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Abstract 

Transportation is a major source of many major air pollutants as well as greenhouse 

gas emissions.  The four common factors responsible for vehicular emissions are vehicle, 

road characteristics, traffic conditions and driving behavior.  The objective of this 

dissertation was to study driving behavior since it is highly correlated to emissions as shown 

by previous studies.  Understanding driving behavior is likely to help improve emissions 

estimates. In this dissertation, three levels of analyses of driving behavior were conducted 

including: (1) exploring driving behavior parameters and assessing their impact on emissions, 

(2) comparing driving behavior among the three most common traffic control devices, and 

(3) modeling second-by-second driving behavior of individual drivers. In order to explore 

these relationships, spatial location, vehicle kinematics, and CO2 emissions were collected 

along a study road corridor in Urbandale (IA) was. The chosen road corridor comprised of a 

roundabout, an all-way-stop and a traffic signal along with curve and tangent sections. The 

traffic during peak and off-peak hours on the corridor was comparable. This was useful for 

comparing driving behavior across drivers under similar conditions. A single instrumented 

vehicle was driven over the corridor by four different subject drivers. The vehicle was 

equipped with a portable emissions measurement device which had engine sensor, tail-pipe 

sample lines and a GPS.  

In the first analysis, vehicle kinematic variables were used to derive driving behavior 

parameters that included gas pedal use and brake pedal use. Two groups of drivers were 

identified based on these parameters. The study identified gaspad and brakepad as important 

driving behavior parameters which can explain variation in vehicular emissions.  
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Driving behavior parameters used in previous studies for developing driving cycle 

were utilized in this study to compare driving behavior between traffic control devices for the 

second analysis.  These parameters characterized speed behavior, speed change behavior and 

energy gain behavior. A MANOVA model was used for comparing the overall driving 

behavior between traffic control devices by comparing these parameters. Results showed that 

driving behavior at the roundabout and all-way-stop differ significantly (p < 0.001) on at 

least one of driving behavior parameter. Likewise, roundabout and traffic signals also 

differed in terms of driving behavior (p < 0.001).  Driving behavior and emissions are highly 

correlated. This implies using separate emission factors for different traffic control devices.  

In the third analysis, speed profiles at roundabout were modeled for the drivers using 

a fourth degree polynomial regression. Results showed that speed profiles models were 

significantly different across drivers. This implied that drivers must be treated as random 

variables in modeling driving behavior and emissions for a given road or driver population.  

Average speeds of drivers at yield point were simulated based on the model. The maximum 

difference was found to be about 1.5 mph.  

 

Keywords: vehicle kinematics, driving behavior, traffic control devices, emissions, 

polynomial regression, Bayesian hierarchical models, MANOVA. 
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CHAPTER 1.  Introduction 

 

1.1 Background 

The transportation sector generates approximately 30% of the greenhouse gas (GHG) 

emissions in the U.S. Total mass of CO2 (a GHG) emissions from the transportation sector 

(fuel combustion) was calculated as 4399 metric tons in 1990 and is estimated to double 

(9092 metric tons) by 2030 (IEA, 2011). Although this includes all modes, highway vehicles 

consisting of large trucks and passenger vehicles contribute a majority of it. The number of 

passenger cars is expected to be two billion in the next 20 years (Sperling and Gordon, 2009).   

 

 
Figure 1.1: Increasing trend of VMT and corresponding CO2 emissions 

 

Many solutions have been proposed for changing the course of this present trend of 

vehicle miles travelled (VMT) and emissions. These include (1) using alternative modes of 

transportation such as transit or bicycling, (2) reducing vehicle miles traveled and number of 
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trips, (3) using renewable fuels and alternative vehicle technologies, and (4) changing driving 

style/behavior.   

Each solution has been demonstrated to be effective, but an interdisciplinary approach 

which combines these solutions is more likely to address GHG emissions from 

transportation. Apart from using technology, human behavior (needs and culture) plays an 

important role in solving the global problems caused by vehicular emissions, implying a need 

for change in human driving behavior (O‟Brain, 2008).  

Understanding the impact of driving on emissions is essential to develop appropriate 

strategies and policies pertaining to environmental-friendly driving. There are a number of 

factors that characterize driving either directly or indirectly, some of which are presented in 

the following section.  

 

1.2 Factors affecting emissions  

Cappiello et al., (2002) classified factors affecting emissions into four broad groups –

vehicle technology specifications (Weight, emissions control devices, engine power 

specification), vehicle status (mileage, age, and mechanical status), vehicle operating 

conditions (power demand, air-fuel ratio, vehicle kinematics), and external environment 

conditions (air conditions, ambient temperature, road characteristics).  

Vehicle operation is a result of how a driver chooses to drive a given vehicle. 

Aggressive driving may contribute to 40% higher fuel consumption as compared to normal 

driving, andemissions may be still higher (De Vlierger et al., 2000; Brundell-Freij et al., 

2005). Further, research indicates that a single "hard “acceleration event may cause as much 
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pollution as the rest of the trip (Guensler, 1993). Such findings have led to the adoption of 

environmental friendly driving habits, some of which are presented in the next section.  

 

1.3 Eco-driving  

Eco-driving strategies pertain to driving in a more environment friendly manner in 

order to reduce fuel consumption and emissions. According to eco-driving practices, small 

changes in driving style can affect big overall savings in energy use and lowering fuel 

consumption and emissions. Aggressive driving (speeding and braking) can lower gas 

mileage by about 33 % on a highway and 5% on an urban road. For most vehicles, an 

optimum speed at which fuel economy is highest is in the range of 35 to 55 mph (EPA, 

2010).  Each five mph above 60 mph can reduce fuel economy by 7%. Fuel economy is 

highly correlated to emissions.  

Optimizing driving habits can help reduce emissions and fuel consumption. Nissan 

introduced the world‟s first eco-pedal to help reduce fuel consumption.  They identified an 

unfavorable region of acceleration where the emissions are significantly high. An eco-pedal 

restricts the free flow pushing of the gas pedal and keeps the acceleration under a limit 

thereby checking the emissions.  In essence, it helps in smooth acceleration. When high 

acceleration is needed, it is provided gradually. Nissan's internal research shows that driving 

with eco-pedal is likely to reduce fuel consumption by 5-10% (Nissan, 2008).  Based on the 

many research findings on impact of driving on emissions and fuel consumption, several 

programs have been initiated to propagate eco-driving. The examples include,  
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1.) EcoDriving USA (EcoDriving, 2011),  

2.)  Driving Change (Hickenlooper, 2011), and  

3.)  GreenRoad (GreenRoad, 2011) 

These programs have been in effect for a while and claim to reduce fuel consumption 

and carbon foot prints to the environment. The efficient driving habits include: 

1.) Reducing idling  

2.) Driving at speed close to speed limit 

3.) Avoiding sudden hard accelerations  

4.) Adopting smooth starts and stops  

5.) Avoiding as much travel during off-peak hours as possible  

6.) Taking the shortest route with the best roads  

7.) Using cruise control  

8.) Maintaining tires at the recommended air pressure  

9.) Removing unwanted things from the vehicle to reduce its weight  

The driver‟s behavior at a given traffic or road condition is generally termed as 

driving behavior (or driver behavior). The next section elaborates on this further.  

1.4  Driving behavior   

Driving behavior is defined as any parameter or group of parameters, combination, 

their derivatives or transformations that characterize the choice of speed, acceleration and 

gear by a driver to accomplish the driving task (Ericsson, 2005). It can also be stated as an 
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attitude manifested in terms of acceleration, braking, cornering, lane handling and speed 

handling (Greenroad, 2011). Transportation activities are identified on a micro-scale level as 

driving behavior in this study. To implement appropriate strategies and policies that can help 

in reducing emissions, it is essential to understand and model emissions as a function of 

transportation activities or driving behavior.  

 

1.5 Motivation for this work  

The science of transportation of people and goods is an interdisciplinary subject. 

Vehicular emissions depend on the road characteristics, driving behavior and the vehicle. 

These factors are repeatedly being studied by transportation professionals, human factor 

researchers and vehicle manufacturers.  

The present research is aimed towards studying the effect of traffic control devices 

and driving behavior on vehicular emissions and fuel economy at micro-scale level. Good 

understanding of the impact of driving style on emissions would improve existing driving 

style education programs (Mierlo et al., 2004). Although, aggregate comparisons have been 

made (Holmén and Niemeier, 1998) across drivers, previous researchers have not modeled 

driving behavior on a micro-scale level (second-by-second). This research is aimed towards 

modeling driving behavior on second-to-second basis. Understanding driving behavior at 

micro-scale level is likely to improve instantaneous emission models which are based on 

aggregate measures.  

Also, researchers have not compared traffic control devices in the light of driving 

behavior parameters that affect emissions. A comparative study of driving behavior at most 
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common traffic control devices is the focus of this research. This is likely to enhance 

modeling emissions at individual traffic control devices. The following section presents 

objectives that served accomplish the purpose of this research study. 

 

1.6 Research objectives and problem statement 

The analysis presented in this research was done on three levels namely (1) 

parameter-level, (2) intersection level, and (3) second-by-second level. The objectives 

underlying these analyses are stated below. 

1.) To explore existing and proposed parameters in terms of drivers and traffic control 

devices. 

2.) To compare driving behavior exhibited at different traffic control devices. 

3.) To model and compare driving behavior of individual drivers on micro-scale level 

(second-to-second basis). This objective was motivated by finding a unique driving 

behavior model that can represent a typical driver. A driving behavior model can be 

highly useful in quantifying emissions at a given traffic control device.  

 

1.7 Research scope 

The study explored driving behaviors corresponding to a mid-size passenger car on 

the level of trips, traffic intersections, and a given geographical co-ordinate. The driving 

behavior of four different drivers was studied in terms of various parameters that affected 

vehicular emissions.   
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The research would help understand driving behavior and emissions at individual 

traffic intersections. This would improve the present emissions models and emission 

estimates and help in developing appropriate strategies for controlling emissions.  

 

1.8 Organization of this dissertation  

The dissertation is divided into seven chapters. The first Chapter introduces the 

background of the research, factors affecting emissions, driving behavior and emissions. It 

further describes the motivation and the research objectives and presents the scope of this 

work. The second chapter summarizes previous research on driver behavior and emissions 

analysis as well as emissions at different traffic devices. Chapter three contains data 

collection methodology, study design and data preparation. Chapter four presents an 

exploratory study on driving behavior parameters. Chapter five compares driving behavior 

across various traffic control devices. In chapter six, individual driving behaviors are 

modeled and compared across drivers. The last chapter (seven) summarizes the findings and 

contributions of this study, discusses the assumptions, explains the limitations and challenges 

faced, and presents recommendations for future research.  
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CHAPTER 2.  Literature Review 

 

This chapter summarizes studies on various aspects of driving behavior and its 

relationship to emissions. In addition, driving behavior and emissions specific to traffic 

control devices are also discussed. 

 

2.1 Driving behavior and emissions 

This section presents studies that correlate driving behavior with emissions. Past 

researchers have shown that driving behavior (or vehicle operating mode) directly affects the 

power required to operate a vehicle at a given state. Fuel consumption is highly correlated to 

emissions. The higher the power demanded of the engine, the higher is the fuel combustion 

leading to higher vehicular emissions. Emissions measured by a portable emissions 

monitoring system (PEMS) have high variability from one run to another due to factors such 

as engine condition, environmental condition and driving behavior (Rouphail et al., 2001).  

Understanding and modeling driving behavior is likely to help researchers in evaluating 

emissions more accurately and help in making appropriate policies for controlling vehicular 

emissions. 

Evans (1979) studied the effect of driver behavior on fuel consumption on urban 

roads. Nine drivers including one with considerable experience and expertise in minimizing 

fuel consumption were asked to drive on a route with vehicle equipped with vacuum gauge 

fuel economy meter. The meter was divided into three regions namely green, orange and red 

which indicated increased level of power use or fuel consumption. The objective of the 
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research was to contrast change in driving behavior due to traffic conditions and change due 

to individual driving style. In order to capture specific driving behaviors, the subject drivers 

were given seven instructions as stated below. They were asked to perform the following 

task. 

1) Drive as they would do under normal conditions 

2) Minimize trip time 

3) Use vigorous acceleration and deceleration 

4) Minimize fuel consumption by taking feedback from the fuel meter placed in the 

dashboard area 

5) Maintain fuel economy meter in green region 

6) Maintain fuel economy meter in green or orange region, and  

7) Drive like a hypothetical, very cautious driver 

The researcher found that for every 1% increment in trip time, the fuel consumption 

increased by about 1.1 %. Research showed that expert drivers can save fuel without 

changing trip time by making adjustments to their driving behavior in term of maintaining a 

particular speed and acceleration. The researcher also found it challenging to develop a 

„perfect‟ fuel meter that would enable the driver to achieve optimum fuel economy in real-

time. 

 Wang et al. (2008) studied driving behavior and developed driving cycle for Chinese 

cities. Driving cycle, as mentioned earlier, is a standard speed profile, which represents 

typical driving behavior for a given road class and drivers. Eleven cities of various sizes and 
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geographical locations were selected for the study. On-road speed profiles were recorded 

using car chase technique on freeways, arterials and local roads. Professional drivers were 

asked to follow traffic in specific routes. The vehicle used was instrumented with a GPS and 

a speed sensor. Two sets of equipment were used to ensure high quality data. Data were 

collected during morning peak hours (7:30–9:00), afternoon off-peak hours (11:00–13:00), 

and evening peak hours (17:00–18:30).  To estimate the characteristic of the entire traffic, the 

authors derived traffic adjustment factors based on road type, peak hours, traffic volume, 

road length and average speed on the road. Eleven driving behavior parameters were derived 

from the time-speed traces. These include (1) average speed, (2) average running speed 

(average speed after removing idling events), (3) average acceleration ,(4) average 

deceleration, (5) percent of time in idling mode, (6) percent of time in accelerating, (7), 

percentage of time cruising, (8) percent of time in decelerating, (9) relative positive 

acceleration, (10) positive acceleration kinetic energy, and (10) the frequency of decelerating 

phase after an acceleration phase for every 100 meter driven. Vehicle driving pattern was 

found to be dependent on the size of city, local road characteristics and individual driving 

behavior. The driving behavior pertaining to Chinese cities was found to be significantly 

different from the driving behavior corresponding to European and US driving cycles. This 

entails that driving cycle for European and US driving cycle cannot be used for 

characterizing driving behavior in Chinese cities including the large ones. Based on the 

longer duration of cruising and acceleration mode (over 83%), it was found that driving in 

Shanghai, China and Chengdu, China involved high percentage of acceleration and hard 

brakes. Shanghai and Chengdu were also associated with aggressive driving as depicted by 
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high acceleration and deceleration measurements. Driving in small Chinese cities was found 

to be less aggressive.   

Holmén and Niemeier (1998) conducted a field study of 24 drivers to study the effect 

of acceleration events on real-world vehicle emissions. They found that the variability 

associated with driving behavior produced significantly different tail pipe emissions.  There 

were significant variations in CO and NOx emissions among the 24 drivers under similar test 

route, traffic density and vehicle type. They found that driving patterns were dependent on 

the intensity of vehicle operation within a given mode.  

Ericsson (2000) studied the variability in urban driving behavior in light of driver, 

street environment and traffic conditions.  Twelve university employees were chosen to drive 

a car instrumented with a data-logger that registered vehicle speed every 1/10
th

 of a second. 

The route consisted of a loop from a residential area to the city center and back on the same 

road.  Street type, peak hour/off-peak hour and gender were considered as fixed effects while 

driver was taken as a random factor. The driving behavior of each driver was assessed using 

26 parameters divided into three categories namely level measures, oscillation measures and 

distribution measures. Level measures consisted of means and standard deviations of speed 

and acceleration. Oscillation measures comprised of relative positive acceleration (RPA) and 

the frequency of occurrence of a particular ratio of maximum speed to min speed. On the 

other hand, distribution measures consisted of various intervals of speed, acceleration and 

deceleration.  The marginal effect of each of the driving behavior parameters were studied 

for driver, street environment and traffic conditions (peak/off-peak hours). The study was 

conducted to compare driving behavior between and within different street types, drivers and 

traffic conditions. Driving behavior showed very significant differences between street type 
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and driver for in terms of all parameters. The effect of street type was generally higher than 

the driver effect. Average speed and average deceleration were found to lower at peak hour 

conditions. Men were found to drive at higher average acceleration levels.  According to the 

researcher, the most important driving behavior parameters were relative positive 

acceleration, frequency of occurrence of maximum speed/minimum speed to be greater than 

2 per 100 m, percentage of time when acceleration exceed 1.5 m/s
2
, percentage of time when 

deceleration was about -1.5 to -2.5 m/s
2
, and percentage of time speed below 15 km/h (~ 10 

mph).  

Ericsson (2001) attempted to find independent driving behavior parameters that can 

explain a large variability in emissions and fuel consumption. To collect vehicle activity and 

driving behavior data, five passenger cars of different sizes and performances were equipped 

with a data-logger and driven on roads in an average sized Swedish city. A total of 2550 

journeys and 18945 km of data were collected. Subject drivers were chosen from 30 families 

in the city of Vasteras, Sweden. As revealed by the families, 45 different drivers drove the 

vehicles. Driving behavior was attributed to street type, street function, street width, traffic 

flow and codes for location in city (central, semi-central, peripheral). A total of 62 different 

driving behavior parameters were defined depending on which of the attributed values 

changed. These parameters measure distribution of speed, acceleration and deceleration, 

occurrence of stops, maximum speed/minimum speed, duration of time driving at a given 

gear, and vehicle power. The researcher found that many of the driving behavior parameters 

are correlated. Factor analysis was performed, which reduced the number of parameters to 16 

independent measures which the researcher called typical parameters. Factor analysis is a 

method of constructing new variables from the linear combination of the original variables 
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such that the new variables have negligible correlation among them. Emissions and fuel 

consumption were estimated for the chosen vehicles using Swedish emissions models 

(VETO Rototest models). The estimated emissions and fuel consumption were then modeled 

using regression on the typical factors. Of the sixteen factors, nine factors pertaining to 

power demand, gear-changing pattern and certain speed range had considerable effect on 

emissions. Specifically, fuel consumption was affected by factors corresponding to high and 

moderate power demand, stops, speed oscillation, extreme acceleration, and high speed and 

moderate speed at gear two and three. Emissions of HC were primarily dependent on 

acceleration with high power demand and extreme acceleration. NOx emissions were mainly 

affected by acceleration with high power demand, extreme acceleration, engine speed > 3500 

rpm and late gear changing from gears two and three.   

Nam et al. (2003) compared real-world CO, THC (C3H8), NO, and CO2 emissions 

with modeled estimates at different driver aggressiveness. The authors used a PEMS to 

measure real-time emissions (above gases), travel times and vehicle kinematics through a 

busy road network in southeast Michigan. Emissions were also estimated using an integrated 

framework of Comprehensive Modal Emissions Modal (CMEM) and a microscopic traffic 

model VISSIM. The emissions model was calibrated with on-road data using a 

dynamometer. The researchers used root mean square of power factor (2*speed*acceleration) 

as a measure of driver aggresivity. For each trip, driver aggresivity was computed. They 

found that aggressive driving produced significantly higher emissions as shown in Table 2.1. 
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Table 2.1: Emissions for normal and aggressive driving (Nam et al., 2003) 

  Measurement 

Model 

estimates 

Driving  Normal Aggressive VISSIM 

Travel time (sec) 1011 1031 974 

Aggressivity (kmph
2
/s) 95.7 116.1 83.4 

Fuel (g/mile) 154 165.1 135.5 

CO2 (g/mile) 488.7 521.4 428.9 

CO (g/mile) 0.25 2.00 0.41 

HC*100 (g/mile) 0.04 2.41 0.89 

NOx (g/mile) 0.52 0.67 0.31 

 

Wahab et al. (2007) studied brake pedal and gas pedal pressure of the driver to 

understand the driver behavior under different environmental conditions. The driving data 

was taken from In-car Signal Corpus hosted in Center for Integrated Acoustic Information 

Research (CIAIR), Nagoya University, Japan. Stop-and-go-segments were extracted since 

they contain a good percentage of acceleration and deceleration behaviors. New parameters 

were derived by taking the first derivatives of gas pedal pressure and brake pedal pressure. 

The researcher used four driving behavior parameters for analysis. These parameters, brake 

pedal and gas pedal pressure and their derivatives, were transformed to frequency domain by 

deriving the power spectral density. The authors used Gaussian mixture models (GMM) to 

analyze the brake and gas pedal pressure plots (mesh and contour plots) of the individual 

drivers. They found that these plots were unique for each driver proposed that this method 

can be extended to predict sequences of individual driving behaviors.  Driving behavior 

parameters in various studies is listed in Table 2.2 along with reasons why they are 

important.  
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Table 2.2:  Driving Parameters from literature 

Driving Parameters Why are they important?   References 

Mean speed Central tendency of motion (Kuhler and 

Karsens,1978) 

Mean driving speed Central tendency of motion (Kuhler and 

Karsens,1978; 

André,1996) 

Mean acceleration  Acceleration behavior (Kuhler and 

Karsens,1978) 

Mean deceleration Deceleration behavior (Kuhler and 

Karsens,1978) 

Mean driving duration Average speed maintained (Kuhler and 

Karsens,1978; 

André,1996) 

Mean number of acceleration 

and deceleration changes in a 

trip 

frequency of brake pedal and gas 

pedal use 

(Kuhler and 

Karsens,1978; 

André,1996) 

Proportion of stand still time 

(v< 3 km/h, |a| <0.1 m/s2) 

Correlated with duration of idling (Kuhler and 

Karsens,1978) 

Proportion of acceleration time Frequency of acceleration  (Kuhler and 

Karsens,1978) 

Proportion of deceleration 

time 

Frequency of acceleration (Kuhler and 

Karsens,1978) 

Acceleration standard 

deviation 

Change in frequency of acceleration  (André,1996) 

Positive kinetic energy Vehicle energy demand (André,1996) 

Number of stops per km Number of acceleration and 

deceleration phases 

(André,1996) 

Relative and joint distribution 

of speed, acceleration and 

deceleration 

Adaptation to maintain a given 

speed and acceleration  

(André,1996) 
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Inertial power  

(acceleration  x speed) 

Adaptation to overcome drag force  (Fomunung et al. ,1999) 

Drag power  

(acceleration  x speed2) 

Found to be highly correlated with 

me and fuel consumption for heavy 

duty vehicles 

(NAP, 2000) 

Relative positive acceleration  Measure of stress taken by the 

engine 

(Weijer,1997; Mierlo, et 

al.,2004; Ericsson, 2000) 

RPM Central tendency of motion (Mierlo, et al.,2004) 

 

2.1.1   Summary (Driving behavior and emissions) 

Vehicular emissions are found to be highly dependent on how much energy (in the 

form of fuel combustion) is demanded of the engine. Amount of emissions are dependent on 

diver activities as quantified by the four common driving modes namely – cruise, idling, 

acceleration and deceleration.  Studies outlined above shows that emissions is highly 

correlated to driving behavior. High speed and acceleration mode are especially responsible 

for peak emissions. Several driving behavior parameters have been utilized in the literature to 

explain driving behavior.  

2.2 Emissions at various traffic control devices  

Emissions at a road intersection were found to be significantly higher than that at 

mid-block sections of the road. This is because intersections tend to make drivers slow down 

or stop. This entails the driver to accelerate to attain the flow speed. The following studies 

quantify and compare emissions at traffic intersections.  

Ahn el al. (2009) evaluated the energy and environmental impacts of installing a 

roundabout, all-way-stop, or a traffic signal at an intersection that was an alternative access 
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point to Washington Dulles Airport. The intersection experienced high traffic volume during 

peak hours. Through simulation, the researchers compared emissions at the traffic 

intersection by assuming it to be either a roundabout, a stop control (two way stop control) or 

a traffic signal. They used INTEGRATION and VISSIM to simulate large number of 

deceleration and acceleration events corresponding to the three traffic control devices. The 

authors also estimated the second by second emissions and fuel consumption using VT-

Micro model and the Comprehensive Modal Emissions Model (CMEM). The roundabout 

was found to be efficient as long as the traffic demand increased by 50 percent. However, 

beyond that, the roundabout produced substantial increase in delay while traffic signal was 

most efficient. With VISSIM and VT-Micro model, fuel consumption was found to increase 

by 13 % and 8% when the stop sign control was substituted with proposed roundabout or a 

traffic signal, respectively. CMEM estimated that fuel consumption increased by 18% when 

stop sign control was replaced by a roundabout. The roundabout produced 155%, 203%, 

38%, and 10% higher HC, CO, NOx, and CO2 emissions, respectively. On the other hand, 

HC, CO, NOx, and CO2 emissions increased by 80%, 108%, 28%, and 8% respectively at the 

traffic signal based on VT-Micro model estimates. According to CMEM model HC, CO, 

NOx, and CO2 emissions increased by 344%, 456%, 95%, and 9%, respectively roundabout 

was installed instead of the stop control. Results also showed that increase in emissions and 

fuel consumption was greater for roundabout than for traffic signal.   

Coelho, et al. (2006) studied the environmental impact of a single lane roundabouts 

located in Lisbon (Portugal) and Raleigh (North Carolina, US). They videotaped the site and 

extracted queue length, time gap between successive acceleration-deceleration cycles, and 

the number of times the vehicle stopped before entering the roundabout circle. Real-world 
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speed profiles for typical stop and go conditions were obtained from repeated runs at several 

single lane roundabouts in the region of Lisbon. A microwave Doppler sensor was used for 

measuring entrance speed of various vehicles. The researchers recorded stop and go 

behavior, on-road emissions and synthesized speed profiles using traffic volume and 

conflicting volume (or circulating volume) which are correlated with queue length. Based on 

intensive empirical measurements the researchers identified three typical speed profiles 

(Figure 2.1) that can be observed at a roundabout. The probability of occurrence of each of 

the profiles was modeled using approaching traffic volume and circulating traffic volume. 

The proportion of time the vehicle experienced profile I, II and III were found to be 43%, 

36% and 21% respectively. VSP was computed from speed profiles and then based on VSP 

bins and emissions lookup table (North Carolina State University, 2002; Frey et al., 2003) 

NOx, HC, CO, CO2 and PM emissions were estimated.   

They found that the region of influence where vehicles accelerate back to free flow 

speed (after encountering traffic intersection) was important in terms of understanding its 

relative impact on total emissions. About 25 % of total emissions were found to have come 

from this region of acceleration. Emissions were found to increase monotonically with free 

flow speed (speed limit outside the influence of roundabout) beyond the region of 

acceleration. Emissions were found to increase as the difference between free flow speed and 

circulating speed became larger.  

 

2.2.1 Summary (emissions at traffic control devices)  

Previous research shows that emissions at various traffic control devices varied across 

traffic control devices. This is due to the difference in driving behavior when drivers try to 
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adjust their speeds to traverse various sections of the road or intersections. It was also found 

that emissions at these traffic control devices were highly dependent on traffic conditions.  

 

 
Figure 2.1: Typical speed profiles at a roundabout (Coelho, et al., 2006) 

 

 

2.3 Contributions of the present study   

This dissertation extends the finding and methods to study driving behavior across 

drivers and traffic control devices. Driving at a traffic control device is a characteristic of 

individual driving behavior. In this dissertation, we studied individual driving behavior at 

traffic control devices to closely examine its impact on emissions. Specifically, the 

dissertation has the following contributions. 



20 

 

1.) Wahab et al. (2007) quantified driving behavior by the amount of pressure the driver 

applied on the gas pedal and brake pedal. In this dissertation, this concept of gas pedal 

pressure and brake pedal pressure was used to study driving behavior and its impact on 

emissions. Variables quantifying gas pedal pressure and brake pedal pressure were 

derived from acceleration.  

2.) Emissions at traffic intersections are significantly different from those at the mid-block 

sections of the road. Traffic control devices force the drivers to slow down (or stop) and 

then accelerate which results in higher emissions. Researchers have studied driving 

behavior and emissions for different road types (Ericsson, 2000) but they did not compare 

driving behavior across traffic control devices. Some studies compared emissions and 

fuel consumption but did not adequately explain how they are correlated to driving 

behavior at traffic control devices. In other words, this dissertation studies on driving 

behavior in the light of traffic control devices while taking the driver as a random 

variable.  

3.) In general, studies have compared driving behavior of different drivers in terms of 

aggregate measures. In this dissertation, an attempt was made to compare driving 

behavior on a micro-scale (second-by-second) level. This is important for identifying 

hotspots where a typical driver or a certain group of driver operates the vehicle 

differently so as to produce significantly high emissions.  Aggregation takes away the 

information on instantaneous driving behavior. Driving behavior of the overall trip tends 

to average out and details regarding acceleration and deceleration behavior are not well 

segregated. For example, we may consider a driver who accelerates hard to change lanes 
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but slows down smoothly at the traffic control devices. Taking average value of such a 

trip tends to hide the high acceleration event. Instantaneous models require quantification 

of driving behavior at high resolution (in time and space). This dissertation, attempted to 

further the research by comparing driving behavior at roundabout, all-way-stop, and 

traffic signal. Driving behavior like acceleration and deceleration in terms of their 

duration and intensity can be well captured at the traffic intersections where it is 

unavoidable to observe these behaviors. This study modeled and compared speed profiles 

across drivers in order to validate the assumption that driving behavior differ across 

drivers and that the driver must be treated as a random variable.  
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CHAPTER 3.  Data Collection and Data Preparation 

 

3.1 Research outline and data collection 

Data collection is a critical step in any research process since it is highly dependent 

on the objective of the study. The broad objective of the study was to explore driving 

behavior and emissions at traffic control devices: roundabout, all-way-stop, traffic signal. In 

order to achieve this objective, on-road emissions tests were performed and driving behavior 

of four drivers were measured and analyzed.  

This chapter gives a detailed description of data collection procedures, and data 

preparation or preprocessing required for analyzing the collected data. The following section 

describes the data collection processes: selection of appropriate route, vehicle, instrument, 

and study period. This is followed by data preparation which comprised of extracting 

relevant information from the raw data, defining new variables, removing outliers and 

preparing the final data tables required for specific analysis in the upcoming chapters.  

 

3.2 Data collection and study design 

Vehicular emissions highly depend on the study period and traffic conditions (Ahn et 

al. 2002), test route (Ropkins et al., 2007), vehicle (Wenzel and Singer, 2000), and driver (Yu 

and Qiao, 2004). In addition, vehicular emissions are also affected by the type of traffic 

control device encountered at a traffic intersection (Coelho et al., 2006; Mandavilli et al., 

2008; Ahn el al., 2009).  Therefore, an appropriately chosen test period, test route, test 
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vehicle and subject drivers are needed. The following sections elaborate on these important 

aspects of data collection protocol.   

 

3.2.1 Study route 

The study was aimed at understanding driving behavior at various traffic control 

devices. Several potential test sites were evaluated in this regard. Eventually, a corridor along 

Douglas Avenue (Urbandale, IA), a minor arterial, was chosen as the test route (Figure 3.1). 

This corridor was chosen as it has all the three traffic control devices in a row.  The speed 

limit on the route was 35 mph except for the roundabout circle where it was 15 mph. Same 

speed limit throughout the route offered similar conditions for comparing driving behavior 

across traffic control devices. A pilot study was conducted on the chosen route, and this 

provided insight into the traffic and road environment the experiment drivers would 

encounter. Douglas Avenue runs east to west and passes over the interstate I-35 while 

connecting with it through a partial cloverleaf interchange. 

The chosen corridor is a paved four-lane road (median separated) except on the west 

side of the all-way-stop where it changes to a two-lane road. The route is comprised of a 

traffic signal, a roundabout (radius ≈1780 ft.), an all-way-stop, curve section and a tangent 

section (length ≈1.62 miles). The length of the tangent section and curve section were 1.62 

and 0.5 miles respectively. The total length of the test route was three miles. 
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Figure 3.1: The study route chosen for data collection (Map © 2011 Google) 

 

To indicate different portions of driving, the following terms were defined.  

1.) Loop: A loop of driving implied driving from the east end of the route to the west end 

and back.  

2.) Trip: A trip was defined as driving from one end to another. A loop consisted of two 

trips.  

3.) Trip-part: A trip-part denoted the portion of a trip that was in the region of influence 

of a traffic intersection or traffic control device.  

The next section describes the vehicle and equipment used for data collection on the 

above test route.   

3.2.2 Portable Emissions Monitoring System (PEMS) 

In general, tail-pipe emissions can be measured using two methods namely on-road 

testing and dynamometer testing. The former entails instrumenting a vehicle and measuring 

the emissions while it is in-use on the road. The latter is a laboratory set up where the vehicle 
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is made to mimic a standard speed/acceleration profile called driving cycle. This standard 

driving cycle is a sequence of many driving behavior events. It is a representative of driving 

behavior for a given vehicle and road type. A portable emissions monitoring system (PEMS) 

was used in this study for measuring and recording emissions and vehicle activity data. This 

equipment has the following advantages. 

1.) Time effective:  It can be hooked up in 20-30 minutes for hours of testing whereas 

using a dynamometer is time consuming.  Setting up the equipment consists of 

connecting the PEMS to a power source (an external battery placed inside the moving 

vehicle), placing the sample probe in the exhaust, routing exhaust lines, and 

connecting on-board sensors to various locations of the engine.  

2.) Wider deployment: A wide range of vehicles can be tested at reasonable cost and 

time. PEMS has been used on both on-road and off-road vehicles (Frey et al., 2005).  

3.) Testing various scenarios: It measures real world driving pertaining to a specific 

road, vehicle and driver. For this reason the PEMS is helpful in identifying high 

emissions spots, in recording hard acceleration events, aggressive driving and other 

driving behaviors (Holmen et al., 1997; Nam et al., 2003; Yu and Qiao, 2004) on a 

second-to-second basis. It is also shown to be a good tool in assessing the impact of 

traffic control on emissions (Frey, 2000) or comparing emissions across different 

routes (Ropkins et al., 2007). The PEMS can also be an effective device in comparing 

emissions at different road grades (Frey et al., 1997) and in assessing the impact of 

transportation improvements on emissions (Rouphail et al., 2001; Unal et al., 2003).  
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Further, PEMS can also be used for testing renewable fuels or power sources (Frey et 

al. 2007).  

With all the above advantages, however, PEMS data is comparatively less reliable for 

standardizing emission factors due to lack of repeatability. Dynamometer measurements are 

mandatory for quantifying emission factors and developing environmental policies. 

However, PEMS data when successfully validated using a dynamometer testing, can be very 

useful since it also records factors that affect emissions.  

The PEMS (Figure 3.2) used in this study was the Axion system manufactured by 

Clean Air Technologies Inc.  The emissions measured by the PEMS are hot-stabilized oxides 

of nitrogen (NOx), hydrocarbon (HC), carbon monoxide (CO), carbon dioxide (CO2) and 

particulate matters PM10. 

 The PEMS records emissions and engine parameters (rpm, intake air temperature and 

manifold absolute pressure) along with geographic information (latitude, longitude, bearing 

and altitude) using a GPS. The emissions, the engine parameters and geographic information 

are synchronized on a second-to-second basis.  

Concentration (mass/second) of emissions is estimated using engine-RPM, intake air 

temperature, manifold absolute pressure and mass of emissions per unit volume of the 

exhaust. This also takes into account the user-supplied fuel composition. The manifold 

absolute pressure transforms changes in engine speed and load into electrical signals which 

control the flow of fuel into the engine. Engine rpm and intake air temperature provide 

information on engine stress. 
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Figure 3.2:  Axion (Portable Emissions Monitoring System, Source: www.cleanairt.com)  

The system consists of two gas analyzers which alternatively perform zeroing – a 

method in which each analyzer calibrates itself with the ambient air away from the exhaust 

air. The values corresponding to the active (sampling from the tail pipe) analyzer are 

recorded. When both the analyzers are active, average values are logged.   

We used PEMS for measuring vehicle activities and emissions on a single test vehicle 

which is discussed in next section.  

 

3.2.3 Test vehicle  

Emissions tests were conducted on a 2005 Ford Taurus, a mid-size passenger car. The 

test vehicle operated on gasoline with automatic transmission feature. The objective of the 

study was to understand driving behavior, and therefore it was assumed that each driver 

would drive any other mid-size passenger car in a similar manner.  A single vehicle was used 

to reduce the possible variability in emissions due to the use of different vehicles (Frey et al, 

2010). This test vehicle was driven by subject drivers who are described in the next section.  
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3.2.4 Subject drivers 

Four graduate students at Iowa State University were chosen as subjects drivers for 

the study. Two were male and two female, and their age ranged from 20 to 25 years. Each 

had a minimum of three years of experience with driving and was familiar with US road and 

traffic conditions and regulations.  

 

3.2.5 Data collection period 

A total of four days of data were collected. This included morning and afternoon peak 

and off-peak hours. The morning and afternoon peak hours were assumed to be from 7 to 9 

am and from 5 to 7 pm respectively. /The morning and afternoon off-peak hours were from 9 

to 11 am and from 3 to 5 pm. Two drivers drove from 7 to 11 am on 13 and 20th April 2010 

and the other two drove from 3 to7 pm on 7th and 14th April 2010. The data collection 

schedule is summarized in Table 3.1. 

Table 3.1: Data collection schedule 

 Morning 

peak 

Morning 

off-peak 

Afternoon 

peak 

Afternoon 

off-peak 

Date => 13 and 20 April 2010 7 and 14 April 2010 

Time => 7 to 9 am 9 to 11 am 3 to 5 pm 5 to 7 pm 

Driver-1 X X   

Driver-2 X X   

Driver-3   X X 

Driver-4   X X 
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3.3 Test protocol 

On the day of data collection the vehicle was equipped with PEMS at the gas station 

located near the east end (shown as red balloon point A in Figure-3.1). Two of the four 

drivers and a data collector would sit in the car at driver and passenger seats respectively. A 

given driver would drive from the east end to the west end of the corridor and back thus 

completing a loop. After few loops of driving the subject drivers would switch places to 

prevent boredom and fatigue which may affect their natural driving. On an average, each 

driver made 25 trips.  A total of 109 trips of data were collected.  This comprised 16 hours of 

driving. The duties of the data collector included, 

1.) Making sure that the PEMS was working normally and that it was fastened tight to 

the vehicle. While on the road, the PEMS is subjected to motion and vibrations which 

can lead to equipment malfunction and may also render the data invalid. 

2.) Recording queue position while the drivers stopped and waited for their turn at the 

traffic intersections.  

3.) Making a qualitative assessment of the traffic flow, and recording abnormal traffic 

conditions, if any.  

Once the data were collected, these were preprocessed for analysis and interpretation. 

The next section deals with data preparation which includes data cleaning, variable 

extraction, and defining new variables.  
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3.4 Data preparation 

PEMS provides raw data in the form of comma separated values (csv) files. The data 

were imported into Excel (2007). Some variables were in the form of strings and were 

therefore transformed to numbers. The data were processed and a quality assurance process 

was performed.  The steps taken to address inappropriate data and to process the data into the 

final format for analysis are described below.  

 

3.4.1 Eliminating unwanted columns in data sheet  

In order to simplify the data processing and analysis, variables such as altitude, and 

those related to raw gas analyzers data were removed since they were not needed to meet the 

objective of this study.  

 

3.4.2 Inserting categorical variables  

In order to segregate observations corresponding to individual driver, trip number, 

date and time of testing and direction of travel, new categorical variables were defined for 

each spreadsheet file. These variables were “Driver”, “TripID”, “DT”, and “Dir”. PEMS 

records the bearing of the moving vehicle. The variable “Dir” implying direction of travel 

was obtained using the bearing values recorded by PEMS. A bearing of more than 180
o
 

implied west bound.  
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3.4.3 Removing rows with abnormal observations 

Some observations had negative and exceptionally high emissions values (e.g. > 100 

g/s). Negative values may appear due to very low value of the given emissions, an error in 

the equipment (PEMS), or because of unusually high concentrations in the ambient air which 

was used as a baseline. Identification and removal of observations was performed in R 

(Version 2.11.1).  

 

3.4.4 Defining new parameters and variables 

Several new variables were created using existing variables as shown in Table 3.2. 

Acceleration was calculated as rate of change of speed.  Jerk, the rate of change of 

acceleration, was used as a measure of hard acceleration. Jerk has been used by many 

researchers to quantify aggressive driving behavior (North et al., 2006; Bagdadi and 

Varheliyi, 2011).  Vehicle specific power (VSP) is a function of speed, acceleration and road 

grade. It is shown to explain a good percentage of variability in emissions (Jiménez-Palacios, 

1999; Frey, 2002; Nam, 2003). Two major emissions models namely MOVES and CMEM 

utilize VSP for characterizing emissions. Road grade was assumed to be zero on the given 

route. Therefore, in the present context VSP was only a function of speed and acceleration.  

The variables gaspad and brakepad denoted the gas pedal use and brake pedal use 

respectively. These variables, computed from acceleration, were effective in segregating 

acceleration and deceleration behavior at a given second.  
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3.4.5 Data Merging 

After cleaning the data and defining relevant variables, data from various 

drivers/trips/days were merged into a single datasheet for easy editing, querying and 

analyzing.    

 

3.4.6 Assigning roadway and traffic control variables 

The Manual on Uniform Traffic Control Devices (MUTCD) defines a traffic control 

device as “a sign, signal, marking, or other device used to regulate, warn, or guide traffic, 

placed on, over, or adjacent to a street, highway, pedestrian facility, or shared-use path by 

authority of a public agency having jurisdiction” (MUTCD, 2009)  

In this dissertation, driving behaviors at the three traffic control devices namely 

roundabout (RDA), all-way-stop (AWS), and traffic signal (TS) were studied.  A new 

variable called “TrafficD” was defined to indicate a traffic control device present at a given 

section of the route. This section called “region of influence” was identified using a GIS 

package (ArcMap 9.3).  

On an average, the drivers entered a deceleration phase about 500 ft. upstream of a 

traffic control device. Similarly, drivers on an average utilized 500 ft. to accelerate to the free 

flow speed of the corridor.  Based on this the region 500 ft. upstream and 500 ft. downstream 

of a given traffic control device was labeled accordingly (RDA for roundabout, AWS for all-

way-stop, or TS for traffic signal). Figure 3.3 shows the route (green) with region of 

influence of respective traffic control devices highlighted in brown. 
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Table 3.2: Primary variables/parameters used in data analysis  

Variable Names Variables Remark 

NOx, HC, CO2, CO and PM Nitrogen oxides, hydrocarbons, carbon 

dioxide, carbon monoxide 

Tail pipe emissions  

RPM, Temp, MAP Rotation per minute, intake air 

temperature, manifold absolute 

pressure 

Give an idea of how much stress in put 

on the engine. It transforms to fuel 

demand.  

Speed Speed in miles per hour  

accl  

acceleration = 
         

   
  in mph/s 

Isn‟t acceleration given by the PEMS?   

Why calculate it yourself? 

jerk jerk 
              

  
 Indicator of  driver aggressiveness 

VSP Vehicle specific power 
                            

Where, v= speed  in m/s and  

               a= acceleration in m/s2 

This variable is highly correlated with 

emissions (Jimenez-Palacios,1999) 

gaspad Positive acceleration 

= accl , if accl>0 

=0, otherwise 

Gas pedal use (indicator for 

acceleration behavior) 

brakepad negative acceleration 

=abs(accl) , if accl<0 

=0, otherwise 

brake pedal use (indicator for 

deceleration behavior) 

DT Date and time   

peakhour Peak or off-peak hours  

TrafficD Traffic devices (Roundabout, all-way-

stop, Traffic signal) abbreviated as 

RDA, AWS, TS (or TS128) 

 

Driver Denoted as D1, D2, D3 and D4 
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Figure 3.3: Route showing the region of influence (top figure) of the traffic control devices 

 

For the purpose of data preparation, data manipulation, data analysis and 

reporting/post processing, more than 1000 lines of code were written in R (version 2.11.1). 

Excel 2007/2010 was used for data management. The following section describes the final 

datasets used for analysis. 

3.5 Final dataset used for analysis 

Data analysis was carried out using various driving behavior parameters. Table 3.2 

shows primary driving behavior parameters (also called primary parameters). The divers 

drove for a total of 16 hours. This comprised of 38,000 observations of primary parameters. 

The secondary driving behavior parameters (also called secondary parameters) as shown in 

Table 3.3 were obtained by summarizing primary parameters and their combinations over 

trip-parts (region of influence of traffic control devices). These parameters were used by 

many researchers for characterizing driving cycles (Tong and Hung, 2010; Barlow et al., 

2009). For a given trip, a driver encountered each traffic control device (roundabout, all-way-
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stop and traffic signal) on single occasion. Therefore, in 109 trips, 327 (3 x 109) trip-parts 

were recorded. The number of rows of secondary parameters was 327.  

Table 3.3: Trip-part summarized variables 

Driving 

behavior 

parameter 
Definition (units)  

   

Relevance 

v_min 

minimum speed for the whole trip 

(mph) 

 Speed 

behavior 

v_avg average speed (mph)  

vrun_avg 

average running speed (excluding 

observations with idling operation) 

(mph)  

v_max maximum speed (mph)  

RMSs root mean square speed (mph/s) 

          
     

 

   

 

N is the number of seconds of data 

a_avg average acceleration (mph/s)  Speed 

change 

behavior d_avg average deceleration (mph/s)  

j_avg average jerk (mph/s)  

RMSa 

root mean square acceleration 

(mph/s) 

         
     

 

   

 

ADS 

Number of acceleration/deceleration 

shifts (number of speed changes) 

  
                              

           
 

 

   

 

             

RPA relative positive acceleration (mph/s) 

 

        
  

                        
           

 
 

   

 

trip_len trip length (s)  Duration of trip Time spent 

in each 

mode Pi percent of time in idling mode (%) Percentage of time when speed =0 

Pa 

percent of time in accelerating mode 

(%) Percentage of time when acceleration ≥ 0.1 m/s
2
 

Pc percent of time in cruise mode (%) 

Percentage of time when speed < 5 m/s and  

-0.1 m/s
2
 < acceleration <  0.1 m/s

2
 

Pd 

percent of time in decelerating mode 

(%) 

Percentage of time when speed < 5 m/s and  

-0.1 m/s
2
 < acceleration <  0.1 m/s

2
 

PKE positive kinetic energy (mph/s) 

 
Where vf and vi are the final and initial speeds, 

respectively, in an individual acceleration phase 

and x is the total travel distance 

Energy 

gained or 

utilized 

VSP_avg 

Average value for vehicle specific 

power (m
2
/s

2
)  
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Data analysis was carried out at three levels namely parameter level, trip-part level 

and micro-scale (second-by-second) level. Dataset corresponding to each level was described 

as follows. Table 3.4 shows summary of the analysis.  

1.) Exploring individual parameters: In this case, distributions of driving behavior 

parameters were explored to compare driving behaviors across drivers and the traffic 

control devices. For analysis pertaining to drivers, primary parameters were used whereas 

for analysis on traffic control devices, both primary and secondary parameters were used. 

Detailed analysis is documented in Chapter-4. 

2.) Comparing traffic control devices: In this analysis, driving behavior at roundabout was 

compared with that of all-way-stop and traffic control devices. In this case, secondary 

parameters used for conducting MANOVA with traffic control device as explanatory 

variable. Chapter -5 gives the details of this analysis. 

3.) Second-by-second data: Second-by-second speed data at roundabout was used for 

analysis. The speed profiles of drivers at the roundabout were modeled using hierarchical 

Bayesian regression. The complete analysis is presented in Chaper-6. 
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Table 3.4: Summary of analysis done in future chapter 

Analysis 

level 

Data Driving behavior 

parameters  

Objective Analysis 

Parameter 

level  

All observations  Speed, 

acceleration, VSP, 

gaspad, brakepad 

Understanding 

parameters that 

quantify driving 

behavior  

Exploring the 

frequency 

distributions of 

driving behavior 

parameters 

Trip-part 

level  

Driving behavior 

parameters summarized 

at each traffic control 

devices  

Parameters 

derived primarily 

from speed, and  

acceleration 

(These parameters 

are used for 

defining standard 

driving cycles)  

Comparing driving 

behavior at different 

traffic control 

devices  

Performing 

MANOVA  

Second-by-

second level 

Second by second speed 

profiles of each driver 

Speed profile at 

the roundabout  

Comparing driving 

behavior among 

drivers 

Developing 

Hierarchical 

Bayesian 

regression model 
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CHAPTER 4.  Study of Driving Parameters 

 

4.1 Background and objectives: 

The main objective of this dissertation is to study emissions in the light of driving 

behavior and traffic control devices. Previous researchers have identified various parameters 

that can quantify driving behavior at different levels. In this regard, this chapter explores few 

of these driving parameters to quantify and contrast driving behavior across individual 

drivers and across traffic control devices.  

 

4.2 Data used in this analysis  

In this chapter, exploration was done to explore if direction of travel and time of the 

day had any influence on driving behavior. Then, driving behavior was studied across drivers 

through speed (mph), acceleration (mph/s), VSP (W/kg), and jerk (mph/s
2
). In addition, 

explored two new parameters gaspad (mph/s) and brakepad (mph/s) were also explored to 

assess how well they can explain variability in driving behavior.  

Driving behavior across the three traffic control devices (roundabout, all-way-stop 

and traffic signal) was studied instantaneous speed, acceleration, “gaspad” and, “brakepad”. 

These variables represented instantaneous driving behavior. Additionally, we studied driving 

behavior in terms of positive kinetic energy (PKE), number of acceleration/deceleration 

shifts (ADS), relative positive acceleration (RPA), and VSP (m
2
/s

2
) where each one was 

aggregated over the area of influence of the respective traffic control device. These variables 
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represented aggregate driving behavior. In this chapter, we based our conclusions on 

observations; no statistical tests were performed.  

 

4.3 Observatory study 

Apart from the vehicle type, driving behavior is likely to differ by traffic volume 

(correlated by time of the day), road geometry, individual driving habits and traffic control 

devices (roundabout, all-way-stop, traffic signals, curves and tangents). The following 

sections describes each of the above four characteristics that impacts driving behavior. 

 

4.3.1 Time of the day and direction of travel  

In this study, we collected data for both peak (7am to 9am and 5pm to7pm) and off-

peak (9am to 11am and 3pm to 5pm) hours. Driving behavior quantified as speed, VSP, 

“gaspad” and “brakepad” was comparable between peak and off-peak hours (Figure 4.1). 

This may be because of low volumes or similar volumes in both the time periods. Ericsson 

(2000) found that difference in emission levels between peak and off-peak hours were not 

significantly different for less congested roads.   

Similarly, driving behavior was comparable between both the directions of approach 

(Figure 4.2). This may like be due to similar road characteristic in both directions. This was 

also observed by the data collector who noted the queue positions at the intersections and in 

most cases the vehicle was at the beginning of the queue. This supported combining data in 

both directions.  East bound trips were not distinguished from west bound trip in future 

chapters. The small differences seen in the graphs (Figure 4.1 - 4.2) were not significant. 
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Figure 4.1: Driving behavior variable for peak and off-peak hours 

 

Figure 4.2: Driving behavior variable for east and west bound driving 

 

Since driving behavior for different time of the day and direction of travel was not 

considerably different, we combined the data and performed an observatory analysis of 

driving across drivers and traffic control devices. The analyses are shown in the following 

sections.  

4.3.2 Driving behavior by drivers 

We analyzed driving behavior with respect to drivers using selected driving 

parameters. Instead of average values, we studied the distributions of each driving 

parameters. The following observations were made.  
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1.) Speed was uniform across drivers, which implied that the drivers maintained similar 

speeds overall. However, in order to make concrete conclusions, it is important to 

consider other parameters that characterize driving behavior. Driver-3 (D3) seemed to 

have pushed the gas pedal less often as compared to other drivers as depicted by 

frequency of zero acceleration in. Lower emissions are expected in this case.  

2.) Driver-1 and Driver-3 demonstrated VSP of 20 W/kg or higher on more occasions than 

the other drivers (Figure 4.5). This implied that Driver-1 and Driver-3 utilized higher 

power from the engine as compared to the other drivers. Also, VSP has been shown to 

explain large variability in emissions. Driver-1 and Driver-3 are expected to generate 

higher emissions since VSP is highly correlated to emissions (Jimenez-Palacios, 1999). 

This is supported by CO2 emissions corresponding to each driver (Figure 4.6). Driver-2 

and Driver-4 exhibited similar driving behavior as shown by most parameters. Likewise, 

Driver-1 and Driver-3 drove displayed similarly driving behavior as depicted by 

acceleration, VSP, gaspad, brakepad and jerk (Figure 4.4 to Figure 4.9). The parameters 

namely “gaspad” and “brakepad” were also similar for the above two driver pairs (Figure 

4.7). This implied that gaspad and brakepad can be used as driving behavior parameters.  
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Figure 4.3: Distribution of speed by drivers  

 

 
Figure 4.4: Distribution of acceleration by drivers  
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Figure 4.5: Distribution of VSP by drivers 

 

 

 
Figure 4.6: Distribution of CO2 by drivers 
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Figure 4.7: Histogram of gaspad by drivers 

 

 

 
Figure 4.8: Histogram of brakepad by drivers 
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Figure 4.9: Distribution of jerk by drivers 

 

The exploratory study done in this section was helpful in understanding the impact of   

individual driving parameters on emissions. In the following section, driving behavior is 

studied in terms of various traffic control devices. 

 

4.3.3 Driving behavior by traffic control devices 

In this section, driving behaviors were assessed at different traffic control devices. 

Apart from vehicle kinematics (speed, acceleration and VSP), other parameters were derived 

for quantifying certain driving behaviors. These include ADS (acceleration-deceleration 

shifts), RPA (relative positive acceleration) and PKE (positive kinetic energy) as discussed 

earlier. The following results were obtained: 

1.) Acceleration, “gaspad”, and “brakepad” at roundabout and all-way-stop had similar 

distributions (Figure 4.10  to Figure 4.12). Emissions were expected to be comparable in 

case of roundabout and all-way-stop. 
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2.) Positive kinetic energy (PKE) was greatest for all-way-stop followed by traffic signal and 

roundabout (Figure 4.13). PKE depicts the aggressive driving behavior (André, 1996). 

Drivers were more aggressive at all-way-stop than at other traffic control devices.  

3.) Acceleration-deceleration shifts for all-way-stop and roundabout were centered at the 

value of 30 and 25 respectively with small standard deviation (Figure 4.14). ADS for 

traffic signal have wider spread. This implied that driving behavior at traffic signal varied 

from trip to trip. This implies that emissions at traffic signal may be either lower of 

higher than roundabout and all-way-stop when compared across various trips.  

 
Figure 4.10: Distribution of acceleration by traffic control devices 
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Figure 4.11: Distribution of gaspad  by traffic control devices 

 

 

 
Figure 4.12: Distribution of brakepad by traffic control devices 
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Figure 4.13: Distribution of  positive kinetic energy (PKE) by traffic control devices 

 

 

 
Figure 4.14: Distribution of ADS by traffic control devices 
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4.4 Summary 

Driving behavior among driver was studied in terms of various kinematics variables 

which were useful in characterizing driving behavior of individual drivers and of a typical 

driver at various traffic control devices. Driving behavior parameters corroborated one 

another while explaining emissions characteristic.  

Driving behavior parameters illustrated that Driver-1 and Driver-3 had similar driving 

behavior, while Driver-2 and Driver-4 drove similarly.  Driving behavior parameters were 

helpful in studying specific driving behaviors. Emissions for Driver-1 and Driver-3 were 

similar. Same was the case with Driver-2 and Driver-4. These parameters can be used to 

classify driving behavior between individual drivers.  

Exploratory study of driving behavior at various traffic control devices revealed that 

driving behaviors at roundabout and all-way-stop were comparable. Emissions are also 

expected to be comparable. This implies that replacing a roundabout with all-way-stop under 

the given conditions, would not likely to have significant environmental benefits.  

The analysis done in this chapter was observational. In order to validate the 

assumptions and findings, standard statistical tests were performed. The following two 

chapters describe the analyses in detail.   
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CHAPTER 5.  Comparison of Driving Behavior at Traffic Control 

Devices 

 

5.1 Background and objectives 

Vehicular emissions are highly correlated with driving behavior. Literature reviews 

showed that emissions at intersections are in general higher than those at the mid-blocks of 

the roads. This is related to the fact that at intersections, acceleration events are likely to 

occur with higher frequency. In most cases, driving through an intersection entails stopping 

or slowing down resulting in acceleration events which are associated with higher emissions 

(Rouphail et al., 2000). Previous researchers have compared emissions at roundabout, all-

way-stop, and traffic signals (Ahn et al., 2009). However, they have not analyzed driving 

behavior at these traffic control devices.   

The analysis conducted in the last chapter (Chapter 4) showed that driving behavior at 

all-way-stops and roundabouts were similar.  Driving behavior and emissions at traffic 

signals were observed to be different from those at a roundabout and all-way-stop. This 

chapter examines driving behavior differs across traffic devices. To achieve this, driving 

behaviors between traffic devices were compared using a multivariate analysis of variance 

(MANOVA) model. In specific, the analysis described in this chapter attempts to answer the 

following questions: 

1.) Is the driving behavior on a roundabout and a traffic signal significantly different?  
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2.) Is there any significant difference in driving behavior on a roundabout and an all-

way-stop?   

5.2 Data set used in this analysis 

Originally, the data recorded by the PEMS consisted of second by second 

observations of speed, acceleration, engine parameters (engine rpm, engine intake 

temperature and manifold absolute pressure) and emissions. For each one second 

observation, VSP was computed from speed and acceleration assuming the road grade to be 

negligible. For light duty vehicles, VSP is given by the following equation: 

VSP = v*(1.1a+0.132) +0.000302*v
3
, where v is speed (m/s) and a is acceleration (m/s

2
). 

Every observation corresponding to a traffic control device was obtained by 

summarizing each parameter over a specific trip-part through the device. Data for a given trip 

and device were reduced to one observation. The result was many such summarized 

observations for each traffic control device (Figure 5.1).   The region of influence of the 

traffic control devices was defined as 500 ft. downstream to 500ft. upstream of the center of 

the road intersection.  The parameters, defined in Table 5.1, were RMSs, RMSa, ADS, RPA, 

PKE, and VSP_avg (average VSP over the region of influence of traffic control devices). 

Past research has used these parameters in constructing and evaluating driving cycles (Tong 

and Hung, 2010). Table 5.1 describes these variables in detail. Driving behavior parameters 

were found to be correlated and this justified the use of a multivariate model – MANOVA for 

comparing driving behavior between pairs of traffic control devices. Drivers were chosen 

randomly from the population and in order to incorporate the individual driving 
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characteristic, the variable “Driver” was included in the model. The following section 

describes the theoretical framework of the MANOVA model.   

 
Figure 5.1: The study route (gray color) showing the various traffic devices. 

 

  

Table 5.1: Driver behavior parameters (Parameters used for characterizing driving behavior) 

Driving behavior 

parameter 
Definition Units Relevance 

RMSs Root mean square speed mph/s Speed behavior 

RMSa Root mean square acceleration mph/s 

Speed change 

behavior 

ADS 
Number of acceleration/deceleration shifts 

(number of speed changes) 
a number 

RPA 

Relative positive acceleration 

mph/s 
This is proportional to  average acceleration 

power of a vehicle  

PKE Positive kinetic energy mph/s Energy gained by 

vehicle and utilized 

by the engine VSP_avg Average value for vehicle specific power m
2
/s

2
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5.3 MANOVA 

MANOVA is an extension of analysis of variance (ANOVA) model in which 

dependent variables are evaluated on a combination of dependent variables.  It is used for 

comparing the means of several groups with many variables. The MANOVA model for g 

groups is given by  

             +                and           ,where, Y is the 

dependent variable. The null hypothesis for the MANOVA model with g groups (or 

population) can be written as  

                    

where,         (    is the     group mean vector) 

    Population mean   overall mean +     population  

The alternative hypothesis    is that at least one of     .  The assumptions required 

in using MANOVA are as follows: 

1) The random samples from different populations are different.  

2) All populations have a common covariance matrix Σ.  

3) Each group is multivariate normal 

The test statistic used for testing the null hypothesis of a MANOVA model is Wilk‟s 

lambda (Λ) given by Λ 
 

   
   where, W is the within sum of square error and B is between 

(groups) sum of the square error. Λ is used as a statistic to test if there is any difference 

between the means of the given groups on a combination of dependent variables. In 
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multivariate analysis, Λ plays the same role as F-test does in one-way ANOVA. It measures 

the proportion of variance across groups in terms of a combination of variables.    

If Λ is small, the null hypothesis is rejected concluding that the mean (dependent 

variable) of at least one of the variable in the groups is significantly different. Distribution of 

Λ is not straightforward but can be approximated as shown in Table 5.2. For large sample 

sizes, a modification of Λ due to Bartlett is used for testing Ho (Johnson and Wichern, 2007). 

P-value for the tests can be obtained from the approximated distribution. 

Table 5.2: Distribution of Wilks‟ lambda, Λ (Taken from Johnson and Wichern (2007)) 

 

The next section presents the model setup and assumption for the specific MANOVA 

models estimated in this chapter.  

5.4 Model outline and assumptions 

In this study, an attempt was made to compare driving behavior between traffic 

control devices. Driving behavior (DB) was a vector comprising of driving behavior 

parameters (Table 5.1) with dimension of seven (RMSs, RMSa, ADS, RPA, PKE and 

VSP_avg, and Driver). “Driver” was a qualitative variable.  The vector DB associated with 
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each traffic control device has a dimension of RxM, where R is number of observations and 

M (=7) is the number of response variables (driving behavior parameters). The mean DB 

vector (averaged over the region of corresponding traffic control devices) for i
th

 traffic 

control device is given by    and is a vector of dimension [Mx1]. 

DB = (RMSs, RMSa, ADS, RPA, PKE, VSP_avg, Driver) is distributed as N (  β, Σ), where 

β is an unknown matrix of regression coefficients of dimension [RxM] and Σ is a 

[RxM]x[RxM] matrix with a diagonal block structure Σ =diag{Σi}, where each block is a 

[MxM] matrix. The null hypothesis of equality of mean is given by  

H0: µtraffic device1 = µtraffic device2 with respect to the alternative hypothesis 

Ha: µtraffic device1 ≠ µtraffic device2  

The MANOVA model can be stated as: DB ~   +TD +error. The justifications for 

assumptions made in the MANOVA model are as follows: 

1) The speed profile of a given driver at a given traffic device was similar across runs. 

However, trip summarized values of the driving behavior parameters were assumed to 

be independent.   

2) Covariance matrix Σ corresponding to different traffic can be reasonably assumed to 

be similar.  

3) The distributions of driving behavior parameters were bell shaped. The vector 

comprising these parameters was assumed to have a multivariate distribution.  

The data management and analysis was done using Excel (2010) and R (version 

2.11.1). Wilks‟s lambda for the overall difference in means of driving behavior vector of 

different traffic device was computed. Significance of each driving behavior parameter was 
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also reported. This was done to explore which driving behavior parameter(s) in particular 

was (were) responsible for the significant difference in mean. The following section presents 

the results of two MANOVA models. The p-values for the difference in individual driving 

behavior parameters were obtained from the F-statistics of ANOVA.  

 

5.5 Results and discussion  

The analysis addressed two questions as stated in section 5.1. In this regard, two 

MANOVA models were estimated for comparing driving behavior between (1) traffic signal 

and roundabout, and between (2) all-way-stop and roundabout. The model examines if the 

difference is due to random chance or inherent characteristic of driving at the two traffic 

control devices.  

 

5.5.1 Driving behavior comparison: traffic signal and roundabout 

The traffic signals and the roundabouts have their respective advantages. While 

vehicles on a roundabout were found to produce lower emissions on local roads (Mandavilli 

et al., 2003), a traffic signal was found to be environmentally friendly for high volume roads 

(Ahn et al., 2009). Emissions at the two traffic control devices basically depend on the traffic 

volume, and driver behavior. In this dissertation, the chosen traffic corridor (Douglas 

Avenue, Urbandale, IA) has low to moderate volume.  

This section presents the result on comparison of driving behavior manifested by a 

typical driver at traffic signal as compared to a roundabout. The study attempted to answer 

the question whether the difference in driving behavior at traffic signal and roundabout is 
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because of random chance or not.  In this regard, the following null hypothesis was tested at 

5% significance level. H0: µtraffic signal = µroundabout versus Ha: µtraffic signal ≠µroundabout 

Where, µtraffic signal and µroundabout are the estimates for the mean driving behavior vector 

(DB) at the traffic signal and the roundabout, respectively.  The number of observations (R) 

for roundabout and traffic signal was 216.  

The results, shown in Table 3, suggest that there was significant difference in driving 

behavior at the two traffic devices. Wilks‟ lamba for the test was 0.35 with p-value less than 

0.001. Specifically, RMSs, ADS, PKE and VSP_avg were significantly different. The RMSs 

or operation speed for roundabout was lower as compared to traffic signal.  

In case of a traffic signal, a driver is not sure in advance if he/she would need to stop 

at the traffic signal. This increases the tendency for hard acceleration which is a characteristic 

of aggressive driving.   This was validated by the fact that, positive kinetic energy and 

average VSP at the traffic signal was higher. Since, emissions are highly correlated with 

VSP, driving at the traffic signal would lead to higher emissions.  

Driving behavior parameters taken on aggregate level showed that driving behavior at 

roundabout and all-way-stop was comparable. In order to validate this, statistical tests were 

performed as stated in this chapter. Driving behavior at the all-way-stop and the roundabout 

was evaluated on the basis of the following null hypothesis tested at 5% significance level. 

H0: µall-way-stop = µroundabout versus Ha: µall-way-stop ≠ µroundabout 

The number of observations for both the traffic devices together was 215. Result 

showed that there was significant difference in driving behavior at an all-way-stop and 

roundabout. Wilks‟ lamba for the test was 0.66 (p-value < 0.001).  
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5.5.2 Driving behavior comparison: all-way-stop and roundabout 

All numeric parameters were significantly between roundabout and traffic signal. 

However, in this case also, the drivers did not have significantly different characteristics. The 

operation speed (RMSs) at roundabout was significantly higher than that at the all-way-stop.  

Aggressiveness as measured by the speed change tendency (ADS, RMSa, RPA) was 

higher for all-way-stop as compared to roundabout. Energy gained parameter showed mixed 

result with both being significantly different between the two traffic control devices under 

consideration.  

Table 5.3: Difference in means of driving behavior parameters (traffic signal and roundabout) 

Driving 

behavior 

parameters 

Mean driving 

behavior  

vector for 

Roundabout 

Mean driving 

behavior  

vector for 

Traffic signal 

p-values 

(difference in 

means) 

 

 

Relevance 

RMSs 24.73 27.64 
3.05e-05 

Operation speed 

behavior 

ADS 25.31 19.90 2.45e-07  

Speed change 

tendency 
RMSa 2.42 1.98 0.093 

RPA 1.01 0.84 0.080 

PKE 0.21 0.29 0.003 Energy gained  

VSP_avg 6.50 8.70 9.95e-08 

Driver   
0.990 

Individual driver 

characteristcs 

 

5.6 Summary 

The driving behavior parameters were correlated and therefore MANOVA was 

performed to compare aggregate measures of driving behavior across traffic devices. It was 

found that driving behavior at a roundabout was significantly different from that at a traffic 

signal and an all-way-stop.  
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Table 5.4: Difference in means of driving behavior parameters (all-way-stop and roundabout) 

 

Driving 

behavior 

parameters 

Mean driving 

behavior  

vector for 

roundabout 

Mean driving 

behavior  

vector for all-

way-stop 

p-values 

(difference in 

means) 

 

 

Relevance 

RMSs 24.73 22.82 9.03e-16  
Operation speed 

behavior 

ADS 25.31 29.22 5.75e-11  

Speed change 

tendency 

RMSa 2.42 3.31 7.20e-4 

RPA 1.01 1.25 0.039 

PKE 0.21 0.45 1.55e-12 
Energy gained 

VSP_avg 6.5 5.76 9.01e-08 

Driver   0.92 
Individual driver 

characteristcs 

 

The above analysis showed that driving behavior at a given traffic device was not 

unique. This implies that traffic devices should be treated separately in modeling emissions 

and fuel consumption. This is useful in developing emissions factors taking the traffic device 

into consideration in addition to individual vehicle types as it is done at present. Findings 

presented in this chapter must be verified with measured emissions data. 

Drivers were not significantly different when observations were aggregated. Driving 

behavior at higher resolutions must be studied in order to find potential emission hotspots on 

road sections or traffic control devices. In the next chapter, driving behavior of individual 

drivers would be modeled on one second resolution to find important instantaneous driving 

behaviors.  
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CHAPTER 6.  A Hierarchical Bayesian Model for Driving Behavior at a 

Roundabout 

 

6.1 Background and objectives 

In Chapter four, driving behavior across drivers was explored using distributions of 

driving behavior parameters. Not all drivers drove similarly.  The analysis was had two 

limitations. First, it was exploratory. Second, it did not provide understanding of the 

instantaneous driving behavior. Ignoring the instantaneous variation in individual profile 

easily leads to aggregation bias (Laureshyn et al., 2009). Therefore, there was a need for a 

model which can be used for comparing second-by-second driving characteristic/behavior. 

The objective of this chapter was to assess if driving behavior at intersections was 

similar enough to be represented by single model for all drivers. This objective was achieved 

through modeling and comparing second-by-second driving behavior across drivers as 

described in this chapter. As noted in Chapter 3, vehicle activity data were collected at 

roundabout, all-way-stop, and traffic signal on Douglas Avenue (Urbandale, IA).  However, 

due to limited resources, only driving behavior at roundabouts was modeled because of the 

following advantages. 

1.) Modeling the whole trip would require significant assumptions and complicated 

statistical methods which are beyond the scope of this dissertation.  
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2.) A roundabout is a traffic device whence all the four primary modes of vehicle 

operation namely idling, cruise, acceleration and deceleration are present in almost all 

the trips.  A vehicle driven through a roundabout must slow down (deceleration), 

cruise along (cruise) or stop (idling), and finally accelerate (acceleration) to attain the 

flow speed. Therefore, a driver on a roundabout is more likely to exhibit most driving 

modes present in a typical trip.  

3.) As shown in Chapter-4, the “acceleration-deceleration shift” parameter for the 

roundabout was centered on 25 with small standard deviation thereby indicating 

similar driving behavior across trips.  Driving behavior at signalized intersection is 

highly dependent on signal state so each trip by a driver through a signalized 

intersection may have a completely different driving trace. 

Speed is an important parameter that can quantify driving behavior (Ericsson, 2000). 

The most common driving behavior parameters are derived from speed (Jimenez-Palacios, 

1999). In this chapter, an attempt was made to use speed, a driving behavior parameter, for 

modeling driving behavior of different drivers at the roundabout using Bayesian hierarchical 

regression model. The following section deals with Bayesian philosophy and Bayesian 

hierarchical inference method. Next, the data used in the model is discussed followed by the 
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model framework, results and discussion. Finally, the summary of findings and conclusions 

are presented.  

6.1.1 Bayesian philosophy 

Bayesian inference is primarily based on Bayes theorem which is a method of 

keeping track of uncertainty. Bayes theorem provides a method by which subsequent 

probability/belief about an event/parameter is updated with observed data. The updated 

probability is estimated by conditioning the prior (prior to observation) probability on the 

observed data.  

In a Bayesian approach, firstly a model is formulated as is done in case of classical 

statistics. This is followed by assuming a probability distribution (called prior distribution) 

for the unknown parameters in the model. This is called prior since it is not based on data but 

some kind of subjective reasoning before utilizing the information in the observed data. The 

probability distribution of the parameters is updated based on the available data and Bayes‟s 

rule. This updated probability distribution is called posterior distribution which is believed to 

encompass data as well as the prior believe and therefore serves as a model for the 

parameters.  Summary of important contrasts between Bayesian and frequentist methods are 

presented in Table 6.1. 

6.1.2 Markov chain Monte Carlo (MCMC) 

Marcov chain is a type of process where outcome of an event at a given stage is only 

dependent on the outcome of the event at the previous stage (Greenshield and Shell, 2006).   

Given a complex integral        
 

 
, if we can find a function f(x) and probability 

density p(x) defined over the interval (a,b) such that  
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 =                         

 

 
 

Table 6.1: Summary of key differences between the two methods  

(Source:   O‟Hagan and Luce, 2003) 

FREQUENTIST BAYESIAN 

Nature of probability 

Probability is a limiting, long-run 

frequency 

Probability measures a personal 

degree of belief 

It only applies to events that are (at 

least in principle) repeatable 

It applies to any event or 

proposition about which we are 

uncertain 

Nature of parameters 

Parameters are not repeatable or 

random 

Parameters are unknown 

They are therefore not random 

variables, but fixed (unknown) 

quantities 

They are therefore random 

variables 

Nature of inference 

Does not (although it appears to) 

make statements about parameters 

Makes direct probability statements 

about parameters 

Interpreted in terms of long-run 

repetition 

Interpreted in terms of evidence 

from the observed data 

Example 

“We reject this hypothesis at the 

5% level of significance" 

"The probability that this 

hypothesis is true is 0.05" 

In 5% of samples where the 

hypothesis is true it will be rejected 

(but nothing is stated about the 

sample) 

The statement applies on the basis 

of this sample (as a degree of 

belief) 
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For a large number of random draws xi from p(x),        
 

 
 can be approximated by 

       
 

 

             
 

 
      

 

   

  

This method of integration based on the above approximation is called Monte Carlo 

integration. It has made the computation of marginal distributions faster and easier (Walsh, 

2004). The MCMC technique used in Bayesian inference is a simulation technique that is 

used for drawing a large sample from any distribution. Gibbs sampler is a type of MCMC 

method that provides an alternative for approximating marginal distribution      which is 

traditionally obtained by integrating the joint probability density function as   

                                    

There are many situations where this integration is not straight forward and almost 

impossible to perform even through numerical approximations (Casella and George, 1992). 

However, a large sized random sample from an approximate distribution is likely to generate 

samples from the exact distribution. Desired statistics pertaining to the exact distribution can 

be computed from this so called inferential sample (approximated distribution) to a great 

accuracy (O‟Hagan and Luce, 2003). 

 

6.1.3 Bayesian hierarchical inference 

A hierarchical problem involves a population with a hierarchical or multilevel 

structure. Such a population is composed of many sub-populations. Observations in each sub-

population are correlated and therefore standard statistical tests do not apply.  Bayesian 

hierarchical models (also known as multilevel models) are used when information is 
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contributed by various different levels of variability (Gelman et al., 2004). In general, all 

Bayesian models are hierarchical models. However, when the level of hierarchy becomes 

more than two, they are especially called Bayesian hierarchical models.  The three levels in 

the model can be stated as 

1) Data model: y| x,θy 

2) Process model: x| θx 

3) Parameter model: θx , θy 

The Hierarchical Bayesian framework was chosen for this analysis for the following reasons. 

1.) It takes better account of uncertainties in models and parameters and provides robust 

estimations of parameters. 

2.) It provides individual-level models and permits estimation of models which are too 

demanding for traditional methods.  

3.) It provides confidential interval for relevant non-linear parameters 

The next section describes the data used in the hierarchical Bayesian regression model.  

6.2 Data set used in this analysis  

On the study route, the PEMS recorded speed and spatial location (latitude, longitude) 

on a second-by-second basis. The method chosen in the study was to fit speed profiles at the 

roundabout with a polynomial in position. Speed was plotted against spatial position 

(distance) along the route which was oriented in the east/west direction. The road geometry 

was different at the two approaches were data were collected (east bound and west bound) of 
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the roundabout. Consequently, for consistency, only data from the east bound direction of 

travel was used for the analysis. The data chosen for developing the Bayesian hierarchical 

model consisted of speed profiles from 58 roundabout trip-parts for the eastbound direction 

of travel. Trip-part of a given traffic control device was defined (Chapter-3) as the vehicle 

traces within the region of influence of the associated traffic control device. 

The GPS records data at one second intervals, as a result, the spatial location of data 

points differs from trip to trip as shown in Figure 6.1. As a result, it was necessary to 

normalize location between trips so that data could be compared.     

In order to normalize distance, common points were identified for all trip-parts and 

position was extrapolated from the original GPS trace to the identified common point.  A 

trajectory of 44 points (yellow points in   

Figure 6.2) separated by 10 ft. was defined.   

 

Figure 6.1: Speed profiles for few roundabout trip-parts made by different drivers (D1 to D4) 
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The gap was taken as 10 ft. since the vehicles travelled 40 ft. at an average every 

second and therefore consecutive observations were more than 10 ft. geographical distance. 

Moreover, these 44 points were sufficient to cover the area of influence of the roundabout. 

Speed for each trip-part was spatially interpolated at these 44 points. This resulted in speed 

profiles with common points, which were separated by a distance of 10 ft. (Figure 6.3). 

 

  

Figure 6.2: Standard forty-four points chosen at the roundabout area of influence 

 

 

Figure 6.3: Interpolated speed profiles of some roundabout trip-parts 
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6.3 Speed profile modeling  

On negligibly few trips the drivers completely stopped at the yield point of the 

roundabout to yield to circulating traffic. Speed profiles corresponding to these trips were not 

included in the model. This was done to eliminate driving behavior resulting from other 

vehicles in the roundabout.  

It was assumed that the speed profiles for a given driver were correlated. For each 

driver, we obtained an average speed profile by averaging the speed profiles at each of the 44 

longitude points. The individual average speed profiles were fitted with a 4
th

 degree 

polynomial in position (longitude) using the statistical language R (Version 2.11). The route 

runs from east-west direction, therefore, latitude was almost the same for the entire route. 

This made it sufficient to use on longitude as position variable.  

A Bayesian hierarchical regression model for speed was developed for all drivers. 

Regression coefficients for each driver were assumed to be normally distributed. Conditional 

distributions (or conditionals) for each parameter were derived from the joint posterior 

distribution for all parameters/coefficients. Samples of these coefficients were drawn from 

their conditionals using Gibbs sampler. The step by step description of the model is given in 

the following section. 

6.3.1 Model set up and assumptions 

Bayesian Hierarchical model, a multi-level model was chosen for fitting the speed 

profiles with respect to the position. The mean speeds of drivers (µDriver) were level-one 

parameters. The coefficients of regression (βDriver) equations of speed profile for each driver 

were level-two parameters. The means (μβDriver) and variances (σβDriver) of the regression 
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coefficients were the level-three parameters (Figure 6.4). These means and variances were 

assumed to have come from Normal and Inverse gamma distributions respectively.  

 

Figure 6.4: Flow chart of various levels of parameters in Bayesian Hierarchical model 

 

Speed profiles were dependent on the relative position of the points with respect to 

the roundabout and therefore the actual values of longitude were not important.  Without any 

loss of information, we replaced the independent variable (longitude) with its index, which 

was 1 to 44. Consequently, the independent variable for the model was x with values from 1 

to 44. The above step was taken to simplify the calculation and analysis.  

The speed profiles were modeled with a fourth degree polynomial in x (longitude). 

High correlations were expected among even as well as odd powers of x. This resulted in 

multicollinearity. Correlations among x, x
2
, x

3
, x

4
 were minimized by setting x to (x-

mean(x)). This transformation is also called centering.   

Let yij denotes the mean speed for driver i at position index j, measured in mph. Let xj 

denotes the dependent variable corresponding to position (longitude). Here, i = 1 to N, j=1 to 

J, where N=4, J=44. The regression model for speed yij, can be expressed as 
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The joint posterior distribution (Equation. 7) for all model parameters was obtained 

by multiplying the likelihood function (Equation. 2) with the priors (Equation.3) and the 

hyper-priors (Equation. 4 to 6). 
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The following conditional distributions (Equation. 8 to 14) were derived from Equation. 7 for the 

model parameters. 
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Since the conditional distributions were not implicit functions, simulation was necessary to 

draw the parameters from the conditionals. For this, we chose to perform Gibbs sampling 

over 10000 iterations. The initial values of all parameters were taken to be the estimates from 

classical regression. The first 1000 simulated values were discarded as burn-in to get 

stabilized draws. A burn-in period is that beyond which values of subsequent draws/updates 

become steady and hetero-scedasticity vanishes. Subsequent draws from the stabilized period 

were found to be auto-correlated with a lag of 11. Therefore, every fifteen draws were 

retained while discarding the rest to obtain a distribution with no autocorrelation (Figure 6.5) 

This strategy of reducing autocorrelation by retaining every 15th point after the burn-in 
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period is called thinning the output. Figure 6.6 shows trace plot of β0 for all drivers showing 

the convergence. The green, red, pink and blue colors correspond to Driver 1 through 4.   

 
Figure 6.5: Auto-correaltion plot of steady state β0 after thinning 

 

 

Figure 6.6: Plot of every 15 draws of steady state β0 for all drivers. 

 

6.3.2 Results and discussion 

Figure 6.9 shows the model speed profiles for the four drivers.  On an average, driver-

1 drove faster than Driver-2. Initial speed of Driver-4 was about the lowest one; however, 

he/she attained the highest speed at upstream. This indicated Driver-4 had harder/aggressive 

acceleration behavior that is likely to produce higher emissions. Also, the individual speed 
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models (Figure 6.9) indicate that all drivers drove at speed higher than 15 mph, the 

circulating speed limit of the roundabout.  

The individual betas (Figure 6.8 - 6.9) that form the regression equation have 

significantly different distributions. This indicates that each driver had a unique speed profile 

which cannot be represented by a single (fourth degree polynomial) regression model. In 

order to perform a predictive check, certain quantities of interest called discrepancy statistics 

are defined based on the research objective. Posterior predictive distribution is obtained from 

the following equations. 

Replication-1 

                               ………………………..equation (13) 

                                                                         

Replication- n 

    
        

          
                

      ………………………..equation (14) 

Here, yrep represents replicated values of y. Subsequent replications of y are obtained 

from existing posterior predictive distribution as shown in equation 14. Each step requires 

performing Gibbs sampling to obtain steady, serially uncorrelated (no auto-correlation) 

replications. Discrepancy statistics, as defined above, are computed from posterior predictive 

distribution at each step of replication. The size of this distribution is equal to the number of 

replications. In a posterior predictive check, the hypothesis being tested is if the chosen 

discrepancy statistic came from the replicated data.  

In order to test for model fit and reliability, two discrepancy statistics were defined.  
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The maximum difference in median of β0 among driver. (β0 is the mean speed for a 

given trip-part) 

The maximum acceleration of Driver-1. Acceleration is derived by taking the first 

difference of model speedmodel (acceleration = speed[t] model –speed[t-1] model). 

Figure 6.10 shows the posterior predictive check for maximum difference in median 

of β0 among drivers. The observed value was 1.45 which does not seem to have come from 

the distribution generated from replicated data. Figure 6.11 depicts the posterior predictive 

check for maximum acceleration corresponding to Driver-1. The observed value of 1.29 was 

likely to come from the distribution generated from replicated data. These results imply a 

reasonably well model.  
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Table 6.2 gives the quartiles for betas corresponding to each driver.  

 
Figure 6.7: Regression model for speed profile of each driver 

 

Figure 6.8: β0 and β1for all drivers 
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Figure 6.9: β2,β3, and β4 for all drivers 

 

 

6.3.3 Posterior predictive check 

In a Bayesian context, “posterior predictive” check implies comparing predictive 

distribution to the observed data (Gelman et al. 1995). It is used to produce inference about 

key quantities of interest or to test model fit (Lynch and Western, 2004).  

In order to perform a predictive check, certain quantities of interest called 

discrepancy statistics are defined based on the research objective. Posterior predictive 

distribution is obtained from the following equations. 

Replication-1 

                               ………………………..equation (13) 

                                                                         

Replication- n 

    
        

          
                

      ………………………..equation (14) 
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Here, y
rep

 represents replicated values of y. Subsequent replications of y are obtained 

from existing posterior predictive distribution as shown in equation 14. Each step requires 

performing Gibbs sampling to obtain steady, serially uncorrelated (no auto-correlation) 

replications. Discrepancy statistics, as defined above, are computed from posterior predictive 

distribution at each step of replication. The size of this distribution is equal to the number of 

replications. In a posterior predictive check, the hypothesis being tested is if the chosen 

discrepancy statistic came from the replicated data.  

In order to test for model fit and reliability, two discrepancy statistics were defined.  

1) The maximum difference in median of β0 among driver. (β0 is the mean speed for a 

given trip-part) 

2) The maximum acceleration of Driver-1. Acceleration is derived by taking the first 

difference of model speedmodel (acceleration = speed[t] model –speed[t-1] model). 

Figure 6.10 shows the posterior predictive check for maximum difference in median 

of β0 among drivers. The observed value was 1.45 which does not seem to have come from 

the distribution generated from replicated data. Figure 6.11 depicts the posterior predictive 

check for maximum acceleration corresponding to Driver-1. The observed value of 1.29 was 

likely to come from the distribution generated from replicated data. These results imply a 

reasonably well model.  
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Table 6.2: Quartiles of various betas for all drivers 

Quartiles 5% 25% 50% 75% 95% 

Beta0 

Driver-1 17.37 17.53 17.64 17.76 17.92 

Driver-2 16.79 16.95 17.05 17.15 17.31 

Driver-3 15.97 16.12 16.23 16.34 16.49 

Driver-4 17.33 17.49 17.6 17.71 17.86 

Beta1 

Driver-1 -0.41 -0.39 -0.38 -0.37 -0.35 

Driver-2 -0.32 -0.31 -0.3 -0.28 -0.27 

Driver-3 -0.35 -0.33 -0.32 -0.31 -0.29 

Driver-4 -0.23 -0.21 -0.2 -0.18 -0.17 

Beta2 

Driver-1 0.087922 0.089794 0.091054 0.092303 0.094194 

Driver-2 0.081826 0.083556 0.084738 0.085936 0.087652 

Driver-3 0.090795 0.092553 0.093768 0.094995 0.096637 

Driver-4 0.085377 0.087223 0.088531 0.089803 0.091553 

Beta3 

Driver-1 0.000667 0.000719 0.000756 0.000793 0.000847 

Driver-2 0.000580 0.000631 0.000669 0.000704 0.000757 

Driver-3 0.000608 0.000661 0.000699 0.000734 0.000785 

Driver-4 0.000445 0.000500 0.000537 0.000573 0.000627 

Beta4 

Driver-1 -0.00014 -0.00013 -0.00013 -0.00013 -0.00012 

Driver-2 -0.00013 -0.00013 -0.00012 -0.00012 -0.00012 

Driver-3 -0.00014 -0.00013 -0.00013 -0.00013 -0.00012 

Driver-4 -0.00014 -0.00013 -0.00013 -0.00013 -0.00012 
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Figure 6.10: Posterior  predictive check: maximum β0 among drivers 

 

 
Figure 6.11: Posterior predictive check: Maximum acceleration of Driver-1 
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6.3.4 Posterior prediction of mean speed at yield point of roundabout 

For each driver, mean speed at the yield point of the roundabout was estimated from 

posterior predictive distribution. Results show that the speed at the yield point was 

significantly different among drivers (Figure 6.12). They are expected to accelerate 

differently to attain the free flow (cruise) speed beyond the region of influence of the 

roundabout.  

 
Figure 6.12: Posterior prediction of mean speed at the yield point of roundabout for all drivers 

 

6.4 Summary 

The primary objective of this dissertation was to investigate the impact of driving 

behavior on emissions. In this chapter, speed profiles at a roundabout were modeled. An 
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attempt was made to fit a fourth degree regression curve to model the speed profiles. The 

model fitted the observations with reasonable accuracy.  

Results show that the speed profiles at the roundabout were not similar among 

drivers. This implied that driver must be taken as a random variable while modeling vehicle 

activity and emissions. This supports the assumptions made in a previous study (Ericsson, 

2000).  

Also, mean speeds at the yield point of the roundabout were also different. If a larger 

number of drivers were used in the study, the difference is likely to be greater (for example 

2-5 mph). This may result in significantly higher emissions for some drivers.  Higher speed 

may also have safety implications.  

Modeling speed is an important aspect of characterizing driving behavior (TRB-

C151, 2011). The methodology/model used in this chapter can be extended to modeling 

operating speed at other intersections types.  Also, based on the models generated, 

classification of driving behavior and corresponding emissions can be performed. 
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CHAPTER 7.  Conclusions and Recommendations 

 

This chapter summarizes the findings and contributions of this study comprising 

driving behavior at traffic control devices. The assumptions adopted as well as limitations of 

the study are discussed. Recommendations for future work are also offered. 

7.1 Findings 

In this dissertation, driving behavior was studied at three levels. First, parameters 

were explored to explain driving behavior among individual drivers and traffic control 

devices. Second, driving behavior was compared between pairs of traffic control devices 

using MANOVA. Lastly, second-by-second driving behavior of individual drivers was 

modeled and analyzed. The following were the key findings from the study: 

1.) Two groups of drivers were identified among the four drivers based on the driving 

behavior parameters.   

2.) Driving behavior at roundabout and all-way-stop were similar as seen from the 

distributions of driving behavior parameters. However, statistical tests (MANOVA) 

done using driving behavior parameters summarized over individual traffic control 

devices revealed that there is a difference. The implication is that rather than 

averaging the emission factor over the routes, separate emission factors must be 

developed for each traffic control device for better accuracy of emissions estimates.  

3.) In this study, speed profiles of different drivers were modeled using Bayesian 

hierarchical regression.  It was found that each driver had a unique speed profile.  
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4.) Speed at the yield point of roundabout was significantly different across drivers. The 

maximum difference was estimated as 1.5 mph. With more number of drivers, this 

difference is likely to increase resulting in difference in emissions from driver to 

driver.  

7.2 Key contributions 

1.) This study was the only one of this type where second-by-second driving behavior 

was modeled. Models that provides second-by-second driving behavior can be useful 

for identifying driving behavior at higher resolution of space. This may help identify 

hot spots or aggressive driving on the road.  

2.) Speed profile of individual drivers was modeled using Bayesian method is capable of 

providing non-linear parameters with confidence interval. Classical methods fail to 

provide confidence interval for non-linear parameter. In this study, there was 

variability in speed from trip to trip. Also, since there was variability in speed within 

driver and between drivers, a multilevel model was chosen. The research highlights 

the use of Bayesian Hierarchical (Multi-level model) framework for modeling 

instantaneous speed. Although, findings are limited to the given driver-vehicle 

combinations, the methodologies used in this research would be useful in similar 

situations and beyond.  

3.) This work identifies the utility of gas pedal and brake pedal parameters to 

characterize driving behavior.  These parameters corroborated other common driving 

behavior parameters (speed, acceleration and VSP). 
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4.) The research identifies that driving behaviors at various traffic control devices are 

significantly different. Trip-part, the portion of driving in the region of influence of 

traffic control devices, can be used for developing driving cycles. Selecting trip-parts 

randomly and appending them one after another based on some conditions (e.g. 

maximum acceleration) can be useful in developing driving cycles. 

5.) The stu dy gives more insight into driving behavior which is highly correlated with 

vehicular emissions.  

In this study, numerous assumptions were made to compensate for the non-ideal 

situation. The following section presents assumptions that formed a basis of analysis in this 

study.  

7.3 Assumptions 

As in all studies, some assumptions had to be made in order to control the parameters 

of the study.  The following assumptions were made in order in this research.  These 

assumptions were not tested and if conditions actually differed from these assumptions, it 

may have affected the analysis results. 

1.) It was assumed that the drivers were driving in a normal state of mind devoid of 

boredom or fatigue. 

2.) Drivers were not affected by the time of the day or day of the week.  

3.) The vehicle was assumed to be functioning properly all the time. 
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4.) On one of the data collection day, the pavement was covered with a layer of water 

due to rain. The amount of rain was judged to be minor and it was assumed that there 

was no significant change in road friction due to wet pavement and that there were no 

changes in driver behavior. 

7.4 Limitations and challenges faced 

1.) High variability associated with on-road emissions (Frey et al., 1997; Bammi, 2001) 

only allows relative measures of emissions instead of absolute values.   

2.) Only four drivers were considered which reduces the scope of extending the results to 

the overall population. 

3.) Data collection was done on single roundabout, all-way-stop and traffic signal. In 

order to validate the findings, a higher number of traffic control devices should be 

tested.  

4.) The analysis is limited to driving behavior on a single mid-size passenger car. The 

research conclusions may not be applicable to driving behavior associated with other 

common vehicles.  

5.) There are measurement limitations associated with the GPS used in the study. 

6.)  GPS do not provide reliable data on altitude and it was not possible to conduct a 

survey of road grade along the route.   There were no adverse changes in elevation 

but acceleration and deceleration can be affected by road grade. This limits the 
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method of deriving gaspad and brakepad using acceleration. Some recommendation 

for overcoming this limitation is provided in the next section.  

The study presented new findings while corroborating existing findings. It opened up 

new research directions. In the next section, recommendation for advancing the research is 

presented.  

7.5 Recommendations for future research 

This study offers the following recommendations for furthering the research: 

1.) Driving behavior associated with different vehicles is likely to be different. For 

example, a typical driver would drive a hybrid car differently in urban roads by 

making use of the regenerative braking system. Further, driving behavior for heavy 

duty vehicle can be studied in order to understand how heavy vehicle drivers 

maneuver curves.   

2.) Pressure sensor can be installed on the pedals for precise estimations of gas pedal 

pressure and brake pedal pressure.  

3.) Emission factors specific to a traffic control device can be developed. 

4.) The method used in the study for modeling individual driver speed can be extended to 

modeling speed at curves for evaluating safety and operation at curves. 
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