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ABSTRACT 
 
 
World oil consumption for energy and transportation applications has increased 

tremendously over the past decades as the world population grew, and more countries 

becoming industrialized. Even domestic products like plastics, chemicals, toiletries, clothes, 

food packaging, automobile parts and building materials are made from petrochemicals. In 

the United States, world’s number one oil consumer, approximately 70% of crude oil goes to 

the transportation sector. To supplement these fossil based fuels, several ethanol-gasoline 

blends are currently in the market, and since 2006, a massive increase in the utilization of 

ethanol is reported in the United States, and this trend is also observed globally. While the 

present first generation fuel ethanol are produced mainly from sugary and starchy feedstock, 

numerous efforts are underway in the research, development and production of second 

generation bioethanol that are derived from lignocellulosic biomass. The latter platform has 

not fully matured due to the various process and economic challenges in efficiently 

producing market friendly ethanol from lignocellulosic biomass. Therefore, it is imperative 

to develop means of bioprocesses that may reduce cost associated with lignocellulosic 

ethanol production. 

 

In our study, we aim to develop a sequential biological process that converts cellulosic 

materials into fermentable sugars and ultimately ethanol as a transportation fuel. We 

performed solid state fermentation at ambient conditions to induce lignocellulolytic activities 

from three fungal species, namely Phanerochaete chrysosporium, Gloeophyllum trabeum 

and Trichoderma reesei. We cultivated each of the fungal species on pure cellulose and corn 



 xvi

stover to induce the secretion of cellulases, hemicellulase and lignolytic enzymes via solid 

state fermentation for several days. Corn stover was chosen as the main material as it is one 

of the most abundant agricultural residues. The mold mediated processes liberate simple 

carbohydrates, suitable substrates for downstream microbial utilization. Next, we performed 

simultaneous saccharification and fermentation (SSF) of the cellulosic materials to produce 

more sugars that are converted to ethanol.  

 

Prior to the SSF studies on the corn stover, we initially performed enzymatic studies of these 

fungal species on pure cellulose to evaluate their in situ enzyme production and hydrolytic 

abilities. Filter paper was used in the screening in accordance to the recommendations of 

several previously reported studies. The efficiency of the fungal species in saccharifying the 

filter was compared against a low dose (25 FPU/g cellulose) of a commercial cellulase. 

Fermentation was achieved by using the yeast Saccharomyces cerevisiae. Total sugar, 

cellobiose and glucose concentrations were monitored during the fermentation period, along 

with three main fermentation products, namely ethanol, acetic acid and lactic acid. Results 

indicated that the most efficient fungal species in saccharifying the filter paper was T. reesei 

with 5.13 g/100 g filter paper of ethanol being produced at days 5, followed by P. 

chrysosporium at 1.79 g/100 g filter paper. No ethanol was produced from the filter paper 

treated with G. trabeum throughout the five day fermentation stage. Acetic acid was only 

produced in the sample treated with T. reesei and the commercial enzyme, with concentration 

0.95 g and 2.57 g/100 g filter paper, respectively at day 5. 

 



 xvii

Next, we performed enzymatic saccharification of corn stover using P. chrysosporium and G. 

trabeum. Subsequent fermentation of the saccharification products to ethanol was achieved 

via the use of Saccharomyces cerevisiae and Escherichia coli K011. During the SSF period 

with S. cerevisiae or E. coli, ethanol production was highest on day 4 for all samples 

inoculated with either P. chrysosporium or G. trabeum.  For the corn stover treated with P. 

chrysosporium, the conversion of corn stover to ethanol was 2.29 g/100 g corn stover for the 

sample inoculated with S. cerevisiae, whereas for the sample inoculated with E. coli K011, 

the ethanol concentration was 4.14 g/100 g corn stover.  While for the corn stover treated 

with G. trabeum, the conversion of corn stover to ethanol was 1.90 g and 4.79 g/100 g corn 

stover for the sample inoculated with S. cerevisiae and E. coli K011, respectively. Other 

fermentation co-products, such as, acetic acid and lactic acid were also recorded.  Acetic acid 

production ranged between 0.45 g and 0.78 g/100 g corn stover for the samples under 

different fungal treatments, while no lactic acid production was detected throughout the 5 

days of SSF.  

 

In the later stages of our study, we further explore the coupling of mild chemical (dilute 

NaOH) and biological pretreatment and saccharification on the corn stover. Ethanol 

production was achieved via the sequential saccharification and fermentation of dilute 

sodium hydroxide (2% w/w NaOH in corn stover) treated corn stover using P.  

chrysosporium and G. trabeum. Ethanol production peaked on day 3 and day 4 for the 

samples inoculated with either P. chrysosporium or G. trabeum, slightly plateauing or 

decreasing thereafter. Ethanol production was highest for the combination of G. trabeum and 

E. coli K011 at 6.68 g/100 g corn stover, followed by the combination of P. chrysosporium 



 xviii

and E. coli K011 at 5.00 g/100 g corn stover. Combination of both the fungi with S. 

cerevisiae generally had lower ethanol yields, ranging between 2.88 g (P. chrysosporium 

treated corn stover) and 3.09 g/100 g corn stover (G. trabeum treated corn stover). Acetic 

acid production ranged between 0.53 g and 2.03 g/100 g corn stover for the samples under 

different fungal treatments, while lactic acid production was only detected in samples treated 

with G. trabeum, throughout the 5 days of SSF.   

 

The results of our study indicated that mild alkaline pretreatment coupled with fungal 

saccharification offer a promising bioprocess for ethanol production from corn stover without 

the addition of commercial enzymes. We believe these sequential procedures are potentially 

applicable to various other lignocellulosic materials (i.e. switchgrass, poplar, corn cobs) and 

may assist in environmentally, economical and technological friendlier ethanol production 

processes. 
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CHAPTER 1: INTRODUCTION 

 

INTRODUCTION 

 

Over the decades, energy consumption has increased tremendously by 16-fold as the world 

population quadrupled in the twentieth century, and more countries have become 

industrialized (Sun and Cheng 2002; Sanchez and Cordona 2008; Zhang 2008). If the current 

trend persists, the total energy consumption is expected to rise to 27–42 Terawatt (TW) from 

the current 13 TW by the year 2050 (Whitesides and Crabtree 2007). In the United States, 

world’s number one oil consumer, approximately 70% of crude oil goes to the transportation 

sector (Sanchez and Cordona 2008). Even plastics products used to make chemicals, 

toiletries, pharmaceuticals, clothes, food packaging, automobile parts and building materials 

are made from petrochemicals (National Renewable Energy Laboratory 2002). This is an 

undesirable situation, both strategically and economically with crude oil and energy prices 

recently reaching historic highs of over 100 dollars per barrel (Sanchez and Cordona 2008). 

 

Oil is a non-renewable resource that is progressively depleting (Silverstein et al. 2007). 

According to Sun and Cheng (2002), analysts are predicting that current global oil production 

would decline by 80% (from 25-30 billion barrels per annum to approximately 5 billion 

barrels) in 2050. In short, the oil reserve could be depleted within 35-70 years, potentially 

causing chaos in  the economy and transportation sector in the United States and most other 

nations that depend heavily on oil (Sun and Cheng 2002; Zhang et al. 2007; Zhang 2008).  
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As the concern about energy security escalates, there is currently a surge of interest both 

statewide and worldwide in utilizing and producing alternative domestic and renewable 

energy sources that could reduce needs for fossil based energy supplies (Sheehan et al. 2004; 

Matsuoka et al. 2009; Wen et al. 2009). Besides energy security issues, other motivations for 

developing biofuels as a transportation fuel also include needs to keep up with economic 

growth and environmental health (Perez-Verdin et al. 2009). The adoption of the Kyoto 

Protocol in 1997 also contributed to this concern as it ignited a global wide concern about 

climate changes and global warming, which has resulted in unprecedented discussions on the 

impacts of fossil-based fuel usage to the increase of polluting gases released into the earth’s 

atmosphere (Sanchez and Cordona 2008; Matsuoka et al. 2009). This has led to the research, 

development and production of biofuels such as bioethanol from plant biomass as the 

candidate to supplement, substitute and possibly replace fossil fuels (Xuan et al. 2009).   

 

Research, development and production of bioethanol (also called fuel ethanol) have received 

countless attention not only in the media, but also in the scientific communities, political, and 

decision-making areas (Perez-Verdin et al. 2009). In his State of Union speech in 2007, 

President Bush projected that ethanol production in the United States would reach 35 billion 

gallons per year by 2017 (Zhang 2008). This is equivalent to approximately 20% of biofuels 

replacement of petroleum usage over the course of next ten years (Wen et al. 2009). Another 

scenario proposed by the US Department of Energy (US-DOE) indicated that 30% 

transportation fuels will be from renewable resources such as biomass (approximately 60 

billion gallons) by 2030 (Himmel et al. 2007).  
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According to the National Research Council (NRC) (1999), the motivation for bioethanol in 

the United States has underwent an interesting evolution that revolves around the tax state 

and federal gasoline tax exemptions. In the 1980’s, the motive was driven by security and 

domestic economic development, followed by the compliance to meet environmental 

regulations such as the improvement of air quality, and finally, the reduction of greenhouse 

gases to the atmosphere as per declared in the Kyoto’s Protocol.  

 

Globally, we also notice the similar interest in biofuels in other countries. Brazil made one of 

the earlier nationwide move soon after 1973, when gasoline was blended with ethanol in 

1979, then began manufacturing vehicles that could run on hydrous ethanol (95% ethanol), 

and by mid-80’s, majority of all new cars were manufactured to run exclusively on ethanol 

(NRC 1999). In the European Union, the European Commission has announced its plan to 

replace 20% of fossil fuels with renewable fuels in the transportation sector by 2020, and 

possibly increasing that percentage to 25% (Himmel et al. 2007).   

 

According to a statement by the International Energy Agency (IEA) presented in the 2008 

World Energy Outlook report, biofuels (bioethanol and biodiesel) contributed to about 1% of 

the world’s transportation fuel consumption in 2006, and projected to rise to approximately 

4% by the year 2030 (Zhou and Thomson 2009). The same report also projected a yearly 

growth rate of approximately 6.8% from 2006 to 2030 for overall total biofuels consumption. 

In total, the United States, Brazil, the European Union and China account for approximately 

90% of global biofuels production (Sainz 2009). 
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Fuel ethanol has always been produced via the first generation platform through the 

conversion of two major groups of feedstocks: (i) sugary feedstocks (sugar cane, sugar beet, 

sweet sorghum) and (ii) starchy materials (corn, milo, wheat, cassava, sweet potatoes) (Balat 

and Balat 2009; Perez-Verdin et al. 2009).  In particular, corn, however, has created 

numerous controversies as it is needed as food for human and also feed for animals. In 

addition, the ethanol prices from sugar or starch feedstocks were too high to compete with 

gasoline for transportation use (Alkasrawi et al. 2003).  Hence, the United States Department 

of Energy (US-DOE) started promoting the development of fuel ethanol from cheap 

lignocellulosic feedstocks, such as agriculture residues and energy crops (de La Torre Ugarte 

et al. 2003; Perez-Verdin et al. 2009).  The reasons for these moves are simple - to reduce 

dependence on foreign oil, decrease trade deficits, rural economics, biodegradability, air 

pollution and global carbon dioxide reduction (carbon sequestration)  (Badger 2002; Balat 

and Balat 2009). 

 

According to several literatures, lignocellulosic biomass is the most abundant and sustainable 

bioresources that are still not fully exploited (Chang 2007; Hong et al. 2007; Zhang 2008; 

Fukuda et al. 2009). Strictly speaking, plant biomass is stored solar energy in forms of 

complex organic molecules and polymers (Sanchez and Cordona 2008). Plants convert solar 

energy into various energy-containing organic molecules such as sugars, starch, other 

carbohydrates, cellulose, hemicellulose and lignin, via photosynthesis, with much of the 

biomass and bioenergy deposited into the fibrous lignocellulosic parts of the plant (NRC 

1999; Ahamed and Vermette 2008; Ling et al. 2009). On average, it is estimated that the 

amount of carbon fixed by plants during photosynthesis is over 100 billion tons per annum 
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(Bedford 2001). In a recent report by the US-DOE, the United States alone is reported to 

have the potential to produce approximately 1.3 billion tonnes of lignocellulosic biomass 

annually, which could be converted to liquid fuel to supply up to 30% of transportation fuels 

(~225 billion liters of ethanol) without displacing food crops, such as grains (Chang 2007).   

 

Although very promising, large-scale lignocellulosic ethanol production faces three major 

logistic obstacles; high processing costs, huge capital investment and narrow margin between 

feedstock and product prices (Zhang 2008).  Process-wise, there are three challenges in 

efficiently producing cheaper ethanol from lignocellulosic biomass (MacAloon et al. 2000): 

 

1. The need to liberate the cellulose and hemicellulose molecules from their native 

lignocellulosic state via pretreatment (Zhu et al. 2006). In this respect, different 

laboratories employ different means of pretreatment, mostly via physical and chemical 

means, to render the cellulose and hemicellulose more accessible for downstream 

enzymatic hydrolysis (Yang et al. 2008; Garcia-Cubero et al. 2009).  However, other sets 

of problems accompany this process. When pretreatments are applied, chemical and 

biochemical compounds are accumulated (i.e. acetic acid, other inorganic acids, 

phenolics and various salts), that can be inhibitory to microbial fermentation and 

biocatalysis (Martinez et al. 2000; Talebnia et al. 2004; Keating et al. 2005). 

 

2.  The lack of cost-effective enzymes to catalyze the hydrolysis of cellulose to glucose 

(Alkasrawi et al. 2003). This is a significant factor in fuel ethanol production as 
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enzymatic hydrolysis still remain a significant portion of the lignocellulosic biomass 

sugars production cost (Linde et al. 2007).  

 

3. The need for hardier and high performance bio-catalysts (microogansims and enzymes) 

capable of utilizing all fermentable sugars released from plant biomass hydrolysis and 

able to adapt to pretreated biomass (MacAloon et al. 2000). Although significant 

progresses have been achieved in selecting and developing microorganisms capable of 

effectively producing ethanol from hexoses at high yield, cultures that perform 

satisfactorily on pentoses still remain elusive (Piskur et al. 2006).   

 

Because of the problems and costs associated with pretreatments and enzymatic hydrolysis of 

lignocellulosic feedstocks, it is imperative to develop means of pretreatment and enzymatic 

hydrolysis of lignocellulosics that do not sacrifice ethanol production. Therefore, in attempts 

to address these issues, we employed several lignocellulolytic microorganisms to perform 

both pretreatment and enzymatic saccharification on corn stover, our lignocellulosic material 

of choice. In our study, we performed solid state fermentation at ambient conditions to 

induce lignocellulolytic activities.  The three fungal species used in this study represent three 

major wood-rot fungi, namely Phanerochaete chrysosporium, Gloeophyllum trabeum and 

Trichoderma reesei. Corn stover was chosen as it is one of the most abundant agricultural 

residues in the United States and many other countries (Galbe and Zacchi, 2007; Chen et al. 

2009). Prior to performing the main studies on corn stover, we initially perform enzymatic 

studies of these fungal species on pure cellulose to evaluate their enzyme production and 

hydrolytic abilities to pure cellulose in situ. Filter paper (Whatman No. 1) was used in the 
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preliminary screening as, according to several studies, this is the material recommended by 

National Renewable Energy Laboratory (NREL) for measurement of cellulase activities 

(Decker et al. 2003; Adney and Baker 2008).  

 

We cultivated each of the fungal species on both of the cellulosic material to induce the 

secretion of cellulases, hemicellulase and lignolytic enzymes via solid state fermentation for 

several days. The mold mediated processes liberate simple carbohydrates, suitable substrates 

for downstream microbial utilization. Next, we performed simultaneous saccharification and 

fermentation (SSF) of the cellulosic materials to convert the fermentable sugar products to 

ethanol. SSF was chosen as it is reportedly the most logistically and economically favorable 

process to produce the highest ethanol yield (Tomas-Pejo et al. 2009).  In the later stages of 

our study, we further explore the coupling of mild chemical (dilute NaOH) and biological 

pretreatment and saccharification on the later part of our study. To perform fermentation, 

Saccharomyces cerevisea and Escherichia coli K011 were used to the convert the 

saccharification products into ethanol. Results are encouraging and we believe these 

sequential procedures are potentially applicable to various other lignocellulosic materials (i.e. 

switchgrass, poplar, corn cobs). 

 

 

RESEARCH IMPORTANCE AND RATIONALE 

 

The realization that oil reserves would someday be extremely expensive and even in short 

supply spawned the idea of a renewable energy pool, one that could be made from either free 
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unlimited resources like solar energy or wind, or from replenished bioresources. As of 

February, 2009, there are 180 bioethanol plants in operations with the total production 

capacity of 12.2 billion gallons, and the Energy Independence and Security Act of 2007 

mandated a gradual increase in the use of renewable biofuels until 2022, until production 

reaches 36 billion gallons (Stowers 2009). Globally, fuel ethanol production from first 

generation platforms is estimated to increase to 113.6 billion liters (~30.29 billion gallons) by 

2022 (Sainz 2009).  However, in the recent years, production of first generation bioethanol 

based on corn starch has received much criticism in the feed, food, fuel debate (Songstad et 

al. 2009). There have even been reports that attribute the rising food prices to the production 

of biofuels such as bioethanol and biodiesel (Armah et al. 2009). In this respect, second 

generation bioethanol research and production from non-food sources such as lignocellulose 

biomass are underway as these resources offers great potential to replace conventional fossil 

fuels without further aggravating the food-fuel debates (Goh et al. 2009). 

 

Research on the production of ethanol from lignocellulosic biomass started as early as the 

1970s in response to the same oil crisis that gave birth to the corn-ethanol industry, as new 

technologies are required if biofuels are to significantly contribute to global energy supplies 

and to offset the effects of greenhouse gas emissions (Sainz 2009). Since new technologies 

typically take approximately 25 years to be commercialized, development of alternative, 

renewable and sustainable transportation fuels is urgently needed in order to meet 

developmental and environmental needs of both present and future generations (Zhang 

2008).  Countries like the United States, Canada and China have shown increasing interest 

and have already committed millions of dollars for the research on lignocellulosic ethanol 
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research and programs, resulting in the acceleration of research activities in cellulosic ethanol 

technologies and funding (Sainz 2009).  

 

The major economic hurdles to viable commercial lignocellulosic ethanol production are 

high production costs, associated with feedstocks, processing and enzymes, as the 

conventional method for the conversion of lignocellulosics to their monomeric sugars 

requires the use of expensive commercial enzymes (Sainz 2009). Therefore in our research, 

we address these main issues in the following manners: 

 

1.  Utilization of corn stover as main feedstock. 

According to Balat and Balat (2009) and Borjenson et al (2009), to produce “good” 

ethanol, production plants should use cheap and abundant biomass as their feedstocks. 

Corn stover is a substantial source of cheap and abundant lignocellulosic biomass, not 

only in the United States, but also in other countries, such as Europe and China (Galbe 

Zacchi 2007; Chen et al. 2009; Hess et al. 2009).  Several recent studies reported that the 

United States produce as much as 75 million tons of this promising feedstock (Perlack et 

al. 2005; Hess et al. 2005). Currently, corn stover is one of the most studied 

lignocellulosic biomass used for bioethanol production, which include harvesting 

technologies and pretreatment procedures (Lu et al. 2008; Aden and Foust 2009; He et al. 

2009; Kumar et al. 2009). Corn stover is recognized as one the most promising feedstock 

by the NREL that a special comprehensive report for a process design and economic 

analysis of the biochemical conversion of corn stover to ethanol was published (Aden, 

2008; Templeton et al., 2009). In fact, by current technological standards, corn stover 
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based ethanol has the potential to produce approximately 6 billion gallons (85 gal/ton) of 

liquid fuel (Hess et al., 2009). 

 

2.  Utilization of wood-rot fungi as main biological treatment options and enzyme sources. 

The three fungal species used in this study are P. chrysosporium, G. trabeum and T. 

reesei. P. chrysosporium has been studied extensively for its efficient lignin degrading 

enzymes, such as lignin peroxidases, manganese peroxidases and peroxidases, in addition 

to a variety of cellulases and hemicellulase (Martinez et al. 2009). P. chrysosporium has 

also been used in biotechnological applications, such as biobleaching and pulp-mill 

effluent treatment (Wymelenberg et al. 2005; Kersten and Cullen 2007; Ravalason et al. 

2008).  G. trabeum is an ecologically important saprophytic fungus contribute 

significantly to the soil fertility in the ecosystem, that cause the most destructive type of 

cellulosic decay, attributed largely to several non-enzymatic processes that involve low 

molecular weight catalysts (Henriksson et al. 1999; Cohen et al. 2005; Schilling et al. 

2009).  T. reesei is a soft-rot mold that is well documented for its highly efficient 

cellulolytic and hemicellulolytic enzyme systems for the complete hydrolysis of biomass, 

and is a model fungus for the production of commercial cellulases (Ahamed and 

Vermette 2008).  

 

The most promising aspects of our research are the possibilities of minimizing or 

eliminating the most costly part of the lignocellulosic-ethanol process, (i) the 

pretreatment stage and (ii) the addition of expensive commercial enzymes. By using 

extracellular enzymes like ligninases, cellulases and hemicellulases from the wood-rot 
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fungi, in situ biodegradation of corn stover will liberate simple sugars that can be 

fermented to ethanol. Several studies using these fungi on corn fiber showed outstanding 

results in terms of lignin degradations and cellulolytic activities (Shrestha et al., 2008; 

Shrestha et al., 2009; Rasmussen et al., 2010). 

 

 

RESEARCH OBJECTIVE 

 

The overall goal of our study is to develop a sequential biological process that converts 

cellulosic materials into fermentable sugars and ultimately ethanol as a transportation fuel. 

 

Specifically, the study was performed to meet the following objectives: 

 

1. Investigate the performances of three different species of wood rot, namely white rot (P. 

chrysosporium), brown rot (G. trabeum) and soft rot (T. reesei) for the production of 

lignocellulolytic enzymes via solid state fermentation on pure cellulose.  

2. Evaluate two different species of wood rot, namely white rot (P. chrysosporium) and 

brown rot (G. trabeum) for the production of lignocellulolytic enzymes via solid state 

fermentation to liberate fermentable sugars that will subsequently be substrates as 

microbial fermentation feedstock to produce ethanol using S. cerevisiae and E. coli K011. 

3. Examine the effectiveness of mild alkali pretreatment, using sodium hydroxide (NaOH), 

of corn stover prior to solid state fermentation by selected fungal species, and subsequent 

fermentation of the hydrolysate to ethanol using S. cerevisiae and E. coli K011. 
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DISSERTATION ORGANIZATION 

 

This dissertation is organized into seven chapters. The first chapter of this dissertation is an 

introduction to the studies, where the research objectives, rationale and justifications are also 

discussed. Chapter 2 is the Literature Review. In this chapter, subjects such as ethanol, fuel 

ethanol, history of fuel ethanol and fuel ethanol programs worldwide are covered. This is 

followed by the discussion of bioethanol production, which is continued by the introduction 

to the lignocellulosics materials and its contribution towards lignocellulosic ethanol 

production. The discussion then flows into the current technologies involved in 

lignocellulosic ethanol production, such as pretreatment (physical, chemical and biological) 

and SSF processes. Finally this chapter will end with discussions on the organisms used in 

this study, namely the white rot (P. chrysosporium), brown rot (G. trabeum), soft rot (T. 

reesei) and the types of lignolytic, cellulolytic and hemicellulolytic enzymes associated with 

these fungi.  

 

The following three chapters (Chapters 3, 4 and 5) consist of three manuscripts prepared for 

publication in various international journals: 

 

Chapter 3 - “Evaluation of Potential Fungal Species for the in-situ Simultaneous 

Saccharification and Fermentation (SSF) of Cellulosic Material” investigates three 

different species of wood rot, namely white rot (P. chrysosporium), brown rot (G. trabeum) 

and soft rot (T. reesei) for the production of lignocellulolytic enzymes via solid state 

fermentation on pure cellulose. The paper aims to satisfy the first objective of this 
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dissertation. This paper will be submitted to the World Journal of Microbiology and 

Biotechnology. 

 

Chapter 4 – “Simultaneous saccharification and fermentation of ground corn stover 

without pretreatment for the production of fuel ethanol using Phanerochaete 

chrysosporium,  Gloeophyllum trabeum, Saccharomyces cerevisiae and Escherichia coli 

K011” focuses on the induction of cellulases during the solid state fermentation of the 

selected fungal species on corn stover to obtain fermentable sugars that will subsequently be 

substrates as microbial fermentation feedstock to produce ethanol using S. cerevisiae and E. 

coli K011. This manuscript is prepared to address the objective 2 of this dissertation, and will 

be submitted to the Journal of Microbiology and Biotechnology. 

 

Chapter 5 – “Ethanol production via sequential saccharification and fermentation of 

dilute NaOH treated corn stover using Phanerochaete chrysosporium and Gloeophyllum 

trabeum” reports the studies on the mild alkaline pretreatment of corn stover and its effect on 

overall fungal saccharification and fermentation of corn stover to ethanol by S. cerevisiae and 

E. coli K011. This chapter satisfies the third objective, and will be submitted to the Applied 

Microbiology and Biotechnology journal. 

 

Chapter 6 – “Engineering, economic and environmental implications and significance” 

discusses the engineering economic and environmental implications and significance of the 

production fuel ethanol via the present studies. This chapter will cover the practical processes 
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and issues in implementing the methodology and technology towards lignocellulose based 

ethanol production.  

 

Finally, Chapter 7 is the general conclusions for this dissertation. In this dissertation, figures 

and tables are embedded within the main texts of every chapter, and literature citations are 

added at the end of each chapter. 
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CHAPTER 2: LITERATURE REVIEW 

 

HISTORY OF FUEL ETHANOL 

 

Ethanol production predates even the Industrial Revolution.  Written records dated 9,000 

years ago found in Northern China indicated that ethanol has been with the human 

civilizations as early as the Neolithic age (Roach 2005). Prior to 1826, early ethanol 

productions have always been via the fermentation processes, until Henry Hennel and S. G. 

Serullas synthetically prepared ethanol. This is followed two years later by Michael Faraday 

who artificially synthesized ethanol using acid catalysis hydration of ethane, a technology 

still used today (Wikipedia 2009). 

 

The early application of ethanol has always been for beverages and as lamp fuel. In fact, 

ethanol was a fuel choice at the beginning of nineteenth century in Europe (Sneller and 

Durante 2007; Matsouka et al. 2009). During that period, ethanol blended with turpentine 

was used to replace the more expensive whale oil for lamp fuel (Songstad et al. 2009). Then 

in 1861, German Engineer and inventor, Nikolas Otto found another use for ethanol, as the 

fuel for one of his “Otto Cycle” combustion engines (Matsouka et al. 2009). This opened a 

new chapter for the applications of ethanol that continued to the United States, when Samuel 

Morey invented the internal combustion engine that ran exclusively on a combination of 

ethanol and turpentine (Songstad et al. 2009).  Simply put, ethanol was already used as fuel 

years before the discovery of petroleum by Edwin Drake in 1859 and in actuality, the 
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production of ethanol for fuel spans more than a century (Sneller and Durante 2007; 

Songstad et al. 2009). 

 

The next important event where fuel ethanol became prominent was linked to the invention 

of the automobile by Henry Ford, who designed his first car, the Quadricycle, to run on pure 

ethanol in the 1896 (Goettemoeller and Goettemoeller 2007; Pollok-Newsom 2008).  

However, during this time, ethanol was heavily taxed, making ethanol more expensive than 

gasoline, favoring use of gasoline for internal combustion engines (Goettemoeller and 

Goettemoeller 2007). When the ethanol tax was eventually lifted in 1906, it was an uphill 

battle for the ethanol to compete with the cheaper gasoline, the then accepted fuel for 

automobiles (Pollok-Newsom 2008; Songstad et al. 2009). Nonetheless, this did not stop 

Henry Ford from equipping his “Model T” with engines capable of running on ethanol, 

gasoline or a combination of the two, in 1908 (Goettemoeller and Goettemoeller 2007; 

Solomon et al. 2007).   

 

Ford further promoted the usage of ethanol in a movement called Chemurgy during the 1920s 

and 1930s and fought to have the sales of at least 10% ethanol blend in motor fuel (Songstad 

et al. 2009). This movement resulted in 2,000 gasoline filling stations with such formulation 

throughout the Midwest (DiPardo 2003; Solomon et al. 2007). Another indirect impact of 

this movement was the increase in ethanol demand in the USA as an alternative and additive 

to gasoline for domestic use. For instance, during World War I, production was at 60 million 

gallons and this increased to 600 million gallons during the Second World War (Songstad et 

al. 2009).  
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Ever since then, the history of ethanol fuel is an epic struggle between ethanol and 

petroleum, played out in a series of circumstances – taxes, wars, discoveries, prohibition, 

inventions and champions on each side (Goettemoeller and Goettemoeller 2007). The first 

major incident that calls for a nationwide search for domestic source of renewable 

transportation fuel was the oil crisis and the Arab oil embargos of the 1970s that raised 

concerns about the stability and availability of fossil fuel (DiPardo 2003).   

 

Apart from the energy security concerns, the potential threat of global climate and weather 

change from the constant consumption of fossil fuels has added new urgency to the 

development of alternative energy systems (Solomon et al. 2007). This sparked the beginning 

of programs to develop alternative domestic and renewable energy sources that could reduce 

needs for imported energy supplies and to counter the unstable and rapid escalation in crude 

oil prices that has continued until presently (Sheehan et al. 2004). These programs are not 

only successful but have grown tremendously over the last two decade, and in the last few 

years, we have seen exponential growth in production, as illustrated in Figure 1 below. 

 

 

Figure 1. The United States ethanol production from 1980 to 2008 (RFA, 2009). 
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We are now entering an interesting transition between fossil based fuels and biofuels. As for 

the United State ethanol industry, “The [United States ethanol] industry can be proud of the 

milestones reached in 2008, including record production of 9 billion gallons, implementation 

of a new Renewable Fuels Standard (RFS), record exports of distillers grains to feed the 

world’s livestock, building new infrastructure, moving to higher blends, and lastly, but 

perhaps most importantly, technological innovations to improve both starch and cellulose-

based ethanol production” (RFA 2009).  

 

 

ETHANOL 

 

Ethanol is a clear, colorless, volatile and flammable liquid with a strong distinctive odor 

(Shakhashiri 2009). It is commonly known as ethyl alcohol, grain alcohol, wine spirit, and 

cologne spirit.  Ethanol belongs to the alcohol family, a group of organic chemical 

compounds that contain a hydroxyl group, OH, bonded to a carbon atom (Shakhashiri 2009). 

The term “alcohol” originates from the Arabic word “al-kuhul”, which originally referred to 

any fine powder.  It was years later that medieval alchemists applied the term to refined 

products of distillation (Shakhashiri 2009). 

 

In 1808, Antoine Lavoisier described the chemical composition of ethanol, as a straight chain 

alcohol compound consisting of carbon, hydrogen, and oxygen. The molecular formula for 

ethanol is C2H5OH (Figure 2), with a molecular weight of 46.07 g/mol (Shakhashiri 2009). It 
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burns to form CO2 and H2O with a non-luminous blue flame, with no soot formation. Table 1 

shows the physical and properties of ethanol.  

 

 

Figure 2. The molecular structure for ethanol. 
 
 

Table 1. Physical and Chemical Properties of Ethanol (Monick 1968; Shakhashiri 2009). 
 

Properties Value 
Boiling point 78.5°C 
Freezing point -114°C 
Heat of combustion of liquid 328 kcal/mole 
Heat of vaporization (at boiling pt and 1 atm) 204.3 cal/g 
Ignition temperature  371-427°C 
Density - relative to water (at 20°C) 0.789 
Refractive index, D 1.33614 

 
 

Traditionally, ethanol has been produced by the anaerobic fermentation of sugars (i.e. 

glucose) by yeast. The anaerobic fermentation reaction is represented by the equation below: 

 
C6H12O6  2C2H5OH + 2CO2 

 
 
Although the equation above seems simple, the reaction is actually very complex. According 

to Shakhashiri (2009), impure cultures of yeast and other biological contaminants or foreign 

chemical compounds produce varying amounts of other substances, including glycerin and 

various organic acids.  
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Currently, mass production of ethanol is via two routes, biologically via fermentation and 

synthetically via hydration of ethane (Wikipedia 2009). Overall, approximately 95% of 

ethanol production are produced via fermentation and the remaining 5% are produced 

synthetically (Berg and Licht 2004).  

 

Ethanol production globally via the fermentation route generally uses starch (approximately 

3% total world production) and sugar crops (approximately 61% total world production) 

(Berg and Licht 2004), and involves microorganisms (most commonly Saccharomyces 

cerevisiae) that ferments the C6 sugars (usually glucose), into ethanol and other by-products, 

such as acetic acid. Theoretically, 1 kg of glucose will produce approximately 514 g of 

ethanol and 488 g of carbon dioxide (Badger 2002).  

 

In Brazil, approximately 79% of the ethanol is produced from sugar cane juice and molasses 

(Fukuda et al. 2009). In the United States, grains commonly used for ethanol production 

include sorghum, maize and wheat (Sanchez and Cordona 2008). A bushel of corn (25.3 kg 

or 56 lb at 15% moisture) can produce from 9.4 to 10.9 L (2.5 to 2.9 gallons) of ethanol 

(Badger 2002). It is projected that sugar and starchy feedstocks will continue to contribute 

significantly to the production of ethanol worldwide (Figure 3) (Berg and Licht 2004). 
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Figure 3. Projected worldwide distribution of sugar and starchy feedstock for ethanol 
production in 2013 (Berg and Licht 2004). 

 
 

Other feedstocks for the production of ethanol are lignocellulosic biomass, and currently, 

lignocellulosic biomass is gaining momentum as potential substrates for bioethanol 

production (Fukuda et al. 2009). This platform for ethanol production will be discussed 

further in the later part of this chapter. 

 

Ethanol produced via fermentation ranges in concentration from a few percent (beer) up to 

about 14% (v/v) (wine). Above 14% (v/v), ethanol stops the fermentation processes as it kills 

the yeast and destroys the zymase enzyme (Shakhashiri 2009). According to Shakhashiri 

(2009), all food grade ethanol and more than half of industrial ethanol is still made by this 

process. To obtain high concentration of up to 95% (v/v), ethanol is usually concentrated by 

distillation of aqueous solutions (12-15% w/v) (Badger 2002). Further processing, such as the 

use of dehydrating agents or molecular sieves, is needed to produce pure ethanol.  
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Ethanol not intended for drinking is now made synthetically. Synthetic production of ethanol 

involves chemical conversion of ethylene made from petroleum or from acetaldehyde made 

from acetylene (Badger 2002). Figure 4 shows the world largest synthetic ethanol producers. 

 

 
 

Figure 4. Largest synthetic ethanol producers (Berg and Licht 2004). 
 
 
 
Ethanol has been a key industrial and pharmaceutical chemical for many years (Zhu et al. 

2006). Because ethanol is fully miscible in water and with most organic solvents, it is the raw 

material of choice for the production of hundreds of chemicals used in beverages, chemical 

industries (paints, lacquer), cosmetics (perfumes) and pharmaceuticals (disinfectants) (Dale 

1991; Berg and Licht 2004). Most industrial ethanol is denatured by adding small amounts of 

poisonous or unpleasant substances, to prevent it from being used as a beverage. These 

chemical denaturants also render ethanol unsuitable for some industrial processes 

(Goettemoeller and Goettemoeller 2007).  
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Besides the above applications, ethanol is used as transportation fuel by itself, or it can be 

mixed with gasoline to form gasohol (Shakhashiri 2009). According to Fukuda et al. (2009), 

about 73% of produced ethanol worldwide are used as fuel ethanol, while the rest goes to the 

beverage and industrial sectors (Figure 5).  

 
 

 
 

Figure 5. Worldwide ethanol application (million of gallons) (Berg and Licht 2004). 
 

 

 

FUEL ETHANOL PRODUCTION AND PROGRAMS 

 

The current global interest in bioethanol technology and industry goes back to the oil 

embargo in the 1970s, and it has truly experienced a dynamic emergence from the 1980s to 

the present. Worldwide biofuels production and applications has increased tremendously in 

recent years, from a little over 18.2 billion liters (~4.85 billion gallons) in 2000 to 

approximately 60.6 billion liters (~16.4 billion gallons) in 2007 (Sainz, 2009). In 2008, this 
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figure stands at least 17.335 billion gallons (Table 2) (RFA 2009), with bioethanol 

contributes to about 85% of the overall total, and it is projected that this volume will surpass 

113.6 billion liters (~30.29 billion gallons) by 2022 (Goldenberg and Guardabassi 2009). The 

United States alone is expected to produce 135 billion liters of renewable fuels, of which 

about 60% is cellulosic ethanol (Kim et al. 2009) 

 
 

Table 2.  World ethanol production in the year 2008 (RFA 2009). 
 

Country Millions of Gallons 
USA 9000.0 
Brazil 6472.2 

European Union 733.6 
China 501.9 

Canada 237.7 
Other 128.4 

Thailand 89.8 
Colombia 79.29 

India 66.0 
Australia 26.4 

Total 17,335.2 
 
 

Currently, the United States and Brazil are the top starch/sugar-ethanol producers (Maki et al. 

2009; Sainz 2009). In 2008, the United States led the production with 9.0 billion gallons, and 

Brazil was close behind at about 6.5 billion gallons (RFA 2009). The top ten ethanol 

producing states in the United States is shown in Table 3. 
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Table 3. Top ten ethanol producer by state in the United States (RFA 2009). 
 

 Nameplate 
 

Operating Under Construction/ 
Expansion 

Million of 
gallons 

Iowa 3,076.0 2,856.0 690 3,766.0 
Nebraska  1,444.0 1,164.0 319 1,763.0 
Illinois  1,190.0 1,190.0 293 1,483.0 
Minnesota  1,081.6 837.6 50 1,131.6 
South Dakota 1,016.0 799.0 33 1,049.0 
Indiana  899.0 697.0 88 987.0 
Ohio  470.0 246.0 65 535.0 
Kansas  491.5 436.5 20 511.5 
Wisconsin  498.0 498.0 - 498.0 
Texas  250.0 140.0 115 365.0 

 

 

In the United States, national energy security concerns, lack of reliable energy sources, new 

federal gasoline standards, and government incentives have been the primary stimuli for the 

production of fuel ethanol (Kim et al. 2009). According to Urbanchuk (2009), as at the end of 

2008, the ethanol industry in the United States comprised of 172 operating plants in 25 states 

with the total production capacity of 10.6 billion gallons, although the official figure is 9 

billion gallons distributed among 170 plants according to the RFA (2009). Public policies 

aimed at encouraging ethanol development are largely motivated by the desire to improve air 

quality and enhance energy security. This need has led to not only nationwide gasoline 

station selling the minimum blend of E10 (gasoline blend with 10% ethanol), but also the 

increase in stations dispensing the E85 blend (Figure 6) (RFA 2009). 
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Figure 6. E85 Refueling locations by state (RFA 2009). 
 
 

A long term objective for biofuel applications in the United States aims to displace 30% of 

the 2004 gasoline use (3.4 billion gallons) with biofuels (60 billion gallons) by 2030 (DOE-

EERE 2009). Of that projected amount, 45 billions are estimated to come from 

lignocellulosic resources, while grains contribute the other 15 billion (Hess et al. 2009). In 

addition, agricultural policymakers see the expansion of the ethanol industry as a means of 

stabilizing farm income and reducing farm subsidies. Increasing ethanol production induces a 

higher demand for corn and raises the average corn price that will result in reduced farm 

program payments (Shapouri et al. 2002).   

 

In the United States, fuel ethanol is typically produced from starch, primarily from corn 

(Silverstein et al. 2007). The type of corn (Zea mays) commonly used for fuel ethanol are the 

yellow dent corn (Zea mays var. indentata), also known as commodity corn. Two methods 
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are used to process corn into ethanol – wet milling (~20%) and dry milling (~80%) (Kim et 

al. 2008). One reason for more dry grind corn ethanol plants is because of low capital costs 

required to build and operate these type of plants. According to the RFA (2009), in total, 

there are currently 170 ethanol plants nationwide (Figure7) in the United States and 20 more 

are under construction (RFA 2009). 

 
 

 
 

  Biorefineries in production (170)   Biorefineries under construction (20) 
 

Figure 7. Location of biorefineries in the United States (RFA, 2009). 
 
 
 

In recent years, government and privately sponsored research has resulted in new 

technologies that have lowered the cost of production of ethanol made from corn (Hohmann 

1993). As a result, corn and ethanol production are now so efficient that it takes less energy 

to grow the crop and process it than the amount of energy in the ethanol itself. According to 

Aden (2008), based on the 2007 dollar, the minimum ethanol selling price was at $2.43 per 
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gallon and this is projected to decrease at $1.33 by the year 2012 with the advancement of 

technologies (Figure 8). Table 4 shows the ethanol production targets up to the year 2020. 

 

Table 4.  The United States renewable fuels, advanced and cellulosic ethanol targets (2009-
2022) (Haigwood and Durante 2009). 

  
Year Total Volume of 

Renewable Fuels 
(millions of gallon) 

Cellulosic Ethanol 
(millions of gallon) 

Advanced Biofuel  
(Cellulosic ethanol and biodiesel) 

(millions of gallon) 
2009 11.10 - 0.60 
2010 12.95 0.10 0.95 
2011 13.95 0.25 1.35 
2012 15.20 0.50 2.00 
2013 16.55 1.00 2.75 
2014 18.15 1.75 3.75 
2015 20.50 3.00 5.50 
2016 22.25 4.25 7.25 
2017 24.00 5.50 9.00 
2018 26.00 7.00 11.00 
2019 28.00 8.50 13.00 
2020 30.00 10.50 15.00 

 
 
 

 
 

Figure 8. State of technology progress toward the 2012 goal (Aden, 2008). 
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Brazil has developed one of the most successful fuel ethanol programs among the fuel 

ethanol producing countries (Badger 2002). Even before the worldwide fuel crisis that 

escalated in the mid 1970s, Brazil has provided a major shift in the industry by mandating 

ethanol as a motor fuel as early as the 1960s.  Unlike other leading countries with fuel 

ethanol programs, Brazil retains a blending requirement that all gasoline used in the country 

contains a minimum of 20-25% ethanol (Janssen et al. 2009). Diesel-powered personal 

vehicles are also banned in Brazil to boost the demand for ethanol powered vehicles, and 

government bodies are required to use 100% alcohol fueled vehicles (Janssen et al. 2009). 

Brazil’s tax regime favors ethanol over gasoline, and other programs have been implemented 

to support the domestic ethanol industry. Brazil is currently running a sugarcane ethanol 

program called ProAlcohol for the last 30 years, and with further innovations and 

improvements, it is expected that sugarcane based fuels could supply over 30% of Brazil’s 

energy needs by 2020 (Matsuoka et al. 2009). 

 

The European Union (EU) has a specific objective as stated in the European White Paper 

‘‘European transport policy for 2010: time to decide”, published in 2001 (later endorsed by 

Directive 2003/30/CE), to promote the use of renewable biofuels (Garcia–Cubero et al. 2009; 

Janssen et al, 2009). According to this directive, EU members must have minimum blends of 

renewable automotive fuels for the public at 2% in 2005, which should be 5.75% by 2010, 

and by the end of 2020, biofuels ratio should be increase to 10% (Galbe and Zacchi 2007; 

Janssen et al. 2009). Other members such as Germany imposed fuel tax exemption and in 

2004, motor fuel blends containing up to 5% biofuel (bioethanol and biodiesel) also became 
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exempted from the fuel tax (RFA 2009). In the United Kingdom, subsidies on biofuels 

include both biodiesel and bioethanol until 2007 (Flach et al. 2009).  

 

In Canada, similar developments are also observed with the Canadian renewable fuel 

standard warranting that motor fuel should contain 5% ethanol by 2010 (Maki et al. 2009). In 

another review by Sanchez and Cardona (2008), Canada is reported to blend 7.5-10.0% 

ethanol, produced mainly from corn, wheat and barley, into their current gasoline supplies. 

The review added that Canada is also offering tax incentives to promote the use of fuel 

ethanol, in an effort to comply with the Kyoto Protocol. 

 

Although all these are encouraging developments worldwide, the problem with corn ethanol 

is that the high demand for corn has caused the increase in price of corn kernels for human 

food and animal feed (Songstad et al. 2009). Therefore, attentions are moved towards the 

utilization of the less costly and most abundant feedstock, lignocellulose materials such as 

corn stover, baggase (sugar cane waste), rice straw, wood chips or "energy crops" (fast-

growing trees and grasses) as the primary starting material (Goettemoeller and Goettemoeller 

2007). Concerted efforts are currently underway to make mass production of lignocellulosic 

ethanol available. These are discussed in a later section of this chapter. 
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LIGNOCELLULOSIC BIOMASS 

 

Lignocellulosic biomass are complex biological materials that include agricultural residues 

(corn stover, wheat straw, sugar baggase, rice straw, rice hull, corn cob, corn fiber, cotton 

stalks), office waste, industrial cardboard and forestry products (Lim 2004; Kumar et al. 

2009). These resources are abundant and widespread, with a yearly supply of approximately 

200 billion metric tons (Table 5) (Zhang 2008; Fukuda et al. 2009). However, only 3% of the 

available lignocellulosic sources are exploited, often in non-food manufacturing, such as the 

paper and pulp industries (Zhang 2008).  Because these materials are outside the human food 

chain, lignocellulosics are relatively low cost feedstocks that is an ideal source of sugars for 

sustainable fuel ethanol and value added commodities production via the development of 

lignocellulose-based biorefineries (Kumar et al. 2009; Xuan et al. 2009; Yu et al. 2009).  

 

Lignocellulose consists primarily of plant cell wall materials that are composed of cellulose 

(insoluble fibers bundles of β-1,4-glucan), hemicellulose (polysaccharides that includes 

xylan, glucan, arabinan, mannan) and lignin (recalcitrant poly-phenol-propane) (Fukuda et al. 

2009; Hendriks and Zeeman 2009). Lignocellulose biomass compositions and structures vary 

greatly according to the plant parts, species and growth conditions (Zhang et al. 2007). 

Depending on the biomass, lignocellulosic materials comprise of 10-25% cellulose, 20-35% 

hemicellulose and 35-50% lignin (Table 6), and the variations in these materials also 

correlate to the amount of fermentable components (Kerstetter 2001). A schematic 

representation of a typical plant secondary wall showing cellulose, hemicelluloses chains and 

lignin matrix is shown in Figure 9. 
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Table 5. Lignocellulosic residues from different agricultural sources (Sanchez 2009). 
 

Lignocellulosic residues  Ton×106/year 
Sugar cane bagasse  317–380 
Maize straw  159–191 
Rice shell  157–188 
Wheat straw  154–185 
Soja straw  54–65 
Yuca straw 40–48 
Barley straw  35–42 
Cotton fiber  17–20 
Sorgoum straw  15–18 
Banana waste 13–15 
Mani shell  9.2–11.1 
Sunflower straw  7.5–9.0 
Bean straw  4.9–5.9 
Rye straw  4.3–5 2 
Pine waste  3.8– 4.6 
Coffee straw  1.6–1.9 
Almond straw  0.4–0.49 
Sisal a henequen straw  0.077–0.093 

 
 

Table 6.  The contents of cellulose, hemicellulose, and lignin in common agricultural 
residues and wastes (Saha 2003; Mosier et al. 2005; Lee et al. 2007; Yu et al. 
2009). 

 
Lignocellulosic materials Cellulose  

(%) 
Hemicellulose  

(%) 
Lignin 

(%) 
Hardwoods stems 40–55 24–40 18–25 
Softwood stems 45–50 25–35 25–35 
Nut shells  25–30 25–30 30–40 
Corn cobs 45 35 15 
Grasses 25–40 35–50 10–30 
Corn stover  38 26 16 
Soybean hull 33 14 - 
Paper  85–99 0 0–15 
Wheat straw 30 50 15 
Rice straw 35 25 12 
Rice hull 35-40 15-20 20-25 
Cotton seed hairs 80-95 5-20 0 
Coastal Bermuda grass 25 36 6 
Switch grass 45 31 12.0 
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Figure 9. Schematic representation of plant wall showing linear cellulose and branched 
hemicelluloses chains surrounded by a lignin matrix (Martinez et al., 2009). 
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CELLULOSE 

 

Cellulose is the most predominant component in plant cell walls. It is the primary product of 

photosynthesis in terrestrial environments and is the most abundant renewable polymer 

produced in the biosphere, reported to be approximately 100 billion dry tons synthesized 

annually (Zhang et al. 2006). 

 

Cellulose in plant cell walls is a polymer consisting of D-anhydroglucopyranose (glucose 

monomers) joined together by β-1,4-glucosidic bonds that form long chains of linear 

cellulose micro fibril, with a degree of polymerization (DP) from 100 to 20,000 (Figure 10) 

(Zhang et al. 2006; Chang 2007; Hendriks and Zeeman 2009). Neighboring glucose 

molecules in the chain rotated 180o with respect to the adjacent molecules. The coupling of 

these molecules by extensive intrastrand hydrogen bonds and van der Waals forces results in 

a crystalline structure, termed cellulose fibrils or cellulose bundles, that is chemically and 

structurally stable and highly resistant to depolymerization (Heck et al. 2002; Lim 2004; 

Hendriks and Zeeman 2009). These structural characteristics, plus the encapsulation by 

lignin and hemicellulose makes cellulose extremely recalcitrant and inaccessible to microbial 

and enzymatic degradation (Heck et al. 2002; Zhang et al. 2006). However, in nature, 

cellulose is degraded much faster by fungal and bacterial cellulases and this is an important 

biological process to return carbon to the atmosphere (Zhang et al. 2006) 
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Figure 10. Schematics of cellulose molecules. 
(http://www.generalbiomass.com/fig_cellulose.gif) 

 
 

 

The long chain of glucose molecules are unlike starch molecules, both structurally and in 

configuration. Celluloses, either in its crystalline (organized) or amorphous forms, are highly 

stable and resistant to physio-chemical attack, making it difficult to hydrolyze (Badger 2002; 

Hendriks and Zeeman 2009). However, because of the abundance of cellulosic biomass and 

the fact that this feedstock can be hydrolyzed into fermentable sugar, cellulose has been the 

major focus for the development of next-generation biofuel production (Chang 2007). The 

key is to hydrolyze these complex structures efficiently and economically for the production 

of cellulosic ethanol (Brekke 2005). The good news is that present advanced bioethanol 

technology allows fuel ethanol production from these cellulose and hemicellulose, greatly 

expanding the renewable and sustainable resources available for fuel ethanol production. 

http://www.generalbiomass.com/fig_cellulose.gif
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HEMICELLULOSE 

 

Hemicelluloses are the second most abundant biopolymer found in plant biomass (Chang 

2007). Like celluloses, hemicelluloses are also comprised of long chains of sugar molecules. 

However, hemicellulose differs from cellulose as it is an amorphous heterogeneous branched 

polymers of pentoses (xylose, arabinose), hexoses (mannose, glucose, galactose), and minor 

sugar acids (4-O-Methyl-D-glucuronic acid, L-fucose, L-galacturonic acid) derived from 

pectin or pectic acids (Saha 2003; Jovanovic et al. 2009).  

 

β-1,4 Xylan, the major component of hemicellulose, is a complex polysaccharide structure 

made of a backbone of β -1,4 linked xylopyranoside (xylose) that is extensively branched and 

linked with acetyl, glucuronosyl, and arabinosyl side chains to other sugar molecules (Sluiter 

et al. 2005; Zhu et al. 2008; Fukuda et al. 2009). The frequency and composition of the 

branches vary greatly according to the plant cells. Approximately 80% of the xylan backbone 

is linked in this manner, and also by oligomeric side chains containing arabinose, and 

galactose residues (Figure 11). Because of these structures, xylans are also categorized as 

linear homoxylan, arabinoxylan, glucuronoxylan, and glucuronoarabinoxylan (Saha 2003). 
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Figure 11. Schematic structure of corn fiber heteroxylan (Saha 2003). 
 

 

The exact sugar composition of hemicellulose can vary depending on the plant species (Table 

7). In general, hardwood hemicelluloses contain mostly xylans with the degree of 

polymerization in the range of 150–200, whereas softwood hemicelluloses contain mostly 

glucomannans with the DP in the range of 70–130 (Saha 2003).  

 
 

Table 7. The composition of sugars in the hemicellulose of several biomass (Saha 2003). 
 
 Xylose 

(%) 
Glucose 

(%) 
Arabinose 

(%) 
Galactose 

(%) 
Othersa 

(%) 
Birch wood 89.3 1.4 1.0 - 8.3 
Rice bran 46.0 1.9 44.9 6.1 1.1 
Wheat 65.8 0.3 33.5 0.1 0.1 
Corn fiber 48.0-54.0 - 33.0-35.0 5.0-11.0 3.0-6.0 

a mannose, glucuronic acid and/or anhydrouronic acid 
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Hemicellulose functions as an intermediate between cellulose and lignin, conferring the 

whole cellulose–hemicellulose–lignin biocomplex more rigidity and structural integrity 

(Hendriks and Zeeman 2009). In typical lignocellulosic biomass, cellulose fibrils are 

interlaced and embedded within a matrix of hemicelluloses, which are highly connected via 

diferulic linkages and isodityrosine bridges to form feruloylated heteroxylans, forming an 

insoluble network (Figure 12) (Saha 2003; Chang 2007). These interactions often time block 

the physical access to the cellulose surface to the activities of the cellulases (Yoon 1998).  

According to Zhu et al. (2008), removal of these acetyl groups from xylan greatly enhanced 

biomass availability and digestibility thereby increasing the enzymatic hydrolysis rate.  

 
 

 
 

Figure 12. Typical hemicellulose-cellulose structures showing networks of diferulic linkages 
(Saha 2003). 

 
 

Traditionally, just like cellulose, hemicellulose serve as a major source of food and nutrients 

for herbivores and as substrates for the production of food, textiles, paper and pulp industries. 

Recently, technology has found another use for hemicellulose - as feedstocks for the 
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production of ethanol. To produce fuel ethanol from these biopolymers, hemicellulose are 

first hydrolyzed into sugars such as glucose, xylose and other sugars by enzymes (Heck et al. 

2002). However, the wide variety of sugar monomers, and other by-products, creates a 

challenge to fermentation because these five carbon sugars are not universally metabolized 

by most microbes, especially the common industrial yeast. One approach is to genetically 

engineering the heterologous ethanol biosynthesis pathways into xylose-consuming microbes 

such as Escherichia coli (Chang 2007).  Nonetheless, these sugars or other by-product of 

hemicellulose degradations (i.e furfural) may also be used for other applications (Table 8). 

 
 

Table 8. Hemicellulose products and applications (Saha 2003). 
 

Hemicellulose components Products and applications 
Oligosaccharides  Oxygen-barrier film, thickeners, adhesives, emulsifiers, 

protective colloids, stabilizers, animal feed and nutrients 
Xylose Xylitol, ethanol, organic acids 
Furfural Lubricants, coatings, adhesives, plastics, furan resins, 

polytetramethylene ether, nylon-6, nylon-6,6 
 
 

 

LIGNIN 

 

Lignin is the third most abundant component of the plant cell wall, and the most abundant 

renewable aromatic composed of phenylpropane moieties (80-90%) (Dashtban et al. 2009). It 

is a complex biopolymer that is synthesized from the combination three types of phenolic 

monomers, namely p-coumaryl alcohol, coniferyl alcohol and sinapyl alcohol (Figure 13) 

(Hendriks and Zeeman 2009). These monomers then form larger hydroxyphenylpropanoid 
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units (Figure 14) that aggregate into very complex heterogeneous polymer that are 

interlinked by a variety of non-hydrolysable C-C and C-O-C bonds, such as 

phenylcoumarans, β-aryl ethers, resinols, biphenyls and biphenyl ethers (Figure 15) (Lim 

2004; Chang 2007; Hammel and Cullen 2008). These organic molecules interlink with 

polysaccharide polymers, like cellulose and hemicellulose, to form a complete lignocellulosic 

biomass. Of the three major cell wall components, lignin is probably the most recalcitrant, 

mainly due to its biochemical qualities such as aromaticity, structural heterogeneity, and 

extensive carbon–carbon crosslinks (Chang 2007).  The three-dimensional surface of lignin is 

complex and non-repeating with no clear chemical composition, and, like hemicellulose, 

varies greatly according to the plant species (Lim 2004; Hammel and Cullen 2008). 

 
 

 
 

Figure 13. Lignin monomers (top) and lignin units (bottom) (Chang, 2007). 
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Figure 14. Lignin units crosslinks (Chang, 2007). 
 
 
 

 
 

Figure 15. Multiple modes of bonding in heterogeneous polymer of lignin (Chang, 2007). 
 

 

Lignin contains no sugars. It is optically inactive and non-water soluble, making it difficult to 

degrade (Hendriks and Zeeman 2009).The primary function of lignin in plant cell wall is for 

structural support, impermeability, and defense against oxidative stress and microbial attack 

(Hendriks  and Zeeman 2009). In addition, this complex material also binds cellulose and 
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hemicellulose together. Lignin is a major deterrent to enzymatic degradation on cellulose and 

hemicellulose, because its close association with the microfibrils prevents enzyme 

accessibility (Badger 2002). Lignin removal or delignification of biomass greatly increases 

digestibility, as this causes the swelling of biomass, and disruption of lignin structure, that 

leads to an increase of exposed surface area and pore volume, subsequently increasing 

enzyme accessibility to cellulose and hemicellulose (Draude et al. 2001; Zhu et al. 2008).   

 

Several chemical, physical and biological pulping methods are currently being used to 

remove lignin from plant biomass. Usually these processes generate much modified-lignin 

residues that are problematic to dispose of (Zhang 2008). Although many applications are 

available for these residues, most pulping residues are burned to generate electricity to 

provide steam and power for running refineries, as conventionally done in Brazil, to produce 

high-energy returns from ethanol (Chang 2007).  This is possible because lignin has high 

energy content. There are, however, various other applications for lignin that further add 

value to lignocellulosic biomass.  These are shown in Figure 16.  

 

 
 

Figure 16. Possible lignin applications. The shaded boxes represent high selling-price 
products (Zhang 2008). 
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ETHANOL FROM LIGNOCELLULOSIC BIOMASS 

 

Currently, most ethanol production in the United States and Brazil comes from starch and 

sugar-based crops, using so-called first-generation technologies (Galbe and Zacchi 2007). 

There are several issues with this platform, as both crops are in the human food chain 

(Badger 2002; Perez–Verdin et al. 2009). Furthermore, increasing demand for fuel ethanol 

has resulted in higher price for these crops, their production and all downstream applications 

involved in the production chain (Perez–Verdin et al. 2009). Starches and sugars from which 

ethanol are made are just a very small portion of available biomass that includes the full 

range of plant materials that, in fact can be converted to ethanol themselves (Figure 17) (Zhu 

et al. 2008). Therefore, common sense would dictate that these underused plant materials be 

used for the production of ethanol for liquid fuels (Hendriks and Zeeman 2009). 

 

Generally, in lignocellulosic ethanol production, feedstocks are typically dedicated 

feedstocks (such as mischantus, switchgrass, willow and hybrid poplar), agricultural residues 

(corn stover or cobs) and forest residues (woody residues, mill residues and urban waste) 

(Perlack et al. 2005; Ruark et al. 2006; Perez–Verdin et al. 2009). However, the process of 

extracting the sugars becomes from lignocellulosic material becomes more difficult because 

these biomass are composed of recalcitrant complex of cellulose, hemicellulose, lignin, ash 

and other insoluble substances. 
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Figure 17. Summary of potential forest and agriculture residue (Perlack et al. 2005). 
 

The production of fuel ethanol from lignocellulosic biomass via biological conversion 

comprises of six main steps.  The basic process steps in producing ethanol from biomass are 

as follow (Tifanny and Eidman 2003; Zhang et al. 2007; Hendriks and Zeeman 2009): 

 

i. Size reduction and pretreatment  

ii. Hydrolysis  

iii. Fermentation  

iv. Distillation and dewatering of the ethanol  

vi. Denaturing of the ethanol 
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Lignocellulosic biomass fermentation is complimentary to, and in some cases, better than 

conventional grain fermentation (Erickson 2004). Currently, several efforts are underway in 

to mass produce ethanol from lignocellulosic materials as a primary feedstock product, as 

shown in Table 9. Zhang (2008) reported that the US-DOE has proposed a scenario to 

produce 30% of transportation fuels (60 billion gallons) each year from biomass by 2030. 

According the April 2009 industry assessment by the US-EPA, eleven lignocellulosic ethanol 

plants are currently at various advanced stages of planning and these facilities are likely to go 

online soon.  It is projected that these facilities will enable the US to fulfill the 100 million 

gallon cellulosic ethanol target in 2010.  

 
Table 9. Projected Cellulosic Ethanol Production Capacity (Top ten producers) (Haigwood 

and Durante 2009). 
 
Operational   Location   Feedstock   Size (Gal/Yr) 
Greenfield Ethanol  Edmonton,  

Canada 
Municipal Solid Waste 
(MSW) 

36,000,000 

POET (Project Liberty) Scotland, SD Corn cobs, fiber 20,000,000 
Abengoa Bioenergy (York) York, NE Wheat Straw 11,600,000 
Verenium 
(Celunol/Diversa/BP) 

Jennings, LA Sugar Cane/Bagasse 1,500,000 

Western Biomass Energy 
(KL Process Design)  

Upton, WY Wood 1,500,000 

Abengoa Bioenergy  Babilafuente, 
Spain 

Ag Waste 1,500,000 

Gulf Coast Energy Livingston, AL Wood waste, sorted 
MSW 

200,000 

Mascoma Corp. (NY) Rome, NY Wood chips 200,000 
AE Biofuels Butte, MT Crop Residue 150,000 
BRI Energy Fayetteville, 

AR 
MSW waste, Wood, 
coal 

40,000 
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PRETREATMENT 
 

One very important step in lignocellulosic ethanol production is the initial pretreatment of the 

feedstocks (Mosier et al. 2005; Galbe and Zacchi 2007). Although they are the most costly 

steps in cellulosic ethanol production, pretreatments are crucial as they greatly improve the 

enzymatic digestibility of the lignocellulosic materials via the alterations of both the 

chemical and structural properties of biomass (Silverstein et al. 2007; Zhu et al. 2006). These 

alterations include the removal of lignin, reduction of cellulose crystallinity, increasing the 

surface area and increasing the porosity of the biomass (Wyman et al. 2005; Hendriks and 

Zeeman 2009). Some pretreatment may also liberate the sugar monomers that can be used 

directly for fermentation (Sorensen et al. 2008, Shrestha et al. 2008). 

 

The schematic of typical pretreatment processes is shown in Figure 18, as illustrated by 

Mosier et al. (2005). Whatever the pretreatment procedures may involve, effective 

pretreatment of lignocellulosic biomass should meet the following requirements (Sun and 

Cheng 2002; Galbe and Zacchi 2007; Mosier et al. 2005; Yu et al. 2009):  

 

i.  High recovery of all sugars, especially the fermentable glucose and xylose using enzymes 

(requires over 240 g/l of fermentable sugars to be economical). 

ii.  Improves accessibility to the hemicellulose and cellulose for enzymatic hydrolysis 

(swelling, hydration of the polysaccharide or delignification). 

iii. Pretreatment end-products should be usable with minimal post detoxification or 

conditioning and simplifies downstream processes (environmentally friendly). 
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iv.  Removes saccharification and/or fermentation inhibitors from solids. 

v.  Requires low energy inputs and operational costs (minimal water use and waste; 

pretreatment chemical should be inexpensive and/or easy to recover). 

vi.  Requires low capital and generate extra revenues from by-products (i.e. lignin by-

products). 

 

 
 

Figure 18. Schematic of Pretreatment Process (Mosier et al. 2005). 
 

 

Numerous pretreatment methods have been suggested and developed in the last decade, and 

can be either simple or more technologically and logistically intensive (Lim 2004). These 

pretreatment protocols can be loosely divided into several groups, such as physical, chemical, 

physicochemical, biological and the combinations of these (Sorensen et al. 2008; Yang et al. 

2008; Garcia-Cubero et al. 2009). In generally, different types on pretreatments work 

differently on the cellulose, hemicellulose and lignin components of biomass (Mosier et al. 

2005). Table 10 details these mechanisms. 
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Table 10. Effects of various pretreatments  on the composition and structure of 
lignocellulosic biomass (Mosier et al. 2005; Hendrikks and Zeeman 2009). 

  
 Increases 

surface 
area 

Cellulose 
Decrystalization 

Hemicellulose 
removal 

Lignin 
removal 

Furfural/ 
HMF 

formation 
Steam explosion ■  ■  □ 
CO2 explosion ■  ■   
Acid ■  ■ □ ■ 
Alkaline ■  □ ■ ■ 
pH controlled hot 
water 

■ ND ■  ND 

Liquid hot water ■ ND ■  □ 
Flow-through liquid 
hot water 

■ ND ■ □ □ 

Flow-through acid ■  ■  ■ 
Oxidative (H2O2) ■ ND  ■ □ 
Ammonia explosion ■ ■ □ ■ ■ 
ARP ■ ■ □ ■ ■ 
Lime ■ ND □ ■ ■ 

                      ■ : Major effect         □ : Minor effect       ND: Not determined 
 
 

The effectiveness of the individual pretreatments is very much dependent on both operating 

conditions and the biomass composition (Hendriks and Zeeman 2009; Olofsson et al. 2008). 

Pretreatment is still one of the most expensive and environmentally controversial processing 

steps in lignocellulosics conversion, with costs as high as 30¢/gallon of ethanol produced 

(Mosier et al. 2005; Wyman et al. 2005). Therefore, more studies are needed to optimize 

their practicality in mass production of lignocellulosic ethanol (Hendriks and Zeeman 2009).  
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PHYSICAL PRETREATMENT 

 

Physical pretreatment of lignocellulosic feedstocks usually involves particle size reduction or 

degradation of molecular structure (Hendriks and Zeeman 2009). This will increase the 

effective surface area of the cellulose and reduce cellulose crystallinity (DP) (Mani et al. 

2004; Galbe and Zacchi 2007). Several simple methods such as grinding or the more 

technically intensive procedures, such as irradiation and ultrasonification are currently under 

laboratory and pilot studies.  

 

1. Milling and grinding.  This form of physical pretreatment can be a combination of 

milling, grinding and chipping to smaller aggregates or even fine powder. Upon size 

reduction, the size of the biomass is usually 0.2–2 mm after milling or grinding, and 10–

30 mm after chipping (Keshwani and Cheng 2009). The particulate size reduction is 

necessary to maximize mass and heat transfer during downstream hydrolysis (Mani et al. 

2004).  According to Hendriks and Zeeman (2009), the reduction of crystallinity and the 

shearing and increase in overall surface area greatly increases the total hydrolysis yield. 

Logistically, size reduction also makes feedstocks handling easier in the subsequent 

processing steps, and reduces bulk density (Mosier et al. 2005). 

 

2. Irradiation. Irradiation, usually using Cobalt-60 isotope to generate gamma ray, has been 

used on several lignocellulosic materials such as rice straw, bagasse, corn stover and oil 

palm empty (Yang et al. 2008). Although promising in lab studies, in reality, this method 

is too expensive to be used in a mass-scale production (Galbe and Zacchi 2007). 
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3. Ultrasonics. Ultrasonification as a mean for physical pretreatment has emerged rather 

recently. For the purpose of biomass pretreatment, “high power” ultrasound, that usually 

involves lower frequencies (20-100 kHz) and high amplitudes (12-320 μm) are used with 

biomass in a water slurry of 35% suspended solids (Mason and Lorimer 2002). At these 

settings, higher acoustic energy are generated, resulting in surface erosion due to the 

cavitational collapse in the surrounding liquid, and size reduction due to particle fission 

during antiparticle collision (Yu et al. 2009). 

 

 

CHEMICAL PRETREATMENT 

 

Chemical pretreatment of lignocellulosic feedstock economics is impacted by time, 

concentration, temperatures and environment. Two main chemical pretreatments of 

lignocellulosic feedstock are acid and alkaline pretreatment (Garcia-Cubero et al. 2009; 

Hendriks and Zeeman 2009). Other chemical pretreatment methods utilize organolvants, 

hydrogen peroxide (H2O2) and ozone (Keshwani and Cheng 2009; Yu et al. 2009).  

 

1.  Acid pretreatment. Dilute acid pretreatment of lignocellulosic materials is probably the 

most widely studied of all the chemical pretreatment methods because this process is 

effective and inexpensive (Sun and Cheng 2005; Gupta et al. 2009). During acid based 

pretreatment, the biomass is soaked in dilute acid solution, usually sulfuric acid (H2SO4) 

at concentrations between 0.5-3% (v/v) (Wyman et al. 2005; Garcia-Cubero et al. 2009). 

The mixtures are then heated to temperatures between 130◦C and 200◦C, at 3-15 atm 
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from several minutes up to a few hours (Wyman et al. 2005). H2SO4 is normally used as 

it is effective and inexpensive compared to other inorganic industrial acid such as 

hydrochloric acid (HCl) and nitric acid (HNO3) (Lim 2004; Silverstein et al. 2007). Upon 

pretreatment, the hemicellulose component of the biomass is hydrolyzed to its 

monomeric sugars (xylose, glucose, arabinose, galactose and mannose) and other soluble 

oligomers, leaving cellulose intact or partially hydrolyzed to glucose (Sun and Cheng 

2005; Galbe and Zacchi 2007). Pretreatment using dilute acid pretreatment is reported to 

achieve high yields and greatly improve cellulose hydrolysis, especially on agricultural 

wastes such as corn stovers and cobs (Sun and Cheng 2002; Silverstein et al. 2007). 

 

According to Keshwni and Cheng (2009), acid pretreatment can also be done using 

strong acids to further solubilize lignin. However, harsher treatments with strong acids 

and extreme temperature may result in the generation of toxic by-products, such as 

furfural from pentoses and 5-hydroxymethylfurfural from hexoses, warranting post-

treatment such as overliming and activated charcoal adsorption (Gupta et al. 2009; 

Keshwani and Cheng 2009; Tasic et al. 2009). Furthermore, strong acids are not only 

highly toxic, they are also corrosive and hazardous, thus requiring reactors that are 

expensive and resistant to corrosion (Sun and Cheng 2002; Lim 2004).  

 

2.  Alkaline pretreatment. Alkaline pretreatment involves the use of alkaline solution such 

as sodium hydroxide (NaOH) and ammonium hydroxide combined with high 

temperature. This procedure is best used on biomass such as agricultural residues and 

herbaceous crops, where it basically dissolves the lignin and various hemicellulose uronic 
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acid portions of the lignocellulosic materials (Galbe and Zacchi 2007; Silverstein et al. 

2007; Garcia-Cubero et al. 2009). This form of pretreatment also hydrolyzes some 

portion of the hemicellulose, leaving behind mostly cellulose residues (Lim 2004). A 

significant fraction of the solubilized hemicellulose sugars can be recovered as 

oligosaccharides (Galbe and Zacchi 2007).  

 

During alkaline hydrolysis, initial solvation and saponification of intermolecular ester 

bonds crosslinking xylan hemicelluloses and lignin (Figure 14) occur extensively, 

causing increase in the porosity of the lignocellulosic materials (Hendriks and Zeeman 

2009; Keshwani and Cheng 2009) Furthermore, alkaline solution also results in the 

swelling of the lignocellulosic materials (Galbe and Zacchi 2007). This subsequently 

decreases the degree of polymerization and crystallinity of the lignocellulosic structure 

(Sun and Cheng 2002).  In addition, there is also increase in the surface area disruption of 

the hemicellulose and lignin molecules (Hendriks and Zeeman 2009). 

 

3. Oxidative pretreatment. Another pretreatment method that causes lignin degradation is 

via oxidative pretreatment using oxidizing chemicals, such as hydrogen peroxide (H2O2) 

and peracetic acid (Teixeira et al. 1999; Yanez et al. 2006; Yu et al. 2009). According to 

Hendriks and Zeeman (2009), during oxidative pretreatment, several chemical reactions 

that occur include displacement of side chains, electrophilic substitution, cleavage of 

organic linkages (aryls, esters) or the cleavage of aromatic rings of the lignin subunits.  

Sun and Cheng (2002) reported that this procedure has been proven successful on sugar 

cane bagasse, with approximately 50% lignin removal by 2% (v/v) H2O2 at 30oC within 8 
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hours. In another study done by Teixeira and colleagues (1999), peracetic acid at ambient 

temperatures pretreatment significantly increased the enzymatic hydrolysis of the 

cellulose from hybrid poplar and sugar cane bagasse. The same study further reported 

that minimal carbohydrate were loss, as peracetic acid is highly lignin selective. 

 

4. Organosolvant pretreatment. One relatively novel method for the pretreatment of 

lignocellulosic materials is the organosolvant pretreatment (Geddes et al. 2009; Li et al. 

2009). Termed COSLIF (Cellulose solvent- and organic solvent-based lignocellulose 

fractionation), this process combines an organic or aqueous volatile organic cellulose 

solvents (methanol, ethanol, acetone, ethylene, glycol, oxalic, acetylsalicylic, salicylic 

acid and phosphoric acid) and another inorganic nonvolatile acid catalysts (usually HCl 

or H2SO4) to hydrolyze the lignin and hemicellulose bonds (Sun and Cheng 2002; 

Geddes et al. 2009; Li et al. 2009; Sathitsuksanoh et al. 2009). 

  

This form of pretreatment offers several advantages as it requires only moderate reaction 

conditions, such as 50oC and 1 atm (Li et al. 2009). In addition, according to Zhang et al. 

(2007), this procedure easily separates the lignocellulose compounds from both solvents, 

making recycling of the solvents easy. Furthermore, this pretreatment produce not only 

high-value lignocellulosic end-products, but also causes minimal sugar degradation 

which mean greater yields upon enzymatic hydrolysis (Li et al. 2009). Recent studies 

using this procedure have shown success with perennial plants, hard wood and cotton-

based waste textiles (Kim and Mazza 2008; Li et al. 2009).  
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5.  Ozonolysis. The final chemical pretreatment is Ozonolysis, that utilizes ozone gas (O3). 

Ozone is a powerful water soluble oxidant “that is highly reactive towards compounds 

incorporating conjugated double bonds and functional groups with high electron 

densities” (Garcia-cubero et al. 2009). Ozonolysis or ozone pretreatment is mainly for 

lignin degradation that subsequently releases soluble compounds with lower molecular 

weight, usually organic acids such as formic and acetic acid (Garcia-cubero et al. 2009) 

Hemicellulose is slightly affected, while the cellulose portion remains intact (Silverstein 

et al. 2007).   

 

Among the advantages of ozonolysis pretreatment are as follows; no production of 

inhibitory residues that can interfere with the downstream processes, effective removal of 

lignin and reactions can be performed in ambient conditions (Sun and Cheng 2002; 

Silverstein et al. 2007). The only negative aspect of this pretreatment is the large amount 

of ozone that is required for effective result which makes the overall process very 

expensive (Sun and Cheng 2002). 

 

The application of ozonolysis has been reported on both agricultural (wheat straw, 

bagasse, hay, peanut, pine, cotton straw) and forestry wastes (poplar sawdust) (Sun and 

Cheng 2002; Silverstein et al. 2007). 
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PHYSICOCHEMICAL PRETREATMENT 

 

Physicochemical pretreatment of lignocellulosic feedstocks is basically a combination of 

both physical and chemical pretreatment (Galbe and Zacchi 2007). Among the more popular 

procedures are steam/steam explosion pretreatment, hydrothermolysis and ammonia fiber 

explosion (AFEX) (Gupta et al. 2009).  

 

1. Steaming/steam explosion. To perform steam pretreatment, ground biomass is heated 

(160-260oC) with high-pressure (0.69-4.83 MPa) saturated steam for a few seconds to 

several minutes, usually in a retort (Keshwani and Cheng 2009). After treatment, parts of 

the hemicellulose is solubilized while, lignin and cellulose remain intact (Lim 2004). 

Factors that significantly affect steam pretreatment are temperature, residence time, 

moisture content and particle size (Sun and Cheng 2005). Adding acid catalysts, such as 

sulfuric acid, oxalic acid, sulfur dioxide or carbon dioxide has been reported to improve 

the procedure (Sassner et al. 2008; Viola et al. 2008; Jurado et al. 2009). 

 

Steam explosion is one of the most commonly used and perhaps the most successful 

physicochemical pretreatment of lignocellulosic biomass, especially hardwoods and 

agricultural residues (Gou et al. 2008; Sassner et al. 2008). The difference between steam 

pretreatment and steam explosion pretreatment is the sudden decompression of the 

materials that causes the water molecules to expand rapidly or ‘explode’ (Hendriks and 

Zeeman 2009). According to Lim (2004), this procedure is among a few that has 

advanced to pilot scale. 
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2. Hydrothermolysis/Liquid hot water (LHW). Another form of thermal pretreatment is 

hydrothermolysis or ‘liquid hot water’ pretreatment (Kim et al. 2008). This process is 

also known as hot aqueous fractionation and involves the ‘cooking’ of the lignocellulosic 

biomass in hot water, at high temperature (Lim 2004). The overall process is to hydrate 

lignocellulose and to solubilize some hemicellulose component to render better access to 

cellulose (Hendriks and Zeeman 2009). When performing LHW, it is recommended that 

the pH of the mixture should be kept between 4 and 7 to minimize the formation of toxic 

residues (Hendriks and Zeeman 2009). 

 

3. Ammonia fiber explosion (AFEX) pretreatment. AFEX is another physico-chemical 

pretreatment method (Kim et al. 2008).  In contrast to the previous alkaline procedure 

such as dilute NaOH, AFEX is accomplished at high pressure (250–300 psi), using an 

extruders, that is quickly released by the end of the treatment (Teymouri et al. 2005).   

 

AFEX is best done on agricultural waste and grassy feedstocks (Kim et al. 2008).  AFEX 

pretreatment does little degradation of cellulose and hemicelluloses but alters the 

structure of the biomass significantly, resulting in higher digestibility and water retention 

capacity (Kim et al. 2008; Keshwani and Cheng 2009). 

 

One advantage to using AFEX pretreatment is that literally high portion of the ammonia 

can be recovered to be reused, while any residual left behind in the biomass serves as 

nitrogen source for yeast or other microbes during fermentation (Teymouri et al. 2005; 

Kim et al. 2008). 
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BIOLOGICAL PRETREATMENT 

 

Physical, chemical and physicochemical pretreatments require highly specialized instrument 

and consume a lot of resources such as chemical and energy, often needing higher initial 

capital investment, larger processing costs and bigger investment risks (Zhang et al. 2007; 

Yu et al. 2009). Furthermore, these processes suffer from low sugar yield, loss of sugars and 

generation of toxic inhibitors to downstream processes such as enzymatic hydrolysis and 

microbial fermentation (Zhang et al. 2007; Yu et al. 2009). However, there is an alternative 

which utilizes less severe procedures, such as biological pretreatments.  

 

For the biological pretreatment of lignocellulosic biomass, microorganisms, especially wood 

degrading fungi such as white-, brown- and soft-rot fungi are used to degrade lignin and 

hemicellulose (Sun and Cheng 2002; Galbe and Zacchi 2007; Shrestha et al. 2008; Shrestha 

et al. 2009; Rasmussen et al. 2010). Each of these fungi has their respective mechanisms as 

discussed further in the following sections. Among some of the fungal species that have been 

investigated are listed in Table 11. 

 

The ability of these fungi to breakdown lignocellulosic biomass is due to their highly 

synergistic enzymatic complexes (Sanchez 2009). Basically, these fungi selectively degrade 

lignin and hemicellulose over a longer time period, making it less attractive for mass 

application (Galbe and Zacchi 2007; Keshwani and Cheng 2009). However, the mild reaction 

conditions and low energy input associated with this form of pretreatment as compared to 

physical, chemical and physico-chemical pretreatments demands a closer look (Keshwani 
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and Cheng 2009; Sanchez 2009).  Furthermore, this form of pretreatment require no 

chemicals, making it also environmentally friendly (Saqib and Whitney 2006; Galbe and 

Zacchi 2007).  

 

Table 11. List of fungal species used in biological pretreatment of lignocellulosic biomass 
(Sun and Cheng, 2002; Cho et al. 2008; Shrestha et al. 2008; Dashtban et al. 
2009; Sanchez 2009; Shrestha et al. 2009; Rasmussen et al. 2010). 

 
Type of rot fungus Fungal species 
White rot Strobilurus ohshimae 
 Phanerochaete chrysosporium 
 Trametes versicolor 
 Pleurotus ostreatus 
 Pleurotus florida 
 Clonostachys rosea 
 Penicillium sp.  
 Pycnoporus cinnabarinus 
 Sporotrichum pulverulentum 
 Xylaria hypoxylon 
 Ceriporiopsis subvermispora 
 Cyathus stercoreus 
 Xylaria polymorpha 
Brown rot Aspergillus niger 
 Fusarium oxysporus 
 Fusarium merismoides 
 Fomitopsis palustris 
 Gloeophyllum trabeum 
Soft rot Trichoderma reesei 

 
 

There are reports of biological pretreatment applications on wood chips, wheat straw, 

Bermuda grass, softwood Pinus densiflora, corn stalks, corn fiber, Japanese beech and 

Japanese cedarwood (Lee et al. 2007; Shrestha et al. 2008; Keshwani and Cheng 2009; 

Sanchez 2009; Shi et al. 2009; Shrestha et al. 2009; Tanaka et al. 2009). According to 

Wyman and colleagues (2005), biological pretreatment offers low costs alternative procedure 
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and with the advancement in biotechnology, this process can further be improved. Another 

suggestion is to use this pretreatment as a first step to be followed by some of the other types 

of pretreatment methods (Galbe and Zacchi 2007). 

  

 

Phanerochaete chrysosporium 

 

P. chrysosporium is a wood-decay white-rot fungus that has been studied extensively due to 

its abilities to completely and efficiently degrade, depolymerization and mineralize all major 

components of plant cell walls including cellulose, hemicellulose, and the more recalcitrant 

lignin (Wymelenberg et al. 2005; Kersten and Cullen 2007; Hamid and Rehman 2009).  

Because of these properties, P. chrysosporium has been deemed as a model organism in the 

study of lignin biodegradation and other biotechnological applications, such as biopulping, 

biobleaching and pulp mill effluents treatment (Ravalason et al. 2008). This fungus 

effectively performs all these processes, because it secretes various cellulases and 

hemicellulase such as endoglucanases, exocellobiohydrolase, cellobiose dehydrogenase, β–

glucosidases, endoxylanases, β-xylosidase and -galactosidase, among others (Abbas et al. 

2005; Wymelenberg et al. 2005; Suzuki et al. 2008). 

 

Molecular analysis of this species using restriction-fragment length polymorphism (RFLP) 

mapping and pulsed field gels electrophoresis suggest that P. chrysosporium genome consists 

of up to nine chromosomes. In 2004, Martinez and colleagues documented the complete 

profile of the P. chrysosporium genome. Table 12 shows a general feature of P. 
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chrysosporium genome. A dedicated genome database for this species is now hosted by the 

United States Department of Energy Joint Genome Institute (Martinez et al. 2004).  

 
 

Table 12. General features of the P. chrysosporium genome (Martinez et al. 2009). 
 

Assembly size 34.5 Mbp 
GC content overall 57% 
Protein coding genes 11,777 
Intron size (average) 117 bp 
Intron size (mode) 54 bp 
Exon size (average) 232 bp 
Exon size (mode) 89 bp 

 

 
Analysis of the P. chrysosporium genome reveals impressive diversity among genes that 

encode carbohydrate-active enzymes (Martinez et al. 2004). Several studies reported that this 

particular fungus harbors the genetic information of proteins from at least 69 distinct families 

that encode 180 glycoside hydrolases (GH) and 282 putative carbohydrate hydrolyzing 

cellulases and hemicellulases (Martinez et al. 2004; Abbas et al. 2005; Wymelenberg et al. 

2005; Suzuki et al. 2008; Martinez et al. 2009).  Martinez updated their database in 2009 and 

a more comprehensive annotation of the P. chrysosporium lignocellulolytic gene complexes 

are shown in Table 13. 

 

Many of the cellulolytic, hydrolytic and oxidative enzymes of P. chrysosporium have been 

purified and their cDNAs isolated and characterized (Abbas et al. 2005).  These cellulases 

and hemicellulases are produced, not only in large amounts, but also in different variety that 

act synergistically, making it a choice microorganism for their production (Wymelenberg et 

al. 2005; Suzuki et al. 2008). 
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Table 13. List of lignocellulolytic genes in P. chrysosporium (Martinez et al. 2009). 
 

 

Types of protein Specific protein/enzymes Total 
Lignin degradation proteins Lignin peroxidases (LiP)  10 
 Manganese peroxidases (MnP)  5 
 Low redox-potential peroxidases  1 
Iron reduction Multicopper oxidases  4 
 Quinone reductases 4 
 Cellobiose dehydrogenases  1 
Peroxide generation Copper-radical oxidases 7 
 Pyranose-2 oxidases (GMC) 1 
 Glucose oxidases (GMC) 1 
 Aryl-alcohol oxidases (GMC)  4 
 Methanol oxidases (GMC) 1 
 Total GMC oxidoreductases 35 
Carbohydrate active proteins GH with cellulose-binding domain 30 
 Exocellobiohydrolases  7 
 Endoglucanases  >40 
 β-Glycosidases  9-10 
 Esterases and transferase 87 
 Expansins 11 
Miscellaneous heme-protein reactions Cytochrome P450-type enzymes 

Chloroperoxidase-peroxygenases 
148 
1-3 

Total proteins predicted 10,048 
 

 

 

Gloeophyllum trabeum 

 

G. trabeum is a brown-rot basidiomycete from the order Gloeophyllales, family 

Gloeophyllaceae and genus Gloeophyllum (www.ncbi.nlm.nih.gov).  A bracket fungus that 

forms spongy basidiocarps measuring up to 5 x 8 cm wide and 0.2-0.8 cm thick, this 

cinnamon-brown colored fungus possesses radial banding patterns (Overholts 1967) (Figure 

19). According to Overholts (1967), the underside is ochre to tan-colored and is lined with a 



 66

network of 1-3 mm wide spore tubes that houses cylindric-elliptic shaped brown spores 

(measuring approximately to 4 x 10 µm).  

 
 

 
 

 
Figure 19. Morphology of G. trabeum.  

(http://micologia.net/g3/Gloeophyllum-trabeum/Gloeophyllum_trabeum_001) 
 
 
 

G. trabeum and other saprophytic brown-rot fungi are major contributors to the plant biomass 

biodegradation, recycling, humus formation and soil fertility in the ecosystem (Kerem et al. 

1999; Cohen et al. 2005). Brown-rot fungi also cause the most destructive type of decay in 

wooden built structures, making them highly studied in wood durability related studies 

(Kerem et al. 1999; Schilling et al. 2009). These basidiomycetes are characterized by the 

rapid and extensive depolymerization of cellulose, incurring significant strength loss, in the 

early stages of wood decay (Cho et al. 2008; Schilling et al. 2009). Cho and colleagues 

(2008) further commented that this unique form of wood depolymerization can easily be 

observed under microscopy such as “loss of birefringence, absence of erosion troughs, and 

near-normal morphological appearance of the degraded wood cells”.  

http://micologia.net/g3/Gloeophyllum-trabeum/Gloeophyllum_trabeum_001
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G. trabeum is unique in its wood-rotting mechanism because they rapidly hydrolyze the 

cellulose while leaving most of the encasing brown pigmented lignin (Kerem et al. 2009). G. 

trabeum modifies the lignin molecular structure, mainly via partial depolymerization, 

oxidation, demethoxylation and demethylation processes (Xu and Goodell 2001; Schilling et 

al. 2009). The remaining residues after degradation are sugar-free brown mass as shown in 

Figure 20 (Schilling et al. 2009). 

 
 

 
 
 

Figure 20. Brown rot patterns on a tree trunk cause by G. trabeum. 
(http://www.wolman.de/imagepool/Braunfaeule_in_NH_1.jpg) 

 
 

G. trabeum degrades lignocellulose via a two-part mechanism (Schilling et al. 2009). Firstly, 

it modifies the plant cell wall non-enzymatically via a Fenton reaction with hydroxyl radical 

generation within the plant cell wall (Varela et al. 2003).  Secondly, G. trabeum secretes 

cellulases and hemicellulases that further degrade the cellulose and hemicellulose. G. 

trabeum possesses a very efficient cellulolytic system that include a variety of cellulases and 

hemicellulases including endoglucanases, exoglucanases, β-glucosidases, xylanases and other 

hemicellulases, that rapidly degrades cellulose and hemicellulose, making it an ideal 
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biocatalyst for the hydrolysis of lignocellulosic materials (Kerem et al. 1999; Cohen et al. 

2005). However, the typical brown-rot cellulases systems are unlike those of P. 

chrysosporium and T. reesei, as the former are not influenced by free glucose concentrations, 

and most often the mechanisms lack exo-acting cellobiohydrolases (Martinez et al. 2009; 

Schilling et al. 2009). 

 

 

Trichoderma reesei 

 

T. reesei is a filamentous mesophilic soft-rot fungus that was first documented during World 

War II (Martinez et al. 2008). This ascomycete is known for its efficient polysaccharide 

degradation system (Jovanovic et al. 2009). Presently, T. reesei serves as an important model 

organism for lignocellulose degradation studies and has been widely used for the mass 

production of cellulases and hemicellulases for various applications (Jovanovic et al. 2009). 

The full T. reesei genome was successfully sequenced from high-quality draft assemblies 

using the Department of Energy Joint Genome Institute (JGI) shotgun assembler and reported 

in 2008 by Martinez and colleagues (Martinez et al. 2008). The general features of the 

genome are listed in Table 14.  

 

Table 14. General features of the T. reesei genome (Martinez et al. 2008). 
 

Assembly size 33.9 Mbp 
GC content overall 52.0% 
Coding genes overall 40.4% 
No. of genes 9,129 
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T. reesei is a well-studied cellulolytic organism that is known to secrete various types of 

cellulolytic, hemicellulolytic and other carbohydrate active enzymes (Fukuda et al. 2009; 

Jovanovic et al. 2009). In total, 200 glycoside hydrolases (GH) have been found in the T. 

reesei genome (Martinez et al. 2009; Jovanovic et al. 2009). A listing of these carbohydrate 

active enzymes is shown in Table 15. 

 
 

Table 15.  Number of carbohydrate active enzymes in T. reesei (Martinez et al. 2008; 
Donohoe et al. 2009; Martinez et al. 2009). 

 
Cellulase/Hemicellulase  Cellulase/Hemicellulase type Total 
Cellulase CBH1, Exocellobiohydrolase I (GH7) 1 
 CBH2, Exocellobiohydrolase II (GH6) 1 
 EG1, Endoglucanase I (GH7) 1 
 EG2, Endoglucanase II (GH5) 2 
 EG3, Endoglucanase III (GH12) 1 
 EG4, Cel61 (GH61) 3 
 EG5, endoglucanase V, Cel45 1 
Hemicellulase GH43  2 
 GH10 1 
 GH11 4 
 GH74 1 
 GH62 1 
 GH54 2 
 GH67 1 
 GH95 4 
Other carbohydrate active enzyme Carbohydrate Binding Module (CBM) 35 
 Carbohydrate Binding Module I (CBMI) 14 
 Glycosyl Transferease Modules 87 
 Carbohydrate Esterases CE) 15 
 Polysaccharide Lyases (PL) 3 
 Expansins (EXPN) 7 

  
 

In recent years, advancement in molecular biology has improved this strain to produce more 

cellulases, and the result is the mutant hypercellulolytic T. reesei Rut C30 (Ahamed and 

Vermette 2008). However, these strains still lack the abilities to secrete significant amount of 
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extracellular β-glucosidase, thus requiring supplementation of β-glucosidases from other 

sources (Kovacs et al. 2009). Nonetheless, the most commonly available commercial enzyme 

mixtures for lignocellulosic degradation are mainly obtained from this fungus (Olofsson et al. 

2008; Tomas-Pejo et al. 2009). 

 

 

CORN STOVER AS A LIGNOCELLULOSIC ETHANOL FEEDSTOCK 

 

Corn stovers (Figure 21), the agricultural residues (the stalks and leaves) that remain after 

corn is harvested, are a substantial source of inexpensive and abundant lignocellulosic 

biomass (Hess et al. 2009). It is also one of the most abundant agricultural residues in other 

countries, such as Europe and China (Galbe Zacchi 2007; Chen et al. 2009). According to 

one of the most current studies on biomass, it is estimated that the United States produce as 

much as 1.3 billion tons biomass per year with corn stover leading the total volume at 75 

million tons (Perlack et al. 2005; Hess et al. 2005; Templeton et al. 2009). Table 16 below 

shows a detailed analysis of a typical corn stover. 

 

 



 71

 
 

Figure 21. Shredded corn stover 
 
 

Table 16. Detailed corn stover composition analysis (Aden and Foust 2009). 
 

Component Dry basis (%) 
Glucan  37.4 
Xylan  21.1 
Lignin  18.0 
Ash  5.2 
Acetate  2.9 
Protein  3.1 
Extractives  4.7 
Arabinan  2.9 
Galactan 2.0 
Mannan  1.6 
Unknown soluble solids 1.1 
Moisture  15.0 

 
 

Corn stover is one of the most studied lignocellulosic biomass used for bioethanol production 

(Sokhansanj et al. 2002). These studies include harvesting techniques developments (Figure 

24) and pretreatment procedures.  Among some of the pretreatment studies that have been 

conducted on corn stovers are AFEX, ARP, dilute acid (both Sunds and Parr systems), flow 

through, SO2 alkaline pretreatments, steam explosion and LHW (Galbe and Zacchi 2007; Lu 

et al. 2008; Aden and Foust 2009; He et al. 2009; Kumar et al. 2009). 
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Figure 22. (a) Corn stover a typical corn field, (b) Harvesting and baling of corn stovers, (c) 
A corn stover bale in the square format, (d) The loading of bales onto a flat-bed 
semi-tractor trailer, (e) Loaded bales being transport (Hess et al. 2009). 

 
 
 

The DOE-funded research from 1978 to 2002 on woody plants and other “perennial energy 

crops such as switchgrass was largely discontinued in 2002 and the focus shifted to the use 

of crop residues” (i.e. corn stover) for bioethanol production (Varvel et al. 2008). Of all the 
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crop residues, corn stover is deemed one of the model and most promising feedstock that the 

National Renewable Energy Laboratory (NREL) published a comprehensive report for a 

process design and economic analysis of the biochemical conversion of corn stover to 

ethanol (Aden 2008; Templeton et al. 2009).  

 

 

LIGNIN, CELLULOSE AND HEMICELLULOSE DEGRADING ENZYMES 

 

The most crucial steps in lignocellulosic ethanol production are the hydrolysis of the 

cellulose and hemicellulose polymers to their respective monomeric sugars. In contrast to 

starch, cellulose and hemicellulose degradation requires more enzymes for complete 

hydrolysis to fermentable units (Keshwani and Cheng 2009). In nature, the enzymatic 

hydrolysis of cellulose and hemicellulose are performed by microorganisms that can be 

found either free in nature (i.e. fungi) or in the rumin of higher animals (i.e. Archaebacteria) 

(Galbe and Zacchi 2007; Maki et al. 2009). These processes are extremely slow and 

challenging because of cell wall insoluble rigid nanostructures and the minute amount of 

efficient cellulolytic and hemicellulolytic release by most microorganisms (Shallom and 

Shoham 2003; Chang 2007).  

 

Enzymatic hydrolysis occurs outside the plant cell using either a free or complexed 

cellulolytic/hemicellulolytic system. Aerobic microorganisms such as T. reesei usually use 

the free cellulases mechanism where they secrete a set of single cellulases, most of which 

contain a carbohydrate binding module (CBM) joined by a peptide linker to the catalytic 
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domain (CD) (Chang 2007; Wilson 2009). Anaerobic cellulolytic microorganism, such as 

Clostridium thermocelluum uses a large cellulase complex known as cellulosomes (Figure 

23), that are attached to the outer surface of the bacterial cell wall via a structural protein 

called scaffoldin (Maki et al. 2009; Wilson 2009). According to Chang (2007), cellulosomes 

are more effective cellulase systems than the freely secreted enzymes. 

 
 

 
 
Figure 23. A schematic of a typical cellulosome complex connected to the cell surface C. 

thermocelluum (Maki et al. 2009). 
 
 

According to the Carbohydrate-Active enZymes (CAZy) database, cellulases and most 

hemicellulases are members of the GH group of enzymes (Dashtban et al. 2009). Multiple 

isozymes of the different classes of cellulases, hemicellulases and ligninases work in unison 

to achieve the complete hydrolysis of cellulose, hemicellulose and lignin. Currently more 

than 2500 GH have been identified, with 148 recognized in the enzyme classification system 

(EC 3.2.1.X) and classified into 115 families (Dashtban et al. 2009; Jovanovic et al. 2009).   
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Cellulases and hemicellulases have attracted much interest in the recent years because of the 

diversity and importance of their applications, especially in the production of lignocellulosic 

ethanol for transportation purposes (Das et al. 2008).  Since the cost of producing these 

enzymes is a huge factor in cost effective biofuel production, accounting for approximately 

40-50% of the total cost, attentions are drawn on the possibilities of using available low cost 

carbon source and on effective fermentation systems (Hao et al. 2006; Liu and Yang 2007; 

Muthuvelayudham and Viruthagiri 2007; Das et al. 2008; Zhang et al. 2006). Recently, in 

partnering with Genencor International and Novozymes Biotech, NREL announced the 

development of technologies that has reduced the cellulase cost 20-30 fold for the cellulosic 

ethanol to about 10-25 cents per gallon of ethanol (Zhang et al. 2006; Chang 2007). In these 

technologies, the improvements were focused on the economical aspects of cellulase 

production by using less expensive medium and a development of higher potency in the 

enzyme activities to reduce the enzyme loadings (Zhang et al. 2006). 

 

In this section, we will also discuss the enzymes that perform lignin degradation, as part of 

the big lignocellulolytic theme.  
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LIGNIN DEGRADING ENZYMES  

 

In a typical plant cell wall, lignin forms a binding matrix that encases and impedes the 

breakdown of cellulose and hemicellulose (Aro et al. 2005). Therefore, solubilization of 

lignin is a prerequisite for liberation of cellulose and hemicelluloses and to achieve an 

optimal biological conversion of lignocellulosic biomass to ethanol. 

 

Lignin is difficult to breakdown because of its hydrophobicity, free radical coupling 

mechanism and its four stereoisomers (Hamid and Rehman 2009). However, many white rot 

fungi, such P. chrysosporium, C. versicolor and T. versicolor, are capable of producing 

efficient lignin degrading enzymes (Aro et al. 2005). Most of these enzymes are non-specific, 

oxidative and act via non-protein mediators (Aro et al. 2005).  There are currently four main 

fungal ligninolytic enzymes (Martinez et al. 2005; Hammel and Cullen 2008): 

 

1.  Lignin Peroxidases (EC 1.11.1.14). Lignin peroxidase (LiP) was first reported in 1983 as 

part of the extracellular enzyme systems of P. chrysosporium, under nitrogen limitation 

(Hammel and Cullen 2008; Hamid and Rheman 2009). They are monomeric proteins 

with molecular weights of approximately 40 kDa with an optimal pH of above 4 with 

addition of H2O2 (Hammel and Cullen 2008; Hamid and Rheman 2009). In addition, 

these enzymes also degrade a variety of complex aromatic compounds and oxidize a 

number of recalcitrant polycyclic aromatic and phenolic compounds, making them highly 

important for the biodegradation of industrial effluents (Hamid and Rehman 2009). To 



 77

date, 10 LiP genes designated lipA through lipJ have been discovered, although the 

reason why there are so many LiPs are still unclear (Hammel and Cullen 2008).  

 

2. Manganese peroxidases (EC 1.11.1.13). Manganese peroxidases (MnP) are produced by 

P. chrysosporium under nutrient limitation and also by the presence of Mn2+ (Hammel 

and Cullen 2008). MnPs are strong oxidizing enzymes but they do not oxidize non-

phenolic lignin-related structures (Hammel and Cullen 2008). These group of enzymes 

have also been reported to catalyze the oxidation of several phenols and aromatic dyes 

compounds via lipid peroxidation reactions, with reactions greatly stimulated by the 

presence of manganese and certain types of buffer solutions (Hamid and Rehman 2009; 

Sanchez 2009). 

 

3. Laccases (EC 1.10.3.1). Laccase, or also known as phenol oxidase, are blue copper 

oxidases that catalyze the one-electron oxidation of phenolic compounds (Dashtban et al. 

2009). As their name describe, phenol oxidases oxidize phenolic compounds and reduce 

molecular oxygen to water (Sanchez 2009).  

 

4. Glyoxal oxidase. Glyoxal oxidases are also called GLOX. These enzymes generate 

peroxides that are essential for peroxidase function (Martinez et al. 2005). 
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CELLULOSE DEGRADING ENZYMES 

 

Enzymatic hydrolysis of crystalline and amorphous cellulose is a complicated process that is 

performed by a group of enzymes called cellulases (Hong et al. 2007). Although the current 

lignocellulosic ethanol interest has sparked great interest in cellulose degrading enzymes, the 

application of cellulases actually has long been established.  Among some of the applications 

of cellulases as mentioned by Zhang et al. (2006) are “in the textile industry for cotton 

softening and denim finishing; in the detergent market for color care, cleaning, and anti-

deposition; in the food industry for mashing; and in the pulp and paper industries for 

deinking, drainage improvement, and fiber modification.”  

 

Cellulases are constructed of independently folding and functionally specialized units called 

domains (Maki et al. 2009). As shown in Figure 24, a typical free cellulase is composed of a 

CBD joined by a flexible peptide linker to the CD (Maki et al. 2009).   

 
 

 
 

Figure 24. A typical structure of free cellulase.  
(http://genome.gsc.riken.go.jp/hgmis/graphics/slides/images/01-0618R3cellulase.jpg) 

http://genome.gsc.riken.go.jp/hgmis/graphics/slides/images/01-0618R3cellulase.jpg
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Cellulases are classified into three main groups according to the mode of action and 

biochemical structure of the protein (Figure 25). These major groups are generically termed 

endoglucanases, exoglucanases and β-glucosidases (Zhang and Lynd 2004; Mussatto et al. 

2008; Maki et al. 2009). Enzymatic hydrolysis by these three enzyme groups occur 

simultaneously (Zhang et al. 2006). Endoglucanase and exoglucanases perform the 

synergistic primary hydrolysis on the surface of solid substrates to release soluble sugars 

with a DP of up to 6 into the liquid substrate (Maki et al. 2009).  Processive cellulases, both 

exo- and endo-, are major components of the free cellulase concoction, and often constitute 

more than 60% of the total cellulase mixture (Wilson 2009). β-Glucosidases then perform the 

secondary hydrolysis the liquid substrate to hydrolyze the free cellobiose or longer 

cellodextrins to glucose (Zhang et al. 2006). 

 
 

 
 
Figure 25. The mode of mechanisms of cellulolytic enzymes. (Adapted from 

http://www.enzymeindia.com/enzymes/images2/Cellulase_map.jpg) 
 



 80

The degradation of cellulose by cellulases is affected by several factors such as types of 

enzymes, quantity of enzymes, quality of substrate (accessibility, crystallinity, DP, particle 

size and pore volume) and environmental factors (temperature, pH, nutrient, etc.) (Gregg and 

Saddler 1996; Hong et al. 2007). 

 

1. β-1-4-Endoglucanase (Endogluccanases - EC 3.2.1.4). β-1-4-Endoglucanases are 

relatively small enzymes with molecular weights between 22 and 45 kDa (Dashtban et al. 

2009). While many endoglucanases consist of the typical CD-linker-CBD structures, 

some smaller endoglucanases lack the CBD (Baldrian and Valaskova 2008; Dashtban et 

al. 2009). These group of endoglucanases degrade the amorphous regions of cellulose 

works best at 50-70oC and at pH of 4-5 (Sun and Cheng 2002; Dashtban et al. 2009).   

 

Endoglucanases break the internal bonds that form the crystalline structure of cellulose 

and cut the long cellulose chains at random positions to create free chain-ends (Zhang et 

al. 2006; Saqib and Whitney 2006; Sanchez 2009). Thus, endoglucanases activities can 

be tested using soluble cellulose substrates, such as carboxymethylcellulose (CMC) 

(Maki et al. 2009). It is because of this assay that endoglucanases are also termed 

carboxymethylcellulases (CMCase).   

 

According to Sanchez (2009), many fungi produce multiple EGs. For instance, T. reesei 

produces at least 5 EGs (EGI/Cel7B, EGII/Cel5A, EGIII/Cel12A, EGIV/Cel61A and 

EGV/Cel45A) whereas P. chrysosporium secretes three EGs (EG28, EG34 and EG44) 

(Dashtban et al. 2009).  
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2. β-1-4-Exoglucanase (Exoglucanases - EC 3.2.1.74) and Cellobiohydrolase (CBH) - EC 

3.2.1.91). Exoglucanases are also known as CBH. These monomeric enzymes have 

molecular weights of between 50 and 65 kDa (Baldrian and Valaskova 2008). 

Exoglucannases degrade the crystalline regions of cellulose and the optimal conditions 

are at 37-60oC and at pH of 4-5 (Dashtban et al. 2009). 

 

These isoenzymes cleave 2-4 units from the ends of the exposed chain-ends produced by 

endocellulases, resulting in the disaccharide such as cellobiose or tetrasaccharides such as 

cellotetraose (Sun and Cheng 2002; Dashtban et al. 2009).  According to Cohen and 

colleagues (2005), there are two main types of exo-cellulases, one type working 

processively from the reducing end and one type working processively from the non-

reducing end of cellulose.  

 

Exoglucanases are also found in multiple copies, at times accounting for 40–70% of the 

total cellulase proteins (Sanchez 2009). For example, T. reesei has two exoglucanases 

acting from both reducing ends (CBHI/Cel7A) and non-reducing (CBHII/Cel6A), making 

it a very efficient cellulolytic fungi (Dashtban et al. 2009) 

 

3. β-Glucosidase (EC 3.2.1.21). β-Glucosidases are a mixture of monomeric, dimeric and 

trimeric enzymes that has a larger range of molecular weights of between 35 and 450 kDa 

(Baldrian and Valaskova 2008). Exoglucanases hydrolyses the cellobiose into glucose 

monomers under a wide pH range and in a temperature range of 45-75oC (Sun and Cheng 

2002; Dashtban et al. 2009). 
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 β–Glucosidases are sometimes not categorized as a cellulase, because it does not act on 

the cellulose itself. However, due to its specificity to β-1,4-glucosidic bonds and its 

essential role in the cellulolytic processes, it is often mentioned as a cellulase. β-

Glucosidase hydrolysis of cellobiose to glucose is highly important, as without this 

mechanism, degradation activities of the other cellulases will be inhibited (Keshwani and 

Cheng 2009; Sanchez 2009).  

 

Because cellobiose is a common carbohydrate, β-Glucosidases are produced by the 

majority of cellulolytic microorganisms (Baldrian and Valaskova 2008). In T. reesei, two 

β-glucosidases (BGLI/Cel3A and BGLII/Cel1A) are found but the expression is very low 

when compared to other cellulolytic fungi such as A. niger (Dashtban et al. 2009). 

 

 

HEMICELLULOSE DEGRADING ENZYMES 

 

Hemicellulose degradation is an important process for the optimal utilization of biomass, as 

this liberates fermentable pentoses like xylose (Fukuda et al. 2009). More importantly, 

hemicellulose needs to be hydrolyzed first before cellulose is exposed for the action of 

cellulases.  In comparison to cellulose, hemicellulose is a very heterogeneous polymer both 

in structures and organization, thus it requires a more extensive repertoire of enzymes to be 

completely hydrolyzed to its forms of soluble sugars (Heck et al. 2002; Dashtban et al. 2009).  

Collectively, these enzymes are known as hemicellulases, and are usually classified under 

cellulase in general.   
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According to Dashtban et al. (2009), hemicellulases and cellulases share several similarities. 

Firstly, hemicellulases are mostly modular proteins and have other functional domains, like 

the CBD of cellulase, attached to their catalytic domains. These CBDs are responsible for the 

attachment of the enzymes to the insoluble polysaccharides. In addition, there are also 

dockerin modules that assist in the binding of the catalytic domains via cohesin–dockerin 

interactions (Shallom and Shoham 2003). Secondly, most of these synergistic hemicellulases 

belong to the GHs family of enzymes (Dashtban et al. 2009; Keshwani and Cheng 2009). 

However, in addition to the GHs, hemicellulase also contain another enzyme group, that 

hydrolyzes the ester linkages from the acetate or ferulic acid side group that are known as 

carbohydrate esterases (CEs) (Shallom and Shoham 2003). And, thirdly, hemicellulases from 

aerobic fungi, such as Trichoderma and Aspergillus, are expressed in high amount in several 

varieties, believed to enable the efficient hydrolysis of their substrates (Aro et al. 2005; 

Chang 2007, Dashtban et al. 2009).  

 

One of the major hemicellulase enzyme groups is the xylanases. This is believed to be partly 

an evolutionary respond the fact that xylan is the largest component of hemicellulose (70%) 

(Dashtban et al. 2009). Endo-xylanases (EC 3.2.1.8) hydrolyze the β-1,4 linkages in xylan to 

release xylooligosaccharides that are finally hydrolyzed into xylose by β-Xylosidases (EC 

3.2.1.37) (Dashtban et al. 2009; Fukuda et al. 2009). Xylanases have an optimum working 

pH of 4 and a very high temperature optimum of 80oC.  It is a relatively large protein with a 

molecular mass of 39–42 kDa, while other hemicellulases are smaller (about 20 kDa) 

monomeric proteins (Saha 2003).   
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In addition to the xylanases, hemicellulose degradation requires a whole consortium of 

additional enzymes. A comprehensive list of the specific substrates and chemical bonds 

hydrolyzed by the hemicellulolytic enzymes are shown in Table 17, and a schematic view on 

degradation of the different hemicellulose components is shown Figure 26 (Shallom and 

Shoham 2003). 

 
 

Table 17. The hemicellulolytic enzymes, their substrates and optimum working conditions 
(Saha 2003: Shallom and Shoham, 2003; Sanchez 2009). 

 
Enzyme Substrates Optimal pH Optimal temp 
Endo-β-1,4-Xylanase  β-1,4-xylan 5.0 45 
Exo-β-1,4-Xylosidase β-1,4-xylooligomers 

xylobiose  
5.0 50 

-L-Arabinofuranosidase -Arabinofuranosyl  
xylooligomers  
-1,5-arabinan 

3.4-4.5 50-60 

Endo--1,5-Arabinanase -1,5-arabinan 4.5-5.0 50-55 
-Glucuronidase 4-O-methyl-a-glucuronic 

acid 
(1 2) xylooligomers 

 
3.5 

50 

Endo-β-1,4-Mannanase β-1,4-mannan 2.9-3.3 72.74 
Exo-β-1,4-Mannosidase β-1,4-mannooligomers  

mannobiose 
3.3 72-74 

-Galactosidase -galactopyranose  
mannooligomers 

4.0 60 

β-Glucosidase  β-glucopyranose (1 4) 
mannopyranose 

5.0 50 

Endo-Galactanase β-1,4-galactan  3.5 50-55 
Acetyl xylan esterase 2- or 3-O-acetyl xylan  7.7 30 
Ferulic acid esterases feruloylester bonds 5.0 55 
p-coumaric acid esterases  p-coumaric ester bonds - - 
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Figure 26. A schematic view on degradation of the different hemicellulose components 

(Shallom and Shoham 2003) 
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SIMULTANEOUS SACCHARIFICATION AND FERMENTATION (SSF)  

 

Simultaneous saccharification and fermentation or SSF is a process whereby both enzymatic 

saccharification of lignocellulosic feedstocks and fermentation of the resultant sugar to 

ethanol, are performed in the same vessel, at the same time (Olofsson et al. 2008). During the 

saccharification step, the supernatant from the enzymatic hydrolysis of the pretreated 

lignocellulosic biomass contain both hexoses and pentoses, mostly glucose and xylose 

(Keshwani and Cheng 2009). Simultaneously, S. cerevisiae or other fermenting species in the 

broth then convert the free sugars to ethanol (Keshwani and Cheng 2009). The initial concept 

of performing the enzymatic saccharification and fermentation simultaneously was first 

suggested in 1976 by Gauss and colleagues (Olofsson et al. 2008). According to Tomás-Pejó 

et al. (2009), SSF results in higher ethanol yields compared to another related process that is 

called separate hydrolysis and fermentation (SHF) that separates the saccharification and 

fermentation steps.  

  

In study by Olofsson et al. (2008), they reported that SSF offers the following advantages: 

 

i.  End-product (glucose and cellobiose) inhibition of the enzymatic saccharification is 

greatly reduced (Shapouri 2007). 

ii.  The potential loss of fermentable sugars (glucose and xylose) can be avoided as the 

supernatant constituents do not need to be separated or transferred. 

iii.  Lower capital and maintenance cost as the number of vessels for processing are fewer. 

The decrease in capital investment is estimated to be more than 20%.  
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Efficient SSF is dependent on several factors:  

 

1.  Substrate loading. Optimal substrate loading is crucial in SSF to achieve a high final 

ethanol concentration, and has to be optimized empirically as high solid content in the 

SSF reactor decreases ethanol yield (Olofsson et al. 2008).   

 

2.  Enzyme loading. Enzyme dosing is also one of the key factors that affect hydrolysis rate 

and efficiencies. Linde and colleagues (2007) documented that there is a strong positive 

correlation between enzyme loading and the overall ethanol yield. 

 

3. Temperature. In performing SSF, a compromise between the optimal temperatures for 

the hydrolytic enzymes activities and the microbial fermentation is needed. Previous SSF 

experiments recommends a temperature of 32-37°C to facilitate both S. cerevisiae 

(optimal temperature ~30°C) and saccharifying enzymes (optimal temperature ~55°C) 

(Sassner et al. 2006; Olofsson et al. 2008). 

  

One problem with an SSF process is the optimum temperature for both the saccharification 

and fermentation stages. For enzymatic hydrolysis using cellulases and hemicellulases, the 

best temperature about 50oC, whereas most fermenting microorganisms of choice, such S. 

cereviseae, Zymomonas mobilitis and E. coli K011, have an optimum temperature ranging 

between 30oC and 37oC (Tomás-Pejó et al. 2009). One possible solution is to use thermo 

tolerant yeasts such as Kluveromyces marxianus, as suggested by Fonseca et al. (2007).  
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CONCLUSION 

 

Through a thorough research and analysis of the literature, we conclude that the goals to 

introduce lignocellulosic ethanol into the fuel ethanol supply are attainable with the 

concerted efforts in improving and maturing the current technologies involved.  

Undoubtedly, cellulosic ethanol has the potential to comply with President Bush’s goals, but 

there are still huge rooms for improvements and breakthroughs to be made, and any attempts 

to displace gasoline consumption by supplementing the supply with ethanol would require an 

enormous change in agricultural and industrial practices. 

 

With nationwide and worldwide production and application of fuel ethanol being the 

universal target, the technologies should be efficient, cost effective and environmentally 

friendly in every aspect. In recent years, we have seen many Government and privately 

sponsored research which has resulted in new technologies that lowered the cost of 

production of ethanol made from corn starch.  But for the production of ethanol should go 

beyond the current first generation technologies. In our discussion, we strongly believe that 

that efforts should be made in transitioning the feedstock from corn and sugar based to 

lignocellulosic biomass, as the low cost and abundance of a wide range of lignocellulosic 

materials offer many possibilities for the development and implementation of biobased 

industries that supply the world energy needs for the international biofuel market. For 

cellulosic fuel ethanol production to be competitive at the commercial level, processing 

expenditures, especially for pretreatment and enzymatic hydrolysis should be improved. 
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Currently, concerted efforts are underway to improve pretreatment technologies and the 

enzymes used for lignocellulosics saccharification to improve production, and reduce the 

overall cost of lignocellulosic ethanol. The biological pretreatment and enzymatic 

saccharification mechanisms of wood-rot fungi such as P. chrysosporium, G. trabeum and T. 

reesei on corn stover is a very promising area for research as there are numerous advantages 

in the application of these processes. Advancement in molecular biology and genetic 

engineering may also assist in strains improvement of these wood-rot fungi for biological 

pretreatment and simultaneous enzymatic hydrolysis of lignocellulosic materials.  In the field 

of fuel ethanol production from corn stovers, the optimization of these biological processes 

can lead to the following advantages: 

 

i. Inexpensive ethanol production - manufacturers can produce their own enzymes without 

the need to buy expensive commercially available ones. 

ii. More effective ethanol production - using adaptive and living fungus, such as P. 

chrysosporium, G. trabeum and T. reesei will reduce the inhibitory effects of by-products 

during saccharification and fermentation. 

iii. More environmentally friendly processing – lignocellulosic ethanol producers can skip 

the environmentally detrimental pretreatments process. 
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CHAPTER 3: EVALUATION OF POTENTIAL FUNGAL SPECIES FOR THE IN 

SITU SIMULTANEOUS SACCHARIFICATION AND FERMENTATION (SSF) OF 

CELLULOSIC MATERIAL 

 

(to be submitted to the World Journal of Microbiology and Biotechnology) 

 

 

ABSTRACT 

 

Three fungal species were evaluated for their abilities to saccharify pure cellulose from 

Whatman No.1 filter paper.  The three species chosen represented the three major wood-rot 

molds; brown rot (Gloeophyllum trabeum), white rot (Phanerochaete chrysosporium) and 

soft rot (Trichoderma reesei). After solid state fermentation of the fungi on the filter paper 

for four days, the hydrolysis products released from the saccharified filter paper was then 

subsequently fermented to ethanol by using Saccharomyces cerevisiae for a period of five 

days.  The efficiency of the fungal species in saccharifying the filter was compared against a 

low dose (25 FPU/g cellulose) of a commercial cellulase. Total sugar, cellobiose and glucose 

were monitored during the fermentation period, along with three main fermentation products, 

namely ethanol, acetic acid and lactic acid. Results indicated that the most efficient fungal 

species in saccharifying the filter paper was T. reesei with 5.13 g/100 g filter paper of ethanol 

being produced at days 5, followed by P. chrysosporium at 1.79 g/100 g filter paper. No 

ethanol was detected for the filter paper treated with G. trabeum throughout the five day 

fermentation stage. Acetic acid was only produced in the sample treated with T. reesei and 
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the commercial enzyme, with concentration 0.95 g/ 100 g filter paper and 2.57 g/100 g filter 

paper, respectively at day 5. Lactic acid production was not detected for all the fungal treated 

filter paper after day 5.  Our study indicated that there is potential in utilizing in situ 

enzymatic saccharification of biomass by using T. reesei and P. chrysosporium that may lead 

to a more economical simultaneous saccharification and fermentation of biomass for 

downstream applications such as production of fuel ethanol.   

 

Keywords Phanerochaete chrysosporium, Trichoderma reesei, Gloeophyllum trabeum, 

Saccharomyces cerevisiae, Simultaneous Saccharification and Fermentation 

(SSF), Cellulase 

 

 

INTRODUCTION 

 

Lignocellulosic materials from biomass such as agricultural crop residues and other energy 

crops is the most abundant and renewable biopolymer on Earth (Bedford 2001; de La Torre 

Ugarte et al. 2003; Zhang 2008; Fukuda et al. 2009).  Made of 75–80% cellulose and 

hemicellulose, they are low cost feedstocks for various industrial purposes that can be used in 

the production of chemicals and fuel ethanol, which is a good substitute for gasoline in 

internal combustion engines (Adsul et al. 2005; Ahamed and Vermette 2008; Ling et al. 

2009). However, the production of fuel grade ethanol from lignocellulosic materials as an 

alternative or additives for fossil fuels is still expensive. According to Alkasrawi et al. 

(2003), recent economical calculations showed that the production cost of fuel ethanol from 
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lignocellulosic biomass would be higher than the price of gasoline. Thus, additional cost 

reductions are necessary to achieve economic competitiveness against the existing 

conventional fuels. 

 

Currently, the most promising platform for the bioconversion of lignocellulosics to ethanol is 

based on the enzymatic hydrolysis of biomass using cellulase and hemicellulase enzymes via 

simultaneous saccharification and fermentation (SSF) process, first reported in 1976 by 

Gauss and colleagues (Ahamed and Vermette 2008; Olofsson et al. 2008).  SSF is a 

technology that has gained a lot of interest, as it is both logistically and economically 

favorable in terms of higher final ethanol yield (Ohgren et al. 2007; Tomas-Pejo et al. 2009).  

Furthermore, this type of process has lower energy consumption when compared to the 

closely related separate hydrolysis and fermentation (SHF) (Olofsson et al. 2008).  However, 

the drawback of SSF is the high enzyme concentrations that are required for significant 

hydrolysis of cellulose and hemicellulose (Alkasrawi et al. 2003; Linde et al. 2007).  

According to Ahamed and Vermette (2008), cellulase production is the most expensive step 

during ethanol production from cellulosic biomass, accounting for approximately 40% of the 

total cost. Therefore, because the high cost of cellulase enzyme production and enzyme 

loading is a major economical factor in the overall ethanol production cost, it is imperative to 

find methods of reducing the enzyme loading and increasing the hydrolysis of cellulose to 

fermentable sugars (Gregg et al. 1998; Adsul et al. 2005).  

 

Another challenge in making the bioconversion of lignocellulosics to ethanol more feasible is 

the pretreatments that are needed to be performed on the feedstocks prior to enzymatic 
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hydrolysis (Silverstein et al. 2007; Zhu et al. 2009).  The problems with many current 

pretreatments technologies are the generations of toxic by-products that can hinder the bio-

mechanisms of the cellulolytic and hemicellulolytic enzymes, and may also inhibit 

downstream alcoholic fermentation (Ortega et al. 2001; Keating et al. 2005). Furthermore, 

these practices are environmentally detrimental and energy intensive (Chundawat et al. 

2006). Therefore, it is imperative to develop means of direct enzymatic hydrolysis of 

lignocellulosics that do not sacrifice ethanol production. One possible solution is to use 

lignolytic, cellulolytic and hemicellulolytic organisms, such as fungi, to perform enzymatic 

saccharifications that will liberate fermentable sugars from the biomass.   

 

Many fungal groups have been known to be able to degrade the main components of 

lignocellulosics, such as cellulose, hemicellulose and lignin (Arantes and Milagres 2006; 

Sanchez 2009; Shrestha et al. 2009; Rasmussen et al. 2010). The first of this group, the 

filamentous molds are well documented for their highly efficient cellulolytic and 

hemicellulolytic enzyme systems for the complete hydrolysis of biomass into its monomeric 

sugar components. The extracellular cellulolytic system of this fungus group composed of 

60–80% cellobiohydrolases or exoglucanases, 20–36% of endoglucanases and 1% of β-

glucosidases that act synergistically (Ahamed and Vermette 2008).  

 

The next fungal group, the white-rots, have been studied extensively for their abilities to 

efficiently degrade and depolymerize major plant cell wall components, especially the more 

recalcitrant lignin, making it extensively used in the study of lignin biodegradation and other 

biotechnological applications, such as biobleaching and pulp mill effluents treatment 
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(Wymelenberg et al. 2005; Kersten and Cullen 2007; Ravalason et al. 2008). White rots 

effectively perform all these processes because they secrete several varieties of lignin 

degrading proteins, such as lignin peroxidases (LiPs), manganese peroxidases (MnPs) and 

other low redox-potential peroxidases, in addition to expressing multiple cellulases and 

hemicellulase (Suzuki et al. 2008; Martinez et al. 2009).  

 

The third fungal group consists of the brown-rots. These saprophytic fungi are major forest 

biomass degraders that contribute significantly to the soil fertility in the ecosystem (Kerem et 

al. 1999; Cohen et al. 2005). Brown-rot fungi also cause the most destructive type of decay in 

wooden structures, although their biodegradation mechanisms are still relatively unknown 

(Kerem et al. 1999; Schilling et al. 2009). Fungi from this group appear to produce some 

cellulases, but a larger part of the cellulose degradation seems to be non-enzymatic, 

involving low molecular weight catalysts such as chelating peptides and radicals (Henriksson 

et al. 1999; Cohen et al. 2005).  

 

In this study, we evaluated three fungal species that represent the three major wood-rot; 

brown-rot (Gloeophyllum trabeum), white-rot (Phanerochaete chrysosporium) and soft-rot 

(Trichoderma reesei), for their abilities to enzymatically saccharify filter paper via in situ. 

The efficiencies of their enzyme activities are measure via the release of cellobiose, glucose 

and the end fermentation products in the form of ethanol and organic acids. To perform 

fermentation, Saccharomyces cerevisea was used to maximize the conversion of the 

saccharification products. 

 



 104

MATERIALS AND METHODS 

 

Microorganisms stocks and culture preparation 

 

All fungal cultures used in this study were obtained from American Type Culture Collection 

(Rockville, MD). The Gloeophyllum trabeum (ATCC 11539), Phanerochaete chrysosporium 

(ATCC 24725), Trichoderma reesei (ATCC 13631) and Saccharomyces cerevisiae (ATCC 

24859) cultures were revived onto potato dextrose broth (PDB) (Difco, Becton Dickinson 

and Co., Sparks, MD) at 24°C with shaking at 120 rpm overnight (Shrestha et al. 2009).  For 

long term storages, the stock cultures were aliquoted in Yeast Malt (YM) extract broth 

(glucose, 10.0 g/l; peptone, 5.0 g/l; yeast extract, 3.0 g/l; and malt extract, 3.0 g/l) (Difco) 

supplemented with 20% (v/v) glycerol, at -80oC in an ultralow-temperature freezer (So-Low 

Environmental Equipment Co., Inc., Cincinnati, OH) (Shrestha et al. 2008; Shrestha et al. 

2009). 

 

Seed cultures from spore suspension of G. trabeum, P. chrysosporium and T. reesei were 

prepared in 1 liter YM broth and incubated at 30oC, agitated at 150 rpm. After a 7-day of 

incubation period, the mycelial pellets were separated from the broth via centrifugation 

(Sorvall-RC3B Plus centrifuge, Thermo Fisher Scientific, Wilmington, DE) at 7,277g for 20 

min in a sterilized 1 L polypropylene centrifuge bottle (Nalgene, Nalge Nunc, Rochester, 

NY) (Shrestha et al. 2008). Next, the mycelial pellets were rinsed with a solution containing 

50 mM Phosphate buffer (pH 4.5-4.8), 0.5% (NH4)2SO4 and basal salt solution (0.25 g 

KH2PO4, 0.063 g MgSO4·7H2O, 0.013 g CaCl2·2H2O, in 1 L water) and 1.25 mL of premix 
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trace element solution (3.0 g MgSO4·7H2O, 0.5 g MnSO4·H2O, 1.0 g NaCl, 0.1 g 

FeSO4·7H2O, 0.181 g CoSO4·7H2O, 0.082 g CaCl2·2H2O, 0.1 g ZnSO4, 0.01 g CuSO4·5H2O, 

0.01 g Al2(SO4)3·2H2O, 0.01 g H3BO3, and 0.01 g NaMoO4) in 1 L of deionized water 

(Shrestha et al. 2009). The mycelial pellets were once more separated from the broth via 

centrifugation at 7,277g for 20 min in a sterilized 1 L polypropylene centrifuge bottle. The 

final mycellial mat collected was mixed with an equal volume of the same solution mixture.  

 

S. cerevisiae culture inoculum for the fermentation stage was prepared by growing the stock 

culture in sterile 50 ml YM broth, in 250-ml Erlenmeyer flasks at 32°C (120 rpm). After 

harvesting the yeast cells in 50 ml conical centrifuge tubes (BD Falcon, BD, Franklin Lakes, 

NJ) at 2,852 g for 10 min (Beckman J2-21centrifuge, Beckman Coulter Inc., Brea, CA), the 

cell concentration was adjusted with sterile YM broth to 107-108 CFU/ml as determined 

turbidometrically at 600 nm (Nguyen et al. 2009). 

 

Filter Paper Compositional Analysis 

 

The compositional analysis of the filter paper used in this study was performed in triplicate 

via complete enzymatic analysis as described by Selig et al. (2008), with minor 

modifications. Filter paper strips (0.1 g) were soaked in 50.0 mL 0.1 M citrate buffer (pH 

4.8) and 1.38 ml (60 FPU/mL) of Spezyme CP (Genencor, Rochester, NY) in a 250 mL 

Flask. Distilled water and 1.0 ml of a 2% sodium azide solution, as microbial inhibitor, was 

added to bring the total volume in each flask to 100.0 mL. The flask was incubated in an 

incubator shaker at 50oC for 5 days for complete hydrolysis of the filter paper.   
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Solid State Fermentation for Enzyme Induction 

 

Prior to the addition of fungal inoculum for enzyme induction, 2.0 g of shredded filter paper 

with 5 ml buffered basal salt solution was sterilized at 121oC for 1 hour in loosely mouth 

covered polypropylene bottles.  Then, 2 ml of fungal mycelia  (1.5% w/v P. chrysosporium, 

1.0% w/v G. trabeum and 0.8% w/v T. reesei, based on dry weight) in 100 mM phosphate 

buffer (pH 4.5-4.8), 0.5% (NH4)2SO4 and basal salt solution was added. Solid state 

fermentation was then performed for 4 days at 37oC, in a humidified incubator, for the 

production of cellulases and hemicellulases. 

 

Determination of total protein concentration and enzyme activities 

 

Sample aliquots of 1.5 ml were taken from the medium washed fungal grown filter paper 

(Whatman No. 1, Whatman Inc., Clifton, NJ) at day 4 of solid substrate fermentation for each 

of the three fungal species treated filter paper. The supernatant was centrifuged at 1,118 g for 

5 min (MiniSpin Plus, Eppendorf, Hauppauge, NY) and filtered through a 0.2 μm nylon 

syringe filter (VWR International, Batavia, IL), and was used to perform total protein 

analysis and enzyme activities assay.  

 

Protein production by P. chrysosporium and G. trabeum grown on the filter paper was 

measured via the NanoDrop™ 1000 Spectrophotometer (Thermo Fisher Scientific, 

Wilmington, DE). This system measures a loading of 2 ul sample size and calculates the 

protein concentration (mg/ml) from the protein’s absorbance at 280 nm (A280). A separate 
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fermentation broth from the filter paper control bottle with no fungal culture was used as the 

blank reading. 

 

The commercial cellulase enzyme (Spezyme CP) was kindly provided by Genencor 

International (Palo Alto, CA). The cellulase activity was measured using the filter paper 

activity (FPase) assay, expressed in filter paper units (FPU/ml) according to the standard 

procedure of the National Renewable Energy Laboratory (NREL) (Adney and Baker 2008). 

This procedure measures the release of reducing sugar produced in 60 min from a mixture of 

enzyme solution (0.5 mL) and of citrate buffer (0.05 M, pH 4.8, 1 mL) in the presence of 50 

mg Whatman No. 1  filter paper (1 x 6 cm strip) and incubated at 50oC. The released sugars 

were analyzed by the dinitrosalicylic (DNS) acid reducing sugar assay. One unit of enzyme 

activity was defined as the amount of enzyme releasing 2.0 mg reducing sugar from 50 mg of 

filter paper in 60 minutes has been designated as the intercept for calculating filter paper 

cellulase units (FPU) by the International Union of Pure and Applied Chemistry (IUPAC) 

(Ghose, 1987). All samples were analyzed in triplicate and mean values were calculated.  

 

Simultaneous Saccharification and Fermentation (SSF) 

 

SSF reactions were carried out in 250 ml polypropylene bottles with batch cultures of 100 ml 

final volume, consisting of 25 ml 4X Yeast Extract Broth (1.8 g yeast extract (Difco), 0.07 g 

CaCl2·2H2O (Thermo Fisher Scientific), 0.45 g of KH2PO4 (Thermo Fisher Scientific), 1.2 g 

(NH4)2SO4 (Thermo Fisher Scientific) and 0.3 g MgSO4·7H2O (Thermo Fisher Scientific) per 

liter of deionized water) (Shrestha et al. 2009) buffered basal medium (pH 4.5-4.8) (50 mM 
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Phosphate Buffer + Basal Salt Solution) (Shrestha et al. 2009).  For the sample set that was 

treated with the commercial cellulase enzyme, 25 FPU of Spezyme CP/g cellulose was 

added. The flasks were then aseptically inoculated with S. cerevisiae suspension. Batch 

culture SSF was performed under static condition for 5 days at 37oC. All experiments were 

performed in triplicates. 

 

Total Sugars Assays 

 

Sample aliquots of 1.8 ml were collected aseptically from each bottle every 24 hours. The 

sample mixtures were centrifuged and filtered through a 0.2 μm nylon syringe filter. The 

filtered supernatants were tested for total sugars via the phenol-sulfuric (Crawford and 

Pometto 1988) method.  The total sugar determination was determined via the phenol sulfuric 

carbohydrate test at 490 nm (SpectraMax Plus384, Molecular Devices, Inc., Sunnyvale, CA, 

U.S.A) with glucose standards. The equivalent sugar concentration (g/l) was determined 

based on a standard glucose solution curve that was generated prior to the assays.  



 109

High Pressure Liquid Chromatography (HPLC) Analyses  

 

Filtered sample aliquots were tested for cellulose, glucose and fermentation products 

(ethanol, acetic acid, lactic acid) were analyzed by using a Waters High Pressure Liquid 

Chromatography (Millipore Corp., Milford, MA) equipped with a Waters Model 401 

refractive index (RI) detector, column heater, autosampler and computer controller.  The 

separation and analysis of ethanol and other fermentation constituents was done on a Bio-

Rad Aminex HPX-87H column (300.0 x 7.8 mm) (Bio-Rad Chemical Division, Richmond, 

CA) using 0.012 N H2SO4 as a mobile phase with a flow rate of 0.6 ml/min, a 20 µl injection 

volume and a column temperature of 65.0°C (Ramos 2003, Liu et al. 2008, Shrestha et al. 

2009).  Percentages of theoretical maximum ethanol yields (TEY) were calculated based on a 

theoretical ethanol yield of 56.8 g per 100 g of cellulose (Doran and Ingram 1993).  

 

Statistical Analyses 

 

The experimental data were analyzed statistically using the statistical software, JMP 8.0 

(SAS Institute Inc., Cary, NC). The data (n=3) on ethanol production were fitted to non-

linear  polynomial (2nd degree) models. Error bars were determined based on the standard 

deviation from the mean values. Student’s t-test for significant differences were also 

performed for all final data set to determine multiple comparisons of the ethanol production 

based on the different fungal treatments. A p-value of less than 0.05 was considered 

significantly different. 
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RESULTS AND DISCUSSION 

 

Cellulose degrading microorganisms hydrolyze cellulose using complicated consortia of 

different enzymes that work individually, but synergistically on the cellulose, converting it to 

cellobiose and glucose (Henrikkson et al. 1999). This group of enzymes is produced by a 

wide variety of bacteria and fungi, aerobes and anaerobes, mesophiles and thermophiles 

(Bhat and Bhat 1997). However, only few of these microorganisms produce a complete 

cellulase complex and significant levels of extracellular cellulase capable of efficient 

depolymerization and solubilizing lignocellulosic biomass (Ahamed and Vermette 2008). 

 

These cellulolytic enzymes are inducible enzyme systems (Iyayi et al. 1989; Suto and Tomita 

2001; Ling et al. 2009). The induction process hypothesizes that basal levels of cellulase that 

is constitutively produced by fungi first hydrolyses cellulose to soluble oligosaccharides or 

their derivative sugars that is then absorbed into the cells, ultimately becoming the actual 

inducers (Lynd et al. 2002; Ling et al. 2009). In the case of Trichoderma, the conidial bound 

cellobiohydrolase hydrolyses the cellulose chains, liberating cellobiose and cellobiono-1,5-

lactone (CBL) that are then taken up by the mycelia and promote further cellulase 

expressions (Szakmary et al. 1991; Bhat and Bhat 1997; Suto and Tomita 2001). 

 

We chose filter paper as the cellulosic starting material because of its high cellulose and low 

impurities content (www.whatman.com). From the results of the total enzymatic analysis 

done on the filter paper, the content of the filter paper was approximately 98.0% cellulose. 

Because of its high cellulose purity, filter paper contains no lignin or other inhibitory 
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compound that may inhibit the fermentation of the glucose released into ethanol, or interfere 

with other analyses.  It was also used in previous fungal enzyme induction studies (van Wyk 

1999), largely due to its crystallinity index (CrI) of 0.45, that is within the range of 

susceptible cellulosic substrates of 0.4-0.7 like other pretreated biomass, and its degree of 

polymerization (DP) of 750-2800 that is also very close to conventional pretreated cellulosic 

substrates of 400-1000 (Zhang et al. 2006). In fact, it is the material that is recommended by 

NREL for standardized method of cellulase activities measurement (Decker et al. 2003; 

Adney and Baker 2008). 

 

The general outline of our study is shown in Figure 1. In our study, the induction of enzyme 

production from the three fungal species was performed at pH 4.5-4.8, a condition suitable 

for both the growth of the fungi but also cellulolytic enzyme reactions (Bhat and Bhat 1997; 

Xia and Shen 2004; Shrestha et al. 2009; Rasmussen et al. 2010).   

 

While many studies have been done on P. chrysosporium, G. trabeum and T. reesei to 

produce various cellulases, hemicellulases and lignolytic enzymes, and their direct cellulose 

hydrolysis activities, only few have reported their coupled applications in SSF (van Wyk 

1999; Decker et al. 2003; Howard et al. 2003; Cohen et al. 2005; Shrestha et al. 2008; 

Shrestha et al. 2009; Rasmussen et al. 2010). Therefore, our study was extended to further 

examine the efficiencies of the respective fungal species and their enzymatic mechanisms on 

high cellulose feedstock, such as filter paper, in the presence of S. cerevisiae, as the 

fermenting organism. To achieve this, we performed SSF on the filter paper and measured 

the final fermentation products via HPLC. This technology combines continous enzymatic 
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hydrolysis of cellulose with the simultaneous fermentation of the sugars released to ethanol 

via a chosen fermenting microorganisms (i.e. the yeast S. cerevisiae), in a single reactor 

(Ballesteros et al. 2004). 

 

  
 
Figure 1. Flow-chart of process outlining the steps for solid state fermentation of P. 

chrysosporium or G. trabeum or T. reesei on filter paper, followed by SSF using S. 
cerevisiae as the fermenting organisms. (A) Whatman No.1 filter paper strips 
before treatment. (B) The SpectraMax Plus384 system used for the phenol-
sulfuric total sugar assay. (C) The Waters HPLC system used for sample analysis. 

 

During SSF, the presence of the fermenting organism reduces the accumulation of glucose 

within the vessel, thereby increasing saccharification rate and ethanol production (Figure 2). 

2.0 g Filter Paper + 5.0 ml phosphate buffer with 
ammonium sulfate (pH 4.5) 

2.0 ml P. chrysosporium or G. trabeum or T. reesei in 
phosphate buffer with ammonium sulfate (pH 4.5) 

62.5 ml phosphate buffer (pH 4.5)  
+ 25 ml 4X Yeast Extract broth + S. cerevisiae  

Total carbohydrate assays – Phenol sulfuric assay 
Cellobiose – HPLC 
Glucose – HPLC 
Ethanol – HPLC 

Acetic acid – HPLC 
Lactic acid – HPLC  

Autoclaved at 
121oC 

Solid state fermentation 
at 37oC for 4 days 

Simultaneous saccharification and 
fermentation (SSF) at 37oC 
5 days 

A

B

C
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We also prepared a separate sample set that was added with the commercial cellulase 

enzyme, Spezyme CP, at a low dose of 25 FPU/g cellulose, as a comparison of enzymatic 

activities. The combination of Spezyme CP and S. cerevisiae yielded 47.91 g/100 g filter 

paper of ethanol (86.06% theoretical).  

 

  
 
Figure 2. Simultaneous saccharification and fermentation (SSF) batches of Whatman No. 1 

Filter paper at day 3. (A) S. cerevisiae only (B) 25 FPU/ g cellulose Spezyme only 
(C) 25 FPU/ g cellulose Spezyme CP + S. cerevisiae  (D) P. chrysosporium + S. 
cerevisiae (E) T. reesei + S. cerevisiae (F) G. trabeum + S. cerevisiae. 

 

From Table 1, the results of the total protein assay using the NanoDropTM 1000 

spectrophotometer showed that the highest protein concentration of 10.67 mg/ml was 

produced in the sample treated with T. reesei, followed by 10.52 mg/ml in the sample treated 

A D

B E

C F
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with P. chrysosporium while in the sample treated with G. trabeum, the concentration was at 

10.04 mg/ml.  We then determined the enzyme activities based on the filter paper units 

(FPU), as described previously (Ghose 1987; Adney and Baker 2008). This assay do not 

report the enzyme activities in the conventional I.U. units, as Ghose (1987) pointed out that 

“because the FPU assay is non-linear, the use of the International Unit per se is incorrect as 

this unit is based on initial velocities, i.e., linear reactions in which the product is produced 

at the same rate during each and every minute of the reaction". Ghose (1987) concluded that 

the FPU values for a given cellulase solution be given simply as "FP units/ml".  

 

The result from FPase assays (Table 1) from the induction experiments indicated that 

cellulase activities were highest in the sample treated with T. reesei, at 1.76 FPU/ml. The 

sample treated with G. trabeum had a lower protein activities value of 1.52  FPU/ml and the 

sample treated with P. chrysosporium had the lowest FPase activities of 0.76 FPU/ml.  

 

Table 1. Enzyme activity and total protein assays (n=3). 
 

 Protein Assay (mg/ml)a Enzyme Assay (FPU/ml)b 
P. chrsysosporium 10.52 0.76 
T. reesei 10.67 1.76 
G. trabeum 10.04 1.52 

 

a Protein was determined by NanoDrop™ 1000 Spectrophotometer.   
b Filter paper unit activities (FPase) based on the value of 2.0 mg of reducing sugar as 

glucose from 50 mg of filter paper, at 4% conversion, in 1 hour (units FPU/ml) 
 

This trend is expected as T. reesei have been known to produce high concentration of potent 

cellulases (Jovanovic et al. 2009), and in fact, this fungus serves as a reference organism for 

cellulose degradation studies and for the mass production of cellulases and hemicellulases for 
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various applications (Martinez et al. 2008).  During the five-day SSF period, total sugar 

production was recorded. From Figure 3, residual total sugar remained at a very steady level 

for all the samples treated with the three different fungi. The concentration ranged from 2.60 

- 2.82 g of total sugar per 100 g of filter paper at day 0 and by day 5, the concentration 

ranged from 3.58 - 2.55 g. The total sugar profile for the Spezyme control showed a sharp 

increase in day 1, followed by a sharp dive in day 2.  

 

 
Figure 3. Time course of total sugar production, as determined via the phenol-sulfuric 

method. The data points represent the averages of three independent experiments 
(n=3). Note: PC – P. chrysosporium, TR – T. reesei, GT – G. trabeum, SC – S. 
cerevisea. Time zero is after 4 days of solid state fermentation with a specific 
fungus (P. chrysosporium, G. trabeum  or T. reesei). 

 
 

Close examination via HPLC (Figure 4) showed that much of this is from the release of 

cellobiose at day 1, that was then hydrolyzed at day 2. Another observation from the HPLC 
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readings indicated that cellobiose was detected all throughout the five day SSF period in the 

sample treated with P. chrysosporium, indicating the possible partial hydrolysis of the 

cellulose.  

 

 
 
Figure 4. Time course of cellobiose production. The data points represent the averages of 

three independent experiments (n=3).  Note: PC – P. chrysosporium, TR – T. 
reesei, GT – G. trabeum, SC – S. cerevisea. Time zero is after 4 days of solid 
state fermentation with a specific fungus (P. chrysosporium, G. trabeum  or T. 
reesei). 

 

From Figure 5, ethanol production was highest for the filter paper inoculated with T. reesei. 

Ethanol production was in steady increments even during the final day of experiment at day 

5, with the concentration values of 5.13 g/ 100 g filter paper, corresponding to 9.33% TEY 

(Table 2). A longer SSF period may provide the necessary information on the day further 

ethanol production will stop. The filter paper inoculated with P. chrysosporium was at 1.79 
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g/ 100 g filter paper (3.25 TEY). In comparing the results of the ethanol production at day 5, 

the FPU values between T. reesei and P. chrysosporium treated filter paper reflects the final 

ethanol concentration. Higher enzymatic activities in T. reesei resulted in more ethanol 

production, and in fact the difference of approximately 286%. Another explanation to the 

lower ethanol yield in the sample treated with P. chrysosporium is the possibility incomplete 

hydrolysis of the cellulose to glucose, as seen in Figure 4.  Statistic analyses validated the 

significance of these results (Table 3, Table 4 and Figure 6).   

 

 
 
Figure 5. Time course of ethanol production. The data points represent the averages of three 

independent experiments (n=3). Note: PC – P. chrysosporium, TR – T. reesei, GT 
– G. trabeum, SC – S. cerevisea. Left y-axis represents the bar charts, Right y-
axis represents the line regression. Time zero is after 4 days of solid state 
fermentation with a specific fungus (P. chrysosporium, G. trabeum  or T. reesei). 
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Table 2. Cellulose conversion and theoretical ethanol yield at day 5 (n=3). 
 

 Cellulose Conversion  
(g / 100 g filter paper) 

Theoretical ethanol 
yield (%) 

P. chrysosporium 1.79 3.25 
T. reesei 5.13 9.33 

G. trabeum n.d. n.d. 
Spezyme (25 FPU/g cellulose) 47.91 87.11 

 
 

Table 3.  Statistical analysis of the significant differences in ethanol production (g ethanol 
/100 g filter paper) between P. chrysosporium, T. reesei and G. trabeum treated 
filter paper as determined via the Student’s t test. 

 
 p - value 

P. chrysosporium + S. cerevisiae vs. T. reesei + S. cerevisiae < 0.0007 
P. chrysosporium + S. cerevisiae vs. G. trabeum + S. cerevisiae < 0.0219 
T. reesei + S. cerevisiae vs. G. trabeum + S. cerevisiae < 0.0001 

 
 

Table 4.  Summary of non-linear (polynomial, 2nd degree) model fits of ethanol production. 
  

 R2 Prob > F 
P. chrysosporium  + S. cerevisiae 0.990 0.0010 
G. trabeum  + S. cerevisiae 0.909 0.0275 

 
 

Unlike the previous two fungi, the data (Table 2, Figure 5 and Figure 6) showed that none of 

the samples inoculated with G. trabeum produced cellobiose, glucose, and other fermentation 

products (ethanol, acetic acid and lactic acid), suggesting that G. trabeum may not be an 

effective fungus for the use in the hydrolysis of pure cellulose, albeit to its highly 

documented potent cellulolytic enzyme systems on other substrates (Cohen et al. 2005; 

Daniel et al. 2007).  There are several possible explanations to these observations.  
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Figure 6. Maximum ethanol yields of different fungal treatments conditions. Letters on top 

of the columns indicate significant differences (Student’s t test, α=0.05) 
 

Firstly, G. trabeum is reported to lack the complete combination of the enzymes needed for 

efficient cellulose hydrolysis on pure cellulose (Mansfields et al. 1998; Cohen et al. 2002). 

Unlike the cellulases of T. reesei, G. trabeum lacks cellobiohydrolases, although 

endoglucanases were detected (Henriksson et al. 1999). This is an important finding as, in 

many cases, CBHs are also more efficient on cellulose than EGs (Henriksson et al. 1999). 

However, brown-rots compensate the lack of processive cellulases by degrading biomass 

largely through non-enzymatic mechanisms, via a hydroquinone-driven system for the 

production of extracellular reactive oxygen species (ROS) in an ‘enhanced’ Fenton system 

(Paszczynski et al. 1999; Cohen et al. 2002).  The Fenton system plays an extremely 
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important role in the early stages of cellulose degradation by brown-rot fungi. However, this 

reaction only occurs under favorable conditions, catalyzed by a low-molecular-weight 

peptide, termed Gt factor (Wang and Gao 2003). According to Xu and Goodell (2001), these 

conditions must include the presence of iron, hydrogen peroxide, biochelators, oxalate and 

light. Iron is present in woody biomass as bound iron and ferric hydroxide complexes. 

However, in our experiment, the absence on iron on the highly cellulose-pure filter paper 

may have adverse effect on the natural iron dependent hydrolytic processes. Lighting 

condition was also not conducive as during the aerobic enzyme induction period, it was 

performed in the darkness of an incubator that may have negatively impacted the Fenton 

reactions. Further experimentation in the future may have to take these conditions into 

consideration in order to fully evaluate the effectiveness of the cellulolytic system of G. 

trabeum in performing SSF on filter paper. 

 

Secondly, another study done by Cohen and colleagues (2005) added that the cellulolytic 

system of G. trabeum may hydrolyze amorphous cellulose but not crystalline cellulose. 

However, in the degradation of amorphous cellulose, hydrolysis is partial with the end 

product being cellotriose instead of glucose, a phenomenon also reported in other 

microorganims (Hash and King 1958; Reese et al. 1959; Lejuene et al. 1988).  This same 

observation is supported by our result with the negative glucose reading in all samples 

inoculated with G. trabeum. This is further supported by another related work done by 

Schilling and colleagues (2009) that observed the difficulties of brown-rot fungi in 

metabolizing lignin-free microcrystalline cellulose. The same study further hypothesized that 



 121

brown-rot fungi make initial tissue modifications that facilitate in hydrolytic efficiencies that 

is specific for the specific cellulases they secrete. 

 

The production of other fermentation co-products, such as, acetic acid and lactic acid were 

also recorded. No lactic acid was produced by any of the samples at the end of the five-day 

experiments. Acetic acid was only detected in the samples inoculated with T. reesei at 0.95 

g/l00 g filter paper (Figure 7). This trend is supported by other studies that documented high 

production of acetic acid by T. reesei (Chambergo et al. 2002; Shrestha et al. 2009).  This is 

due to the enzymatic actions of the two paralogous genes for aldehyde dehydrogenase (ALD1 

and ALD2) capable of converting acetaldehyde to acetate, present in the T. reesei genome 

(Chambergo et al. 2002; Shrestha et al. 2009). Furthermore, other genes such as acetyl 

esterases are also reported to function in the same manner and interestingly, these genes 

interact with other cellulases for the production of acetates from other biomass (Poutanen and 

Sundberg 1998; Harrison et al. 2002). Acetic acid (2.57 g/100 g filter paper) was also 

detected in the sample treated with Spezyme CP (Figure 7).  
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Figure 7. Time course of acetic acid production. The data points represent the averages of 

three independent experiments (n=3). Note: PC – P. chrysosporium, TR – T. 
reesei, GT – G. trabeum, SC – S. cerevisea. Time zero is after 4 days of solid 
state fermentation with a specific fungus (P. chrysosporium, G. trabeum  or T. 
reesei). 

 

By comparing these three fungal species, our study suggests that the most efficient fungal 

species in saccharifying pure cellulose was T. reesei, followed by P. chrysosporium, while G. 

trabeum failed to effectively liberate fermentable product. Of the three fungal species 

evaluated in this study, P. chrysosporium is worth noted as not only it is the cellulolytic 

enzymes system efficient, but it offers greater flexibilities when lignocellulosic biomass is 

the feedstock for ethanol production. This is because P. chrysosporium also harbors 

lignolytic enzyme that may be advantageous in eliminating a major inhibitor in conventional 

SSF, which is lignin (Ballesteros et al. 2004). 
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In conclusion, the results from our study of the solid state fermentation of cellulose-rich filter 

paper for the production of ethanol indicated that the fungal species P. chrysosporium and T. 

reesei are potentially useful for this form of application.  Further experimentation may be 

done by inoculating these two species onto more complex feedstocks that are lignin rich, 

such as switchgrass, corn stover and other perennial grasses, to evaluate their enzymatic 

efficiencies against more recalcitrant feedstocks and the presence of potential inhibitors 

(Sokhansanj et al. 2002; Varga et al. 2004; Wyman et al. 2005). Direct fungal enzymatic 

saccharification mechanisms for SSF are indeed very promising and can lead to a more 

environmentally friendlier processing, whereby ethanol producers can skip or minimize the 

environmentally detrimental pretreatment steps. This will ultimately lead to a more 

economically sound ethanol production when manufacturers can produce their own enzymes 

in situ to supplement the use of expensive commercial preparations. 
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CHAPTER 4: SIMULTANEOUS SACCHARIFICATION AND FERMENTATION 

OF GROUND CORN STOVER FOR THE PRODUCTION OF FUEL ETHANOL 

USING PHANEROCHAETE CHRYSOSPORIUM,  GLOEOPHYLLUM TRABEUM, 

SACCHAROMYCES CEREVISIAE AND ESCHERICHIA COLI K011 

 

(to be submitted to the Journal of Microbiology and Biotechnology) 

 

 

ABSTRACT 

 

Enzymatic saccharification of corn stover using the white rot, Phanerochaete chrysosporium, 

and the brown rot, Gloeophyllum trabeum and subsequent fermentation of the 

saccharification products to ethanol was achieved via the use of Saccharomyces cerevisiae 

and Escherichia coli K011. Prior to the simultaneous saccharification and fermentation (SSF) 

for ethanol production, P. chrysosporium or G. trabeum solid-state-fermentation for four 

days with ground corn stover was performed for 4 days to induce in situ cellulase production.  

During the SSF period with S. cerevisiae or E. coli, ethanol production was highest on day 4 

for all samples inoculated with either P. chrysosporium or G. trabeum.  For the corn stover 

treated with P. chrysosporium, the conversion of corn stover to ethanol was 2.29 g/100 g 

corn stover for the sample inoculated with S. cerevisiae, whereas for the sample inoculated 

with E. coli K011, the ethanol concentration was 4.14 g/100 g corn stover.  While for the 

corn stover treated with G. trabeum, the conversion of corn stover to ethanol was 1.90 g/100 

g and 4.79 g/100 g corn stover for the sample inoculated with S. cerevisiae and E. coli K011, 
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respectively. Other fermentation co-products, such as, acetic acid and lactic acid were also 

reported.  Acetic acid production ranged between 0.45 to 0.78 g/100 g corn stover for the 

samples under different fungal treatments, while no lactic acid production was detected 

throughout the 5 days of SSF.  The results of our experiment suggest that it is possible to 

perform SSF of corn stover by using P. chrysosporium, G. trabeum, S. cerevisiae and E. coli 

K011 for the production of fuel ethanol without pretreatments and without the use of 

commercial enzymes. 

 

Keywords: Phanerochaete chrysosporium, Gloeophyllum trabeum, Saccharomyces 

cerevisiae, Escherichia coli K011, solid state fermentation, simultaneous 

saccharification and fermentation (SSF). 

 

 

INTRODUCTION  

 

The present use of ethanol for transportation purposes is conventionally produced in large 

quantities from corn grain and sugarcane juice. However, this is only a temporary solution as 

this practice conflicts with the food and feed industry (Chundawat et al. 2007). Thus, there is 

great interests in the development of fuel ethanol from agricultural residues and other 

lignocellulosic feedstocks, which are inexpensive feedstocks, and are the most abundant bio-

resources available in the biosphere (de La Torre Ugarte et al. 2003). Currently, corn stover 

is considered one of the first candidates for lignocellulosic biomass use for cellulosic 

bioethanol production, because this it is an abundant agricultural by-product in many 
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European countries and in the USA, and it can be collected during harvest (Sokhansanj et al. 

2002; Varga et al. 2004). Although promising, using corn stover as raw material to produce 

ethanol faces many challenges, as unlike starch from corn, the polysaccharides in corn 

stovers are cellulose and hemicellulose, which are difficult to degrade (Hendriks and Zeeman 

2009; Keshwani and Cheng 2009; Nguyen et al. 2009). Thus hydrolyzing these components 

into fermentable sugars is essential to the efficient and economical production of cellulosic 

ethanol (Brekke 2005).   

 

Biohydrolysis of cellulose and hemicellulose is an enzymatic process carried out by a family 

of cellulolytic and hemicellulolytic enzymes that are highly specific (Keshwani and Cheng 

2009). These enzyme consortia are usually a mixture of several enzymes, that may include 

endoglucanases, exoglucanases or cellobiohydrolases, glucosidases or cellobiases, 

endoxylanases, xylosidases and galactosidases, among others (Abbas et al. 2005; Musatto et 

al. 2008; Suzuki et al. 2008; Wymelenberg et al. 2005). The conventional method for the 

breakdown of lignocellulosics to fermentable sugars requires the use of expensive 

commercial enzymes (Donohoe et al. 2009; Kumar et al. 2009; Weiss et al. 2010).  However, 

these enzymes are not only substrate specific, and they are largely susceptible to inhibition 

from compounds usually associated with lignin. Thus, prior to enzymatic hydrolysis, 

pretreatment of the ground lignocelluloses is required (Keating et al. 2006).  

 

Pretreatments of plant biomass are crucial for the production of cellulosic ethanol as they 

greatly improve the enzymatic accessibility of the feedstocks (Saqib et al. 2006; Duguid et al. 

2009; He et al. 2010; Kim et al. 2009; Seliq et al. 2009). In recent years, several 
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pretreatments have been tested on corn stover, either via physical, chemical, physicochemical 

or the combinations of these procedures (Sorensen et al. 2008; Yang et al. 2008; Garcia-

Cubero et al. 2009). However, these current pretreatment technologies are energy intensive, 

environmentally unfriendly and may produce many toxic by-products such as weak acids, 

phenolic derivatives and furans which inhibit alcoholic fermentation (Cantarella et al. 2001; 

Keating et al. 2006; Chundawat et al. 2007). Therefore, it is imperative to develop alternative 

means of lignocellulosics saccharification that can overcome these obstacles.   

 

One potential form of pretreatment and hydrolysis of lignocellulosic materials is by using 

biological means (Sun and Cheng 2002; Galbe and Zacchi 2007). This type of procedure 

usually involves lignocellulolytic fungal species such as Phanerochaete chrysosporium and 

Gloeophyllum trabeum (Sanchez 2009; Shrestha et al. 2008; Shrestha et al. 2009; Rasmussen 

et al. 2010).  

 

P. chrysosporium is a white-rot fungus that has been studied extensively in the degradation 

of plant cell walls components which includes cellulose, hemicellulose and lignin (Kersten 

and Cullen 2007; Wymelenberg et al. 2005). P. chrysosporium performs efficient 

lignocellulolytic processes using the various ligninolytic peroxidases or laccases, cellulases 

and hemicellulases it is known to secrete (Martinez et al. 2004; Wymelenberg et al. 2005; 

Suzuki et al. 2008). 

 

G. trabeum is a brown-rot basidiomycete. Like a typical brown rot, G. trabeum primarily 

attack the polysaccharide while leaving the brown pigmented lignin behind (Cohen et al. 
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2005). These degradative processes culminate in the rapid loss of wood strength and the 

darkening of the affected substrate (Daniel et al. 2007). G. trabeum is known to secrete a 

potent cellulolytic enzyme family, consisting of endoglucanases, exoglucanases, β-

glucosidases and other hemicellulases (Cohen et al. 2005; Kerem et al. 1999).  In contrast to 

white rots, G. trabeum rapidly degrades cellulose and hemicellulose, while leaving the 

undigested lignin modified mainly through demethoxylation and demethylation mechanisms 

(Arantes et al. 2006).  

 

In this paper, we report the use of in situ cellulases and hemicellulases from P. 

chrysosporium and G. trabeum for the saccharification of corn stover cellulose that is 

subsequently fermented to ethanol by using Saccharomyces cerevisiae and Escherichia coli 

K011.  We performed our work at conditions and with equipment that would generate 

commercially relevant results. 
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MATERIALS AND METHODS  

 

Corn stover analysis 

 

Corn stover was obtained from the Department of Agronomy, Iowa State University. The 

field dried corn leaf and corn stalk were ground in a Wiley mill to pass through a 2 mm 

screen and then screened using a 20 mesh sieve and further oven dried at 80oC for four days 

prior to compositional analysis. The composition of cellulose and hemicellulose was 

determined by Iowa State University, Department of Agronomy, using the ANKOM method 

(ANKOM Technol. Corp., Fairport, NY) as described previously (Vogel et al. 1999). The 

Klason lignin content was determined by using a modified Klason lignin assay, which 

measures lignin as the acid-insoluble fraction of lignocellulosic material after hydrolysis by 

strong acid (H2SO4) and heat. Klason lignin analysis was performed following the method by 

Crawford and Pometto (1988) with a slight modification, where by glass fiber filters (1.6 μm) 

(Fisherbrand, Fisher Scientific, Pittsburgh, PA) were used for capturing the lignin residues. 

The residue on the filter paper was thoroughly rinsed with deionized water and dried in the 

oven at 105oC for four days. The Klason lignin was determined as the weight of dry residue 

collected on the filter paper. 

 

Microorganisms 

 

Phanerochaete chrysosporium (ATCC 24725), Gloeophyllum trabeum (ATCC 11539), 

Saccharomyces cerevisiae (ATCC 24859) and Escherichia coli K011 (ATCC 55124) were 
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used in this study. All cultures were obtained from American Type Culture Collection 

(Rockville, MD). The fungal cultures were revived by inoculating onto potato dextrose broth 

(PDB) (Difco, Becton Dickinson and Co., Sparks, MD), bacterial culture on LB broth 

(Becton Dickinson and Co. , Sparks, MD), and was incubated with shaking at 24°C (Shrestha 

et al. 2008; Shrestha et al. 2009). Stock cultures were stored in stored in Yeast Malt extract 

(YM) broth (Becton Dickinson and Co.) supplemented with 20% (v/v) glycerol at -80oC in 

an ultralow-temperature freezer (So-Low Environmental Equipment Co., Inc., Cincinnati, 

OH) for long term storage. 

 

P. chrysosporium and G. trabeum culture preparation 

 

P. chrysosporium and G. trabeum seed culture was prepared from spores in 1 liter of YM 

Broth (Difco, Becton Dickinson and Co.) and incubated at 30oC, agitated at 150 rpm. After 7 

days of growth, the fungal mycelia (approximately 2-3 mm in diameter) was harvested via 

centrifugation in a sterilized 1-L polypropylene centrifuge bottle (Nalgene, Nalge Nunc, 

Rochester, NY), at 7,277 g for 20 min using a Sorvall-RC3B Plus centrifuge (Thermo Fisher 

Scientific, Wilmington, DE) (Rasmussen et al. 2010). The fungal cell pellets were rinsed 

with fungal mineral salt solution (pH 4.5-4.8) (50 mM Phosphate Buffer + 0.5% (NH4)2SO4 

+ Basal Medium).  Basal medium was prepared according to the formulation of Shrestha et 

al. (2009), consisting of 0.25 g of KH2PO4 (Fisher Scientific, Pittsburgh, PA), 0.063 g of 

MgSO4.7H2O (Fisher Scientific), 0.013 g of CaCl2.2H2O (Fisher Scientific), and 1.25 mL of 

trace element solutions in 1 L of deionized water (Shrestha et al. 2008). 
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Solid State Fermentation for Enzyme Induction 

 

All ground corn stover used in this study received no pretreatment except what weathering 

occurred in the field prior to harvest.  Prior to the addition of fungal inoculum for enzyme 

induction,  2 g of ground corn stover and glass marbles with 5 ml fungal mineral salt solution 

was sterilized in 250-ml polypropylene bottles (Nalgene) at 121oC for 1 hr followed by rapid 

exhaust. Then, 2 ml of fungal (1.5% w/v P. chrysosporium and 1.0% w/v G. trabeum) 

biomass in mineral salt solution was added. The bottles were rolled on their sides and the 

marbles assisted to uniformly disperse and coat the corn stover and fungi mixture along the 

inner surface (Shrestha et al. 2009; Rasmussen et al. 2010). Solid state fermentation was then 

performed for 4 days at 37oC in a humidified incubator for in situ production of cellulases 

and hemicellulases prior to the addition of ethanolic microorganism. 

 

Protein Assay 

 

Total protein was analyzed by using the NanoDrop™ 1000 Spectrophotometer (Thermo 

Fisher Scientific). The NanoDrop 1000 module measures the protein’s absorbance at 280 nm 

(A280) and calculates the concentration (mg/ml) from a loading of 2 ul sample size. Sample 

aliquots of 1.5 ml were taken from the minimal salt media washed fungal grown corn stover 

at day 4. The supernatant was centrifuged using a MiniSpin Plus centrifuge (Eppendorf, 

Hauppauge, NY) at 1,118 g for 5 min and filtered through a 0.2 μm nylon syringe filter 

(VWR International, Batavia, IL). Parts of the filtered solution were also used to perform the 

enzyme activities assay.  
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Enzyme Activities Assay  

 

Specific enzyme activity assay was performed using the protocol described by the official 

National Renewable Energy Laboratory (NREL) procedure [2]. This method is based on the 

International Union of Pure and Applied Chemistry (IUPAC) guidelines to determine 

cellulase activity in terms of "filter-paper units" (FPU) per milliliter (FPU/ml) of original 

enzyme preparation (Ghose 1987).  

 

S. cerevisiae and E. coli K011 culture preparation 

 

Culture inoculum of S. cerevisiae and E. coli K011 were prepared by growing cultures in 

sterile 50 ml YM Broth at 32°C with constant agitation (120 rpm). Cells were harvested via 

centrifugation in a 50 ml conical centrifuge tubes (BD Falcon, BD, Franklin Lakes, NJ) at 

2852 g for 10 min using a Beckman J2-21centrifuge (Beckman Coulter Inc., Brea, CA). Prior 

to use in SSF, cell counts were set at 107-108 CFU/ml as determined turbidometrically at 600 

nm via a standard curve (Nguyen et al. 2009). 

 

Simultaneous Saccharification and Fermentation (SSF) 

 

SSF reactions were carried out in 250-ml polypropylene bottles with batch cultures of 100 ml 

final volume, consisting of 25 ml 4X Yeast Extract Broth (1.8 g yeast extract (Difco), 0.07 g 

CaCl2·2H2O (Fisher Scientific), 0.45 g KH2PO4 (Fisher Scientific), 1.2 g (NH4)2SO4 (Fisher 

Scientific), and 0.3 g MgSO4·7H2O (Fisher Scientific) per liter of water) (Shrestha et al. 
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2009) and basal medium (pH 4.5-4.8) (50 mM Phosphate Buffer + 0.5% (NH4)2SO4 + Basal 

Medium). The flasks were then aseptically inoculated with S. cerevisiae and E. coli K011 

suspension. Batch culture fermentations were incubated at 37oC under static condition.  

These bottles were then subjected to SSF in anaerobic conditions for 5 days. The SSF 

experiments were performed in triplicates (n=3). 

 

High Pressure Liquid Chromatography (HPLC) Analyses  

 

Sample aliquots of 1.8 ml were taken daily, centrifuged at 1,118 g for 5 min and filtered 

through a 0.2 μm nylon syringe filter. Glucose, xylose and the fermentation products 

(ethanol, acetic acid, and lactic acid) were analyzed by using a Waters High Pressure Liquid 

Chromatography (Millipore Corp., Milford, MA) equipped with a Waters Model 401 

refractive index (RI) detector, column heater, autosampler and computer controller.  The 

separation and analysis of ethanol and other fermentation constituents was done on a Bio-

Rad Aminex HPX-87H column (300.0 x 7.8 mm) (Bio-Rad Chemical Division, Richmond, 

CA) using 0.012 N H2SO4 as a mobile phase with a flow rate of 0.6 ml/min, a 20 µl injection 

volume and a column temperature of 65°C (Ramos 2003, Liu et al. 2008; Shrestha et al. 

2009).   

 

Total and Reducing Sugars Assays 

 

The filtered supernatants from the fermentation broth were tested for free reducing sugar and 

total reducing sugars, via the Somogyi-Nelson (Antai and Crawford 1981) and phenol-
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sulfuric (Crawford and Pometto 1988) methods, respectively. The Somogyi-Nelson 

carbohydrate assay was performed at 500 nm with a glucose standard, whereas total sugar 

determination was determined via the phenol sulfuric carbohydrate test at 490 nm with a 

glucose standard. The absorbance readings of samples were achieved using a 

spectrophotometer (SpectraMax Plus384, Molecular Devices, Inc., Sunnyvale, CA, U.S.A). 

The absorbance readings were then converted into equivalent sugar concentration (g/L) based 

on a standard glucose solution curve. All sugar analyses were performed in triplicate (n=3).   

 

Statistical Analyses 

 

The SSF results were statistically analyzed using the statistical software, JMP 8.0 (SAS 

Institute Inc., Cary, NC). The data on ethanol production were fitted to exponential fit 

models, and a significant difference of p value of 0.05 was employed. Student’s t-test 

analyses were also performed for all final data set to determine multiple comparisons of the 

ethanol production. A p-value of less than 0.05 was considered significantly different. 
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RESULTS AND DISCUSSION 

 

Enzyme Induction on Untreated Corn Stover 

 

In this study, we performed SSF on ground corn stovers that received no pretreatment.  The 

main components of the corn stover used are hemicellulose, cellulose, lignin, and ash (Table 

1).  An interesting observation from the compositional analysis is the high content of ash in 

the corn stover.  This is in agreement with another analysis done previously (Pordesimo et al. 

2005; Su et al. 2006) that reported the ash contents of corn leaf and corn stalk to be 

considerably higher than that of other biomasses.  A flow-chart of our experimental design is 

shown in Figure 1. Unlike other previous works, our SSF process do not use pretreated corn 

stover samples (Duguid et al. 2009; Kim et al. 2009; Selig et al. 2009; He et al. 2010) or the 

addition of expensive commercial enzymes (Donohoe et al. 2009; Kim et al. 2009; Weiss et 

al. 2010). Instead, cellulases and hemicellulases produced by G. trabeum and P. 

chrysosporium in situ upon corn stover enzyme induction were performed in a pH range of 

4.5-4.8 at 37oC for 4 days via solid state fermentation (Figure 2), a condition suitable not 

only for the growth of the fungus but also the ideal pH for production of cellulolytic enzymes 

(Shrestha et al. 2008; Shrestha et al. 2009; Rasmussen et al. 2010). As seen in Table 2, our 

protein assay using the NanoDropTM 1000 spectrophotometer indicated that protein was 

produced during the induction stage, and production is higher in quantities in the corn stover 

and P. chrysosporium combination, compared the corn stover and G. trabeum combination, 

at 14.06 mg/ml and 11.61 mg/ml, respectively.    
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Table 1. Composition of corn stover (as percentage based on dry weight; n=3). 
 

Main components Composition based on cell mass (%, w/w) 
Cellulose 38.08 

Hemicellulose 30.72 
Klasson lignin 20.70 

Ash 8.77 
Others 0.31 

 
 
 

 
 
Figure 1. Flow-chart of process outlining the steps for solid state fermentation of G. 

trabeum and P. chrysosporium on corn stover without pretreatment, followed by 
SSF using S. cerevisiae and E. coli K011. 

2.0 g Corn stover + 5.0 ml phosphate buffer with 
ammonium sulfate (pH 4.5) 

2.0 ml G. trabeum/P. chrysosporium in phosphate 
buffer with ammonium sulfate (pH 4.5) 

66.0 ml phosphate buffer (pH 4.5)  
+ 25 ml 4X Yeast Extract broth  

+ S. cerevisiae  + E. coli K011  

 Total sugar (Phenol-sulfuric) 
Reducing sugar (Somogyi-Nelson) 

Xylose (HPLC) 
Glucose (HPLC) 
Ethanol (HPLC) 

Acetic acid (HPLC) 
Lactic acid (HPLC) 

Autoclaved at 120oC
1 hour 

Solid state fermentation at 37oC 
4 days 

Simultaneous  saccharification 
and fermentation at 37oC 

5 days 
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Figure 2. Solid state fermentation of corn stover with P. chrysosporium (left) and G. 

trabeum (right) at day 4. 
 

Table 2. Enzyme activity and total protein assays (n=3). 
 

 Corn stover + P. chrysosporium Corn stover + G. trabeum 
Enzyme Assay (FPU/ml)a 0.65 1.72 
Protein Assay (mg/ml)b 14.06 11.61 

 

a Filter paper unit activities (FPase) based on the value of 2.0 mg of reducing sugar as 
glucose from 50 mg of filter paper, at 4% conversion, in 1 hour (units FPU/ml)  

b Protein was determined by NanoDrop™ 1000 Spectrophotometer.   
 
 

Enzyme assays done to determine the FPase showed that more cellulase was being secreted 

by the brown rot, at 1.72 FPU/ml, as compared to white rot at 0.65 FPU/ml (Table 2). This 

concentration, however, does not correlate to the amount of total protein being produced 

extra-cellularly as mentined earlier.  White-rot fungi such as P. chrysosporium, produce 

additional extracellular enzymes such as laccases and peroxidases, when grown in lignin 
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impregnated biomass such as corn stover and other lignocellulosic material (Wymelenberg et 

al. 2005; Suzuki et al. 2008). 

 

In situ Enzymatic Hydrolysis  

 

The efficiencies of the cellulolytic enzymes hydrolysis of lignocelluloses were further 

evaluated and validated via the assays of the saccharification and fermentation products. 

Saccharification of the stover to its free reducing and total sugars was measured via the 

Somogyi-Nelson and phenol-sulfuric methods.  After four days solid state fermentation for  

enzyme induction (day 0 of SSF), between 2.42 - 2.91 g of reducing sugar per 100 g of 

stover, was detected for G. trabeum treated stover and 0.23 - 0.29 g reducing sugar per 100 g 

of stover, was detected for P. chrysosporium treated stover. Although there was a significant 

difference in the amount of reducing sugar, it is quite different for the total sugar. Total water 

soluble sugar profile was almost similar for both fungi and ranged from 5.57 – 5.94 g sugar 

per 100 g of stover. Both of these assays support the ability of both fungal strains to perform 

in situ saccharification and these trends were observed throughout the five day SSF period 

(Figure 3 and Figure 4), especially for total sugar. 
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Figure 3.  Time course of reducing sugar production, as determined via the Somogyi-Nelson 

method. The data points represent the averages of three independent experiments 
(n=3). Note: PC – P. chrysosporium, GT – G. trabeum. Time zero is after 4 days 
of solid state fermentation with a specific fungus (P. chrysosporium or G. 
trabeum). 

 

To supplement the reducing sugar assay, the concentration of glucose and xylose were 

determined using the HPLC, as these sugars are the main monomeric end products from the 

cellulosic and hemicellusic polymers hydrolysis (Hendriks and Zeeman 2009; Lim 2004). 

During the anaerobic ethanolic fermentation, no glucose was detected. Xylose was detected 

in all fungi treated samples that were inoculated with S. cerevisiae, (Figure 5). This is 

expected since S. cerevisiae cannot utilized pentoses such as xylose (Eliasson et al. 2000; Liu 

et al. 2010). 
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Figure 4. Time course of total sugar production, as determined via the phenol-sulfuric 

method. The data points represent the averages of three independent experiments 
(n=3). Note: PC – P. chrysosporium, GT – G. trabeum. Time zero is after 4 days 
of solid state fermentation with a specific fungus (P. chrysosporium or G. 
trabeum). 
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Figure 5. Time course of xylose production. The data points represent the averages of three 

independent experiments (n=3). Note: PC – P. chrysosporium, GT – G. trabeum. 
Time zero is after 4 days of solid state fermentation with a specific fungus (P. 
chrysosporium or G. trabeum). 

 
 
 

Simultaneous Saccharification and Fermentation of Fungal Treated Corn Stover 

 

The fermentability of the saccharification products was further evaluated by using S. 

cerevisiae and E. coli K011 as the fermenting organisms. S. cerevisiae and E. coli K011 was 

chosen as both of these microorganisms are efficient ethanolic fermenters, with the former 

capable of fermenting glucose from the breakdown of cellulose, and the latter capable of 

fermenting both glucose and other fermentable sugars such as xylose, arabinose and 

galactose from the enzymatic hydrolysis of hemicelluloses (Liu et al. 2010). 
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From the graph in Figure 6, ethanol production started from day 1 and increased steadily for 

all corn stover samples, indicating that the sugars released during the saccharification were 

readily converted to ethanol. Our results showed that ethanol production was highest on day 

4 for all samples inoculated with either P. chrysosporium or G. trabeum.  For the corn stover 

treated with P. chrysosporium, the conversion of corn stover to ethanol was 2.29 g/100 g 

corn stover for the sample inoculated with S. cerevisiae, whereas for the sample inoculated 

with E. coli K011, the ethanol concentration was 4.14 g/100 g corn stover. For the corn 

stover treated with G. trabeum, the conversion of corn stover to ethanol was 1.90 g and 4.79 

g/100 g corn stover for the sample inoculated with S. cerevisiae and E. coli K011, 

respectively. A general trend in ethanol production among the fungal treatments is that 

samples inoculated with E. coli K011 has greater ethanol yield. This is due to the ability of E. 

coli K011 to ferment both hexoses (C6 sugars) (i.e. glucose) and pentoses (C5 sugars) (i.e. 

xylose) (Liu et al. 2010). The result as seen in Figure 5 further supports this observation, with 

corn stover not inoculated with E. coli K011 still containing xylose even after day 5 of SSF.    

 

One interesting observation in the ethanol production profile is the production of trace 

amount of ethanol (1.45 g/100 g corn stover at day 4) for the sample inoculated only with E. 

coli K011. This, however, is not a new finding as E. coli have been documented to secrete 

cellulases and several hemicellulases, such as xylanases, mannosidase and galactases that 

may have librated xylose from the hemicellulose polymers (Gebler et al. 1992; Park and Yun 

1999; Sampaio et al. 2004; Okuyama et al. 2005). 
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Figure 6. Time course of ethanol production. The data points represent the averages of three 

independent experiments (n=3). Note: PC – P. chrysosporium, GT – G. trabeum. 
Time zero is after 4 days of solid state fermentation with a specific fungus (P. 
chrysosporium or G. trabeum). 

 
 

Throughout the experiment, other fermentation co-products, such as, acetic acid and lactic 

acid were also monitored (Figure 7). Acetic acid production ranged between 0.45 g and 0.78 

g/100 g corn stover for the samples under different fungal treatments, while no lactic acid 

production was detected throughout the 5 days of SSF. 

 

Statistical analyses of the ethanol production via non-linear regression using exponential 
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test showed statistically significant ethanol yield (Figure 8) among the different treatments. 

This reinforces the interrelationship between fungal species treatments and fermenters used.  

 

 
 
Figure 7. The course of acetic acid production. The data points represent the averages of 

three independent experiments (n=3). Note: PC – P. chrysosporium, GT – G. 
trabeum. Time zero is after 4 days of solid state fermentation with a specific 
fungus (P. chrysosporium or G. trabeum). 

 
 

Table 3. Summary of non-linear (exponential) fit models of ethanol production (n=3). 
 

 R2 F - value 
Corn stover + E. coli K011 0.911 0.0265 

Corn stover + P. chrysosporium  + S. cerevisiae 0.925 0.0022 
Corn stover + P. chrysosporium  + E. coli K011 0.839 0.0103 

Corn stover + G. trabeum  + S. cerevisiae 0.893 0.0044 
Corn stover + G. trabeum  + E.coli K011 0.937 0.0015 
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Figure 8.  Maximum ethanol productions of different fungal treatments and fermentation 
conditions. Letters on top of the columns indicate significant differences 
(Student’s t test, α=0.05). 

 
 

To realize large scale applications for cellulosic feedstocks such as corn stovers, low 

conversion costs are essential.  The usage of commercial enzymes makes the production of 

fuel ethanol not economically feasible or profitable.  Furthermore, these enzymes are highly 

susceptible to inhibitions and are very substrate specific. An ideal lignocellulolytic 
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hemicellulose and lignin.  Thus, P. chrysosporium and G. trabeum as the organism to provide 

in situ enzymes for the degradation of the lignocellulosic components of corn stovers offers a 

promising solution. In the production of fuel ethanol production from corn stovers, the 

optimization of this mechanism can lead to reduced ethanol production costs, as ethanol 

plants can produce their own enzymes to supplement the usage of commercial enzymes. 

Another advantage in using this process is an environmentally friendlier approach that 

eliminates the needs to perform potentially environmentally detrimental pretreatments. 
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CHAPTER 5: ETHANOL PRODUCTION VIA SEQUENTIAL 

SACCHARIFICATION AND FERMENTATION OF DILUTE NAOH PRETREATED 

CORN STOVER USING PHANEROCHAETE CHRYSOSPORIUM AND 

GLOEOPHYLLUM TRABEUM 

 

(to be submitted to the Applied Microbiology and Biotechnology journal) 

 

 

ABSTRACT 

 

Ethanol production was achieved via the sequential saccharification and fermentation of 

dilute sodium hydroxide (2% w/w NaOH in corn stover) treated corn stover using 

Phanerochaete chrysosporium and Gloeophyllum trabeum. Fermentation was performed by 

using Saccharomyces cerevisiae and Escherichia coli K011 after a four-day solid state 

fermentation of the wood rots to induce cellulolytic and hemicellulolytic enzymes production 

on the alkaline treated stover which was followed by an ethanolic simultaneous 

saccharifiation and fermentation (SSF). Ethanol production peaked on day 3 and day 4 for 

the samples inoculated with either P. chrysosporium or G. trabeum, slightly plateauing or 

decreasing thereafter. Ethanol production was highest for the combination of G. trabeum and 

E. coli K011 at 6.68 g/100 g stover, followed by the combination of P. chrysosporium and E. 

coli K011 at 5.00 g/100 g stover. SSF with S. cerevisiae generally had lower ethanol yields, 

ranging between 2.88 g/100 g stover (P. chrysosporium treated stover) and 3.09 g/100 g 

stover (G. trabeum treated stover). The production of total sugar, reducing sugar, acetic acid 
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and lactic acid were also recorded.  Acetic acid production ranged between 0.53 g and 2.03 

g/100 g corn stover for the samples under different fungal treatments, while lactic acid 

production was only detected in samples treated with G. trabeum, throughout the 5 days of 

SSF.  The results of our study indicated that mild alkaline pretreatment coupled with fungal 

saccharification offer a promising bioprocess for ethanol production from corn stover without 

the addition of commercial enzymes. 

 

Keywords: Phanerochaete chrysosporium, Gloeophyllum trabeum, Saccharomyces 

cerevisiae, Escherichia coli K011, solid state fermentation, simultaneous 

saccharification and fermentation (SSF). 

 

 

INTRODUCTION  

 

Ethanol has been an important industrial chemicals for decades (Zhu et al. 2006). It’s 

application is broad due to its total miscibility in water and many organic solvents, making it 

the choice material for use in beverages, chemical industries, cosmetics and pharmaceuticals 

(Dale 1991; Berg and Licht 2004).  Another more recent and significant application of 

ethanol is as transportation fuel, either by itself, or as additives to regular gasoline 

(Shakhashiri 2009). According to a study by Fukuda et al. (2009), it is estimated that about 

73% of worldwide ethanol productions goes into the transportation sectors. In fact, in the 

United States alone, it is projected that by 2017, fuel ethanol will replace approximately 20% 

fossil fuel (35 billion gallons), a practice that is envisioned to reduce the amount of gasoline 
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used, and also the dependence on foreign oils (Wen et al. 2009). This interest is also shared 

globally and can be traced back to the oil embargo in the 1970s.  According to Sainz (2009), 

worldwide biofuels production and applications has increased tremendously in recent years, 

from a little over 18.2 billion liters (~4.85 billion gallons) in 2000 to approximately 60.6 

billion liters (~16.4 billion gallons) in 2007, with bioethanol contributing to about 85% of the 

amount. In 2008, this figure stands at least 17.335 billion gallons (RFA 2009).  

 

Presently, one major controversy with bioethanol production is the high demand for corn that 

it has caused, leading to the increase in price of corn kernels for human food and animal feed, 

which questions the sustainability of this technology (Bommarius et al. 2008; Alvira et al. 

2009). Therefore, attentions are now moving towards the utilization of non-food 

lignocellulosic materials such as corn stover, baggase (sugar cane waste), rice straw, wood 

chips or other "energy crops" (fast-growing trees and grasses) as the primary feedstock 

(Mosier et al. 2005; Dwivedi et al. 2009). Together with other lignocellulosic biomass in world 

forests, these biopolymers are the most abundant renewable resources with a yearly supply of 

approximately 200 billion metric tons (Zhang 2008; Fukuda et al. 2009).  

 

Although available in great abundance, utilization of lignocellulosics, such as corn stover, for 

ethanol production faces many obstacles. Firstly, the individual lignocellulosic components 

such as cellulose and hemicellulose have to be liberated from the encasing lignin barriers.  

Secondly, the exposed cellulosic and hemicellulosic has to be hydrolyzed into fermentable 

sugar. To tackle these two hurdles, pretreatments, usually via physical and chemical means 

are deployed and, commercial enzymes are used. With corn stover, many pretreaments that 
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have been tested are chemical based which include Ammonia Fiber Explosion (AFEX), 

Ammonia Recycle Perlocation (ARP), dilute acid, lime and SO2 alkaline pretreatments 

(Galbe and Zacchi 2007; Aden and Foust 2009; He et al. 2009; Kim et al. 2009; Kumar et al. 

2009). These pretreatments, however, are highly unfavorable, especially in the mass 

production of fuel ethanol as they result in downstream post treatments and in environmental 

problems, usually associated with disposal. Furthermore, according to several other reports, 

pretreatments can be expensive with costs as high as 30¢/gallon of ethanol produced (Mosier 

et al. 2005; Wyman et al. 2005). Thus, more studies are needed to optimize their use in 

commercial production of lignocellulosic ethanol (Hendriks and Zeeman 2009).  

 

One possible solution to reduce the cost of these expensive chemical based pretreatment is to 

couple the process with biological pretreatment and the sequential saccharification of the 

feedstock, using biological means. In this study, we perform initial pretreatment of corn 

stover with mild sodium hydroxide (NaOH) at high temperature.  Next, we hydrolze the 

treated corn stover using two wood rots, Phanerocheate chrysosporium and Gloeophyllum 

trabeum, which have proven to be effective in this form of application (Shreshta et al. 2008, 

Shrestha et al. 2009, Rasmussen et al. 2010).  P. chrysosporium and G. trabeum are choosen 

for their abilities to efficiently degrade cellulose and hemicellulose, with their repertoire of 

cellulases and hemicellulase such as endoglucanases, exocellobiohydrolase, cellobiose 

dehydrogenase, β–glucosidases (cellobiases), endoxylanases, β-xylosidase and α-

galactosidase, among others (Kerem et al. 1999; Abbas et al. 2005; Cohen et al. 2005; 

Wymelenberg et al. 2005; Suzuki et al. 2008). We further subject the saccharification 

products to be fermented to ethanol by using Saccharomyces cerevisiae and Escherichia coli 
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K011. This bacterium utilizes hexose and pentose sugars generated from cellulose and 

hemicelluloses. 

 

MATERIALS AND METHODS  

 

Experimental setup 

 

A flow-chart of the overall experimental setup is shown in Figure 1.  All experiments were 

done in triplicates (n=3). Carbohydrate analyses, total protein and enzymatic activities assays 

were also performed in triplicates. 

 
 

 
 
Figure 1.  Flow-chart of process outlining the steps for dilute NaOH treatment of corn 

stover, followed by solid state fermentation of  P. chrysosporium  and G. trabeum 
on corn stover, and simultaneous saccharification and fermentation (SSF) using S. 
cerevisiae and E. coli K011. 

 

10.0 g (20% dry weight) Corn stover 
+ 5.0 ml phosphate buffer with 

ammonium sulfate (pH 4.5) 

2.0 ml P. chrysosporium or G. 
trabeum or in phosphate buffer with 

ammonium sulfate (pH 4.5) 

58.0 ml phosphate buffer 
(pH 4.5)  

+ 25 ml 4X Yeast Extract 
broth  

S. cerevisiae  E. coli K011

Carbohydrate assays 
High Pressure Liquid 

Chromatography 

Autoclaved at 121oC 
1 hour 

Solid state 
fermentation at 
37oC for 4 days Simultaneous  

saccharification and 
fermentation (SSF) at 

37oC for 5 days 

98 g Corn stover  
+ 2 g NaOH in 800 ml distilled water 

Autoclaved at 121oC 
1 hour 
pH adjusted to 4.8-5.0 with 1 N H2SO4 
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Corn stover pretreatment and analysis 

 

Corn stover used in this study was obtained from the Department of Agronomy, Iowa State 

University. The field dried corn stovers were ground in a Wiley mill (Model 4 Wiley 

Laboratory Mill, Thomas Scientific Inc., Swedesboro, NJ) and then screened using a 20 mesh 

sieve. To perform the dilute NaOH pretreatment of the corn stover, 98 g of stover was soaked 

in a NaOH solution that was prepared by diluting 2 g NaOH pellets in 800 ml of distilled 

water (0.25% w/v NaOH solution or 2% w/w NaOH per stover). The mixture was heated at 

121oC for 1 hour. Heat treated corn stover was initially rinsed with distilled water, and the 

pH was adjusted to a final pH of 4.8-5.0 with 1 N (0.5 M) H2SO4 at room temperature. The 

acidified corn stover is then dried to a 20% w/w solid content. 

 

For compositional determination, the oven dried corn stover and NaOH treated corn stover 

were subjected to cellulose and hemicellulose analysis using the ANKOM method (ANKOM 

Technol. Corp., Fairport, NY) as described previously (Vogel et al. 1999). The lignin content 

for both untreated and NaOH treated corn stover were determined by using a modified 

Klason lignin assay, following the method by Crawford and Pometto (1998) which measures 

lignin as the acid-insoluble material after hydrolysis by strong acid (H2SO4) and heat. The 

lignin analysis was performed with a slight modification, where by glass fiber filters (1.6 μm) 

(Fisherbrand, Fisher Scientific, Pittsburgh, PA) were used instead of Whatman No.1 filter 

papers for capturing the solid lignin residues. The Klason lignin was determined as the 

weight of dry residue collected on the filter paper after the remaining solids were thoroughly 

rinsed with deionized water and dried in the oven at 105oC for four days. 
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Microorganisms 

 

Stock cultures of Phanerochaete chrysosporium (ATCC 24725), Gloeophyllum trabeum 

(ATCC 11539), Saccharomyces cerevisiae (ATCC 24859) and Escherichia coli K011 

(ATCC 55124) used in this study were obtained from the American Type Culture Collection 

(Rockville, MD). The fungal cultures were revived by inoculating onto potato dextrose broth 

(PDB) (Difco, Becton Dickinson and Co., Sparks, MD), while the bacterial culture was 

grown on LB broth (Difco). All cultures were incubated at 24°C with shaking at 120 rpm 

overnight (Shrestha et al. 2009). Long term storage of the stock cultures in Yeast Malt extract 

(YM) broth (Difco) supplemented with 20% (v/v) glycerol, were kept at -80oC in an 

ultralow-temperature freezer (So-Low Environmental Equipment Co., Inc., Cincinnati, OH). 

 

Microorganism culture preparation 

 

P. chrysosporium and G. trabeum cultures were grown in 1 liter of YM Broth and incubated 

at 30oC, agitated at 150 rpm. After 7 days of growth, the fungal mycelia was harvested via 

centrifugation at 7,277 g for 20 min in a sterilized 1-L polypropylene centrifuge bottle 

(Nalgene, Nalge Nunc, Rochester, NY), using a Sorvall-RC3B Plus centrifuge (Thermo 

Fisher Scientific, Wilmington, DE) (Shrestha et al. 2008; Shrestha et al. 2009). The collected 

fungal mycellia was rinsed with a mineral salt solution (pH 4.5-4.8) containing 50 mM 

Phosphate Buffer, 0.5% (NH4)2SO4 and Basal Medium (0.25 g KH2PO4, 0.063 g 

MgSO4·7H2O, 0.013 g CaCl2·2H2O, and 1.25 mL of trace element solutions in 1 L of 

deionized water) (Shrestha et al. 2009). 
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S. cerevisiae and E. coli K011 culture inocula were prepared in sterile 50 ml of YM Broth at 

32°C with constant agitation (120 rpm). The respective yeast and bacterial cells were 

harvested via centrifugation in a 50 ml conical centrifuge tubes (BD Falcon, BD, Franklin 

Lakes, NJ) at 2852 g for 10 min using a Beckman J2-21centrifuge (Beckman Coulter Inc., 

Brea, CA) and cell density was adjusted at 107-108 CFU/ml as determined at 600 nm via a 

standard curve (Nguyen et al. 2009). 

 

Solid State Fermentation  

 

Solid state fermentation was performed on the autoclave sterilized corn stover (10 g, 20% dry 

weight) that was mixed with 5 ml mineral salt medium and three marble balls (Shrestha et al. 

2008; Shrestha et al. 2009). Next, rinsed P. chrsosporium or G. trabeum inocula were mixed 

with fungal mineral salt solution, and 2 ml of the mixture was added to the sterilized corn 

stover. The bottles were rolled on their sides to uniformly disperse and coat the corn stover 

and fungi mixture along the inner surface with the assistance of glass marbles (Shrestha et al. 

2008; Shrestha et al. 2009). The four days incubation for enzyme induction production was 

kept at 37oC in a humidified incubator.  
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Simultaneous Saccharification and Fermentation (SSF) 

 

SSF experiments were carried out in batch cultures of 100 ml, consisting of 25 ml 4X Yeast 

Extract Broth  (1.8 g yeast extract (Difco), 0.07 g CaCl2·2H2O (Fisher Scientific, 0.45 g of 

KH2PO4 (Fisher Scientific), 1.2 g of (NH4)2SO4 (Fisher Scientific), and 0.3 g of MgSO4·7H2O 

(Fisher Scientific) per liter of deionized water) (Shrestha et al. 2009) and buffered basal 

medium (pH 4.5-4.8) (50 mM Phosphate Buffer + Basal Medium). The flasks were then 

aseptically inoculated with S. cerevisiae or E. coli K011 cultures. These SSF culture bottles 

were incubated for 5 days at 37oC under static condition (Figure 2).  

  

 
 
Figure 2. Simultaneous saccharification and fermentation (SSF) of corn stover with P. 

chrysosporium and E. coli K011 (day 3), clearly showing the formation of carbon 
dioxide gas bubbles. 

 



 165

Protein and Enzyme Activities Assays 

 

On day 4 of the solid state fermentation a 1.5 ml samples was aspectially collected. The 

sample was centrifuged at 1,118 g for 5 min (MiniSpin Plus, Eppendorf, Hauppauge, NY) 

and the supernatant was filtered through a 0.2 μm nylon syringe filter (VWR International, 

Batavia, IL). The filtered solutions were used to perform total protein analysis and enzyme 

activities assay.  

 

Protein production by P. chrysosporium or G. trabeum cultured on corn stover was measured 

via the NanoDrop™ 1000 Spectrophotometer (Thermo Fisher Scientific). This system 

measures a loading of 2 μl sample size and calculates the protein concentration (mg/ml) from 

the protein’s absorbance at 280 nm (A280). A separate fermentation broth from uninoculated 

corn stovers was used as the blank reading. 

 

Enzyme activity assay in terms of "filter-paper units" (FPU) per milliliter of enzyme 

preparation was performed using the protocol described by the official National Renewable 

Energy Laboratory (NREL) procedure (Adney and Baker 2008). This method was developed 

based on the International Union of Pure and Applied Chemistry (IUPAC) guidelines to 

determine cellulase activities (Ghose 1987).  
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Total and Reducing Sugars Assays 

 

Sample aliquots of 1.8 ml were collected aseptically from each SSF bottle every 24 hours. 

The sample mixtures were centrifuged (MiniSpin Plus) at 1,118 g for 5 min and supernatant 

filtered through a 0.2 μm nylon syringe filter. The filtered supernatants were tested for total 

sugars and reducing sugar, via the phenol-sulfuric (Crawford and Pometto 1988) and 

Somogyi-Nelson (Antai and Crawford 1981) methods, respectively.  The total sugar 

determination was determined via the phenol sulfuric carbohydrate test at 490 nm 

(SpectraMax Plus384, Molecular Devices, Inc., Sunnyvale, CA, U.S.A) while the Somogyi-

Nelson carbohydrate assay was performed at 500 nm (SpectraMax Plus384) with glucose 

standards. The equivalent sugar concentration (g/l) was determined based on a standard 

glucose concentration curve that was generated prior to the assays.  

 

High Pressure Liquid Chromatography (HPLC) Analyses  

 

Fermentation products (ethanol, acetic acid, and lactic acid) and glucose were measured by 

using a Waters High Pressure Liquid Chromatography (Millipore Corp., Milford, MA) 

system. The separation and analysis the fermentation products was done on a Bio-Rad 

Aminex HPX-87H column (300.0 x 7.8 mm) (Bio-Rad Chemical Division, Richmond, CA) 

using 0.012 N H2SO4 as a mobile phase with a flow rate of 0.6 ml/min (Ramos 2003; Liu et 

al. 2008; Shrestha et al. 2009). 
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Statistical Analyses 

 

The experimental data were validated statistically using the statistical software, JMP 8.0 

(SAS Institute Inc., Cary, NC). The data (n=3) on ethanol production were fitted to 

polynomial (2nd degree) fit models. Error bars were determined for triplicate samples based 

on the standard deviation from the mean values. Tukey-Kramer’s HSD (Honestly 

Significantly Different) test analyses were also performed for all final data set to determine 

multiple comparisons of the ethanol production. A p-value of less than 0.05 was considered 

significantly different. 

 

 

RESULTS  

 

The main components of the oven dried corn stover used are cellulose, hemicellulose, lignin, 

and ash (Table 1). Following 2% (w/w) NaOH pretreatment, overall weight loss was 

recorded at 14.1% with Klason lignin reduction by 4%. The Klason lignin reduction 

corresponds to approximately 19.3% of initial lignin content of untreated corn stover. 

 

Table 1.  Composition of dried biomass for initial and dilute NaOH treated corn stover using 
the ANKOM method and Klason Lignin method (as percentage based on dry 
weight; n=3). 

 
Main components Initial Biomass (%)   NaOH Treated Biomass (%) 

Cellulose 38.0 44.1 
Hemicellulose 30.7 31.6 
Klasson lignin 20.7 16.7 

Others 10.6 7.6 
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The sample from the day 4 solid-state-fermentation was used to determin the total protein 

and FPase concentrations (Table 2). Results showed that protein production was higher with 

the P. chrysosporium inoculated corn stover (12.14 mg/ml), compared to the G. trabeum 

treated (10.98 mg/ml). Following the protein assays, enzyme activities were determined 

based on the Filter paper unit (FPase) (Ghose 1987; Adney and Baker 2008).  From Table 2, 

the assay indicated that more cellulase activities were observed from the brown rot G. 

trabeum, at 2.54 FPU/ml, as compared to white rot P. chrysosporium at 1.48 FPU/ml. 

 

Table 2.  Enzyme activity and total protein assays after 4 day SSF (n=3). 
 

 Corn stover + P. chrysosporium Corn stover + G. trabeum 
Enzyme Assay (FPU/ml)a  1.48 2.54 
Protein Assay (mg/ml)b 12.14 10.98 

 

a Filter paper unit activities (FPase) based on the value of 2.0 mg of reducing sugar as 
glucose from 50 mg of filter paper, at 4% conversion, in 1 hour (units FPU/ml) 

b Protein was determined by NanoDrop™ 1000 Spectrophotometer 
 

During the five day SSF period, the samples were analyzed for solubilized saccharification 

products (both free reducing and total sugars) via the Somogyi-Nelson and phenol-sulfuric 

methods.  At day 4 of the enzyme induction stage (day 0 of SSF), between 5.42 – 5.58 g of 

reducing sugar per 100 g of corn stover, was detected in the broth of the G. trabeum treated 

corn stover and 3.78 – 4.34 g reducing sugar per 100 g of corn stover, was detected in the 

broth of the P. chrysosporium treated corn stover. From Figure 3, the concentration of the 

reducing sugars decreased steadily with all the samples, including the control samples 

inoculated with a single ethanolic fermenters. Sequential fermentations with P. 

chrysosporium and E. coli K011 showed a very dramatic drop from 3.78 g reducing sugar per 
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100 g of corn stover to 0.767 g reducing sugar per 100 g of corn stover.  At day 4 of the solid 

state fermentation, solubilized total-sugar ranged from 8.62 – 10.04 g per 100 g of corn 

stover for the corn stover treated with G. trabeum, and 6.03 – 6.54 g of total sugar per 100 g 

of corn stover was detected in the P. chrysosporium treated corn stover (Figure 4). The corn 

stovers that was not treated with either the white- or brown-rot (control) showed the presence 

of some total sugar after 4 days incubation (day 0 of SSF) (4.33 – 4.39 g of total sugar per 

100 g of corn stover), indicating that some sugar was liberated via the dilute NaOH 

pretreatment on the ground corn stover. 

 

 
 
Figure 3. Time course of reducing sugar production, as determined via the Somogyi-Nelson 

method. The data points represent the averages of three independent experiments 
(n=3). Note: PC – P. chrysosporium, GT – G. trabeum. Time zero is after 4 days 
of solid state fermentation with a specific fungus (P. chrysosporium or G. 
trabeum). 
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Figure 4. Time course of total sugar production, as determined via the phenol-sulfuric 

method. The data points represent the averages of three independent experiments 
(n=3). Note: PC – P. chrysosporium, GT – G. trabeum. Time zero is after 4 days 
of solid state fermentation with a specific fungus (P. chrysosporium or G. 
trabeum). 

 
 

From Figure 5, ethanol production started from day 1 of SSF and increased steadily for all 

fungal treated samples, indicating the significant liberation of fermentable sugars during 

saccharification. As expected ethanol production was typically greater for fungal solid-state-

fermented corn stovers sequential fermentation with E. coli K011 SSF due to its ability to 

utilize both C6 and C5 sugars.  The highest ethanol yield was for the corn stover inoculated 

with G. trabeum and E. coli K011 at 6.68 g/100 g corn stover followed by the combination of 

P. chrysosporium and E. coli K011 at 5.00 g/100 g corn stover which represents 15.42% and 
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0.0 

2.0 

4.0 

6.0 

8.0 

10.0 

12.0 

14.0 

0 1 2 3 4 5

gr
am

 to
ta

l s
ug

ar
/ 1

00
 g

ra
m

 st
ov

er
 

Anaerobic conditions (days)

 Stover + S. cerevisiae Stover + E. coli K011 
Stover + PC + S. cerevisiae Stover + PC + E. coli K011 
Stover + GT + S. cerevisiae Stover + GT + E. coli K011 



 171

and the combination of P. chrysosporium and S. cerevisiae generally illustrated lower ethanol 

yields, at 3.09 g and 2.88 g/100 g corn stover, respectively.  

 

 

Figure 5. Time course of ethanol production. The data points represent the averages of three 
independent experiments (n=3). Note: PC – P. chrysosporium, GT – G. trabeum. 
Time zero is after 4 days of solid state fermentation with a specific fungus (P. 
chrysosporium or G. trabeum). 

 
 

The production of other fermentation co-products, such as, acetic acid and lactic acid were 

also recorded.  Acetic acid production ranged between 0.53 g and 2.03 g/100 g corn stover 

for the samples under different fungal treatments (Figure 6).  Lactic acid production was only 

detected in samples treated with G. trabeum, throughout the 5 days of SSF (Figure 7).   
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Figure 6. Time course of acetic acid production. The data points represent the averages of 

three independent experiments (n=3). Note: PC – P. chrysosporium, GT – G. 
trabeum. Time zero is after 4 days of solid state fermentation with a specific 
fungus (P. chrysosporium or G. trabeum). 
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Figure 7. Time course of lactic acid production. The data points represent the averages of 

three independent experiments (n=3). Note: PC – P. chrysosporium, GT – G. 
trabeum. Time zero is after 4 days of solid state fermentation with a specific 
fungus (P. chrysosporium or G. trabeum). 

 

 

 

DISCUSSION 

 

In this study, we performed SSF on dilute alkaline (NaOH) treated corn stovers.  Mild 

alkaline have been proven to be very effective on biomass with low lignin content, such as 

herbaceous crops and agricultural residues, such as corn stover (Galbe and Zacchi 2007; 
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cellulose untouched (Lim 2004; Silverstein et al. 2007). The removal of lignin and/or partial 

reduction of hemicellulose can substantially reduce the recalcitrance of biomass to enzymatic 

hydrolysis (Wyman et al. 2005). In addition, Varga et al. (2003) stated that alkaline pH was 

previously found to be very efficient for increasing the cellulose convertibility to glucose, 

consequently leading to high sugar recoveries.  

 

Furthermore, dilute NaOH pretreatment of lignocellulosics produces minimal inhibitory by-

products (i.e. complex mixtures of acetate compounds from the deacetylation of xylan, furan 

dehydration products [furfural and hydroxymethylfurfural] and aliphatic acids [formic and 

levulinic acid] from sugars, and cocktails of phenolic compounds from lignin when using 

dilute acid) (Martinez et al. 2000). The presence of furfural and hydroxymethylfurfural is 

highly undesirable as these two compounds are known to be two of the strongest inhibitory 

compounds present in acid pretreated hydrolyzates (Talebnia et al. 2004). Previous research 

has demonstrated that even low concentrations of furfural at 2 g/l reduced the rate of glucose, 

galactose, glucose, and mannose consumption in S. cerevisiae-catalyzed fermentations, an 

effect that can be attributed to the inhibition of glycolytic enzymes (Keating et al. 2004; 

Chundawat et al. 2006).   

 

To achieve saccharification of the corn stover, we employed the lignocellulolytic abilities of 

P. chrysosporium and G. trabeum. Both these fungal species have been studied extensively 

due to their abilities to degrade, depolymerize and modify all major components of plant cell 

walls including cellulose, hemicellulose, and the more recalcitrant lignin (Kerem et al. 1999; 

Cohen et al. 2005; Wymelenberg et al. 2005; Kersten and Cullen 2007; Hamid and Rehman 



 175

2009). Like most other wood-rotters, P. chrysosporium and G. trabeum effectively performs 

these biomass degradations via the secretion of various cellulases and hemicellulases (Cohen 

et al. 2005; Wymelenberg et al. 2005; Suzuki et al. 2008).  

 

Visual observations of solid-state fermentation products showed that P. chrysosporium grew 

more aggresively visually when compared to G. trabeum. Total mycelial coverage of the 

corn stover was seen even at day 2 for P. chrysosporium (Figure 8a) , while visible mycelia 

from G. trabeum was only observed after day 3 (Figure 8b). For G. trabeum, slower visible 

growth is in agreement with Rasmussen et al. (2010), whereby substantial growth of G. 

trabeum was only seen on day 5 when the same strain was grown on corn fiber. The slower 

growth rate could also explain the lower amount of overall protein being secreted (Table 2). 

Unlike other previous works, our SSF experiments do not use additional commercial 

enzymes (Kumar and Wyman 2009; Weiss et al. 2010). Instead, the cellulases and 

hemicellulases produced by G. trabeum  and P. chrysosporium in situ upon corn stover 

induction was performed in a pH range of 4.5-4.8 at 37oC for 4 days, conditions suitable for 

the induction of the lignocellulotic enzymes enzymes (Shrestha et al. 2008; Shrestha et al. 

2009; Rasmussen et al. 2010).  
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Figure 8. (a) NaOH treated corn stover inoculated with P. chrysosporium at day 2 of 
enzyme induction stage. (b) NaOH treated corn stover inoculated with G. trabeum 
at day 3 of enzyme induction stage. (c) Oven dried NaOH treated corn stover 
inoculated with P. chrysosporium at day 4. (d) Oven dried NaOH treated corn 
stover inoculated with G. trabeum at day 4. 

 

Although the protein concentration is lower in the sample treated with G. trabeum, FPase 

actitivies are higher at 2.54 FPU/ml as compared to 1.48 FPU/ml in the sample treated with 

P. chrysosporium. More proteins are detected in the P. chrysosporium treated corn stover 

a      b

c      d
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could be due to the secretion of other lignocellulosic active protein such as laccases and 

peroxidases, when this particular fungal species is grown in lignin rich biomass such as corn 

stover and other lignocellulosic material (Wymelenberg et al. 2005; Suzuki et al. 2008). 

Although no specific lignolytic enzyme assays were performed to verify this, visual 

inspection of the corn stover indicated the discoloration of the feedstock due to lignin 

reduction. This can be seen in Figure 8c. Corn stover treated with G. trabeum do not share 

this physical manifestation as brown-rot basidiomycetes only slightly modify the encasing 

brown pigmented lignin, leaving behind brown residues (Figure 8d) (Xu and Goodell 2001; 

Kerem et al. 2009; Schilling et al. 2009). 

 

Throughout the course of the five day SSF, reducing sugar concentration continued to 

decrease (Figure 3), while the ethanol production continued to increased (Figure 5) until day 

3, for most of the samples. To supplement the reducing and total carbohydrate assay, HPLC 

analysis was also performed to monitor the glucose level. However, during the anaerobic 

SSF period, no glucose was detected, a good indication that efficient conversion to ethanol 

was achieved.  

 

Fermentation of the enzymatic saccharification products was further achieved by using S. 

cerevisiae or E. coli K011 as ethanolic fermenters, chosen as both of these microorganisms 

are efficient fermenters (Garrote et al. 1999a; Garrote et al. 1999b; Liu et al. 2010). From the 

result shown in Figure 5, samples inoculated with E. coli K011 generally has higher ethanol 

yield due to the ability of this particular strain to ferment both hexose and pentose sugars 

(Liu et al. 2010). When comparing efficiencies of saccharification among the P. 
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chrysosporium and G. trabeum, the results shows that the latter has more effective 

cellulolytic and hemicellulolytic systems. These are supported by the amount of initial 

reducing sugar and total sugar release at day 4 of the enzyme induction stage, and also the 

significant differences in the amount of ethanol production at day 3 (Table 3). The highly 

efficient cellulolytic and hemicellulolytic systems of G. trabeum are well documented. 

According to Kerem et al. (1999) and Schilling et al. (2009), brown-rot fungi like G. trabeum 

cause the most destructive type of decay in wooden structures, as they rapidly and 

extensively depolymerize cellulose in the early stages of wood decay (Cho et al. 2008; 

Schilling et al. 2009). 

 

Table 3.  Statistical analysis of the significant differences in ethanol production (g ethanol 
/100 g corn stover) between P. chrsysosporium and G. trabeum treated corn stover 
as determined via the Tukey-Kramer HSD test. 

 
Ethanol production (g ethanol /100 g corn stover) p - value 

PC + S. cerevisiae (2.88 g ethanol /100 g corn stover) vs. GT + S. cerevisiae 
(3.09 g ethanol /100 g corn stover) 

< 0.0001 

PC + E. coli K011 (5.00 ethanol /100 g corn stover) vs. GT + E.coli K011 
(6.68 g ethanol /100 g corn stover) 

< 0.0001 

 
 

We also observe the production of ethanol (2.28 g/100 g corn stover at day 2) for the sample 

inoculated only with E. coli K011 (Figure 5). However, this is quite expectable as E. coli 

have been reported to secrete cellulases and several hemicellulases, such as xylanases, 

mannosidase and galactases (Gebler et al. 1992; Park et al. 1999; Sampaio et al. 2004; 

Okuyama et al. 2005) that may have librated fermentable sugars such glucose, xylose, 

arabinose, mannose and galactose from the cellulose and hemicellulose fibers. 
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Statistical analyses of the ethanol production via non-linear regression using 2nd degree 

polynomial model fits, as summarized in Table 4 validated the reliability of the ethanol 

production, with all p-values < 0.005. Further analyses performed using Tukey-Kramer’s 

HSD test showed statistically significant ethanol yield (Figure 9) among the different fungal 

treatments, further reinforcing the interrelationship between fungal species treatments and 

fermenters used.  

 

Table 4  Summary of polynomial (2nd degree) fit models of ethanol production (g ethanol 
/100 g Switchgrass vs. Day). 

 
 R2 Prob > F 

Corn stover + E. coli K011 0.785 0.0998 
Corn stover + P. chrysosporium  + S. cerevisiae 0.895 0.0341 
Corn stover + P. chrysosporium  + E. coli K011 0.981 0.0026 

Corn stover + G. trabeum  + S. cerevisiae 0.977 0.0036 
Corn stover + G. trabeum  + E.coli K011 0.943 0.0138 

 
 

In order to realize mass production of lignocellulosic ethanol, low conversion costs are 

essential.  The optimization of both feedstock pretreatment and hydrolysis will lead to the 

reduction of production costs. The results of our study indicate that mild alkaline 

pretreatment coupled with fungal saccharification offer a promising alternative to produce 

ethanol from agricultural wstes such as corn stover. While our study may not show that the 

addition of commercial cellulases can be eliminated altogether, the results of do offer 

promising potentials signs that there could be savings in enzyme costs. 
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Figure 9.  Maximum ethanol yields of different fungal treatments and fermentation 
conditions. Letters on top of the columns indicate significant differences (Tukey-
Kramer HSD, α=0.05). 
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 CHAPTER 6: ENGINEERING, ECONOMIC AND ENVIRONMENTAL 

IMPLICATIONS AND SIGNIFICANCE 

 

 

INTRODUCTION 

 

Currently, in the United States, ethanol-gasoline blends range from 10 to 85%. In fact, the 

combined production of present ethanol industries is more than 10 billion gallons, 

representing about 7%  of the gasoline supply (Sainz 2009). Sainz (2009) further commented 

that approximately 70% of all gasoline sold nationwide contains some ethanol. It is expected 

that if the current trend persists, fuel ethanol will replace approximately 20% fossil fuel (35 

billion gallons) by 2017 (Wen et al. 2009). According Stowers (2009), in a recent report by 

the U.S. Department of Commerce International Trade Administration Study, the United 

States will generate sufficient cellulosic feedstock by 2020 to generate approximately 50 

billion gallons of lignocellulosic ethanol.  These statements clearly indicate the bright 

prospect for the research and production of second generation bioethanol. 

 

This chapter aims to discuss the engineering, economic and environmental implications, and 

significance of fuel ethanol in two aspects, the general outlook of ethanol productions and the 

specific significances and implications of our present research. The purpose of this chapter is 

to discuss the following: 
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i.  The importance of bioethanol as transportation fuel 

ii.  The importance of bioethanol for the environment 

iii. The importance of bioethanol for the economy 

iv.  Engineering and processing implications 

v.  Research recommendations 

   

 

THE IMPORTANCE OF BIOETHANOL AS TRANSPORTATION FUEL 

      

Ethanol is an oxygenated liquid fuel that contains 35% oxygen (Badger 2004). It is a perfect 

replacement for lead additives to gasoline used to boost the octane level and performances 

because of its high octane content (ethanol octane number is 113) (Durante et al. 2009; Wen 

et al. 2009).  In fact, ethanol will soon establish itself as an octane enhancer (Shapouri et al. 

2002). Higher oxygen content is good for the engine as this result in motor fuel that burns 

cleaner, reduces emissions of carbon monoxide and ozone-forming compounds, and reduces 

the build-up of gummy deposits in the engine (Wen et al. 2009).  

 

Another feature unique to ethanol blended fuel is the ability to absorb water and prevent 

automotive gas-line freeze-up during cold weather (Goettemoeller and Goettemoeller 2007). 

Even the lowest ethanol-gasoline blend of E10 is able to absorb more moisture than a regular 

dosage of methyl or isopropyl alcohol, eliminating the need for adding additional gas line 

anti-freeze formula (Wen et al. 2009). Furthermore, ethanol burns cooler that gasoline, thus 

preventing engine valves from overheating and burning (Wen et al. 2009). Logistically, 
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ethanol is also more favorable as it is much less flammable than gasoline, making it safer 

than gasoline to store, transport and refuel (Goettemoeller and Goettemoeller 2007).  

 

Routine operation for ethanol fueled vehicles are very similar to those conventionally fueled 

(Goettemoeller and Goettemoeller 2007). Special lubricants, to prevent pipe corrosion, for 

ethanol fueled vehicles are sometimes needed at a slightly higher cost than normal motor 

oils, but not all vehicles require these lubricants (US-DOE 1999). In addition, oil changes are 

less frequent, defraying some incremental costs (Wooley et al. 1999; Sheehan et al. 2004). 

 

Fuel ethanol (E10) is attractive as a gasoline extender and, a mean of increasing the gasoline 

supply. When blended with gasoline, ethanol will increase the quantity of motor fuel 

available for consumers, while not compromising the quality of the vehicle performances 

(Goettemoeller and Goettemoeller 2007). According to the Sainz (2009), ethanol (113 to 115 

octane rating) fueled vehicles exhibit the same power, acceleration, payload and cruise speed 

on high-compression engines, as their gasoline (87 octane) fueled counterparts. 
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THE IMPORTANCE OF BIOETHANOL FOR THE ENVIRONMENT  

 

In general, ethanol is one of the safest and most environmentally friendly components in 

reformulated gasoline. Ethanol is nontoxic, water-soluble, and rapidly biodegrades in 

essentially all environments (Goettemoeller and Goettemoeller 2007). When blended with 

gasoline, ethanol proportionally reduces other toxic components in normal gasoline, such as 

sulfur and benzene (Durante et al. 2009; Wen et al. 2009). Ethanol can be used as a fuel 

oxygenate substitute for methyl tertiary butyl ether (MTBE), while achieving equal 

combustion performance (Wen et al. 2009). However, unlike MTBE, ethanol poses no threat 

to surface or ground water (Wen et al. 2009). In fact, in the United States, blending ethanol 

with gasoline is a common practice to meet the new oxygen requirements mandated by the 

Clean Air Act Amendments (CAA) of 1990 as ethanol is not a toxic pollutant when used as a 

motor fuel (Durante et al. 2009).  

 

The U.S. Environmental Protection Agency (US-EPA 2002) credits ethanol blended 

gasolines with the reduction of hazardous emissions, which threaten air quality.  When 

blended with motor fuel, ethanol reduces the use of cancer-causing gasoline compounds such 

as benzene, toluene, xylene, and ethyl benzene (Durante et al. 2009). Because of this, ethanol 

blended gasoline programs are currently being introduced in cities that exceed public health 

standards for carbon monoxide and ozone pollution (Sainz 2009).  As a result, more than 

one-third of the gasoline for United States motor fuels contains some level of ethanol 

oxygenates to reduce harmful emissions and improve air quality (Jennings 2005). 
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The data that support the contributions of ethanol blended gasoline towards environmental 

friendliness are numerous. According to the US-EPA (2002), ethanol blended with gasoline 

produces fewer total toxic substances (Durante et al. 2009). Further studies made by the US-

EPA (2002) also reported reductions in particulate emissions (20%), nitrogen oxide (10%) 

and sulfate emissions (80%). According to another study by the Argonne National 

Laboratory, vehicles that use ethanol actually help offset fossil fuels' greenhouse gas 

emissions, which contribute to global warming, by 35 to 46% (Shapuori et al. 2002; Durante 

et al. 2009; Sainz 2009). Corn-based ethanol alone shows between 20 to 30% reduction in 

emissions according to the same model (Brekke 2005). These data are summarized in Figure 

1 below. 

 

 

Figure 1. Greenhouse gas reductions compared to standard gasoline (Durante et al. 2009). 

 

Ethanol programs, especially bioethanol from lignocellulosic biomass and agricultural 

feedstocks are perhaps one of the best means humankind has to fight air pollution and create 

a more sustainable carbon-neutral energy (Zhang 2008). 
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THE IMPORTANCE OF BIOETHANOL FOR THE ECONOMY 

 

Ethanol and ethanol related industries have a tremendously positive impact on the US 

economy. According to Jenkins (2008), the rapid growth and maturing of the ethanol 

industries is an important business and economic success story of the past several years, 

spanning more than twenty states. These amounts covers three major areas: production 

operations (annual operations and transportation), capital spending for construction of new 

production facilities and research and development, adding $65.6 billion to the nation’s 

Gross Domestic Product (GDP) in 2008 (Urbanchuck 2009). Along with this, fuel ethanol 

has also contributed to the lowering of transportation fuel prices, approximately $12 billions 

to the consumers as reported by Sainz (2009).  

 

Demand for fuel ethanol will increase between 2002 and 2016, resulting in the increment of 

farm-level corn prices by 11.8% (Urbanchuck 2009). Currently, ethanol production has 

helped boost U.S. farm income by $5.5 billion, and over the next 15 years, an additional $6.6 

billion of net cash income will be available annually for America's farmers (Vaughann 2000; 

Sneller and Durante 2007). 

 

In 2008, ethanol production provided more than 494,000 jobs in all sectors, from ongoing 

production, constructions and R&D spurring growth in many rural areas (Urbanchuck 2009). 

From the agriculture sectors alone, about 54,000 jobs are created in the United States by the 

year 2020 (Stowers 2009). Another study estimated that increased production and use of 

renewable fuels will also create as many as 300,000 new jobs by 2016 (Vaughan 2000). 
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Production of fuel ethanol also helps curb the massive transfer of energy dollars to other 

countries, presently amounting more than $700 billion annually (Jenkins 2008). According to 

Urbanchuck (2009), crude oil imports account for more than 65% oil supplies and the 

imports of this commodity are the largest contributor to US trade deficit. Therefore, 

production of nine billion gallons of fuel ethanol reduces crude oil import by 321.4 million 

barrels in 2008, a value of approximately $32 billion.  

 

The ethanol industry has a tremendously positive impact on the local economies around the 

plants themselves.  For example, in a study focused on 50 mgpy wood-to-ethanol plant 

reported by Sneller and Durante (2007), the construction of this type of infrastructure will 

generate up to $200 million in income, and create about 6,000 jobs, with 540 to 830 

permanent jobs that result in up to $48 million of annual income.  

 

In a case study on Iowa's 12 farmer-owned ethanol facilities (with the capacity to produce 

493 million gallons of ethanol, from 182 million bushels of corn annually), a total of $2.8 

billion in sales went back to local communities (www.iowacorn.org 2009). Iowa’s ethanol 

industry also has contributed more than 80,000 new job opportunities statewide, benefiting 

all employment sectors, especially rural communities (www.iowacorn.org 2009). Figure 2 

shows the location of all biofuels (bioethanol and biodiesel) plants in Iowa. This is just one 

of the more than 100 communities that have benefit from similar infrastructures (Sneller and 

Durante 2007).  
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Figure 2. Biofuel plants in Iowa (http://data.desmoinesregister.com/ethanol2/index.php). 

 

 

 

ENGINEERING AND PROCESSING IMPLICATIONS  

 

Our present study was designed to address the issues with pretreatment and enzymatic 

saccharification of lignocellulosic biomass, namely corn stover. We aimed to eliminate, if 

not, minimize the harsh and detrimental pretreatment process by using biological means and 

a coupling of biological and mild chemical pretreatment. Just as important, we did not use  

expensive commercial enzymes, but, by inducing the production of the necessary enzymes in 

situ from the wood-rot fungi (white-rot fungus: P. chrysosporium and brown-rot fungus: G. 

trabeum). This dissertation therefore  significantly reduces the costs associated with the 

http://data.desmoinesregister.com/ethanol2/index.php
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pretreatment and enzymatic processes, which reportedly are the most expensive steps in the 

production of cellulosic ethanol. 

 

We determined the ethanol yields based on two calculations – theoretical yield (Doran and 

Ingram 1993) and practical yield based on the fermentation efficiencies assumption set by 

Balat and Balat (2009) and Goh et al (2009). This was done for both glucose (from cellulose) 

and xylose (from hemicellulose). The first calculation is shown in Table 1 and the second is 

shown in Table 2. We calculated the conversion values based on the compositional analysis 

of our corn stover (untreated corn stover with 38% cellulose, 31% hemicellulose; NaOH 

treated corn stover with 44% cellulose, 32% hemicellulose).  

 

The yield values may seem low, probably due to the reason that part of the sugars liberated 

are consumed by the  fungi as they proliferate during the enzyme induction phase (Shrestha 

et al 2008; Shrestha et al 2009).The enzymatic saccharification of untreated corn stover using 

P. chrysosporium and G. trabeum followed by SSF had ethanol yields of 10.55 and 8.76% of 

the theoretical maximum yield, which corresponds to approximately of practical 14.14 and 

11.73% yields, respectively, with S. cerevisea as the fermenting organism (Table 3). When E. 

coli K011 is used as the fermenting organism, the theoretical yield was 10.53% (P. 

chrysosporium) and 12.19% (G. trabeum), while practical yield was 16.56% (P. 

chrysosporium) and 19.04% (G. trabeum) (Table 3).   

 

Ethanol yields are generally higher for the alkaline and fungal treated corn stover samples. 

Ethanol yields of 11.47% (P. chrysosporium) and 12.31% (G. trabeum) of the theoretical 
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maximum yield was recorded, which corresponds to approximately of practical 15.32% (P. 

chrysosporium) and 16.44% (G. trabeum) yields, respectively, with S. cerevisea as the 

fermenting organism. When E. coli K011 is used as the fermenting organism, the theoretical 

yield was 11.55% (P. chrysosporium) and 15.42% (G. trabeum), while practical yield was 

17.92% (P. chrysosporium) and 23.94% (G. trabeum) (Table 4). Thus, in our study, based on 

the cellulose and hemicellulose compositional analysis and taking into consideration the 

practical values and assumptions, the best ethanol yield is when the corn stover is pretreated 

with dilute NaOH followed by G. trabeum enzymatic saccharification with the percentage of 

yield at 23.94% (23.94 gram of ethanol/100 gram of corn stover) with  E. coli K011. 
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For a larger scale study, our research conceptualizes four production platforms: 

i.  Biological (fungal) pretreatment and saccharification of corn stover with S. cerevisea as 

fermenting organism (Figure 3) 

ii.  Biological (fungal) pretreatment and saccharification of corn stover with E. coli K011 as 

fermenting organism (Figure 4) 

iii.  Coupled biological (fungal) and mild alkaline (NaOH) pretreatment, and saccharification 

of corn stover with S. cerevisea as fermenting organism (Figure 5) 

iv.  Coupled biological (fungal) and mild alkaline (NaOH) pretreatment, and saccharification 

of corn stover with E. coli K011 as fermenting organism (Figure 6) 

 

Table 1.  Theoretical ethanol yield from cellulose and hemicellulose using calculations 
from Doran and Ingram (1993). 

 
Dry corn stover (1000 kg) Untreated corn stover NaOH pretreated 
Cellulose   

Cellulose content  × 0.38 × 0.44 
Ethanol stoichiometric yield  × 0.57 × 0.57 
Final yield  217 g 251 g 

Hemicellulose   
Hemicellulose content  × 0.31 × 0.32 
Ethanol stoichiometric yield  × 0.57 × 0.57 
Final yield  176 g 182 g 

 
Note :  untreated corn stover consist of 38% cellulose and 31% hemicellulose; NaOH treated 

consist of 44% cellulose, 32% hemicellulose. 
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Table 2. Practical ethanol yield from lignocellulose using the calculation from Balat and 
Balat (2009). 

 
Dry corn stover (1000 kg) Untreated corn stover NaOH pretreated 
Cellulose   

Cellulose content  × 0.38 × 0.44 
Ethanol stoichiometric yield  × 0.57 × 0.57 
Glucose fermentation efficiency × 0.75 × 0.75 
Final yield  162 g 188 g 

Hemicellulose   
Hemicellulose content  × 0.31 × 0.32 
Ethanol stoichiometric yield  × 0.57 × 0.57 
Xylose fermentation efficiency × 0.50 × 0.50 
Final yield  88 g 91 g 

 
Note :  untreated corn stover consist of 38% cellulose and 31% hemicellulose; NaOH treated 

consist of 44% cellulose, 32% hemicellulose. 
 
 

Table 3. Ethanol yield from untreated corn stover. 
 
 P. chrysosporium G. trabeum 
 S. cerevisea E. coli K011 S. cerevisea E. coli K011
Ethanol per 100 g corn stover 2.29 4.14 1.90 4.79 
Theoretical yield (%) 10.55 10.53 8.76 12.19 
Practical yield (%) 14.14 16.56 11.73 19.04 
 
 

Table 4. Ethanol yield from untreated NaOH treated corn stover. 
 
 P. chrysosporium G. trabeum 
 S. cerevisea E. coli K011 S. cerevisea E. coli K011
Ethanol per 100 g corn stover 2.88 5.00 3.09 6.68 
Theoretical yield (%) 11.47 11.55 12.31 15.42 
Practical yield (%) 15.32 17.92 16.44 23.94 
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Figure 3. Biological (fungal) pretreatment and saccharification of corn stover with S. 

cerevisea as fermenting organism. 
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Figure 4. Biological (fungal) pretreatment and saccharification of corn stover with E. coli 

K011 as fermenting organism.  
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Figure 5. Coupled biological (fungal) and mild alkaline (NaOH) pretreatment, and 

saccharification of corn stover with S. cerevisea as fermenting organism. 
 
 
Main production  – Ethanol 
 
By products  – Lignin related/derived products, carbon dioxide, organic acid (mainly 

acetic acid), xylose, xylitol, yeast extract 
 
Residue/waste  – Water (to be recycled), solid residues (for power generation) 

E
 t 

h 
a 

n 
o 

l  
 P

 r
 o

 d
 u

 c
 t 

i o
 n

 

C5 Products C6 Products

Xylose Glucose

FermentationXylitol 

Organic Acid

Enzymatic Saccharification

Carbon Dioxide 

Solid Residue Burner 

Power Generation 

Process use 

Sold to Grid

DistillationWater Recycling 

Ethanol

Fungal Pretreatment & Enzyme Production

Corn Stover

Transport of Corn Stover

Size Reduction

Dilute NaOH Pretreatment Hydrolysate

Ash

Landfill

Lignin Derived Products Glue & Binder 
Phenolic Resins 
Dispersants 
Soil Conditioner



 200

 
 
Figure 6. Coupled biological (fungal) and mild alkaline (NaOH) pretreatment, and 

saccharification of corn stover with E. coli K011 as fermenting organism 
 
 
Main product  – Ethanol 
 
By products  – Lignin related/derived products, carbon dioxide, organic acid (mainly 

acetic acid), yeast extracts 
 
Residue/waste  – Water (to be recycled), solid residues (for power generation) 
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CONCLUSION  

 

The ethanol industries are indeed making significant contributions to the economy, both 

locally and nation-wide, by creating demand for local goods and services, stimulating 

investment, generating tax revenues, invigorating grain markets, creating employment 

opportunities with salaries exceeding regional averages, and displacement of imported oil. As 

for the case of lignocellulosic based bioethanol, engineering aspects, process optimization 

and production economics are important considerations that may render cost to be 

competitive with fossil fuels. This will ensure marketability and create the incentive for the 

mass consumers to adopt renewable sources of fuel.  
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CHAPTER 7: GENERAL CONCLUSION AND RESEARCH RECOMMENDATIONS 

 

Since 2006, there has been a significant increase in the utilization of ethanol in the United 

States, and this trend is also observed globally. Research and production of fuel ethanol are 

currently being promoted in many sectors, especially in the transportation sector. In the hope 

of increasing the production and use of biofuels for transportation and energy purposes, 

biorenewable resources and environmentally friendly processes are of particular interest 

because they offer energy security, economics possibilities and mitigation of greenhouse 

gases. Efforts being made to transition the feedstock from corn starch and sugar based to 

lignocellulosic biomass are indeed noble, and lignocellulosic ethanol is projected to make a 

significant contribution to future energy needs that will be even more environmentally 

friendly than first-generation biofuels. 

 

Lignocellulosic ethanol platform offers greater flexibilities as the technologies may be 

adapted across various types of plant biomass materials. These abundant feedstocks are low 

cost and offer many possibilities for the development and implementation of biobased 

industries that supply the world energy needs for the international biofuel market. Of the 

various feedstocks being studied, corn stover is a very attractive candidate because of its 

close proximity to existing ethanol plants. Corn stover and corn kernel can be collected at the 

same time, thus lowering labor, harvesting and transportation costs.  

 

In the past decade, there are worldwide efforts being explored to improve production and 

reduce the overall cost of plant biomass ethanol, as the success of lignocellulosic ethanol is 
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directly related to the profitability and environmental sustainability of the overall production 

process. One method to boost competitiveness is by introducing cost effective pretreatment 

and enzymatic processes. An ideal lignocellulolytic biocatalyst should degrade the three main 

components of corn stovers, namely, the cellulose, hemicellulose and lignin. In this 

dissertation, we have successfully applied inexpensive fungal and mild alkaline pretreatment 

and saccharification of corn stover into sugars, both C5 and C6, that are readily fermentable 

by S. cerevisiae and E. coli K011.  

 

The biological pretreatment and lignocellulolytic activities of P. chrysosporium, G. trabeum 

and T. reesei on other lignocellulosic biomass is a very promising area for research as there 

are numerous applications warranting the application of these processes. We believe that 

through advancement in biotechnology, molecular biology and genetic engineering, these 

wood-rot fungi could be further manipulated to perform maximized biological pretreatment 

and simultaneous enzymatic hydrolysis of lignocellulosic materials for ethanol production. 

While the addition of commercial cellulases may not be eliminated altogether, the results of 

our studies do offer promising potentials signs that there could be savings in enzyme costs. 
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Thus, the outcome of our dissertation may lead to the following advantages: 

 

i. Environmentally friendlier processing – ethanol producers can minimize the 

environmentally detrimental pretreatments processes by coupling the current chemical 

and physical based technologies with biological means. 

 

ii. Economical and technological viable ethanol production – ethanol plants can produce 

their own enzymes in situ to supplement expensive commercial preparations. 

 

iii. More effective ethanol production - using adaptive and living fungi, such as P. 

chrysosporium or G. trabeum, will reduce the inhibiting by-products during 

saccharification and fermentation, as these fungi have the abilities to convert and degrade 

some of these chemicals. 

 

In conclusion, lignocellulosic ethanol has the potential to fulfill the President’s goals. With 

emerging technologies that are more efficient and less expensive, the problem of biomass 

recalcitrance, that hinders the commercial production of ethanol from various lignocellulosic 

biomasses, may be resolved and the future of biofuels from lignocellulosic sources is 

promising. These biotechnological advances will address the issues such as biomass 

feedstock yield improvement and processing steps. 
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Future studies recommendations:  

 

While the results of our studies show promising applications of our procedures, we 

recommend the following strategies to further improve on the existing processes:  

 

1.  Screening of other lignocellulosic enzyme inducers  

We see that there are significant differences of activities when pure cellulose and corn 

stover are used to induce enzyme productions, especially in G. trabeum. While no 

fermentable sugar was detected in pure cellulose induced G. trabeum, corn stover 

(untreated and treated) clearly indicates that this fungus has the best enzymatic 

performance in liberating fermentable sugars. Therefore, we suggest the screening of 

several other lignocellulosic biomass, such as poplar, switchgrass and distillers dried 

grains (DGGs) to determine the best inducers. 

 

2.  Optimize solid state parameters 

 We also recommend the manipulation of other parameters such as the duration of solid 

state fermentation, aeration level, pH and carbon:nitrogen ratios. 

 

3.  Concentration of enzymes 

The saccharification of the raw material and ethanol yield during SSF are highly 

dependent on the enzymatic activities of the fungal species. Therefore, to possibly 

improve the performances of the enzymes from the P. chrysosporium and G. trabeum 

innocula, we suggest to concentrate of the enzyme preparation, and perhaps to include 
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protease inhibitor to prevent enzyme degradations. Purified and concentrated enzyme 

consortia would definitely improve the liberation of sugar. The potency of these enzymes 

preparations can be compared against the popular commercial blends (Spezyme CP and 

Accellearase 1000).  

 

4.  Mixed culture 

Another possible process improvisation is to perform solid state fermentation using a 

mixed culture of the three fungi. The logic behind this suggestion is that while P. 

chrysosporium effectively degrade the lignin components, co-culturing of G. trabeum and 

T. reesei may assist in further hydrolysis of the cellulose-hemicellulose components. 
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