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ABSTRACT 

Many ground improvement techniques are subjected to the limitations of cost, safety and 

construction time. Innovations in industry are resulting in new technologies and construction 

methods to overcome these limitations. Displacement Aggregate Pier (DAP) technology 

developed by GeopierTM Foundation Company is one such technology and is the focus of this 

research. Specifically, the influence of pier installation on matrix soil densification is 

addressed based on evaluation of several full-scale field studies. Cases histories are presented 

describing the use of cone penetration test (CPT) and standard penetration test (SPT) to 

investigate matrix soil densification for a range of ground conditions. Additionally, full scale 

load tests were studies for single piers and pier groups to confirm the current design approach. 

Data from sixteen of sites were analyzed. Although site specific analysis reveals the unique 

behavior of IRAP elements, an effort was made to combine data from multiple sites to 

investigate general relationships between matrix soil densification and soil type, depth, initial 

relative density, pier spacing, radial distance, groundwater table locations and soil strata. Key 

findings from this study show that ground densification is highest for matrix soils with less 

than 20% fines and that the relative density increases for groups of piers and in particular for 

sandy matrix soils. Evaluations of group effective factor, improvement index, ground 

modification and settlement are also presented in this research. Simplied design tables 

presenting change the CPT tip resistance for individual DAPs and group of DAPs are present 

as one outcome from this study. 
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CHAPTER 1: INTRODUCTION 

This chapter is arranged in five sections, background about displacement aggregate pier 

technology, the research goals, the research objectives, benefits and significance of this 

research, and the arrangement of the thesis. 

BACKGROUND 

Because many projects are constructed on weak soils, such as soft clay and loose sand, 

and because all structural loads finally transfer to the matrix soil beneath the foundation, that 

soil often requires improvement to adequately support the structures. Traditional ground 

improvement techniques, such as deep foundations, preloading, and overexcavation and 

replacement, can be costly and time consuming. In recent years, displacement aggregate piers 

(DAP) have been developed and increasingly are used to improve such soils and reduce 

foundation settlement. 

The Geopier Foundation Company TM has developed DAP technologies including 

Geopier®, Impact® Rammed Aggregate Piers (IRAP or IP), Pyramid PiersTM, and Taper 

Mandrel Rammed Aggregate Piers (TMRAP). These technologies have been used to support 

economical construction of commercial buildings, oil tanks, warehouses, and highway 

embankments. 

Many instruments are used to investigate ground improvement, such as Pressuremeters 

and large plate load tests, but Cone Penetration Tests (CPT), and Standard Penetration Tests 

(SPT) are the most commonly used. CPTs provide continuous, detailed profiles of tip 

resistance, sleeve friction, and pore water pressure, and SPTs provide a measure of 

penetration resistance or blow count incrementally with depth. These tests can be empirical 

related to engineering parameter values that estimate matrix soil characteristics before and 
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after the installation of displacement aggregate piers. Full-scale modulus load tests are used 

to investigate the performance of pier elements and confirm pier performance when it is 

subjected to structural loads. The combination of modulus load test results and results from 

CPTs and SPTs may be used to describe the interactions between piers and matrix soils, and 

more importantly, the overall effectiveness of DAPs as a ground improvement system. 

CPTs, SPTs, and modulus load tests conducted on three kinds of displacement aggregate 

piers—IRAPs, pyramid piersTM, and TMRAPs—from 16 sites provided the data used in this 

study. 

RESEARCH GOAL 

The main goal of this research was to produce two simple design tables indicating matrix 

soil improvement for DAPs. Three areas of investigation were planned to meet this goal: an 

investigation of matrix soil improvement around displacement aggregate piers; the 

identification and examination the matrix soil factors that influence the load-settlement 

response of these piers during vertical loading; and a study of the interactions between matrix 

soil and piers. 

RESEARCH OBJECTIVES 

In order to create the design tables that indicate matrix soil improvements, the first 

objective was to investigate matrix soil improvement around displacement aggregate piers 

based on soil parameters determined by CPTs and SPTs that were conducted before and after 

installation of the piers at the case sites. The magnitudes of improvement factors were 

studied with respect to soil types, fines content, initial relative density, and pier spacing. 
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The second objective was to evaluate the performance of these piers based on full-scale 

modulus load tests and soil information from CPT profiles and SPT boring logs. The third 

objective was to study the interactions between matrix soil and piers.  

RESEARCH BENEFITS AND SIGNIFICANCE 

The most important result of this research will be two design tables that indicate matrix 

soil improvement for displacement aggregate piers which will allow design engineers to 

predict the matrix soil improvement for known ground conditions. Using these tables can 

reduce the number of tests that have been required, which will result in savings of both time 

and money as well as more efficient engineering design and construction processes. 

ARRANGMENT OF THE THESIS 

The next chapter is a review of literature about aspects of constructing displacement 

aggregate piers identified from the case studies, some theoretical background related to soil 

improvement, and information about in situ testing methodology. The third chapter presents 

sixteen case histories that the GeopierTM Foundation Company provided.1  

The fourth chapter presents the results, and the fifth chapter provides a discussion and 

analysis of the results. The final chapter outlines the conclusions of the research and suggests 

applications for industry and future research. 

  

                                                 
1 I am grateful to the GeopierTM Foundation Company for supporting this research. 
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CHAPTER 2: BACKGROUND AND LITERATURE REVIEW  

This chapter first presents background information on equipment, construction 

procedures, and materials involved in displacement aggregate piers. Second, information 

about the theoretical background of lateral stress, cavity expansion, and settlement will be 

presented. The chapter concludes with a review of the literature about in situ testing methods, 

including CPTs, SPTs, and full-scale modulus load tests. 

EQUIPMENT, CONSTRUCTION PROCEDURES, AND MATERIALS 

This section discusses the equipment, construction procedures, and materials that are 

used in constructing displacement aggregate piers. 

Equipment 

Specific equipment is used in the process of constructing displacement aggregate piers 

and the selection of particular equipment depends on ground conditions and design purposes 

at a given site. In general, displacement aggregate piers are constructed with installation 

machines and mandrels; aggregate is usually delivered by loaders.  

• Installation machines 

o Excavator 

o ABI or Liebherr Mobileram 

o Piling hammer 

• Mandrels 

o Cylinder mandrels 

o Pyramid mandrels 

o Taper mandrels 

Figure 1 shows examples of these kinds of equipment, a telltale used in testing bottom 

settlement of a pier, and a profile of a displacement aggregate pier. 
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Figure 1: Selected equipment for DAP installation and an illustration of a DAP 
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Construction Procedures 

The major construction procedures for DAPs are: 

1. Drive the mandrel through the soil to the design depth using heavy crowd force and 

vertical hammer rams. 

2. Load hopper and mandrel with 2–4 yd3 crush rock. 

3. Raise the mandrel to charge hole with rock. 

4. Ram mandrel into rock to expand the rammed aggregate pier diameter, densify loose 

sand, and stiffen weak soil. 

5. Repeat steps 3 and 4 until the DAP is installed to the design elevation. 

Figure 2 shows the typical construction procedures of impact DAPs that are discussed in 

this report. The uses of alternative methods, such as different mandrel shapes and 

raise/rammed thicknesses, normally depend on design requirements. In most cases, three 

construction methods are used: raised 3 ft (1 m) and rammed 2 ft (0.65 m) (3'/2'); raised 4 ft 

(1.33 m) and rammed 3 ft (1 m) (4'/3'); and raise 4 ft rammed 4 ft then raises 4 ft rammed 3 ft 

(4'/4' and 4'/3'). 



7 

 

Figure 2. Impact rammed aggregate pier installation process (after Farrell Inc.) 

Materials 

DAPs typically use both open graded and well graded aggregate with approximately 

1.0 in. (2.5 cm) maximum particle size. Flow restriction is observed during construction for 

aggregate with 2– 2.5 in. (5 to 6.3 cm) particle size. The internal friction angles of open 
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graded aggregate and well graded aggregate are about 48 degrees and 52 degrees, 

respectively (Fox and Cowell 1998). The high friction angle of the aggregate after ramming 

is related with the stiffness ratio, which is defined as the relative stiffness between the 

aggregate pier elements and the matrix soil (Pitt and White 2003). Open graded aggregates 

are typically used below the water table to provide vertical drainage, and well graded 

aggregates, which have larger internal friction angles, are typically used above the water 

table. The permeability of the well gradated aggregate is similar to that of fine grained soils 

(Pitt and White 2003). In some cases, clean sand can be used as an alternative material. 

THEORETICAL BACKGROUND 

This section discusses prior research and theory about lateral stress, cavity expansion, and 

DAP settlement during loading. 

Lateral Stress 

DAP installation involves the lateral displacement of the soil surrounding the pier during 

mandrel penetration and ramming action. The lateral stresses induced during DAP 

installation are radial stress, tangential stress, and vertical stress; these stresses are shown in 

Figure 3. Pier element lateral outward displacement tends to increase the lateral pressure in 

soil around the piers. Handy (2001) explained the lateral stress change using the stress path 

that is illustrated in Figure 4. Due to the cavity expansion, horizontal stress increasing in 

matrix soil allows the bearing capacity to increase as well. White et al. (2000) pointed out 

that the high lateral stress induced by the high-energy impact rammed action might generate 

the soil passive stress conditions in matrix soil.  
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Figure 3. The stresses induced by ramming of IRAP 

 

Figure 4. Lateral stresses change due to the cavity expansion (from Handy 2001) 

According to White et al., (2000), the passive zone seems to be related to the overburden 

pressure and the soil conditions (Figure 5). Further, Handy and White (2006) reported that 

radial cracks that occur during construction would affect the lateral stress distributions in the 

fine grain ground. 
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Figure 5. Passive zone due to the rammed aggregate pier (from White et al. 2000) 

Figure 6 illustrates the bulging behavior of the rammed aggregate pier during loading, 

Wissmann et al. (2001) found that lateral stress increases as the result of pier bulging during 

loading. The similar results were confirmed by the in situ tests results and numerical analysis 

(Ham and White 2006). 

 

Figure 6. Schematic of bulging behavior and stress distribution in one dimension  

(from Hughes and Withers 1974) 



11 

Cavity Expansion Theory 

Construction processes of the mandrel penetration and impact ramming action involve 

with the cavity expansion phenomena. Based on different assumptions, cavity expansion can 

be classified as cylinder cavity expansion and spherical cavity expansion. This report will 

mainly discuss the situation of cylinder cavity expansion. The equilibrium of the cylinder 

cavity expansion problem for the infinite boundary conditions in 2-dementions can be 

expressed as follow (Figure 7):   

 

 

 

 

 

 

Figure 7. Cavity expansion modes 

� ����� � �	� 
 	�� 
 0  (1) 

Where 	�= radial stress, 	�= tangential stress. The equation is subject to two boundary 

conditions:  

�σ�|��� 
 
P (2) 

�σ�|��� 
 
P� (3) 

Yu (2000) derived the following equations under elastic-perfectly plastic condition in for 

cylinder cavity expansion in the forms: 

Stresses in the plastic region: 

 

p0 
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p0 
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σ� 
 ���� � Ar�������  (4) 

σ 
 ���� � !" r�������  (5) 

Where,  

# 
 $% &'( )��(*+ )  ; C = cohesion = 0 (clean sand) 

 , 
 �-(*+ )��(*+ ) 

A = constant of integration 

Stress in the elastic region: 

σ� 
 
p� 
 Br�$  (6) 

σ 
 
p� � Br�$
 (7) 

B = second integration constant 

The strain in plastic zone: 

ε� 
 ln� ����3� (8) 

ε 
 ln� ��3� (9) 

The displacement in elastic zone:  

4 
 5� 7� � (10) 

Where:  

     5 
 8-�9���:3$��-9�;  

Both Randolph et al (1979) and Yu (2000) modeled pile driving that involved with the 

cylindrical cavity expansion as the undrained expansions. The excess pore water pressures 
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generated in driving were assumed to dissipate by means of outward radial flow of the pore 

water. Radial displacement can be estimated by the known soil parameters. 

DAP Settlement During Loading 

Rammed aggregate piers were well documented to design to reduce the settlement and 

increase the footing bearing capacity (Lawton et al. 1994; Wissmann et al. 2001). The 

settlements of the DAP were normally overestimated than the predicted values (Handy et al. 

1999; Wissmann et al. 2001). The mechanisms of the pier-soil interactions are not fully 

understood. Hughes and Withers (1974) indicated that the stress transfer from the pier to the 

soil through the skin friction that vertical stress would rapidly diminish and the aggregate 

pier would likely bulge near the top of the pier. Fox and Cowell (1998) proposed that vertical 

stress was transferred to the matrix soil more than 90% downward beyond about four times 

diameters depth. 

Aboshi (1991) introduced the settlement reduction factor to estimate the settlement. The 

settlement reduction factor was determined from the area replacement ratio. The after-

treatment settlement was obtained from the original ground without any improvement 

settlement multiplied by the settlement reduction factor. Fox and Cowell (1998) proposed a 

method to estimate the settlement. They separated the stress affected zones to upper zone and 

lower zone. The upper zone consists of the DAP zone while the lower zone is found below 

the upper zone soil layers (Figure 8). 

Wissmann et al (2001) proposed that the load response and aggregate pier deformation 

was indicated in the top settlement and bottom settlement curves. The bulging behavior 

indicated that the inflection point for the top plate but not for the tell-tale near the bottom 

(Figure 9). 
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Figure 8. Schematic of upper zone and lower zone (from Fox and Cowell 1998) 

                          

Figure 9. Typical modulus load test results (from Wissmann et al 2001) 

Bulging 

Punching 
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Punching deformation was defined that the inflection of the top of pier response 

corresponds to an inflection point in the tell-tale response. 

Wissmann and Fox (2000) reported that the stiffness of the pier related with the effective 

friction angle of the matrix soil. Figure 10 shows the total stress states induced the aggregate 

pier installation. They concluded the three failure models for pier groups: upper zone shear 

failure, individual punching failure and composite punching failure.  

 
Figure 10. Stress path of the matrix soil and pier element (from Wissmann 1999) 

IN SITU TESTING 

Many field testing methods have been used to evaluate the efficiency of the soil 

improvement. The performance of cone penetration test (CPT) and standard penetration test 

(SPT) are most commonly used to field verification in current research objectives. 

Additionally, modulus load tests were performed in most IRAP projects to confirm the 

design approach.  
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In testing procedures, it is important to recognize the differences between the improved 

ground and elsewhere. The testing of soils reinforced by lateral reinforced pier must 

recognize the different response of the ground when testing granular in comparison to 

predominantly cohesive soils (Slocombe and Moseley 1991). Table 1 provides their 

suggestions on how useful certain commonly performed methods are for testing treated soils. 

Recently, new equipment is used to investigate the soil improvement, such as PMTs and Ko 

stepped blade tests (Pitt and White 2003). Full-scale load tests on isolated pier and pier 

groups were conducted to verify the DAP bearing capacity and settlement.  

Cone Penetration Test (CPT) 

The cone penetration test (CPT) has been widely used to evaluate the ground soil profile 

because it is simple, quick and economical test. The data obtained from CPT sounding can be 

used to determine the soil parameters in certain level reliable. Figure 9 illustrates a typical 

piezocone penetrometer apparatus. Three main measurements are cone tip resistance (<7 ), 

sleeve friction (=>) and pore water pressure (4). The tip resistance ( <7 ) is calculated as the 

force ( ?7) and the project area of the cone (@7). The sleeve friction was calculated by the net 

force acting on the friction sleeve divided by the surface of the sleeve (@>). The friction ratio 

(AB) is the ratio of the sleeve friction dived by the tip resistance. 
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Figure 11. Schematic showing of typical cone penetrometer and location of components 

Table 1: Suitability of testing lateral displacement pier (from Slocombe and Moseley 
1991) 

Test Granular Cohesive Comments 

Boreholes + SPT *** ** 
Efficiency of test and recovers 

samples 

CPT **** ** Can be affected by lateral 

earth pressures generated by 

treatment. Best test for 

seismic liquefaction 

evaluation.  

Full-Scale  **** **** Could be installed some other 

instrument such as 

inclinometer, stress cell etc., 

to study the mechanism. 

Pressuremeter *** * No often used 

Small Plate * * Does not adequately confine 

pier and affected by pore 

water pressures  

Large Plate ** ** Better confining action 

Note: * least suitable, **** most suitable 
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 AB 
 BCDE F 100%         (11) 

The empirical and theoretical correlations between the soil parameters and CPT results 

were used to estimate the soil parameters in this report.  Table 2 illustrates the applicability 

of using the CPT to estimate the soil parameters.  

Table 2: Suitability of testing matrix soil improvement (from Lunne et al. 1997) 
Soil 

type 
profile 4 IJ KL MN OPL  Cv k Go σh OCR 

σ

-ε 

A A A B B A/B B A/B B B B/C B C 

Note: Applicability: A = high; B = moderate; C = low. 

Soil parameter define: u = in situ static pore water pressure, IJ = effective internal 

friction angle, KL = undrained shear strength, mv = constrain modulus, Cv= coefficient of 

consolidation, k = coefficient of permeability, G0= shear modulus at small strains, σh = 

horizontal stress, OCR = over consolidation ratio, σ-ε = stress-strain relationship, ID = 

density index 

Soil Classification from CPT 

It is observed that different types of soils exhibit distinctive responses during the cone 

penetration, which make it possible to classify the soils based on their responses. Many 

researchers characterized that sandy soils were high cone resistance and low friction ratio, 

soft clays are low cone resistance and high friction ratio (Douglas et al 1985 and Robertson 

1990). Roberson and Campanella (1988) summarized the soil behavior types based on the tip 

resistance (<7 ) values and friction ratio (AB) (Figure 12). Recently, Lunne (1992) noted that 

the soil classification correlated with pore water pressure. 
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To conduct a better method to estimate the soil behavior types, Jefferies and Davies 

(1991) suggested the following conversions to provide a conventional method to classify the 

soil behavior types from CPT. They introduced the soil behavior type index, M7, which was 

defined as follows: 

M7 
 ��3.47 
 UVW?X�$ � �UVWY� � 1.22�$��.[
     (12) 

Where, ?X 
 D\�]^_�J^_ , normalized cone resistance, <X = corrected cone resistance, Y�= 

normalized friction ratio. 

They tabulated the boundary of the soil behavior types and the range of the corresponding 

M7 values (Table 3).  

 

Figure 12. Soil classification chart present by Robertson and Champanella (1997) 

  

 1 - Sensitive, Fine Grained, 2 - Organic Material,  3 - Clay, 4 - Silty Clay to Clay, 5 - Clay Silt to Silt Clay
 6 - Sandy silt to Clayed Silt, 7 - Silty Sand to Sandy Silt, 8 - Sand to Silty Sand, 9 - Sand, 10 - Gravelly Sand to Sand
 11 - Very Stiff Fine Grained *, 12 - Sand to Clayey Sand *. (note:  * Overconsolidated cemented)
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Table 3: Ic boundaries of soil behavior types (from Jefferies and Davies 1991) 
Soil Behavior Types Index, Ic Zone Soil Behavior Types 

Ic < 1.31 7 Gravel sand 

1.31< Ic < 2.05 6 Sands- clean sand to silty sand 

2.05 < Ic <2.60  5 Sand mixtures – silty sand to sandy 

silt 

2.60 < Ic <2.95 4 Silt mixtures – clayey silt to silty clay 

2.95 < Ic <3.60 3 Clays 

Ic > 3.60 2 Organic soils - peats 

Fines Content(FC) from CPT 

Recently, CPT is commonly applied to evaluate soil fines content and particle mean grain 

size, D50. Robertson et al (1983) studied the correlations between CPT-SPT with mean grain 

size, and found that increase gain size would increase the (qc/pa)/N60 values. Kulhawy and 

Mayne (1990) found that increasing FC (particle size < 0.075 mm) will decrease the 

(qc/pa)/N60 values. Further, Robertson and Fear (1995) reported a method to approach the 

fines content from CPT soundings.  
       Y`�%� 
 1.75M7b.$[ 
 3.7       (13) 

Where, M7 = soil behavior types index.  

The equation provided above is only a method to estimate the percentage of the fines, but 

it does not provide the information to classify the silt or clay types of the fines.  

Relative Density from CPT 

The relative density (c�) of sand is an important engineering index property for 

cohesionless soil that gives the level of compaction. It is defined in the term of: 

c� 
  �defg – d� �defg – deij�         (14) 
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Where, e is the void ratio, kl9m  is the maximum void ratio and klno is the minimum 

void ratio. Table 4 shows the different methods have been approached by researchers. 

Table 4: The methods to approach the relative density by different researchers 
Equations researchers Comments 

 c� 
 
98 � 66UVW�� <7�	Ps′ ��.[  
Jamiolkowski 
et al (1985) 

Predicted by five silica sands used 
under control laboratory 
conditions; 
Use to calculate in this report; 
Figure 13(a) c� 
 `$ Ut <7`��	Ps′ �%�  

Baldi et al 
(1985) 

Based on extensive calibration 
testing on Ticino sand; 

c�$ 
 <7�305?7 · ?v%w · ?x 
Kulhawy and 
Mayne (1990) 

Consider the interbedded deposits 
where the cone resistance may not 
have reached the full value within 
thin layer; 

c�$ 
 <7�305?7 · y`A�.�[ · ?x · <7z9 · �z9	P′��.[ Kulhawy and 
Mayne (1990) 

Experiments performed on clean 
fine to medium silica sands; 

c� 
 100 · {�|��}��60  

 
Skempton 

(1986) 

Results from SPT and quartz 
sands; Figure 13 (b) 
 

c� 
 100 · ~ <X�300 Marcuson and 
Bieganowsky 

(1991) 

Normal consolidation for unaged 
uncemented sands; 
Figure 13 (c) 

c� 
 100 · ~ <X�300 · y`A�.$ 
over consolidation for unaged 
uncemented sands 

Where, σ�'J = effective vertical stress; C�, C�, C$ = soil constants (Table 3.7); q&� 

������

�������3.� = dimensionless normalized  cone resistance; p�= atmosphere pressure in same units 

as qc; Q&= compressibility factor, 0.91 < Q&<1.09; Q���= over consolidation factor = 0.18 ; 

Q!= aging factor; q�� 
 ������� �3.� = normalized tip resistance.  
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Figure 13. Several methods to approach the relative density: (a) from Jamiolkowski et 

al. 1985; (b) from Skempton et al. 1986 and (c) from Marcuson et al.1991 

a 

b 

c 
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Lateral Earth Pressure from CPT 

Many theories exist to evaluate the in situ lateral stress, σ��', or coefficient of earth 

pressure at rest. Ko: 

K' 
 �J���J��          (15) 

Hughes and Robertson (1985) reported that the estimated value of K' was extremely 

sensitive to the measurement accuracy of the horizontal stress (σ��'), which might be result 

of the extreme stresss relief and disturbance that occurs as elements of soil pass the tip of the 

penetrometer.  

Masood and Mitchell (1991) studied the relationships between Rankine passive 

coefficient and the sleeve friction (f() from CPT during penetration.  

f( 
  c� � K(σ�J tanδ        (16) 

Since the sleeve frictions (f() are different between pre- and post-installation, it is 

possible to evaluate the post-installation soil Rankine passive coefficient factor K(. 

f(� 
  c�� � K(�σ��J tanδ�        (17) 

f(� 
  c�� � K(�σ��J tanδ�        (18) 

Let c��= c��, σ��J = σ��J , and δ�= δ�=ϕ�/3, (18) - (17) rewrite: 

K(� 
 ������3
��3�  ��+ �I�� � � K(�        (19) 

Where, denote 0 = pre-installation, 1 = post-installation, f( = sleeve friction, c�= adhesion 

between soil and the sleeve, , δ 
 angle of friction between soil and sleeve, ϕ� 
 effective 

stress friction angle of the displaced soil.  

The authors noted that use of K( for loose sand may overestimate the horizontal stress 

during penetration, since the K( lead to overestimate the post-installationK'.  



24 

Calculating soil parameters from CPT data 

Design engineers calculate soil parameters by using data from CPT soundings in several 

equations. Table 5 summarizes the kinds of correlations, the equations used to obtain the 

correlations, and the researchers who proposed the equations.  

Table 5: The equations for soil parameters from CPT and their references 
Terms Equations References 

CPT-SPT correlation |}� 
 �<X z9� �8.5�1 
 M7� Lunne et al. (1997) 

SPT- (N1)60 �|��}� 
 |}��	PJ z9� ��.[ Das (2007) 

Internal friction angle ϕ�  J 
 ¡15.4�|��}� � 20 Das (2007) 

Pre-installation Ko ¢� 
 1 
 £¤t J Lade and Lee (1976) 
 

OCR 

For sand 

y`A 
 �¢��sP�/¢��¥%�� ���>no)J 
For clay 

y`A 
 �¢��sP�/¢��¥%�� ��.}[ 

Huang and Mayne (2008) 

Undrainded shear strength, 
Su 

KL 
 <7 
 	Ps|¦  Lunne and Kleven (1981) 

Young’s modulus E 
Depends of the soil types 

Typical values: § 
 2.5<7 

Schmertmann (Fang, 
1997) 
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Standard Penetration Tests (SPTs) 

SPTs are performed both before and after installation to investigate soil improvement. 

SPTs are more effective in granular deposits than cohesive soil. In usual, the corrected blow 

count (N60) is used to estimate the improvement. 

It is possible to evaluate the simple correlation between the SPT and CPT on the same 

site which was performed both the SPTs and CPTs. The correlation of SPT N-values and 

CPT results of sands was shown as follow: 

DE/¨f¥ 
 4          (20) 

Where, z9= atmosphere pressure. 

Modulus Load Tests 

Modulus load test performs to safety confirmation of the DAP. The modulus load test 

measures the top (KX� and bottom deformation (K©� and records the applied stress (	X�. 

Stiffness is defined as the ratio of applied stress divided by the amount of top deformation 

(	X/KX�. Figure 10 shows a schematic of a typical modulus load test. Normally, one test takes 

about several hours. Any record in the settlements takes about every 20 minutes. 

 
 

Figure 14. Schematic of the modulus load test (from Wissmann 1991) 
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The results of full scale testing of the aggregate pier using load cells are shown in Figure 

15. The results show that the vertical stress decreases to less than 20% on the RAP element at 

a depth of about 3 diameters. That means the most vertical applied stress is distributed to the 

matrix soil at the depth of about 3 diameters. The ability of stress distribution in matrix soil is 

strongly related with the characteristics of the matrix soil in this range of depth. 

 

Figure 15. Distribution of compressive vertical stress within middle rammed aggregate 

pier (from Fox and Cowell, 1998) 
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CHAPTER 3: CASE HISTORIES 

The Geopier Foundation Company TM (GFC) provided case study data from 16 sites 

where displacement aggregate piers were installed. The data for each case that is presented in 

this chapter were extracted from the data provided by GFC and prepared so they were 

consistent between the cases. Each case history includes a description of the project, the 

subsurface conditions at each site, the pier system installed at each site, a description of the in 

situ tests that resulted in the study data, and the results and preliminary analysis of the data 

from these tests. This chapter has two main parts, the case histories and the all of the data 

from the case studies. Table 11 to Table 13 summarizes the brief information of all cases. 

INDIVIDUAL CASE STUDIES 

Salinas, CA 

Project Description 

The project involved the construction of cinemas in Salinas, CA. A DAP system was 

selected to support the foundation footing with a bearing capacity of 18.33 ksf (0.88MPa) 

and a foundation up-lift resistance of 40 kips (178 kN). 

Subsurface Conditions 

The results from two pre-installation SPTs showed that the matrix soil strata at the site 

consisted of soft to firm clay and firm silt and sand fill to a depth of around 17 ft (5.2 m), 

underlain by soft to firm silt to a depth of about 22 ft (6.7 m), and then underlain by soft to 

medium dense sand (Table 20b). 

The laboratory tests show the fines content (passing #200 sieve) varied from 17% to 34% 

in the sand layers. The groundwater table depth was around 29 ft (8.8 m). 
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Pier System 

Geopiers were installed on 11 ft (3.4 m) centers. The Geopier diameter was 

approximately 30 inches (0.76 m) and the height was approximately 14 ft (4.27 m). 

Tests and Results 

SPTs were performed before installation, and CPTs and modulus load tests were 

conducted after installation. Seven CPTs were performed within one pier group; the CPT 

locations are shown in Figure 16a, and CPT results are show in Figure 17. The average N60 

value (calculated from CPT data) increased from 15 to 40 after Geopier installation. The soil 

seems not improved at a depth of about l0 ft (3 m). A modulus load test and and uplift test 

were also performed. Total settlement and telltale settlement at design stress was about 

0.2 in. (0.5 cm) and 0.02 in. (0.05 cm), respectively. The calculated stiffness modulus was 

639 pci (173 kN/cm3) at design stress. The pier moved up about 0.16 in (0.41 cm) at design 

uplift load of 40 kips (178 kN). These results are shown in Figure 18 

                   

(a)                                                         (b) 

Figure 16. Salinas, CA: The plan layout of CPT locations (a) within a pier group and (b) 

subsoil profiles from SPT  
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Figure 17. Salinas, CA: SPT-N60 values calculated from CPT data, pre-installation qc, 

SPT-N, and soil type profiles 

 

Figure 18. Salinas, CA: Applied stress and deformation results from the modulus load 

test and uplift test
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Minneapolis, MN 

Project Description 

The project involved the construction of a 12,500 ft2 (1161 m2) single story, slab on grade 

facility. The project consisted of IRAP elements that were installed beneath column and wall 

footings. The column loads varied from 5 to 80 kips (22 kN to 356 kN). Three pier types—

IRAPs, TMRAPs, and Geopiers—were installed for research purposes. 

Subsurface Conditions 

The soil stratum consisted of silty to clayey sand with organics to a depth of about 2.5 ft 

(0.76 m), underlain by very loose to loose, poorly graded sand to depth of around 15 ft (4.5 

m), and then underlain by medium dense sand. The SPT N-values in the sand ranged from 2 

to 16. No groundwater was encountered. Figure 20 shows the CPT results and SPT soil 

profiles. 

Pier System 

IRAPs were designed to support the columns and walls for the entire project. Three types 

of DAPs—IRAPs, TMRAPs, and Geopiers—were installed for research purposes. The 

design capacity of the DAPs was 40 kips (178 kN). The IRAPs and Geopiers were installed 

by the conventional methods. After installation, one of the three test TMRAPs did not have 

additional compation. The top of the second pier was compacted for 15 seconds using a 

standard RAP hammer. For the third pier, the final two lifts were compacted using a 

modified (non-tapered) mandrel. 

Tests and Results 

Only SPTs were performed before the piers were installed. CPTs and modulus load tests 

were performed after the piers were installed. The dimensions, types, and locations of the 

piers and locations of the CPTs are shown in Figure 19. 
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Modulus load tests were performed on three TMRAPs (TP-1, TP-2, and TP-3) where 

three different top compaction methods were used; modulus load tests were also performed 

on one IRAP and one Geopier. The modulus load tests were performed one day after the 

installation of TMRAPs and two days after the installation of the IRAP and the Geopier. The 

tell-tale of TP-1 was damaged during the modulus load test. 

 

Figure 19. Minneapolis, MN: IRAP, TMRAP, and Geopier layout and CPT and SPT 

locations 

The CPT results indicated soil improvement within 5 ft (1.6 m) of the center of the piers 

(Figure 20). The mean CPT tip resistance values of the matrix soil within the pier group were 

almost 1.5 times greater than those of the matrix soil outside group. The modulus load test 

results are shown in Figure 21 and summarized on Table 6. Since the design stress values of 

the DAPs were unknown, the assumed values are given on Table 7. The CPT tip resistance 
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results indicated that the additional RAP hammer compaction and modified mandrel 

compaction did not significantly increase the stiffness of TMRAPs at the assumed design 

stress levels. The tell-tale deflection of the TP-2 was 0.1 inches (0.25 cm) while the top 

deflection was 0.5 inches (1.25 cm) under the assumed design stress. The stiffness of the 

IRAP was the highest, whereas the Geopier stiffness was the lowest. 

 

Figure 20. Minneapolis, MN: CPT tip resistance profiles and SPT soil profiles 
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Figure 21. Minneapolis, MN: Applied stress and deformation results from modulus load 

tests 

Table 6: Summary results from modulus load tests 
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Lacrosse, WI 

Project Description 

The project consisted of a six-story building located on the east side of the Mississippi 

River in La Crosse, WI. The design load for the columns was between 330 kips (1468 kN) 

and 880 kips (3914 kN). The allowable soil bearing pressure for the footings was designed as 

6 ksf (0.29 MPa), and the design stress was 22 ksf (1.05 MPa) for the IRAPs elements. 

Subsurface Conditions 

The soil stratum consisted of loose sand fill with construction debris (concrete and gravel 

fragments) to depths of about 10 ft (3 m) to 16 ft (5 m), underlain by loose to medium dense 

sand. The SPT N-values ranged from 2 to 12 between the depths of 10 ft to 15 ft (Figure 23). 

The groundwater table was at approximately 10 ft (3 m) to 15 ft (4.5 m). 

Pier System 

The IRAPs were designed with a capacity of 60 kips (267 kN), an allowable pressure of 6 

ksf (0.29 MPa), and with a stiffness modulus of 150 pci (554 MN/m3). The pier penetration 

depth was 30 ft (9 m), and the piers were spaced on 3 ft (1 m) centers within the footing. And 

the footings were supported by up to seventeen IRAPs. 

Aggregate with nominal diameter of 2 to 2.5 in. (5 to 6.7 cm) was too large to flow freely 

from the bottom of the mandrel. Aggregate with a nominal diameter of 1 in. (2.5 cm) had an 

acceptable withdrawal rate of 0.2 ft/s. 

Tests and Results 

SPTs and CPTs were performed before and after the IRAP installation. SPT and CPT and 

were conducted at the vicinity piers group. The design parameters of the IRAPs, footing size, 

and SPT and CPT locations are shown in Figure 22. 
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A modulus load test was conducted on a group of five piers after the CPTs and four days 

after the IRAPs were installed. Another modulus load test was conducted on a single pier 

near the pier group. 

 

Figure 22. Lacrosse, WI: The plan layout of the 7 ft x 7 ft (2.1 m x 2.1 m) footing and 

locations of pre-and post-installation SPTs and CPTs 

The pre-installation SPT profiles and the post-installation CPT profiles are shown in 

Figure 23 and Figure 24, respectively. The average SPT N-values increased from 8 to 17 at a 
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(2247 MN/m3) was obtained at the design stress level of 22.2 ksf (1.1MPa). The full scale 

footing load tests results indicated the deflection of the footing was 0.2 inches (0.5 cm) at the 

design stress level of 6 ksf. 

 

Figure 23. Lacrosse, WI: SPT and calculated fines content profiles 

The CPTs showed that the fines content in this site was approximately 5% and 25%. Tip 

resistance values increased at a depth of 13 ft where the transit layers of fill material and 

native soil were found. Figure 26 indicates that the lower fines content has larger tip 

resistance increment. 
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Figure 24. Lacrosse, WI: CPT baseline profiles and SPT profiles 

 

Figure 25. Lacrosse, WI: Modulus load test results for an individual pier and a pier 

group 
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Figure 26. Lacrosse, WI: Fines content from CPT compared with increasing tip 

resistance 

Manalapan, NJ 

Project Description 

The project was designed for highway embankment subsoil improvement in Manalapan, 

NJ. The improvement area was about 250 ft (76.2 m) by 60 ft (18.3 m). IRAP system was 

designed for the soil improvement and supported the keystone retaining wall and concrete 

retaining wall. Approximately around total 800 IRAPs were installed in this site. Sheetpile 

was constructed after the DAP installation.  
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loose sand trace silt to silty sand to a depth of about 15 ft (4.5 m), underlain by loose to 

medium dense sand. The water table was varied from 1 ft to 3 ft (0.3 m to 0.9 m) from test 

locations surface. The soil exploration profiles are shown in Figure 29. 

Pier System 
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piers was around 8 ft (2.4 m) on centers. The pier layout was considered as parallelogram. 

The two construction methods, which were pyramid hammer compaction in upper 5 ft (1.5 

m) and blunt tip compaction in upper 4 ft (1.2 m), were conducted for research purpose. 

Tests and Results 

CPT, SPT, and modulus load tests were performed at the vicinity of the project locations. 

SPT was performed before the IRAP installation. CPT was performed after the IRAP 

installation. The locations of the tests are shown in Figure 28. The CPT results indicated that 

the soil was not improved much by IRAP (Figure 29)  

The modulus load tests results pointed out the settlement as 2 inches at the design stress 

level of 18 ksf (0.86 MPa) and 15 ksf (0.72 MPa) for the pyramid compaction and the blunt 

tip compaction, respectively (Figure 30). The pier stiffness modulus was 59 pci (217 MN/m3) 

and 51 pci (188 MN/m3) at the design stress level for the pyramid compaction method and 

blunt tip compaction method, respectively.  

The test results indicated that the initial very loose sandy ground did not have too much 

improvement by IRAP.  
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Figure 27. Lacrosse, NJ: Project plan layout (French Parrello Company) 

 

Figure 28. Manalapan, NJ: Plan layout of the CPT locations 
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Figure 29. Manalapan, NJ: The CPT profiles for tests performed outside pier groups 

(CPT 5 to 8) and pre-installation SPT profile (SPT located in the vicinity of the CPT 

locations) 

 

Figure 30. Manalapan, NJ: Applied stress and deformation results from modulus load 

tests 

Fs (tsf)

0 1 2 3 4

qc (tsf)

0 40 80 120

D
ep

th
 (

ft
)

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

Baseline
CPT-8
CPT-5
CPT-6
CPT-7

Pw (psi)

-0.5 0.0 0.5

Soil Behavior Type

Soil Behavior 2: Organic soils - peats, 3: Clays, 4: Silt mixtures - clayey silt to silty clay, 5: sand mixtures - silty sand to sandy silt, 
6: Sands - clean sand to silty sand, 7: Gravelly Sand. *Based on Robertson and Fear (1995)
O: Very loose sand (N: less than 3),I: Loose sand (N = 4 to 9), II: Medium dense sand (N = 10 to 29), III: Dense sand (N = 30 to 49),
IV: Very dense sand (N: greater than 50)

FC (%)*

0 10 20 30 40 50
Baseline
CPT-8 CPT-5

7

5-6

5

4

55

4-5

7

4-5

5

4-5

5

3

4-5

5

SPT O-3

O

II
(SW-SM)

Soil Profile

Applied Stress (ksf)

0 5 10 15 20

D
ef

or
m

at
io

n 
(in

)

-4

-3

-2

-1

0

Pyramid Pier 2 Total
Pyramid Pier 2 Tell-Tale

Applied Stress (ksf)

0 5 10 15 20

D
ef

or
m

at
io

n 
(in

)

-4

-3

-2

-1

0

Pyramid Pier 1 Total
Pyramid Pier 1 Tell-tale

24 in top/8 in bottom
H=14 ft
Pyramid/blunt tip in upper 4 ft

24 in top/8 in bottom
H = 14ft
Pyramid/pyramid in upper 5 ft



42 

Reynolds, IN 

Project Description 

The project consisted of providing TMRAP to support a 105 ft (32 m) diameter grain 

storage bin with an 8.25 ft (2.51 m) wide concrete ring wall footing. The design maximum 

slab pressure was 5 ksf (0.24 MPa). The design upper zone settlement and total settlement 

was 2 inches (5 cm) and 2.5 inches (6.4 cm), respectively. The in situ tests locations and 

proposed footing locations are shown in Figure 31. 

Subsoil Conditions 

The subsoil conditions are shown in Figure 32, and generally were consisted of 5 ft (1.5 

m) medium stiff to stiff clay fill overlying loose to medium dense sand to a depth of 17 ft 

(5.2 m), underlain by the stiff to hard glacial till. The groundwater table was about 5 ft (1.5 

m) from the ground surface.  

Pier System 

The TMRAP was designed and selected to facilitate the construction of the displacement 

RAPs for the project site. The test piers were constructed at 4.5 ft (1.4 m) center to center 

distance. The dimensions of the RAPs were 24 inches (0.6 m) top diameter and 16.6 ft (5 m) 

height.  

Tests and Results 

The in situ tests were consisted of SPT and modulus load tests. SPT were performed 

before and after the DAP installation. The in situ test locations and pier layout are shown in 

Figure 31. The modulus load tests were performed on the piers within the confining piers 

(TP-1) and without confining piers (TP-2). SPT-5 and SPT-6 were performed on the matrix 

soil within the piers group. SPT-8 and SPT-9 were performed outside the pier group.  
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The SPT results indicated that soil was significantly improved to a depth of about 10 ft (3 

m) (Figure 32). The average SPT value was increased from 12 to 22 in piers group for upper 

10 ft (3 m). Soil was not improved below the depth of about 10 ft (3 m). Load test results 

indicated that the pier with confining piers did not significantly increase the stiffness and 

reduce the settlement. Tell-tale settlement of TP-1 show large settlement at the pier bottom 

during load test. But the tell-tale settlement of TP-2 was zero. The tell-tale may be damaged 

during the construction.  

 

Figure 31. Reynolds, IN: Pier and SPT locations plan layout 

4'-6"

2'

2'

1'-7"

TP 2

TP 1
B5

B6

B7

B8

TP 3 TP 4

TP 5 TP 6

Proposed Grain Bins

B-1

B-2

B-3

B-4

Proposed
Metal Grain Bin

Existing Grain
Storage Bin

1200 '

TP : Tapered Mandrel RAP (24 in diameter, 16.6 ft length)
         B1 to B4: Pre-installation SPT locations
         B5 to B8: Post-installation SPT locations

200 '

Warehouse



44 

 

Figure 32. Reynolds, IN: SPT profiles for tests performed outside pier groups (B-7 and 

B-8) and within pier groups (B-5 and B-6) 

 

Figure 33. Reynolds, IN: Applied stress and deformation results from modulus load 

tests 
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Tampa, FL 

Project Description 

The project was to design and support a gasoline tank located in Tampa, FL. The 

diameter was designed about 120 ft (36.4 m). The site presented a tight work environment.  

Subsoil Conditions 

The subsoil profiles consisted of sand stone fill to a depth of 5 ft (1.5 m), underlain by 

sand with clay and shell fragments to a depth of 15 ft (4.6 m), underlain by silty to clayey 

sand. Groundwater was encountered at a depth of about 3 ft (1 m). The soil profiles are 

shown in Figure 35. 

Pier System 

IRAPs with 20 in. top diameter and 20 ft height were designed to support the gasoline 

tank footing foundations and matrix soil improvement. The IRAP elements were designed 

between 5 ft to 7 ft (1.5 to 2.1 m) center to center distance. It was reported that the IRAP 

work continued effectively in the ground conditions without creating excess water or spoils 

that would require disposal during construction. 

Tests and Results 

Both CPTs and SPTs were conducted before and after the IRAP installations to 

investigate the matrix soil improvement. SCPTs (Seismic CPT) were performed during the 

pre-installation and post-installation in the matrix soil. The additional SCPTs were performed 

through the IRAP elements to investigate the DAP stiffness and strength. The locations of 

CPTs, SCPTs and SPTs are shown in Figure 34. Load modulus load test was performed in 

the project area, and identified the nearest boring (T-08-01) is shown in the Figure 35.  
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Figure 34. Tampa, FL: Pier and CPT locations plan layout 
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which indicated that the stiffness modulus of the pier was 374 pci (1380 MN/m3). No tell-tale 

settlement during loading may be due to: 

• Budging deformation domination during the load test 

• The telltale was damaged during the construction 

 

 

Figure 35. Tampa, FL: SPT N-values and soil exploration profiles 
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Figure 36. Tampa, FL: SPT N-values and soil exploration profiles 

 

Figure 37. Tampa, FL: Applied stress and deformation results from modulus load tests 

(IRAP located in the project area, identified nearest boring profile: T-08-01) 
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Seattle, WA 

Project Description 

The project was designed the construction of a 64,000 ft2 (5946 m2) high bay warehouse 

facility. The column load was designed up to 250 kips (1112 kN) and floor loads up to 1000 

psf (47.9 kPa). Site liquefaction mitigation was required. The total and differential settlement 

was required less than 1 in. (2.5 cm) and 0.5 in. (1.7 cm), respectively. 

Subsoil Conditions 

Subsurface conditions were consisted of 10 ft (3 m) to 12 ft (3.6 m) of existing sand fill 

over soft clay that extended to approximately 30 ft (9.1 m) underlain by loose to medium 

dense sand to a depth of about 60 ft (18.2 m). Groundwater was encountered at a depth of 

about 5 ft (1.5 m). The results of soil behavior types classifications from CPT supported the 

explored soil information.  

Pier System 

IRAP system was selected to install in this site. The IRAP was designed as 5 ft (1.5 m) 

center on the center distance. The top diameter and height was designed to be 20 inches (0.51 

m) and 39 ft (11.9 m), respectively.  

Tests and Results 

The in situ tests included the CPT and modulus load tests. The pre-installation and post-

installation CPT locations are shown in Figure 38. Two modulus load tests were performed 

on IP-1 and IP-2. The IP-1 that was located at the south area of the site was performed after 

16 days later the pier installation. The IP-2 which was located at the northeast area was 

performed after 9 days later the pier installation. 

The pre-installation and post-installation CPT results are shown in Figure 40 and Figure 

40. The results indicated that the IRAP was effective to improve the sand fill layer which 
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consisted of 12 ft (3.6 m) depth. And it is not effective to improve the soft clay layer that 

extent from a depth of 12 ft (3.6m) to a depth of about 28 ft (8.5m). Figure 41 shows that soil 

with less than 20% fines content was effective to improve. 

The isolated IRAP placed by 1 ft (0.3 m) thick concrete cap was used to modulus load 

test. Figure 42 shows the modulus load test results. The top deflections of IP-1 and IP-2 were 

approximately 0.21 inch (0.53 cm) and 0.15 inches (0.38 cm) at a designed stress of about 18 

ksf (0.86 MPa), indicating an impact stiffness modulus of 619 pci (2284 MN/m3) and 873 pci 

(3221 MN/m3), respectively. The results indicated that the pier increased the stiffness due to 

the aging effect. 

 

Figure 38. Seattle, CA: Pier and CPT locations plan layout 
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(a) 

 

(b) 

Figure 39. Seattle, CA: Pre-installation and post-installation CPT results, fines content 

and soil behavior types profiles between (a) pier-170 and pier-171, and (b) pier-171 and 

pier 190 

Fs (tsf)

0 1 2 3 4

qc (tsf)

0 100 200 300 400

D
ep

th
 (

ft)

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

Baseline
CPT-170
CPT-5
CPT-171

Pw (psi)

-16 -8 0 8 16 24 32
Baseline
CPT-170 CPT-5

Soil Behavior Type

Soil Behavior Type 2: Organic soils - peats, 3: Clays, 4: Silt mixtures - clayey silt to silty clay, 5: sand mixtures - silty sand to sandy silt, 
6: Sands - clean sand to silty sand, 7: Gravelly Sand. *Based on Robertson and Fear (1995)

FC (%)*

0 20 40 60 80

7

6

4

7

3-5

6

6-7

3-4

6

6

3

4-5

6

5-6

5

3-5

3-5

5-6

Baseline
CPT-171

7

6

3-5

6

3-6

6

5

Fs (tsf)

0 1 2 3 4

qc (tsf)

0 100 200 300 400

D
ep

th
 (

ft)

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

40

42

Baseline
CPT-171
CPT-6
CPT-190

Pw (psi)

-16 -8 0 8 16 24 32
Baseline
CPT-171 CPT-6

Soil Behavior Type

Soil Behavior Type 2: Organic soils - peats, 3: Clays, 4: Silt m ixtures - clayey silt to silty clay, 5: sand mixtures - silty sand to sandy silt, 
6: Sands - clean sand to silty sand, 7: Gravelly Sand. *Based on Robertson and Fear (1995)

FC (%)*

0 20 40 60 80
7

6

7

3-5

6

6-7

3-5

6 6

3

4-5

6

3-6

6

4

3-5

5-6

3

5

Baseline
CPT-190

7

6

3-5

6

4-6

3-4

4-5

3



52 

 

 

(c) 

 

(d) 

Figure 40. Seattle, CA: Pre-installation and post-installation CPT results, fines content 

and soil behavior types profiles (c) pier-189 and pier-190, and (b) pier-190 and pier 170
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Figure 41. Seattle, CA: The fines content versus increasing tip resistance  

 

Figure 42. Seattle, CA: Applied stress and deformation results from modulus load tests 
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Springfield, MA 

Project Description 

The testing plan was located in the Church of God site in Springfield, MA. During the 

construction, the difficulties with flow of the 3/8 inches (1 cm) to 3/4 inches (2 cm) 

aggregate were observed within the sand fill layers above the peat soil during the 

construction. It was suspended that clogging of the mandrel might occur. The introduction of 

water was used after the flow restriction. The purpose of this project was to verify that the 

strength and stiffness of the piers constructed prior to the usage of water in the mandrel that 

was adequate in the sand fill layer above the peat.  

Subsurface Conditions 

The subsoil consisted of loose to dense sand fill materials to a depth of about 14 ft (4.3 

m), underlain by peat to a depth of about 19 ft (5.8 m), and then underlain by loose to dense 

sand. 

Pier System 

IRAPs were selected to install in the project site. The piers were designed to a height of 

25 ft (7.6 m).  

Tests and Results  

CPTs were conducted to test the stiffness and strength of the piers and matrix soils. Ten 

of the thirteen CPTs were performed at the center of the IRAP elements. The other three CPT 

soundings were performed in the matrix soil which is shown in Figure 43 (CPT 41A, 41B 

and 66A).  

CPT results are shown in Figure 44. The tip resistance varied from 100 tsf to 200 tsf (9.6 

MPa to 19.2 MPa) in pier element, was usually 2 to 3 times greater than that of matrix soil in 

the sand fill layer. The tip resistance of the piers in the peat zone seemed to be equal to the 
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tip resistance in the matrix soil. The pier strength and stiffness in the upper fill layer verified 

that the construction of the piers prior to adding water was acceptable.  

 

Figure 43. Springfield, MA: The locations of CPT soundings 

 

Figure 44. Springfield, MA: CPT profiles performed on center on piers and matrix soil  

(only CPT 41A performed in the matrix soil) 
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Prince George County,  MD 

Project Description 

The IRAP system was designed for alternative footing foundation for chalk point plant 

located in Prince George County., MD. The construction equipment is used both the Liebherr 

hammer and ABI hammer.  

Subsurface Conditions 

The subsoil conditions consisted of the sand and silt mixture to a depth of about 35 ft 

(10.6 m). The groundwater table was at the depth of 25 ft (7.6 m) based on the CPT results. 

Pier System 

IRAP was design spacing at about 9 ft (2.7m) in the 160 ft x 90 ft (48.5 m x 27 m) project 

area.  

Tests and Results 

The pre-installation and post-installation CPT locations are shown in Figure 45. From the 

test results (Figure 46), the average tip resistance values outside the individual piers and 

within the piers group were 142 tsf  (13.6 MPa)  and 162 tsf  (15.5 MPa), respectively. Figure 

47 shows the results of fines content and the tip resistance increasing. The results indicated 

that soil with less than 20 percent fines content showed a better improvement.  
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Figure 45. Prince Geoge County, MD: Plan layout of CPT locations (CPTs in pier 

groups located at the vicinity project locations) 

  

2'

2'

9'

IP-2

IP-1

CPT-2

CPT-1

IP-3

CPT-3

2'

Liebherr Hammer

ABI Hammer

160'

90'

CPT-9

CPT-8

CPT-7

IP: Impact Pier (Pier information is not available)
      : CPT locations



58 

 

(a) 

 

(b) 

Figure 46. Prince Geoge County, MD: CPT results profiles for individual pier (a) and 

pier groups (b) 
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Figure 47. Prince Geoge County, MD: The fines content versus the tip resistance 

increasing 

Waterloo, IA 

Project Description 

The project was located at the Wagner Road test site in Waterloo, IA. The purpose of this 

project was to study the construction methods, materials, individual and pier groups’ effects. 

Additionally, the modulus load tests investigated the aging effect of the stiffness of a single 

pier. The piers’ information and locations and in situ test locations are shown in Figure 48.  
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and gravel. The fine sand trace clay and organics to a depth of 2.5 ft (0.75 m), underlain by 
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water pressure. 
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Pier System 

The types of DAP consisted of IRAP, rampact pier (RP) and chain mandrel (CM). The 

materials included sand and aggregate. The diameters of the DAP varied between 20 inches 

(0.51 m) and 24 inches (0.61 m) The height of the piers was designed to be between 7 ft (2.1 

m) and 14 ft (4.2 m). The results indicated that the nominal diameter of the IRAP system 

varied from 21.6 inches to 24 inches (0.55 m to 0.6 m).  

Tests and Results 

The in situ tests consisted of CPTs and modulus load tests. CPTs were performed both 

pre-installation and post-installation of DAP. Modulus load tests were performed on every 

type of pier, including one group of four IRAPs. Another four piers were performed modulus 

load tests on the different days after installation to investigate the aging effect. The CPT 

results are shown in Figure 49 to Figure 52. The modulus load test results are shown in 

Figure 53 and Figure 54. The summaries of modulus load test results are shown in Table 7 

and Table 8. 

The total average tip resistance increased from 58 tsf to 126 tsf (5.55 MPa to 12.1 MPa) 

in pier group.  

The orders of average tip resistance values of the matrix soil at 2 ft (0.6 m) from center of 

piers are: IP-S > RP > RP-S > CM > IP. The orders of the stiffness of piers at designed stress 

level are: IP-S > RP > RP-s > CM > IP. The results show that the larger tip resistance values 

of the matrix soil indicated larger stiffness of the piers at the design stress level. 

The pier stiffness increment may be due to the aging (time) effect. The design stiffness 

modulus might increase to 1.5 times in two months. 
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The modulus load test results of IP-1 and IP-2 indicated that the stiffness modulus and 

bearing capacity were not significantly different from the single pier test of 7 ft (2.1 m) 

height and 14 ft (4.3 m) height.  

For aggregate material, the stiffness modulus of impact processes and rampact processes 

were not significantly different. But the stiffness modulus of rampact processes was 1.3 times 

greater than that of the impact processes for sand material.  

Figure 55 shows the fines content is not a significant factor to influence the matrix soil 

improvement for the soils with fines content less than 15% in this test site. 

 

 

Figure 48. Waterloo, IA: Pier and CPT locations plan layout 
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(a) 

 

(b) 

Figure 49. Waterloo, IA: CPT profiles for tests performed near the (a)IP-3 and (b)IP-4  
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(c) 

 

(d) 

Figure 50. Waterloo, IA: CPT profiles for tests performed near the (c) IP-5 and (d) IP-6 
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(a) 

 

(b) 

Figure 51. Waterloo, IA: CPT profiles for tests performed near (a) CM-1 and (b) RP-1 
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(c) 

 

(d) 

Figure 52. Waterloo, IA: CPT profiles for tests performed near (c) IP-S and (d) RP-S 
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Figure 53. Waterloo, IA: Applied stress and deformation results from modulus load 

tests for individual piers 
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Figure 54. Waterloo, IA: Applied stress and deformation results from modulus load 

tests for footings 
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Table 7: Waterloo, IA: Summary results from modulus load tests for individual pier 

Pier ID 

Days after 
pier 

installation 
Diameter, 

D (in) 
Height, 
H (ft) 

Design Stress 
(ksf) 

k100% 
(pci) 

CM-2 
Test # 1 

14 24 14 31.83 210 

CM-2 
Test # 2 

21 24 14 31.83 350 

RP-2 Not Given 24 14 31.83 442 

IP-8 Test 
# 1 

13 20 14 45.85 206 

IP-8 Test 
# 2 

20 20 14 45.85 329 

IP-7 Not Given 24 14 31.83 186 

IP-S Not Given 20 14 45.85 671 

RP-S 

Test # 1 
12 24 14 31.83 271 

RP-S 
Test # 2  

57 24 14 31.83 539 

 

Table 8: Waterloo, IA: Summary results from footing load tests 

Pier ID 

Days after 
pier 

installation 
Diameter, D 

(in) 
Height, 
H (ft) 

Footing 
Size 

(ft X ft) 

Area 
Replacement 
Ratio, Ar = 

Ag/AF 

Design 
Stress 
(ksf) 

k100% 
(pci) 

CM-1 Not Given 20 14 3.5 X 3.5 0.18 8.163 204 

IP-1 0 20 14 3.5 X 3.5 0.18 8.163 155 

IP-2 0 20 9 3.5 X 3.5 0.18 8.163 169 

RP-1 Not Given 20 14 3.5 X 3.5 0.18 8.163 174 

IP-S Not Given 20 14 3.5 X 3.5 0.18 8.163 146 

IP-3, 4, 5, 6 0 20 13.25 7.0 X 7.0 0.18 8.163 106 
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Figure 55. Waterloo, IA: Fines content and tip resistance increasing 

 

Lynn Haven, FL 

Project Description 

This project involved the construction of the alternative footing foundation of the 

elementary school facility which was located in Lynn Haven, FL. IRAP was selected to 

support the columns and walls’ footings for increasing the bearing capacity, decreasing the 

settlement and reducing the construction cost. Depending on the column loads, 2 to 6 IRAPs 

were designed beneath the column footings. The distance between piers beneath the wall 

footings was varied from 7 ft (2.1 m) to 12.8 ft (3.9 m). 

Subsurface Conditions 

The SPT soil explored vicinity of  the project location indicated that the soil profile 

consisted of clayey fine sand to medium fine sand to a depth of 18 ft (5.4 m), underlain by 

silty sand with mica.  
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Pier System  

Several hundred IRAPs were designed and installed in the construction area. The piers 

were designed as 20 in. (0.51 m) diameter and 6 to 7 ft (1.8 to 2.1 m) height. 

Tests and Results 

The in situ tests were consisted of SPT, CPT and modulus load test. SPT was performed 

before the pier installation and located at the vicinity of the CPT locations. The CPTs were 

conducted both before and after the pier installation where its locations are shown in Figure 

56. The modulus load test was performed on the IP-1 (Figure 56).  

 

Figure 56. Lynn Haven, FL: Pier and CPT locations plan layout 

Figure 57 shows the CPT results which the values were estimated at 1 ft (0.3 m) intervals 

from hard copies. The CPT results indicated that the soil densification in this site was 
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• Clayey soil types of the fine-grained soil may significantly reduce the effectiveness of 

the improvement 

• The soil stratum were complicated 

The deformation was about 0.2 inches at the top of the design stress level of 18 ksf 

（0.86 MPa）indicating 663 pci (2446 MN/m3) of the stiffness modulus from load test. The 

results of the modulus load test are shown in Figure 58. 
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(b) 

 

(c) 

Figure 57. Lynn Haven, FL: CPT and SPT profiles within the three different groups 

[group (a), group (b) and group (c)] 
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Figure 58. Lynn Haven, FL: The modulus load test results on IP-1 

 

Jacksonville, FL 

Project Description  

IRAPs were introduced as an alternative foundation of JEA Kennedy Generating Station 

located in Jacksonville, FL. IRAPs were designed to support the footings consisted of 

buildings, demineralization tanks and GSU transformer. The SPTs and full scale modulus 

load test were conducted in the project site.  

Subsurface Conditions 

The soil profile consisted of the loose to dense fine sand to a depth of 35 ft, underlain by 

the weather limestone to a depth of 45 ft, underlain by stiff to hard clay. Figure 60 shows the 

subsoil profiles.  

Tests and Results  

The in situ tests included SPT and modulus load tests. The SPTs were performed both 

before and after the piers installation. The locations of SPTs are indicated in Figure 59. 
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The impact mandrel was observed to refusal during the installation at a depth of about 10 

ft to 13 ft (3.1 m t0 4 m). SPT results profiles indicated that IRAP was effective in improving 

the soil around 2 diameters depth beneath the piers bottom in this site. The average SPT 

values of pre-installation (B-2, B-4 and B-6) and post-installation (B-1, B-3 and B-5) are 8 

and 19 within the piers depth, respectively. 

The modulus load test results are shown in Figure 61. The total deflection at the design 

stress of 28.2 ksf (1.35MPa) was about 0.21 inches (0.53 cm). The calculated stiffness 

modulus was 913 pci (3369 MN/m3).  

 

Figure 59. Jacksonville, FL: Piers and SPT locations plan layout 
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Figure 60. Jacksonville, FL: Pre-installation and post-installation SPT profiles 

 

Figure 61. Jacksonville, FL: Modulus load test results on trial pier at vicinity B-2 
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Westminster, CA 

Project Description  

More than 2500 IRAPs were installed for the matrix soil improvement of the Moran 

Asian Garden project located in Westminster, CA. The design piers were at 10 ft x 7.4 ft (3.1 

m x 2.3 m); for research purposes, piers were at 3 ft x 6 ft (0.9 m x 1.8 m). Twenty four CPTs 

were performed to compare the matrix soil improvement effectiveness. Twelve CPTs were 

performed before the IRAP installation, and another 12 CPTs were performed after the IRAP 

installation. The locations of the CPTs and IRAPs are shown in Figure 62. The IRAPs in 

“Test area A” were installed by the single-pass process and the IRAPs in “Test area B” were 

installed by double-pass process. 

Subsurface Conditions 

The subsoil conditions from the previous drill investigation indicated that the site was 

generally interbedded layers of loose to medium dense sand (SP, SP-SM, and SM), firm to 

very stiff non-plastic silt (ML), and firm to very stiff clay (CL). The lab tests showed that the 

fines content at the site contain approximately 58% to 82% for the fine grain soil layer. The 

silts were found to be non-plastic. The groundwater table was approximately 2 to 3 ft (0.76 to 

1 m) below the ground surface.  

Pier System 

The diameters of the IRAP were about 24 in.(0.62 m) in “Test area A” locations and 30 

in.(0.76m) in “Test area B” locations. The piers were installed to a depth of 25 ft (7.6 m) in 

testing area. 
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Tests and Results 

CPT was conducted to investigate the soil improvement. The CPT locations are shown in 

Figure 62.The CPTs were performed for 2 weeks after the piers installation. Thus, the pore 

water pressure induced during the construction was considered fully dissipate.  

 

Figure 62. Westminster, CA: Plan layout of test pier, CPT locations 
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sandy layer could represent the in situ conditions. The peak values for the stiff layers are 

summarized on Table 9. The soft layers were not shown to improve from the test results. 

The average values of the peak tip resistance ratio of the double-pass and single-pass 

methods were 1.5 and 1.32, respectively. The average values of the peak tip resistance ratio 

of the smaller pier spacing and larger pier spacing were 1.42 and 1.45, respectively. The 

results indicated that the double-pass construction method had benefit for the matrix soil 

improvement. The pier spacing is in the range between 6 ft (1.8 m) and 7.3 ft (2.3  m) did not 

significantly influence the improvement in this site. 
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(a) 

 

(b) 

Figure 63. Westminster, CA: CPT profile before and after installation of piers in Group 

II (a) and Group I (b) 
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(c) 

 

(d) 

Figure 64. Westminster, CA: CPT profile before and after installation of piers in Group 

IV (c) and Group III (d) 
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Table 9: Westminster, CA: Summary results of peak tip resistance 
Group II 

L
ayer 

CPT 13/CPT 
1 

CPT 14/CPT 
2 

CPT 
15/CPT 3 

1 1.35 1.3 1.55 

2 1.33 1.34 1.24 

3 1.47 1.48 1.5 

4 2.6 1.71 1.35 

Group I 
L

ayer 
CPT 16/CPT 

4 
CPT 17/CPT 

5 
CPT 

18/CPT 6 

1 1.27 1.43 1.52 

2 1.39 1.21 1.39 

3 1.43 1.67 2.07 

4 1.2 1.23 2.03 

Group IV 
L

ayer 
CPT 19/CPT 

7 
CPT 20/CPT 

8 
CPT 

21/CPT 9 

1 1.13 1.07 1.43 

2 1.16 1.12 1.56 

3 1.24 1.19 1.93 

4 1.26 1.15 1.3 

Group II 
L

ayer 
CPT 22/CPT 

10 
CPT 23/CPT 

11 
CPT 

24/CPT 12 

1 1.39 1.46 1.29 

2 1.27 1.27 1.14 

3 1.61 1.75 1.69 

4 1.09 1.15 0.99 

Summary 

Catalogs Post/pre peak qc ratio 
Single-pass 

installation 1.32 
Double-Pass 

installation 1.5 
larger spacing of 

piers 1.45 
smaller spacing of 

piers 1.42 
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Oakland, CA 

Project Description  

The project was designed for alternative foundation footing for restaurant depot located 

in Oakland, CA. CPTs were conducted to investigate the matrix soil improvement. Based on 

the provided information, there were not CPTs conducted before the pier installations. Six 

CPTs were performed within the pier groups.  

Subsurface Conditions 

Subsoil conditions which were estimated from the CPT results and consisted of sandy 

soil to a depth of 5 ft (1.5 m), underlain by clayey soil to a depth of about 24 ft (7.3 m), and 

then underlain by interbedded sandy layers and clayey/silty layers.  

Pier system 

The IRAP was designed to matrix soil improvement. The spacing of the piers was 7 ft 

(2.3 m).  

Tests and Results 

Since the pre-installation CPTs were not conducted in this site, it is not possible to 

compare the soil improvement between pre-installation and post-installation. Figure 65 

shows the locations of the pos-installation CPTs. 

Figure 66 shows the CPT results of the post-installation CPT profiles. it was difficult to 

quantify the soil improvement. But it was noted that the pore water in clayey layer for CPT-1 

from the depth of about 12 ft (3.7 m) to a depth of 24 ft (7.3 m) was significantly larger than 

the other two. It might be due to the distance between the CPT-1 and the IRAPs that was 

greater than that of the CPT-2 and CPT-3. This induced the pore water need take longer time 

to dissipate. The tip resistance values of the CPT-5 were significantly greater than that of the 
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CPT-4 from the depth of 12 ft (3.7 m) to 28 ft (8.5 m). The reasons are probably due to the 

original soil stratum or the ground disturbed. 

 

Figure 65. Oakland, CA: Pier and CPT locations plan layout 
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(Group I) 

 

(Group II) 

Figure 66. Oakland, CA: Pier and CPT locations plan layout  
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Waterloo, IA (Liquefaction) 

Project Description  

The project was to investigate the soil densification based on the different construction 

methods. The equipment, construction methods and CPT locations are illustrated in Figure 

67. The installation time was recorded for quality control for each pier installation. After the 

pier installation, the average of 4'/3' method took an average of 5 minutes. The 4'/4' and 3'/2' 

methods took an average 15 minutes, while the pull-drive 4'/3' method took an average of 10 

minutes. The averages of the diameters of the piers for the above three methods were 25.3 in. 

(0.65 m), 29.9 in. (0.76 m), and 28.7 in. (0.73 m). 

Subsurface Conditions 

The SPT borings profile near the CPT locations indicated that the subsoil consisted of 

granular alluvium which was composed of poorly graded sand with varying amounts of fines 

and gravel. The fine sand trace clay and organics to a depth of 2.5 ft (0.76 m), underlain by 

fine to medium sand trace clay and gravel to a depth of about 25 ft (7.6 m). The groundwater 

table was observed to be between 9 and 12 ft (2.7 m and 3.7 m) based on the recorded pore 

water pressure. 

Pier system 

IRAPs were constructed on the project area with a spacing of 8 ft. The diameters of the 

piers varied from 22 to 30 in. (0.56 m to 0.76m). The height of the piers was designed as 15 

ft (4.5 m) and 20 ft (6m).  

Tests and Results 

The pre-installation in situ tests included SPT boring logs and CPT. Only CPTs were 

conducted after IRAP installations. The CPT locations were shown in Figure 67. 
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Figure 68 to Figure 70 show the CPT results profiles. The general trends from the tests 

results indicated that the soil profiles in the upper about 5 ft (1.5 m) were not significantly 

improved. The average values of the tip resistance of the three construction methods are 

summarized on Table 10. The results indicated that the pull-drive 4’/3’ method did not 

provide any benefit. The 4’/4’and 4’/3’ method generated the densest method however it was 

time consuming. The average tip resistance of soil profiles using Liebherr hammer and ABI 

hammer were 130 tsf (12.4 MPa) and 134 tsf (12.8 MPa), respectively. 

 

Figure 67. Waterloo, IA (Liquefaction): Pier and CPT locations plan layout 
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Figure 68. Waterloo, IA (Liquefaction): CPT profiles for tests performed by 4’/3’ 

method using 20 ft (top) and 15 ft mandrel (bottom) (Waterloo, IA, CPT - 22 – Baseline) 
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Figure 69. Waterloo, IA (Liquefaction): CPT profiles for tests performed by 4’/4’and 

4’/3’ method using 20 ft mandrel (Waterloo, IA, CPT - 22 – Baseline) 

 

Figure 70. Waterloo, IA (Liquefaction): CPT profiles for tests performed by pull-drive 

4’/3’ method using 20 ft mandrel(Waterloo, IA, CPT - 22 – Baseline) 
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Table 10: Waterloo, IA (Liquefaction): Summary results for three methods 
Construction 

methods 

Construction time 

(minutes) 
Average qc, tsf 

4’/3’ method 5 128 

4’/4’and 4’/3’ 

method 
15 145 

Pull-drive 4’/3’ 10 123 

 

Rochester, NH 

Project Description  

The project involved the design of IRAP to support the New Hampshire Route 16 Ramp 

F MSE wall located in Rochester, NH. The subsoil profiles were selected the boring logs 

(W2-125, W2-126 and W2-127) where the relative locations are illustrated in Figure 71. The 

locations of the post-installation boring logs are also shown in Figure 71. The boring W2-126, 

which was the closest to the post-installation boring log profiles, was selected to compare 

with the post-installation results. The piers were constructed on approximately 4.5 ft (1.5 m). 

Subsurface Conditions 

The subsoil conditions within the pier installation elevations, which were approximately 

from 148 ft to 168 ft (45 m to 51 m), were consisted of loose to medium dense fine sand trace 

silt. The SPT varied between 5 and 28 and had average value of 10.  

Pier system 

Hundreds of piers were installed to ground improvement. The diameter and height of the 

pier were designed about 21in. (0.53 m) and 24 ft (7.2 m), respectively. The spacing of the 

pier was 4.5 ft (1.5 m).  
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Tests and Results 

The locations of the post-installation boring logs are also shown in Figure 71. The boring 

W2-126, which was the closest to the post-installation boring log profiles, was selected to 

compare with the post-installation results.  

The results indicate that soil was significantly improved by the IRAP installation. The 

average N values increased from 10 to 24. Figure 72 shows the in situ SPT results. 

 

Figure 71. Rochester, NH: Piers and SPTs locations plan layout 
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Figure 72. Rochester, NH: Pre-installation and post-installation SPT profiles 
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installed. CPTs were performed at six project locations before piers were installed and at 

twelve project locations after piers were installed. Table 11 summarizes the dates and 

subsurface conditions of the project sites; Table 12 summarizes the pier types, dimensions, 

and spacing of the projects; and Table 13 summarizes the kinds of modulus load tests, and 

pre-installation and post-installation tests by project.Table 14 summarizes the construction 

methods and tips during construction. 
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Table 11: Summary of dates and subsurface soil conditions by project 
Project 

Location Year Subsurface Soil Conditions 

Salinas, CA 
2002-
2004 

Soft to firm clay, firm silt and sand fill to a depth of about 17 ft, 
underlain by soft to firm silt to a depth of about 22 ft, underlain by 

loose to medium dense sand 

Minneapolis, 
MN 

2004 
Silty to clayey sand with oganics to a depth of about 2.5 ft, underlain 

by very loose to loose sand to depth of about 15 ft, underlain by 
medium dense sand 

Lacrosse, WI 2005 
Loose sand fill with construction debris (concrete and gravel 

fragments) to depths of about 10 to 16 ft, underlain by loose to 
medium dense sand 

Manalapan, 
NJ 

2005 
Very loose sand to depth of about 15 ft, underlain by loose to medium 

dense sand 

Reynolds, IN 2006 
Clay fill to a depth of about 5 feet, underlain by loose to medium 

dense sand trace gravel to depth of about 17 ft, underlain by stiff to 
hard glacial till 

Tampa, FL 2006 
Sand stone fill to a depth of about 5 ft, underlain by sand with clay 
and shell fragments to a depth of about 15ft, underlain by silty to 

clayey sand 

Seattle, WA 2006 
Gravel sand layer to a depth of about 6 ft underlain by silt sand 

medium to a depth of about 14.5 ft, underlain by clays to silt medium 
and sand medium to sand to a depth of about 39.5 ft 

Springfield, 
MA 

2006 
Loose to dense sand fill to a depth of about 14 ft, underlain by peat to 

a depth of about19 ft, underlain by loose to dense sand 
Prince George 
County,  MD 

2007 Sand and silt mixture to a depth of about 35 ft 

Waterloo, IA 2007 
Fine sand trace clay and organics to a depth of about 2.5 ft, underlain 
by fine to medium sand trace clay and gravel to a depth of about 25 ft 

Lynn Haven, 
FL 

2008 
Clayey fine sand to medium fine sand to a depth of about 18 ft, 

underlain by silty fine sand with mica 

Jacksonville, 
FL 

2008 
Loose to dense fine sand to a depth of about 35 ft, underlain by 

weathered limestone to a depth about 45 ft, underlain by stiff to hard 
clay 

Westminster, 
CA 

2008 
Silty clay to clayey silt with interbedded layers of loose to medium 

dense sand to a depth of about 35 ft 

Oakland, CA 2008 
Sandy soil to a depth of about 5 ft, underlain by clay layer to a depth 

of about 12 ft, underlain by sandy soil 
Waterloo, IA 
(Liquefaction) 

2008 
Fine sand trace clay and organics to a depth about 2.5 ft, underlain by 

fine to medium sand trace clay and gravel to about 25 ft 
Rochester, 

NH 
2008 Loose to medium dense fine sand trace silt 

Legend: 1 ft = 0.31 m.  
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Table 12: Summary of pier types, dimensions, and spacing by project 
Project 

Location 
Pier 

Types Pier Dimensions and Spacings 

Salinas, CA Geopier D = 30 in, H=14 ft, about 11 ft on-center spacing (Ar*=0.04) 

Minneapolis, MN 
Pyramid 

pier, 
Geopier      

D = 16 in at top and 5-3/4 in at bottom (Pyramid Pier), D = 18 
in (IRAP), D=30 in (Geopier), H = 16 ft, and 4 ft on-center 

spacing (Ar=0.11) 

Lacrosse, WI IRAP 
D = 20 in, H =15 to 30 ft, and 3.5 ft on-center spacing  

(Ar = 0.21) 

Manalapan, NJ  
Pyramid 

pier 
IRAP 

D = 24 in at top and 8 in at bottom, H = 14 ft, and 8 ft on-center 
spacing (Ar =0.057)-[Pyramid pier]; 
8 ft center spacing for impact pier  

Reynolds, IN  TM RAP D = 24 in, H = 16.6 ft, 4.5 ft on-center spacing (Ar=0.15) 

Tampa, FL  IRAP 
D = 20 in, H = 20 ft  6 ft 7 in to 6 ft 11 in on-center spacing 

(Ar=0.045) 
Seattle, WA IRAP D = 20 in, H = 39 ft, and 6.3 ft on-center spacing (Ar = 0.072) 

Springfield, MA IRAP 
H = 16 to 30 ft, 4.5 ft on-edge spacing 

(pier D information not available)  
Prince George 
County,  MD 

IRAP 
9.5 ft to 25.7 ft on-center spacing 

(pier D and H information not available) 

Waterloo, IA 

IRAP 
Rampact 

RAP 
Chain 

Mandrel 

D = 24 in and 20 in, H = 7 to 14 ft, 4ft 8 in to 5 ft 3 in on-center 
spacing for group piers, and 12 ft 6 in to 18 ft 10 in on-center 

spacing for single piers (Ar = 0.089) 

Lynn Haven, FL IRAP 
D = 20 in, H=10 ft, 4.5 to 10 ft on-center spacing  

(Ar = 0.048) 

Jacksonville, FL IRAP 
D=20 in, H= 20 ft, 6 ft 7 in to 7 ft 10 in on-center spacing 

(Ar=0.035) 

Westminister, CA IRAP 
D = 24 in and 30 in, H= 25 ft, 4.2 ft to 6 ft on-center spacing 

(Ar = 0.144 and 0.225) 

Oakland, CA IRAP 
7 ft on-center spacing  

(pier D and H information not available) 
Waterloo, IA 
(Liquefaction) 

IRAP 
D = 22 to 30 in, H=15 ft and 20 ft, 

8 ft on-center spacing (Ar=0.065 and 0.089)) 
Rochester, NH IRAP D = 21+ in, H = 24 ft, and 4 ft 6 in on-center spacing (Ar=0.15) 

 
  

Legend: D = Diameter. H = Height. Ar = area replacement ratio. 1 ft = 0.31 m; 1 in. = 2.54 cm. 
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Table 13: Summary modulus load tests, pre-installation, and post-installation tests by 
project 

Project Location Modulus Load Test Pre-installation Post-installation 
Salinas, CA Yes (UL) SPT CPT 

Minneapolis, MN Yes (TT) SPT CPT [0] 

Lacrosse, WI 
Yes (Compared to Full 

Scale Footing Load 
Test) 

SPT, CPT SPT, CPT [0-1] 

Manalapan, NJ Yes (TT) SPT CPT [U] 
Reynolds, IN Yes (TT) SPT SPT [1] 
Tampa, FL Yes (TT) SPT SPT [U] 
Seattle, WA Yes CPT CPT [U] 

Springfield, MA No SPT CPT [U] 
Prince George County,  

MD 
No CPT CPT [U] 

Waterloo, IA 
Yes (TT) (Compared 
to Full Scale Footing 

Load Test) 
CPT CPT [19] 

Lynn Haven, FL Yes (TT) SPT CPT 
Jacksonville, FL Yes (TT) SPT SPT 
Westminster, CA No CPT CPT [14] 

Oakland, CA No — CPT [U] 
Waterloo, IA 
(Liquefaction) 

No CPT SPT CPT [12] 

Rochester, NH No SPT SPT [U] 

 

  

Legend: UL = up lift test; TT = telltale; U = number of days post-installation is unknown 
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Table 14. Summary of IRAP construction characteristics 
Project Name Construction characteristics 

Minneapolis, MN 

• The number of lifts to construct pyramid piers in a group (4 
piers) was related with the construction order. 

• Construction of the first pier required 7 lifts and spent 2.5 
minutes penetration. 

• Construction of the second pier required 4 lifts and spent 
49 seconds penetration. 

• Construction of the third pier required 3 lifts and spent 36 
seconds penetration. 

• Construction of the forth pier required 2 lifts and spent 15 
seconds penetration. 

Lacrosse, WI  

• The nominal size of open graded aggregate (2 to 2.5 
inches) is too large to free flow through the mandrel and 
hopper to the bottom of mandrel. 

• 1 inch size open graded aggregate was satisfied to flow rate 
for IRAP construction. 

• After construction of several piers in group, the subsequent 
piers may be difficult to penetrate to the design depth. 

Springfield, MA 

• During constructing of IRAP, the difficulties with the flow 
of ¾ inches to 3/8 inches aggregate was observed within a 
sand fill layer above the peat soil at the site. 

• Using water through the mandrel to help the aggregate to 
flow to the mandrel bottom. 

• It is verified that the pier strength and stiffness was 
acceptable by prior adding water.  

Westminster, CA 

• Single pass (3 ft up and 2 ft down) and double pass (3 ft up, 
3ft down, and then 3 ft up and 2 ft down) were employed to 
research purpose. 

• The double pass methods induce larger diameter (30 
inches) than single pass method (24 inches). 

• The improvement efficiency of double pass method is 
slightly greater than that of single pass method. 

Waterloo, IA (Liq.) 

• Construction methods included: 4’/3’; 4’/4’ then 3’/2’ 
double compaction; 4’/3’ with initial loose aggregate.  

• 4’/3’ method took about 5 minutes to construct and achieve 
design requirement. 

• 4’/4’ and 3’/2’ method took about 15 minutes to construct 
and exceeded design requirement. 

• 4’/3’ drive-pull and re-drive method took about 10 minutes 
and provided no benefit compared to the single 4’/3’ 
method. 
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CHAPTER 4: RESULTS 

As descript in the back ground chapter, matrix soil improvement and soil engineering 

properties can be estimated from the CPT data and SPT data. Results show that matrix soil 

improvement is affected by fines content, initial relative density and pier spacing. Based on 

the individual project test results, this chapter will descript the analysis of the data and a 

summary of the results that support these findings. 

CPT Data  

Most of the CPT data base provided the tip resistance, sleeve friction and pore water 

pressure (Table 15). It can be seen from the Table 15 that some projects have a large number 

of CPT profiles while other projects were limited too few CPT profiles due to the differential 

pier height and the interval of CPT data. The analysis results biased toward the projects 

contain more data. The tip resistance values were sensitive for small variations in 

stratigraphy and misalignment. That means that the more complicate soil stratum has larger 

bias, such as multiple soil layers, differential elevations. The average value of the CPT tip 

resistance in one foot depth increment to represent one data was employed to reduce these 

biases for some analysis. However, the heights of the piers are different for different projects. 

The results biased toward longer piers.  
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Table 15: Summary results of CPTs 

Project Name CPT 
Soundings 

Intervals 
(ft)  

Depth 
of pier 

(ft)  

No. of data 
/ profile 
(before 

average) 

No. of data 
/ profile 
(after 

average) 

Salinas, CA 
Corrected 

|}� 

0.5 17 34 17 

Minneapolis, MN <7  0.065 14 215 14 

Lacrosse, WI  * <7, => and 4 1 28 8 (refusal) 8 

Manalapan, NJ * <7, => and 4 0.32 14 44 14 

Tampa, FL * <7, => and 4 0.16 20 125 20 

Seattle, WA * <7, => and 4 0.16 39 244 39 

Prince Geo. Co,, MD * <7, => and 4 0.16 24 150 24 

Waterloo, IA * <7, => and 4 0.16 14 88 14 

Lynn Haven, FL <7  1 9 9 9 

Westminster, CA * <7, => and 4 0.16 25 156 25 

Waterloo. IA (Liq.) * <7, => and 4 0.16 15 93 15 

Legend: <7= CPT tip resistance. =>= sleeve friction, 4 = pore water pressure; * = can be 

obtained matrix soil fines content 

Notes and Observations from CPT Results 

To reduce the bias of the data analysis, the following methods were used in the data 

collection and analysis. 

• The same depths from the CPT profiles were used to analyze the improvement with 

distance. The elevation of some tests had to be adjusted to provide matching results 

(Figure 73a). 

• If the CPT data did not include a pre-installation test, the test profiles which were 

influenced least by the DAPs were used as the baseline. If two CPTs had a relative 

large distance (more than 5 ft), elevations were considered by matching soil strata 

(Figure 73b). 
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•  In some cases, the CPT tip resistance values were lower than expected. This may be 

due to ground disturbance or possible adjacent CPT hole. It has been reported that tip 

resistance values will be influenced if the distance between two tests is closer than 

10–20 cone diameters (1–2 ft) (Lunne et al. 1997). In some cases, the tip resistance 

values increase due to penetration of the edge of the pier. (Figure 73c and d) 

• In some cases, for highly variable interbedded soil profiles with stiff layers thinner 

than 2.5 ft, the tip resistance values may be underestimated due to the transition from 

one layer to another layer (Vreugdemhil et al. 1994). The peak values of the layers 

are less influenced by the transition. It is better to use the peak values to represent the 

stiff layers conditions.   
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                 (a)                                           (b)                            

               
    (c)                                   (d) 

Figure 73. Illustrations of data collection: (a) same depth data comparison; (b) adjusted 

for elevation; (c) penetrating verticality; (d) potential penetration of the edge of a pier 
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DATA ANALYSIS 

General Analysis 

Overall, the key observations from case histories are listed as follow: (1) several projects 

indicate that the surface soils to the depth of about 1–2 pier diameters did not have much 

improvement; (2) most projects indicate the overburden pressure or depth was not a 

significant factor to influence the matrix soil improvement at elevations deeper than 1 to 2 

diameters; (3) some projects show the soil improvement can be achieved as deep as 2 

diameters beneath the pier bottom. 

Summary of CPT and SPT Data  

SPTs were performed at five of the sixteen project sites before and after piers were 

installed to investigate the matrix soil improvement. Figure 74 shows the SPT N-values 

profile which was combined the pre-installation and post-installation SPT N-values profiles 

from the five sites. The post installation SPT N-values profiles were selected within the pier 

groups. The mean values of SPT N-values increased from 9 to 20 after DAPs were installed. 

The mean values of SPT N60 values, which were calculated from CPT data, increased from 

11 to 21 after DAPs were installed.  Figure 75 shows the statistical summary of the SPT N-

values and calculated SPT N60-values. The cumulative curves in Figure 75a are 

approximately parallel starting from N-values around 5. That means the N-values increased 

approximately equal from N-values larger than 5. It similar trends were observated for N60 

values larger than 7 from Figure 75b.  
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Figure 74. SPT N-values profiles from several project sites (Lacrosse, WI; Reynolds, IN; 

Tampa, FL; Jacksonville, FL; and Rochester, NH) 
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Figure 75. Summary of SPT N-values and calculated N60 values from CPT for all 

available case histories 
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Determining the Effective Soil Improvement Zone 

CPTs were performed in matrix soils at only 11 out of 16 sites. Table 16 summerizes the 

CPT information for these 11 sites. Three sites did not have sleeve friction measurement and 

at one site the cone tip refusal was encountered. Two of the cases were performed at the same 

site (Waterloo, IA) and were later combined. The CPT data from the resulting six sites were 

used to predict and generate the relationship between soil types and the effective 

improvement zones for piers groups (Table 16). Figure 76shows the summary of the tip 

resistance and friction ratios in pier groups with 2 ft (0.65 m) between individual piers. 

Figure 77a shows the initial CPT data for two catalogues, which are effective improvement 

and non effective improvement, on the Robertson’s soil classification chart. The effective 

improvement is defined as the ∆qc values larger than 1 MPa (11tsf) after DAPs installation. 

Figure 77b shows the effective improvement zone that was generated from Figure 77a.  
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Table 16: Summary results of CPTs from 11 sites 

 

  

Project Name CPT Soundings 
No. of data / 

profile  
Comments 

Salinas, CA Corrected |}� 34 Not CPT data profiles (only within group) 

Minneapolis, MN <7 215 
CPTs were performed within and outside 

group  

Lacrosse, WI  <7, => and 4 8 (refusal) 
CPTs were performed within and outside 

group, but CPTs were refusal within group 

Manalapan, NJ * <7, => and 4 44 
CPTs were performed within and outside 

group 

Tampa, FL * <7, => and 4 125 
CPTs were performed within and outside 

group 

Seattle, WA * <7, => and 4 244 CPTs were performed within group only 

Prince Geo. Co,, MD * <7, => and 4 150 
CPTs were performed within and outside 

group 

Waterloo, IA * + <7, => and 4 88 
CPTs were performed within and outside 

group 

Lynn Haven, FL <7 9 
CPTs were performed within and outside 

group, but it is the estimated values 

Westminster, CA * <7, => and 4 156 CPTs were performed within group only 

Waterloo. IA (Liq.) + <7, => and 4 93 CPTs were performed within group only.  

Legend: * : CPT data are used to the determine the effective improvement zone; +: have the same initial soil profile 
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Figure 76. Summary of friction ratios and tip resistance as illustrations of soil 

improvement or nonimprovement
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(a) 

 

(b) 

Figure 77. The effective improvement data and non effective improvement data shown 

in Robertson’s classification chart (a) and the effective improvement region (b) 

Determining Matrix Soil Improvement from Friction Ratios 

Figure 77 indicates that the effective improvement soil is likely to relate with both the tip 

resistance and friction ratio. However, most of the effective improvement soils are 
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Zone          Soil Behavior Type
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  7              Silty Sand to Sandy Silt
  8              Sand to Silty Sand
  9              Sand
 10             Gravelly Sand to Sand
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                * Overconsolidated cemented
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concentrated in low friction ratio zones. Friction ratios may be used to distinguish the 

effective improvement soils from non effective improvement soils. Figure 78 shows the 

correlation between increasing tip resistance and the friction ratio. The negative values of 

increment of tip resistance may be due to the differential elevations and ground modification. 

The results indicate that the soils with friction ratios that are less than 1% can be significantly 

improved. 

 

Figure 78. The increasing tip resistance with regard to friction ratio for all available 

case histories 
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when sandy soil had less than 20% FC it was not possible to estimate the reduction in soil 

improvement (Aboshi et al. 1989). Figure 79 shows the relationship between SPT N-values 

and FC from the  study of Aboshi et al. (1991). Slocombe et al. (2000) found that FC affects 

soil radial densification, and for the deep compact method, soils show no obvious 

improvement for FC greater than 15%. 

 

Figure 79. Relationship between SPT N-values and fines content (from Aboshi et al. 

1991) 

The results from this study indicate that the soil is significantly improved for FC of less 

than 20%, and that soil improvement will reduce when the FC is greater than 20%. However, 

in sandy soil with less than 20% FC, it is difficult to estimate the reduction in improvement. 

In some of the cases in this project where the FC was less than 20%, ground conditions 

induced different amounts of matrix soil improvement are listed as follow: 

• Although the FC is less than 20%, the CPT results indicate the tip resistance in the 

very loose sandy layer does not increase as much as in denser layer. That indicates 

that the initial relative density somewhat affects the degree of improvement.  
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• It appears that the sandy soil with clay does not significantly improve in some cases, 

which means that the type of fines affects the degree of improvement.  

• The calculated FC was underestimated for the unimproved soil layers. 

 

Figure 80. The increase tip resistance versus calculated fines content from CPT for all 

available case histories 
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Figure 81. Increases in tip resistance compared with soil behavior types in pier groups 

for all available case histories (following classification method proposed by Jefferies 

and Davis 1997) 

Statistical Summary of Sandy Soil (FC<20%) Improvement 

Previous studies indicated that the sandy soils can be effective to improvement. This 
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M� 
 ¥f«\¬�¥ ­¬«_�¬ 
 1        (21) 

Figure 82 shows the statistic summary of the sandy soils (FC<20%) improvement index 

values from CPT results. The peak value of the predicted  normal distribution curve of the 

improvement index of the sandy soils with FC less than 20% is 0.62. Figure 83 shows the 

statistic summary of the improvement index values from SPT results. The peak value of the 

predicted normal distribution curve of improvement index from SPT is 1.2. The sandy soils 

improvement indices for individual projects are summarized in Table 17.   

 

Figure 82. Statistic summary of improvement index (Id) from (qc) for sandy ground 

with calculated fines content less than 20% for available case histories 
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Figure 83. Statistic summary of improvement index (Id) from SPT N-values for sandy 

soils for all available case histories 

Group Effective Factors 
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  ∑  DE,ij °�_±¨ ¨i¬�∑ DE,f\ Cfe¬ ²iC\fjE¬ _±\Ci²¬ °�_±¨ ¨i¬�  or  
 DE,ij °�_±¨ ¨i¬�DE,f\ Cfe¬ ²iC\fjE¬ _±\Ci²¬ °�_±¨ ¨i¬� (22) 

For SPT, 

=® 
  ∑  ¥,ij °�_±¨ ¨i¬�∑ ¥ f\ Cfe¬ ²iC\fjE¬ _±\Ci²¬ °�_±¨ ¨i¬�  or  
 ¥,ij °�_±¨ ¨i¬�¥ f\ Cfe¬ ²iC\fjE¬ _±\Ci²¬ °�_±¨ ¨i¬�  (23) 

 

Improvement index,Id

-1 0 1 2 3 4 5 6

F
re

qu
en

cy

0

4

8

12

16

20

C
um

ul
at

iv
e,

 %

0

20

40

60

80

100

Cumulative curve
predicted distribution curve

Peak value = 1.2



114 

Table 17 summarizes the improvement index and group effective factors for individual 

project sites. The group efficiency factors varied from 1.14 to 1.8 and had a average value of 

1.35. 

Table 17. Summary of soil improvement index and group effective factor in sandy 
layers 

Legend: * : From SPT N values or calculated N60 values from CPT 

 

 

 

Project Location Soil Information Improvement Index (M�) 
Group effective 

factor (=®) 

Cinemas, CA * 
Loose to medium dense sand 

to silty sand ─ SM 
1.67 ─ 

Minneapolis, MN 
Loose to medium dense sand 

─ SP 
1.35 1.25 

Lacrosse, WI * 
Loose to medium dense sand 

─ SP (FC: 5%-25%) 
1.45 1.2 

Manalapan, NJ 
Very loose silty sand ─ SP-

SM (FC: 10%-35%) 
0 ─ 

Reynolds, IN * 
Medium dense sand trace 

gravel ─ SW-SP 
1.6 1.8 

Tampa, FL 
Very loose to loose silty sand 

─ SM 
0.25 ─ 

Seattle, WA 
Loose to medium dense sand 

– SP (FC: 5% - 20%) 
2.4 ─ 

Prince Geo. Co., MD 
Loose to medium dense sand 

– SP-SM  
0.57 1.14 

Waterloo, IA 
Loose to medium dense sand 
─ SP (FC: 5% to 15%) 

1.16 1.34 

Lynn Haven, FL 
Loose to medium dense sandy 

soil ─ SW-SP-SC 
0 ─ 

Jacksonville, FL * Medium dense sand ─ SP 0.6 ─ 

Westminster, CA 
Loose to medium dense sand 
─ SP (FC: 10%-80%) 

0.6 ─ 

Waterloo. IA (Liq.) 
Loose to medium dense sand 
─ SP (FC: 5% to 15%) 

1.04 ─ 

Rochester, NH * 
Loose to medium dense sand 

trace silt – SP-SM 
1.4 ─ 
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Radial Densification 

    

Figure 84. Cavity expansion modes 

From the cavity expansion theory, either the radial stress or tangential stress reduces with 

the radial distance away from pier. For the elastic model, Yu (2000) reported the radial stress 

of cavity expansion could be represented in the form: 

      σ� 
 
p� 
 �p 
 p��� �� �$       (24) 

     σө 
 
p� � �p 
 p��� �� �$                                                                             (25) 

Similarly, the redial densification using CPT tip resistance could be expressed in the 

form: 

            q&� 
 q&� � q&� · � �� ��$                                                                                (26) 

Where, q&� = the post installation tip resistance values in matrix soil; q&� = the pre-

installation tip resistance values,  
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Figure 85. Radial densification from modified equation for sandy soils, in situ test 

results and in situ test average curves (Manalapan, IN and Waterloo, IA) 

Relative Density 

The relative density is an important parameter for sandy soil. It’s relative with the sandy 

soil strength and liquefaction. CPT can be used to estimate the in situ relative density of 

sands. However, there are many factors will influence the calculated relative density results, 

such as overconsolidation ratio, particle size and aging (Skempton 1986, Kulhawy and 

Mayne 1990). Based on the comparison of the several equations provided on Table 4, the 

equation developed by Jamiokowski et al is used in calculations. 

D� 
 
98 � 66log�� ������� �3.�       (27) 

The effective overburden pressure �σ�'J � of this empirical equation is determined by the 

unit weight, depth and groundwater table elevations. The relative density increases due to the 

decreased voids ratio. The voids ratio is relative large in the very loose to loose sand which is 

easy to lateral compress and reduce the void ratio. Since the aggregate is considered as 

placing the constant volume for each lift procedure, the very loose to loose sands induce 
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same among densification by impacting same volume aggregate in some range of small 

initial relative density. The larger diameters of DAPs have been found in the loose sandy 

ground than in the dense ground (Figure 86).  Because the aggregate tends to be more 

difficult to be impacted as many volumes in the dense sands as in loose sands due to the 

much higher lateral pressure required to change the same amount of void ratio (Figure 87). 

That may induce some volumes of aggregate to push back to the mandrel. Figure 88 shows 

the relationship of relative density between before and after DAPs were installed. The results 

indicates that the relative density increase about 20% for the sand with initial relative density 

less than about 40% (Figure 88: A to B). The relative density increases less in the dense sand 

than in the loose sand (Figure 88: B to C).  

 

                                     (A)                                                                (B)   

Figure 86. The construction profiles of constructing pier in the loose sand (A) and dense 

sand (B) 

low confining
stress - Lose layer
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Figure 87. Typical e-log p curve of sand 

 

Figure 88. Comparisons of the relative density changes between pre-installation and 

post-installation at seven sites 

Load Test Settlement 

The load test results are related to the soil types and strength within depths of the upper 3 

to 4 times diameters (Fox and Cowell 1998).Table 18 lists of the top soil types and the load 

test results are pointed out. The relationships between the settlements of individual IRAP and 

the ratios of design stress to average tip resistance within the top 3 diameters depth of matrix 

soil were shown in Figure 89 . This figure combines the design stress, stiffness of the matrix 

soil and deformation of individual pier under design stress. The results indicate the pier 

P, kPa

1 10 100 1000 10000
e

∆e1

∆e2

∆P1

∆P2

P
os

t-
in

st
al

la
tio

n 
D

r ,
(%

)

0

20

40

60

80

100

Pre-installation Dr, (%)

0 20 40 60 80 100

Lacrosse, WI
Manalapan, NJ
Seattle, WA
Prince Ggeo. MD
Waterloo, IA
Westminster, CA
Waterloo, IA (Liq.)

A 

B 
C 



119 

settlement was related with the matrix soil stiffness with the top 3 diameters depth. It may be 

used to give a quick approaximation of the design stress by giving settlement or predict the 

individual pier settlement under design stress.  

Typically, bulging and tip movement during the load test contributes to the deformation 

of a single aggregate pier. Because the tip movement deformation can be easily obtained by 

using tell-tale, the amount of bulging deformation can be determined from the total 

deformation and tell-tale deformation. The term of settlement index is introduced here, which 

is defined as: 

M> 
 >i¶��>i·i¶��·i         (28) 

Where, £n = total telltale settlement during ith load,  £n-�= total telltale settlement during 

(i+1)th load; Kn = total settlement during ith load; Kn-�= total settlement during (i+1)th load.  

Increasing applied stress on the top of pier induces the total settlement increase. Assume 

the amount of total settlement increase from  ¤X¸ loading to �¤ � 1�X¸ loading equals to the 

amount of tell-tale settlement (bottom settlement) from ¤X¸ loading to �¤ � 1�X¸ loading, the 

pier element will not contribute any settlement. The settlement index equals to 1 in this 

situation. Conversely, if the tell-tale settlement equals to zero, the total settlement will be 

totally contributed by the pier element. Between these two extreme conditions, the total 

settlement is contributed both bulging and tip movement.  

Figure 90 shows the settlement index values with the applied stress for the case histories. 

The results indicated that the deformations of piers in the most sites were predominated 

contribution by bulging. The trends of the bulging and tip movement during loading appear 

to be to wave change for most case histories.  
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Table 18. Summary of modulus load test results 

Project Locations 

Soil type with 
depth equal to 3 

times pier 
diameter 

Settlement 
at design 
load (in 
inches) 

Settlement at 
150% design 

load (in 
inches) 

Position of 
load test  

pier 
Comments 

Salinas, CA 
Sand to silty 
sand ─ SM 
(|}�¹¹¹¹¹ = 16) 

0.2 0.33 — Geopier 

Minneapolis, MN 
Sand (<7¹¹¹=65 

tsf) 

TP - 0.4 

IP - 0.34 

GP - 0.22 

0.77 

0.54 

0.34 

Individual  

TP-pyramid 
pier; IP-impact 

pier; GP-
Geopier 

Lacrosse, WI 
Sand, gravel 
fragment fill 
(<7¹¹¹=32 tsf) 

0.24 0.35 Individual 
— 

0.2 0.39 Pier group 

Manalapan, NJ 
Silty sand 
(<7¹¹¹=11 tsf) 

2.15 — — 
Assumed typical 

design stress 
:18.3 tsf 

Reynolds, IN 
Sandy soil �|º=8) 

1.47 3.1 Individual Design stress = 
28 ksf 1.31 2.4 Within group 

Tampa, FL 
Silty sand 
(<7¹¹¹=59 tsf) 

0.35 0.54 Individual 
Design stress = 

18.6 ksf 

Seattle, WA 
Silty sand to 

sandy silt 
(<7¹¹¹=91 tsf) 

0.21 0.35 Individual  
Design stress 

=18.3 ksf 

Waterloo, IA 
Sand (<7¹¹¹=50 

tsf) 
1.54 3.17 Individual  

Design stress = 
45.85ksf 

Lynn Haven, FL 
SW-SP-SC 
(<7¹¹¹=100 tsf) 

0.19 0.35 individual 
Design stress = 

18.6 ksf 

Jacksonville, FL Sand (|º=10) 0.21 0.36 individual 
Design stress = 

28.2 ksf 
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Figure 89. Relationship between total settlement and the ratio of design applied stress 

and pre-installation average qc,3D values (σdesign/qc,3D ) within the top 3 times diameters 

depth  
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Figure 90. The settlement index values with the applied stress 
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CHAPTER 5: DISCUSSION OF RESULTS 

This chapter is arranged into two parts, a discussion of matrix soil improvement and a 

discussion of the characteristics that influence the stability of DAPs during vertical loading. 

MATRIX SOIL IMPROVEMENT 

This section will present the conclusions of matrix soil improvement according to 

construction methods, area replacement ratios, pier group efficiency, and soil engineering 

parameter changes before and after pier installation.  

Area Replacement Ratio 

The area replacement ratio (Ra) was defined as the ratio of the sectional area of the DAP 

to the hypothetical cylindrical area. The DAP to footing ratio (Rf) was defined the ratio of the 

total pier area beneath the supporting footing to the footing area. Figure 91 indicated the 

different between area replacement ratio and the DAP to footing ratio. The area replacement 

ratio involved with the matrix soil improvement, however the DAP to footing ratio involved 

with the footing bearing capacity. The area replacement ratio was another factor to affect the 

efficiency of matrix soil improvement. Figure 92 shows the correlations between matrix soil 

improvement and the area replacement ratio.  

 

Figure 91. Schematic(a)  the area replacement ratio and (b) the DAP to footing ratio  

 

a b

footing
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         (a) 

 

        (b) 

Figure 92. Illustration of the matrix soil improvement and area replacement ratio – (a) 

Waterloo, IA and (b) Westminster, CA (1 tsf  =  0.096 MPa) 

Several results may be induced by increasing area replacement ratio: 

• Larger area replacement ratio may induce the greater ground heave. 

• Larger area replacement ratio will increase the matrix soil excess pore water pressure 

that will against the partially lateral pressure during ramming action.  
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• Larger area replacement ratio may cause greater soil disturbance and remolding of the 

interbeded soil strata. 

Matrix Soil Improvement within Pier groups 

Overall, the sandy matrix soil improvement has been discussed as the improvement index 

in Chapter Four; however, the different locations in the group have the different efficiency of 

the degree of improvement. Figure 93 shows the improvement index and the locations within 

and outside the pier groups. Different ground conditions showed different efficiency 

improvement. The heterogeneous soil strata are more difficult to observe the improvement 

(Figure 93a and b) than relative homogeneous soil strata (Figure 93c). Figure 94 shows the 

idealized contour improvement field of the Waterloo, IA site, which consists of relative 

homogeneous fine sand soil profiles. The descriptions indicated the soil in the group is more 

improved than outside group, and also the soil element near the piers have larger degree of 

improvement. But this trend is difficult to identify for the heterogeneous soil strata. 
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Figure 93. The improvement index (Id) values of sandy soils at the vicinity of the pier 

groups in (a) Lacrosse, WI; (b) Prince George County, MD; and (c) Waterloo, IA 

(Note:Id=qc,after/qc,before-1)  
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                                         (a)                                                            (b) 

Figure 94. (a) The idealized contour field of improvement index (Id) of sandy ground  

and (b) the actural test results in Waterloo, IA (Note:Id=qc,after/qc,before-1) 

Soil engineering parameter changes between pre- and post-installation 

To gain further insight into the matrix soil densification of DAPs, soil parameters of pre-

installation and post-installation are used to compare between the pre-installation and post-

installation in this section. The soil parameter profiles, which were calculated from CPT 

results,  are attached in the Appendix II. The average values of several soil engineering 

parameters at the mid-depth and greater depth are summarized on Table 19. The assumption 

of normal consolidated soils with 120 pcf (1.92kg/liter) unit weight is used in the calculations. 

The results indicate that the friction angle of the sandy soils increase varied from 2 to 6 

degree after the DAP installation. The undrained shear strength and friction angles of clayey 

soils were not significant increasing after DAP installation. Lateral stress coefficient and 

OCR increased for both sandy soils and clayey soils. 
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Table 19. Summary the matrix soil parameters for pre-installation and post-installation 

Case 

IJ »¼ (tsf) ½¾ OCR 

Pre- Post- Pre- Post- Pre- Post- Post- 

Riverside Center 31.5 37 - - 0.48 1.21 6.3 

Road O Crossing 25.5 27.5 - - 0.57 0.83 3.94 

Washington Liquor* 27.9 27.3 1.6 1.63 0.54 0.58 - 

Chalk Point P.P. 32.3 38 - - 0.52 2.3 65 

Wagner Road 34 39 - - 0.55 2.4 18 

Moran Asian* 28 31 1.8 1.8 0.56 0.59 2.7 

Wagner Road Liqf. 34 40 - - 0.55 2.5 21 

Note: *:obtained from silty or clayey soils 

THE STABILITY OF DAPS DURING LOAD TEST 

The DAP tends to lateral bulge out to the matrix soil and vertical tip movement into the 

ground during loading. The stiffness of matrix soil are affected the stability of the DAP. The 

first subsection is to discuss the stiffness of DAP and matrix soil from CPT data. And then, 

the performances of the single pier and group pier during loading are discussed. Finally, the 

effect of pore water pressure is analyzed in this section. 

Stiffness of DAP and Matrix Soil from CPTs data 

The various construction methods used to install DAPs affect the matrix soil 

improvement during mandrel penetration before ramming. The matrix soil improvemen can 

be separated to two phases. The first phase is similar to pile driving. The second phase is the 

lateral enhance by ramming action. Both phases will increase the preconsolidation pressure 

and reinforcing the matrix soil. The CPT and SPT are introduced to investigate the strength 
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of piers and the strength of matrix soil. The method is performing the CPT and SPT on the 

DAP shaft and the surrounding matrix soil. Figure 95 shows the results of tip resistance of 

DAP shaft and matrix soil. The results indicate that the tip resistance of the piers is generally 

2 to 3 times greater than the matrix soil, but the tip resistance of the piers in the peat zone is 

approximately equal to that of the matrix soil.  

 

 
Figure 95. The CPT tip resistance results of the RAPs and matrix soil in (a) Tampa, FL 

and (b) Springfield, MA  
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Deformation of Single DAP during Loading 

Since no tensile strength of the DAP during loading, the pier tends to lateral compress the 

soil and bulge in response to the load. The radial stress ( 	�) of the soil increases and contacts 

against the aggregate pier lateral compression and bulging. The vertical compression stress is 

quickly decreasing along the pier. As discussion in the background, the most vertical stress 

will be dissipated to the soil within 3 diamters depth from ground surface for RAP.  Figure 

96 shows the settlement results and the soil strength from CPT tip resistance in the top 3 

diameters deep.  

 

Figure 96. The results of combination in situ CPT results in matrix soil and single IRAP 

load test results  
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to increase during load increasing (White et al. 2001). Comparison the results between full 

scale small size footing and large size footing load test results may recognize the difference 

between the larger scale group and small scale group. Figure 97 shows the load test results of 

single pier with cap, single pier footing and pier groups footing. The results indicate that the 

footing contained matrix soil will increase the bearing capacity. The pier unit in group tends 

to reduce the bearing capability.  

The difference between the single pier and the single pier footing may be due to the 

matrix soil sharing partial load and the pier stiffness increasing caused by increasing the 

confining pressure. The load capacity of single pier with matrix soil in groups is lower than 

single pier footing, one reason may be due to that the uneven confining pressures, which tend 

the pier to slide, and the boundary conditions are different in group.  

 

Figure 97. Load tests results indicating single pier unit in Waterloo, IA site 
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Figure 98. Illustration the pier-soil interactions beneath the footing 

Pore Water Pressure in Piers and Matrix Soil 

High pore water pressure will be generated in the surrounding soil during the ramming 

action that may induce the temporary liquefaction of saturated soil (Handy and White, 2006). 

After the pore water dissipates, the total stress decreases as the effective pressure increases, 

which may increase the interaction between the pier and matrix soil and increase the stiffness 

of the pier (Figure 99). The relatively greater permeability of aggregate piers is beneficial 

because they can provide drainage in constant low permeability soil layers and sand-clay-

sand interbeded soil layers. Further, because the drainage path from the point in the middle of 

the space between piers, more time is required to dissipate pore water pressure (Figure 100). 

However, pore water pressure in DAPs appears to be highly related with the matrix soil 

conditions (Figure 101).  

In situ CPT soundings indicate that negative pore water pressures are generated in low 

permeability layers during initial penetration. One reason for this negative pressure may be 

that initial unsaturated silty or clayey soils have negative air pressure. Another reason for 

negative pore water pressures may be the combination of soil remolding, reduction, and pore 

water being forcing away from the piezometer by air. Figure 101 shows the differences in 
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pore water pressures before and after DAP installation, differences that may be the result of 

ground modification and remolding after the installation.  

  

Figure 99. Comparison modulus load test results for time effect for Waterloo, IA site 

(1 tsf  = 0.096 MPa) 

 

Figure 100. Schematic of the drainage paths of the sand-clay-sand interbedded soil 

layers after DAP installation  
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Figure 101. Pore water pressure in matrix soil and pier element from CPT of 

Springfield, MA 

 

Figure 102. Pre-installation and post-installation Pore water pressure in interbeded soil 

layers from CPT for Westminster, CA site 
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PROJECTED MATRIX SOIL IMPROVEMENT TABLES 

This section provides two tables that can be used to predict soil improvement after DAPs 

are installed. These tables are based on tip resistance data and friction ratios obtained from 

CPTs performed both before and after DAPs were installed at the case sites. The soil 

classifications used in the tables are based on the Jefferies and Davis classification system 

(1997), and Figure 101 shows the distribution of increases in CPT tip resistance values with 

respect to the pre-installation soil index. Because clayey soils did not show improvement 

(Figure 103), only clean sand to silty sand soils and silty sand to sandy silt soils were used to 

construct the two design tables. 

 

Figure 103. Increases in tip resistance with respect to pre-installation soil behavior 

types in pier groups (following classification method proposed by Jefferies and Davis 

1997) 
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soils and silty soils measured at 2 ft from the center of an individual pier not in a group of 

piers. 

Table 20. Predicted matrix soil improvement for sandy soils and silty soils within pier 
groups 

Table 21. Predicted matrix soil improvement for sandy soils and silty soils measured at 
2 ft from the center of an individual pier not in a group of piers 

Clean sand to silty sand Silty sand to sandy silt 

Pre-installation tip 
resistance (tsf) 

∆qc (tsf) 

 

Pre-installation tip 
resistance (tsf) 

∆qc (tsf) 

 

10–30 5–20–40 5–20 5–10–20 

30–60 5–40–70 20–40 5–15–35 

60–100 5–30–85 40–60 ─ 

100–160 20–60–85 60–80 ─ 

Legend: 1 tsf = 0.096 MPa 

 

 The soils can be classified several groups which have different amount improvement 

after group DAPs are installed on Robertson et al.’s classification chart. The results are 

shown in Figure 104.  

Comparing the design table and Figure 104, the former is used to the known soil types 

and initial tip resistance, the later is applicable to for the soil profiles with tip resistance and 
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friction ratio. Both methods have quite large variance, but the results are still achieved to the 

purposes of this study. 

 

Figure 104. Soil improvement projected from initial tip resistances and friction ratios 

(the amount increment respected to matrix soils within pier groups; the spacing of the 

piers within the range of 4 ft and 7 ft) 
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CHAPTER 6: CONCLUSIONS 

Conclusions based on the data from the 16 cases provided by the Geopier Foundation 

Company resulted in the following conclusions. These conclusions are grouped into these 

categories: matrix soil improvement and soil-pier interactions. The final two sections of this 

chapter offer suggestions for future research and implications for constructing DAPs. 

MATRIX SOIL IMPROVEMENT 

• The following methods can be used to identify the pre-installation effective 

improvement and non effective improvement soils: 

o CPT friction ratio less than 1% 

o Fines content less than 20% 

o Effective improvement chart (Figure 77). 

• The types of fines may affect the soil improvement. Clay types may reduce the degree 

of improvement. 

• Based on soil behavior index, clean sand to silty sand soils, sandy silt soils, and silty 

clay to clay soils show major improvement, minor improvement and no improvement, 

respectively. 

• The initial relative density affects the degree of improvement for clean sand to silty 

sand soil. The very loose sandy soils (for example, SPT=0) indicate much less 

improvement than dense sand after IRAP installation. 

• Overall, the average SPT N-vales increased from 9 to 20 after DAPs installation in 

groups; The average SPT N60-values, which were calculated from CPT results,  

increased from 11 to 21 in the groups.  

• Typically, the surface soils to the depth of 1 to 2 DAP diameters do not have much 

improvement. 

• The overburden pressure (or depth) was not a significant factor to influence the 

matrix soil improvement at elevations deeper than 1 to 2 diameters. 

• Soil improvement can be achieve as deep as 2 diameters beneath the pier bottom, but 

strongly depends on the soil types and soil strata. 
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• The average values of improvement index of clean sand to silty sand soils (FC<20%) 

from CPT and SPT were approximately 0.62 and 1.2, respective.  

• The average group effective factor was approximately 1.35 for sandy soils.  

• The relative density of the sandy soils increased after DAPs installation. 

• CPT results indicated the effective improvement zone of single pier to be within the 5 

ft from center. 

• DAP may induce the subsoil disturbance and modifications which may reduce the tip 

resistance values at some points. 

SOIL-PIER INTERACTIONS 

• The pier stiffness and strength from the tip resistance tend to strongly relate with the 

stiffness and strength of the matrix soil. The tip resistance values of the pier are 

normally 2 to 3 times greater than the matrix soil composed of sand layers. 

• DAPs provide a vertical drainage to dissipate the pore water pressure in clayey layers. 

• The CPT results indicated that the pore water pressure in DAP was related to the 

matrix soil conditions. 

• The interactions, which are represented by the stiffness, between the pier and soils 

increase after the pore water pressure dissipates. 

• Settlement index was introduced to study the settlement of DAPs. 
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SUGGESTIONS FOR FUTURE RESEARCH 

 

It is recommended to future researchers to use and update the design tables and figures. 

Numerical analysis of the single pier and pier groups settlement in sand is recommended. 

The sliding effect may be considered for pier groups simulation. 

The temporary liquefaction may be occurred during ramming compaction in sands. The 

correlations of sandy soil densification with the critical voids ratio, ground heave, dilatants 

and drainage path are not fully understood. It is recommended to future research on this area. 
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APPENDIX I: SAMPLE CALCULATIONS 

 

Sample calculations of area replacement ratio 

 

Assume the diameter of piers = D, Ar = area replacement ratio 

@� 
 ¿c$
4,$

a
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APPENDIX II: SAMPLE SPREAD SHEET AND SOIL PARAMETERS PROFIL ES 

 

1 2 3 4 5 6 7 8 9 10 11
Depth, 

m
ft Qc, tst Fs, tsf

Pw, 
psi

Inclinatio
n 

(degrees)
Overburdent 

(psf)
FR (%) Qt Ic

Soil 
Type

0.05 0.16 5.60 0.00 0.00 0.00 19.68 0.00 568.11
0.10 0.33 23.90 0.02 0.00 0.00 39.36 0.08 1213.43 0.41 7.00
0.15 0.49 41.90 0.13 -0.60 0.01 59.04 0.31 575.78 1.01 7.00
0.20 0.66 53.50 0.22 -0.30 0.00 78.72 0.41 876.98 0.99 7.00
0.25 0.82 58.90 0.29 -0.20 0.00 98.40 0.49 925.33 1.04 7.00
0.30 0.98 61.00 0.33 0.00 0.01 118.08 0.54 1032.20 1.06 7.00
0.35 1.15 61.20 0.35 0.00 0.00 137.76 0.57 887.50 1.11 7.00
0.40 1.31 59.70 0.37 0.00 0.00 157.44 0.62 757.38 1.17 7.00
0.45 1.48 56.20 0.26 0.00 0.00 177.12 0.46 633.60 1.11 7.00
0.50 1.64 50.20 0.26 -0.10 0.01 196.80 0.52 474.45 1.23 7.00
0.55 1.80 38.80 0.22 0.00 0.01 216.48 0.57 357.46 1.34 6.00
0.60 1.97 31.10 0.17 0.00 0.00 236.16 0.55 262.38 1.42 6.00
0.65 2.13 27.50 0.14 0.00 0.01 255.84 0.51 213.98 1.47 6.00
0.70 2.30 28.60 0.13 0.00 0.01 275.52 0.46 206.61 1.45 6.00
0.75 2.46 30.50 0.14 0.00 0.00 295.20 0.46 205.64 1.46 6.00
0.80 2.62 32.20 0.15 0.10 0.00 314.88 0.47 213.28 1.45 6.00
0.85 2.79 36.50 0.19 0.10 0.01 334.56 0.52 226.97 1.46 6.00
0.90 2.95 46.30 0.27 0.00 0.00 354.24 0.59 260.40 1.44 6.00
0.95 3.12 54.90 0.37 0.00 0.01 373.92 0.68 292.65 1.45 6.00
1.00 3.28 55.50 0.41 0.20 0.01 393.60 0.74 303.20 1.47 6.00
1.05 3.44 51.10 0.46 0.20 0.01 413.28 0.90 264.74 1.57 6.00
1.10 3.61 47.50 0.56 0.20 0.01 432.96 1.18 233.98 1.70 6.00
1.15 3.77 47.70 0.60 0.10 0.01 452.64 1.26 216.66 1.74 6.00
1.20 3.94 56.20 0.62 -0.40 0.01 472.32 1.11 211.22 1.71 6.00
1.25 4.10 65.40 0.62 -0.50 0.01 492.00 0.95 231.04 1.63 6.00
1.30 4.26 67.80 0.60 -0.90 0.01 511.68 0.89 210.65 1.64 6.00
1.35 4.43 65.70 0.55 -0.80 0.01 531.36 0.84 202.41 1.63 6.00
1.40 4.59 63.70 0.59 -0.10 0.01 551.04 0.93 224.34 1.63 6.00
1.45 4.76 59.40 0.41 -0.50 0.01 570.72 0.69 183.95 1.61 6.00
1.50 4.92 54.80 0.51 -0.40 0.01 590.40 0.94 168.22 1.72 6.00
1.55 5.08 51.90 0.51 -3.60 0.01 610.08 0.99 91.44 1.94 6.00
1.60 5.25 55.20 0.48 -5.30 0.01 629.76 0.87 78.80 1.96 6.00
1.65 5.41 58.70 0.37 -0.40 0.01 649.44 0.63 165.13 1.62 6.00
1.70 5.58 58.80 0.39 0.00 0.01 669.12 0.67 174.75 1.61 6.00
1.75 5.74 59.70 0.42 0.00 0.01 688.80 0.71 172.34 1.63 6.00
1.80 5.90 60.00 0.40 0.00 0.01 708.48 0.67 168.38 1.63 6.00
1.85 6.07 58.50 0.41 -0.10 0.01 728.16 0.71 156.58 1.66 6.00
1.90 6.23 56.70 0.41 0.00 0.01 747.84 0.73 150.64 1.69 6.00
1.95 6.40 53.50 0.38 0.00 0.01 767.52 0.72 138.41 1.71 6.00
2.00 6.56 55.90 0.38 -0.10 0.01 787.20 0.68 138.49 1.70 6.00
2.05 6.72 59.40 0.40 -0.10 0.01 806.88 0.68 143.67 1.68 6.00
2.10 6.89 59.20 0.40 -0.10 0.12 826.56 0.68 139.81 1.69 6.00
2.15 7.05 59.50 0.40 0.00 0.12 846.24 0.68 139.62 1.69 6.00
2.20 7.22 60.00 0.40 0.10 0.12 865.92 0.67 139.91 1.69 6.00
2.25 7.38 59.60 0.39 0.10 0.13 885.60 0.66 135.81 1.69 6.00
2.30 7.54 57.00 0.39 0.10 0.13 905.28 0.69 126.95 1.73 6.00
2.35 7.71 51.70 0.40 0.00 0.14 924.96 0.78 110.79 1.81 6.00
2.40 7.87 49.20 0.38 0.10 0.14 944.64 0.78 104.76 1.83 6.00
2.45 8.04 51.20 0.27 -0.10 0.14 964.32 0.53 103.64 1.74 6.00
2.50 8.20 59.10 0.26 0.10 0.14 984.00 0.44 120.89 1.64 6.00
2.55 8.36 65.80 0.37 -3.80 0.15 1003.68 0.57 84.21 1.83 6.00
2.60 8.53 69.70 0.46 -3.60 0.15 1023.36 0.66 89.75 1.84 6.00
2.65 8.69 74.40 0.48 -3.40 0.15 1043.04 0.65 96.41 1.81 6.00
2.70 8.86 79.10 0.52 -3.10 0.16 1062.72 0.66 104.13 1.79 6.00
2.75 9.02 81.60 0.54 -2.60 0.15 1082.40 0.67 111.28 1.77 6.00
2.80 9.18 86.00 0.58 -2.30 0.15 1102.08 0.68 119.24 1.75 6.00
2.85 9.35 88.80 0.64 -2.20 0.15 1121.76 0.73 122.68 1.75 6.00
2.90 9.51 90.60 0.68 -1.80 0.16 1141.44 0.76 128.55 1.75 6.00
2.95 9.68 91.30 0.70 -1.70 0.15 1161.12 0.77 129.05 1.75 6.00
3.00 9.84 94.30 0.70 -1.60 0.15 1180.80 0.75 132.81 1.73 6.00
3.05 10.00 98.10 0.71 -1.50 0.31 1200.48 0.73 137.66 1.72 6.00
3.10 10.17 101.60 0.74 -1.40 0.30 1220.16 0.73 142.06 1.71 6.00
3.15 10.33 99.20 0.77 -1.40 0.30 1239.84 0.78 136.78 1.74 6.00
3.20 10.50 92.30 0.74 -1.30 0.30 1259.52 0.81 126.73 1.77 6.00
3.25 10.66 85.30 0.69 -1.20 0.30 1279.20 0.82 116.61 1.80 6.00
3.30 10.82 83.90 0.65 -1.20 0.30 1298.88 0.78 113.14 1.80 6.00
3.35 10.99 78.80 0.62 -1.10 0.30 1318.56 0.79 105.81 1.83 6.00
3.40 11.15 69.00 0.57 -1.00 0.30 1338.24 0.83 92.20 1.89 6.00
3.45 11.32 60.10 0.36 -1.00 0.30 1357.92 0.61 79.13 1.86 6.00
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12 13 14 15 16 17 18 19 20 21 22
Fines 

Content
N60 Es

effective 
stress

N(1)60
Friction 
angle

Ko(pre)
stress 

(tsf)
fs Dr e

0.62 14.00 0.01 6.28 29.83 0.50 0.00 1.00 51.66 0.79
-3.60 2.92 59.75 0.02 20.80 37.90 0.39 0.01 1.00 83.32 0.63
-1.92 5.96 104.75 0.02 42.48 45.58 0.29 0.01 1.00 99.41 0.59
-2.02 7.57 133.75 0.07 28.08 40.79 0.35 0.01 1.00 87.69 0.63
-1.70 8.47 147.25 0.06 34.29 42.98 0.32 0.02 1.00 92.97 0.61
-1.60 8.80 152.50 0.06 34.91 43.19 0.32 0.02 1.00 93.37 0.61
-1.26 8.96 153.00 0.06 36.88 43.83 0.31 0.02 1.00 94.53 0.61
-0.76 8.91 149.25 0.07 33.93 42.86 0.32 0.03 1.00 91.61 0.63
-1.25 8.23 140.50 0.08 29.34 41.26 0.34 0.03 1.00 87.96 0.64
-0.30 7.61 125.50 0.09 25.57 39.84 0.36 0.04 1.00 83.04 0.66
0.81 6.08 97.00 0.11 18.72 36.98 0.40 0.04 1.00 73.13 0.72
1.81 5.01 77.75 0.11 15.21 35.31 0.42 0.05 1.00 66.44 0.76
2.42 4.49 68.75 0.12 13.07 34.19 0.44 0.06 1.00 61.66 0.78
2.18 4.64 71.50 0.13 12.99 34.14 0.44 0.06 1.00 61.64 0.78
2.23 4.96 76.25 0.14 13.36 34.35 0.44 0.06 1.00 62.42 0.78
2.12 5.22 80.50 0.15 13.59 34.47 0.43 0.07 1.00 62.99 0.77
2.24 5.94 91.25 0.15 15.32 35.36 0.42 0.07 1.00 66.33 0.76
2.08 7.50 115.75 0.16 18.75 36.99 0.40 0.07 1.00 72.24 0.73
2.19 8.92 137.25 0.18 21.19 38.07 0.38 0.07 1.00 75.67 0.72
2.44 9.07 138.75 0.19 20.98 37.97 0.38 0.08 1.00 75.21 0.73
3.96 8.64 127.75 0.18 20.22 37.65 0.39 0.08 1.00 73.19 0.75
6.09 8.37 118.75 0.19 19.09 37.15 0.40 0.09 1.00 70.34 0.79
6.92 8.53 119.25 0.20 18.98 37.10 0.40 0.09 1.00 69.75 0.80
6.23 9.93 140.50 0.22 21.21 38.07 0.38 0.09 1.00 73.29 0.78
4.88 11.26 163.50 0.26 21.88 38.36 0.38 0.09 1.00 74.91 0.75
4.98 11.70 169.50 0.28 22.03 38.42 0.38 0.10 1.00 75.05 0.75
4.90 11.32 164.25 0.32 19.99 37.55 0.39 0.10 1.00 72.31 0.77
4.91 10.98 159.25 0.32 19.30 37.24 0.40 0.11 1.00 71.31 0.77
4.46 10.14 148.50 0.28 19.08 37.14 0.40 0.11 1.00 71.22 0.77
6.54 9.74 137.00 0.32 17.18 36.26 0.41 0.12 1.00 67.08 0.81
11.31 9.97 129.75 0.32 17.51 36.42 0.41 0.12 1.00 65.40 0.88
11.78 10.67 138.00 0.56 14.21 34.79 0.43 0.14 1.00 59.22 0.92
4.63 10.06 146.75 0.70 12.05 33.62 0.45 0.14 1.00 57.96 0.83
4.55 10.06 147.00 0.35 16.92 36.14 0.41 0.14 1.00 67.73 0.78
4.91 10.29 149.25 0.33 17.79 36.55 0.40 0.14 1.00 68.96 0.78
4.79 10.31 150.00 0.34 17.57 36.45 0.41 0.14 1.00 68.68 0.78
5.45 10.19 146.25 0.35 17.12 36.23 0.41 0.15 1.00 67.56 0.79
5.84 9.95 141.75 0.37 16.32 35.86 0.41 0.15 1.00 65.99 0.81
6.29 9.46 133.75 0.37 15.47 35.44 0.42 0.16 1.00 64.22 0.82
6.06 9.85 139.75 0.38 15.89 35.64 0.42 0.16 1.00 65.11 0.81
5.78 10.41 148.50 0.40 16.44 35.91 0.41 0.17 1.00 66.22 0.80
5.97 10.41 148.00 0.41 16.24 35.82 0.42 0.17 1.00 65.78 0.81
5.95 10.46 148.75 0.42 16.13 35.76 0.42 0.18 1.00 65.58 0.81
5.90 10.54 150.00 0.42 16.20 35.79 0.42 0.18 1.00 65.73 0.81
5.99 10.48 149.00 0.43 16.07 35.73 0.42 0.18 1.00 65.45 0.81
6.66 10.15 142.50 0.44 15.38 35.39 0.42 0.19 1.00 63.85 0.83
8.30 9.47 129.25 0.45 14.19 34.78 0.43 0.20 1.00 60.73 0.86
8.71 9.07 123.00 0.46 13.34 34.33 0.44 0.21 1.00 58.77 0.88
6.79 9.14 128.00 0.47 13.40 34.36 0.44 0.21 1.00 59.83 0.85
4.97 10.20 147.75 0.49 14.58 34.98 0.43 0.21 1.00 63.22 0.81
8.68 12.13 164.50 0.48 17.42 36.38 0.41 0.20 1.00 66.43 0.84
9.01 12.92 174.25 0.78 14.67 35.03 0.43 0.22 1.00 61.35 0.87
8.33 13.63 186.00 0.77 15.53 35.46 0.42 0.22 1.00 63.30 0.85
7.84 14.38 197.75 0.77 16.42 35.90 0.41 0.22 1.00 65.14 0.83
7.39 14.72 204.00 0.75 16.94 36.15 0.41 0.22 1.00 66.26 0.82
7.01 15.41 215.00 0.73 18.05 36.67 0.40 0.22 1.00 68.27 0.81
7.16 15.95 222.00 0.72 18.84 37.04 0.40 0.22 1.00 69.42 0.81
7.06 16.25 226.50 0.72 19.16 37.18 0.40 0.23 1.00 69.94 0.80
7.15 16.40 228.25 0.70 19.60 37.37 0.39 0.23 1.00 70.55 0.80
6.78 16.83 235.75 0.70 20.07 37.58 0.39 0.23 1.00 71.42 0.79
6.41 17.39 245.25 0.71 20.70 37.86 0.39 0.23 1.00 72.50 0.78
6.24 17.96 254.00 0.71 21.34 38.13 0.38 0.23 1.00 73.45 0.78
6.83 17.72 248.00 0.71 21.01 37.99 0.38 0.24 1.00 72.71 0.79
7.53 16.69 230.75 0.72 19.66 37.40 0.39 0.25 1.00 70.45 0.81
8.17 15.59 213.25 0.72 18.33 36.80 0.40 0.26 1.00 68.13 0.82
8.14 15.33 209.75 0.73 17.99 36.64 0.40 0.26 1.00 67.61 0.83
8.74 14.54 197.00 0.74 16.95 36.15 0.41 0.27 1.00 65.62 0.84
10.13 13.01 172.50 0.74 15.14 35.27 0.42 0.28 1.00 61.76 0.88
9.55 11.23 150.25 0.74 13.05 34.17 0.44 0.30 1.00 57.75 0.89
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