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GENERAL ABSTRACT 

Portland Cement Pervious Concrete (PCPC) is a unique and effective mean to solve the 

important environmental issues and to support green, sustainable growth, by reducing 

stormwater and providing treatment of pollutants contained within. As a replacement for 

conventional impermeable pavement, PCPC has seen increasing used in recent year.  

 

Clogging of PCPC leading to potential problems in serviceability has been regarded as one of 

the primary drawbacks of PCPC systems. The clogging potential of three void ratios of 

pervious concrete were examined using three different soil types: sand, clayey silt and clayey 

silty sand. Pervious concrete cylindrical specimens were exposed to sediments mixed in 

water to simulate runoff with small and large load of soil sediments. Pressure washing, 

vacuuming and a combination of these were used as rehabilitation methods to clean the 

clogged specimens. The clogging tests were conducted using falling head permeability 

apparatus by allowing the “dirty water” to flow through the specimen. A clogging cycle 

included both clogging and cleaning procedure. The permeability was determined during the 

clogging procedure and after the cleaning procedure in each clogging cycle. 20 clogging 

cycles were repeated on each sample to simulate the 20 years of pavement service life.  

 

The results show that permeability reduction magnitude as well as rate and permeability 

recovery by rehabilitation are significantly affected by sediment types, void ratios of 

specimens, and selection of rehabilitation methods. The results provide a quantitative 

evaluation of the clogging effect of pervious concrete, and the comparison of tested 

rehabilitation methods in terms of permeability recovery.  
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Chapter 1. INTRODUCTION 

1.1 General   

Portland Cement Pervious Concrete (PCPC) has been used in construction for over 100 years 

[32]. Its first recorded use in construction buildings was found in Europe. In the U.S., PCPC 

has becoming popular due to its great environmental benefits in stormwater management and 

sustainable development [10, 50]. Pervious concrete pavement is an "environmental friendly" 

concrete pavement, which can be used to carry the light traffic load volume in urban area, 

and meanwhile, to decrease the effect of impervious concrete pavement on environment [32]. 

More than just the drainage of surface water runoff, its advantages include pollution 

treatment of runoff water, reducing traffic noise, recharging of aquifers, increasing skid 

resistance, and minimizing the heat island effect in large cities [12].  

 

The hydrological performance of PCPC is always the “driving force” to agencies to permit 

PCPC construction. In contrast with traditional impervious pavement, the properly designed 

and constructed PCPC is regarded as a structural infiltration system, which can collect the 

large runoff volume and allow the water to infiltrate into the ground with purification, and 

recharge the natural water sources [10]. Hence, the cost of hydraulic facilities applied with 

conventional pavement can be saved by using PCPC.  

 

The structural and hydrological designs of PCPC have been widely discussed in the 

literatures.  Although pervious concrete has been successfully constructed and function in 

numerous geographical locations, and many basic regulations, standards, properties of 
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pervious concrete have been well discussed and established, there still exists a series of 

issues that have not been completely resolved. Those issues continue to impede the wide 

application of pervious concrete, and reduce its long term functionality in service. These 

concerns are including [12, 26, 32, 47]:  

1) the blockage of pores by sediments (clogging materials), resulting in the decrease of 

permeability or infiltration and loss of storage of PCPC pavement, as well as the 

maintenance methodology for this case;    

2) the laboratory permeability test results, which can be very different with the design 

infiltration rate values of the in-place pervious concrete;  

3) Standards for the fabrication of specimens for testing and permeability and porosity 

measuring, although universal standards are currently in development;   

4) In-place pervious concrete quality control;  

5) Freeze-thaw durability  

 

The freeze-thaw durability problem of PCPC has been discussed and tested in laboratory 

conditions [19]. Current studies show that adding approximately 7% of fine aggregates by 

weight as the replacement of coarse aggregates, air entraining agent and fibers in the 

mixtures can significantly increase the freeze-thaw durability of PCPC and also its 

mechanical properties [22, 27]. These important findings are presently being testing in the 

field in the numerous installations of pervious concrete placed in the past six years.  
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The sedimentation effect on the hydrological behaviors of PCPS (Pervious Concrete 

Pavement System) has been studied in the laboratory condition, and the results show that 

finer sedimentation materials could cause more significant permeability loss for the PCPS 

compared to coarser sedimentation materials. Being exposured to the same clogging 

condition, the samples mixed with smaller aggregates have the better clogging resistance 

than the samples mixed with larger aggregates. The traditional cleaning method is not 

effective when PCPC pavement was exposure to finer sedimentation materials [28, 41, 59]. 

The filter fabric and sub-base design should be carefully considered when pavement being 

exposure to clogging conditions. Applying the rehabilitation methods to in-place pervious 

concrete, the results show that traditional maintenance increase approximately 200% over the 

original infiltration rates of pervious concrete cores, and achieve the satisfied performance 

[35].  

 

1.2 Problem Statements 

According to the literature and the behaviors of in-place PCPC pavements, the ability of 

effectively draining stormwater runoff for in-place pervious concrete decreases gradually as 

the pavements get clogged due to the fine particles entering into its pore structure, and 

subsequently block the water flow channels.  

 

This study is recommended [28] to quantitatively determine the clogging effect on hydraulic 

properties of PCPC pavement, including permeability and effective service life, as well as the 

residual permeability at end of service performance. Although various maintenance methods 
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have been reported and applied in the field to clean the PCPC pavement, and also shown 

great efficiency, there exist few studies to quantify the recovery of hydraulic function of 

PCPC after being clogged. More importantly, current research rarely shows the decrease 

trend of hydraulic behaviors during the service life of PCPC being exposed to clogging 

condition. It is noted that the trend of hydraulic behaviors would be helpful to establish the 

economical maintenance schedule. Based on the findings and confirmations in this study, 

PCPC pavement could be better evaluated, developed and applied by design professionals. 

The key element of such a study is the development of a rational design methodology based 

on recognized and well established engineering principles.  

 

1.3 Objectives  

The clogging failure is regarded as one of the primary reasons that cause the decrease of 

functionality and even the thorough failures of pervious concrete pavement eventually [28]. 

Solving clogging relevant problems will make the contributions to the sustainable 

urbanization and environmental issues [13, 15, 36, 63]. One of the important reasons that 

impede the widespread acceptance of pervious concrete is its perceived maintenance. It is 

empirically understood that vacuum sweeping and pressure washing can improve the 

infiltration capacity of pervious concrete, and increase the effective service life of PCPC 

pavement, but rarely understood the quantitative relationship between the permeability 

reduction and recovery of PCPC, the properties of clogging materials, properties of PCPC 

and the several of rehabilitation methods. Since the variability of density and void ratios of 

in-placed pervious concrete is so great; the results of simulated sedimentation tests on 
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cylindrical specimens may not be able to predict the actual case. However, this provides an 

idea of understanding the influence of void ratios and clogging material’s properties on 

clogging effect of pervious concrete  

 

This study primarily focuses on the clogging effect or sedimentation issues, including the 

following important objectives: 

1. Identify and analyze the effects of various void ratios on the change in permeability 

coefficients of pervious concrete being exposed to clogging;  

2. Determine the deposition patterns and severity of different sedimentation materials on 

clogging effect;    

3. Determine the efficiency and working mechanisms of three rehabilitation methods 

under different clogging conditions and for various void ratios of PCPC specimens;  

 

1.4 Approach 

This study investigated the clogging effect of various pervious concrete specimens 

containing different void ratios and subjected to clogging that caused by three sedimentation 

materials so as to bring the influence of void ratios, gradation of sedimentation materials on 

the change in permeability, and the efficiency of tested cleaning methods in this study.  

 

This study was divided into two stages. In Stage I, the testing specimens were carefully 

casted, compacted and finished in order to achieve the anticipated design void ratios. The 

testing specimens were trimmed into 4 inch diameter and 6 inch height cylinders, and were 
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divided into three groups based on measured void ratios, which were 15%, 20% and 25%. In 

Stage II, the permeability coefficients of three groups of pervious concrete were examined 

with three different types of clogging materials: sand, clayey silt, and clayey silty sand. The 

clogging test in this experimental study on permeability reduction is conducted using a 

falling head permeability test equipment. Three cleaning methodologies pressure washing; 

vacuuming and the combination of pressure washing followed by vacuuming were also 

conducted on clogged specimens.  

 

To simulate the in-situ clogging condition, three groups of specimens were subjected to a 

small sedimentation load or so-called “typical sedimentation load", and a relatively high 

sedimentation load or "worst case".  The use of sedimentation loads in both small load and 

large load was estimated based on the 20 years' service life of pavement. The testing results 

were used to evaluate the clogging potential of various sedimentation materials, effects of 

void ratios of PCPC on clogging, and efficiencies of rehabilitation methods applied in this 

study. However, due to the great variability of infiltration rates and density of in-place 

pervious concrete pavements, the testing results in this study based simulated clogging test 

may not truly indicate the “real” case, but provide a guidance of considering and preventing 

the clogging effect of pervious concrete from occurring in terms of three perspectives, which 

would be helpful to establish the quantitative and accurate study on clogging effect of 

pervious concrete pavement. 
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1.5 Organization of This Thesis  

This thesis organized into seven chapters. Chapter One presents the general introduction on 

PCPC and research and methodology outline as well as the anticipated findings. Chapter Two 

presents a brief summary of current developments and researches of PCPC based on 

literature review, and particularly focuses on clogging effects of pervious concrete. The 

development and design of laboratory testing methodologies and materials, equipments, 

principal theories are introduced in Chapter Three. The testing results, data analysis and any 

notes and observations obtained through testing work were addressed in Chapter Four. 

Chapter Five includes the conclusion and recommendations developed based on the findings 

from this research, as well as the recommended study and further improvements. Important 

cited references in this study are listed.   
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Chapter 2. LITERATURE REVIEW 

2.1 General 

Portland Cement Pervious Concrete (PCPC) has been widely used in infrastructures 

especially in urban areas over the past 4 decades [37]. With the support of the United States 

Environmental Protection Agency (EPA), a pervious pavement program was developed, and 

was initially installed in parking lots [37]. Currently, the main application of PCPC in the 

U.S. includes parking lots, pathways, sidewalks, slope stabilization, swimming pool decks, 

green house floors, zoos, shoulders, noise barriers, permeable base under a normal concrete 

pavement, friction courses for highway pavements and other cases with the low traffic 

loadings [15, 57]. As cited in Ferguson [37], it is recommended that it is possible to select 

pervious concrete materials for approximately half of the built cover in most of urban land 

due to the low or moderate traffic. Pervious concrete is a special building material with 

environmental, economic and structural benefits.  

 

2.1.1 Environmental Benefits 

The recent interests in sustainable development and recognition of the PCPC system as a best 

tool for stormwater management have been become the driving force that makes PCPC “the 

most popular material to” use in U.S. [42]. The application of PCPC pavement improves the 

urban drainage systems, purifies the stormwater, supports the supplement of underground 

water, reduces the heat island effect and increases the skid resistance in freezing conditions 

[37].  
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Due to its highly porous structure, PCPC pavement allows air and water to reach the roots 

promoting healthier and more beautiful trees rather than cut off the by conventional 

pavement [37]. Properly designed and constructed PCPC system can store some or all of the 

precipitation in a site, and reduce the quantity of surface stormwater water runoff [44, 48]. 

Reducing heat island effect is another important issue, especially in large cities where most 

areas are paved with impervious construction materials; the heat island causes the significant 

energy consumption up to 12% and higher urban temperatures [44, 52] 

 

Pervious concrete pavement systems act a filter, which can retain the pollutants in the first 

flush of rainfall, and prevents it from entering the streams, ponds, and rivers [15]. Up to 75% 

of the total urban contaminant loads can be reduced by using PCPC pavement [63, 65]. This 

provides a valuable stormwater management tool under the requirements of EPA Storm Waer 

Phase II Regulation.  A recent study [43] indicates the removal efficiency of pollutants by 

PCPC pavement, the results shown in Table 2-1.  

Table 2-1. Effectiveness of Pervious Pavement Pollutant Removal, % by Mass [43] 

Study 

Locations 

Total 

Suspended 

Solids 

(TSS) 

Total 

Phosphorus 

(TP) 

Total 

Nitrogen 

(TN) 

Chemical 

Oxygen 

Demand 

(COD) 

Metals 

Prince 

William, 

VA 

82 65 80 - - 

Rockville, 

MD 
95 65 85 82 98-99 
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2.1.2 Economic Benefits 

For regular and pervious concrete, installation costs for both ranges from $2 to $6 per square 

foot. Therefore, there is no significant increase in initial cost for pervious concrete [13]. For 

pervious concrete acting as pavement and detention area or drainage facility as a part of 

stormwater management, this pavement technology creates more efficient land use by 

eliminating the need for retention ponds, other stormwater management devices or sewer 

system. Pervious pavement was properly counted as both a pavement structure and a part of 

the drainage system. By doing so, pervious concrete can save the overall project costs on a 

first-cost basis [37].   

 

Moreover, pervious concrete pavement can save up to 12% of energy consumption by 

reducing the effect of heat island effect, especially in large cities that are paved with large 

area of impervious pavement [37]. The life-cycle cost of pervious concrete is also much 

lower than normal pavement, because it can be recycled at the end of life cycle. This has 

been widely recognized as the lowest life-cycle cost option available for paving [13, 37].  

 

2.1.3 Structural Benefits 

The unique surface texture of PCPC compared to conventional concrete pavement provides 

the enhanced friction for vehicles tires and skid resistance, prevent the driving hazards 

especially in severe weather such as snow or rainfall. The open surface of PCPC allows rapid 

infiltration and prevents water puddling, which can eliminate the spraying and skidding 

under freezing temperature. Experiences show that pervious concrete pavement allows rapid 
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thawing due to the high open voids on the surface. Figure 2-1 below shows the comparison 

of post-snowstorm pavement surface of conventional asphalt pavement and pervious concrete 

pavement.  

 

Figure 2-1. Conventional Asphalt Concrete Pavement and Pervious Concrete Pavement 

after Snowstorm (Adopted from [24]) 

Compared to conventional pavements, pervious concrete pavements have many other 

advantages as below, as detailed below [23, 34, 37, 43, 48] 

1) The ability to drain surface water runoff faster and decrease the cost of drainage 

facilities, detention basins, and water supplies;   

2) Increase groundwater storage in urban areas and protect pristine water resources;   

3) Reduce the pollutants of storm water in urban areas and purify the ground water;  

4) Decrease effect of heat-island, decrease the surface temperature, keep the free 

exchange of moisture and air in underground soil and benefit for the plants to grow;   

5) Increase skid resistance and surface friction, which would provide the safe driving;   
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6) Decrease tire noise, and achieve a lower noise level than normal concrete and dense 

asphalt pavement;  

7) Regarded as green and recyclable building materials;  

 

2.1.4 Disadvantages  

These great advantages related with environmental, economic and structural issues have been 

the driving force of the increasing application of PCPC all over the world. However, there 

are also disadvantages and problems that have not been completely solved, and those 

problems impede the use and application of PCPC. However, its wide spread application has 

been limited by inconsistent information and absence of uniform standards that address the 

freeze-thaw durability, clogging, strength and the appropriate use and design. The 

disadvantages for pervious concrete as listed below are mentioned in the literature, and more 

research is necessary to solve these problems [23, 34, 42, 43, 48]:  

(1) PCPC does not handle the heavy traffic loadings and vehicles due to its low  

compressive and flexural strength;  

(2) The cost of maintenance and cleaning is high. The clogging effects on pervious 

concrete pavement decrease the initial drainage ability significantly in the short 

period. The drainage function may lose thoroughly if without the effective and timely 

cleaning;  

(3) The resistance to freeze-thaw cycles and deicing chemicals attack are more sensitive 

than normal concrete;   
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(4) There are installation problems. Proper sub-grade preparation is important. With the 

different sub-grade materials, the compaction levels also change. A subgrade with 

uniform and stable surface, proper moisture content and the sufficient permeability is 

the key to drain the water infiltrate through the pervious concrete pavement. Over 

compaction may also cause the swelling of the subgrade; 

(5) Effects on the neighboring environment and developed area. The mobile sediments 

from the surroundings area or construction sites must be prevented from blocking the 

open pores. The necessary oversight must be taken into the account in design. 

Particularly, the runoff from developed area is likely to contain lower levels of 

sediments loading to cause the clogging effects;    

(6) Initial protection is important for lasting service life of pervious concrete pavement. 

For example, the pervious concrete should be finished after the adjacent area is 

finished and no construction traffic should be allowed onto the pervious pavement. 

This is normally discussed during the pre-construction meeting;   

Pervious concrete sites have had a relatively high failure rate in the past, which has been 

attributed to poor design, inadequate construction techniques, low permeability soil, heavy 

construction traffic and poor maintenance [60, 62, 63]. Great progresses have been made in 

the past few years in increasing the mechanical properties, free-thaw durability, concrete 

properties, and construction techniques developments.    
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2.2 PCPC Materials Properties   

Pervious concrete, also known as porous, gap-graded, permeable or enhanced porosity 

concrete in the literatures, is concrete made by eliminating most or all of the fine aggregate 

(sand) in normal concrete mixtures. Lacking the fines particles creates empty space between 

the coarse aggregates as there is. Insufficient paste fills the remaining space. This leaves a 

highly porous structure and the porosity anywhere from 15% to 35% but most frequently 

about 20%. The interconnected pores allow the concrete to transmit water at the relatively 

higher rates without compromising the durability or integrity of the concrete [35, 41]. In this 

section, the aggregates, cementatious materials, chemical admixtures and typical mixtures 

commonly used for PCPC will be discussed. A brief summary on fresh and hardened PCPC 

properties including unit weight, porosity, permeability, F/T resistance, mechanical 

properties and compaction methods based on current literature review is presented.  

 

Aggregates  

Coarse aggregate grading used in pervious concrete is typically gap-graded or single-sized 

coarse aggregates or narrowly-graded between ¾ and 3/8 in (19 mm to 9.5 mm). Aggregates 

used in pervious concrete meet the requirements of ASTM D488 “Specification for Crushed 

Stone, Crushed Slag and Gravel for Waterbound Base and Surface and Surface Courses of 

Pavements” and ASTM C33 “Standard Specification for Concrete Aggregates”.  A narrow 

grading is an important characteristic and is the remarkable difference with conventional 

concrete. Use of coarser aggregates in the mixture increases skid resistance, void ratio, and 

permeability. Smaller aggregates produces higher mechanical strength but with tradeoff 
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decreasing of permeability. Angular aggregates produce less density, higher voids, 

permeability and lower strength compared to rounded aggregates [22].  

 

In pervious concrete produced to date, fine aggregates are generally non-exist or present in a 

very small amount. Current studies show that the additional fine aggregates up to 7% of 

replacement of coarse aggregates significantly increase the freeze-thaw durability, 

compressive strength and flexural strength of PCPC [22, 27]. It also should be pointed that 

the permeability coefficient or hydraulic function decreases with the addition of fines 

aggregates in mixture. The increase of aggregates size would increase permeability and 

decrease the acoustic absorption property for the samples with similar total porosity [18-20]. 

Good mixtures should achieve the balance between the hydraulic performance and 

mechanical properties.  

 

Cementitious Materials  

Cementitious materials used in pervious concrete meet the relevant ASTM specifications. 

Portland cement and blended cement conform with ASTM C 595 "Standard Specification for 

Blended Hydraulic Cements" and ASTM C 1157 "Standard Performance Specification for 

Hydraulic Cement" may be used in pervious concrete [15]. Fly ash, slag, and silica fume as 

supplementary cementitious materials confirming with ASTM C 618 "Standard Specification 

for Coal Fly Ash and Raw or Calcined Nature Pozzolan for Use in Concrete", ASTM C 989 " 

Standard Specification for Slag Cement for Use in Concrete and Mortars", and ASTM C 

1240 "Standard Specification for Silica Fume Used in Cementitious" respectively, also used 

in pervious concrete.  
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Chemical Admixtures  

Chemical admixtures frequently used in conventional concrete are also used in pervious 

concrete for the same reasons. Due to the low workability and water cement ratio, the high 

range water reducer is always used. Air entraining agent is also commonly used to increase 

the freeze-thaw durability of pervious concrete in severe environment [22, 27, 56]. Retarders 

or hydration stabilizers are always used to increase the setting time in field [15].   

 

Mixtures   

A good mixture for pervious concrete always meets the requirements listed below [25]:   

1. Sufficient strength for loadings;  

2. Desired permeability for acceptable hydrological function;  

3. Freeze-thaw resistance;  

4. Clogging resistance, and minimize the maintenance cost;  

The relationship between water to cement ratio (w/c) and mechanical strength for pervious 

concrete has not been well established as with conventional concrete. Water-cement ratio 

(w/c) and aggregate-binder ratio (a/b) are two important ratios that affect the mechanical and 

hydrological properties of PCPC [25].   

 

1) Effects of Water to Cement Ratio  

Low w/c ratio around 0.27-0.3 is preferred for pervious concrete [25]. The low w/c ratios can 

cause insufficient cohesion and constancy, thus reducing bonds between the particles (See 

Figure 2-2), which cause the low workability of PCPC. On the contrast, high w/c ratios may 
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lead to the over-workable PCPC with excessive paste volume than actually needed, thus 

cause segregation (See Figure 2-3) and much lower permeability than anticipated values after 

hardened.   

 

Figure 2-2. Samples of Pervious Concrete with Different Water Contents, Formed into 

A Ball (a) too little water, (b) proper amount of water, and (c) too much water (Adopted 

from [24]) 

 

Figure 2-3. Excessive Water Leading to Segregation of PCPC Slab: Top View (Left) & 

Bottom View (Right)  

24” 

Diameter 

& 6” 

Thickness 
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2) Effect of Binder to Aggregate Ratio 

Proper values of binder to aggregate ratio (b/a) primarily depends on the application and 

mixture materials. Similar with the effect of w/c on properties of PCPC, the high (low) b/a 

ratios cause strong (weak) contact between particles, thick (thin) paste layer around 

aggregates and occupation of hydraulic channels and void spaces, respectively. Figure 2-4 

shows the difference for these two cases. However, it should be noted that the aggregate 

distance may decrease with the increase of b/a ratios.   

 

The influence of w/c and b/a ratio on properties and performance of PCPC is summarized in 

Table 2-2. A typical mixture for pervious concrete is shown below in Table 2-3. A summary 

of PCPC properties published in the literature is presented in Table 2-4.                            

 

Figure 2-4. Higher Binder/Aggregate Ratio (Left) and Lower Binder/Aggregates Ratio 

(Right) (Adopted from [15]) 
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Table 2-2. Effects of w/c and b/a ratio on PCPC Properties 

Ratio Proper Values Low High 

w/c  
0.27-0.30 

(by weight) 

1. Low workability 

2. Low strength 

3. Low flexural strength 

4. Low elastic modulus 

5. Low freeze-thaw-

durability 

1. Low permeability 

2. Low void ratios 

3. Eliminate the anticipated 

hydraulic function 

4. Eliminate the effective 

service life 
b/a  

0.18-0.22 

(by volume) 

 

Table 2-3. Typical Mixtures of PCPC [15] 

Materials Proportions 

Cementatious materials, lb/yd
3
 

(kg/m
3
) 

0.18-0.24 450-700 (270-415) 

Coarse Aggregates 

lb/yd
3
 (kg/m

3
) 

- 2000-2500 (1190-1480) 

Fine: coarse aggregate 

(by mass) 
0-1:1 - 

W/C 0.27-0.40 - 

Void Ratio 15%-35% - 

Air Entraining Agent - 2 oz/cwt 

Mid-Range Reducer Agent - 6 oz-cwt 

Hydration Stabilizer - 6-12 oz/cwt 
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Table 2-4. PCPC Properties Presented from Literature 

Void Ratio 

(%) 

Density 

(lb/ft3) 

Permeability 

(in/hr) 

Compressive 

Strength 

(psi) 

Flexural 

Strength 

(psi) 

Reference 

15-25 100-125 288-756 800-3000 150-550 
Tennis et 

al.2004 

15-35 - - - 363-566 
Olek st 

at.2003 

15.6-24.4 - 91-687 2385-3260 - Delattee, 2009 

18-31 - - 1595-3626 - Park 2004 

11-15 - 36-252 - 400-606 Kajio 1998 

20-30 118-130 - 2553-4650 561-825 Beeldens 2001 

18.3-33.6 104.1-130.9 142-694 1771-3661 205-421 
Wang et al. 

2006 

11.2-33.6 98.6-138 12-2120 784-4027 201-429 
Schaefer et al, 

2008 

- 109-125 - - - ASTM C 1688 

 

2.2.1 Unit Weight   

The fresh density of pervious concrete is an indicator of the mechanical and hydrological 

properties, and provides the best routine test for monitoring quality [15]. The fresh unit 

weight of pervious concrete is commonly between 105 lb/ft
3
 to 120 lb/ft

3
 (1680 to 1920 

kg/m
3
) depending on the mixtures, mixing materials and compaction levels and procedures 

[56]. By testing the sample prepared using gyratory compaction method [56], porosity was 

found to decrease linearly with unit weight increases (the blue line) as shown in Figure 2-5. 

The void ratio (porosity) of plastic and hardened pervious concrete can be determined from 

the unit weight, and furthermore, the compressive strength is predicted based on the direct 

relationship between voids and compressive strength [56]. Also, with increase of unit weight, 

the workability of fresh pervious concrete also decreases.  
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Figure 2-5. The Linear Relationship between Unit Weight and Voids (Adopt from [56]) 

 

2.2.2 Porosity  

Porosity is a function of the mixtures, mixing materials and finishing and compaction 

procedures. The relationship and numerical functions between porosity and permeability of 

pervious concrete have been discussed by several studies [9, 20, 22, 27, 33, 35,]. Porosity 

affects the properties of pervious concrete including compressive strength, flexural strength, 

permeability and storage capacity, and is regarded an important parameter in many design 

calculations [33]. The typical range of total porosity is 15% to 30%. Insufficient hydraulic 

performance and weak mechanical properties may be caused if the porosity is lower than 

15% and higher than 30%, respectively. 20% total porosity is considered as the reasonable 

range for hydrological and structural design of pervious concrete [15].  
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Unlike with conventional concrete, porosity or so-called total porosity in pervious concrete is 

the summation of open porosity or called “effective porosity or interconnected porosity” and 

closed porosity or so-called “dead-end porosity” [18, 19, 20, 33,]. The open porosity 

(interconnected porosity or effective porosity) allows fluids flowing through [20, 31], and in 

contrast, the dead-end or close porosity fairly make little contribution to transportation 

through the pavement. The closed porosity is randomly distributed within the paste and forms 

the isolated or open on one side and closed on the other side, which makes limited 

contribution on water infiltration. Studies show that the higher porosity may not be the 

indicator of the high permeability in pervious concrete. Also, the total porosity alone cannot 

provide the adequate information to predict the permeability since there was the high 

variability of permeability for the pervious concrete samples all with close total porosity. The 

open or effective porosity is more important to predict the permeability, acoustic absorption 

and mechanical properties [19, 20]. The effective porosity factor was defined as the ratio of 

the open porosity and total porosity. The higher the effective porosity factor, the greater the 

permeability with the similar total porosity would be [17, 67]. Effective porosity is normally 

measured in the laboratory using ASTM C 140 “Standard Test Methods for Sampling and 

Testing Concrete Masonry Units and Related Units”, or ASTM D 7063 “Standard Test 

Method for Effective Porosity and Effective Air Void of Compacted Bituminous Paving 

Mixture Samples”.  

 

The porosity measurements applied in this research were conducted by following the 

“Volume Method” or “Water-Displacement Method” [16, 33]. The Eqn. 2-1, 2-2 and 2-3 are 

used to determine the total, open and effective porosity, respectively. W1 is regarded as the 
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weight of the specimen measuring under surface saturated dry (SSD) condition; W2 is the 

weight measurement under totally dry condition and W3 is weight measurement under 

immersed condition.  

%100)
12

1((%) 
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WW
Ptotal


      Eqn. 2-1 

%100)
13

1((%) 





V

WW
Popen


      Eqn. 2-2                                               

(%)(%)(%) opentotalclose PPP        Eqn. 2-3                                                                                                                         

 

Where  

Popen = Total porosity, % 

Pclose = Closed porosity, % 

W1= Weight immersed, (lbs or kg) 

W2= Dry weight, (lbs or kg) 

W3= Surface saturated dry, (lbs or kg) 

V= Normal sample volume based on dimensions of the sample, (ft3 or m3) 

ρ = Density of water, (pcf or kg/m
3
)  

 

2.2.3 Pore Structure 

Recently, a number of studies [16, 18, 19, 20, 31] have been conducted on the pore structures 

of pervious concrete. The pore structure of pervious concrete included four factors which are 

pore volume, pore size, pore distribution and the connectivity of the pores [33, 34]. Studies 

on pore structure benefit the understanding the freeze-thaw damage occur in pervious 

concrete, permeability prediction and clogging phenomena and associated maintenance.  
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As cited in [33, 34], the results showed that a fairly linear vertical porosity distribution with 

lower porosity occurred in the top quarter of the specimen, with average porosities in the 

center half, and higher porosity near the bottom. This conclusion explains that larger 

clogging particles may be trapped on the top or near the surface within the pavement, which 

also explains that surface washing and vacuuming sweeping have a good efficiency in 

cleaning the clogged pavement subjected to larger sedimentation materials [31, 41].  

 

The effect of pore size distribution has been studied [19, 20, 56]. The results showed that 

measured porosity is not the only factor that controls the hydraulic performance of pervious 

concrete. Increasing either the pore size or pore connectivity in terms of pore structure 

parameters would cause the increase of hydraulic conductivity in pervious concrete. The 

establishments of two-dimensional (2D) planar images of multiple cross-sections were 

applied to predict the three-dimensional (3D) pore structure, and the hydraulic conductivity 

of pervious concrete. The results showed a fairly good match between the predicted values 

and actual values, especially for the samples mixed with small aggregates (3/8 in) due to the 

more uniformly distributed pores [19, 20, 39]. 

2.2.3.1 Tortuosity  

The tortuosity of a porous medium is a fundamental property of the streamlines, or lines of 

flux, in the conducting capillaries [64]. The effects of porosity and pore characteristics on 

permeability can be captured through a single parameter called tortuosity, which is the 

property of a curve being tortuous, which describes the path taken by any species through 

porous medium, relative to direct route. It is the actual length of flow path, which is sinuous 
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inform, divided by the straight distance between the ends of flow path or Le/L shown in 

Figure 2-6 [40, 67], where Le is the length of a flow channel for the fluid, and L is the 

straight line length between the ends of the flow path.  

 

Figure 2-6. The Indication of Tortuosity of Pervious Concrete (Adopted from [40]) 

Tortuosity is viewed as an important indicator for pervious concrete infiltration rate. The 

high tortuosity indicated the more distance between the two points in concrete, which 

required more time for liquid to flow through. Tortuosity is also defined as structure factor 

and a purely geometrical independent of the solids or fluid densities factor [67]. A 

relationship between tortuosity and porosity has been found [68]  

α=1-r(1-1/∅)                                      Eqn. 2-4 

Where α is regarded as tortuosity, and r = ½ for spheres and lies between 0 to 1 for other 

ellipsoids, and ∅ is regarded as measured porosity. As predicted from Eqn. 2-4, with the 

increase of porosity, the tortuosity decreases. A general relationship between porosity and 
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tortuosity might be obtained. The minimum tortuosity is calculated equal to 0.5. The testing 

data is currently unavailable to verify the accuracy of this relationship.   
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Figure 2-7 General Relationship between Porosity and Tortuosity [68] 

Study results indicated that higher the tortuosity, the lower is the permeability [20, 67]. The 

permeability of concrete is the function of the porosity and pore size variation and 

distribution, orientation, and connectivity [19, 20]. As well known, permeability generally 

increases with an increase in porosity based.  Further studies on pore structures in terms of 

tortuosity, pore size distribution and pores connectivity on permeability of pervious concrete 

may be important to investigate to better understand the relationship between hydraulic 

performance and pore structure of PCPC.   
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2.2.4 Permeability  

Permeability or flow rate of water through PCPC is a property indicating the ease with which 

water will flow through the pore space or fractures of the PCPC layer, which depends on the 

materials, mixtures, compaction and placing operation. The permeability is the most 

important parameter used in hydrological design of PCPC. The typical range is from 3 

gal/ft
2
/min (288 in/hr, 120 L/m

2
/min, or 0.2 cm/s) to 8 gal/ft

2
/min (770 in/hr, 320 L/m

2
/min, 

or 0.54cm/s), or up to 17 gal/ft
2
/min (1650 in/hr, 700 L/m

2
/min, 1.2cm/s) [17]. Under 

laboratory conditions, even higher rates could be achieved.  

 

Nevertheless, for convenience, most permeability measurements are based on the theory of 

Darcy’s Law and the assumption of laminar flow within the pervious concrete using falling 

head permeability test adopted from soil mechanics (Figure 2-8). The detailed procedures can 

be found in the literatures [18, 19, 20, 23, 26, 56]. The average coefficient of permeability (k) 

is calculated using Equation 2-4 established based on Darcy’s law:  

)(
2

1

h

h
Ln

tA

La
K 




          Eqn. 2-5                                                                     

Where  

K = coefficient of permeability, in/s or cm/s, (or L/T) 

a = cross-sectional area of the pipe, in
2
 or cm

2
, (or L) etc  

L = length of the sample, (in or cm) 

A = cross-section area of the sample specimens, in
2
 or cm

2
,  

t = time for water to drop from h1 to h2, sec,  

h1 = initial water level, in or cm,  

h2 = final water level, in or cm,  
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Figure 2-8.  Laboratory Falling Head Permeameters for Pervious Concrete (Adopted 

from [20, 23, 26]) 

 

Figure 2-9. A General Relation between Void Ratios and Permeability Coefficients for 

PCPC Mixtures [26] 
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Previous studies showed that the permeability exponentially increases with measured 

porosity as shown in Figure 2-9. Several formulas have been established to predict the 

permeability of pervious concrete based on the measured porosity [17, 19, 56]. However, 

these formulas may show limited accuracy due to the invalid laminar flow condition and 

complex pore structures of PCPC [17]. The assumption of lamina flow may not be always 

valid as shown in Figure 2-10 due to the large pore geometry. When the pore size is about 0.6 

cm, the flow conditions within specimen moves from laminar to transition flow, and Reholds 

numbers range from 10 to 100. Darcy’s law may not valid for these cases. Permeability 

calculated using Carman-Kozeny equation based on measured porosity show fairly good 

accuracy with the measured values [17].  

 

Figure 2-10. Using Falling Head Permeability Measurements vs. Reynolds Number 

(Adopted from [18]) 
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Additionally, the non-destructive electrical method [19] and three-dimension planar images 

methods [40] were developed to predict the permeability of pervious concrete. Especially for 

specimens mixed with aggregates sized with 3/8 inches, the theoretical calculated 

permeability matches well with the measured values.  A brief summary about the porosity 

data and permeability, and the numerical relationships including best-fit formulas and 

Carman-Kozeny equations from each reference are presented in Table 2-5. The reasonable 

range for α factor is from 9 to 43 based on the published data.  It should be noted that the 

functions of porosity and permeability are different for different references due to the 

different samples' properties and mixtures. Currently, there is no universal mathematical 

relationship established between porosity and permeability of PCPC.  



 

 
 

3
1
 

Table 2-5. The Relationship between Measured and Calculated Permeability Coefficients and Porosity from Literatures 

Reference Samples Description 
Testing 

Methodology 
K (cm/sec) = f ( p(%) ) Carman-Kozeny Equations 

Felipe, 2005 

1. Sample Size=19 

2. Field placed concrete from 3 locations. 

3. Average porosity: 16%, 18%, and 28%. 

4. Cylinder cores 4" diameter and 4"-6" 

height. 

1, 2 
K = 7.214*e

(0.1761*p) 

R
2
=0.7258 

α factor Expression 

18.9 K(cm/sec)=18.9*  

Delatte, 2009 N/A 
 

K=2.8705*e
(0.1674*p) 

R
2
=0.6748 

9 K(cm/sec)=9*  

Wang, K, 2006 

1. Sample Size: 19 

2. Cylinder cores 3" by 3" casted in lab 

3. Unit Weight: 104.1-132.2 

4. Porosity: 14.4-33.6 

5. Permeability:0.015-0.193 in/sec 

1,2 
K=13.257*e

(0.1579*p) 

R
2
=0.6522 

19 K(cm/sec)=19*  

V.R. Schaefer, 

2009, 2006 & 

J.T 

Kevern,2009, 

2006 

1. Sample Size=17 

2. Cylinder cores 3" by 3" casted in lab 

for permeability test. 

3. Cylinder cores 3" by 6" casted in lab 

for porosity test. 

4. Compaction Level: Low, Regular. 

5. Unit Weight: 104.1-138.9 pcf. 

6. Porosity: 11.2%-38.8% 

7. Permeability: 0.004-0.59 in/sec 

1,2 
K=5.8826*e

(0.1873*p) 

R
2
=0.794 

18 K(cm/sec)=18*  

J.D. Luck, 

2006 
N/A 

1,2 
K=0.066*e

(0.1121*p) 

R
2
=0.7933 

43 K(cm/sec)=43*  

B.Huang, 2009 
N/A 

1,2 
K=0.732*e

(0.1451*p) 

R
2
=0.9991 

25.36 
K(cm/sec)=25.36*

 

* Note: “1” and “2” indicate for the Falling Head Permeability Test and “Volume Method”  
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Infiltration rate is regarded as the most important parameter to evaluate the hydraulic 

performance of in-place pervious concrete pavement system, which may be affected by the 

properties of PCPC layer, subgrade layer and subbase soil conditions. A few in-situ 

infiltration testing methods have been published (See Figures 2-11, 2-12, 2-13, 2-14):  

1) ASTM 1701C "Standard Test Method for Infiltration Rate of in Place Pervious 

Concrete";   

2) NCAT (National Center for Asphalt Technology) Field Permeameter;  

Infiltration testing results from NCAT applied on in-place pervious concrete maybe 

over-predicted due to the lateral migration. Also, the large amount of water supply is 

required when conducting this method.  

3) ERIK (Embedded Ring Sampling Times) method [42];  

4) Embedded Single-Ring Infiltrometer method [38];  

This testing method is developed based on Double ring Infiltration (ASTM D3385-03 

“Standard Test Method for Infiltration Rate of Soils in Filed Using Double-Ring 

Infiltrometer”), but eliminate the effect of lateral migration. After the modification, 

the infiltration of whole pavement system can be measured. This method can be used 

pre and post construction 

 

 

 



 

 
 

3
3
 

 

 
 
 

 

Figure 2-13. Standards for ASTM 1701 C 

 

Figure 2-12. Field Permeameter Setup 

Figure 2-14. Embedded Ring Sampling Times 

(Adopted from [39]) 

Figure 2-11. Embedded Single-Ring Infiltrometer 

Method (Adopted from [39]) 
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2.2.5 Freeze-Thaw Durability/Deicing Chemical Resistance  

Frost durability is one of the primary factors impeding the wide application of pervious 

concrete in freezing climates such as Midwest. The volume expansion of water in the void 

space may break the bonding between the paste and aggregates, and cause the rapid 

deterioration of paste and/or aggregates, especially for lower porosity pervious concrete [22, 

23, 26, 28,].   

 

Currently, two testing methods are widely applied to evaluate the freeze-thaw durability of 

pervious concrete [22, 27], which are ASTM C 66 “Resistance of concrete and Rapid 

Freezing and Thawing” and ASTM C 672 “Standard for Scaling Resistance of Concrete 

Surfaces Exposed to Deicing Chemicals”. These two ASTM procedures the durability of 

pervious concrete under two frost phenomena, which are rapid freezing and thawing, and the 

chemical resistance under freezing-thaw condition respectively.  

 

Early research reported that pervious concrete specimens can withstand over 160 freeze-thaw 

cycles when damp or in air, but only 45 cycles when in fully saturation [66]. Therefore, the 

saturation levels of the voids and the time for freezing influence the F/T durability 

significantly.  

 

Mixed aggregate types and gradation show the significant effect on freeze-thaw durability of 

pervious concrete. The more textured surface of aggregates as limestone show the better 

freeze-thaw resistance compare to rounded and smooth surface of aggregates as river gravel 

due to the better aggregate to paste bonding. Current studies also show that addition of fine 
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aggregates up to 7% by aggregates weight and introduction of air entrainment dramatically 

improves the freeze-thaw durability of pervious concrete [22, 24, 29]. A mixture containing 

sand and AEA shows the dramatically freeze-thaw compared to the same mixtures without 

sand and AEA. A similar conclusion was also reported that pervious concrete specimens with 

air entraining admixture had 50% to 70% of dynamic modulus after 65 cycles. Specimens 

with AEA had 20% to 70% loss after 70 cycles [24]. More than just engineering 

considerations in improving the F/T durability, the reduce of likelihood of fully saturating of 

pervious concrete layer also increases the F/T durability. The adequate storage capacity of 

subgrade layer, which allows the rapidly discharging infiltrated runoff to storm water sewer,  

is the key issue [69].  

 

Considering the chemical attack on pervious concrete, pervious concrete is more susceptible 

to be attacked by aggressive chemicals due to its open structure.  A research study [22] 

shows that on the damage of chemical deicers on pervious concrete pavement show that 

calcium chloride causes the most severe damage compared to sodium chloride and CMA in 

terms of surface condition, mass loss, and compressive strength. However, the current testing 

method as followed by ASTM C 672 “Standard Test Method for Scaling Resistance of 

Concrete Surface Exposed to Deicing Chemicals” presents the most severe condition.  

 

The clogging effect retards the infiltration time, and cause a longer saturation time within 

pervious concrete. Therefore, the clogging effect and frost resistance may be related 

especially in freezing climates. The clogging effect on freeze-thaw resistance of pervious 

concrete in laboratory condition was reported by [30]. No remarkable signs indicated that 
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frost resistance of pervious concrete was affected by sedimentation materials. However, the 

relationships between the clogging effect, potential saturation and freeze-thaw resistance 

have not been well resolved.  

 

2.2.6 Flexural Strength/Compressive Strength/Splitting Tensile Strength 

The mechanical properties are important for the structural design of pavements. Due to the 

high void ratio (15% to 35%), often without the fine aggregates in mixing proportions, the 

mechanical properties including compressive and tensile strength are always lower than 

conventional concrete. Compressive strength is always used in structural design of PCPC 

pavement Pervious concrete mixtures can develop compressive strengths from 500 psi to 

4000 psi (3.5 MPa to 28 MPa). Typical value of compressive strength is approximately 2500 

psi (17 MPa). Flexural strength of PCPC can develop from 150 psi to 550 psi (3.8 MPa). The 

relationship between splitting tensile strength and compressive strength for pervious concrete 

is between 12% and 15% of the compressive strength [29].  

 

Degree of compaction and porosity are the two most important factors that influence the 

mechanical properties of PCPC. It has been found that the increase of fresh unit weight, 

increase of fine aggregates in mixtures, and the application of high compaction effort can 

increase the mechanical properties but also decrease the hydraulic performance [27, 48]. Also, 

aggregate-to-cement (a/c) ratio is important to determine the mechanical properties of PCPC.  
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Under the clogging condition, the change of mechanical properties of pervious concrete is 

rarely investigated in literature. When the clogging phenomena occur, the void space may be 

filled up with the clogging materials. With the compaction energy caused by the repeated 

traffic loading, the surface pavement materials become more compacted. Therefore, the 

strength increase of pervious pavement may be nearly negligible.  

 

2.2.7 Consolidation and Compaction of PCPC 

Compaction levels and methods affect the properties of pervious concrete including unit 

weight, compressive strength, permeability and void ratio. To get the best surface finish, 

required strength and permeability, proper compaction is important. Too little compaction 

may not provide the required strength or smooth surface, and may also cause potential for 

raveling of the finished pavement. Too much compaction may cause decreased permeability 

by closing up the void ratios. The same mixture can vary up to 25% of hydraulic 

performance by different compaction levels or energy [36]. Therefore, controlling the 

compaction energy accurately and quantitative for determining the performance of pervious 

concrete is important.  

 

According to pore distribution results obtained by testing in-place pervious concrete cores 6 

in. (15 cm) in height, the top third portion of the cores contain less porosity and higher 

density than the bottom third portion when subjected to a surface compaction finished by a 

static roller [24] (See Figure 2-14). Studies on the effects of compaction on strength and 

porosity distribution indicate that the low strength and porosity may be found at the bottom 
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quarter of the pavement, which may cause the rapid crack potential, therefore, 6 in maximum 

thickness is recommended  [65].   

 

Several compaction methods were introduced in the laboratory to determine the relationship 

between porosity and unit weight: 1) Marshal hammer 2) Protector hammer 3) Roller-

compacted concrete described in ASTM C 1176 “Standard Practice for Making Roller-

Compacted Concrete in Cylinder Molds Using a Vibrating Table” and ASTM C 1435 

“Standard Practice for Molding Roller-Compacted Concrete in Cylinder Molds Using a 

Vibrating Hammer” and 4) ASTM C1688“Standard Test Method for Density and Void 

Content of Freshly Mixed Pervious Concrete”. Jigging consolidation and rodding procedures 

introduced in ASTM C 29 "Standard Test Method for Bulk Density and Voids in 

Aggregates" as presented by ACI 522-08 are always used to determine the linear relationship 

between density of freshly mixed concrete and porosity, voids and splitting tensile strength. 

The theory is used in this study to control the properties of testing specimens. However, a 

large variability of specimens’ properties was produced using this compaction method.  

 

Gyratory compaction testing of PCPC was introduced by [26, 58]. In this study, the different 

in-situ compaction levels on pervious concrete pavement were simulated in laboratory by 

using a AFGBI gyratory compactor with different loading pressures and number of gyrations.  

 

Linear relationships between fresh density and void ratios, and fresh density and splitting 

strength are found. Also, compaction energy applied increase also freeze-thaw durability. 
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Based on this linear relationship, the viability can be eliminated when samples are casted 

using other compaction method mentioned above, such as tapping and rodding.  

 

Placement of pervious concrete is always done continuously, spreading and striking-off 

immediately, commonly with vibrating screeds [17]. A temporary wood spacing strip form is 

pre-placed in the direction of placement (See Figure 2-15).  

 

Figure 2-15. A Temporary Wood Spacing is Pre-placed (Adopted from [54]) 

Currently, there are two basic pervious concrete placement/compaction methods used in the 

United States: 1) riser strip method (See Figure 2-16 Left) and 2) roller-screed method (See 

Figure 2-16 Right). Other methods include either slip forms or a revolving steel cylinder that 

combines strike-off and compaction. Due to the rapid hardening and high evaporation 

methods, delays in compaction always cause problems. Generally, it is recommended to 
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complete the compaction within 15 minutes of placement. The detailed information on 

compaction and construction standards of pervious concrete is readily available [24, 29].  

 

Figure 2-16. Compacting Pervious Concrete Using Vibratory Screed (Left) and Weight 

Roller (Right) (Adopted from [54]) 

 

2.2.8 Pavement Hydrological Design of PCPC Pavement  

The hydraulic performance of PCPC pavement is the primary driving force for the wide 

application of this special type of pavement. Capturing and storing all or some significant 

part of anticipated runoff in a given storm is the most important characteristic of PCPC 

pavement. The Curve Number method and Rational Method are two hydrological design 

methods [69]. The hydrological design of pervious concrete includes the surrounding 

environments, flat layout, site design, storage capacity (void ratio), pavement thickness, 

allowable ponding time, and infiltration rate of sub-grade and pervious pavement as well as 

the discharge systems. 
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PCPC pavement can be designed as a "passive" or "active" mitigation system.  Reducing the 

quantity of impervious surface by replacing it with pervious surface is the main consideration 

for passive mitigation system. An active system, however, is to designed to capture the direct 

precipitation on pervious concrete and also the stormwater runoff from adjacent areas [27]. 

Therefore, better hydraulic performance is expected an active mitigation system. It is noted 

that the clogging effect on active mitigation systems is more critical.  

 

The storage capacity of pervious concrete layer and infiltration rate of underlying soil are the 

main hydrological design considerations. Storage in the pavement’s reservoir takes the 

temporary differences between the inflow and outflow [37]. Adequate storage capacity 

produced from 15% to 30% porosity provides space for the water captured by system once 

the storm passed, and underlying soil with a typical infiltration rate of 1/2 in/hr (12 mm/hr) 

allows the water to drain in a fairly short time (typically less than 5 days). The shorter the 

dragdown time, the more effective or better the hydraulic performance of pervious concrete 

pavement behaves [57]. The porous sub-base such as open-graded or sandy soils is 

recommended if the underlying soil is impermeable such as clay layer soils. Another option 

to increase the drainage of poorly draining time is to install wells or drainage channels. 

Permeability as another important parameter is not always a limiting factor even though it 

can be significantly decreased due to clogging effect. Compared to infiltration of underlying 

soil, the permeability of pervious concrete can be easily much higher [57].  

 

US EPA (1999) [43] provides basic guidelines on the design of PCPS: 1) placed over highly 

pervious layers of open graded gravel or crushed stones; 2) filter fabric must be placed 
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beneath the gravel or stone sub-grade. From hydrological design considerations, the 

minimum 6 inches of granular or gravely sandy materials as subgrade shall have the 

minimum the permeability no less than one inch per hour. The base should be compacted 

uniformly with the slope less than 5% [38, 41, 65]. 

 

2.2.9 Pavement Structural Design of PCPC Pavement  

The structural design of PCPS is similar to the standard pavement design such as AASHTO, 

ACI325.12R as the conventional concrete for streets and roads; ACI 330R for parking lots; 

sometime using structural numbers from asphalt pavement design procedure [15, 36]. Overall, 

the empirical design methods developed based on traditional concrete still dominated the 

pervious concrete pavement design practice. The pavement thickness and permeable 

subgrade are the main considerations in pervious concrete design. Also, the measured 

compressive strengths and empirical relationship estimated flexural strengths are the strength 

properties used in structural design of pervious concrete. It should be noted that the finishing, 

degree of compaction and compaction process also control the strengths and permeability 

values.  

A few important design criterions are listed below [15, 28, 37, 38]:  

 Typical pavement thickness is from 4 to 10 in. (125 mm to 250 mm);  

 If using conventional concrete design, 25% additional pavement thickness for 

pervious concrete is required;  

 Use a minimum 5 inches for parking area;   

 Six inches for industrial driving lanes;  
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 Eight inches for low truck volumes;  

 Every additional one inch of pervious pavement thickness can reduce the design void 

content by 2%;  

 Sub-base materials depth from 6 to 12 inches, and 24 inches for F/T area;  

A brief summary on typical structures of pervious concrete pavement for typical cross-

section, standard parking lot or driveway, heavy traffic, and sidewalk, cart path are listed in 

Figure 2-17, Figure 2-18, Figure 2-19, and Figure 2-20.   
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Figure 2-20 .Typical Parking & Driveway Pervious 

Concrete Pavement after (www.stonecreekmaterials.com) 

 

Figure 2-18.Typical Cross-Section of Pervious 

Concrete Pavement, after Tennis et al (2004)   

Figure 2-17. Pervious Concrete Pavement Design for 

SidewalkCart Path, Hike, and Bike Trails, after 

(www.stonecreekmaterials.com) 

   Figure 2-19. Pervious Concrete Design for Heavy Traffic, 

after (www.stonecreekmaterials.com) 

http://www.stonecreekmaterials.com/
http://www.stonecreekmaterials.com/
http://www.stonecreekmaterials.com/
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2.3 Previous Studies of Clogging Effect  of PCPC 

Clogging has been regarded as another primary reason that causes failure, reduces the 

effective service life and impedes the widespread application of pervious concrete pavement 

[13, 36]. Attention has been focused on the clogging effect of pervious concrete, and the 

great progress that has been made in terms of design regulations and maintenance. The 

majority of pervious concrete pavements function well with little or no maintenance. 

Vacuuming sweeping and pressure washing or the combinations of these two are commonly 

applied as maintenance methods. Based on experience, maintenance is recommended being 

performed annually [13].  

 

However, the quantitative study and evaluation on clogging effect, design and maintenance 

used to prevent the clogging effect have not been well established. The relationships among 

the pervious concrete pavement properties, clogging materials' properties, cleaning efficiency 

and maintenance schedule have not been established to provide the reliable information for 

in-place pervious concrete pavement. Ferguson [37] reported that the initial drainage time of 

unclogged concrete ranged from 25 to 75 seconds, and after nine clogging cycles, drainage 

time increased from 160 to 400 seconds. As a primary function of pervious concrete is the 

ability to readily transport water, understanding the clogging issue of pervious concrete is 

essential for delineating further maintenance and for estimating the quality of pervious 

concrete pavement. Further studies on clogging effect are recommended [28, 37] in terms of 

the several aspects listed below:   

1) Sediment deposition and segregation;  
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2) Sediment transport within the pervious concrete;  

3) Methods to estimate sediment load;  

4) Deposition and transport effects on design methodologies;  

5) The clogging-resistance mixtures and design of PCPC;  

6) Quantitative estimation of cleaning efficiency of a certain type of cleaning method;  

 

2.3.1 The Clogging Effect of PCPC 

2.3.1.1 The Clogging Failures of PCPC Pavement  

The severe clogging failure may occur to the pervious pavement after the pavement 

construction in a short period. It has been shown that the rapid decrease in filtration rate of 

pervious pavement could occur during the first two years of service due to the clogging effect. 

The in-situ infiltration rate test showed approximately 10% of the initial level after 2-3 years 

of construction or 87% reduction of permeability after 3 years of construction [58]. The 

clogging developed very rapidly in the first few years, which cause a significant reduction of 

infiltration rate, for example, 30% to 50% reduction in country area; 40% to 70% reduction 

in cities and 60% to 90% reduction in the much polluted areas.  

 

The clogging failures are caused by various reasons on pervious concrete pavements. 

Landscaping materials such as mulch, sand, and topsoil should not be stored and staged on 

the completed pervious concrete, even temporarily. Any construction aggregates must be 

prevented from the spilling onto a completed porous pavement. Ferguson [37] suggested that 
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a pervious concrete may be impractical for public streets under the load of clogging materials. 

Also, during a construction project pervious concrete should always be the last process. A 

good site design minimizes surface clogging by locating, and protecting the pavement by 

pretreating runon (with a vegetative filter strip), as feasible [69].   

If the pervious concrete were already paved close to construction site, contractors must pay 

attention that no construction traffic onto pavement and no construction runoff. The pre-

construction plan and surrounding environments are extremely for preventing the clogging 

failures from happening, as presented in Section 2.1.  

 

Some common clogging failures are shown in the several figures. Figure 2-20 shows that 

failure caused by construction runoff. Figure 2-21 shows that sedimentation brought by 

runoff from adjacent unplanted area. Figure 2-23 shows the clogging occurred adjacent to the 

construction site. Figure 2-24 shows clogging occurring to pathway, and the sedimentation 

materials brought by vehicles, wind and/or stormwater runoff from surrounding 

environments. Particularity, this pavement as shown in Figure 2-24 was constructed and 

finished in March, 2010, and this photo was taken on July, 2010. As can be observed, the 

clogging started to occur with few months after the construction was finished. The failure 

case was caused by constriction traffic.   
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Figure 2-22. Clogging Failure Caused by 

Construction Runoff  

 

 

Figure 2-21. Clogging Caused by Surrounding 

Unplanted Area  

Figure 2-23. Clogging Failure Caused by 

Construction Traffic  

Figure 2-24. Common Clogging Failure Caused 

by Surface Runoff 
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2.3.1.2 The Definition of Clogging Effect 

The clogging effect or sedimentation effect has been studied and defined by many 

researchers and studies [28, 54, 59, 60]. A universal definition that is widely accepted is that 

clogging materials or sedimentation solids including soil, rock, leaves and other debris, 

which may be brought by wind or more commonly by stormwater water runoff from the 

surrounding environments, infiltrate through and/or are retained within the pervious concrete, 

and enter into the voids space with the water infiltration, and decrease the hydraulic function 

in terms of the gradual reduction of permeability and storage capacity of this pervious 

concrete pavement system. Frequent maintenance must be performed to keep or improve the 

hydraulic performance to an acceptable level.  

 

Chopra [41] defined the clogging effect of the pervious concrete for the whole pavement 

system as that the permeability of pervious concrete layer decreases lower than the 

permeability of underlying soil due to the completely or partially clogged during the service 

life, then the permeability of pervious concrete becomes the limiting factor of the whole 

pavement system. At this time, the restoration action or application of cleaning methods is 

required to improve the permeability of pervious concrete layer to achieve the better 

hydraulic performance.  

 

The clogging degree is found relate to the type of clogging materials, pervious concrete 

properties, stormwater runoff, environmental surroundings of in-place pavement and the 

rehabilitation methods [28, 59, 60]. To detail these different aspects, this section on previous 
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clogging studies is organized into 1) the effects of various sediments, 2) different void ratios 

of PCPC, and 3) comparisons of the rehabilitation methods. 

    

2.3.1.3 The Clogging Effects on PCPC Properties  

The clogging effect on the performance of PCPC mainly relates to the change of the porosity 

and the pore structure properties including pore size, pore shape, pore size distribution and 

tortuosity with the gradual particle retention and the consequent permeability reduction [60]. 

Studies showed that the clogging materials are trapped in the void space, and block the flow 

channel, and furthermore, the tortuosity would be increased in terms of the longer flow 

distance. Limited studies have been conducted to investigate the effect of porosity and pore 

structure of pervious concrete under clogging condition. Change in porosity and pore 

structure due to clogging is the internal cause, and the changes in hydrological behaviors are 

the results, which are manifested three ways:  

1) Clogging can reduce surface permeability of the pervious concrete layer;  

2) Clogging can affect the infiltration rate into the subgrade, that is, exfiltration from the 

system to underlying soil;  

3) Clogging can slightly reduce storage capacity;  

Mata and Neithalath [28, 61] described the influence of clogging mechanism, and 

the studies show that the clogging could cause the loss of 3-5% of initial total 

storage capacity.  
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The clogging effect on hydraulic performance reduction of PCPC pavement has been studied 

in laboratory and in-place condition, but the effect on the mechanical properties and freeze-

thaw durability has not been studied. 

 

2.3.1.4 The Effects of Different Types of Sediments  

Different type of sediments cause different deposited patterns, retained locations and the 

different effects on hydraulic performance reduction and maintenance recovery.  The effect 

of different type of sediments on clogging is discussed fairly well in Mata (2008) [28]. The 

types and quantity estimation of sedimentation employed in this study were calculated based 

on the Universal Soil Loss Equation (USLE), which also provide a good reference for the 

other researchers. In this study, three types of sediments 1) sand sediments 0.08 in (2 mm) 

and  #200 sieve size(75 µm), 2)  fine sediments smaller than #200 sieve size (75 µm), and 3) 

the combination of these two were used as clogging materials to investigate the effect on 

hydraulic performance of pervious concrete. More detailed discussion can be found in 

section 2.3.2.1.  

 

Sediments from various locations are also different [28, 37]. In the Pacific Northwest, 

organic debris is a more likely the clogging material. The cool moist climate promotes net 

accumulation of organic matter. The suspended inorganic soil particles in stormwater were 

used as sedimentation materials in clogging test [30].  
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The well-known phenomena was found that larger particles tend to be retained on the top or 

near the surface, the finer sand particles penetrate the pavement and were trapped within the 

concrete, the even finer particles could infiltrate though pavement, and deposited between the 

surface concrete layer and underlying soil (See Figure 2-25) [28, 59, 60].  This phenomenon 

also could explain that surface washing and vacuuming sweeping have a good efficiency in 

cleaning the clogged pavement subjected to larger sedimentation materials [17] as presented 

in Section 2.2.3. Research Studies [62, 63] reported coarser particles took more time to clog 

the pavement than finer particles. The clay materials tend to retain on or near the pavement 

surface, and reduce the infiltration rate gradually [59]. Recent placement technique results a 

lowest porosity on the top, which could filter the clay materials effectively by the smaller 

pores.  Lower levels with simple maintenance such as surface sweeping or rinsing can restore 

the serviceability to acceptable. Higher sediments loading rate or the density of the clay 

suspensions for the same clay increased the rate of loss. The difference in the conclusions 

summarized by the various studies [28, 59] would be confirmed in this study.  
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Figure 2-25. Different Cases of Sediment Deposition in Pervious Concrete Depending on 

Soil Type (Adopted from [28]) 

Various sediments were found to cause the different magnitudes of permeability reductions.  

In terms of maintenance efficiency, the larger size of solids as sand could be removed 

effectively by using pressured wash. Rocks, leaves and other debris which have fairly larger 

size than pore size are easier to clean using the traditional cleaning method such as sweeping 

or pressure washing. However, the fine solid, such as clay or silts that are easily trapped 

within the void space of pervious concrete pavement at the certain depth is hard to clean 

Approximate 60% to 70% of initial permeability was lost [28]. Shown in Figure 2-26, the 

comparison of two specimens confirms that coarser and finer sediments tend to be retained at 

different locations. The same conclusion was also reported [29] that sand as a cohesionless 

material generally with a larger size than the pore size, may be easily trapped. From Figure 

2-26, little amount of coarser sediments was found at the bottom of specimens, which 

indicate that most were tapped on the surface or within the specimens. In contrast to coarser 
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sediments, significant amounts of fine sediments such as clays were found at the bottom of 

specimens.  

 

In general, studies on the effect of sedimentation type are recommended [28, 59]. Better 

understanding of linking the sediment’s characteristics such as the particle size and particle 

types to clogging effect and the rehabilitation methods recovery efficiency should be 

obtained.  

 

Figure 2-26. Pervious Concrete Specimens Subjected to Sand (Left) and Clay (Right) as 

Sedimentation Materials (Adopted from [28]) 
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2.3.1.5 The Effects of Properties of PCPC  

The relationships between clogability and properties of PCPC such as the mixtures, mixing 

materials, void ratios and initial permeability have been discussed by several studies [29, 17, 

28, 62, 64] reported that the increasing amount of #4 aggregates in mixtures increased the 

propensity of clogging under fine sand sedimentation load. The blended mixing aggregates 

show the best clogging resistance. The mixtures which cause larger pore size than clogging 

materials tend to have lower permeability reduction. The effective pore size to sedimentation 

particles size ratio ranges between 10 and 12 leads the highest reduction on permeability of 

testing specimens, and also leads the highest clogging potential. More detailed discussion is 

presented in Section 2.3.2.2. However, one limitation is that only fine and coarse find as 

sedimentation materials was studied in this study.  

 

By studying the clogging effect on soil filters [64], the results indicated that the soil filters 

which contained a more uniformly sized distribution particles tends to cause a faster 

reduction in permeability compared to those with large variability in particle size distribution. 

This finding implies the conclusion from Omkar (2009) [29] that the narrower mixed 

aggregates are preferred for clogging resistance design of pervious concrete. Additional 

research is recommended to quantify and verify this relationship between mixed aggregates 

size and clogability. The density effect on clogging resistance has been studied [41]. The 

testing results showed that the lower the concrete density, the better of infiltration rate and 

infiltration recovery rate for the specimens being exposed to the same semimetal loading and 

rehabilitations method. The reasonable high porosity of pervious concrete may indicate the 

better the cleaning efficiency.  
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The host of parameters such as the total pore volume, pore characteristics including the pore 

size and the connectivity affect clogability of pervious concrete significantly [29]. Porosity, 

currently regarded as the most important one, has been studied. Testing specimens studied in 

literatures mainly contained approximate 20% void ratios [28, 29] and the additional study on 

the effect of void ratios on clogability was recommended by many research studies [17, 28, 

29]. The important findings and recommended study are helpful for developing the design 

methodology of pervious concrete, which is less susceptible to clogging.  

 

2.3.1.6 The Efficiencies of Different Rehabilitation Methods  

Maintenance of pervious concrete pavement primarily consists of prevention of clogging of 

void structure, winter maintenance and distress remediation [37]. For the winter maintenance, 

like all other Portland cement product, avoiding use of salts and deicers for a minimum of 

one year is recommended. The hydraulic function of pervious concrete maintenance is the 

main consideration in this master thesis. 

 

Three rehabilitation methods 1) vacuum sweeping and 2) pressure washing are most 

commonly used in practice, and show good efficiency in rehabilitating a clogged pavement. 

Sometimes the two are used in combination (pressured washing followed by vacuuming 

sweeping) and this combination shows the best recovery of hydraulic performance. Ferguson 

[37] reported that the infiltration of pervious concrete specimens subjected to sand sediments 

can be immediately restored with pressure washing and immediate brooming. Also, 
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vacuuming without pressure washing could be more effective for sand as sedimentation 

materials.  

 

The important issues about pervious concrete pavement maintenance are: 1) prevent heavy 

sediment accumulations within the pavement structure; 2) clean debris off from the pavement 

surface quickly; and 3) schedule regular maintenance to provide greatest effectiveness of the 

pavement. Currently, there is no universal rehabilitation method standard for pervious 

concrete cleaning. The mechanism can be summarized below [13, 37, 41]: 

 

Pressure Washing  

As shown in Figure 2-27, the “power head cone nozzle” is used to concentrate water in a 

narrow cone (other types of nozzle did not work as well), and loose or weaken the bonds 

between the clogged particles and concrete, and push the clogging particles well inside the 

core or even to the bottom pavement, or the underlying soil or gravel reservoir. However, 

there is the risk of contamination of underground water. High volume-low pressure water has 

proven to be most effective as shown in Figure 2-28. Pressure washing of a clogged pervious 

concrete pavement has restored 80% to 90% of the permeability in some cases [65]. The 

typical pressure applied should be carefully determined, which is normally approximately 

20.7 MPA (3,000 psi) [41].  
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Figure 2-27. Pressure Washing (Adopted from [22]) 

Vacuuming  

Vacuuming is also called suction. The clogged particles near the pavement surface are 

sucked out and make the partial surface and interconnected pores open. It should be noted 

that only the particles close to the surface can be extracted and doesn't include the deep 

portion of pavement. A typical street vacuuming sweeper and a dry/wet vacuuming are 

shown in Figure 2-28 and 2-29. Vacuum sweeping annually or more often may be necessary 

to remove debris from the surface of the pavements. For most of the cases, the vacuum 

sweeping is faster than but not as effective as pressuring washing [13, 37, 41].  
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Figure 2-28. Typical Street Sweeper (Adopted from [22]) 

 

 

Figure 2-29. Vacuuming Sweeper (Adopted from [22]) 

   



60 
 

 
 

Pressure Washing & Vacuuming 

The vacuum sweeping followed by the high pressure washing shows the best cleaning 

efficiency for most cases in terms of the infiltration rate recovery percent [36, 37, 41]. ACI 

522R-2008 reported that the most effective cleaning scheme is to combine the two 

techniques:  power vacuum after pressure washing. Table 2-6 shows the testing data [41], 

which was based on 18 testing specimens obtained from the field (public parking lots) with 

service lives from 6 to 18 years. Vacuum sweeping using 4.85 kW (6.5-HP) wet/dry vacuum 

sweeper and pressure washing using 20.7-MPa (3,000-psi) pressure washer were applied. 

The restoration of the infiltration rate, which was defined as the ratios of post-rejuvenation 

infiltration to rejuvenations infiltration, was listed. The higher numbers are the better 

cleaning efficiency of the applied methods is under this clogging condition.  A similar 

conclusion was reached in Ferguson (2005) [36] that the highest permeability recovery was 

achieved by using pressure and vacuuming swept (See Figure 2-30).  

Table 2-6. Restoration of Infiltration Rate (%) By Different Rehabilitation Methods [37] 

 
Vacuum Sweeping 

Only 

Pressure Washing 

Only 

Vacuum sweeping 

followed by 

pressure washing 

Minimum 1.9 1.9 4.1 

Maximum 31 360 379 

Mean 10.4 56.7 66.9 
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Figure 2-30. The Permeability Recovery by Different Rehabilitation Methods (Adopted 

from [38]) 

Scheduled maintenance after construction may be also required with time. Four inspections 

each year with appropriate jet hosing and vacuuming sweeping treatments are recommended 

by US EPA (1999) [43]. Studies show that if maintenance has not been applied on time or 

after a serious clogging phenomenon occurs or when the permeability rate is below 0.1 cm/s, 

there would be no improvement in infiltration rate with sweeping followed by vacuuming 

because of the fully clogging [42]. In most cases, maintenance is performed according to 

empirical evidence and/or experience; there are no universal standards to be followed. The 

maintenance for pervious concrete is still being developed. The additional studies on 
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quantitative determination of recovery efficiency and maintenance schedule based on 

pervious concrete pavement and sedimentation materials should be investigated.  

 

2.3.1.7 The Clogging Effects on Hydrological Design of PCPC Pavement 

Current studies on clogging effects on hydrological design of PCPC pavement focus on the 

exfiltration and storage capacity reduction and maintenance procedures of pavement 

subjected to various types of sedimentation materials [28].  Depending on the estimation of 

sediment volume, site characteristics, requirement of end of service (EOS) hydrological 

performance, deposition patterns of sediments in PCPC pavement and clogging potentials of 

different sediments, a few design criterions have been established [28]. These 

recommendations are based on the sedimentation test on three sediments; 1) clayey silt 2) 

clayey silty sand and 3) sand. However, most of the design criterion still follows the current 

practical standard of pervious concrete construction [57].  

 

The addition of one inch (25 mm) of base layer is recommended to overcome the storage 

capacity loss and keep an acceptable hydraulic performance under typical loads of clayey silt 

or sandy sediments. The traditional methods pressured washing; vacuuming sweeping and 

the combination of these two are effective under this clogging load.  

 

When PCPC pavement is subjected to clayey silty or slty soils and, the flow rate loss is 

considerable, the traditional maintenance methods have proved to be ineffective [37]. The 

clayey silty formed a sedimentation layer at the surface layer bottom retained by the filter 
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fabric are the controlling factor of the exfiltration of the system. Immediate cleaning action is 

recommended once the mulch or small particles or organic are accumulated on pervious 

pavement. However, pressure washed and vacuuming is still applied based on experience.  

The design guidelines for PCPC pavement under this case still follow that described as cited 

in [57]. Mata [38] provided the following considerations:  

1) Conduct the initial hydrologic analysis based on the surrounding environments. 

Determine the composition and total volume of the sediments anticipated over the 

simulated service life time.   

2) The sedimentation loads=1000 lbs/acre/year (typical value) or 860 lb/acre/year 

(industrial site) 

3) Predict the sedimentation load in mass per unit area, and conduct the simulated 

clogging test as the preliminary study in laboratory.  

Check the hydrological behaviors (permeability and storage capacity) to see if the 

initial design is still acceptable to provide adequate drainage ability under the 

sedimentation loading. If not, it is necessary to re-design the pavement structure.  

4) On-site permeability (minimum) = 290 in/hr (0.2 cm/s)  

 

In general, the additional of one inch of base layer is recommended under clogging load, and 

traditional cleaning methods are recommended to under the different clogging loads. The 

additional research is this area is recommended [38].  
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2.3.2 The Previous Studies on Clogging Effects of PCPC  

There have been some researches discussing the clogging effects of pervious concrete 

pavement. The clogging testing methods, sample preparations, sedimentation assumptions, 

conclusions and weakness are slightly different for each of these studies. However, most of 

these experiments were conducted based on the principle similar to falling head permeability 

cell, and the gradual reduction of permeability of specimens was measured. The simulation 

of the clogging condition in the field was the main objective in clogging test in laboratory. 

For instance, three types of sedimentation materials are used [28], and the water mixed with 

sediments as clogging fluid was allowed draining through the specimens for 24 hours. 

Pressurized washing was applied to clean the clogged samples. In Pezzaniti (2009) [30], the 

clogging fluid employed contained the average suspended solids concentration of 200 mg/L. 

A total of 1110 g sedimentation materials were used based on the simulated time of 35 years 

or 420 month for in-place condition and two mixers were used to keep the suspended state of 

solids in the liquid. In Neithalath (2009) [61], a total of 25g clogging materials was spread 

evenly on the specimen, which represented the “first flush” of the runoff. The test took a 

relative long period until these were no noticeable change of permeability with additional 

clogging materials adding in this simulated “first flush”.  

 

The difference between the clogging test and falling head permeability test is to infiltrate the 

clogging fluids through pervious concrete specimens rather than the pure water. In this 

session, the difference between each method is discussed and summarized.  The results of 

recent research studies are reviewed below.  
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2.3.2.1 Mata (2008)  

The objective of this study [28] was to identify and analyze the effects of sediment 

deposition and segregation, and the effects of sediments transport within the PCPS layers. 

The appropriate design guidelines for storage capacity under the sedimentation conditions 

were discussed. Also, the appropriate maintenance strategies corresponding with the actual 

sedimentation conditions were investigated. Additionally, the frost resistance of PCPC with 

the realistic freezing rate under sedimentation conditions was investigated.  

 

This is the first paper study to investigate the performance and functionality of pervious 

concrete pavement system in the simulated sedimentation conditions, and it helps engineers 

to take the clogging effect into account when design the pervious concrete pavement. 

Importantly, different with other clogging tests in literatures, the sedimentation materials 

were divided into three types, which are sand, clayey silt and clayey silty sand according to 

the EPA regulations, which was to simulate the actual environments. Each type of 

sedimentation materials was applied in clogging test. The conclusions from this study are:  

1) For sand sediments as clogging materials, the decrease of permeability and storage 

capacity are negligible. The traditional cleaning methods can clean and improve the 

drainage ability to an acceptable level.  

2) For clayey silt as clogging materials, the presence of finer grained sediments on the fabric 

filter affects the serviceability significantly.  The sedimentation layer retained by the 

fabric filter at the bottom of the PCPS affects the exfiltration strongly. The traditional 
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maintenance methods are not applicable in this case. Therefore, the effects should be 

considered in design.  

3) For clayey silty sand as clogging materials, the worst permeability loss and lowest 

permeability recovery occur in this condition. The finest materials deposited at the 

bottom affect the effective permeability. The traditional maintenance methods are also 

not applicable. 

4) The traditional cleaning methods such as vacuuming, sweeping and pressure washing are 

not effective when the clogging materials are either clayey silt or clayey silty sand.  

5) It is confirmed that the effects of sand and AEA are effective on frost resistance.  

6) 7% of the sand by weight in mixing proportions is effective to improve the frost 

resistance of PCPC.  

 

Testing procedures:  

The testing was divided into three phases: 1) sedimentation condition with low flow and high 

sediment load; 2) sedimentation condition with high low flow and moderate sediment load; 3) 

F/T durability test. For phase 1 and 2, the sedimentation loads and amount of clogging fluids 

infiltrated were different accordingly. For the total clogging and cleaning cycles, it is based 

on the on the service life of 20 years. The general testing steps are listed as below:  

1) Measure the initial permeability of the testing specimen before sedimentation test.   

2) Apply the sedimentation and cleaning cycles.  

3) Repeat the sedimentation and cleaning cycles according to the simulated service life.  

4) Check the distribution of the sedimentation along the depth of pavement  
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2.3.2.2 Neithalath (2009)  

The objective of this study [61] was to understand the influence of pore structures features 

(porosity and pore sizes) on clogging resistance and permeability reduction. Three types of 

coarse aggregates (#4, #8 and 3/8”) were used to mix three types of specimens, and 20% of 

porosity remains constant for all testing samples. The fine and coarse sand used as clogging 

materials mixed with pure water at the certain concentration were used as clogging fluids in 

the falling head permeability cell.  

 

Also, the new parameter “clogging potential” was defined in this paper described the ease of 

the certain PCPC pavement get clogged. The study results show that:  

1) The clogging is related with the pore size and the mixed aggregates size of pervious 

concrete as well as the gradation of clogging materials.   

2) The finer clogging material tends to have more severe effects than coarse clogging 

material on permeability reduction.  

3) Exposed the same clogging conditions, the PCPC samples made with smaller size 

aggregates tend to have higher residual permeability than the PCPC samples made with 

larger size aggregates due to the higher pore size distribution. 

4) The permeability decrease for the samples mixed with 3/8” aggregates is smallest among 

the three types of samples.      

5) The blended aggregates tend to have more severe clogging than any single sizes 

aggregates.  
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6) The permeability reduction is fairly small in both cases when pervious concrete contain 

either the very large or very small pores. However, the reduction is significant when the 

pore size to clogging particle size ratio is within the range from 10 to 12.  

 

Testing procedure  

1) Determine the porosity by image analysis and the hydraulic conductivity by the falling 

head permeability.  

2) Fine and coarse sand applied as the sedimentation materials, and keep the materials 

constant for every testing sample  

3) 25g of clogging material either coarse or fine sand which represents the first run were 

applied in clogging experiment.   

4) Repeat Step 3 or add the same clogging material until the clogged permeability tent to a 

constant value or no noticeable change with addition of clogging materials or approach to 

zero.  

 

2.3.2.3 Tan et al. (2001)  

By examining the effect of sand and residual soil as sedimentation materials on hydraulic 

performance reduction of permeable bases, and taking the gradation of potential sediments 

particles and mixed aggregates into consideration of clogging phenomena, the following are 

the main conclusions from this study [29]:  
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1) A narrower particle size distribution of mixed materials or small D85/D15 ratio leads to the 

larger voids and more open base, and higher residual permeability.  

2) The empirical coefficient α is defined in this study as a function of ratio of D15 of 

permeable size to d85 clogging materials, and the coefficient uniformity of clogging 

materials. This empirical coefficient is found to be inversely related to D15/d85, and 

directly related to coefficient uniformity of clogging materials.  

3) A higher α-factor implies a more rapid decrease in permeability under clogging condition.  

4) The gradation and amount of clogging material, and particle shape is recommended to be 

studied in terms of clogging effect.  

 

 

Testing procedures:  

1) The 150 mm tall cylindrical specimens with crushed granite aggregate are prepared.  

2) Measure the initial permeability of the specimens by using Volume method 2.2.2.  

3) Clogging procedure (addition of clogging material in the water that passing through the 

specimens) 

4) Measure the permeability of the testing specimen after the clogging.   

5) Compare the measured permeability with 1milimeter/s. If not, redo the clogging cycles 

until the permeability is smaller than 1mm/s, and collect the clogging materials. If yes, 

stop the experiment.  
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2.3.2.4 Haselbach (2006)  

This study [31] determined the relationship between the permeability of clogging materials, 

the porosity of the un-clogged materials and the effective–permeability of sand-clogged 

block. 

Then, the test results are compared with the estimated results based on the numerical 

methods. The results show that:  

1) The system permeability is considered and measured including the concrete layer and 

subbase.  

2) The system permeability for unclogged pervious concrete pavement is always limited by 

the permeability of the subbase or soil subgrade below.  

3) The permeability of pervious concrete block without a subbase or sand clogging ranges 

from 0.2 to 1 cm/s.  

4) The system permeability over an extra fine sand subbase without sand clogging is about 

0.02 cm/sec. 

 

Testing procedures:  

1) An adjustable wooden flume with 158 cm long and 28 cm wide was constructed in the 

laboratory.  

2) The pervious concrete pavement system was placed in the flume, which contains the sub 

base, pervious pavement layer, and the clogging materials coverage on the top.  

3) The various depth of sand coverage and surface slopes of the flume are applied.  
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4) The simulations of various amount of rainfall runoff are carried in the lab.  

5) Measure the water runoff amount at the both ends of the flume with and without the sand 

coverage both.  

6) The permeability of the pervious concrete system are calculated by using the theoretically 

equations from the derivation.  

7) Compare the estimated permeability results with the measured results.  

 

2.3.2.5 Pezzaniti (2008)  

The effective life or service life or useful lifespan under the sediment loadings and the water 

quality improvement treated by pervious concrete pavement were the main objectives in this 

study [35].  Both tests in laboratory and in field were conducted. The actual sediments 

loading conditions over 35 years of service life was simulated and applied to three types of 

pervious concrete pavements. The results show that the hydraulic conductivity of the testing 

pavements reduced 59 to 75% with the average sediment retention of 94%. The traditional 

cleaning methods sweeping and vacuuming show the little effect on suspend solid 

concentration in outflow.   

 

In the field studies, the concentrations of sediments in runoff related with the clogging effect. 

The high coarse sediment and organic sediments cause the clogging of pavement rapidly, 

particular where runoff flowing onto the pavement was concentrated.  
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2.3.2.6 Y. Joung (2008) [62] 

In this study, the effects of mixture on permeability and clogging of pervious concrete were 

investigated. The falling head test was used as clogging test to determine the relationship 

between the reduction of permeability of the specimens and the amounts of added clogging 

materials. The testing specimens contained the different void contents.   

 

The results mainly show that the clogging reduced the permeability of the specimen with 

void ratio from 23% to 31% more significantly compared to the specimen with the void ratio 

about 33% higher. More research was recommended to further study the effect of initial 

porosity and/or initial permeability of pervious concrete on clogging potential.  

 

Testing procedures:  

1) Place the clogging materials (4 types in this test) per unit weight of the water and mix 

roughly  

2) Pour clogging fluid into the ready sample in the clogging apparatus  

3) Drain mixed water from the cylinder  

4) Repeat step 1, 2 five times that the pervious concrete cylinder becomes well clogged with 

sand.  

5) Set the clogged sample in the falling head permeameter  

6) Measure the time for water head to fall from initial level to final level while draining. 

Repeat five times and average the results. 
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2.4 Important Findings from Literature Review  

1) Pervious concrete is regarded as an “environmental friendly” building materials and 

is increasingly applied due to the environmental, structural and cost benefits.  

2) There are still deficiencies in PCPC, which are low compressive strength, flexural 

strength, clogging, freeze-thaw resistance and other durability, that limit its 

application as a pavement. However, a great progress has been made in the past few 

years.  

3) Studies show the in-place compacted pervious concrete contains higher porosity at 

bottom which may cause the weak strength and potential crack at the bottom.   

4) The pore structure analysis has been found important to predict the hydraulic 

performance as permeability and storage capacity of pervious concrete pavement.  

5) The clogging potential of pervious concrete depends on the gradation of 

sedimentation materials and mixed aggregates, pore size, initial porosity and 

sediments type.  

 When the sediment particles’ size is close to the pore size of pervious concrete, 

the clogging potential is highest.  

 A narrower particle size distribution of mixed coarse aggregates retains the 

better clogging resistance and higher residual permeability; blended mixed 

aggregates have more clogging potential.  

 Different types of sediments cause different clogging effects on pervious 

concrete based on the deposited patterns and locations.   
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 Clogging reduced the permeability of the specimen with void ratio from 23% 

to 31% more significantly compared to the specimen with the void ratio about 

33% higher. 

 Further research is recommended.  

6) Sedimentation effect could significant reduce the permeability but fairly negligible 

effect on storage capacity of pervious concrete.  

7) Traditional cleaning methods show very limited recovery on finer sediments, but 

better efficiency on coarser sediments.  

8) The combination of vacuuming swept and pressure washed show the best efficiency 

based on empirical evidence and experience. The quantitatively and accurately study 

is recommended.  

9) The additional one inch of subbase is recommended to clogging hydrological design 

of pervious concrete.  

 

2.5 List of Uniqueness of This Study  

The shortcomings of previous studies have been discussed. A more comprehensive study on 

clogging effects by considering the effects of void ratios, sedimentation types and cleaning 

methods has not been well established yet.  Therefore, according to the review and 

recommendations from previous studies on this topic, the developments and uniqueness of 

this study are listed:  
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1) Three variables including three types of sediment materials, three designed void ratios 

and three selected cleaning methods are considered in the developing consideration 

of testing matrix in this study.  

2) The design parameter of PCPC pavement, that is void ratio, is considered in terms of 

clogging issue. The conclusion established based on testing results can be used as 

reference in terms of clogging issue for pervious concrete design.  

3) Understanding the deposition patterns of different sedimentation materials can lead to 

the better understanding of clogging mechanisms, and furthermore, to determine the 

relationship between pore structure of pervious concrete and properties of 

sedimentation materials as well as its transportation within the pavement.   

4) The designed clogging test was used to simulate the actual clogging condition, and 

the results may be used to predict to residual permeability in reality.  

5) The applications of three most commonly used cleaning methods on clogged 

specimens that were exposured to various clogging conditions are evaluated in terms 

of permeability recovery.  
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Chapter 3. LABORATORY EXPERIMENTAL WORK 

3.1 Introduction and Design Principles  

The objective of experimental work is to examine the clogging effect of pervious concrete at 

different design void ratios subjected to three types of sedimentation materials, and to 

provide a quantitative evaluation in terms of permeability reduction. Additionally, the 

comparisons of rehabilitation methods are presented in terms of permeability recovery of 

clogged specimens. The influence on hydraulic performance related to pore structure and the 

clogging mechanisms is also discussed. A maintenance schedule established based on 

laboratory clogging test results could be used as the reference guide for the pervious concrete 

pavement maintenance in field.  

Based on the findings from this study, a better understanding on the quantitative evaluation 

of clogging effect on pervious concrete is obtained. The important finding are presented and 

discussed in Chapter 4. Also, in this chapter, an overview of test parameters and the concrete 

materials and mixtures is provided. Descriptions of the mixing procedures, preparations and 

curing of the specimens and the test methodologies are also reviewed. 

 

The design principle of the experimental study is to simulate the in-place field clogging of 

pervious concrete in the laboratory. A clogging cycle which is explained later in this chapter 

is defined to simulate the clogging of in-place pavement in each service year. Based on this 

simulation, the permeability reduction of in place pervious concrete due to clogging effect 

can be determined, and also the permeability recovery by cleaning methods is also found.    
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3.2 Testing Matrix  

The experimental program can be divided into two steps: 1) the testing specimen preparation; 

2) the clogging testing, which includes two cases. In the step 1, through the proper casting 

and compaction, only the testing specimens that contained the anticipated design void ratios 

were selected for further clogging test in step 2. The detailed casting and compaction 

procedure and method is discussed in Section 3.2.5. For the two clogging cases (Case A and 

Case B), the testing matrix and testing procedure are developed based on the previous studies 

[37, 59, 62].   

 

A clogging cycle is defined in this study.  For each cycle, an equal amount of clogging 

material is spread evenly on the testing specimen top, and the permeability is measured by 

allowing the water to flow through the specimen along with the suspended clogging material 

within. This procedure is refereed to clogging. After the water is completely drained, a tested 

rehabilitation method was selected to clean the clogged specimen. After cleaning, the 

permeability test is conducted again by allowing pure water flow through this "cleaned" 

specimen, and permeability was recorded. This procedure is refereed as cleaning. Therefore, 

each clogging cycle includes a clogging and a cleaning operation.  

 

In Case A clogging, the testing specimens were subjected to the sedimentation with a typical 

sedimentation load, as a reasonable case for in-place pavement. The clogging procedure was 

repeated up to 20 times. Permeability was determined and recorded for each clogging 

procedure. Case A simulates the clogging condition without any cleaning maintenance 

applied on pervious pavement. In Case B clogging, the specimens were subjected to a large 
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sediment load, as a reasonable but worst-case scenario. In contrast with case A, in case B, the 

specimens were subjected to a repeated clogging cycle including both clogging and cleaning 

procedure up to 20 cycles. Permeability was determined and recorded in each clogging and 

cleaning procedure. Twenty cycles was selected to simulate an assumed 20 years of service 

life of the pavement.  

 

To simulate the reasonable loadings for a PCPS in variety of geographical area [43, 45, 37], 

it was necessary to estimate of amount of sediments and the volume of runoff. The 

sedimentation load for case A and case B are listed in Table 3-1. The testing matrix of this 

study is shown in Table 3-2.  

Table 3-1. Sedimentation Load (Adopted from [38]) 

 
Case A 

(Typical or small 

sediment load) 

Case B 

(High or worst sediment 

load) 

Total Sedimentation 

Materials 
0.22 lb 1.76 lb(0.82 Kg) 

Water Heads 20 in-4 in 20 in- 4 in 

Simulated Service Life 

(year) 
20 20 
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Table 3-2. Testing Matrix for Case A and Case B 

Testing Matrix (Total Sample Size: 108) 

Test 

Testing 

Standard 

Specimen Type 

15% 20% 25% 

Porosity 
Volume 

Method 
36 36 36 

Permeability Falling Head 36 36 36 

 

Phase I Typical Sedimentation Load (0.01 lb/cycles) 

Permeability 

Falling Head 

Specimen Number 
Sedimentation Type 

Sand 3 3 3 

Clayey Silt 3 3 3 

Clayey Silty Sand 3 3 3 

 

Phase II High Sedimentation Load (0.088 lb/cycles) 

Permeability 

Falling Head 

Specimen Number 
Sedimentation Type 

Sand 9 9 9 

Clayey Silt 9 9 9 

Clayey Silty Sand 9 9 9 

 

Rehabilitation Methods 

(Apply Clogged Samples From Phase II) Specimen Number 

Permeability 

Falling Head 
Pressure Washed 3 3 3 

Vacuum Swept 3 3 3 

Pressure Washed & Vacuum Swept 3 3 3 
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3.3 Materials and Mix Proportions   

3.3.1 Binder Properties  

LaFarge Type I/II cement was used in this study. Table 3-3 lists the cement properties 

provided from the mill report.  

Table 3-3. Physical Properties and Chemical Analysis of Cement 

Physical Properties 

Finess-Blaine 1878 ft
2
/lb 

Specific Gravity 3.15 

Vicat Setting Time 90 min 

Compressive Strength 
7-day 4460 psi 

28-day 6300 psi 

Autoclave 0.02% 

Chemical Properties & Analysis wt. % 

Silicon Dioxide 20.5 

Aluminum Oxide (Al2O3) 4.2 

Ferric Oxide (CaO) 3.3 

Ferric Oxide (CaO) 62.3 

Calcium Oxide (MgO) 2.9 

Sulfur Trioxide (SO3) 3.0 

Loss on Ignition 1.2 

Insoluble Residue 0.23 

Free Lime 1.0 

Tricalcium Silicate (C3S) 57 

Tricalcium Aluminate (C3A) 6 

Total Alkali as NaEq 0.53 
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A densified silica fume from Degussa, USA was also used at 5% binder replacement to 

improve strength and paste bonding characteristics of selected mixes. The specific gravity of 

the silica fume 2.2 with a bulk density of 30-40 lb/ft3. The mechanical properties are not a 

major concern in this study.  

 

3.3.2 Aggregates Properties  

3.3.2.1 Coarse Aggregates  

The aggregate used in this study was 3/8 inch crushed granite with a specific gravity of 2.65, 

absorption of 0.59 %, and 18% passing the No.4 Sieve. A fine river sand with fine modulus 

of 2.9, specific gravity of 2.62 and the absorption of 1.1% was used as fine aggregate. The 

gradation curves for the coarse aggregates, fine and combined aggregates are shown in 

Figure 3-1. For both coarse and fine aggregates, the grading, specific gravity and absorptions 

were measured according to ASTM D 448 "Standard Classification for Sizes of Aggregates 

for Road and Bridge Construction" and ASTM C 128 "Standard Test Method for Density, 

Relative Density, and Absorption of Fine Aggregates", respectively. The coarse and fine 

limit represents for the potential failures of the casted pervious concrete due to the aggregates 

gradations. 
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Figure 3-1. The Gradation Curve of Grainite, Fine Sands, and the Combination of 

Mixed Aggregates (Adopted from [25])  

3.3.3 Admixtures  

A high-range water reducer agent (HRWR), viscosity modify agent (VMA), air entraining 

agent and hydration stabilizer were used in the mixing proportions. Also variable-length 

fibrillated polypropylene fibers were used in the mixtures. The related information is shown 

in Table 3-4: 
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Table 3-4. Admixture Chemical Properties 

Name Type Color 
Specific 

Gravity 
pH 

Recommended 

Dosage 

Glenium 

3400 NV 

High-range 

water 

reducing 

admixtures 

Dark brown 1.07 7.8 
2-12 fl.oz/100lb 

cement 

Everair Plus 

Air-

entraining 

agent 

Brown 1.01 10 
0.8-2.3 fl.oz/100 

lb cement 

 

3.3.4 Mix Designs  

The mix design as shown in Table 3-5 used was one of the most durable freeze-thaw mix 

designs as developed in conjunction with the overall research project [22, 27].  This mix 

design has been proved to be freeze-thaw durable after 180 F/T cycles. Also, the replacement 

of the viscosity modifying workability agent with a latex polymer admixture was employed 

to increase tensile strength and improve workability of the mix.  
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Table 3-5. Pervious Concrete Mix Proportions 

Materials Amount 

Coarse Aggregate (3/8” granite, 

oven dry) (pcy) 
2245 

Fine Aggregates (concrete sand, 

oven dry)  (pcy) 
225 

Portland Cement (Type I//II) 

(pcy) 
296 

Slag (pcy) 207 

Fly Ash (pcy) 89 

Propex Fibermesh 300 

Buckeye UltraFiber 300 

1.5 

1.5 

Water-Cement Ratio 

(w/c=0.29) 20.6 gallons (maybe 

adjusted at the time of batching for 

actual moisture) 

Glenium 7500 (HRWR) (oz) 25.5 

Air Entraining Agent (oz) 12.0 

Delvo Hydration Stabilizer (oz) 71.0 

Viscosity Modifying Agent (oz) 20.0 

 

3.3.5 Fabrication and Curing of Specimens  

Cylindrical specimens were casted for clogging tests in this study. The cylindrical specimens 

were casted in a plastic mold with the dimensions of 4 in (101mm) in diameter by 8 in 

(203mm) tall, and the specimens were demolded after 24 hours. The curing procedure was 

conducted according to ASTM C192. After being cured in a moist environment for 7 days, 
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all the specimens were trimmed to 6 inches tall by sawing 1 in from the top and bottom (See 

Figure 3-2) 

 

Figure 3-2. Untrimmed Specimen (Left) and Trimmed Specimen (Right) 

The compaction method is an important consideration in the specimen preparation procedure. 

As presented in Section 2.2.7, to achieve the designed total porosity, the different levels of 

compaction effort was applied to cast the specimens. However, it should be noted that the 

rodding and tapping as the compaction method would cause the large variability in total 

porosity and also depend on the operators. Therefore, a similar casting method based on the 

fresh unit weight was used in this study. The casting and compaction procedure used was 

based on with ASTM C 1688 “Standard Test Method for Density and Void Content of 

Freshly Mixed Pervious Concrete”. The necessary rodding and tapping was used to ensure 
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the specific amount of fresh materials to fill up the mold. The top surface was stroked off so 

the concrete surface was level with the top of mold. The desired weight of the sample was 

maintained by not adding/removing material during the finishing of the top surface. Each 

mold was filled with a specific weight/amount of fresh materials. The specific amount of 

fresh materials could be determined as stated below.  

 

From Kevern [56], a general linear relationship between unit weight and porosity of pervious 

concrete mixtures was found. To achieve the design porosity, the linear relationship between 

the fresh unit weights particularly for this mixture and design porosity was also established, 

which is reported in Figure 3-5. From the literature, the fresh density of pervious concrete is 

roughly 100 to 130 lb/ ft
3 

(1601 kg/m
3
 to 2082 kg/m

3
). The plastic mold is 8 in by height and 

4 in by diameter, and the volume is 0.058 ft
3
. The weight of the fresh mixing materials in this 

mold was roughly 2500 to 3500 gram based on the portion of volume.  

 

The casting procedure is summarized as below:  

1) The first step is to establish the general relationship between porosity and unit weight. 

To do so, the filling materials for each mold increase by 50 gram from 2500 gram in 

mold No.1 to 20 samples were casted (Figures 3-3 and 3-4).   

2) After the proper curing procedure, the samples were trimmed into 4 in by 6 in 

diameter uniformly (See Figure 3-2).  

3) The void ratio of trimmed specimens was measured using Volume method.  
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4) Repeat from Step 1 to Step 3, and establish the general relationship between the 

porosity and fresh unit for the particular mixture and mixing material, as shown in 

Figure 3-5. 

 

Figure 3-3. Different Amount of Fresh Filling Material in Each Mold Compacted by 

Roding and Tapping Method to Achieve Designed Porosity  
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Figure 3-4. Hardened Specimens  

The design void ratios are 15%, 20% and 25%. Therefore, according to Figure 3-5, the unit 

weights of fresh materials are estimated, which are approximately 123, 117 and 113 pcf, 

respectively. The unit weights of fresh materials were converted into the weight of filling 

materials in each mold. This linear relationship as established in Figure 3-5 between the fresh 

unit weight and void ratio was developed according to the theory introduced in [25] only 

represents for this mixing proportioning and materials. The similar linear relationship 

between the unit weight and total porosity of hardened specimen should be found for 

different batch designs. It should be noticed that development of this relationship is important 

to control and predict the hardened properties of pervious concrete by using fresh unit weight, 

especially for achieving the uniform properties of pervious concrete in the placement process.  



 

 
 

8
9
 

 

Figure 3-5. Linear Relationship between Fresh Unit Weight (pcf) and Design Void Ratio (%)  
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3.4 Clogging Methods  

3.4.1 Sedimentation Particles Characteristics  

The types of soils used for sedimentation in this study were selected to have the most 

significant effects on reduction of exfiltration, and a fairly large range of particles size 

distribution was studied.  In addition, a soil with both coarse and fine particles will likely be 

retained on the pervious concrete with the larger size remaining on or in surface region, and 

the finer particle susceptible to transport through the pavement vertically [37]. The three soils 

used in this study are shown in Figure 3-6.  

 

Figure 3-6. Three Sedimentation Materials: Sand (left), Clayey Silt (middle), and 

Clayey Silty Sand (right).  

Particle size analysis of sediments was conducted in general accordance with ASTM D 422 

"Standard Test Method for Particle-Size Analysis of Soils". The coarse sediments contain 

medium to fine sand as classified by the United Soil Classified by Unified Soil Classification 

with particles between 0.08 in (2 mm) and the #200 sieve size (75 um). Finer grained 
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particles, those passing the #200 sieve size (75µm), contained approximately 25% clay as 

measured by the hydrometer testing is general accordance with ASTM D 422. The clayey 

silty sand was composed approximately 60% coarse sediments and 40% fine sediments.  

 

3.4.2 Case A Typical (Small) Sedimentation Load  

For 20 years of simulated effective service life and the surface area corresponding to the 

sedimentation test in 3.4.2, a total of 0.22 lbs (0.1 kg) of sediments was used for Case A for 

each specimen. For each clogging procedure run, the amount of sediments is approximate 

0.01 lb, which is one twentieth of the total 0.22 lb.  

 

The clogging testing apparatus and methodology used in this study is similar to the previous 

studies [37]. After the initial permeability measurement of the unclogged specimens, water 

from the graduated cylinder was drained off completely. Then, 0.01 lbs of sediments was 

spread evenly on the specimen’s surface and the permeability test was conducted by allowing 

the water to flow through the specimen along with the clogging materials on the surface. 

Time was recorded for water level to drop from the constant initial head (h1) of 20 inch to a 

constant final head (h2) of 4 inch above the specimen top. This procedure is refereed as 

clogging procedure as stated in Section 3.2. Such clogging procedure run was repeated up to 

20 times for each sample using one type of sediment.   
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3.4.3 Case B High Sedimentation Load  

The difference between Case A and B is the greater amount of sedimentation materials in 

clogging procedure (See Table 3-2), and the followed cleaning by three rehabilitation 

methods: pressure washing, vacuuming, and the combined of these two methods.  

A total of 1.76 lbs (0.82kg) of soil sediments, corresponding to the specimen surface area, 

was used simulate the total sedimentation load during 20 years of service life. Therefore, in 

each clogging cycle, 0.088 lbs of clogging materials which is one twentieth of the total were 

spread evenly on the specimen top, and water allowed to flow through. Then, the sediments 

were removed with a selected cleaning method and permeability was measured again. This 

procedure was conducted up to 20 times for each specimen to examine the effects of 

sedimentation and cleaning efficiency. Based on statistical analysis, for each void ratio and 

one type of sediment, three samples were tested, and the average values were presented as 

output.  

 

Pressure washing as used in this study the “power head cone nozzle” is shown in Figure 3-7. 

The tap water was concentrated in a narrow cone (other types of nozzle did not work as well), 

and directly sprayed on the sample surface (See Figure 3-8). The pressure is measured at 

1000 Mpa (psi). The vacuuming was effected by the 4.85 kW (6.5-HP) wet/dry vacuum 

sweeper shown in Figure 3-7. The sealed pressure is 120” or 4 psi, which is smaller than the 

commonly used for vacuuming swept pressure in-place pavement. Therefore, a better 

performance than the testing results found in this study is expected in the field. For each 

sample, approximately 60 seconds of vacuuming is applied. The pressure washing method 

followed by vacuum sweeping is also used due to the best permeability recovery as 
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recommended in literature. It should be pointed out that the pressure washing followed 

vacuuming involved two steps.  

 

Figure 3-7. Vacuuming the Clogged Specimen 

 

Figure 3-8. Pressure Washer Applied in This Study 
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3.4.4 Testing Method  

3.4.4.1 Porosity  

The porosity measurements applied in this research were conducted by following “Volume 

Method” or so-called “Water-Displacement Method”. The detailed testing procedures have 

been well discussed in previous studies [16, 17, 62]. The weights of the specimen are 

measured under surface saturated dry (SSD) condition, totally dry condition and immersed 

condition, which were recorded as W3, W2 and W1; the equations for calculating the total, 

open and close porosity are below:   

 %100)
12

1((%) 
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WW
Ptotal


       Eqn. 3-1 

%100)
13
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V

WW
Popen


       Eqn. 3-2                                                                   

(%)(%)(%) opentotalclose PPP         Eqn. 3-3                                                   

Where,   

Popen = Total porosity, % 

Pclose = Closed porosity, % 

W1= Weight immersed, (lbs or kg) 

W2= Dry weight, (lbs or kg) 

W3= Surface saturated dry, (lbs or kg) 

V= Normal sample volume based on dimensions of the sample, (ft3 or m3) 

ρ = Density of water, (pcf or kg/m
3
)  
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3.4.4.2 Permeability  

Permeability tests of cylindrical specimens were conducted using conventional falling head 

permeability test apparatus illustrated in Figure 3-8. The concrete specimen was enclosed in a 

rubber sleeve, directly attached to the pipe as shown in Figure 3-9. Flexible sealing gum was 

used around the top perimeter of the sample to prevent water from leaking along the sides of 

the sample.  

 

Figure 3-9. Falling Head Permeability Testing Used in This Study 
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The samples were then confined in a membrane and sealed in the rubber sleeve, which was 

surrounded by the adjustable hose clamps. The 16 inches of water used in the test was from 

the 20
th

 inch to the 4
th

 inch markings to provide a constant head and to permit more accurate 

measurement of elapsed time.  For each individual sample, the initial permeability before 

clogging test, and permeability coefficient changing with clogging cycles were determined 

and recorded. The following equation was used to calculated of permeability K (in/hr).  

1* 1
ln( )

2* 2

A L H
K

A t H
                   Eqn. 3-4 

     

Where,     

K= coefficient of permeability. in/sec 

A1= cross sectional area of the pipe, in
2
  

L= length of the sample, in  

A2=cross sectional area of specimen, in
2
.  

t=time in second from H1 to H2 

H1=initial water level, in   

H2= final water level, in 
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Chapter 4. TESTING RESULTS AND ANALYSIS 

In this section, the laboratory testing results including the hydraulic properties of testing 

specimens and clogging testing results from Case A and Case B are presented. The testing 

results found in this study are:  

1) The initial permeability coefficients and void ratio measurements for all testing specimens,  

2) The results of the sedimentation tests of the results of Case A and Case B.  

 

In preliminary analysis, changes in permeability of cylindrical specimens after sedimentation 

test are the main measurements, and their graphical representations are used to interpret the 

trends of the effects of the three types of sedimentation materials, clogging cycles and 

permeability recovery after cleaning. Using the percentages of initial permeability for each 

specimen, however, allows easier comparisons between each rehabilitation methods. As 

noted previously, each clogging cycle simulates the clogging occurring during one service 

year of pavement. This simulation is important to determine the trends of permeability 

changing with time and sedimentation types for both Case A and Case B.  

 

4.1 Hydrological Properties of the Pervious Concrete Specimens  

The specimen’s identification code for all the properties follows the following designation: a) 

the first letters corresponds to the sedimentation type that is applied on this type, C for clay, 

S for sand, and CS for clayey silty sand; b) second letters corresponds to the rehabilitation 

method that is applied on this sample, P for pressure washed, V for vacuuming swept and 

P&V for the combined two methods; c) first number corresponds to the group number, 1 for 
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15% void ratio group, 2-20% void ratio group, 3-25% void ratio group; d) second number 

corresponds to sample ID in each group. For example, sample No. 1 at 15% design void ratio 

was subjected to sand sedimentation and pressure wash as rehabilitation method is designated 

as S-P-1-1.  

 

The porosity and initial permeability for cylindrical specimens was determined by following 

the method called “Volume Method " and “Falling Head Permeability Test” as described in 

Section 3.4.4.1 and 3.4.4.2, respectively. The testing specimens were divided into three 

groups, and can be identified as Group 1, Group 2 and Group 3, which contained the 

anticipated porosity 15%, 20% and 25%, respectively. A total 27 specimens were prepared in 

each group, and the average porosity for group 1, 2, and 3 is 14.94%, 21.21% and 25.13%, 

respectively. The standard deviation is 0.82, 1.05 and 1.05, for group 1, 2, and 3 respectively. 

Group 1 showed the lowest standard deviation of 0.82, which indicated the more uniform 

porosities of specimens. In the contrast, Group 2 and 3 showed the higher standard deviations 

for higher anticipate void ratios, and the void ratios are more inconsistently distributed. This 

finding may indicate that the laboratory compaction method shows the better uniformity in 

quality and property control on denser specimens with low porosity. The porosity of 

specimens is more consistent with greater compaction energy applied. The testing 

measurements are shown in Table 4-2, 4-3, 4-4, 4-5.  

 

Through statistical analysis, the actual void ratios of these specimens in Group 1, 2 and 3 are 

not statistically different with their corresponding designed void ratios, which also confirmed 
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and proved the average porosity for each group. The effect of void ratios on sedimentation is 

anticipated based on this confirmation.   

 

As briefly shown in Table 4-1, the average permeability (standard deviation) for Group 1, 2 

and 3 is 477.07 (104), 917.56 (232) and 1477.37 in/hour (167), respectively. Much higher 

values of permeability were measured for group 3 at 25% average porosity, and the lower 

permeability and lower standard deviation are consistent with the lower porosity as well 

known. However, for group 2 and 3, a larger standard deviation of 232 was calculated and 

the considerable large difference in hydraulic conductivity is found while the void ratios are 

not significantly different. This finding confirmed that the hydraulic conductivity of pervious 

concrete can’t be measured based on porosity even though the mixing, batching and curing 

procedures are same.  

Table 4-1. Average Porosity and Permeability Coefficients for Group 1, 2 and 3 

 

Average Porosity Average Permeability 

(%) Std. Dev (in/hr) Std. Dev 

Group 1 14.94 0.82 477.1 104.9 

Group 2 20.83 1.05 917.6 232.8 

Group 3 25.08 1.09 1477.4 169 
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Table 4-2. Fresh Density, Porosity Initial Permeability Coefficients for Case A Cylinder Specimens 

Group 

ID. 

Sample 

No. 

Height Fresh Density Porosity Std. Average 
Initial Hydraulic 

Conductivity 

(in) (cm) pcf (kg/m3) (%) Deviation Porosity (%) 
Coefficient K, in/hr 

(cm/sec) 

1 

S-1-1 6.02 15.3 

108 (1730) 

15.6 

0.404 15.17 

333.6 (0.2) 

S-1-2 6.1 15.5 14.8 475.8 (0.3) 

S-1-3 6.04 15.3 15.1 268.4 (0.2) 

2 

S-2-1 5.94 15.1 

119 (1913.5) 

19.7 

0.451 20.17 

548.2 (0.4) 

S-2-2 6.04 15.3 20.6 647.5 (0.5) 

S-2-3 6.08 15.4 20.2 431.5 (0.3) 

3 

S-3-1 6.03 15.3 

125 (2010) 

24.6 

0.557 25.20 

1607.2 (1.1) 

S-3-2 6.08 15.4 25.7 1558.6 (1.1) 

S-3-3 6.06 15.4 25.3 1476.8 (1) 

1 

CS-1-1 6.0 15.3 

108 (1730) 

16.1 

0.709 15.33 

339.5 (0.2) 

CS-1-2 6.0 15.3 14.7 506 (0.4) 

CS-1-3 6.0 15.3 15.2 358.6 (0.3) 

2 

CS-2-1 6.1 15.4 

119 (1913.5) 

21.6 

0.404 21.23 

1121.3 (0.8) 

CS-2-2 6.1 15.4 21.3 1041 (0.7) 

CS-2-3 6.0 15.3 20.8 854.3 (0.6) 

3 

CS-3-1 6.1 15.4 

125 (2010) 

24.1 

0.929 25.13 

1634.8 (1.2) 

CS-3-2 6.0 15.3 25.9 1365.2 (1.0) 

CS-3-3 6.1 15.4 25.4 1414.2 (1.0) 
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Table 4-3 Fresh Density, Porosity and Initial Permeability Coefficients for Case B Cylinder Specimens 

Group 

ID. 

Sample 

No.  

Height Fresh Density 

pcf (kg/m3) 

Porosity 

(%) 

Std.  

Deviation  

Average 

Porosity (%) 

Initial Hydraulic 

Conductivity 

Coefficient K, in/hr 

(cm/sec) (in) (cm) 

1 

S-P-1-1 5.9 15.1 

108 (1730) 

16.2 

0.866 15.7 

404.7 (0.3) 

S-P-1-2 5.9 15.1 14.7 361.8 (0.3) 

S-P-1-3 6.0 15.2 16.2 448.7 (0.3) 

2 

S-P-2-1 6.0 15.3 

119 (1913.5) 

20.7 

0.624 20.9 

835 (0.6) 

S-P-2-2 5.9 15.0 20.4 833.9 (0.6) 

S-P-2-3 6.0 15.3 21.6 1031.9 (0.7) 

3 

S-P-3-1 6.0 15.3 

125 (2010) 

25.4 

0.289 25.6 

1560.3 (1.1) 

S-P-3-2 6.0 15.3 25.9 1437.4 (1.0) 

S-P-3-3 6.1 15.4 25.4 1223.8 (0.9) 

1 

C-P-1-1 6.1 15.4 

108 (1730) 

15.2 

0.569 14.6 

491.8 (0.3) 

C-P-1-2 6.0 15.3 14.1 318.6 (0.2) 

C-P-1-3 6.1 15.4 14.4 454.1 (0.3) 

2 

C-P-2-1 6.1 15.4 

119 (1913.5) 

20.8 

0.416 21.3 

1099.1 (0.8) 

C-P-2-2 6.0 15.3 21.6 926.7 (0.7) 

C-P-2-3 6.0 15.3 21.4 1170.6 (0.8) 

3 

C-P-3-1 6.0 15.2 

125 (2010) 

24.1 

1.044 24.6 

1561 (1.1) 

C-P-3-2 5.8 14.8 25.8 1614.3 (1.1) 

C-P-3-3 5.9 15.1 23.9 1218.6 (0.9) 

1 

CS-P-1-1 5.9 15.1 

108 (1730) 

15.6 

0.458 15.2 

565.8 (0.4) 

CS-P-1-2 6.0 15.2 14.7 684.3 (0.5) 

CS-P-1-3 6.0 15.3 15.3 548.7 (0.4) 

2 

CS-P-2-1 5.9 15.0 

119 (1913.5) 

21.6 

0.850 21.3 

936.7 (0.7) 

CS-P-2-2 6.0 15.3 21.9 1048.9 (0.7) 

CS-P-2-3 6.0 15.3 20.3 1137.2 (0.8) 

3 

CS-P-3-1 6.0 15.3 

125 (2010) 

25.4 

0.681 26.2 

1183.4 (0.8) 

CS-P-3-2 6.1 15.4 26.7 1049.4 (0.7) 

CS-P-3-3 5.9 14.9 26.4 1597.6 (1.1) 
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Table 4-4 Fresh Density, Porosity and Initial Permeability Coefficient for Case B Cylinder Specimens  

Group 

ID. 
Sample No.  

Height 
Fresh Density 

pcf (kg/m3) 

Porosity 

(%) 

Std.  

Deviation  

Average 

Porosity (%) 

Initial Hydraulic 

Conductivity 

Coefficient K, in/hr 

(cm/sec) 
(in) (cm) 

1 

S-V-1-1 6.1 15.4 

108 (1730) 

16.4 

0.800 15.6 

569.9 (0.4) 

S-V-1-2 6.0 15.3 15.6 618.3 (0.4) 

S-V-1-3 6.1 15.4 14.8 591.3 (0.4) 

2 

S-V-2-1 6.1 15.4 

119 (1913.5) 

22.4 

0.850 22.1 

714.6 (0.5) 

S-V-2-2 6.0 15.3 22.7 805.4 (0.6) 

S-V-2-3 6.0 15.3 21.1 697.6 (0.5) 

3 

S-V-3-1 6.0 15.2 

125 (2010) 

25.6 

1.168 25.4 

1661.2 (1.2) 

S-V-3-2 5.8 14.8 26.4 1539.4 (1.1) 

S-V-3-3 5.9 15.1 24.1 1318.7 (0.9) 

1 

CS-V-1-1 6.1 15.4 

108 (1730) 

14.2 

0.945 14.5 

494 (0.3) 

CS-V-1-2 6.0 15.3 13.8 513.6 (0.4) 

CS-V-1-3 6.1 15.4 15.6 358.3 (0.3) 

2 

CS-V-2-1 6.1 15.4 

119 (1913.5) 

21.8 

0.721 21.6 

724.8 (0.5) 

CS-V-2-2 6.0 15.3 22.2 691.2 (0.5) 

CS-V-2-3 6.1 15.5 20.8 548.6 (0.4) 

3 

CS-V-3-1 6.0 15.2 

125 (2010) 

24.6 

0.351 24.3 

1501.5 (1.1) 

CS-V-3-2 5.9 15.0 23.9 1489.2 (1.1) 

CS-V-3-3 5.8 14.8 24.3 1748.6 (1.2) 
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Table 4-5. Fresh Density, Porosity and Initial Permeability Coefficient for Case B Cylinder Specimens  

Group 

ID. 
Sample No.  

Height 
Fresh Density 

pcf (kg/m3) 

Porosity 

(%) 

Std.  

Deviation  

Average 

Porosity (%) 

Initial Hydraulic 

Conductivity 

Coefficient K, in/hr 

(cm/sec) 
(in) (cm) 

1 

S-VP-1-1 6.0 15.1 

108 (1730) 

13.8 

0.473 

  

14.0 

  

459.4 (0.3) 

S-VP-1-2 6.0 15.3 13.6 509.4 (0.4) 

S-VP-1-3 6.1 15.5 14.5 538.5 (0.4) 

2 

S-VP-2-1 6.0 15.3 

119 (1913.5) 

21.6 

1.159 

  

21.8 

  

1130.2 (0.8) 

S-VP-2-2 5.9 15.1 20.7 1256.7 (0.9) 

S-VP-2-3 6.0 15.3 23 1097.5 (0.8) 

3 

S-VP-3-1 6.1 15.4 

125 (2010) 

25.4 

1.168 

  

25.6 

  

1683.8 (1.2)  

S-VP-3-2 6.0 15.3 26.9 1544.6 (1.1) 

S-VP-3-3 6.1 15.4 24.6 1627.6 (1.1) 

1 

CS-VP-1-1 6.1 15.4 

108 (1730) 

15.4 

0.917 

  

14.4 

  

494.4 (0.3) 

CS-VP-1-2 6.0 15.3 13.6 598.6 (0.4) 

CS-VP-1-3 6.0 15.3 14.2 574.6 (0.4) 

2 

CS-VP-2-1 6.0 15.2 

119 (1913.5) 

21.5 

0.850 

  

20.6 

  

1025.6 (0.7) 

CS-VP-2-2 5.8 14.8 19.8 1128.6 (0.8) 

CS-VP-2-3 5.9 15.1 20.6 1289.6 (0.9) 

3 

CS-VP-3-1 6.1 15.4 

125 (2010) 

24.1 

0.764 

  

24.3 

  

1428.4 (1.1) 

CS-VP-3-2 6.0 15.3 23.6 1384.5 (1.0) 

CS-VP-3-3 6.0 15.3 25.1 1458.9 (1.0)  
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4.2 Case A: Typical (Small) Sedimentation Results  

The changes in permeability of specimens under the sedimentation from three types’ 

sedimentation materials are shown in Table 4-6. The cylinder specimens subjected to sand, 

clayey silt and clayey silty sand are shown with the respective permeability determined 

initially and finally after 20 clogging repetitions. It is realized that fine particles would cause 

the negligible permeability reduction; therefore, clay sedimentation tests were not necessary 

to be finished completely.  
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Table 4-6. Changes in Coefficient of Permeability in Specimens at Different States of the Case A Sedimentation Test 

Group 

ID 
Specimen 

Initial 

Permeability 

Coeff. (In/hr) 

Decrease 

Permeability 

After 

Sedimentation  

Average 

Residual 

Permeability 

Coeff. (in/hr) 

Average 

Decrease of 

Permeability 

(in/hr.) 

Average 

Residual 

Permeability 

(in/hr.) 

Average 

Decrease of 

Permeability 

(%) 

Design 

Porosity 

(%) 

Sedimentation 

Materials 

1 

S-1-1 333.7 118.6 64 

335 119 63 15 

Sand 

S-1-2 250.3 112.5 55 

S-1-3 421.8 126.4 70 

2 

S-2-1 794.5 107.2 87 

830 118 86 20 S-2-2 748.3 118.6 84 

S-2-3 948.3 128.4 86 

3 

S-3-1 1607.2 142.6 91 

1643 143 90 25 S-3-2 1408.2 138.6 90 

S-3-3 1374.6 147.3 89 

1 

C-1-1 458.2 457.3 0 

413 411 0 15 

Clay Silty 

C-1-2 421.6 419.5 0 

C-1-3 358.4 357 0 

2 

C-2-1 587.2 587.6 0 

601 600 0 20 C-2-2 614.3 613.2 0 

C-2-3 - - - 

3 

C-3-1 - - - 

- - - 25 C-3-2 - - - 

C-3-3 - - - 

1 

CS-1-1 506 29.8 94 

504 35 93 15 

Clayey-Silty 

Sand 

CS-1-2 471.2 32.6 93 

CS-1-3 536.2 41.5 92 

2 

CS-2-1 1041.2 39.5 96 

1038 37 96 20 CS-2-2 1157 35.9 97 

CS-2-3 917 36.8 98 

3 

CS-3-1 1634.8 36.4 96 

1497 53 96 25 CS-3-2 1528.2 68.5 96 

CS-3-3 1326.5 54.8 96 
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4.2.1 Clay or “Fine Particles” as Sedimentation Materials  

When clayey silt or very fine particles were used as sedimentation materials, the clogging 

effect is fairly negligible (less than 1%) in terms of permeability coefficient reduction for all 

three groups of specimens at 15%, 20% and 25% void ratios. For Group 1, 2 and 3, the 

average reduction of permeability is 0.6%, 0.4% and 0.6% after being exposed to 20 repeated 

clogging procedures with typical amount of sedimentation load, respectively.  

 

These results show that the fine particles can hardly clogged the pores and reduce the 

permeability of pervious concrete with the void ratios ranging from 15% to 25% tested in this 

study. This finding indicates that the fine particles with the size of passing sieve No.200 (75 

µm) most likely would transport through the sample with water, and be retained in the space 

between the pervious concrete layer and filter fabric layer. With the building up of this fine 

deposition layer between the pavement layer and filter fabric layer, the system permeability 

could decrease gradually. However, for concrete itself, the clay sedimentation effect is fairly 

negligible. Since this study mainly focused on the permeability reduction of the pervious 

concrete specimens from the sedimentation effect rather than the whole pavement system, it 

is not necessary to discuss the sedimentation effect from clay materials in the later sections 

due to findings in Case A. More information regarding to clay sedimentation on pervious 

concrete pavement system can be found in Mata (2008).  

 

As expected, the very little amount of clay was observed at the top of the specimens after 

sedimentation test (See Figure 4-2), and most of sedimentation clay particles were flushed 

through the specimens with water (See Figure 4-3).  This observation is consistent with Mata 
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(2008) that significant permeability recovery of clogged pervious pavement was achieved 

after the removal of filter fabric layer at the bottom of concrete layer (See Figure 4-1). 

 

With the very low permeability of clay material, the formation of clay layer would 

considerably reduce the system permeability even though the hydraulic function of pervious 

concrete layer still works well. Also, this finding may also explain that traditional cleaning 

methods as pressure washing and vacuuming sweeping may not work effectively for this 

sedimentation case since the depth of deposition layer always equal or greater than the 

pavement thickness. With the formation of clay layer between pavement and filter layer, the 

system permeability would decrease gradually. Vacuum machines with larger concealed 

pressure maybe working, but research on this issue is recommended. Therefore, this clogging 

effect issue caused by fine particles with size less than sieve No.200 size (75 µm) should be 

taken into the pavement hydraulic design consideration, and the minimum opening of filter 

fabric is 75 µm recommended.  
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Figure 4-1. Specimens at Exposure to Clayey Silt (This photo was adapted from [28]) 

 

 

Figure 4-2 Specimens at Exposure to Clayey Silt in This Study (Left: Before Test; Right: 

After Test) 
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Figure 4-3. The Clayey Silt Sedimentation Test is in Progress  

 

4.2.2 Sand as Sedimentation Materials  

When sand was used as the sedimentation material, a significant decrease of permeability 

occurred to all three groups of specimens. The average remaining permeability for Group 1, 2 

and 3 is 29.5 in/hr., 203.5 in/hr. and 547.3 in/hr. after the specimens being subjected to 20 

repeated clogging procedure runs, respectively. This is 34.1%, 20.8% and 6.8% of initial 

permeability for Group 1, 2 and 3, respectively (See Table 4-5 (B)). The specimens in Group 

1 contained the lowest initial porosity and permeability, which may result the lowest residual 

permeability compared to the specimens that contained the highest initial porosity in Group 3. 
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The residual permeability directly increases with initial void ratio of specimens. At least 60% 

of initial permeability was lost for all three groups subjected to sand sedimentation.  

 

Less than 3% of the amount of applied sedimentation materials was found passing though the 

testing specimens and captured by the No.200 Sieve. This finding confirmed that most of the 

sand sediments were retained either on the surface or within the specimens. The void size of 

the concrete ranging from 0.08 to 0.32 in (2 to 8 mm) is not large enough to allow most of 

the sand sediments to be transported through the specimen. In this case, the pervious concrete 

act as a filter to eliminate the solids within water is confirmed with the reduction of 

permeability.  

 

A linear relationship between the initial permeability and the residual permeability or 

remaining percentage of initial permeability was found as shown in Figure 4-4. This finding 

appears to indicate that the higher initial permeability achieves the higher residual 

permeability compared to other specimens with lower initial permeability under the same 

sand sedimentation load. Therefore, the clogging effect and permeability reduction of 

pervious concrete is influenced by the initial void ratio of pervious concrete because as well 

known that high void ratio generally leading the high permeability.  

 

The general minimum requirement for pervious concrete is a permeability of 15-20 in/hr of 

permeability is a general minimum requirement of pervious pavement. Also, generally at 

75% loss of initial permeability, maintenance should be performed [63, 65]. Based on this 

observation and the simulation of 20 years of service life of pavement, Group 1 showed the 
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lowest residual permeability about 20 in/hr, that is, approximately 5% of the initial value at 

the end of the clogging test, which is regarded having the highest risk of clogging failure 

among three groups. Group 2 with 20% initial void ratio resulted in approximate 200 in/hr of 

residual permeability, which could still satisfy the hydraulic function at the end of service 

year. With a residual permeability of 143 in/hr, Group 3 may be overdesigned on hydraulic 

performance.    

Residual Permeability  = 0.43* Initial Permeability -160.08

R² = 0.9645
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Figure 4-4 (A). Initial Permeability of Specimens Affects the Residual Permeability Due 

to Sand Sedimentation 
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% of Initial Permeability  = 0.0228*Initial Permeability - 0.6883

R² = 0.8792
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Figure 4-4 (B). Initial Permeability of Specimens Affects the Percentage of Remaining 

Permeability Due to Sand Sedimentation 

The amount of applied sediments in each clogging repetition simulates clogging occurring 

each year of service life of pavement up to 20 years, which is the key assumption in this 

study based on Mata's [28]. With sand as sedimentation, at least 20% initial permeability was 

lost after the first 1-2 cycles of constriction. Depending on the void ratios, approximate 55% 

of initial permeability was lost for specimens in all three groups until 7
th

 year after 

construction for group 2 and 3. Then, total permeability reduction for group 2 and group 3 

tend to be constant, and end with 79.2% and 65.9% reduction at 203 in/hr and 547 in/hr, 

respectively. This finding may indicate that at least 85% of total permeability reductions 

occur during the first 10 cycles of service life for the pervious concrete pavement with initial 
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porosity higher than 20%. For group 3 with the lowest void ratios and initial permeability, 

however, permeability reduction is more uniformly distribution with time, and 90% of initial 

permeability was lost up to 12
th

 year after construction. Then, the total permeability reduction 

tends to be constant and reach at 5% of initial permeability about 20 in/hr (Figure 4-5).   

 

According to the definition of “critical pore radius” [61], there exists a certain pore radius for 

every mixture and independent with the compaction procedure, for which the number of 

particles that deposited is the maximum and any increase of the pore radius does not 

contribute a further increase in particle deposition. For convenience, the pores with size close 

and smaller to the critical pore size has higher clogging suspect than other pores, and the 

volume of these pores is defined as critical pore volume. For a certain specimen, the total 

volume of pore includes the critical pore volume and also the volume of pores with size 

greater than critical pore size. For a certain mixture, the critical pore volume is approximately 

the same for all the specimens using the same mixture, and only slightly influenced by the 

compaction energy applied and total void ratio. In other words, the applied compaction 

energy on specimens most likely affects the volume of large pores or so called “non-critical 

pores” rather than the small pores and/or critical pore volume. For specimens subjected to 

sand sedimentation, the critical pores tend to get fully clogged first, and the larger pores may 

still stay open after finishing all the clogging cycles. The specimens with greater void ratios 

contain the larger volume of large pores, which can still efficiently transport water through 

compared to the specimens with low void ratio containing smaller volume of large pores. 

This may explain that why the specimens in Group 3 with higher initial void ratios would 

finally reach the higher residual permeability coefficients. The difference of the remaining 
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permeability coefficients of Group1, 2 and 3 may indicate the difference of the volumes of 

large pores in the specimens with different void ratios.  

Also, a proper maintenance schedule may be established based on Figure 4-5 (B). 

Maintenances are always required when the permeability coefficients were reduced by 75% 

of the initial value due to clogging [63, 65]. Therefore, for Group 1, 2 and 3, the time for 

regular maintenance is at 9
nd

 years after construction based on experiences, and Group 1 may 

still need maintenance to prevent the clogging failure from occurring. However, for Group 2 

and 3, the satisfied hydraulic performance can still be provided due to the higher residual 

permeability without any further maintenance under this condition.  

 

Therefore, the empirical regulation on performing annually maintenance [43] may not be 

necessary.  It should be pointed that the sedimentation test conducted in lab might be very 

different with the actual clogging condition in the field due to the great variability of 

infiltration rate, therefore, this finding may only provide a general idea that how hydraulic 

performance of pervious concrete would change with time after opening.   
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Figure 4-5 (A). Permeability Changes with Number of Clogging Repetition under Sand Sedimentation 
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Figure 4-5 (B). Percentage of Remaining Permeability Change with Number of Clogging Repetition under Sand 

Sedimentation 



117 
 

 
 

4.2.3 Clayey Silty Sand as Sedimentation Materials 

The blended soils that used as sediments were investigated in terms of clogging effect. When 

clayey silty sand was used as the sedimentation materials, similar with sand but even worse, 

significant permeability reductions occur to all three groups. For Group 1, 2 and 3, the 

permeability reductions are 92%, 94% and 98%. More interestingly, the average remaining 

permeability coefficients of all three groups are all approximately equal at about 20 in/hr 

(See Figure 4-8 (A)) independent on the initial void ratios and initial permeability 

coefficients. This is the most remarkable difference compare to sand sedimentation.  

 

Additionally, the changes in permeability with the increase of clogging cycles are shown in 

Figure 4-8 (A) & (B). Specimens in Group 1 containing the lowest void ratios again showed 

the lowest clogging resistance and total permeability reduction increases up to 90% at 5
th 

repetition or 5
th

 years after construction. Group 2 and Group 3 showed better conditions and 

reached the 90% of permeability reduction at 13
th

 and 18
th

 clogging procedure or 13
th

 and 

18
th

 years after construction. 

 

 It was observed that clay particles were flushed through and the sand particles were retained 

on the surface of the specimens. The permeability reductions of specimens subjected to 

clayey silty sand are the highest, and this observation has good agreement with Mata's [28] 

(See Figure 4-6). The reasons the observations are similar with those used in Section 4.2.2. 

However, the differences are noted that 1) the much lower remaining permeability 2) the 

different trends of permeability changing with increased number of clogging repetitions. 

Regarding to the first difference, the reasons are the wider range of particle size distribution 
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and cohesion of clay. Clayey silty sand contains a wider range of particle size distribution 

compared to the narrowly particle size-ranged materials such as sand or clay used in the 

previous cases, which increases their chances of being retained within or passed through the 

specimens. More pores within the specimens may get clogged by the blended materials. 

Another important reason is due to the cohesion property of clayey silty materials. Due to the 

significant amount of clay in this blended sedimentation materials around 40% by weight and 

its cohesion property, clay particles may flow through the specimen with sand particles, and 

adhere on the sand particle surface that was retained. Especially, with the increase of 

clogging repetitions and decrease of flow rate, the clay particles are more easily to “touch 

and adhere” the sand particles compare to the initial condition with a relatively high flow rate. 

Finally, the void space would be occupied gradually by the sand deposition and adhered clay 

particles. Secondly, the reason is the difference of pore volumes in specimens with different 

void ratios. The specimens with higher void ratios containing the larger volume of pores than 

the specimens with lower void ratios; the gradual increase of volume sediments within the 

pore with the accumulation of trapped clay and sand particles; therefore, it may take more 

clogging cycles to fully clog those pores. However, once the samples get fully clogged, the 

remaining permeability for all the specimens become very low and equally same.  

 

A proper maintenance schedule may be established based on Figure 4-8 (B). Maintenances 

are always required when the permeability coefficients reduced up to 75% of the initial value 

[65, 63]. Therefore, for Group 1 and Group 2, the time for regular maintenance is at 2
nd

 year 

after construction; however, for Group 3, the time for regular maintenance is at 3
rd

 year after 

construction. All Groups had the clogging failure risk. To prevent this failure, at least an 
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additional maintenance is required for Group 1 at 5
th

 year, Group 2 at 12
th

 year and Group 3 

at 16
th

 year of service.   

 

Figure 4-6. Specimen After Exposure to Clayey Silty Sand (Adapt from [28]) 

 

Figure 4-7. Specimens Exposed to Clayey Silty Sand   

Clay adheres to 

sand particles and 

concrete surface 
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Figure 4-8 (A). Permeability Changes with the Number of Clogging Repetition under Clayey Silty Sand 
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Figure 4-8 (B). Percentage of Remaining Permeability Change with the Number Clogging Repetition under Clayey Silty 

Sand Sedimentation 
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4.2.4 Case A Conclusion  

The following important findings are listed based on observation in Case A:  

1) Initial void ratios affect the residual permeability under clayey silt and sand 

sedimentation, which are narrowly graded materials.  

2) Clayey silty sand as blended clogging materials cause the most significant permeability 

reduction compared to sand and clayey silt, more than 90% of initial permeability was 

reduced with time for the three groups. The specimens with different void ratios all 

become fully clogged and reached remaining permeability (35in/hr).  

3) The higher the void ratio (approximate 25% in this study), the higher remaining 

permeability under sand and clayey silty sedimentation.  

4) For clay sediments, no significant permeability reduction for concrete itself, but the 

simulation of deposited clay layer between pavement and filter fabric is critical, and 

should be taken into consideration.  

5) For sand sediments, at least 60% of initial permeability was reduced for all three groups.  

6) The maintenance of pervious concrete may be established according to sedimentation 

type and pervious concrete pavement property. However, laboratory sedimentation test 

may not be able to predict the actual clogging condition.  
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4.3 Case B: Worst (Large) Sedimentation Results  

The sedimentation effects from clay on pervious concrete were confirmed to be negligible in 

Case A (See Table 4-6), Therefore, this type of sedimentation effect is not discussed in this 

section. Testing specimens would only be subjected to sand and clayey silty sand sediments. 

Sediment load for Case B was considered the reasonably worst case as introduced in Section 

3.4.3. A total of 1.76 lbs (0.82 kg) was used, corresponding to the cylinder surface area to 

simulate the total sedimentation load for 20 years.  

 

The definition of clogging cycles is first developed in this study including clogging 

procedure run and then cleaning. In each clogging run, 0.088 lbs of clogging materials were 

spread evenly on specimen surface, and water allowed flowing through. The permeability 

was measured when the dirty water was flowing through the specimen. Then, the sediments 

were removed with a selected cleaning method and permeability was measured again. This 

procedure, involving clogging and then cleaning, as one clogging cycle, was conducted a 

total of 20 times for each specimen to examine the effects of sedimentation and cleaning 

efficiency.  

 

Sedimentation tests in Case A confirmed that higher initial void ratio of pervious concrete 

showed the higher remaining permeability after being subjected to a typical sedimentation 

loads without rehabilitation methods applied. However, when using clayey silty sand as 

sedimentation material, the residual permeability approached a constant value for three 

groups.  In this section, the rehabilitation methods were taken into consideration and three 

sedimentation were still used but with a greater amount of sediment. The effects of different 
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rehabilitation methods on the permeability of specimens subjected to sand and clayey silty 

sand are provided in Table 4-7, Table 4-8, and Table 4-9. The permeability loses and 

recoveries changing with number of clogging cycles are provided in Figure 4-9, Figure 4-12 

and Figure 4-15.   

 

This section is organized into three sections based on the application of rehabilitation 

methods, they are, pressure washing, vacuuming and the combination of these two. Since the 

test results and analysis for pressure washing and vacuuming swept are similar, the analysis 

of test results will be detailed as discussed in “Pressure washing” in Section 4.4.1, and a brief 

discussion will be provided in “Vacuuming” in Section 4.4.2 any unless there is significant 

difference. In Section 4.4.3, the effects of the combinations of two methods are presented. 

Lastly, the effects of void ratios of PCPC, sedimentation materials type and rehabilitation 

methods on sedimentation are presented in Section 4.4.4.   
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Table 4-7. Changes in Coefficient of Permeability at Different Stages of the Case 2 Sediments Test (By Pressure Washing) 

Group 

ID 
Specimen 

Initial 

Permeability 

Coeff. 

(In/hr) 

Decrease 

Permeability 

After 

Sedimentation  

Average 

Residual 

Permeability 

Coeff. (in/hr) 

Average 

Decrease of 

Permeability 

(in/hr.) 

Average 

Residual 

Permeability 

(in/hr.) 

Average 

Decrease of 

Permeability 

(%) 

Design 

Porosity 

(%) 

Sedimentation 

Materials 

1 

S-P-1-1 404.8 26.4 93 

405 54 87 15 

Sand 

S-P-1-2 361.8 60.3 83 

S-P-1-3 448.74 74.3 83 

2 

S-P-2-1 835.1 145.5 83 

900 182 80 20 S-P-2-2 833.9 228.8 73 

S-P-2-3 1031.9 171.5 83 

3 

S-P-3-1 1560.4 513.4 83 

1407 588 57 25 S-P-3-2 1437.4 422.9 67 

S-P-3-3 1223.8 480.9 71 

1 

C-P-1-1 491.9 317.2 2 

422 416 1 15 

Clay Silty 

C-P-1-2 318.6 450.7 0 

C-P-1-3 454.1 1080.7 1 

2 

C-P-2-1 1099.1 887.9 2 

1065 1046 2 20 C-P-2-2 926.8 1168.4 4 

C-P-2-3 1170.6 1535 0 

3 

C-P-3-1 1561 1610.5 2 

1465 1454 1 25 C-P-3-2 1614.3 1217.5 0 

C-P-3-3 1218.6 86.1 0 

1 

CS-P-1-1 565.8 74.6 85 

600 70 88 15 

Clayey-Silty 

Sand 

CS-P-1-2 684.3 49.3 89 

CS-P-1-3 548.7 217.6 91 

2 

CS-P-2-1 936.7 237.5 77 

1041 232 78 20 CS-P-2-2 1048.9 238.6 77 

CS-P-2-3 1137.2 239.5 79 

3 

CS-P-1-1 1183.1 255.7 78 

1277 285 77 25 CS-P-2-2 1048.4 302.6 71 

CS-P-3-3 1597.6 297.6 81 
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Table 4-8. Changes in Coefficient of Permeability at Different Stages of the Case 2 Sediments Test (By Vacuuming) 

Group 

ID 
Specimen 

Initial 

Permeability 

Coeff. (In/hr) 

Decrease 

Permeability 

After 

Sedimentation  

Average 

Residual 

Permeability 

Coeff. (in/hr) 

Average 

Decrease of 

Permeability 

(in/hr.) 

Average 

Residual 

Permeab

ility 

(in/hr.) 

Average 

Decrease of 

Permeability 

(%) 

Design 

Porosity 

(%) 

Sedimentation 

Materials 

1 

S-V-1-1 569.9 69.3 88 

593 87 85 15 

Sand 

S-V-1-2 618.3 84.6 86 

S-V-1-3 591.3 108.5 82 

2 

S-V-2-1 714.6 236.9 67 

739 232 69 20 S-V-2-2 805.4 265.1 67 

S-V-2-3 697.6 194.3 72 

3 

S-V-3-1 1661.3 464.7 72 

1506 497 67 25 S-V-3-2 1539.4 494.5 68 

S-V-3-3 1318.7 531.9 60 

1 

CS-V-1-1 494 39.1 92 

455 48 89 15 

Clayey-Silty 

Sand 

CS-V-1-2 513.6 43.6 92 

CS-V-1-3 358.3 61.3 83 

2 

CS-V-2-1 724.8 245.6 66 

655 174 74 20 CS-V-2-2 691.2 138.2 80 

CS-V-2-3 548.6 136.9 75 

3 

CS-V-3-1 1501.6 196.4 87 

1580 216 86 25 CS-V-3-2 1489.2 239.4 84 

CS-V-3-3 1748.6 213.5 88 
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Table 4-9. Changes in Coefficient of Permeability at Different Stages of the Case 2 Sediments Test (By Pressure Washing 

and Vacuuming) 

Group 

ID 
Specimen 

Initial 

Permeability 

Coeff. (In/hr) 

Decrease 

Permeability 

After 

Sedimentation  

Average 

Residual 

Permeability 

Coeff. (in/hr) 

Average 

Decrease of 

Permeability 

(in/hr.) 

Average 

Residual 

Permeability 

(in/hr.) 

Average 

Decrease of 

Permeability 

(%) 

Design 

Porosity 

(%) 

Sedimentation 

Materials 

1 

S-VP-1-1 459.4 98.6 79 

458 121.5 76 15 

Sand 

S-VP-1-2 509.4 135.6 73 

S-VP-1-3 538.5 130.6 76 

2 

S-VP-2-1 1130.2 347.6 69 

956 372 68 20 S-VP-2-2 1256.7 428.6 66 

S-VP-2-3 1097.5 338.6 69 

3 

S-VP-3-1 1683.9 508.9 70 

1428 449 70 25 S-VP-3-2 1544.6 438.5 72 

S-VP-3-3 1627.6 517.5 68 

1 

CS-VP-1-1 494.4 58.6 88 

614 80 86 15 

Clayey-Silty 

Sand 

CS-VP-1-2 598.6 94.5 84 

CS-VP-1-3 574.6 87.6 85 

2 

CS-VP-2-1 1025.6 284.6 82 

1120 229 78 20 CS-VP-2-2 1128.6 247.5 78 

CS-VP-2-3 1289.6 227.5 82 

3 

CS-VP-3-1 1428.5 328.4 77 

1359 364 75 25 CS-VP-3-2 1384.5 374.9 73 

CS-VP-3-3 1458.6 369.5 75 
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4.3.1 Pressure Washing  

4.3.1.1 Sand  

Using sand as the sedimentation material, the average permeability reductions for Groups 1, 

2 and 3 are relatively close and not significantly different with each other, which are 84.6%, 

81.2%, and 82.8%, respectively (See Figure 4-10). The residual permeabilities are 43.2 in/hr, 

181.95 in/hr and 421.3 in/hr after 20 clogging cycles. Group 3 achieved the highest residual 

permeability after sedimentation due to its highest initial void ratio (See Figure 4-9).  

 

Pressure washing was applied as a rehabilitation method to remove the sediments from the 

specimens, and the average permeability recovery per clogging cycle is 9.3%, 9.8% and 15% 

for Group1, 2 and 3. The average permeability recovery is lowest for Group 1 containing the 

lowest void ratio and initial permeability. Also, the permeability recovery slightly increases 

with the initial void ratio. However, among the three groups, the permeability recoveries are 

not statistically significantly different with each other and all less than 10%.  

 

The most significant permeability drops about 60% to 70% of initial values for all three 

groups occur in the first 5 clogging cycles (See Figure 4-9). After the 5
th

 cycle, the 

permeability approaches a consistent value, which are 150 in/hr, 300 in/hr and 500 in/hr. The 

permeability reduction and recovery all approach a constant value about 2-4% of the initial 

value for Group 1, 5% and 10% for Group 2 and 3. The permeability recovery magnitudes 

with clogging cycles were also decrease gradually.  
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A significant amount of sand was observed at the top of the specimens after the each 

clogging procedure, which can be completely removed by pressure washing or vacuum 

sweeping. Only very limited amount of sand was observed flushing though the specimen 

with water (See Figure 4-10).  

Table 4-10. Specimens Subjected to Sand Sedimentation and Cleaned by Pressure 

Washing   

Group ID 

Void 

Ratio 

Permeability 

Recovery 

Mean (%) 

Std 

Dev 

Upper 

95% 

Mean 

Lower 

95% 

Mean 

Average 

Initial 

Permeability 

(in/hr) 

Average 

Residual 

Permeability 

(in/hr) 

Group 1 

15% 
4 3.35 5.56 2.42 395.2 43.2 

Group 2 

20% 
7.8 7.7 11.4 4.2 864.6 181.9 

Group 3 

25% 
9.4 2.06 10.4 8.4 1408.3 421.3 
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Figure 4-9. Permeability Coefficient of Permeability of Specimens Subjected to Sand Sediments and Cleaned by Pressure 

Washing 
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Figure 4-10. Specimens Exposed to Sand Sediments before (Left) and After 

Sedimentation Test 

 

Figure 4-11. Sand Sedimentation Test is in Progress 
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According to Deo' s  [61], the higher residual permeability may be attributed the larger pore 

sizes, and increased pore connectivity in the specimens. Therefore, the highest residual 

permeability of Group 3 may indicate the largest pore size and increased pore connectivity 

caused by the highest porosity as compared to Group 1 and 2 with lower porosity. The 

finding may show that the high porosity indicates the pore connectivity and large average 

pore size.     

 

As predicted, sand sediments were generally trapped on the surface and near the top zone of 

specimens after sedimentation test, and only the sediments trapped on the surface were 

completely removed by pressure washing. The critical pores were clogged by gradual 

accumulation of sediments and the deposition depth also increased with clogging cycles.  

Therefore, the permeability decreased accordingly. With more clogging cycles repeated, the 

critical pores approached being completely clogged by sand sediments, and finally, the 

clogged critical pores tended to a relatively steady state, and no further permeability 

reduction would occur with repeated clogging cycles because no further sediments would be 

retained within the pores in specimens. Group 3 showed the highest residual permeability due 

to its highest non-critical pore volume among Group 1 and 2. Therefore, even though the 

pressure washing was applied to clogged pavement to open the surface pores, there would 

not be any significant permeability improvement if the critical pores were filled up.  

 

As discussed previously (See Figure 4-12), the total volume of pervious concrete roughly 

equal to the summation of open (or also called “effective”) and close pore volume, and the 

open pore volume roughly equals to the summation of critical pore and non-critical pore. 



133 
 

 
 

With the deposition of sediments in critical pore, the specimens with high total porosity may 

reach the higher residual permeability comparing to the specimen with lower total porosity 

due to the higher volume of non-critical pore, which always has the large pore size than 

critical pore, and allows the faster transportation of water through. However, for a certain 

mixture, the critical pore volume for various specimens are roughly equal (See Figure 4-12) 

 

Figure 4-12. Pore Volume of Pervious Concrete Specimens: High Porosity (Left) and 

Low Porosity (Right) 

Regarding the average permeability, specimens at high void ratios contain large pores as 

confirmed previously, and the removal of the sediments clogging these surface open pores 

may contribute to the permeability improvements. Therefore, as anticipated, the specimens at 

higher porosity would achieve the higher permeability recovery. This phenomenon would 

explain why the permeability values and permeability recoveries would approach being 

constant values.  
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The rapid permeability reduction during the first 5 clogging cycles may indicate the faster 

accumulation rate of sediments in the critical pores within the specimens at the beginning of 

clogging process. However, with time most critical pores would be filled up and no longer 

hold more sedimentation materials, which could cause slow accumulation rate. 

 

4.3.1.2 Clayey Silty Sand  

Clayey silty sand was confirmed in Case A as the most “dangerous” sedimentation materials 

which can cause the highest loss of hydraulic performance of pervious concrete specimens in 

terms of permeability reduction. Approximate 90% of initial permeability was lost for all 

three groups after 20 clogging cycles, which is 39.5 in/hr., 185.3 in/hr., 217.6 in/hr. for 

Groups 1, 2 and 3, respectively (See Table 4-11). The trends of permeability changing with 

clogging cycles are shown in Figure 4-13. The remaining permeability are fairly equivalent, 

particularly for Group 2 and Group 3. This observation is not consistent with the results 

presented in Section 4.3.1.1, but similar with the observations obtained in Section 4.2.3.  

 

Though statistical analysis (See Table 4-11), the average permeability recovery for Group 1 

and Group 2 is not statistical significantly different. However, for Group 3, with 25% initial 

void ratio, the highest average permeability recovery was achieved.  In each clogging cycle, 

at least 15% of the initial permeability was recovered by applying  the pressurized water to 

remove the sand sediments from specimens. This finding may indicate that if the pervious 

concrete specimen contain the initial void ratios ranging from 15% to 20%, the permeability 

recovery achieved by pressurize water are approximately equivalent. 25% of void ratios 
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show the significantly higher permeability recovery. The significant permeability reduction 

more than 60% of initial permeability lost during the first 5 to 6 clogging cycles was 

observed. Especially for Group 1, more than 90% of permeability was lost after the first 

clogging cycle. This finding has good agreement with Section 4.2.3.  

 

A significant quantity of sand with a fine layer of clayey silty sediments was observed on the 

surface of the cylinder after the sedimentation tests. Due to cohesion of clay materials, the 

clay grains adhered to sand particles surface and built up a mud layer on the specimens’ 

surface. The application of vacuum sweeping and pressure washing completely removed this 

material. Visual observation did not show a significant amount of sediments flow through the 

specimen, very similar to the observation with the sand sediment sedimentation test.  

Table 4-11. Specimens Subjected to Clayey Silty Sand Sedimentation and Cleaned by 

Pressure Washing   

Group ID 
(Void 

Ratio) 

Permeability 

Recovery 

Mean (%) 

Std 

Dev 

Upper 

95% 

Mean 

Lower 

95% 

Mean 

Average 

Initial 

Permeability 

(in/hr) 

Average 

Residual 

Permeability 

(In/hr) 

Group 1 

(15%) 
9.4 6.4 6.34 12.4 565.8 39.5 

Group 2 

(20%) 
9.8 2.8 11.1 8.4 926.7 185.3 

Group 3 

(25%) 
15 5.1 17.4 12.6 1584.3 217.6 
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Figure 4-13. Permeability Coefficient of Permeability of Specimens Subjected to Clayey Silty Sand Sediments and Cleaned 

by Pressure Washing 
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The residual permeability for all three groups tended to achieve a constant value, especially 

for Group 2 and 3. This result is unlikely with sand sedimentation test but very similar with 

typical clayey silty sand sedimentation test, presented in Section 4.2.3, therefore, the similar 

theory and explanation were applied that the gradual accumulation of sand particles with 

adhered clay grains filled the critical pores up. Due to the wider range of particle size 

distribution than pure sand and heavy load of sedimentation materials applied, the larger 

volume pores were clogged up and became impermeable, which may explain that the residual 

permeability are approaching constant but lower than the values measured at the end the sand 

sedimentation test. It should be noted that the constant residual permeability is independent 

void ratio of specimens.   

 

Regarding the average permeability recovery, opening of clogged surface pores by removing 

sediments that are trapped near the top zone using pressure washing may still attribute the 

permeability improvements. The distribution and frequency of larger pores are higher in 

specimens at higher porosity than at lower porosity. Therefore, the larger surface pores on the 

surface specimens in Group 3 were cleaned and opened to allow the larger amount of water 

infiltration than the specimens from Group 1 and 2. A similar explanation is introduced in 

sand sedimentation test in Section 4.2.2.  

 

The highest permeability reduction around  90% for Group 1 and lowest around 60% for 

Group 3 up to 5 or 6 clogging cycles may indicate that the permeability reduction rate relates 

to the deposition rate of sedimentation materials, which depended on the pore size and 

sediments particle size.  Sand particles adhered by cohesive clay grains could build up the 
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deposition and filled up the critical pores faster than pure cohesiveless sand. Therefore, the 

faster permeability drop could be properly explained.  

 

Pressure washing applied cleaned the sediments surface fairly well but only showed the very 

limited effect on the part clogging within the specimens based on visual observation. 

Therefore, by removing the surface sediments, approximately 10% of average permeability 

recovery was achieved for Group 1 and 2, and 15% for Group 3. However, the permeability 

recovery magnitude and residual permeability were strongly influenced by specimens’ void 

ratio, clogging degree and sedimentation type.    
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Figure 4-14. Specimens Exposed to Clayey Silty Sand Sediments before (Left) and after 

Sedimentation Test 

 

Figure 4-15. Clay Silty Sand Sediments Is In Progress 
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4.3.2 Vacuuming  

Vacuuming as another rehabilitation method investigated in this study is used and compared 

to other cleaning methods based on the permeability recovery under the same sedimentation 

load. Unlike the vacuuming machine used in the field, the pressure installed on this one is 

lower than the vacuum actually used in filed. Therefore, the cleaning efficiency from the 

laboratory test may be underestimated.  

 

4.3.2.1 Sand  

The changes in permeability of the specimens subjected to sand with 20 clogging cycles of 

the test procedure are shown in Figure 4-16.  Three specimens lost at least 70% of the initial 

permeability while for Group 1; the average permeability reduction is about 84%. The 

average residual permeability for Groups 1, 2 and 3 is 69 in/hr, 291 in/hr and 465 in/hr, 

respectively.   

 

The average permeability recovery by vacuuming of the most affected specimens is Group 3, 

reaching, approximate 10% of the initial value. However, for Group 1 and Group 3, the 

permeability recoveries are relatively low, which are 2.4% and 7.1%, respectively. Similar 

results were observed that the remaining permeability and average permeability recovery 

increased directly with initial void ratio and permeability.   

 

Applying vacuuming to pervious concrete specimens at 25% void ratio is more efficient than 

applying to at 15% and 20% void ratios under the sand sedimentation, but it is not 
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statistically different (See Table 4-13). The permeability lost reached at 70% of the initial 

value for three groups up to 5
th

 clogging cycles, which showed a similar trend as introduced 

in Section 4.3.1.1. 

 

The similar phenomenon of the deposited materials on the top of specimens after 

sedimentation was observed as described in Section 4.3.1.1 (See Figure 4-10). The visible 

sedimentation materials on sample specimens were removed from the top by vacuuming. It 

was expected that sedimentation materials within the top zone were also partially removed.  

Table 4-12. Specimens Subjected to Sand Sedimentation and Cleaned by Vacuuming   

Group ID 
(Void 

Ratio) 

Permeability 

Recovery 

Mean (%) 

Std 

Dev 

Upper 

95% 

Mean 

Lower 

95% 

Mean 

Average 

Initial 

Permeability 

(in/hr) 

Average 

Residual 

Permeability 

In/hr  

Group 1 

(15%) 
2.4 0.7 2.7 2.1 509.9 69.3  

Group 2 

(20%) 
7.1 1.9 8 6.17 1018.6 291.4  

Group 3 

(25%) 
9.6 9.3 15 5.2 1661.3 461.8  
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Figure 4-16.  Permeability Coefficient of Permeability of Specimens Subjected to Sand Sediments and Cleaned by 

Vacuuming 



143 
 

 
 

It should be noted that the results on permeability reduction, permeability recovery, and even 

the permeability changing trends with clogging cycles for three groups are relatively similar 

with the results obtained in Section 4.3.1.1. The principles and theories to interpret these 

testing results in Section 4.3.1.1 are also applied to this section.  

 

The lower tortuosity and higher pore connectivity as well as the higher volume of large pore 

were found in the specimens at high void ratios [61, 20].  The greater volume and higher 

frequency of large pore, lower tortuosity and higher pore connectivity obtained in specimens 

at higher void ratios are the important factors for achieving the higher residual permeabilities 

and permeability recoveries comparing to specimens at lower void ratios. These important 

pore structure characteristics allow the easier movements of retained cohesieless sand 

particles in the pores within the specimens, which can achieve the better cleaning efficiency 

and residual permeability as predicted.  

 

Different with the cleaning mechanism of pressure washing, vacuuming could remove the 

retained particles on specimen surface but also the particles retained within the top one inch 

of the specimen. The effective cleaning depth depends on the pressure that is applied on 

specimen surface by vacuuming machine. As cited in [37] and [60], the permeability 

recovery only by vacuuming is normally slightly higher or approximately equivalent with 

pressure washing (See Section 2.3.1.6). However, the applied pressure in this study is lower 

than the one actually used in filed, which may indicate the smaller cleaning depth than that in 

field. Therefore, the permeability recovery and cleaning efficiency in this study may be 

underestimated.  
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4.3.2.2 Clayey Silty Sand  

The change in permeability of specimens subjected to clayey silty sand sediments and 

cleaned by vacuuming with 20 clogging cycles of the test procedure are shown in Figure 4-

17. Three groups lost more than 80% of the initial permeability after 20 clogging cycles and 

all achieved a constant low value at about 200 in/hr.  

 

The average permeability recoveries per cycle for three groups are almost equivalent at 

approximate 11%. It is noted that the permeability recovery magnitude decreases with 

clogging cycles increases. As clearly shown in Figure 4-17, from 1
st
 to 5

th
 cycles, the average 

permeability recovery is 20%, 15% and 22% for Group 1, 2, and 3. However, from 6
th

 to 20
th

 

clogging cycles, the average permeability recovery drops to 9.1%, 8.7% and 9.3% for Group 

1, 2 and 3. Also, all specimens in three groups approach the constant remaining 

permeabilities ranging from 110 in/hr to 280 in/hr after 20 clogging cycles.  

 

The similar phenomenon of the deposited materials on the top of specimens after 

sedimentation was observed as described in Section 4.3.1.2 (See Figure 4-15). This material 

was completely removed from the top by vacuuming.  

 

Under clayey silty sand sedimentation, the residual permeability tends to approach a constant 

value for all specimens approximate 200 in/hr at the end of clogging test. The permeability 

recovery by vacuuming is relatively close at 11%. For all three groups, more than 50% of 

initial permeability was lost within the first clogging cycle, and more than 80% of initial 

permeability was lost up to 2
nd

 clogging cycles. These important observations confirm the 
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results obtained in Section 4.3.1.2, and as expected, the similar interpretation was also 

applied in this section.  

Table 4-13. Specimens Subjected to Clayey Silty Sand Sedimentation and Cleaned by 

Vacuuming   

Group ID 

Void 

Ratio 

Permeability 

Recovery 

Mean (%) 

Std.  

Dev 

Upper 

95% 

Mean 

Lower 

95% 

Mean 

Average 

Initial 

Permeability 

(in/hr) 

Average 

Residual 

Permeability 

(In/hr) 

Group 1 

(15%) 
11.8 7.5 15.2 8.4 479.3 43.5 

Group 2 

(20%) 
10.27 4.76 12.5 8.1 1234.6 107 

Group 3 

(25%) 
12.54 10.21 14.02 9.2 1528.5 142.3 

 

Sand particles with adhered cohesive clay grains can easily build up the deposition in the 

pores within the specimens, and reduce the permeability during a short time. Cohesive clay 

behaves as a cementatious material adhering to sand particles, and establishes the bonding 

between the concrete and sand particles in the pores. This bonding could stabilize the sand 

sediments that were retained in the pores, which could reduce the cleaning efficiency.  

 

Also, as noted, the significant sedimentation appeared within about the bottom two thirds of 

the specimen on visual observation, and, very little amount of sedimentation materials was 

observed within the top third of this specimen cleaned by vacuuming. This may be the good 

indicator of effective cleaning depth.  
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The removal of sedimentation materials retained on the surface and within the top few inches 

of specimens indicated the higher permeability recovery than only removing the surface 

retained sediments by using pressure washing but not statistical significantly greater. Also, 

comparing to Section 4.3.1.2, the average permeability recoveries approximately remain 

constant. The higher permeability recovery is expected using a higher pressure applied by 

vacuuming.  
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Figure 4-17. Permeability Coefficient of Permeability of Specimens Subjected to Clayey Silty Sand Sediments and Cleaned 

by Vacuuming 
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Figure 4-18. Cylinder Specimens Subjected to Clay Silty Sand Sedimentation and Cleaned by Vacuuming
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4.3.3 The Combination of Pressure Washing and Vacuuming  

4.3.3.1 Sand  

The changes in permeability of specimens subjected to sand and cleaned by the combination 

of pressurized washing and vacuuming over 20 clogging cycles are shown in Figure 4-19.  

All specimens in the three groups lost at least 70% of the initial permeability after 20 

clogging cycles while Group 1; lost the most permeability about 75% due to its low void 

ratio about 15%. The residual permeability is 121 in/hr, 305 in/hr and 449 in/hr for Groups 1, 

2 and 3, respectively.  

 

Pressure washing followed by vacuuming showed the most improvement in specimens in 

Group 3 that received about 25% and the other two groups, Group 1 and Group 2 that 

received the equivalent permeability recovery about 11% of the initial value. The similar 

results were observed that the specimens with the high initial void ratios and permeability 

coefficients achieve the greatest permeability coefficients.  

 

It should be noted that residual permeability for each group tends to achieve a constant value, 

and this constant remaining permeability value is lowest for Group 1 and highest but 

approximately equivalent for both Group 2 and 3. Regarding to the permeability recovery, 

the average value is lowest for Group 1 and highest for Group 3 and Group 2 is in the middle, 

which may indicate that the permeability recoveries increase directly with the initial void 

ratios of specimens.  
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The similar phenomenon of the deposited materials on the top of specimens after 

sedimentation was observed as described in Section 4.3.1.1 (See Figure 4-9). This material 

was completely removed from the top by pressure washing followed by vacuum sweeping.  

Table 4-14. Specimens Subjected to Sand Sedimentation and Cleaned by Pressure 

Washing and Vacuuming  

Group ID 

Void 

Ratio 

Permeability 

Recovery 

Mean (%) 

Std. 

Dev. 

Upper 

95% 

Mean 

Lower 

95% 

Mean 

Average 

Initial 

Permeability 

(in/hr) 

Average 

Residual 

Permeability 

(In/hr) 

Group 1 

(15%) 
11.0 3.9 9.2 12.9 457.6 121.5 

Group 2 

(20%) 
11.8 4.5 9.6 13.9 956.4 305.6 

Group 3 

(25%) 
25.2 4.7 23 27.5 1428.4 449.1 

 

As expected, the highest residual permeability coefficient and average permeability 

recoveries were achieved comparing to Section 4.3.1.1, specimens subjected to sand 

sediments and cleaned pressure washing and Section 4.3.2.1, specimens subjected to sand 

sediments and cleaned by vacuuming. This finding also confirms the conclusion in the 

literature that the combined pressure washing and vacuuming can provide the best cleaning 

efficiency comparing to only applying pressure washing or vacuuming along [38, 41].  

Surface-retained particles were completely cleaned off and some of the retained particles 

within the top zone of specimens were also loosened by vibration caused pressure washing, 

and the most of surface pores would open and available for water infiltration again. After 

pressure washing, vacuuming can pick up the loosed particles within the few inches near the 
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top of specimen, and further increase the infiltration rate. According to Table 4-14 and Figure 

4-19 the permeability recoveries achieved by either pressure washing and vacuuming is 

approximately equivalent.  

 

The effective cleaning depth also increased approximately from one third depth to one half 

depth of specimen height (See Figure 4-21) due to the removal of extra sedimentation 

particles that were retained within the top zone but loosened by the vibration of pressure 

washing applied on the specimen surface. This phenomenon may lead to a best cleaning 

efficiency of pressure washing followed by vacuuming. Also, the pore structure 

characteristics of specimen at void ratios are important to permeability recovery as presented 

in Section 4.4.2.1.  
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Figure 4-19. Permeability Coefficient of Permeability of Specimens Subjected to Sand Sediments and Cleaned by Pressure 

Washing and Vacuuming 
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Figure 4-20. Cylinder Specimens Subjected to Sand Sedimentation and Cleaned by Pressue Washing and Vacuuming
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4.3.3.2 Clayey Silty Sand  

The changes in permeability of specimens subjected to clayey silty sand sediments and the 

combination of pressure washing and vacuuming as cleaning method with 20 clogging cycles 

of the test procedure are shown in Figure 4-21. Testing specimens lost more than 75% of 

initial permeability after the test while Group 1, lost the most permeability at about 80% of 

the initial permeability due to the low porosity. The residual permeability is 144 in/hr, 268.1 

in/hr and 364.1 in/hr for Group 1, 2 and 3 (See Table 4-16). As previously discussed, the 

same phenomenon was observed that the residual permeability increases directly with the 

initial permeability and/or void ratio.  

 

Group 3 showed the best average permeability recovery at about 20% among three groups. 

However, it is not statistically higher than Group 1 and 2 based on the statistical analysis 

with 95% confidence interval (See Table 4-16). Under clayey silty sand sedimentation, the 

effect of void ratio of specimens on cleaning efficiency by the combination of vacuuming 

and pressure washing are small, and proved to be statistically insignificant.   

 

As observed in Figure 4-22, the effective cleaning depth by vacuuming and pressure washing 

is at most one third of the total height of the specimen, because a significant amount of 

sedimentation materials were found within the bottom two thirds of the specimens. The 

similar phenomenon of the deposited materials on the top of specimens after sedimentation 

was observed as described in Section 4.3.1.2 (See Figure 4-15). This material was completely 

removed from the top by pressure washing followed by vacuum sweeping. Under clayey silty 

sand sedimentation, the specimens can at least achieve the residual permeability of 
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approximately 140 in/hr after 20 clogging cycles and even 2 times of higher for specimens at 

25% void ratios. This is more than sufficient to satisfy the hydraulic performance of pervious 

concrete. This is established based on the annual maintenance by performing pressure 

washing followed by vacuuming. As recommended by EPA [43], performing annual 

maintenance on pervious concrete pavement was preferred, which may be overdone based on 

this finding.  The effective cleaning depth as observed in this section decreases comparing to 

the value observed in Section 4.3.3.1, which could explain the lower cleaning efficiency and 

residual permeability coefficients. The similar interpretation regarding to the effective 

cleaning depth used in Section 4.3.2.2 still applied in this section. However, a difference 

should be noted, comparing the effective cleaning depths as observed in Section 4.3.2.1 and 

Section 4.3.3.1, the effective cleaning depth increased from one third to approximate one half 

of the total specimen height when using the combination of pressure washing and vacuuming 

instead of vacuuming only. However, this difference is not found when comparing 

observations from Section 4.3.2.2 and Section 4.3.3.2, which may be explained by the effect 

of clayey silt acting as cementitious materials bonding the sand sediments and concrete in the 

pores and reduce the effective cleaning efficiency.   
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Table 4-15. Specimens Subjected to Clayey Silty Sand Sedimentation and Cleaned by 

Pressure Washing and Vacuuming 

Group 

ID 
(Void 

Ratio) 

Permeability 

Recovery 

Mean (%) 

Std 

Dev 

Upper 

95% 

Mean 

Lower 

95% 

Mean 

Average 

Initial 

Permeability 

(in/hr) 

Average 

Residual 

Permeability 

In/hr 

Group 1 

(15%) 
14.2 4.8 13.5 15.3 613.5 143.5  

Group 2 

(20%) 
13.1 9.7 11.7 15.6 1119.2 268.1  

Group 3 

(25%) 
20 8.2 16 26.7 1359.4 364.1  
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Figure 4-21. Cylinder Specimens Subjected to Clay Silty Sand Sedimentation and Cleaned by Pressue Washing and 

Vacuuming 
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Figure 4-22. Cylinder Specimens Subjected to Clay Silty Sand Sedimentation and Cleaned by Pressue Washing and 

Vacuuming
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4.3.4 Implications of Sedimentation Effects on PCPC 

In this section, a “big picture” is provided. The clogging testing in described Section 4.2 and 

4.3 on cylindrical specimens showed the reasonably similar results of permeability changing 

trends, they are, zigzag curves. The differences in these multiple zigzag curves were found 

and interpreted from the three perspectives of void ratios of PCPC, characteristics 

sedimentation materials, and rehabilitation methods.  

 

In clogging test, the water with sediments has a one direction flow through the specimen. The 

water with sediments flows through a confined space tended to push the sediments deeper 

into the specimens. The initial high head of the water (18 in) may have contributed to this 

effect, and also, due to the great variability of infiltration rate and density of in-place 

pervious concrete pavement, the testing results in this study based simulated clogging test 

may not truly indicate the “real” case, but more importantly is to provide a guide of 

considering and preventing the clogging effect of pervious concrete from occurring in terms 

of three perspectives as mentioned above, which would be helpful to establish the 

quantitative  and accurate study on clogging effect of pervious concrete pavement.  

 

In general, this section is organized into three parts: 1) the effect of void ratios of PCPC, 2) 

sedimentation materials and 3) rehabilitation methods on sedimentation effects of pervious 

concrete.   
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4.3.4.1 Effects of Sedimentation Materials  

All the sedimentations tests confirmed that sand sediments will most likely be trapped on the 

surface or near the top zone within the specimen (See Figure 4-4 and Figure 4-10); clayey silt 

will be deposited within the concrete or travel through the concrete, and then retained 

between the space between the concrete and filter fabric or underlying soil (See Figure 4-1 

and Figure 4-2). Based on the observation of clayey silty sand material, clayey silt also tends 

to adhere to sand particles surface due to its cohesion property (See Figure 4-6, 4-7 and 

Figure 4-14). The presence of coarser particles in sedimentation materials may change the 

deposition pattern of clayey silty material. The dense, less permeability surface acted like a 

coarse filter, passing the small particles most likely the clay grains but trapping larger ones as 

sand particles. The observations in this study confirmed these findings results from previous 

studies.  

 

By conducting the laboratory clogging sedimentation test on cylindrical specimens, some 

conclusions are found that clay would cause the negligible permeability reduction of the 

pervious concrete itself (See Table 4-6); sand would cause significant permeability reduction 

(See Figure 4-5), which can be recovered to an acceptable residual permeability by using 

proper cleaning method (See Figure 4-9, 4-16 and 4-19), and may still satisfy the minimum 

requirements of hydraulic performance of pervious concrete pavement; clayey silty sand as 

sedimentation material cause the most significant permeability reduction, lowest residual 

permeability and permeability recoveries (See Figure 4-8). Current available rehabilitation 

methods showed the limited cleaning efficiency (See Figure 4-13, 4-17 and 4-21), and the 

initial design of pervious concrete pavement should take clogging into consideration. 
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However, the cleaning efficiency depends on the void ratios of pervious concrete pavement. 

Due to the great variability of infiltration rate, uniformity of density and void ratios of in-

place pervious concrete, the actual clogging effect may not be predicted accurately based on 

the results obtained in this study.  

 

4.3.4.2 Effect of Void Ratios of PCPC 

According to Section 4.2, the test results show that the higher void ratios achieved the higher 

residual permeability coefficients of the clogged specimens subjected to the same 

sedimentation loads without rehabilitation methods applied (See Figure 4-8 and 4-9 ). A 

proper maintenance schedule may be established based on the trends of permeability with 

repeated clogging experiments. The test results showed that the pavement with low void 

ratios at around 15% requires earlier and more frequent maintenances than those with higher 

void ratios at 20% or above. However, more research is recommended to be further confirm 

this finding.  

 

According to Section 4.3, the similar test results were also obtained. The specimens with 

greater void ratios always achieve the higher residual permeability and permeability 

recoveries by cleaning. This conclusion is based on conducting a series of laboratory 

clogging tests on cylindrical specimens involving three sedimentation materials and 

rehabilitation methods on cylindrical specimens with 15%, 20% and 25% designed void 

ratios.  
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Based on the test results in Case A and Case B, it is recommended to using 20% of void 

ratios as the minimum design void ratio of pervious concrete pavement in terms of the 

clogging consideration. For 15% as design porosity, there is a possibility of failure of 

hydraulic performance, that is, the residual permeability is lower than 5% of the initial value 

and about 20 in/hr, when pavement subjected to clayey silty sand while the cleaning methods 

may not be effective. For 25% as design void ratios, the hydraulic performance may be 

overdesigned and cause the strength failure due to this high void ratio. However, further 

researches are recommended to confirm this finding.  

 

4.3.4.3 Effect of Rehabilitation Methods  

According to the test results presented in Section 4.3, the combined pressure washing and 

vacuuming as the cleaning method is regarded as the best rehabilitation method. However, 

the cleaning efficiencies depend on the pervious concrete void ratios and the characteristics 

of sedimentation materials. In Figures 4-23 to 4-28, the vertical axis is the remaining percent 

of permeability, and the horizontal axis is the clogging cycles conducted. As observed, 

vacuuming and pressure washing always show approximately the equivalent remaining 

percentage, and the V+P (pressure washing and vacuuming indicates for the green bar) 

always shows the highest remaining permeability percentage. It should be noted that under 

sand sediments with the increase of void ratios, the difference in three bar heights tend to 

decrease.  
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Under sand sedimentation (See Figures 4-22, 4-23, 4-24), the residual permeability of 

clogged specimens, cleaned by V+P, kept a fairly constant value at 30% of initial 

permeability with conducting more clogging cycles. By contrast, applying pressure washing 

and vacuuming kept approximate 20% of initial permeability for specimens containing 20% 

and 25% of void ratios but only 10% for those containing 15% of void ratios. Under clayey 

silty sand sedimentation (See Figures 4-26, 4-27 and 4-28), V+P kept a fairly constant value 

at 20% of initial permeability with conducting more clogging cycles. By contrast, applying 

pressure washing and vacuuming only can keep 10-20% of initial permeability for specimens 

containing 20% and 25% of void ratios but less than 10% for those containing 15% of void 

ratios.  

 

This finding may indicate that pressure washing followed by vacuuming always keep the 

remaining permeability highest under same sedimentation type and loading, Number of 

clogging cycles and initial void ratios of pervious concrete comparing to those only using 

pressure washing or vacuuming. Further researches are recommended to conduct similar 

clogging tests on pervious concrete slab instead of core sample in order to better simulate the 

real case.  
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Figure 4-23. Specimens with 15% Void Ratio Subjected to Sand and Cleaned by Three Rehabilitation Methods  
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Figure 4-24. Specimens with 20% Void Ratio Subjected to Sand and Cleaned by Three Rehabilitation Methods 
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Figure 4-25. Specimens with 25% Void Ratio Subjected to Sand and Cleaned by Three Rehabilitation Methods 
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Figure 4-26. Specimens with 15% Void Ratio Subjected to Clayey Silty Sand and Cleaned by Three Rehabilitation 

Methods 
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Figure 4-27. Specimens with 20% Void Ratio Subjected to Clayey Silty Sand and Cleaned by Three Rehabilitation 

Methods
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Figure 4-28. Specimens with 25% Void Ratio Subjected to Clayey Silty Sand and Cleaned by Three Rehabilitation 

Methods
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4.4 Design Considerations and Maintenance Strategy for PCPC Pavement Subjected to 

Clogging Issues 

The implications of the design considerations include several common situations for PCPC 

pavement overlying different subgrades, therefore, the various sedimentation conditions, were 

investigated in this section. Also, the preferred cleaning methods and procedures are discussed 

corresponding with each sedimentation condition. A detailed discussion about the design of 

PCPC pavement subjected to clogging conditions can be found in literature [28].  

 

In general, four steps are involved in design procedure:  

1) Conduct the conventional hydrologic analysis including the determination of Curve 

Numbers, surrounding area and localized soil characteristics;  

2) Determination of the localized soil characteristics including soil type, gradation and 

composition; determine the initial exfiltration rate of subgrade layer;  

3) Predict the total sediment load and the sediment load in mass per unit area of PCPC 

pavement based on 20 years of service life;  

4) Conduct clogging test to determine the hydrologic behavior in terms of permeability change 

and the residual permeability;   

 

Mata [28] provides the minimum on-situ permeability on the order of 200-800 cm/h (78.8-315 

in.hr.), therefore, permeability lower than this rate during a clogging test may indicate the 

pervious concrete needs maintenance or initial design porosity may be adjusted to achieve the 

higher permeability rate. However, the specific value of in situ permeability of pervious 
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pavement is normally determined based on local precipitation, surrounding area and pervious 

pavement site design.  

 

Based on the testing results, design recommendations developed in this study are summarized as 

below based on different clogging conditions.  This may provide a reference for in-situ pervious 

concrete construction. The composition, soil properties, and gradation of subgrade materials 

should be determined, and taken into the consideration of pavement design and maintenance.  A 

comprehensive summary of residual permeabilities and cleaning efficiencies in different 

clogging conditions are shown in Table 4-16.   

 

4.4.1. Sand  

Depending on the subgrade materials’ characteristics, when the localized subgrade soil and 

potential clogging material are mostly cohesionless, the hydraulic performance of PCPC layer 

may end up with different levels based on different initial porosities. The experimentally 

determined residual permeability can still reach more than 30 in/hr. for 15% of initial porosity, 

200 in/hr. for 20% of initial porosity, and 570 in/hr. for 25% of initial porosity. These values 

were obtained without applying maintenance. Under this case, a high initial porosity of pervious 

pavements around 25% is preferred to achieve the higher residual permeability and cleaning 

efficiency if it is necessary.  

 

4.4.2. Cohesive Materials  

When the localized subgrade soil and potential clogging material are mostly cohesive, the 

clogging effect on hydraulic performance of PCPC layer is negligible and independent with the 



172 
 

 
 

design initial porosity. An appropriate initial porosity may be selected to achieve the hydraulic 

performance based on local precipitation amount, stomwater runoff, site characteristics and 

surrounding areas. However, the accumulation of clay layer within the space between concrete 

layer and filter fabric may reduce the system permeability. Under this sedimentation case, based 

on the properties of cohesive material, the maintenance operation is preferred to be conducted in 

the wet condition, and pre-wetting is recommended prior to conducting maintenance. Pressure 

washing followed by vacuuming is preferred. Also, the opening size of filter fabric used in PCPC 

construction should at least No.200 sieve size (75µm) to allow the passing of fine particles.  

 

4.4.3. Blended Materials 

When the localized subgrade soil and potential clogging material are mostly blended material, 

the clogging effect on hydraulic performance of PCPC layer is the most significant. Greater 

permeability reductions were obtained in this case. Independent with the initial porosity, the 

residual permeability for all specimens is approximate 30 in/hr. without the application of 

maintenance. With the maintenance in this case, residual permeabilities are depended on the 

initial porosities of PCPC specimens. Overall, specimens containing 25% of initial porosity and 

cleaned by annual pressure washing followed by vacuuming show the highest residual 

permeability around 430 in/hr. Therefore, under this sedimentation case, the greater initial 

porosity and the combined pressure washing and vacuuming are preferred. Due to the large 

amount of cohesive materials, pre-wetting activity is recommended before conducting the 

maintenance.  
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Table 4-16. Residual Permeabilities and Cleaning Efficiencies in Different Clogging Conditions 

 

 

 

 

Group  
No 

Maintenance  

With Maintenance  

Sediment 

ID Porosity 

Pressure Washing Vacuuming  PW+V 

Residual K 
Initial 

K 

Residual 

K 
Efficiency 

Initial 

K 

Residual 

K 
Efficiency 

Initial 

K 

Residual 

K 
Efficiency 

(In/hr.) (In/hr.) (In/hr.) (%) (In/hr.) (In/hr.) (%) (In/hr.) (In/hr.) (%) 

1 15% 411 422 416 98 - - - - - - 

Cohesive 2 20% 600 1065 1046 99 - - - - - - 

3 25% - 1465 1454 98 - - - - - - 

1 15% 119 405 54 4 593 87 2.4 458 121.5 11 

Sand 2 20% 118 900 182 7.8 739 232 7.1 956 372 11.8 

3 25% 143 1407 588 9.4 1506 497 9.6 1428 449 25.2 

1 15% 35 600 70 9.4 455 48 11.8 614 80 14.2 

Blended 2 20% 37 1041 232 9.8 655 174 10.27 1120 229 13.1 

3 25% 53 1277 285 15 1580 216 12.54 1359 364 20 
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Chapter 5. CONCLUSIONS AND RECOMMENDATIONS 

5.1 Study Summary  

Portland Cement Pervious Concrete (PCPC) is regarded as an “environmental friendly” 

construction pavement material. It has a few advantages over conventional pavement 

including reducing or eliminating stormwater runoff and treatment of pollutants, the low long 

term cost and better pavement surface condition during snow or rain storm. Great progress 

has been made in the past few years in developing the freeze-thaw durable pervious concrete 

pavement, increasing hydraulic and strength properties, and maintenance strategy.  

 

However, there is a concern that the pores in the pervious concrete might clog due to long 

term deposition of fine focuses on the extreme events due to the catastrophic event(s) or 

flooding close to unpaved area. The objective of this research is to provide a quantitative 

evaluation of clogging effect of pervious concrete by considering three variables; 

characteristic of sedimentation materials, void ratios of pervious concrete and rehabilitation 

methods. A laboratory procedure was conducted to mimic a series of pervious clogging 

cycles with various clogging materials.  

 

The testing matrix was divided into Case A and B. Case A simulates the more realistic 

clogging condition, which involving a small sedimentation load. Case B simulates the 

reasonable but worst scenario, which involving a large sedimentation loads. The definition of 

clogging cycle, as introduced in Section 3.4.3, was introduced to simulate the clogging and 

cleaning that occurs to PCPC pavement in reality.  In Case A, each specimen was exposure 
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up to 20 clogging repetitions without cleaning to predict the residual pavement performance 

as well as the permeability changing with simulated service time. In Case B, each specimen 

was exposure up to 20 clogging cycles to simulate the effective service life time. Three types 

of sediments, which are pure sand, clayey silt and clayey silty sand, are used to simulate the 

realistic clogging condition of PCPC pavement. Testing specimens at 15%, 20% and 25% of 

void ratios are used to determine the effect of pervious concrete properties on clogging. 

Three rehabilitation methods, which are pressure washing, vacuum sweeping and the 

combined of these two, are employed and applied on the testing specimens in Case B, and the 

cleaning efficiency of each method is compared.  

 

Overall, testing results of Case A confirm fairly well with Case B. It is predicted that the fine 

materials (cohesive materials) usually cause the negligible effect on hydraulic performance 

of PCPC with void ratios from 15% to 25%. However, fine particles may be trapped within 

the space between the concrete pavement layer and filter fabric layer, and cause the reduction 

of pavement system permeability. The traditional cleaning method show limited cleaning 

efficiency in this condition. Therefore, the minimum opening size of filter fabric used in 

PCPC pavement is greater than No. 200 sieve size, which to allow the passing of fine grains 

particles and prevent the accumulation of fine grain layer from occurring with clogging.  

 

Coarse materials (cohesiveless materials) normally cause the significant reduction on 

hydraulic performance of PCPC, but the design goals for hydrological purpose can be still 

maintained. The cleaning recovery and permeability reduction inversely related with 
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designed void ratio of PCPC. The combined vacuuming and pressure washing show the best 

cleaning efficiency under this case.  

 

The blended sediments normally lead to the most significant reduction on hydraulic 

performance of PCPC, and the residual permeability and permeability recoveries are fairly 

lowest compared to the case only using fine or coarse sediments alone. However, the higher 

initial porosity of PCPC pavement may “retard” the occurring of serious clogging as seen in 

Figure 4-7, and there is a risk of clogging failures occurring at the end of service time in this 

case. This clogging phenomenon can be explained by using “critical pore radius theory”.    

 

However, as previously noted, the testing results in this study may not be able to be directly 

used to predict the actual permeability results in actual condition due to the high 

nonuniformity of density, void distribution, and permeability coefficients of in place PCPC 

pavement layer. The spread of surface water flow as well as the distribution of sediments on 

pervious pavement are also complicated to be mimicked in laboratory condition. The very 

high water level from 20 inches to 4 inches above the specimen top applied in clogging test 

may violate the realistic condition as well. The 20 inch of water pressure may increase the 

amount of clogging materials trapped in pervious concrete specimen, and overestimate the 

permeability reduction.  Further efforts on developing a more “simulated” clogging test 

should be spend to solve these problems.  
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5.2 Conclusions  

5.2.1 Case A: Typical (Small) Sedimentation Test 

Sedimentation tests in Case A indicate that:  

1) Initial void ratios affect the residual permeability of pervious concrete under clayey silt 

and sand sedimentation. The specimens with higher void ratios (20% or above) could 

achieve the higher residual permeability than those with lower void ratios (15% or lower).  

However, under the sedimentation of clayey silty sand, the residual permeability is 

constantly low for all testing specimens.  

2) Clayey silty sand as blended clogging materials cause the most significant permeability 

reduction, and more than 90% of the initial permeability was reduced at the end of 

clogging test. The specimens with different void ratios all reach a constant residual 

permeability coefficient about 20 in/hr.  

3) For clay sediments, there is no significant permeability reduction for concrete itself as 

found in Section 4.2.1, but the simulation of deposited clay clayey between pavement and 

filter fabric is critical, and should be taken into design consideration in terms of the 

selection of filter fabric openings.  

4) Clayey silty sand causes the rapidest permeability reduction, and easily deposit within the 

pervious concrete in a short period. Based on the simulated clogging test, the 

permeability coefficients of testing specimens decrease to 10% of the initial value in 3-5 

years after construction. Cohesive clayey silt acts like cementing materials forms the 

bonding between concrete and sedimentation material particles in the pores.  
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5) The maintenance of pervious concrete may be established according to sedimentation 

material types and pervious concrete pavement property.   

 

5.2.2 Case B: Worst (Large) Sedimentation Test  

Sedimentation tests in Case B partially confirmed the findings obtained in Case A, and 

further concluded that:  

1) Residual permeability and permeability recoveries by rehabilitation methods increase 

directly with the initial permeability and/or initial void ratio of pervious concrete.  

2) As expected, clayey silty sand sediments segregated with larger size particles, that is, 

sand, trapped on or in the surface of pervious concrete and finer grained seize washing 

through the specimens. Also, partial fine grains adhered to sand particles surface within 

the specimens, and further reduce the permeability.   

3) Pressure washing followed by vacuuming is confirmed as the best rehabilitation method. 

Pressure washing and vacuum sweeping typically result an equivalent increase in 

permeability, and the use of both methods of maintenance resulted in the greatest increase 

in filtration rates.  

 

5.2.3 Clogging-Resistant PCPC Pavement Design Recommendation 

Designing the clogging-resistant pervious concrete pavement is the ultimate objective by 

taking the clogging issue into the design consideration of PCPC pavement. This design 

includes the considerations on pervious pavement and construction site characteristics. The 
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pervious pavement characteristics include mixtures, mixed materials properties, design 

porosity, initial infiltration rate; the local environment includes surrounding impermeable 

area, precipitation amount, surface water runoff, geological environment, subgrade soil 

characteristics. 25% of initial design porosity or higher is recommended for the pervious 

pavement located in areas where the localized soils are most cohesiveless or blended 

materials. The high initial infiltration rate is preferred. 15% of initial porosity is 

recommended where the localized soil are most cohesive materials. Also, it is recommended 

using the minimum opening size of filter fabric of 75 µm for pervious pavement 

constructions.    

 

5.3 Recommendations  

1. Additional studies are recommended to establish the mathematical relationship between 

the porosity and pore structures parameters including pore size, distribution, tortuosity 

and permeability.   

2. Additional study of the relationships between void size distribution, porosity and 

sediment characteristics is recommended.  

3. Based on the finding in Case A, additional studies are recommended to establish the 

proper maintenance schedule and confirm the current empirical-based maintenance 

regulation 

4. Additional studies on the microstructure of pervious concrete are recommended. The 

better understanding of pore structure characteristics including total porosity, effective 

porosity, pore geometry and tortuosity is benefit for predicting the hydraulic and strength 

performance of pervious concrete.  
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5. Most of the previous clogging tests were conducted on cylindrical specimens, and the 

results based on this setup may be different from the actual condition. It is recommended 

to conduct the clogging test on casted PCPC slabs (See Figure 5-1), which is to better 

simulate the actual water runoff spread, flow distance and clogging materials distribution 

on pavement surface. More accurate evaluation of permeability reduction might be 

obtained by using ASTM C 1701 “Standard Test Method for Infiltration Rate in Place 

Pervious Concrete”  

 

Figure 5-1. Laboratory Clogging Testing by Using ASTM C 1701 Standard “Standard 

Test Method for Infiltration Rate in Place Pervious Concrete” 
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