to the increased alertness of the drivers and the 

adjustment of vehicle speed during adverse weather conditions. 

A very interesting finding is the effect of wind on crash severity. Both wind speed 

and direction, especially when they interact with other factors seem to affect crash severity. 

As the 1-hr average wind speed increases the probability of a PDO outcome increases as 

well. However, a crash whose reported cause was inappropriate speed (i.e., driving too fast 

for conditions) in combination with high wind speed is more likely to result in a 

possible/unknown injury outcome.  
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Turning to wind direction, winds of non-parallel direction to direction of vehicle’s 

movement were found to interact with other weather conditions such as snowfall, or other 

crash factors such as vehicle speed. Specifically, winds of cross direction during snowfall 

may increase the probability of a PDO outcome, while winds of non-parallel direction in 

combination with inappropriate vehicle speed may lead to fatal/major/minor injury outcomes. 

Finally, specific types of crash were found to affect crash severity regardless of the 

prevailing weather conditions. For instance, a crash resulted in an overturn or rollover is 

more likely to be of high severity (i.e., possible/unknown injury or fatal/major/minor injury). 

On the other hand, collisions with animal lead to less severe crash outcomes. 

US-34 Corridor 

The models of US-34 corridor included fewer weather-related variables than those of 

the I-80.  Thus, it is more difficult to draw many inferences in terms of the weather effects on 

crash severity for that corridor. Nevertheless, variables associated with adverse weather 

conditions were found to lead to severe outcomes (injuries). This finding is contradictory to 

the major findings of the I-80 models. 

 The effect of wind (speed and direction) was found significant as well. However, the 

1-hr average wind speed especially in a rural environment has now a negative effect on the 

probability of a PDO outcome. Specifically, as the average wind speed on a rural road 

increases, the probability of a PDO crash decreases. This finding is also contradictory to the 

findings of the I-80 models. In terms of wind direction, winds of non-parallel direction to the 

direction of the vehicle movement in combination with the logarithm of truck ADT of the 

road segment were found to increase the probability of fatal/major/minor injury outcomes.  
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Finally, crashes occurred during morning hours and crashes occurred in August were 

less likely to be of PDO outcome, regardless of the prevailing weather conditions.   

In conclusion, the findings of the models were different on the two corridors, since 

different variables were found significant in each case. However, it is noteworthy that the 

models of the US-34 corridor included fewer interaction variables (and fewer variables in 

general). This fact may suggest that different factors affect the severity of crashes on each 

study corridor. The main difference though is that adverse weather conditions lead to injury 

outcomes on US-34, a finding which is contradictory to I-80 corridor and the existing 

literature. Thus, once could say that the combination of adverse weather conditions and route 

classification may influence crash severity in different ways. This difference could be 

attributed to the geometric and roadway characteristics of the corridors and particularly the 

absence of median on the US route. In addition, one could speculate that different 

maintenance measures and policies, especially during adverse weather conditions, are applied 

to routes based on their functional classification and traffic volumes. In other words, an 

interstate route (with higher traffic volumes) may gather more and early attention (e.g., snow 

plowing, better enforcement) during inclement weather than routes of other classification.  

Finally, it should be pointed out that based on the estimation results, multinomial 

logit (MNL) models are preferable to binary probit models due to their flexibility to 

investigate more than two outcomes. Furthermore, creating interaction variables is useful for 

investigating the effects that a combination of two or more different variables may have on 

specific outcomes. 
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6.3 Study Limitations 

One of the main limitations of this thesis is the small area of study. Only two 

corridors of specific length and classification of the Iowa roadway network were considered 

in the analysis. Although those corridors were selected based on the adequate sample of cases 

that they could provide and their proximity to RWIS, any generalization of the results of this 

study to the entire state network might not be accurate. Thus, the author recommends this 

study to be evaluated as a case study of two different corridors and not as a statewide 

analysis. 

Furthermore, the author did not consider human factor effects (e.g., gender and age of 

drivers) or vehicle characteristics (e.g., vehicle classification). These factors were not 

included since the focus of this thesis was on roadway factors and their interaction with 

weather conditions. It is anticipated that including human or vehicle factors would involve a 

more computationally expensive estimation process but the overall model fit would improve. 

In that case, mixed logit models (with random parameters) could be used to take into account 

the variability in human-factors (i.e., multiple age ranges, many different vehicle 

classifications, etc.).  

In addition to the aforementioned issues, some limitations are also associated with the 

data and especially the weather information. This study attempted to incorporate real-time 

information about the prevailing weather conditions at the location and time of a crash. 

However, as in similar studies, real-time information about weather conditions is not 

available for every single point of a corridor. Despite the fact that weather records from the 

nearest RWIS were utilized, the recorded weather conditions at the RWIS location at the time 
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of crash (or actually the 1-hr period prior to that time) may be quite different from the exact 

weather conditions at crash location, especially when the distance between the RWIS and the 

crash point is large. This is mainly true for the records reporting wind speed, direction, etc.  

The weather data also suffered from additional issues. First, the records of the RWIS 

were obtained in extremely raw format and in many cases were incomplete (see also Section 

3.3). Thus, the corresponding weather information was missing for some crash observations 

(especially information related to precipitation). Those observations were skipped during the 

statistical analysis since interaction variables associated with weather conditions could not be 

created. As a result, the sample size was reduced and thus the models were developed on 

fewer observations than the original number of observations. It should be noted that the 

problem of missing data was more serious on US-34 corridor. Thus, the models of that 

corridor were estimated based on a small sample, a fact that needs to be considered when 

reviewing the corresponding results and conclusions. Finally, another limitation was the lack 

of visibility information for most of the weather records during the analysis period. As such, 

it was not possible to examine the significance of this variable on crash severity as indicated 

in many similar previous studies. 

Lastly, real-time information about actual vehicle speeds was not collected. That was 

due to the difficulty in collecting and processing raw speed data by Automatic Traffic 

Recorders (ATR) at the location and time of each crash. For this reason, any variables and 

inferences related to speed (e.g., driving too fast for conditions) were based only on the speed 

information provided by the crash reports. However, this information is subjective to the 

person who filled in the report and may be subject to errors or omissions. 
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6.4 Recommendations 

As already mentioned, this thesis constitutes a case study of two specific corridors. 

However, the findings of this study can have general implications on the improvement of 

road safety especially during adverse weather conditions. The results of this study could be 

of interest to transportation agencies, driving education and license providers, and road users. 

Furthermore, the study limitations can provide the groundwork for future research and also 

improvements in data collection and maintenance. 

First, transportation agencies, such as the Iowa Department of Transportation, can 

take a number of measures in order to improve and ensure safety on roadways, especially in 

periods of inclement weather. For instance, appropriate maintenance and operation activities 

should be performed during events of adverse weather (such as when temperature is below 

freezing or under precipitation events). The need of effective maintenance of corridors of 

lower classification and traffic volumes should not be underestimated. It is noteworthy that 

findings of this study suggest that although adverse weather may be associated with less 

severe crashes on interstates, this is opposite for the case of US routes. Besides, except for 

the models’ results, this argument is also supported by a simple analysis and test of the 

difference in the probabilities of a severe crash (such as fatal or major injury crash) during 

adverse weather conditions among the two corridors (refer to Appendix D for more details). 

This finding could be attributed to the priority (and the larger share of funds) that might be 

given to the maintenance of interstate routes. 

Nevertheless, if more attention and funds were allocated to routes of lower 

classification (such as US routes), the DOTs and the states in general could benefit from 
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responding to less severe crashes and incur lower costs associated with them. For instance, 

let consider the effect of the temperature below freezing on a US route. Based on Equation 

4.13, the probability of a fatal/major/minor injury outcome for a crash that occurred under 

temperature below 0
o
C is 0.1 or 10% (if all the other variables are assumed to be equal to 0). 

However, if the crash was avoided under such conditions, the probability of that crash to be 

of a fatal/major/minor injury outcome would be 5%. Thus, the probability is reduced by 50% 

(refer to Appendix E for the calculation).  

Weather conditions were also found to interact with vehicle speed and that interaction 

seems to contribute to crash severity. In specific, driving too fast for conditions in 

combination with high wind speed and/or non-parallel direction was found to increase the 

probability of severe outcomes (possible/unknown injury or fatal/major/minor injury) on the 

Interstate corridor. Moreover, the increase in wind speed on a rural environment and a US 

corridor was found to be associated with an increase in the probability of a severe outcome. 

Thus, the use of adjusted speed limits according to the prevailing weather conditions or at 

least with a seasonal effect (i.e., during winter period) could be a potential beneficial 

measure. Another promising measure might be the introduction of electronic signs installed 

on specific spots on the highway network which would provide the road users with real-time 

information about the prevailing (or future) weather conditions (e.g., temperature, wind 

speed and direction, chance of precipitation, etc.) in order to properly adjust their driving 

speed and increase their alertness. 

In addition with the aforementioned measures, higher levels of enforcement may be 

necessary to ensure that road users comply with the speed limits and other safe driving rules. 

Enforcement is necessary not only during adverse weather conditions but also under other 
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circumstances such as morning peak hours or during the night, and especially on corridors of 

lower classification. For instance, according to the US corridor model, morning periods 

between 6:00 am to 9:00 am and dark lighting conditions (probably at night) are associated 

with increase in the probability of severe outcomes. Finally, although more investigation of 

the effect of wind is needed, a discussion about whether specific types of vehicles (such as 

large trucks or motorcycles) should be allowed (or not) to travel during events of severe 

winds might be useful. Besides, as found by the US corridor model, winds (especially of non-

parallel direction) in association with Truck AADT seem to lead to severe outcomes. 

Apart from policy measures, emphasis on the driver education is essential. Based on 

the results of this study, appropriate driving (for example, selection of speeds) according to 

the prevailing weather conditions may avoid serious crash outcomes. For this reason, driver 

education should provide future drivers with skills on safe driving under adverse conditions. 

These skills could also be tested during the driving license exams. This however requires the 

adjustment of the driver’s manual as well. For instance, specific reference to the effect of 

weather conditions (such as the negative effect of wind or the temperature below freezing) 

could be included in the manual. Also, driving sessions under events of inclement weather 

(such as rainfall or snowfall) could be organized by driver education providers. Finally, 

information campaigns about safe driving during winter and under events of inclement 

weather may contribute to the reduction of crashes, or at least the severe ones. 

Finally, based on the aforementioned data limitations, the author would like to point 

out the need of comprehensive and accurate data. Special also emphasis should be given to 

the installation and maintenance of recording stations (as RWIS), especially on routes of 

lower classification.  
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Recommendations for future research should be mainly associated with the need of 

generalization of the current findings to other routes and road networks. For this purpose, 

similar studies on larger samples from different routes and in larger scale (e.g. statewide) are 

necessary. Furthermore, a more systematic investigation of the interaction effects of weather 

conditions along with other crash parameters (by using interaction variables) is highly 

recommended. Finally, the incorporation of human and vehicle factors in the analysis is 

recommended for a more comprehensive analysis of this phenomenon. 
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APPENDIX B  

LIST OF VARIABLES USED IN THE MODELS 

 

Table B. 1 (continued) 

VARIABLE 

DESCRIPTION 

VARIABLE 

MNEMONIC 

VARIABLE 

TYPE 

VARIABLE SAMPLE 

SPACE 

MEAN (STD. 

DEVIATION) OR 

PRECENTAGE 

(of observations 

equal to 1) 

Temperature (
o
C) X45 Continuous [-27.58, 36.37] 5.27 (13.14) 

1-hr Precipitation 

Amount (mm) 
X52 Continuous [0, 128.79] 2.43 (10.28) 

1-hr Avg. Wind 

Speed (Km/hr) 
X53 Continuous [0, 47.83] 15.42 (9.57) 

Adjusted segment 

AADT 
X61 Continuous [6658.37, 10753.70] 

26036.40  

(4165.58) 

Adjusted segment 

Truck-AADT 
X63 Continuous [6658.37,10753.70] 8497.19 (847.31) 

January JAN Indicator {0,1} 17.75 

February FEB Indicator {0,1} 10.27 

March MAR Indicator {0,1} 4.83 

April APR Indicator {0,1} 4.95 

May MAY Indicator {0,1} 7.49 

June JUN Indicator {0,1} 8.21 

July JUL Indicator {0,1} 6.04 

August AUG Indicator {0,1} 4.95 

September SEP Indicator {0,1} 4.95 

October OCT Indicator {0,1} 6.28 

November NOV Indicator {0,1} 8.33 

December DEC Indicator {0,1} 15.94 

Year 2009 D2009 Indicator {0,1} 35.27 

Year 2010 D2010 Indicator {0,1} 37.20 

Year 2011 D2011 Indicator {0,1} 27.54 

Daylight 

Conditions 
DAYLGHT Indicator {0,1} 54.23 

Dark Conditions DARK Indicator {0,1} 39.49 

Rural Road RURAL Indicator {0,1} 92.75 

Single Vehicle 

Crash 
VEH1 Indicator {0,1} 66.06 

Collision with 

Vehicle 
COLVEH Indicator {0,1} 28.02 

Table B. 1: Variables Used in the Models of I-80 Corridor 
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Table B. 1 (continued) 

VARIABLE 

DESCRIPTION 

VARIABLE 

MNEMONIC 

VARIABLE 

TYPE 

VARIABLE SAMPLE 

SPACE 

MEAN (STD. 

DEVIATION) OR 

PRECENTAGE 

(of observations 

equal to 1) 

Collision with 

Guardrail 
COLANI Indicator {0,1} 18.96 

Collision with 

Animal 
COLGUAD Indicator {0,1} 9.42 

Non-collision 

event 
NONCOL Indicator {0,1} 63.22 

Rear-End 

Collision 
REAREND Indicator {0,1} 13.09 

Sideswipe SSWIPE Indicator {0,1} 17.91 

Overturn/Rollover OVERTRN Indicator {0,1} 13.53 

Driving too fast 

for conditions 
TOOFAST Indicator {0,1} 20.41 

Driving too close TOOCLOSE Indicator {0,1} 2.66 

Swerving/Evasive 

Action 
SWEREV Indicator {0,1} 14.73 

Lost Control LOSTCON Indicator {0,1} 4.59 

Rainfall Event PTRAIN Indicator {0,1} 11.79 

Snowfall Event PTSNOW Indicator {0,1} 26.35 

Wind Direction: 

North-East 
NRES Indicator {0,1} 11.42 

Wind Direction: 

East 
ES Indicator {0,1} 12.30 

Wind Direction: 

South-East 
STES Indicator {0,1} 12.05 

Wind Direction: 

South 
ST Indicator {0,1} 13.55 

Wind Direction: 

South-West 
STWS Indicator {0,1} 13.68 

Wind Direction: 

West 
WS Indicator {0,1} 12.17 

Wind Direction: 

North-West 
NRWS Indicator {0,1} 18.95 

Wind Direction: 

North 
NR Indicator {0,1} 5.90 

Logarithm of 

Adjusted segment 

AADT 

LOGADT Continuous [9.75, 10.52] 10.15 (0.16) 

Logarithm of 

Adjusted segment 

Truck-AADT 

LOGTRADT Continuous [8.80, 9.28] 9.04 (0.10) 

Precipitation 

Event 
PRECIP Indicator {0,1} 35.71 

Temperature 

below 0oC 
BELOWZ Indicator {0,1} 46.93 
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Table B. 1 (continued) 

VARIABLE 

DESCRIPTION 

VARIABLE 

MNEMONIC 

VARIABLE 

TYPE 

VARIABLE SAMPLE 

SPACE 

MEAN (STD. 

DEVIATION) OR 

PRECENTAGE 

(of observations 

equal to 1) 

Driving Too Fast 

for conditions & 

Temp. below 0
o
C 

BZTOOFST 
Interaction-

Indicator 
{0,1} 19.32 

Single Vehicle 

Crash & Temp. 

below 0
o
C 

BZVEH1M 
Interaction-

Indicator 
{0,1} 30.24 

Collision with 

Vehicle & Temp. 

below 0
o
C 

COLVHBZ 
Interaction-

Indicator 
{0,1} 13.93 

Rural Road & 1-

hr Precipitation 

Amount 

RPREC 
Interaction-

Continuous 
[0, 128.79] 1.61 (7.47) 

1-hr Avg. Wind 

Speed (lower than 

13.9 Km/hr) 

WINSA1 Indicator {0,1} 51.19 

1-hr Avg. Wind 

Speed (between 

13.9 and 24.5 

Km/hr) 

WINSA3 Indicator {0,1} 17.31 

1-hr Avg. Wind 

Speed (greater 

than 24.5 Km/hr) 

WINSA2 Indicator {0,1} 31.49 

Rural Road & 1-

hr Avg Wind 

Speed 

RWINSA 
Interaction-

Continuous 
[0, 64.08] 20.53 (13.98) 

Sideswipe & 1-hr 

Avg. Wind Speed 
ORTRWSA 

Interaction-

Continuous 
[0, 61.00] 3.59 (10.51) 

Overturn/Rollover 

& 1-hr Avg. Wind 

Speed 

SSWWSA 
Interaction-

Continuous 
[0, 60.75] 4.12 (10.49) 

Driving Too Fast 

for conditions & 

1-hr Avg. Wind 

Speed (Km/hr) 

TFWSA 
Interaction-

Continuous 
[0, 64.08] 5.62 (12.78) 

Driving Too Fast 

for conditions & 

1-hr Avg. Wind 

Speed (lower than 

13.9 Km/hr) 

TFWSA1 
Interaction-

Indicator 
{0,1} 6.52 

Driving Too Fast 

for conditions & 

1-hr Avg. Wind 

Speed (between 

13.9 and 24.5 

Km/hr) 

TFWSA2 
Interaction-

Indicator 
{0,1} 7.28 
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Table B. 1 (continued) 

VARIABLE 

DESCRIPTION 

VARIABLE 

MNEMONIC 

VARIABLE 

TYPE 

VARIABLE SAMPLE 

SPACE 

MEAN (STD. 

DEVIATION) OR 

PRECENTAGE 

(of observations 

equal to 1) 

Driving Too Fast 

for conditions & 

1-hr Avg. Wind 

Speed (greater 

than 24.5 Km/hr) 

TFWSA3 
Interaction-

Indicator 
{0,1} 7.03 

Daylight 

Conditions & 

Temperature (
o
C) 

TDAY 
Interaction-

Continuous 
[-24.45, 35.64] 3.30 (11.14) 

Daylight 

Conditions & 

Temp. below 0
o
C 

BZDAY 
Interaction-

Indicator 
{0,1} 27.35 

Darkness 

Conditions & 

Temperature (
o
C) 

TDARK 
Interaction-

Continuous 
[-27.58, 36.37] 1.58 (7.30) 

Darkness 

Conditions & 

Temp. below 0
o
C 

BZDARK 
Interaction-

Indicator 
{0,1} 17.06 

Daylight 

Conditions & 

Snowfall Event 

SDAY 
Interaction-

Indicator 
{0,1} 17.57 

Daylight 

Conditions & 

Precipitation 

Event 

PRDAY 
Interaction-

Indicator 
{0,1} 23.12 

Daylight 

Conditions & 1-hr 

Precipitation 

Amount (mm) 

PHDAY 
Interaction-

Continuous 
[0, 128.79] 19.92 (9.57) 

Darkness 

Conditions & 1-hr 

Precipitation 

Amount (mm) 

PHDARK 
Interaction-

Continuous 
[0, 73.98] 0.45 (3.86) 

Snowfall Event in 

December 
SDEC 

Interaction-

Indicator 
{0,1} 7.15 

Snowfall Event in 

January 
SJAN 

Interaction-

Indicator 
{0,1} 10.29 

Snowfall Event in 

February 
SFEB 

Interaction-

Indicator 
{0,1} 7.03 

Wind of Parallel 

Direction to the 

Direction of 

Vehicle 

Movement 

HORWIN Indicator {0,1} 24.47 
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Table B. 1 (continued) 

VARIABLE 

DESCRIPTION 

VARIABLE 

MNEMONIC 

VARIABLE 

TYPE 

VARIABLE SAMPLE 

SPACE 

MEAN (STD. 

DEVIATION) OR 

PRECENTAGE 

(of observations 

equal to 1) 

Wind of Cross 

Direction to the 

Direction of 

Vehicle 

Movement 

VERWIN Indicator {0,1} 19.45 

Wind of Non-

Parallel Direction 

to the Direction of 

Vehicle 

Movement 

NPWIN Indicator {0,1} 75.53 

Precipitation 

Event & Wind of 

Non-Parallel 

Direction 

PRECIPNP 
Interaction-

Indicator 
{0,1} 27.66 

Snowfall Event & 

Wind of Non-

Parallel Direction 

SNOWNP 
Interaction-

Indicator 
{0,1} 20.33 

Driving Too Fast 

for Conditions & 

Wind of Non-

Parallel Direction 

TOOFSTNP 
Interaction-

Indicator 
{0,1} 16.69 

Time of Crash 

10:00 pm - 4:00 

am 

TB1 Indicator {0,1} 15.70 

Time of Crash 

6:00 am - 9:00 am 
TB3 Indicator {0,1} 12.92 

Time of Crash 

9:00 am - 4:00 pm 
TB4 Indicator {0,1} 31.52 

Time of Crash 

7:00 pm - 10:00 

pm 

TB5 Indicator {0,1} 19.08 

Time of Crash 

4:00 pm - 7:00 

pm 

TB6 Indicator {0,1} 14.61 

Time of Crash 

5:00 pm - 10:00 

pm 

TB7 Indicator {0,1} 26.57 

Time of Crash 

4:00 pm - 10:00 

pm 

TB8 Indicator {0,1} 33.70 

Time of Crash 

7:00 pm - 4:00 am 
TB9 Indicator {0,1} 30.31 

Time of Crash 

4:00 pm - 10:00 

pm & 

Precipitation 

Event 

TB8PR 
Interaction-

Indicator 
{0,1} 13.51 
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Table B. 1 (continued) 

VARIABLE 

DESCRIPTION 

VARIABLE 

MNEMONIC 

VARIABLE 

TYPE 

VARIABLE SAMPLE 

SPACE 

MEAN (STD. 

DEVIATION) OR 

PRECENTAGE 

(of observations 

equal to 1) 

Time of Crash 

9:00 am - 4:00 pm 

& Snowfall Event 

TB4SN 
Interaction-

Indicator 
{0,1} 10.79 

Time of Crash 

7:00 pm - 10:00 

pm & Snowfall 

Event 

TB5SN 
Interaction-

Indicator 
{0,1} 6.02 

Time of Crash 

4:00 pm - 7:00 

pm & Snowfall 

Event 

TB6SN 
Interaction-

Indicator 
{0,1} 2.89 

Time of Crash 

5:00 pm - 10:00 

pm & Snowfall 

Event 

TB7SN 
Interaction-

Indicator 
{0,1} 6.40 

Time of Crash 

4:00 pm - 10:00 

pm & Snowfall 

Event 

TB8SN 
Interaction-

Indicator 
{0,1} 8.91 

Time of Crash 

7:00 pm - 4:00 am 

& Snowfall Event 

TB9SN 
Interaction-

Indicator 
{0,1} 4.89 

Time of Crash 

9:00 am - 4:00 pm 

& Rainfall Event 

TB4RN 
Interaction-

Indicator 
{0,1} 3.89 

Time of Crash 

7:00 pm - 10:00 

pm & Rainfall 

Event 

TB5RN 
Interaction-

Indicator 
{0,1} 3.14 

Time of Crash 

4:00 pm - 7:00 

pm & Rainfall 

Event 

TB6RN 
Interaction-

Indicator 
{0,1} 1.63 

Time of Crash 

5:00 pm - 10:00 

pm & Rainfall 

Event 

TB7RN 
Interaction-

Indicator 
{0,1} 3.89 

Time of Crash 

4:00 pm - 10:00 

pm & Rainfall 

Event 

TB8RN 
Interaction-

Indicator 
{0,1} 4.77 

Time of Crash 

7:00 pm - 4:00 am 

& Rainfall Event 

TB9RN 
Interaction-

Indicator 
{0,1} 3.39 
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Table B. 1 (continued) 

VARIABLE 

DESCRIPTION 

VARIABLE 

MNEMONIC 

VARIABLE 

TYPE 

VARIABLE SAMPLE 

SPACE 

MEAN (STD. 

DEVIATION) OR 

PRECENTAGE 

(of observations 

equal to 1) 

Time of Crash 

10:00 pm - 4:00 

am & Temp. 

below 0oC 

TB1BZ 
Interaction-

Indicator 
{0,1} 5.02 

Time of Crash 

6:00 am - 9:00 am 

& Temp. below 

0oC 

TB3BZ 
Interaction-

Indicator 
{0,1} 8.03 

Time of Crash 

9:00 am - 4:00 pm 

& Temp. below 

0oC 

TB4BZ 
Interaction-

Indicator 
{0,1} 17.57 

Time of Crash 

7:00 pm - 10:00 

pm & Temp. 

below 0
o
C 

TB5BZ 
Interaction-

Indicator 
{0,1} 8.28 

Time of Crash 

4:00 pm - 7:00 

pm & Temp. 

below 0
o
C 

TB6BZ 
Interaction-

Indicator 
{0,1} 5.90 

Time of Crash 

5:00 pm - 10:00 

pm & Temp. 

below 0
o
C 

TB7BZ 
Interaction-

Indicator 
{0,1} 11.17 

Time of Crash 

4:00 pm - 10:00 

pm & Temp. 

below 0
o
C 

TB8BZ 
Interaction-

Indicator 
{0,1} 14.18 

Time of Crash 

7:00 pm - 4:00 am 

& Temp. below 

0
o
C 

TB9BZ 
Interaction-

Indicator 
{0,1} 10.92 

Driving Too Fast 

for conditions & 

Non-Parallel 

Wind 

TFSTNP 
Interaction-

Indicator 
{0,1} 16.69 

Overturn/Rollover 

& Snowfall Event 
ORTRNSN 

Interaction-

Indicator 
{0,1} 7.65 
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Table B. 2 (continued) 

VARIABLE 

DESCRIPTION 

VARIABLE 

MNEMONIC 

VARIABLE 

TYPE 

VARIABLE 

SAMPLE SPACE 

MEAN (STD. 

DEVIATION) OR 

PRECENTAGES 

(of observations 

equal to 1) 

Temperature (
o
C) X45 Continuous [-27.58, 36.37] 5.27 (13.14) 

1-hr Precipitation 

Amount (mm) 
X52 Continuous [0, 128.79] 2.43 (10.28) 

1-hr Avg. Wind 

Speed (Km/hr) 
X53 Continuous [0, 47.83] 15.42 (9.57) 

Adjusted segment 

AADT 
X61 Continuous [6658.37, 10753.70] 

26036.40  

(4165.58) 

Adjusted segment 

Truck-AADT 
X63 Continuous [6658.37,10753.70] 8497.19 (847.31) 

January JAN Indicator {0,1} 17.75 

February FEB Indicator {0,1} 10.27 

March MAR Indicator {0,1} 4.83 

April APR Indicator {0,1} 4.95 

May MAY Indicator {0,1} 7.49 

June JUN Indicator {0,1} 8.21 

July JUL Indicator {0,1} 6.04 

August AUG Indicator {0,1} 4.95 

September SEP Indicator {0,1} 4.95 

October OCT Indicator {0,1} 6.28 

November NOV Indicator {0,1} 8.33 

December DEC Indicator {0,1} 15.94 

Sunday SUN Indicator {0,1} 14.25 

Monday MON Indicator {0,1} 14.98 

Tuesday TUE Indicator {0,1} 14.49 

Wednesday WED Indicator {0,1} 12.80 

Thursday THU Indicator {0,1} 11.96 

Friday FRI Indicator {0,1} 15.58 

Saturday SAT Indicator {0,1} 15.94 

Year 2009 D2009 Indicator {0,1} 35.27 

Year 2010 D2010 Indicator {0,1} 37.20 

Year 2011 D2011 Indicator {0,1} 27.54 

Daylight 

Conditions 
DAYLGHT Indicator {0,1} 54.23 

Dark Conditions DARK Indicator {0,1} 39.49 

Rural Road RURAL Indicator {0,1} 92.75 

Table B. 2: Variables Used in the Models of US-34 Corridor 
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Table B. 2 (continued) 

VARIABLE 

DESCRIPTION 

VARIABLE 

MNEMONIC 

VARIABLE 

TYPE 

VARIABLE 

SAMPLE SPACE 

MEAN (STD. 

DEVIATION) OR 

PRECENTAGES 

(of observations 

equal to 1) 

Single Vehicle 

Crash  
VEH1M Indicator {0,1} 66.06 

Collision with 

Vehicle 
COLVEH Indicator {0,1} 28.02 

Collision with 

Guardrail 
COLANI Indicator {0,1} 18.96 

Collision with 

Animal 
COLGUAD Indicator {0,1} 9.42 

Non-collision 

event 
NONCOL Indicator {0,1} 63.22 

Rear-End 

Collision 
REAREND Indicator {0,1} 13.09 

Sideswipe SSWIPE Indicator {0,1} 17.91 

Overturn/Rollover OVERTRN Indicator {0,1} 13.53 

Driving too fast 

for conditions 
TOOFAST Indicator {0,1} 20.41 

Driving too close TOOCLOSE Indicator {0,1} 2.66 

Swerving/Evasive 

Action 
SWEREV Indicator {0,1} 14.73 

Lost Control LOSTCON Indicator {0,1} 4.59 

Rainfall Event PTRAIN Indicator {0,1} 11.79 

Snowfall Event PTSNOW Indicator {0,1} 26.35 

Wind Direction: 

North-East 
NRES Indicator {0,1} 11.42 

Wind Direction: 

East 
ES Indicator {0,1} 12.30 

Wind Direction: 

South-East 
STES Indicator {0,1} 12.05 

Wind Direction: 

South 
ST Indicator {0,1} 13.55 

Wind Direction: 

South-West 
STWS Indicator {0,1} 13.68 

Wind Direction: 

West 
WS Indicator {0,1} 12.17 

Wind Direction: 

North-West 
NRWS Indicator {0,1} 18.95 

Wind Direction: 

North 
NR Indicator {0,1} 5.90 

Logarithm of 

Adjusted segment 

AADT 

LOGADT Continuous [9.75, 10.52] 10.15 (0.16) 

Logarithm of 

Adjusted segment 

Truck-AADT 

LOGTRADT Continuous [8.80, 9.28] 9.04 (0.10) 
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Table B. 2 (continued) 

VARIABLE 

DESCRIPTION 

VARIABLE 

MNEMONIC 

VARIABLE 

TYPE 

VARIABLE 

SAMPLE SPACE 

MEAN (STD. 

DEVIATION) OR 

PRECENTAGES 

(of observations 

equal to 1) 

Precipitation 

Event 
PRECIP Indicator {0,1} 35.71 

Temperature 

below 0
o
C 

BELOWZ Indicator {0,1} 46.93 

Driving Too Fast 

for conditions & 

Temp. below 0
o
C  

BZTOOFST 
Interaction-

Indicator 
{0,1} 19.32 

Single Vehicle 

Crash & Temp. 

below 0
o
C  

BZVEH1M 
Interaction-

Indicator 
{0,1} 30.24 

Collision with 

Vehicle & Temp. 

below 0
o
C 

COLVHBZ 
Interaction-

Indicator 
{0,1} 13.93 

Rural Road & 1-hr 

Precipitation 

Amount 

RPREC 
Interaction-

Continuous 
[0, 128.79] 1.61 (7.47) 

1-hr Avg. Wind 

Speed (lower than 

13.9 Km/hr) 

WINSA1 Indicator {0,1} 51.19 

1-hr Avg. Wind 

Speed (between 

13.9 and 24.5 

Km/hr) 

WINSA3 Indicator {0,1} 17.31 

1-hr Avg. Wind 

Speed (greater 

than 24.5 Km/hr) 

WINSA2 Indicator {0,1} 31.49 

Rural Road & 1-hr 

Avg Wind Speed 
RWINSA 

Interaction-

Continuous 
[0, 64.08] 20.53 (13.98) 

Sideswipe & 1-hr 

Avg. Wind Speed  
ORTRWSA 

Interaction-

Continuous 
[0, 61.00] 3.59 (10.51) 

Overturn/Rollover 

& 1-hr Avg. Wind 

Speed  

SSWWSA 
Interaction-

Continuous 
[0, 60.75] 4.12 (10.49) 

Driving Too Fast 

for conditions & 

1-hr Avg. Wind 

Speed (Km/hr) 

TFWSA 
Interaction-

Continuous 
[0, 64.08] 5.62 (12.78) 

Driving Too Fast 

for conditions & 

1-hr Avg. Wind 

Speed (lower than 

13.9 Km/hr) 

TFWSA1 
Interaction-

Indicator 
{0,1} 6.52 



125 

Table B. 2 (continued) 

VARIABLE 

DESCRIPTION 

VARIABLE 

MNEMONIC 

VARIABLE 

TYPE 

VARIABLE 

SAMPLE SPACE 

MEAN (STD. 

DEVIATION) OR 

PRECENTAGES 

(of observations 

equal to 1) 

Driving Too Fast 

for conditions & 

1-hr Avg. Wind 

Speed (between 

13.9 and 24.5 

Km/hr) 

TFWSA2 
Interaction-

Indicator 
{0,1} 7.28 

Driving Too Fast 

for conditions & 

1-hr Avg. Wind 

Speed (greater 

than 24.5 Km/hr) 

TFWSA3 
Interaction-

Indicator 
{0,1} 7.03 

Daylight 

Conditions & 

Temperature (
o
C) 

TDAY 
Interaction-

Continuous 
[-24.45, 35.64] 3.30 (11.14) 

Daylight 

Conditions & 

Temp. below 0
o
C  

BZDAY 
Interaction-

Indicator 
{0,1} 27.35 

Darkness 

Conditions & 

Temperature (
o
C) 

TDARK 
Interaction-

Continuous 
[-27.58, 36.37] 1.58 (7.30) 

Darkness 

Conditions & 

Temp. below 0
o
C  

BZDARK 
Interaction-

Indicator 
{0,1} 17.06 

Daylight 

Conditions & 

Snowfall Event 

SDAY 
Interaction-

Indicator 
{0,1} 17.57 

Daylight 

Conditions & 

Precipitation 

Event 

PRDAY 
Interaction-

Indicator 
{0,1} 23.12 

Daylight 

Conditions & 1-hr 

Precipitation 

Amount (mm) 

PHDAY 
Interaction-

Continuous 
[0, 128.79] 19.92 (9.57) 

Darkness 

Conditions & 1-hr 

Precipitation 

Amount (mm) 

PHDARK 
Interaction-

Continuous 
[0, 73.98] 0.45 (3.86) 

Snowfall Event in 

December 
SDEC 

Interaction-

Indicator 
{0,1} 7.15 

Snowfall Event in 

January 
SJAN 

Interaction-

Indicator 
{0,1} 10.29 

Snowfall Event in 

February 
SFEB 

Interaction-

Indicator 
{0,1} 7.03 
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Table B. 2 (continued) 

VARIABLE 

DESCRIPTION 

VARIABLE 

MNEMONIC 

VARIABLE 

TYPE 

VARIABLE 

SAMPLE SPACE 

MEAN (STD. 

DEVIATION) OR 

PRECENTAGES 

(of observations 

equal to 1) 

Wind of Parallel 

Direction to the 

Direction of 

Vehicle 

Movement 

HORWIN Indicator {0,1} 24.47 

Wind of Cross 

Direction to the 

Direction of 

Vehicle 

Movement 

VERWIN Indicator {0,1} 19.45 

Wind of Non-

Parallel Direction 

to the Direction of 

Vehicle 

Movement 

NPWIN Indicator {0,1} 75.53 

Precipitation 

Event & Wind of 

Non-Parallel 

Direction 

PRECIPNP 
Interaction-

Indicator 
{0,1} 27.66 

Snowfall Event & 

Wind of Non-

Parallel Direction 

SNOWNP 
Interaction-

Indicator 
{0,1} 20.33 

Driving Too Fast 

for Conditions & 

Wind of Non-

Parallel Direction 

TOOFSTNP 
Interaction-

Indicator 
{0,1} 16.69 

Time of Crash 

10:00 pm - 4:00 

am 

TB1 Indicator {0,1} 15.70 

Time of Crash 

6:00 am - 9:00 am 
TB3 Indicator {0,1} 12.92 

Time of Crash 

9:00 am - 4:00 pm 
TB4 Indicator {0,1} 31.52 

Time of Crash 

7:00 pm - 10:00 

pm 

TB5 Indicator {0,1} 19.08 

Time of Crash 

4:00 pm - 7:00 pm 
TB6 Indicator {0,1} 14.61 

Time of Crash 

5:00 pm - 10:00 

pm 

TB7 Indicator {0,1} 26.57 

Time of Crash 

4:00 pm - 10:00 

pm 

TB8 Indicator {0,1} 33.70 

Time of Crash 

7:00 pm - 4:00 am 
TB9 Indicator {0,1} 30.31 
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Table B. 2 (continued) 

VARIABLE 

DESCRIPTION 

VARIABLE 

MNEMONIC 

VARIABLE 

TYPE 

VARIABLE 

SAMPLE SPACE 

MEAN (STD. 

DEVIATION) OR 

PRECENTAGES 

(of observations 

equal to 1) 

Time of Crash 

4:00 pm - 10:00 

pm & 

Precipitation 

Event 

TB8PR 
Interaction-

Indicator 
{0,1} 13.51 

Time of Crash 

9:00 am - 4:00 pm 

& Snowfall Event 

TB4SN 
Interaction-

Indicator 
{0,1} 10.79 

Time of Crash 

7:00 pm - 10:00 

pm & Snowfall 

Event 

TB5SN 
Interaction-

Indicator 
{0,1} 6.02 

Time of Crash 

4:00 pm - 7:00 pm 

& Snowfall Event 

TB6SN 
Interaction-

Indicator 
{0,1} 2.89 

Time of Crash 

5:00 pm - 10:00 

pm & Snowfall 

Event 

TB7SN 
Interaction-

Indicator 
{0,1} 6.40 

Time of Crash 

4:00 pm - 10:00 

pm & Snowfall 

Event 

TB8SN 
Interaction-

Indicator 
{0,1} 8.91 

Time of Crash 

7:00 pm - 4:00 am 

& Snowfall Event 

TB9SN 
Interaction-

Indicator 
{0,1} 4.89 

Time of Crash 

9:00 am - 4:00 pm 

& Rainfall Event 

TB4RN 
Interaction-

Indicator 
{0,1} 3.89 

Time of Crash 

7:00 pm - 10:00 

pm & Rainfall 

Event 

TB5RN 
Interaction-

Indicator 
{0,1} 3.14 

Time of Crash 

4:00 pm - 7:00 pm 

& Rainfall Event 

TB6RN 
Interaction-

Indicator 
{0,1} 1.63 

Time of Crash 

5:00 pm - 10:00 

pm & Rainfall 

Event 

TB7RN 
Interaction-

Indicator 
{0,1} 3.89 

Time of Crash 

4:00 pm - 10:00 

pm & Rainfall 

Event 

TB8RN 
Interaction-

Indicator 
{0,1} 4.77 

Time of Crash 

7:00 pm - 4:00 am 

& Rainfall Event 

TB9RN 
Interaction-

Indicator 
{0,1} 3.39 
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Table B. 2 (continued) 

VARIABLE 

DESCRIPTION 

VARIABLE 

MNEMONIC 

VARIABLE 

TYPE 

VARIABLE 

SAMPLE SPACE 

MEAN (STD. 

DEVIATION) OR 

PRECENTAGES 

(of observations 

equal to 1) 

Time of Crash 

10:00 pm - 4:00 

am & Temp. 

below 0
o
C 

TB1BZ 
Interaction-

Indicator 
{0,1} 5.02 

Time of Crash 

6:00 am - 9:00 am 

& Temp. below 

0
o
C 

TB3BZ 
Interaction-

Indicator 
{0,1} 8.03 

Time of Crash 

9:00 am - 4:00 pm 

& Temp. below 

0
o
C 

TB4BZ 
Interaction-

Indicator 
{0,1} 17.57 

Time of Crash 

7:00 pm - 10:00 

pm & Temp. 

below 0
o
C 

TB5BZ 
Interaction-

Indicator 
{0,1} 8.28 

Time of Crash 

4:00 pm - 7:00 pm 

& Temp. below 

0
o
C 

TB6BZ 
Interaction-

Indicator 
{0,1} 5.90 

Time of Crash 

5:00 pm - 10:00 

pm & Temp. 

below 0
o
C 

TB7BZ 
Interaction-

Indicator 
{0,1} 11.17 

Time of Crash 

4:00 pm - 10:00 

pm & Temp. 

below 0
o
C 

TB8BZ 
Interaction-

Indicator 
{0,1} 14.18 

Time of Crash 

7:00 pm - 4:00 am 

& Temp. below 

0
o
C 

TB9BZ 
Interaction-

Indicator 
{0,1} 10.92 

Driving Too Fast 

for conditions & 

Non-Parallel 

Wind 

TFSTNP 
Interaction-

Indicator 
{0,1} 16.69 

Overturn/Rollover 

& Snowfall Event 
ORTRNSN 

Interaction-

Indicator 
{0,1} 7.65 
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APPENDIX C 

NLOGIT OUTPUTS 

 

I-80 Corridor 

Binary Probit Model 

--> probit; lhs=x70;rhs=one,bzveh1,x54,colani,overtrn,feb,sdec,tb7rn,snowvr,t... 

 

 ************************************************************************ 

 * NOTE: Deleted     33 observations with missing data. N is now    795 * 

 ************************************************************************ 

 

Normal exit from iterations. Exit status=0. 

 

+---------------------------------------------+ 

| Binomial Probit Model                       | 

| Maximum Likelihood Estimates                | 

| Model estimated: Mar 18, 2013 at 02:19:13AM.| 

| Dependent variable                  X70     | 

| Weighting variable                 None     | 

| Number of observations              795     | 

| Iterations completed                  6     | 

| Log likelihood function       -368.2874     | 

| Number of parameters                 10     | 

| Info. Criterion: AIC =           .95167     | 

|   Finite Sample: AIC =           .95202     | 

| Info. Criterion: BIC =          1.01051     | 

| Info. Criterion:HQIC =           .97428     | 

| Restricted log likelihood     -415.1904     | 

| McFadden Pseudo R-squared      .1129675     | 

| Chi squared                    93.80607     | 

| Degrees of freedom                    9     | 

| Prob[ChiSqd > value] =         .0000000     | 

| Hosmer-Lemeshow chi-squared =   5.25686     | 

| P-value=  .72980 with deg.fr. =       8     | 

+---------------------------------------------+ 

+--------+--------------+----------------+--------+--------+----------+ 

|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 

+--------+--------------+----------------+--------+--------+----------+ 

---------+Index function for probability 

 Constant|    -.48332436       .10921425    -4.425   .0000 

 BZVEH1  |    -.56763920       .14355768    -3.954   .0001    .30314465 

 X54     |    -.01508953       .00585361    -2.578   .0099   15.4296651 

 COLANI  |    -.99152531       .19337475    -5.127   .0000    .18993711 

 OVERTRN |     .88035052       .15693446     5.610   .0000    .13584906 

 FEB     |     .31743282       .17815881     1.782   .0748    .10566038 

 SDEC    |     .32307277       .19889981     1.624   .1043    .07169811 

 TB7RN   |    -.80113995       .37151493    -2.156   .0311    .03899371 

 SNOWVR  |    -.45390713       .26127040    -1.737   .0823    .05157233 

 TOOFSTNP|     .33755568       .14672789     2.301   .0214    .16729560 

 

+-------------------------------------------+ 

| Partial derivatives of E[y] = F[*]   with | 
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| respect to the vector of characteristics. | 

| They are computed at the means of the Xs. | 

| Observations used for means are All Obs.  | 

+-------------------------------------------+ 

+--------+--------------+----------------+--------+--------+----------+ 

|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]|Elasticity| 

+--------+--------------+----------------+--------+--------+----------+ 

---------+ 

 Constant|    -.15455378       .03845727    -4.019   .0001 

---------+Marginal effect for dummy variable is P|1 - P|0. 

 BZVEH1  |    -.13597667       .03058812    -4.445   .0000   -.22344539 

 X54     |    -.00402076       .00155961    -2.578   .0099   -.33629616 

---------+Marginal effect for dummy variable is P|1 - P|0. 

 COLANI  |    -.19440698       .02491558    -7.803   .0000   -.20016068 

---------+Marginal effect for dummy variable is P|1 - P|0. 

 OVERTRN |     .29091532       .05836430     4.984   .0000    .21423001 

---------+Marginal effect for dummy variable is P|1 - P|0. 

 FEB     |     .09375395       .05742638     1.633   .1026    .05369809 

---------+Marginal effect for dummy variable is P|1 - P|0. 

 SDEC    |     .09637569       .06522616     1.478   .1395    .03745694 

---------+Marginal effect for dummy variable is P|1 - P|0. 

 TB7RN   |    -.14529316       .03935012    -3.692   .0002   -.03071120 

---------+Marginal effect for dummy variable is P|1 - P|0. 

 SNOWVR  |    -.09884505       .04458722    -2.217   .0266   -.02763304 

---------+Marginal effect for dummy variable is P|1 - P|0. 

 TOOFSTNP|     .09868931       .04645296     2.125   .0336    .08949766 

 

+----------------------------------------+ 

| Fit Measures for Binomial Choice Model | 

| Probit   model for variable X70        | 

+----------------------------------------+ 

| Proportions P0= .783648   P1= .216352  | 

| N =     795 N0=     623   N1=     172  | 

| LogL=     -368.287 LogL0=    -415.190  | 

| Estrella = 1-(L/L0)^(-2L0/n) = .11769  | 

+----------------------------------------+ 

|     Efron |  McFadden  |  Ben./Lerman  | 

|    .11914 |    .11297  |       .69981  | 

|    Cramer | Veall/Zim. |     Rsqrd_ML  | 

|    .11573 |    .20659  |       .11130  | 

+----------------------------------------+ 

| Information  Akaike I.C. Schwarz I.C.  | 

| Criteria         .95167       1.01051  | 

+----------------------------------------+ 

+---------------------------------------------------------+ 

|Predictions for Binary Choice Model.  Predicted value is | 

|1 when probability is greater than  .500000, 0 otherwise.| 

|Note, column or row total percentages may not sum to     | 

|100% because of rounding. Percentages are of full sample.| 

+------+---------------------------------+----------------+ 

|Actual|         Predicted Value         |                | 

|Value |       0                1        | Total Actual   | 

+------+----------------+----------------+----------------+ 

|  0   |    612 ( 77.0%)|     11 (  1.4%)|    623 ( 78.4%)| 

|  1   |    147 ( 18.5%)|     25 (  3.1%)|    172 ( 21.6%)| 

+------+----------------+----------------+----------------+ 

|Total |    759 ( 95.5%)|     36 (  4.5%)|    795 (100.0%)| 

+------+----------------+----------------+----------------+ 

 

======================================================================= 

Analysis of Binary Choice Model Predictions Based on Threshold =  .5000 

----------------------------------------------------------------------- 

Prediction Success 
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----------------------------------------------------------------------- 

Sensitivity = actual 1s correctly predicted                     14.535% 

Specificity = actual 0s correctly predicted                     98.234% 

Positive predictive value = predicted 1s that were actual 1s    69.444% 

Negative predictive value = predicted 0s that were actual 0s    80.632% 

Correct prediction = actual 1s and 0s correctly predicted       80.126% 

----------------------------------------------------------------------- 

Prediction Failure 

----------------------------------------------------------------------- 

False pos. for true neg. = actual 0s predicted as 1s             1.766% 

False neg. for true pos. = actual 1s predicted as 0s            85.465% 

False pos. for predicted pos. = predicted 1s actual 0s          30.556% 

False neg. for predicted neg. = predicted 0s actual 1s          19.368% 

False predictions = actual 1s and 0s incorrectly predicted      19.874% 

 

 

--> DSTAT; rhs = bzveh1,x54,colani,overtrn,feb,sdec,tb7rn,snowvr,toofstnp;out... 

Descriptive Statistics 

All results based on nonmissing observations. 

=============================================================================== 

Variable     Mean       Std.Dev.     Minimum      Maximum        Cases Missing 

=============================================================================== 

------------------------------------------------------------------------------ 

All observations in current sample 

------------------------------------------------------------------------------ 

BZVEH1  |  .302384      .459579      .000000      1.00000          797      31 

X54     |  15.4204      9.56645      .833333E-01  47.8333          798      30 

COLANI  |  .190073      .392596      .000000      1.00000          826       2 

OVERTRN |  .135593      .342564      .000000      1.00000          826       2 

FEB     |  .102657      .303694      .000000      1.00000          828       0 

SDEC    |  .714286E-01  .257701      .000000      1.00000          798      30 

TB7RN   |  .388471E-01  .193352      .000000      1.00000          798      30 

SNOWVR  |  .513784E-01  .220907      .000000      1.00000          798      30 

TOOFSTNP|  .166667      .372912      .000000      1.00000          798      30 

 

Correlation Matrix for Listed Variables 

 

           BZVEH1      X54   COLANI  OVERTRN      FEB     SDEC    TB7RN   SNOWVR 

  BZVEH1  1.00000   .22649  -.23565   .38548   .31637   .13494  -.13286   .08131 

     X54   .22649  1.00000  -.24862   .16747   .13571   .07055   .00196   .07461 

  COLANI  -.23565  -.24862  1.00000  -.19199  -.15601  -.12214   .05155  -.11292 

 OVERTRN   .38548   .16747  -.19199  1.00000   .10257   .01788  -.02297  -.02606 

     FEB   .31637   .13571  -.15601   .10257  1.00000  -.09552  -.06924   .14187 

    SDEC   .13494   .07055  -.12214   .01788  -.09552  1.00000  -.05598   .15565 

   TB7RN  -.13286   .00196   .05155  -.02297  -.06924  -.05598  1.00000  -.04697 

  SNOWVR   .08131   .07461  -.11292  -.02606   .14187   .15565  -.04697  1.00000 

 

           BZVEH1      X54   COLANI  OVERTRN      FEB     SDEC    TB7RN   SNOWVR 

TOOFSTNP   .29096   .24787  -.21704   .13704   .27350   .03219  -.05547   .21548 

 

         TOOFSTNP 

TOOFSTNP  1.00000 

 

 

Multinomial Logit Model 

 

--> nlogit;lhs=x1;choices=PDO,POSUN,FINJ;model: 
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    u(PDO)=bzvh1pd*bzveh2m+winspd*x53+snwvrpd*snowvr 

    +tb7rnpd*tb7rn/ 

    u(POSUN)=POSUN*one+colanips*colani+bzvh1ps*bzveh2m 

    +overps*overtrn+tfwsa2ps*tfwsa2/ 

    u(FINJ)=FINJ*one+overf*overtrn+rprecf*rprec 

    +tfstnpf*tfstnp+novf*nov+octf*oct$ 

+---------------------------------------------+ 

| Discrete choice and multinomial logit models| 

+---------------------------------------------+ 

Normal exit from iterations. Exit status=0. 

+---------------------------------------------+ 

| Discrete choice (multinomial logit) model   | 

| Maximum Likelihood Estimates                | 

| Model estimated: Mar 16, 2013 at 02:14:51AM.| 

| Dependent variable               Choice     | 

| Weighting variable                 None     | 

| Number of observations              770     | 

| Iterations completed                  7     | 

| Log likelihood function       -467.7436     | 

| Number of parameters                 15     | 

| Info. Criterion: AIC =          1.25388     | 

|   Finite Sample: AIC =          1.25471     | 

| Info. Criterion: BIC =          1.34439     | 

| Info. Criterion:HQIC =          1.28871     | 

| R2=1-LogL/LogL*  Log-L fncn  R-sqrd  RsqAdj | 

| Constants only    -516.3259  .09409  .08518 | 

| Chi-squared[13]          =     97.16453     | 

| Prob [ chi squared > value ] =   .00000     | 

| Response data are given as ind. choice.     | 

| Number of obs.=   828, skipped  58 bad obs. | 

+---------------------------------------------+ 

 

+---------------------------------------------+ 

| Notes No coefficients=> P(i,j)=1/J(i).      | 

|       Constants only => P(i,j) uses ASCs    | 

|         only. N(j)/N if fixed choice set.   | 

|         N(j) = total sample frequency for j | 

|         N    = total sample frequency.      | 

|       These 2 models are simple MNL models. | 

|       R-sqrd = 1 - LogL(model)/logL(other)  | 

|       RsqAdj=1-[nJ/(nJ-nparm)]*(1-R-sqrd)   | 

|         nJ   = sum over i, choice set sizes | 

+---------------------------------------------+ 

+--------+--------------+----------------+--------+--------+ 

|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| 

+--------+--------------+----------------+--------+--------+ 

 BZVH1PD |    1.28839965       .35567475     3.622   .0003 

 WINSPD  |     .02341733       .01055855     2.218   .0266 

 SNWVRPD |     .82321804       .51920644     1.586   .1128 

 TB7RNPD |    1.53874634       .75858378     2.028   .0425 

 POSUN   |   -1.58112783       .21515759    -7.349   .0000 

 COLANIPS|   -2.31609335       .72970767    -3.174   .0015 

 BZVH1PS |    1.00492942       .42475914     2.366   .0180 

 OVERPS  |    1.31208310       .32782405     4.002   .0001 

 TFWSA2PS|     .66161076       .38911882     1.700   .0891 

 FINJ    |   -1.56782585       .20699644    -7.574   .0000 

 OVERF   |    1.74407186       .34640654     5.035   .0000 

 RPRECF  |    -.06903149       .04712546    -1.465   .1430 

 TFSTNPF |    1.31765276       .31486770     4.185   .0000 

 NOVF    |   -1.10493814       .61246453    -1.804   .0712 

 OCTF    |   -1.16444082       .73889393    -1.576   .1150 

 

--> dstat; rhs = bzveh2m, x53, snowvr, tb7rn, colani, tfwsa2, overtrn, rprec,... 
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Descriptive Statistics 

All results based on nonmissing observations. 

=============================================================================== 

Variable     Mean       Std.Dev.     Minimum      Maximum        Cases Missing 

=============================================================================== 

------------------------------------------------------------------------------ 

All observations in current sample 

------------------------------------------------------------------------------ 

BZVEH2M |  .302384      .459387      .000000      1.00000         2391      93 

X53     |  15.4190      9.56837      .833333E-01  47.8333         2391      93 

SNOWVR  |  .514429E-01  .220946      .000000      1.00000         2391      93 

TB7RN   |  .388959E-01  .193387      .000000      1.00000         2391      93 

COLANI  |  .189614      .392074      .000000      1.00000         2484       0 

TFWSA2  |  .727729E-01  .259818      .000000      1.00000         2391      93 

OVERTRN |  .135266      .342076      .000000      1.00000         2484       0 

RPREC   |  1.61154      7.47527      .000000      128.786         2310     174 

TFSTNP  |  .166876      .372943      .000000      1.00000         2391      93 

NOV     |  .833333E-01  .276441      .000000      1.00000         2484       0 

OCT     |  .628019E-01  .242655      .000000      1.00000         2484       0 

 

Correlation Matrix for Listed Variables 

 

          BZVEH2M      X53   SNOWVR    TB7RN   COLANI   TFWSA2  OVERTRN    RPREC 

 BZVEH2M  1.00000   .20021   .10196  -.13119  -.22993   .16654   .38671   .01238 

     X53   .20021  1.00000   .08936   .01046  -.24037   .13499   .16916   .02472 

  SNOWVR   .10196   .08936  1.00000  -.04536  -.10938   .08190  -.01474   .04621 

   TB7RN  -.13119   .01046  -.04536  1.00000   .04860  -.05681  -.02226   .05901 

  COLANI  -.22993  -.24037  -.10938   .04860  1.00000  -.13698  -.19409  -.09547 

  TFWSA2   .16654   .13499   .08190  -.05681  -.13698  1.00000   .08359   .10692 

 OVERTRN   .38671   .16916  -.01474  -.02226  -.19409   .08359  1.00000  -.01389 

   RPREC   .01238   .02472   .04621   .05901  -.09547   .10692  -.01389  1.00000 

 

          BZVEH2M      X53   SNOWVR    TB7RN   COLANI   TFWSA2  OVERTRN    RPREC 

  TFSTNP   .30861   .25798   .24968  -.05542  -.21950   .44743   .12348   .14722 

     NOV  -.15090  -.03952  -.06948   .00514   .23440  -.08701  -.09657   .00787 

     OCT  -.10841  -.10358  -.05773  -.02633   .13923  -.05165  -.08681  -.03918 

 

           TFSTNP      NOV      OCT 

  TFSTNP  1.00000  -.11493  -.10152 

     NOV  -.11493  1.00000  -.08179 

     OCT  -.10152  -.08179  1.00000 

 

 

US-34 Corridor 

Binary Probit Model 

--> probit; lhs = x70; rhs= one, aug, tb3, rwinsa, sdark,vh2bz, npwin$ 

 

 ************************************************************************ 

 * NOTE: Deleted     36 observations with missing data. N is now    172 * 

 ************************************************************************ 

 

Normal exit from iterations. Exit status=0. 

 

+---------------------------------------------+ 

| Binomial Probit Model                       | 

| Maximum Likelihood Estimates                | 
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| Model estimated: Mar 20, 2013 at 10:15:37AM.| 

| Dependent variable                  X70     | 

| Weighting variable                 None     | 

| Number of observations              172     | 

| Iterations completed                  5     | 

| Log likelihood function       -91.00207     | 

| Number of parameters                  7     | 

| Info. Criterion: AIC =          1.13956     | 

|   Finite Sample: AIC =          1.14353     | 

| Info. Criterion: BIC =          1.26765     | 

| Info. Criterion:HQIC =          1.19153     | 

| Restricted log likelihood     -107.7914     | 

| McFadden Pseudo R-squared      .1557574     | 

| Chi squared                    33.57861     | 

| Degrees of freedom                    6     | 

| Prob[ChiSqd > value] =         .8111896E-05 | 

| Hosmer-Lemeshow chi-squared =   5.79974     | 

| P-value=  .66965 with deg.fr. =       8     | 

+---------------------------------------------+ 

+--------+--------------+----------------+--------+--------+----------+ 

|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| Mean of X| 

+--------+--------------+----------------+--------+--------+----------+ 

---------+Index function for probability 

 Constant|   -1.46255615       .30165320    -4.848   .0000 

 AUG     |    1.56575759       .42106641     3.719   .0002    .06976744 

 TB3     |     .72911091       .30135576     2.419   .0155    .12209302 

 RWINSA  |     .02541666       .00973812     2.610   .0091   9.27200281 

 SDARK   |   -1.02440976       .58751475    -1.744   .0812    .05813953 

 VH2BZ   |     .65187442       .28182120     2.313   .0207    .18023256 

 NPWIN   |     .53693934       .29647457     1.811   .0701    .79651163 

 

+-------------------------------------------+ 

| Partial derivatives of E[y] = F[*]   with | 

| respect to the vector of characteristics. | 

| They are computed at the means of the Xs. | 

| Observations used for means are All Obs.  | 

+-------------------------------------------+ 

+--------+--------------+----------------+--------+--------+----------+ 

|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]|Elasticity| 

+--------+--------------+----------------+--------+--------+----------+ 

---------+Index function for probability 

 Constant|    -.50349003       .09237290    -5.451   .0000 

---------+Marginal effect for dummy variable is P|1 - P|0. 

 AUG     |     .56239310       .11292186     4.980   .0000    .13366011 

---------+Marginal effect for dummy variable is P|1 - P|0. 

 TB3     |     .27498422       .11661665     2.358   .0184    .11436882 

 RWINSA  |     .00874977       .00334707     2.614   .0089    .27636269 

---------+Marginal effect for dummy variable is P|1 - P|0. 

 SDARK   |    -.24858903       .08338262    -2.981   .0029   -.04923371 

---------+Marginal effect for dummy variable is P|1 - P|0. 

 VH2BZ   |     .24209126       .10808309     2.240   .0251    .14863510 

---------+Marginal effect for dummy variable is P|1 - P|0. 

 NPWIN   |     .16638179       .08006176     2.078   .0377    .45144718 

 

+----------------------------------------+ 

| Fit Measures for Binomial Choice Model | 

| Probit   model for variable X70        | 

+----------------------------------------+ 

| Proportions P0= .680233   P1= .319767  | 

| N =     172 N0=     117   N1=      55  | 

| LogL=      -91.002 LogL0=    -107.791  | 

| Estrella = 1-(L/L0)^(-2L0/n) = .19121  | 

+----------------------------------------+ 
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|     Efron |  McFadden  |  Ben./Lerman  | 

|    .18985 |    .15576  |       .64796  | 

|    Cramer | Veall/Zim. |     Rsqrd_ML  | 

|    .18812 |    .29365  |       .17735  | 

+----------------------------------------+ 

| Information  Akaike I.C. Schwarz I.C.  | 

| Criteria        1.13956       1.26765  | 

+----------------------------------------+ 

+---------------------------------------------------------+ 

|Predictions for Binary Choice Model.  Predicted value is | 

|1 when probability is greater than  .500000, 0 otherwise.| 

|Note, column or row total percentages may not sum to     | 

|100% because of rounding. Percentages are of full sample.| 

+------+---------------------------------+----------------+ 

|Actual|         Predicted Value         |                | 

|Value |       0                1        | Total Actual   | 

+------+----------------+----------------+----------------+ 

|  0   |    106 ( 61.6%)|     11 (  6.4%)|    117 ( 68.0%)| 

|  1   |     34 ( 19.8%)|     21 ( 12.2%)|     55 ( 32.0%)| 

+------+----------------+----------------+----------------+ 

|Total |    140 ( 81.4%)|     32 ( 18.6%)|    172 (100.0%)| 

+------+----------------+----------------+----------------+ 

 

======================================================================= 

Analysis of Binary Choice Model Predictions Based on Threshold =  .5000 

----------------------------------------------------------------------- 

Prediction Success 

----------------------------------------------------------------------- 

Sensitivity = actual 1s correctly predicted                     38.182% 

Specificity = actual 0s correctly predicted                     90.598% 

Positive predictive value = predicted 1s that were actual 1s    65.625% 

Negative predictive value = predicted 0s that were actual 0s    75.714% 

Correct prediction = actual 1s and 0s correctly predicted       73.837% 

----------------------------------------------------------------------- 

Prediction Failure 

----------------------------------------------------------------------- 

False pos. for true neg. = actual 0s predicted as 1s             9.402% 

False neg. for true pos. = actual 1s predicted as 0s            61.818% 

False pos. for predicted pos. = predicted 1s actual 0s          34.375% 

False neg. for predicted neg. = predicted 0s actual 1s          24.286% 

False predictions = actual 1s and 0s incorrectly predicted      26.163% 

 

 

--> dstat; rhs = aug, tb3, rwinsa, sdark,vh2bz, npwin; output =2 $ 

Descriptive Statistics 

All results based on nonmissing observations. 

=============================================================================== 

Variable     Mean       Std.Dev.     Minimum      Maximum        Cases Missing 

=============================================================================== 

------------------------------------------------------------------------------ 

All observations in current sample 

------------------------------------------------------------------------------ 

AUG     |  .625000E-01  .242645      .000000      1.00000          208       0 

TB3     |  .134615      .342136      .000000      1.00000          208       0 

RWINSA  |  9.33797      10.8166      .000000      71.0000          181      27 

SDARK   |  .581395E-01  .234690      .000000      1.00000          172      36 

VH2BZ   |  .171271      .377790      .000000      1.00000          181      27 

NPWIN   |  .790055      .408399      .000000      1.00000          181      27 

 

Correlation Matrix for Listed Variables 

 

              AUG      TB3   RWINSA    SDARK    VH2BZ    NPWIN 

     AUG  1.00000  -.10213  -.05405  -.06804  -.12841  -.03164 
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     TB3  -.10213  1.00000   .06842  -.01677   .00994   .01205 

  RWINSA  -.05405   .06842  1.00000   .21531   .09788   .03398 

   SDARK  -.06804  -.01677   .21531  1.00000   .27132   .06387 

   VH2BZ  -.12841   .00994   .09788   .27132  1.00000   .08672 

   NPWIN  -.03164   .01205   .03398   .06387   .08672  1.00000 

 

--> create; elasrwsa = (1-proute)*0.025*rwinsa $ 

--> dstat; rhs =elasrwsa$ 

Descriptive Statistics 

All results based on nonmissing observations. 

=============================================================================== 

Variable     Mean       Std.Dev.     Minimum      Maximum        Cases Missing 

=============================================================================== 

------------------------------------------------------------------------------ 

All observations in current sample 

------------------------------------------------------------------------------ 

ELASRWSA|  .135723      .145550      .000000      .657624          172      36 

 

Multinomial Logit Model 

--> nlogit;lhs=x1;choices=PDO,POSUN,FINJ;model: 

    u(PDO)=augpd*aug+tb3pd*tb3+rwinsapd*rwinsa/ 

    u(POSUN)=POSUN*one+belowz*belowz/ 

    u(FINJ)=FINJ*one+logTRvrf*logtrvr+darkf*dark+belowz*belowz 

    ;effects: aug(PDO)/tb3(PDO)/rwinsa(PDO)/ 

    belowz(POSUN)/belowz(FINJ)/ 

    logtrvr(FINJ)/dark(FINJ)$ 

+---------------------------------------------+ 

| Discrete choice and multinomial logit models| 

+---------------------------------------------+ 

 

+------------------------------------------------------+ 

|WARNING:   Bad observations were found in the sample. | 

|Found  27 bad observations among     208 individuals. | 

|You can use ;CheckData to get a list of these points. | 

+------------------------------------------------------+ 

 

Normal exit from iterations. Exit status=0. 

+---------------------------------------------+ 

| Discrete choice (multinomial logit) model   | 

| Maximum Likelihood Estimates                | 

| Model estimated: Mar 20, 2013 at 10:24:58AM.| 

| Dependent variable               Choice     | 

| Weighting variable                 None     | 

| Number of observations              181     | 

| Iterations completed                  6     | 

| Log likelihood function       -128.3480     | 

| Number of parameters                  8     | 

| Info. Criterion: AIC =          1.50661     | 

|   Finite Sample: AIC =          1.51123     | 

| Info. Criterion: BIC =          1.64798     | 

| Info. Criterion:HQIC =          1.56392     | 

| R2=1-LogL/LogL*  Log-L fncn  R-sqrd  RsqAdj | 

| Constants only    -148.1688  .13377  .11420 | 

| Chi-squared[ 6]          =     39.64143     | 
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| Prob [ chi squared > value ] =   .00000     | 

| Response data are given as ind. choice.     | 

| Number of obs.=   208, skipped  27 bad obs. | 

+---------------------------------------------+ 

 

+---------------------------------------------+ 

| Notes No coefficients=> P(i,j)=1/J(i).      | 

|       Constants only => P(i,j) uses ASCs    | 

|         only. N(j)/N if fixed choice set.   | 

|         N(j) = total sample frequency for j | 

|         N    = total sample frequency.      | 

|       These 2 models are simple MNL models. | 

|       R-sqrd = 1 - LogL(model)/logL(other)  | 

|       RsqAdj=1-[nJ/(nJ-nparm)]*(1-R-sqrd)   | 

|         nJ   = sum over i, choice set sizes | 

+---------------------------------------------+ 

+--------+--------------+----------------+--------+--------+ 

|Variable| Coefficient  | Standard Error |b/St.Er.|P[|Z|>z]| 

+--------+--------------+----------------+--------+--------+ 

 AUGPD   |   -2.37723186       .66526106    -3.573   .0004 

 TB3PD   |   -1.31388699       .50544268    -2.599   .0093 

 RWINSAPD|    -.02919346       .01590340    -1.836   .0664 

 POSUN   |   -2.29950051       .31630729    -7.270   .0000 

 BELOWZ  |     .91284405       .39539160     2.309   .0210 

 FINJ    |   -2.79569939       .40896325    -6.836   .0000 

 LOGTRVRF|     .20479711       .07825527     2.617   .0089 

 DARKF   |   -1.86398707       .78633663    -2.370   .0178 

 

--> dstat; rhs = aug, tb3, rwinsa, belowz, dark, logTRvr; output =2 $ 

Descriptive Statistics 

All results based on nonmissing observations. 

=============================================================================== 

Variable     Mean       Std.Dev.     Minimum      Maximum        Cases Missing 

=============================================================================== 

------------------------------------------------------------------------------ 

All observations in current sample 

------------------------------------------------------------------------------ 

AUG     |  .625000E-01  .242256      .000000      1.00000          624       0 

TB3     |  .134615      .341586      .000000      1.00000          624       0 

RWINSA  |  9.33797      10.7966      .000000      71.0000          543      81 

BELOWZ  |  .276243      .447551      .000000      1.00000          543      81 

DARK    |  .317308      .465802      .000000      1.00000          624       0 

LOGTRVR |  1.70004      2.79506      .000000      6.63379          543      81 

 

Correlation Matrix for Listed Variables 

 

              AUG      TB3   RWINSA   BELOWZ     DARK  LOGTRVR 

     AUG  1.00000  -.10078  -.03892  -.17186  -.00102   .03103 

     TB3  -.10078  1.00000   .06520  -.03091  -.09320   .01001 

  RWINSA  -.03892   .06520  1.00000   .21865   .04104   .08110 

  BELOWZ  -.17186  -.03091   .21865  1.00000   .09437  -.02210 

    DARK  -.00102  -.09320   .04104   .09437  1.00000   .04058 

 LOGTRVR   .03103   .01001   .08110  -.02210   .04058  1.00000 
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APPENDIX D 

TEST OF DIFERRENCE IN THE PROBABILITY OF SEVERE CRASHES 

 

According to a descriptive analysis of the used data, 470 crashes occurred on the I-80 

corridor under adverse weather conditions (e.g. temperature below freezing or precipitation 

events). Of those crashes, only 18 resulted in a fatal or major injury (severe) outcome. This 

corresponds to a probability of    ̂   
  

   
      . 

On the other hand, 60 crashes occurred on the US-34 corridor under adverse weather 

conditions. Of those crashes only 4 resulted in a fatal or major injury (severe) outcome. Thus 

the corresponding probability is    ̂   
 

  
      . 

However, if X is the random binary variable (takes on values 0 or 1) associated with 

whether a crash under adverse weather conditions had a severe outcome, then X can be 

considered as a Bernoulli variable, since it can be associated with a Bernoulli trial of two 

possible outcomes, such as fatal or major injury outcome or outcome of lower severity 

(Miller & Miller, 2004). Let denote the p-value of this Bernoulli variable as   . Note also 

that the p-value of a Bernoulli random variable is actually the probability that the variable 

equals one. 

Based on the above context, one could say that in this study, there are 470 Bernoulli 

variables associated with a severe outcome under adverse weather conditions on the I-80 

corridor and 60 Bernoulli variables on the US-34 corridor.   
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An estimator of     for n Bernoulli variables can be given by the formula:  ̂  

 

 
∑   

 
   . Thus, for the I-80 corridor:  ̂   

 

   
∑   

   
           and for the US-34 

corridor:  ̂   
 

  
∑   

  
         . 

Moreover, it can be proven by incorporating the Central Limit Theorem that the mean 

and variance of   ̂  are   ̂ 
   ( ̂ )   

 

 
∑   

 
    and     ̂ 

   
  

 

 
 , where:   

     (  

  ). 

In the case of the two corridors, n is large enough (greater than 30) in order to invoke 

the Central Limit Theorem, thus:  

  ̂            and    ̂   
   

  (    )

 
      (       )

   
          

   ̂            and    ̂   
   

  (    )

 
      (       )

  
       

In order to examine that the probability of a severe crash during adverse weather 

conditions is significantly larger on the US-34 corridor than the I-80 corridor, one could 

perform a simple hypothesis test, such as: 

 Ho:    ̂      ̂        vs. Hα:    ̂      ̂       

 An appropriate test for the aforementioned hypotheses is the Welch’s t test, which is 

an approximation to the t-test (Otto & Longnecker, 2010). The test is performed as follows: 

Test Statistic:      
(  ̂      ̂   )   

√
  ̂   
 

   
   

  ̂   
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Rejection Region:  reject Ho if        , with degrees of freedom equal to: 

   
(        )

(   ) (     )   (     )
, where:   

  ̂   
 

   

  ̂   
 

   
 

  ̂   
 

   

 

 By applying the corresponding numbers of the I-80 and US-34 corridors, the values 

of the previous formulas are:       and      . By using a t-distribution table it can be 

inferred that Ho should be rejected at any acceptable α-level (p-value < 0.0005).  

In conclusion, the probability of having a fatal or major injury crash under adverse 

weather conditions for a US route is significantly larger than the corresponding probability 

for an Interstate route at any acceptable α-level. Equivalently, adverse weather conditions 

seem to be associated with lower probability of a severe crash on an Interstate than on a route 

of lower classification.  
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APPENDIX E 

CALCULATION OF THE PROBALITY OF A FATAL CRASH 

 

The probability of a crash that occurred under temperature below 0
o
C on a US route 

to result in a fatal injury outcome is given by Equation 4.13. Based on Table 5.5, the values 

of the utility functions for each of the three outcomes are (assuming that the values of all the 

other variables are equal to 0): 

                  = 0 

                        = -2.300 + 0.913 = -1.387 

            = -2.796 + 0.913 = -1.883 

Thus, from Equation 4.13: 

 ( )   
   (      )

   ( )     (      )     (      )
       

If the crash had occurred under different weather conditions (i.e., temperature higher 

than 0
o
C), then the values of the utility functions would be: 

                  = 0 

                        = -2.300  

            = -2.796  

And thus the probability to be of a fatal outcome would be: 
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 ( )   
   (      )

   ( )     (      )     (      )
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