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ABSTRACT 

Permanent strain and resilient modulus provide direct, quantifiable values that describe 

two types of deformation (irrecoverable and recoverable) of pavement foundation materials 

under repeated transient traffic loads. Although the permanent deformation is not directly 

used in pavement design calculation, it affects the long-term performances of pavement 

foundations. The resilient moduli are used in AASHTO 1993 pavement design and the 

current Mechanistic-Empirical Pavement Design Guide. 

This study investigated permanent deformation and resilient modulus characteristics of 

unbound granular materials in relation with relative densities, fines contents, material types, 

stress levels, and number of load applications. Materials tested in this study included crushed 

limestone and recycled aggregate materials (recycled asphalt pavement and recycled portland 

cement concrete). 

Laboratory prepared samples were tested to assess the influence of different conditions 

varied in situ (e.g., relative density and fines content). Varied stress levels and number of 

load cycles were applied to samples to assess their influence on different material types. 

Results from this investigation demonstrated that 1) accumulation of permanent 

deformations increased with deviator stress; 2) higher fines contents (12.4%-12.6%) result in 

lower permanent deformations than lower fines contents (0.8%-2.2%) for the materials with 

laboratory reconstituted fines contents; 3) relative densities in the range of 85% to 95% does 

not significantly affect the permanent deformation behavior for the materials tested in this 

study at low deviator stress (e.g., 68.9 kPa); 4) the crushed limestone material that was tested 

in this study has higher resistance to permanent deformation and higher resilient moduli 

compared to the recycled materials that were tested in this study; 5) two recycled materials 

generally have the similar resilient modulus values; 6) stress levels (i.e., confining pressure 

and deviator stress) significantly affect the resilient modulus values; and 7) relative densities 

and fines contents affect the resilient moduli but they are not clearly related to the resilient 

modulus values of the materials tested in this study.  

Due to the complexity of the test method used in this study, measurements errors related 

to data sampling, tests apparatus setup, and the analysis methods were studied. The analyses 

demonstrated that 200 readings which is the minimum value specified in AASHTO T307-99 
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are not sufficient in tracking the loading history and the selection of data points affects the 

calculated resilient modulus value at each load sequence in the resilient modulus tests. 
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CHAPTER 1. INTRODUCTION 

This chapter presents the industry and technical problems that are addressed in this study, 

states the research goals and objectives, and discusses the significance of this research. The 

final section in this chapter describes the organization of this thesis. 

Industry Problem 

Recycled materials are being increasingly used in base/subbase layers under pavements 

to reduce costs and environmental impacts of pavement construction. However, variations in 

original mixtures and service history of these recycled materials lead to uncertainties in their 

performance as pavement foundation layers so the performance of recycled materials must be 

studied and compared to the conventional unbound granular materials (UGMs). 

The deteriorating U.S. pavement infrastructure, increasing traffic loads, and increasing 

use of recycled materials are problems that require more research and improved design and 

pavement foundation construction. Failure to act: The economic impact of current 

investment trends in surface transportation infrastructure (ASCE 2011) reported that 

deficiencies in America’s surface transportation systems were estimated to cost households 

and businesses nearly $130 billion in 2010. Many of the roads in present service were built 

decades ago. Repair or complete rebuild are necessary and expensive for these roads. So 

researchers need to understand the factors that affect the deterioration in pavement systems to 

improve pavements’ long-term performance.  

Traffic loads typically increase, and the actual growth rate might be higher than the 

estimated value in the original pavement design. For example, the Central Texas Regional 

Mobility Authority (2011) reported that from 2010 to 2011 traffic counts increased 22.6% 

along US 183 north of the Avery Ranch Boulevard exit. Increased traffic loads require 

pavement foundations to support larger loads that degrade long-term pavement 

performances.  

A pavement structure is typically composed of three layers: the wearing surface, the 

base/subbase and the subgrade. The base/subbase layers are constructed with UGMs to 

provide high permeability, high elastic stiffness, and low variability. However, the 

construction process can cause degradation of UGMs and variation in densities of 

base/subbase layers.  
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Technical Problem 

Deteriorating pavement infrastructure calls for advanced pavement technologies and 

investments to improve these technologies. One of these investments is to study the factors 

that affect deterioration of the pavement foundation. 

Increasing traffic load will accelerate deterioration in pavement structures, so the 

resistance of pavement structures to large loads must be studied. Large-scale tests with actual 

pavement structures and real wheel loading machines are expensive and time-consuming so 

the use of small-scale laboratory tests that simulate the moving wheel loads on pavement 

foundation materials.  

The repeated load triaxial (RLT) test measures permanent strain and resilient moduli of 

pavement foundation materials. Permanent strain provides a measure of deformation values 

and resilient moduli provide a measure of stiffness to help quantify long-term pavement 

foundation support conditions. Barksdale (1972) reported a linear relationship between 

accumulated permanent strain and number of load applications, and proposed a numerical 

model for predicting permanent strain. Other researchers (Sweere 1990, Paute et al. 1996, 

Lekarp and Dawson 1998, etc.) proposed different numerical models but there is no universal  

model for predicting permanent strain for different materials and variations in factors that 

affect the ability of pavement foundation materials to resist deterioration.  

Recycled materials are being used more frequently in base/subbase layers during last two 

decades, but their performance under repeated traffic loading has not yet been fully 

understood. This study aims to investigate and compare permanent deformation and resilient 

response of these different UGMs typically used in the pavement foundation layers. 

Research Goals 

The goals of this study are to evaluate models for predicting permanent deformation from 

laboratory tests results using statistical analysis method and to better understand the 

permanent and resilient behavior of recycled and conventional materials under repeated 

traffic loading. 
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Research Objectives 

This study has six main objectives. 

• Determine permanent deformation of unbound granular materials as a function of  

◦ the number of load cycles; 

◦ stress level (deviator stress and confining pressure); 

◦ relative density; 

◦ fines content; and 

◦ materials type. 

• Determine resilient modulus of unbound granular materials as a function of 

◦ relative density; 

◦ stress level; 

◦ fines content; and 

◦ materials type. 

• Develop permanent deformation prediction equation for multi stress levels tests as the 

tests loading sequences specified in NCHRP 598 tests.  

• Determine the significance of regression parameters of the numerical models in 

predicting resilient modulus. 

• Discuss the possible errors in the repeated load triaxial tests to determine permanent 

deformation and resilient moduli. 

Significance of the Research 

Pavement design considers natural subgrade properties and determines the most 

economical subbase layer thicknesses and material types for the pavement system. Estimated 

traffic loads and environmental conditions are important factors. Uniform support and good, 

drainability are important functions of the subbase layers. 

Advanced understanding of permanent deformation and resilient response aims to 

evaluate the functionability of base/subbase layers, slow down aging of the pavement 

infrastructures and improve long-term pavement performance. Resilient modulus (Mr) used 

to quantify resilient response is a direct input in pavement foundation design, but the resilient 

modulus alone does not characterize the base/subbase layers’ functionability. Permanent 

deformation of granular base/subbase layers is one of the most important performance 
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measures because it can cause significant stress concentrations in the pavement layers, which 

in the long-term is linked to cracking. The permanent deformation behavior must be studied 

with the resilient modulus to fully evaluate the engineering behavior of UGMs.  

FHWA recognizes that increasing use of recycled materials is necessary in U.S. highway 

industry because of potential cost savings, engineering performance, landfill reduction, and 

environment stewardship (Wright 2002). However, physical, chemical, and mechanical 

properties of the recycled materials need to be studied to ensure proper selection and 

placement of these materials. 

Laboratory Mr and permanent deformation tests simulate actual roadway conditions by 

subjecting vibratory compacted samples to transient repeated loads and controlled stresses. 

This study will evaluate permanent deformation and resilient response of five pavement 

foundation materials and related factors (i.e., relative densities, fines contents, stress levels, 

etc.). 

Overall, this research aims to better understand the permanent and resilient behavior of 

UGMs including recycled materials. The outcomes help to design economical and long 

lasting pavement systems. 

Organization of the Document 

Following this introduction chapter, this thesis is organized into five additional chapters. 

Chapter 2 reviews previous literature and provides background information for this study. 

Chapter 3 describes the laboratory test methods, and chapter 4 summarizes the tested 

materials’ properties that characterized in laboratory tests. Chapter 5 presents the tests results 

and analyses and discusses findings from the analyses. Chapter 6 summarizes the conclusions 

and outcomes derived from this research. Moreover, chapter 6 discusses how these 

conclusions can be applied in construction practice and provides suggestions for future 

research. Supporting materials are provided as appendices that follow the list of works cited. 
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CHAPTER 2. BACKGROUND AND LITERATURE REVIEW 

This chapter summarizes selected literature that discusses deformation behavior of 

unbound granular materials (UGMs) in base/subbase layers under repeated traffic loading. 

This literature review consists of three main sections: stresses and deformation response in 

base/subbase layers, permanent deformation of UGMs, and resilient response of UGMs. 

Stresses and Deformation Response in Base/Subbase Layers 

This section describes the stresses in base/subbase layers and discusses deformation 

responses of UGMs under repeated traffic load. 

Stresses in base/subbase layers 

Base/subbase layers are constructed to provide a working platform for upper pavement 

layers, to improve drainage under pavement surface, and to minimize the effects of frost 

heave (Saeed 2008a). UGMs are usually used in construction of base/subbase layers, because 

of their stiffness and permeability. 

Crushed gravels and crushed limestone are two types of commonly used UGMs. 

However, over the last two decades, recycled materials are being increasingly used in 

base/subbase layers (Wright 2002). Recycled asphalt pavement (RAP) and recycled concrete 

pavement (RPCC) are the two primary types of recycled materials used in base/subbase 

construction. Performance of the recycled materials is not fully understood given the wide 

variation in the materials. Sivakumar et al. (2004) suggested the suitability of recycled 

materials in civil engineering applications must be carefully considered due the intense and 

cyclic nature of loading on pavements. 

It is well known that the behaviors of UGMs depend on the stress state and the stress 

history that they experience. In pavement structures, stresses induced by moving wheel loads 

are complex, and they are important to the engineering behavior of the base/subbase layers. 

An element in a pavement structure is subjected to stress pulses which consist of varying 

magnitudes of vertical, horizontal, and shear stresses. These stress pulses are transient due to 

the moving wheel loading. The principal stress axes rotate due to the rolling motion of the 

wheel loading, because the shear stresses are reversed as the load passes. In addition, the 
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principal stresses act on an element only in vertical and horizontal directions when the shear 

stresses are zero as shown in Figure 1. 

 
Figure 1. Stresses beneath rolling wheel load (Lakarp et al. 1997) 

Saeed (2008) said the magnitude of stress, number of stress repetitions, and rates of 

loading are three main aspects of applied stress on foundation layers. Moving wheel load is 

an impulse type repeated loading. 

The repeated load triaxial (RLT) testing is commonly used to simulate the transient stress 

pulses in laboratory to study the engineering behavior of UGMs. Various RLT test devices 

have been used by researchers to simulate various combinations of vertical and longitudinal 

stress experienced in situ in base/subbase layers. However, most RLT apparatus cannot 

simulate the rotation of the principal axes. So, the stresses applied in the RLT tests only 

simulate the stresses on an element when the wheel load is centered above the element. This 
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means the shear stresses in RLT tests are zero and σ1 =σz =vertical stress= applied cyclic 

stress, σ2= σ3= σz = horizontal stress= confining stress. In Figure 1, σ1 and σ3 are shown in 

vertical and horizontal direction on a UGM element. σ2 (not shown in the figure) is 

perpendicular to σ1 and σ3 planes, and is assumed to be equal to σ3. 

Deformation response mechanisms in base/subbase layers 

Proper understanding of the behavior of construction materials in base/subbase layers is 

key for the success of mechanistic pavement design (Lekarp et al. 2000a). Werkmeister 

(2003) reported that the deformation resistance of UGMs is a function of the applied stress. 

Strain hardening and strain softening are two major behaviors of UGMs under loading 

(Figure 2). Strain hardening occurs at low stress levels where the stiffness of UGMs 

increases with increasing stress. This happens because granular particles are compacted into 

new interlocked positions such that particles are packed into a dense state. Some strain 

softening occurs at high stress levels as the volumetric strains continue to increase.  

 
Figure 2. Stress-strain behavior of UGMs (Werkmeister 2003) 

Many researchers have studied the complex deformation responses of UGMs subjected to 

repeated traffic loading (Thom and Brown 1989; Lekarp 1996; Werkmeister 2003; Arnold 

2004). The deformation responses are typically characterized into two types: resilient 
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deformation and permanent deformation. UGMs exhibit both resilient strain and permanent 

strain under each load cycle (Figure 3). Resilient strains are the strains that are recovered 

after each load application and permanent strains are irrecoverable and accumulate with 

increasing load applications. The stress–strain relationship for UGMs can be plotted as a non-

linear curve for each load cycle and forms a hysteresis loop. This indicates that less 

permanent deformation per load cycles occurs when more load cycles are applied compared 

to the first several load cycles. Werkmeister (2003) and Arnold (2004) found that permanent 

deformations per cycle diminished with load applications compared to the permanent 

deformation per cycles at first several load cycles.  

 
Figure 3. Stress–strain hysteresis loop in UGMs during one cyclic load application 

Lekarp et al. (2000a) cited Luong (1982) who reported that permanent deformation under 

cyclic loading is mainly caused by three mechanisms: consolidation, distortion, and attrition. 

Consolidation changes the particle structure and results in volume reductions by rearranging 

and reorienting particles, but the inherent structures of UGMs are not modified. Distortion is 

characterized by three motions of individual particles: bending, sliding, and rolling and is 

mainly governed by the microscopic interlocking of particles and the resistance to sliding and 

rolling is dependent on the interparticle friction. Attrition changes the UMG’s fabric and 
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packing, and results in crushing and breaking of the particles when the applied loads exceed 

the strength of the material.  

Deformation of individual particles (i.e., breaking and crushing particles) is often referred 

to as degradation. When the contact force that transmitted by the inter-particle contacts 

increases, the resilient deformation of the particles decreases. Van Niekerk (2002) indicated 

that additional effects probably affect the non-linear resilient deformation at high stress 

levels. Hoff et al. (1999) and Van Niekerk (2002) found that the volume change of densely 

compacted granular materials increases with increasing shear strain. This is because the shear 

forces squeeze and push the granular particles to climb onto the other particles, because the 

voids between particles are relatively small in densely compacted granular materials. 

Permanent Deformation of Unbound Granular Materials 

This section presents the definition of permanent deformation, reviews the literature 

about factors that affect permanent deformation, describes shakedown theory, and discusses 

statistical models reported in literature for permanent deformation prediction. Additionally, 

the degradation of UGMs is also reviewed for quantifying particle breakage during 

permanent deformation accumulation under cyclic loading.  

Definition of permanent deformation 

Permanent deformation is quantified as the accumulated irrecoverable (permanent) strain 

(Figure 3) through the pavement service life. At a given number of load applications under a 

given stress level, the permanent strain for a laboratory test specimen is calculated using 

Equation 1: 

    
  

  
      (1) 

where: εp is the permanent deformation in percent; 

∆H is the change in specimen height after a certain number of load applications; and 

Ho is the original specimen height. 

Permanent deformation is one of the most important types of distresses on flexible 

pavements, but is also important on rigid pavements, especially in cases with non-uniform 

deformations. Limiting rut development or permanent deformation is one of the main 
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objectives in the design of flexible pavements. Permanent deformations occurred in 

base/subbase layers lead to low serviceability in rigid pavements.  

Although permanent deformation is relatively simple to measure, the prediction of 

permanent deformation is comparatively complex. Lekarp et al. (2000b) proposed that the 

prediction of permanent deformation is not only related to the materials’ characteristics but 

also the environmental conditions and stress distribution over the pavement service life.  

Factors that affect permanent deformation 

Several factors affecting permanent deformation UGMs include: applied stress, number 

of load cycles, moisture content, density, fines content, and material type. 

Applied stress 

The applied stress levels is one of the most important factors affecting UGMs ability to 

resist permanent deformation. Morgan (1966) reported that accumulated axial permanent 

strain is directly related to deviator stress and inversely related to confining pressure 

according to repeated load triaxial tests.  

Following Morgan’s research, many researchers (Lashine et al. 1971; Barksdale 1972; 

Boyce 1975; Brown and Hyde 1975; Werkmeister et al. 2001) have documented the 

influence of stress ratio (deviator stresses divided by confining pressure) on permanent 

deformation of granular materials.  

Based on tests on crushed limestone material, Lashine et al. (1971) reported that 

permanent axial strain increased and finally reached a constant value at different stress ratios. 

These tests were performed on partially saturated samples in drained conditions to allow pore 

water pressures to dissipate. Barksdale (1972) confirmed Lashine et al. (1971) results 

showing that permanent axial strain increases as confining pressure decreases and deviator 

stress increases. Brown and Hyde (1975) further confirmed this conclusion by studying the 

response of crushed limestone material subjected to both constant and variable confining 

pressures during testing.  

Boyce (1975) reported that the permanent strain reached a constant value before or when 

a low deviator to normal stress ratio was applied. When a high stress ratio (e.g. (q/p) max = 

2.25) was applied, a larger permanent strain developed and continued to increase. Pappin 
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(1979) confirmed these findings and suggested that permanent axial strain is a function of the 

stress ratio. 

Based on testing on sandy gravel material, Werkmeister et al. (2001) found that 

permanent strain reaches an equilibrium state at low vertical to radial stress ratio. Further, 

permanent deformation increased rapidly and reached to failure at high vertical to radial 

stress ratio.  

Some researchers studied ultimate shear strength of the materials to explain the 

permanent deformation behavior of UGMs under repeated loading. Lekarp and Dawson 

(1998) stated that static failure tests induced sudden failure in granular materials, which is 

not in gradual process that is the case under repeated loading.  

Number of load applications 

Several researchers (Morgan 1966; Barksdale 1972; Kolisoja 1998; Kumar et al. 2006)) 

reported that permanent strain in UGMs continuously increases under repeated loading. For 

example, Morgan (1966) reported that permanent strain continues increasing at the end of the 

tests after 2,000,000 load cycles applied. Barksdale (1972) found a logarithmic relationship 

between the accumulated permanent strain and the number of load applications, based on 

testing some sand stone and crushed biotite granite gneiss materials up to 100,000 loading 

cycles. Barksdale (1972) indicated a sudden increase in the rate of accumulated permanent 

strain after up to 100,000 load applications. Kolisoja (1998) observed a progressive increase 

in permanent strain with number of load applications when more than 80,000 load cycles 

were applied, but the increasing accumulated permanent strain tends to reach an equilibrium 

state at 80,000 load cycles. Based on tests on crushed granite, Brown and Hyde (1975) 

reported that permanent strain reaches an equilibrium state after 1,000 load applications. 

Werkmeister et al. (2001) conducted tests on granidiorite material, which confirmed the 

findings reported by Brown and Hyde (1975). Werkmeister et al. (2001) also indicated that 

the accumulated permanent strain was clearly a function of the stress ratio (at 100,000 cycles: 

εp = 0.05% when stress ratio = 0.5, and εp = 1% when stress ratio = 11). 

Lekarp and Dawson (1998) also reported conclusions similar to Werkmeister et al. (2001) 

and indicated that the accumulated permanent strain reaches a constant value when low 
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stresses are applied and continuous increase when high stresses are applied at a large number 

of load cycles.  

Moisture content 

High moisture content and low permeability in UGMs can lead to increasing pore water 

pressures (PWP) and thus resulting in low effective stress (Lekarp et al. 2000b, 

Werkmeister). Consequently, the UGM stiffness is reduced and deformations are increased. 

Holubec (1969) reported that increasing water content contributed to higher permanent 

deformations based on laboratory RLT tests (with drainage channels open during testing) . 

The accumulated permanent strain at 1,000 load applications increased by about 300% in a 

waterbound macadam pavement when the water content increased from 3.1% to 5.7% and 

increased about 200% in a sandy gravel material when water content increased from 3% to 

6.6%. Barksdale (1972) studied permanent deformation in soaked and partially saturated 

samples and reported a 68% increase in permanent strain from partially saturated to soaked 

samples. Thom and Brown (1987) agreed that permanent strain rate increase largely even 

with a small increase in water content. Laboratory test results reported recently by serveral 

researchers also agree with these findings (Kancheral 2004, Uthus et al. 2006).  

Rodgers et al. (2008) reported that more rutting occurred in sandstone aggregates when a 

10 mm rainfall was simulated compared to the dry state. Moreover, Ishikawa et al. (2008) 

studied the influence of water content on mechanical behavior of gravel by performing fixed-

place loading and moving wheel loadings tests. The accumulated residual strain (permanent 

strain) increased due to saturation in both loading tests. They concluded that water content 

significantly affects mechanical behavior of gravel. 

Density 

The resistance of UGMs to permanent deformation under repeated wheel loading is 

generally improved with increasing density (Lekarp et al. 2000b). Barksdale (1972) reported 

an average of 185% reduction in permanent axial strain induced in samples compacted to 

100% maximum density compared to samples compacted to 95% maximum density. Allen 

(1973) studied permanent deformation in crushed limestone and gravel under standard 

Proctor and modified Proctor compaction. He reported that permanent deformation reduced 

80% in crushed limestone samples and reduces 22% in the gravel samples when the samples 
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are compacted to the maximum densities determined in the modified Proctor tests compared 

to the standard Proctor tests. Van Niekerk (2002) reported that higher axial stresses are 

required to produce the same amount of permanent axial strain in samples with 103% degree 

of compaction versus 97%.  

Fines content and type 

Fines content (passing No. 200 sieve) is typically limited to meet gradation requirements 

for Department of Transportation (DOT) specifications. However, fines content can vary 

during the pavement service life. Fines content can increase as a result of particle crushing 

and segregation during construction (White et al. 2004) and under traffic loading. White et al. 

(2004) reported that the amount of fines content affect the CBR values and hydraulic 

conductivities of RPCC and crushed limestone materials.  

Ferguson (1972) conducted RLT tests monitoring permanent strain on crushed lime stone 

materials at varying fines content. His results indicated that the influence of fines content on 

the rate of axial strain under cyclic loading is significant above a critical fines content. 

Barksdale (1972), Thom and Brown (1988), Kancherla (2004), and Hussain et al. (2010) also 

reported that increasing fines content  lead to higher permanent deformations in UGMs. 

Mishra et al. (2010) concluded that the uncrushed gravel has less resistance to negative 

effects of increasing fines content, because the voids were filled quickly in this material with 

low fines content. Therefore, fines content directly related to amount of permanent 

deformation produced in granular materials. 

Mishra et al. (2009) indicated that plasticity of fines is one of the most important 

parameters affecting deformation behavior of UGMs at low fines content. Because plastic 

fines with moisture will reduce strength and lower the resistance of UGMs to permanent 

deformation.  Excess fines content are usually produced by particles crushing under loading 

or compacting, so these fine materials are usually non-plastic or have low plasticity as the 

same as the original UGMs. However, the tests results from Belt et al. (1997) shows a 

increase in permanent strain of a crushed rock material as the fines content increase from 

about 2% to 10% and maximum grain size increase. 
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Material type 

Allen (1973) concluded that materials with angular particles (e.g. crushed stone) have 

higher resistance to permanent deformation than material with rounded particles. River 

gravel materials which contain rounded particles are more than two times susceptible to 

permanent deformation than angular crushed granular materials (Barksdale and Itani 1989). 

Moreover, the crushed granular materials (aggregates) with blade-shaped particles have 

lower resistance to permanent deformation or rutting than other crushed materials (Barksdale 

and Itani 1989). 

The researchers generally studied several different materials when they studied the 

permanent deformation and resilient modulus of UGMs, because there are many materials 

can be used as UGMs. Lekarp et al. (1996) studied permanent deformation behaviors of five 

different UGMs. In these five materials, granidiorite and dolomitic magnesium limestone 

have the highest resistance, followed by Leighton buzzard sand, and slate waste and sand 

with gravel. Werkmeister (2003) reported that sandy gravel (with smooth surfaces) is least 

resistant to permanent deformation, followed by granidiorite material (rough surface) and 

diabase material (rough surface). Rodgers et al. (2008) reported that sandstone had better 

resistance to deformation than limestone shale and sandstone was able to withstand up to 

1000 kPa (145 psi) applied pressures without excessive rutting.  

Werkmeister (2003) indicated that natural and crushed granular materials with similar 

gradation characteristics exhibit different permanent deformation behaviors b. Granular 

materials’ angularity changes as a result of crushing. Mishra et al. (2009) agreed that 

aggregate type or angularity have significant effect on the permanent deformation behavior. 

Moreover, they indicated that the aggregate type alone does not govern aggregate behavior. 

Material type which governs angularity is the most important parameter at low fines content 

(Mishra et al. 2010). Crushed particles have higher resistance to permanent deformation than 

uncrushed gravels in unbound granular layers.  

Bennert et al. (2000) conducted cyclic triaxial tests with a confining stress of 103 kPa 

(15 psi) and deviator stress of 310 kPa (45 psi) on RPCC, RAP, and dense-graded aggregate 

base coarse (DGABC) blended materials with different percentages. They reported that at 

100,000 load applications, the amount of permanent strain is lower in 100% RPCC materials 
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and is higher in 100% RAP materials. Bennert et al. (2000) indicated that the amount of 

permanent strain at 100,000 load applications decreased with increasing percentage of RPCC 

and increased with increasing RAP. Kim et al. (2009) agreed that permanent deformation 

increased with increasing percentage of RAP in RAP and virgin aggregate blended materials. 

They also reported that more than four times greater permanent deformation was developed 

in the 100% RAP specimens than the 100% aggregate specimens. 

Shakedown theory 

The shakedown theory was studied in the literature to help the researchers understand the 

permanent deformation behaviors of UGMs under different stress levels and number of load 

applications. 

The shakedown concept was originally introduced to analyze behavior of pressure vessels 

under cyclic thermal loading and behavior of metal surfaces under repeated rolling or sliding 

loads (Johnson 1986). Sharp and Booker (1984) developed procedures to analyze pavement 

shakedown under repeated cyclic loading. They suggested that pavement shakedown could 

be observed and satisfactorily predicted and the long term performance of weaker pavements 

could be conveniently estimated. The materials is said to do shakedown by an adaptation 

process when the accumulated permanent strain stopped increasing and the material then 

elastically responds to a load after a certain number of load applications (Sharp and Booker 

1984). 

Shakedown theory is being used widely to characterize behavior of UGMs under repeated 

traffic loading (Austin 2009; Tao et al. 2010; Nazzal et al. 2011; Cerni et al. 2012; Tao et al. 

2010). Werkmeister (2003) indicated that shakedown analysis on a pavement layer is to 

determine the critical shakedown load for given material types, layer thicknesses, and 

environmental conditions. In addition, he suggested that adoption of the shakedown concept 

in modeling the permanent deformation behavior of UGMs in a pavement structure could 

greatly improve the accuracy and reliability. Werkmeister (2003) and Arnold (2004) 

categorized the behaviors of UGMs into three ranges 1, 2, and 3 as illustrated in Figure 4: 

• Range 1: plastic shakedown range: at low stress level, the materials response is plastic 

for a finite number of load applications and the response is purely resilient after 

compaction is completed. 
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• Range 2: plastic creep shakedown range: the materials response is initially similar to 

Range 1 for a finite number of load application and collapse when the number of load 

application exceeds about 2 million. In this range, the material response is not purely 

resilient. 

• Range 3: incremental collapse shakedown range: Increasing permanent strain with 

load applications.  

 
Figure 4. Shakedown ranges of typical permanent deformation behavior (Cerni et al. 

2012) 

For a pavement to perform well, Range 1 materials are preferred and Range 3 materials 

must be avoided, while Range 2 materials might be acceptable if permanent deformation is 

estimated with reasonable accuracy (Werkmeister 2003). 

Werkmeister (2003) reported that the RLT test results could be categorized into Ranges 

1, 2, and 3 by visually inspecting the shapes/slopes of vertical permanent strain rate versus 

vertical permanent strain curves. He also proposed that the limit criteria for Ranges 1-2 

boundary is 4.5×10-5 mm/mm vertical permanent strains (no unit) accumulated from 3,000 to 

5,000 load applications and the limit criteria for Ranges 2-3 boundary is 4.0×10-4 mm/mm 

vertical permanent strains accumulated from 3,000 to 5,000 load applications. 
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Numerical models for predicting permanent deformation 

Many researchers have developed constitutive relationships for predicting permanent 

deformation of UGMs in base/subbase layers. A few selected models that are widely used are 

discussed in this section. Verka (1979) proposed a correlation between permanent and 

resilient strains of granular materials (Equation 2): 

          
  (2) 

where ε1,p = permanent strain; 

εr = resilient strain; 

a and b = regression parameters; and 

N = number of load repetitions. 

Sweere (1990) studied the behavior of unbound base materials and sands but could not 

verify Verka’s correlation.  

Barksdale (1972) performed RLT tests up to 10,000 load application to study the 

behavior of granular materials (i.e., crushed granite gneiss) that usually are used in base layer 

construction. He observed a logarithmic relationship between the accumulated permanent 

axial strain and the number of load applications as shown in Equation 3. This relationship 

shows that the accumulation rate of permanent axial strain decreases with increasing number 

of load cycles. 

                 (3) 

where: ε1, p = accumulated permanent axial strain; 

N= number of load repetitions; and  

a, b = regression parameters. 

Bennert et al. (2000) reported that using Equation 3, an average difference of 5.83% 

between the predicted and tested values was observed for RPCC, RAP, and DGABC blended 

materials. Sweere (1990) conducted RLT tests with 1,000,000 load applications and modified 

Equation 3 to a log-log model as shown in Equation 4: 

                       (4) 

Paute et al. (1996) proposed Equation 5 as a function of the number of loading cycles: 

                       
     (5) 
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where: where: ε1, p (N) = total accumulated permanent axial strain after the certain 

number of load applications; 

ε1, p (100) = the accumulated permanent axial strain with initial 100 load applications; and 

ε*
1,p (N) = the accumulated permanent axial strain after initial 100 load applications. 

The accumulated permanent axial strain after the initial 100 cycles is calculated with the 

number of load applications (Equation 6): 

     
   (  (

 

   
))

  

 (6) 

where: N = the number of load applications; and 

A, B = regression parameters (always positive). 

Paute et al. (1996) state that parameter A is considered as a limit value in permanent 

strain accumulation as the number of load applications continues to incrase. The limit value 

that varies with the maximum shear stress ratio is determined with the static failure line as 

shown in Equation 7: 

   

 

      

 (  
 

      
)
 (7) 

where: q = deviator stress; 

p = mean normal stress; 

p* = stress parameter defined by intersection of the static failure line; 

m = slope of the static failure line; and 

b = regression parameter. 

Lekarp and Dawson (1998) concluded from their test results that Equation 6 is only valid 

when low stress levels are applied and they questioned parameter A (Equation 7). Lekarp and 

Dawson (1998) argued that failure in granular materials occur gradually under repeated 

traffic loads but are not suddenly collapsed as occurs in static tests. Therefore, Parte et al. 

(1996) model is invalid in including effect of stress level in accumulation of permanent 

deformation.  

Lekarp and Dawson (1998) suggested a new method that employed the shakedown 

approach to explain the permanent deformation behavior of granular materials. According to 

RLT tests on different UGMs, they determined a relationship (Equation 8) between the 
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accumulated permanent strain after a certain number of load applications and the stress path 

length (L) and the maximum deviator to normal stress ratio (q/p).  
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)
   

 

 (8) 

where: ε1, p (Nref) = the accumulated permanent axial strain after a given number of load 

applications (Nref >100); 

L = stress path length = √p2 q2; 

p0 = reference stress; 

p = mean normal stress; 

q = deviator stress;  

(q/p)max = maximum stress ratio; and 

a, b = regression parameters. 

Lekarp and Dawson (1998) reported a correlation between the measured and model- 

predicted values. The permanent strain is accumulated at low stress ratio (q/p) to a final 

equilibrium state, while the permanent strain is accumulated rapidly at high stress ratio and 

the materials are gradually deteriorated. They suggested more research focus on determining 

the shakedown limit of UGMs where the gradual collapse starts occurring. If the shakedown 

limit method is suitable, the pavement designers are able to determine a limit to prevent 

excessive permanent deformation produced by controlling the induced traffic loading below 

the limit. 

Although no standard test method was developed to determine the permanent 

deformation in UGMs, researchers determined several models to determine the relationship 

between the permanent strain and the number of load applications and the stress levels.  

In addition to the equations that were widely examined by other researchers as we discussed 

above, more equations are listed in Table 1 which summarized other models discussed by 

Lekarp et al. (2000b) and developed by other researchers.  
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Table 1. Summary of numerical prediction models for permanent response (Lekarp et 

al. 2000b and others) 

Models References Parameters 
Based on the number of load applications 

ε1,p = accumulated permanent axial strain 
after N load cycles 
ε*

1,p = additional permanent axial strain 
after the first 100 load cycles 
ε1,p(100) = accumulated permanent axial 
strain at 100 load cycles 
a, b, d, ε0

1,p, m, n, s, B = parameters 
m = slope of the static failure line 
c = apparent cohesion 
φ = angle of internal friction 
A4, D4 = parameters that are functions of 
stress ratio q/p 
L = length of stress path 
     √    

      
  

N = number of load repetitions 
Nref = reference number of load repetitions 
> 100 
Rf = ratio of measured strength to ultimate 
hyperbolic strength ratio 
fnN = shape factor 
σ3 = confining pressure 
p0=reference stress 
pa = 100 kPa 
q = deviator stress 
p = mean normal stress 
q0 = modified deviator stress = √     
p0 = modified mean normal stress =√   
p* = stress parameter defined by 
intersection of the static failure line 
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Summary of permanent deformation research 

Table 2. Summary of some previous researches on permanent deformation 

Authors Material 
No. of 
Load 

Cycles 

Deviator 
stress 
(kPa) 

Confining 
Pressure 

(kPa) 
Key Findings 

Ferguson 
(1972) 

Garner crushed 
stone >10,000 384.0-

930.8 68.9 

Effects of fines contents below the maximum 
desired values on permanent deformation is small, 
otherwise the effects are large. The maximum 
desirable fines content is nearly independent of the 
number of load cycles. 

Lekarp and 
Dawson 
(1998) 

Crushed limestone, 
crushed dolomitic 
limestone, crushed 
slate waste, sand 
and gravel. 

40,000 or 
80,000 

20.0-
285.0 

300.0-
700.0 

A new model was developed to describe the 
relationship between accumulated permanent axial 
strain and stresses at any given number of cycles 
(>100). 

Werkmeister 
(2003) 

Granodiorite, 
sandy gravel, 
diabase. 

< 
2,000,000 

70.0-
840.0 140.0 

Three ranges were specified for the permanent 
deformation behavior: plastic shakedown; plastic 
creep; incremental collapse. 

Kancherla 
(2004) Crushed granite 10,000 213.7 103.5 

The permanent deformation and the resilient 
modulus values of granular material increased. The 
specimen height does not influence the test results. 

Kumar et al. 
(2006) 

Coarse, stone dust, 
fly ash, and 
riverbed materials 

10,000 
125.0, 

95.0, and 
65.0 

40.0, 70.0, 
and 100.0 

The permanent strain increases with increasing 
number of load cycles and the deviator stress. Stone 
dust has least resistance to rutting compared to other 
three materials. 

Mishra et al. 
(2009) 

Limestone and 
dolomite. 1,000 103.4 103.4 

The most important property at low fines contents is 
the aggregate type. When the fines content is low 
(<8%), fines do not significantly affect aggregate 
deformation behavior except plastic fines and high 
moisture content are used. 
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Degradation of UGMs 

The integrity of the constituting particles of UGMs determines their engineering behavior 

in pavement foundations (Lade et al. 1996). With the accumulation of permanent 

deformation owing to the repeated traffic load, the particle size distribution of aggregates can 

be changed. The existing voids in the constructed pavement foundations could be filled with 

the smaller particles that are broke from large particles by repeated traffic loading. So 

contacts between particles were increased and the contact stresses caused particles to break 

into smaller sizes. Therefore, degradation of particles occurs as the permanent deformation 

accumulated. Nevertheless, the degradation of particles affects the strength and deformation 

behavior of coarse granular base/subbase (Marsal 1967). 

Integrity of the constituting particles is well recognized as the important factor in 

determining the engineering behavior of granular coarse aggregates (Lade et al. 1996). Lade 

(1996) reported that if the granular aggregates subjected to a stress level above the normal 

geotechnical range, considerable particle breakage will exhibit in those granular aggregates.  

In showing degradation of aggregate materials in numeric format, breakage index is 

calculated for each test. All breakage indices are calculated from the changes of overall 

grain-size distribution of aggregates between the unloaded materials and materials after 

cyclic load test (Indraratna et al. 2004). Indraratna and Salim (2002) concluded from their 

experimental results that the breakage of particles increased at a decreasing rate to a constant 

rate as the axial strain increased.  

Saeed (2008) reported that RAP and RPCC degradation do not occur during constructions 

by comparing RAP and RPCC to the virgin aggregate materials (e.g. crushed limestone). The 

reason could be the asphalt coating absorbs some stresses act on the RAP particles and the 

hardened cement paste provides RPCC particles additional resistance to degradation. 

Increase in fines content in one of the indication of degradation, so Saeed (2008) reported 

more increase in fines content of virgin aggregate (3.6 %) than RAP (0.6 %) and RPCC 

(1.6 %). Housain et al. (2007) reported that particles breakage significantly affects the 

settlement and volumetric strains and that breakage is a function of confining pressure. 

Breakage occurs under dilating conditions at low confining pressure and occurs under 

contracting condition at higher confining pressure. 
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Determining degradation for UGMs 

Marsal (1967) is one of the first researcher who quantified particle breakage with an 

independent technique and index. His particle breakage index (Bg) is the sum of the positive 

changes in percent of particles retained on each sieve size before and after the triaxial test. 

However, this Bg index is not able to quantify the breakage of smaller particles which passes 

the smallest sieve size. Indraratna et al. (2005) introduced the ballast breakage index (BBI) to 

quantify the magnitude of degradation of ballast granular materials. This method of breakage 

quantification was agreed by Housain et al. (2007), and they noted the particle size 

distribution curve move to the left with the increase in breakage. Indraratna et al. (2005) 

plotted the particle size distribution curves with x-axis (sieve size) started at 0 mm from left 

to right ended at 63 mm. The BBI was calculated as the ratio of change in passing fraction 

through a range of sieve size due to load applications to the difference between the original 

particle size distribution and the determined arbitrary boundary of maximum breakage 

(Figure 5). 

 
Figure 5. Definition of ballast breakage index (BBI) (Indraratna et al. 2005) 
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Although this BBI is developed for ballast degradation under cyclic triaxial loading, the 

same concept could be employed on UGMs. Because both of ballast materials and UGMs are 

granular materials with large particles and they experience same type of loading (transient 

and repeated). Consequently, breakage model (Equation 9) introduced model is able to be 

used to quantify degradation occurred in UGMs under repeated traffic loads. 

     
 

   
 (9) 

where: BBI = ballast breakage index; 

A = area between initial particle size distribution and final particle size distribution 

curves; and 

B = area between initial particle size distribution curve and the arbitrary boundary of 

maximum breakage. 

 

Resilient Modulus of Unbound Granular Materials 

This section defines resilient modulus, discusses the factors that affect the resilient 

response of UGMs and numerical models for predicting resilient modulus, and listed typical 

resilient modulus design values.  

Definition of resilient modulus 

Resilient modulus (Mr) is a basic property of UGMs in characterizing stiffness of UGMs 

and resilient deformation in base/subbase layers. In mechanistic-empirical pavement design 

method, Mr is a key parameter to determine the thickness of each layer. Mr is defined as the 

ratio of the cyclic deviator stress to the resilient strain in each load cycle. As the AASHTO 

T307 suggested, resilient modulus is calculated according to Equation 10 

    
  

  
 (10) 

where: Mr = resilient modulus, 

σd = cyclic deviator stress (the difference between applied deviator stress and the 

contact stress), and 

εr = resilient strain.  

When certain deviator stresses were applied, the variation in Mr decreases between load 

cycles. Therefore, in the AASHTO T307 standard, the mean value of Mr in 96–100 cycles is 
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determined to represent the Mr of the materials under certain applied stress. Figure 3 shows 

the axial strain recovered when the applied load released which is defined as resilient 

response of the materials.  

Hveem (1955) is the first person who attempts to observe the resilient properties of 

UGMs. However, Seed et al. (1962) first introduced the actual concept of Mr. AASHTO 

T307 “Standard method of test for determining the resilient modulus of soils and aggregate 

materials” is most used in determination of Mr for materials used in subgrade and 

base/subbase layers. Groeger et al. (2003) introduced the history of current AASHTO T307 

developed. The current AASHTO T307 standard is developed based on the Long Term 

Pavement Performance (LTPP) Protocol P46. This LTPP Protocol P46 is the revised 

procedure based on AASHTO T274 in 1982 which is the first standard to determine Mr. 

AASHTO T274 is developed according to studies on vehicle speed, deflections, and effect of 

depth on vertical stress pulses. In 1999, LTPP Protocol P46 was modified to AASHTO T307 

to include the allowed type of loading system, cycle durations, number of readings per cycle, 

and allowed sample compaction methods. As Groeger et al. (2003) indicated, these 

modifications allow the AASHTO standard to be used by more testing agencies.  

Factors that affect resilient modulus 

Lekarp et al. (2000b) mentioned the importance of learning variation in resilient modulus 

of pavement foundation materials with change in different factors. Resilient moduli of 

granular materials have been shown to be dependent on several factors such as stress, 

density, physical properties, fines content, and material type. 

Stress 

Kolisoja (1997) concluded that stress level is a factor that significantly affects the 

resilient response of granular materials. Many researchers (Morgan 1966; Hicks and 

Monismith 1971; Brown and Hyde 1975; Sweere 1990; Kolisoja 1997) have found that 

resilient response which is quantifies by Mr of UGMs is highly dependent on sum of 

principal stresses and confining stress. Mr increases rapidly with increasing sum of principal 

stresses and confining stress. 

Morgan (1966) reported that the Mr slightly decreases with increasing deviator stress and 

constant confining stress. However, Hicks (1970) and Stolle et al. (2009) suggested that the 
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magnitude of applied deviator stresses practically did not affect the Mr or could be neglected. 

On the other hand, Hicks and Monismith (1971) reported that the materials exhibit a slight 

softening when low deviator stress was applied and a slight stiffening when higher deviator 

stress was applied. They also reported that the Mr increased as the confining stress increased. 

Brown and Hyde (1975) agreed with this conclusion. Moreover, they found that the deviator 

stress and the permanent strain after 10,000 load cycles are in proportion when constant 

confining stress was applied.  

Both of constant confining pressure (CCP) and variable confining pressure (VCP) are 

used in laboratory resilient modulus tests. Allen and Thompson (1974) reported that higher 

Mr is calculated with CCP test data compared to VCP test (Figure 6). Brown and Hyde 

(1975) suggested that the same Mr values were obtained from CCP and VCP tests when the 

constant confining pressure in the CCP tests is equal to the average value of variable 

confining pressures in the VCP tests. 

 
Figure 6. Triaxial test results example with CCP and VCP (Allen and Thompson 1974) 

Density 

Generally, the density increases in granular materials would cause the base/subbase layer 

to be stiffer and resilient and permanent deformation subjected to repeated load to be 

reduced. Many researchers (e.g., Seed et al. 1962; Trollope et al. 1962; Hicks and Monismith 

1971; Thom and Brown 1989; Barksdale and Itani 1989; Kolisoja 1997; Andrei 2009) 

contributed to study the effects of density on resilient responses and this topic has not been 
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fully understood. Some researchers suggested that increasing densities generally cause 

increases in the Mr values. Trollope et al. (1962) concluded that the Mr increased up to 50% 

from loose to dense samples according to the slow repeated load tests on a uniform sand. 

Kolisoja (1997) also observed that the Mr increases with increased density. The reason is that 

the number of particle contacts increases when additional compaction is applied to reach the 

higher target density. More particle contacts reduce the contact stress per particle contact and 

then reduce the deformation in particle contacts.  

Nevertheless, Thom and Brown (1989) stated the effect of density is relatively 

insignificant. Some factors such as material types, stress levels have impacts on significance 

of density’s impacts on Mr. Hicks and Monismith (1971) reported that the Mr increases with 

increasing relative density according to tests on the partially crushed aggregates and they 

observed almost same Mr values for the fully crushed aggregates with increasing relative 

density. They further found the effect of density is less significant when granular materials 

(aggregates) contain more fines content. The Mr increased rapidly with increasing density at 

low stress levels, whereas at higher stress levels, effect of density is relatively insignificant 

(Barksdale and Itani 1989). The Mr is not very sensitive to density when density is higher 

than the optimum value. Seed et al. (1962) reported that Mr is lower in less densified samples 

with low moisture contents. However, Mr is higher in more densified samples with high 

moisture contents. Their observations are shown in Figure 7. 

 
Figure 7. Influence of dry density on resilient modulus at difference moisture content 

levels (Seed et al. 1962) 
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According to 96 tests performed on Arizona DOT materials with NCHRP 1-28A test 

protocol, Andrei (2009) agreed that density strongly affects the relationship between Mr and 

moisture content and suggested adding density as a predictor to the Mr model which 

developed based on moisture contents. Alam et al. (2010) studied RAP and virgin granular 

materials mixture. They reported that dry density has a positive and moisture content has a 

negative influence on Mr. 

Fines content 

The impact of fines content on materials stiffness has not been fully understood, but some 

researchers (Hicks and Monismith 1971; Thom and Brown 1987; Barksdale and Itani 1989; 

Kamal et al. 1993) studied this topic.  

Hicks and Monismith (1971) studied the impact of fine content on two types of crushed 

aggregates which are partially and fully crushed aggregates. They had different observations 

in these two granular materials. Mr of the partially crushed aggregates reduced with 

increasing fines content, whereas opposite effect was reported for fully crushed aggregates. 

Moreover, Hicks and Monismith (1971) suggested that fines content had a minor impact on 

Mr when it was in the range of 2-10%.  

However, Barksdale and Itani (1989) reported that Mr reduced 60% when fines content 

increased from 0% to 10%. Thom and Brown (1987), Kamal et al. (1993), Kancherla (2004) 

agreed that Mr generally decreases in samples contains more fines. Stolle et al. (2009) 

reported that fines nature importantly affects the moisture sensitivity of aggregates Mr values 

even at low percentage. 

Material type 

Variation in material types called several researchers (Hicks 1970; Hicks and Monismith 

1971; Barksdale and Itani 1989; Thom and Brown 1989; Heydinger et al. 1996) to study the 

impact of material type on resilient response. Heydinger et al. (1996) performed Mr tests on 

limestone, gravel, and slag. They reported that gravel has the highest Mr and then limestone 

while slag has the lowest Mr.  

However, many other researchers (Hicks 1970; Hicks and Monismith 1971; Barksdale 

and Itani 1989; Thom and Brown 1989) reported that crushed aggregates which contain 

particles in angular to subangular shape spread load better and have higher Mr values than 
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uncrushed gravels which contain particles in round or sub-round shapes. Particle shape is one 

of the main characteristics used to describe different material types. Brown and Itani (1989) 

reported that the rough and angular crushed materials had about 50% more Mr than the 

rounded uncrushed gravels at low mean normal stress and about 25% more at high mean 

normal stress.  

Recycled materials are more used as pavement foundation materials since last two 

decades, and researchers expand their study on effect of material types on Mr to include the 

most used recycles materials. RPCC and RAP are two most used materials in base/subbase 

constructions. The hydration of residual concrete might affect RPCC samples (Nataatmadja 

and Tan 2001; Mayrberger and Hodek 2007).  

Granular materials typically showed a decrease in Mr values with increased moisture 

content, whereas, RPCC specimens had increased Mr with increased moisture content and 

longer mellowing time. The asphalt coating on particles might affect properties of RAP 

materials. Bennert et al. (2000) conducted cyclic triaxial tests on the RPCC, RAP, and dense-

graded aggregate base coarse (DGABC) blended materials with different percentages. They 

concluded that the 100% RPCC and 100% RAP materials had higher Mr values than the 

100% DGABC materials. Moreover, they reported from the tests results that the Mr values 

increased with increasing percentage of RPCC and RAP at bulk stresses of 144.7 kPa (21 psi) 

and 344.7 kPa (50 psi).  

Alam et al. (2010) agreed that the Mr values increased with increased RAP content in 

RAP and virgin granular materials mixture. They also reported that Mr is increasing at both 

high and low bulk stress levels. They concluded that increasing RAP content decreases 

pavement surface distresses according to the in situ tests. Kang et al. (2011) concluded that 

Mr generally increased when RPCC or RAP was added into virgin granular materials and 

suggested that RAP and RPCC would be good substitutes for virgin materials used in 

base/subbase construction. However, Leite et al. (2011) suggested that recycled construction 

and demolition waste materials and a standard well-graded crushed stone had similar Mr 

values determined in laboratory tests.  
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Numerical models for predicting resilient modulus 

During last six decades, researchers made many efforts to investigate the resilient moduli 

of the granular materials and proposed several models to predict Mr in different materials and 

conditions. The proposed models are developed according to the test data by using different 

test methods and pavement materials. Different test methods and pavement types determine 

the certain Mr values in designing specific layers. These resilient moduli models are used to 

predict the nonlinear behavior of a soil layer and this help on developing more rational 

pavement design procedures.  

Some models were widely used to predict resilient modulus and examined in many 

research works. Seed et al. (1962) proposed the bulk stress model to indicate the simple 

hyperbolic relationship between resilient modulus and bulk stress. As the result of the 

simplicity, the bulk stress model was widely used to characterize materials stiffness related to 

stress conditions. This model is shown as Equation 11: 

        
   (11) 

where: σB = bulk stress (MPa) = σ1+ σ2+ σ3; and 

k1, k2 = regression coefficients. 

However, several drawbacks were found by other researchers. A constant Poisson’s ratio 

was assumed in calculating radial strain. Hicks and Monishmith (1971) and Sweere (1990) 

proposed that applied stresses caused variation in Poisson’s ratio so Poisson’s ratio is not a 

constant. Sweere (1990) reported good prediction of axial strain by using the bulk stress 

model, but radial and volumetric strains were rather poorly predicted by assuming the 

constant Poisson’s ratio. Another drawback is that the bulk stress model only uses the sum of 

the principal stresses to account for effect of stress on Mr. However, May and Witczak 

(1981) reported that shear strain induced mainly by shear or deviator stress is a plausible 

factor related to the Mr of granular materials.  

MEPDG (NCHRP 2004) recommends the universal constitutive model developed by 

Witczak and Uzan (1988) to account for effects of bulk stress and shear stress on Mr 

(Equation 12): 

        (
  

  
)
  

(  
    

  
)
  

 (12) 

where: Pa = atmospheric pressure (MPa); 
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τoct = octahedral shear stress (MPa) =√                          

 
 

σB= bulk stress (MPa) = σ1+ σ2+ σ3; 

k1, k2, k3 = regression coefficients; and 

σ1, σ2, σ3 = principal stresses (MPa). 

NCHRP (2004) gave a general idea about the values of regression coefficient and this 

idea helps researchers to understand the application of this model in different materials and 

conditions. k1 is a regression coefficient proportional to Young’s modulus. The value of k1 is 

positive according to positive Mr in real application. k2 is also a positive regression 

coefficient because stiffening response caused by increasing bulk stress will result in larger 

Mr values. However, k3 should be a negative regression coefficient to account the softening 

response. Because increasing shear stress results in softening response and lower Mr values 

(NCHRP 2004).  

However, Stolle et al. (2009) reported shortcomings in application of the universal model 

and demonstrated relatively linear relationship between bulk stresses and Mr for the granular 

base/subbase materials. They suggested a simplified linear Mr–σB model (Equation 13) 

developed by Stolle et al. (2006) is better in predicting the test data. 

     (
  

  
)    (13) 

where: Pa = atmospheric pressure (MPa); 

σB= bulk stress (MPa) = σ1+ σ2+ σ3; and 

m, b = regression coefficients. 

The efficiency of the developed Mr models in predicting resilient moduli are based on the 

studied materials and accurate measurements of parameters employed in the models. Puppala 

(2008) listed some resilient moduli equations that developed by other researchers for 

cohesive and/or granular materials. Some resilient modulus models used for granular soils 

are summarized in Table 3 on next page.  
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Table 3. Summary of resilient modulus models (Puppala 2008 and additional models) 

Models Original 
References  Parameters 

       (
  

  
)
  

 Dunlap (1963) 
k1, k2, k3, k4, k6, k7 = 
regression coefficients 
Pa = atmospheric pressure 
σ1, σ2, σ3 = principal 
stresses 
σB= bulk stress = σ1+ σ2+ 
σ3 
σd = σ1 – σ3 = deviator 
stress 
τoct = octahedral shear stress 

=√                          

 
 

(μa – μw) = matric suction; 
and α1, β1 = regression 
constants 
n, nmax = porosity of the 
aggregate 
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 Seed et al. 
(1967) 

       (
  

  
)
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 Uzan (1985) 
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 Witczak and 
Uzan (1988) 
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 Pezo (1993) 
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Kolisoja (1998) 
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)
  

 Ni et al. (2002) 
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)
  

(  
  

  
)
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)
  

(  
    
  

)
  

 

Ooi et al. 
(2004) 

       (
  

  
)
  

(  
    
  

)
  

 

NCHRP 
project 1-28 
and MEPDG 
recommended 

       (
      

  
)
  

 (   
    
  

)
  

             

Gupta et al. 
(2007) 

 

Typical resilient modulus design values 

The typical Mr values for unbound granular and subgrade materials at optimum moisture 

content without modification for climate are recommended in NCHRP 1-37A (2004). These 

values help researchers compare the Mr values of tested materials and required design input 
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values. Table 4 shows the ranges and typical Mr values of soils according to both AASHTO 

and USCS classification systems.  

Table 4. Typical Mr values for pavement foundation layers at optimum moisture 

content (NCHRP 1-37A) 

Material 
Classification 

Mr Range Typical Mr 
Low High psi MPa psi MPa psi MPa 

A-1-a 38,500 265.4 42,000 289.6 40,000 275.8 
A-1-b 35,500 244.8 40,000 275.8 38,000 262.0 
A-2-4 28,000 193.1 37,500 258.6 32,000 220.6 
A-2-5 24,000 165.5 33,000 227.5 28,000 193.1 
A-2-6 21,500 148.2 31,000 213.7 26,000 179.3 
A-2-7 21,500 148.2 28,000 193.1 24,000 165.5 
A-3 24,500 168.9 35,500 244.8 29,000 199.9 
A-4 21,500 148.2 29,000 199.9 24,000 165.5 
A-5 17,000 117.2 25,500 175.8 20,000 137.9 
A-6 13,500 93.1 24,000 165.5 17,000 117.2 
A-7-5 8,000 55.2 17,500 120.7 12,000 82.7 
A-7-6 5,000 34.5 13,500 93.1 8,000 55.2 
CH 5,000 34.5 13,500 93.1 8,000 55.2 
MH 8,000 55.2 17,500 120.7 11,500 79.3 
CL 13,500 93.1 24,000 165.5 17,000 117.2 
ML 17,000 117.2 25,500 175.8 20,000 137.9 
SW 28,000 193.1 37,500 258.6 32,000 220.6 
SP 24,000 165.5 33,000 227.5 28,000 193.1 
SW-SC 21,500 148.2 31,000 148.2 25,500 175.8 
SW-SM 24,000 165.5 33,000 227.5 28,000 193.1 
SP-SC 21,500 148.2 31,000 148.2 25,500 175.8 
SP-SM 24,000 165.5 33,000 227.5 28,000 193.1 
SC 21,500 148.2 28,000 193.1 24,000 165.5 
SM 28,000 193.1 37,500 258.6 32,000 220.6 
GW 39,500 272.3 42,000 289.6 41,000 282.7 
GP 35,500 244.8 40,000 275.8 38,000 262.0 
GW-GC 28,000 193.1 40,000 275.8 34,500 237.9 
GW-GM 35,500 244.8 40,500 279.2 38,500 265.4 
GP-GC 28,000 193.1 39,000 268.9 34,000 234.4 
GP-GM 31,000 148.2 40,000 275.8 36,000 248.2 
GC 24,000 165.5 37,500 258.6 31,000 148.2 
GM 33,000 227.5 42,000 289.6 38,500 265.4 
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CHAPTER 3. METHODS  

This chapter describes the laboratory test methods and standards employed to address the 

goals and objectives of the research design. 

Research Design 

The goals of this study are to better understand the permanent and resilient deformation 

behavior of recycled and conventional unbound granular materials (UGMs) under repeated 

traffic loading and to evaluate numerical models for predicting permanent deformation from 

laboratory tests results. The six objectives of the study are as follows: 

• Determine permanent deformation of UGMs as functions of the number of load 

applications; relative density; confining pressure and deviator stress; and fines 

content. 

• Determine breakage index of UGMs after permanent deformation tests. 

• Determine resilient moduli of UGMs as functions of relative density; confining 

pressure and deviator stress; and fines content. 

• Determine unconsolidated undrained strength of UGMs after resilient modulus tests. 

• Compare permanent deformation and resilient moduli of different unbound granular 

materials. 

• Evaluate numerical models that were developed and widely used in other research 

works for predicting permanent strain. 

• Determine the significance of regression parameters in the universal model for 

predicting resilient moduli. 

To characterize the engineering properties of the unbound granular materials used in this 

study, basic soil index properties and relative density tests were conducted. Special sample 

preparation techniques were used and are discussed. Permanent deformation, degradation, 

resilient modulus (Mr), and undrained shear strength tests were performed. Test standards 

have not been published for determining permanent strain and breakage index values of 

pavement foundation materials, so the specific procedures will be described in the permanent 

deformation and degradation tests sections. Table 5 summarizes the laboratory tests and 

standards used in this study, and any differences from the test standards are described.  
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Table 5. Standards used for laboratory soil tests 

Laboratory test Test method 
Standard Test Method for Particle-Size Analysis of Soils ASTM D422-63 
Standard Test Methods for Laboratory Determination of 

Water (moisture) Content of Soil and Rock by Mass ASTM D2216-10 

Standard Test Method for Density, Relative Density 
(Specific Gravity), and Absorption of Coarse Aggregate ASTM C127-07 

Standard Test Methods for Specific Gravity of Soil Solids 
by Water Pycnometer ASTM D854-10 

Standard Test Methods for Laboratory Compaction 
Characteristics of Soil Using Standard Effort 
(12,400 ft-lbf/ft3 (600 kN-m/m3)) 

ASTM D698-07 

Standard Test Methods for Maximum Index Density and 
Unit Weight of Soils Using a Vibratory Table ASTM D4253-00 

Standard Test Methods for Minimum Index Density and 
Unit Weight of Soils and Calculation of Relative 
Density 

ASTM D4254-00 

Iowa Modified Relative Density Test for Determination of 
Bulking Moisture Contents of Cohesionless Soils White el al. 2002 

Standard Method of Test for Determining the Resilient 
Modulus of Soils and Aggregate Materials AASHTO T307-99 

Quick Shear Test AASHTO T307-99 
Standard Test method for Unconsolidated-Undrained 

Compression Test on Cohesive Soils ASTM D2850-03a 

 

Soil Index Property Tests 

Soil index properties were determined through particle size distribution analysis, soil 

classification, and specific gravity tests. 

Particle size distribution 

Mechanical sieve analysis and hydrometer analysis tests to determine particle size 

distributions of the UGMs were conducted according to ASTM D422-63. Samples of UGMs 

were first divided into two portions by sieving the material through a No. 10 sieve. 

Mechanical sieve analyses were conducted on washed and dried materials retained on No. 10 

sieve. Usually, a set of 1.5 in., 1 in., 3/4 in., 3/8 in., No. 4, and No. 10 sieves was used in 

mechanical sieve analysis, but in some cases other sieves were used for capture more detailed 

particle size information. Hydrometer test on material passing the No. 10 sieve was used to 

determine particles sizes on materials smaller than the No. 200 sieve. A calibrated 152H 
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hydrometer was used. Timers were used to record hydrometer readings at 2 min, 5 min, 

15 min, 30 min, 60 min, 250 min, and 1440 min from the hydrometer test jars were sit stably 

(Figure 8). After the hydrometer tests, the material was washed though No. 200 sieve and 

material retained on No. 200 sieve was saved and oven dried for analysis with a set of 

No. 20, No. 40, No. 60, No. 100, and No. 200 sieves.  

 
Figure 8. A hydrometer test in process 

Soil classification 

AASHTO and Unified Soil Classification System (USCS) soil classifications were 

followed to classify the UGMs. These two systems use Atterberg limits and particle size to 

classify materials. However, the UGMs in this study were non-plastic, so they were classified 

solely based on their particle size distributions.  

Specific gravity 

Two test methods were used to determine the sample average specific gravity (ASTM 

D854-10 and ASTM C127-07). Method B in ASTM D854-10 was followed for oven-dried 

materials passing the No. 4 sieve, and ASTM C127-07 was followed for materials retained 

on the No. 4 sieve. Materials passing the No. 4 sieve were weighed in the pycnometer 

(Figure 9a), and coarse granular materials retained on the No. 4 sieve were weighed in a 

basket submerged in water (Figure 9b). In addition, temperatures of materials were recorded 

during the tests and temperature corrections were made in the specific gravity calculations.  
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Figure 9. Specific gravity: pycnometer test (A); coarse aggregate test (B) 

Materials in this study all contained particles both retained on and passed No. 4 sieve, so 

Equation 14 (ASTM D854-10) was used to calculate the average specific gravity. 

          
 

 

          
 

 

          

 (14) 

where: R = percent of soil retained on No. 4 sieve; 

P = percent of soil passing the No. 4 sieve;  

G1@20°C = apparent specific gravity of soils retained on the No. 4 sieve as determined by 

ASTM C127-07, corrected to 20°C; and 

G2@20°C = apparent specific gravity of soils passing the No. 4 sieve as determined by 

ASTM D854-10, corrected to 20°C. 

Moisture content 

Moisture contents were determined according to ASTM D2216-10 by oven drying 

samples at 110 ± 5°C (230 ± 9°F) to a constant mass, except for recycled asphalt pavement 

(RAP) and recycled portland cement concrete samples with less than about 10% RAP 

(RPCC/RAP). Asphalt binder on the particles melts at 110°C (230°F), and this liquid asphalt 

binds aggregate particles when it cools to room temperature and changes particle size 

distribution of original materials. Consequently, the oven temperature for RAP samples was 

A B 
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controlled at 38°C (100°F) and at 60°C (140°F) for RPCC with RAP. These drying 

temperatures allowed more representative particle size distributions so the same RAP and 

RPCC/RAP samples could be used for mechanical sieve analysis.  

Relative Density Tests 

Relative density tests were conducted to determine the relationships between dry unit 

weights and moisture contents. Material gradation requirements determine which compaction 

method should be used.  

Maximum and minimum relative densities of cohesionless free-draining soils were 

calculated by performing relative density tests with a vibrating table according to ASTM 

D4253-00 and ASTM D4254-00 respectively. This test method is applicable for materials 

which particles passing the 3 in. sieve and not more than 15 percent pass No. 200 sieve by 

mass. In addition, moisture contents of the material were varied according to methods 

introduced by White et al. (2002) to determine moisture–dry unit weight relationships. 

Moreover, the bulking moisture content can be determined from the moisture-dry unit weight 

relationships. 

Sample preparation 

Samples for permanent deformation and Mr tests were prepared according to AASHTO 

T307-99. The untreated materials were classified as Type I or II. Type I materials are 

untreated base, subbase, and subgrade that have less than 70 percent particles smaller than 

2.00 mm and less than 20 percent particles smaller than 75 μm, and plasticity index equal to 

or less than 10. Type II materials include all untreated pavement foundation materials that do 

not satisfy requirements for Type I materials. All UGMs in this study are classified as Type I 

materials, so sample preparation procedures for Type I materials were followed for this 

study.  

Due to particle size requirements in AASHTO T307-99, special methods were applied to 

materials preparation. For non-cohesive Type I materials, vibratory compaction was used to 

reconstitute the materials. The following sections described detailed procedures for materials 

preparation and sample compaction.  
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Material preparation 

Due to sample size limitations, oversized particles where either scalped and replaced 

(method SR), or scalped only (method S). Method SR was used for studying permanent 

deformation response of test specimens that made of untrimmed slag and RPCC materials. 

Method S was used for studying permanent deformation and resilient modulus behaviors 

under various conditions (i.e., relative densities and fines contents) of tests samples that made 

of crushed limestone, RAP, and RPCC/RAP materials.  

The fines contents were varied for each material that was prepared with scalp only 

method to study effects of fines contents on permanent deformation and resilient modulus of 

UGMs. Four fines contents of each UGM were studied and included natural fines content 

which is the original fines content as the materials were produced and three reconstituted 

fines contents. To reconstitute fines contents, the materials were first oven dried and then 

sieved through No. 200 sieve. For the 0% target fines content materials, no more fines was 

added and for 6% or 12% target fines contents, more fines that were produced by crushing 

larger particles from the same material type. 

Both the method SR and S were used to prepare samples that satisfied the requirements in 

AASHTO T307-99. First requirement is that the minimum diameter of the mold used to 

fabricate samples should be equal to five times the maximum particle size of the materials.  

Second requirement is that particles should be scalped if their size exceeds 25 percent of the 

mold diameter. Equipment used for Mr and permanent deformation tests in this research is 

not capable to fit 152.4 mm (6 in.) diameter samples, so the maximum diameter of mold used 

is 101.6 mm (4 in.). Samples were compacted in 101.6 mm (4 in.) diameter molds so the 

maximum particle size of the test materials should be less than 20.3 mm (0.8 in.). 

Scalp and replace method 

Method SR is to remove particles retained on 19.1 mm (3/4 in.) sieve and replace them 

with same percentage by weight of the same material that retained on the No. 4 sieve and 

passed 19.1 mm (3/4 in.) sieve. This method was used for two materials that were collected 

from I-94, Michigan and US-30, Iowa to modify their particle size distribution to meet 

requirement in AASHTO T307-99.  
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Scalp only method 

Method S is to remove particles that are retained on the 19.1 mm (3/4 in.) sieve without 

replacement. This method was used for three materials that were collected from Martin 

Marietta Materials, Inc. and Manatt’s, Inc. quarries. 

Sample compaction 

Before vibratory compaction, prepared materials were in moisture conditions and 

mellowed in sealed bags for at least three to six hours to allow particles to absorb water. 

Equipment for preparing vibratory compacted samples includes the base of the triaxial 

chamber, 101.6 mm (4 in.) diameter split mold (Figure 10), porous stones, filter paper, rubber 

O-rings, rubber membranes, a steel compaction plate with rod, and an electric rotary hammer 

drill (Figure 11).  

 
Figure 10. Split mold sit on pressure chamber base 
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Figure 11. Compaction plate with rod and electric rotary hammer drill  

When the diameter of the hole in the flat compaction plate was bigger than the diameter 

of the steel rod, the compaction rod slid during compaction which caused the plate to tilt and 

create an uneven top surface for the samples. A tapered compaction plate was made to 

prevent the compaction rod from sliding. The tapered plate had a tapered hole at the center of 

the plate to tightly fit the modified compaction rod which had a tapered head (Figure 12).  

   
Figure 12. Compaction plate and rod: flat (A) and tapered (B) 

A B 
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The split mold was designed for compacting 8 in. high by 4 in. diameter samples, and the 

height to diameter ratio is 2 as required in AASHTO T307-99 to sufficiently eliminate the 

end effects on measuring strength as suggested by Lekarp et al. (1996). They also proposed 

that membranes might slightly reduce deformation of samples as result of restraining effect 

of the membranes. However, the reduction is very small compared to the total amount of 

permanent deformation of UGM samples, so the reduction of deformation caused by 

membranes can be ignored and accounted by membrane correction in calculating the applied 

deviator stresses. 

During vibratory compaction, materials were restrained by the 4 in. inner diameter split 

mold and compacted in five lifts of equal mass and thickness by using an electric rotary 

hammer drill (Figure 13 A). The uniform thickness of each lift was controlled with caliper 

measurements (Figure 13 B). Density gradient verification tests were conducted to see if the 

densities of compacted sample match requirements of AASHTO T307-99. 

   
Figure 13. Compaction of UGMs in split mold (A) and thickness verification (B) 

Thickness of each lift was verified by caliper measurement and constant mass of each lift 

was controlled, so reduction in time cost might indicates density gradient for whole sample. 

RPCC and RAP subbase materials were tested to verify achievement of uniform density of 

A B 
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the whole compacted samples. Three methods were used to determine the densities and the 

compaction time for each lift. All of the tools used in these tests except the rubber 

membranes and O-rings are shown in Figure 14.  

 
Figure 14. Density gradient verification test tools 

Method 1 is using filter paper to separate two adjacent compacted layers and measure the 

height after each layer was compacted. In addition, when all layers were compacted, the post- 

compaction height of each layer was measured by taking out one compacted layer at each 

time. Method 2 is compacting sample in general procedures that are same for all Mr and 

permanent deformation tests samples. In method 2, 1 in. materials from the top of each 

compacted layer were scarified to loosen the compacted materials to produce better 

conjunction between two layers. Method 3 is to use polypropylene (PP) strapping band 

between two layers and measured the layer thickness when each of following layers was 

compacted. The PP strapping bands were bending to form a right angle and looks like a “L” 

as the red strapping bands shown in Figure 14. A PP strapping band was put inside the split 

mold that short side was parallel to and long side was perpendicular to the mold base before 

each layer was compacted (Figure 15(3)). When the subsequent layers were compacted, the 
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former layers were also compacted and the new thicknesses were measured to compare with 

the original layer thickness. The detailed procedures are shown in Figure 15. 

 
Figure 15. Basic steps for compacting samples with Method 3 (PP strapping band) 

The compacted wet density should not vary more than ±3% of target wet density 

(AASHTO T307-99). Six samples were compacted for checking the sample density gradient 

with the three methods that were described above. The compacted wet density of each was 

calculated for the compacted samples and the percentages of differences between the 

measured and target wet densities were also calculated. Moreover, the compaction time for 

each layer was recorded. 

Method 1 was used on three samples that two were made of RPCC and one was made of 

RAP materials. The average compacted wet density of five layers for all three samples is less 

than -1% from the target wet density. However, the first layer which is the bottom layer of 

each sample generally show the largest difference between the measured and the target wet 

1 2 

3 4 

5 6 



 45 

density while the last layer which is the top layer of each sample generally show the least 

difference. Although the compaction time that was consumed in compacting each layer was 

varied, the last layer generally need the least compaction time. 

Method 2 was used on one sample that was made of RAP materials. The average 

compacted wet density of five layers is about -0.1% from the target wet density and the last 

layer consumed the least compaction time. However, this method only calculated the wet 

density of each layer before subsequent layers were compacted and compaction of the 

subsequent layers could result in higher wet density for the first four layers. 

Method 3 was used on two samples that were made of RAP materials. The average 

compacted wet density of five layers for all two samples is less than 0.7% from the target wet 

density. The compaction time that was consumed in compacting the last layer is shortest 

compared to other four layers for both samples, but the decrease in compaction time was 

small. 

These six samples all shows differences between the measured layer wet densities and the 

target sample density, but the differences are within the ±3% limit from target value as 

AASHTO T307-99 specified. Therefore, the differences are acceptable as the standard does 

not specify the requirement for each compacted layer. The results for all six samples are 

summarized in Table 6.  
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Table 6. Density gradient tests 

Method Material 

Target 
wet 

density 
(kN/m3) 

Layer 
Actual wet 

density 
(kN/m3) 

Actual wet 
density off 

target 
value (%) 

Compaction 
time 
(s) 

1 
Filter 
paper 

IA 
Hyw-30 
Clean 
RPCC 

subbase 

18.37 

1 17.97 -2.2% 19 
2 18.79 2.3% 16 
3 18.04 -1.8% 14 
4 18.36 -0.1% 17 
5 18.38 0.1% 17 

Avg 18.31 -0.3% — 

1 
Filter 
paper 

IA 
Hyw-30 
Clean 
RPCC 

subbase 

18.94 

1 18.35 -3.1% 23 
2 18.85 -0.5% 20 
3 19.07 0.7% 20 
4 18.81 -0.7% 20 
5 18.90 -0.2% 17 

Avg 18.94 -0.8% — 

1 
Filter 
paper 

Manatt's 
Inc. RAP 18.57 

1 19.79 6.6% 44 
2 18.94 2.0% 63 
3 17.92 -3.5% 50 
4 18.29 -1.5% 51 
5 17.91 -3.6% 32 

Avg 18.57 0.0% — 

2 
No 

separation 

Manatt's 
Inc. RAP 18.57 

1 18.43 -0.8% 60 
2 18.63 0.3% 42 
3 18.52 -0.3% 51 
4 18.69 0.6% 44 
5 18.53 -0.2% 31 

Avg 18.57 -0.1% — 

3 
PP 

strapping 
band 

Manatt's 
Inc. RAP 17.59 

1 18.73 6.5% 7 
2 17.23 -2.0% 7 
3 17.51 -0.5% 6 
4 17.99 2.3% 4 
5 17.07 -3.0% 4 

Avg 17.59 0.7% — 

3 
PP 

strapping 
band 

Manatt's 
Inc. RAP 18.57 

1 19.79 6.6% 26 
2 18.94 2.0% 26 
3 17.92 -3.5% 28 
4 18.29 -1.5% 25 
5 17.91 -4.0% 24 

Avg 18.57 0.0% — 
Notes: —means no value; the layer was numbered from the bottom to the top of each sample 



 47 

Permanent Deformation Tests 

This section discusses testing procedures and data analyses to determine the permanent 

deformation of samples. 

Permanent deformation tests to determine permanent deformation of the UGMs were 

conducted according to three methods which include ISU 100k, ISU 1k, and NCHRP 598 

(Saeed 2008a) methods. The sample compactions were the same by following the 

requirements in AASHTO T307-99. However, the loading sequences are designed with 

different number of load applications, confining pressures, and deviator stresses. In ISU 100k 

tests, the loading sequences were modified to produce large permanent deformation because 

high stresses and large number of load applications could produce large deformation that 

might occur in pavement service life.  

The automated Mr test system that meets the AASHTO T307-99 requirements was used 

to determine the permanent deformation of samples. This system consisted of fully 

automated unit and a computer for data acquisition. The automated unit consists of a load 

frame, a cyclic-RM unit, a load cell, and electro-pneumatic air pressure regulator, a triaxial 

pressure chamber with two spring-loaded linear variable differential transducers (LVDT). 

The cyclic-RM unit was used to apply cyclic load with haversine pulse for 0.1 s and rest for 

0.9 s in each loading cycle. A 11.1 kN (2500 lbf) load cell was used in this tests to apply up 

to 198.9 psi stress on cylindrical samples with diameter of101.6 mm (4 in.) by height of 

203.2 mm (8 in.). The electro-pneumatic air pressure regulator automatically maintained and 

increased air pressure in triaxial chamber.  

Two LVDTs were installed at opposite side and equal distance from the piston rod to 

measure the axial deformation of samples externally. Average values of the measurements of 

two LVDTs were used for calculating axial strains. RM5 software was installed in the 

computer for system parameters input and data acquisition and the version is 1.0.9.289. This 

system uses a proportional-integral-derivative (PID) controller to adjust the system control 

parameters in real-time as the stiffness of the sample changes during each test, so the applied 

loads were corrected to meet the target values. Figure 16 shows triaxial pressure chamber, 

load frame, and the computer used for permanent deformation and Mr tests. 
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Figure 16. Triaxial pressure chamber, load unit, and computer used for permanent 

deformation and Mr tests. 

ISU 100 k, ISU 1k, and NCHRP 598 tests are three permanent deformation tests that 

were conducted in this study. They were performed on different materials and using the same 

test machine as shown in Figure 16. In addition, drainage valves of triaxial pressure chamber 

remained open during the permanent deformation tests. 

The loading sequences and the number of readings per cycle were different in the 

permanent deformation tests from the Mr tests. The ISU 100k test consists of 4 loading 

sequences with 25,000 load cycles in each under constant confining stress and axial stress, 

because the capacity of each sequence was limited to about 33,000 cycles in the program 

used in this study. 20 instead of 200 readings per cycle which is the minimum requirement in 

AASHTO T307-99 were collected in each load cycle of the permanent deformation tests, 

because the permanent strain is calculated by using the first and last readings of each load 

cycle. Samples were considered as failed for both ISU 100k and ISU 1k tests when an axial 

strain of 5% obtained as AASHTO T307-99 specified.  

ISU 100k tests were performed on the samples that were made of untrimmed slag 

subbase materials from I-94, MI and RPCC subbase materials from US-30, IA. ISU 1k tests 

were performed on the samples that were made of RPCC subbase materials from US-30, IA. 
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Dry unit weights, moisture contents, fines contents, confining pressures, and maximum axial 

stresses were varied for different tests to determine effects of these factors on resistance of 

materials to permanent deformation. An example of ISU 100k test setup is shown in Table 7 

and an example of ISU 1k test setup is shown in Table 8. 

Table 7. Repeated load triaxial test sequences and stress values 

(ISU 100 k test) 

Sequence 
No. 

Confining Pressure Maximum Axial Stress No. of Cycles (kPa) (psi) (kPa) (psi) 
1 103.4 15.0 68.9 10.0 100,000 

 

Table 8. Repeated load triaxial test sequences and stress values 

(ISU 1 k test) 

Sequence 
No. 

Confining Pressure Maximum Axial Stress No. of 
Cycles (kPa) (psi) (kPa) (psi) 

1 103.4 15.0 68.9 10.0 1,000 

NCHRP 598 test used in this study was introduced by National Cooperative Highway 

Research Program (NCHRP) report 598, and it consists of 1 preconditioning (PC) sequence 

and 10 loading sequences with same confining pressure and various cyclic stresses for each 

loading sequence as shown in Table 9. The PC with 50 load cycles was first performed on the 

sample to minimize the effects of unflatten top surfaces of the test samples which lead to 

imperfect contacts between the test samples and the sample cap which sit on the top surface 

of the samples. After PC sequence, 10 loading sequences with 1,000 cycles for each were 

applied on the sample with constant confining pressure of 103.4 kPa (15 psi) and increasing 

cyclic stress from 68.9 kPa (10 psi) to 1241.1 kPa (180 psi) with increment of 137.9 kPa 

(20 psi).  
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Table 9. Repeated load triaxial test sequences and stress values  

(NCHRP report 598) 

Sequence 
No. 

Confining Pressure Maximum Axial Stress No. of 
Cycles (kPa) (psi) (kPa) (psi) 

PC 103.4 15.0 68.9 10.0 50 
1 103.4 15.0 68.9 10.0 1000 
2 103.4 15.0 137.9 20.0 1000 
3 103.4 15.0 275.8 40.0 1000 
4 103.4 15.0 413.7 60.0 1000 
5 103.4 15.0 551.6 80.0 1000 
6 103.4 15.0 689.5 100.0 1000 
7 103.4 15.0 827.4 120.0 1000 
8 103.4 15.0 965.3 140.0 1000 
9 103.4 15.0 1103.2 160.0 1000 

10 103.4 15.0 1241.1 180.0 1000 

Saeed (2008) suggested that the NCHRP 598 tests loading sequences are applicable for 

Mr and permanent deformation tests and 200 readings per load application were recorded for 

calculating Mr and permanent strain. However, this NCHRP 598 test method was only 

applied for permanent deformation tests in this study, so 20 readings per load application was 

suggested for calculating permanent strain of the tested samples. The NCHRP 598 tests were 

completed when either all loading cycles applied or 10% permanent strain of the test samples 

reached. The NCHRP 598 tests were performed on RPCC/RAP and RAP subbase materials 

from Manatt’s, In., IA and crushed limestone subbase materials from Martin Marietta 

Materials, Inc., IA. Dry unit weights and fines contents were varied to find their effects on 

resistance of the tested materials to permanent deformation. 

Data analysis of permanent deformation tests 

Data analysis for ISU 100k, ISU 1k and NCHRP 598 tests were basically the same. 

Permanent defamation in this study was quantified as accumulated permanent axial strain 

which is the ratio of the amount of unrecoverable change in sample height to the original 

sample height. The original heights of samples were measured when the samples were 

compacted and vacuumed with a vacuum pump before the permanent deformation tests. In 

addition, the accumulated permanent strain was calculated at every load cycle for all three 

permanent deformation test methods. 
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The displacements measured by two LVDTs were first averaged and then the average 

value at the end of each load cycle was divided by the original sample height to calculate the 

accumulated permanent strain at that load cycle. After the permanent strains of all load 

applications were calculated, the permanent strains were plotted with number of load cycles 

to observe the change in the accumulated permanent strains with increasing loading cycles. 

The accumulated permanent strain versus number of load cycles for ISU 100k and ISU 1k 

tests is a single parabola curve with increasing number of loading cycles, because constant 

confining pressure and cyclic stress were applied in each test. The accumulated permanent 

strains obtained in NCHRP 598 tests were plotted with increasing number of load cycles in 

stair-step parabola curve, because increasing deviator stress and constant confining pressure 

were applied in these tests. 

According to literature studies, one widely used equation for permanent deformation 

prediction was selected for data analysis in this research. This equation was proposed by 

Barksdale (1972) and indicated a linear relationship between the accumulated permanent 

strain and logarithm number of load applications (Equation 15). 

                 (15) 

where: ε1, p = accumulated permanent axial strain; 

N= number of load repetitions; and  

a, b = regression parameters. 

This equation was also modified to predict the permanent strain obtained in the NCHRP 

598 tests according to the applied deviator stresses (Equation 16): 

                    
  [   

   ( 
       )

  
]       [            ] (16) 

where: ε1, p = accumulated permanent axial strain; 

N = number of load cycles;  

S = number of load sequences; 

k1, k2, k3, k4, k5, and k6 = regression parameters; and 

σd = deviator stress (kPa). 
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Degradation Tests 

Mechanical sieve analyses were conducted according to ASTM D422-63 to determine 

degradations of UGMs caused by permanent deformation tests. Breakage index (BI) was 

defined as the change in particle size distributions of the tested materials due to test loadings, 

and BI was developed based on the ballast breakage index (BBI) that is used for quantifying 

ballasts degradations due to cyclic loading and developed by Indraratna et al. (2005).  

If the original particle size distribution curve below the particle size distribution curve 

after permanent deformations, the difference between two curves indicates that particles 

broke down to smaller particles under the test loading. The loads can cause particles 

breakages are from two sources: permanent deformation test loading and sample 

compactions. Certain forces are applied in compacting materials to reach target densities. 

However, breakage caused by sample compaction is hard to be differentiated from samples 

variations. Consequently, total breakages caused by the applied forces from sample 

compaction and permanent deformation test were determined. The base line at 0% passing 

was determined as the reference line for calculating degradation in whole sample (Figure 17). 

 
Figure 17. Example for calculating BI 
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Data analysis of degradation tests 

Each degradation test includes two mechanical sieve analyses that one is for the materials 

before permanent deformation test and another one is for the materials after the test. 

Therefore, two particle size distribution curves that were plotted on the same figure (Figure 

17) to calculate breakage index. Equation 17 was modified based on the BBI method that was 

developed by Indraratna et al. (2005), and each parameter was described. 

    
   

 
 (17) 

where: BI= breakage index; 

A=area between the particle size distribution curve of the original materials and after the 

permanent deformation test; and 

B= area between the particle size distribution curve of the original materials and the 0% 

passing base line. 

Resilient Modulus Tests 

This section discusses the testing and data analysis procedures for determining resilient 

modulus (Mr). Same sample preparation procedures, test equipment, and data acquisition 

system that were used in permanent deformation tests (Figure 16) were used in Mr tests. Mr 

tests were conducted according to AASHTO T307-99 with an automated Mr test system 

(Figure 16). 

In this study, Mr tests were conducted on the cylindrical samples with diameter of 

101.6 mm (4 in.) by height of 203.2 mm (8 in.), because the triaxial chamber used in this 

study could not fit larger samples (e.g., 6 in. diameter sample). Drainage valves of the triaxial 

pressure chamber were kept open to provide drained condition during Mr tests. The samples 

were air vacuuming before the Mr tests starts to maintain the samples shape. A computer 

software was also used for data acquisition during Mr tests, and the PID controller was used 

to adjust the system control parameters in real-time to correct the applied loads to reach the 

target values.  

Although Saeed (2008) reported that the data from the cyclic triaxial tests with loading 

sequences (Table 9) was analyzed to determine not only the permanent deformations of the 

samples but also the Mr, AASHTO T307-99 is more widely used and followed in this study 

to determine resilient modulus values under different stress conditions.  
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In AASHTO T307-99, two different loading sequences were specified to simulate the 

stress conditions under traffic loading at different locations in a pavement foundation 

structure. One series of loading sequences is designed for subgrade materials with low 

confining and axial stresses and the other series of loading sequences is designed for base 

and subbase materials has higher stresses. In both series, the first loading sequence is a 

preconditioning sequence that is used to minimize the effect of imperfect contact between the 

sample surface and load cap. The PC sequence has 500 to 1000 cycles, and 500 cycles was 

used in this study. When the PC sequence completed, 15 loading sequences were 

continuously applied with 100 load cycles in each to determine the Mr at specified stress 

conditions. In this study, the granular materials that used for subbase layers were tested, so 

only the loading sequences specified for base and subbase materials are used (Table 10).  

Table 10. Resilient modulus test sequences and stress values for base and subbase 

materials (AASHTO T307-99) 

Sequence 
No. 

Confining Pressure Max. Axial Stress No. of 
Cycles (kPa) (psi) (kPa) (psi) 

PC 103.4 15 103.4 15 500-1000 
1 20.7 3 20.7 3 100 
2 20.7 3 41.4 6 100 
3 20.7 3 62.1 9 100 
4 34.5 5 34.5 5 100 
5 34.5 5 68.9 10 100 
6 34.5 5 103.4 15 100 
7 68.9 10 68.9 10 100 
8 68.9 10 137.9 20 100 
9 68.9 10 206.8 30 100 
10 103.4 15 68.9 10 100 
11 103.4 15 103.4 15 100 
12 103.4 15 206.8 30 100 
13 137.9 20 103.4 15 100 
14 137.9 20 137.9 20 100 
15 137.9 20 275.8 40 100 

The Mr tests were completed when either all test sequences completed or 5% permanent 

strain of the samples reached. When the Mr tests were finished, quick shear tests were 

conducted on the same samples that were used for Mr tests to determine the stress–strain 
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relationships of the samples if less than 5% accumulated permanent axial strain was obtained 

when the Mr tests completed. Mr tests were performed on RPCC/RAP and RAP subbase 

materials from Manatt’s, In., IA and crushed limestone subbase materials from Martin 

Marietta Materials, Inc., IA. Dry unit weights and fines contents were varied to study their 

effects on resilient moduli of UGMs. 

Data analysis of resilient modulus tests 

Test readings of every load cycles in each sequence were calculated according to 

AASHTO T307-99 to determine the resilient moduli under various combinations of 

confining pressure and deviator stress. In the table summary report that was automatically 

generated in the computer program when Mr test was completed, Mr was calculated by 

averaging Mr values of the last five load cycles for each loading sequence. Manual 

calculations were performed according to AASHTO T307-99 to check the results from 

system summary report. 

The raw data which consists of displacement 1 and 2, confining pressure, and load were 

recorded for each of 200 readings in one load cycle during Mr tests. Two displacement 

readings were averaged to calculate accumulated axial strain of each reading by dividing the 

average displacement by original heights of test samples. The difference between the 

maximum axial strain and the last axial strain in the 200 axial strains of each load cycle is the 

resilient strain of this load cycle. Axial stresses of each reading were calculated by dividing 

the load by the area of test samples. Cyclic stress is the difference between the maximum 

axial stress and the minimum axial stress in 200 readings for each load application. Mr of 

each load cycle was calculated through dividing the cyclic stress by the resilient strain. The 

manually calculated resilient moduli of last five cycles in each load sequence were 

summarized to compare to the values from system output.  

The calculated Mr values for each sample were analyzed by fitting the Mr prediction 

model by Witczak and Uzan (1988). This prediction model was recommended by MEPDG 

(NCHRP 2004) and also called Universal model (Equation 18): 

        (
  

  
)
  

(  
    

  
)
  

 (18) 

where: Pa = atmospheric pressure (MPa); 
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τoct = octahedral shear stress (MPa) =√                          

 
 

σB= bulk stress (MPa) = σ1+ σ2+ σ3; 

k1, k2, k3 = regression coefficients; and 

σ1, σ2, σ3 = principal stresses (MPa). 

Unconsolidated Undrained Tests 

Unconsolidated undrained tests (quick shear test in AASHTO T307-99) were conducted 

to determine the undrained shear strengths of the UGMs according to AASHTO T307-99. 

The quick shear test was conducted only when a sample experienced less than 5% permanent 

strain during a Mr test and was conducted as soon as possible after the Mr test.  

In this study, only UGMs used for subbase construction were studied, so 34.5 kPa (5 psi) 

confining stress was controlled for all quick shear tests. During the quick shear tests, the 

confining stresses were controlled by the Mr test computer program while data was acquired 

by another computer program which is for quick shear tests. This quick shear tests program 

also controlled the strain rate that compresses samples at 1% axial strain per minute 

according to AASHTO T307-99. In addition, the valves of the triaxial pressure chamber were 

turned off during quick shear tests to maintain undrained conditions. Undrained shear 

strength were determined as half of the peak values before the load values decrease with 

increasing strain. The quick shear tests completed when either undrained shear strengths 

were determined, 5% permanent strain reached, or load capacity of load cell reached.  

Data analysis of shear strength tests 

Stress–strain relationships were presented by plotting accumulated axial strains with 

deviator stresses. Deviator stresses were calculated according to ASTM D2850-03a using 

raw data from quick shear tests, and axial strains were corrected by counting the permanent 

strains from the Mr tests on the sample. Strains were calculated by dividing the displacements 

by the sample height that was calculated after Mr test. Then, the cross area of test sample was 

corrected by accounting strain effects on sample. Membrane corrections for stress difference 

were calculated to subtract the effects of membranes used in each test (Equation 19) as 

introduced in ASTM D2850-03a. 

          
       

 
 (19) 
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where: ∆ (σ1 – σ3) = correction to be subtracted from the measured principal stress 

difference; 

D= √4A/  = diameter of sample; 

Em = Young’s modulus for the membrane material; 

tm = thickness of the membrane; and 

ε1 = axial strain. 

Typical value of Em for latex membrane is 1400 kN/m2 (ASTM D2850-03a) and this 

value was used for membrane correction in this study. Membrane thickness was doubled to 

account the effect of two membranes that used on each sample. The actual deviator stresses 

were calculated by dividing the axial loads with the corrected areas and subtracting the 

membrane corrections. Changes in original sample height due to load applications in Mr tests 

were accounted for correcting axial strain in the quick shear test. Finally, the stress-strain 

relationship and the undrained shear strength of each sample were determined. 
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CHAPTER 4. MATERIALS  

This chapter summarizes the index properties of granular materials used in this study 

(Table 11). Materials from project sites were collected from pavement foundation layers of 

newly constructed or reconstructed pavements. Materials from Iowa quarries were produced 

to meet requirements of Iowa Department of Transportation (Iowa DOT) for pavement 

foundation materials. All materials were non-plastic with low fines content (percentage of 

materials passing No. 200 sieve). In addition to mechanical sieve analysis, hydrometer tests 

were conducted on samples of recycled portland cement concrete pavement (RPCC), RPCC 

with recycled asphalt pavement mixture (RPCC/RAP), recycled asphalt pavement (RAP), 

and crushed limestone materials.  

Table 11. Site locations and subbase materials 

State Site Location Subbase Material 
Michigan I-94, St. Clair and Macomb Counties Untrimmed slag 

Iowa 

US-30, Story County RPCC 

Manatt's, Inc., Ames RPCC/RAP 
RAP 

Martin Marietta Materials, Inc., Ames Crushed limestone 

These unbound granular materials (UGMs) were investigated in two stages that required 

different preparation methods and involved different test matrices. In stage one, the main 

objectives were to determine permanent deformations of two UGMs (untrimmed slag 

subbase and RPCC) and to observe the factors that affect permanent deformation response, 

so the test materials were prepared using the scalp and replace method to reduce the 

maximum particle size per test standards. In stage two, a new test matrix was created to study 

permanent deformation response of the remaining three materials (RPCC/RAP, RAP, and 

crushed limestone) and to perform other laboratory tests to observe relationships between 

permanent deformation and other properties (e.g., Mr, permeability). The test materials tested 

in stage two were prepared by scalping off large particles (retained on 3/4in. sieve) only to 

maintain nearly the same particle size distribution for materials used in different tests.  

Both the scalp and replace and scalp only samples were prepared to meet the 

requirements in AASHTO T307-99. The requirement of the Mr test is that the minimum 

diameter of the mold used to fabricate samples should be equal to five times the maximum 
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particle size of the materials. Samples that were subjected for Mr and permanent deformation 

tests were compacted in 101.6 mm (4 in.) diameter molds so the maximum particle size of 

the test materials should be less than 20.3 mm (0.8 in.). For each material in the study, soil 

index properties were determined by conducting mechanical sieve analysis, hydrometer tests, 

relative density tests, and specific gravity tests.  

Untrimmed Slag Subbase 

The untrimmed slag subbase material from Michigan I-94 was sampled from St. Clair 

and Macomb Counties in Michigan (Figure 18). Table 12 shows the soil index properties of 

the original untrimmed slag subbase and same material after the scalp and replace process. 

 
Figure 18. Untrimmed slag subbase in situ 

Table 12. Untrimmed slag subbase soil index properties 

Soil Index Property Original Scalp and Replaced 
USCS classification GP GP 
AASHTO classification A–1–a A–1–a 
Coefficient of uniformity (Cu) 2.00 13.14 
Coefficient of curvature (Cc) 1.10 3.71 
Specific gravity (Gs) — — 
Min dry unit weight (kN/m3) relative 

density at 0% moisture content 14.05 — 

Max dry unit weight (kN/m3) relative 
density at 0% moisture content 16.24 — 

D10 (mm) 13.44 0.59 
D30 (mm) 19.57 4.09 
D60 (mm) 26.18 7.71 
F200 (%) 2.2 0.8 

Note: — indicates tests not performed 
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Both the original untrimmed slag subbase material and the material after the scalped and 

replace process were classified as GP in accordance with USCS and A–1–a in accordance 

with AASHTO classification systems. The particle size distribution curve of the scalp and 

replace material moved to the right side of the original material as expected, because more 

particles passed ¾ in. (19 mm) sieve and no materials were retained on 1 in. (25 mm) sieve. 

These particle size distribution curves are shown in Figure 19. 
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Figure 19. Untrimmed slag subbase particle size distribution 

Laboratory relative density tests were conducted to determine the maximum and 

minimum dry unit weights. The actual moisture content and dry unit weight for each resilient 

modulus tests was determined to cover the range of maximum and minimum dry unit 

weights. The moisture contents and dry unit weights were similar for all permanent 

deformation test samples because the main variable in this test set was fines content. Figure 

20 shows the maximum and minimum dry unit weights that were determined in the relative 

density test at 0% moisture content and the actual moisture contents and dry unit weights of 

samples that were prepared for permanent deformation and resilient modulus tests. 
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Figure 20. Untrimmed slag subbase moisture–dry unit weight relationships 

 

RPCC 

The RPCC subbase material was sampled from a stockpile at a project site on US 30 in 

Story County, Iowa (Figure 21). Table 13 shows the soil index properties of the original 

RPCC and the same material after the scalp and replace process.  

 
Figure 21. RPCC (US–30) air dried 
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Table 13. RPCC (US 30) soil index properties 

Soil Index Property Original Scalp and Replaced 
USCS classification GP–GM GP–GM 
AASHTO classification A–1–a A–1–a 
Coefficient of uniformity (Cu) 44.34 36.17 
Coefficient of curvature (Cc) 4.48 5.39 
Specific gravity (Gs) 2.57 — 
Min dry unit weight (kN/m3) relative 

density at 0% moisture content 13.49 — 

Max dry unit weight (kN/m3) relative 
density at 0% moisture content 17.40 — 

D10 (mm) 0.27 0.28 
D30 (mm) 3.85 3.84 
D60 (mm) 12.12 9.95 
F200 (%) 5.2 5.6 

Note: — indicates tests not performed 

The original RPCC material and the RPCC material after the scalp and replace process 

were classified as GP–GM in accordance with USCS and A–1–a in accordance with 

AASHTO classification systems. As a result of the scalp and replace process, the RPCC 

coefficient of uniformity decreased about 20% and the coefficient of curvature increased 

about 20%. D60 decreased about 18% compared to the original material, but values of D10, 

D30, and F200 changed within 8%. The larger change in D60 is because the scalp and replace 

process that add more materials without particles retained on ¾” (19 mm) and passed No. 4 

(4.75 mm) sieve. 

To further characterize the gradation of the material, a mechanical sieve analysis was 

conducted on a sample compacted in preparation for permanent deformation testing. This 

sieve analysis indicates the breakage of particles due to sample compaction. Sample 

compaction broke particles, so higher percent of materials passing each sieve. All of these 

three particle distribution curves are plotted in Figure 22.  
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Figure 22. RPCC (US–30) subbase particle size distribution 

A relative density test was conducted to determine the maximum and minimum dry unit 

weights for the material with 0% moisture content. In addition, the specific gravity test was 

conducted to determine specific gravity for this RPCC material as 2.57. Then, the zero air 

voids (ZAV) curve was plotted based on the calculation with the determined specific gravity. 

The actual moisture content and dry unit weight values were calculated for each permanent 

deformation test sample. The moisture contents for all ISU 100k and ISU 1k permanent 

deformation tests were around 10% except one ISU100k test specimen at about 8%. Dry unit 

weights of all permanent deformation tests were about1% to 6% higher than the maximum 

dry unit weight which was determined in the relative density test. 
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Figure 23. RPCC (US–30) subbase moisture–dry unit weight relationships 

 

RPCC/RAP 

The RPCC/RAP material was produced by Manatt’s, Inc. (Figure 24). Although RAP 

particles were observed, the percent of RAP in this mixed material was not reported. Particle 

size distribution of this material was produced to meet the requirements of the Iowa DOT on 

subbase aggregate materials with gradation No. 12a (Iowa DOT 2008). In addition, this 

material had moisture content of 5.98% as tested in Laboratory when the researchers 

transport it from quarry to laboratory in sealed buckets. Table 14 shows the soil index 

properties of the original RPCC/RAP and the same material after the scalp only process and 

contains four different fines content. 
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Figure 24. RPCC/RAP (Iowa Manatt’s) oven-dried 

Table 14. RPCC/RAP (Iowa Manatt’s) soil index properties 

Soil Index 
Property 

Natural % Fines 0% Fines 6% Fines 12% Fines Original Scalped only 
USCS classification GW GW GW GW–GM GM 
AASHTO 
classification A–1–a A–1–a A–1–a A–1–a A–1–a 

Coefficient of 
uniformity (Cu) 

10.7 15.73 11.03 29.89 * 

Coefficient of 
curvature (Cc) 

2.63 2.61 1.86 1.89 * 

Specific gravity (Gs) 2.62 — — — — 
Min dry unit weight 

(kN/m3) relative 
density at 0% 
moisture content 

14.65 12.88 12.93 13.96 14.69 

Max dry unit weight 
(kN/m3) relative 
density at 0% 
moisture content 

16.42 14.97 15.57 17.38 18.17 

D10 (mm) 1.39 0.62 0.82 0.26 * 
D30 (mm) 7.36 3.99 3.71 1.99 1.87 
D60 (mm) 14.84 9.78 9.02 7.92 7.51 
F200 (%) 2.2 3.1 0.8 5.8 12.4 

Note: — indicates tests not performed 
* indicates cannot be calculated 
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The original, scalp only, 0% fines content RPCC/RAP materials were classified as GW in 

accordance with USCS. The 6% and 12% fines content materials were classified as GW–GM 

and GM separately in accordance with USCS. However, all of these five materials were 

classified as A–1–a in accordance with AASHTO. The target fines contents were determined 

as the 0%, 100%, and 200% of the maximum fines content that is specified by Iowa DOT 

(2008) on granular subbase materials (gradation No. 12a). Therefore, fines content was made 

to reach the target values of 0%, 6%, and 12%, but actual fines contents were measured and 

not exactly as the target values. Coefficient of uniformity, coefficient of curvature, and D10 

values could not be calculated for materials with >10% target fines content. All the particle 

size distribution curves were plotted in Figure 25. 
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Figure 25. RPCC/RAP (Iowa Manatt’s) particle size distribution 

Relative density tests were conducted on the original RPCC/RAP material to determine 

the maximum and minimum dry unit weights at 0% moisture content and a moisture-dry unit 

weight relationship. The bulking moisture content effect was identified by varying the 

moisture content of samples in small increment. The actual moisture content and dry unit 
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weight for each sample after permanent deformation testing or resilient modulus testing was 

determined and shown in Figure 26. 
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Figure 26. RPCC/RAP (Iowa Manatt’s) moisture–dry unit weight relationships 

Moreover, relative density tests were conducted on the materials with different target 

fines contents. The maximum and minimum dry unit weights of materials increased with 

increasing fines content for 0% to 12%. Fine materials increased in percentage of the total 

materials from 0% to 12%, so more voids between particles were filled with fine materials 

and dry unit weight increased. The maximum and minimum dry unit weights of all relative 

density tests were reported in Figure 27. 
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Figure 27. RPCC/RAP (Iowa Manatt’s) with varied fines content dry unit weight 

 

RAP 

The RAP material was produced by Manatt’s, Inc. (Figure 28). Particle size distribution 

of this material was produced to meet the requirement of Iowa DOT on subbase aggregate 

materials with gradation No. 12a (Iowa DOT 2008). In addition, this material had moisture 

content of 2.86% as tested in Laboratory when the researchers transport it from quarry to 

laboratory in sealed buckets. Table 15 shows the soil index properties of the original RAP 

material and the materials after the scalp only process and contained four different fines 

content. 
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Figure 28. RAP with 4.8% moisture content 

Table 15. RAP soil index properties 

Laboratory Property 
Natural % Fines 0% 

Fines 
6% 

Fines 
12% 
Fines Original Scalped 

only 
USCS classification GW GW SW SW–SM SM 
AASHTO classification A–1–a A–1–a A–1–a A–1–a A–1–a 
Coefficient of uniformity (Cu) 13.28 10.89 11.78 15.74 * 
Coefficient of curvature (Cc) 1.38 1.38 1.11 1.29 * 
Specific gravity (Gs) 2.47 — — — — 
Min dry unit weight (kN/m3) 

relative density at 0% 
moisture content 

13.67 12.88 13.70 14.51 14.97 

Max dry unit weight (kN/m3) 
relative density at 0% 
moisture content 

14.35 14.97 16.15 17.50 18.20 

D10 (mm) 0.51 0.57 0.50 0.37 * 
D30 (mm) 2.17 2.21 1.81 1.66 1.01 
D60 (mm) 6.73 6.22 5.90 5.80 4.12 
F200 (%) 2.9 2.0 1.6 5.6 12.5 

Note: — indicates tests not performed 
* indicates cannot be calculated 

Average specific gravity of this RAP material is 2.47 from calculation of coarse 

aggregate specific gravity and water pycnometer tests. The actual fines content of materials 

with 0% target fines content was 1.6%, because the dry sieve process that to separate fines 
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cannot clearly separate the fine materials from asphalt binder coated large particles. When 

6% or 12% target fines content were desired, additional fines that were produced by crushing 

or washing and drying RAP materials were added to the materials after the scalp only 

process.  

Both of the original RAP material and the RAP material after scalped off the materials 

retained on 3/4 in. sieve were classified as GW in accordance with USCS. However, 

materials with target fines content of 0%, 6%, and 12% were classified as SW, SW–SM, and 

SM separately. Moreover, all materials were classified as A–1–a in accordance with 

AASHTO classification system. Coefficient of curvature and uniformity and D10 values were 

not reported for materials with >10% target fines content. All particle size distribution curves 

were plotted in Figure 29. The particle size distribution curve moved to the right as target 

fines increased. 
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Figure 29. RAP particle size distribution 

Relative density tests were conducted on the original RAP material to determine the 

maximum and minimum dry unit weights and a moisture-dry unit weight relationship. The 
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bulking moisture content effect was identified by varying the moisture content in small 

increments and up to about 13%. In addition, the actual moisture contents and dry unit 

weights of all samples for permanent deformation and resilient modulus tests were reported.  

Dry unit weight of all permanent deformation and resilient modulus tests were higher 

than the maximum dry unit weight of the original RAP materials (Figure 30) because the 

target dry unit weight for each sample was determined based on the maximum and minimum 

dry unit weights on the materials in the same conditions (e.g., same fines content and after 

scalp only process). The moisture–dry unit weight relationship of the original RAP materials, 

and dry unit weights and moisture contents for all permanent deformation and resilient 

modulus tests were reported in Figure 30.  
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Figure 30. RAP moisture–dry unit weight relationships 

In addition, the maximum and minimum dry unit weights for RAP with different fines 

content after scalped off oversize particles and the original RAP were determined by 

conducting relative density tests. The maximum and minimum dry unit weight increased with 

increasing fines content for 0% to 12%. Although fines content of materials after scalped off 

with natural fines content is about 30% higher than the materials with 0% target fines 



 72 

content, the maximum and minimum dry unit weights of materials with 0% target fines 

content were about 7% higher. All dry unit weight values were reported in Figure 31. 
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Figure 31. RAP with varied fines content dry unit weight 

 

Crushed Limestone 

This crushed limestone was produced by Martin Marietta Materials, Inc.. Particle size 

distribution of this material should meet the requirement of Iowa DOT on subbase aggregate 

materials with gradation No. 12a (Iowa DOT 2008). In addition, this material had moisture 

content of 2.32% as tested in Laboratory when the researchers transport it from quarry to 

laboratory in sealed buckets. Fine grains around the large crushed limestone particles make it 

in grey color as Figure 32 shows. Table 16 shows the soil index properties of the original 

crushed limestone material and the same material after the scalp only process and contains 

different fines contents. 
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Figure 32. Crushed limestone oven-dried 

Table 16. Crushed limestone soil index properties 

Soil Index Property 
Natural % Fines 0% 

Fines 
6% 

Fines 
12% 
Fines Original Scalped 

only 
USCS classification GP–GM GP–GM GP GP–GM GM 
AASHTO classification A–1–a A–1–a A–1–a A–1–a A–1–a 
Coefficient of uniformity (Cu) 61.88 * 22.33 35.78 * 
Coefficient of curvature (Cc) 11.41 * 4.36 5.69 * 
Specific gravity (Gs) 2.71 — — — — 
Min dry unit weight (kN/m3) 

relative density at 0% 
moisture content 

16.76 16.94 16.15 16.15 16.64 

Max dry unit weight (kN/m3) 
relative density at 0% 
moisture content 

17.83 21.06 19.60 20.20 20.60 

D10 (mm) 0.17 * 0.45 0.28 * 
D30 (mm) 4.54 1.84 4.40 3.98 3.34 
D60 (mm) 10.56 8.91 9.96 9.98 10.42 
F200 (%) 7.8 10.1 2.2 5.8 12.6 

Note: — indicates tests not performed 
* indicates cannot be calculated 

Average specific gravity of the crushed limestone material is 2.71 from calculation of 

coarse aggregate specific gravity and water pycnometer tests. Although 0% fines content was 

desired, the actual fines content of materials with 0% target fines content was 2.2%. When 
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6% or 12% target fines content were desired, additional fines that were produced by crushing 

oven-dried crushed limestone materials were added to the materials after the scalp only 

process.  

The original crushed limestone materials and the scalped only materials with natural and 

6% target fines content were classified as GP–GM in accordance with USCS. Moreover, the 

scalped only materials with 0% and 12% target fines content were classified as GP and GM 

separately in accordance with USCS. However, all materials were classified as A–1–a in 

accordance with AASHTO classification system. Coefficient of curvature and uniformity and 

D10 were not reported for materials with 12% target and natural fines content after scalped 

off oversize particles, because the percentage of fines in these materials were over 10%. The 

particle size distribution curve moved to the right as target fines increased. All particle size 

distribution curves were plotted in Figure 33.  
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Figure 33. Crushed limestone particle size distribution 

Relative density tests were conducted on the original materials to determine the 

maximum and minimum dry unit weights and a moisture-dry unit weight relationship. The 
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bulking moisture content effect was identified by varying moisture content of samples in 

small increments and up to 9%. The lowest dry unit weight of the original materials reached 

when moisture content was about 2.9%. This bulking moisture content is close to 2.32% 

which is the target moisture content for all permanent deformation and resilient modulus tests 

samples. Dry unit weight of all permanent deformation and resilient modulus testing samples 

were higher than the maximum dry unit weight of the original materials (Figure 34), because 

the target dry unit weight for each sample was determined based on relative density tests of 

the materials in the same conditions (fines content, scalped off or not). Actual dry unit 

weights and moisture contents for all permanent deformation and resilient modulus testing 

were shown in Figure 34.  
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Figure 34. Crushed limestone moisture–dry unit weight relationships 

The maximum and minimum dry unit weight increased about 3% and 5% separately as 

target fines content of the scalped only crushed limestone materials increased from 0% to 

12%. However, the maximum and minimum dry unit weight of scalped off crushed limestone 

materials with natural fines content were about 3% higher than the values of materials with 

12% target fines content. The second relative density test determined the maximum and 

minimum dry unit weight that used for determining the target dry unit weight for samples 
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made with natural scalped off materials in the test plan. However, another relative density 

test was conducted on scalped only materials with natural fines content. The maximum dry 

unit weights of these two relative density tests showed about 15% in difference, because two 

tests were conducted on materials sampled from different soil buckets and fines content of 

materials were varied among soil buckets. The minimum dry unit weights that determined in 

all relative density testes were within about 14% in difference. However, the difference 

between the highest and the lowest maximum dry unit weighs was about 20%. All dry unit 

weight values are reported in Figure 35. 
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Figure 35. Crushed limestone with varied fines content dry unit weight 
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CHAPTER 5. RESULTS AND DISCUSSION 

This chapter presents and discusses the test results from accumulated permanent strain 

(εp) and resilient modulus (Mr) studies. The εp was studied by performing permanent 

deformation tests on five materials to determine the significance of factors affecting εp, to 

generate a model for predicting accumulated permanent axial strain (εp), and to quantify 

particles breakage of unbound granular materials (UGMs) due to sample compaction and 

cyclic loading. The Mr study was performed on three materials to observe measurement 

errors in the Mr tests, to find significance of factors affecting Mr, to predict Mr using the 

universal model, and to determine the unconsolidated undrained (UU) strength. The number 

and types of tests that were performed on each material are summarized in Table 17 and 

detailed information about the variables for each tests are summarized in related tests 

sections. 

Table 17. Summary of tests performed 

No. of Tests  
Performed 

Materials 

Permanent Deformation Tests Resilient 
modulus 

tests ISU 100k ISU 100k NCHRP 
598 

Untrimmed slag 6 0 0 0 
Recycled portland cement concrete 8 8 0 0 
Crushed Limestone 0 0 12 12 
Recycled portland cement concrete 
with recycled asphalt pavements 0 0 12 12 

Recycled asphalt pavements 0 0 12 12 
 

Permanent Deformation 

Results related to Ep tests are presented in four sections, significance of samples 

characteristics, permanent deformation prediction model, and breakage index. Three test 

methods, ISU 100k, ISU 1k, and NCHRP 598 tests, were used to study Ep behavior of 

UGMs. The ISU 100k tests were conducted by loading the samples up to 100,000 cycles to 

observe the effect of cycle numbers on accumulated εp. Moreover, the effects of relative 

densities (RD), deviator stress (σd), and fines content (F200) were studied by conducting the 

ISU 100k tests on the untrimmed slag material.  
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The ISU 1k tests were conducted by loading the samples up to 1,000 cycles to observe 

the difference from the ISU 100k tests. In addition, the effects of relative densities (RD) and 

deviator stress (σd) were studied by conducting the ISU 100k and ISU 1k tests on the 

recycled portland cement concrete (RPCC) materials that were collected from US-30, IA. 

The NCHRP 598 tests were conducted by loading samples with incrementally increasing σd 

up to 180 psi to measure the effect of σd. The results of the NCHRP 598 tests were analyzed 

by assuming that stress history did not have significant effects on measuring permanent strain 

of one sample that were subjected to different stress levels. Moreover, the effects of RD, 

fines content (F200), and materials type were studied by conducting NCHRP 598 tests on 

crushed limestone, recycled asphalt pavement (RAP), and recycled portland cement concrete 

with recycled asphalt pavement (RPCC/RAP) that were collected from two quarries in Iowa. 

Each test was conducted on a unique sample that was prepared to meet the target values 

of designed sample characteristics and the actual values of the samples characteristics were 

determined. Moreover, the test number was assigned for each test to avoid repeated 

descriptions of samples characteristics. 

The ISU 100k tests that were conducted on untrimmed slag samples were numbered from 

D-A1 to D-A6 and the target and the actual values of samples characteristics were 

summarized (Table 18). Actual F200 are about 1.0% higher than the target values. Actual 

moisture contents (w) are about 0.1% to 0.3% higher than the target w. The actual relative 

densities are about 15% higher than the target values. 

Table 18. The target and actual characteristics of ISU 100k tests untrimmed slag 

samples 

Test 
no. 

F200 (%) w (%) RD (%) γd (kN/m3) 
Target Actual Target Actual Target Actual Target Actual 

D-A1 2.0 3.3 

3.3 

3.6 90.0 104.3 15.99 16.35 
D-A2 3.3 3.3 100.0 118.8 16.24 16.73 
D-A3 4.0 4.5 3.6 

90.0 

105.1 

15.99 

16.37 
D-A4 4.5 3.5 106.3 16.40 
D-A5 6.0 7.0 3.4 109.3 16.48 
D-A6 8.0 9.0 3.4 106.3 16.40 

The ISU 100k tests were also conducted on RPCC materials. The actual moisture 

contents generally are less than 0.4% different from the target w, except the sample D-A8, 
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which has moisture content about 1.9% less than the target value. The actual relative 

densities are about 15% higher than the target values. The ISU 100k tests that were 

conducted on RPCC samples were numbered from D-A8 to D-A15 and the target and the 

actual values of samples characteristics were summarized (Table 19). 

Table 19. The target and actual characteristics of ISU 100k tests RPCC samples 

Test 
no. 

F200 (%) w (%) RD (%) γd (kN/m3) 
Target Actual Target Actual Target Actual Target Actual 

D-A8 

natural 6.2 10.0 

8.1 95.0 104.1 17.14 17.61 
D-A9 9.6 

90.0 

100.4 

16.90 

17.42 
D-A10 9.9 99.4 17.37 
D-A11 9.8 99.4 17.37 
D-A12 9.6 99.8 17.39 
D-A13 10.1 99.2 17.36 
D-A14 10.1 80.0 88.7 16.44 16.85 
D-A15 9.8 85.0 95.0 16.67 17.15 

The RPCC materials were also studied by using the ISU 1k method. The actual moisture 

contents are within ±4% from the target w. The actual RD are about 10% higher than the 

target RD. The ISU 1k tests that were conducted on RPCC samples were numbered from 

D-B1 to D-B8 and the target and the actual values of samples characteristics were 

summarized (Table 20). 

Table 20. The target and actual characteristics of ISU 1k tests RPCC samples 

Test 
no. 

F200 (%) w (%) RD (%) γd (kN/m3) 
Target Actual Target Actual Target Actual Target Actual 

D-B1 

natural 5.6 10.0 

9.65 95.0 103.7 17.14 17.59 
D-B2 10.15 

90.0 

99.4 

16.90 

17.37 
D-B3 9.59 100.4 17.42 
D-B4 9.88 101.0 17.45 
D-B5 9.84 100.0 17.40 
D-B6 10.51 98.0 17.30 
D-B7 10.11 80.0 89.2 16.44 16.87 
D-B8 10.05 85.0 94.4 16.67 17.12 

The NCHRP 598 method was used to study the εp behavior of crushed limestone, RAP, 

and RPCC/RAP materials. Each material was studied with four target fines contents and 

three relative densities.  
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The actual w of crushed limestone samples are within ±0.2, of RAP samples are within 

±0.3%, and of RPCC/RAP samples are within ±0.4% from the target moisture contents 

values, except three RPCC/RAP samples that two have 3.5% and one has 0.8% fines 

contents.  

The actual RD of crushed limestone samples are less than 9% RD, of RAP samples are 

less than 5% RD, and of RPCC/RAP samples are less than 7% RD different from the target 

RD values. Generally, the dry unit weights of materials with natural fines content are smaller 

than the materials with target fines contents. The materials with natural fines contents usually 

have small fine particles adhered on the large particles surfaces. The wet and dry process 

hardened the fine particles layer and made the particles bigger so less free fine particles in the 

material could fill the voids. 

Actual F200 for three materials that contain natural fines content are varied. The natural 

F200 of crushed limestone was measured as 7.9% which is the highest compared to other two 

recycles materials. Natural F200 were determined as the original F200 of the materials that 

were transported from the quarries to the lab. The natural F200 might be different if the 

materials were collected from different locations or different productions. The 0% target F200 

was not reached for all materials because the large particles attracted fines on the rough 

surfaces and particles could break down when the mechanical sieve analysis was conducted 

to determine the F200 of the material. The actual F200 for the materials with 6% target F200 are 

<0.4% lower than 6% and the actual F200 for the materials with 12% target F200 are <0.6% 

higher than 12%.  

The crushed limestone samples were numbered from D-C1 to D-C12, the RAP samples 

were numbered from D-C13 to D-C24, the RPCC/RAP samples were numbered from D-C25 

to D-C36 and the target and the actual values of all samples characteristics were also 

summarized (Table 21).  
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Table 21. The target and actual characteristics of NCHRP 598 tests samples 

Test 
No. 

F200 (%) w (%) RD (%) γd (kN/m3) 
Target Actual Target Actual Target Actual Target Actual 

D-C1 0.0 2.2 

2.3 

2.2 

85.0 

87.0 18.99 19.08 
D-C2 6.0 5.8 2.4 86.0 19.47 19.52 
D-C3 natural 7.9 2.4 90.7 17.65 17.72 
D-C4 12.0 12.6 2.6 85.3 20.33 20.34 
D-C5 0.0 2.2 2.3 

90.0 

91.7 19.19 19.26 
D-C6 6.0 5.8 2.5 90.4 19.70 19.73 
D-C7 natural 7.9 2.5 94.6 17.71 17.76 
D-C8 12.0 12.6 2.5 90.4 20.55 20.57 
D-C9 0.0 2.2 2.4 

95.0 
 

96.4 19.40 19.46 
D-C10 6.0 5.8 2.3 96.2 19.95 20.01 
D-C11 natural 7.9 2.3 103.7 17.76 17.86 
D-C12 12.0 12.6 2.5 95.7 20.78 20.82 
D-C13 0.0 1.6 

2.9 

2.8 

85.0 

87.7 15.75 15.83 
D-C14 natural 2.0 2.7 88.9 14.92 15.02 
D-C15 6.0 5.6 3.1 85.6 16.97 16.99 
D-C16 12.0 12.5 3.0 85.9 17.62 17.66 
D-C17 0.0 1.6 2.6 

90.0 

94.2 15.89 16.01 
D-C18 natural 2.0 2.6 94.0 15.05 15.15 
D-C19 6.0 5.6 3.1 90.7 17.14 17.17 
D-C20 12.0 12.5 2.8 91.7 17.81 17.87 
D-C21 0.0 1.6 2.7 

95.0 

98.2 16.03 16.12 
D-C22 natural 2.0 2.7 98.0 15.17 15.25 
D-C23 6.0 5.6 2.9 96.4 17.32 17.37 
D-C24 12.0 12.5 2.8 96.5 18.00 18.06 
D-C25 0.0 0.8 

6.0 

5.7 

85.0 

88.5 15.26 15.36 
D-C26 natural 3.5 7.5 77.0 16.12 15.97 
D-C27 6.0 6.0 6.0 86.1 16.76 16.81 
D-C28 12.0 12.4 6.0 86.3 17.54 17.60 
D-C29 0.0 0.8 5.8 

90.0 

93.3 15.41 15.51 
D-C30 natural 3.5 7.5 81.2 16.22 16.05 
D-C31 6.0 6.0 6.0 91.3 16.96 17.01 
D-C32 12.0 12.4 6.2 90.7 17.74 17.77 
D-C33 0.0 0.8 5.5 

95.0 

99.0 15.56 15.69 
D-C34 natural 3.5 6.4 95.4 16.44 16.33 
D-C35 6.0 6.0 6.2 95.6 17.17 17.19 
D-C36 12.0 12.4 6.0 96.4 17.95 18.01 
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Two deviator stresses (41.4 kPa, 62.1 kPa), four target fines contents (2.0%, 4.0%, 6.0%, 

8.0%), and two target relative densities (90.0%, 100.0%) were studied for the untrimmed slag 

materials by performing the ISU 100k tests. The accumulated permanent strain at the test end 

doubled as the σd increased from 41.4 kPa to 62.1 kPa. In addition, the accumulated 

permanent strain at the test end is the highest for the sample with 7.0% F200 at about 0.71% 

and within the 0.35 ± 0.03% range for other three samples. Moreover, the accumulated εp at 

the test end doubled when the target RD decreased from 118.8% to 104.3%. The εp at the test 

end, confining pressure (σc), and σd for all ISU 100k tests that conducted on untrimmed slag 

materials are summarized (Table 22). 

Table 22. εp values (%) at the end of the tests for untrimmed slag samples (ISU 100k) 

Test no. εp at the test end σc σd 
% kPa psi kPa psi 

D-A1 0.38 

20.7 3.0 

41.4 6.0 D-A2 0.16 
D-A3 0.32 
D-A4 0.66 62.1 9.0 
D-A5 0.71 41.4 6.0 D-A6 0.34 

Five deviator stresses (20.7 kPa, 41.4 kPa, 62.1 kPa, 82.7 kPa, and 103.4 kPa), and four 

target relative densities (80.0%, 85.0%, 90.0%, and 95.0%) were studied for the RPCC 

materials by performing the ISU 100k tests and the ISU 1k tests separately. The accumulated 

εp at all ISU 100k test ends are within the range of 0.10 ± 0.04% and do not show a clear 

trend as the σd increased. The accumulated εp at all ISU 100k test ends are less than 0.11% 

and do not show a clear trend as the RD increases. The accumulated permanent strain in 

these ISU 100k tests were not continuously increasing as expected, but show decrease in 

some samples. However, the reason cause the decrease is not determined while the same 

machine and materials were used for IUS 1k tests and no decrease was observed. The εp at 

the test end, σc, and σd for all ISU 100k tests that conducted on RPCC materials are 

summarized (Table 23).  
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Table 23. εp values (%) at the end of the tests for RPCC samples (ISU 100k) 

Test no. εp at the test end σc σd 
% kPa psi kPa psi 

D-A8 0.02 

103.4 15.0 

20.7 3.0 
D-A9 0.06 20.7 3.0 
D-A10 0.07 41.4 6.0 
D-A11 0.13 62.1 9.0 
D-A12 0.11 82.7 12.0 
D-A13 0.11 103.4 15.0 
D-A14 0.003 20.7 3.0 
D-A15 0.06 20.7 3.0 

The accumulated εp at all ISU 1k test ends are within the range of 0.08 ± 0.05% and do 

not show a clear trend as the σd increased. The accumulated εp at all ISU 1k test ends are less 

than 0.10% and do not show a clear trend as the RD increased. The differences of the 

accumulated εp between the ISU 1k tests and the ISU 100k tests conducted on the samples 

with the same target characteristics are within ±0.07%. The small differences could be the 

results of small permanent deformation occurred in the RPCC materials, the low stress level, 

the internal error of the test machine, and the inaccuracy in the ISU 100k tests that were 

conducted on the RPCC materials. Moreover, this is an indicator that the number of load 

cycles does not have significant effects on permanent deformation at deviator stress up to 

103.4 kPa, though the 1,000 times load cycles were applied. The εp at the test end, σc, and σd 

for all ISU 1k tests that conducted on RPCC materials are summarized (Table 24). 

Table 24. εp values (%) at the end of the tests for RPCC samples (ISU 1k) 

Test no. εp at the test end σc σd 
% kPa psi kPa psi 

D-B1 0.02 

103.4 15.0 

20.7 3.0 
D-B2 0.01 20.7 3.0 
D-B3 0.03 41.4 6.0 
D-B4 0.05 62.1 9.0 
D-B5 0.05 82.7 12.0 
D-B6 0.09 103.4 15.0 
D-B7 0.03 20.7 3.0 
D-B8 0.03 20.7 3.0 
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The accumulated εp at the NCHRP 598 test sequence (S) end was calculated using the 

change of samples height at the end of the 1000 load cycles to the 0-point height 

measurement (sample height was measured at the end of preconditioning (PC) sequence) to 

be divided by the initial sample height (sample height was measured at the end of sample 

compaction). 

Saeed (2008 a) suggested that the NCHRP 598 test may be ceased and the samples were 

considered failed when 10% εp reached. Consequently, the tests might be terminated at any 

number of load cycles in any load sequence. So the εp at the sequence end was only 

calculated for the load sequences were completely finished. The accumulated εp at the 

sequence end increased as the σd increased from 68.9 kPa up to 1241.1 kPa for all NCHRP 

598 tests that were conducted on crushed limestone (Table 25), RAP (Table 26 ), and 

RPCC/RAP (Table 27).  

Table 25. εp values (%) at the end of all load sequences for all crushed limestone 

samples (NCHRP 598) 

Test 

No. 
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

D-C1 0.020 0.062 0.156 0.417 1.337 3.339 6.870 — — — 
D-C2 0.013 0.033 0.087 0.232 0.875 2.246 5.309 — — — 
D-C3 0.068 0.322 1.464 3.338 5.658 8.648 — — — — 
D-C4 0.022 0.052 0.102 0.144 0.187 0.276 0.982 2.476 4.425 7.811 
D-C5 0.005 0.032 0.096 0.187 0.573 1.669 3.951 8.483 — — 
D-C6 0.008 0.035 0.089 0.151 0.295 0.980 2.455 5.138 — — 
D-C7 0.050 0.239 1.158 3.067 5.488 8.250 — — — — 
D-C8 0.007 0.020 0.046 0.062 0.077 0.097 0.141 0.309 1.322 4.577 
D-C9 0.018 0.057 0.141 0.300 0.870 2.116 4.705 9.347 — — 
D-C10 0.010 0.032 0.074 0.113 0.209 0.750 1.947 5.054 10.380 — 
D-C11 0.093 0.420 1.788 3.783 6.154 8.849 — — — — 
D-C12 0.004 0.019 0.041 0.060 0.078 0.093 0.115 0.153 0.419 6.304 

Notes: — means the test ended at this load sequence or previous load sequence. 
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Table 26. εp values (%) at the end of all load sequences for all RAP samples 

(NCHRP 598) 

Test 

No. 
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

D-C13 1.533 2.752 5.286 8.083 — — — — — — 
D-C14 1.850 3.281 6.058 — — — — — — — 
D-C15 0.491 1.048 2.491 4.585 7.118 10.000 — — — — 
D-C16 0.232 0.533 1.340 2.693 4.576 6.872 9.679 — — — 
D-C17 1.268 2.383 4.741 7.381 — — — — — — 
D-C18 1.750 3.049 5.647 — — — — — — — 
D-C19 0.346 0.780 1.934 3.699 5.996 8.704 — — — — 
D-C20 0.217 0.473 1.223 2.548 4.479 6.948 10.095 — — — 
D-C21 1.014 1.919 3.930 6.373 9.078 — — — — — 
D-C22 1.374 2.675 5.326 8.292 — — — — — — 
D-C23 0.255 0.595 1.514 3.062 5.242 7.936 — — — — 
D-C24 0.185 0.425 1.119 2.389 4.217 6.514 9.307 — — — 

Notes: — means the test ended at this load sequence or previous load sequence. 

Table 27. εp values (%) at the end of all load sequences for all RPCC/RAP samples 

(NCHRP 598) 

Test 

No. 
S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

D-C25 0.076 0.362 1.352 2.694 4.624 7.440 — — — — 
D-C26 0.011 0.051 0.196 0.599 2.102 6.459 — — — — 
D-C27 0.022 0.141 0.741 1.685 2.953 4.445 7.122 — — — 
D-C28 0.006 0.039 0.130 0.404 0.971 1.704 2.816 5.258 — — 
D-C29 0.078 0.330 1.336 2.620 4.122 6.496 — — — — 
D-C30 0.016 0.062 0.194 0.500 1.635 4.388 8.894 — — — 
D-C31 0.024 0.146 0.711 1.558 2.568 3.770 5.395 7.695 — — 
D-C32 0.015 0.050 0.162 0.404 0.895 1.622 2.572 4.262 — — 
D-C33 0.066 0.279 1.073 2.208 3.789 5.756 10.176 — — — 
D-C34 0.017 0.071 0.255 0.639 1.802 3.740 7.217 — — — 
D-C35 0.016 0.075 0.389 1.001 1.845 2.905 4.272 6.610 — — 
D-C36 0.007 0.031 0.106 0.240 0.551 1.078 1.772 3.002 — — 

Notes: — means the test ended at this load sequence or previous load sequence. 

Significance of samples characteristics 

Various factors that were expected to affect the permanent deformation behavior of 

UGMs were identified in the literature review. The number of load cycles, deviator stresses, 

relative densities, fines contents, and materials types are investigated in this research.  
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Number of load cycles 

Permanent strain in UGMs is continuously increasing under repeated loading (Morgan 

1966; Barksdale 1972; Kolisoja 1998; Kumar et al. 2006) and identified as an important 

factor affecting permanent deformation behavior of pavement subbase layers.  

The ISU 100k test was designed to determine the effect of number of load cycles by 

loading the samples up to 100,000 cycles. The permanent strain of untrimmed slag samples 

nearly continuously increased with increasing number of load cycles and reached a constant 

value at the end of the test. However, some samples shows about 0.025% decrease in 

permanent strain at a large number of load cycles while the permanent strain at the end of all 

untrimmed slag sample are less than1.0%. The reasons might be the small amount of 

permanent strain developed during the ISU 100k tests and the temperature caused shrinkage 

and expansion of aggregates. Moreover, the ISU 100k tests were also conducted on RPCC 

materials and the permanent strains at the end of test are less than 0.15%. The εp is not 

continuously increasing with the number of load cycles. The reasons might be the small 

amount of strain was developed in the test, hydration of the cementitious materials on the 

particles surfaces, expansion and shrinkage of particles under varied temperature as the ISU 

100k required about 28 hours to be finished, and the workability of the test machine as it 

might need to be calibrated at that period.  

The finding that constant values are reached for several ISU 100k tests depart from the 

conclusion proposed by Morgan (1966) and Kolisoja (1998) that permanent strain continues 

increasing at the end of the tests after large number of load cycles applied. The reason is that 

they only applied high stress levels to have the conclusion. 

The ISU 1k tests were also conducted on the RPCC materials with the same target 

characteristics as the ISU 100 test RPCC samples by applying up to 1,000 cycles. The εp is 

continuously increasing with the number of load cycles to a constant value. However, the 

permanent strains at the end of all ISU 1k tests on the RPCC materials are also less than 

0.15% that is similar to the values that were produced by the ISU 100k tests. 

ISU 1k tests results shows a large increase of permanent strain at first several load cycles 

(Figure 36), and the increase of permanent strain with increasing number of load cycles from 

50 to 1000 is relatively small (Figure 37) compared to the permanent strain that was 
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produced in first 50 load cycles. These large increases of permanent strain at first 50 load 

cycles could be the results of initial sample setting.  

Therefore, as Saeed (2008a) specified in NCHRP report 598, the preconditioning 

sequence of 50 load cycles was applied for every NCHRP 598 tests to subtracting the effect 

of initial sample setting. As the results of ISU 100k tests indicate that the permanent strain 

will be negative if subtract the permanent strain accumulated during first 50 load cycles. The 

ISU 1k and NCHRP 598 tests results are analyzed with less effects of initial sample setting. 

 
Figure 36. ISU 1k tests results without subtraction of first 50 load cycles 
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Figure 37. ISU 1k tests results with subtraction of first 50 load cycles 
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The finding that the constant permanent strains were not obtained at the end of 1,000 load 

cycles depart from the conclusion reported by Brown and Hyde (1975) that the permanent 

strain reaches an equilibrium state after approximately 1,000 load cycles. The reason could 

be that the different materials were used in the research, because they studied crushed granite 

materials.  

In conclusion, the constant εp could be obtained at the end of large number of load cycles 

(up to 100,000) when the low deviator stress is applied and the continuous increasing εp 

could be obtained at the end of small number of load cycles (1,000). Barksdale (1972) 

indicated a sudden increase in strain rate after a large number of load cycles was applied. In 

this study, the εp of crushed limestone shows a sudden increase in strain rate in the last 

several sequences in each NCHRP 598 test. However, the number of load cycles is 1,000 and 

is not large. This indicates that the sudden increase in strain rate could be the results of 

several factors. 

The number of load cycles is a significant factor on εp based on statistical analyses. The 

parameters of statistical analysis are summarized for ISU 100k tests on untrimmed slag 

(Table 28) and RPCC materials (Table 29), ISU 1k tests on RPCC materials (Table 30), and 

NCHRP 598 tests (Table 31) on crushed limestone, RAP, and RPCC/RAP. 

Table 28. Significance of load cycles on εp for ISU 100k untrimmed slag samples 

Test 
No. 

Sum of 
Squares F Ratio Probability 

>F R2 Significant? 

D-A1 19.6258 196431.7 <0.0001 0.6627 Yes 
D-A2 49.8620 65641.7 <0.0001 0.3963 Yes 
D-A3 46.0794 267208.5 <0.0001 0.7277 Yes 
D-A4 226.2940 112434.2 <0.0001 0.5293 Yes 
D-A5 198.0317 224042.6 <0.0001 0.6914 Yes 
D-A6 100.0025 263886.3 <0.0001 0.7252 Yes 
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Table 29. Significance of load cycles on εp for ISU 100k RPCC samples 

Test 
No. 

Sum of 
Squares F Ratio Probability 

>F R2 Significant? 

D-A8 1.8542 38097.9 <0.0001 0.2759 Yes 
D-A9 1.4748 28862.7 <0.0001 0.2240 Yes 
D-A10 0.2983 5521.5 <0.0001 0.0524 Yes 
D-A11 1.8699 14857.1 <0.0001 0.1294 Yes 
D-A12 5.3579 69598.8 <0.0001 0.4104 Yes 
D-A13 0.1972 10060.3 <0.0001 0.0914 Yes 
D-A14 1.7034 23590.3 <0.0001 0.1909 Yes 
D-A15 0.9985 41710.2 <0.0001 0.2943 Yes 

 

Table 30. Significance of load cycles on εp for ISU 1k RPCC samples 

Test 
No. 

Sum of 
Squares F Ratio Probability 

>F R2 Significant? 

D-B1 0.0059 2856.6 <0.0001 0.7411 Yes 
D-B2 0.0033 9528.2 <0.0001 0.9052 Yes 
D-B3 0.0114 2044.2 <0.0001 0.6720 Yes 
D-B4 0.0203 2183.9 <0.0001 0.6864 Yes 
D-B5 0.0105 798.5 <0.0001 0.4445 Yes 
D-B6 0.0657 2660.6 <0.0001 0.7272 Yes 
D-B7 0.0044 1823.4 <0.0001 0.6463 Yes 
D-B8 0.0096 2371.0 <0.0001 0.7038 Yes 
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Table 31. Significance of load cycles on εp for NCHRP 598 test samples 

Test 
No. 

Sum of 
Squares F Ratio Probability 

>F R2 Significant? 

D-C1 33976.8 17122.8 <0.0001 0.6972 Yes 
D-C2 23117.1 11839.9 <0.0001 0.6120 Yes 
D-C3 48552.3 64875.1 <0.0001 0.913 Yes 
D-C4 26021.4 17588.9 <0.0001 0.6376 Yes 
D-C5 33892.6 15028.3 <0.0001 0.6464 Yes 
D-C6 22690.7 12432.6 <0.0001 0.5923 Yes 
D-C7 47574.3 57847.6 <0.0001 0.9023 Yes 
D-C8 3592.2 6769.2 <0.0001 0.4037 Yes 
D-C9 45786.2 17788.6 <0.0001 0.6832 Yes 
D-C10 37896.0 13239.8 <0.0001 0.5921 Yes 
D-C11 51829.1 86324.8 <0.0001 0.9334 Yes 
D-C12 2854.0 3273.6 <0.0001 0.2467 Yes 
D-C13 29521.1 145400.8 <0.0001 0.9711 Yes 
D-C14 20930.2 115736.7 <0.0001 0.9687 Yes 
D-C15 60047.5 102735.7 <0.0001 0.9436 Yes 
D-C16 61525.5 78312.2 <0.0001 0.9166 Yes 
D-C17 37085.4 155972.7 <0.0001 0.9705 Yes 
D-C18 22394.1 125791.9 <0.0001 0.9696 Yes 
D-C19 61125.9 85350.5 <0.0001 0.9291 Yes 
D-C20 61104.2 63074.6 <0.0001 0.8995 Yes 
D-C21 40755.8 141659.6 <0.0001 0.9649 Yes 
D-C22 30208.4 134747.7 <0.0001 0.9694 Yes 
D-C23 64052.5 66703.8 <0.0001 0.9077 Yes 
D-C24 59918.4 67877.3 <0.0001 0.9041 Yes 
D-C25 43257.6 56185.4 <0.0001 0.8987 Yes 
D-C26 19824.8 11389.4 <0.0001 0.6478 Yes 
D-C27 36817.9 54469.9 <0.0001 0.8836 Yes 
D-C28 16597.4 28129.9 <0.0001 0.7767 Yes 
D-C29 49625.4 57763.2 <0.0001 0.8956 Yes 
D-C30 33428.7 17061.0 <0.0001 0.7074 Yes 
D-C31 46339.5 87472.9 <0.0001 0.9147 Yes 
D-C32 13189.8 33209.6 <0.0001 0.8026 Yes 
D-C33 55009.5 47813.1 <0.0001 0.9683 Yes 
D-C34 30221.0 21806.1 <0.0001 0.7517 Yes 
D-C35 32633.0 48058.3 <0.0001 0.8550 Yes 
D-C36 7768.6 14397.0 <0.0001 0.6359 Yes 
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Deviator stress 

Stress levels (confining pressure and deviator stress) or stress ratio was identified to have 

effects on the permanent deformation behavior of UGMs. In this study, the constant 

confining pressures were used for each test method so the increase in deviator stress indicates 

increase in stress ratio (deviator stress to confining pressure ratio). 

Two deviator stresses of 41.4 kPa and 62.1 kPa were studied in the ISU 100k tests on 

untrimmed slag materials. The εp of the sample under 62.1 kPa is as twice as the εp of the 

sample under 41.4 kPa (Figure 38). Five deviator stresses were studied in the ISU 100k tests 

on RPCC materials. The εp of the sample under high σd is higher than the εp of the sample 

under low σd (Figure 39), but the clear trend of εp under increasing σd is not shown in this test 

set. Same conclusion could be drawn for RPCC materials under ISU 1k tests (Figure 40). 

 
Figure 38. εp at 4.5% F200 for untrimmed slag samples (ISU 100k) 
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Figure 39. εp at 90% target RD for RPCC samples (ISU 100k) 

 
Figure 40. εp at 90% target RD for RPCC samples (ISU 1k) 
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The permanent strain at the end of each load sequence in all NCHRP 598 tests in this 

study increases with increasing deviator stress. The statistical analyses were conducted on 

first six deviator stresses for crushed limestone, first three deviator stresses for RAP, and first 

six deviator stresses for RPCC/RAP with the permanent strains at the end of load sequences 

where the selected σd was applied. In the statistical analyses, only the completely finished 

sequences in the NCHRP 598 tests for each material were studied. The deviator stress is 

concluded as significant factor affecting the permanent deformation behavior of the studied 

materials. The statistical analysis parameters are summarized (Figure 53). 

Table 32. Statistical analysis summary for significance of deviator stress affecting εp 

Materials Degree of 
Freedom 

Sum of 
Squares F Ratio Probability 

>F R2 Significant? 

Crushed 
Limestone 5 85.5934 4.9923 0.0006 0.2744 Yes 

RAP 2 39.5048 6.0275 0.0059 0.2676 Yes 
RPCC/RAP 5 151.6650 24.1431 <0.0001 0.6465 Yes 

The deviator stress is concluded to have direct effect on increasing permanent strain or 

stress ratio (σd/σc) as the confining pressure (σc) is constant. This conclusion is confirmed to 

Morgan (1966), Lashine et al. (1971), Barksdale and Hyde (1975), and Boyce (1975). 

Moreover, the permanent strain is found to reach a constant value at low deviator stresses and 

continue increasing with high strain rate at the end of the load sequence while high deviator 

stresses were applied. This finding confirmed the conclusion of Lashine et al. (1971) that 

permanent axial strain increases and reaches a constant value directly related to stress ratio. 

This also confirmed the conclusion reported by Boyce (1975) that the permanent strain 

reaches a constant value when a low stress level was applied and a large permanent strain 

develops and continues increasing at the end of the test.  

Relative density 

The resistance of UGMs to permanent deformation under repeated wheel loading is 

generally improved by increasing density (Lekarp et al. 2000b). In the field site the 95% 

relative density is a general target value for subbase compaction but the actual values might 

be varied throughout the field site. Consequently, the density which is specified as relative 

density in this study is important for studying the permanent deformation behavior of UGMs. 
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Although the target RD is varied in different levels, the target dry unit weight is varied at 

each RD level for different materials and same materials with different fines contents. The 

actual RD is also determined for each test and shown in the parenthesis in the legend of each 

figure which is shown in the following parts. 

Two relative densities of 104.3% and 118.8% were studied by conducting the ISU 100k 

tests on untrimmed slag materials. The 104.3% RD sample has about one time higher εp at 

the end of the test than the 118.8% RD sample (Figure 41). Four measured relative densities 

of 88.7%, 95.0%, 100.4%, and 104.1% were studied by conducting the ISU 100k tests on 

RPCC materials. The εp at the end of these tests does not show a clear relationship with RD 

(Figure 42). The reason could be the errors in the ISU 100k tests on RPCC that indicted by 

the εp changes in a wave form with increasing number of load applications. The same 

findings were concluded for the ISU 1k tests on RPCC materials (Figure 43). 

 
Figure 41. εp at 3.3% F200 for untrimmed slag samples (ISU 100k) 
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Figure 42. εp at 20.7 kPa (3.0 psi) σd for RPCC samples (ISU 100k) 

 
Figure 43. εp at 20.7 kPa (3.0 psi) σd for RPCC samples (ISU 1k) 
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Three target relative densities of 85.0%, 90.0%, and 95.0% were studied by conducting 

the NCHRP 598 tests. The measured relative density values are varied for each target level. 

When natural F200 of 7.9% was specified for crushed limestone samples, the 94.6% RD 

(target 90% RD) sample has the lowest εp at the end of each load sequence and the 103.7% 

RD (target 95% RD) sample has the highest εp for all load sequences (Figure 44). When 

2.2% F200 was specified, the 91.7% RD sample has the lowest εp at the end of each load 

sequence and the 87.0% RD sample has the highest εp for all load sequences (Figure 45). 

When 5.8% F200 was specified, the 96.2% RD sample has the lowest εp at the end of each 

load sequence and the 86.0% RD sample has the highest εp for all load sequences (Figure 

46). When 12.6% F200 was specified, the 95.7% RD sample has the lowest εp at the end of 

each load sequence except the last sequence and the 85.3% RD sample has the highest εp for 

all load sequences (Figure 47). In the last load sequence, the εp of the sample with 90.4% 

target RD increases at a higher rate than the samples with 95.7% and 85.3% target relative 

densities. The accumulated εp of the sample with 90.4% target RD exceed the accumulated εp 

of the sample with 95.7% target RD before the sequence ended (Figure 47).  

 
Figure 44. εp at natural 7.9% F200 for crushed limestone samples (NCHRP 598) 
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Figure 45. εp at reconstituted 2.2% F200 for crushed limestone samples (NCHRP 598) 

 
Figure 46. εp at reconstituted 5.8% F200 for crushed limestone samples (NCHRP 598) 
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Figure 47. εp at reconstituted 12.6% F200 for crushed limestone samples (NCHRP 598) 
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Figure 48. εp at natural 2.0% F200 for RAP samples (NCHRP 598) 

 
Figure 49. εp at reconstituted 1.6% F200 for RAP samples (NCHRP 598) 
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Figure 50. εp at reconstituted 5.6% F200 for RAP samples (NCHRP 598) 

 
Figure 51. εp at reconstituted 12.5% F200 for RAP samples (NCHRP 598) 
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When natural F200 of 3.5% was specified for RPCC/RAP samples, the 81.2% RD sample 

has the lowest εp at the end of the first five load sequences and the 77.0% RD sample has the 

highest εp for all load sequences (Figure 52). The εp of the sample with 81.2% RD increases 

at a higher rate than the samples with 95.4% RD. The accumulated εp of the sample with 

81.2% RD exceed the accumulated εp of the sample 95.4% RD at sequence No. 6 and the rest 

following sequences. The reason could be the large difference of approximately 9% between 

the target and the actual RD values. When 0.8% F200 was specified, the 99.0% RD sample 

has the lowest εp at the end of each load sequence and the 88.5% RD sample has the highest 

εp for all load sequences (Figure 53). When 6.0% F200 was specified, the 95.6% RD sample 

has the lowest εp at the end of each load sequence and the 86.3% RD sample has the highest 

εp for all load sequences (Figure 54). When 12.4% F200 was specified, the 95.6% RD sample 

has the lowest εp at the end of each load sequence and the 86.3% RD sample has the highest 

εp for all load sequences (Figure 55). Generally, the RPCC/RAP materials indicates that 

increased permanent strain with increasing relative densities 

 
Figure 52. εp at natural 3.5% F200 for RPCC/RAP samples (NCHRP 598) 
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Figure 53. εp at reconstituted 0.8% F200 for RPCC/RAP samples (NCHRP 598) 

 
Figure 54. εp at reconstituted 6.0% F200 for RPCC/RAP samples (NCHRP 598) 
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Figure 55. εp at reconstituted 12.4% F200 for RPCC/RAP samples (NCHRP 598) 

The statistical analysis for RD affecting the accumulated permanent strain at the end of 

each load sequence, six complete sequences were selected from the NCHRP 598 tests on 

crushed limestone samples, four complete sequences were selected for RAP samples, and six 

complete sequences were selected for RPCC/RAP samples.  

The statistical analyses conclude the RD is an insignificant factor for crushed limestone. 

The parameters of statistical analyses that were conducted for each material separately are 

summarized in Table 33.   

Manatt's RPCC/RAP 6% Target Fines

Load Cycles (N)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P
e
rm

a
n
e
n
t 

S
tr

a
in

, 
 p

 (
%

)

0

2

4

6

8

10

12

D-C28 target 85.0%RD (86.3%RD)

D-C32 target 90.0%RD 90.7%RD)

D-C36 target 95.0%RD (96.4%RD)

D-C28

D-C32

D-C36



 105 

Table 33. Statistical analysis for RD affecting εp of different materials samples 

Materials Sequence 
No. 

Degree 
of 

Freedom 

Sum of 
Squares F Ratio Probability

>F R2 SIG
? 

Crushed 
limestone 

S1 

2 

0.0042 0.6811 0.5304 0.1315 No 
S2 0.0126 0.2117 0.8131 0.0450 No 
S3 0.0729 0.0697 0.9332 0.0152 No 
S4 0.1154 0.0216 0.9787 0.0048 No 
S5 0.3819 0.0265 0.9739 0.0059 No 
S6 1.7930 0.0621 0.9402 0.0136 No 

RAP S1 0.9686 0.3198 0.7342 0.0664 No 
S2 1.5207 0.2538 0.7812 0.0534 No 
S3 2.8280 0.2045 0.8187 0.0434 No 

RPCC/R
AP 

S1 0.0005 0.0435 0.9576 0.0096 No 
S2 0.0045 0.0689 0.9339 0.0151 No 
S3 0.0622 0.0967 0.9088 0.0210 No 
S4 0.2427 0.1132 0.8942 0.0245 No 
S5 0.9246 0.2141 0.0811 0.0454 No 
S6 5.5228 0.5668 0.5863 0.1119 No 

Notes: SIG is abbreviation for significant 

The significance of RD affecting εp was also studied by conducting the statistical analysis 

on all sample without differentiate the load sequence number. These statistical analyses 

indicate that RD does not have significant factor affecting εp. The parameters of statistical 

analyses that were conducted for all materials are summarized in Table 34. 

Table 34. Statistical analysis for significance of RD affecting εp at the sequence end 

Materials 
Degree 

of 
Freedom 

Sum of 
Squares F Ratio Probability 

>F R2 Significant
? 

Crushed 
Limestone 

2 
1.0674 0.1185 0.8885 0.0034 No 

RAP 5.0584 0.5853 0.5626 0.0343 No 
RPCC/RAP 2.7926 0.4156 0.6616 0.0119 No 

The general finding from the NCHRP 598 tests confirmed the conclusion reported by 

Barksdale (1972) and Allen (1973) that the permanent strain decreases with increasing 

relative densities. However, for some tests, the permanent strain for samples with 90.0% 
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target RD could be varied. The statistical analyses results indicate possible effects of deviator 

stresses and material types on RD affecting permanent deformation behavior of UGMs. 

Fines content 

Fines content (F200) is the percentage of the materials passing the No. 200 sieve and can 

vary for UGMs during the entire pavement service life. Migration of fine materials from 

subbase to pavement surface lead to loss of pavement support and finally induced pavement 

distresses. The fines content was specified as a factor influencing permanent deformation 

behavior of UGMs in the literature review. Four fines contents of 3.3%, 4.5%, 7.0%, and 

9.0% were studied in the ISU 100k tests that were performed on the untrimmed slag 

materials. Although the sample with 7.0% F200 has higher εp at the test end than the sample 

with 3.3% F200, the permanent strains at the test ends of samples with 4.5% and 9.0% F200 are 

lowest in the four tests. The clear relationship between F200 and the accumulated permanent 

strain is not observed in the tests (Figure 56). 

 
Figure 56. εp at 41.2 kPa σd for untrimmed slag samples (ISU 100k) 
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contents are inversely related to the accumulated εp at the end of each load sequence (Figure 

57). Permanent strain of the sample with 12.6% F200 accumulates at very low strain rate and 

close to 0%/N at the first several load sequences where lower σd was applied and 

accumulates at higher strain rate when higher σd was applied. The same observations of fines 

contents affecting permanent deformation of crushed limestone materials are concluded on 

the samples with 90.0% target RD (Figure 58) and 95.0% target RD (Figure 59).  

 
Figure 57. εp at 85% target RD for crushed limestone samples (NCHRP 598) 
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Figure 58. εp at 90% target RD for crushed limestone samples (NCHRP 598) 

 
Figure 59. εp at 95% target RD for crushed limestone samples (NCHRP 598) 
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When 85.0% target RD was specified for the RAP samples, the natural 2.0% F200 sample 

has the highest permanent strain and the other samples show that the fines contents inversely 

relates to the accumulated εp at the end of each load sequence (Figure 60). The 12.5% F200 

sample has the lowest εp for all load sequences compared to other three samples has the same 

target RD and different fines contents. The same observations of fines contents affecting 

permanent deformation of RAP materials are drawn on the samples with 90.0% target RD 

(Figure 61) and 95.0% target RD (Figure 62Figure 58).  

 
Figure 60. εp at 85% target RD for RAP samples (NCHRP 598) 

85% RD

Load Cycles (N)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P
e
rm

a
n
e

n
t 

S
tr

a
in

, 
 p

 (
%

)

0

2

4

6

8

10

12

D-C13 target 0% F200 (1.6% F200)

D-C14 target natural F200 (2.0% F200)

D-C15 target 6% F200 (5.6% F200)

D-C16 target 12% F200 (12.5% F200)

D-C13

D-C14

D-C15

D-C16



 110 

 
Figure 61. εp at 90% target RD for RAP samples (NCHRP 598) 

 
Figure 62. εp at 95% target RD for RAP samples (NCHRP 598) 
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When 85.0% target RD was specified for the RPCC/RAP samples, the samples with fines 

contents of 0.8%, 6.0%, and 12.4% show that the fines contents inversely relates to the 

accumulated εp at the end of each load sequence and the sample with 0.8% fines content has 

the highest εp for all load sequences (Figure 63). However, the natural F200 sample has higher 

strain rate than the other three samples. The εp of the natural F200 sample are lower than the εp 

of the 0.8% and 6.0% F200 samples at the first five load sequences, but the εp of the natural 

F200 sample increases to be higher than the εp of the 0.8% F200 sample and closer to the εp of 

the 6.0% F200 sample. 

The same observations of fines contents affecting permanent deformation of RPCC/RAP 

materials are drawn on the samples with 90.0% target RD (Figure 64) and 95.0% target RD 

(Figure 65). The plots of εp accumulated with the number of load cycles for RPCC/RAP 

samples with different fines contents are shown in next two pages.  

 
Figure 63. εp at 85% target RD for RPCC/RAP samples (NCHRP 598) 
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Figure 64. εp at 90% target RD for RPCC/RAP samples (NCHRP 598) 

 
Figure 65. εp at 95% target RD for RPCC/RAP samples (NCHRP 598) 
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The samples with natural fines contents are always show much different trends that the 

permanent strain was accumulated with increasing number of load cycles in different strain 

rate. The RPCC/RAP samples with natural fines content have the permanent strains increase 

to be higher than the permanent strains of the 6.0% F200 samples at the same number of load 

cycles after first five load sequences. Moreover, the crushed limestone and RAP samples 

with natural fines contents always have higher permanent strain than the samples with 0% 

target F200. 

One reason could be the materials preparation methods. The materials were prepared by 

adding more fines to or removing extra fines from the dried original materials which were 

used to prepare natural F200 sample. The structures between fine particles and large particles 

were changed. For example, the extra fine particles were added to the original materials and 

the fine particles might be adhered to form larger particles while they were expected to 

adhere to the larger particles surface.  

Low dry unit weights were determined in the relative density testes for the natural F200 

samples could be another reason. Although the target relative densities were specified for all 

tests samples, the dry unit weights of all crushed limestone and RAP samples with natural 

F200 are lower than the dry unit weights of the samples with target fines contents and the dry 

unit weights of all RPCC samples with natural fines content are close to the dry unit weights 

of the samples with 0% target F200. Therefore, the observations that were concluded on 

relations between the εp of the natural and the target F200 samples for the crushed limestone 

and RAP materials are different from the observation on the RPCC/RAP materials. The dry 

unit weights of each material were calculated based on the maximum and minimum dry unit 

weights that were obtained by conducting the RD tests at 0.0% moisture content. However, 

the original materials have more fines adhered to the larger particles surface and fewer fines 

fill the voids among particles. The materials with target fines contents were dried and sieved 

in materials preparation so these materials have less fines adhere to the larger particles 

surface and more fines fill the voids between particles. The difference in the proportion of 

fines adhered to larger particles surface might cause lower dry unit weights and higher εp at 

the same fines content. 
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According to the εp at the end of each load sequence for 0.0%, 6.0%, and 12.0% target 

F200 samples of crushed limestone, RAP, and RPCC/RAP materials, the permanent strains are 

inversely related to fines contents. This finding are conflict with the conclusion reported by 

Barksdale (1972), Thom and Brown (1988), Kancherla (2004), Mishra et al. (2009) and 

Hussian et al. (2010) that increasing fines content causes decrease in resistance of UGMs to 

permanent deformation.  

The higher permanent strain at the same deviator stress and number of load cycles 

indicate lower resistance to permanent deformation. The possible reason caused the different 

conclusion might be the samples were compacted to the same level of RD not the same 

values of dry unit weight in this research while other researchers compacted the samples to 

the same dry unit weight (Hussian et al. 2010) or similar dry unit weights with less than 

1 kN/m3 difference (Mishra et al. 2009).  

However, Belt et al. (1997) reported a similar results with the conclusion in this study 

that higher fines content results in lower fines content except the fines content is very high 

(>15%). Moreover, Mishra et al. (2009) also found the permanent deformation is lower in 

dolomite materials with 8% fines than the same materials with 4% fines, although they also 

found that the permanent deformation in gravel materials increased with increasing fines 

content from 4% to 16%. The stress level has been identified as important factor affecting 

permanent deformation, so another reason lead to different conclusions in study from some 

findings in previous studies on relationship between fines content and the accumulated 

permanent strain could be stress level. Crushed limestone materials do not show purely 

increase in εp with increasing fines content (Figure 66). 
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Figure 66. The accumulated εp at load sequence 1 end for crushed limestone samples 
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strain for each material (Table 35).   
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Table 35. Statistical analysis for F200 affecting εp for all samples of each material 

Materials Sequence 
No. 

Degree 
of 

Freedom 

Sum of 
Squares F Ratio Probability 

>F R2 SIG
? 

Crushed 
limestone 

S1 

3 

0.0232 6.8853 0.0132 0.7208 Yes 
S2 0.2467 18.9518 0.0005 0.8766 Yes 
S3 4.5344 48.5349 <0.0001 0.9479 Yes 
S4 23.8617 181.4911 <0.0001 0.9855 Yes 
S5 64.4158 200.6485 <0.0001 0.9869 Yes 
S6 128.6572 111.5199 <0.0001 0.9766 Yes 

RAP 
S1 12.8867 20.0877 0.0004 0.8828 Yes 
S2 26.1983 30.5358 <0.0001 0.9197 Yes 
S3 61.4095 44.8792 <0.0001 0.9439 Yes 

RPCC/R
AP 

S1 0.0533 45.5114 <0.0001 0.9447 Yes 
S2 0.2818 52.8763 <0.0001 0.9520 Yes 
S3 2.8128 52.0217 <0.0001 0.9512 Yes 
S4 9.4309 54.9623 <0.0001 0.9537 Yes 
S5 19.0970 40.4824 <0.0001 0.9382 Yes 
S6 42.3812 16.1748 0.0009 0.8585 Yes 

Notes: SIG is abbreviation for significant 

However, the fines content is determined to have insignificant effect on permanent strain 

when materials types were not differentiated (Table 36) and only three target fines contents 

were studied because the natural fines content are largely different (up to 75%) for the three 

tested materials. 

Table 36. Statistical analysis for significance of F200 affecting εp for all samples 

Materials Degree of 
Freedom 

Sum of 
Squares F Ratio Probability

 >F R2 Significant
? 

Crushed 
Limestone 

3 
121.0120 14.3687 <0.0001 0.3880 Yes 

RAP 91.1498 17.2092 <0.0001 0.6174 Yes 
RPCC/RAP 40.9308 4.7908 0.0044 0.1745 Yes 

 

Materials type 

The materials type is an important factor affecting the permanent deformation behavior. 

The researchers (Lerkarp et al. 1996; Bernertet al. 2000; Rodgers et al. 2008; Werkmeister 

2003) all reported different resistance to deformation levels for different materials. The 
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materials used for subbase construction are varied, and the crushed limestone, RAP, and 

RPCC/RAP were selected for this study to learn the difference in the resistance to permanent 

deformation of virgin materials and recycled materials. 

The NCHRP 598 tests results for all the samples indicate that RAP usually have the 

lowest resistance, followed by RPCC/RAP, and the crushed limestone have the highest 

resistance to the permanent deformation when same target fines content, relative density, and 

deviator stress were specified. 

The permanent strain of RAP samples continuously increased with small increase in the 

strain rate at different deviator stress and shows the trend to reach a constant value at the end 

of each load cycles. RAP has the highest permanent strain at the end of each load sequence 

compared to other two materials. The reasons might be the void ratio of the asphalt coating 

on the particles surfaces is higher than the void ratio of aggregates and the asphalt coating 

break down under high deviator stresses to fill the voids between particles. 

The permanent strain of RPCC/RAP samples also continuously increased with small 

increase in the strain rate at different deviator stress and shows a sudden failure in the test. 

For example, the permanent strain of sample D-C36 is about 3.0% at the end of the 8th load 

sequence and reaches 10% at the 230 load cycles of the 9th load sequence. The sudden 

increase in the permanent strain for the RPCC/RAP samples is because the sample cannot 

support the high deviator stress (i.e. 1103.2 kPa) and cracks. The RAP particles in this 

RPCC/RAP material are very low in proportion and not specified in this study. 

The permanent strain of crushed limestone samples continuously increased with small 

increase in the strain rate at the low deviator stress and with large increase in the strain rate at 

the high stress level.  For example, the permanent strain of sample D-C8 has less than 0.2% 

accumulated at the end of the 8th load sequence and reaches 1.3% at the end of the 9th load 

sequence and 4.6% at the test end. This indicates the crushed limestone samples starts to 

form crack and losing interlocking between particles.  

This study confirmed the finding reported by Bennert et al. (2000) that the RPCC 

materials have lower permanent strain than the RAP materials. Materials type is proved using 

statistical analysis to have significance effect on permanent strain at the end of first four load 

sequences. The parameters of statistical analysis are summarized (Table 37).  
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Table 37. Statistical analysis for significance of materials type affecting εp at the end of 

the sequence 

Sequence 
No. 

Degree 
of 

Freedom 

Sum of 
Squares F Ratio Probability

 >F R2 Significant
? 

S1 

2 

4.6196 9.7212 0.0008 0.4475 Yes 
S2 11.8058 11.6294 0.0003 0.4926 Yes 
S3 39.8884 14.8260 <0.0001 0.5527 Yes 
S4 103.9763 21.1735 <0.0001 0.6383 Yes 

 

Permanent deformation prediction model 

The accumulated permanent strain was predicted with the applied number of load cycles 

(N) by using the Barksdale (1972) model (Equation 20) in this study: 

                 (20) 

where: ε1, p = accumulated permanent axial strain; 

N= number of load cycles; and  

a, b = regression parameters. 

Bennert et al. (2000) reported a good fit by using the Barksdale model to fit the 

accumulated permanent strain of RPCC, RAP, and aggregate base course materials. The 

Barksdale model is used as the start in studying the permanent deformation prediction.  

Two samples from each of the ISU 100k tests and the ISU 1k tests were fitted by using 

the Barksdale model. The large differences between the predicted and the measured 

permanent strain are observed on the ISU 100k tests because the measured values are not 

constant (Figure 67). The small difference between the predicted and the measured 

permanent strain are observed on the ISU 1k tests (Figure 68). This model predicts the trend 

of the permanent strain to reach a constant value at certain number of load cycles. However, 

the ISU 100k and ISU 1k tests were conducted with low deviator stress less than 103.4 kPa. 

According to the study on important factors affecting the permanent deformation behavior of 

UGMs, the Barksdale model is also used to fit the measured accumulated permanent strains. 
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Figure 67. Predicting εp using Barksdale model on two ISU 100k εp test samples 

 
Figure 68. Predicting εp using Barksdale model on two ISU 1k εp test samples 
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The prediction of sample D-A8 has very low R2 value of 0.0593 which indicates only 

5.93% of the measured data points could be explained by the prediction model. The 

predictions of permanent strain for other three samples are better to fit the measured data 

points as indicated by the high R2 values. This statistical conclusion confirmed the 

observations that were discussed earlier. The Barksdale’s model parameters were 

summarized for two ISU 100k and two ISU 1k tests. 

Table 38. Barksdale’s model parameters for two ISU 100k and two ISU 1k samples 

Test No. a b R2 
D-A3 0.0250 0.0545 0.8848 
D-A8 -0.0075 0.0046 0.0593 
D-B4 0.0780 0.0125 0.9652 
D-B1 0.0653 0.0066 0.9876 

The NCHRP 598 tests were designed to include up to 10 deviator stress levels, so the 

Barksdale model is used to fit the measured accumulated permanent strain for each load 

sequence separately. The Barksdale model fitted the accumulated permanent strain of two 

crushed limestone samples with natural fines content and 0.0% target fines content. The 

number of load cycles (N) is from 51 to 1051 to void the effects of (0, 0) origin on determine 

the parameters a and b. At low deviator stress up to 413.7 kPa, the model shows a good fit to 

the measured permanent strain. At high deviator stress from 551.6 kPa to 827.4 kPa, the 

differences between the predicted and measured permanent strain are clearer (Figure 69). The 

predicted values are negative at the beginning of the load sequences where the high deviator 

stresses were applied. The negative value is due to the reversed S shape transition of 

permanent strain between two load sequences under high deviator stresses. The reversed S 

shape describes the accumulated permanent strain first increases with increasing strain rate 

then increases with decreasing stain rate. This reversed S shape might be an indicator of the 

effects of stress history in the tests and the question to the assumption of no effect from 

previous load sequences in the NCHRP 598 tests. 
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Figure 69. Measured and Barksdale’s model predicted εp for one NCHRP 598 εp test 

sample (D-C3) 

The similar observations are concluded on the crushed limestone sample with 0.0% target 

fines content (D-C1) as the crushed limestone sample with natural fines content (D-C3). The 

large difference between the predicted and the measured permanent strains in the last load 

cycle, because small amount of data points were collected for this load sequence as the test 

was terminated after 10.0% εp reached. The lower accumulated permanent strain at the end of 

load sequence No. 7 was predicted than the measured value. The reason could be the 

Barksdale’s model always predicts a trend to reach constant permanent strain after certain 

number of load cycles was applied. This lead to a question of different models could be used 

at different deviator stresses.  
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Figure 70. Measured and Barksdale’s model predicted εp for one NCHRP 598 εp test 

sample (D-C1) 

According to the statistical analyses on the prediction of accumulated strain from the 

applied number of load cycles, the prediction is good to fit the measured data points as R2 is 

higher than 0.9 for all load sequences in two tests on the crushed limestone samples. The 

differences between the predicted and measured permanent strain are indicated as lower R2 

values for load sequences with high deviator stresses (Table 39).  

Table 39. Barksdale’s model parameters for two crushed limestone samples 

Sequence 
No. 

Sample D-C1 Sample D-C3 
a b R2 a b R2 

S1 0.0586 0.0147 0.9682 0.0336 0.0529 0.9936 
S2 0.0881 0.0193 0.9838 -0.1262 0.1895 0.9964 
S3 0.0902 0.0499 0.9905 -0.7291 0.7776 0.9877 
S4 -0.1022 0.1950 0.9833 -1.0255 1.5028 0.9969 
S5 -1.0311 0.8000 0.9834 -0.3145 2.0205 0.9947 
S6 -2.1728 1.8194 0.9746 0.5819 2.7104 0.9883 
S7 -3.1367 3.2748 0.9646 5.6270 1.7212 0.9237 
S8 -1.4480 4.3106 0.9086 — — — 

Notes: — means no value 
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The parameters a and b of Barksdale’s model for each load sequence except the last load 

sequence where the tests were terminated are plotted with the deviator stresses, because the 

deviator stress was determined as an important factor affecting accumulated permanent 

strain. The parameter a for two crushed limestone samples are shown in Figure 71, and 

quadratic polynomial relationship (Equation 21) is specified to describe the relationship 

between the parameter a and the deviator stress.  

                 
  (21) 

where: a = parameter a in Barksdale’s model; 

k1, k2, and k3 = regression parameters; and 

σd = deviator stress (kPa). 

 
Figure 71. Parameter a of Barksdale’s model at different σd for two samples 

The parameter b for two crushed limestone samples are shown in Figure 74, and 

exponential growth with stirling model (Equation 22) relationship is specified to describe the 

relationship between the parameter b and the deviator stress. 

      
   ( 

       )

  
 (22) 

where: b = parameter a in Barksdale’s model; 

k4, k5, and k6 = regression parameters; and 

σd = deviator stress (kPa). 
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Figure 72. Parameter b of Barksdale’s model at different σd for two samples 

Based on the relationships between the parameters a and b of Barksdale’s model and the 

deviator stresses, a modified model was proposed as (Equation 23): 

                    
  [   

   ( 
       )

  
]       [            ] (23) 

where: ε1, p = accumulated permanent axial strain; 

N = number of load cycles;  

S = number of load sequences; 

k1, k2, k3, k4, k5, and k6 = regression parameters; and 

σd = deviator stress (kPa). 

This modified model accounts for the effects of deviator stresses on permanent 

deformation. Moreover, this model is modified to fit the data points obtained in NCHRP 598 

tests. This modified model is used to predict the accumulated permanent strain with 

increasing number of load cycles and deviator stresses on the two crushed limestone samples 

which were used for finding the relationship between the Barksdale’s model regression 

parameters deviator stress (Figure 73). The good fits are shown in the figure, but the 

predicted permanent stains are much lower than the measured values. The reason could be 

the transitions of permanent strains between two load sequences are not explained by the 
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Barksdale’s model. The parameters of modified model predicting accumulated permanent 

strain for two crushed limestone samples (Figure 73) are summarized in Table 40. 

 
Figure 73. Predicting εp with increasing N using modified model on an NCHRP 598 εp 

test sample 

Table 40. Modified model parameters for two crushed limestone samples 

Parameters D-C1 D-C3 
k1 2.83E-01 1.15E+00 
k2 -1.38E-04 -1.36E-02 
k3 -4.68E-06 2.14E-05 
k4 -8.08E-02 -3.71E-01 
k5 3.33E-04 4.50E-03 
k6 5.11E-03 2.98E-04 
R2 9.97E-01 9.99E-01 

The modified model is also used to predict the accumulated permanent strain for test 

No.D-C12, D-C24, and D-C36. However, the modified model does not provide good fit for 

these three tests especially for the D-C12 samples with 12.0% target F200 and 95.0% target 

RD. The large offset in the predicted values from the measure values indicates the model 
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regression parameters might also be affected by fines contents and relative densities. The 

predicted and measured permanent strains for the three samples are compared in Figure 74. 

 
Figure 74. Predicting εp with increasing N using modified model on three NCHRP 598 

εp test sample 

The regression parameters of the modified model for the three samples (Figure 74) are 

listed in (Table 41). 

Table 41. Modified model parameters for three materials samples 

Parameters D-C12 D-C24 D-C36 
k1 -1.26E+00 -6.12E-01 1.92E+00 
k2 1.17E-03 -2.93E-03 -1.15E-02 
k3 -1.15E-06 1.13E-05 1.28E-05 
k4 5.39E-15 1.96E-01 -8.76E-01 
k5 2.52E-02 1.92E-03 7.59E-03 
k6 4.37E-01 -5.89E-04 -5.75E-03 
R2 8.03E-01 9.76E-01 8.15E-01 
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Breakage index 

To quantify the degradation of aggregate particles due to sample compaction and εp test, 

BI was calculated for each εp test using Equation 24.  

 BI=    

 
 (24) 

where: BI= breakage index; 

A=area between the particle size distribution curve of the original materials and after the 

permanent deformation test; and 

B= area between the particle size distribution curve of the original materials and the 0% 

passing base line. 

The breakage of particles was calculated based on the change in particle size distribution 

curves. In this study, the BI was calculated for each test sample to quantify the change in 

particle size due to both of sample compaction and εp test loading. The BI due to sample 

compaction was not calculated as result of the variance in particle size distribution among 

samples. The difference in the particle size distribution of the materials before and after the 

NCHRP 598 test on a crushed limestone sample are shown in Figure 75. The area between 

two particle size distribution curves of this crushed limestone sample is very small compared 

to the area below the particle size distribution curve to the reference line (0% passing). 

 
Figure 75. Gradation curves used for calculating BI for a crushed limestone sample 
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BI was calculated for each sample for NCHRP 598 test. Crushed limestone samples have 

BI less than 4.5% and most samples have positive BI values. RAP samples have BI varied in 

large approximate range of -7 to +2%. The large negative values of BI for RAP samples 

might be due to the regroup of the particles. The large applied force in the NCHRP tests 

pushed the asphalt coating into the voids and the asphalt coating binds the small particles to 

the large particles and forms larger particles. The sample materials were broken down by 

hand force and oven-dried for mechanical sieve analysis. When the sample cools to the room 

temperature, the asphalt binder hardened from the relative soft state and larger particles can 

resist force from mechanical sieve analysis to break down. RPCC/RAP samples have BI 

varied in the approximate range from -2 to +4%. The negative values might be due to 

regroup of the particles and variance between the materials sample. Because the material 

used to determine the pre-test particle size distribution is a sample from a large amount of 

materials and the material used to determine the post-test particle size distribution is another 

sample from the same materials source. However, the variance of particles in sampling is not 

able be fully eliminated. Variance in sampling might has larger effect on the samples with 

low BI. The BI for all NCHRP 598 test samples are plotted with the actual fines contents of 

the samples () and the detailed data are listed in Figure 76. 

 
Figure 76. BI for all NCHRP 598 test samples 
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Table 42. BI summary for all NCHRP 598 εp test samples 

Materials Test No. Fines content (%) BI (%) Target Pre-test Post-test 
Crushed 
Limestone 

D-C1 0.0 2.2 3.0 2.4092 
D-C2 6.0 5.8 6.6 1.4394 
D-C3 natural 7.9 9.6 -1.5901 
D-C4 12.0 12.6 13.2 1.6270 
D-C5 0.0 2.2 2.8 -0.5998 
D-C6 6.0 5.8 6.3 -0.0711 
D-C7 natural 7.9 9.8 -1.9122 
D-C8 12.0 12.6 12.9 2.2822 
D-C9 0.0 2.2 3.1 3.7179 
D-C10 6.0 5.8 6.6 2.4385 
D-C11 natural 7.9 10.3 1.2880 
D-C12 12.0 12.6 12.8 1.5195 

RAP D-C13 0.0 1.6 2.1 -0.5312 
D-C14 natural 2.0 2.2 -7.0029 
D-C15 6.0 5.6 6.4 -0.0873 
D-C16 12.0 12.5 10.1 -3.5844 
D-C17 0.0 1.6 1.6 0.6453 
D-C18 natural 2.0 2.4 -2.4497 
D-C19 6.0 5.6 5.4 -1.2036 
D-C20 12.0 12.5 10.0 -2.2259 
D-C21 0.0 1.6 2.0 1.4263 
D-C22 natural 2.0 2.5 -4.4030 
D-C23 6.0 5.6 6.1 1.7918 
D-C24 12.0 12.5 8.7 -5.0307 

RPCC/RAP D-C25 0.0 0.8 1.4 4.7950 
D-C26 natural 3.5 3.7 1.3578 
D-C27 6.0 6.0 6.3 3.0762 
D-C28 12.0 12.4 12.2 2.2793 
D-C29 0.0 0.8 1.4 1.1468 
D-C30 natural 3.5 3.5 1.1242 
D-C31 6.0 6.0 6.7 2.1408 
D-C32 12.0 12.4 13.2 4.1308 
D-C33 0.0 0.8 1.4 0.1188 
D-C34 natural 3.5 3.5 2.3974 
D-C35 6.0 6.0 6.1 -0.1834 
D-C36 12.0 12.4 13.3 4.3033 
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Resilient Modulus 

Results related to resilient modulus (Mr) are presented in four sections, significance of 

samples characteristics, resilient moduli prediction, assessment of possible errors in Mr tests, 

and unconsolidated undrained shear strength. 

Resilient modulus tests were conducted on crushed limestone, RAP, and RPCC/RAP 

materials for studying the resilient modulus behavior of different UGMs. Fines contents and 

relative densities are varied for studying the effects on the resilient modulus behavior of all 

the UGMs. Mr values were directly calculated by averaging the system generated data of last 

five cycles in each load sequence. Stress levels and number of load cycles are same as 

AASHTO T-307 (99) specified load sequences for base/subbase materials that were 

summarized in Methods chapter. Appendix B provides resilient modulus sample calculations. 

The actual moisture contents (w) of all samples are within ±0.2% from the target 

moisture content of each material. The actual RD of crushed limestone samples are less than 

7% RD, of RAP samples are less than 4% RD, and of RPCC/RAP samples are less than 11% 

RD different from the target RD. The crushed limestone samples were numbered from M1 to 

M12, the RAP samples were numbered from M13 to M24, the RPCC/RAP samples were 

numbered from M25 to M36 and the target and the actual values of all samples 

characteristics were also summarized in Table 43 for crushed limestone samples, in Table 44 

for RAP samples, and in Table 45 for RPCC/RAP samples.  

Table 43. The target and actual characteristics of Mr tests crushed limestone samples 

Test 
No. 

F200 (%) w (%) RD (%) γd (kN/m3) 
Target Actual Target Actual Target Actual Target Actual 

M1 0.0 2.2 

2.3 

2.4 

85.0 

86.6 18.99 19.06 
M2 6.0 5.8 2.4 86.2 19.47 19.52 
M3 natural 7.9 2.5 87.4 17.65 17.68 
M4 12.0 12.6 2.5 85.5 20.33 20.35 
M5 0.0 2.2 2.2 

90.0 

92.1 19.19 19.28 
M6 6.0 5.8 2.4 91.2 19.70 19.76 
M7 natural 7.9 2.5 96.3 17.71 17.78 
M8 12.0 12.6 2.5 90.4 20.55 20.57 
M9 0.0 2.2 2.2 

95.0 

97.5 19.40 19.50 
M10 6.0 5.8 2.4 96.2 19.95 20.01 
M11 natural 7.9 2.4 101.0 17.76 17.83 
M12 12.0 12.6 2.5 95.7 20.78 20.81 
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Table 44. The target and actual characteristics of Mr tests RAP samples 

Test 
No. 

F200 (%) w (%) RD (%) γd (kN/m3) 
Target Actual Target Actual Target Actual Target Actual 

M13 0.0 1.6 

2.9 

3.0 

85.0 

86.0 15.75 15.78 
M14 natural 2.0 2.7 88.6 14.92 15.01 
M15 6.0 5.6 2.9 86.2 17.01 17.01 
M16 12.0 12.5 2.9 86.1 17.62 17.67 
M17 0.0 1.6 2.7 

90.0 

92.4 15.89 15.96 
M18 natural 2.0 2.8 93.3 15.05 15.13 
M19 6.0 5.6 2.9 91.6 17.14 17.20 
M20 12.0 12.5 2.8 91.6 17.81 17.87 
M21 0.0 1.6 2.9 

95.0 

96.3 16.03 16.07 
M22 natural 2.0 2.8 98.1 15.17 15.25 
M23 6.0 5.6 2.9 96.3 17.30 17.36 
M24 12.0 12.5 2.9 96.3 18.00 18.05 

Table 45. The target and actual characteristics of Mr tests RPCC/RAP samples 

Test 
No. 

F200 (%) w (%) RD (%) γd (kN/m3) 
Target Actual Target Actual Target Actual Target Actual 

M25 0.0 0.8 

6.0 

6.0 

85.0 

86.8 15.26 15.31 
M26 natural 3.5 6.2 87.3 16.12 16.17 
M27 6.0 6.0 6.5 84.3 16.77 16.73 
M28 12.0 12.4 6.2 85.5 17.54 17.56 
M29 0.0 0.8 5.9 

90.0 

92.5 15.41 15.48 
M30 natural 3.5 7.7 79.1 16.22 16.01 
M31 6.0 6.0 5.9 91.7 16.96 17.03 
M32 12.0 12.4 6.0 91.2 17.74 17.79 
M33 0.0 0.8 5.8 

95.0 

99.1 15.56 15.69 
M34 natural 3.5 5.7 102.5 16.32 16.47 
M35 6.0 6.0 6.2 95.6 17.17 17.19 
M36 12.0 12.4 6.2 95.2 17.95 17.96 

The average resilient modulus value of last five cycles in each load sequence was 

calculated for all load sequences and plotted with load sequence number for all Mr tests 

conducted on each material separately. The Mr values are within the range of 50 to 

1,100 MPa for crushed limestone samples (Figure 77). The Mr values are within the range of 

50 MPa to 700 MPa for RAP samples (Figure 78). The Mr values are within the range of 

50 MPa to 600 MPa for RPCC/RAP samples (Figure 79). 
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Figure 77. Resilient moduli summary for Mr tests on crushed limestone samples 

 
Figure 78. Resilient moduli summary for Mr tests on RAP samples 
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Figure 79. Resilient moduli summary for Mr tests on RPCC/RAP samples 
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Mr values at low stress levels for RAP materials (Figure 78). Although the trend of increasing 

Mr could be obtained at higher stress levels are observed, the Mr values are not continuously 

increasing with increasing stress levels. This finding is not fully agreed the conclusion that 

reported by Sweere (1990) and Kolisoja (1997) that Mr increases rapidly with increasing sum 

of principal stresses and confining pressure and the conclusion that drawn by Wolfe (2011) 

that resilient moduli of granular materials increased with load sequences. Because Mr values 

are observed to decrease when increasing σd and constant σc were applied. Morgan (1996) 

also reported that the Mr slightly decreases with increasing σd and constant σc, but continuous 

decreases in Mr values are not observed in this study. Mr values are not linearly related to the 

sum of deviator stress and confining pressure. Stress levels have significant effects on the 

resilient modulus for UGMs while the statistical analysis was conducted on each material 

separately (Table 46).  

Table 46. Statistical analysis on significance of RD affecting Mr values 

Materials Degree of 
Freedom 

Sum of 
Squares F Ratio Probability 

>F R2 Significant
? 

Crushed 
limestone 

14 
4141510.1 19.5378 <0.0001 0.6237 Yes 

RAP 1281584.6 14.7797 <0.0001 0.5564 Yes 
RPCC/RAP 1163992.0 19.3927 <0.0001 0.6220 Yes 

 

Relative density 

Generally, the density increases in granular materials would cause the base/subbase layer 

to be stiffer and resilient deformation subjected to repeated load to be reduced. This indicates 

that higher densities generally result in higher resilient moduli at the same stress levels. 

However, the literature review does not conclude a clear effect of density on resilient 

response.  

Four randomly selected examples for the three tested material are shown in this section 

and the entire results could be found in Appendix B. The Mr values are different for the 

samples with different relative density, but no clear relationship between the Mr and RD 

could be drawn. Because Mr values of the samples at different relative densities reach the 

maximum at different load sequences.  
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For example (Figure 80), the 96.2% RD sample has maximum Mr value at sequence 15 

(σB ≈ 0.71), the 91.2% RD sample has maximum Mr value at sequence 7 (σB ≈ 0.3), and the 

86.2% RD sample has maximum Mr value at sequence 1 (σB ≈ 0.09). Moreover, the 90.4% 

RD sample nearly has the highest Mr values for all load sequences except the last three 

compared to other two samples (85.5% and 95.7% RD) of this crushed limestone material 

with 12.6% F200 (Figure 81). However, the 86.0% RD sample has the highest Mr values for 

all load sequences compared to other two samples (92.4% and 98.1% RD) of this RAP 

material with 1.6% F200 (Figure 82). The same observation that 85.5% RD sample has the 

highest Mr values can be concluded for the RPCC/RAP materials with 12.4% F200 (Figure 

83). However, the higher Mr cannot be specified between the sample with 91.2% and 95.2% 

RD samples.  

Therefore, the same conclusion is not bale to be drawn for all samples. This confirmed 

the conclusion that reported by Thom and Brown (1989) and Wolfe (2011) that the effect of 

density is relatively insignificant and the Mr values are not clearly influenced by the density 

alone. The statistical analysis show that the relative density does not have significant effect 

on Mr values for all three samples and the statistical analysis was conducted separately for 

each material (Table 47). 

Table 47. Statistical analysis on significance of RD affecting Mr values 

Materials Degree of 
Freedom 

Sum of 
Squares F Ratio Probability 

>F R2 SIG? 

Crushed 
limestone 

2 
123784.57 1.6812 0.1891 0.0186 No 

RAP 685.49 0.0263 0.9740 0.0003 No 
RPCC/RAP 41839.50 2.0239 0.1352 0.0224 No 

Notes: SIG is abbreviation for significant 
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Figure 80. Comparison of Mr at reconstituted 5.8% F200 for crushed limestone samples 

 
Figure 81. Comparison of Mr at reconstituted 12.6% F200 for crushed limestone samples 
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Figure 82. Comparison of Mr at reconstituted 1.6% F200 for RAP samples 

 
Figure 83. Comparison of Mr at reconstituted 12.4% F200 for RPCC/RAP samples 
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Fines content 

Fines content is not a fully understood factor that could affect resilient modulus values in 

the literature review. Measured Mr values are not indicating a good relationship to the fines 

contents in this study. However, the Mr data points are plotted for the samples with varied 

fines content at the same target relative densities to learn the effect of fines content. Although 

no consistent conclusion could be drawn to define the linear relationship between fines 

content and resilient moduli, the difference in Mr values between samples with varied fines 

contents are clear. 

The natural fines content samples always have large difference from the three target fines 

content samples, so the target fines content samples are compared separately from the natural 

fines content samples. The samples with about 12.0% fines content have the largest Mr 

values in some examples, like 85.0% (Figure 84) and 90.0% (Figure 85) target RD crushed 

limestone samples, 90.0% (Figure 88) and 95.0% (Figure 89) target RD RAP samples, and 

all RPCC samples. This finding is conflict with the conclusion reported by Thom and Brown 

(1987), Kamal et al. (1993), and Kancherla (2004) that the resilient modulus generally 

decreases with increasing fines content. However, Hicks and Monismith (1971) observed 

some increase in resilient modulus with increasing fines content for fully crushed aggregates 

and confirmed the findings from some samples in this study. Relationships between 6.0% 

target F200 and 0.0% target F200 affecting Mr values is not determined. The 0.0% target F200 

samples could have the higher Mr values than the 6.0% target F200 samples for some 

materials, like the 85.0% target RD crushed limestone materials (Figure 84), 85.0% target 

RD RAP materials (Figure 84), and 85.0% target RD RPCC/RAP materials (Figure 90). The 

6.0% target F200 samples could have the higher Mr values than the 0.0% target F200 samples 

for some materials, like the 90.0% (Figure 85) and 95.0% (Figure 86) target RD crushed 

limestone materials, 95.0% target RD RAP materials (Figure 89), and 90.0% (Figure 91) and 

95.0% (Figure 92) target RD RPCC/RAP materials. 

These findings indicate the fines content have effect on Mr values and correlated to 

relative densities. The resilient modulus generally increases with increasing fines content 

when high relative densities (95.0% RD) are reached and the lowest resilient modulus 

generally reached at 6.0% fines content when low relative densities (85.0%RD) are reached. 
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Figure 84. Comparison of Mr at 85% RD for crushed limestone samples 

 
Figure 85. Comparison of Mr at 90% RD for crushed limestone samples 
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Figure 86. Comparison of Mr at 95% RD for crushed limestone samples 

 
Figure 87. Comparison of Mr at 85% RD for RAP samples 
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Figure 88. Comparison of Mr at 90% RD for RAP samples 

 
Figure 89. Comparison of Mr at 95% RD for RAP samples 
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Figure 90. Comparison of Mr at 85% RD for RPCC/RAP samples 

 
Figure 91. Comparison of Mr at 90% RD for RPCC/RAP samples 
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Figure 92. Comparison of Mr at 95% RD for RPCC/RAP samples 
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which contain angular to subangular shape particles spread load better than the recycled 

materials which always have coating materials (e.g., asphalt binder, cement hydration 

products) on the particles surface. Hicks (1970), Barksdale and Itani (1989) and Thom and 

Brown (1989) all reported that angular crushed aggregates have higher Mr values than round 

uncrushed gravels. Bennert et al. (2000) also studied the resilient modulus of RAP and RPCC 

and concluded similar values for these two materials up to 600 MPa which is close to the 

values obtained for the RAP and RPCC/RAP materials tested in this study.  

The significance of material types, RD, and F200 affecting the Mr values of UGMs were 

concluded by using the statistical method. In order to conduct the statistical analyses, the 

samples with natural fines content were excluded from the analyses. The natural F200 of each 

material were varied in the range of 40% to 75% so the natural F200 is not a fixed factor in the 

analysis on all samples. The conclusion from the statistical analysis on all samples agreed 

with the conclusion from the statistical analysis on each material. RD is concluded as a factor 

insignificantly affecting Mr of UGMs while it ranges from 80% to 95%. F200 is concluded as 

a factor significantly affecting Mr of UGMs while it ranges from 0% to 12%. Moreover, 

material type is concluded as a factor significantly affecting Mr of UGMs when the crushed 

limestone, RAP, and RPCC/RAP were studied. The statistical analysis that was performed 

for all samples except the samples with natural F200 determined the significance of each 

factor (Table 49).  

Table 49. Statistical analysis summary for significance of F200, RD, and materials type 

affecting Mr of all samples 

Factors Degree of 
Freedom 

Sum of 
Squares F Ratio Probability 

>F R2 SIG? 

Material type 2 2126319.2 51.1181 <0.0001 0.2028 Yes 
Notes: SIG is abbreviation for significant 

 

Resilient modulus prediction model 

Resilient moduli data are used to determine regression coefficients (k values) for finite 

element analysis or to determine a single resilient modulus value to indicate the stiffness of 

pavement foundation support materials in current structural pavement design. The National 

Highway Cooperative Research Program (NCHRP) Project 1-28A (2004a) suggested that a 
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representative resilient modulus value could be determined using the universal model 

(Equation 25) with cyclic stress of 103.4 kPa and confining pressure of 34.5 kPa for granular 

base/subbase materials. The cyclic stress is determined using the maximum applied stress 

minus the contact stress (the minimum applied stress). 

        (
      

  
)
  

(
    

  
   )

  

 (25) 

where: Pa = atmospheric pressure (MPa); 

τoct = octahedral shear stress (MPa) =√                          

 
; 

σB= bulk stress (MPa) = σ1+ σ2+ σ3; 

σ1, σ2, σ3 = principal stresses (MPa); and 

k1, k2, k3, k6, k7 = regression coefficients. 

In the NCHRP (2004a) suggested universal model, the regression coefficients k1 and k2 

are generally positive, k3 and k6 are generally positive, and k7 is generally larger than 1. 

Another universal model suggested by Mechanistic-Empirical Pavement Design Guide 

(MEPDG) (Witczak and Uzan 1988) is nearly same as the NCHRP (2004a) suggested 

universal model but has less regression coefficients by using k6 = 0 and k7 = 1. The three 

parameter universal model (Equation 26) is used to predict Mr values in this study. 

        (
  

  
)
  

(  
    

  
)
  

 (26) 

where: Pa = atmospheric pressure (MPa); 

τoct = octahedral shear stress (MPa) =√                          

 
; 

σB= bulk stress (MPa) = σ1+ σ2+ σ3; 

σ1, σ2, σ3 = principal stresses (MPa); and 

k1, k2, k3 = regression coefficients. 

The “k” coefficients for the universal model were determined through regression 

analysis. The k1 will be positive because it is proportional to the Mr. The k2 will be positive 

because it is the exponent of the σB and increased σB results in a higher Mr. The k3 will 

typically be slightly negative because it is the exponent of the τoct and increased τoct likely 

weaken the materials resulting lower Mr values. 
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However, the single resilient modulus value is not really representative for a given UGM. 

The resilient modulus for UGMs is highly dependent on stress state (i.e., bulk stress, 

octahedral shear stress) which is a function of the position in the pavement structure where 

the materials at and volume of traffic loading. Resilient moduli values were predicted using 

the universal model and compared to the measured values for all Mr test samples (Appendix 

B). Three samples of each crushed limestone (Figure 93), RAP (Figure 94), and RPCC/RAP 

(Figure 95) materials with 6% target F200 were shown as examples for studying the prediction 

equations in this section. The predicted resilient moduli are shown in line with symbol format 

and the measured resilient moduli are shown in symbol format in all Mr versus σB plots. The 

predicted values could present the change of Mr values due to increasing bulk stresses and 

good to fit Mr values at all applied stress states. 

 
Figure 93. Mr vs. σB on crushed limestone samples with reconstituted 5.8% F200 
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Figure 94. Mr vs. σB on RAP samples with reconstituted 5.6% F200 

 
Figure 95. Mr vs. σB on RPCC/RAP samples with reconstituted 6.0% F200 
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Values of regression coefficients k1, k2, and k3 and P-values for every regression 

coefficients that were determined in statistical analyses are summarized in Table 50 for 

crushed limestone samples, Table 51 for RAP samples, and Table 52 for RPCC/RAP 

samples. 

k1 values range from 800 to 2300 for crushed limestone samples, from 800 to 2400 for 

RAP samples, and from 550 to 1800 for RPCC/RAP samples. Larger k1 value generally 

indicates higher resilient modulus. k1 regression coefficient is significant in the 3-parameter 

universal mode as the statistical analyses indicate for all samples. k2 values range from 0.3 to 

0.9 for crushed limestone samples, from 0.4 to 1.0 for RAP samples except one outlier, and 

from 0.3 to 0.8 for RPCC/RAP samples. One outlier is the RAP sample with 12.5% F200 and 

96.3% RD which has a k2 of 0.064 that is out the range from 0.4 to 1.0. The same sample has 

R2 is about 0.51 which means only 51% measured Mr values can be represented by the 

predicted Mr values. k2 regression coefficient is significant except the outlier. However, k3 

values range from -0.2 to 1.8 for crushed limestone samples, from -1.1 to 1.0 for RAP 

samples except one outlier, and from -0.3 to 1.3 for RPCC/RAP samples. The k3 values are 

either negative or positive and are not always significant in the 3-parameter universal model. 

Table 50. Statistical analysis for the parameters in Mr prediction of crushed limestone 

samples 

Test 

No. 

k1 k2 k3 

R
2 

Values P-value  
SIG

? 
Values P-value  

SIG

? 
Values P-value  

SIG

? 

M1 1685.60 <0.0001 Y 0.549 <0.0001 Y 0.594 0.0413 Y 0.8990 
M2 1373.59 <0.0001 Y 0.614 <0.0001 Y 0.393 0.0234 Y 0.9592 
M3 917.67 <0.0001 Y 0.687 <0.0001 Y 0.178 0.3401 N 0.9577 
M4 841.53 <0.0001 Y 0.740 <0.0001 Y 1.418 <0.0001 Y 0.9494 
M5 1068.93 <0.0001 Y 0.511 <0.0001 Y 0.942 <0.0001 Y 0.9835 
M6 1436.54 <0.0001 Y 0.734 <0.0001 Y 0.183 0.5342 N 0.8996 
M7 910.53 <0.0001 Y 0.600 <0.0001 Y 0.187 0.3607 N 0.9377 
M8 2227.49 <0.0001 Y 0.829 <0.0001 Y -0.188 1.4020 N 0.8624 
M9 1121.10 <0.0001 Y 0.562 <0.0001 Y 0.898 <0.0001 Y 0.9773 
M10 1512.07 <0.0001 Y 0.556 <0.0001 Y 0.384 0.0832 N 0.9229 
M11 836.61 <0.0001 Y 0.608 <0.0001 Y 0.439 0.0229 Y 0.9545 
M12 862.90 <0.0001 Y 0.334 <0.0001 Y 1.767 <0.0001 Y 0.9894 

Note: SIG= significant; R2 = coefficient of determination; Y = yes; and N = no. 
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Table 51. Statistical analysis for the parameters in Mr prediction of RAP samples 

Test 

No. 

k1 k2 k3 

R
2 

Values P-value  
SIG

? 
Values P-value  

SIG

? 
Values P-value  

SIG

? 

M13 1625.30 <0.0001 Y 0.631 0.0129 Y -0.218 1.4978 N 0.8074 
M14 867.39 <0.0001 Y 0.452 <0.0001 Y 0.565 0.0189 Y 0.9098 
M15 1337.79 <0.0001 Y 0.566 <0.0001 Y -0.168 1.3653 N 0.7783 
M16 928.79 <0.0001 Y 0.615 <0.0001 Y 0.427 0.0659 N 0.9331 
M17 787.44 <0.0001 Y 0.550 <0.0001 Y 0.307 0.0055 Y 0.9787 
M18 856.93 <0.0001 Y 0.991 <0.0001 Y -0.570 1.9764 N 0.9300 
M19 951.70 <0.0001 Y 0.561 <0.0001 Y 0.404 0.0305 Y 0.9530 
M20 2322.10 <0.0001 Y 0.821 <0.0001 Y -1.125 1.9860 N 0.7377 
M21 804.08 <0.0001 Y 0.610 <0.0001 Y 0.243 0.0772 N 0.9688 
M22 1080.99 <0.0001 Y 0.854 <0.0001 Y -0.581 1.9742 N 0.9041 
M23 1057.41 <0.0001 Y 0.590 <0.0001 Y 0.279 0.2722 N 0.9103 
M24 2079.20 <0.0001 Y 0.064 0.7021 N 0.902 0.0550 N 0.5149 

Note: SIG= significant; R2 = coefficient of determination; Y = yes; and N = no. 

Table 52. Statistical analysis for the parameters in Mr prediction of RPCC/RAP 

samples 

Test 

No. 

k1 k2 k3 

R
2 

Values P-value  
SIG

? 
Values P-value  

SIG

? 
Values P-value  

SIG

? 

M25 626.21 <0.0001 Y 0.726 <0.0001 Y 0.310 0.0811 N 0.9645 
M26 1247.67 <0.0001 Y 0.662 <0.0001 Y 0.271 0.1346 N 0.9611 
M27 627.83 <0.0001 Y 0.541 <0.0001 Y 0.652 0.0093 Y 0.9250 
M28 1360.70 <0.0001 Y 0.704 <0.0001 Y -0.297 1.6519 N 0.8420 
M29 779.56 <0.0001 Y 0.731 <0.0001 Y -0.038 1.2378 N 0.9779 
M30 1780.75 <0.0001 Y 0.632 0.0003 Y -0.533 1.7439 N 0.6848 
M31 721.84 <0.0001 Y 0.498 <0.0001 Y 0.394 0.0153 Y 0.9558 
M32 766.61 <0.0001 Y 0.728 <0.0001 Y 0.265 0.1295 N 0.9642 
M33 701.84 <0.0001 Y 0.486 <0.0001 Y 0.470 <0.0001 Y 0.9845 
M34 728.98 <0.0001 Y 0.317 <0.0001 Y 1.247 <0.0001 Y 0.9659 
M35 1184.37 <0.0001 Y 0.476 <0.0001 Y 0.251 0.3681 N 0.8557 
M36 570.83 <0.0001 Y 0.603 <0.0001 Y 1.040 <0.0001 Y 0.9813 

Note: SIG= significant; R2 = coefficient of determination; Y = yes; and N = no. 
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Assessment of measurements errors in Mr tests 

The resilient modulus tests were conducted by following the procedures in AASHTO 

T307-99. This section discusses five major possible sources lead to errors in measuring 

resilient moduli values as selection of load cycles, load cell location, linear variable 

differential transducers (LVDTs) location, load pulse shape, and number of points per cycle. 

Load cycles selection 

A general assumption in the Mr tests is that Mr increases with increasing number of load 

applications and reaches at a constant value when a certain number of load cycles were 

applied. The AASHTO T307-99 standard requires using the average value of the last five 

cycles at the end of each load sequence to represent the Mr value of this load sequence. 

However, according to the program generated Mr values with the number of load application, 

the constant Mr values are not generated at the sequence end. Mr values could increase, 

decrease, or vary as the number of load cycles applied in different loading sequences.  

An example that Mr increases first and then decreases to the sequence end where it was 

assumed a constant value reached is shown on Figure 96. Another example that Mr increases 

first and then decreases in about every 9 load cycles is shown on Figure 97. 

 
Figure 96. Example 1 of Mr vs. load cycles from program output for one load sequence 



 151 

 
Figure 97. Example 2 of Mr vs. load cycles from program output for one load sequence 

Therefore, the differences between the average Mr values of the maximum and adjacent 

four points, minimum and adjacent four points, and the standard last five cycles are studied 

in this study.  

One load sequence from each Mr test was randomly selected and the maximum, 

minimum, and standard average Mr values were directly read from the program generated 

resilient modulus versus load cycles plots. The maximum average Mr value was determined 

as the average value of the maximum and adjacent four Mr values. The minimum average Mr 

value was determined as the average value of the minimum and adjacent four Mr values. The 

standard Mr value was determined as the average Mr values at the last five cycles. A 

summary of the average Mr values which were calculated using the maximum, minimum, 

and standard methods is shown in Figure 98 for observing difference in Mr values. Generally, 

the difference between the maximum and minimum average Mr values increases with 

increasing standard average Mr values. 

Statistical analysis was conducted to find the significance of the three methods on 

affecting Mr values. The mean Mr values of each method are different, but the range of 

variation in Mr values is similar. The plot of the distributions of Mr values for the three 

methods were plotted in Figure 99 where the (shown as the horizontal line at the center of 

each diamond) indicates the mean Mr value. Although three different methods result in 

different Mr values, statistical analysis of variance (ANOVA) showed that the method does 

not have a significant effect on Mr values. The reason is that the selected data are obtained at 

different stress levels that have significant effects on affecting Mr values. 
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Figure 98. Average Mr determined with standard, maximum, and minimum methods 

 
Figure 99. Statistical analysis of Mr values determined with maximum, minimum, and 

standard methods. 
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Table 53. Statistical ANOVA summary in determine the significance of load cycles 

selections in affecting calculated Mr values 

Source Degree of 
Freedom 

Sum of 
Squares 

Mean 
Squares F Ratio Probability >F 

Method 2 21075.4 10537.7 0.3784 0.6859 
Error 105 2923727.4 27845.0 — — 
Corrected 
Total 107 2944802.8 — — — 

Notes: —means no data 

 

Load cell location 

The standard require the outside mounted load cell used outside of the triaxial chamber. 

The inside load cells mounted within the triaxial chamber are also suitable, and allows for 

more precise control and more accurate reading of the loads applied on the specimens.  

LVDTs type 

The AASHTO T307 requires use of outside mounted LVDTs because LVDTs mounted 

on the specimen may slip during testing. This action might not be observed by the operator 

during the tests and the results will be inaccurate (Groeger et al. 2003). However, Groeger et 

al. (2003) also suggest that the advantage of using the LVDTs mounted on the specimens 

could negate any slop in the system and alleviate concerns with stress concentration at the 

ends of the specimens. The internal deflection measurements were taken by using the LVDTs 

mounted on samples and the external deflection measurements were taken using the outside 

mounted LVDTs. Camargo et al. 2012 reported that higher resilient moduli values are 

determined on the same sample using the internal deflection measurements than the external 

measurements. 

Load pulse shape 

Load pulse shape should be a harversine waveform. The first 20 data points in one load 

cycle indicates duration of 0.1 s for a cycle with 200 readings were recorded. One load cycle 

is selected to verify the harversine shape of load pulse (Figure 100). The raw data points are 

nearly followed the harversine waveform fitted line but the peak value is lower the fitted 

peak value.  
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Figure 100. Compare the actual load pulse shape with the harversine waveform for the 

loading duration in one load cycle 

Number of points per cycle 

However, the raw data points shown on Figure 100 are distributed in groups of about 3 

points. This indicates the 200 readings of a single load cycle are not sampling at a constant 

rate which is assumed in the standard method (Groeger et al. 2003). The inconstant sampling 

rate causes increase sampling error because the peak value might be lost. In addition, 

Groeger et al. (2003) suggested using 500 points instead of 200 points per second, because 

200 points are not adequate to fully characterize the true shape of the curve. The NCHRP 

report 598 (Saeed, 2008b) also suggest to use a data acquisition rate of 500 data points per 

second to record values.  

The system generated Mr values are different from the hand calculated Mr values with the 

collected raw data points. This might be the result of insufficient data acquisition and missing 

the true value on the curve. 



 155 

Unconsolidated undrained shear strength 

The unconsolidated undrained triaxial (UU) tests or quick shear tests were conducted on 

the same sample when 5% of the permanent axial strain is not obtained at the end of the Mr 

tests. All Mr test samples were used for UU tests except the RAP samples with natural fines 

contents that obtained5% εp at the Mr tests ends. In addition, the UU test data was overwrote 

and not reported for the RPCC/RAP sample with 12% target F200 and 90% target RD. 

Another outlier is the crushed limestone sample with natural F200 and 95% target RD which 

did not give the maximum deviator stress when the UU test was terminated. The possible 

reason might the strain hardening of this sample that the interlocking between the particles is 

stronger. 

The undrained shear strength (cu) is in the range of 80 to 400 kPa for crushed limestone 

samples, 60 to 110 kPa for RAP samples, and 70 to 140 kPa for RPCC/RAP samples. The 

average strain at failure for RAP samples is the smallest, followed by crushed limestone 

samples and the RPCC/RAP samples have the highest average strain at failure. All the UU 

test samples were used for Mr tests so the same test number is specified for the UU test 

samples as the Mr tests. The sample height changed for each sample due to the load 

applications in the Mr tests, so the appropriate calibrations of sample characteristics are done 

for analyzing UU tests data.  

Detailed sample data analysis could be found in Appendix B. The maximum deviator 

stress (σdmax), strain at failure (εf), and cu are summarized for all UU tests in Table 54. 
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Table 54. Undrained strength summary 

Test No. σd max (kPa) εf (%) cu (kPa) 
M1 254 0.48 127 
M2 364 0.70 182 
M3 166 2.04 83 
M4 364 0.29 182 
M5 505 0.77 253 
M6 515 0.77 257 
M7 164 0.48 82 
M8 326 0.47 163 
M9 478 0.62 239 
M10 474 0.80 237 
M11 462 5.08 231 
M12 797 0.58 398 
M13 209 0.86 104 
M15 143 0.50 72 
M16 170 0.49 85 
M17 135 0.66 68 
M19 123 0.50 62 
M20 189 0.64 95 
M21 162 0.66 81 
M23 155 0.48 77 
M24 202 0.46 101 
M25 153 1.35 76 
M26 279 0.65 139 
M27 146 0.83 73 
M28 217 0.65 108 
M29 250 3.94 125 
M30 279 1.15 139 
M31 170 2.56 85 
M33 236 3.24 118 
M34 251 3.57 126 
M35 180 2.72 90 
M36 237 0.46 118 

The statistical least square fit analysis was conducted to find the significance of variables 

that include materials type, target F200, and target RD on affecting cu. In order to conduct the 

statistical analysis, the varied natural fines contents were excluded from the analysis. In 

addition, it needs to be noted that the cu value of the RPCC/RAP with 12% target F200 and 

90% target RD was lost in the analysis. The materials type was found as the factor that has 
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significant effect on cu values while target F200 and RD do not have significant effects. The 

statistical analysis results for studying the effects of the three variables on undrained shear 

strength are summarized in Table 55. 

Table 55. Least square fit analysis of factors significance on cu 

Factors Degree of 
Freedom 

Sum of 
Squares F Ratio Probability 

>F 
Significant

? 
Materials type 

2 
108619.48 26.0098 <0.0001 Yes 

F200 2923.33 0.7000 0.5089 No 
RD 11258.07 2.6958 0.0932 No 
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CHAPTER 6. CONCLUSIONS AND RECOMMENDATIONS 

This chapter presents an overview of the scientific value gained from the study, an 

overview of the lessons learned, and recommendations based on the lessons learned.  

The conclusions are grouped into the following categories: permanent deformation, 

resilient modulus, materials, and prediction models. The last part of this chapter presents 

recommendations for immediate impact, long-term impact, and implications for the future to 

advance the knowledge gained from this study.  

Permanent Deformation 

Permanent deformation is a measure to indicate the support capacity of the unbound 

granular materials (UGMs) in long-term performance. This study examined the influence of 

the following variables on the permanent deformation behavior of UGMs: number of load 

cycles, deviator stress level, relative density (RD), fines content (F200), and material type. The 

results showed that four of these variables are important factors except RD at influencing the 

resistance of UGMs to permanent deformation under traffic loads, but have different levels of 

importance. The results of statistical analyses results are summarized in Table 56. 

Table 56. Importance of five factors affecting permanent deformation of UGMs 

Factors Materials Probability >F Significant? R2 Rank 
Number of load 

cycles All <0.0001 Yes 0.2467-
0.9711 1 

Deviator 
Stresses 

Crushed 
limestone 0.0006 Yes 0.2744 

3 RAP 0.0059 Yes 0.2676 
RPCC/RAP <0.0001 Yes 0.6465 

Relative Density 

Crushed 
limestone 

0.8885 No 0.0034 
— RAP 0.5626 No 0.0343 

RPCC/RAP 0.6616 No 0.0119 

Fines Contents 

Crushed 
limestone 

<0.0001 Yes 0.3880 
3 RAP <0.0001 Yes 0.6174 

RPCC/RAP 0.0044 Yes 0.1745 

Material Types All <0.0001-0.0008 Yes 0.4475-
0.6383 2 

Notes: the range of P-values is determined as the summary of all completed load sequences. 
—means no significant effects 
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Number of load cycles 

Results and analysis indicated that the number of load cycles is the most important factor 

affecting the long-term performance of the UGMs. The ISU 100k test results indicate that the 

untrimmed slag and the recycled portland cement concrete pavements (RPCC) have high 

resistance to permanent deformation at low stress levels (<103.4 kPa) with less than 1.0% 

permanent strains at 100,000 load cycles. The ISU 1k tests results highlighted that the initial 

permanent strain produced in the first several load cycles is due to sample setting. 

The NCHRP 598 tests were conducted on crushed limestone, recycled asphalt pavement 

(RAP), and recycled portland cement concrete with recycled asphalt pavement (RPCC/RAP). 

The permanent deformation (εp) of crushed limestone materials reached a constant value 

(varied with other factors) at 1,000 load cycles at low deviator stresses (i.e., 137.9 kPa). 

However, deformation increased at 1,000 load cycles at high deviator stresses (i.e., 

551.6 kPa). Permanent deformation of RAP materials tends to increase at the 1,000 load 

cycles for all stress levels, except on RAP materials with about 12.5% fines content which 

showed a relatively constant εp value at 1,000 cycles at 68.9 kPa and 137.9 kPa deviator 

stress levels. RPCC/RAP materials generally showed a constant εp value at the 1,000 load 

cycles for all stress levels except the very high stress levels (i.e., >551.6 kPa for 0.8% fines 

content, >689.5 kPa for 12.4% fines content) where the samples tend to fail. 

Deviator stress level 

Stress history and traffic loading applied at the pavement surface is important in 

predicting the long-term service life of the designed pavement structure. In this study, the 

confining pressures are kept the same for each UGM, so only deviator stresses were studied 

for UGMs permanent deformation. The ISU 100k tests on the untrimmed slag materials 

indicate that two times more permanent deformation accumulated at 100,000 load cycles 

when the applied deviator stress is increased from 41.4 kPa to 62.1 kPa. Tests on the RPCC 

materials also showed a similar finding.  

The NCHRP 598 tests applied up to 10 levels of deviator stress with constant confining 

pressure to study the permanent deformation of the UGMs with various stress levels. 

Increasing stress levels are applied as increasing deviator stresses with constant confining 

pressure in this study by following the procedures specified in NCHRP report 598 (Saeed 
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2008a). The permanent deformations of the crushed limestone materials at 1,000 cycles 

increased up to 100% with increasing deviator stress with every 137.9 kPa deviator stress 

increment applied. However, the crushed limestone materials with 12.6% fines content did 

not show large permanent deformation increases with increasing deviator stress until 

>827.4 kPa was applied. Permanent deformations of both RAP and RPCC/RAP materials at 

the 1,000 cycles increase about 40% to 100% with every 137.9 kPa deviator stress increment 

applied. 

Consequently, all materials have less resistance to permanent deformation as deviator 

stresses increases. The deviator stress level has a significant effect on permanent deformation 

for all materials based on the statistical analysis. The increasing rate of permanent 

deformation with increasing deviator stress is lower, however, for recycled materials 

compared to crushed limestone materials at higher deviator stresses.  

Relative density 

Relative densities of the compacted base/subbase materials are generally varied through 

the project sites. This lead to a study of the effects of the relative density on the resistance of 

the UGMs to the permanent deformation.  

The ISU 100k tests on the untrimmed slag materials shows that permanent deformation at 

100,000 cycles increased two times when the relative density decreased from 118.8% to 

104.3%. The NCHRP 598 tests were conducted to compare 3 levels of relative densities 

(85%, 90%, and 95% target RD that are varied in actual values). The permanent 

deformations of the 7.9% F200 crushed limestone materials are highest at 103.7% RD and 

decreased from 90.7% to 94.6% RD. The permanent deformations of the 2.2% F200 crushed 

limestone materials are highest at 87% RD and decreased from 96.4% to 91.7% relative 

densities. However, the permanent deformations of the 5.8% and 12.5% target fines crushed 

limestone materials are highest at around 85.5% RD followed by 90.4% and around 96% RD 

that show similar permanent deformations values. The permanent deformation of crushed 

limestone materials is generally higher at around 85.5% RD than higher relative densities 

except the natural 7.9% F200 materials. However, the differences in permanent deformation 

between about 90.4% and 96% RD are smaller compared to the difference from 85.5%RD. 

The reason is that the actual RD values of the natural 7.9% F200 samples are about 5% higher 
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than the target RD values. The difference in permanent deformation between samples at high 

RD is smaller. The reason is that higher relative density required higher forces to compact the 

materials and breakage of the materials that produces more small particles while breakage 

indexes for crushed limestone is up to 4%.  

Permanent deformations of the RAP and RPCC/RAP materials all increase with 

decreasing relative densities. This finding confirmed the conclusions from literature review 

that resistance to permanent deformation could be highly improved with increased density 

(Lekarp et al. 2000b). Larger permanent deformation values reflect lower resistance to 

permanent deformation. 

Statistical analysis shows that relative density does not have a significant effect on 

permanent deformation of all three materials tested in this study but the differences in 

permanent strain between different relative densities were found in the tests results. 

Therefore, the significant effects of relative densities might be concluded on different 

materials or same materials with wider range of relative densities. 

Fines content 

Particle breakage of UGMs can produce more fine materials. Moreover, migration of fine 

materials generally leads to loss of fines content in lower pavement foundation layers and 

increase in fines content of upper pavement foundation layers. Studying on fines content 

affecting the permanent deformation of UGMs helps designer understand distress of rigid 

pavement (i.e., pumping, corner cracks, and joint cracks).  

In this study, the NCHRP 598 tests were conducted to study four fines contents of three 

materials that include 7.9%, 2.2%, 5.8%, and12.6% F200 in crushed limestone, 2.0%, 1.6%, 

5.6, and 12.5% F200 in RAP, 3.5%, 0.8%, 6.0%, and 12.4% F200 in RPCC/RAP materials to 

cover the range of 0% to 6% F200 that IOWA DOT specified for crushed subbase materials. 

The natural fines contents mean that the fines content is the same as the materials were 

produced and collected from the quarry. However, the reconstituted fines contents are 

produced by subtracting or adding more fines that were produced by crushing the same 

material type. The different materials preparation processes could be the reason that caused 

the natural fines contents (7.9%, 2.0%, and 3.5%) for all materials to have large different 

permanent deformation behavior from other three reconstituted fines contents.  
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Permanent deformations of all materials increase with increasing fines content from 

approximate 1% to 12% at same relative density level except the natural fines materials. This 

finding diverges from the conclusion reported by some researchers (Barksdale 1972; Thom 

and Brown 1988; Kancherla 2004; Mishra et al. 2009; Hussian et al. 2010) that increasing 

fines content causes decrease in resistance of UGMs to permanent deformation. One reason 

is that some previous researchers prepared limited samples to studying effects of fines 

contents up to 20% which is not included in this study. Another reason is that some previous 

researchers tested the samples with low deviator stress (i.e., <200 kPa). In this study, 

permanent deformation of crushed limestone at 1,000 cycles under <200 kPa deviator 

stresses did not show increased fines content caused decreasing permanent strain.  

Statistical analysis shows that the effect of fines content on permanent deformation is 

significant for each material separately.  

Material type 

The NCHRP 598 tests results for all the samples indicate that RAP usually have the 

lowest resistance, followed by RPCC/RAP, and the crushed limestone have the highest 

resistance to the permanent deformation when the same target fines content, relative density, 

and deviator stress are specified. Moreover, the permanent deformation in the RAP is up to 

300% higher than the permanent deformations in the crushed limestone and RPCC/RAP 

materials while other factors are the same. The RPCC/RAP materials also show sudden 

failures when the 965.3 kPa deviator stress is applied.  

Statistical analysis shows that material type has significant effects on permanent 

deformation of all samples.  

Resilient Modulus 

Resilient modulus is a measure of the stiffness of the UGMs and is used as an input in 

pavement designs. Resilient modulus tests were conducted over a range of confining and 

deviator stress conditions. In this study, relative density, fines content, and material type 

were identified as important factors influencing the laboratory resilient modulus. The 

statistical analyses results were summarized in Table 57. 
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Table 57. Importance of four factors affecting laboratory resilient moduli of UGMs 

Factors Materials Probability 
>F Significant? R2 Rank 

Stress levels 

Crushed 
limestone <0.0001 

Yes 
0.6237 

1 RAP <0.0001 0.5564 
RPCC/RAP <0.0001 0.6220 

RD 

Crushed 
limestone 0.1891 

No 
0.0186 

— RAP 0.9740 0.0003 
RPCC/RAP 0.1352 0.0224 

F200 

Crushed 
limestone <0.0001 

Yes 
0.1397 

3 RAP <0.0001 0.1200 
RPCC/RAP <0.0001 0.1228 

Material 
type All <0.0001 Yes 0.2028 2 

Note: — means no significant effects 

Stress level 

The AASHTO T307-99 standard test covers a range of confining and deviator stress 

conditions. In general, resilient moduli of the tested materials are higher when higher bulk 

stresses (sum of deviator stress and confining pressure) are applied. However, the effects of 

stress levels on resilient modulus values are not linearly related to the bulk stress. Statistical 

analysis showed that stress levels have significant effects on laboratory resilient modulus of 

all samples.  

Relative density 

Results from testing a number of samples with relative density values from about 86% to 

100% (target 85% to 95%) showed no clear relationship between resilient moduli and 

relative densities. However, statistical analysis showed that relative density has significant 

effects on laboratory resilient modulus of all samples.  

Fines content 

Fines content affects resilient modulus values and is correlated to relative densities. The 

resilient modulus generally increases with increasing fines content at relatively high relative 

densities (about 96.0% RD). Moreover, in this study fines content is not important for 

resilient modulus at low relative densities (about 85%) because the testing results did not 
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show a clear relationship between resilient modulus and fines content. Statistical analysis 

shows that fines content has a significant effect on laboratory resilient moduli of UGMs. 

However, a clear relationship between resilient modulus values and fines contents cannot be 

concluded. 

Material type 

The crushed limestone material has the highest resilient modulus values of up to 

1,000 MPa compared to the RAP and RPCC/RAP materials that have the similar resilient 

modulus values of up to 600 MPa. The material type has significant effect on resilient 

modulus as the statistical analysis shows by comparing the crushed limestone, RAP, and 

RPCC/RAP materials.  

Prediction Models 

The models for predicting permanent deformations and resilient moduli of UGMs are 

discussed in this study separately. 

Permanent deformation prediction 

Barksdale’s model is used to predict permanent deformations of UGMs under a single 

stress level, and a new model based on NCHRP 598 test results was developed in this study 

to predict permanent deformations of UGMs under multiple stress levels (i.e., varying 

deviator stresses and constant confining pressure).  

• The new model cannot predict the transition between two stress levels if several 

stresses were applied on the same sample in one test (e.g., NCHRP 598 specified test 

sequences). 

• The new model shows good fit to the natural and low fines content materials but 

cannot predict the permanent deformations of the high fines content materials. 

Resilient moduli prediction 

The three-parameter universal model was used to predict the resilient modulus of the 

UGMs. Moreover, statistical analyses were conducted to determine the significances of each 

regression parameters on predicting resilient moduli for UGMs. 

• The three regression coefficients (k1, k2, and k3) account for nonlinear soil and are 

related to the specific stress parameters. 
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• The k1 values are always positive and vary from hundreds to thousands. Regression 

coefficient k1 has a significant effect on predicting resilient moduli. 

• The positive k2 values indicate the dependence of resilient moduli on bulk stresses. 

The k2 values are generally less than one and have a significant effect on predicting 

resilient moduli. 

• The k3 values could be either negative or positive and are close to zero. Moreover, the 

regression parameter k3 does not always have a significant effect on predicting 

resilient moduli. 

Conclusions from Testing 

The materials with natural fines content showed large differences in permanent 

deformations from the materials with target fines contents.  

• Relative densities of the natural fines content materials are much lower than the target 

fines content materials. This difference is related to the use of crushed fines in the 

reconstituted specimens.  

• Laboratory resilient modulus values are not continuously increasing with the number 

of load applications. Therefore, the last five cycles of each load sequence cannot 

precisely represent the actual resilient moduli. 

• Following AASHTO T307-99, LVDTs were installed outside and at the top of the 

pressure chamber in this study, so the measured values may not accurately represent 

resilient behavior through the whole sample height. 

• Numbers of reading points are set to be 200 per load cycle which is the minimum 

value specified in AASHTO T307-99. However, the system did not record the data at 

a constant rate and 200 readings are not enough to represent the harversine shape load 

pulse.  

Immediate Impact 

This study has shown that care needs to be taken when migration of fines in pavement 

foundation structures are present in situ because the stiffness of subbase layers is 

significantly affected by fines content. Although materials with reconstituted fines contents 

from about 1% to 12% have decreasing permanent strain, materials with natural fines content 
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(>2%) may have larger permanent deformation than the materials with about 1%-2% fines 

contents. This indicates that reconstituted materials should be prepared with similar 

procedures as materials produced in quarries and attention should be paid to the preparation 

process. 

Long-term Impact 

The industry problem discussed in the introduction chapter involved the need to use more 

recycled materials in pavement foundation construction and to better predict the permanent 

and resilient deformation of UGMs.  

Increasing the use of recycled materials reduces costs associated with repairing 

deteriorated pavements or constructing new pavement structures. Permanent deformation and 

resilient modulus tests show the acceptable workability of recycled materials based on their 

permanent deformation and resilient moduli over a range of conditions (e.g., varying stress 

levels, relative densities) compared to the conventional crushed limestone materials.  

Accurate prediction of permanent deformation in UGMs has not been determined, but 

deviator stress, fines contents, and relative densities must be correlated in predicting the 

permanent deformation in addition to the present focus on the number of load cycles. More 

accurate prediction for permanent deformation would help pavement designer to design a 

pavement to serve longer and decrease the possible pavement deteriorations. 

Recommendations for Future Research 

The research presented in previous chapters is based on investigations of the permanent 

and resilient deformation of a limited number of variables. Additional investigations are 

necessary to advance pavement foundation design.  

• The movement of fine particles between foundation layers had been identified as an 

important issue affecting permeability, uniformity, strength of pavement foundation 

layers. Future research should include fines from subgrade in composite samples to 

study the effects of subgrade fines migration. Different amounts of subgrade fines 

should be studied to learn the severity of fines migration. 
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• Deformation behavior could be affected by the support from lower layers in pavement 

foundation structures. Future study should include composite samples in studying the 

permanent deformation and resilient modulus of UGMs. 

• The different deformation behaviors of recycled and conventional materials at 

different stress levels warrant further study of combinations of RAP, RPCC, and 

limestone materials in different proportion. 

• The effects of freezing and thawing of UGMs reduce the serviceability of pavement 

structures. Future study of permanent deformation and resilient modulus could be 

conducted on UGM samples after freeze-thaw cycles have been applied. 

• The permeability of pavement foundation layers is important, so it should be included 

in future studies to understand whether materials that can resist higher permanent 

deformation also can provide acceptable permeability. 

• Actual stresses in the field are not constant, so future study should investigate the 

permanent deformation of UGMs under varying confining pressures.  

• The discrepancies between predictions made using the new permanent deformation 

model and measured permanent strains should be examined to test the assumption 

that stress history does not affect tests results in multiple stage tests. 
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APPENDIX A. PERMANENT DEFORMATION TESTS ANALYSES 

Permanent Deformation Calculation 

Permanent deformation at each load repetition was calculated as the accumulated vertical 

permanent strain using Equation 27. 

   
  

  
 

        

        
              (27) 

Test methods 

Method #1 ISU 100k tests 

ISU 100k tests were conducted on the I–94 untrimmed slag subbase and US–30 RPCC 

materials (Table 58). The 100k load repetitions were divided into 4 load sequences because 

the program cannot run 100k load repetitions in a single load sequence. This method is 

designed to terminate the tests when the 5% permanent strain reached. The deviator stresses 

were varied for different tests, and the values could be 20.7 kPa (3 psi), 41.4 kPa (6 psi), 

62.1 kPa (9 psi), 82.7 psi (12 psi), and 103.4 kPa (15 psi). The confining stresses were 

20.7 kPa (3 psi) for the I–94 untrimmed slag subbase and were 103.4 kPa (15 psi) for US–30 

RPCC materials. 

Table 58. Permanent deformation test sequences and stress values for ISU 100k tests on 

a subbase sample 

Sequence 
No. 

Confining Stress Deviator Stress No. of Load 
Repetitions kPa Psi kPa Psi 

1 103.4 15 41.4 6 25,000 
2 103.4 15 41.4 6 25,000 
3 103.4 15 41.4 6 25,000 
4 103.4 15 41.4 6 25,000 
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Figure 101. Permanent deformation accumulated with number of load repetitions for a 

subbase sample using ISU 100k method 

Method #2 ISU 1k tests 

ISU 1000k tests were conducted on Iowa US–30 recycled portland cement concrete 

materials (Table 59). This test method was designed to terminate the tests when permanent 

strain of 5% reached. 

Table 59. Permanent deformation test sequence and stress values for ISU 1k tests 

Sequence 
No. 

Confining Stress Deviator Stress No. of Load 
Repetitions 

kPa Psi kPa Psi  
1 103.4 15 20.7 3  1000 
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Figure 102. Permanent deformation accumulated with number of load repetitions for a 

subbase sample using ISU 1k method 

Method #3 NCHRP 598 tests 

NCHRP 598 tests were conducted on Martin Marietta crushed limestone, Manatt’s 

RPCC/RAP, and Manatt’s RAP materials (Table 60).  

Table 60. Permanent deformation test sequences and stress values for NCHRP 598 tests 

Sequence 
No. 

Confining Pressure Cyclic Stress No. of 
Cycles (kPa) (psi) (kPa) (psi) 

PC 103.4 15 68.9 10 50 
1 103.4 15 68.9 10 1000 
2 103.4 15 137.9 20 1000 
3 103.4 15 275.8 40 1000 
4 103.4 15 413.7 60 1000 
5 103.4 15 551.6 80 1000 
6 103.4 15 689.5 100 1000 
7 103.4 15 827.4 120 1000 
8 103.4 15 965.3 140 1000 
9 103.4 15 1103.2 160 1000 
10 103.4 15 1241.1 180 1000 

Note: In system output, the sequences were numbered from 1 to 11 instead of PC to 10. 
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Figure 103. Permanent deformation accumulated with number of load repetitions for a 

subbase sample using NCHRP 598 method 

Statistical analysis 

Prediction model 

Barksdale permanent deformation prediction model (Equation 28) was used to predict the 

permanent strain at given number of load repetitions. 

                (28) 

1. Calculate and input the permanent strain with related number of load cycles into JMP. 

2. Create the third column named as “% Ep Predicted” with formula 

a   b log10 (N) where a and b are assumed parameters and N is the actual number of load 

repetitions in first column. If the NCHRP 598 tests results are analyzed, the 

a   b log10 (N-      ) formula will be used and n is the load sequence number. 

3. Run Analyze→ Modeling→ Nonlinear→ % Ep Predicted as Y, Response and %Ep as 

X, Predictor Formula. An example result for the nonlinear fit is shown in Figure 104 

for ISU 100k test and is shown in Figure 105 for one load sequence in a NCHRP 598 

test. 
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Figure 104. Statistical nonlinear analysis on prediction of εp on a ISU 100k test sample 
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Figure 105. Statistical nonlinear analysis on prediction of εp on one load sequence for a 

NCHRP 598 test sample 
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The modified prediction model also fitted to the calculated permanent strains for NCHRP 

598 test samples and the same statistical analysis procedures that were used for fitting 

Barksdale model are sued in obtain the regression coefficients in the modified model 

(Equation 29). The predicted permanent strains for one NCHRP 598 test sample are shown in 

Figure 106. 

                   
  [   

   ( 
       )

  
]       [            ] (29) 

 
Figure 106. Modified model predicted permanent strain for a NCHRP 598 test sample 

Significance of factors 

The permanent strains (εp) at the end of each load sequence were summarized when the 

load sequences were completely finished. For example, if the εp reached 10% at 500 load 

repetitions in sequence 6, the permanent strains of up to sequence 5 were recorded for this 

test. In order to analysis the effects of materials, target fines content, and target relative 

density on accumulated permanent strain at the end of the load sequences, only permanent 

strain at the end of load sequence No. 1 (S1), sequence No. 2 (S2), sequence No. 3 (S3), 

sequence No. 4 (S4) were used as summarized. 
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Table 61. Factor analysis for permanent deformation tests 

Source Materials Target Fines 
Content Target RD PC εp at S1 

(%) 
εp at S2 

(%) 
εp at S3 

(%) 
εp at S4 

(%) 

Martin 
Marietta 

Crushed 
Limestone 

0% 
85% 

0.0855 0.1051 0.1478 0.2418 0.5029 
6% 0.0390 0.0524 0.0716 0.1257 0.2706 

12% 0.0657 0.0875 0.1176 0.1675 0.2100 
0% 

90% 
0.0570 0.0624 0.0888 0.1533 0.2435 

6% 0.0460 0.0542 0.0811 0.1350 0.1969 
12% 0.0427 0.0499 0.0627 0.0888 0.1050 

0% 
95% 

0.0714 0.0896 0.1283 0.2127 0.3712 
6% 0.0557 0.0654 0.0876 0.1293 0.1691 

12% 0.0388 0.0432 0.0577 0.0797 0.0985 

Manatt's 

RAP 

0% 
85% 

1.0153 2.5484 3.7677 6.3011 9.0985 
6% 0.2188 0.7100 1.2667 2.7099 4.8042 

12% 0.1596 0.3920 0.6930 1.4991 2.8531 
0% 

90% 
0.6928 1.9612 3.0762 5.4340 8.0740 

6% 0.1404 0.4860 0.9208 2.0742 3.8392 
12% 0.1541 0.3711 0.6274 1.3767 2.7017 

0% 
95% 

0.5892 1.6027 2.5079 4.5193 6.9621 
6% 0.1312 0.3857 0.7263 1.6454 3.1927 

12% 0.1179 0.3030 0.5427 1.2373 2.5064 

RPCC/RAP 

0% 
85% 

0.1853 0.2617 0.5469 1.5372 2.8798 
6% 0.0819 0.1041 0.2226 0.8231 1.7669 

12% 0.0488 0.0552 0.0879 0.1789 0.4524 
0% 

90% 
0.1193 0.1973 0.4496 1.4557 2.7389 

6% 0.0847 0.1084 0.2304 0.7960 1.6427 
12% 0.0509 0.0659 0.1009 0.2132 0.4553 

0% 
95% 

0.1306 0.1964 0.4099 1.2036 2.3384 
6% 0.0744 0.0908 0.1498 0.4638 1.0754 

12% 0.0579 0.0653 0.0894 0.1637 0.2976 
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JMP analysis on permanent strain at the end of first four load sequences 

 
Figure 107. JMP analysis on permanent strain at the end of load sequence No.1 
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Figure 108. JMP analysis on permanent strain at the end of load sequence No.2 
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Figure 109. JMP analysis on permanent strain at the end of load sequence No.3 
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Figure 110. JMP analysis on permanent strain at the end of load sequence No.4 
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APPENDIX B. RESILIENT MODULUS TESTS ANALYSES 

Resilient Moduli Calculation 

Resilient modulus (Mr) tests were conducted on crushed limestone, recycled asphalt 

pavement (RAP), and recycled portland cement concrete (RPCC) materials. According to 

AASHTO T307-99 (2009), average resilient strain and applied maximum deviator stress 

were calculated separately for last five load repetitions in each load sequence (Table 62) for 

calculating resilient modulus. The parameters in prediction model were determined according 

to the average resilient moduli for all load sequences and calculated octahedral stress (Toct) 

and bulk stress (σB) as example shown on Table 62. 

Table 62. Last five load repetitions in load sequence 1 of resilient modulus test for a 

subbase sample 

No. of 
Load 

Repetition 

Applied 
Max Dev 
Stress, σd 

(kPa) 

Applied 
Cyclic Dev 

Stress, 
σcyclic 
(kPa) 

Applied 
Contact 

Dev Stress, 
σc (kPa) 

Deflection 
LVDT 
(mm) 

Resilient 
Strain, εr 

(%) 

Resilient 
Modulus, 
Mr (MPa) 

96 17.793 16.003 1.78981 0.04464 0.021981 72.8 

97 17.370 15.323 2.04698 0.05276 0.025978 59.0 

98 17.835 15.617 2.21804 0.05276 0.025978 60.1 

99 18.303 16.422 1.88117 0.05276 0.025978 63.2 

100 18.474 16.635 1.83911 0.05276 0.025978 64.0 

Average 17.955 16.000 1.95501 0.05114 0.025178 63.8 

Using data shown in Table 62, the resilient moduli for the last five load repetitions in 

Sequence No.1 were calculated using Equation 30 and the average resilient modulus was also 

calculated. 

   
                              

                
 (30) 
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Using the same procedures, the average Mr was calculated for each load sequence. In 

addition, using confining pressure and maximum deviator stress, the σB was calculated using 

Equation 31 and the Toct was calculated using Equation 32 in Sequence No.1. 

                                (31) 

     
 

 
 √        

 

 
 √          

 

    
           (32) 

Table 63. All load sequences for a subbase sample 

Sequence 
No.  

Confining 
Pressure, σc 

(kPa) 

Max 
Deviator 
Stress, σd 

(kPa) 

Mean Bulk 
Stress, σB 

(MPa) 

Avgerage 
Mr (MPa) Τoct (MPa) 

PC 41.4 27.6 0.0804 249.2  
1 40.9 18.0 0.1038 63.8 0.0085 
2 41.1 42.0 0.1270 119.2 0.0198 
3 40.9 65.4 0.1385 102.0 0.0308 
4 40.9 34.6 0.1755 80.2 0.0163 
5 40.7 72.0 0.2092 130.5 0.0339 
6 27.1 105.3 0.2774 174.7 0.0496 
7 26.9 70.6 0.3427 203.6 0.0333 
8 27.2 135.7 0.4067 268.8 0.0639 
9 27.0 198.6 0.3814 264.6 0.0936 
10 27.1 70.5 0.4129 250.2 0.0332 
11 13.4 102.8 0.5086 277.4 0.0485 
12 13.2 197.7 0.5123 335.7 0.0932 
13 13.4 102.1 0.5440 274.6 0.0481 
14 13.4 133.6 0.6715 327.8 0.0630 
15 13.5 260.3 0.0804 372.7 0.1227 
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Statistical Analysis 

Prediction model 

The calculated resilient moduli were used to fit the universal model (Equation 33) to 

determine the parameters k1, k2, and k3 based on the calculated Toct and σB in Table 63. In 

this calculation, the atmospheric pressure Pa value was assumed to be constant as 0.101325 

         (
  

  
)
  

 (  
    

  
)
  

 (33) 

The statistical nonlinear modeling analysis was conducted to determine the values of 

regression coefficients k1, k2, and k3. 

4. Input the bulk stress, octahedral stress, calculated Mr, and a column named “Mr Pred” 

with formula of Equation 33. 

5. Run Analyze→ Modeling→ Nonlinear→ Mr as Y, Response and Mr Pred as X, 

Predictor Formula (Figure 111). 

 
Figure 111. Nonlinear statistical analysis dialog in JMP program 
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6. Run analysis and determine k1, k2, and k3 values and record SSE values that are 

shown in the generated nonlinear analysis report. An example of the generated report 

is shown in Figure 112. 

 
Figure 112. An example of the JMP generated nonlinear analysis report 
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7. Run Analyze→ Distribution→ Set Mr as Y column → Record Standard Deviation→ 

Determine R2. An example of the Mr distribution is shown in Figure 113. 

   
       

       
   

       

       
 

                                                       

           

     
       

       
   

         

         
        

 
Figure 113. An example of histogram of Mr values 

Significance of parameters 

According to JMP nonlinear analysis on predicting resilient modulus, k1, k2, and k3 are 

three parameters concluded for the universal model. 

8. Estimate and approximate standard error (Approx Std Err) from nonlinear modeling 

Mr were recorded and imputed into two new columns in JMP program 

9. Create a new column named as “Z” with formula         

            
 

10. Create another new column named as “p-value” with 

formula  [                         ] 

11. If p-value < 0.05, the parameter was concluded as significant with null hypothesis 

that Ho: k=0 is true. 
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Significance of factors 

Materials type, fines content, and relative density were tested for their effects on 

prediction parameters k1, k2, and k3. In order to run statistical analysis, the natural fines 

content was excluded and the target values were used to test the effects of the factors. The 

factors and universal prediction model’s parameters were summarized in JMP worksheet 

(Figure 114). The sequence No. indicates the stress levels as Table 63 summarized. 

 
Figure 114. Statistical analysis for significance of all factors affecting Mr 
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Figure 115. Statistical analysis for significance of material types affecting Mr 
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Figure 116. Statistical analysis for significance of RD affecting Mr 
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Figure 117. Statistical analysis for significance of F200 affecting Mr 
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Figure 118. Statistical analysis for significance of stress levels affecting Mr  
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Summary of Statistical Analysis on Resilient Moduli 

Test number was assigned for each Mr test and related target sample properties were summarized in Table 64. 

Table 64. Test numbers and sample target properties 

Crushed Limestone RAP RPCC/RAP 

Test 
No.  

Fines 
Content 

(%) 

w 
(%) 

RD 
(%) γd (pcf) Test 

No.  

Fines 
Content 

(%) 

w 
(%) 

RD 
(%) 

γd 
(pcf) 

Test 
No.  

Fines 
Content 

(%) 

w 
(%) 

RD 
(%) 

γd 
(pcf) 

M1 0.0 2.3 85.0 120.9 M13 0.0 2.9 85.0 100.3 M25 0.0 6.0 85.0 97.1 
M2 6.0 2.3 85.0 123.9 M14 2.0 2.9 85.0 95.0 M26 3.5 6.0 85.0 102.7 
M3 7.9 2.3 85.0 112.4 M15 6.0 2.9 85.0 108.3 M27 6.0 6.0 85.0 106.8 
M4 12.0 2.3 85.0 129.4 M16 12.0 2.9 85.0 112.2 M28 12.0 6.0 85.0 111.7 
M5 0.0 2.3 90.0 122.2 M17 0.0 2.9 90.0 101.1 M29 0.0 6.0 90.0 98.1 
M6 6.0 2.3 90.0 125.4 M18 2.0 2.9 90.0 95.8 M30 3.5 6.0 90.0 103.3 
M7 7.9 2.3 90.0 112.7 M19 6.0 2.9 90.0 109.1 M31 6.0 6.0 90.0 108.0 
M8 12.0 2.3 90.0 130.8 M20 12.0 2.9 90.0 113.4 M32 12.0 6.0 90.0 113.0 
M9 0.0 2.3 95.0 123.5 M21 0.0 2.9 95.0 102.0 M33 0.0 6.0 95.0 99.1 
M10 6.0 2.3 95.0 127.0 M22 2.0 2.9 95.0 96.6 M34 3.5 6.0 95.0 103.9 
M11 7.9 2.3 95.0 113.1 M23 6.0 2.9 95.0 110.1 M35 6.0 6.0 95.0 109.3 
M12 12.0 2.3 95.0 132.3 M24 12.0 2.9 95.0 114.6 M36 12.0 6.0 95.0 114.3 

Note: w = moisture content; RD = relative density; γd = dry unit weight. 
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Table 65. Prediction model summary for resilient modulus tests on crushed limestone materials 

Test 
No. 

Equation parameters 
k1 k2 k3 

SSE SD 
(Mr) R2 MSE 

Value P-value SIG 
Y/N Value P-value SIG 

Y/N Value P-value SIG 
Y/N 

M1 1685.60 <0.0001 Y 0.549 <0.0001 Y 0.594 0.0413 Y 49094.2 186.36 0.8990 4091.2 
M2 1373.59 <0.0001 Y 0.614 <0.0001 Y 0.393 0.0234 Y 13422.0 153.37 0.9592 1118.5 
M3 917.67 <0.0001 Y 0.687 <0.0001 Y 0.178 0.3401 N 5840.0 99.30 0.9577 486.7 
M4 841.53 <0.0001 Y 0.740 <0.0001 Y 1.418 <0.0001 Y 55760.9 280.56 0.9494 4646.7 
M5 1068.93 <0.0001 Y 0.511 <0.0001 Y 0.942 <0.0001 Y 4746.3 143.30 0.9835 395.5 
M6 1436.54 <0.0001 Y 0.734 <0.0001 Y 0.183 0.5342 N 48798.0 186.29 0.8996 4066.5 
M7 910.53 <0.0001 Y 0.600 <0.0001 Y 0.187 0.3607 N 5476.5 79.21 0.9377 456.4 
M8 2227.49 <0.0001 Y 0.829 <0.0001 Y -0.188 1.402 N 146230.6 275.55 0.8624 12185.9 
M9 1121.10 <0.0001 Y 0.562 <0.0001 Y 0.898 <0.0001 Y 8078.1 159.43 0.9773 673.2 
M10 1512.07 <0.0001 Y 0.556 <0.0001 Y 0.384 0.0832 N 23624.5 147.97 0.9229 1968.7 
M11 836.61 <0.0001 Y 0.608 <0.0001 Y 0.439 0.0229 Y 5328.1 91.48 0.9545 444.0 
M12 862.90 <0.0001 Y 0.334 <0.0001 Y 1.767 <0.0001 Y 3789.3 159.79 0.9894 315.8 

Note: SIG = significant; Y = yes; N = no; SSE= Sum squares error; SD = standard deviation; MSE = mean squares error.  
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Table 66. Prediction model summary for resilient modulus tests on RAP materials 

Test 
No. 

Equation parameters 
k1 k2 k3 

SSE SD 
(Mr) R2 MSE 

Value P-value  SIG 
Y/N Value P-value  SIG 

Y/N Value P-value  SIG 
Y/N 

M13 1625.30 <0.0001 Y 0.631 0.0129 Y -0.218 1.4978 N 36522.7 116.38 0.8074 3043.6 
M14 867.39 <0.0001 Y 0.452 <0.0001 Y 0.565 0.0189 Y 6832.5 73.54 0.9098 569.4 
M15 1337.79 <0.0001 Y 0.566 <0.0001 Y -0.168 1.3653 N 22113.1 84.40 0.7783 1842.8 
M16 928.79 <0.0001 Y 0.615 <0.0001 Y 0.427 0.0659 N 9932.5 102.97 0.9331 827.7 
M17 787.44 <0.0001 Y 0.550 <0.0001 Y 0.307 0.0055 Y 1318.8 66.55 0.9787 109.9 
M18 856.93 <0.0001 Y 0.991 <0.0001 Y -0.570 1.9764 N 11777.5 109.65 0.9300 981.5 
M19 951.70 <0.0001 Y 0.561 <0.0001 Y 0.404 0.0305 Y 5485.3 91.26 0.9530 457.1 
M20 2322.10 <0.0001 Y 0.821 <0.0001 Y -1.125 1.986 N 91014.3 157.44 0.7377 7584.5 
M21 804.08 <0.0001 Y 0.610 <0.0001 Y 0.243 0.0772 N 2330.1 72.98 0.9688 194.2 
M22 1080.99 <0.0001 Y 0.854 <0.0001 Y -0.581 1.9742 N 12835.4 97.76 0.9041 1069.6 
M23 1057.41 <0.0001 Y 0.590 <0.0001 Y 0.279 0.2722 N 12296.1 98.98 0.9103 1024.7 
M24 2079.20 <0.0001 Y 0.064 0.7021 N 0.902 0.055 N 63918.9 97.01 0.5149 5326.6 

Note: SIG = significant; Y = yes; N = no; SSE= Sum squares error; SD = standard deviation; MSE = mean squares error.  
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Table 67. Prediction model summary for resilient modulus tests on RPCC/RAP materials 

Test 
No. 

Equation parameters 
k1 k2 k3 

SSE SD 
(Mr) 

R2 MSE 
Values P-value SIG 

Y/N Values P-value SIG 
Y/N Values P-value SIG 

Y/N 
M25 626.21 <0.0001 Y 0.7259 <0.0001 Y 0.3095 0.0811 N 3318.33 81.72 0.9645 276.5 
M26 1247.67 <0.0001 Y 0.6622 <0.0001 Y 0.2706 0.1346 N 10548.53 139.25 0.9611 879.0 
M27 627.83 <0.0001 Y 0.5410 <0.0001 Y 0.6520 0.0093 Y 5430.60 71.89 0.9250 452.5 
M28 1360.70 <0.0001 Y 0.7036 <0.0001 Y -0.2967 1.6519 N 24535.87 105.32 0.8420 2044.7 
M29 779.56 <0.0001 Y 0.7313 <0.0001 Y -0.0379 1.2378 N 1855.29 77.45 0.9779 154.6 
M30 1780.75 <0.0001 Y 0.6320 0.0003 Y -0.5330 1.7439 N 57382.74 114.03 0.6848 4781.90 
M31 721.84 <0.0001 Y 0.4978 <0.0001 Y 0.3939 0.0153 Y 2044.31 57.47 0.9558 170.4 
M32 766.61 <0.0001 Y 0.7278 <0.0001 Y 0.2654 0.1295 N 4596.04 95.79 0.9642 383.0 
M33 701.84 <0.0001 Y 0.4864 <0.0001 Y 0.4704 <0.0001 Y 718.84 57.54 0.9845 59.9 
M34 728.98 <0.0001 Y 0.3169 <0.0001 Y 1.2468 <0.0001 Y 3002.48 79.36 0.9659 250.2 
M35 1184.37 <0.0001 Y 0.4760 <0.0001 Y 0.2512 0.3681 N 12988.62 80.19 0.8557 1082.4 
M36 570.83 <0.0001 Y 0.6027 <0.0001 Y 1.0400 <0.0001 Y 2626.39 100.05 0.9813 218.9 

Note: SIG = significant; Y = yes; N = no; SSE= Sum squares error; SD = standard deviation; MSE = mean squares error. 
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Resulient Modulus versus Bulk Stess 

This section summarizes the relationships between the Mr values and the bulk stresses on 

the plots. In addition to the actual measured Mr values, the predicted Mr values are also 

shown in the plots. The predicted Mr values were calculated by fitting the universal model 

(Equation 33) to the actual values. The test numbers (e.g., M3, M7, M11) that were denoted 

in the results chapter and the target relative density (RD) are shown in the figure legends for 

reference. Moreover, the actual RD values are shown in the parentheses in the legends. 

 
Figure 119. Mr vs. σB on crushed limestone sample with natural F200 
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Figure 120. Mr vs. σB on crushed limestone sample with target 0% F200 

 
Figure 121. Mr vs. σB on crushed limestone sample with target 6% F200 
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Figure 122. Mr vs. σB on crushed limestone sample with target 12% F200 
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Figure 123. Mr vs. σB on RAP sample with natural F200 

 
Figure 124. Mr vs. σB on RAP sample with 0% F200 
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Figure 125. Mr vs. σB on RAP sample with 6% F200 

 
Figure 126. Mr vs. σB on RAP sample with 12% F200 
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Figure 127. Mr vs. σB on RPCC/RAP sample with natural F200 

 
Figure 128. Mr vs. σB on RPCC/RAP sample with 0% F200 
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Figure 129. Mr vs. σB on RPCC/RAP sample with 6% F200 

 
Figure 130. Mr vs. σB on RPCC/RAP sample with 12% F200  
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Unconsolidated Undrained Shear Strength 

According to AASHTO T307-99 (2009), the unconsolidated undrained shear strength 

(UU) tests were conducted when the accumulated permanent deformation is less than 5%. 

During the UU tests, the vertical displacements and the applied loads were recorded. The 

sample height should be modified for calculating the shear strain, because the original height 

was measure before the resilient modulus (Mr) test and the permanent strain was accumulated 

as the result of the Mr test loading.  

The modified original height should be calculated using Equation 34. 

  
            (34) 

The accumulated permanent strain εp at the end of Mr test is 0.9243% and the original 

sample height (H0) of the compacted sample before the Mr test is 7.9959 in.. The modified 

sample height (H0’) is calculated. 

  
                                

The shear strains were calculated using Equation 35. 

  
  

  
  

         

      
                 % (35) 

The corrected areas (Ac) were calculated with the shear strains using Equation 36. 

   
  

   
 

      

              
              (36) 

The deviator stress (σd) is calculated using Equation 37. 

         
 

  
 

      

       
            (37) 

The membrane corrections (Δσd) were calculated using Equation 38. The Young’s 

modulus for the membrane material (Em) was 1400 kN/m2 (203.05 psi) as suggested in 

ASTM D2850 (2007) and two membranes were used in the test to prevent confinement from 

leaking for the compacted samples.  

            
 

 
 (38) 

                      

    √
  

 
   √
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The corrected deviator stresses (σd’) were calculated using Equation 39. 

  
                                               (39) 

The shear stress and strain curve was plotted with the calculated corrected strains and 

deviator stresses (Figure 131). 

The undrained shear strength (cu) was calculated using Equation 40. 
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Figure 131. Stress and strain relationship with corrected data for a subbase sample 
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Statistical analysis of factors affecting undrained shear strength (cu) 

 
Figure 132. JMP results of least squares fit analysis for cu 
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Figure 133. JMP results of least squares fit analysis of materials types effect on cu 
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Figure 134. JMP results of least squares fit analysis of target fines contents effect on cu 
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Figure 135. JMP results of least squares fit analysis of target relative density effect on cu 
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Degradation 

Degradations of the unbound granular materials were calculated to quantify the change 

particle size distribution of the tested materials after the permanent deformation tests. 

Calculation 

Area below the particle size distribution curve of untested material is denoted as A and of 

tested materials is denoted as B. The breakage index (BI) was calculated using Equation 41. 

   
   

 
 

             

      
             (41) 

Table 68. Breakage index calculation on a subbase sample 

Sieve Size 
(mm) 

Percent 
Passing (%) 

Area between 
two points 
(%*mm) 

Percent 
Passing (%) 

Area between 
two points 
(%*mm) 

100.0 576.5 100.0 575.6 100.0 
77.4 209.7 77.1 210.1 77.4 
62.4 235.0 63.0 242.8 62.4 
36.6 78.9 39.2 85.4 36.6 
29.4 10.4 32.2 11.3 29.4 
28.2 28.2 30.8 30.8 28.2 
20.8 7.8 22.8 8.6 20.8 
16.1 2.6 17.6 2.8 16.1 
13.5 1.2 14.5 1.3 13.5 
11.5 0.8 12.3 0.8 11.5 
9.6 — 10.1 — 9.6 

Sum A 1151.0 B 1169.6 
BI  -1.59 

Note: — means no value calculated. 
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Figure 136. Particle size distribution change of a subbase sample 

Particle size distribution change of all samples 

For each permanent deformation test sample, wash sieve analyses were conducted on all 
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Figure 137. Particle size distributions on limestone with 7.9% fines content 
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Figure 138. Particle size distributions on limestone with 2.2% fines content 
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Figure 139. Particle size distributions on limestone with 5.8% fines content 
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Figure 140. Particle size distributions on limestone with 12.6% fines content 
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Figure 141. Particle size distributions on RAP with 2.0% fines content 
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Figure 142. Particle size distributions on RAP with 1.6% fines content 
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Figure 143. Particle size distributions on RAP with 5.6% fines content 
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Figure 144. Particle size distributions on RAP with 12.5%fines content 
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Figure 145. Particle size distributions on RPCC/RAP with 3.5% fines content 
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Figure 146. Particle size distributions on RPCC/RAP with 0.8% fines content 
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Figure 147. Particle size distributions on RPCC/RAP with 6.0% fines content 
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Figure 148. Particle size distributions on RPCC/RAP with 12.4% fines content 
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APPENDIX C. SYSTEM OUTPUTS 

Permanent Deformation Tests 

System outputs of the permanent deformation tests were reported for one sample using 

each method except 3 samples for NCHRP 598 tests. 

Method #1 ISU 100k tests 
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Method #2 ISU 1k tests 
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Method #3 NCHRP 598 tests 

Crushed limestone 
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RAP 
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RPCC/RAP 
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Resilient Modulus Tests 

System outputs of the resilient modulus tests were reported for each tested subbase 

material sample. 

Crushed limestone 
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APPENDIX D. LOAD CYCLES SELECTION STUDY 

In order to see variance among the average resilient moduli of last five load repetitions 

(standard method), the maximum Mr and adjacent four load repetitions (max method), and 

the minimum Mr and adjacent four load repetitions (min method), one load sequence was 

randomly selected from each Mr test (Table 69) and determined according to system output. 

Table 69. Randomly selected load sequence number of each resilient modulus test 

Test No. Target Fines 
(%) 

Target 
Moisture (%) RD (%) Target γd 

(kN/m3) 
Target γd 

(pcf) 
Sequence 

No. 
M1 0.0 2.3 85.0 18.99 120.9 1 
M2 6.0 2.3 85.0 19.47 123.9 15 
M3 7.9 2.3 85.0 17.65 112.4 5 
M4 12.0 2.3 85.0 20.33 129.4 7 
M5 0.0 2.3 90.0 19.19 122.2 5 
M6 6.0 2.3 90.0 19.70 125.4 14 
M7 7.9 2.3 90.0 17.71 112.7 12 
M8 12.0 2.3 90.0 20.55 130.8 15 
M9 0.0 2.3 95.0 19.40 123.5 12 
M10 6.0 2.3 95.0 19.95 127.0 13 
M11 7.9 2.3 95.0 17.76 113.1 7 
M12 12.0 2.3 95.0 20.78 132.3 10 
M13 0.0 2.9 85.0 15.75 100.3 13 
M14 2.0 2.9 85.0 14.92 95.0 10 
M15 6.0 2.9 85.0 17.01 108.3 12 
M16 12.0 2.9 85.0 17.62 112.2 5 
M17 0.0 2.9 90.0 15.89 101.1 9 
M18 2.0 2.9 90.0 15.05 95.8 8 
M19 6.0 2.9 90.0 17.14 109.1 11 
M20 12.0 2.9 90.0 17.81 113.4 13 
M21 0.0 2.9 95.0 16.03 102.0 15 
M22 2.0 2.9 95.0 15.17 96.6 10 
M23 6.0 2.9 95.0 17.30 110.1 14 
M24 12.0 2.9 95.0 18.00 114.6 13 
M25 0.0 6.0 85.0 15.26 97.1 12 
M26 3.5 6.0 85.0 16.12 102.7 9 
M27 6.0 6.0 85.0 16.77 106.8 9 
M28 12.0 6.0 85.0 17.54 111.7 5 
M29 0.0 6.0 90.0 15.41 98.1 9 
M30 3.5 6.0 90.0 16.22 103.3 4 
M31 6.0 6.0 90.0 16.96 108.0 11 
M32 12.0 6.0 90.0 17.74 113.0 6 
M33 0.0 6.0 95.0 15.56 99.1 14 
M34 3.5 6.0 95.0 16.32 103.9 15 
M35 6.0 6.0 95.0 17.17 109.3 13 
M36 12 6.0 95.0 17.95 114.3 7 
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Table 70. Resilient moduli summary for standard, max, and min methods 

Test 
No. 

Standard 
Mr 

Max 
average Max Mr 

Min 
average Min Mr 

psi psi -2 -1 Max 1 2 psi -2 -1 Min 1 2 

1 18930.0 19085.
4 

19103.
8 

19115.
4 

19261.
5 

19161.
5 

18784.
6 

18489.
2 

18653.
8 

18692.
3 

18238.
5 

18346.
2 

18515.
4 

Load No.   40 41 42 43 44   63 64 65 66 67 

2 31917.0 34375.
4 

32846.
2 

34738.
5 

37230.
8 

34846.
2 

32215.
4 

32116.
9 

32200.
0 

31600.
0 

30430.
8 

32092.
3 

34261.
5 

Load No.   22 23 24 25 26   67 68 69 70 71 

3 84573.0 87946.
1 

85423.
1 

87403.
8 

89903.
8 

88500.
0 

88500.
0 

80946.
1 

84769.
2 

83557.
7 

71519.
2 

81615.
4 

83269.
2 

Load No.   17 18 19 20 21   61 62 63 64 65 

4 35004.0 35392.
3 

34815.
4 

35907.
7 

36269.
2 

34892.
3 

35076.
9 

34544.
6 

34692.
3 

34400.
0 

33723.
1 

34692.
3 

35215.
4 

Load No.   57 58 59 60 61   83 84 85 86 87 

5 42445.0 49215.
4 

49019.
2 

48923.
1 

49557.
7 

49480.
8 

49096.
2 

39592.
3 

39653.
8 

39653.
8 

38942.
3 

39750.
0 

39961.
5 

Load No.   43 44 45 46 47   11 12 13 14 15 

6 28978.0 29238.
5 

28384.
6 

28769.
2 

30615.
4 

29884.
6 

28538.
5 

27658.
5 

27923.
1 

27692.
3 

27176.
9 

27615.
4 

27884.
6 

Load No.   75 76 77 78 79   11 12 13 14 15 

7 92798.0 94969.
2 

93230.
8 

92500.
0 

99307.
7 

94769.
2 

95038.
5 

89215.
4 

99230.
8 

92500.
0 

79423.
1 

86307.
7 

88615.
4 

Load No.   95 96 97 98 99   50 51 52 53 54 

8 124050.0 12660
7.7 

12765
3.8 

12892
3.1 

12676
9.2 

12680
7.7 

12288
4.6 

12109
2.3 

12548
0.8 

12115
3.8 

11836
5.4 

11938
4.6 

12107
6.9 

Load No.   11 12 13 14 15   89 90 91 92 93 

9 25573.0 26155.
4 26000 25884.

6 
26707.

7 
26707.

7 
25476.

9 
25390.

8 
26407.

7 
26023.

1 
24553.

8 
24969.

2 
25000.

0 
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Test 
No. 

Standard 
Mr 

Max 
average Max Mr 

Min 
average Min Mr 

psi psi -2 -1 Max 1 2 psi -2 -1 Min 1 2 
Load No.   15 16 17 18 19   54 55 56 57 58 

10 72596.0 74757.
7 

74038.
5 

75288.
5 

74884.
6 

75461.
5 

74115.
4 

71326.
9 

71538.
5 

71250.
0 

70096.
2 

70673.
1 

73076.
9 

Load No.   18 19 20 21 22   89 90 91 92 93 

11 57184.0 58467.
7 

59869.
2 

57846.
2 

60769.
2 

57338.
5 

56515.
4 

57155.
4 

57800.
0 

56530.
8 

55484.
6 

57792.
3 

58169.
2 

Load No.   27 28 29 30 31   60 61 62 63 64 

12 36855.0 36869.
2 

36169.
2 

36600.
0 

38115.
4 

36769.
2 

36692.
3 

36221.
5 

35815.
4 

35630.
8 

34953.
8 

37046.
2 

37661.
5 

Load No.   68 69 70 71 72   85 86 87 88 89 

13 23807.0 30884.
6 

30576.
9 

30115.
4 

32115.
4 

31038.
5 

30576.
9 

23807.
0 min=standard 

Load No.   49 50 51 52 53             

14 51044.0 59523.
1 

73653.
8 

70961.
5 

74923.
1 

74461.
5 3615.4 48407.

7 
49230.

8 
49153.

8 
47000.

0 
47884.

6 
48769.

2 
Load No.   49 50 51 52 53   91 92 93 94 95 

15 
42436.0 57015.

4 
58269.

2 
61730.

8 
61846.

2 
52923.

1 
50307.

7 
38615.

4 
40115.

4 
37961.

5 
37692.

3 
38076.

9 
39230.

8 
Load 
No..   62 63 64 65 66   27 28 29 30 31 

16 18864.0 19504.
6 

20000.
0 

20069.
2 

21107.
7 

18230.
8 

18115.
4 

19033.
8 

20176.
9 

20692.
3 

17692.
3 

17961.
5 

18646.
2 

Load No.   16 17 18 19 20   26 27 28 29 30 

17 30512.0 31158.
5 

30723.
1 

31876.
9 

31953.
8 

31046.
2 

30192.
3 

25772.
3 

25492.
3 

25807.
7 

25453.
8 

25630.
8 

26476.
9 

Load No.   23 24 25 26 27   15 16 17 18 19 

18 30152.0 31692.
3 

32326.
9 

32923.
1 

33692.
3 

31923.
1 

27596.
2 

27838.
5 

31730.
8 

29711.
5 

25769.
2 

25730.
8 

26250.
0 
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Test 
No. 

Standard 
Mr 

Max 
average Max Mr 

Min 
average Min Mr 

psi psi -2 -1 Max 1 2 psi -2 -1 Min 1 2 
Load No.   69 70 71 72 73   13 14 15 16 17 

19 43322.0 43965.
4 

43384.
6 

43884.
6 

45153.
8 

44480.
8 

42923.
1 

35076.
9 

35423.
1 

34846.
2 

34538.
5 

35000.
0 

35576.
9 

Load No.   85 86 87 88 89   49 50 51 52 53 

20 94894.0 10464
6.2 

98846.
2 

97307.
7 

11415
3.8 

10830
7.7 

10461
5.4 

88676.
9 

88769.
2 

90769.
2 

87307.
7 

89615.
4 

86923.
1 

Load No.   67 68 69 70 71   93 94 95 96 97 

21 37129.0 37129.
0 max=standard 23676.

9 
23923.

1 
23538.

5 
22923.

1 
23615.

4 
24384.

6 
Load No.               30 31 32 33 34 

22 48616.0 48616.
0 max=standard 40192.

3 
41942.

3 
41269.

2 
38096.

2 
39653.

8 
40000.

0 
Load No.               32 33 34 35 36 

23 45573.0 46538.
5 

46615.
4 

43846.
2 

43538.
5 

44076.
9 

54615.
4 

55461.
6 

53423.
1 

54230.
8 

63846.
2 

53076.
9 

52730.
8 

Load No.   77 78 79 80 81   12 13 14 15 16 

24 46426.0 64561.
5 

60384.
6 

60000.
0 

69038.
5 

67384.
6 

66000.
0 

46426.
0 min=standard 

Load No.   12 13 14 15 16             

25 37715.0 37903.
9 

38000.
0 

38269.
2 

38365.
4 

37788.
5 

37096.
2 

32050.
0 

31942.
3 

31942.
3 

31634.
6 

31846.
2 

32884.
6 

Load No.   92 93 94 95 96   56 57 58 59 60 

26 56879.0 60069.
2 

60038.
5 

59730.
8 

61576.
9 

59500.
0 

59500.
0 

56076.
9 

56442.
3 

55192.
3 

54038.
5 

56826.
9 

57884.
6 

Load No.   11 12 13 14 15   39 40 41 42 43 

27 26898.0 27507.
7 

27646.
2 

27946.
2 

28000.
0 

27546.
2 

26400.
0 

24727.
7 

25723.
1 

25776.
9 

24053.
8 

24084.
6 

24000.
0 

Load No.   37 38 39 40 41   12 13 14 15 16 
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Test 
No. 

Standard 
Mr 

Max 
average Max Mr 

Min 
average Min Mr 

psi psi -2 -1 Max 1 2 psi -2 -1 Min 1 2 

28 28589.0 29048.
5 

29269.
2 

29384.
6 

29076.
9 

28723.
1 

28788.
5 

27992.
3 

28400.
0 

28861.
5 

27365.
4 

27507.
7 

27826.
9 

Load No.   11 12 13 14 15   53 54 55 56 57 

29 31020.0 32015.
4 

31826.
9 

32211.
5 

31961.
5 

32115.
4 

31961.
5 

25696.
1 

27250.
0 

26634.
6 

24634.
6 

24961.
5 

25000.
0 

Load No.   61 62 63 64 65   16 17 18 19 20 

30 27842.0 31561.
5 

26903.
8 

29942.
3 

34807.
7 

34153.
8 

32000.
0 

29934.
6 

29038.
5 

29769.
2 

24730.
8 

32884.
6 

33250.
0 

Load No.   42 43 44 45 46   89 90 91 92 93 

31 24625.0 24731.
5 

24269.
2 

24769.
2 

25119.
2 

24750.
0 

24750.
0 

24243.
1 

24330.
8 

24307.
7 

23903.
8 

24038.
5 

24634.
6 

Load No.   88 89 90 91 92   26 27 28 29 30 

32 21521.0 22209.
6 

22151.
9 

22336.
5 

22380.
8 

22321.
2 

21857.
7 

21408.
4 

21978.
8 

22000.
0 

20903.
8 

21173.
1 

20986.
5 

Load No.   23 24 25 26 27   64 65 66 67 68 

33 27662.0 29054.
8 

28811.
5 

28961.
5 

29307.
7 

29058.
5 

29134.
6 

27996.
2 

28538.
5 

28446.
2 

27338.
5 

27796.
2 

27861.
5 

Load No.   23 24 25 26 27   84 85 86 87 88 

34 56875.0 56875.
0 max=standard 46526.

9 
46692.

3 
46865.

4 
45653.

8 
46153.

8 
47269.

2 
Load No.               13 14 15 16 17 

35 38725.0 39841.
5 

39638.
5 

39953.
8 

40469.
2 

39684.
6 

39461.
5 

38760.
0 

39400.
0 

39746.
2 

37384.
6 

38269.
2 

39000.
0 

Load No.   34 35 36 37 38   27 28 29 30 31 

36 19765.0 21090.
8 

20269.
2 

20930.
8 

23284.
6 

20638.
5 

20330.
8 

19733.
9 

20046.
2 

19692.
3 

19230.
8 

19669.
2 

20030.
8 

Load No.   73 74 75 76 77   67 68 69 70 71 
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Statistical Analysis for Comparing Three Methods 

 
Figure 149. Distribution of standard Mr values  
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Figure 150. Distribution of maximum average Mr values 
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Figure 151. Distribution of minimum average Mr values 
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Figure 152. Comparing three methods for average Mr values at selected load sequences 
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APPENDIX E. HYDROMETER CORRECTIONS 

A 152H hydrometer was used for all hydrometer tests in this study, and the temperature 

corrections were made by recording the readings of the hydrometer in pure distilled water 

and distilled water with dispersing agent (40g/L sodium hexametaphosphate solution). These 

solutions were placed in three glass cylinders which were placed in a water bath where the 

temperature was controlled (Figure 153). The hydrometer temperature corrections in distilled 

water with dispersing agent were plotted in Figure 154 and in distilled water were plotted in 

Figure 155. The hydrometer temperature corrections are negative values of hydrometer 

readings. 

 
Figure 153. Glass cylinders in a water bath 

Table 71. Readings of the hydrometer in distilled water with dispersing agent 

Temperature 
°C 10.1 11.5 13.7 17.4 20.3 22.3 22.8 24.1 

Reading -6.33 -6.20 -6.00 -5.20 -4.38 -4.05 -4.00 -3.70 
Temperature 

°C 25.9 29.0 29.8 30.8 33.6 35.4 40.1  
Reading -3.03 -2.07 -1.97 -1.47 -0.07 0.87 3.00  
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Table 72. Hydrometer temperature corrections in distilled water 

Jar #B Jar #E Jar #G Average 

T (ºC)  Correction T 
(°C) Correction T 

(°C) Correction T(°C)  Correction 

11.5 -1.00 11.5 -1.00 11.5 -1.00 11.5 -1.00 
13.0 -0.80 13.0 -0.80 13.0 -0.80 13.0 -0.80 
14.5 -0.55 14.5 -0.50 14.5 -0.50 14.5 -0.52 
15.5 -0.55 15.5 -0.50 15.5 -0.45 15.5 -0.50 
17.9 -0.10 17.9 -0.10 17.9 -0.10 17.9 -0.10 
18.3 -0.10 18.3 -0.10 18.3 -0.05 18.3 -0.08 
19.6 0.04 19.6 0.04 19.6 0.04 19.6 0.04 
20.4 0.20 20.4 0.20 20.4 0.25 20.4 0.22 
20.7 0.30 20.7 0.30 20.7 0.30 20.7 0.30 
21.1 0.50 21.1 0.50 21.1 0.50 21.1 0.50 
21.6 0.50 21.6 0.50 21.6 0.50 21.6 0.50 
22.4 0.80 22.4 0.80 22.4 0.80 22.4 0.80 
22.7 0.95 22.7 0.95 22.7 0.95 22.7 0.95 
24.0 1.00 24.0 1.10 24.0 1.15 24.0 1.08 
24.1 1.05 24.1 1.10 24.1 1.30 24.1 1.15 
25.4 1.80 25.4 1.95 25.4 1.90 25.4 1.88 
25.4 1.80 25.4 1.85 25.4 1.80 25.4 1.82 
26.7 2.00 26.7 2.05 26.7 2.05 26.7 2.03 
26.9 2.15 26.9 2.20 26.9 2.25 26.9 2.20 
28.0 2.70 28.0 2.70 28.0 2.75 28.0 2.72 
28.9 3.00 28.9 3.00 28.9 3.00 28.9 3.00 
31.4 3.95 31.4 3.90 31.4 3.90 31.4 3.92 
31.9 4.10 31.9 4.10 31.9 4.00 31.9 4.07 
32.5 4.50 32.5 4.70 32.5 4.60 32.5 4.60 
37.2 7.40 37.2 7.60 37.2 7.60 37.2 7.53 

Note: T means temperature. 
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Figure 154. Hydrometer temperature correction in water with dispersing agent solution 

 
Figure 155. Hydrometer temperature corrections in distilled water 
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