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Abstract 

 The work presented in this thesis involves the study of drying shrinkage behavior of 

mortars and field concrete mixtures made with ternary cementitious blends. The thesis is 

composed of two papers resulting from the study: (1) Short-Term Drying Shrinkage of 

Ternary Blends and (2) Drying Shrinkage of Ternary Blends for Use in Transportation 

Structure. In the former, statistical response surface analysis was employed to develop 

shrinkage models to better understand the drying shrinkage behavior of mortar mixes made 

with ternary blends. In the latter, ternary blend concrete mixtures used for pavement and 

bridge deck structures in different states were selected. Factors affecting drying shrinkage 

behavior of these ternary blend concretes were also investigated.  

 In Paper 1, shrinkage behavior of mortar mixes made with various ternary blends was 

studied. Ternary blends consisting of different combinations of portland or blended cement, 

slag cement, fly ash (Class C and F) and/or silica fume were considered: the amounts of slag 

cement, fly ash and silica fume ranged between 15-35%, 13-30%, and 3-10% by mass of 

cementitious, respectively. Mortar bars were made with the ternary blends and subjected to a 

drying condition (i.e., T = 73 ± 3 °F and RH = 50±4%) after standard curing for 28 days. 

Free shrinkage of the mortar bars was measured up to 28 days. Based on the test results, a 

response surface analysis was done to examine the effects of blend proportions on shrinkage 

behavior of the mortars and a statistical model was developed for predicting the mortar 

shrinkage behavior. Furthermore, to validate the models, shrinkage strains of an independent 

group of mortar mixes were measured, and the measured values were compared with the 

predicted values. The results indicated that among the three supplementary cementitious 

materials in the ternary blends studied, slag cement showed a dominant effect on mortar 

shrinkage. The contribution of Class C fly ash to the mortar free shrinkage was slightly less 

than that of slag cement. Increasing silica fume content slightly increased free shrinkage, 

while an increase in Class F fly ash content slightly decreased free shrinkage of the mortar. 

There was a good correlation between the measured shrinkage strain and the strain predicted 

from the shrinkage model developed from the response surface analysis. 

 The work discussed in Paper 2 investigated the drying shrinkage behavior of ternary 

blend concretes that were used in transportation structures. Factors affecting drying shrinkage 
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behavior of ternary blend concretes were studied. Five concrete mixes, used for either 

pavement or bridge deck construction, were tested for both restrained and unrestrained 

shrinkages. The effects of blend materials and mix proportion on the concrete shrinkages 

were assessed. The results indicated that shrinkage strain rate linearly increased with clay 

content of fine aggregate, cementitious material content, paste-to-void ratio (by volume), and 

dosage of water reducer of the concrete mixes. 

 The study demonstrates that the supplementary cementitious materials (SCMs) can be 

used to develop a statistical model in order to quantitatively predict drying shrinkage strain. 

The study gives a better understanding on how SCMs affect mortar and concrete drying 

shrinkage behavior. Both free and restrained shrinkage methodologies provide efficient 

analyses on interacted drying shrinkage influence factors. The cracking potential derived 

from restrained ring shrinkage test can be used to predict drying shrinkage cracking potential 

of ternary blend concrete mixtures. 
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Chapter 1 

 

Introduction 

 

General 

The present thesis is developed from an on-going research project, Development of 

Performance Properties of Ternary Mixes. The purpose of this research project is to perform 

a comprehensive study of how supplementary cementitious materials (SCMs), such as fly ash, 

slag cement, and silica fume, can be used to improve the performance of concrete mixtures. 

Several different sources of Portland cement and blended cement are used in the 

experimental program to address the material variability issue. The proposed project is 

conducted in three phases: Phase I, laboratory study on mortar, which simply served as a 

filter to identify materials combinations that did not perform adequately; Phase II, laboratory 

study on concrete, which used the information obtained from Phase I to select a range of 

materials and dosages to investigate the effects of hot and cold environmental conditions on 

concrete; Phase III, filed demonstration and technical assistance, which will provide on-site 

technical support for using ternary mixtures and review the specifications based on the 

performance of field mixtures. The Phase I and II were accomplished already. 

Concrete shrinkage is of concern when it relates to structure durability. Excessive 

shrinkage may cause concrete cracking, even structural failure. Thus, cracking may lead to 

increased corrosion rate of steel reinforcement in concrete structure. For prestressed concrete 

structure, the shrinkage induced cracking may not only accelerate the rate of corrosion of 

steels but also contribute to prestress loss causing failure [1]. Therefore, researchers start to 

make use of blending of two or three SCMs to optimize durability and cost for the benefit of 

engineers, owners, contractors and material suppliers. The industrial by-products used as 

SCMs, such as fly ash and slag cement, have become more efficient admixtures to diminish 

the shrinkage effects and increase the durability of concrete. This thesis includes a selection 

of papers encompassing a critical shrinkage mechanism, drying shrinkage, to perform a 

comprehensive study on mortar and concrete. Statistical analysis software and materials 
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collected from construction site provided sufficient supports to realize a more practical study 

on concrete drying shrinkage behavior.  

 

Objective of thesis 

The main purpose of this work is to perform a comprehensive study of how SCMs 

can be used to improve the performance of concrete mixtures through the mortar shrinkage 

evaluations. In order to accomplish this main purpose, the following objectives are included 

in this thesis: 

 Investigation on determining the effects of different SCMs on drying shrinkage 

behavior of ternary blends. 

 Statistical models development and validity of models verification based on drying 

shrinkage behavior of mortars produced with ternary blends. 

 Evaluation of restrained and unrestrained drying shrinkage behavior for ternary 

blended concrete mixtures used in transportation structures. 

 Cracking risk assessment for ternary blended concrete mixtures used in transportation 

structures in lab condition compared to field condition. 

 Investigation on the influence factors which have different dominances on drying 

shrinkage behavior of ternary blended concrete mixtures used in transportation 

structures. 

 

Thesis organization 

This thesis is divided into six chapters. Chapter 1 provides a general introduction and 

thesis objectives. 

Chapter 2 gives a brief literature review of the concrete drying shrinkage 

phenomenon, factors affecting concrete drying shrinkage, and shrinkage testing methodology. 

The review aims to provide background and general information about concrete shrinkage 

behaviors. 

Chapter 3 and 4 includes selected papers that have been either submitted for 

publication or ready for submission to peer reviewed journals. The results and conclusions of 

this thesis are presented in these two chapters. 
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Chapter 5 summarizes the major findings of the study and chapter 6 provides the 

recommendations for future research and industrial applications. 

Appendix presents the technical reports for five field demonstration transportation 

structures in New Hampshire, Pennsylvania, Kansas, Michigan, and Iowa. 

 

Reference 

[1] Tia M, Liu Y, Brown D. Modulus of elasticity, creep and shrinkage of concrete. 

Gainesville: Department of Civil & Coastal Engineering, College of Engineering, 2005. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



4 

 

 

 

Chapter 2 

 

Literature Review 

 

Concrete shrinkage  

Concrete shrinkage types are plastic shrinkage, chemical shrinkage (autogenous 

shrinkage) and drying shrinkage [1]. Generally, there are two distinct stages: early and later 

ages. The two stages should be evaluated together as total shrinkage of a concrete. Early age 

of shrinkage indicates the first day which concrete is setting and starting to harden. Later age, 

also known as long term, refers to concrete at 24 hours after casting or longer.  

Plastic shrinkage occurs at early age from the moisture loss of concrete before, or 

shortly after, the concrete sets. Chemical shrinkage is also an early age behavior, especially 

first hour when mixing water with cementitious materials. Carbonation shrinkage is a part of 

chemical shrinkage which is limited to the surface of the low-permeable concrete and quicker 

cement reaction may lead to high chemical shrinkage [2]. “The reduction in total solid and 

liquid volumes is produced by the chemical hydration reaction, which can be considered to 

be the driving mechanism of autogenous shrinkage [3].” Therefore, the study of autogenous 

deformations has been affected by experimental assessment of chemical shrinkage. 

Autogenous shrinkage is “the shrinkage occurring in the absence of moisture exchange due 

to the hydration reactions taking place inside the cement matrix [4].” Drying shrinkage 

occurs when the specimen is exposed to the environment and allowed to have volumetric 

changes. Normally, the entire shrinkage strain is assumed to be from drying shrinkage, and 

any contribution from autogenous shrinkage is neglected for normal strength concrete (i.e., < 

6000 psi at 28 days) [3, 4]. 

From a microstructural point of view, solids in the hydrated cement paste include four 

principal solid phases, calcium silica hydrate (40 to 50%); calcium hydroxide (20 to 25%); 

calcium sulfoaluminate hydrates (15 to 20%) and unhydrated clinker grains [6].  
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Water can exist in many forms in the hydrated cement paste and they can be 

classified depending on the degree of ease with which it can be removed from the paste 

(Figure 1): 

The capillary voids that represent the voids not filled by solid hydration products, 

initially filled with excess unhydrated water. Such voids will retain water by capillary tension. 

Water in the larger voids (>50 nm) is considered to be “free water” because its removal does 

not result in volume change. However, water in small capillary voids (5 to 50 nm) may result 

in large shrinkage strains when water is forced to leave the system [6]. The size and volume 

of the capillary voids are determined by the initial w/c ratio and the degree of cement 

hydration. At a constant w/c ratio, increasing the degree of hydration decreases the size and 

volume of the capillary voids. Subsequent drying then will result in reduced shrinkage strain 

[6].  

Adsorbed water is the water bonded to but not reacted with the surface of hydration 

products. Water molecules are physically adsorbed onto the surface of solids in hydrate 

cement by influence of attractive forces such as hydrogen bonding. The removal of adsorbed 

water will result in shrinkage strains, but such removal will not occur unless the RH of the 

pore system is low (less than about 40% RH) [31]. 

Interlayer water is the water held within the calcium silica hydrate (CSH) nano-

structure. The water in the interlayer space of CSH voids is held by Van der Waals forces 

[51]. Because of the extremely small size of the so-called gel pores, removal of interlayer 

water will only occur under very dry conditions (about 10% RH) [6, 31]. The size and 

volume of gel pores vary depending on the Ca/Si ratio, type of molecules (non-ionic, anionic 

or cationic), concentration and pH while they are independent of the initial w/c ratio and 

degree of hydration [51, 52]. Therefore, increasing the Ca/Si ratio may decrease the size and 

volume of gel pores and so increase resistance to water removal [54]. 

The predominant drying shrinkage mechanisms (mainly by water loss) are composed 

of moisture transport within the porous solid, permeation due to a pressure head, capillary 

suction due to surface tension and capillary tension, absorption phenomena including fixation 

and liberation of water molecules due to mass forces [5]. Capillary tension is a well 

documented drying shrinkage mechanism in drying porous media. Tensile stresses in the 
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capillary water in the high RH range (up to approximately 50% RH) are subjected to 

capillary tension. These tensile stresses bring about elastic shrinkage stains [6, 31]. Surface 

tension is another important mechanism for adsorbed water removal. Due to lack of 

symmetry of molecules lying on the surface of the material, a resultant force perpendicular to 

the surface that provokes contraction is referred as surface tension. It is suggested that this 

mechanism is only valid in the low RH regime (up to 40% of RH) [31]. Another mechanism, 

movement of interlayer water, is attributed to the layered-structure of the CSH. This 

phenomenon may migrate the interlayer water out of the CSH sheets when RH drops below 

10% [31]. 

 

Factors affecting concrete shrinkage 

Factors that affect drying shrinkage are usually interrelated although they can be 

grouped into two main categories – material characteristics and ambient conditions [6]. On 

one hand, the group contains the characteristic properties of material itself, such as aggregate 

properties (i.e., size, gradation, content, and elastic properties), the w/c ratio, water content, 

cementitious material content, cement characteristics, air content, chemical and 

supplementary cementitious material admixtures. On the other hand, the environmental 

factors set up the external conditions, such as relative humidity, ambient temperature, and 

wind velocity [6]. The curing condition influences are falling between the previous two 

classifications since they are controlled by external conditions which will internally affect the 

quality of material as well [6, 7]. 

Because the drying process involves moisture loss from the surface, drying shrinkage 

mainly depends on the size and configuration of the element [8]. Usually, a larger member 

dries slower and the thicker specimens have a lower rate of shrinkage. An inverse proportion 

between shrinkage and the ratio of specimen volume to its drying surface area is obtained 

from American Concrete Institute (ACI) [4]. Increasing the volume-to-specimen surface area 

ratio may cause decrease in drying shrinkage. Quantity of aggregate is also a significant 

factor affecting the potential of shrinkage. Shrinkage is basically related to volume of 

aggregate content and higher content of aggregate has a lower shrinkage strain at the same 

w/c ratio [9]. ACI Committee 209 on “Factors affecting shrinkage and creep of hardened 
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concrete” reports that increasing the size of aggregate while decreasing the paste content will 

decrease the drying shrinkage. The aggregate size changes from 1.4 to 6 inches will result in 

the aggregate volumetric changes from 0.6 to 0.8 so that the shrinkage reduces at around 

50%. This is because the quantity of paste is one of the main parameters affecting the 

shrinkage potential of a mixture. For a given w/c ratio, decreasing paste content, and so 

increasing aggregate content leads to reduced shrinkage strain [9]. The methylene blue index 

(MBI) can be used as an indicator of clay content of fine aggregate in concrete. The higher 

clay content may absorb more water from the cement system so as to change moisture 

content in the concrete. The drying shrinkage of concrete increases with the increasing MBI 

values, especially when MBI value is greater than or equal to 1.45  because clay particles 

coating aggregate particles will deform significantly with changing moisture content [48]. 

The elastic properties of the aggregate will also affect concrete shrinkage – the lower the 

modulus of elasticity of aggregate, the higher the drying shrinkage of the concrete may be [6]. 

Cement characteristics, such as reduced sulfate content, increasing fineness will reportedly 

increase drying shrinkage potential. 

Relative humidity around concrete can dramatically increase the shrinkage, especially 

when RH is lower than 10%. It is generally agreed that the interlayer water may migrate out 

of CSH sheets to reduce the distance between these layers and causing macroscopic 

shrinkage strain. As long as the air content less than 8%, there is no significant effect on the 

drying shrinkage strain [10]. Proper, prompt, and sufficient curing period helps to reduce 

shrinkage [4]. 

Both supplementary cementitious materials (SCMs) and chemical admixtures can 

dramatically affect the shrinkage of a mixture. The available literature indicates that for a 

similar mixture, inclusion of slag cement appears to have marginal effect on increasing 

shrinkage [36]. A high silica fume content may increase the drying shrinkage in the short 

term. However, silica fume may not cause an increase in shrinkage with lower replacement 

dosage over the long term (i.e., 365 days) [11]. Use of slag cement and silica fume in ternary 

mixes provides the best performance compared to binary mixtures where slag cement and 

silica fume are used alone [42]. Class F fly ash used in binary mixtures may reduce drying 

shrinkage with increasing replacement dosages compared to plain portland cement concrete 
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[43]. Compared to class F fly ash, class C fly ash reportedly causes more shrinkage than 

control concrete mixtures in most cases, apparently due to low alkali contents and higher 

Ca/Si ratios [44]. However, both types of fly ash combined with slag cement or silica fume in 

ternary blends diminish the adverse effects of silica fume or slag cement [42]. 

Current literature focuses on investigating how binary systems affect drying 

shrinkage. 

 For binary blends of Portland cement and class F fly ash: Gesoğlu et al. replaced PC 

by FFA at levels of 20%, 40%, and 60% and observed that the free shrinkage was 

reduced by using FFA and this beneficial effect appeared to be more pronounced 

with increasing replacement levels [32]. In another study, FFA was used to 

investigate the drying shrinkage behavior in six mixtures cast with total cementitious 

contents of 400 and 500 kg/m
3
. The use of the FFA in 500 kg/m

3
 cementitious 

content mixtures resulted in a nominal reduction in shrinkage strain [33].  

 For binary blends of Portland cement and slag cement: free shrinkage was reduced 

by using slag cement in a binary system compared to an ordinary PC mixture. The 

shrinkage decreased with increased amounts of slag cement [32]. On the other hand, 

the alkali-activated slag concrete had higher drying shrinkage than plain PC concrete 

by 1.6 to 2.1 times [34]. In order to assess the influence of slag cement on drying 

shrinkage behavior, the Slag Cement Association (SCA) performed a critical review 

based on published shrinkage research. Slag cement was incorporated either as a 

separately SCM or as a component in blended cement. The authors concluded that 

given a similar mixture, slag cement appears to have a marginal effect on increasing 

drying shrinkage [36].  

 For binary blends of Portland cement and silica fume: A research project using 5% to 

15% mass replacement of PC concluded that SF increased the drying shrinkage [32]. 

Similar conclusions were reached in another study that the ultimate drying shrinkage 

of mortar increases with increased of SF content at 28 days, but the long-term drying 

shrinkage after 365 days was not affected significantly by the addition of SF [11]. 

One study showed that at early ages, the amount of shrinkage showed an increased 

sensitivity to changes in water-to-cementitious ratio (w/c ratio) as the SF content was 
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increased, while high levels of SF (i.e., over 8%) in mixtures may dramatically 

increase drying shrinkage [36]. However, some conflicting results were found in 

other studies: the drying shrinkage of SF incorporated concrete was 10 to 22% higher 

than that of ordinary PC of same w/c ratio and same binder content for short term 

[37]; on the other hand, SF concrete had lower shrinkage than that of normal portland 

cement concrete with the same w/c ratio but marginally lower binder content [38]. 

The lower drying shrinkage of SF concrete could be attributed to its lower w/c ratio 

used in the study [5].  

Some researches into the effects of drying shrinkage with the use of ternary mixtures 

have been published.  

 For ternary blends of Portland cement, slag cement, and silica fume: the adverse 

effect of the SF was reduced and the shrinkage values compared to control mixture 

were reduced [32]. Khatri et al. conducted research on shrinkage behavior of the 

addition of SF to slag cement concrete. It was established that strain due to drying 

shrinkage was caused by the removal of adsorbed water and the addition of SF to slag 

cement concrete refined the pore size distribution of the cement paste. The pore 

refinement could be the cause of reduced loss of water and thus decreased the 

shrinkage strain [5].  

 For ternary blends of Portland cement, slag cement, and class F fly ash: Compared to 

control mixtures, shrinkage was reduced by using 10% S and 10% FFA, 20% S and 

20% FFA, and 30% S and 30% FFA as replacement dosages of PC in ternary blends 

[32]. 

A water reducer agent is used to achieve a higher strength at the same workability or 

to maintain strength at a higher workability. Most researchers have found that drying 

shrinkage increases when water reducer agent dosage increases regardless of the curing 

conditions [14, 15, 39, 40]. However, Qi et al. reported the shrinkage of concrete with a 

higher water reducer content (2.37 percent by weight of cement) was lower than that with 

lower water reducer content (1.39 percent by weight of cement). The test results also showed 

that the high water reducer content was effective in inhibiting crack opening and propagation 

in concrete specimens tested in a restrained condition [41].  
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A summarized concrete shrinkage influence factors are shown in Table 1. 

 

Existing prediction models 

Five existing models have been developed according to large number of concrete tests 

to predict the concrete shrinkage strain for supplemental cementitious material concrete 

mixtures. Researchers used the residual value which was equal to predicted value subtract the 

measured value to indicate if the models had ability to either overestimate or underestimate 

shrinkage [16]. Five existing prediction models are presented as follows: 

1. American Concrete Institute – ACI 209 Code Model [6, 17] 

   (       )   
          

             
      (moist/cure) 

    (       )   
          

             
      (stream/cure) 

 where, εsh(t, tsh,0) = shrinkage strain (in./in.); t = time (days); tsh,0 = time at start of  

 drying (days); εsh ∞ = ultimate shrinkage strain (in./in.). 

2. Gardner/Lockman Model [18] 

   (       )                    
    

                 
      

             
    

     
          

 where, h = humidity; tc = age drying commenced (days); t = age of concrete (days). 

3. Euro-International Concrete Committee – CEB 90 Code Model [6, 17] 

                     (
  

   
)
 

  

        (         (  
   

    
))     

where, εcso = drying shrinkage of Portland cement concrete (in./in.); εs = drying 

shrinkage obtained from RH-shrinkage chart; βsc = coefficient depending on type of 

cement; fcm = average 28-day compressive strength (psi).  

4. Bazant B3 Model [19] 

   (       )                
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          √
     
   

 

where, α1 and α2 = 1.0; w = water content of concrete (lb/yd
3
); Kh = cross-section 

shape factor;  h = relative humidity (%); t = age of concrete (days); t0 = age of 

concrete at beginning of shrinkage; S(t) = time function for shrinkage. 

5. Sakata Model [20] 

   (       )                            
      

                                                             

where, w = water content of concrete (lb/yd
3
); V/S = volume-to-surface area ratio. 

Two statistical analyses were performed to determine which model was better: the 

summation of the residuals squared test and an error percentage analysis. The analysis 

showed that Gardner/Lockman Model was the best predictor of drying shrinkage for the fly 

ash and slag cement mixtures followed by the Bazant B3, and CEB 90 Models. However, 

considering microsilica mixture to be Type I cement mixtures, ACI 209 Model was the best 

model followed by Bazant B3 and CEB 90 Models. The Bazant, CEB 90, and 

Gardner/Lockman Models tended to underestimate the shrinkage while ACI 209 and Sakata 

Models gave overestimated shrinkage values. It should be noted that some models containing 

28-day compressive strength which were assumed that a higher compressive strength would 

have less shrinkage may not happen for all the cases [16]. 

 

Shrinkage testing methodology  

Although most shrinkage related experiments are measured based on free shrinkage, 

such as ASTM C 157, shrinkage is more or less restrained in some ways and the strain 

capacity of mortar or concrete have a profound role in the cracking process. Therefore, 

restrained shrinkage tests have been developed to evaluate the restrained shrinkage of 

concrete, such as bar test, plate test, and ring test [21]. 
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The advantages of using the bar test are uniaxial stress and the possibility of using 

large size aggregate in both free and restrained condition. The disadvantages, however, are 

the challenges to provide a constant restraint. Autogeneous shrinkage measurement could be 

assessed by using the restrained bar test. Stainless steel gage studs are embedded on both 

sides of fresh concrete to provide a 350 mm gage length. Two detachable mechanical gages 

are used to measure the shrinkage based on ASTM C 341 [23]. A similar uniaxial restrained 

shrinkage test was used in the study of “Effect of mineral admixtures and curing periods on 

shrinkage and cracking under restrained condition”. Bolts and dowels were used to fix both 

ends of the concrete specimen with dimensions of 100 by 100 by 350 mm. The restrained 

frame was made of two commercial steel channels with the total sectional area 1764 mm
2
 

and cross-section of 75 by 75 mm
2
. The apparatus for this external restrained shrinkage 

frame is shown in Figure 2. The displacement transducers (PI gauge), having a 100-mm 

gauge length, were attached to the bolts glued on the tensile surface in the constant moment 

span of the specimen. An electrical circuit was used to detect the crack. The portable data 

logger could record every second and the cracking was revealed by an abrupt change of 

voltage [24]. 

The plate test is another test method to determine the cracking potential due to drying 

shrinkage of concrete. However, it is very hard to be consistent because it can provide a 

biaxial restraint but highly depended on the geometry and boundary conditions [25]. 

Researchers investigated cracking potential with different concrete mixtures by using plate 

test. One panel was used as control and the other was a similar restrained plate panel except 

that a single material was altered to study its effect. Cracking length and cracking depth were 

then measured and the weighted value was as a parameter for cracking potential comparisons 

[22]. 

Ring test, either restrained or unrestrained, has become more popular in shrinkage 

testing field recently. Many advantages of ring tests include high and nearly constant restraint, 

applicable to both mortar and concrete samples, and lower effects of geometry and boundary 

conditions due to symmetry [25]. It is often assumed that cracking occurs when the stress that 

develops as a result of restraining the shrinkage exceeds the tensile strength of concrete [29]. 

However, “it should be noted that even if the ‘true’ tensile strength of concrete could be 
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determined, a strength-based failure criterion may not be appropriate in predicting the failure 

of restraint shrinkage specimens due to their failure is also depended on size and geometry” 

[29].  Although the tensile splitting and flexural strength are normally used as an 

approximation of tensile strength, it has been approved that this case is only valid for small 

specimen geometries, such as the tests used in laboratory and for quality assurance. 

Researchers suggested that the differences between the measured strength in different 

geometry could be better explained using fracture mechanics concepts [26-28]. Also, thicker 

steel rings with higher restraint caused cracking at an earlier age and higher interface 

pressures between the inner steel ring and concrete. Boundary condition series were 

investigated and the apparatus of restrained ring specimens is shown in Figure 3. The 

conclusions drawn from different boundary conditions were that drying from top and bottom 

had a higher surface to volume ratio which may lead a later age cracking even though it had 

lower interface pressures [30].  

Limited literature reports uses of the concrete ring test to investigate the free 

shrinkage of concrete. An unrestrained ring test was used to understand the effect of 

boundary condition on free shrinkage and find out the relationship between using 

unrestrained ring specimens and linear specimens according to ASTM C 157. The 

unrestrained specimen apparatus is shown in Figure 4. It was allowed to dry only from the 

outer circumference and a linear variable differential transformer (LVDT) was used to 

measure the change in diameter of free rings. By converting the diametric deformation of the 

ring measured by LVDT to an equivalent free shrinkage strain, researchers found that the 

surface to volume ratio of specimens had a significant influence on the rate of free shrinkage 

[30]. 

A summarized shrinkage testing methodology is shown in Table 2. 
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Fig. 1. Diagrammatic model of the types of water associated with the calcium silicate hydrate 
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Fig. 2. External restraint shrinkage apparatus [24].  
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Fig. 3. Restrained ring specimens apparatus [30]. 

 

Fig. 4. Unrestrained ring specimen apparatus [30]. 
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Abstract 

In this paper, shrinkage behavior of mortar mixes made with various ternary blends is 

discussed. Ternary blends consisting of different combinations of portland or blended cement, 

slag cement, fly ash (class C and F) and/or silica fume were considered. The amounts of slag 

cement, fly ash and silica fume ranged between 15-35%, 13-30%, and 3-10% by mass of 

cementitious, respectively. Mortar bars were made with the ternary blends and subjected to a 

drying condition (i.e., T = 73 ± 3 °F and RH = 50±4%) after standard curing for 28 days. 

Free shrinkage of the mortar bars was measured up to 28 days. Based on the test results, a 

response surface analysis was determined to examine the effects of blend proportions on 

shrinkage behavior of the mortars. A statistical model was also developed for predicting the 

mortar shrinkage behavior. To validate this model, shrinkage strains of an independent group 

of mortar mixes were measured, and the measured values were compared with the predicted 

shrinkage values. The results indicated that among the three supplementary cementitious 
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materials in the ternary blends studied, slag cement showed a dominant effect on mortar 

shrinkage. The contribution of class C fly ash to the mortar free shrinkage was slightly less 

than that of slag cement. Increasing silica fume content slightly increased free shrinkage, 

while an increase in class F fly ash content slightly decreased free shrinkage of the mortar. 

There was a good correlation between the measured shrinkage strain and the strain predicted 

from the shrinkage model developed from the response surface analysis. 

Keywords: ternary blend, supplementary cementitious materials, shrinkage 

 

Introduction 

Concrete shrinkage, especially drying shrinkage, is of concern to engineers because 

of its direct influence on cracking risk. Supplementary cementitious materials (SCMs), such 

as class C fly ash (CFA), class F fly ash (FFA), slag cement (S), natural pozzolans and silica 

fume (SF) improve concrete performance by nature of their pozzolanic or combined 

pozzolanic and cementitious reactions [1]. The advantages of using SCMs are mostly in 

improving concrete durability, economy, and sustainability with reduced environmental 

impacts [2]. However, disadvantages also exist due to the nature of SCMs, such as slower 

hydration, accompanied by slower setting and a reported higher risk of drying shrinkage 

cracking [3].  

Current literature focuses on investigating how binary systems affect drying 

shrinkage. Gesoğlu et al. replaced PC by FFA at levels of 20%, 40%, and 60% and observed 

that the free shrinkage was reduced by using FFA and this beneficial effect appeared to be 

more pronounced with increasing replacement levels [4]. In another study, FFA was used to 

investigate the drying shrinkage behavior in six mixtures cast with total cementitious 

contents of 400 and 500 kg/m
3
. The use of the FFA in 500 kg/m

3
 cementitious content 

mixtures resulted in a nominal reduction in shrinkage strain [1]. 

Free shrinkage was reduced by using slag cement in a binary system compared to an 

ordinary PC mixture. The shrinkage decreased with increased amounts of slag cement [4]. 

On the other hand, an alkali-activated slag concrete had higher drying shrinkage than plain 

PC concrete by 1.6 to 2.1 times [5]. In order to assess the influence of slag cement on drying 
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shrinkage behavior, the Slag Cement Association (SCA) performed a critical review based on 

published shrinkage research. Slag cement was incorporated either as a separately SCM or as 

a component in blended cement. The authors concluded that given a similar mixture, slag 

cement appears to have a marginal effect on increasing shrinkage [6]. 

A research project using 5% to 15% mass replacement of PC concluded that SF 

increased the drying shrinkage [4]. Similar conclusions were reached in another study that 

the ultimate drying shrinkage of mortar increases with increased of SF content at 28 days, but 

the long-term drying shrinkage after 365 days was not affected significantly by the addition 

of SF [7]. One study showed that at early ages, the amount of shrinkage showed an increased 

sensitivity to changes in water-to-cementitous ratio (w/c ratio) as the SF content was 

increased, while high levels of SF (i.e., over 8%) in mixtures may dramatically increase 

drying shrinkage [8]. However, some conflicting results were found in other studies: the 

drying shrinkage of SF incorporated concrete was 10 to 22% higher than that of ordinary PC 

of same w/c ratio and same binder content for short term [9]; on the other hand, SF concrete 

had lower shrinkage than that of normal portland cement concrete with the same w/c ratio but 

marginally lower binder content [10]. The lower drying shrinkage of SF concrete could be 

attributed to its lower w/c ratio used in the study [11]. 

Some researches into the effects of drying shrinkage with the use of ternary mixtures 

have been published. For ternary blends of PC, S, and SF, the adverse effect of the SF was 

reduced and the shrinkage values compared to control mixture were reduced [4]. Khatri et al. 

conducted research on shrinkage behavior of the addition of SF to slag cement concrete. It 

was established that strain due to drying shrinkage was caused by the removal of adsorbed 

water and the addition of SF to slag cement concrete refined the pore size distribution of the 

cement paste. The pore refinement could be the cause of reduced loss of water and thus 

decreased the shrinkage strain [11]. Compared to control mixtures, shrinkage was reduced by 

using 10% S and 10% FFA, 20% S and 20% FFA, and 30% S and 30% FFA as replacement 

dosages of PC in ternary blends [4]. 

The work discussed in this paper was aimed at developing a model of the drying 

shrinkage behavior of mortars produced with ternary blends. Shrinkage of mortar bars was 
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determined as 28-day length change. A statistical analysis software package was used to 

develop models and the validity of the models was tested [12]. 

 

Experimental program 

Materials  

This study consisted of two phases: developing the shrinkage models based on 

statistical analysis and verification of the proposed models using different materials. The first 

phase of statistical analysis was conducted based on the data published in reference 13 along 

with supplementary data obtained as a result of an additional group of mortar bars tested by 

the authors. The second phase included casting a series of mortar bars to verify the model 

obtained in phase I. The ternary percentages within the valid range of the model were 

randomly selected and different cementitious materials were used in Phase II. 

Phase I 

In order to perform the statistical analysis, the data reported in reference 13 (36 

mortar mixtures) was complemented with additional data obtained in the current study (14 

mortar mixtures). Mortar bars were cast with the same mix parameters used in reference 13. 

The mortar mixtures were proportioned with an aggregate to cementitious materials ratio of 

2.75 and a w/c ratio of 0.45. The fine aggregate used in reference 13 reportedly complied 

with the requirements of ASTM C 33 had a specific gravity of 2.61 and a fineness modulus 

of 2.90, while the sand used in the additional lab study had a specific gravity of 2.62 and a 

fineness modulus of 3.09 [14]. A trithanolamine based water reducing admixture was utilized 

to maintain a flow between 80 and 120 in accordance with ASTM C 1437 [15]. All the mixes 

also included a vinsol resin air entraining agent. Chemistry of the cementitious materials used 

in both reference 13 and in the laboratory study is given in Table 1. 

The ternary mixes are grouped into three series – (1) Type I portland cement (PC), 

slag cement (15-35%), class F fly ash (13-30%); (2) Type I portland cement, slag cement 

(15-35%), class C fly ash (15-30%); and (3) Type I portland cement, slag cement (15-

35%), silica fume (3-10%).  The ternary combinations are given in Table 3(a), 3(b), and 
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3(c). The ternary components could be either separately blended or a combination of a 

commercially blended Type IP or IS with an added SCM. 

Four 1×1×11 ¼ inch mortar bars were prepared from each mortar mix in accordance 

with the method in ASTM C 157 [16]. The bars were moist cured for 28 days and the initial 

readings were recorded. Then, the mortar bars transferred to a room maintained at 50±4% 

relative humidity and a temperature of 73 ± 3°F for 28 days. Shrinkage measurements were 

taken up to 28 days of drying and used for analysis. 

Phase II 

In this phase of the study, mortar mixes were cast following the same procedures as 

phase I and the 28-day shrinkage values were compared. Four verification mixes were used 

for each series using different cementitious materials. The river sand used as fine aggregate 

was the same as the one used in phase I, and the procedures to prepare and cure mixes were 

the same as those in phase I. Proportions of the cementitious materials in the verification 

mixes are given in Table 4. Chemistry of the cementitious materials is given in Table 2. 

 

Results and discussion 

Statistical analysis software was used to develop a quadratic response surface model 

for each series of ternary mixes – PC+S+FFA, PC+S+CFA and PC+S+SF. It is worth noting 

that in the same series class F fly ash and slag cement are represented by different materials 

varying in chemistry (e.g., class F fly ash 1 and 2) or in physical properties (e.g., interground 

or externally blended slag cements). 

Since the three cementitious materials contents add up to 100 percent by mass, 

ternary plots are used to display the distribution of the materials used in each mixture. The 

ternary display is a triangle with sides scaled from 0 to 1. Data and trends were not 

extrapolated beyond the bounds of mixtures tested (Figure 1). 

Ternary mixtures series I: Type I cement, Class F fly ash, and slag cement 

A prediction equation was derived using statistical analysis software. The R
2
 value 

was determined to be 74%. T-tests showed that slag cement content and the product of Type 
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I portland cement and slag cement content in series I mortar mixtures have statistically 

significant effects on 28-day drying shrinkage strain. 

εfree= –5051 × FFA + 16041 × S + 1605 × PC – 17561× FFA × S + 6645× FFA × PC  – 

34835× S × PC 

where, εfree = drying shrinkage at 28 days, in./in.; FFA = class F fly ash content, %; S = slag 

cement content, %; PC = Type I Portland cement content, %. 

Figure 1 shows the estimated 28-day drying shrinkage strain values. This ternary plot 

gives a shrinkage range for a specific ternary blend. Figure 2 (a) shows that for a given slag 

replacement level, shrinkage strain has an increasing trend with the increasing class F fly ash 

content. However, the findings seem to be in conflict with class F fly ash effects in binary 

blends systems reported in the literature[1, 4]. The discrepancy may be caused by interactive 

effect of using slag cement and class F fly ash as ternary blends. The contour lines developed 

from the response surface analysis in Figure 2 (b) shows that slag content has a significant 

effect on drying shrinkage strain compared to class F fly ash content. Moreover, it can be 

observed that drying shrinkage is increasing with increased slag cement content regardless 

the class F fly ash content between 13% to 30%. A similar trend has been reported in the 

literature [4-6]. 

Ternary mixtures series II: Type I cement, Class C fly ash, and slag cement 

A prediction equation was derived using statistical analysis software. The R
2
 value 

was determined to be 79%.The high R
2
 value indicates a good correlation between predicted 

shrinkage strain and actual measured shrinkage strain. T-tests found that slag cement content 

and the product of class C fly ash and slag cement content have a statistically significant 

effect on 28-day drying shrinkage strain. 

εfree= 6595× CFA + 5303× S – 370× PC – 30030 × CFA × S + 7043 × CFA × PC – 8303× S 

× PC 

where, εfree = drying shrinkage at 28 days, in./in.; CFA = class C fly ash content, %; S = slag 

cement content, %; PC = Type I Portland cement content, %. 

Predicted shrinkage of ternary blends in this series is shown in a ternary plot (Figure 

3). Figure 4 (a) shows that when mortar mixtures have low slag cement content (i.e., 15-

20%), shrinkage decreases as class C fly ash content increases. However, when slag cement 
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content is between 20 and 35%, the shrinkage tends to increase and this trend is observed to 

be more distinctive with the increased slag cement content. One of the reasons might be that 

the lower replacement dosage of slag cement (i.e., <20%) is not as active as higher dosage 

replacement level (i.e., >20%). Therefore, class C fly ash plays a dominant effect on 

shrinkage until slag cement content is greater than 20%. The pozzolanic index for class C fly 

ash listed in Table 1 indicates a high activity which is close to grade 120 slag cement and 

higher than the class F fly ash. The chemical composition of class C fly ash is closer to 

portland cement. Figure 4(b) is a 2-D contour plot developed from the response surface 

analysis to better illustrate the observations from response surface plot of Figure 4(a). 

Ternary mixtures series III: Type I cement, silica fume, and slag cement 

A prediction equation was derived using statistical analysis software. The R
2
 value 

was determined to be 66%. T-tests found that slag cement content and the product of Type I 

portland cement and slag cement content have statistically significant effects on 28-day 

drying shrinkage strain. 

εfree= –7613× SF + 10477× S + 940.1 × PC – 2713× SF × S + 5039× SF × PC  – 22725× S × 

PC 

where, εfree = drying shrinkage at 28 days, in./in.; SF = silica fume content, %; S = slag 

cement content, %; PC = Type I Portland cement content, %. 

Predicted shrinkage in this series is shown in a ternary plot (Figure 5). Figure 6 (a) 

shows that at the constant slag replacement level, shrinkage strain has an increasing trend 

with increasing silica fume content. This confirms the observations in the literature that silica 

fume increases shrinkage with increased replacement levels [4, 7-9, 11]. On the other hand, 

at a constant silica fume replacement dosage, shrinkage increases as the slag cement content 

increases. The 2-D contour lines developed from the response surface analysis in Figure 6 (b) 

shows that slag cement content has a significant effect on drying shrinkage strain compared 

to silica fume content. It also provides a quantitative view on how slag cement content affects 

drying shrinkage at different silica fume replacement levels. 

Table 5 shows measured and predicted 28-day drying shrinkage strains for the ternary 

mixes. The relationship between measured shrinkage strains and predicted values derived 

from statistical models is shown in Figure 7. The shrinkage strains of verification mixtures 



30 

 

 

 

from phase II versus model predicted shrinkage strain points for series I, II, and III from 

phase I are highlighted in this figure as well. The R
2
 value of 74% indicates that the model 

predicted shrinkage strains have a good correlation with the measured shrinkage values for 

the materials tested in this work. 

Analysis on Ca/Si ratio and alkali content on drying shrinkage 

In order to investigate the relationship between cementitious chemistry and drying 

shrinkage, the oxide compositions were normalized to 100% based on the percentage of the 

each ternary component. For example, the ternary mixture I-20 contains 68% Type I portland 

cement, 15% class F fly ash, and 17% slag. For a specific oxide, Type I, class F fly ash and 

slag cement contribute 68%, 15%, and 17%, respectively. 

Table 6 summarizes the Ca/Si ratio and equivalent alkali content (i.e., Na2O + 0.658 

K2O) for the mixtures in phase I. Figure 8 shows a plot of 28-day shrinkage strain vs Ca/Si 

ratio for series I, II, and III. The trend line in the plot shows that ternary blended mixtures 

with higher Ca/Si ratio tend to exhibit a lower shrinkage strain. However, the low value of R
2 

indicates that a model based on these data may not be reliable. The alkali content for phase I 

mixtures of series I, II, and III are plotted against the 28-day shrinkage strain in Figure 9. 

This plot shows that the increasing alkali content in ternary blended mixtures tends to 

increase shrinkage strain. Again the R
2
 is low indicating that the relationship is likely tenuous. 

Discussion 

From a microstructural point of view, solids in the hydrated cement paste include four 

principal solid phases, calcium silica hydrate (40 to 50%); calcium hydroxide (20 to 25%); 

calcium sulfoaluminate hydrates (15 to 20%) and unhydrated clinker grains [18].  

Water can exist in many forms in the hydrated cement paste and they can be 

classified depending on the degree of ease with which it can be removed from the paste 

(Figure 10):  

The capillary voids that represent the voids not filled by solid hydration products, 

initially filled with excess unhydrated water. Such voids will retain water by capillary tension. 

Water in the larger voids (>50 nm) is considered to be “free water” because its removal does 

not result in volume change. However, water in small capillary voids (5 to 50 nm) may result 
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in large shrinkage strains when water is forced to leave the system [18]. The size and volume 

of the capillary voids are determined by the initial w/c ratio and the degree of cement 

hydration. At a constant w/c ratio, increasing the degree of hydration decreases the size and 

volume of the capillary voids. Subsequent drying then will result in reduced shrinkage strain 

[18].  

Adsorbed water is the water bonded to but not reacted with the surface of hydration 

products. Water molecules are physically adsorbed onto the surface of solids in hydrate 

cement by influence of attractive forces such as hydrogen bonding. The removal of adsorbed 

water will result in shrinkage strains, but such removal will not occur when the RH of the 

pore system is low (less than about 40% RH) [21].  

Interlayer water is the water held within the calcium silica hydrate (CSH) nano-

structure. The water in the interlayer space of CSH voids is held by Van der Waals forces 

[22]. Because of the extremely small size of the so-called gel pores, removal of interlayer 

water will only occur under very dry conditions (about 10% RH) [18, 21]. The size and 

volume of gel pores vary depending on the Ca/Si ratio, type of molecules (non-ionic, anionic 

or cationic), concentration and pH while they are independent of the initial w/c ratio and 

degree of hydration [22, 23]. Therefore, increasing the Ca/Si ratio may decrease the size and 

volume of gel pores and so increase resistance to water removal [19]. 

Based on these mechanisms, the following discussion addresses how the changes in 

cementitious materials may be affecting shrinkage strain: 

Class F fly ash with low-calcium content in series I have been reported to contain 

nonreactive crystalline minerals, such as quartz, mullite and magnetite [18]. These crystalline 

minerals tend to reduce the pozzolanic activity of class F fly ash. However, class C fly ash 

with high-calcium content in series II is generally considered to be more reactive because it 

contains reactive crystalline compounds, such as C3A and free lime. As a result, class C fly 

ashes are generally more reactive than class F ashes. Subsequently, the volume of capillary 

voids in mixtures containing class C fly ashes may be less than those containing class F fly 

ashes and exhibit reduced drying shrinkage [18]. In addition, the chemical characteristics of 

class C fly ash will result in high Ca/Si ratio in the mixture which reduces the size and 



32 

 

 

 

volume of gel pores in CSH system. The removal of interlayer water from CSH system is 

likely reduced therefore reducing shrinkage strain [23].  

Slag cement is similar to high-calcium fly ashes in the mineralogical composition and 

reactivity [18]. The high reactivity of slag cement may increase the degree of hydration result 

in reduced volume of capillary voids in a mixture so as to reduce drying shrinkage. The 

chemical composition of slag cement generally includes very low alkali contents. Previous 

research reported that a decrease of alkali content could decrease the shrinkage strain [20]. 

The low alkali content in slag cement plays a beneficial role in reducing drying shrinkage in 

a mixture.  

It has been demonstrated that the particle size distributions of silica fume are about 

two orders of magnitude finer than typical fly ashes [18]. It is a high reactive pozzolanic 

material due to this fineness and its composition comprising mostly silica. Silica fume is 

reported to react with CH crystal hydrates to create additional CSH.  This makes the concrete 

more resistance to drying shrinkage caused by force applied to it, such as surface tension and 

capillary tension [17]. On the other hand a decreased Ca/Si ratio in the cementitious system 

will likely increase shrinkage [23]. 

Therefore, the shrinkage of a cementitious system at a constant w/c ratio appears to 

be affected by degree of hydration depending on material reactivity. The reactivity is 

determined by cementitious material particle size distributions and chemical composition, 

such as alkali content and crystalline compounds content. Ca/Si ratio of cementitious 

material is another important influence factor that changes volume of gel pores in CSH 

system so as to drying shrinkage in a ternary blend mixture. 

Conclusions 

The following conclusions can be drawn from the present study: 

 Slag cement shows a dominant effect on increasing mortar shrinkage in all three 

series. An increase of class C fly ash in series II is likely to decrease the mortar 

shrinkage. It also has a dominant effect although the effect of slag cement is slightly 

stronger. Silica fume in series III does not have a very strong effect while increasing 

in silica fume content still slightly increases free shrinkage of the mortar in ternary 

blends. An increase of class F fly ash in series I tends to increase the mortar shrinkage. 
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However, this behavior is likely tenuous and class F fly ash shows the least dominant 

effect on the shrinkage in ternary blended slag cement mixture. 

 The mineralogical and chemical composition promotes the reactivity of slag cement. 

The low alkali content in slag cement plays a beneficial role on drying shrinkage in a 

mixture. Class C fly ash with high-calcium content is similar to slag cement in the 

mineralogical composition and reactivity. In addition, the chemical characteristics of 

class C fly ash will result in high Ca/Si ratio in the mixture which reduces the size 

and volume of gel pores in CSH system. The removal of interlayer water from CSH 

system is likely reduced therefore reducing shrinkage strain. The particle size 

distributions play a significant role on increasing pozzolanic reactivity of silica fume. 

The slightly increased mortar free shrinkage of silica fume in ternary blends is mainly 

due to the high pozzolanic reactivity and pore size refinement mechanisms. Class F 

fly ash with low calcium content results in low pozzolanic reactivity that plays the 

least effect on drying shrinkage of mortar in ternary blends. 

 The shrinkage measurements from a group of verification mortar mixes have 

evidenced a good correlation between the measured shrinkage strain and the strain 

predicted from the shrinkage model developed from the response surface analysis. 
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Figure 1. Ternary plot for series I. 

 

Figure 2. (a) Response surface plot for series I. 
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Figure 2. (b) 2-D Contour plot developed from the response surface plot for series I. 

 

Figure 3. Ternary plot for series II. 
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Figure 4. (a) Response surface plot for series II. 

 

Figure 4. (b) 2-D Contour plot developed from the response surface plot for series II. 
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Figure 5. Ternary plot for series III. 

 

Figure 6. (a) Response surface plot for series III. 
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Figure 6. (b) 2-D Contour plot developed from response surface plot for series III. 

 

Figure 7. Designed and verification mixtures shrinkage strain vs. predicted shrinkage strain. 
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Figure 8. Relationship between Ca/Si ratio and 28-day shrinkage strain. 

 

Figure 9. Relationship between alkali content and 28-day shrinkage strain. 
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Figure 10. Diagrammatic model of the types of water associated with the calcium silicate 

hydrate [24]. 

Table 1. Chemical and physical properties of cementitious materials 

Chemical, % Type I-1 
Type 

IS(20) 

Type 

IP(20) 

Type 

IP(7) 
CFA FFA1 FFA2 S100 S120 SF1 

CaO 61.71 58.19 50.88 59.15 27.18 3.78 13.15 36.86 36.77 0.42 

SiO2 19.80 23.53 28.88 24.91 34.02 45.05 51.40 37.40 36.81 97.90 

Al2O3 6.18 5.29 8.19 4.38 18.20 23.71 16.21 8.98 9.66 0.18 

Fe2O3 2.50 2.97 3.70 3.12 6.59 16.43 6.73 0.76 0.61 0.07 

MgO 2.76 4.34 1.60 1.36 5.06 0.88 4.41 10.60 10.03 0.21 

K2O 0.74 0.58 0.90 0.56 0.35 1.46 2.33 0.40 0.35 0.59 

Na2O 0.36 0.13 0.35 0.22 1.56 0.80 2.86 0.29 0.31 0.12 

SO3 2.63 2.88 2.74 3.33 2.70 0.68 0.80 - - 0.17 

P2O5 0.21 0.09 0.22 0.11 1.29 0.24 0.15 0.02 0.01 0.12 

TiO2 0.28 0.41 0.44 0.29 1.57 1.15 0.63 0.38 0.49 - 

SrO 0.24 0.04 0.20 0.10 0.50 0.18 0.33 0.04 0.05 0.01 

Mn2O3 0.11 0.50 0.20 0.18 0.06 0.03 0.05 0.73 0.39 0.03 

LOI 2.37 0.70 1.14 1.60 0.27 5.39 0.05 - - - 

Specific gravity 3.04 2.95 3.11 3.08 2.62 2.37 2.41 2.82 2.96 2.21 

Pozzolanic 

Index 

    

108 86 107 97 112 125 

Note: FFA1 and FFA2 denote different Class F fly ashes. S100 and S120 denote different grade of slag cement. 
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Table 2. Chemical and physical properties of cementitious materials used for model verification 

Chemical, % Type I-2 S CFA FFA1 SF2 

CaO 63.22 42.25 27.18 3.78 0.46 

SiO2 20.97 38.82 34.02 45.05 94.32 

Al2O3 4.47 7.27 18.20 23.71 0.28 

Fe2O3 2.93 0.81 6.59 16.43 0.31 

MgO 2.30 9.02 5.06 0.88 0.75 

K2O 0.60 0.50 0.35 1.46 0.48 

Na2O 0.16 0.31 1.56 0.80 0.08 

SO3 2.63 - 2.70 0.68 0.05 

P2O5 0.12 0.03 1.29 0.24 0.09 

TiO2 0.31 0.41 1.57 1.15 0.01 

SrO 0.08 0.05 0.50 0.18 - 

Mn2O3 0.04 0.52 0.06 0.03 - 

LOI 2.17 - 0.27 5.39 2.58 

Specific 

gravity 3.15 2.87 2.62 2.37 2.25 

 

Table 3 (a). Ternary blends SCMs compositions and verification mixtures for series I 

Mix ID FFA1, % FFA2, % 
FFA in 

IP(20) 
S100, % S120, % 

Slag in 

IS(20) 
Type I-1, % 

I-1 30 - - 20 - - 50 

I-2 30 - - - 20 - 50 

I-3 - 30 - 20 - - 50 

I-4 - 30 - - 20 - 50 

I-5 15 - - 35 - - 50 

I-6 - 15 - 35 - - 50 

I-7 15 - - - 35 - 50 

I-8 - 15 - - 35 - 50 

I-9 20 - - 20 - - 60 

I-10 20 - - - 20 - 60 

I-11 - 20 - 20 - - 60 

I-12 - 20 - - 20 - 60 

I-13 - - 13 35 - - 52 

I-14 - - 13 - 35 - 52 

I-15 25 - - - - 15 60 

I-16 - 25 - - - 15 60 

I-17 - - 16 20 - - 64 

I-18 - - 16 - 20 - 64 

I-19 15 - - - - 17 68 

I-20 - 15 - - - 17 68 

Note: Mixtures I-1 to I-20 are from reference [13]. 
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Table 3 (b) Ternary blends SCMs compositions and verification mixtures for series II 

Mix ID CFA, % S100, % S120, % S in IS(20) Type I-1 

II-1 30 20 - - 50 

II-2 30 - 20 - 50 

II-3 15 35 - - 50 

II-4 15 - 35 - 50 

II-5 20 20 - - 60 

II-6 20 - 20 - 60 

II-7 25 - - 15 60 

II-8 15 - - 17 68 

II-9 22 - 22 - 56 

II-10 22 22 - - 56 

II-11 15 - 15 - 70 

II-12 15 - 25 - 60 

II-13 15 25 - - 60 

II-14 25 15 - - 60 

II-15 25 - 15 - 60 

Note: Mixtures II-1 to II-8 are from reference [13]. 

 

Table 3 (c). Ternary blends SCMs compositions and verification mixtures for series III 

Mix ID S100, % S120, % 
S in 

IS(20) 
SF1, % Type I-1 

III-1 35 - - 5 60 

III-2 - 35 - 5 60 

III-3 35 - - 5 60 

III-4 - 35 - 5 60 

III-5 35 - - 3 62 

III-6 - 35 - 3 62 

III-7 - - 19 5 76 

III-8 - - 19 3 78 

III-9 - 30 - 5 65 

III-10 - 25 - 10 65 

III-11 - 30 - 10 60 

III-12 - 28 - 7 65 

III-13 28 - - 7 65 

III-14 - 20 - 10 70 

III-15 - 23 - 7 70 

Note: Mixtures III-1 to III-8 are from reference [13]. 
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Table 4. Proportions of the cementitious materials in phase II 

Mix ID FFA1, % Type I-2, % S, % CFA, % SF2, % 

V-I-1 15 55 30 - - 

V-I-2 15 50 35 - - 

V-I-3 22 56 22 - - 

V-I-4 25 50 25 - - 

V-II-1 - 64 18 18 - 

V-II-2 - 50 25 25 - 

V-II-3 - 55 15 30 - 

V-II-4 - 44 28 28 - 

V-III-1 - 65 30 - 5 

V-III-2 - 71 25 - 4 

V-III-3 - 65 25 - 10 

V-III-4 - 77 15 - 8 
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Table 5. 28-day drying shrinkage strain and model predicted shrinkage strain for series I, II, 

and III mortar mixes 

Mix 

ID 

Measured 

shrinkage 

strain, 

in./in. 

Model 

predicted 

shrinkage 

strain, 

in./in. 

Mix 

ID 

Measured 

shrinkage 

strain, 

in./in. 

Model 

predicted 

shrinkage 

strain, 

in./in. 

Mix 

ID 

Measured 

shrinkage 

strain, 

in./in. 

Model 

predicted 

shrinkage 

strain, 

in./in. 

I-1 -1192 -1045 II-1 -902 -835 III-1 -798 -818 

I-2 -990 -1045 II-2 -769 -835 III-2 -880 -818 

I-3 -970 -1045 II-3 -929 -898 III-3 -763 -818 

I-4 -1030 -1045 II-4 -867 -898 III-4 -853 -818 

I-5 -932 -861 II-5 -807 -885 III-5 -813 -845 

I-6 -957 -861 II-6 -978 -885 III-6 -865 -845 

I-7 -742 -861 II-7 -700 -708 III-7 -705 -791 

I-8 -798 -861 II-8 -802 -805 III-8 -823 -770 

I-9 -987 -898 II-9 -920 -934 III-9 -887 -935 

I-10 -920 -898 II-10 -937 -934 III-10 -911 -964 

I-11 -920 -924 II-11 -898 -913 III-11 -914 -924 

I-12 -898 -924 II-12 -925 -913 III-12 -993 -948 

I-13 -968 -924 II-13 -762 -761 III-13 -983 -948 

I-14 -841 -924 II-14 -708 -708 III-14 -933 -891 

I-15 -653 -691 II-15 -712 -708 III-15 -936 -921 

I-16 -720 -691 

V-II-

1 -812 -836 

V-III-

1 -889 -935 

I-17 -938 -913 

V-II-

2 -960 -1006 

V-III-

2 -894 -936 

I-18 -853 -913 

V-II-

3 -789 -628 

V-III-

3 -919 -964 

I-19 -730 -736 

V-II-

4 -992 -1076 

V-III-

4 -786 -661 

I-20 -758 -736 

      V-I-

1 -1072 -1053 

      V-I-

2 -926 -861 

      V-I-

3 -986 -1006 

      V-I-

4 -1013 -1071             
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Table 6. Ca/Si ratio and equivalent alkali content for mixtures in phase I 

Mix ID  Ca/Si 

Eq. alkali 

content, 

% 

Mix ID  Ca/Si 

Eq. alkali 

content, 

% 

Mix ID  Ca/Si 

Eq. alkali 

content, 

% 

I-1 1.43 1.750 II-1 1.89 1.069 III-1 1.95 0.724 

I-2 1.42 1.750 II-2 1.89 1.069 III-2 1.95 0.724 

I-3 1.52 1.750 II-3 1.99 0.882 III-3 2.07 0.573 

I-4 1.51 1.750 II-4 1.99 0.882 III-4 2.07 0.573 

I-5 1.70 1.223 II-5 2.12 0.975 III-5 2.09 0.731 

I-6 1.74 1.223 II-6 2.11 0.975 III-6 2.09 0.731 

I-7 1.70 1.223 II-7 2.32 0.831 III-7 2.50 0.511 

I-8 1.74 1.223 II-8 2.59 0.703 III-8 2.71 0.511 

I-9 1.63 1.429 II-9 2.04 0.988 III-9 2.02 0.739 

I-10 1.63 1.429 II-10 2.04 0.988 III-10 1.75 0.737 

I-11 1.76 1.429 II-11 2.34 0.920 III-11 1.69 0.722 

I-12 1.76 1.429 II-12 2.15 0.913 III-12 1.91 0.738 

I-13 1.82 0.805 II-13 2.15 0.913 III-13 1.91 0.738 

I-14 1.82 0.805 II-14 2.25 1.140 III-14 1.82 0.752 

I-15 1.69 1.399 II-15 2.25 1.140 III-15 1.98 0.753 

I-16 1.75 1.399 

      I-17 2.15 0.865 

      I-18 2.14 0.865 

      I-19 2.04 1.044 

      I-20 2.08 1.044             
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Chapter 4 

 

Drying Shrinkage of Ternary Blend Concrete in Transportation Structures  

 

A paper to be submitted to Construction and Building Materials 

 

Xuhao Wang
6
, Kejin Wang

7
, Fatih Bektas

8
, and Peter Taylor

9
 

Abstract 

In this paper, factors affecting drying shrinkage behavior of ternary blend concretes are 

studied. Five concrete mixes used for either pavement or bridge deck construction in 

different states are tested for both restrained and unrestrained shrinkages. The effects of 

blend materials and mix proportion on the concrete shrinkages are assessed. The results 

indicate that shrinkage strain rate linearly increases with clay content of fine aggregate, 

cementitious material content, paste-to-void ratio (by volume), and dosage of water reducer 

of the concrete mixes. 

Keywords: ternary blends, drying shrinkage, cracking potential 
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Introduction 

Concrete shrinkage, especially drying shrinkage, is of concern to engineers because 

of its direct influence on cracking risk. The drying shrinkage occurs when the specimen is 

exposed to a drying environment and allowed to have volumetric changes [1]. It is 

considered that the shrinkage strain in normal strength concrete (i.e., < 6000 psi at 28 days) 

primarily results from  drying shrinkage and any contribution from autogenous shrinkage is 

marginal [1, 2]. Decreasing concrete volume with time due to moisture loss (drying 

shrinkage) is unavoidable [3, 4]. The shrinkage cracking of concrete may accelerate the 

deterioration of concrete used in transportation structures. For instance, deicer salts may 

reach to the steel surface through cracks or by capillary action and cause corrosion which 

leads to further cracking, delamination, and spalling of the concrete [5].  

From a microstructural point of view, although the loss of moisture plays a significant 

role on drying shrinkage, an increase in water loss does not correspond to a proportional 

decrease in volume. The removal of capillary water in larger capillary voids (i.e., > 50 nm) of 

hydrated cement does not cause drying shrinkage. The loss of capillary water held by 

capillary tension in small voids (i.e., < 50 nm) contributes to shrinkage strain [3]. The 

volume of capillary voids is influenced by water-to-cementitious ratio (w/c ratio) and the 

degree of cement hydration. At constant w/c ratio, increasing the degree of hydration may 

cause a considerable decrease in the volume of capillary voids while the shrinkage strain may 

be reduced significantly [3]. 

The adsorbed water is removed in the concrete drying process by surface tension. Due 

to asymmetry of water molecules in contact with the surface of the material, referred to as 

surface tension, a resultant force perpendicular to the surface causes contraction as capillaries 

are drained. This phenomenon is only valid in the low RH regime (up to 40% of RH) [4]. 

Interlayer water is the water held by hydrogen bonding within the calcium silica 

hydrates (CSH) structures. The removal of interlayer water will contribute to drying 

shrinkage but only under strong drying conditions (i.e., RH about 10%) [4]. 

Factors that affect drying shrinkage are usually interrelated although they can be 

grouped into two main categories – material characteristics and ambient conditions [3]. 

Because the drying process involves moisture loss from the surface, drying shrinkage mainly 
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depends on the size and configuration of the element [6]. Increasing the volume-to-specimen 

surface area ratio may cause decrease in drying shrinkage [30]. Quantity of paste is one of 

the main parameters affecting the shrinkage potential of a mixture. For a given w/c ratio, 

decreasing paste content, and so increasing aggregate content leads to reduced shrinkage 

strain [7]. The methylene blue index (MBI) can be used as an indicator of clay content of fine 

aggregate in concrete. The drying shrinkage of concrete increases with the increasing MBI 

values, especially when MBI value is greater than or equal to 1.45 because clay particles 

coating aggregate particles will deform significantly with changing moisture content [32]. 

The elastic properties of the aggregate will also affect concrete shrinkage – the lower the 

modulus of elasticity of aggregate, the higher the drying shrinkage of the concrete may be [1]. 

Cement characteristics, such as reduced sulfate content, increasing fineness will 

reportedly increase drying shrinkage potential [1]. Proper, prompt, and sufficient curing 

period helps to reduce shrinkage [1, 10]. 

Both supplementary cementitious materials (SCMs) and chemical admixtures can 

dramatically affect the shrinkage of a mixture. The available literature indicates that for a 

similar mixture, inclusion of slag cement appears to have marginal effect on increasing 

shrinkage [31]. A high silica fume content may increase the drying shrinkage in the short 

term. However, silica fume may not cause an increase in shrinkage with lower replacement 

dosage over the long term (i.e., 365 days) [9]. Use of slag cement and silica fume in ternary 

mixes provides the best performance compared to binary mixtures where slag cement and 

silica fume are used alone [2]. Class F fly ash used in binary mixtures may reduce drying 

shrinkage with increasing replacement dosages compared to plain portland cement concrete 

[8]. Compared to class F fly ash, class C fly ash reportedly causes more shrinkage than 

control concrete mixtures in most cases, apparently due to low alkali contents and higher 

Ca/Si ratios [10]. However, both types of fly ash combined with slag cement or silica fume in 

ternary blends diminish the adverse effects of silica fume or slag cement [2].  

A water reducer agent is used to achieve a higher strength at the same workability or 

to maintain strength at a higher workability. Most researchers have found that drying 

shrinkage increases when water reducer agent dosage increases regardless of the curing 

conditions [11, 12, 27, 28]. However, Qi et al. reported the shrinkage of concrete with a 
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higher water reducer content (2.37 percent by weight of cement) was lower than that with 

lower water reducer content (1.39 percent by weight of cement). The test results also showed 

that the high water reducer content was effective in inhibiting crack opening and propagation 

in concrete specimens tested in a restrained condition [26].   

The work discussed in this paper is aimed at investigating the drying shrinkage 

behavior of ternary blend concretes that are used in transportation structures. Five different 

concrete mixes from field demonstration projects in the Midwest were included in the study. 

Both restrained and unrestrained shrinkage testing methodologies are used to analyze the 

factors that influence shrinkage in mixtures with large differences in materials and 

proportions. 

 

Experimental program 

Concrete mixtures for five transportation structures have been studied and project 

descriptions are listed in Table 1. The laboratory study employed the same materials that had 

been used in the job mixes. Shrinkage tests, either free shrinkage or restrained shrinkage 

were run with as-built mixture proportions, and also with mixes containing varying 

cementitious content. Additionally, the mechanical properties (i.e., modulus of elasticity, 

compressive strength, and splitting tensile strength) were also determined for the five as-

built mixtures. 

Materials and mix proportion 

Raw materials from ready mix plants were collected to perform shrinkage related 

tests in a lab environment. The mixtures represent a wide variety of material combinations. 

Chemistry of the cementitious materials and the aggregate properties are given in Table 2 and 

3, respectively. Combined aggregate gradations are plotted in Figure 1. The mix proportions 

for the as-built mixtures are summarized in Table 4(a). Additional mixtures were prepared 

with 450 and 700 pcy total cementitious materials contents, and w/c ratio of 0.45 without 

fiber and chemical admixtures are shown in Tables 4(b), (c), and (d), respectively. These 

added mixtures were used to investigate the effect of changing w/c ratio, water reducer agent 

dosages, and cementitious material content on the five mixtures. 
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Test Methods 

Concrete strength and elastic modulus test 

Compressive strength, splitting tensile strength, and elastic modulus specimens were 

prepared from each field concrete mixture in accordance with ASTM C 39, ASTM C 496, 

and ASTM C 469, respectively. Specimens for these tests were moist cured for seven days 

and then tested at ages of 1, 3, 7, 28, and 56 days [13-15]. 

Free shrinkage test 

Three 3x3x11 ¼ inches concrete prisms were prepared from each mixture shown in 

Table 4(a) to 4(d). In addition, four 1x1x11 ¼ inch mortar bars were prepared based on the 

cementitious materials shown in Table 4(a). The mortar mixtures were proportioned with an 

aggregate to cementitious materials ratio of 2.75 and a w/c ratio of 0.45. The fine aggregate 

types used in mortar tests were the same as those used in field mixtures. The mortar mixes 

were mixed and compacted by hand. The prisms and bars were moisture cured for seven days, 

and then stored at 50±4% relative humidity and 73 ± 3°F. Testing was conducted in 

accordance with ASTM C 157, except that initial reading was taken at the end of seven days 

moist storage and drying readings were taken at ages of 1, 4, 7, 14, 28, and 56 days after the 

specimens were exposed to the drying environment [16]. 

Restrained ring test 

Four restrained concrete rings for each as-built mixture (Table 4a) were cast in order 

to assess the potential for shrinkage induced cracking in accordance to ASTM C 1581 [17]. 

The geometry of the restrained ring was shown in Figure 2. Paraffin wax was used to seal the 

top surface of rings in order to allow the moisture loss only from the exterior surface. Two 

strain gages for each ring were used to measure the strains of the steel ring after casting and 

continued recording up to 28 days or until the concrete cracked. The recording interval was 

every 10 minutes. 

Methylene blue index test  

Because the clay content of fine aggregate may be a factor that affects concrete 

drying shrinkage, the relationship between MBI values and drying shrinkage of five field 
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mixtures was investigated [32]. The MBI was used as an indicator of clay content or the 

surface area of clay from different sources of fine aggregate in accordance with ASTM C 837 

[22].   

Paste-to-void ratio (by volume)  

The effect of paste-to-void ratio was investigated to assess its relationship with drying 

shrinkage. Combined aggregate voids were determined in accordance with ASTM C 29 [20]. 

Paste content by volume and voids of combined aggregate were used to derive the voids of 

each designed mixture. The paste-to-void ratio is the simple ratio of paste content to void 

content within mixture. 

Results and discussion 

Mechanical properties of concrete 

The development of compressive strength, elastic modulus, and tensile split strength 

are shown in Figure 3 to Figure 5. The compressive strength of Mix 4 was highest for later 

ages (i.e., > 7 days). This is most likely due to the combined effect of the lowest w/c ratio of 

0.38 and silica fume which will improve the long term strength [9]. Mixes 1 and 2 had a 

relatively low compressive strength which may be caused by relatively high w/c ratio. The 

differences of splitting tensile strengths among five mixes were not significant. Compared to 

Mixes 1, 2 and 4 mixtures, higher coarse aggregate contents of 41% and 42% in Mixes 3 and 

5 generate higher modulus of elasticity of concrete mixtures. 

Unrestrained shrinkage  

The average strain rate factor and average maximum length change are two 

parameters used to evaluate the drying shrinkage in an unrestrained condition. The shrinkage 

strain εs was plotted against the square root of elapse time t to compute the average strain rate 

factor α. Equation 1 describes that the strain factor α is the slope of a regression line that was 

used to fit the data in the shrinkage strain versus square root of elapse time plot [17]. 

                         
     √                                                                       (1) 

where,                
 is equivalent to the measured strain from strain gages attached 

at the inner surface of the steel ring, and k is a regression constant. 
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Unrestrained shrinkage for concrete 

Figure 6 provides the shrinkage strain for each as-built mixture. It can be observed 

that Mix 5 has the lowest shrinkage strain followed by Mixes 3, 2, 1 and 4 after 7 days. 

Mixtures with different cementitious materials contents were prepared to investigate 

the effect on drying shrinkage. Figure 7 and 8 show that both lower cementitious content 

(450 pcy) and higher cementitious content mixtures (700 pcy) have similar trends to those in 

Figure 6, that is, Mix 5 is found to have the least shrinkage followed by Mixes 3, 2, 1, and 4. 

Figure 9 provides five linear relationships of 56-day shrinkage for mixes with 450, as-built, 

and 700 pcy cementitious materials. This figure clearly shows that increasing cementitious 

material content leads to higher shrinkage strain values but does not change the overall trends. 

Figure 10 presents the mixes with fixed w/c ratio of 0.45 for all five mixtures without adding 

chemical and fiber admixtures. 

By comparing Figures 10 and Figure 6, it is found that the shrinkage strain of the as-

built mixtures with high water reducer dosages, such as Mixes 4, 1 and 2, are significantly 

reduced when chemical admixtures are left out. However, the shrinkage strain of Mix 5 

without adding chemical admixtures (as shown in Figure 10) is higher than that of the Mix 5 

as-built mixture (as shown in Figure 6). This is likely because increasing w/c ratio from 0.40 

to 0.45 leads to a higher free shrinkage strain [1]. The water reducer effect on shrinkage can 

be considered to be not significant in this case due to a very small amount of water reducer 

used in the Mix 5 as-built mixture. 

Unrestrained shrinkage for mortar 

Figure 11 shows the average free shrinkage results of four mortar bars. The mortar 

mix proportions effectively eliminate the influence of factors including w/c ratio, coarse 

aggregate size and types, chemical and fiber admixtures. In this case, cementitious material 

variations in terms of chemical and physical characteristics (i.e., Ca/Si ratio, alkali content, 

and hydration properties) likely play a dominant role on shrinkage strain. For example, Mix 3 

with silica fume and slag cement performs better than Mix 1 with class F fly ash and slag 

cement. This may be attributed to different hydration properties between silica fume and 

class F fly ash. 
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Previous researchers have demonstrated that silica fume and slag cement will 

promote hydration of cement and react with CH particles. The hydration products can 

increase the density of hardened cement paste and so reduce drying shrinkage [29]. When 

compared to the concrete mixes in Figure 10, Mixture 5 mortar mixture shown in Figure 11 

has an increased shrinkage strain and is similar to the other mortar mixtures. This may be due 

to removal of the high elastic modulus aggregate (i.e., quartzite) [1, 10, 11]. 

Restrained shrinkage  

The restrained shrinkage strain development of ring samples is shown in Figure 12. 

The curves represent the average strain of four samples for each as-built field mixture. The 

positive shrinkage values indicate an expansion process during the first day. As shown in 

Figure 12, it is noted that Mixes 2, 5, 1, and 3 do not have significant changes in strain values 

after 18 days and did not crack up to 28 days except for the Mix 4 which cracked at 6.8 days. 

Mix 4 had the highest shrinkage strain rate up to 7 day, while Mix 5 exhibited the lowest 

average strain rate. 

Data from all of the tests are summarized in Table 5.The average strain rate factor 

was determined up to 18 days for the restrained ring tests. The average strain rate factors for 

as-built mixture prisms are consistent with those for restrained rings. The results imply a 

good relationship between restrained and free shrinkage for each mixture. Good relationships 

between strain rate factors and prisms of 450, 700 pcy cementitious materials mixtures and 

restrained rings can be observed as well. 

Shrinkage cracking potential of concrete 

Previous publications have provided a method to compute the residual stress in the 

concrete rings and a tool to determine the cracking potential ΘCR (i.e., the measure of how 

close the ring specimens are to failure) by comparing the actual residual stress with the 

strength of the material [23, 25]. Since the restrained ring can be separated into a steel 

cylinder pressurized at outer surface and a concrete cylinder loaded with opposite and equal 

tensile stresses at inner surface. This equilibrium consideration can be used to derive the 

interface pressure p on the outer surface of the steel ring or inner surface of concrete ring 

expressed in Equation 3 as:  
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                                 (2) 

where, ES is the modulus elasticity of steel, ROS and RIS are the outer and inner radii of 

steel ring refer to Figure 1, respectively [22]. It is noted that the actual measured strain 

from strain gages has taken the effect of creep into account. The axi-symmetric nature of 

the geometry eliminates the need to consider the circumferential tractions on the inner 

surface of steel ring. The interface pressure p can be directly related to the 

circumferential tensile stress at any point along the radial direction. Therefore, the 

shrinkage maximum induced stress (i.e., circumferential maximum tensile stress) is 

directly determined by Equation 3 at any time, t. 

                                                                
   

     
 

   
     

                                             (3) 

where, σActual-Max is the shrinkage maximum induced stress, ν is the Poisson ration and 

ROS and ROC are the outer and inner radii of steel and concrete refer to Figure 1, 

respectively. 

In this study, the simple ratio of the shrinkage maximum induced stress and the 

tensile split strength are presented to determine the cracking potential and expressed by 

Equation 4 [23]. 

                                                                   
           

      
                                                        (4)                                                                

where, σActual-Max is the shrinkage maximum induced stress, and fsp(t) is the splitting tensile 

strength developed with time t.  

The calculated cracking potential values are shown in Figure 13. Concrete 

cracking will be expected to occur when the cracking potential reaches 1 meaning when 

the shrinkage maximum induced stress is close to splitting tensile strength [23]. However, 

it is observed that only the Mix 4 cracked when the cracking potential reached 2.1, while 

the cracking potentials of other mixtures all exceeded 1.0 and did not crack up to 28 days. 

It might be attributed to the assumption used in this study: the splitting tensile strength 

shown in Table 6 was calculated based on non-linear relationship while the shrinkage 

induced stress was estimated based on linear elasticity for simplicity [24]. The simple 

linear elasticity may overestimate the shrinkage maximum induced stress in the concrete 

under restrained conditions. Also, geometry and boundary conditions dramatically affect 
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the shrinkage induced stress due to the dependency of stress to geometry [25]. Therefore, 

the geometry of ring specimens used in this study may cause no cracking of concrete 

although cracking potentials are larger than 1.0. Equation 3 gave the relationship between 

geometry of specimen, such as outer and inner radii of steel and concrete in terms of 

concrete and steel ring thickness, and shrinkage induced stress. In another words, the 

levels of restraint of concrete may be an important factor to explain the inconsistent 

cracking potential values compared to theoretical failure potential, 1.0 [25]. Thus, further 

study is needed for a nonlinear approach to assess the shrinkage induced stress if using 

this approach to evaluate the cracking potential of concrete with restrained concrete rings. 

Despite the inability of the cracking potential to predict cracking, Figure 13 provides 

a good stress-to-strength relationship with concrete ages of concrete rings for five field 

mixtures. It is interesting that the cracking potential value of Mix 2 was close to Mix 4 but 

did not crack. This may be attributed to fiber reinforcement within Mix 2. 

Effects of concrete materials on shrinkage 

Test results of methylene blue index (MBI), paste-to-void ratio, water reducer agent 

dosage, and modulus of elasticity at 28 days are given in Table 7. The linear relationships 

between restrained stress rate of as-built mixtures and the test results are shown in Figure 

14(a) to (d). The other two linear relationships can also be observed in Figure 15 (a) and (b) 

including modulus of elasticity at 28 days and cracking potential and splitting tensile strength 

at either crack time or 28 days and cracking potential for five as-built mixtures.   

Figure 14(a) shows that the higher MBI indicates a higher potential for shrinkage. 

The MBI values exhibit a good correlation with average strain rate factors. This is consistent 

with what has been found in previous research [32]. 

The relationship between paste-to-void ratio and average strain rate factor is shown in 

Figure 14(b). The strain rate factor increases with increased paste-to-void ratio. It is because 

greater distances between the aggregate particles, the less resistance will be to the movement 

of concrete caused by shrinkage [19]. It is also not surprising that a system with 

proportionately higher paste contents will shrink more because it is the paste that shrinks and 

not the aggregate. 
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Water reducing admixture dosage appears to plays a significant role shown in Figure 

14 (c). Higher water reducer agent dosage sufficiently increases the potential of drying 

shrinkage and this finding is consistent with most previous research [11, 12, 27, 28]. 

Figure 14(d) illustrates the relationship between modulus of elasticity of mixtures and 

their strain rate factors. Concrete mixtures with higher modulus of elasticity may resist 

drying shrinkage and so reduce the average strain rate factor [1, 10, 11]. Thus, Mix 5 tends to 

have a relatively higher modulus of elasticity because of the quartzite as coarse aggregate. 

Figure 15(a) indicates that concrete mixtures with higher modulus of elasticity not 

only resist drying shrinkage, but also reduce the cracking potential. Shrinkage cracking 

potential decreases with increased splitting tensile strength can be observed in Figure 15(b) 

and this relationship is linear with R
2
 value of 83%. 

Conclusion 

Based on the test results in this paper, the following conclusions can be drawn. 

 Water reducing admixture dosage plays a dominant role in the five ternary blend 

concrete mixtures. 

 Cementitious material content has a significant effect on shrinkage strain. All as-built 

mixtures showed that free shrinkage linearly increases with the increased 

cementitious material content at an age of 56 days. 

 Shrinkage strain rate linearly increases with clay content in aggregate and paste-to-

void ratio of as-built concrete mixes.  

 Splitting tensile strength and modulus of elasticity affect cracking potential. 

Shrinkage cracking potential decreases with increased splitting tensile strength and 

modulus of elasticity. 

 Use of fibers appears to have reduced cracking risk. 

 Free shrinkage strain rate factors demonstrate good correlation with shrinkage rate 

factors for restrained conditions. 
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Figure 1. Combined aggregate gradations.  

 

Figure 2. Configuration of restrained concrete ring samples [24]. 
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Figure 3. Compressive strength development of concrete. 

 

Figure 4. Splitting tensile strength development of concrete. 
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Figure 5. Modulus of elasticity development of concrete. 

 

Figure 6. Designed mixtures free shrinkage of prisms. 
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Figure 7. 450 pcy cementitious materials mixtures free shrinkage of prisms. 

 

Figure 8. 700 pcy cementitious materials mixtures free shrinkage of prisms. 
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Figure 9. Free shrinkage strain at 56 days versus cementitious material content at 450, designed, 

and 700 pcy. 

 

Figure 10. w/c of 0.45 and without chemical and fiber admixtures free shrinkage of prisms. 
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Figure 11. Free shrinkage of bars for mortar mixtures. 

 

Figure 12. Strains of steel rings resulting from concrete shrinkage. 
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Figure 13. Shrinkage stress-to-tensile strength ratio (cracking potential ΘCR) of restrained 

concrete rings with time. 

 

Figure 14(a). Methylene blue index versus average strain rate factor. 
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Figure 14(b). Paste-to-void ratio versus average strain rate factor. 

 

 

Figure 14(c). Water reducer dosage versus average strain rate factor. 

R² = 0.8885 

0.0

10.0

20.0

30.0

40.0

50.0

60.0

140.0 145.0 150.0 155.0 160.0 165.0 170.0 175.0

A
v

e.
 s

tr
a

in
 r

a
te

 f
a

ct
o

r,
 ×

1
0

-6
/d

a
y

1
/2

  

Paste-to-void ratio (by volume), % 

R² = 0.9154 

0.0

10.0

20.0

30.0

40.0

50.0

60.0

0.0 10.0 20.0 30.0 40.0 50.0 60.0

A
v

e.
 s

tr
a

in
 r

a
te

 f
a
ct

o
r,

 ×
1
0

-6
/d

a
y

1
/2

  

Water reducer dosage, oz/yd3 



73 

 

 

 

 

Figure 14(d). 28-day modulus of elasticity of concrete versus average strain rate factor. 

 

Figure 15(a). 28-day modulus of elasticity of concrete versus cracking potential Θ. 
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Figure 15(b). Splitting tensile strength of concrete versus cracking potential Θ. 

 

Table 1. Project descriptions. 

Project Project Description 

Mix 1 Bridge deck placement 

Mix 2 Bridge deck placement 

Mix 3 Bridge deck placement 

Mix 4 Bridge deck placement 

Mix 5 Rigid Pavement  

 

 

 

 

 

R² = 0.8331 

0

0.5

1

1.5

2

2.5

300 350 400 450 500 550

C
ra

ck
in

g
 p

o
te

n
ti

a
l,

 Θ
 

Splitting tensile strength, psi 



75 

 

 

 

Table 2. Chemical and physical properties of cementitious materials 

  

Table 3. Properties for coarse and fine aggregates 

 

 

 

 

 

Mix 4

Ternary blends 

composition, %
55 15 30 50 15 35 60 5 35

71 PC + 4 

SF + 25 Slag 

cement

64 

PC+21 

F ash

15

CaO 62.40 7.29 41.90 61.30 1.65 41.54 63.22 0.46 42.25 53.30 48.83 26.34

SiO2 20.10 45.07 34.20 19.40 57.36 35.98 20.97 94.32 38.82 28.70 29.19 35.13

Al2O3 4.60 23.83 11.17 4.90 26.57 12.89 4.47 0.28 7.27 5.86 8.62 19.95

Fe2O3 2.70 15.02 0.68 3.70 5.40 0.52 2.93 0.31 0.81 1.98 3.80 5.74

MgO 4.00 1.58 6.89 2.30 - 6.11 2.30 0.75 9.02 4.68 3.04 4.88

K2O - - 0.29 - - 0.27 0.60 0.48 0.50 0.48 0.89 0.42

Na2O - 0.55 0.32 - 0.81 0.29 0.16 0.08 0.31 0.18 0.39 1.75

SO3 3.40 1.30 - 3.80 0.33 1.09 2.63 0.05 - 2.52 3.14 1.45

P2O5 - - 0.02 - - 0.04 0.12 0.09 0.03 0.08 - -

TiO2 - - 0.44 - - 0.44 0.31 0.01 0.41 0.27 - -

SrO - - 0.07 - - - 0.08 - 0.05 0.05 - -

Mn2O3 - - 0.38 - - 0.45 0.04 - 0.52 0.18 - -

Eq. Alkalies 0.89 0.67 0.51 0.85 - 0.47 0.55 0.40 0.64 0.49 0.97 2.03

LOI 2.10 1.91 - 1.80 1.97 - 2.17 2.58 - 1.60 1.26 0.11

Specific gravity 3.15 2.40 2.90 3.15 2.91 2.37 3.15 2.25 2.87 - 2.95 2.62

Chemical, %

Mix 3

Type II 

cement

Class F 

fly ash

Grade 120 

slag cement

Mix 5Mix 1 Mix 2

Type 

IP(25)

Class C 

fly ash
IT(P4)(S25)

Type I/II 

cement

Class F 

fly ash

Grade 100 

slag cement

Type I/II 

cement

Slag 

cement

Silica 

fume

Field 
mixtures 

Coarse aggregate 
type 

Maximum 
aggregate 
size, in. 

Specific 
gravity 

Absorption, % 
Passing 

#4 
sieve, % 

Fine 
aggregate 

type 

Specific 
gravity 

Fineness 
modulus 

Mix 1 dolomitic limestone 3/4 2.84 0.32 2.0 sandstone 2.61 2.83 

Mix 2 granite 3/4 2.67 0.65 3.6 sandstone 2.67 2.66 

Mix 3 granite 3/4 2.60 0.80 3.0 natural 

sand 
2.61 2.66 

granite - 2.60 0.80 5.0 

Mix 4 

high calcium 
limestone 3/4 2.70 1.73 3.0 natural 

sand 
2.61 2.80 

granite - 2.60 2.33 5.0 

Mix 5 
quartzite 3/4 2.64 0.30 0.7 natural 

sand 
2.65 3.00 

p-gravel - 2.67 1.60 39 
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Table 4(a). Designed mix proportions for field mixtures 

   

Table 4(b). Mix proportions for 450 pcy cementitious material content 

  

 

 

 

 

 

 

 

 

Field 
Mixtures 

Cement 
Fly 
Ash 

Slag 
cement 

Silica 
Fume FA CA 1 CA 2 w/c 

ratio 
AEA WR Retarder Accelerator Fiber 

pcy pcy pcy pcy pcy pcy pcy oz/yd3  oz/yd3  oz/yd3  oz/yd3  pcy 

Mix 1 323 88 176 - 1210 1928 - 0.41 7.04 35.22 11.74 - - 

Mix 2 306 92 213 - 1160 1800 - 0.44 3.80 27.50 - - 7 

Mix 3 
321 - 187 27 1217 1371 463 0.42 1.00 4.00 1.00 1 - 

Mix 4 
426 - 150 24 1234 1435 299 0.38 11.40 54.00 18.00 - - 

Mix 5 
478 84 - - 1235 1568 280 0.40 1.50 1.00 4.00 - - 

 

Mixtures Cement 
Fly 
Ash Slag 

Silica 
Fume FA CA 1 CA 2 

w/c 
ratio ARA WR Retarder Accelerator Fiber 

pcy pcy pcy pcy pcy pcy pcy oz/yd3  oz/yd3  oz/yd3  oz/yd3  pcy 

Mix 1 248 68 135 - 1319 2102 - 0.41 7.04 35.22 11.74 - - 

Mix 2 225 68 157 - 1302 2028 - 0.44 3.80 27.50 - - 7 

Mix 3 270 - 157 23 1284 1446 488 0.42 1.00 4.00 1.00 1 - 

Mix 4 320 - 113 18 1363 1638 329 0.38 11.40 54.00 18.00 - - 

Mix 5 383 67 - - 1323 1681 300 0.40 1.50 1.00 4.00 - - 
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Table 4(c). Mix proportions for 700 pcy cementitious material content 

  

Table 4(d). Mix proportions for w/c of 0.45 and without fiber and chemical admixtures 

 

Table 5. Average strain rate factor, maximum strain and time of cracking 

Mix 

Designed 

mixture 

prisms  

Restrained 

rings 

Prisms of 

w/c=0.45 & 

w/o 

admixture 

Prisms of 450 

pcycementitious 

Prisms of 700 

pcycementitious 
Mortar bars 

Ave. strain rate factor α (strain×10
-6

/day
1/2

) 

Mix 1 83.0 34.0 81.9 76.1 108.5 140.6 

Mix 2 102.9 35.8 77.1 71.5 95.0 132.7 

Mix 3 81.2 26.1 64.6 65.1 75.4 113.5 

Mix 4 118.9 51.5 78.3 87.5 112.1 125.0 

Mix 5 34.0 23.1 53.6 31.9 58.0 125.9 

  Ave. maximum strain (×10
-6

) 

Mix 1 682.5 87.9 560.5 541.0 756.0 1102.3 

Mix 2 596.7 112.4 535.9 536.0 695.0 1012.5 

Mix 3 510.0 93.9 459.3 440.0 540.0 936.9 

Mix 4 756.7 94.7 535.8 598.0 820.0 986.2 

Mix 5 290.0 83.8 396.3 199.0 398.0 980.3 

Mixtures Cement 
Fly 
Ash Slag 

Silica 
Fume FA 

CA 
1 

CA 
2 

w/c 
ratio 

ARA WR Retarder Accelerator Fiber 

pcy pcy pcy pcy pcy pcy pcy oz/yd3  oz/yd3  oz/yd3  oz/yd3  pcy 

Mix 1 385 105 210 - 1120 1785 - 0.41 7.04 35.22 11.74 - - 

Mix 2 351 105 244 - 1097 1709 - 0.44 3.80 27.50 - - 7 

Mix 3 420 - 245 35 1088 1225 414 0.42 1.00 4.00 1.00 1 - 

Mix 4 497 - 175 28 1170 1406 282 0.38 11.40 54.00 18.00 - - 

Mix 5 595 105 - - 1126 1430 255 0.40 1.50 1.00 4.00 - - 

 

Mixtures Cement 
Fly 
Ash Slag 

Silica 
Fume FA CA 1 CA 2 w/c 

ratio 
ARA WR Retarder Accelerator Fiber 

pcy pcy pcy pcy pcy pcy pcy oz/yd3  oz/yd3  oz/yd3  oz/yd3  pcy 

Mix 1 323 88 176 - 1210 1928 - 0.45 - - - - - 

Mix 2 306 92 213 - 1160 1800 - 0.45 - - - - - 

Mix 3 321 - 187 27 1217 1371 463 0.45 - - - - - 

Mix 4 426 - 150 24 1234 1435 299 0.45 - - - - - 

Mix 5 478 84 - - 1235 1568 280 0.45 - - - - - 
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Table 6. Concrete ring splitting tensile strength and failure strength at concrete crack time 

or 28 days 

Mix 
Cracking 

Potential, Θ 

Concrete crack 

time, days 

Shrinkage induced 

stress, psi 

Splitting tensile 

strength, psi 

Mix 1 1.5 No cracking 645.2 430.1 

Mix 2 2.0 No cracking 825.7 412.9 

Mix 3 1.6 No cracking 691.4 432.1 

Mix 4 2.1 6.8 696.0 339.5 

Mix 5 1.2 No cracking 617.1 514.3 

 

Table 7. Test results of methylene blue index, paste-to- void ratio, water reducer agent dosage 

and 28-day MOE and average strain rate factors 

Mix 
Methylene 

blue index 

Paste-to-void 

ratio (by 

volume), % 

Water reducer 

content, oz/yd3 
28-day MOE, psi 

Ave. strain 

rate factor, 

×10
-6

/day
1/2

 

Mix 1 1.08 158.3 35.2 5.3E+06 34.0 

Mix 2 1.13 163.8 27.5 4.1E+06 35.8 

Mix 3 0.75 150.0 4.0 5.8E+06 26.1 

Mix 4 1.54 169.3 54.0 4.2E+06 51.5 

Mix 5 0.63 145.0 1.0 5.8E+06 23.1 
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Chapter 5 

 

Conclusion 

 This study was aimed at developing a model of the drying shrinkage behavior of 

mortars produced with ternary blends. Shrinkage of mortar bars was determined as 28-day 

length change. A statistical analysis software package was used to develop models and the 

validity of the models was tested. In addition, the drying shrinkage behavior of ternary blend 

concretes that were used in transportation structures was investigated. Five different concrete 

mixes from field demonstration projects in the Midwest were included in the study. The 

mixtures represented a wide variety of material combinations. Raw materials from ready mix 

plants were collected to perform shrinkage related tests in a lab environment. Both restrained 

and unrestrained shrinkage testing methodologies were used to analyze the factors that 

influence shrinkage in mixtures with large differences in materials and proportions. The risk 

for cracking of as-built ternary blended concrete mixtures was assessed. In addition, 

compressive and splitting tensile strengths testing, and modulus of elasticity determination 

were carried out to investigate the correlations to drying shrinkage and cracking potential. 

 The main conclusions of the study are as follows: 

 Slag cement shows a dominant effect on increasing mortar shrinkage in all three 

series. An increase of class C fly ash in series II is likely to decrease the mortar 

shrinkage. It also has a dominant effect although the effect of slag cement is slightly 

stronger. Silica fume in series III does not have a very strong effect while increasing 

in silica fume content still slightly increases free shrinkage of the mortar in ternary 

blends. An increase of class F fly ash in series I tends to increase the mortar shrinkage. 

However, this behavior is likely tenuous and class F fly ash shows the least dominant 

effect on the shrinkage in ternary blended slag cement mixture. 

 The mineralogical and chemical composition promotes the reactivity of slag cement. 

The low alkali content in slag cement plays a beneficial role on drying shrinkage in a 

mixture. Class C fly ash with high-calcium content is similar to slag cement in the 

mineralogical composition and reactivity. In addition, the chemical characteristics of 
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class C fly ash will result in high Ca/Si ratio in the mixture which reduces the size 

and volume of gel pores in CSH system. The removal of interlayer water from CSH 

system is likely reduced therefore reducing shrinkage strain. The particle size 

distributions play a significant role on increasing pozzolanic reactivity of silica fume. 

The slightly increased mortar free shrinkage of silica fume in ternary blends is mainly 

due to the high pozzolanic reactivity and pore size refinement mechanisms. Class F 

fly ash with low calcium content results in low pozzolanic reactivity that plays the 

least effect on drying shrinkage of mortar in ternary blends. 

 Literature provided general trends on concrete drying shrinkage when cement was 

replaced by single SCMs, such as class C fly ash, class F fly ash, slag cement, and 

silica fume. Reportedly, class C fly ash tended to increase drying shrinkage while 

class F fly ash may have a decrease trend on drying shrinkage strain without changing 

the w/cm ratio and aggregate content. Researchers concluded that given a similar 

binary system of slag cement mixture, slag cement tended to have a marginal effect 

on increasing drying shrinkage. The ultimate drying shrinkage of mortar increased 

with increase of SF content at 28 days, but the long-term drying shrinkage after 365 

days was not affected significantly by the addition of SF.  

 Class C and F fly ash have conflict effects on drying shrinkage in accordance with 

previous research of binary concrete system, while the silica fume and slag cement 

have agreements on literature. The conflicts may be caused by complex chemical and 

physical ternary mixing system, microstructural of ternary system, different mix 

proportion and w/cm ratio compared with literature, coarse aggregate effect on drying 

shrinkage, and differential effect between mortar and concrete mixtures. 

 The shrinkage measurements from a group of verification mortar mixes have 

evidenced a good correlation between the measured shrinkage strain and the strain 

predicted from the shrinkage model developed from the response surface analysis. 

 Water reducing admixture dosage plays a dominant role in the five ternary blend 

concrete mixtures. 
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 Cementitious material content has a significant effect on shrinkage strain. All as-built 

mixtures showed that free shrinkage linearly increases with the increased 

cementitious material content at an age of 56 days. 

 Shrinkage strain rate linearly increases with clay content in aggregate and paste-to-

void ratio of as-built concrete mixes.  

 Splitting tensile strength and modulus of elasticity affect cracking potential. 

Shrinkage cracking potential decreases with increased splitting tensile strength and 

modulus of elasticity. 

 Use of fibers appears to have reduced cracking risk. 

 Free shrinkage strain rate factors demonstrate good correlation with shrinkage rate 

factors for restrained conditions.  
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Chapter 6 

 

Recommendations for Future Research 

 The work presented in this thesis has provided a comprehensive study on drying 

shrinkage behavior of ternary blended mortar and concrete mixtures. However, further 

research is still needed, especially from the economic feasibility of the material point of view. 

The sources’ availability plays a dominant role to determine different supplementary 

cementitious materials (SCMs) used in pavement and bridge deck structures. Some materials 

used to make good performance concrete are expensive. This is, for instance, true of silica 

fume. Therefore, the economic decisions will depend on some specific cases which may need 

accurate assessments. 

 From the technical point of view, statistical design and analysis can be introduced and 

contribute to mortar and concrete research. Design of mixture and response surface model, 

for example, can be beneficial to develop binary, ternary, or quantitative blended concrete 

testing matrix and perform a comprehensive analysis on different concrete properties, 

respectively. 

 Some other supplementary materials, such as rice husks, ground clay brick, and 

metakaolin, can be investigated on their effects of concrete durability and sustainability. 

Further research can also focus on other concrete properties caused by supplementary 

materials. Fracture mechanics and creep corresponding to concrete shrinkage and cracking, 

air and rapid chloride permeability, freeze-thaw resistance, alkali silica reaction (ASR) 

durability, and sulfate attack resistance are other realms that can be studied.  
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Introduction 

This document is a report of the activities and observations of a research team that 

performed on-site testing of a ternary mixture placed on a bridge deck in Kansas. The 

purpose of this research project is a comprehensive study of how supplementary cementitious 

materials (SCMs) can be used to improve the performance of concrete mixtures when used in 

ternary blends. This is the third phase of a project which intends to provide consulting to 

states and contractors on the use and field management of ternary mixtures. A state-of-the-art 

44-foot long PCC mobile laboratory equipped for on-site cement and concrete testing was 

provided by the CP Tech Center to collect data and field observations.  

Project Information 

 Project No. K 7888-01 

 Douglas County. Kansas 

 Contractor: Ames Construction  

 US-59 Northbound bridge approximately 1½ mile south of US-56 

 Bridge deck placement (3 span – structural steel girders with concrete deck) (Figure 

1) 

Site Location 

An area at the bridge site was prepared by the contractor for the PCC mobile lab. The 

location of the project site and the mobile lab is shown in Figure 2. 

Sampling and Testing Activities 

The mobile lab arrived on site on October 27, 2009. Concrete placement, sampling 

and testing took place on October 28, 2009. Hardened samples were transported to Iowa 

State University on October 29, 2009 for further testing.  The following tests were conducted 

either in the field or in the laboratory: 

 Calorimetry test (ASTM C 1679) 

 Slump, unit weight, temperature and air content of fresh concrete – 2 test (ASTM C 

143, ASTM C 138, ASTM C 231) 

 Microwave w/c ratio – 2 test (AASHTO T 318) 
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 Air Void Analyzer, Taylor et al. (2006) 

 Initial set and final set of concrete – 1 test (ASTM C 403) 

 Compressive strength, splitting tensile strength, static modulus of elasticity - 4” x 8” 

cylinders at 1-day, 3-days, 7-days, 28-days, and 56-days (ASTM C 39, ASTM C 

496, ASTM C 469) 

 Rapid chloride permeability - 4” x 8” cylinders at 56 days (ASTM C 1202) 

 Air void analysis of hardened concrete - 4” x 8” cylinders (ASTM C 457) 

 Porosity analysis (boil test) of hardened concrete - 4” x 8” cylinders (ASTM C 642) 

 Free shrinkage test – 3 beams (ASTM C 157) 

 Restrained rings –  4 samples (ASTM C 1581) 

Observations of the Research Team 

The following observations were made in this field study: 

 The overall deck thickness is 8 ½ inches. The cover for top mat of epoxy coated grade 

60 steel is 3 inches and cover from top surface for bottom mat of steel is 6 ½ inches. 

 Removable wood formwork was used in the deck construction. 

 The concrete was mixed at a central mix plant (Penny’s concrete) and transported by 

ready mix trucks.  

 The mix design was from Ames Construction Inc., and approved by Kansas 

Department of Transportation. The accepted mix proportions are given in the project 

data section. 

 Cementitious materials include Type I/II cement (Buzzi Unicem), grade 120 slag 

cement (Holcim), and silica fume (WR Grace). Two types of coarse granite aggregate 

were used together with a natural sand as fine aggregate.  

 Setting time of the mix was determined as a single measurement: initial set occurred 

at 3.66 hours and the final set was achieved at 11.66 hours.  

 According to the Workability Factor & Coarseness Factor graph (Page 13), combined 

aggregate gradation for this project falls in the well-graded region. However, from 

0.45 Power Curve and Combined Percent Retained Curve, the aggregate gradation is 

slightly lacking in the amount of material retained on the #8 sieve. This did not 
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adversely affect workability or hardened properties of the mixture as observed in the 

field. 

 A brief summary of weather conditions recorded by the PCC mobile lab is tabulated 

in Table 1 and presented graphically in Figures 3 to 5. The relative humidity ranged 

from 60% to 84%; the ambient temperature ranged from 48˚F to 62 ˚F; the wind 

speed varied from 2.4 mph to 11.2 mph; the concrete temperature ranged from 55.0 

˚F to 66 ˚F during the recorded period (i.e., from 8am to 11:30am). 

 Figures 6 through 10 illustrate some activities during the testing process. 

 The fresh concrete tests include slump cone, unit weight, and water-cementitious 

materials ratio by microwave. Nine groups of samples were tested during the 

construction period. Slump results varied from a maximum of 7.5 inches to a 

minimum of 3.0 inches. The unit weight ranged from 142.4 lb/ft
3
 to 135.6 lb/ft

3
 with 

an average value of 138.9 lb/ft
3
. Two microwave w-cm ratio tests were performed at 

8:20 AM and 10:50 AM, and the results were 0.44 and 0.45, respectively. The design 

value is 0.42. The data are provided on page 15. 

 The air content ranged from 5.2% to 9.0% with an average of 7.3% over the nine tests 

conducted. The specified minimum was 6.5%.  

 The air void test (Rapid Air Test) results for 14 samples from the same concrete mix 

are given in Table 2. A spacing factor ≤ 0.20 mm measured using microscopical 

methods is an indication of a good concrete freeze-thaw resistance (Tanesi and 

Meininger 2006). Based on this criterion, the spacing factors are acceptable in 7 out 

of 14 samples. 

 The rapid chloride permeability test measures the electrical conductance of a concrete 

sample as its resistance to chloride ion penetration. The test results shown in Table 3 

indicate a classification of “very low” permeability of chloride. 

 The strength development 28/7 day fc ratios are reported in Table 3.  

 Compressive strength, splitting tensile strength and modulus of elasticity results 

(ASTM C 39, ASTM C 496, and ASTM C 469) are given in Table 4 and 

development curves are plotted in Figures 11 to Figure 13. 
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 The porosity values obtained by the boiling test (ASTM C 642) results are given in 

Table 3.  

 The feedback from contractor on workability and finishing properties was positive. 

Traditionally, KDOT has constructed bridge decks in two pours, a binary mixture 

approximately 6” thick, which is later capped with an approximately 2” high density 

silica fume mixture. However, the ternary mixture allowed the contractor to place a 

full depth deck in one pour.   

 Free shrinkage test (ASTM C 157) was conducted in the laboratory. Three concrete 

beams were wet cured for seven days and then moved to a dry room at 23˚C and 50% 

relative humidity. The drying shrinkage results are given in Table 5 and also plotted 

in Figure 14. 

 Restrained shrinkage test was conducted based on ASTM C 1581. Four rings were 

cast. The rings were demolded and the top surface was covered with paraffin wax 24 

hours from casting. The rings were allowed to dry at 23˚C and 50% relative humidity 

immediately after demolding. Strains in the steel rings were recorded every 10 

minutes up to 28 days or until the concrete cracked. The configuration of restrained 

concrete rings is shown in Figure 15. The cracking potential is listed in Table 6 and 

shown graphically in Figure 16. The cracking potential is classified as “moderate high” 

based on the average stress rate. 
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The following test data is provided for information only, comments and conclusions 

will be reported in the comprehensive Phase III report of the pooled fund project 
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General Information

Project:

Contractor:

Mix Description:

Mix ID:

Date(s) of Placement:

Cementitious Materials Source Type Spec. Gravity lb/yd3

% 

Replacement 

by Mass

Portland Cement: Buzzi Unicem I/II 3.150 321

GGBFS: Holcim 2.870 187 34.95%

Fly Ash:

Silica Fume: WR Grace 2.250 27 5.05%

Other Pozzolan:

535 lb/yd3

5.7 sacks/yd3

Aggregate Information Source Type

Spec. Gravity 

SSD

Absorption 

(%)

% Passing     

#4

Coarse Aggregate: Granite Mountain - Ark. Granite 2.600 0.80% 3.0%

Intermediate Aggregate #1: Granite Mountain - Ark. Granite 2.600 0.80% 5.0%

Intermediate Aggregate #2:

Fine Aggregate #1: Penny's Natural Sand 2.610 0.70% 99.0%

Coarse Aggregate %: 45.0%

Intermediate Aggregate #1%: 15.2%

Intermediate Aggregate #2%:

Fine Aggregate #1 %: 39.8%

Mix Proportion Calculations

Water/Cementitious Materials Ratio: 0.420

Air Content: 6.50%

Volume                                    

(ft3)

Batch Weights SSD       

(lb/yd3) Spec. Gravity

Absolute 

Volume        

(%)

Portland Cement: 1.633 321 3.150 6.048%

GGBFS: 1.044 187 2.870 3.867%

Fly Ash:

Silica Fume: 0.192 27 2.250 0.712%

Other Pozzolan:

Coarse Aggregate: 8.449 1,371 2.600 31.291%

Intermediate Aggregate #1: 2.854 463 2.600 10.569%

Intermediate Aggregate #2:

Fine Aggregate #1: 7.472 1,217 2.610 27.675%

Water: 3.601 225 1.000 13.337%

Air: 1.755 6.500%

27.000 3,810 100.000%

Unit Weight (lb/ft3) 141.1 Paste 30.465%

Mortar 59.330%

Admixture Information Source/Description oz/yd3
oz/cw t

Air Entraining Admix.: Daravair 1400 AEA 4.00 0.75

Admix. #1:  ADVA 140M Full Range WR 1.00 0.19

Admix. #2:  Daraset 200 Type C accelerator 1.00 0.19

Admix. #3: Recover Type D Retarder 1.00 0.19

AVA Information
Absolute Volume                             

(%)

Air Free Paste: 23.965%

Air Free Mortar: 52.830%

10/28/2009

Mix Design & Misc. Info.

Kansas - Ternary Mixtures

Ames

535 lb Cementitious

1PL5046A
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Project:

Mix ID:

Test Date: 27-Oct-09

535 lb/yd3

Agg. Ratios: 45.00% 15.20% 39.80% 100.00%

Sieve Coarse Intermediate Fine #1 Fine #2

Combined % 

Retained

Combined % 

Retained On 

Each Sieve

Combined % 

Passing

2 ½ " 100% 100% 100% 0% 0% 100%

2" 100% 100% 100% 0% 0% 100%

1 ½ " 100% 100% 100% 0% 0% 100%

1" 100% 100% 100% 0% 0% 100%

¾ " 89% 100% 100% 5% 5% 95%

½ " 45% 95% 100% 26% 21% 74%

⅜" 21% 50% 100% 43% 18% 57%

#4 3% 5% 99% 58% 15% 42%

#8 2% 3% 92% 62% 4% 38%

#16 1% 1% 74% 70% 8% 30%

#30 1% 1% 53% 78% 8% 22%

#50 1% 1% 15% 93% 15% 7%

#100 1% 1% 1% 99% 6% 1%

#200 0.7% 1.0% 0.3% 99.4% 0.4% 0.6%

Workability Factor: 37.2

Coarseness Factor: 69.6

Workability Factor & Coarseness Factor

Total Cementitious Material:

Sample Comments: KDOT Data

KDOT Ternary Mixtures

Bridge Deck

20

25

30

35

40

45

0 10 20 30 40 50 60 70 80 90 100

W
o

rk
a

b
ili

ty
(p

e
rc

e
n

t)

Coarseness Factor
(percent)

KDOT Ternary Mixtures
Workability Factor & Coarseness Factor

27-Oct-09

Well Graded 
1 1/2" to 3/4

Well 
Graded 

Minus 3/4"

Rocky

Sandy

Control 
Line
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Project

Date: Start Time:

Sta:

Test Data

Penetration 

Time (xx:xx-24 

hr format) Time (min)

Needle # 

(1,2,4,10,20 or 

40) Force (lb)

Penetration 

Resistance 

(psi)

Sample 

Temp. 

(ºF)

3:40 PM 290.00 1 149 149.00 n/a

4:30 PM 340.00 4 85 340.00 n/a

5:00 PM 370.00 10 40 400.00 n/a

5:38 PM 408.00 10 70 700.00 n/a

6:05 PM 435.00 20 42 840.00 n/a

6:30 PM 460.00 20 62 1240.00 n/a

8:10 PM 560.00 40 100 4000.00 n/a

n/a

n/a

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

220 minutes 3.66 hours

700 minutes 11.66 hours

Kansas - Ternary Mixtures

Set Time ASTM C 403

US-59 Bridge Deck

28-Oct-09 10:50 AM

n/a

Initial Set (at 500 psi PR) estimated times 

using forecast 

functionFinal Set (at 4,000 psi PR)
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Project

Date: Time:

Sta:

Test Data

3,703.6

2,203.4

3,662.2

3,611.0

3,603.2

3,601.1

3,599.6

3,598.8

3,598.5

3,598.5

7.0%

135.6

256.6

535

1211

1369

463

0.70%

0.80%

0.80%

0.436

* If necessary (stop if the weight loss is less than 1g)

** Mass at test termination

***From unit weight test

n/a

Kansas - Ternary Mixtures

Microwave Water Content Worksheet

US-59 Bridge Deck

28-Oct-09 8:20 AM

Unit weight of fresh concrete, UW (lb/ft3)***

Mass of tray+cloth+block+fresh test sample, WF (g)

Mass of tray+cloth+block, WS(g)

Mass of tray+cloth+dry sample, WD (g) (5mins)

Mass of tray+cloth+dry sample, WD (g) (7 mins)

Mass of tray+cloth+dry sample, WD (g) (9 mins)*

Mass of tray+cloth+dry sample, WD (g) (11 mins)*

Mass of tray+cloth+dry sample, WD (g) (13 mins)*

Mass of tray+cloth+dry sample, WD (g) (15 mins)*

Mass of tray+cloth+dry sample, WD (g) (17 mins)*

Mass of tray+cloth+dry sample, WD (g) (Final)**

Water content percentage, WC (%)

Coarse aggregate absorption (%)

Intermediate aggregate absorption (%)

w/c

Total water content, WT, (lb/yd3)

Total cementitious weight (lb/yd3)

Fine aggregate weight (lb/yd3)

Coarse Aggregate weight (lb/yd3)

Intermediate Aggregate weight (lb/yd3)

Fine aggregate absorption (%)
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Boil Test (ASTM C 642) 

KS A-1 KS B-1 

            

A 1032.5 g A 1216.8 g 

B 1061.86 g B 1239.58 g 

C 1072.3 g C 1241.36 g 

D 594.1 g D 694.4 g 

P 1 g/cm³ P 1 g/cm³ 

            

g1 2.1591 g/cm³ g1 2.2247 g/cm³ 

g2 2.3552 g/cm³ g2 2.3292 g/cm³ 

            

            

Volume of permeable 

pore space (voids), %   8.3229 

Volume of permeable 

pore space (voids), %   4.4903 

KS A-2 KS B-2 

            

A 1203.3 g A 1207.8 g 

B 1234.8 g B 1227 g 

C 1247.16 g C 1227.71 g 

D 694.8 g D 695.1 g 

P 1 g/cm³ P 1 g/cm³ 

            

g1 2.1785 g/cm³ g1 2.2677 g/cm³ 

g2 2.3664 g/cm³ g2 2.3558 g/cm³ 

            

            

Volume of permeable 

pore space (voids), %   7.9405 

Volume of permeable 

pore space (voids), %   3.7382 
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Sample ID: CAST CYL A-1-122-S1

90 x 85 2413.1

27.00 80 x 75

Class No.
Chord size 

(microns)

Number of 

Chords in Class

Number of Chords 

in Percent

Air Content in 

Class

Cumulated Air 

Content

Chord 

length 

frequenc

y

Air 

content, 

fraction

1 0-10 18 1.78 0.010 0.010 0.02 0.010 0.00-0.01

2 10-20 82 8.11 0.050 0.060 0.08 0.050 0.01-0.02

3 20-30 52 8.11 0.060 0.110 0.05 0.060 0.02-0.03

4 30-40 43 4.25 0.060 0.180 0.04 0.060 0.03-0.04

5 40-50 45 4.45 0.080 0.260 0.04 0.080 0.04-0.05

6 50-60 42 4.15 0.100 0.360 0.04 0.100 0.05-0.06

7 60-80 74 7.32 0.210 0.570 0.07 0.210 0.06-0.08

8 80-100 72 7.12 0.270 0.840 0.07 0.270 0.08-0.10

9 100-120 67 6.63 0.300 1.140 0.07 0.300 0.10-0.12

10 120-140 58 5.74 0.310 1.450 0.06 0.310 0.12-0.14

11 140-160 44 4.35 0.270 1.720 0.04 0.270 0.14-0.16

12 160-180 44 4.35 0.310 2.030 0.04 0.310 0.16-0.18

13 180-200 40 3.96 0.320 2.350 0.04 0.320 0.18-0.20

14 200-220 20 1.98 0.170 2.520 0.02 0.170 0.20-0.22

15 220-240 33 3.26 0.320 2.840 0.03 0.320 0.22-0.24

16 240-260 25 2.47 0.260 3.100 0.02 0.260 0.24-0.26

17 260-280 22 2.18 0.250 3.340 0.02 0.250 0.26-0.28

18 280-300 21 2.08 0.250 3.590 0.02 0.250 0.28-0.30

19 300-350 38 3.76 0.510 4.100 0.04 0.510 0.30-0.35

20 350-400 26 2.57 0.400 4.500 0.03 0.400 0.35-0.40

21 400-450 22 2.18 0.390 4.890 0.02 0.390 0.40-0.45

22 450-500 16 1.58 0.320 5.210 0.02 0.320 0.45.0.50

23 500-1000 80 7.91 2.200 5.620 0.08 2.200 0.50-1.00

24 1000-1500 19 1.88 0.980 8.390 0.02 0.980 1.00-1.50

25 1500-2000 8 0.79 0.540 8.920 0.01 0.540 1.50-2.00

26 2000-2500 0 0.00 0.000 8.920 0.00 0.000 2.00-2.50

27 2500-3000 0 0.00 0.000 8.920 0.00 0.000 2.50-3.00

28 3000-4000 0 0.00 0.000 8.920 0.00 0.000 3.00-4.00

1011

8.92

18.78

0.161

0.420

0.213

3.03Paste to Air Ratio:

Air Content (%):

Specific Surface (mm-1):

Spacing Factor (mm):

Void Frequency (mm-1):

Length Traversed (mm):

Area Traversed (mm x mm):Paste Content (%):

Sample Size (mm x mm):

Chord Length Distribution - Table

Average Chord Length (mm):
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Sample ID: CAST CYL A- 1 - 122 - S2

80 x 90 2413.1

27.00 70 x 80

Class No.
Chord size 

(microns)

Number of 

Chords in Class

Number of Chords 

in Percent

Air Content in 

Class

Cumulated Air 

Content

Chord 

length 

frequency

Air content, 

fraction

1 0-10 22 2.29 0.010 0.010 0.02 0.010 0.00-0.01

2 10-20 56 5.82 0.040 0.040 0.06 0.040 0.01-0.02

3 20-30 38 5.82 0.040 0.080 0.04 0.040 0.02-0.03

4 30-40 32 3.33 0.050 0.130 0.03 0.050 0.03-0.04

5 40-50 49 5.09 0.090 0.220 0.05 0.090 0.04-0.05

6 50-60 34 3.53 0.080 0.300 0.04 0.080 0.05-0.06

7 60-80 57 5.93 0.170 0.460 0.06 0.170 0.06-0.08

8 80-100 66 6.86 0.240 0.710 0.07 0.240 0.08-0.10

9 100-120 64 6.65 0.290 1.000 0.07 0.290 0.10-0.12

10 120-140 52 5.41 0.280 1.280 0.05 0.280 0.12-0.14

11 140-160 45 4.68 0.280 1.560 0.05 0.280 0.14-0.16

12 160-180 32 3.33 0.220 1.780 0.03 0.220 0.16-0.18

13 180-200 40 4.16 0.320 2.100 0.04 0.320 0.18-0.20

14 200-220 33 3.43 0.290 2.390 0.03 0.290 0.20-0.22

15 220-240 42 4.37 0.400 2.790 0.04 0.400 0.22-0.24

16 240-260 32 3.33 0.330 3.120 0.03 0.330 0.24-0.26

17 260-280 21 2.18 0.240 3.350 0.02 0.240 0.26-0.28

18 280-300 21 2.18 0.250 3.600 0.02 0.250 0.28-0.30

19 300-350 37 3.85 0.500 4.100 0.04 0.500 0.30-0.35

20 350-400 32 3.33 0.500 4.600 0.03 0.500 0.35-0.40

21 400-450 25 2.60 0.440 5.030 0.03 0.440 0.40-0.45

22 450-500 16 1.66 0.310 5.350 0.02 0.310 0.45.0.50

23 500-1000 82 8.52 2.230 5.870 0.09 2.230 0.50-1.00

24 1000-1500 22 2.29 1.090 8.670 0.02 1.090 1.00-1.50

25 1500-2000 9 0.94 0.640 9.310 0.01 0.640 1.50-2.00

26 2000-2500 3 0.31 0.280 9.590 0.00 0.280 2.00-2.50

27 2500-3000 0 0.00 0.000 9.590 0.00 0.000 2.50-3.00

28 3000-4000 0 0.00 0.000 9.590 0.00 0.000 3.00-4.00

962

9.59

16.63

0.169

0.400

0.240

2.82Paste to Air Ratio:

Air Content (%):

Specific Surface (mm-1):

Spacing Factor (mm):

Void Frequency (mm-1):

Chord Length Distribution - Table

Length Traversed (mm):

Area Traversed (mm x mm):Paste Content (%):

Sample Size (mm x mm):

Average Chord Length (mm):
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Sample ID: CAST CYL A- 1 - 122 - S3

90 x 85 2413.1

27.00 80 x 75

Class No.
Chord size 

(microns)

Number of 

Chords in Class

Number of Chords 

in Percent

Air Content in 

Class

Cumulated Air 

Content

Chord 

length 

frequency

Air content, 

fraction

1 0-10 11 1.25 0.000 0.000 0.01 0.000 0.00-0.01

2 10-20 39 4.44 0.020 0.030 0.04 0.020 0.01-0.02

3 20-30 47 4.44 0.050 0.080 0.05 0.050 0.02-0.03

4 30-40 37 4.21 0.050 0.130 0.04 0.050 0.03-0.04

5 40-50 39 4.44 0.070 0.200 0.04 0.070 0.04-0.05

6 50-60 40 4.55 0.090 0.290 0.05 0.090 0.05-0.06

7 60-80 73 8.30 0.210 0.510 0.08 0.210 0.06-0.08

8 80-100 63 7.17 0.240 0.740 0.07 0.240 0.08-0.10

9 100-120 52 5.92 0.240 0.980 0.06 0.240 0.10-0.12

10 120-140 49 5.57 0.260 1.240 0.06 0.260 0.12-0.14

11 140-160 45 5.12 0.280 1.520 0.05 0.280 0.14-0.16

12 160-180 32 3.64 0.230 1.750 0.04 0.230 0.16-0.18

13 180-200 39 4.44 0.310 2.060 0.04 0.310 0.18-0.20

14 200-220 32 3.64 0.280 2.330 0.04 0.280 0.20-0.22

15 220-240 23 2.62 0.220 2.550 0.03 0.220 0.22-0.24

16 240-260 19 2.16 0.200 2.750 0.02 0.200 0.24-0.26

17 260-280 30 3.41 0.340 3.090 0.03 0.340 0.26-0.28

18 280-300 14 1.59 0.170 3.260 0.02 0.170 0.28-0.30

19 300-350 38 4.32 0.510 3.770 0.04 0.510 0.30-0.35

20 350-400 27 3.07 0.420 4.190 0.03 0.420 0.35-0.40

21 400-450 26 2.96 0.450 4.640 0.03 0.450 0.40-0.45

22 450-500 12 1.37 0.230 4.880 0.01 0.230 0.45.0.50

23 500-1000 66 7.51 1.920 5.010 0.08 1.920 0.50-1.00

24 1000-1500 16 1.82 0.800 7.600 0.02 0.800 1.00-1.50

25 1500-2000 4 0.46 0.300 7.900 0.00 0.300 1.50-2.00

26 2000-2500 2 0.23 0.190 8.100 0.00 0.190 2.00-2.50

27 2500-3000 2 0.23 0.220 8.320 0.00 0.220 2.50-3.00

28 3000-4000 2 0.23 0.270 8.590 0.00 0.270 3.00-4.00

879

8.59

16.96

0.185

0.360

0.236

3.14

Chord Length Distribution - Table

Length Traversed (mm):

Area Traversed (mm x mm):Paste Content (%):

Sample Size (mm x mm):

Average Chord Length (mm):

Paste to Air Ratio:

Air Content (%):

Specific Surface (mm-1):

Spacing Factor (mm):

Void Frequency (mm-1):
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75 x 100 2413.1

27.00 65 x 90

Class No.
Chord size 

(microns)

Number of 

Chords in Class

Number of Chords 

in Percent

Air Content in 

Class

Cumulated Air 

Content

Chord 

length 

frequency

Air content, 

fraction

1 0-10 31 2.50 0.010 0.010 0.03 0.010 0.00-0.01

2 10-20 107 8.64 0.070 0.080 0.09 0.070 0.01-0.02

3 20-30 70 8.64 0.070 0.150 0.06 0.070 0.02-0.03

4 30-40 43 3.47 0.060 0.210 0.03 0.060 0.03-0.04

5 40-50 54 4.36 0.100 0.310 0.04 0.100 0.04-0.05

6 50-60 41 3.31 0.090 0.410 0.03 0.090 0.05-0.06

7 60-80 65 5.25 0.190 0.590 0.05 0.190 0.06-0.08

8 80-100 69 5.57 0.260 0.850 0.06 0.260 0.08-0.10

9 100-120 56 4.52 0.250 1.110 0.05 0.250 0.10-0.12

10 120-140 69 5.57 0.370 1.480 0.06 0.370 0.12-0.14

11 140-160 41 3.31 0.250 1.740 0.03 0.250 0.14-0.16

12 160-180 41 3.31 0.290 2.020 0.03 0.290 0.16-0.18

13 180-200 40 3.23 0.310 2.340 0.03 0.310 0.18-0.20

14 200-220 30 2.42 0.260 2.600 0.02 0.260 0.20-0.22

15 220-240 41 3.31 0.390 2.990 0.03 0.390 0.22-0.24

16 240-260 22 1.78 0.230 3.220 0.02 0.230 0.24-0.26

17 260-280 32 2.58 0.360 3.570 0.03 0.360 0.26-0.28

18 280-300 21 1.70 0.250 3.820 0.02 0.250 0.28-0.30

19 300-350 59 4.77 0.800 4.620 0.05 0.800 0.30-0.35

20 350-400 43 3.47 0.670 5.290 0.03 0.670 0.35-0.40

21 400-450 40 3.23 0.700 5.990 0.03 0.700 0.40-0.45

22 450-500 36 2.91 0.710 6.700 0.03 0.710 0.45.0.50

23 500-1000 153 12.36 4.380 7.220 0.12 4.380 0.50-1.00

24 1000-1500 24 1.94 1.190 12.270 0.02 1.190 1.00-1.50

25 1500-2000 5 0.40 0.370 12.650 0.00 0.370 1.50-2.00

26 2000-2500 1 0.08 0.090 12.740 0.00 0.090 2.00-2.50

27 2500-3000 4 0.32 0.450 13.190 0.00 0.450 2.50-3.00

28 3000-4000 0 0.00 0.000 13.190 0.00 0.000 3.00-4.00

1238

13.19

15.56

0.132

0.510

0.257

2.05

Chord Length Distribution - Table

Length Traversed (mm):

Area Traversed (mm x mm):Paste Content (%):

Sample Size (mm x mm):

Average Chord Length (mm):

Paste to Air Ratio:

Air Content (%):

Specific Surface (mm-1):

Spacing Factor (mm):

Void Frequency (mm-1):
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Sample ID: CAST CYL A-2-122-S2

90 x 80 2413.1

27.00 80 x 70

Class No.
Chord size 

(microns)

Number 

of Chords 

in Class

Number of Chords 

in Percent

Air Content in 

Class

Cumulated Air 

Content

Chord 

length 

frequency

Air content, 

fraction

1 0-10 9 0.96 0.000 0.000 0.01 0.000 0.00-0.01

2 10-20 37 3.94 0.020 0.030 0.04 0.020 0.01-0.02

3 20-30 48 3.94 0.050 0.080 0.05 0.050 0.02-0.03

4 30-40 31 3.30 0.040 0.120 0.03 0.040 0.03-0.04

5 40-50 36 3.84 0.070 0.190 0.04 0.070 0.04-0.05

6 50-60 34 3.62 0.080 0.270 0.04 0.080 0.05-0.06

7 60-80 61 6.50 0.180 0.440 0.07 0.180 0.06-0.08

8 80-100 53 5.65 0.200 0.640 0.06 0.200 0.08-0.10

9 100-120 52 5.54 0.240 0.880 0.06 0.240 0.10-0.12

10 120-140 41 4.37 0.220 1.100 0.04 0.220 0.12-0.14

11 140-160 39 4.16 0.240 1.340 0.04 0.240 0.14-0.16

12 160-180 35 3.73 0.250 1.590 0.04 0.250 0.16-0.18

13 180-200 31 3.30 0.250 1.830 0.03 0.250 0.18-0.20

14 200-220 31 3.30 0.270 2.110 0.03 0.270 0.20-0.22

15 220-240 30 3.20 0.290 2.390 0.03 0.290 0.22-0.24

16 240-260 20 2.13 0.210 2.600 0.02 0.210 0.24-0.26

17 260-280 17 1.81 0.190 2.790 0.02 0.190 0.26-0.28

18 280-300 27 2.88 0.320 3.110 0.03 0.320 0.28-0.30

19 300-350 50 5.33 0.670 3.790 0.05 0.670 0.30-0.35

20 350-400 51 5.44 0.790 4.580 0.05 0.790 0.35-0.40

21 400-450 33 3.52 0.580 5.160 0.04 0.580 0.40-0.45

22 450-500 19 2.03 0.370 5.530 0.02 0.370 0.45.0.50

23 500-1000 119 12.69 3.300 6.120 0.13 3.300 0.50-1.00

24 1000-1500 22 2.35 1.110 9.940 0.02 1.110 1.00-1.50

25 1500-2000 6 0.64 0.430 10.370 0.01 0.430 1.50-2.00

26 2000-2500 3 0.32 0.280 10.650 0.00 0.280 2.00-2.50

27 2500-3000 3 0.32 0.330 10.990 0.00 0.330 2.50-3.00

28 3000-4000 0 0.00 0.000 10.990 0.00 0.000 3.00-4.00

938

10.99

14.15

0.174

0.390

0.283

2.46

Chord Length Distribution - Table

Length Traversed (mm):

Area Traversed (mm x mm):Paste Content (%):

Sample Size (mm x mm):

Average Chord Length (mm):

Paste to Air Ratio:

Air Content (%):

Specific Surface (mm-1):

Spacing Factor (mm):

Void Frequency (mm-1):
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Sample ID: CAST CYL A-2-122-S3

75 x 90 2413.1

27.00 65 x 80

Class No.
Chord size 

(microns)

Number of 

Chords in Class

Number of Chords 

in Percent

Air Content in 

Class

Cumulated Air 

Content

Chord 

length 

frequency

Air content, 

fraction

1 0-10 29 2.50 0.010 0.010 0.02 0.010 0.00-0.01

2 10-20 101 8.70 0.060 0.070 0.09 0.060 0.01-0.02

3 20-30 75 8.70 0.080 0.150 0.06 0.080 0.02-0.03

4 30-40 52 4.48 0.080 0.230 0.04 0.080 0.03-0.04

5 40-50 43 3.70 0.080 0.310 0.04 0.080 0.04-0.05

6 50-60 40 3.45 0.090 0.400 0.03 0.090 0.05-0.06

7 60-80 73 6.29 0.210 0.610 0.06 0.210 0.06-0.08

8 80-100 63 5.43 0.240 0.850 0.05 0.240 0.08-0.10

9 100-120 64 5.51 0.290 1.140 0.06 0.290 0.10-0.12

10 120-140 49 4.22 0.260 1.400 0.04 0.260 0.12-0.14

11 140-160 43 3.70 0.270 1.670 0.04 0.270 0.14-0.16

12 160-180 46 3.96 0.320 1.990 0.04 0.320 0.16-0.18

13 180-200 31 2.67 0.240 2.230 0.03 0.240 0.18-0.20

14 200-220 29 2.50 0.250 2.490 0.02 0.250 0.20-0.22

15 220-240 26 2.24 0.250 2.740 0.02 0.250 0.22-0.24

16 240-260 32 2.76 0.330 3.070 0.03 0.330 0.24-0.26

17 260-280 22 1.89 0.240 3.310 0.02 0.240 0.26-0.28

18 280-300 30 2.58 0.360 3.670 0.03 0.360 0.28-0.30

19 300-350 38 3.27 0.510 4.180 0.03 0.510 0.30-0.35

20 350-400 37 3.19 0.570 4.750 0.03 0.570 0.35-0.40

21 400-450 36 3.10 0.640 5.390 0.03 0.640 0.40-0.45

22 450-500 40 3.45 0.790 6.170 0.03 0.790 0.45.0.50

23 500-1000 137 11.80 3.990 6.700 0.12 3.990 0.50-1.00

24 1000-1500 16 1.38 0.810 10.980 0.01 0.810 1.00-1.50

25 1500-2000 4 0.34 0.270 11.250 0.00 0.270 1.50-2.00

26 2000-2500 2 0.17 0.190 11.430 0.00 0.190 2.00-2.50

27 2500-3000 3 0.26 0.340 11.770 0.00 0.340 2.50-3.00

28 3000-4000 0 0.00 0.000 11.770 0.00 0.000 3.00-4.00

1161

11.77

16.35

0.140

0.480

0.245

2.29

Chord Length Distribution - Table

Length Traversed (mm):

Area Traversed (mm x mm):Paste Content (%):

Sample Size (mm x mm):

Average Chord Length (mm):

Paste to Air Ratio:

Air Content (%):

Specific Surface (mm-1):

Spacing Factor (mm):

Void Frequency (mm-1):
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Sample ID: CAST CYL A-2-122-S4

90 x 80 2413.1

27.00 80 x 70

Class No.
Chord size 

(microns)

Number of 

Chords in Class

Number of Chords 

in Percent

Air Content in 

Class

Cumulated Air 

Content

Chord 

length 

frequency

Air content, 

fraction

1 0-10 11 1.03 0.000 0.000 0.01 0.000 0.00-0.01

2 10-20 62 5.81 0.040 0.040 0.06 0.040 0.01-0.02

3 20-30 62 5.81 0.070 0.110 0.06 0.070 0.02-0.03

4 30-40 40 3.75 0.060 0.170 0.04 0.060 0.03-0.04

5 40-50 38 3.56 0.070 0.230 0.04 0.070 0.04-0.05

6 50-60 45 4.21 0.100 0.340 0.04 0.100 0.05-0.06

7 60-80 69 6.46 0.200 0.540 0.06 0.200 0.06-0.08

8 80-100 60 5.62 0.220 0.760 0.06 0.220 0.08-0.10

9 100-120 67 6.27 0.300 1.060 0.06 0.300 0.10-0.12

10 120-140 46 4.31 0.250 1.310 0.04 0.250 0.12-0.14

11 140-160 42 3.93 0.260 1.570 0.04 0.260 0.14-0.16

12 160-180 48 4.49 0.340 1.910 0.04 0.340 0.16-0.18

13 180-200 30 2.81 0.230 2.140 0.03 0.230 0.18-0.20

14 200-220 28 2.62 0.240 2.380 0.03 0.240 0.20-0.22

15 220-240 26 2.43 0.240 2.630 0.02 0.240 0.22-0.24

16 240-260 35 3.28 0.360 2.990 0.03 0.360 0.24-0.26

17 260-280 20 1.87 0.220 3.210 0.02 0.220 0.26-0.28

18 280-300 19 1.78 0.230 3.440 0.02 0.230 0.28-0.30

19 300-350 51 4.78 0.700 4.140 0.05 0.700 0.30-0.35

20 350-400 23 2.15 0.360 4.500 0.02 0.360 0.35-0.40

21 400-450 33 3.09 0.580 5.080 0.03 0.580 0.40-0.45

22 450-500 31 2.90 0.610 5.680 0.03 0.610 0.45.0.50

23 500-1000 135 12.64 3.840 6.400 0.13 3.840 0.50-1.00

24 1000-1500 32 3.00 1.540 11.060 0.03 1.540 1.00-1.50

25 1500-2000 9 0.84 0.660 11.710 0.01 0.660 1.50-2.00

26 2000-2500 4 0.37 0.360 12.070 0.00 0.360 2.00-2.50

27 2500-3000 2 0.19 0.230 12.300 0.00 0.230 2.50-3.00

28 3000-4000 0 0.00 0.000 12.300 0.00 0.000 3.00-4.00

1068

12.30

14.40

0.153

0.440

0.278

2.20

Chord Length Distribution - Table

Length Traversed (mm):

Area Traversed (mm x mm):Paste Content (%):

Sample Size (mm x mm):

Average Chord Length (mm):

Paste to Air Ratio:

Air Content (%):

Specific Surface (mm-1):

Spacing Factor (mm):

Void Frequency (mm-1):
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Sample ID: CAST CYL B-1-133-S1

120 x 80 2413.1

27.00 100 x 70

Class No.
Chord size 

(microns)

Number 

of Chords 

in Class

Number of Chords 

in Percent

Air Content in 

Class

Cumulated Air 

Content

Chord 

length 

frequency

Air content, 

fraction

1 0-10 8 1.71 0.000 0.000 0.02 0.000 0.00-0.01

2 10-20 47 10.02 0.030 0.030 0.10 0.030 0.01-0.02

3 20-30 22 10.02 0.020 0.050 0.05 0.020 0.02-0.03

4 30-40 22 4.69 0.030 0.090 0.05 0.030 0.03-0.04

5 40-50 30 6.40 0.050 0.140 0.06 0.050 0.04-0.05

6 50-60 21 4.48 0.050 0.190 0.04 0.050 0.05-0.06

7 60-80 42 8.96 0.120 0.310 0.09 0.120 0.06-0.08

8 80-100 36 7.68 0.130 0.440 0.08 0.130 0.08-0.10

9 100-120 18 3.84 0.080 0.530 0.04 0.080 0.10-0.12

10 120-140 23 4.90 0.120 0.650 0.05 0.120 0.12-0.14

11 140-160 16 3.41 0.100 0.750 0.03 0.100 0.14-0.16

12 160-180 12 2.56 0.080 0.840 0.03 0.080 0.16-0.18

13 180-200 20 4.26 0.160 1.000 0.04 0.160 0.18-0.20

14 200-220 22 4.69 0.190 1.190 0.05 0.190 0.20-0.22

15 220-240 11 2.35 0.100 1.290 0.02 0.100 0.22-0.24

16 240-260 13 2.77 0.140 1.430 0.03 0.140 0.24-0.26

17 260-280 7 1.49 0.080 1.510 0.01 0.080 0.26-0.28

18 280-300 8 1.71 0.100 1.600 0.02 0.100 0.28-0.30

19 300-350 21 4.48 0.280 1.890 0.04 0.280 0.30-0.35

20 350-400 18 3.84 0.280 2.170 0.04 0.280 0.35-0.40

21 400-450 10 2.13 0.180 2.350 0.02 0.180 0.40-0.45

22 450-500 6 1.28 0.120 2.470 0.01 0.120 0.45.0.50

23 500-1000 30 6.40 0.820 2.600 0.06 0.820 0.50-1.00

24 1000-1500 4 0.85 0.200 3.490 0.01 0.200 1.00-1.50

25 1500-2000 2 0.43 0.130 3.620 0.00 0.130 1.50-2.00

26 2000-2500 0 0.00 0.000 3.620 0.00 0.000 2.00-2.50

27 2500-3000 0 0.00 0.000 3.620 0.00 0.000 2.50-3.00

28 3000-4000 0 0.00 0.000 3.620 0.00 0.000 3.00-4.00

469

3.62

21.50

0.259

0.190

0.186

7.46

Chord Length Distribution - Table

Length Traversed (mm):

Area Traversed (mm x mm):Paste Content (%):

Sample Size (mm x mm):

Average Chord Length (mm):

Paste to Air Ratio:

Air Content (%):

Specific Surface (mm-1):

Spacing Factor (mm):

Void Frequency (mm-1):
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Sample ID: CAST CYL B-1-133-S2

90 x 100 2413.1

27.00 80 x 90

Class No.
Chord size 

(microns)

Number of 

Chords in Class

Number of Chords 

in Percent

Air Content in 

Class

Cumulated Air 

Content

Chord 

length 

frequency

Air content, 

fraction

1 0-10 6 1.35 0.000 0.000 0.01 0.000 0.00-0.01

2 10-20 33 7.42 0.020 0.020 0.07 0.020 0.01-0.02

3 20-30 21 7.42 0.020 0.040 0.05 0.020 0.02-0.03

4 30-40 14 3.15 0.020 0.060 0.03 0.020 0.03-0.04

5 40-50 21 4.72 0.040 0.100 0.05 0.040 0.04-0.05

6 50-60 16 3.60 0.040 0.140 0.04 0.040 0.05-0.06

7 60-80 26 5.84 0.070 0.210 0.06 0.070 0.06-0.08

8 80-100 30 6.74 0.110 0.330 0.07 0.110 0.08-0.10

9 100-120 20 4.49 0.090 0.420 0.04 0.090 0.10-0.12

10 120-140 11 2.47 0.060 0.480 0.02 0.060 0.12-0.14

11 140-160 16 3.60 0.100 0.570 0.04 0.100 0.14-0.16

12 160-180 21 4.72 0.150 0.720 0.05 0.150 0.16-0.18

13 180-200 15 3.37 0.120 0.840 0.03 0.120 0.18-0.20

14 200-220 17 3.82 0.150 0.990 0.04 0.150 0.20-0.22

15 220-240 10 2.25 0.090 1.080 0.02 0.090 0.22-0.24

16 240-260 23 5.17 0.240 1.320 0.05 0.240 0.24-0.26

17 260-280 13 2.92 0.150 1.470 0.03 0.150 0.26-0.28

18 280-300 11 2.47 0.130 1.600 0.02 0.130 0.28-0.30

19 300-350 19 4.27 0.250 1.850 0.04 0.250 0.30-0.35

20 350-400 18 4.04 0.280 2.130 0.04 0.280 0.35-0.40

21 400-450 6 1.35 0.110 2.240 0.01 0.110 0.40-0.45

22 450-500 14 3.15 0.270 2.510 0.03 0.270 0.45.0.50

23 500-1000 48 10.79 1.340 2.710 0.11 1.340 0.50-1.00

24 1000-1500 6 1.35 0.300 4.150 0.01 0.300 1.00-1.50

25 1500-2000 5 1.12 0.340 4.490 0.01 0.340 1.50-2.00

26 2000-2500 0 0.00 0.000 4.490 0.00 0.000 2.00-2.50

27 2500-3000 2 0.45 0.230 4.720 0.00 0.230 2.50-3.00

28 3000-4000 3 0.67 0.380 5.100 0.01 0.380 3.00-4.00

445

5.10

14.46

0.329

0.180

0.277

5.29

Chord Length Distribution - Table

Length Traversed (mm):

Area Traversed (mm x mm):Paste Content (%):

Sample Size (mm x mm):

Average Chord Length (mm):

Paste to Air Ratio:

Air Content (%):

Specific Surface (mm-1):

Spacing Factor (mm):

Void Frequency (mm-1):
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Sample ID: CAST CYL B-1-133-S3

80 x 110 2413.1

27.00 70 x 90

Class No.
Chord size 

(microns)

Number of 

Chords in Class

Number of Chords 

in Percent

Air Content in 

Class

Cumulated Air 

Content

Chord length 

frequency

Air content, 

fraction

1 0-10 10 2.62 0.000 0.000 0.03 0.000 0.00-0.01

2 10-20 41 10.73 0.020 0.030 0.11 0.020 0.01-0.02

3 20-30 20 10.73 0.020 0.050 0.05 0.020 0.02-0.03

4 30-40 16 4.19 0.020 0.070 0.04 0.020 0.03-0.04

5 40-50 14 3.66 0.030 0.100 0.04 0.030 0.04-0.05

6 50-60 11 2.88 0.020 0.120 0.03 0.020 0.05-0.06

7 60-80 21 5.50 0.060 0.180 0.05 0.060 0.06-0.08

8 80-100 28 7.33 0.100 0.290 0.07 0.100 0.08-0.10

9 100-120 11 2.88 0.050 0.340 0.03 0.050 0.10-0.12

10 120-140 10 2.62 0.050 0.390 0.03 0.050 0.12-0.14

11 140-160 15 3.93 0.090 0.480 0.04 0.090 0.14-0.16

12 160-180 15 3.93 0.110 0.590 0.04 0.110 0.16-0.18

13 180-200 19 4.97 0.150 0.740 0.05 0.150 0.18-0.20

14 200-220 10 2.62 0.090 0.820 0.03 0.090 0.20-0.22

15 220-240 13 3.40 0.120 0.950 0.03 0.120 0.22-0.24

16 240-260 13 3.40 0.130 1.080 0.03 0.130 0.24-0.26

17 260-280 12 3.14 0.130 1.220 0.03 0.130 0.26-0.28

18 280-300 16 4.19 0.190 1.410 0.04 0.190 0.28-0.30

19 300-350 15 3.93 0.200 1.600 0.04 0.200 0.30-0.35

20 350-400 10 2.62 0.150 1.760 0.03 0.150 0.35-0.40

21 400-450 10 2.62 0.180 1.930 0.03 0.180 0.40-0.45

22 450-500 7 1.83 0.140 2.070 0.02 0.140 0.45.0.50

23 500-1000 28 7.33 0.750 2.240 0.07 0.750 0.50-1.00

24 1000-1500 9 2.36 0.480 3.300 0.02 0.480 1.00-1.50

25 1500-2000 7 1.83 0.490 3.790 0.02 0.490 1.50-2.00

26 2000-2500 1 0.26 0.090 3.880 0.00 0.090 2.00-2.50

27 2500-3000 0 0.00 0.000 3.880 0.00 0.000 2.50-3.00

28 3000-4000 0 0.00 0.000 3.880 0.00 0.000 3.00-4.00

382

3.88

16.33

0.330

0.160

0.245

6.96

Chord Length Distribution - Table

Length Traversed (mm):

Area Traversed (mm x mm):Paste Content (%):

Sample Size (mm x mm):

Average Chord Length (mm):

Paste to Air Ratio:

Air Content (%):

Specific Surface (mm-1):

Spacing Factor (mm):

Void Frequency (mm-1):
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Sample ID: CAST CYL B-1-133-S4

100 x 90 2413.1

27.00 90 x 80

Class No.
Chord size 

(microns)

Number of 

Chords in Class

Number of Chords 

in Percent

Air Content in 

Class

Cumulated Air 

Content

Chord 

length 

frequency

Air content, 

fraction

1 0-10 13 3.66 0.000 0.000 0.04 0.000 0.00-0.01

2 10-20 48 13.52 0.030 0.030 0.14 0.030 0.01-0.02

3 20-30 34 13.52 0.040 0.070 0.10 0.040 0.02-0.03

4 30-40 18 5.07 0.030 0.090 0.05 0.030 0.03-0.04

5 40-50 13 3.66 0.020 0.120 0.04 0.020 0.04-0.05

6 50-60 9 2.54 0.020 0.140 0.03 0.020 0.05-0.06

7 60-80 21 5.92 0.060 0.200 0.06 0.060 0.06-0.08

8 80-100 15 4.23 0.060 0.250 0.04 0.060 0.08-0.10

9 100-120 18 5.07 0.080 0.340 0.05 0.080 0.10-0.12

10 120-140 10 2.82 0.050 0.390 0.03 0.050 0.12-0.14

11 140-160 11 3.10 0.070 0.460 0.03 0.070 0.14-0.16

12 160-180 7 1.97 0.050 0.510 0.02 0.050 0.16-0.18

13 180-200 8 2.25 0.060 0.570 0.02 0.060 0.18-0.20

14 200-220 11 3.10 0.100 0.670 0.03 0.100 0.20-0.22

15 220-240 10 2.82 0.090 0.760 0.03 0.090 0.22-0.24

16 240-260 6 1.69 0.060 0.820 0.02 0.060 0.24-0.26

17 260-280 8 2.25 0.090 0.910 0.02 0.090 0.26-0.28

18 280-300 7 1.97 0.080 0.990 0.02 0.080 0.28-0.30

19 300-350 11 3.10 0.150 1.140 0.03 0.150 0.30-0.35

20 350-400 12 3.38 0.190 1.330 0.03 0.190 0.35-0.40

21 400-450 12 3.38 0.210 1.540 0.03 0.210 0.40-0.45

22 450-500 8 2.25 0.160 1.700 0.02 0.160 0.45.0.50

23 500-1000 31 8.73 0.830 1.850 0.09 0.830 0.50-1.00

24 1000-1500 7 1.97 0.340 2.870 0.02 0.340 1.00-1.50

25 1500-2000 5 1.41 0.370 3.250 0.01 0.370 1.50-2.00

26 2000-2500 2 0.56 0.180 3.430 0.01 0.180 2.00-2.50

27 2500-3000 0 0.00 0.000 3.430 0.00 0.000 2.50-3.00

28 3000-4000 0 0.00 0.000 3.430 0.00 0.000 3.00-4.00

355

3.43

17.17

0.332

0.150

0.233

7.87

Chord Length Distribution - Table

Length Traversed (mm):

Area Traversed (mm x mm):Paste Content (%):

Sample Size (mm x mm):

Average Chord Length (mm):

Paste to Air Ratio:

Air Content (%):

Specific Surface (mm-1):

Spacing Factor (mm):

Void Frequency (mm-1):
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80 x 90 2413.1

27.00 70 x 80

Class No.
Chord size 

(microns)

Number of 

Chords in Class

Number of Chords 

in Percent

Air Content in 

Class

Cumulated Air 

Content

Chord 

length 

frequency

Air content, 

fraction

1 0-10 13 3.08 0.000 0.000 0.03 0.000 0.00-0.01

2 10-20 36 8.53 0.020 0.030 0.09 0.020 0.01-0.02

3 20-30 25 8.53 0.030 0.050 0.06 0.030 0.02-0.03

4 30-40 19 4.50 0.030 0.080 0.05 0.030 0.03-0.04

5 40-50 20 4.74 0.040 0.120 0.05 0.040 0.04-0.05

6 50-60 19 4.50 0.040 0.160 0.05 0.040 0.05-0.06

7 60-80 32 7.58 0.090 0.250 0.08 0.090 0.06-0.08

8 80-100 29 6.87 0.110 0.360 0.07 0.110 0.08-0.10

9 100-120 15 3.55 0.070 0.430 0.04 0.070 0.10-0.12

10 120-140 20 4.74 0.110 0.540 0.05 0.110 0.12-0.14

11 140-160 22 5.21 0.140 0.670 0.05 0.140 0.14-0.16

12 160-180 26 6.16 0.180 0.860 0.06 0.180 0.16-0.18

13 180-200 16 3.79 0.130 0.980 0.04 0.130 0.18-0.20

14 200-220 18 4.27 0.160 1.140 0.04 0.160 0.20-0.22

15 220-240 5 1.18 0.050 1.190 0.01 0.050 0.22-0.24

16 240-260 5 1.18 0.050 1.240 0.01 0.050 0.24-0.26

17 260-280 9 2.13 0.100 1.340 0.02 0.100 0.26-0.28

18 280-300 8 1.90 0.100 1.430 0.02 0.100 0.28-0.30

19 300-350 12 2.84 0.160 1.600 0.03 0.160 0.30-0.35

20 350-400 5 1.18 0.080 1.670 0.01 0.080 0.35-0.40

21 400-450 10 2.37 0.180 1.850 0.02 0.180 0.40-0.45

22 450-500 8 1.90 0.160 2.010 0.02 0.160 0.45.0.50

23 500-1000 37 8.77 1.010 2.290 0.09 1.010 0.50-1.00

24 1000-1500 4 0.95 0.190 3.210 0.01 0.190 1.00-1.50

25 1500-2000 5 1.18 0.390 3.590 0.01 0.390 1.50-2.00

26 2000-2500 3 0.71 0.280 3.870 0.01 0.280 2.00-2.50

27 2500-3000 1 0.24 0.100 3.970 0.00 0.100 2.50-3.00

28 3000-4000 0 0.00 0.000 3.970 0.00 0.000 3.00-4.00

422

3.97

17.60

0.303

0.170

0.227

6.80

Chord Length Distribution - Table

Length Traversed (mm):

Area Traversed (mm x mm):Paste Content (%):

Sample Size (mm x mm):

Average Chord Length (mm):

Paste to Air Ratio:

Air Content (%):

Specific Surface (mm-1):

Spacing Factor (mm):

Void Frequency (mm-1):
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Sample ID: CAST CYL B-2-129-S2

90 x 90 2413.1

27.00 80 x 80

Class No.
Chord size 

(microns)

Number of 

Chords in Class

Number of Chords 

in Percent

Air Content in 

Class

Cumulated Air 

Content

Chord 

length 

frequency

Air content, 

fraction

1 0-10 11 2.34 0.000 0.000 0.02 0.000 0.00-0.01

2 10-20 41 8.72 0.030 0.030 0.09 0.030 0.01-0.02

3 20-30 28 8.72 0.030 0.060 0.06 0.030 0.02-0.03

4 30-40 15 3.19 0.020 0.080 0.03 0.020 0.03-0.04

5 40-50 24 5.11 0.040 0.120 0.05 0.040 0.04-0.05

6 50-60 22 4.68 0.050 0.170 0.05 0.050 0.05-0.06

7 60-80 32 6.81 0.090 0.270 0.07 0.090 0.06-0.08

8 80-100 39 8.30 0.150 0.410 0.08 0.150 0.08-0.10

9 100-120 28 5.96 0.130 0.540 0.06 0.130 0.10-0.12

10 120-140 19 4.04 0.100 0.640 0.04 0.100 0.12-0.14

11 140-160 22 4.68 0.140 0.780 0.05 0.140 0.14-0.16

12 160-180 23 4.89 0.160 0.940 0.05 0.160 0.16-0.18

13 180-200 23 4.89 0.180 1.120 0.05 0.180 0.18-0.20

14 200-220 15 3.19 0.130 1.250 0.03 0.130 0.20-0.22

15 220-240 15 3.19 0.140 1.390 0.03 0.140 0.22-0.24

16 240-260 5 1.06 0.050 1.440 0.01 0.050 0.24-0.26

17 260-280 6 1.28 0.070 1.510 0.01 0.070 0.26-0.28

18 280-300 11 2.34 0.130 1.640 0.02 0.130 0.28-0.30

19 300-350 12 2.55 0.160 1.810 0.03 0.160 0.30-0.35

20 350-400 15 3.19 0.230 2.040 0.03 0.230 0.35-0.40

21 400-450 13 2.77 0.230 2.270 0.03 0.230 0.40-0.45

22 450-500 13 2.77 0.250 2.520 0.03 0.250 0.45.0.50

23 500-1000 20 4.26 0.570 2.670 0.04 0.570 0.50-1.00

24 1000-1500 15 3.19 0.730 3.820 0.03 0.730 1.00-1.50

25 1500-2000 3 0.64 0.200 4.020 0.01 0.200 1.50-2.00

26 2000-2500 0 0.00 0.000 4.020 0.00 0.000 2.00-2.50

27 2500-3000 0 0.00 0.000 4.020 0.00 0.000 2.50-3.00

28 3000-4000 0 0.00 0.000 4.020 0.00 0.000 3.00-4.00

470

4.02

19.40

0.273

0.190

0.206

6.72

Chord Length Distribution - Table

Length Traversed (mm):

Area Traversed (mm x mm):Paste Content (%):

Sample Size (mm x mm):

Average Chord Length (mm):

Paste to Air Ratio:

Air Content (%):

Specific Surface (mm-1):

Spacing Factor (mm):

Void Frequency (mm-1):
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Sample ID: CAST CYL B-2-129-S3

80 x 90 2413.1

27.00 70 x 80

Class No.
Chord size 

(microns)

Number of 

Chords in Class

Number of Chords 

in Percent

Air Content in 

Class

Cumulated Air 

Content

Chord 

length 

frequency

Air content, 

fraction

1 0-10 14 3.02 0.000 0.000 0.03 0.000 0.00-0.01

2 10-20 36 7.78 0.020 0.030 0.08 0.020 0.01-0.02

3 20-30 37 7.78 0.040 0.060 0.08 0.040 0.02-0.03

4 30-40 13 2.81 0.020 0.080 0.03 0.020 0.03-0.04

5 40-50 23 4.97 0.040 0.120 0.05 0.040 0.04-0.05

6 50-60 20 4.32 0.050 0.170 0.04 0.050 0.05-0.06

7 60-80 38 8.21 0.110 0.280 0.08 0.110 0.06-0.08

8 80-100 27 5.83 0.100 0.380 0.06 0.100 0.08-0.10

9 100-120 23 4.97 0.100 0.490 0.05 0.100 0.10-0.12

10 120-140 24 5.18 0.130 0.620 0.05 0.130 0.12-0.14

11 140-160 17 3.67 0.110 0.720 0.04 0.110 0.14-0.16

12 160-180 20 4.32 0.140 0.860 0.04 0.140 0.16-0.18

13 180-200 18 3.89 0.140 1.000 0.04 0.140 0.18-0.20

14 200-220 7 1.51 0.060 1.060 0.02 0.060 0.20-0.22

15 220-240 10 2.16 0.100 1.160 0.02 0.100 0.22-0.24

16 240-260 10 2.16 0.110 1.260 0.02 0.110 0.24-0.26

17 260-280 4 0.86 0.050 1.310 0.01 0.050 0.26-0.28

18 280-300 7 1.51 0.080 1.390 0.02 0.080 0.28-0.30

19 300-350 12 2.59 0.160 1.550 0.03 0.160 0.30-0.35

20 350-400 14 3.02 0.210 1.770 0.03 0.210 0.35-0.40

21 400-450 12 2.59 0.210 1.980 0.03 0.210 0.40-0.45

22 450-500 15 3.24 0.300 2.270 0.03 0.300 0.45.0.50

23 500-1000 51 11.02 1.430 2.470 0.11 1.430 0.50-1.00

24 1000-1500 7 1.51 0.350 4.060 0.02 0.350 1.00-1.50

25 1500-2000 2 0.43 0.160 4.220 0.00 0.160 1.50-2.00

26 2000-2500 2 0.43 0.190 4.400 0.00 0.190 2.00-2.50

27 2500-3000 0 0.00 0.000 4.400 0.00 0.000 2.50-3.00

28 3000-4000 0 0.00 0.000 4.400 0.00 0.000 3.00-4.00

463

4.40

17.43

0.292

0.190

0.229

6.14

Chord Length Distribution - Table

Length Traversed (mm):

Area Traversed (mm x mm):Paste Content (%):

Sample Size (mm x mm):

Average Chord Length (mm):

Paste to Air Ratio:

Air Content (%):

Specific Surface (mm-1):

Spacing Factor (mm):

Void Frequency (mm-1):
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Figure 1 US-59 Bridges (Southbound-left and Northbound-right). 

 

Figure 2 Project and Mobile Lab Location. 
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Figure 3 Ambient temperature versus time of day. 

 

Figure 4 Relative humidity versus time of day. 
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Figure 5 Wind speed versus time of day. 

 

Figure 6 KDOT crew collecting samples. 
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Figure 7 Construction crew placing concrete pouring and vibrating. 

 

Figure 8 Preparing concrete cylinder samples. 
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Figure 9 CP Tech Center PCC mobile lab. 

 

Figure 10 Concrete being placed and vibrated. 
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Figure 11 Compressive strength development with time. 

 

Figure 12 Tensile splitting strength development with time. 
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Figure 13 Modulus of elasticity development with time.  

 

Figure 14 Free shrinkage test results (ASTM C 157).

0.0E+00

1.0E+06

2.0E+06

3.0E+06

4.0E+06

5.0E+06

6.0E+06

7.0E+06

0 5 10 15 20 25 30 35 40 45 50 55 60

M
O

E
 (

p
si

) 

Age (days) 

Modulus of Elasticity 

-800

-700

-600

-500

-400

-300

-200

-100

0

100

0 7 14 21 28 35 42 49 56 63

M
ic

ro
st

ra
in

, 
in

./
in

. 

Dry Time, days (after 7 days curing) 

Free Shrinkage Test (ASTM C157 ) 



125 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

Figure 15 Configuration of restrained concrete ring samples. 
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Figure 16 Stain of steel rings resulting from concrete shrinkage. 
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Table 1 Ambient conditions of US-59 bridge deck project 

 

 

 

 

 

 

 

 

 

 

Sample 

Date

Sample 

Time Sample Comments

Relative 

Humidity 

(%)

Ambient 

Temp. 

(˚F)

Wind 

Speed 

(mph)

Conc. 

Temp. 

(probe) 

(˚F)

28-Oct-09 8:03 AM kdot sample taken at pump discharge 65.0 48.0 2.4 55.0

28-Oct-09 8:20 AM cp tech center sample taken at truck discharge 81.0 48.0 8.0 60.0

28-Oct-09 8:25 AM kdot sample taken at pump discharge 84.0 49.0 4.5 62.0

28-Oct-09 9:20 AM kdot sample taken at pump discharge 79.0 51.0 4.5 61.0

28-Oct-09 8:40 AM kdot sample taken at pump discharge 81.0 53.0 11.2 62.0

28-Oct-09 10:10 AM kdot sample taken at pump discharge 70.0 57.0 6.0 65.0

28-Oct-09 10:50 AM cp tech center sample taken at truck discharge 60.0 57.0 5.0 62.6

28-Oct-09 11:04 AM kdot sample taken at pump discharge 65.0 58.0 5.5 65.0

28-Oct-09 11:28 AM kdot sample taken at pump discharge 62.0 62.0 3.5 66.0

Kansas - Ternary Mixtures

US-59 Bridge Deck

Sample Information & Identification Environmental Conditions
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Table 2 Air void structure results 

Sample ID Air Content (%) Specific Surface (mm
-1

) 
Spacing Factor 

(mm) 

A-1-122-S1 8.92 18.78 0.161 

A-1-122-S2 9.59 16.63 0.169 

A-1-122-S3 8.59 16.96 0.185 

A-2-122-S1 13.19 15.56 0.132 

A-2-122-S2 10.99 14.15 0.174 

A-2-122-S3 11.77 16.35 0.140 

A-2-122-S4 12.3 14.40 0.153 

B-1-133-S1 3.62 21.50 0.259 

B-1-133-S2 5.10 14.46 0.329 

B-1-133-S3 3.88 16.33 0.330 

B-1-133-S4 3.43 17.17 0.332 

B-2-129-S1 3.97 17.60 0.303 

B-2-129-S2 4.02 19.40 0.273 

B-2-129-S3 4.40 17.43 0.292 
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Table 4 Summation of strength and modulus of elasticity 

Location Age, days 
Compressive 

Strength, psi 

Splitting Tensile 

Strength, psi 

Modulus of 

Elasticity, psi 

KS 

1 820 114 4.1E+06 

3 1,750 270 4.8E+06 

7 3,050 417 5.3E+06 

28 6,110 484 5.8E+06 

56 6,610 522 5.4E+06 

 

Table 5 Free shrinkage test results 

Free Shrinkage (ASTM C 157) 

Dry 

Time 

Beam 1 

change% 

Beam 2 

change % 

Beam 3 

change % Average Microstrain 

1 -0.001 0.004 0.000 0.001 10.0 

4 -0.008 -0.003 -0.002 -0.004 -43.3 

7 0.000 -0.009 -0.01 -0.006 -63.3 

14 -0.031 -0.038 -0.039 -0.036 -360.0 

28 -0.039 -0.044 -0.042 -0.042 -416.7 

56 -0.050 -0.056 -0.047 -0.051 -510.0 

 

Table 6 Cracking potential and average stress rate (ASTM C 1581) 

Cracking Potential for KS Project (ASTM C 1581) 

  Ring 1 Ring 2 Ring 3 

Strain Rate Factor (in./in.x10
-6

)/hours
1/2

 -5.09 -5.70 -5.21 

G (psi) 10.47x10
6
 10.47x10

6
 10.47x10

6
 

Absolute Value of αavg (in./in.10
-6

)/day
1/2

 26.13 

Elapsed Time, tr (hours) 424.0 302.9 302.9 

Elapsed Time, tr (days) 17.7 12.6 12.6 

Stress Rate, q (psi/day) q=GIαavgI/2√tr 32.5 38.5 38.5 

Average Stress Rate, q (psi/day) q=GIαavgI/2√tr 36.52 

Potential for cracking classification (ASTM 1581) Moderate-high (25≤ q < 50) 
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Introduction 

This document is a report of the activities and observations of a research team that 

performed on-site testing of a ternary mixture placed on I-94 Riverside Drive bridge deck in 

Battle Creek, Michigan. The cementitious system comprised a Type I cement, Grade 120 slag 

cement, and silica fume. The purpose of this research project is a comprehensive study of 

how supplementary cementitious materials (SCMs) can be used to improve the performance 

of concrete mixtures when used in ternary blends. This is the third phase of a project which 

intends to provide consulting to states and contractors on the use and field management of 

ternary mixtures. Due to severe weather condition, a state-of-the-art 44-foot long PCC 

mobile laboratory equipped for on-site cement and concrete testing was not provided by the 

CP Tech Center to collect data and field observations. However, samples were delivered by 

Michigan Department of Transportation and tested under laboratory condition. 

Project Information 

 Project: Tercem 

 I-94, Riverside Drive, Battle Creek, Michigan 

 Contractor: Anlaan Contracting.  

 Bridge deck placement (Figure 1) 

Site Location 

An area at the bridge site was prepared by the contractor for the PCC mobile lab. The 

location of the project is shown as following Figure 2. 

Sampling and Testing Activities 

Concrete placement, sampling and testing took place on December 18, 2009. 

Hardened samples were transported to Iowa State University on December 30, 2010, for 

further testing.  The following tests were conducted either in the field or in the laboratory: 

 Slump, unit weight, temperature of fresh concrete – 1 test (ASTM C 143, ASTM C 

138, ASTM C 231) 
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 Compressive strength, splitting tensile strength, static modulus of elasticity - 4” x 8” 

cylinders at 1-day, 3-days, 7-days, 28-days, and 56-days (ASTM C 39, ASTM C 

496, ASTM C 469) 

 Rapid chloride permeability - 4” x 8” cylinders at 56 days (ASTM C 1202) 

 Air void analysis of hardened concrete - 4” x 8” cylinders (ASTM C 457) 

 Free shrinkage  test – 4 beams (ASTM C 157) 

 Restrained rings –  4 samples (ASTM C 1581) 

Observations of the Research Team 

The following observations were made in this field testing: 

 Two types of coarse aggregate were use: one type was 6AA high calcium limestone 

with 1.73% absorption and the other was 29A granite with 2.33% absorption. One 

type of fine aggregate 2NS natural sand with 1.2% absorption was used in the 

concrete. Micro-Air Type AR air entraining agent, Delvo retarding agent (ASTM 

Type D), and Rheobuild 1000 (Type MR) water reducer were used as chemical 

admixtures in order to achieve a better performance.  

 According to the workability factor & coarseness factor graph (Page 14) combined 

aggregate gradation for this project fell in the well-graded region. Similarly, the 

aggregate gradation (Page 15) indicated a well graded system. 

 Eight temperature sensors were used to track the concrete and ambient temperatures. 

Table 1 lists the name of sensors and description of location for each sensor. The 

specific locations of eight sensors are list from Figure 3 to Figure 6. The temperature 

sensor data reported by MI DOT are shown in Figure 7. 

 The fresh concrete tests include slump cone, unit weight, and temperature 

measurement. MI DOT crew conducted the tests on site: the slump was 4 inches; unit 

weight was 147.2 lb/ft
3
; concrete placement temperature was 81˚F; and the ambient 

temperature is 33 ˚F. 

 Figures 8 to 11 illustrate several activities during the testing process. 

 The air void test (Rapid Air Test) results for 9 samples, which were tested by MI 

DOT, are given in Table 2.  
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 The air void test (Rapid Air Test) results for 10 samples, which were tested by the 

CPO Tech Center are given in Table 3. The average results for each cylinder are less 

than the expected values. Two of cylinders have lower specific surface results than 

desired.  

 The strength development as 28/7 day compressive strength ratios is reported in Table 

4. 

 The rapid chloride permeability test measures the electrical conductance of a concrete 

sample as its resistance to chloride ion penetration. The test results shown in Table 4 

indicate a classification of “very low” chloride permeability according to ASTM 

C1202. 

 Compressive strength, splitting tensile strength and modulus of elasticity results 

(ASTM C 39, ASTM C 496, and ASTM C 469) are tabulated in Table 5 and also 

plotted in Figures 12 to 14.  

 Free shrinkage test (ASTM C 157) was conducted in the laboratory. Three concrete 

beams were wet cured for seven days and then moved to a dry room at 23˚C and 50% 

relative humidity. The drying shrinkage results are given in Table 6 and also plotted 

in Figure 15. 

 Restrained shrinkage test was conducted based on ASTM C 1581. Four rings were 

cast. The rings were demolded and the top surface was covered with paraffin wax 24 

hours from casting. The rings were allowed to dry at 23˚C and 50% relative humidity 

immediately after demolding. Strains in the steel rings were recorded every 10 

minutes up to 28 days or until the concrete cracked. The configuration of restrained 

concrete rings is shown in Figure 16. The cracking potential is listed in Table 4 and 

shown graphically in Figure 17. The cracking potential is classified as “moderate high” 

based on the average stress rate. 
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Project Data 

The following test data is provided for information only, comments and conclusions 

will be reported in the comprehensive Phase III report of the pooled fund project 

Development of Performance Properties of Ternary Mixtures. 
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General Information

Project:

Contractor:

Mix Description:

Mix ID:

Date(s) of Placement:

Cementitious Materials Source Type Spec. Gravity lb/yd3

% 

Replacement 

by Mass

Portland Cement: Buzzi Unicem I 3.150 426

GGBFS: 2.870 150 25.00%

Fly Ash:

Silica Fume: 2.250 24 4.00%

Other Pozzolan:

600 lb/yd3

6.4 sacks/yd3

Aggregate Information Source Type

Spec. Gravity 

SSD

Absorption 

(%)

% Passing     

#4

Coarse Aggregate: 6AA High calcium limestone 2.700 1.73% 3.0%

Intermediate Aggregate #1: 29A Granite 2.600 2.33% 5.0%

Intermediate Aggregate #2:

Fine Aggregate #1: 2NS Natural Sand 2.610 1.20% 99.0%

Coarse Aggregate %: 48.3%

Intermediate Aggregate #1%: 10.1%

Intermediate Aggregate #2%:

Fine Aggregate #1 %: 41.6%

Mix Proportion Calculations

Water/Cementitious Materials Ratio: 0.380

Air Content: 6.50%

Volume                                    

(ft3)

Batch Weights SSD       

(lb/yd3) Spec. Gravity

Absolute 

Volume        

(%)

Portland Cement: 2.167 426 3.150 8.030%

GGBFS: 0.838 150 2.870 3.103%

Fly Ash:

Silica Fume: 0.171 24 2.250 0.633%

Other Pozzolan:

Coarse Aggregate: 8.895 1,435 2.700 32.954%

Intermediate Aggregate #1: 1.854 299 2.600 6.871%

Intermediate Aggregate #2:

Fine Aggregate #1: 7.657 1,234 2.610 28.369%

Water: 3.654 228 1.000 13.537%

Air: 1.755 6.502%

26.991 3,796 100.000%

Unit Weight (lb/ft3) 140.6 Paste 31.806%

Mortar 61.224%

Admixture Information Source/Description oz/yd3
oz/cw t

Air Entraining Admix.: Micro-Air (type AR) 11.40 1.90

Admix. #1: Delvo (Type D) 18.00 3.00

Admix. #2: Rheobuild 1000 (Type MR) 54.00 9.00

Admix. #3:

AVA Information
Absolute Volume                             

(%)

Air Free Paste: 25.304%

Air Free Mortar: 54.721%

10/28/2009

Mix Design & Misc. Info.

MI - Ternary Mixtures

600 lb Cementitious

1PL5046A
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Project:

Mix ID:

Test Date: 21-Feb-11

600 lb/yd3

Agg. Ratios: 48.35% 10.07% 41.58% 100.00%

Sieve Coarse Intermediate Fine #1 Fine #2

Combined % 

Retained

Combined % 

Retained On 

Each Sieve

Combined % 

Passing

2 ½ " 100% 100% 100% 0% 0% 100%

2" 100% 100% 100% 0% 0% 100%

1 ½ " 100% 100% 100% 0% 0% 100%

1" 100% 100% 100% 0% 0% 100%

¾ " 74% 100% 100% 13% 13% 87%

½ " 30% 100% 100% 34% 21% 66%

⅜" 10% 96% 100% 44% 10% 56%

#4 0% 6% 97% 59% 15% 41%

#8 0% 1% 82% 66% 7% 34%

#16 0% 1% 67% 72% 6% 28%

#30 0% 1% 49% 79% 8% 21%

#50 0% 1% 23% 90% 11% 10%

#100 0% 1% 5% 98% 8% 2%

#200 0.0% 0.7% 2.7% 98.8% 1.0% 1.2%

Workability Factor: 35.1

Coarseness Factor: 66.8

Total Cementitious Material:

Sample Comments: MIDOT Data

MIDOT Ternary Mixtures

Bridge Deck
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Sample ID: Cast cyl Cylinder 1-3

85 x 90 2413.1

30.20 75 x 80

Class No.
Chord size 

(microns)

Number of 

Chords in Class

Number of Chords 

in Percent

Air Content in 

Class

Cumulated Air 

Content

Chord length 

frequency

Air content, 

fraction

1 0-10 6 2.36 0.000 0.000 0.02 0.000 0.00-0.01

2 10-20 24 9.45 0.020 0.020 0.09 0.020 0.01-0.02

3 20-30 26 9.45 0.030 0.040 0.10 0.030 0.02-0.03

4 30-40 15 5.91 0.020 0.070 0.06 0.020 0.03-0.04

5 40-50 17 6.69 0.030 0.100 0.07 0.030 0.04-0.05

6 50-60 19 7.48 0.040 0.140 0.07 0.040 0.05-0.06

7 60-80 22 8.66 0.060 0.200 0.09 0.060 0.06-0.08

8 80-100 15 5.91 0.060 0.260 0.06 0.060 0.08-0.10

9 100-120 8 3.15 0.040 0.290 0.03 0.040 0.10-0.12

10 120-140 7 2.76 0.040 0.330 0.03 0.040 0.12-0.14

11 140-160 13 5.12 0.080 0.410 0.05 0.080 0.14-0.16

12 160-180 9 3.54 0.060 0.470 0.04 0.060 0.16-0.18

13 180-200 4 1.57 0.030 0.510 0.02 0.030 0.18-0.20

14 200-220 8 3.15 0.070 0.580 0.03 0.070 0.20-0.22

15 220-240 5 1.97 0.050 0.620 0.02 0.050 0.22-0.24

16 240-260 1 0.39 0.010 0.630 0.00 0.010 0.24-0.26

17 260-280 3 1.18 0.030 0.670 0.01 0.030 0.26-0.28

18 280-300 1 0.39 0.010 0.680 0.00 0.010 0.28-0.30

19 300-350 3 1.18 0.040 0.720 0.01 0.040 0.30-0.35

20 350-400 3 1.18 0.050 0.770 0.01 0.050 0.35-0.40

21 400-450 4 1.57 0.070 0.840 0.02 0.070 0.40-0.45

22 450-500 3 1.18 0.060 0.900 0.01 0.060 0.45.0.50

23 500-1000 16 6.30 0.470 0.940 0.06 0.470 0.50-1.00

24 1000-1500 6 2.36 0.290 1.660 0.02 0.290 1.00-1.50

25 1500-2000 7 2.76 0.530 2.180 0.03 0.530 1.50-2.00

26 2000-2500 4 1.57 0.350 2.530 0.02 0.350 2.00-2.50

27 2500-3000 0 0.00 0.000 2.530 0.00 0.000 2.50-3.00

28 3000-4000 5 1.97 0.730 3.270 0.02 0.730 3.00-4.00

254

3.27

12.89

0.475

0.110

0.310

9.24

Chord Length Distribution - Table

Length Traversed (mm):

Area Traversed (mm x mm):Paste Content (%):

Sample Size (mm x mm):

Average Chord Length (mm):

Paste to Air Ratio:

Air Content (%):

Specific Surface (mm-1):

Spacing Factor (mm):

Void Frequency (mm-1):
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Sample ID: Cast cyl Cylinder 2-1

80 x 90 2413.1

30.20 70 x 80

Class No.
Chord size 

(microns)

Number of 

Chords in Class

Number of Chords 

in Percent

Air Content in 

Class

Cumulated Air 

Content

Chord length 

frequency

Air content, 

fraction

1 0-10 1 0.44 0.000 0.000 0.00 0.000 0.00-0.01

2 10-20 30 13.16 0.020 0.020 0.13 0.020 0.01-0.02

3 20-30 20 13.16 0.020 0.040 0.09 0.020 0.02-0.03

4 30-40 13 5.70 0.020 0.060 0.06 0.020 0.03-0.04

5 40-50 12 5.26 0.020 0.080 0.05 0.020 0.04-0.05

6 50-60 14 6.14 0.030 0.110 0.06 0.030 0.05-0.06

7 60-80 15 6.58 0.040 0.160 0.07 0.040 0.06-0.08

8 80-100 14 6.14 0.050 0.210 0.06 0.050 0.08-0.10

9 100-120 16 7.02 0.070 0.280 0.07 0.070 0.10-0.12

10 120-140 6 2.63 0.030 0.310 0.03 0.030 0.12-0.14

11 140-160 7 3.07 0.040 0.360 0.03 0.040 0.14-0.16

12 160-180 8 3.51 0.060 0.410 0.04 0.060 0.16-0.18

13 180-200 6 2.63 0.050 0.460 0.03 0.050 0.18-0.20

14 200-220 2 0.88 0.020 0.480 0.01 0.020 0.20-0.22

15 220-240 5 2.19 0.050 0.530 0.02 0.050 0.22-0.24

16 240-260 4 1.75 0.040 0.570 0.02 0.040 0.24-0.26

17 260-280 6 2.63 0.070 0.630 0.03 0.070 0.26-0.28

18 280-300 7 3.07 0.080 0.720 0.03 0.080 0.28-0.30

19 300-350 9 3.95 0.120 0.840 0.04 0.120 0.30-0.35

20 350-400 6 2.63 0.090 0.930 0.03 0.090 0.35-0.40

21 400-450 2 0.88 0.040 0.960 0.01 0.040 0.40-0.45

22 450-500 3 1.32 0.060 1.020 0.01 0.060 0.45.0.50

23 500-1000 16 7.02 0.440 1.130 0.07 0.440 0.50-1.00

24 1000-1500 1 0.44 0.040 1.500 0.00 0.040 1.00-1.50

25 1500-2000 2 0.88 0.160 1.660 0.01 0.160 1.50-2.00

26 2000-2500 3 1.32 0.260 1.920 0.01 0.260 2.00-2.50

27 2500-3000 0 0.00 0.000 1.920 0.00 0.000 2.50-3.00

28 3000-4000 0 0.00 0.000 1.920 0.00 0.000 3.00-4.00

228

1.92

19.66

0.394

0.090

0.203

15.73

Chord Length Distribution - Table

Length Traversed (mm):

Area Traversed (mm x mm):Paste Content (%):

Sample Size (mm x mm):

Average Chord Length (mm):

Paste to Air Ratio:

Air Content (%):

Specific Surface (mm-1):

Spacing Factor (mm):

Void Frequency (mm-1):
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Sample ID: Cast cyl Cylinder 2-2

80 x 80 2413.1

30.20 70 x 80

Class No.
Chord size 

(microns)

Number of 

Chords in Class

Number of Chords 

in Percent

Air Content in 

Class

Cumulated Air 

Content

Chord length 

frequency

Air content, 

fraction

1 0-10 3 1.35 0.000 0.000 0.01 0.000 0.00-0.01

2 10-20 32 14.35 0.020 0.020 0.14 0.020 0.01-0.02

3 20-30 25 14.35 0.030 0.050 0.11 0.030 0.02-0.03

4 30-40 16 7.17 0.020 0.070 0.07 0.020 0.03-0.04

5 40-50 18 8.07 0.030 0.100 0.08 0.030 0.04-0.05

6 50-60 10 4.48 0.020 0.130 0.04 0.020 0.05-0.06

7 60-80 14 6.28 0.040 0.170 0.06 0.040 0.06-0.08

8 80-100 16 7.17 0.060 0.230 0.07 0.060 0.08-0.10

9 100-120 6 2.69 0.030 0.260 0.03 0.030 0.10-0.12

10 120-140 12 5.38 0.060 0.320 0.05 0.060 0.12-0.14

11 140-160 5 2.24 0.030 0.350 0.02 0.030 0.14-0.16

12 160-180 6 2.69 0.040 0.390 0.03 0.040 0.16-0.18

13 180-200 7 3.14 0.060 0.450 0.03 0.060 0.18-0.20

14 200-220 6 2.69 0.050 0.500 0.03 0.050 0.20-0.22

15 220-240 6 2.69 0.060 0.560 0.03 0.060 0.22-0.24

16 240-260 1 0.45 0.010 0.570 0.00 0.010 0.24-0.26

17 260-280 6 2.69 0.070 0.640 0.03 0.070 0.26-0.28

18 280-300 2 0.90 0.020 0.660 0.01 0.020 0.28-0.30

19 300-350 7 3.14 0.090 0.750 0.03 0.090 0.30-0.35

20 350-400 3 1.35 0.050 0.800 0.01 0.050 0.35-0.40

21 400-450 1 0.45 0.020 0.820 0.00 0.020 0.40-0.45

22 450-500 1 0.45 0.020 0.840 0.00 0.020 0.45.0.50

23 500-1000 10 4.48 0.250 0.940 0.04 0.250 0.50-1.00

24 1000-1500 4 1.79 0.220 1.300 0.02 0.220 1.00-1.50

25 1500-2000 2 0.90 0.130 1.440 0.01 0.130 1.50-2.00

26 2000-2500 1 0.45 0.100 1.540 0.00 0.100 2.00-2.50

27 2500-3000 1 0.45 0.110 1.650 0.00 0.110 2.50-3.00

28 3000-4000 2 0.90 0.290 1.940 0.01 0.290 3.00-4.00

223

1.94

19.09

0.404

0.090

0.209

15.57

Chord Length Distribution - Table

Length Traversed (mm):

Area Traversed (mm x mm):Paste Content (%):

Sample Size (mm x mm):

Average Chord Length (mm):

Paste to Air Ratio:

Air Content (%):

Specific Surface (mm-1):

Spacing Factor (mm):

Void Frequency (mm-1):
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Sample ID: Cast cyl Cylinder 2-3

80 x 80 2413.1

30.20 70 x 70

Class No.
Chord size 

(microns)

Number of 

Chords in Class

Number of Chords 

in Percent

Air Content in 

Class

Cumulated Air 

Content

Chord length 

frequency

Air content, 

fraction

1 0-10 5 2.51 0.000 0.000 0.03 0.000 0.00-0.01

2 10-20 33 16.58 0.020 0.020 0.17 0.020 0.01-0.02

3 20-30 16 16.58 0.020 0.040 0.08 0.020 0.02-0.03

4 30-40 21 10.55 0.030 0.070 0.11 0.030 0.03-0.04

5 40-50 7 3.52 0.010 0.080 0.04 0.010 0.04-0.05

6 50-60 13 6.53 0.030 0.110 0.07 0.030 0.05-0.06

7 60-80 16 8.04 0.050 0.160 0.08 0.050 0.06-0.08

8 80-100 17 8.54 0.060 0.220 0.09 0.060 0.08-0.10

9 100-120 10 5.03 0.050 0.270 0.05 0.050 0.10-0.12

10 120-140 5 2.51 0.030 0.290 0.03 0.030 0.12-0.14

11 140-160 11 5.53 0.070 0.360 0.06 0.070 0.14-0.16

12 160-180 4 2.01 0.030 0.390 0.02 0.030 0.16-0.18

13 180-200 0 0.00 0.000 0.390 0.00 0.000 0.18-0.20

14 200-220 4 2.01 0.030 0.420 0.02 0.030 0.20-0.22

15 220-240 3 1.51 0.030 0.450 0.02 0.030 0.22-0.24

16 240-260 2 1.01 0.020 0.470 0.01 0.020 0.24-0.26

17 260-280 1 0.50 0.010 0.480 0.01 0.010 0.26-0.28

18 280-300 2 1.01 0.020 0.510 0.01 0.020 0.28-0.30

19 300-350 3 1.51 0.040 0.550 0.02 0.040 0.30-0.35

20 350-400 1 0.50 0.010 0.560 0.01 0.010 0.35-0.40

21 400-450 2 1.01 0.040 0.600 0.01 0.040 0.40-0.45

22 450-500 3 1.51 0.060 0.660 0.02 0.060 0.45.0.50

23 500-1000 17 8.54 0.460 0.720 0.09 0.460 0.50-1.00

24 1000-1500 3 1.51 0.150 1.260 0.02 0.150 1.00-1.50

25 1500-2000 0 0.00 0.000 1.260 0.00 0.000 1.50-2.00

26 2000-2500 0 0.00 0.000 1.260 0.00 0.000 2.00-2.50

27 2500-3000 0 0.00 0.000 1.260 0.00 0.000 2.50-3.00

28 3000-4000 0 0.00 0.000 1.260 0.00 0.000 3.00-4.00

199

1.26

26.13

0.355

0.080

0.153

23.97

Chord Length Distribution - Table

Length Traversed (mm):

Area Traversed (mm x mm):Paste Content (%):

Sample Size (mm x mm):

Average Chord Length (mm):

Paste to Air Ratio:

Air Content (%):

Specific Surface (mm-1):

Spacing Factor (mm):

Void Frequency (mm-1):
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Sample ID: Cast cyl Cylinder 2-4

80 x 80 2413.1

30.20 70 x 70

Class No.
Chord size 

(microns)

Number of 

Chords in Class

Number of Chords 

in Percent

Air Content in 

Class

Cumulated Air 

Content

Chord length 

frequency

Air content, 

fraction

1 0-10 6 3.06 0.000 0.000 0.03 0.000 0.00-0.01

2 10-20 16 8.16 0.010 0.010 0.08 0.010 0.01-0.02

3 20-30 21 8.16 0.020 0.030 0.11 0.020 0.02-0.03

4 30-40 15 7.65 0.020 0.050 0.08 0.020 0.03-0.04

5 40-50 10 5.10 0.020 0.070 0.05 0.020 0.04-0.05

6 50-60 10 5.10 0.020 0.100 0.05 0.020 0.05-0.06

7 60-80 13 6.63 0.040 0.130 0.07 0.040 0.06-0.08

8 80-100 16 8.16 0.060 0.190 0.08 0.060 0.08-0.10

9 100-120 12 6.12 0.050 0.250 0.06 0.050 0.10-0.12

10 120-140 12 6.12 0.060 0.310 0.06 0.060 0.12-0.14

11 140-160 4 2.04 0.030 0.340 0.02 0.030 0.14-0.16

12 160-180 3 1.53 0.020 0.360 0.02 0.020 0.16-0.18

13 180-200 7 3.57 0.050 0.410 0.04 0.050 0.18-0.20

14 200-220 3 1.53 0.030 0.440 0.02 0.030 0.20-0.22

15 220-240 3 1.53 0.030 0.470 0.02 0.030 0.22-0.24

16 240-260 5 2.55 0.050 0.520 0.03 0.050 0.24-0.26

17 260-280 3 1.53 0.030 0.550 0.02 0.030 0.26-0.28

18 280-300 2 1.02 0.020 0.580 0.01 0.020 0.28-0.30

19 300-350 6 3.06 0.080 0.660 0.03 0.080 0.30-0.35

20 350-400 6 3.06 0.090 0.750 0.03 0.090 0.35-0.40

21 400-450 4 2.04 0.070 0.820 0.02 0.070 0.40-0.45

22 450-500 3 1.53 0.060 0.880 0.02 0.060 0.45.0.50

23 500-1000 11 5.61 0.320 0.900 0.06 0.320 0.50-1.00

24 1000-1500 5 2.55 0.250 1.440 0.03 0.250 1.00-1.50

25 1500-2000 0 0.00 0.000 1.440 0.00 0.000 1.50-2.00

26 2000-2500 0 0.00 0.000 1.440 0.00 0.000 2.00-2.50

27 2500-3000 0 0.00 0.000 1.440 0.00 0.000 2.50-3.00

28 3000-4000 0 0.00 0.000 1.440 0.00 0.000 3.00-4.00

196

1.44

22.56

0.388

0.080

0.177

20.97

Chord Length Distribution - Table

Length Traversed (mm):

Area Traversed (mm x mm):Paste Content (%):

Sample Size (mm x mm):

Average Chord Length (mm):

Paste to Air Ratio:

Air Content (%):

Specific Surface (mm-1):

Spacing Factor (mm):

Void Frequency (mm-1):
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Sample ID: Cast cyl Cylinder 3-2

80 x 80 2413.1

30.20 70 x 70

Class No.
Chord size 

(microns)

Number of 

Chords in Class

Number of Chords 

in Percent

Air Content in 

Class

Cumulated Air 

Content

Chord length 

frequency

Air content, 

fraction

1 0-10 17 2.93 0.010 0.010 0.03 0.010 0.00-0.01

2 10-20 58 10.00 0.030 0.040 0.10 0.030 0.01-0.02

3 20-30 76 10.00 0.080 0.120 0.13 0.080 0.02-0.03

4 30-40 38 6.55 0.050 0.180 0.07 0.050 0.03-0.04

5 40-50 38 6.55 0.070 0.240 0.07 0.070 0.04-0.05

6 50-60 47 8.10 0.110 0.350 0.08 0.110 0.05-0.06

7 60-80 63 10.86 0.180 0.530 0.11 0.180 0.06-0.08

8 80-100 42 7.24 0.160 0.690 0.07 0.160 0.08-0.10

9 100-120 20 3.45 0.090 0.780 0.03 0.090 0.10-0.12

10 120-140 22 3.79 0.120 0.900 0.04 0.120 0.12-0.14

11 140-160 18 3.10 0.110 1.010 0.03 0.110 0.14-0.16

12 160-180 17 2.93 0.120 1.130 0.03 0.120 0.16-0.18

13 180-200 13 2.24 0.100 1.230 0.02 0.100 0.18-0.20

14 200-220 10 1.72 0.090 1.320 0.02 0.090 0.20-0.22

15 220-240 9 1.55 0.090 1.410 0.02 0.090 0.22-0.24

16 240-260 6 1.03 0.060 1.470 0.01 0.060 0.24-0.26

17 260-280 4 0.69 0.040 1.510 0.01 0.040 0.26-0.28

18 280-300 6 1.03 0.070 1.590 0.01 0.070 0.28-0.30

19 300-350 17 2.93 0.230 1.810 0.03 0.230 0.30-0.35

20 350-400 7 1.21 0.110 1.920 0.01 0.110 0.35-0.40

21 400-450 9 1.55 0.160 2.080 0.02 0.160 0.40-0.45

22 450-500 7 1.21 0.140 2.220 0.01 0.140 0.45.0.50

23 500-1000 24 4.14 0.690 2.330 0.04 0.690 0.50-1.00

24 1000-1500 8 1.38 0.400 3.300 0.01 0.400 1.00-1.50

25 1500-2000 4 0.69 0.300 3.600 0.01 0.300 1.50-2.00

26 2000-2500 0 0.00 0.000 3.600 0.00 0.000 2.00-2.50

27 2500-3000 0 0.00 0.000 3.600 0.00 0.000 2.50-3.00

28 3000-4000 0 0.00 0.000 3.600 0.00 0.000 3.00-4.00

580

3.60

26.68

0.220

0.240

0.150

8.39

Chord Length Distribution - Table

Length Traversed (mm):

Area Traversed (mm x mm):Paste Content (%):

Sample Size (mm x mm):

Average Chord Length (mm):

Paste to Air Ratio:

Air Content (%):

Specific Surface (mm-1):

Spacing Factor (mm):

Void Frequency (mm-1):
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Sample ID: Cast cyl Cylinder 3-3

70 x 80 2413.1

30.20 60 x 70

Class No.
Chord size 

(microns)

Number of 

Chords in Class

Number of Chords 

in Percent

Air Content in 

Class

Cumulated Air 

Content

Chord length 

frequency

Air content, 

fraction

1 0-10 22 3.70 0.010 0.010 0.04 0.010 0.00-0.01

2 10-20 79 13.30 0.050 0.050 0.13 0.050 0.01-0.02

3 20-30 80 13.30 0.080 0.140 0.13 0.080 0.02-0.03

4 30-40 54 9.09 0.080 0.220 0.09 0.080 0.03-0.04

5 40-50 49 8.25 0.090 0.310 0.08 0.090 0.04-0.05

6 50-60 36 6.06 0.080 0.390 0.06 0.080 0.05-0.06

7 60-80 58 9.76 0.170 0.560 0.10 0.170 0.06-0.08

8 80-100 30 5.05 0.110 0.670 0.05 0.110 0.08-0.10

9 100-120 32 5.39 0.150 0.810 0.05 0.150 0.10-0.12

10 120-140 19 3.20 0.100 0.920 0.03 0.100 0.12-0.14

11 140-160 19 3.20 0.120 1.040 0.03 0.120 0.14-0.16

12 160-180 15 2.53 0.100 1.140 0.03 0.100 0.16-0.18

13 180-200 14 2.36 0.110 1.250 0.02 0.110 0.18-0.20

14 200-220 9 1.52 0.080 1.330 0.02 0.080 0.20-0.22

15 220-240 6 1.01 0.060 1.390 0.01 0.060 0.22-0.24

16 240-260 5 0.84 0.050 1.440 0.01 0.050 0.24-0.26

17 260-280 6 1.01 0.070 1.510 0.01 0.070 0.26-0.28

18 280-300 6 1.01 0.070 1.580 0.01 0.070 0.28-0.30

19 300-350 11 1.85 0.150 1.730 0.02 0.150 0.30-0.35

20 350-400 9 1.52 0.140 1.870 0.02 0.140 0.35-0.40

21 400-450 3 0.51 0.050 1.920 0.01 0.050 0.40-0.45

22 450-500 6 1.01 0.120 2.040 0.01 0.120 0.45.0.50

23 500-1000 24 4.04 0.670 2.060 0.04 0.670 0.50-1.00

24 1000-1500 2 0.34 0.110 2.810 0.00 0.110 1.00-1.50

25 1500-2000 0 0.00 0.000 2.810 0.00 0.000 1.50-2.00

26 2000-2500 0 0.00 0.000 2.810 0.00 0.000 2.00-2.50

27 2500-3000 0 0.00 0.000 2.810 0.00 0.000 2.50-3.00

28 3000-4000 0 0.00 0.000 2.810 0.00 0.000 3.00-4.00

594

2.81

34.98

0.187

0.250

0.114

10.75

Chord Length Distribution - Table

Length Traversed (mm):

Area Traversed (mm x mm):Paste Content (%):

Sample Size (mm x mm):

Average Chord Length (mm):

Paste to Air Ratio:

Air Content (%):

Specific Surface (mm-1):

Spacing Factor (mm):

Void Frequency (mm-1):
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Figure 1 I-94 Riverside drive bridge deck placement. 

 

Figure 2 Project and mobile lab location. 
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Figure 3 Ambient sensor location.    

 

Figure 4 Locations of sensor #640, #641, and #644. 
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Figure 5 Locations of sensor #642 and #643.       

 

Figure 6 Locations of sensor # 646 and #647. 
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Figure 7 Temperature sensor data from MI DOT. 

 

             Figure 8 Concrete being placed. 
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Figure 9 Concrete being finished. 

 

Figure 10 Concrete heated tent enclosure. 
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Figure 11 Curing blankets for concrete curing. 

 

Figure 12 Compressive strength development with time. 
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Figure 13 Tensile splitting strength development with time. 

 

Figure 14 Modulus of elasticity development with time. 
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Figure 15 Free shrinkage of prisms (ASTM C 157). 
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Figure 16 Configuration of restrained concrete ring samples. 
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Figure 17 Strains of steel rings resulting from concrete shrinkage. 
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Table 1 Description of locations for each temperature sensor 

Sensor Location/Description 

Ambient 
Approximately 200' from structure, tied to a tree to protect from sunlight and 

exhaust 

640 Mid-structure, on bottom mat, over a metal form 

641 Mid-structure, on top mat, over a metal form 

642 Where wood forms meet the fascia beam, on bottom mat 

643 Where wood forms meet the fascia beam, on top mat 

644 Mid-structure south of #640 & #641, on top mat, over middle of beam 

646 Cure box, placed between cylinders 

647 Inside a cylinder 

 

 

Table 2 Air void test results conducted in MI DOT 

Sample ID 

Spacing Factor (mm) 

Specific Surface  

(mm
-1

) 

Cylinder 1-1 0.308 24.720 

Cylinder 1-2 0.352 27.110 

Cylinder 1-3 0.475 12.890 

Cylinder 2-1 0.394 19.660 

Cylinder 2-2 0.355 26.130 

Cylinder 2-3 0.388 22.560 

Cylinder 3-1 0.192 33.390 

Cylinder 3-2 0.220 26.680 

Cylinder 3-3 0.187 34.980 
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Table 3 Air void test results conducted in ISU 

Sample ID 
Air Content Specific Surface  Spacing Factor  

(%) (mm
-1

) (mm) 

Cylinder 1-1 1.99 24.72 0.308 

Cylinder 1-2 1.18 27.11 0.352 

Cylinder 1-3 3.27 12.89 0.475 

Cylinder 2-1 1.92 19.66 0.394 

Cylinder 2-2 1.94 19.09 0.404 

Cylinder 2-3 1.26 26.13 0.355 

Cylinder 2-4 1.44 22.56 0.388 

Cylinder 3-1 2.95 33.39 0.192 

Cylinder 3-2 3.60 26.68 0.220 

Cylinder 3-3 2.81 34.98 0.187 

 

Table 4 Properties of hardened concrete 

Tests Results   

7-day Compressive Strength, psi 3050 

28-day Compressive Strength, psi 6110 

Rapid Chloride Permeability, 

Coulombs 

Sample 1 Sample 2 Sample 3 Average 

977 1040 987 1001 

Strength Development 28/7 day fc 

Ratio 
2.00 

Shrinkage Microstrain @ 28 days, 

in/in 
756.7 

Average Stress Rate by Restrained 

Ring Test, psi/day 
92.63 
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Table 5 Summation of strength and modulus of elasticity 

Location Age, days 
Compressive 

Strength, psi 

Splitting Tensile 

Strength, psi 

Modulus Of 

Elasticity, psi 

MI 

1 820 114 4.10E+06 

3 1,750 270 4.80E+06 

7 3,050 417 5.30E+06 

28 6,110 484 5.80E+06 

56 6,610 522 5.40E+06 

 

Table 6 Free shrinkage test results 

MI Project Free Shrinkage Test (ASTM C 157) 

Dry 

Time Beam 1 change% Beam 2 change % Beam 3 change % Average Microstrain 

1 -0.002 -0.001 -0.005 -0.003 -26.7 

4 -0.015 -0.015 -0.020 -0.017 -166.7 

7 -0.073 -0.051 -0.045 -0.056 -563.3 

14 -0.080 -0.064 -0.068 -0.071 -706.7 

28 -0.089 -0.067 -0.071 -0.076 -756.7 

56 -0.077 -0.070 -0.080 -0.076 -756.7 

 

Table 7 Cracking potential and average stress rate (ASTM C 1581) 

Cracking Potential for MI Project (ASTM C 1581) 

  Ring 1 Ring 2 Ring 3 

Strain Rate Factor (in./in.x10
-6

)/hours
1/2

 -11.57 -10.48 -9.47 

G (psi) 10.47x10
6
 10.47x10

6
 10.47x10

6
 

Absolute Value of αavg (in./in.10
-6

)/day
1/2

 51.47 

Elapsed Time, tr (hours) 176.0 138.0 400.0 

Elapsed Time, tr (days) 7.3 5.8 16.7 

Stress Rate, q (psi/day) q=GIαavgI/2√tr 99.5 112.4 66.0 

Average Stress Rate, q (psi/day) q=GIαavgI/2√tr 92.63 

Potential for cracking classification (ASTM 1581) High (50≤ q) 
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Introduction 

This document is a report of the activities and observations of a research team that 

performed on-site testing of a ternary mixture placed on an interstate pavement in Iowa. The 

cementitious system comprised a Type 1P cement (25% fly ash) blended with 15% Class C 

fly ash. The purpose of this research project is a comprehensive study of how supplementary 

cementitious materials (SCMs) can be used to improve the performance of concrete mixtures 

when used in ternary blends. This is the third phase of a project which intends to provide 

consulting to states and contractors with the use and field management of ternary mixtures. A 

state-of-the-art 44-foot long PCC mobile laboratory equipped for on-site cement and concrete 

testing was provided by the CP Tech Center to collect data and field observations.  

Project Information 

 Project No. ESIMX-029-5(100)95-1S-43 

 Monona County, Iowa 

 Contractor: McCarthy Improvement Co.  

 I-29 Grade/Replace, Monona, Iowa 

 Rigid Pavement Improvement (Southbound of Interstate 29 in Iowa) (Figure 1) 

Site Location 

An area at the bridge site was prepared by the contractor for the PCC mobile lab. The 

location of the project (on Interstate 29 near the city of Onawa, IA) and the mobile lab is 

shown in Figure 2. 

Sampling and Testing Activities 

The mobile lab arrived on site on June 1, 2010. Concrete placement, sampling and 

testing took place on June 7, 2010. Hardened samples were transported to Iowa State 

University on June 8, 2010, for further testing.  The following tests were conducted in the 

field or in the laboratory: 

 Calorimetry test (ASTM C 1679) 

 Slump, unit weight, temperature and air content of fresh concrete – 1 test (ASTM C 

143, ASTM C 138, ASTM C 231) 
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 Microwave w/c ratio – 1 test (AASHTO T 318) 

 Initial set and final set of concrete – 1 test (ASTM C 403) 

 Compressive strength, splitting tensile strength, static modulus of elasticity - 4” x 8” 

cylinders at 1-day, 3-days, 7-days, 28-days, and 56-days (ASTM C 39, ASTM C 496, 

ASTM C 469) 

 Rapid chloride permeability - 4” x 8” cylinders at 56 days (ASTM C 1202) 

 Porosity analysis (boil test) of hardened concrete - 4” x 8” cylinders (ASTM C 642) 

 Salt scaling – 3 samples (ASTM C 672) 

 Shrinkage – 3 beams (ASTM C 157) 

 Restrained rings –  4 samples (ASTM C 1581) 

Observations of the Research Team 

The following observations were made in this field testing: 

 The sub-base for the entire project was recycled material: the old concrete slab had 

been crushed to create a granular sub-base of approximately 8-10 inches thick. 

 The sub-grade was also a recycled section: the old asphalt overlay was crushed into 

sub-grade of 12 inches thick. All was installed on a 1% grade to the outside. 

 Slab dimensions were 11 inches by 26 feet for mainline and 7 inches by 6 or 8 feet for 

shoulders which were tied to mainline by #4 bars. 

 For mainline pavement, the contractor used a Guntert-Zimmerman 8500, while 

Gomaco Commander with a side kit was used for the shoulders. 

 1½ -inch dowel bars were used in baskets placed every 20 feet. The transverse joints 

were ¼ inches wide and approximately 2 inches deep cut using early entry saws. The 

center longitudinal joint was 1/8 inches wide by approximately 3 ½ inches deep cut 

using conventional water-cooled saws.  

 The concrete was supplied from a fixed batch plant and was delivered to the job site 

in tandem trucks. The mix design was from McCarthy Improvement Company and 

approved by Iowa Department of Transportation. The specific accepted mix 

proportions are given in the project data section (page 14). The plant had a 90 second 
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mix time. Once in the truck, the mix had to be placed on the ground within 60 

minutes without segregation.  

 Workability factor & coarseness factors were 34.5 and 64.9, respectively. The 

combined aggregate gradation fell in the well-graded region (page 17). Similarly, the 

Combined Percent Retained Curve indicated a well graded system (page 18). 

 The weather condition at the job site was recorded for a period of eight days from 

June 1
st
 to June 8

th
. Data is shown in Figures 3 to 5. The relative humidity ranged 

between 21% and 89%. The ambient temperature ranged from 48 ˚F to 88˚F. The 

wind speed varied from 3 mph to 20 mph. 

 The fresh concrete properties testing include slump, unit weight, and water-

cementitious materials ratio measured by microwave. Due to unexpected weather, 

only one group of sample was tested during the construction period. Slump was 2.0 

inches. The unit weight was 135.6 lb/ft
3
. The water- cementitious material ratio was 

0.35.  

 The air content was 8.75% from the one test conducted at the batch plant, which was 

slightly higher than the specified minimum, 6%.  

 Setting time of the mix was determined as a single measurement: initial set occurred 

at 2.32 hours and the final set was achieved at 8.41 hours.  

 The rapid chloride permeability test measures the electrical conductance of a concrete 

sample as its resistance to chloride ion penetration. The test results shown in Table 1 

indicate a classification of “very low” chloride permeability according to ASTM 

C1202. 

 The compressive strengths at 7 and 28 days and the 28/7 days strength development 

ratio are reported in Table 1.  

 The porosity values obtained by the boiling test (ASTM C 642) results are given in 

Table 1.  

 Compressive strength, splitting tensile strength and modulus of elasticity results 

(ASTM C 39, ASTM C 496, and ASTM C 469) are given in Table 2 and 

development curves are plotted in Figures 12 to Figure 14.  
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 Free shrinkage test (ASTM C 157) was conducted in the laboratory. Three concrete 

beams were wet cured for seven days and then moved to a dry room at 23˚C and 50% 

relative humidity. The drying shrinkage results are given in Table 3 and also plotted 

in Figure 15. 

 Restrained shrinkage test was conducted based on ASTM C 1581. Four rings were 

cast. The rings were demolded and the top surface was covered with paraffin wax 24 

hours from casting. The rings were allowed to dry at 23˚C and 50% relative humidity 

immediately after demolding. Strains in the steel rings were recorded every 10 

minutes up to 28 days or until the concrete cracked. The configuration of restrained 

concrete rings is shown in Figure 16. The cracking potential is listed in Table 4 and 

shown graphically in Figure 17. The cracking potential is classified as “moderate high” 

based on the average stress rate. 

 Salt scaling test (ASTM C 672) was performed: the specimens were subjected to 16 

to18 hours freezing and then allowed to thaw at 23 ± 2.0˚C and a relative humidity of 

45 to 55% for 6 to 8 hours. The solution of 4 % calcium chloride was rinsed off and 

the surface was visually examined. The solution was replaced and the test was 

continued following visual examination. 50 freeze-thaw cycles were applied. The 

surface was rated on a scale of 0 to5 with 0 having no scaling, 1 having very slight 

scaling of 3 mm depth maximum without coarse aggregate visible, 2 having slight to 

moderate scaling, 3 having moderate scaling with some coarse aggregate visible, 4 

having moderate to severe scaling, and 5 having severe scaling with coarse aggregate 

visible over entire surface. The photograph after 50
th

 cycle was taken and shown in 

Figure 18. The visual ratings assigned to each specimen for cycles 0, 5, 10, 15, 20, 25, 

and 50 are given in Table 5. 
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Project Data 

The following test data is provided for information only, comments and conclusions 

will be reported in the comprehensive Phase III report of the pooled fund project 

Development of Performance Properties of Ternary Mixtures. 
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General Information

Project:

Contractor:

Mix Description:

Mix ID:

Date(s) of Placement:

Cementitious Materials Source Type Spec. Gravity lb/yd
3

% 

Replacement 

by Mass

Portland Cement: PC0008 Ash Grove Louisville, NE 1P (25) 2.950 478

GGBFS:

Fly Ash: FA004C Headwater Resources Concil Bluffs, IA Class C 2.620 84 14.95%

Silica Fume:

Other Pozzolan:

562 lb/yd
3

6.0 sacks/yd
3

Aggregate Information Source Type

Spec. Gravity 

SSD

Absorption 

(%)

% Passing     

#4

Coarse Aggregate: ASD010 Everist, Inc. Dell Rapids, SD Quartzite 2.640 0.30% 0.7%

Intermediate Aggregate #1: A18528 Higman S&G Washta, IA P-Gravel 2.670 1.60% 39.0%

Intermediate Aggregate #2:

Fine Aggregate #1: A18528 Higman S&G Washta, IA Natural Sand 2.650 0.80% 99.0%

Coarse Aggregate %: 51.0%

Intermediate Aggregate #1%: 9.0%

Intermediate Aggregate #2%:

Fine Aggregate #1 %: 40.0%

Mix Proportion Calculations

Water/Cementitious Materials Ratio: 0.400

Air Content: 6.00%

Volume                                    (ft
3
)

Batch Weights SSD       

(lb/yd
3
) Spec. Gravity

Absolute 

Volume        

(%)

Portland Cement: 2.597 478 2.950 9.617%

GGBFS:

Fly Ash: 0.514 84 2.620 1.903%

Silica Fume:

Other Pozzolan:

Coarse Aggregate: 9.520 1,568 2.640 35.260%

Intermediate Aggregate #1: 1.680 280 2.670 6.222%

Intermediate Aggregate #2:

Fine Aggregate #1: 7.467 1,235 2.650 27.655%

Water: 3.603 225 1.000 13.343%

Air: 1.620 6.000%

27.000 3,870 100.000%

Unit Weight (lb/ft
3
) 143.3 Paste 30.863%

Mortar 60.915%

Admixture Information Source/Description oz/yd
3

oz/cwt

Air Entraining Admix.: Eucild AEA 92/ AEA 1.00 0.18

Admix. #1: Euclid Eucon Retardent 100/ Retarder 1.50 0.27

Admix. #2: Euclid Eucon WR/ Water Reducer 4.00 0.71

Admix. #3:

AVA Information Absolute Volume                             (%)

Air Free Paste: 24.863%

Air Free Mortar: 54.915%

6/7/2010

Mix Design & Misc. Info.

I-29 Grade/Replace Monona Co

McCarthy Improvement Company

562 lb Cementitious

ESIMX-029-5(100)951S-43
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Sample Information:

Project:

Date: Time:

Type of Paving: Direction of Paving:

Sta: Latitude: Longitude:

Mix ID: Truck IDs:

Environmental Conditions:

Dew Point: Relative Humidity:

Wind Speed: Ambient Temp.:

Concrete Properties:

4

use adiacal

3

74.1 30

Slump (in.): 2.00 3

Air Content: 8.8%

Unit Weight (lb/ft
3
): 135.6

Microwave Water Content Samples: Calorimetry (ADIACAL Cylinders):

Set-Time (ASTMC403) Mortar Samples: Cylinder for RCP & Perm. Voids Boil Test:

72.0

Base/Soil Temp. (internal)(ºF): Base Temp. (surface)(ºF):

Concrete Temp.(ºF):

Scaling Blocks:

Compressive, Tensile & MOR Cylinders:

Shrinkage Beams:

            Iowa - Ternary Mixtures

I-29 @ Blencoe

7-Jun-10 1:15 PM

Sample Location Mark                             

& Comments:

65%
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Project:

Mix ID:

Test Date: 7-Jun-10

562 lb/yd
3

Agg. Ratios: 51.00% 9.00% 40.00% 100.00%

Sieve Coarse Intermediate Fine #1 Fine #2

Combined 

% Retained

Combined 

% Retained 

On Each 

Sieve

Combined 

% Passing

2 ½" 100% 100% 100% 0% 0% 100%

2" 100% 100% 100% 0% 0% 100%

1 ½" 100% 100% 100% 0% 0% 100%

1" 99% 100% 100% 1% 1% 99%

¾" 83% 100% 100% 9% 8% 91%

½" 37% 100% 100% 32% 23% 68%

⅜" 18% 100% 100% 42% 10% 58%

#4 1% 39% 99% 57% 15% 43%

#8 1% 6% 87% 64% 8% 36%

#16 1% 5% 63% 74% 10% 26%

#30 1% 4% 38% 84% 10% 16%

#50 1% 3% 12% 95% 10% 5%

#100 1% 2% 1% 99% 4% 1%

#200 0.7% 0.5% 0.5% 99.4% 0.5% 0.6%

Workability Factor: 35.5

Coarseness Factor: 64.9

Total Cementitious Material:

Sample Comments:

I-29 Grade/Replace Monona Co @ Blencoe

CDM
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Project

Date: Start Time:

Sta:

Test Data

Penetration 

Time (xx:xx-24 hr 

format) Time (min)

Needle # 

(1,2,4,10,20 or 40) Force (lb)

Penetration 

Resistance 

(psi)

Sample 

Temp. (ºF)

3:40 PM 145.00 1 149 149.00 n/a

4:30 PM 195.00 4 85 340.00 n/a

5:00 PM 225.00 10 40 400.00 n/a

5:38 PM 263.00 10 70 700.00 n/a

6:05 PM 290.00 20 42 840.00 n/a

6:30 PM 315.00 20 62 1240.00 n/a

8:10 PM 415.00 40 100 4000.00 n/a

n/a

n/a

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

139 minutes 2.32 hours

505 minutes 8.41 hours

n/a

Initial Set (at 500 psi PR) estimated times 

using forecast 

functionFinal Set (at 4,000 psi PR)

Iowa - Ternary Mixtures

Set Time ASTM C 403

I-29 Grade/Replace Monona Co

7-Jun-10 1:15 PM
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Iowa - Ternary Mixtures 
 

Boil Test (ASTM C 642) 

IA #1 

      

A 944.4 g 

B 966.61 g 

C 967.18 g 

D 557.5 g 

P 1 g/cm³ 

      

g1 2.3052 g/cm³ 

g2 2.4409 g/cm³ 

      

      

Volume of permeable pore space (voids), %   5.5604 

IA #2 

      

A 982.7 g 

B 1006.28 g 

C 1006.91 g 

D 581.1 g 

P 1 g/cm³ 

      

g1 2.3078 g/cm³ 

g2 2.4470 g/cm³ 

      

      

Volume of permeable pore space (voids), %   5.6856 

IA #3 

      

A 1017.7 g 

B 1044.53 g 

C 1045.46 g 

D 596.2 g 

P 1 g/cm³ 

      

g1 2.2653 g/cm³ 

g2 2.4145 g/cm³ 

Volume of permeable pore space (voids), %   6.1791 
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Figure 1 Interstate 29 in Iowa (Southbound). 

 

Figure 2Project and mobile lab location. 
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Figure 3 Ambient temperature versus time of day. 

 

Figure 4 Relative humidity versus time of day. 
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Figure 5 Wind speed versus time of day. 

 

Figure 6 Concrete being dumped into a belt placer and spread by the placer. 
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Figure 7 Concrete being dumped into a belt placer and spread by the placer. 

 

Figure 8 Concrete passing through the paver. 
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Figure 9 Concrete passing through the paver. 

 

Figure 10 Concrete being finished and curing compound being applied. 
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Figure 11 Concrete being finished and curing compound being applied. 

 

Figure 12 Compressive strength development with time. 
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Figure 13 Tensile splitting strength development with time. 

 

Figure 14 Modulus of elasticity development with time. 
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Figure 15 Free shrinkage of prisms (ASTM C 157). 
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Figure 16 Configuration of restrained concrete ring samples. 
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Figure 17 Average stress rate for KS project. 

 

Figure 18 IA salt scaling sample after 50
th

 freeze-thaw cycle. 
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Table 1 Properties of hardened concrete 

Tests Results 

7-day Compressive Strength, psi 4860 

28-day Compressive Strength, psi 5960 

Volume of Permeable Pore Space, % 
Sample 1 Sample 2 Sample 3 Average 

5.56 5.68 6.18 5.81 

Rapid Chloride Permeability, 

Coulombs 

Sample 1 Sample 2   Average 

980 1413   1197 

Strength Development 28/7 day fc 

Ratio 
1.23 

Shrinkage Microstrain @ 28 days, 

in/in 
183.3 

Average Stress Rate by Restrained 

Ring Test, psi/day 
28.21 

 

 

Table 2 Summation of strength and modulus of elasticity 

Location Age, days 
Compressive 

Strength, psi 

Splitting Tensile 

Strength, psi 

Modulus Of 

Elasticity, psi 

IA 

1 2,660 322 4.75E+06 

3 4,650 339 5.30E+06 

7 4,860 452 5.10E+06 

28 5,960 478 5.75E+06 

56 8,110 599 5.70E+06 
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Table 3 Free shrinkage test results 

IA Project Free Shrinkage Test (ASTM C 157) 

Dry 

Time Beam 1 change% Beam 2 change % Beam 3 change % Average Microstrain 

0 0.000 0.000 0.000 0.000 0.000 

1 -0.011 -0.010 -0.010 -0.010 -103.3 

4 -0.010 -0.008 -0.008 -0.009 -86.7 

7 -0.005 -0.005 0.000 -0.003 -33.3 

14 -0.011 -0.012 -0.006 -0.010 -96.7 

28 -0.017 -0.024 -0.014 -0.018 -183.3 

56 -0.027 -0.031 -0.029 -0.029 -290.0 

 

Table 4 Cracking potential and average stress rate (ASTM C 1581) 

Cracking Potential for IA Project (ASTM C 1581) 

  Ring 1 Ring 2 Ring 3 Ring 4 

Strain Rate Factor (in./in.x10
-6

)/hours
1/2

 -4.89 -4.23 -4.47 -5.27 

G (psi) 10.47x10
6
 10.47x10

6
 10.47x10

6
 10.47x10

6
 

Absolute Value of αavg (in./in.10
-6

)/day
1/2

 23.10 

Elapsed Time, tr (hours) 441.0 441.0 441.0 441.0 

Elapsed Time, tr (days) 18.4 18.4 18.4 18.4 

Stress Rate, q (psi/day) q=GIαavgI/2√tr 28.2 28.2 28.2 28.2 

Average Stress Rate, q (psi/day) q=GIαavgI/2√tr 28.21 

Potential for cracking classification (ASTM 1581) Moderate-high (25≤ q < 50) 

 

Table 5 Salt scaling test visual condition of specimen 

  Condition of Surface 

IA Salt Scaling Samples Cycle 5 Cycle 10 Cycle 15 Cycle 20 Cycle 25 Cycle 50 

No. 1 1 1 2 2 2 4 

No. 2 1 1 2 2 2 4 

No. 3 1 1 2 2 2 4 
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Introduction 

This document is a report of the activities and observations of a research team that 

performed on-site testing of a ternary mixture placed on a State Road 36, section 20, bridge 

deck in Pennsylvania. The cementitious system comprised a Type I/II cement, Grade 100 

slag cement, and Class F fly ash. The purpose of this research project is a comprehensive 

study of how supplementary cementitious materials (SCMs) can be used to improve the 

performance of concrete mixtures when used in ternary blends. This is the third phase of a 

project which intends to provide consulting to states and contractors on the use and field 

management of ternary mixtures. A state-of-the-art 44-foot long PCC mobile laboratory 

equipped for on-site cement and concrete testing was provided by the CP Tech Center to 

collect data and field observations.  

Project Information 

 Project No. ECMS#21899 

 Roaring Spring, Blair County, New07A42&07B42 

 Contractor: Plum Contracting.  

 State Route 36, section 20 

 Bridge deck placement (1 span – structural steel girders with concrete deck) (Figure 

1) 

Site Location 

An area at the bridge site was prepared by the contractor for the PCC mobile lab. The 

location of the project and mobile lab is shown as following Figure 2. 

Sampling and Testing Activities 

The mobile lab arrived on site on July 13, 2010. Concrete placement, sampling and 

testing took place on July 14, 2010. Hardened samples were transported to Iowa State 

University on July 16, 2010, for further testing.  The following tests were conducted either in 

the field or in the laboratory: 

 Calorimetry test (ASTM C 1679) 



195 

 

 

 

 Slump, unit weight, temperature and air content of fresh concrete – 2 test (ASTM C 

143, ASTM C 138, ASTM C 231)  

 Microwave w/c ratio – 2 test 

 Initial set and final set – 1 test (ASTM C 403) 

 Compressive strength, splitting tensile strength, static modulus of elasticity - 4” x 8” 

cylinders at 1-day, 3-days, 7-days, 28-days, and 56-days (ASTM C 39, ASTM C 496, 

ASTM C 469) 

 Rapid chloride permeability - 4” x 8” cylinders at 56 days (ASTM C 1202) 

 Porosity analysis (boil test) of hardened concrete - 4” x 8” cylinders (ASTM C 642) 

 Salt scaling – 3 samples (ASTM C 672) 

 Free shrinkage  test – 4 beams (ASTM C 157) 

 Restrained rings –  4 samples (ASTM C 1581) 

 Two i-buttons are buried on top and bottom layer of reinforcement to investigate 

maturity of concrete. (ASTM C 1074) 

Observations of the Research Team 

The following observations were made in the field work: 

 Concrete paving: Contractors were using Bid-Well 3600 typical form riding bridge 

deck paver for a rural bridge deck. The bridge deck was 8 inches deep with a 2 ½ 

inches cover on top layer of reinforcement and 1 inch cover on bottom layer of 

reinforcement.  

 All concrete came from a fixed batch plant and was delivered to the job site in transit 

mix trucks or front-ready-mix trucks. A front-ready-mix truck was used to transfer 

material from a central mixed concrete to a rear-ready-mix truck. The concrete was 

placed using a conveyor belt.  

 The mix design was from New Enterprise Stone & Lime Co., Inc, and approved by 

Pennsylvania Department of Transportation. The mix proportions are given in the 

project data section.  

 Cementitious materials include Type I/II portland cement (Holcim-Hagerstown, MD), 

Grade 100 slag cement (GranCem-Camden, NJ) and Class F fly ash (Headwaters-
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Sammis Plant). Dolomitic limestone coarse aggregate (Class A57) was used and the 

fine aggregate was sandstone. MBVR air entraining agent, Glenium 3030 water 

reducer, and 100XR retarder were used as chemical admixtures. 

 According to the workability factor & coarseness factor graph (Page 22) combined 

aggregate gradation for this project fell in the well-graded region. Similarly, the 

aggregate gradation (Page 23) indicated a well graded system. 

 The weather conditions at the job site recorded by the PCC mobile lab is given in 

Table 1 below and graphically in Figures 3 to 5. The relative humidity ranged from 

70% to 82%; the ambient temperature ranged from 69˚F to 77.4 ˚F; the wind speed 

varied from 0 mph to 7 mph with; the concrete temperature ranged from 73 ˚F to 80.4 

˚F at during the recorded period. 

 The fresh concrete tests include slump cone, unit weight, and water/cementitious 

materials ratio by microwave. CP Tech Center crew carried out tests for two sets of 

specimens PennDOT crew ran tests for six. Slump result was varied from 3.0 inches 

to 6.5 inches (performed by PennDOT). CP Tech Center crew performed unit weight 

tests in duplicate: the values are 147.3 lb/ft
3
 and 147.1 lb/ft

3
. The water-cementitious 

materials ratios obtained from microwave water-cementitious ratio tests were 0.50 

and 0.46. The design value was 0.41. The data is provided on Page 16. 

 The air content was varied from 5.0% to 7.1% with an average value of 6.0% based 

on eight sets of testing. The specified minimum was 6%.  

 Setting time of the mix was determined as a single measurement: initial set occurred 

at 3.63 hours and the final set was achieved at 10.96 hours (Page 25). 

 The feedback from PA department of Transportation on workability and durability 

was positive. Only some minor cracking over the pier at four months after bridge 

deck being constructed (Figure 14 and 15).  

 The rapid chloride permeability test measures the electrical conductance of a concrete 

sample as its resistance to chloride ion penetration. The test results shown in Table 2 

indicate a classification of “very low” chloride permeability according to ASTM 

C1202. 
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 The compressive strengths at 7 and 28 days and the 28/7 days strength development 

ratio is reported in Table 2.  

 Two i-buttons were attached to reinforcing steel before the concrete placement: one 

was placed on top layer of reinforcement steel and the other was placed on bottom 

layer of reinforcement steel. The rate of cement hydration is dependent on the 

temperature and the time (Mindess, Young and Darwin, 2003). Maturity is used to 

monitor the cement hydration progress as a function of time and temperature. The 

temperature of concrete was recorded up to 28 hours. The concrete temperature over 

time is plotted in Figure 16 (a) and concrete maturity curve based on Nurse – Saul 

method (ASTM C 1074) is generated in Figure 16 (b). 

 Compressive strength, splitting tensile strength and modulus of elasticity results 

(ASTM C 39, ASTM C 496, and ASTM C 469) are given in Table 3 and also plotted 

in Figures 17 to Figure 19.  

 Free shrinkage test (ASTM C 157) was conducted in the laboratory. Three beams 

were wet cured for seven days and then moved to a dry room at 23˚C and 50% 

relative humidity. The drying shrinkage results are given in Table 4 and also plotted 

in Figure 20. 

 Restrained shrinkage test was conducted based on ASTM C 1581. Four rings were 

cast. The rings were demolded and the top surface was covered with paraffin wax 24 

hours from casting. The rings were allowed to dry at 23˚C and 50% relative humidity 

immediately after demolding. Strains in the steel rings were recorded every 10 

minutes up to 28 days or until the concrete cracked. The configuration of restrained 

concrete rings is shown in Figure 21. The cracking potential is listed in Table 5 and 

shown graphically in Figure 22. The cracking potential is classified as “moderate high” 

based on the average stress rate. 

 Salt scaling test (ASTM C 672) was performed: the specimens were subjected to 16 

to18 hours freezing and then allowed to thaw at 23 ± 2.0˚C and a relative humidity of 

45 to 55% for 6 to 8 hours. The solution of 4 % calcium chloride was replaced and 

the test was continued following visual examination. 50 freeze-thaw cycles were 

applied. The surface was rated on a scale of 0 to5 with 0 having no scaling, 1 having 
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very slight scaling of 3 mm depth maximum without coarse aggregate visible, 2 

having slight to moderate scaling, 3 having moderate scaling with some coarse 

aggregate visible, 4 having moderate to severe scaling, and 5 having severe scaling 

with coarse aggregate visible over entire surface. The photograph after 50
th

 cycle was 

taken and shown in Figure 23. The visual ratings assigned to each specimen for 

cycles 0, 5, 10, 15, 20, 25, and 50 are given in Table 6. 
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The following test data is provided for information only, comments and conclusions 

will be reported in the comprehensive Phase III report of the pooled fund project 

Development of Performance Properties of Ternary Mixtures. 
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General Information

Project:

Contractor:

Mix Description:

Mix ID:

Date(s) of Placement:

Cementitious Materials Source Type Spec. Gravity lb/yd
3

% 

Replacement 

by Mass

Portland Cement: Holcim-Hagerstown, MD. Tpye I/II 3.150 323

GGBFS: GranCem-Camden, NJ (gr-100) Grade 100 2.900 176

Fly Ash: Headwaters-Sammis Plant Class F 2.400 88 14.99%

Silica Fume:

Other Pozzolan:

587 lb/yd
3

6.2 sacks/yd
3

Aggregate Information Source Type

Spec. Gravity 

SSD

Absorption 

(%)

% Passing     

#4

Coarse Aggregate: NESL Roaring Spring Dolomitic L.S. 2.840 0.32% 2.0%

Intermediate Aggregate #1:

Intermediate Aggregate #2:

Fine Aggregate #1: NESL- lshman Sandstone 2.610 0.94% 99.0%

Coarse Aggregate %: 59.4%

Intermediate Aggregate #1%:

Intermediate Aggregate #2%:

Fine Aggregate #1 %: 40.6%

Mix Proportion Calculations

Water/Cementitious Materials Ratio: 0.410

Air Content: 6.00%

Volume                                    (ft
3
)

Batch Weights SSD       

(lb/yd
3
) Spec. Gravity

Absolute 

Volume        

(%)

Portland Cement: 1.643 323 3.150 6.088%

GGBFS: 0.973 176 2.900 3.603%

Fly Ash: 0.588 88 2.400 2.177%

Silica Fume:

Other Pozzolan:

Coarse Aggregate: 10.882 1,928 2.840 40.314%

Intermediate Aggregate #1:

Intermediate Aggregate #2:

Fine Aggregate #1: 7.430 1,210 2.610 27.528%

Water: 3.857 241 1.000 14.289%

Air: 1.620 6.002%

26.993 3,966 100.000%

Unit Weight (lb/ft
3
) 146.9 Paste 32.158%

Mortar 60.217%

Admixture Information Source/Description oz/yd
3

oz/cwt

Air Entraining Admix.: MBVR AEA 7.04 1.20

Admix. #1: Glenium 3030 WR 35.22 6.00

Admix. #2: 100XR RE 11.74 2.00

Admix. #3:

AVA Information Absolute Volume                             (%)

Air Free Paste: 26.157%

Air Free Mortar: 54.215%

7/14/2010

Mix Design & Misc. Info.

State Road 36 Section 20, Bridge Deck in Roaring Spring, Blair County, PA

Plum Contracting

587 lb Cementitious

ECMS#21899
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Sample Information:

Project:

Date: Time:

Type of Paving: Direction of Paving:

Sta: Latitude: Longitude:

Mix ID: Truck IDs:

Environmental Conditions:

Dew Point: Relative Humidity:

Wind Speed: Ambient Temp.:

Concrete Properties:

4 (7:53 am)

use adiacal

3

80.4 30

Slump (in.): 3.50 4

Air Content: 6.0%

Unit Weight (lb/ft
3
): 44.6

Microwave Water Content Samples: Calorimetry (ADIACAL Cylinders):

Set-Time (ASTMC403) Mortar Samples: Cylinder for RCP & Perm. Voids Boil Test:

3.0 69.0

Base/Soil Temp. (internal)(ºF): Base Temp. (surface)(ºF):

Concrete Temp.(ºF):

Scaling Blocks:

Compressive, Tensile & MOR Cylinders:

Shrinkage Beams:

Bridge Deck n/a

            PA - Ternary Mixtures

SR 36 Section 20, Bridge Deck in Roaring Spring, Blair County, PA

14-Jul-10 7:20 AM

n/a

Sample Location Mark                             

& Comments:

63.0 82%
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Sample Information:

Project:

Date: Time:

Type of Paving: Direction of Paving:

Sta: Latitude: Longitude:

Mix ID: Truck IDs:

Environmental Conditions:

Dew Point: Relative Humidity:

Wind Speed: Ambient Temp.:

Concrete Properties:

4 (10:00am)

use adiacal

n/a

78.8 n/a

Slump (in.): 3.75 n/a

Air Content: 6.0%

Unit Weight (lb/ft
3
): 44.6

Scaling Blocks:

Concrete Temp.(ºF): Compressive, Tensile & MOR Cylinders:

Shrinkage Beams:

Microwave Water Content Samples: Calorimetry (ADIACAL Cylinders):

Set-Time (ASTMC403) Mortar Samples: Cylinder for RCP & Perm. Voids Boil Test:

64.0 78%

7.0 72.0

Base/Soil Temp. (internal)(ºF): Base Temp. (surface)(ºF):

n/a

Sample Location Mark                             

& Comments:

Bridge Deck n/a

            PA - Ternary Mixtures

SR 36 Section 20, Bridge Deck in Roaring Spring, Blair County, PA

14-Jul-10 9:30 AM



205 

 

 

 

 

Project:

Mix ID:

Test Date: 14-Jul-10

587 lb/yd
3

Agg. Ratios: 59.00% 0.00% 41.00% 100.00%

Sieve Coarse Intermediate Fine #1 Fine #2

Combined 

% Retained

Combined 

% Retained 

On Each 

Sieve

Combined 

% Passing

2 ½" 100% 0% 100% 0% 0% 100%

2" 100% 0% 100% 0% 0% 100%

1 ½" 100% 0% 100% 0% 0% 100%

1" 99% 0% 100% 1% 1% 99%

¾" 75% 0% 100% 15% 14% 85%

½" 37% 0% 100% 37% 22% 63%

⅜" 22% 0% 100% 46% 9% 54%

#4 2% 0% 99% 58% 12% 42%

#8 1% 0% 80% 67% 9% 33%

#16 1% 0% 60% 75% 8% 25%

#30 1% 0% 45% 81% 6% 19%

#50 1% 0% 26% 89% 8% 11%

#100 1% 0% 7% 97% 8% 3%

#200 100.0%  0.0%

Workability Factor: 33.7

Coarseness Factor: 68.8

Total Cementitious Material:

Sample Comments:

Bridge Deck Paving in Roaring Spring, PA

ECMS#21899
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Project

Date: Start Time:

Sta:

Test Data

Penetration 

Time (xx:xx-24 hr 

format) Time (min)

Needle # 

(1,2,4,10,20 or 40) Force (lb)

Penetration 

Resistance 

(psi)

Sample 

Temp. (ºF)

12:50 PM 330.00 1 36 36.00 73.2

1:30 PM 370.00 2 42 84.00 74.7

2:35 PM 435.00 4 100 400.00 76.3

3:12 PM 472.00 10 98 980.00 78.1

3:57 PM 517.00 20 102 2040.00 77.9

4:20 PM 540.00 40 81 3240.00 77.9

4:50 PM 570.00 40 104 4160.00 77.4

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

0.00 0.00

218 minutes 3.63 hours

658 minutes 10.96 hours

n/a

Initial Set (at 500 psi PR) estimated times 

using forecast 

functionFinal Set (at 4,000 psi PR)

Pennsylvania - Ternary Mixtures

Set Time ASTM C 403

SR 36 Section 20, Bridge Deck in Roaring Spring, Blair County, PA

14-Jul-10 7:20 AM
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Project

Date: Time:

Sta:

Test Data

3,722.3

2,198.3

3,686.7

3,645.6

3,620.8

3,606.9

3,603.6

3,602.3

3,601.6

3,601.6

7.9%

146.6

313.5

587

1210

1928

0

0.94%

0.32%

0.00%

0.504

* If necessary (stop if the weight loss is less than 1g)

** Mass at test termination

***From unit weight test

Coarse aggregate absorption (%)

Intermediate aggregate absorption (%)

w/c

Total water content, WT, (lb/yd
3
)

Total cementitious weight (lb/yd
3
)

Fine aggregate weight (lb/yd
3
)

Coarse Aggregate weight (lb/yd
3
)

Intermediate Aggregate weight (lb/yd
3
)

Fine aggregate absorption (%)

Unit weight of fresh concrete, UW (lb/ft
3
)***

Mass of tray+cloth+block+fresh test sample, W F (g)

Mass of tray+cloth+block, WS(g)

Mass of tray+cloth+dry sample, WD (g) (5mins)

Mass of tray+cloth+dry sample, WD (g) (7 mins)

Mass of tray+cloth+dry sample, WD (g) (9 mins)*

Mass of tray+cloth+dry sample, WD (g) (11 mins)*

Mass of tray+cloth+dry sample, WD (g) (13 mins)*

Mass of tray+cloth+dry sample, WD (g) (15 mins)*

Mass of tray+cloth+dry sample, WD (g) (17 mins)*

Mass of tray+cloth+dry sample, WD (g) (Final)**

Water content percentage, WC (% )

n/a

PA - Ternary Mixtures

Microwave Water Content Worksheet

SR 36 Section 20, Bridge Deck in Roaring Spring, Blair County, PA

14-Jul-10 7:20 AM
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Project

Date: Time:

Sta:

Test Data

3,786.1

2,198.0

3,753.3

3,715.5

3,685.4

3,674.6

3,672.2

3,671.1

3,670.6

3,670.6

7.3%

146.6

287.9

587

1210

1928

0

0.94%

0.32%

0.00%

0.461

* If necessary (stop if the weight loss is less than 1g)

** Mass at test termination

***From unit weight test

n/a

Pennsylvania - Ternary Mixtures

Microwave Water Content Worksheet

SR 36 Section 20, Bridge Deck in Roaring Spring, Blair County, PA

14-Jul-10 9:30 AM

Unit weight of fresh concrete, UW (lb/ft
3
)***

Mass of tray+cloth+block+fresh test sample, W F (g)

Mass of tray+cloth+block, WS(g)

Mass of tray+cloth+dry sample, WD (g) (5mins)

Mass of tray+cloth+dry sample, WD (g) (7 mins)

Mass of tray+cloth+dry sample, WD (g) (9 mins)*

Mass of tray+cloth+dry sample, WD (g) (11 mins)*

Mass of tray+cloth+dry sample, WD (g) (13 mins)*

Mass of tray+cloth+dry sample, WD (g) (15 mins)*

Mass of tray+cloth+dry sample, WD (g) (17 mins)*

Mass of tray+cloth+dry sample, WD (g) (Final)**

Water content percentage, WC (% )

Coarse aggregate absorption (%)

Intermediate aggregate absorption (%)

w/c

Total water content, WT, (lb/yd
3
)

Total cementitious weight (lb/yd
3
)

Fine aggregate weight (lb/yd
3
)

Coarse Aggregate weight (lb/yd
3
)

Intermediate Aggregate weight (lb/yd
3
)

Fine aggregate absorption (%)
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Figure 1 State Route 36 Section 20 bridge deck. 

 

Figure 2 Project and mobile lab location. 
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Figure 3Ambient temperature versus time of day. 

 

Figure 4 Relative humidity versus time of day. 
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Figure 5 Wind speed versus time of day. 

 

Figure 6 Concrete being tested by Penn DOT technicians . 
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Figure 7 Concrete being spread by construction crews. 

 

Figure 8 Concrete being tested by CP Tech Center technician PCC mobile lab. 
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Figure 9 PCC mobile lab. 

 

Figure 10 Concrete being finished. 
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Figure 11 Two i-buttons being embeded on site. 

 

Figure 12 Concrete being vibrated. 
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Figure 13 Concrete temperature being tested by sensor. 

 

Figure 14 Bridge deck surface at four months after being constructed. 
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Figure 15 Bridge deck surface at four months after being constructed. 

 

Figure 16 (a) Concrete temperatures versus time for heat of hydration. 
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Figure 16 (b) Concrete maturity. 

 

Figure 17 Compressive strength development with time. 
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Figure 18 Tensile splitting strength development with time. 

 

Figure 19 Modulus of elasticity development with time. 
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Figure 20 Free shrinkage of prisms (ASTM C 157). 
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Figure 21 Configuration of restrained concrete ring samples. 
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Figure 22 Strains of steel rings resulting from concrete shrinkage. 

 

Figure 23 PA salt scaling sample after 50
th

 freeze-thaw cycle. 
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Table 1 Ambient conditions of S.R. 36 Section 20 Bridge Deck Project 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample 

Date

Sample 

Time Sample Comments

Relative 

Humidity 

(%)

Ambient 

Temp. 

(˚F)

Wind 

Speed 

(mph)

Conc. 

Temp. 

(probe) 

(˚F)

14-Jul-10 7:20 AM cp tech center sample taken at truck discharge 82.0 69.0 3.0 80.4

14-Jul-10 8:05 AM PennDOT sample taken at pump discharge (quality control) 70.0 77.4 0.0 73.0

14-Jul-10 8:50 AM
PennDOT sample taken at pump discharge (acceptance 

test/quality control test)
75.0 75.4 0.0 74.0

14-Jul-10 8:50 AM
PennDOT sample taken at pump discharge (acceptance 

test/quality control test)
75.0 75.4 0.0 80.0

14-Jul-10 9:27 AM
PennDOT sample taken at pump discharge (quality 

assurance test)
77.0 74.6 0.0 75.0

14-Jul-10 9:30 AM cp tech center sample taken at truck discharge 78.0 72.0 7.0 78.8

14-Jul-10 10:01 AM PennDOT sample taken at pump discharge (quality control) 79.0 73.9 0.0 79.0

14-Jul-10 10:38 AM PennDOT sample taken at pump discharge (quality control) 79.0 73.2 0.0 79.0

PA - Ternary Mixtures

S.R. 36 Section 20 Bridge Deck

Sample Information & Identification Environmental Conditions
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Table 2 Properties of hardened concrete 

Tests Results 

7-day Compressive Strength, psi 4240 

28-day Compressive Strength, psi 4700 

Rapid Chloride Permeability, 

Coulombs 

Sample 1 Sample 2   Average 

1860 1731   1796 

Strength Development 28/7 day fc 

Ratio 
1.11 

Shrinkage Microstrain @ 28 days, 

in/in 
612.5 

Average Stress Rate by Restrained 

Ring Test, psi/day 
55.35 

 

 

Table 3 Summation of strength and modulus of elasticity 

Location Age, days 
Compressive 

Strength, psi 

Splitting Tensile 

Strength, psi 

Modulus Of 

Elasticity, psi 

PA 

1 2,010 291 3.95E+06 

3 3,430 281 4.45E+06 

7 4,240 375 4.60E+06 

28 4,700 488 5.25E+06 

56 5,620 497 5.60E+06 
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Table 4 Free shrinkage test results 

PA Project Free Shrinkage Test (ASTM C 157) 

Dry 

Time 

Beam 1 

change% 

Beam 2 

change % 

Beam 3 

change % 

Beam 4 

change % Average Microstrain 

1 -0.002 -0.005 -0.004 -0.003 -0.003 -35 

4 -0.010 -0.012 -0.010 -0.013 -0.011 -112.5 

7 -0.019 -0.020 -0.019 -0.021 -0.020 -197.5 

14 -0.026 -0.025 -0.031 -0.029 -0.028 -277.5 

28 -0.061 -0.062 -0.064 -0.058 -0.061 -612.5 

56 -0.070 -0.068 -0.065 -0.070 -0.068 -682.5 

 

Table 5 Cracking potential and average stress rate (ASTM C 1581) 

Cracking Potential for PA Project (ASTM C 1581) 

  Ring 1 Ring 2 Ring 3 

Strain Rate Factor (in./in.x10
-6

)/hours
1/2

 -7.86 -5.56 -7.37 

G (psi) 10.47x106 10.47x106 10.47x106 

Absolute Value of αavg (in./in.10
-6

)/day
1/2

 33.95 

Elapsed Time, tr (hours) 270.0 270.0 210.0 

Elapsed Time, tr (days) 11.3 11.3 8.8 

Stress Rate, q (psi/day) q=GIαavgI/2√tr 53.0 53.0 60.1 

Average Stress Rate, q (psi/day) q=GIαavgI/2√tr 55.35 

Potential for cracking classification (ASTM 1581) High (50≤ q) 

 

Table 6 Salt scaling test visual condition of specimen 

  Condition of Surface 

PA Salt Scaling Samples Cycle 5 Cycle 10 Cycle 15 Cycle 20 Cycle 25 Cycle 50 

No. 1 1 1 1 2 2 2 

No. 2 1 1 1 2 2 2 

No. 3 1 1 1 2 2 2 
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Introduction 

This document is a report of the activities and observations of a research team that 

performed on-site testing of a ternary mixture placed on a small bridge in Epsom, New 

Hampshire. The cementitious system comprised a Type II cement, Grade 120 slag cement, 

and Class F fly ash. The purpose of this research project is a comprehensive study of how 

supplementary cementitious materials (SCMs) can be used to improve the performance of 

concrete mixtures when used in ternary blends. This is the third phase of a project which 

intends to provide consulting to states and contractors on the use and field management of 

ternary mixtures. A state-of-the-art 44-foot long PCC mobile laboratory equipped for on-site 

cement and concrete testing was provided by the CP Tech Center to collect data and field 

observations.  

Project Information 

 The project was advertised in September 2009 for construction during 2010. 

 Project No. Epsom 15266 

 Located on NH Route 107, approximately thirteen miles east of Concord and one 

mile south of US Route 4. 

 Contractor: Southern NH Poured Concrete Const., Inc. 

 Bridge is situated on a low volume, two-lane rural road with 20 feet long by 30 feet 

wide. 

 Bridge deck placement (the slab on the right with form using ternary mixture while 

left one using conventional binary mix for comparison purpose) (Figure 1) 

Site Location 

An area at the bridge site was prepared by the contractor for the PCC mobile lab. The 

location of the project site and the mobile lab is shown Figure 2. 

Sampling and Testing Activities 

The mobile lab arrived on site on August 9, 2010. Concrete placement, sampling and 

testing took place on August 10, 2010. Hardened samples were transported to Iowa State 
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University on August 14, 2010, for further testing.  The following tests were conducted either 

in the field or in the laboratory: 

 Calorimetry test (ASTM C 1679) 

 Slump, unit weight, temperature and air content of fresh concrete – 1 test (ASTM C 

143, ASTM C 138, ASTM C 231) 

 Microwave w/c ratio – 1 test (AASHTO T 318) 

 Initial set and final set of concrete – 1 test (ASTM C 403) 

 Compressive strength, splitting tensile strength, static modulus of elasticity - 4” x 8” 

cylinders at 1-day, 3-days, 7-days, 28-days, and 56-days (ASTM C 39, ASTM C 

496, ASTM C 469) 

 Rapid chloride permeability - 4” x 8” cylinders at 56 days (ASTM C 1202) 

 Salt scaling – 3 samples (ASTM C 672) 

 Free shrinkage best – 3 beams (ASTM C 157) 

 Restrained rings –  4 samples (ASTM C 1581) 

 Two i-buttons are buried on top and bottom layer of reinforcement to investigate 

maturity of concrete. (ASTM C 1074) 

Observations of the Research Team 

The following observations were made in this field testing: 

 The structure was originally designed to have a bituminous concrete wearing course, 

but the designer had revised it to have a bare deck for long-term observation purposes. 

 The deck thickness was 23 inches. The cover for top mat of epoxy coated steel was 

approximately 5 1/8 inches and cover for bottom mat of steel is 1 ½ inches.  

 Removable wood formwork was used in the deck construction. 

 All concrete was delivered in three concrete ready-mix trucks. During construction 

process, ready-mix trucks dumped concrete into bridge deck. Concrete was manually 

spread out and vibrated by the construction crew.  
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 The mix design was prepared by Southern NH Poured Concrete Co, and approved by 

New Hampshire Department of Transportation. The mix proportions are given in the 

project data section.  

 The State of New Hampshire has alkali reactive aggregate, therefore the 

specifications require mixes to contain 50% slag or fly ash unless the aggregate has 

been tested to determine the required percentage to mitigate ASR. Most of suppliers 

presently use fly ash from Brayton Point, MA. 50% replacement of combined Grade 

120 slag cement and Class F fly ash were used as supplementary cementitious 

material. Strux 90/40 polymer fibers were also used at a dosage of 7 lb/cubic yard. 

 According to the workability factor & coarseness factor graph (Page 21) combined 

aggregate gradation for this project falls in the well-graded region. Similarly, the 

combined percent retained curve (Page 22) indicates a well graded system. 

 The weather conditions recorded by the PCC mobile lab are given in Table 1 and in 

Figures 3 to 5. The relative humidity ranged from 72% to 79%; the ambient 

temperature ranged from 71.8˚F to 74.4 ˚F; the wind speed varied from 1 mph to 3 

mph; the concrete temperature ranged from 80 ˚F to 83 ˚F during the recorded period. 

 The fresh concrete tests include slump cone, unit weight, and water-cementitious 

materials ratio by microwave. During the construction, one set of samples was tested 

by CP Tech Center crew and four sets of testing were performed by NHDOT crew. 

Slump result was varied from 3.0 inches to 5.5 inches. Five sets of unit weight of 

concrete were available and ranged from 136 lb/ft
3 

(performed by NHDOT) to 141.18 

lb/ft
3
 (performed by CP Tech Center). The microwave water-cementitious ratio was 

found to be 0.43; the design value is 0.44. The data are provided in Page 16. 

 The air content ranged from 6.6% to 8.8% with an average of 7.4% over the five tests 

conducted. The specified minimum was 5%.  It was noticed that the air content were 

reduced by adding 9 oz defoamer admixture during mixing. The data are provided on 

Page 17. 

 Setting time of the mix was determined as a single measurement: initial set occurred 

at 5.24 hours and the final set was achieved at 8.12 hours (Page 24). 
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 The rapid chloride permeability test measures the electrical conductance of a concrete 

sample as its resistance to chloride ion penetration. The test results shown in Table 2 

indicate a classification of “very low” permeability of chloride according to ASTM 

C1202. 

 The strength development 28/7 fc ratio is reported in Table 2. 

 Two i-buttons were attached to reinforcing steel before the concrete placement: one 

was placed on top layer of reinforcement steel and the other was placed on bottom 

layer of reinforcement steel. The rate of cement hydration is dependent on the 

temperature and the time (Mindess, Young and Darwin, 2003). Maturity is used to 

monitor the cement hydration progress as a function of time and temperature. The 

temperature of concrete was recorded up to 28 hours. The concrete temperature over 

time is plotted in Figure 14 (a) and concrete maturity curve based on Nurse – Saul 

method (ASTM C 1074) is generated in Figure 14 (b). 

 Compressive strength, splitting tensile strength and modulus of elasticity results 

(ASTM C 39, ASTM C 496, and ASTM C 469) are given in Table 3 and also plotted 

in Figures 15 to Figure 17.  

 Free shrinkage test (ASTM C 157) was conducted in the laboratory. Three concrete 

beams were wet cured for seven days and then moved to a dry room at 23˚C and 50% 

relative humidity. The drying shrinkage results are given in Table 5 and also plotted 

in Figure 18. 

 Restrained shrinkage test was conducted based on ASTM C 1581. Four rings were 

cast. The rings were demolded and the top surface was covered with paraffin wax 24 

hours from casting. The rings were allowed to dry at 23˚C and 50% relative humidity 

immediately after demolding. Strains in the steel rings were recorded every 10 

minutes up to 28 days or until the concrete cracked. The configuration of restrained 

concrete rings is shown in Figure 19. The cracking potential is listed in Table 5 and 

shown graphically in Figure 20. The cracking potential is classified as “moderate high” 

based on the average stress rate. 

 Salt scaling test (ASTM C 672) was performed: the specimens were subjected to 16 

to18 hours freezing and then allowed to thaw at 23 ± 2.0˚C and a relative humidity of 
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45 to 55% for 6 to 8 hours. The solution of 4 % calcium chloride was replaced and 

the test was continued following visual examination. 50 freeze-thaw cycles were 

applied. The surface was rated on a scale of 0 to5 with 0 having no scaling, 1 having 

very slight scaling of 3 mm depth maximum without coarse aggregate visible, 2 

having slight to moderate scaling, 3 having moderate scaling with some coarse 

aggregate visible, 4 having moderate to severe scaling, and 5 having severe scaling 

with coarse aggregate visible over entire surface. The photograph after 50
th

 cycle was 

taken and shown in Figure 21. The visual ratings assigned to each specimen for 

cycles 0, 5, 10, 15, 20, 25, and 50 are given in Table 6. 
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General Information

Project:

Contractor:

Mix Description:

Mix ID:

Date(s) of Placement:

Cementitious Materials Source Type Spec. Gravity lb/yd
3

% 

Replacement 

by Mass

Portland Cement: Ciment Quebec Type II Type II 3.150 306

GGBFS: Lafarge North America Grade 120 2.910 213 34.86%

Fly Ash: Headwaters Resources Class F 2.370 92 15.06%

Silica Fume:

Other Pozzolan:

611 lb/yd
3

6.5 sacks/yd
3

Aggregate Information Source Type

Spec. Gravity 

SSD

Absorption 

(%)

% Passing     

#4

Coarse Aggregate: Pike-Hooksett 3/4 Blended Stone 2.670 0.65% 3.6%

Intermediate Aggregate #1:

Intermediate Aggregate #2:

Fine Aggregate #1: Fillmore S&G Sandstone 2.670 0.78% 99.2%

Coarse Aggregate %: 60.9%

Intermediate Aggregate #1%:

Intermediate Aggregate #2%:

Fine Aggregate #1 %: 39.1%

Mix Proportion Calculations

Water/Cementitious Materials Ratio: 0.443

Air Content: 5.00%

Volume                                    (ft
3
)

Batch Weights SSD       

(lb/yd
3
) Spec. Gravity

Absolute 

Volume        

(%)

Portland Cement: 1.557 306 3.150 5.766%

GGBFS: 1.173 213 2.910 4.344%

Fly Ash: 0.622 92 2.370 2.304%

Silica Fume:

Other Pozzolan:

Coarse Aggregate: 10.938 1,800 2.670 40.511%

Intermediate Aggregate #1:

Intermediate Aggregate #2:

Fine Aggregate #1: 7.023 1,160 2.670 26.009%

Water: 4.338 271 1.000 16.066%

Air: 1.350 5.000%

27.000 3,842 100.000%

Unit Weight (lb/ft
3
) 142.3 Paste 33.480%

Mortar 60.740%

Admixture Information Source/Description oz/yd
3

oz/cwt

Air Entraining Admix.: W.R. Grace Darex II AEA 3.80 0.62

Admix. #1: Glenium 7500-HRWR (BASF Admixtures) 27.50 4.50

Admix. #2: Strux 90/40 fibers (7 lb/cubic yard)

Admix. #3:

AVA Information Absolute Volume                             (%)

Air Free Paste: 28.480%

Air Free Mortar: 55.740%

8/10/2010

Mix Design & Misc. Info.

RT-107, Epsom 15266, NH

Southern NH Poured Concrete Const., Inc.

611 lb Cementitious
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Project:

Mix ID:

Test Date: 10-Aug-10

611 lb/yd
3

Agg. Ratios: 60.90% 0.00% 39.10% 100.00%

Sieve Coarse Intermediate Fine #1 Fine #2

Combined 

% Retained

Combined 

% Retained 

On Each 

Sieve

Combined 

% Passing

2 ½" 100% 0% 100% 0% 0% 100%

2" 100% 0% 100% 0% 0% 100%

1 ½" 100% 0% 100% 0% 0% 100%

1" 100% 0% 100% 0% 0% 100%

¾" 88% 0% 100% 7% 7% 93%

½" 60% 0% 100% 24% 17% 76%

⅜" 31% 0% 100% 42% 18% 58%

#4 4% 0% 99% 59% 17% 41%

#8 1% 0% 91% 64% 4% 36%

#16 1% 0% 80% 68% 5% 32%

#30 1% 0% 43% 82% 14% 18%

#50 1% 0% 15% 93% 11% 7%

#100 1% 0% 6% 97% 4% 3%

#200 0.7% 99.7%  0.3%

Workability Factor: 37.7

Coarseness Factor: 66.1

Total Cementitious Material:

Sample Comments:

RT-107 Epsom, NH

13266 Epsom, NH
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Project

Date: Start Time:

Sta:

Test Data

Penetration 

Time (xx:xx-24 hr 

format) Time (min)

Needle # 

(1,2,4,10,20 or 40) Force (lb)

Penetration 

Resistance 

(psi)

Sample 

Temp. (ºF)

12:50 PM 215.00 1 20 20.00 76.6

1:30 PM 255.00 2 24 48.00 76.6

2:15 PM 300.00 4 38 152.00 77.7

2:45 PM 330.00 10 34 340.00 78.8

3:15 PM 360.00 20 30 600.00 79.9

3:55 PM 400.00 20 58 1160.00 84.2

4:15 PM 420.00 20 100 2000.00 83.3

4:35 PM 440.00 40 76 3040.00 83.1

4:45 PM 450.00 40 84 3360.00 83.1

4:55 PM 460.00 40 90 3600.00 83.1

5:15 PM 480.00 40 100 4000.00 82.9

480.00 4000.00

480.00 4000.00

480.00 4000.00

314 minutes 5.24 hours

487 minutes 8.12 hours

n/a

Initial Set (at 500 psi PR) estimated times 

using forecast 

functionFinal Set (at 4,000 psi PR)

New Hampshire - Ternary Mixtures

Set Time ASTM C 403

RT-107, Epsom 15266, NH

10-Aug-10 9:15 AM
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Project

Date: Time:

Sta:

Test Data

3,778.0

2,198.5

3,735.8

3,698.4

3,670.2

3,662.1

3,660.1

3,659.8

3,659.8

7.5%

141.2

285.3

611

1160

1800

0

0.78%

0.65%

0.00%

0.433

* If necessary (stop if the weight loss is less than 1g)

** Mass at test termination

***From unit weight test

n/a

New Hampshire - Ternary Mixtures

Microwave Water Content Worksheet

RT-107, Epsom 15266, NH

10-Aug-10 9:15 AM

Unit weight of fresh concrete, UW (lb/ft
3
)***

Mass of tray+cloth+block+fresh test sample, W F (g)

Mass of tray+cloth+block, WS(g)

Mass of tray+cloth+dry sample, WD (g) (5mins)

Mass of tray+cloth+dry sample, WD (g) (7 mins)

Mass of tray+cloth+dry sample, WD (g) (9 mins)*

Mass of tray+cloth+dry sample, WD (g) (11 mins)*

Mass of tray+cloth+dry sample, WD (g) (13 mins)*

Mass of tray+cloth+dry sample, WD (g) (15 mins)*

Mass of tray+cloth+dry sample, WD (g) (17 mins)*

Mass of tray+cloth+dry sample, WD (g) (Final)**

Water content percentage, WC (% )

Coarse aggregate absorption (%)

Intermediate aggregate absorption (%)

w/c

Total water content, WT, (lb/yd
3
)

Total cementitious weight (lb/yd
3
)

Fine aggregate weight (lb/yd
3
)

Coarse Aggregate weight (lb/yd
3
)

Intermediate Aggregate weight (lb/yd
3
)

Fine aggregate absorption (%)
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Figure 1 Route 107 bridge deck in Epsom, NH. 

 

Figure 2 Project and mobile lab location. 
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Figure 3 Ambient temperature versus time of day. 

 

Figure 4 Relative humidity versus time of day. 
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Figure 5 Wind speed versus time of day. 

 

Figure 6 Bridge deck with removable wood form. 
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Figure 7 Concrete being placed. 

 

Figure 8 Concrete being vibrated. 
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Figure 9 PCC mobile lab. 

 

Figure 10 Two i-buttons being placed. 
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Figure 11 Fresh concrete. 

 

Figure 12 Concrete being finished. 
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Figure 13 Concrete being cured with burlap. 

 

Figure 14 (a) Concrete temperatures versus time for heat of hydration. 
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Figure 14 (b) Concrete maturity. 

 

Figure 15 Compressive strength development with time. 
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Figure 16 Tensile splitting strength development with time. 

 

Figure 17 Modulus of elasticity development with time. 

0

100

200

300

400

500

600

0 5 10 15 20 25 30 35 40 45 50 55 60

S
p

li
tt

in
g

 T
en

si
le

 S
tr

en
g

th
 (

p
si

) 

Age (days) 

Tensile Splitting Strength  

NH

0.0E+00

1.0E+06

2.0E+06

3.0E+06

4.0E+06

5.0E+06

6.0E+06

0 5 10 15 20 25 30 35 40 45 50 55 60

M
O

E
 (

p
si

) 

Age (days) 

Modulus of Elasticity 



256 

 

 

 

Figure 18 Free shrinkage of prisms (ASTM C 157). 
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Figure 19 Configuration of restrained concrete ring samples. 
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Figure 20 Strains of steel rings resulting from concrete shrinkage. 

 

Figure 21 NH salt scaling sample after 50
th

 freeze-thaw cycle. 
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Table 1 Ambient conditions of Route 107 Bridge Deck Project in NH 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample 

Date

Sample 

Time Sample Comments

Relative 

Humidity 

(%)

Ambient 

Temp. 

(˚F)

Wind 

Speed 

(mph)

Conc. 

Temp. 

(probe) 

(˚F)

10-Aug-10 8:22 AM NHDOT sample taken at pump discharge (quality control) 79.0 71.8 3.0 83.0

10-Aug-10 9:00 AM NHDOT sample taken at pump discharge (quality control) 75.0 73.1 1.0 80.0

10-Aug-10 9:15 AM cp tech center sample taken at truck discharge 72.0 74.0 2.0 82.2

10-Aug-10 9:17 AM NHDOT sample taken at pump discharge (quality control) 72.0 74.4 3.0 81.0

10-Aug-10 9:28 AM NHDOT sample taken at pump discharge (quality control) 72.0 74.4 1.0 81.0

New Hampshire - Ternary Mixtures

RT-107 Bridge Deck

Sample Information & Identification Environmental Conditions
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Table 2 Properties of hardened concrete 

Tests                      Results   

7-day Compressive Strength, psi 3360 

28-day Compressive Strength, psi 4550 

Rapid Chloride Permeability, 

Coulombs 

Sample 1 Sample 2 
 

Average 

1279 732   1006 

Strength Development 28/7 day fc 

Ratio 
1.35 

Shrinkage Microstrain @ 28 days, 

in/in 
520 

Average Stress Rate by Restrained 

Ring Test, psi/day 
50.34 

 

 

Table 3 Summation of strength and modulus of elasticity 

Location Age, days 
Compressive 

Strength, psi 

Splitting Tensile 

Strength, psi 

Modulus Of 

Elasticity, psi 

NH 

1 620 99 2.90E+06 

3 2,650 278 3.00E+06 

7 3,360 346 3.50E+06 

28 4,550 451 4.05E+06 

56 5,530 489 4.85E+06 
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Table 4 Free shrinkage test results 

NH Project Free Shrinkage Test (ASTM C 157) 

Dry 

Time Beam 1 change% Beam 2 change % Beam 3 change % Average Microstrain 

1 -0.024 -0.021 -0.015 -0.020 -200.0 

4 -0.015 -0.006 -0.005 -0.009 -86.7 

7 -0.024 -0.016 -0.022 -0.021 -206.7 

14 -0.029 -0.025 -0.026 -0.027 -266.7 

28 -0.055 -0.048 -0.053 -0.052 -520.0 

56 -0.064 -0.057 -0.058 -0.060 -596.7 

 

Table 5 Cracking potential and average stress rate (ASTM C 1581) 

Cracking Potential for NH Project (ASTM C 1581) 

  Ring 1 Ring 2 Ring 3 Ring 4 

Strain Rate Factor (in./in.x10
-6

)/hours
1/2

 -7.06 -6.80 -6.35 -9.00 

G (psi) 10.47x10
6
 10.47x10

6
 10.47x10

6
 10.47x10

6
 

Absolute Value of αavg (in./in.10
-6

)/day
1/2

 35.77 

Elapsed Time, tr (hours) 294.8 367.1 323.3 350.4 

Elapsed Time, tr (days) 12.3 15.3 13.5 14.6 

Stress Rate, q (psi/day) q=GIαavgI/2√tr 53.4 47.9 51.0 49.0 

Average Stress Rate, q (psi/day) q=GIαavgI/2√tr 50.34 

Potential for cracking classification (ASTM 1581) High (50≤ q) 

 

Table 6 Salt scaling test visual condition of specimen 

  Condition of Surface 

NH Salt Scaling Samples Cycle 5 Cycle 10 Cycle 15 Cycle 20 Cycle 25 Cycle 50 

No. 1 1 1 1 1 2 3 

No. 2 1 1 1 1 2 3 

No. 3 1 1 1 1 2 3 
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