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Manatee Sound Localization:  
Performance Abilities, Interaural Level Cues, and Usage of Auditory Evoked Potential 

Techniques to Determine Sound Conduction Pathways  
 

Debborah Colbert 

ABSTRACT 

 
 

Three experiments investigated the ability and means by which Florida manatees 

determine sound source directionality.  An eight-choice discrimination paradigm 

determined the sound localization abilities of two manatees within a 360o array of 

speakers.  Five conditions were tested including a 3,000 and 200 ms, 95 dB, 0.2-24 kHz 

signal, a 3,000 ms, 80 dB, 18-24 kHz signal, a 3000 ms, 110 dB, 0.2-1.5 kHz signal and a 

200 ms, 101 dB, 4 kHz tonal signal. A sixth condition attenuated the level of the 3,000 

ms, 95 dB, 0.2-24 kHz signal in 3 dB increments until accuracy reached 75%.  Subjects 

performed above the 12.5% chance level for all broadband frequencies and were able to 

localize over a large level range.  Errors were typically located to either side of the signal 

source location when presented in the front 180o but were more dispersed when presented 

from the 135o, 180o and 225o locations.  Front-to-back confusions were few and accuracy 

was greater when signals originated from the front 180o.   

Head/body related transfer functions determined how different frequencies were 

filtered by the manatees’ head/torso to create frequency-specific interaural level 

differences (ILDs).  Hydrophones were suspended next to each manatee ear and Fast 

Fourier transform (FFT) ratios compared received signals with and without the subject’s 



ix 

presence.  ILD magnitudes were derived for all frequencies, as well as specific 0.2-1.5, 

0.2-5, and 18-30 kHz bands of frequencies.  ILDs were found for all frequencies as a 

function of source location, although they were largest with frequencies above 18 kHz 

and when signals originated at 90o and 270o.    Larger ILDs were found when the signals 

originated behind the subjects as compared to in front of them.    

Auditory evoked potential (AEP) techniques were used to map manatee sound 

conduction pathways in-water and in-air using 15 and 24 kHz carriers.  All subjects 

produced AEPs at each position the transducer was placed, however specific sound 

conduction pathway(s) were not identified.   AEP amplitudes were usually greater with 

the 24 kHz carrier, however patterns between carriers at identical body positions were 

highly variable between subjects.   

 



 

 

 

 

Chapter One: The Importance of Understanding the Auditory Sensory System of 

the Florida Manatee, Trichechus manatus latirostris: An Introduction 

 
The Florida manatee (Trichechus manatus latirostris) is a sub-species of the West 

Indian manatee (Trichechus manatus) that is typically found in the coastal waterways 

surrounding the peninsula of Florida, but can range as far north as Massachusetts and as 

far west as Louisiana.  In the summer months, it lives in turbid saltwater habitats, grazing 

primarily on sea grass (Reynolds & Odell, 1991).  In colder months, it migrates to 

freshwater springs or power plant discharge sites where water remains at a warmer 

temperature, feeding primarily on water hyacinth, hydrilla, and other freshwater 

vegetation (Reynolds & Wilcox, 1986).  It is considered a semi-social species, often 

grazing or traveling alone, although females with calves will often congregate together 

and males will frequently mass around estrous females for mating purposes (Reynolds, 

1979).  Although manatee ecology and population biology field studies validate that these 

behavior patterns are typical (Hartman, 1979; U.S. Fish and Wildlife Service, 2001), the 

means by which they navigate and locate one another within their vast habitat remains 

unclear. 

The Florida manatee is an endangered species, currently protected by both the 

Marine Mammal Protection Act (1972) and the Endangered Species Act (1973).  The 

February 2007 synoptic survey estimated the Florida manatee population to be 

approximately 2,817 animals (Florida Fish and Wildlife Research Institute, 2007a).  It is 
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known to be threatened by naturally occurring events such as cold stress and red tide and 

by human-influenced events such as boat strikes, canal lock compression, and habitat 

degradation (Odell & Reynolds, 1979).  Over 1,027,000 boats were registered in the state 

of Florida in 2007 (Florida Department of Highway Safety and Motor Vehicles, 2007) 

and many manatees are hit by vessels numerous times throughout their lives as evidenced 

by a multitude of scar patterns on their bodies (Beck & Reid, 1995).  The frequency of 

deaths caused specifically by watercraft remains relatively stable ranging between 19-

31% of the annual mortalities (Florida Fish and Wildlife Research Institute, 2007b; Table 

1.1).  Because the annual number of undetermined causes of death and unrecovered 

carcasses is high, the annual percentage of deaths caused by watercraft is likely 

underestimated. 

Table 1.1.  Number of manatee deaths and their causes from 2002 through 2007. 

Year Water- 
craft 

Gates/ 
Locks 

Other 
Human 

Peri-
natal 

Cold 
Stress Natural Unde- 

termined 
Unre- 

covered Total 

2002 95 5 9 53 17 59 65 2 305 

2003 73 3 7 71 47 102 67 10 380 

2004 69 3 4 72 50 24 51 3 276 

2005 80 6 8 89 31 88 90 4 396 

2006 92 3 6 70 22 81 116 27 417 

2007 73 2 5 59 18 81 67 12 317 

 

Since the Florida manatee lives in a habitat where boats are found in high 

numbers and conspecifics are often out of visual range, it is important to gain a detailed 

understanding of how the manatee perceives its environment.  Although no information 

has been published regarding the manatee’s gustatory and olfactory sensory systems, 
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several anatomical and behavioral studies have provided considerable insight into the 

manatee’s visual, tactile, and auditory sensory processes. 

Anatomical investigations of the small 18 mm diameter manatee eye reveal that it 

possesses two types of cones (Cohen et al., 1982; Ahnelt & Kolb, 2000; Ahnelt & Bauer, 

2000), has relatively few retinal ganglion cells, lacks an accommodation mechanism, and 

has limited resolution with a minimum angle of 20 minutes of visual arc (Walls, 1963; 

Piggins et al., 1983; West et al., 1991; Mass et al., 1997).  Behavioral investigations of 

the manatee’s visual sensory system using discrimination testing paradigms found that 

subjects were able to distinguish blue and green from a series of comparably bright grays 

(Griebel & Schmid, 1996) and differentiate brightness with a Weber fraction of 0.35 

(Griebel & Schmid, 1997).  A visual acuity study using gratings of various widths found 

that one subject possessed a minimum angle of 21 minutes of visual arc, while the second 

subject’s was over a degree (Bauer et al., 2003).   Results from this behavioral study in 

confluence with ganglion cell density anatomical data suggest that the 21 minutes of 

visual arc is probably typical for manatees.   

Anatomical investigations of the manatee’s facial vibrissae show that each is 

composed of a dense connective tissue capsule with a prominent blood sinus complex 

and substantial innervation.  Six fields of perioral bristles have been identified (Reep et 

al., 2001) and those located on the upper lip are used in a prehensile manner during 

feeding (Marshall et al., 1998 & 2003).  Each postcranial body vibrissae also contains a 

blood sinus and is innervated by 20-50 axons (Reep et al., 2002).   Behavioral 

investigations of the manatee’s facial tactile sensory system using discrimination testing 

paradigms found that an Antillean manatee possessed good sensitivity with a Weber 
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fraction of 0.14 (Bachteler & Dehnhardt, 1999) and two Florida manatees had excellent 

sensitivity with a Weber fraction of 0.025 for one subject and 0.075 for the other (Bauer 

et al., 2005), sensitivity comparable to that of a human index finger (Weber fraction of 

0.028) (Gaydos, 1958).    

Anatomical investigations of the manatee’s ear demonstrate that the external 

pinna flange is absent and that the external auditory meatus is of minute size, occluded 

with cellular debris that reaches a blind end separated from the tympanic membrane, and 

is an unlikely channel for sound transmission (Ketten et al., 1992; Chapla et al., 2007).  

Behavioral investigations of the manatee’s auditory sensory system have been conducted 

using discrimination and auditory evoked potential testing techniques.  Gerstein et al. 

(1999) obtained a behavioral audiogram for two manatees and found that hearing 

thresholds ranged from 0.5–38 kHz for one subject and 0.4–46 kHz for the other.  The 

frequency range of best hearing was between 10–20 kHz and maximum sensitivity was 

~50 dB re: 1 μPa at 16 and 18 kHz, decreasing by ~20 dB re: 1 μPa per octave from 0.8 

to 0.4 kHz and 40 dB re: 1 μPa per octave above 26 kHz.  Auditory evoked potential 

investigations found the frequency range of detection reached up to 35 kHz when tested 

in air (Bullock et al., 1980; 1982; Popov & Supin, 1990) and 60 kHz when tested in water 

(Klishen et al., 1990).  More recently, Mann et al. (2005) found an upper limit of 

detection at 40 kHz when tested in water.   

The information gained from sensory investigations with animals in a controlled 

setting offer indications about how their sensory systems function in natural settings. 

These results suggest that manatee vision is built for sensitivity in dim light conditions 

with the ability to distinguish brightness differences and differentiate blues from greens, 
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but that acuity is poor and not useful for fine details.  Tactile sensitivity appears to be 

superior, but like vision, is probably designed to function with nearby tasks.  Audition is 

excellent and spans a wide range of frequencies seemingly fulfilling a crucial role for 

functioning in both nearby and distant scenarios.  This capability likely facilitates the 

capacity for sound localization which would be of great importance for tasks such as 

navigation, finding conspecifics and boat avoidance.  Therefore, the localization abilities 

of the manatee warrant further investigation.  

Initial estimations of manatee sound localization abilities were determined by 

comparing manatee interaural time delays (the distance sound travels from one ear to the 

other divided by the speed of sound) to those of other species.  Heffner and Heffner 

(1992) generated a regression equation that described the relationship between interaural 

time delays and the upper frequency hearing limits for a variety of species.  Animals with 

narrower heads had smaller interaural time delays and typically needed higher frequency 

sensitivity to be able to localize sounds.  Ketten et al. (1992) calculated the manatee 

intermeatal distance as 278 mm with a maximum acoustic travel time of 258 μsec, and 

the intercochlear distance as 82 mm with a maximum acoustic travel time of 58 μsec.  

When these time delays were plotted on Heffner and Heffner’s regression line, it 

appeared that manatees would need a 50–90 kHz upper frequency limit to be able to 

localize sound.  Given that behavioral investigations indicated that the upper limit of 

manatee’s hearing likely lies between 40 -60 kHz, below or bordering the 50–90 kHz 

interaural upper frequency limit estimates needed for localization, it was predicted that 

manatees may not possess “good” sound localization abilities (Ketten et al., 1992).   
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This calculation however, was not supported by the results of two distinct 

behavioral sound localization studies.   Gerstein (1999) tested one manatee’s ability to 

localize in a four-choice (45o, 90o, 270o and 315o) testing paradigm.  Stimuli included 0.5, 

1.6, 3, 6, or 12 kHz tonal signals, pulsed for either 200 or 500 ms, paused for 400 ms, and 

then repeated.  Results indicated that the subject was capable of localizing all signals but 

accuracy increased with the higher frequencies and at the 90o angles.  Given the subject’s 

poorer performance with the low frequency stimuli, Gerstein suggested that low 

frequency sounds typical of recreational boat engine noises might be difficult to localize.   

Colbert (2005) also conducted a four-choice localization experiment (45o, 90o, 270o and 

315o) with two manatees.  Stimuli included three broad-band noises of 0.2-20, 6-20, and 

0.2–2 kHz tested at four durations (3,000, 1,000, 500 and 200 ms) and two tonal signals 

of 4 and 16 kHz tested at 3,000 ms.  Results indicated that the subjects were able to 

localize all of the broad-band stimuli at each duration and location, including the lowest 

frequencies which conflicted with Gerstein’s predictions.  Both subjects also performed 

above chance levels with the tonal signals but with lower accuracy.   

As often happens when conducting research, although one question may be 

answered, many more arise.  These localization investigations demonstrated that subjects 

were able to localize high, medium and low frequency test signals from four speakers 

located at 45o, 90o, 270o and 315o.  The goal of this dissertation is to expand upon these 

studies and determine the manatee’s ability to determine sound source directionality 

within all 360o of the azimuth plane and identify the possible means by which they do so.   

 Chapter Two investigates the manatee’s ability to localize test signals at 45o 

angles within the 360o of the azimuth plane. In this study, two male captive-born 
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manatees at Mote Marine Laboratory in Sarasota Florida, Hugh and Buffett, were 

conditioned to participate in an eight-choice localization project.  The experimental 

design of this study expands upon a previous manatee sound localization study (Colbert, 

2005) by incorporating a broadband stimulus that spanned a wider range of frequencies 

(from 0.2-20 kHz to 0.2-24 kHz), one restricted to higher frequencies (from 6-20 kHz to 

18-24 kHz), and one limited to lower frequencies (from 0.2-2 kHz to 0.2-1.5 kHz).  In 

addition, a 4 kHz tonal signal was tested at a shorter duration (from 3,000 ms to 200 ms) 

and the level of the 0.2-24 kHz signal was incrementally reduced to investigate the 

effects of decreased amplitude.  

Chapter Three considers how different frequencies of a test signal, presented at 

45o angles within the 360o of the azimuth plane, are filtered by the manatee’s head and 

body to provide interaural level difference cues that may aid sound localization.   The 

same two male captive-born manatees at Mote Marine Laboratory in Sarasota Florida, 

Hugh and Buffett, participated in this study.  These are the first body related transfer 

function data collected for any Sirenian species.  

Chapter Four investigates how auditory evoked potential techniques can be used 

to evaluate the potential existence sound conduction pathways, outside of the traditional 

pinna-to-cochlea pathway, which might be used by the manatee since the external 

auditory meatus is occluded with cellular debris and is separated from the tympanic 

membrane (Chapla et al., 2007).  Four male manatees participated in this study including 

Hugh and Buffett at Mote Marine Laboratory in Sarasota Florida, and Mo and Bock at 

Walt Disney World’s The Living Seas at EPCOT in Lake Buena Vista, Florida.  . 
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Chapter Five provides a brief summary of the experiments detailed in Chapters 

Two, Three, and Four, each of which are formatted for individual journal publication.  

Concluding remarks tie the three Chapters together and address the questions of how well 

manatees are able to localize sound sources, how interaural intensity cues may facilitate 

sound localization, and what sound conduction pathways may be used for hearing.   
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Chapter Two:  Eight-Choice Sound Localization Abilities of Two Florida Manatees, 

Trichechus manatus latirostris 

 

Abstract 

An eight-choice discrimination paradigm was used to determine the sound 

localization abilities of two Florida manatees (Trichechus manatus latirostris) within a 

360o array of speakers positioned 45o apart.  Five conditions were tested including a 

3,000 ms and 200 ms, 95 dB, 0.2-24 kHz broadband signal, a 3,000 ms, 80 dB, 18-24 

kHz broadband signal that was restricted to frequencies with wavelengths shorter than a 

manatee’s interaural time distances, a 3000 ms, 110 dB, 0.2-1.5 kHz broadband signal 

that was limited to frequencies with wavelengths longer than their interaural time 

distances, and a 200 ms, 101 dB, 4 kHz tonal stimulus that’s an approximate midpoint of 

the fundamental frequency range of manatee vocalizations.  A sixth condition attenuated 

the spectrum level of the 3,000 ms, 95 dB, 0.2-24 kHz signal in 3 dB increments until 

accuracy reached 75%.   

Both subjects performed well above the 12.5% chance level for all broadband 

frequencies tested.  They also were able to localize over a fairly large sound level range 

with Hugh’s accuracy at 48% and Buffett’s at 56% when the signal was presented at 80 

dB re 1 μPa.  Accuracy deteriorated to 14 % for Hugh and 20 % for Buffett when the 4 

kHz, 200 ms, 101 dB re 1 μPa signal was tested.   Errors were primarily located at the 
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“nearest neighbor” locations on either side of the signal source location when presented 

in the front 180o but became more dispersed when signals originated from the 135o, 180o 

and 225o locations.  Very few front to back confusions were made and accuracy was 

greater when test signals originated from the front 180o and with the longer 3,000 ms 

duration of the 0.2-24 kHz signal.   

Results from this study demonstrate that the subjects could localize short duration 

and low intensity test signals within the frequency ranges of recreational boat engines and 

conspecifics in all 360o of the azimuth plane at distances of at least 3 meters.    

 



 

 

 

Introduction 

The Florida manatee (Trichechus manatus latirostris) is a sub-species of the West 

Indian manatee (Trichechus manatus) protected by both the Marine Mammal Protection 

Act (1972) and the Endangered Species Act (1973).  It is the only marine mammal that is 

euryhaline, living in both saltwater and freshwater habitats depending on the time of year 

(Reynolds & Wilcox, 1986; Reynolds & Odell, 1991).  It has been described as a semi-

social species, often grazing or traveling alone, although females with calves will often 

congregate together and males will frequently mass around an estrous female for mating 

purposes (Reynolds, 1979).  It is threatened by naturally occurring events such as cold 

stress and red tide, as well as by human-influenced events such as canal lock 

compression, habitat degradation, and boat strikes (Odell & Reynolds, 1979).  The 

frequency of deaths caused specifically by watercraft remains relatively stable ranging 

between 19-31% of the annual mortalities (Florida Fish and Wildlife Research Institute, 

2007; Table 1-1).   

Although field research has provided crucial information about the manatee’s 

social structure, habitat usage and annual migratory behaviors, the means by which they 

are able to find one another, determine directionality, and avoid danger in their vast 

habitat is unclear.  Research has not been published regarding the manatee’s gustatory 

and olfactory sensory systems, however anatomical and behavioral studies have gained 

considerable insight into the manatee’s visual and tactile sensory processes.  The manatee 

visual sensory system is built for sensitivity in dim light conditions with the ability to 
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differentiate brightness differences (Griebel & Schmid, 1997) and blues from greens 

(Cohen et al., 1982; Griebel & Schmid, 1996; Ahnelt & Kolb, 2000; Ahnelt & Bauer, 

2000), but acuity is poor (Walls, 1963; Piggins et al., 1983; West et al., 1991; Mass et al., 

1997; Bauer et al., 2003) and not useful for fine details.  Tactile sensitivity appears to be 

excellent (Bachteler & Dehnhardt, 1999; Reep et al., 2002; Bauer et al., 2005), but like 

vision, is probably designed to function with nearby tasks.   

It seems likely that the manatee’s auditory sensory system plays a crucial role 

with functioning not only in close proximity, but also in more distant scenarios and that 

the ability to determine conspecific and boat engine sound source directionality would be 

of great importance.  Manatee vocalizations are characterized as short harmonic 

complexes that range from almost pure tones to broad-band noise and have a fundamental 

frequency that ranges between 2.5 – 5.9 kHz , but can extend to 15 kHz (Nowacek, et al., 

2003).  The dominant recreational boat engine frequency ranges between 0.01 – 2 kHz, 

but can reach over 20 kHz with the estimated 1/3-octave source levels at 120-160 dB re 1 

µPa at 1 m for small motorboats (Gerstein, 2002; Richardson et al., 1995) and at 

approximately 9 dB quieter for personal watercraft, such as jet-skis (Buckstaff, 2004).  

Boats traveling at rapid speeds typically produce higher frequency cavitating noise, while 

those traveling at idle and slow speeds produce lower frequency non-cavitating noise 

(Ross, 1976; Miksis-Olds, 2006).   

  Sound localization is the auditory system’s ability to process the frequency, 

level, and phase of a sound and associate it with the spatial location of that sound’s 

source (Yost, 2000).  Sound can be localized from the vertical, distance and azimuth 

(horizontal) planes using interaural time, phase, and/or level difference cues.  Interaural 
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time differences compare the time the sound arrives at each ear; since the speed of sound 

is relatively constant and not effected by frequency wavelength, frequency variations do 

not have an effect on the perception of interaural time differences.  Interaural phase 

differences compare the period of the sound as it arrives at each ear and is affected by 

frequency wavelength.   Interaural level differences compare the level or amplitude of a 

sound as it reaches each ear and is also affected by wavelength with higher frequencies 

having shorter wavelengths and greater sound shadows (Yost, 2000). 

The ability to localize sounds is considered a primary source of selective pressure 

in the evolution of mammalian hearing (Masterson et al., 1969) and is vital for many 

species’ ability to find food and conspecifics while avoiding predation.   Behavioral 

testing of sound localization abilities has typically been investigated by measuring the 

species’ minimum audible angle (MAA) (Brown, 1994; Brown & May, 1990).  This 

method determines the smallest detectable angular difference between two sound source 

locations positioned in front of the subject in the azimuth plane (Mills, 1958).   

Numerous in-air auditory localization studies have been conducted with terrestrial 

mammals including humans (Stevens & Newman, 1936; Mills, 1972), monkeys (Don & 

Star, 1972; Houben & Gourevitch, 1979; Brown et al., 1980), the domestic cat (Casseday 

& Neff, 1973; Wakeford & Robinson, 1974; Heffner & Heffner, 1988b), red fox (Isley & 

Gysel, 1975), hedgehog (Masterson et al., 1975), elephant, horse, Norway rat, pig, gerbil, 

Northern grasshopper mouse, pocket gopher, goat and cattle (Heffner & Heffner, 1982; 

1984; 1985; 1988a; 1988c; 1989; Heffner & Masterson, 1990; Heffner & Heffner, 1992b 

respectively).  Results from these studies suggest that some combination of interaural 

time, level and phase difference cues are used to localize sounds although some species 
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have reduced or lost the ability to use one or two of them, and one species (pocket 

gopher) cannot use any of them and is incapable of sound localization. 

While in-air localization may be difficult or impossible for some terrestrial 

species, the ability to localize sounds underwater presents additional challenges to marine 

mammals.  The speed of sound in water (1500 m/second) travels approximately five 

times faster than in air (340m/second) (Urick, 1996) requiring marine mammal auditory 

systems to process interaural time, phase and level differences much more rapidly than 

terrestrial mammals.  Although most acoustic energy propagates more efficiently in water 

than light, thermal or electromagnetic energy (Au, 1993), in shallow waters, higher 

frequencies become more directional, reflecting off the surface and bottom and hindering 

sound wave travel efficiency and very low frequencies may not propagate well (Medwin 

& Clay, 1998).   Marine mammals likely utilize underwater acoustic information for 

reproduction and territorial purposes (Watkins & Schevill, 1979; Cleator & Stirling, 

1990; Bartsh et al., 1992; Hanggi & Schusterman, 1994; Rogers et al., 1996; Smolker & 

Pepper, 1996; Van Parijs et al., 1999; Van Parijs et al., 2000a; Van Parijs et al., 2000b; 

Serrano & Terhune, 2002; Van Parijs et al., 2003; Bjørgesaeter et al., 2004; Hayes et al., 

2004),  individual identification (Caldwell & Caldwell, 1965; Sayigh et al., 1990; Sayigh 

et al., 1995), prey detection (Barrett-Lennard et al., 1996; Tyack & Clark, 2000; Gannon 

et al., 2005), predator avoidance (Deecke et al., 2002) and navigation (Norris, 1967). 

Minimum audible angle measurements have also been assessed for some marine 

mammals including pinnipeds (Gentry, 1967; Anderson, 1970; Moore, 1974; Terhune, 

1974; Moore & Au, 1975; Babushina and Poliakov, 2004; Holt et al., 2004) and 

cetaceans (Renaud & Popper, 1975; Moore & Pawloski, 1993; Moore and Brill, 2001).  
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More recently, some pinniped sound localization investigations have required subjects to 

identify sound sources relative to different locations surrounding the subject’s body.  This 

has been done by presenting signals in the frontal 180° or complete 360° of the horizontal 

plane surrounding a stationary subject (Kastelein et al., 2007) or by having the subject 

swim along a half circle diameter and orient towards a sound source when presented 

(Bodson et al., 2006).  All three designs assess sound localization abilities, however the 

latter two have enhanced real-life scenario applications by addressing the subject’s ability 

to determine sound source directionality as sounds originate from different angles 

surrounding the body.    

Given that the Florida manatee’s visual and tactile sensory systems are better 

adapted for use with tasks in close proximity to their bodies, it seems likely that their 

auditory sensory system has developed to function with both near-field and far-field 

scenarios and that the ability to determine sound source directionality would be of great 

importance.  This area of research however, has not been widely investigated and is 

relatively new.    

Heffner and Heffner (1992a) generated a regression equation that described the 

relationship between interaural time delays, the distance sound travels from one ear to the 

other divided by the speed of sound, and the upper frequency hearing limits for a variety 

of species (Figure 2.1).  Animals with narrower heads had smaller interaural time delays 

and typically needed higher frequency sensitivity to be able to localize sounds.  Ketten et 

al. (1992) calculated the manatee intermeatal distance as 278 mm with a maximum 

acoustic travel time of 258 μsec, and the intercochlear distance as 82 mm with a 

maximum acoustic travel time of 58 μsec.  When these time delays were plotted on 
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Heffner and Heffner’s regression line, it appeared that manatees would need to be able to 

hear in the 50–90 kHz frequency range to be able to localize sounds (Figure 2.1).  

 (Ketten et al., 1992) 
Figure 2.1.  Interaural distances vs. maximum frequency perceived at 60 dB SPL (from Ketten et al., 1992).  
Behavioral audiogram sensitivity data are plotted by each species’ interaural time distances.  The gopher’s 
and manatee’s (ic=intercochlear; im=intermeatal) maximum perceived frequency varied significantly from 
the regression.  
 

The hearing range of the manatee has been assessed through the development of 

an audiogram and by utilizing auditory evoked potential techniques.  Gerstein et al. 

(1999) obtained a behavioral audiogram for two manatees, which showed hearing 

thresholds that ranged from 0.5–38 kHz for one subject and 0.4–46 kHz for the other.  

The frequency range of best hearing was between 10–20 kHz and maximum sensitivity 

was ~50 dB re: 1 μPa at 16 and 18 kHz, decreasing by ~20 dB per octave from 0.8 to 0.4 

kHz and 40 dB per octave above 26 kHz.  Auditory evoked potential measurements have 

been obtained in several studies.  Bullock et al. (1980; 1982) and Popov and Supin (1990) 

found that the highest frequency detection reached 35 kHz when tested in air and Klishen 

et al. (1990) found it reached 60 kHz when tested in water.  More recently, Mann et al. 
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(2005) found that detection reached 40 kHz when tested in water, results similar to those 

found by Bullock (1980; 1982), and Popov and Supin (1990).   

Given that the upper end of  the manatee’s hearing range lies between 40 -60 kHz, 

below or bordering the 50–90 kHz frequency range estimate needed for localization, the 

prediction was made that manatees may not possess effective sound localization abilities 

(Ketten et al., 1992).  This prediction however, was not supported by the results of two 

separate four-choice (45o, 90o, 270o, 315o) sound localization studies (Gerstein, 1999; 

Colbert, 2005).    

Gerstein (1999) tested the ability of one manatee, Stormy, to localize 0.5, 1.6, 3, 

6, or 12 kHz tonal test signals from four speakers located 1 m away from the subject at a 

depth of 1.5 m below the surface.  All signals were presented at 125 dB re: 1 uPa, 

approximately 30 dB above white noise that was also projected through the speakers. The 

signals were pulsed for either 200 or 500 ms, paused for 400 ms, and then repeated, 

thereby creating a 400 ms signal which spanned an 800 ms duration and a 1,000 ms 

signal which spanned a 1,400 ms duration.  Each condition was composed of 80 trials.   

Results indicated that conditional accuracy was well above the 25% chance level 

(Table 2.1).  Overall accuracy for frequency ranged from 58-78% with the 400 ms signals 

and 56-88% with the 1,000 ms signals.  Overall accuracy for location ranged from 62-

68% with the 400 ms signals and 68-74% with the 1,000 ms signals.  Subject 

performance decreased as frequency and duration decreased.  Given the subject’s reduced 

level of performance with the low frequency stimuli, Gerstein suggested that manatees 

may have difficulty localizing low frequency boat engine noise.  
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Table 2.1.  Overall performance within and between location, duration and frequency conditions of 
Gerstein’s (1999) four-choice localization experiment.  Results are based on 80 trials per condition with 
chance at 25%.   

400 ms Signal (over an 800 ms duration)  

Location 0.5 kHz 1.6 kHz 3 kHz 6 kHz 12 kHz Overall Accuracy     
by Location 

45o 60% 65% 65% 70% 80% 68% 

90o 60% 60% 60% 60% 75% 63% 

270o 55% 60% 60% 65% 70% 62% 

315o 55% 60% 60% 65% 85% 65% 
Overall Accuracy   

by Frequency 58% 61% 61% 65% 78%  

1,000 ms Signal (over a 1,400 ms duration) 

45o 55% 65% 80% 80% 90% 74% 

90o 55% 65% 65% 70% 85% 68% 

270o 55% 60% 70% 70% 85% 68% 

315o 60% 60% 75% 85% 90% 72% 
Overall Accuracy   

by Frequency 56% 63% 73% 76% 88%  

 

Colbert (2005) expanded upon the previous four-choice sound localization task 

(Gerstein, 1999) by testing the abilities of two manatees, Hugh and Buffett, to localize 

sounds that were systematically varied across dimensions of bandwidth and duration.  

Two tonal signals were used, a 4 kHz tone that was midway between the 2.5–5.9 kHz 

fundamental frequency range of typical manatee vocalizations (Nowacek et al., 2003) and 

a 16 kHz tone that was in the 10–20 kHz range of manatee best hearing (Gerstein et al., 

1999).  Broadband stimuli were also introduced which spanned a wide range of 

frequencies (0.2-20 kHz) as well as those restricted to high frequencies that had 

wavelengths that were shorter than their interaural time distances (6-20 kHz) and low 

frequencies with wavelengths that were longer than their interaural time distances (0.2–2 

kHz).  Duration was manipulated within the broadband conditions and included signal 
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lengths of 200 ms that prohibited head movement as well as 500, 1,000, and 3,000 ms.  

All stimuli were tested at 100 dB re: 1 uPa (± 1.5 dB) from four speakers located 1.05 m 

away from the subject at a depth of 0.75 m below the surface (Figure 2.2).  Although 

white noise was not introduced, exhibit background noise was continuous and typically 

below 500 Hz, indicating the possibility of masking at lower frequencies. 

 
Figure 2.2. Testing configuration for Colbert’s (2005) four-choice localization experiment.  Test speakers 
(yellow circles) were located 105cm from the subject and .75m below the surface.  The blue octagon 
represents the Test Trainer’s position, the green square represents the Data Recorder’s position and the 
orange triangle represents the Stationing Trainer’s position.   
 

Each of the 14 conditions was composed of 72 trials.  Both subjects performed 

well above the 25% chance level for all of the broadband frequency conditions (Table 

2.2).  Hugh showed a drop in percentage correct as the broadband signal duration 

decreased, but this result was not observed with Buffett.  Both animals also performed 

above chance levels with the tonal signals, but with lower accuracy than with the 

broadband signals.    
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Table 2.2.  Overall performance within and between the duration and frequency conditions of Colbert’s 
(2005) four-choice localization experiment.  Results are based on 72 trials per condition with chance at 
25%.   

  Frequency (kHz) 

Duration: 0.2 - 20 6 - 20 0.2 - 2 Mean  4 16 

 Hugh 
200 ms 64% 51% 58% 58%   
500 ms 71% 63% 57% 64%   
1000 ms 74% 71% 65% 70%   
3000 ms 93% 86% 81% 87% 49% 32% 

Mean 76% 68% 65%       

 Buffett 
200 ms 93% 89% 85% 89%   
500 ms 85% 92% 86% 88%   
1000 ms 93% 79% 92% 88%   
3000 ms 88% 82% 92% 87% 44% 33% 

Mean 90% 86% 89%    
 

The overall broadband error rate, derived from the complete data set (excluding 

tonal results) collapsed across all conditions, was only 11% for Buffett and 22% for 

Hugh.  Frequency selection distributions (percent of location selections by frequency, 

collapsed across duration) revealed that although differences in performance accuracy 

were found between subjects within the broadband signal conditions, errors were 

generally consistent, with most equally distributed to the locations adjacent to the correct 

location, however error distribution for the tonal signal conditions were almost equally 

scattered among the four locations (Figure 2.3).  Similar results were found for duration 

selection distributions (percent of location selections by duration, collapsed across 

frequency) and those calculated for each of the individual broadband conditions (percent 

of location selections within the 12 individual broadband conditions). 
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Figure 2.3. Percent correct and distribution of sound localization errors by frequency collapsed across 
duration in Colbert’s (2005) 4-choice sound localization study.  Tonal conditions are presented in the 
bottom row.  Correct speaker location is notated by double parentheses. Buffett’s results are presented 
above the grid lines in magenta and Hugh’s below in teal.  
 

The results from Colbert’s (2005) sound localization study suggested that 

although manatees could localize tonal signals, they were better able to localize 

broadband noises as is typical with many species (Stevens & Newman 1936; Marler, 

1955; Casseday & Neff, 1973), which likely accounted for higher accuracy as compared 
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to those in Gerstein’s (1999) study.  While results from both sound localization studies 

indicated that manatees were able to localize test signals that originated from a distance 

of ~1 m to the front 180o of the azimuth plane, questions remain regarding their ability to 

localize sounds within all 360o.    

The objective of this study was to investigate the manatee’s ability to localize test 

signals that were systematically varied across dimensions of bandwidth, duration and 

level as they originated from 45o angles within all 360o of the azimuth plane at a distance 

~3 times greater than previously tested.   
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Hypotheses 

Five hypotheses were made.  The first posited that subjects would be able to 

localize all of the broadband test signals above the 12.5% chance level at all eight 

locations within the 360o.   Prior manatee localization studies (Gerstein, 1999; Colbert, 

2005) demonstrated that subjects were able to determine the origin of sound sources to 

the front 180o, but had difficulty with tonal signals.  A field study which investigated 

manatee responses to controlled boater approaches suggested that manatees angled away 

from, increased swimming speed, and oriented towards deeper channel waters when 

boats with broadband engine noise approached from all directions (Nowacek et al., 

2004).   

The second hypothesis declared that subjects would have greater localization 

accuracy with the 0.2-24 kHz test signal at the 3,000 ms duration versus the 200 ms 

duration.  Colbert’s (2005) four choice manatee sound localization study found that 

subject accuracy decreased as duration decreased.  The 0.2-24 and 4 kHz signals 

presented in the current investigation serves as a means to determine manatee localization 

abilities without their ability to orient towards the sound source during its presentation.   

The third hypothesis stated that subjects would have greater localization accuracy to 

the anterior 180o than to the posterior 180o.  Previous studies have suggested that the 

ability to localize a sound source may be influenced by multimodal sensory systems and 

be a function of visual orientation responses (Heffner, 1997).  Reflexive visual 

27 
 



 

orientation towards startling sounds have been found in a wide variety of species at birth 

(or when their auditory systems become functional) including humans, gulls, ducks, cats, 

rats and guinea pigs (Brown, 1994).   

The fourth hypothesis asserted that subject errors would have a higher distribution 

to the correct locations “nearest neighbors” rather than to other locations.  Colbert’s 

(2005) previous manatee localization study demonstrated that error distribution was 

highest amongst the two speakers neighboring the test speaker than the other speakers 

when broadband frequency signals were tested.   

The final hypothesis contended that subjects would make more differentiation 

errors between speakers located at 0 o and 180 o than any other contralateral pairs.  

Middlebrooks and Green (1991) demonstrated that front to back sound localization 

confusions were typical with human subjects and attributed these results to the fact that 

stimulus locations lie in mirror symmetry with respect to the subject’s ears which 

eliminate interaural time of arrival, phase and level cues.   
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Materials and Methods 

Subjects 

The subjects of this study were two captive-born male Florida manatees 

(Trichechus manatus latirostris) that reside at Mote Marine Laboratory and Aquarium in 

Sarasota, Florida.  All procedures used were permitted through the United States Fish and 

Wildlife Service (Permit # MA837923-6) and approved by the Institutional Animal Care 

and Use Committee of Mote Marine Laboratory and Aquarium.  At the inception of this 

study Hugh was 23 years of age, weighed 547 kg and was 310 cm in length, while Buffett 

was 20 years of age, weighed 773 kg and was 334 cm in length.   They were housed in a 

265,000 liter exhibit that was composed of three inter-connected sections: a 3.6 x 4.5 x 

1.5 m Medical Pool, a 4.3 x 4.9 x 1.5 m Shelf Area, and a 9.1 x 9.1 x 3 m Exhibit Area 

(Figure 2.4).   Both animals had acquired an extensive training history over the previous 

seven years and participated in an auditory evoked potential study (Mann et al., 2005) 

and a four-choice sound localization study (Colbert, 2005), making them excellent 

candidates for this project.  In addition, they had been behaviorally conditioned for 

husbandry procedures (Colbert et al., 2001), a serum and urine creatinine study (Manire 

et al., 2003), a visual acuity study (Bauer et al., 2003), a lung capacity study (Kirkpatrick 

et al., 2002), and a vibrissae tactile sensitivity study (Bauer et al., 2005).  
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Figure 2.4: Diagram of the 265,000 L manatee exhibit composed of a Medical Pool, Shelf Area, and 
Exhibit Area. The lines in the Medical Pool represent a distance scale, used in a previous study that was 
painted on the floor of the exhibit.  The oval masses in the Exhibit Area represent outcroppings in the 
bottom terrain (built of cement) to conceal the two floor-level filtration drains (gratings).  The rectangles 
represent a tree log and stump (built of cement).   
 
Subject Training 

The majority of animal training procedures utilized in Colbert’s (2005) four-

choice sound localization study were maintained in this study, although some 

modifications were necessary (see Colbert, 2005 for the specific animal training 

procedures).  The testing set-up was moved from the Shelf Area to the Exhibit Area 

where the stationing bar and test speakers were lowered from a depth of 0.75 m to 1.5 m, 

half way between the water’s surface and the exhibit bottom.  Eight underwater speakers 

(Aquasonic AC 339) were positioned 45o apart at 0o, 45o, 90o, 135o, 180o, 225o, 270o and 

315o.  The distance between the stationing apparatus and the test speakers was increased 

from 1.05 m to 3.05 m.  Because the water in the deep area had a strong counter-current 

circulation originating at ~160o, the subjects needed to face east rather than south to 

reduce drag (Figure 2.5).    

9.1 x 9.1 x 3 m  
Exhibit Area  

4.3 x 4.9 x 1.5 m  
Shelf Area

 4.5 x 3.6  x 1.5 m 
Medical Pool
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315o 

225o 
180o 

45o

90o 

135o 

0o 

Shelf Area Medical Pool 

1.05 m 
45o

270o 

90o

315o

Figure 2.5.  Training setup comparison for the Colbert’s four-choice and eight-choice sound localization 
experiments.  The setup was moved from the Shelf Area (outlined by red dashed line) to the Exhibit Area 
where the subjects faced east rather than south, the stationing bar and test speakers were lowered from a 
depth of 0.75 m to 1.5, and the distance between the two was increased from 1.05 m to 3.05 m.   

 

The procedures utilized in Colbert’s (2005) four-choice sound localization study 

required that the subjects be trained to respond to a unique station signal that was played 

from a speaker located on a stationing apparatus.  The call-to-station signal ranged from 

10 to 20 kHz and played for a 2000 ms duration, however Buffett’s repeated at a slower 

rate of 1.5/sec while Hugh’s repeated at a faster rate of 5/sec.  In response to their 

stationing signal, each subject was trained to position the crease on the top of its rostrum 

(approximately 10 cm posterior to the nostrils) up against a stationing bar located at the 

bottom of the stationing apparatus.  The manatee remained stationed until a test signal 

was played from one of the four underwater speakers that were suspended from poles that 

pivoted, whereupon he swam to and pushed the speaker from which the sound originated.  

If correct, a secondary reinforcer signal was emitted from the test speaker and the subject 

returned to the stationing device to be fed primary food reinforcement.  The secondary 

reinforcement signals were programmed in RPvds and matched the unique whistles used 
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to bridge each animal (Appendix A).  Buffett’s reinforcement signal ranged from 14 to 

120 kHz with a peak at 53 kHz, while Hugh’s had more of a warble to it and ranged from 

12 to 110 kHz with a peak at 27 kHz (Figure 2.6).  If incorrect, the stationing signal was 

played from the stationing apparatus speaker and the subject re-positioned correctly with 

no primary or secondary reinforcement given, and waited a minimum of 60 seconds for 

the initiation of the next trial.   

 
Figure 2.6. Power spectra (top) and spectrograms (bottom) of the secondary reinforcement signals. 
Buffett’s ranged from 14 to 120 kHz with a peak at 53 kHz, while Hugh’s had more of a warble to it and 
ranged from 12 to 110 kHz with a peak at 27 kHz.  
 

Although these same procedures were used with the eight-choice sound 

localization study, several behaviors needed to be re-shaped to meet the change in 

stationing direction (from south to east), increased stationing depth (from 0.75 m to 1.5 

m), and extended test speaker distance (from 1.05 m to 3.05 m) criteria.   All new 

behaviors were trained using standard positive classical and operant conditioning 

techniques.  Each animal’s unique secondary reinforcement whistle was used to bridge 

correct behaviors as they occurred and primary reinforcers included bite size pieces of 
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apples, beets and baby peeled carrots. Zupreem monkey biscuits, one of the manatees 

preferred foods, were used to reward especially desired behaviors during shaping 

procedures.  In addition, verbal and tactile secondary reinforcers were used.  All new or 

modified behaviors were shaped by reinforcement of successive approximations (Pepper 

& Defran, 1975).  Undesirable behaviors were ignored and time-outs, (Pepper & Defran, 

1975; Domjan, 1998) or the removal of the opportunity to receive reinforcement, were 

used if a string of undesirable behaviors occurred.   

Both animals had previously been trained to station and follow their own personal 

target, and in the early stages of shaping the stationing behavior when facing east, the 

trainer used the subject’s target to guide him to the shorter, four-choice sound localization 

stationing bar which was adapted to fit over a platform suspended across the Exhibit 

Area.  Shaping of the correct position was facilitated by the trainer’s reaching into the 

water to help maneuver the manatee into the correct position. When this was 

accomplished, the 23 cm wide stationing apparatus, constructed from 2.54 cm diameter 

polyvinyl chloride (PVC) pipe, was modified to reach 1.5 m below the surface of the 

water (Figure 2.7).  Shaping of the stationing behavior at the 1.5 m depth was 

accomplished by lowering the stationing apparatus in gradual steps.    
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Figure 2.7.  Stationing apparatus used in the eight-choice sound localization study.  The black circle 
represents the speaker that played the stationing tones.  The subject pressed the crease of his rostrum up 
against the gray stationing bar on the bottom. 

Water Line

1.5 m  

23 cm 

 
Eight underwater speakers (Aquasonic AC 339) were positioned 45o apart at 0o, 

45o, 90o, 135o, 180o, 225o, 270o and 315o (with the subject facing 0o) (Figure 2.8).  Each 

speaker was suspended from a 1.88 cm diameter PVC rod at a depth of 1.5 m.  The rods 

were bolted to aluminum beams that radiated out from two suspension supports spanning 

the Exhibit Area, and were designed to pivot so that the speaker at the bottom of the rod 

could be pushed backwards while the top of the rod tilted forward in a pendulum motion.  

A 0.2-24 kHz, 3000 ms broadband signal was used to train the subjects to swim to the 

speakers at the increased distance, and to those introduced behind them.   Distance 

34 
 



 

increases were initiated by introducing only the 45o, 90o, 270o and 315o test speakers at a 

distance of 2 m and subject responses were assisted by the trainer’s use of the subject’s 

target to guide him towards the speaker if needed.  When subject responses were reliable, 

the distance was increased to 3.05 m and shaping continued until their reactions were 

again consistent.  Test speakers 0o, 135o, 180o and 225o were then introduced at the 3.05 

m distance and subjects were guided by their target towards the correct test speaker until 

each reliably oriented towards the 90o region the signal originated from. 

 
Figure 2.8. Testing setup for the eight-choice sound localization experiment.  Subjects stationed facing 0o 
and test speakers were suspended from pivoting rods at 45o, 90o, 135o, 180o, 225o, 270o, and 315o.  The blue 
octagon represents the Test Trainer’s location, the green square represents the Data Recorder’s location, 
and the orange triangle represents the Stationing Trainer’s location. 

Deep Exhibit Area 

3.05 m

270o

315o

225o180o

45o

90o

135o 

0o 

Shelf Area Medical Pool 

 

Experimental Design 

An eight alternative forced-choice discrimination paradigm was used to test the 

sound localization abilities of two Florida manatees, Trichechus manatus latirostris.   

Eight underwater test speakers (Aquasonic AC 339) were positioned in a 6.10 m diameter 

circle surrounding a stationing/listening apparatus at 0o, 45o, 90o, 135o, 180o, 225o, 270o 

and 315o and a depth of 1.5 m. (Figure 2.8).  Each subject was trained to position the top 

of its rostrum, approximately 10 cm posterior to the nostrils, up against a stationing bar 
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positioned at mid-water depth (1.5 m) in response to his stationing signal.  The subject 

remained stationed facing 0o until a test signal was played from one of the eight test 

speakers.  Upon hearing the test signal, the subject would swim to and push the speaker 

from which he believed the sound originated.  If correct, a secondary reinforcer signal 

(1.4 - 12 kHz with a peak at 5.3 kHz for Buffett, 1.2 - 11 kHz with a peak at 2.7 kHz for 

Hugh) was emitted from the test speaker and the subject returned to the stationing device 

to be fed a primary reinforcement of food (apples, beets and carrots).  If incorrect, the 

stationing tone was played from the stationing apparatus speaker and the subject re-

stationed correctly with no reinforcement given, to await a minimum of 30 seconds 

before the initiation of the next trial.  

All training and testing sessions were run between 0700 and 1000 h five days per 

week before the Aquarium was open to the public.  The manatees’ daily ration of food 

(72 heads of romaine lettuce and 12 bunches of kale) was fed to the animals from 1200 to 

1400 h and was usually consumed by 1700 h, leaving a 14 to 16 hour overnight fast 

before training was initiated the following morning.   

Three people were required to run the experiment: a Test Trainer, Data Recorder, 

and Station Trainer (Figure 2.8).  The Test Trainer, “blind” to the test stimulus locations, 

wore noise-masking headphones and was positioned facing 180o on a platform suspended 

across the Exhibit Area. The Test Trainer ensured that a minimum 30 second inter-trial 

interval was met, the subject was positioned correctly, initiated each trial by verbally 

stating “tone” to the Data Recorder, informed the Data Recorder which location the 

subject selected, determined if the subject was correct by looking at the Data-recorder 

when he/she came into view for the appropriate head nod or shake, provided the subject 
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primary reinforcement if he was correct, and requested the subject to station by stating 

“station” to the Data Recorder.    

The Data Recorder was positioned behind a laptop computer, out of sight of the 

Test Trainer and subject, and set up the experimental conditions needed for each session 

on the computer using a graphical user interface that was programmed in Visual C (see 

Appendix A for set up protocols).  The Data Recorder initiated trials when instructed to 

do so by the Test Trainer, informed the Test Trainer and subject if the location selection 

was correct by leaning out from behind the computer to provide a head nod to the Test 

Trainer and playing the subject’s secondary reinforcer signal, or incorrect by providing a 

head shake and playing the station signal, recorded all data on a tank-side session sheet 

(Appendix B), and ran the video equipment.   

The Station Trainer was positioned at the northeast end of the Medical Pool out of 

the test subject’s line of sight and was responsible for holding the non-test animal at 

station throughout the subject’s session.  The Station Trainer was unaware of the correct 

locations and unable to see the subject during testing.   

Acoustic Stimuli 

A total of six experimental conditions were tested (Table 2.3).  A speaker 

frequency response normalization procedure (see experimental controls section) 

generated test signals which were presented at the same spectrum level, meaning that 

signals with broader frequency spectra had louder root mean square (rms) amplitudes 

(Figure 2.9).  The average spectrum level (dB re 1μPa/sqrt (Hz)) of each stimulus was 

defined by condition (Table 2.3).  
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Table 2.3.  Frequency, duration and level conditions of the eight-choice manatee localization experiment.   
Frequency 

(kHz) 
Duration 

(ms) 
Averaged Level 

(dB re 1μPa/sqrt (Hz)) 

4 200 101 

0.2-24 200 95 

0.2-24 3000 95 

18-24 3000 80 

0.2-1.5 3000 110 

0.2-24 3000 95 then decreasing  
to < 75% 

 

Figure 2.9.  Sound calibration from the eight test speakers that were normalized with a 500-tap FIR filter 
(top) and spectrum level of the background exhibit noise (bottom) in the eight choice localization 
experiment.  Sound from each speaker was normalized to approximately follow the shape of the manatee 
audiogram, with decreasing sound levels at higher frequencies.  Each curve shows the recording from one 
of the eight speakers.  
  

The 0.2-24 kHz stimulus was tested at both 3000 ms and 200 ms durations and 

spanned a wider range of frequencies than had been previously tested (0.2-20 kHz).  The 

18-24 kHz stimulus was tested at a 3,000 ms duration and was composed of a more 

extreme higher frequency range than previously tested (6-20 kHz) with wavelengths that 

were shorter than a manatee’s interaural distance.  The 0.2-1.5 kHz stimulus was 

presented at a 3,000 ms duration and was comprised of a slightly smaller range of low 
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frequencies than previously tested (0.2-2 kHz) with wavelengths that were greater than a 

manatee’s interaural distance.    

The 4 kHz tonal signal was midway between the 2.5–5.9 kHz fundamental 

frequency range of typical manatee vocalizations (Nowacek et al., 2003) and was 

presented at 200 ms, a duration shorter than had previously been tested (3,000 ms) which 

prohibited subject head movement adjustments while it was presented.  The 4 and 16 

kHz, tonal signals used in Colbert’s (2005) four-choice localization study were only 

tested at a 3,000 ms duration because the subjects exhibited strong signs of behavioral 

frustration at lower durations.  To prevent this frustration from occurring with the shorter 

200 ms 4 kHz signal at the more distant speaker locations, four tonal probes were 

included in 16-trial blocks of 0.2-24 kHz, 3,000 ms signals until 80 trials were completed 

(Appendix B).   

In the sixth condition, the level of the 0.2-24 kHz, 3,000 ms, 95 dB test signal was 

attenuated in 3 dB increments per block until each subject’s overall percent correct within 

a 16-trial block fell below 75%.   A total of 80 trials were collected at the level in which 

the subject fell below 75% accuracy to ensure consistency.   

Signal Generation & Programming 

All signals including each subject’s station and secondary reinforcement signals 

and the test stimuli were programmed in RPvds language (Appendix A), digitally 

generated by a Tucker-Davis Technologies real-time processor (RP2.1), and attenuated 

with a programmable attenuator (PA5) to control level.  Signals were amplified with a 

Hafler power amplifier and switched to the eight test speakers through a power 

multiplexer (PM2R).  A separate digital to analog channel was used to generate the 
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stationing signal from the speaker located on the stationing apparatus in the center of the 

array.   

MATLAB programming was used to generate blocks of sixteen trials that were 

counterbalanced between the eight speaker locations in a quasi-random order, meaning 

that the test signal location was randomized, but had a criterion of no more than two trials 

in a row from the same location.   

A Dell laptop computer (model Latitude D505) with Windows XP was used to 

run the signal generation equipment, set up the testing conditions and to automatically 

download the parameters of each trial into an Excel file (Appendix B).   Trials were 

initiated and completed through an electronic control box which was connected to the 

RP2 unit, and then into the laptop computer (Figure 2.9).  The control box had four 

buttons with corresponding colored LED lights built into it.  The station signal button 

was used to call the subject to station and the actual speaker switching occurred while the 

station signal was played.  The test signal button was used to play each condition’s test 

signal once per trial.  The correct button was used to play the subject’s unique secondary 

reinforcement signal for correct location selections.  The wrong button was used to 

digitally record incorrect location selections and was immediately followed by playing 

the station signal.  The four LED lights provided visual verification that their 

corresponding signals were played and that the trial was downloaded into the Excel file. 
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Figure 2.10. Electronic button box used to run the sessions and automatically download each trial into a 
digital excel file. 
 

Data Recording 

Data from each session were recorded in three ways.  Automated digital computer 

reports were uploaded into an Excel file as each trial occurred in real-time on the laptop 

computer.  The Data Recorder documented session information by completing a tank-side 

data sheet (Appendix C).  This information was then manually entered into a Microsoft 

Access database created on a Dell desktop computer (model Dimension 8300) after the 

completion of each session.   This database was designed specifically for this experiment 

and had a user-friendly data entry screen (Figure 2.10).   All data entered into the 

database were double-checked for accuracy by a second trainer after they were entered.   

Finally, each test block was video recorded.  A Sony variable zoom, high resolution, 

outdoor weather proof, color dome camera (model SCW-CD358DVP) was attached to 

the trainer’s platform directly over the subject’s head and connected to a Sony digital 

video camera (model DCR-TRV50).  Pre-printed data sheets which identified the date, 

subject, test frequency, and sound duration were video recorded prior to the initiation of 

each block to stipulate each blocks parameters as they occurred.  

Station  
Signal

Test  
Signal

Correct/ 
Bridge

Wrong 

Station Signal
LED

Correct  
LED

Wrong  
LED

Test Signal 
LED
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Figure 2.11. Data entry screen used to enter session information into the Access database. 
 

Experimental Controls 

Several experimental controls were put into place to ensure that cues which might 

possibly arise from trainers, test signals, speakers and their locations were avoided, and 

that the subjects were motivated for each testing session.  All personnel were positioned 

out of the test subject’s line of sight except for the Test Trainer.  The Test Trainer was 

required to wear sound-dampening headphones to avoid the possibility of hearing the test 

signals and was ignorant of the test signal’s location. The Data Recorder was the only 

individual who knew which location the test signal would originate from and only 

obtained this knowledge at the initiation of each trial.  The Data Recorder was seated 

approximately 6 m to the back of the Test Trainer behind the laptop computer screen and 

was not visible until after the subject had made his location selection at the end of each 

trial.  At this point the Test Trainer would look backwards towards the Data Recorder 

who would move into view to indicate if the subject’s choice was correct or incorrect. 
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All test signals had a 100 ms rise-fall time to eliminate transients and levels were 

randomly presented +/- 1.5 dB over the nominal acoustic pressure to eliminate level cues.  

A speaker frequency response normalization procedure was developed to eliminate the 

possibility that small differences in the speakers and their locations in the exhibit would 

produce localization cues that could be detected by the manatees (Figure 2.9).  This was 

accomplished by measuring each speaker’s frequency response from the stationing 

apparatus via a hydrophone (HTI 96 min; sensitivity -164 dBV/ μPa from 0.2 Hz to 37 

kHz) and then developing a 500-tap FIR filter for each speaker to produce normalized 

responses over the frequency bands.  Note that the frequency response was not flat, but 

louder at lower sound frequencies, similar to the spectra produced by boats. The signal 

also tracked the manatee audiogram which was more sensitive at higher frequencies 

(Gerstein et al., 1999).  No effort was made to test the subjects in an anechoic setting, in 

fact, the exhibit background noise (pumps for filtration) was continuous throughout 

testing.  The spectrum level of the exhibit noise was ~30-50 dB re 1 μPa lower than the 

normalized speaker outputs (Figure 2.9).  

To control for motivational effects, each animal’s session was started with eight 

“warm-up” trials, one from each location in a randomized order, and ended with four 

“cool-down” trials, the locations of which were randomly generated via the computer 

program.  The signal stimulus used for these trials was the same 3000 ms, 0.2–24 kHz, 

broadband noise used throughout training.  In addition, two criteria were defined as 

reasons to drop a test block.  The first stipulated that a minimum performance accuracy of 

75% was required on the warm-up and cool-down trials.   The second defined a 

maximum allowance of any combination of three interruptions from the non-test manatee 
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and/or leaves or attempted leaves from the test subject per block.  If a block was dropped, 

the experimental condition was repeated in the next session. 

 



 

 

 

Results 

Training was initiated on July 7, 2006 and completed for Hugh on September 1, 

2006 and for Buffett on August 18, 2006.  Both manatees learned the new requirements 

of the task easily.  Testing with the 0.24-24 kHz, 3,000 ms signal took place from 

September 4 to October 20, 2006 for Hugh and from August 21 to October 12, 2006 for 

Buffett.  Testing that attenuated the 0.24-24 kHz, 3,000 ms signal took place from 

October 23 to November 20, 2006 for Hugh and from October 13 to December 15, 2006 

for Buffett.  Testing with the 18-24 kHz, 3,000 ms signal took place from November 22 

to December 5, 2006 for Hugh and from December 20, 2006 to January 2, 2007 for 

Buffett.  Testing with the 0.2-1.5 kHz, 3,000 ms signal took place from December 6, 

2006 to January 16, 2007 for Hugh and from January 3 to January 18, 2007 for Buffett.  

Testing with the 0.2-24 kHz, 200 ms signal took place from February 6 to February 20, 

2007 for Hugh and from January 31 to February 20, 2007 for Buffett.  Testing with the 4 

kHz, 200 ms signal took place from February 21 to April 19, 2007 for Hugh and from 

February 21 to April 2, 2007 for Buffett.  A total of 27 blocks were dropped from both 

manatees as they met the pre-defined drop criteria.  Buffett dropped 17 and Hugh 

dropped 10.  

Three data analyses were conducted for each subject including one that examined 

the possibility of speaker artifact or location cues, one that determined overall 

performance accuracy, and one that investigated selection distribution. The frequency 

response normalization procedure was integrated during the training of the eight choice 
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sound localization study as a safeguard to eliminate the possibility that small differences 

arising from the speakers themselves and/or their positions in the exhibit would be 

detected and used to facilitate the subject’s response (Figure 2.11).  Determination of 

accuracy by speaker location before and after the speaker frequency normalization 

calibration was done showed no large or consistent differences in performance, 

suggesting that the manatees did not use other cues for sound localization (Figure 2.12).    
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Figure 2.12. Subject accuracy before and after speaker normalization calibration.  Note that the speaker at 
180 degrees is biased by multiple presentations during the ‘before’ calibration.   
 

Overall performance accuracy was determined and described in Table 2.4.  

Percentage correct was calculated for each subject based on 15 trials per speaker for the 

0.2-24 kHz, 200 ms condition and 10 trials per speaker for all other conditions.  The level 

of the 0.2-24 kHz. 3,000 ms, 95 dB signal was decreased in 3 dB increments if the 

subject achieved 75 % correct or greater for two consecutive blocks.  Five blocks were 

completed when accuracy fell below 75% (86 dB), and then five additional blocks were 
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completed at a level that was 6 dB lower than this point to examine how performance 

changed in these increments.    

Table 2.4.  Results for the conditions of the eight-choice localization experiment with chance level at 
12.5%.  Percentages are based on 15 trials/speaker for the 0.2-24 kHz, 200 ms condition and 10 
trials/speaker for all other conditions.  Trials which measured accuracy as level was decreased are shown in 
italics. 

Frequency & Averaged Level (dB re 1μPa/sqrt (Hz)) 
 

4 kHz 
101 dB  

0.2-24 
95 dB 

18-24 kHz 
80 dB 

0.2-1.5 kHz 
110 dB 

Duration  Hugh 

200 ms 14% 55%  
3000 ms 69% 40% 46% 

3000 ms; 86 dB 72% 
3000 ms; 80 dB 

 
48%  

 Buffett 

200 ms 20% 65%  
3000 ms 79% 60% 64% 

3000 ms; 86 dB 77% 
3000 ms; 80 dB 

 
56%  

 

Both subjects performed well above the 12.5% chance level for all of the 

broadband frequencies tested.  When the 4 kHz tonal signal was tested however, 

performance decreased dramatically for both subjects with Hugh’s accuracy at only 14% 

Buffett’s at 20%.  When level was decreased with the 0.2-24 kHz signal, both were able 

to localize the signal over a fairly large sound level range, however, Hugh’s performance 

deteriorated more than Buffett’s.   

Selection distribution was investigated for each of the conditions tested.  The 0.2-

24 kHz, 3,000 ms signal was composed of the widest range of frequencies presented at 

the longest duration tested, making it the easiest discernible signal.   The 3,000 ms 

duration allowed subjects to move their heads to physically and visually orient towards 

speaker locations to the front 180o during signal presentation, but did not provide enough 

time for orientation towards speakers behind them.  Results showed that the few errors 
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made were primarily located at the “nearest neighbor” of the test speaker for both 

subjects but became somewhat more dispersed when they originated from 135o and 180o 

for Buffett and more widely dispersed when they came from 180o and 225o.  Hugh never 

selected the 180o location and made back to front confusions on 20% of the trials when 

the signal originated at 180o (Figure 2.13).   

 
Figure 2.13. Selection distribution with the 0.2-24 kHz, 3,000 ms, 95 dB re 1 μPa test signal. The percent 
correct is notated at the locations demarked by the yellow circles.  Hugh’s results are always presented to 
the right of the graph lines in teal and Buffett’s are to the left in maroon.  The exterior circle of the grid 
represents 100% accuracy, the middle 50% and the inner 0%. 
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The 0.2-24 kHz, 200 ms signal was also composed of the widest range of 

frequencies, however the shorter duration did not provide enough time for subjects to 

physically or visually orient towards any of the speaker locations.  Errors tended to be to 

the “nearest neighbor” of the test speaker for both subjects but became somewhat more 

dispersed when signals came from 135o, 180o and 270o for Buffett and more widely 

dispersed when they came from 180o for Hugh.  Hugh never selected the 180o location 

and made back to front confusions on 27% of the trials when the signal originated at 

180o.  Hugh also made contralateral confusions on 7% of the trials when the signal 

originated from 315o (Figure 2.14).   

49 
 



 

 
Figure 2.14. Selection distribution with the 0.2-24 kHz, 200 ms, 95 dB re 1 μPa test signal. The percent 
correct is notated at the locations demarked by the yellow circles.  Hugh’s results are always presented to 
the right of the graph lines in teal and Buffett’s are to the left in maroon.  The exterior circle of the grid 
represents 100% accuracy, the middle 50% and the inner 0%. 
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and 180o.  Hugh never selected the 180o location and made back to front confusions on 

10% of the trials when the signal originated at 180o.  Hugh also made contralateral 

confusions on 10 % of the trials when the signal originated from 225o and 270o (Figure 

2.15).   

 
Figure 2.15. Selection distribution with the 18-24 kHz, 3,000 ms, 80 dB re 1 μPa test signal. The percent 
correct is notated at the locations demarked by the yellow circles.  Hugh’s results are always presented to 
the right of the graph lines in teal and Buffett’s are to the left in maroon.  The exterior circle of the grid 
represents 100% accuracy, the middle 50% and the inner 0%. 
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Errors tended to be to the “nearest neighbor” for all speaker locations but became more 

dispersed when signals originated from 180o, 225o and 270o for both Hugh and Buffett.  

Hugh never selected the 180o location and made back to front confusions on 10% of the 

trials when the signal originated at 180o (Figure 2.16).   

 
Figure 2.16. Selection distribution with the 0.2-1.5 kHz, 3,000 ms, 110 dB re 1 μPa test signal. The percent 
correct is notated at the locations demarked by the yellow circles.  Hugh’s results are always presented to 
the right of the graph lines in teal and Buffett’s are to the left in maroon.  The exterior circle of the grid 
represents 100% accuracy, the middle 50% and the inner 0%. 
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enough time for subjects to physically or visually orient towards any of the speaker 

locations.   Errors were scattered among the locations with no obvious patterns observed 

for both subjects.  Contralateral confusions were not considered due to the high 

variability of speaker location selections (Figure 2.17).   

 
Figure 2.17. Selection distribution with the 4 kHz, 200 ms, 101 dB re 1 μPa test signal. The percent correct 
is notated at the locations demarked by the yellow circles.  Hugh’s results are always presented to the right 
of the graph lines in teal and Buffett’s are to the left in maroon.  The exterior circle of the grid represents 
100% accuracy, the middle 50% and the inner 0%. 
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The data were also evaluated by determining the number correct for each of the 

broadband stimuli and separating these results into three regions: front, back and side. 

These numbers were averaged by the total number of trials presented at each location for 

each stimulus (15 trials for the 0.2-24 kHz, 200 ms stimulus; 10 trials for the remaining 

stimuli) (Table 2.5).  Buffett’s accuracy ranged between 83% - 97% when the stimuli 

were presented in front (0o, 45o, 315o), 40% - 67% when presented in back (135o, 180o, 

225o), and 60% - 75% when presented to the sides (90o and 270o).  Hugh’s accuracy 

ranged between 62% - 90% when the stimuli were presented in front, 13% - 51% when 

presented in back, and 45% - 80% when presented to the sides. 

Table 2.5.  Average percents correct by front, back and side regions.  The numbers of correct trials were 
averaged by the total number of trials presented at each location for each stimulus.  Averages were based 
upon 15 trials per location with the 0.2-24 kHz, 200 ms stimulus and 10 trials per location for the remaining 
stimuli. 

Hugh 
 Front  Back  Side  
  0o 45o 315o   135o 180o 225o   90o 270o   
0.2-24 kHz, 200 ms 10 14 4 62% 12 0 11 51% 13 11 80% 
0.2-24 kHz, 3000 ms 10 10 7 90% 9 0 6 50% 8 5 65% 
18-24 kHz, 3000 ms 7 9 4 67% 4 0 0 13% 6 2 40% 
0.2-1.5 kHz, 3000 ms 6 8 6 67% 7 0 1 27% 6 3 45% 

Buffett 
 Front  Back  Side  
  0o 45o 315o   135o 180o 225o   90o 270o   

0.2-24 kHz, 200 ms 12 12 15 87% 6 7 5 40% 11 10 70% 
0.2-24 kHz, 3000 ms 10 10 9 97% 7 6 7 67% 9 5 75% 
18-24 kHz, 3000 ms 10 9 6 83% 1 7 5 43% 6 4 50% 
0.2-1.5 kHz, 3000 ms 10 10 5 83% 2 5 7 47% 8 4 60% 
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Discussion 

The results of this study provide information about the manatee’s ability to 

localize specific broad-band and tonal signals of specific durations and levels in a 

controlled environment.  Numerous controls were put in place to avoid test signal 

distortions and/or the projection and recognition of speaker artifact or location cues.  

These included the incorporation of a 100 ms rise-fall time within signals to eliminate 

transients, the addition of a +/- 1.5 dB randomization of signal levels between trials to 

eliminate level cues, switching the test signal location during the presentation of the 

stationing tone to avoid transients, and the frequency response normalization procedure 

done between speakers.  Analysis of the test signals showed no obvious temporal or 

harmonic distortions and performance prior to and after frequency normalization 

calibration procedures showed no large or consistent differences, suggesting that the 

subjects were localizing the actual test signals and not artifact or spatial cues. 

The subjects of this study were readily able to adapt behaviors learned in a prior 

four-choice sound localization study (Colbert, 2005) to meet the change in stationing 

direction (from south to east), increased stationing depth (from 0.75 m to 1.5 m), and 

extended test speaker distance (from 1.05 m to 3.05 m) criteria for the eight choice 

paradigm.   Reshaping of these behaviors took approximately six weeks to complete.  

Testing was completed in approximately eight months.  Results indicated that the 

subjects were able to localize all of the test signals specified within the conditions and, 

similarly to the two prior four choice sound localization studies (Gerstein, 1999; Colbert, 
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2005), do not support the anatomical hypothesis that suggested manatees may be poor at 

sound localization (Ketten, 1992).   

The first hypothesis posited that subjects would be able to localize all of the 

broadband test signals above the 12.5% chance level at all eight locations within the 360o.   

Results indicated that Buffett was capable of localizing all of the broad-band signals, 

even the 0.2-24 kHz, 200 ms shorter signal, when they originated from all angles 

including behind him.   Hugh demonstrated that he was able to localize all of same 

signals when they originated from all locations except 180o.  Hugh never selected the 

180o speaker when the broadband signals were tested but seemed to instead default to the 

speakers located at 135o or 270o most of the time.  Both subjects had difficulty localizing 

the 4 kHz, 200 ms tonal signal at all locations and their speaker selections were 

distributed randomly.  Hugh did select the 180o speaker in this condition, however these 

selections also appeared to be random.   This hypothesis was supported by the subjects’ 

performance with the broadband stimuli except for Hugh’s performance at the 180o 

location.  Interestingly, both subjects were able to localize the 0.2-24 kHz test signal over 

a fairly large sound level range although Hugh’s accuracy decreased more rapidly than 

Buffett’s.   

Although psychoacoustic studies often use tonal sound stimuli in a controlled 

setting, studies with many species have demonstrated that broadband signals are easier to 

localize than tonal signals (Stevens & Newman 1936; Marler, 1955; Casseday & Neff, 

1973).  The manatee’s natural environment contains a multitude of complex sounds that 

are primarily broadband and have rapid amplitude, frequency and bandwidth fluctuations 

on an ongoing basis.   Recreational boat engine noise is characterized as broadband with 
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a typical dominant frequency range of 0.01–2 kHz although it can reach over 20 kHz with 

the 1/3-octave source levels at 1 m for small motorboats estimated at 120-160 dB re 1 

µPa (Miksis-Olds, 2006; Gerstein, 1999; Richardson et al., 1995).  The subjects’ ability 

to localize broadband test signals ranging from a 80 - 110 dB re 1 µPa spectrum level 

suggests that they are able to localize typical recreational boat engine noises.     

Manatee vocalizations, categorized as chirps, squeaks and squeals, are 

characteristically short tonal complexes which contain several harmonics.  The 

fundamental frequencies of manatee vocalizations range from 2.5–5.9 kHz, but can 

extend up to 15 kHz (Nowacek et al., 2003).  Although Buffett’s 20% accuracy with the 4 

kHz, 200 ms test signal was above the 12.5% chance level, Hugh’s accuracy was only 

14%.  The decreased accuracy with the 4 kHz tonal signal might imply that localization 

of manatee tonal vocalizations would be difficult, however the harmonics of different 

frequencies contained within these vocalizations likely provide additional cues to aid in 

this capacity.  Some vocalizations transition from a tonal harmonic complex to more 

strongly modulated calls covering a greater frequency range and are often produced by 

calves, facilitating localization (Nowacek, et al., 2003; Mann et al., 2005; O’Shea & 

Poche, 2006).  

  The second hypothesis declared that subjects would have greater localization 

accuracy with the 3,000 ms, 0.2-24 kHz test signal than the 200 ms, 0.2-24 kHz test 

signal. This hypothesis was supported by both subjects’ performance.  Hugh had 69% 

accuracy with the 3,000 ms duration and 55% accuracy with the 200 ms duration.  Buffett 

had 79% accuracy with the 3,000 ms duration and 65% accuracy with the 200 ms 

duration.  The performance differences found between Hugh and Buffett are 
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characteristic of the results found in previous sensory studies conducted with the same 

subjects (Bauer et al., 2003; 2005; Mann et al., 2005) and are assumed to represent 

normal variation (Ridgway & Carder, 1997; Brill et al., 2001). 

Videotape analysis of the test trials demonstrated that the subjects remained at the 

stationing bar for a minimum of 270 ms before they began to move in response to the 

presentation of the test signal.  The 200 ms test signals, presented at 0.2-24 and 4 kHz, 

impeded head and/or body movements, requiring the subjects to navigate all 3.05 m to 

the test speakers without the presence of the test signal.   Underwater studies conducted 

with human divers have demonstrated that sounds are easier to localize if the head is 

allowed to move during the sound presentation (Wells & Ross, 1980) due to the 

accentuation of interaural cue differences (Thurlow et al., 1967; Richardson et al., 1995; 

Yost & Dye 1997).  The longer 3,000 ms duration with the 0.2-24 kHz signal allowed the 

manatees to utilize interaural cues while traversing  the ~ >2 m distance towards the 

sound source and likely accounts for the increased accuracy as compared to the 200 ms 

duration.   

The third hypothesis stated that subjects would have greater localization accuracy 

to the anterior 180o than to the posterior 180o.  The data were separated into three regions 

(front, back and side) and the number correct for each of the broadband stimuli were 

found for each location (Table 2.5).  This hypothesis was supported as results indicated 

that both subjects had greater localization accuracy to the anterior 180o than to the 

posterior 180o with the exception of Hugh’s higher side performance with the 0.2-24 

kHz, 200 ms stimulus.    
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Previous studies have suggested that the ability to localize a sound source may be 

influenced by multimodal sensory systems and be a function of visual orientation 

responses (Brown, 1994; Heffner, 1997).  The subjects of this study were unable to see 

the test speakers located behind them while at station and even signals tested at the 

maximum 3,000 ms duration condition did not allow enough time for them to turn and 

see the speakers before the signal ceased.  The increased number and dispersal of errors 

found when test signals originated from the 135o, 180o and 225o locations suggest that 

manatees utilize visual orienting responses to assist with localization.  

The fourth hypothesis asserted that subject errors would have a higher distribution 

to the correct locations “nearest neighbors” rather than to other locations as was found in 

a prior four choice localization study (Colbert, 2005).  Results from this experiment show 

that errors are typically distributed to the correct locations nearest neighbors for the front 

180o for both subjects, however increased selection confusion was found at the 135o 

location for Buffett and at the 180o and 225o locations for Hugh.  The data derived from 

Buffett suggests that he is able to localize the region if not the source from which the 

signal originated, which supports this hypothesis, but Hugh’s performance at the 180o and 

225o locations suggest that he has difficulty determining sound source directionality 

directly behind and to the left posterior regions of his body.   

The final hypothesis contended that subjects would make more differentiation 

errors between speakers located at 0 o and 180 o than any other contralateral pairs.  The 

data were separated into four contralateral pairs (0o & 180o; 45o & 225o; 90o & 270o; and 

135o & 315o) and the number of confusion instances that occurred for each were 

calculated for each of the broadband stimuli conditions (Table 2.6).  Of the 360 trials run 
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for each subject, only eleven contralateral confusions were made by Hugh and three by 

Buffett.  This hypothesis was supported by Hugh’s performance as eight of these 

confusions were made between the 0o and 180o pair (all were made when test signals 

originated from 180o), while the remaining three were found spread between different 

pairs.  This hypothesis was not supported by Buffett’s performance however, who had 

only one confusion between the 0o and 180o pair, but two confusions between the 90o and 

270o pair.   

Table 2.6.  Number of confusions made between contralateral pairs for each subject. Numbers were derived 
from a possible 45 trials per pair when tested with the 0.2-24 kHz, 200 ms, 0.2-24 kHz, 3000 ms, 18-24 
kHz, 3000 ms, and 0.2-1.5, 3000 ms stimuli.  

 Hugh Buffett 

Signal @ 0; Selected 180   

Signal @ 45; Selected 225   

Signal @ 90; Selected 270  2 

Signal @ 135; Selected 315   

Signal @ 180; Selected 0 8 1 

Signal @ 225; Selected 45 1  

Signal @ 270; Selected 90 1  

Signal @ 315; Selected 135 1  

 

Middlebrooks and Green (1991) demonstrated that front and back sound 

localization confusions were typical with human subjects and attributed these results to 

the fact that stimulus locations lie in mirror symmetry with respect to the subject’s ears 

which eliminate interaural time of arrival, phase and intensity cues.  Out of the possible 

90 trials that front to back confusions would have the opportunity to occur, results 

demonstrated Buffett had only one and Hugh had just eight.  These results suggest that 

the manatees may have been able to use some type of interaural cue(s) to assist with these 

discriminations even though the stimuli were presented symmetrically. 
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Almost all localization studies conducted with terrestrial and marine mammals 

utilize minimal audible angle techniques in which subjects identify a just detectable 

change of a sound source from a particular reference point (Mills, 1958).   The design 

used in this study instead required subjects to locate sound sources relative to their own 

location.  This testing paradigm, similar to those used recently with a harbor seal (Bodson 

et al., 2006) and a harbor porpoise (Kastelein et al., 2007), has more realistic applications 

which address the subjects’ ability to determine the directionality of sounds as they 

originate from different angles surrounding their bodies.   

Experiments in controlled settings provide valuable information about the specific 

conditions tested.  Results from this study demonstrate that the subjects could localize 

short and solitary test signals within the frequency ranges of recreational boat engines 

and conspecifics in all 360o of the azimuth plane at distances of at least 3 meters.   

Attenuation of the level showed that both subjects were able to localize the test signal 

well above the 12.5% chance level (Hugh, 48%; Buffett, 56%) at 80 dB re 1 μPa, a 

relatively quiet level.   

Understanding how the manatee’s sensory systems assimilate information and 

react to environmental stimuli is an important factor that should be considered in 

conservation management strategies that are incorporated into the Florida Manatee 

Recovery Plan (US Fish and Wildlife Service, 2001).  Implications derived from this 

controlled study suggest that manatees would be better able to localize sounds in their 

natural environment considering most stimuli are repetitive and/or of longer duration than 

the test signals.  Natural sounds provide increased opportunities to alter head or body 

orientation to better utilize interaural cue differences.  This study provides strong 
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evidence that manatees are capable of localizing the sounds produced by boats and 

conspecifics.  Their ability to successfully localize sounds at the 110 dB re 1μPa level as 

well as when it was attenuated implies that manatees are able to localize the loud sounds 

of nearby stimuli as well as the quieter sounds of distant stimuli.  Norris (1967) suggested 

that marine mammals may even localize sounds derived from abiotic sources (shore 

waves) to assist with navigation.  Manatees may also utilize auditory landmarks to 

facilitate their biannual migrations.  

  Several areas of study should be considered for future investigations that would 

enhance our knowledge about the ability and means by which manatees are able to 

localize sounds.   Localization tasks with manatees to date have only investigated their 

abilities within the azimuth plane.  Field tests that measured manatee responses to 

controlled boater approaches found that manatees increased swim speed and oriented to 

deeper channel waters as boats approached (Nowacek et al., 2004).  Localization ability 

assessments in the remaining dimensions may find that interaural cues in the vertical 

plane hold equal or more salience than those in the azimuth plane, partially explaining 

why these animals increase their depth in response to surface threats.   

Manatee localization investigations to date demonstrate their ability to determine 

sound source directionality in all 360o, including a capacity to interpret sounds 

originating directly to the front and back of them.  The means by which they accomplish 

these tasks however, remain unclear.  Most terrestrial mammals utilize some combination 

of interaural time, level, and phase difference cues to localize sounds, however several 

species have reduced or lost the ability to use one or even all of them (Heffner & Heffner, 

1992a).  Head related transfer function measurements for signals presented in different 
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locations on the azimuth plane may provide clues as to how interaural level and 

frequency differences might be used to facilitate sound localization.   
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Chapter Three:  Head/Body Related Transfer Functions of the Florida Manatee, 

Trichechus manatus latirostris 

 

 
Abstract 

Head and body related transfer function measurements were investigated for two 

Florida manatees (Trichechus manatus latirostris) to determine how different frequencies 

of a test signal, presented in different locations on the azimuth plane, are filtered by the 

manatee’s head and torso.  A previous investigation demonstrated that manatees were 

capable of localizing sounds in all 360o of the azimuth plane and may be able to 

differentiate signals originating directly in front or behind them (Chapter 2).  The means 

by which manatees determine sound source directionality however are unknown. 

To determine if different frequencies are filtered by the manatee’s head and torso, 

thereby providing level cues which may aid sound localization, subjects were positioned 

in the center of a 360o array of speakers positioned 45o apart with one hydrophone 

suspended next to but not touching each external auditory meatus.  The test stimulus 

presented was a 0.2-30 kHz, 3000 ms broadband noise burst.  

Head/body related transfer functions were determined by subtracting the averaged 

‘animal present’ FFTs (10 Hz frequency resolution) from the averaged ‘animal absent’ 

FFTs (10 Hz frequency resolution).  The magnitude of interaural level differences was 

73 
 



 

then derived for all frequencies in addition to specific 0.2-1.5, 0.2-5 and 18-30 kHz bands 

of frequencies.   

Results indicated that interaural level differences were found for all frequencies, 

starting below 1 kHz and extending up to 30 kHz, as a function of source location.   

Interaural level differences were of the greatest magnitude with frequencies above 18 

kHz which have wavelengths shorter than the manatee’s intercochlear distance.  Test 

signals originating at 90o and 270o provided greater ILD cues than those originating from 

other locations, however ILDs were greater when the signal originated behind the subject 

at 180o, 225o and 135o than in front of them at 0o, 45o and 315o.   These results suggest 

that the manatees’ torso provided greater shadowing effects than the head, thereby 

increasing ILD cue salience to facilitate localization when sounds originate behind them. 
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Introduction 

The Florida manatee (Trichechus manatus latirostris) is an endangered species, 

protected by both the Marine Mammal Protection Act (1972) and the Endangered Species 

Act (1973).  It is the only marine mammal known to migrate considerable distances from 

fresh water habitats to salt water habitats in the summer months, and the opposite in 

winter months.   It is considered a semi-social species, often grazing or traveling alone 

with conspecifics out of visual range, although females with calves will congregate 

together and males will mass around estrous females (Reynolds, 1979).  The Florida 

manatee also lives in lives in a habitat where boats are found in high numbers with over 

1,027,000 registered in the state of Florida in 2007 (Florida Department of Highway 

Safety and Motor Vehicles, 2007).  The means by which manatees are able to find one 

another, navigate and avoid danger in their vast habitat is unclear.  Research has not been 

published regarding the manatee’s gustatory and olfactory sensory systems, however 

anatomical and behavioral studies have provided insight into the manatee’s visual, tactile, 

and auditory sensory processes.   

The manatee visual sensory system appears to be built for sensitivity in dim light 

conditions with the ability to differentiate brightness differences (Griebel & Schmid, 

1997) and blues from greens (Cohen et al., 1982; Griebel & Schmid, 1996; Ahnelt & 

Kolb, 2000; Ahnelt & Bauer, 2000), but acuity is poor (Walls, 1963; Piggins et al., 1983; 

West et al., 1991; Mass et al., 1997; Bauer et al., 2003) and not useful for fine details.  

The tactile sensitivity of the manatee’s facial vibrissae is excellent and comparable to that 
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of the human index finger (Bachteler & Dehnhardt, 1999; Bauer et al., 2005), and the 

vibrissae hairs dispersed across the torso are also sensitive and may act similarly to a 

fish’s lateral line (Reep et al., 2002).  The manatee’s hearing threshold is quite wide and 

ranges between 0.4-40 kHz (Bullock et al., 1980, 1982; Popov & Supin, 1990; Gerstein et 

al., 1999; Mann et al., 2005) although one investigation estimates it reaches 60 kHz 

(Klishen et al., 1990).  An audiogram demonstrates that the range of best hearing lies 

between 10–20 kHz with maximum sensitivity at ~50 dB re: 1 μPa with 16 and 18 kHz, 

decreasing by ~20 dB re: 1 μPa per octave from 0.8 to 0.4 kHz and 40 dB re: 1 μPa per 

octave above 26 kHz (Gerstein et al., 1999).  These hearing capabilities indicate that 

manatees have the capacity to detect conspecific vocalizations which typically range 

between 2.5–5.9 kHz (Nowacek, et al., 2003) and boat engine noise which typically range 

between 0.01–2 kHz (Gerstein, 2002; Richardson et al., 1995). 

These results suggest that the manatee’s senses of vision and touch are probably 

designed to function with tasks in close proximity to its body.  It seems likely that the 

manatee’s auditory system plays a crucial role with functioning in both nearby and 

distant scenarios and that the ability to localize or determine sound source directionality 

would be of great importance for tasks such as navigation, finding conspecifics and boat 

avoidance.    

Sound localization is the auditory system’s ability to process the frequency, level 

and phase of a sound and associate it with the spatial location of that sound’s source 

(Yost, 2000).   The ability to localize sounds is considered a primary source of selective 

pressure in the evolution of mammalian hearing (Masterson et al., 1969) and is vital for 

many species’ ability to find food and conspecifics while avoiding predation.  Previous 
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studies have suggested that the ability to localize a sound source may be influenced by 

multimodal sensory systems and be a function of visual orientation responses (Brown, 

1994; Heffner, 1997).  Numerous species, including humans, gulls, ducks, cats, rats and 

guinea pigs possess a reflexive visual orientation response towards startling sounds at 

birth or shortly thereafter when their auditory systems become functional (Brown, 1994).  

Many species, including cats, mice, rats, chinchillas, guinea pigs and horses, also possess 

a Preyer reflex, which is a distinctive movement of the pinna towards a sudden sound to 

assist with localization (Francis, 1979; Ehret, 1983).  These multi-modal arrangements 

are extremely beneficial for determining the location of an acoustic stimulus when it is of 

a long enough duration to do so.  However, the ability to localize sounds that are of 

shorter durations and cannot be tracked or scanned using head, eye, or pinna movements 

provides obvious additional advantages.  

In our three dimensional world, sounds can be localized from the vertical, 

horizontal (azimuth) and distance dimensions by extracting information from the sound’s 

temporal, phase and level cues with each of our two ears (Middlebrooks & Green, 1991; 

Hartman, 1999).  Interaural time differences (ITD), also known as time of arrival cues, 

compare the sound’s time of arrival at each ear (Figure 3.2).  Because the speed of sound 

is relatively constant, variations in frequency do not have an effect on the perception of 

interaural time differences.  

Interaural level differences (ILD) are interpreted when the sound is one level when 

it reaches the closest ear but due to the shadowing effect of the pinna, head, or body, is a 

lower level when it reaches the farthest ear (Figure 3.2).  The level difference is 

dependent on sound wave lengths.  Higher frequencies have shorter wavelengths causing 
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a greater sound shadow.  Sounds are generally perceived to be closer to the ear they 

arrive earliest and with the greatest amplitude. 

 Interaural phase differences (IPD) are interpreted when the sound that arrives in 

the first ear is in one period of the frequency but is out of phase when it hits the second 

ear (Figure 3.1).  The phase difference is also dependent on sound wave lengths.   

 
Figure 3.1.  Interaural time (ITD), phase (IPD), and level (ILD) cues used for sound localization. 

 

Several divisional planes have been identified around an organism which facilitate 

dimension and cue integration (Figure 3.2).  The elevation plane, also called the vertical 

plane, runs vertically through the body, dividing the left and right sides, and provides 

information about a sound’s location as it is positioned anywhere in a circumference 

above or below the body.  The azimuth plane also called the horizontal plane, runs 

laterally around the body and provides information about a sound’s location as it is 

positioned anywhere in a circumference from the left to the right.  The medial plane runs  
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vertically through the body, dividing the anterior and posterior portions, and provides 

information about a sound’s location as it is positioned anywhere in a circumference from 

front to back (Figure 3.1).   Monaural ear signal attributes (those derived from only one 

ear) provide information about anterior and posterior areas of the median plane as well as 

the elevation angle and distance of the sound source location.  Interaural signal attributes 

(those derived from both ears) provide information about lateral displacement of the 

sound source location. The combination of monaural and interaural ear signal attributes 

provides angular information about a sound’s distance and location in the azimuth and 

elevation planes. 

 
Figure 3.2.  Azimuth, elevation and medial planes used to integrate the vertical, horizontal and distance 
dimensions with a sound’s temporal, phase and level cues.  

 

Behavioral testing of sound localization abilities has typically been investigated 

by measuring the species’ minimum audible angle (MAA) (Brown, 1994; Brown & May, 
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1990).  This method determines the smallest detectable angular difference between two 

sound source locations positioned in front of the subject in the azimuth plane (Mills, 

1958).  Numerous in-air auditory MAA studies have been conducted with terrestrial 

mammals including humans (Stevens & Newman, 1936; Mills, 1972), monkeys (Don & 

Star, 1972; Houben & Gourevitch, 1979; Brown et al., 1980), the domestic cat (Casseday 

& Neff, 1973; Wakeford & Robinson, 1974; Heffner & Heffner, 1988b), red fox (Isley & 

Gysel, 1975), hedgehog (Masterson et al., 1975), elephant, horse, Norway rat, pig, gerbil, 

Northern grasshopper mouse, pocket gopher, goat and cattle (Heffner & Heffner, 1982; 

1984; 1985; 1988a; 1988c; 1989; Heffner & Masterson, 1990; Heffner & Heffner, 1992b 

respectively). 

Although less common, MAA measurements have been assessed for marine 

mammals including pinnipeds (Gentry, 1967; Anderson, 1970; Moore, 1974; Terhune, 

1974; Moore & Au, 1975; Babushina and Poliakov, 2004; Holt et al., 2004) and 

cetaceans (Renaud & Popper, 1975; Moore & Pawloski, 1993; Moore & Brill, 2001; 

Branstetter et al., 2003; Branstetter, 2005; Branstetter & Mercado, 2006; Branstetter et 

al., 2007).  More recently, some pinniped and manatee sound localization investigations 

have required subjects to identify sound sources relative to different locations 

surrounding the subject’s body.  This has been done by presenting signals in the frontal 

180° or complete 360° of the horizontal plane surrounding a stationary subject (Kastelein 

et al., 2007; Gerstein, 1999; Colbert 2005; Chapter 2) or by having the subject swim 

along a half circle diameter and orient towards a sound source when presented (Bodson et 

al., 2006).  All three designs assess sound localization abilities, however the latter two 
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have more realistic applications by addressing the subjects ability to localize sounds that 

originate from different angles surrounding their bodies.    

Although these testing paradigms provide valuable information about a species’ 

localization abilities, they do not address the means by which they are able to accomplish 

these tasks.  The first investigation that examined how the shape of the human head 

affects sounds within the azimuth plane was conducted by Lord Rayleigh (Strutt, 1907).  

Lord Rayleigh modeled the head as a rigid sphere and measured how sound waves 

propagated around it.  His early results provided considerable information about 

interaural level and time differences.  He found that ILD’s were not linear with 

frequency.  Frequencies with wavelengths greater than the diameter of the head (<1500 

Hz) were not filtered or shadowed as much as frequencies with wavelengths smaller than 

the diameter of the head (>1500 Hz).  These data suggested that higher frequency 

components of a sound were more salient than lower frequency components when the 

brain evaluated ILD’s.  He also found that lower frequency components of a sound were 

more important for evaluating ITD’s because independent comparisons of points within 

one phase of the sound wave could be interpreted by the brain.   

The spherical head model has been used by many researchers to explain how 

sounds from various locations within the azimuth dimension are filtered by the human 

head (Hartley & Fry, 1921; Kuhn, 1977, 1987; Brungart & Rabinowitz, 1999).  It did not, 

however address how sounds originating from several different locations can produce 

identical ITDs and ILDs to create a cone of confusion (Figure 3.3), how sounds are 

filtered in the remaining dimensions or how sounds are filtered by the by the pinna or 

torso.   
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a 

d 
c 

b  
Figure 3.3  Cone of confusion caused from sounds originating in different locations.  Sounds from sources 
a & b as well as c & d have identical interaural time and level differences.   

 

Head-related transfer functions (HRTFs) have been comprehensively studied to 

understand the mechanisms of spatial hearing (Blauert, 1997; Wightman & Kistler, 

1997).  HRTFs are determined by identifying differences between the sound’s 

characteristics at its source and at the point of the ears as a function of frequency 

(Blauert, 1997).  HRTFs with terrestrial animals have commonly been conducted by 

playing bursts of broadband noise from different spatial locations surrounding a fixed 

head and measuring the sound’s spectral characteristics from small microphones that 

were implanted deep in the ear canal.  

HRTFs illustrate how sound waves are filtered by the diffraction and reflection 

properties of the head, pinna, and torso before they reach the inner ear (Searle et al., 

1975; Middlebrooks et al., 1989), and how the conundrum of the cone of confusion is 

resolved.  For species with pinnae, sounds may travel directly into the ear canal or be 

reflected off the pinna and travel into the ear canal fractions of a second later.  Because 

sounds are typically composed of multiple frequencies, many copies of the signal enter 

the ear at different times depending on their frequency.  Some copies overlap and have 
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matching phase signals that are enhanced, while others have non-matching phase signals 

that are canceled out.   Studies with humans have demonstrated that the pinna has 

substantial effects on HRTFs at higher frequencies with wavelengths smaller than the 

pinna size (>3 Hz) but that these effects were minimized with lower frequencies 

(Mehrgardt & Mellert, 1977; Wightman & Kistler, 1989).  The pinna was also found to 

provide substantial information about the elevation of the sound source (Batteau, 1967; 

Wright et al., 1974).  Similarly, the human torso influenced HRTFs, although not as 

significantly as the pinna, and primarily with lower frequencies (Kuhn & Gurnsey, 1983; 

Kuhn, 1987).  Algazi et al. (2001; 2002) demonstrated that the torso produced reflections 

and shadows that also provided elevation cues.  

Measurements of how interaural time, phase and level difference cues are 

interpreted has been investigated with many terrestrial species including humans (Stevens 

& Newman, 1936; Mills, 1972; Middlebrooks & Green, 1991), rats (Heffner & Heffner, 

1985), Northern grasshopper mouse (Heffner & Heffner, 1988c), gerbils (Kelly & Potas, 

1986; Heffner & Heffner, 1988a; Maki & Furukawa, 2005), guinea pigs (Carlile & 

Pettigrew, 1987), pocket gopher (Heffner & Heffner, 1992a), ferrets (Carlile, 1990), 

hedgehog (Masterson et al., 1975), Tammar wallabies (Coles & Guppy, 1986), monkeys 

(Don & Star, 1972; Houben & Gourevitch, 1979; Brown et al., 1980; Spezio et al., 2000), 

cats (Casseday & Neff, 1973; Wakeford & Robinson, 1974; Roth et al., 1980; Phillips et 

al., 1982; Irvine, 1987; Heffner & Heffner, 1988b; Musicant et al., 1990; Rice et al., 

1992), fox (Isley & Gysel, 1975), elephant (Heffner & Heffner, 1982), horse (Heffner & 

Heffner, 1984), pig (Heffner & Heffner, 1989), goat and cattle (Heffner & Heffner, 
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1992b), bats (Jen & Chen, 1988; Obrist et al., 1993; Fuzessery, 1996; Firzlaff & Schuller, 

2003), and barn owls (Knudsen & Konishi, 1979; Moiseff, 1989; Keller et al., 1998).   

Results from these investigation indicate that most terrestrial mammals, including 

humans, gerbils, squirrel monkeys, Norway rats, macaques, red fox, and the domestic cat  

utilize some combination of all three interaural cues.  Some species, however, only use 

two interaural cues.  For instance, the hedgehog and the Northern grasshopper mouse use 

only interaural time and level difference cues and the elephant, horse, pig, goat and cattle 

use only interaural time and phase difference cues.  At least one species, the pocket 

gopher, is incapable of using any of the interaural cues and it has been suggested  that this 

may be a result of this fossorial species’ adaptation to living in an underground 

environment where azimuth cues have little meaning (Burda et al., 1990).   

While the ability to interpret interaural cues for localization may be difficult or 

impossible for some terrestrial mammals, the ability for marine mammals to use these 

cues for underwater localization is complicated by several factors.  The speed of sound in 

water (1500 m/second) is approximately five times faster than in air (340m/second) 

(Urick, 1996) requiring marine mammal auditory systems to process interaural time, 

phase and level differences much more rapidly than those of terrestrial mammals.  

Although acoustic energy propagates more efficiently in water than light, thermal or 

electromagnetic energy (Au, 1993), higher frequencies become more directional, 

reflecting off the surface and bottom and low frequencies may not propagate well in 

shallow waters (Medwin & Clay, 1998).    

It is apparent that sound characteristics differ between the source and inner ear 

due to attenuation from refraction, reflection, scattering and absorption caused by objects 
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in the environment as well as by the shape of the pinna, head and torso of terrestrial 

mammals (Urick, 1996).   Fully aquatic marine mammals however, have become 

streamlined for hydrodynamic efficiency and lack the very important pinna terrestrial 

mammals and even semi-aquatic marine mammals such as the sea lion use to facilitate 

localization.  Investigations with dolphins have shown that they are very competent at 

localization tasks (Renaud & Popper, 1975; Moore & Pawloski, 1993; Moore & Brill, 

2001; Branstetter et al., 2003; Branstetter, 2005; Branstetter & Mercado, 2006; 

Branstetter et al., 2007), but only one study has measured their interaural time and level 

difference thresholds.  Moore et al. (1995) investigated the dolphin’s ability to utilize 

ITDs and ILDs by presenting binaural stimuli through jaw phones (hydrophones 

embedded in rubber suction cups) that were attached to the right and left lower jaws. 

Results found ITDs and ILDs were salient cues dolphins could detect and suggest that 

they likely use the same interaural differential sound cues as terrestrial mammals.  It has 

been shown that dolphins receive sonar echoes through complex fat channels in their 

lower jaw which may function as a pinna analogue (Brill, 1988; Ketten et al., 1992; Møhl 

et al., 1999). 

The Florida manatee spends a significant amount of time grazing in shallow water 

where sounds tend to have more reflection off the surface of the water and bottom terrain 

making localization more challenging.   The localization abilities of the manatee have 

only recently been investigated and results indicate that they are quite proficient at 

localizing sounds over a wide range of frequencies (Gerstein, 1999; Colbert, 2005) and 

within all 360o (Chapter 2).  These findings are somewhat perplexing given that the 

manatee lacks pinnae, but also possesses an external auditory meatus (ear canal) that is of 
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minute size, completely occluded with cellular debris, and reaches a blind end that is 

separated from the tympanic membrane (Chapla et al., 2007).   

The means by which manatees determine sound source directionality have not 

been investigated as yet.  It may be that the manatee’s elliptical and rotund body shape 

plays a more important role as a filter for generating interaural level cues than its much 

smaller head.  The objective of this study was to measure head/body related transfer 

functions (HBRTF) from two Florida manatees.   
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Hypotheses 

Two hypotheses were made.  The first posited that subjects would have greater 

sound shadows present when the test stimulus was presented at the 135o and 225o 

locations than when presented at other locations.   The manatee’s small head and 

elongated elliptical body is fashioned in such a way that in the azimuth plane, there is 

more surface area for the signal to reflect off of when sounds are presented to the 

posterior angles of the body (Figure 3.4).    

 
Figure 3.4.  Interpretation of how signals presented from the 135o and 225o locations reflect off the 
manatees’ elliptically shaped body. 
 

The second hypothesis declared that interaural differences in level cues would be 

greater with higher frequencies than lower frequencies.  ILDs are found when the level of 

the sound wave that reaches the ear nearest the source is greater than when it reaches the 

ear farthest from the source.  ILDs are most effective with shorter wavelengths (higher 

frequencies), especially those that are shorter than the species’ inter-meatal distance 

(Brown & May, 1990; Brown, 1994; Blauert, 1997).   
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Materials and Methods 

Subjects 

The subjects of this study were two captive-born male Florida manatees 

(Trichechus manatus latirostris), Hugh and Buffett, that reside at Mote Marine 

Laboratory and Aquarium in Sarasota, Florida.  All procedures used were permitted 

through the United States Fish and Wildlife Service (Permit # MA837923-6) and 

approved by the Institutional Animal Care and Use Committee of Mote Marine 

Laboratory and Aquarium.  At the inception of this study Hugh was 23 years of age, 

weighed 547 kg, and was 310 cm in length, while Buffett was 20 years of age, weighed 

773 kg, and was 334 cm in length.   They were housed in a 265,000 liter exhibit that was 

composed of three inter-connected sections: a 3.6 x 4.5 x 1.5 m Medical Pool, a 4.3 x 4.9 

x 1.5 m Shelf Area, and a 9.1 x 9.1 x 3 m Exhibit Area.    

Both animals had acquired an extensive training history over the previous seven 

years and had been behaviorally conditioned for husbandry procedures (Colbert et al., 

2001) and studies which investigated lung capacity (Kirkpatrick et al., 2002), serum and 

urine creatinine levels as a function of release conditions (Manire et al., 2003), visual 

acuity (Bauer et al., 2003), facial vibrissae tactile sensitivity (Bauer et al., 2005), auditory 

evoked potentials (Mann et al., 2005) and four-choice (Colbert, 2005) and eight-choice 

sound localization studies (Chapter 2).   
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Experimental Design 

An eight alternative forced-choice discrimination paradigm was used to measure 

the head/body related transfer functions (HBRTFs) of two Florida manatees, Trichechus 

manatus latirostris.   Testing was conducted in the center of the exhibit area of the 

manatee habitat where eight underwater speakers (Aquasonic AC 339) were positioned in 

a 6.10 m diameter circumference at 0o, 45o, 90o, 135o, 180o, 225o, 270o and 315o (Figure 

3.5).  Each speaker was suspended from a 1.88 cm diameter PVC rod at a depth of 1.5 m.  

The rods were bolted to aluminum beams that radiated out from two suspension supports 

spanning the Exhibit Area, and were designed to pivot so that the speaker at the bottom 

of the rod could be pushed backwards while the top of the rod tilted forward in a 

pendulum motion.   

 

3.05 m 

270o 

315o 

225o 
180o 

45o

90o 

135o 

0o 

4.5 x 4.9 x 1.5  
Shelf Area 

3.6 x 4.5 x 1.5 m 
Medical Pool 

9.1 x 9.1 x 3 m  
Exhibit Area 

Figure 3.5. Testing setup for the manatee body related transfer function experiment.  Subjects stationed 
facing 0o and test speakers were suspended from pivoting rods at 45o, 90o, 135o, 180o, 225o, 270o and 315o.  
The blue octagon represents the Test Trainer’s location, the green square represents the Data Recorder’s 
location, and the orange triangle represents the Stationing Trainer’s location. 
 

A 23 cm x 1.5 m stationing apparatus was constructed from 2.54 cm diameter 

polyvinyl chloride (PVC) pipe and positioned in the center of the circular array, 3.05 m 
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away from the speakers.   Each subject had been previously trained to position the top of 

its rostrum, approximately 10 cm posterior to the nostrils, up against a stationing bar 

located at the bottom of the stationing apparatus in response to an individualized 

stationing tone.   For this experiment, the stationing apparatus was modified such that two 

hydrophones (HTI 96 min; sensitivity -164 dBV/ μPa from 0.2 Hz to 37 kHz) were 

suspended next to but not touching each of the subject’s external auditory meatus (Figure 

3.6).   

 
Figure 3.6.  Stationing apparatus used to measure manatee body related transfer functions.  The black circle 
represents the speaker that played the stationing tones.  The subject pressed the crease of his rostrum up 
against the gray stationing bar on the bottom.  Two hydrophones were suspended next to but not touching 
each external auditory meatus. 

 

Water Line

1.5 m  

Trainer Platform

23 cm 

Hydrophone
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The subject remained stationed facing 0o until a 0.2-30 kHz, 3,000 ms test signal 

was played from one of the eight test speakers. Upon hearing the test signal, the subject 

would swim to and push the speaker from which he believed the sound originated.  If 

correct, a secondary reinforcer signal (1.4-12 kHz with a peak at 5.3 kHz for Buffett, 1.2-

11 kHz with a peak at 2.7 kHz for Hugh) was emitted from the test speaker and the 

subject returned to the stationing device to be fed a primary reinforcement of food 

(apples, beets, and carrots).  If incorrect, the stationing tone was played from the 

stationing apparatus speaker and the subject re-stationed correctly with no reinforcement 

given to await a minimum of 30 seconds before the initiation of the next trial.      

Three people were required to run the experiment: a Test Trainer, Data Recorder, 

and Station Trainer (Figure 3.5).  The Test Trainer was positioned on a platform 

suspended across the Exhibit Area and ensured that the subject stationed properly, 

initiated trials, indicated which speaker the subject selected, and provided reinforcement 

when the subject selected the correct speaker location.  The Data Recorder was 

positioned behind a laptop computer out of sight of the Test Trainer and subject, and set 

up the session’s experimental conditions, informed the Test Trainer if the subject was 

correct or incorrect, recorded all data on a tank-side session sheet (see Appendix C), and 

ran the video equipment.  The Station Trainer was positioned at northeast end of the 

Medical Pool and was responsible for holding the non-test animal at station throughout 

the subject’s session.  Although the personnel and experimental design protocols put in 

place to avoid cuing the subjects in the eight choice localization study were replicated, 

the subject’s speaker selection choices were not the topic of this investigation and 

therefore not recorded. 
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Testing sessions were run between 0700 and 1000 h.  The manatees’ daily ration 

of food (72 heads of romaine lettuce and 12 bunches of kale) was fed to the animals from 

1200 to 1400 h and was usually consumed by 1700 h, leaving a 14 to 16 hour overnight 

fast before training was initiated the following morning.   

Signal Generation & Programming 

All signals including each subject’s station and secondary reinforcement signals 

as well as the 0.2-30 kHz, 3,000 ms test stimulus were programmed in RPvds language, 

digitally generated by a Tucker-Davis Technologies real-time processor (RP2.1).  The 

signal were amplified with a Hafler power amplifier and the test stimulus was switched to 

the eight test speakers during the presentation of the stationing tone through a power 

multiplexer (PM2R).  Three separate digital to analog channels were used; one to 

generate the signal to the stationing speaker at the center of the array and two to record 

from the hydrophones.  MATLAB programming was used to generate blocks of sixteen 

trials that were counterbalanced between the eight speaker locations in a quasi-random 

order, meaning that the test signal location was randomized, but had a criterion of no 

more than two trials in a row from the same location.   

Test trials were initiated and completed through an electronic control box which 

was connected to the RP2 unit, and then into a Dell laptop computer (model Latitude 

D505) with Windows XP.  Test signals received by each hydrophone were digitally 

recorded to the real time processor.  The laptop computer was used to run the signal 

generation equipment and to automatically download the parameters of all hydrophone 

recordings into separate .wav files.  All test trials were visually recorded through a Sony 

variable zoom, high resolution, outdoor weather proof, color dome camera (model SCW-
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CD358DVP) that was attached to the trainer’s platform directly over the subject’s head 

and connected to a Sony digital video camera (model DCR-TRV50).   

Raw data were analyzed to remove any sounds of subject movement and only 

segments in which there was no extraneous noise were kept.  Test trials were collected 

until the kept segments from each speaker provided a minimum of 3,000 ms of data.   

Fast Fourier transforms (FFT’s) using 9,766 points were used to convert the signal from 

the time domain to the frequency domain.  The FFTs from each location were averaged 

together using a 10 Hz frequency resolution.  All data analyses were programmed in 

MatLab (Appendix D). 
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Results 

Testing was conducted from April 25-30, 2007.  Both subjects readily adapted to 

the presence of the hydrophones on the stationing apparatus and additional conditioning 

was not needed for them to complete the localization task in their usual manner.   

Three data analyses were conducted per subject.  The first compared power 

spectra received at the left and right hydrophones as a function of sound source location 

with ‘animal absent’ and ‘animal present’ conditions.  HBRTFs were determined by 

subtracting the averaged ‘animal present’ FFTs from the averaged ‘animal absent’ FFTs.  

The second determined the magnitude of interaural level differences for all frequencies.  

The final analysis determined the magnitude of interaural level differences for specific 

0.2-1.5, 0.2-5, and 18-30 kHz bands of frequencies.   

Comparisons were made between the power spectra acquired at the left 

hydrophone to that acquired at the right hydrophone (simulating the manatee’s left and 

right ears) when the signals originated from the eight different locations.  These data 

were then compared to the same data collected in the absence of the subject at the 

stationing bar (Figures 3.8 and 3.9).   Results demonstrated interaural level differences 

for all frequencies ranging from 0.2 to 30 kHz (the output limits of the test speakers) as a 

function of source location.    
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Hugh

Right Ear

Left Ear

 
Figure 3.8. Comparisons of left vs. right received signals as a function of signal source location and the 
presence (red line) or absence (blue line) with Hugh.  The Y axis represents the amount of signal 
attenuation (dB) and the x-axis represents frequency (Hz) for each graph in the figure. 
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Figure 3.9. Comparisons of left vs. right received signals as a function of signal source location and the 
presence (red line) or absence (blue line) with Buffett.  The Y axis represents the amount of signal 
attenuation (dB) and the x-axis represents frequency (Hz). 
 

Head/body related transfer functions were then derived from these data by 

subtracting the averaged ‘animal present’ FFTs from the averaged ‘animal absent’ FFTs 

received by each hydrophone as a function of sound source location.  Figure 3.10 
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demonstrates how the test signal was attenuated across frequencies by the subject’s 

(Buffett) head and torso when the sound originated on the opposite side.  The red lines of 

the plots represent the averaged ‘animal absent’ minus the ‘animal present’ signals 

received by the right hydrophone and the blue lines indicate the same for the left 

hydrophone.  The y-axis corresponds to the amount of signal attenuation and the x-axis 

denotes frequency.  Results demonstrated that signals originating from 90o were 

attenuated by the subjects body across all frequencies by as much as 8 dB re 1μPa when 

received at the left hydrophone.  Likewise, signals originating from 270o were attenuated 

when received at the right hydrophone.   

 

 
Figure 3.10. Left (270o) vs. right (90o) head/body related transfer functions for Buffett. Red lines represent 
‘animal absent’ averaged signals minus ‘animal present’ signals for the right hydrophone and blue lines 
represent the same for the left hydrophone.   The Y axis represents the amount of attenuation difference 
(dB) between ears and the x-axis represents frequency (Hz). 
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Similar ILD results were found with both subjects (Figures 3.11 & 3.12).  

Shadowing effects from the manatee head and torso created signal differences that 
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covered a broad frequency range, starting at frequencies below 1 kHz and extending up to 

the 30 kHz output limits of the test speakers.    

 
Figure 3.11.  Head/body related transfer functions for Hugh. Red lines represent ‘animal absent’ averaged 
signals minus ‘animal present’ signals for the right hydrophone and blue lines represent the same for the 
left hydrophone.  The Y axis represents the amount of attenuation difference (dB) between ears and the x-
axis represents frequency (Hz). 
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Figure 3.12.  Head/body related transfer functions for Buffett.  Red lines represent ‘animal absent’ 
averaged signals minus ‘animal present’ signals for the right hydrophone and blue lines represent the same 
for the left hydrophone. The Y axis represents the amount of attenuation difference (dB) between ears and 
the x-axis represents frequency (Hz). 
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The magnitude of the level differences (dB) found between the signals received at 

the left and right hydrophones as a function of frequency and sound source location were 

found by subtracting the ‘animal absent’ averaged signals minus ‘animal present’ signals 

received from the right hydrophone from the ‘animal absent’ averaged signals minus 

‘animal present’ signals for the right hydrophone (Figures 3.13 & 3.14).  Results showed 

that received signals had a large amount of variability in decibel gain and loss depending 

upon the frequency and sound source location. 
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Figure 3.13.   Interaural level difference magnitudes between the left and right hydrophones for all 
frequencies with Buffett.  ‘Animal absent’ averaged signals minus ‘animal present’ signals for the right 
hydrophone were subtracted from the ‘animal absent’ averaged signals minus ‘animal present’ signals for 
the right hydrophone.   The ILD spectrum represents the difference in a decibel scale. The x-axis represents 
frequency (Hz) and the y-axis represents level gain or loss (dB).  A positive ILD indicates level in the right 
ear was higher than in the left ear. 
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Figure 3.14.   Interaural level difference magnitudes between the left and right hydrophones for all 
frequencies with Hugh.  ‘Animal absent’ averaged signals minus ‘animal present’ signals for the right 
hydrophone were subtracted from the ‘animal absent’ averaged signals minus ‘animal present’ signals for 
the right hydrophone.  The ILD spectrum represents the difference in a decibel scale. The x-axis represents 
frequency (Hz) and the y-axis represents level gain or loss (dB).  A positive ILD indicates level in the right 
ear was higher than in the left ear. 
 
 

The magnitude of interaural level differences (dB) as a function of sound source 

locations were also calculated for specific 0.2-1.5, 0.2-5 and 18-30 kHz bands of 

frequencies (Figure 3.15; Table 3.1).   Positive ILDs, which indicated that level was 

higher in the right ear, were found when the test signal originated to the right of the 
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subjects and negative ILDs were found when it originated to their left.  The 0.2-1.5 kHz 

frequency range was the same low frequency test stimuli used in the 8-choice manatee 

sound localization investigation (Chapter 2).  The 0.2-5 kHz frequency range was 

composed of stimuli with wavelengths longer than the manatee’s intermeatal distance.  

The 18-30 kHz frequency range included stimuli that were shorter than the manatee’s 

intercochlear distance.  Results for both subjects demonstrated that ILD magnitudes were 

greatest with the higher 18-30 kHz frequency band, however the lowest 0.2-1.5 kHz 

frequency band had larger magnitudes than the 0.2-5 kHz frequency band (Figure 3.15).    
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Figure 3.15.  Interaural level difference magnitudes between the left and right hydrophones with 0.2-1.5, 
0.2-5 and 18-30 kHz bands of frequencies.  ‘Animal absent’ averaged signals minus ‘animal present’ 
signals for the right hydrophone were subtracted from the ‘animal absent’ averaged signals minus ‘animal 
present’ signals for the right hydrophone The x-axis represents sound source location and the y-axis 
represents level gain or loss (dB).  A positive ILD indicates level in the right ear was higher than in the left 
ear. 
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ILD magnitudes were greatest when the test signal originated at 90o and 270o, and 

were smallest when they originated at 0o.  When these data were compared in 

contralateral pairs, ILDs were overwhelmingly greater when signals originated in the 

back (Table 3.1).  Although ILD magnitude was greatest when signals originated from 

the 90o and 270o pair, greater magnitudes between the frequency bands were equally 

distributed between these two locations. 

Table 3.1.  Level differences (in dB) between subjects of averaged ‘animal absent’ minus ‘animal present’ 
signals for left and right hydrophones with 0.2-1.5, 0.2-5 and 18-30 kHz bands of frequencies.  Data are 
presented in contralateral pairs with locations in the posterior 180o in italics.  A positive ILD indicates level 
in the right ear was higher than in the left ear.  Shaded areas represent the larger ILD of the pair. 

  0.2-1.5 kHz 0.2-5 kHz 18-30 kHz 
  Hugh Buffett Hugh Buffett Hugh Buffett 

0o 0.46 dB -0.22 dB 0.21 dB 0.46 dB 0.05 dB 0.79 dB 

180o -0.04 dB -1.06 dB -0.37 dB -0.72 dB -4.00 dB -1.51 dB 
              

45o 0.83 dB 0.24 dB 0.30 dB 0.57 dB 0.86 dB 2.26 dB 

225o -3.61 dB -2.68 dB -2.01 dB -2.34 dB -4.50 dB -2.39 dB 
              

315o -0.79 dB -0.76 dB -0.38 dB -0.32 dB -1.13 dB -2.80 dB 

135o 2.36 dB 1.7 dB 1.02 dB 1.71 dB 2.41 dB 2.88 dB 
              

90o 2.32 dB 2.54 dB 0.93 dB 1.61 dB 3.34 dB 4.07 dB 

270o -1.54 dB -2.59 dB -0.08 dB -0.74 dB -6.14 dB -4.72 dB 
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Discussion 

The results from this study provided information about the means by which 

manatees were able to generate interaural level difference cues via head and torso 

filtering effects.  In order to capitalize on the previously learned behaviors of stationing 

in the center of a 6.10 m diameter circumference with eight test speakers positioned at 

45o apart (Chapter 2), the subjects, Hugh and Buffett, completed localization trials, 

however, their speaker location selections were not recorded and only head/body related 

transfer functions were measured.  Due to the subjects experience at the localization task, 

testing was completed in only four sessions.   

Results indicated that level differences were found for all frequencies, starting 

below 1 kHz and extending up to the 30 kHz output limits of the test speakers, as a 

function of source location due to the shadowing effect of the subjects’ head and torso.   

This is remarkable given that a 1 kHz frequency has a wavelength of 1.5 m in water. 

These findings demonstrate that ILDs are relevant cues which manatees may be able to 

detect and suggest that manatees, like the dolphin, likely use the same interaural 

differential sound cues as terrestrial mammals. 

The first hypothesis posited that subjects would have greater sound shadows 

present when the test stimulus was presented at the 135o and 225o locations than when 

presented at other locations.  Specific ILDs were determined for both subjects with 0.2-

1.5, 0.2-5, and 18-30 kHz bands of frequencies, with positive ILDs indicating that the 

received level in the right ear was greater than the left (Table 3.1).   Results showed test 

106 
 



 

signals originating at 90o and 270o provided greater ILD cues than those originating from 

other locations, refuting this hypothesis.  Interestingly, ILDs were greater when the signal 

originated behind the subject at 180o, 225o and 135o than in front of them at 0o, 45o and 

315o.    

Manatees have a unique body shape.  Their head is small in comparison to the 

remainder of their large torso which is elongated and elliptically-shaped. At the caudal 

end of their body is their paddle, or tail, which is laterally compressed and less than 2 cm 

thick along its edge.  During this study, Hugh weighed 547 kg and was 310 cm in length, 

while Buffett weighed 773 kg and was 334 cm in length.  The circumference of Hugh’s 

head was 90 cm while the widest part of his torso, located at the umbilicus, was 204 cm. 

Buffett’s head circumference was 101 cm and his torso was 237 cm.  The ~ 2.3 : 1 body 

to head size ratio demonstrates that the torso provides more surface area for sounds to 

reflect, refract, or scatter off of or be absorbed by than the head.  When positioned 

horizontally in the azimuth plane, which is typical for this species, the shape of their torso 

provides more shadowing effects when sounds originate from the lateral and posterior 

angles of the body as compared to anterior angles (Figure 3.12).    
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Figure 3.16.  Simulated shadow effects created from the manatee head and body.  Sounds originating from 
posterior angles of the body, such as shown from speaker (b) have more surface area to reflect off and 
create a larger shadow effect than those originating from anterior angles of the body such as shown from 
speaker (a).   

b

a

b a

 

Previous studies have suggested that the ability to localize a sound source may be 

influenced by multimodal sensory systems and be a function of visual orientation 

responses (Brown, 1994; Heffner, 1997) or for those species possessing muscularized 

pinnae, a Preyer reflex (Francis, 1979; Ehret, 1983).  Investigations with terrestrial 

mammals have shown that the pinna provides elevation cues (Batteau, 1967; Wright et 

al., 1974) and has substantial effects on HRTFs with wavelengths smaller than the pinna 

size (Mehrgardt & Mellert, 1977; Wightman & Kistler, 1997).  Studies with humans 

demonstrate that the pinna has a stronger effect on HRTFs than the torso (Kuhn & 

Gurnsey, 1983; Kuhn, 1987).  Manatees, like dolphins, lack pinnae and therefore do not 
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benefit from the spectral cues they provide.  Dolphins however, unlike manatees, seem to 

have compensated for this deficit with their ability to receive sonar echoes through the fat 

channels located in their lower jaw.  This mechanism likely functions as a pinna analogue 

(Brill, 1988; Ketten et al., 1992; Møhl et al., 1999) and provides relevance for the ITDs 

and ILDs found by Moore et al. (1995).   

 Investigations with manatees suggested that they were able to localize sounds 

over a wide frequency range including those in the frequency range of boats and 

conspecifics (Gerstein, 1999; Colbert, 2005) and within all 360o (Chapter 2).  Results 

from the 360o testing paradigm demonstrated that although subjects were able to localize 

from points behind them and made few front to back confusions, the number and 

dispersal of errors was greater than when test signals originated behind them.  These 

results suggest that manatees utilize visual orienting responses to assist with localization 

from locations within their visual field increasing their accuracy, but still have 

compensated for the absence of these responses when sounds originated behind them 

through the use of amplified ILD cues produced by their body shape.   

The second hypothesis declared that ILDs would be greater with higher 

frequencies than lower frequencies.  Results found that ILDs were greater for the higher 

18-30 kHz frequency range than the 0.2-1.5 or 0.2-5 kHz frequency ranges (Figure 3.15; 

Table 3.1).  These results suggest that frequencies above 18 kHz, provide more salient 

cues for localization than those below it, supporting this hypothesis.  ILDs have been 

shown to be most effective with higher frequencies, especially those that are shorter than 

the intermeatal distance for terrestrial species (Brown & May, 1990; Brown, 1994; 

Blauert, 1997) and the intercochlear distance for cetaceans (Dudok van Heel, 1962; 
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Ketten et al., 1992).   Ketten et al. (1992) found that the manatee’s average intermeatal 

distance was 0.278 m and intercochlear distance was 0.082 m.  When both distances are 

considered, it appears that frequencies 5.4 kHz (wavelength = 0.78 m) or higher would 

provide more effective ILD cues when using the intermeatal distance, and those 18 kHz 

(wavelength = 0.08 m) or higher would be more effective when using the intercochlear 

distance.  ILD magnitudes were calculated with high frequency bands (18-30 kHz) 

having wavelengths shorter than the manatee’s intercochlear distance and low frequency 

bands (0.2-5) having wavelengths longer than their intermeatal distances.  Results from 

these analyses show that the higher frequency band produced more effective ILD than the 

lower frequency and followed a pattern similar to terrestrial mammals and cetaceans.  

Surprisingly, results found for the lowest 0.2-1.5 kHz frequency band used in the eight-

choice manatee localization experiment (Chapter 2) deviate from the typical mammalian 

pattern and demonstrate greater ILDs than the wider range of low frequencies from 0.2-5 

kHz.     

Since Florida manatees spend a significant amount of time grazing in shallow 

water, interpretation of ILD cues from higher frequencies might be hindered due to 

attenuation from refraction, reflection, scattering and absorption caused by objects in the 

environment as well as the surface of the water and bottom terrain (Medwin & Clay, 

1998).   The combined effects of multiple reflective sound paths can sometimes be as 

loud as or louder than sound traveling directly from the source.  The precedence effect 

(also called the Haas Effect or Law of the First Wavefront) provides a solution for this 

problem however, by weighing the preceding sound more heavily than the reflection or 

echoes that arrive shortly thereafter (Blauert, 1997).    
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The information gained from this study demonstrates how different frequencies of 

a 0.2-30 kHz test signal, presented at 45o angles within the 360o of the azimuth plane, are 

filtered by the manatee’s body to provide ILD cues which may be used to facilitate sound 

localization.   All measurements were obtained when the subjects’ head and body were 

stationary, however in the natural environment, animals have the ability to move as 

sounds occur allowing the monaural and interaural characteristics of the sound to change 

at the inner ear thereby reducing the cone of confusion and magnifying ILD cue strength 

(Blauert, 1997).       

These are the first head/body related transfer function data collected for any 

Sirenian species and future investigations should be conducted to supplement this 

knowledge.   Although ILDs are typically more effective with frequencies having 

wavelengths shorter than an animal’s intermeatal or intercochlear distance, the 

anomalous results found for the 0.2-1.5 kHz frequency band that produced greater ILDs 

than the 0.2-5 kHz range warrants further research.   Most HRTF investigations introduce 

sound sources that are at least 1 m away from the subject because HRTFs become 

independent of distance beyond this.  As sound sources originate at distances less than 1 

m, ILDs increase dramatically and ITDs remain constant.  Investigations in which sound 

sources originate at a distance less than 1 m would be beneficial to determine if this 

pattern will hold true for manatees.  Manatees live in a habitat where acoustic stimuli 

may occur above and below them as often as around them.  Field tests that measured 

manatee responses to controlled boater approaches found that manatees increased swim 

speed and oriented to deeper channel waters as boats approached (Nowacek et al., 2004).  

Algazi et al. (2002) compared HRTFs with acoustic measurements in the horizontal, 
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median and frontal planes and demonstrated that reflections and shadows from the human 

torso provided important elevation cues.  The study of manatee HRTFs using test signals 

that originate in the elevation plane would provide valuable information about the 

salience of interaural difference cues in this dimension.  This information may provide 

insight into the importance of determining sound source directionality from dangerous 

sources such as boats at the surface.   
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Chapter Four:  Potential Sound Conduction Pathways for the Florida Manatee, 

Trichechus manatus latirostris 

 
 

Abstract 

Behavioral investigations have demonstrated that manatees possess the capacity 

to detect and localize sounds over a wide range of frequencies (Bullock et al., 1980; 

1982; Klishen et al., 1990; Popov & Supin, 1990; Gerstein, 1999; Gerstein et al., 1999; 

Colbert, 2005; Mann et al., 2005).  Paradoxically, anatomical investigations have 

established that the manatee’s external and middle ear is formed in a manner atypical of 

most mammalian species (Ketten et al., 1992; Chapla et al., 2007).  The external auditory 

meatus is occluded and separated from the tympanic membrane making it an unlikely 

channel for sound transmission, the tympanoperiotic complex is located intracranially but 

not ossified to the skull, and the ossicles are massive.  Several sound conduction 

pathways outside the traditional pinna-to-cochlea conduit have been proposed to explain 

these anatomical anomalies, however the specific means by which manatees hear remains 

unknown.   

Auditory evoked potential (AEP) techniques, using 15 kHz (154.9 dB re 1 μPa) 

and 24 kHz (158.8 dB re 1 μPa ) carrier tone bursts that were amplitude modulated (AM) 

with a 600 Hz rate, were used to map possible sound conduction pathways with four 

Florida manatees (Trichechus manatus latirostris).  Voluntary AEP measurements were 

obtained from positions on the heads of two subjects, Hugh and Buffett, while all 

portions of their body, excluding the electrodes, were positioned in the water.  Restrained 
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evoked potential measurements were obtained from various positions on the heads and 

torsos of three subjects, Hugh, Mo, and Bock, while all portions of their bodies were in 

air.  Data included in this study were collected prior to the development of a formal 

methodological plan to investigate the possible existence of manatee sound conduction 

pathways and should be considered with caution.  Transducer positions were coded by 

video analysis and results were derived through the compilation and organization of the 

data already collected.  

Results demonstrated that all four subjects, regardless of being positioned in air or 

in water, produced AEPs at every position the transducer was placed on their bodies, 

however no obvious sound conduction pathway was identified.   Estimated effective 

sound pressure levels between body positions were found to be proportionally the same.  

AEP amplitudes were usually greater with the 24 kHz carrier when tested in both the in-

air and in-water mediums, however patterns between carriers at identical body positions 

were highly variable between subjects.  In-water testing demonstrated identical or similar 

AEP amplitudes at six of seven common positions with the 24 kHz carrier, however 

amplitudes were inconsistent for all but one of the common positions with the 15 kHz 

carrier.  In-air testing showed that Bock and Mo had similar AEP amplitudes at four of 

five common positions with both carriers, however Hugh shared only one similar AEP 

amplitude out of the nine positions common to the three subjects with the 15 kHz carrier.      

Evoked potentials, averaged together from positions along the vertebral column 

and lateral ribs that were more than 20 cm caudal to the scapula, were greater than those 

averaged together from positions at and dorsal to the meatus, those averaged from 
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positions along the zygomatic process, and those averaged from positions along the 

vertebral column and lateral ribs that were cranial to 20 cm behind the scapula.  

 

 

 



 

 

 

Introduction 

The Florida manatee (Trichechus manatus latirostris) is an endangered species 

protected by both the Marine Mammal Protection Act (1972) and the Endangered Species 

Act (1973).  Investigations of the manatee’s sensory processes reveal that vision and 

touch likely function best with tasks in close proximity, while audition functions 

effectively for tasks that are both nearby and at a distance (Chapters 2 & 3).   

The hearing range of the manatee has been assessed through the development of 

an audiogram and by utilizing auditory evoked potential techniques.  Gerstein et al. 

(1999) obtained a behavioral audiogram for two manatees which showed hearing 

thresholds that ranged from 0.5–38 kHz for one subject and 0.4–46 kHz for the other.  

The frequency range of best hearing was between 10–20 kHz and maximum sensitivity 

was ~50 dB re: 1 μPa at 16 and 18 kHz, decreasing by ~20 dB per octave from 0.8 to 0.4 

kHz and 40 dB per octave above 26 kHz.  Auditory evoked potential measurements have 

been obtained in several studies.  Bullock et al. (1980; 1982) and Popov & Supin (1990) 

found that the highest frequency detection reached 35 kHz when tested in air and Klishen 

et al. (1990) found it reached 60 kHz when tested in water.  More recently, Mann et al. 

(2005) found that detection reached 40 kHz when tested in water, results similar to those 

found by Bullock (1980; 1982), Popov & Supin (1990).  These results indicate that 

manatees are able to detect conspecific vocalizations which typically range between 2.5–

5.9 kHz (Nowacek, et al., 2003) and boat engine noises which typically range between 

0.01–2 kHz (Gerstein, 2002; Richardson et al., 1995). 
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The localization abilities of the manatee have been investigated though four-

choice discrimination paradigms that presented acoustic stimuli in the frontal 180° 

(Gerstein, 1999; Colbert 2005) and an eight-choice paradigm with stimuli presented in all 

360° of the horizontal plane surrounding a stationary subject (Chapter 2).  Results 

indicated that they were proficient at localizing broadband stimuli over a wide range of 

frequencies (0.2-24 kHz) as well as those restricted to high (6-20 kHz) and low 

frequencies (0.2–2 kHz) at various durations and levels as well as tonal stimuli.  

Performance accuracy was decreased with lower levels, decreased durations and tonal 

stimuli, but still remained above chance levels.  These results suggested that manatees 

were able to localize frequencies having wavelengths that were both shorter and longer 

than their interaural distances.   

Head related transfer functions were measured with two manatees to investigate if 

interaural level difference (ILD) cues facilitated their ability to determine sound source 

directionality (Chapter 3).   Results indicated that ILDs were found for all frequencies as 

a function of source location and that the torso provided greater shadowing effects than 

the head.  ILDs appeared to be magnified when sounds originated behind the subjects and 

may have compensated for their inability to visually orient towards these locations as 

stimuli were presented. 

The findings of these behavioral investigations might suggest that the manatee 

auditory system is built and functions similarly to that of typical mammalian species.  

This assumption however, is false and anatomical examination of the manatee ear has 

provided evidence to the contrary.  Unlike most terrestrial mammals, but similar to fully 

aquatic marine mammals such as cetaceans, the manatee’s external pinna flange is absent 
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(Ketten et al., 1992; Chapla et al., 2007).   The entrance to the external auditory meatus 

(EAM) is only 1 mm in diameter and the EAM is ~61 mm long and has a ~3.6 mm 

diameter at its widest point (Chapla et al., 2007).  In contrast to most terrestrial and 

marine mammals, the manatee’s EAM is occluded by cellular debris and reaches a blind 

end that is separated from the tympanic membrane which makes it an unlikely channel 

for sound transmission (Ketten et al., 1992; Chapla et al., 2007) (Figure 3).  

 
Figure 4.1.  Diagrammatic illustration of manatee auditory anatomy based on multiple cross-sections 
through the transverse plane. eam, external auditory meatus; eao, external auditory opening; h, hyoid 
bones; htr, hypotympanic recess; mec, middle ear cavity; pb, periotic bone; sq, squamosal bone; tb, 
tympanic bone; tm, tympanic membrane. Figure used with permission from Chapla et al., 2007.  
 

The manatee middle ear is composed of a large bilobed periotic bone and the 

tympanic bone.  The two are connected to one another at two small locations that may act 

as a hinge and are called the tympanoperiotic complex (Fleischer, 1978; Ketten et al., 

1992).  Cetaceans have a tympanoperiotic complex that is located extracranially and has 

no bony attachment to the skull (Ketten, 1992).  Manatees have a tympanoperiotic 
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complex that is located intracranially, however it is not ossified to the skull and the 

periotic is only attached to the occipital bone by a small ~ 5 mm cartilage disc and to the 

squamosal bone by an even smaller ~2.5 mm cartilage disc (Ketten et al., 1992; Chapla et 

al., 2007).   

The middle ear cavity is composed of two main sections, the epitympanic recess 

and the mesotympanum (Ketten et al., 1992). The epitympanic recess is filled with soft 

tissue and surrounds the short arm of the incus.   The mesotympanum is divided into two 

chambers that are separated by a membranous septum.  The lateral chamber contains the 

ossicular chain and abuts the tympanic membrane.  The medial chamber includes the 

round window and is bordered ventrally by soft tissue and dorsomedially and caudally by 

the skull.  The hypotympanic recess connects to the middle ear cavity, is bound ventrally 

by soft tissues, and allows air to pass between it and the nasopharynx via the eustachian 

tube (Fleischer, 1978; Ketten et al., 1992; Domning, 2001).  

The tympanic membrane is multilayered, has an elliptical shape, and is laterally 

convex (Ketten et al., 1992).  The ossicles are massive with most of their 5400 mg mass 

centered in the large malleus head (Figure 3.2).  The cross-sectional area of the ossicular 

chain has been found to be proportional to the area of the tympanic membrane for most 

terrestrial mammals (Nummela, 1995) and for cetaceans (Nummela et al., 1999).  A 

greater tympanic membrane area intensifies the amount of energy collected by the 

membrane so the ossicular chain must become modified and enlarged as a means to 

endure the increased membrane vibration forces.   Nummela (1995) found area 

proportions to be ~ 0.1, for species ranging in size from the elephant to the shrew, 

however the area proportion was found to be greatly increased to 0.4 for seals whose 
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ossicular chain was significantly larger than the area of the tympanic membrane.  The 

manatee ossicular chain shows a similar deviation and is overly massive compared to the 

tympanic membrane area as well as the other tympanic and periotic ear bones (Chapla, et 

al., 2007).   

 
Figure 4.2. Manatee ossicles from the right ear. (A) Malleus, incus, and stapes; (B) malleus magnified; (C) 
stapes magnified; 1. tip of incus short arm (weakly fuses within epitympanic recess of periotic); 2. malleus 
rostral ossification (connects with tympanic bone); 3. malleus caudal process (attachment site for tympanic 
membrane); 4. malleus medial process (attachment site for tensor tympani muscle); 5. ligamentary vestige 
of the stapedial artery (traverses stapes dorsoventral foramen); 6. stapedial footplate (abuts the oval 
window); f, facets by which malleus and incus articulate (arrows denote small facets anddotted line in B 
defines outline); i, incus; k, cartilaginous keel (dashed line marks the border of the keel and the malleus 
manubrium); mh, malleus head; mm, malleus manubrium; s, stapes; sm, stapedius muscle; tt, tensor 
tympani muscle.  Figure used with permission from Chapla et al., 2007. 
 

The anatomical anomalies found in the manatee’s outer and middle ears of 

indicate that their auditory system functions in a manner dissimilar to that of the typical 

terrestrial or marine mammal species.  Several sound conduction pathways outside the 

traditional pinna-to-cochlea course have been proposed that use the zygomatic process, 

cranial tissues, cranial bones, vertebrae and/or lungs to directly stimulate the tympanic 

membrane.  
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The manner by which sound is transmitted between water and soft body tissue, or 

between soft body tissue and bone, is complex and somewhat dependent upon the elastic, 

reflective and absorptive properties of the tissues and bones.  The velocity of sound 

traveling through terrestrial mammal soft tissues has been found to be linearly related to 

the density of the tissues (Mast, 2000).  Soft tissue density varies ~10% from that of 

seawater and velocity varies ~15% (Aroyan, 1996).  Tissues containing increased 

structural elements such as collagen retain higher densities and sound velocities than 

water (Goold & Clarke, 2000), while those composed of greater fat or lipid content retain 

lower densities and sound velocities (Mast, 2000).  Investigations with cetaceans have 

shown that fatty tissue has a density and sound velocity less than that of sea water, 

muscle has a density and sound velocity similar to that of seawater, and connective tissue 

has a density and sound velocity greater than that of seawater (Soldevilla et al., 2005).   

Cetaceans have acoustic fats located in their mandible and melon that are less 

dense than the surrounding blubber tissues.  Soldevilla et al. (2005) suggested that the 

velocity change which occurs as sound travels from seawater to blubber tissue and then to 

the acoustic fat, likely plays an important impedance matching role as sound is channeled 

to the middle ear complex.    

Investigations with manatees have shown that the tympanoperiotic complex is 

connected to the squamosal bone, which in turn, is connected to the zygomatic process 

(Figure 4.3) (Ketten et al., 1999; Chapla et al., 2007).  Ketten et al. (1999) found that the 

zygomatic process differed from all other cranial bones and was a lipid-filled bony 

sponge that may serve a unique function to enhance sound transmission much like the 

acoustic fat found with cetaceans.  The zygomatic process was found to have 
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significantly lower density than other bones (Fawcett, 1942; Caldwell & Caldwell, 1985; 

Domning & de Buffre´nil, 1991), however the lipids it contained were composed almost 

entirely of triacylglycerols (Ames et al., 2002) and not the isovaleric acid typical of 

cetacean acoustic fat by which sounds are conducted (Varanasi & Malins, 1971).   Chapla 

et al. (2007) suggest that the distinctive composition of the zygomatic process causes it to 

be less rigid than other dense bones.   This increased elasticity may enhance sound wave 

propagation along the zygomatic process to stimulate the tympanic membrane and 

tympanic bone.  

 

zp 

A 

B 

Figure 4.3.  Right lateral view of a three dimensional reconstruction of a CT scanned manatee head 
(MSW0058). (A) Skin layer showing relation of external auditory opening (eao) to eye. (B) Skeletal layer 
showing relation of squamosal bone (sq, pink) and the zygomatic process (zp, pink) which is filled with fats 
and blood vessels to external auditory meatus (eam), eye, and tympanic bone (tb).  Figure edited from Fig. 
4 of, and used with permission from, Chapla et al., 2007. 
 

Chapla et al. (2007) found that the soft tissues of the manatee head have a density 

similar to that of seawater suggesting that sound waves could propagate easily from one 
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medium to the other.  In addition, these authors suggest that these soft tissues are 

arranged in a manner that allows sounds to be transmitted to the manatee’s inner ear with 

a minimal amount of reflection (Figure 4.4).  Sound waves with azimuth angles between 

45o and 90o (this includes the area surrounding the external auditory meatus) and 

elevation angles between ~43o and 73o should be able to propagate through these soft 

tissues, without reflecting off of the squamosal bone, to stimulate the tympanic 

membrane directly.   

 
Figure 4.4.  Potential sound pathways where a sound wave will experience the least amount of reflection. 
(A) Dorsal view showing that soundwaves with angles of incidence between 45o and 90o from the mid-
saggital line, on both the left and right sides of the head, may reach the ear without reflecting off of the 
squamosal. (B) Rostral view with an axial cut at the level of the ear showing that sound waves with angles 
of incidence (measured from the horizontal) between 43o and 64o (on the right side of the head) and 
between 55o and 73o (on the left side of the head) have only dermis and fatty tissue to pass through in 
order to reach the ears. The external auditory meatus is also present within this area, but is composed only 
of soft tissue and has no connection with the tympanic membrane. Airspaces, teal; cartilage, fuchsia; fatty 
tissue, yellow; malleus, green; muscle, dark red; periotic, purple; salivary glands, dark blue; skin, gray; 
squamosal, pink; tympanic bone, light blue; tympanic membrane, orange.  Figure used with permission 
from Chapla et al., 2007. 

 

Sound can also be transmitted to the inner ear through bone.  Sound waves can 

cause the bones of the skull to vibrate through inertial, compressional, and osseotympanic 

movements (Tonndorf, 1966; Yost, 2000; Gelfand, 2004).  In humans, inertial bone 

conduction occurs with assistance from the middle ear and with frequencies below 800 

Hz which causing the skull to vibrate as one unit while the ossicular chain lags behind it 
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due to its inertia.  The lagging motion of the ossicular chain causes the stapes to stimulate 

the oval window in a manner identical to air conduction.  Compressional bone conduction 

occurs with assistance from the inner ear and with frequencies above 800 Hz and causes 

the temporal bone to vibrate in such a manner that the cochlear capsule compresses and 

expands simultaneously.  These compressions cause the round window to oscillate and 

send a traveling wave through the cochlea.  Osseotympanic bone conduction occurs with 

the assistance of the outer ear and at frequencies below 1,000 Hz which causes the 

external auditory canal to vibrate and radiate along the length of the canal to stimulate the 

tympanic membrane.  An occlusion effect occurs when the external auditory canal is 

blocked.  Bone-conducted sound vibrations are prevented from radiating out of the ear 

canal and are instead reflected back toward the tympanic membrane.  The occlusion 

effect has been found to boost sound pressure in the ear canal by 20 dB with frequencies 

below 500 Hz. 

Investigations with cetaceans have suggested that high frequencies may cause the 

thinner portion of the tympanic bone to vibrate with greater amplitude than the thicker 

portion (Hemila et al., 1999).  These vibrations would in turn be conducted to the 

ossicular chain causing the tympanic bone to act much like a tuning fork (Fleischer, 

1978).   Chapla et al., (2007) suggest that the manatee’s massive ossicular chain may 

have evolved to function in a similar manner by increasing movement relative to the 

tympanoperiotic complex and skull.  

Several investigations have revealed that the lungs and skeletal system of snakes 

and turtles play important roles in hearing (Hartline, 1971; Lenhardt, 1982; Lenhardt et 

al., 1983).  These reptiles have lungs that lie in a horizontal plane along the body’s length 
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instead of the transverse plane typical for mammals.  This positioning was found to 

facilitate sound wave vibrations to be received by the lungs and skeletal system and then 

be conducted to the ears.  The position of the manatee’s pleural cavity and lungs also 

diverge from the typical mammalian arrangement and are similar to those found in many 

reptiles (Chapla et al., 2007).  The manatee lungs extend the full length of the body cavity 

and lie dorsal to the heart (Figure 4.5) (Rommel & Lowenstine, 2000).  The pleural 

cavities are supported by two separate diaphragms (hemidiaphragms) instead of the 

typical single mammalian diaphragm (Rommel & Reynolds, 2000).  The cranial portion 

of the hemidiaphragms are attached to the first three ribs and extend from the sixth 

cervical vertebra to the 26th vertebra, spanning an incredible 40% of the total body length 

(Rommel & Reynolds, 2000).  Chapla et al. (2007) suggest that vibrations from sound 

waves may be transmitted through the lungs, ribs and/or spinal column to the skull and 

ear bones.  Rommel & Reynolds (2000) further suggest that the separation of the 

hemidiaphragms may provide individualized cues to aid in sound localization. 
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Figure 4.5  Schematic illustrations of the manatee diaphragm and lung. A: In left lateral view, the manatee 
lung is a relatively flattened and elongate structure that occupies the dorsal region of the pleural cavity. B: 
In cross section the manatee body is an ellipse, with the diaphragm stretched almost horizontally from the 
hypapophyses at the midline to the ribs at mid shaft.  Figure used with permission from Rommel & 
Reynolds, 2000. 
 
 

Behavioral investigations with the manatee have demonstrated that they are able 

to hear and localize sounds over a wide range of frequencies (Chapter 2) and that 

interaural level cues likely assist in localization (Chapter 3).  The unusual anatomy of the 

manatee ear however, causes speculation as to how these sounds are received by their 

auditory system.   Auditory evoked potential (AEP) techniques may be a valuable tool for 

clarifying which sound conduction pathways are most prominent for the manatee.    

AEPs are neural electrical firing responses that spontaneously occur when an 

acoustic stimulus is received.  Although individual AEPs have amplitudes that only range 

up to several microvolts, they can be detected through electrodes placed on the head 

(Ferraro & Durrant, 1994).  To amplify these AEPs, amplitude modulated tones are 

presented rapidly which result in an envelope following response (EFR) in which neural 
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responses are phase-locked with the stimulus and averaged together to make it easily 

distinguishable from electrical noise (Dolphin, 1996, 1997).   

AEP techniques have been traditionally used to determine hearing thresholds and 

have been used with birds (Lucas et al., 2002), terrestrial mammals (Corwin et al., 1982) 

cetaceans (Ridgway, et al., 1981; Szymanski et al., 1999; Cook et al., 2006), and 

manatees (Bullock et al., 1980, 1982; Klishen et al., 1990; Popov & Supin, 1990; Mann 

et al., 2005).   Bullock et al. (1982) conducted a cursory investigation to determine if 

specific areas of the manatee head had increased acoustic sensitivity when they measured 

the in-air hearing thresholds of four West Indian manatees (Trichechus manatus) using 

AEP techniques.   Results suggested that the area surrounding the external auditory 

meatus showed only a slightly higher sensitivity than “a considerable area in front of it, 

suggesting that acoustic energy may be received over a large area” (Bullock et al., 1982).  

The manatee’s ability to detect and localize sounds and the atypical anatomy of its 

ear seems paradoxical and signifies an area that merits further research.   Results found 

by Bullock et al. (1982) represent a limited sound conduction pathway evaluation but 

introduce the potential for utilizing AEP techniques to more fully evaluate the existence 

of sound conduction pathways outside of the traditional pinna-to-cochlea conduit.  The 

objective of this study was to evaluate if AEP measurements that were previously 

obtained using in-air and in-water when acoustic stimuli were presented on various 

positions of the heads and torsos of four manatees would identify the existence of specific 

sound conduction pathways.    
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Hypotheses 

Two hypotheses were made.  The first posited that auditory evoked potentials 

would be of greater magnitude at the position of the external auditory meatus than at the 

zygomatic process.  The zygomatic process is a lipid-filled bony sponge (Ketten et al. 

1999) that has a lower density than other bones (Fawcett, 1942; Caldwell & Caldwell, 

1985; Domning & de Buffre´nil, 1991).  It has been suggested that the uniqueness of this 

bone may enhance sound transmission much like the acoustic fat found in the cetacean 

mandible and melon (Varanasi & Malins, 1971), however the lipids in the zygomatic 

process differ from that of cetacean acoustic fat (Ames et al., 2002).  Chapla et al. (2007) 

suggested that manatee inter-cranial tissue arrangements near the external auditory 

meatus had impedance properties similar to that of water and had a minimal amount of 

reflection which may facilitate sound transmission to their inner ears (Figure 4.4).  

 The second hypothesis stated that auditory evoked potentials would be of greater 

magnitude at points along the vertebral column and lateral ribs that are more than 20 cm 

caudal to the scapula than those located cranial to, at the level of, or up 20 cm caudal to 

the scapula.  Hartline (1971), Lenhardt (1982), and Lenhardt et al. (1983) found that 

several reptiles (snakes and turtles) had lungs that lay in a horizontal plane along the 

body’s length through which vibratory stimulation was transferred from the lungs and 

skeletal system to the ears.  Rommel & Reynolds (2000) found that the manatee’s lungs 

also lie in a horizontal plane along the body’s length, and are composed of two pleural 

cavities that are ventrally supported by hemidiaphragms.  The hemidiaphragms are 
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attached to the first three ribs and extend back to the 26th vertebra which accounts for 

approximately 40% of the manatee’s total body length (Figure 4.5).  Chapla et al. (2007) 

suggest that vibrations from sound waves may be transmitted through the manatee’s 

lungs, ribs and/or spinal column to the skull and ear bones.  The manatee’s large scapulas 

may provide a “deaf-spot” that sound waves reflect from.  
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Materials and Methods 

Subjects 

The subjects for this study included four male Florida manatees (Trichechus 

manatus latirostris), Hugh and Buffett who reside at Mote Marine Laboratory and 

Aquarium in Sarasota, Florida, and Mo and Bock who reside at Walt Disney World’s The 

Living Seas at EPCOT in Lake Buena Vista, Florida.  All procedures used with these 

subjects were permitted through the United States Fish and Wildlife Service (Permit # 

MA837923-6) and approved by the Institutional Animal Care and Use Committees of 

each facility.   

Hugh and Buffett were both captive-born animals.  Hugh was 20 years of age, 

weighed 547 kg, and was 310 cm in length, while Buffett was 17 years of age, weighed 

773 kg, and was 334 cm in length.   They were housed in a 265,000 liter exhibit that was 

composed of three inter-connected sections: a 3.6 x 4.5 x 1.5 m Medical Pool, a 4.3 x 4.9 

x 1.5 m Shelf Area, and a 9.1 x 9.1 x 3 m Exhibit Area (Figure 4.6).   Both animals had 

acquired an extensive training history and were conditioned to voluntarily participate in a 

prior auditory evoked potential study, making them excellent candidates for this 

investigation (Mann et al., 2005).  In addition, they had been behaviorally conditioned for 

husbandry procedures (Colbert et al., 2001) and studies which investigated lung capacity 

(Kirkpatrick et al., 2002), serum and urine creatinine levels as a function of release 

conditions (Manire et al., 2003), visual acuity (Bauer et al., 2003), facial vibrissae tactile 
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sensitivity (Bauer et al., 2005), as well as a four-choice (Colbert, 2005) and an eight-

choice sound localization study (Chapter 2).  Voluntary evoked potentials measurements 

were obtained from the cranial regions of Hugh and Buffett while all portions of their 

body, excluding the electrodes, were in the water.  Restrained evoked potential 

measurements were also collected from Hugh when he was dry-docked in the drained 

medical pool with all portions of his body in air. 

4.5 x 4.9 x 1.5 m Shelf 
Area 

3.6 x 4.5 x 1.5 m 
Medical Pool 

9.1 x 9.1 x 3 m  
Exhibit Area  

 
Figure 4.6. Testing setup for voluntary auditory evoked potential measurements used to map sound 
conduction pathways with subjects at Mote Marine Laboratory & Aquarium.  Subjects stationed facing the 
northeast wall of the Shelf Area.  The blue octagon represents the Test Trainer’s location, the green square 
represents the Data Recorder’s location, and the orange triangle represents the Subject Handler.  Lines a, b, 
and c represent the reference, recording and ground electrode leads respectively, that travel to the amplifier 
housed in a water resistant case (yellow rectangle) which was connected to the Workstation. The blue line 
represents the transducer. 

a
bc

 

Mo and Bock were both orphaned shortly after birth.   Mo was 10 years of age, 

weighed 458 kg and was 280 cm in length.  Bock was 4 years of age, weighed 346 kg and 

was 247 cm in length.  They were housed with a variety of fish species in a 465,605 liter 

exhibit that was composed of two inter-connected sections: a 14.17 m x 7.16 m x 3.27 m 

Public Display Pool and a 8.23 m x 4.42 m x 3.70 m adjoining Off-display Medical Pool 

(Figure 4.7).  All evoked potential measurements obtained from these subjects were 
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collected when they were restrained in the drained off-display medical pool with all 

portions of their bodies in air.    

 
Figure 4.6. Testing setup for restrained auditory evoked potential measurements used to map sound 
conduction pathways with subjects at Walt Disney World’s The Living Seas at EPCOT.  Subjects were 
restrained out of water in the Off-display Medical Pool.  Gray shaded areas represent walkways and the 
dashed line represents a gate that connects the two pools under the walkway. 

 
8.23 m x 4.42 m x 3.70 m  
Off-display Medical Pool 

 
14.17 m x 7.16 m x 3.27 m  

Public Display Pool  

 

Experimental Design 

All data included in this study were collected between September, 2003 and 

February, 2005, prior to the development of a formal methodological plan to investigate 

the possible existence of manatee sound conduction pathways.  Transducer positions 

were coded by video analysis and results were derived through the compilation and 

organization of these data.  

Voluntary AEP measurements with Hugh and Buffett had been previously 

obtained (Mann et al., 2005).  The subjects had been trained to station motionless at a 

target placed against the northeast wall of the shelf area (Figure 4.1).  Through a process 
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of counter-conditioning (Pearce & Dickinson 1975; Domjan 2003), they were 

desensitized to surgical scrub preparation of the skin which consisted of isopropyl alcohol 

and betadine scrubs that were alternated three times each, and insertion of two 27-gauge 

needle electrodes (Rochester Electro-Medical).  The recording electrode was inserted 

0.7–1.0 cm into the skin above the cranium, approximately 5 cm cranial to the back of the 

skull and the reference electrode was inserted to the same skin depth approximately 20 

cm caudal to the recording electrode. A third electrode, the ground, was placed in the 

water.  The aversive properties of the needle insertions were countered by the immediate 

presentation of food reinforcement including apples, carrots, beets and monkey biscuits if 

they remained motionless.  Subjects were trained to remain still for a duration of 2 

minutes during recording bouts and while the transducer was placed underwater at 

different positions located cranial to the scapula (Figure 4.7).    

 
Figure 4.7.  Voluntary AEP measurements with Hugh. 
 

Three personnel were needed to obtain voluntary AEP measurements, including a 

Test Trainer, Data Recorder and Subject Handler (Figure 4.5).  The Test Trainer 
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maintained the subject’s proper behavior, performed the surgical scrubs, inserted the 

electrodes and positioned the transducer.  The Data Recorder initiated and recorded each 

trial via the computer. The Subject Handler was positioned in the water to the right of the 

subject with his/her knee positioned under the subject’s sternum to ensure that the 

electrodes remained above water and provided the subject primary food reinforcement 

between recording bouts.   

Restrained measurements with Hugh, Mo and Bock required that each subject be 

dry-docked out of the water and confined as much as possible to avoid movement.  

Subjects were placed on closed cell foam pads and their skin was kept moist with wet 

towels or water from a garden hose. The surgical scrub procedures and needle electrode 

positions were identical to those used with voluntary recordings, however the ground 

electrode was also inserted into a surgically scrubbed area approximately 10 cm lateral to 

the reference electrode.  The transducer was positioned on different locations of their 

entire bodies (Figure 4.8).   

 
Figure 4.8.  Restrained AEP measurements with Bock. 
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Restrained AEP procedures required 7-10 personnel including the Test Trainer, 

Data Recorder and numerous Subject Handlers.  The Test Trainer was responsible for 

performing the surgical scrubs, inserting the electrodes, and positioning the transducer.   

The Data Recorder was responsible for initiating and recording each trial via the 

computer.  The Subject Handlers were responsible for keeping the subject as motionless 

as possible and hi skin moist.   

 

Signal Generation and Programming  

A Tucker-Davis Technologies AEP workstation and laptop computer (Dell 

Latitude D505) with SigGen and BioSig software were used to present and collect all 

evoked potential data.  The same workstation had been previously used to investigate  

cetacean AEPs (Cook, 2006; Cook, et al., 2006). 

Signals were generated with a 100 kHz sample rate, amplified by a Hafler 

amplifier (P1000) and delivered via a piezoceramic transducer (ITC-1042) that was 

embedded in a suction cup (VI-SIL V-1062, Rhodia, Inc.) constructed of a silicone-based 

material that had an acoustic impedance similar to water (Brill et al. 2001).  A 15 kHz 

carrier tone burst was presented at 154.9 dB re 1 μPa and a 24 kHz carrier tone burst was 

presented at 158.8 dB re 1 μPa.  These tone bursts had 5 ms cosine-squared rise-fall times 

that were amplitude modulated (AM) with a 600 Hz rate that were 40.96 ms and 

presented 14.5 times per second.  The 600 Hz AM rate was found to have produced the 

largest AEPs with 15 and 24 kHz carrier frequencies in a study that investigated the 

temporal resolution of Hugh and Buffett (Mann et al., 2005).  The frequencies and levels 

that were presented were chosen because they produced the largest AEPs.   
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AEP electrical responses received through the electrodes were returned to a 

differential amplifier (TDT-RP2.1) that was housed in a water-resistant case that could be 

easily positioned next to the subject.  These signals were differentially amplified and 

averaged with an acquisition sample rate of 25 kHz.  Amplified signals were sent via 

fiber optic cable to the TDT Workstation for data analysis using the BioSig software.   

Evoked potentials were collected in response to 200–1,000 presentations of the 

stimulus.  Underwater calibration was performed from within the BioSig software by 

playing the test signal from the transducer and recording the received level from a 

hydrophone (HTI 96 min; sensitivity -164 dbV/μPa from 2 to 37 kHz) that was 

positioned 2 cm away from it and 10 cm below the surface.  

Evoked potential magnitudes were calculated by performing a Hanning window 

on the (EFR) signal followed by a 2,048-point Fast Fourier Transform (FFT) with a 

measuring amplitude at 600Hz.  Equivalent sound pressure levels (SPL) were estimated 

for evoked potential measurement amplitudes within each carrier frequency and at each 

transducer location by dividing previously obtained input/output functions (Mann et al., 

2005) by 20 log.   
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Results 

Voluntary evoked potential measurements were obtained from Hugh and Buffett 

for positions on the body that were cranial to the scapula while underwater on March 3, 

2004.  Restrained evoked potential measurements were obtained for positions over the 

entire body while in air for Hugh on September 17, 2003, Mo on February 17, 2004, and 

Bock on February 22, 2005. 

All four subjects, whether positioned in air or in water, produced EFRs at the 600 

Hz AM rate with both the 15 kHz (Figure 4.9) and 24 kHz carrier signals (Figure 4.10).   

 
Figure 4.9. A typical auditory evoked potential found at the 600 Hz AM frequency using the 15 kHz 
carrier.  Frequency is defined along the X-axis and signal strength (dB volts) is defined along the Y-axis.  
Results are from Bock’s rib 5 cm caudal to the scapula.  Top shows complete measurement, bottom shows 
same AEP signal magnified. 
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Figure 4.10. A typical auditory evoked potential found at the 600 Hz AM frequency using the 24 kHz 
carrier.  Frequency is defined along the X-axis and signal strength (dB volts) is defined along the Y-axis.  
Results are from the hinge of Bock’s chin.  Top shows complete measurement, bottom shows same AEP 
signal magnified. 
 

A total of 17 in-water AEPs were measured for Hugh, with nine derived from the 

15 kHz carrier frequency and eight from the 24 kHz carrier frequency (Figure 4.11 & 

4.12).   EFR amplitudes and SPLs were determined for positions both dorsal and ventral 

to the eye, the hinge and center of the lower jaw, both meatuses and the vertebrae located 

between the scapulas.   

The pattern of EFR amplitudes and equivalent SPLs varied between carrier 

frequencies but were higher with the 24 kHz carrier frequency for all positions except 5 

cm dorsal to the left eye, the left meatus and the vertebrae between the scapulas.  

Measurements found with the 15 kHz carrier frequency ranged from 1.4 nV / 118.2 dB (5 
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cm ventral to the right eye) to 8.2 nV / 126.6 dB (5 cm dorsal to the left eye).  

Measurements found with the 24 kHz carrier frequency ranged from 2 nV / 119 dB (left 

meatus and 5 cm ventral to the right eye) to 7.7 nV / 126 dB (5 cm ventral to the left eye).  
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Figure 4.11.  In-water auditory evoked potential response measurements for Hugh. Body locations the 
transducer was positioned on are listed along the X-axis and envelope following response amplitudes (nV) 
are defined along the Y-axis.  Measurements obtained with the 15 kHz carrier are denoted by triangles 
while those obtained with the 24 kHz carrier are demarked by squares. *Note that some locations may be 
duplicated or absent for one or both carrier frequencies.    
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Hugh In-Water Estimated SPL Differences
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Figure 4.12.  Estimated in-water sound pressure level measurements for Hugh.  Body locations the 
transducer was positioned on are listed along the X-axis and the sound pressure levels (dB) are defined 
along the Y-axis.  Measurements obtained with the 15 kHz carrier are denoted by triangles while those 
obtained with the 24 kHz carrier are demarked by squares. *Note that some locations may be duplicated or 
absent for one or both carrier frequencies.    
 

A total of 16 in-water AEPs and SPLs were measured for Buffett, eight each from 

the 15 and 24 kHz carrier frequencies (Figure 4.13 & 4.14).   EFR amplitudes and SPLs 

were determined for positions both dorsal and ventral to the eye, the jaw hinges and 

center of the lower jaw, both meatuses and the vertebrae located between the scapulas.   

The pattern of EFR amplitudes and SPLs between carrier frequencies was similar; 

those found with the 24 kHz carrier frequency were higher or equal (center of lower jaw 

and left meatus) to those found with the 15 kHz frequency carrier.  Measurements found 

with the 15 kHz carrier frequency ranged from 0.3 nV / 11.9 dB (5 vertebrae between the 

scapulas) to 4.8 nV / 122.4 dB (hinge of the left jaw).  Measurements found with the 24 

kHz carrier frequency ranged from 1.4 nV / 119.7 dB (hinge of right jaw) to 7.1 nV / 

125.3 dB (hinge of left jaw).  
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Figure 4.13.  In-water auditory evoked potential response measurements for Buffett. Body locations the 
transducer was positioned on are listed along the X-axis and envelope following response amplitudes (nV) 
are defined along the Y-axis.  Measurements obtained with the 15 kHz carrier are denoted by triangles 
while those obtained with the 24 kHz carrier are denoted by squares.  
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Figure 4.14.  Estimated in-water sound pressure level measurements for Buffett.  Body locations the 
transducer was positioned on are listed along the X-axis and the sound pressure levels (dB) are defined 
along the Y-axis.  Measurements obtained with the 15 kHz carrier are denoted by triangles while those 
obtained with the 24 kHz carrier are denoted by squares.  
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EFR amplitudes of the 7 common positions between Hugh and Buffett, when 

tested in-water and using both the 15 and 24 kHz carrier frequencies, were plotted 

together to examine similarities and discrepancies (Figure 4.15).  Patterns within the 15 

kHz carrier were inconsistent and amplitudes varied by as much as 6.5 nV (5 cm dorsal to 

the eye) at all locations except the right meatus which only had a 0.7 nV difference 

between subjects.  Patterns within the 24 kHz carrier were identical or similar (within 0.6 

nV) at all locations except the hinge of the left jaw which had a 4.1 nV difference 

between subjects (note that the data for the left lower jaw with the 24 kHz carrier is 

absent for Hugh).   
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Figure 4.15.  In-water auditory evoked potential response measurement comparison of common positions 
for Hugh and Buffett.  Body locations the transducer was positioned on are listed along the X-axis and 
envelope following response amplitudes (nV) are defined along the Y-axis.  Measurements obtained with 
the 15 kHz carrier are denoted by teal triangles for Hugh and maroon triangles for Buffett while those 
obtained with the 24 kHz carrier are denoted by teal squares for Hugh and maroon squares for Buffett.  

 

A total of 18 in-air AEPs and SPLs were measured for Bock, nine each from the 

15 and 24 kHz carrier frequencies (Figure 4.16 & 4.17).   EFR amplitudes and SPLs were 

determined for positions caudal to the nares, the hinge of the jaw, ventral to the eye, the 
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meatus, on the zygomatic process ventral to the meatus, caudal to the meatus, on the 

lateral side of the ribs caudal to the scapula and on the last vertebrae of the tail.   

The pattern of EFR amplitudes and SPLs between carrier frequencies was similar; 

those found with the 24 kHz carrier frequency were higher than those found with the 15 

kHz frequency carrier for all positions except ventral to the meatus on the zygomatic 

process and 10 cm caudal to the meatus.  Measurements found with the 15 kHz carrier 

frequency ranged from 2 nV / 119 dB (ventral to the meatus on the zygomatic process) to 

9.7 nV / 128.5 dB (hinge of the jaw).  Measurements found with the 24 kHz carrier 

frequency ranged from 0.7 nV / 117.4 dB (10 cm caudal to the meatus) to 15.1 nV / 135.2 

dB (hinge of jaw).  
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Figure 4.16.  In-air auditory evoked potential response measurements for Bock.  Body locations the 
transducer was positioned on are listed along the X-axis and envelope following response amplitudes (nV) 
are defined along the Y-axis.  Measurements obtained with the 15 kHz carrier are denoted by triangles 
while those obtained with the 24 kHz carrier are denoted by squares. ‘ZP’ denoted zygomatic process and 
‘Lat.’ denoted lateral. 
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Figure 4.17.  Estimated in-air sound pressure level measurements for Bock.  Body locations the transducer 
was positioned on are listed along the X-axis and the sound pressure levels (dB) are defined along the Y-
axis.  Measurements obtained with the 15 kHz carrier are denoted by triangles while those obtained with 
the 24 kHz carrier are denoted by squares. ‘ZP’ denoted zygomatic process and ‘Lat.’ denoted lateral. 
 

A total of 32 in-air AEPs and SPLs were measured for Hugh at only the 15 kHz 

carrier frequency (Figure 4.18 & 4.19).   EFR amplitudes and SPLs were determined for 

positions surrounding the jaw, eye, meatus, zygomatic process, scapula, the vertebrae 

midway down the length of the spine and the tail, as well as every 10 cm along the lateral 

side of the ribcage.    

AEPs were found at every position tested but amplitudes were highest at the 

vertebrae located midway down the length of the tail (15 nV / 135 dB) and the spine 

(13.3 nV / 132.9 dB).  Amplitudes were lowest at the lateral side of the ribs, 10 cm caudal 

to the scapula (1.4 nV / 118.2 dB) and the meatus (2.3 nV / 119.3 dB).
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Figure 4.18.  In-air auditory evoked potential response measurements for Hugh. Body locations the transducer was positioned on are listed along the X-axis and 
envelope following response amplitudes (nV) are defined along the Y-axis.  All measurements were obtained with the 15 kHz carrier frequency.  ‘ZP’ denoted 
zygomatic process and ‘Lat.’ denoted lateral. 
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Figure 4.19.  Estimated in-air sound pressure level measurements for Hugh.  Body locations the transducer was positioned on are listed along the X-axis and the 
sound pressure levels (dB) are defined along the Y-axis.  Measurements were obtained only with the 15 kHz carrier. ‘ZP’ denoted zygomatic process and ‘Lat.’ 
denoted lateral. 



 

 

A total of 27 in-air AEPs and SPLs were measured for Mo, with 14 derived from 

the 14 kHz carrier frequency and 13 from the 24 kHz carrier frequency (Figure 4.20 & 

4.21).  EFR amplitudes and SPLs were determined for positions on the center of the 

lower jaw, areas surrounding the eye and meatus, the last vertebrae on the tail, as well as 

positions along the lateral side of the ribcage.   

The pattern of EFR amplitudes and SPLs varied and amplitudes with the 24 kHz 

carrier frequency were not always higher than those found with the 15 kHz frequency 

carrier.   Amplitudes with the 24 kHz carrier frequency was higher for all positions 

except the center of the lower jaw, 5 cm ventral to the eye, 15 cm ventral and 10 cm 

caudal to the eye, and on the last vertebrae of the tail.  Measurements found with the 15 

kHz carrier frequency ranged from 0.6 nV / 117.2 dB (10 cm ventral and caudal to eye) 

to 7.7 nV / 126 dB (meatus).  Measurements found with the 24 kHz carrier frequency 

ranged from 1.1 nV / 117.9 dB (center of lower jaw) to 9 nV / 127.6 dB (5 cm caudal to 

the meatus).  
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Figure 4.20.  In-air auditory evoked potential response measurements for Mo. Body locations the transducer was positioned on are listed along the X-axis and 
envelope following response amplitudes (nV) are defined along the Y-axis.  Measurements obtained with the 15 kHz carrier are denoted by triangles while those 
obtained with the 24 kHz carrier are denoted by squares. ‘ZP’ denoted zygomatic process and ‘Lat.’ denoted lateral. *Note that some locations may be duplicated 
or absent for one or both carrier frequencies.    
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Figure 4.21.  Estimated in-air sound pressure level measurements for Mo.  Body locations the transducer was positioned on are listed along the X-axis and the 
sound pressure levels (dB) are defined along the Y-axis.  Measurements obtained with the 15 kHz carrier are denoted by triangles while those obtained with the 
24 kHz carrier are denoted by squares. ‘ZP’ denoted zygomatic process and ‘Lat.’ denoted lateral. *Note that some locations may be duplicated or absent for one 
or both carrier frequencies.    



 

EFR amplitudes of the 12 positions that were common between at least two of the 

three subjects, when tested in-air, were plotted together to examine similarities and 

discrepancies between Hugh, Mo & Bock (Figure 4.22).  Comparisons were made with 

the 15 and 24 kHz carrier frequencies for Mo and Bock, but only included the 15 kHz 

carrier frequency with Hugh.   

Patterns within the 15 kHz carrier were similar and had less than 1 nV difference 

only when positioned 5 cm ventral to the eye between Mo and Bock, the meatus between 

Hugh and Bock, 5 cm caudal to the meatus between Mo and Bock, and on the last 

vertebrae on the tail between Mo and Bock.  Patterns within the 24 kHz carrier were 

similar (within 0.9 nV) at all locations except 5 cm ventral to the eye which had a 3.7 nV 

difference between Mo and Bock.   

 

 

 

 

160 
 



 

Hugh, Mo & Bock In-Air AEP Comparisons

0

2

4

6

8

10

12

Center of Low er
Jaw

Jaw  Hinge 5 cm Ventral to
Eye

5 cm Caudal to
Eye

Right Meatus ZP 5 cm Ventral to
Meatus

5 cm Caudal to
Meatus

Lat. Ribs Caudal to
Scapula

Lat. Ribs 10 cm
Caudal to Scapula

Lat. Ribs 1/2 w ay
along ribcage

Last Vertebrae on
Tail

Location

EF
R

 A
m

pl
itu

de
 (n

V)
 

Hugh  15 kHz

Mo  15 kHz

Mo  24 kHz

Bock  15 kHz

Bock  24 kHz

 
Figure 4.22.  In-air auditory evoked potential response measurement comparison of common positions for Hugh, Mo, and Bock.  Body locations the transducer 
was positioned on are listed along the X-axis and envelope following response amplitudes (nV) are defined along the Y-axis.  Measurements obtained with the 15 
kHz carrier are denoted by teal triangles for Hugh and red triangles for Mo and blue triangles for Bock while those obtained with the 24 kHz carrier are denoted 
by red squares for Mo and blue squares for Bock (24 kHz carrier not used with Hugh).  ‘ZP’ denoted zygomatic process and ‘Lat.’ denoted lateral.
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EFR amplitudes of the 4 positions common between at least one subject when 

measured in-air and at least one subject when measured in-water, were plotted together 

(Figure 4.23).  Comparisons were made with the 15 and 24 kHz carrier frequencies in-air 

for Mo and Bock but only the 15 kHz carrier frequency with Hugh, and the 15 and 24 

kHz carrier frequencies for Hugh and Buffet in-water.  Amplitudes were typically greater 

within the 15 and 24 kHz carrier frequencies when tested in-air with up to a 9 nV and 

12.3 nV differences (respectively) found at the jaw hinge between Bock and Buffett.  

Bock and Hugh demonstrated greater in-air amplitudes at the jaw hinge and 5 cm ventral 

to the eye, however the remaining amplitudes were more symmetrical between subjects, 

positions, carrier frequencies and the medium in which testing was conducted.  
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Figure 4.23.  In-water vs.in-air auditory evoked potential response measurement comparison of common 
positions for Hugh, Buffett, Mo and Bock.  Body locations the transducer was positioned on are listed 
along the X-axis and envelope following response amplitudes (nV) are defined along the Y-axis.  
Measurements obtained with the in-air 15 kHz carrier are denoted by solid teal triangles for Hugh, solid red 
triangles for Mo and solid blue triangles for Bock, while those obtained with the in-air 24 kHz carrier are 
denoted by solid teal squares for Hugh, solid red squares for Mo and solid blue squares for Bock.  
Measurements obtained with the in-water 15 kHz carrier are denoted by shaded teal triangles for Hugh and 
shaded maroon triangles for Buffett, while those obtained with the in-water 24 kHz carrier are denoted by 
shaded teal squares for Hugh and shaded maroon squares for Buffett.  

162 
 



 

 
 

 

Discussion 

This investigation used auditory evoked potential techniques to evaluate if sound 

conduction pathways, outside of the typical mammalian pinna-to-cochlea conduit, may be 

used by manatees to detect sounds.  A 600 Hz signal was used to amplitude modulate 15 

and 24 kHz carrier tone bursts.  AEP responses were collected as test signals were 

delivered in-water to several positions on the subjects’ heads, and in-air to a variety of 

positions on the subjects’ heads and torsos.  Transducer positions were coded by video 

analysis and results were derived through the compilation and organization of the data 

already collected.  

Hugh and Buffett had been previously conditioned to remain motionless in the 

water at a target for a prior AEP investigation (Mann et al., 2005).  This training was 

capitalized upon to obtain voluntary in-water AEP measurements from these subjects as 

test signals were presented to several areas on the head that could be easily reached from 

the side of the exhibit.  In-air measurements were obtained from three subjects, Hugh, 

Mo and Bock, as the test signal(s) were presented to many of the same areas on their 

heads in addition to numerous areas on their torsos.  For the in-air testing, the 15 and 24 

kHz carrier frequencies were used with Mo and Bock however only the 15 kHz carrier 

frequency was used with Hugh.  

Overall findings demonstrated that all subjects, regardless being positioned in air 

or in water, produced AEPs with the 15 and 24 kHz carriers at the 600 AM rate at every 

position the transducer was placed on their bodies.   Sound pressure levels mirrored 
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amplitude variations between body positions and did not attenuate at positions further 

away from the meatus.  This is an interesting phenomenon, considering some 

measurements were obtained at a distance of 3 m from the meatus, and supports the AEP 

results which suggest that sound waves may be received across the entire body.  Results 

found between subjects, body positions, carrier frequencies and in-air vs. in-water 

mediums should be interpreted with caution.  Data were collected in an unsystematic 

manner that did not permit many identical comparisons to be made.  

Results found between subjects when AEPs were collected in-water demonstrated 

identical or similar amplitudes (within 0.6 nV) at six of the seven common positions 

using the 24 kHz carrier, however amplitudes were inconsistent for all but one of the 

common positions using the 15 kHz carrier.  Results between subjects when collected in-

air showed that Bock and Mo had similar amplitudes (within 0.9 nV) at four of their five 

common positions with both the 15 and 24 kHz carriers, however  Hugh had only one 

similar amplitude (0.9 nV difference) with Bock out of the nine positions that were 

common to Hugh, Mo, and Bock.      

Results found between the 15 and 24 kHz carrier frequencies generally 

demonstrated that amplitudes were higher with the 24 kHz carrier when tested in both in-

air and in-water.  It is important to recall that all amplitudes are represented in nanovolts, 

so these differences are quite small when compared to differences found with cetacean 

AEP investigations that were measured in microvolts (Cook et al., 2006).  Patterns 

between carriers at identical positions were highly variable between subjects, with Buffett 

and Bock showing more similarities than Hugh and Mo.     
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Of the possible four positions that were common to the four subjects in both the 

in-air and in-water mediums, amplitude was typically greater within the 15 and 24 kHz 

carrier frequencies when tested in-air.  In comparison to the other subjects, Bock had a 

considerably greater amplitude with both carriers at one of the four locations and Hugh 

had greater amplitude with the 15kHz carrier at two of the four locations when tested in-

air.  All remaining amplitudes were more symmetrical between subjects, positions, carrier 

frequencies and the medium in which testing was conducted. 

The first hypothesis posited that auditory evoked potentials would be of greater 

magnitude at the position of the external auditory meatus than at the zygomatic process.    

Anatomical investigation of the zygomatic process has shown that it lies ventral to the 

external auditory opening (EAO) and extends cranially to a point about half way between 

the EAO and the eye.  It is connected to the squamosal bone, which in turn, is connected 

to the tympanoperiotic complex (Figure 4.3) (Ketten et al., 1999; Chapla et al., 2007).  

The zygomatic process is a bony sponge filled with lipids and blood vessels that has less 

density and rigidity than other bones (Fawcett, 1942; Caldwell & Caldwell, 1985; 

Domning & de Buffre´nil, 1991; Ketten et al., 1999), however the lipids it contains are 

not considered acoustic fats (Ames et al., 2002).   It may be that the composition of the 

zygomatic process and its geometric position relative to the ear bones may serve as an 

acoustic channel.  

The manatee’s inter-cranial tissue arrangements near the external auditory meatus 

has been found to have an impedance similar to that of water with a minimal amount of 

bone for sound waves to reflect off of (Figure 4.4) (Chapla et al., 2007).   Sound waves 

arriving from azimuth angles between 45o and 90o and elevation angles between ~43o and 
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73o may be able to propagate through the soft tissue surrounding the external auditory 

meatus area to stimulate the tympanic membrane directly.   

The AEP amplitudes (nV) for areas surrounding the external auditory meatus and 

zygomatic process were defined from the data collected and averaged by the positions 

defined in the hypothesis (Table 4.1).  Note that data for some positions may have been 

duplicated or never obtained between subjects.   Positions defined as caudal to the meatus 

are likely to have been presented over the edge of the zygomatic process or the 

squamosal bone as it extends dorsally and caudally and were included in the zygomatic 

process average.  The one measurement obtained cranial to the meatus was included in 

the meatus average.  Measurements from the jaw hinge should also be considered as the 

transducer may have been positioned on the ventral edge of the zygomatic process, 

however this positioning was not certain and it was averaged on its own.   

Results did not support the hypothesis that suggested AEPs would be of greater 

magnitude at the position of the external auditory meatus than at the zygomatic process.  

The averaged AEPs were found to be identical and suggest that one area does not 

represent a stronger sound conduction pathway.  Interestingly, averaged measurements 

obtained from the jaw hinge were of greater magnitude than those found in the areas of 

the zygomatic process or meatus.   
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Table 4.1.  AEP amplitudes (nV) obtained from the areas surrounding the external auditory meatus and 
zygomatic process for all subjects. The averaged AEP amplitudes for each position are listed in the end 
column.  Note that data for some positions may be duplicated or absent.    

  In-Water In-Air   
  Hugh Buffett Hugh Mo Bock   

Location 
15 

kHz 
24 

kHz 
15 

kHz 
24 

kHz
15 

kHz 
15 

kHz 
24 

kHz 
15 

kHz 
24 

kHz   
Meatus 4.6 2 1.4 1.4 2.3 7.7 8 3.2 7.7 
Meatus 3.6 4.8 2.9 4.4           

5 cm Cranial to Meatus           6       
4.3

5 cm Caudal to Meatus           4 9 3.6 8.1 
10 cm Caudal to Meatus               3.1 0.7 

ZP / Just Ventral to Meatus         9.7         
ZP / 5 cm Ventral to Meatus         3.6     2 1.2 

ZP / 10 cm Ventral to Meatus         2.9         

4.3

Jaw Hinge 1.8 3 4.8 7.1       9.7 15.1 
Jaw Hinge     0.7 2.6           

5.6

 
  The second hypothesis stated that subjects would demonstrate greater evoked 

potentials at points along the vertebral column and lateral ribs that are more than 20 cm 

caudal to the scapula than those located cranial to, at the level of, or up to 20 cm caudal 

to the scapula.  The manatee lung structure is composed of two pleural cavities that are 

supported ventrally by hemidiaphragms which lie in a horizontal plane along the body’s 

length (Rommel & Reynolds, 2000).  The manatee’s hemidiaphragms are attached to the 

first three ribs and extend back to the 26th vertebra which accounts for approximately 

40% of the manatee’s total body length. This anatomical arrangement is not typical for 

mammals but is similar to that found with many reptiles that use their lungs and skeletal 

system as a conduit for acoustic vibratory stimulation to be transferred to the ears 

(Hartline, 1971; Lenhardt, 1982; Lenhardt et al., 1983).  This arrangement provides a 

huge surface area for acoustic sound wave vibrations to be received by the manatee’s 

lungs, ribs and/or spinal column and transmitted to the skull and ear bones.  The 

manatee’s large scapulas however, may provide a “deaf-spot” that sound waves will 

reflect from rather than be received through.  
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The AEP amplitudes (nV) for points along the vertebral column and lateral ribs 

were defined from the data collected and averaged by the areas defined in the hypothesis 

(Table 4.2).  Results showed that evoked potentials from positions along the vertebral 

column and lateral ribs that were more than 20 cm caudal to the scapula (6.3 nV) were 

greater than those located in cranial to, at the level of, or up to 20 cm caudal to the 

scapula (4.4 nV).  These findings substantiate the hypothesis and suggest that the spinal 

column and lateral ribs, positioned caudal to the scapula, may serve as an important 

conduit for sound transmission to the ear bones.  It is important to note that the averages, 

particularly those that include positions greater than 20 cm caudal to the scapula, are 

composed of numerous single data points from Hugh. The evoked potentials obtained 

from Hugh were characteristically found to be greater than those obtained from other 

subjects and these results should be interpreted cautiously.    
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Table 4.2.  AEP amplitudes (nV) obtained from points along the vertebral column and lateral ribs that are 
more than 20 cm caudal to the scapula than those located cranial to, at the level of, or up 20 cm caudal to 
the scapula. The averaged AEP amplitudes for each area are listed in the end column.  Note that data for 
some positions may be duplicated or absent and many positions have only one data point.    

  In-Water In-Air   
  Hugh Buffett Hugh Mo Bock   

Location 
15 

kHz 
24 

kHz 
15 

kHz 
24 

kHz
15 

kHz 
15 

kHz 
24 

kHz 
15 

kHz 
24 

kHz   
Lat.  Ribs Cranial to Scapula         11.9         

Scapula         9.9         
Lat. Ribs Just Caudal to Scapula         5.8 2.4 6.9 3.6 6.8 

Lat. Ribs 10 cm Caudal to Scapula         1.4 3.4 4     
Lat.  Ribs 20 cm Caudal to Scapula         2.2         

Vertebrae Between Scapula 3.7 2.1 0.3 1.5           

4.4 

Lat.  Ribs 30 cm Caudal to Scapula         4.8         
Lat.  Ribs 40 cm Caudal to Scapula         7         
Lat.  Ribs 50 cm Caudal to Scapula         4.3 0.9 1.8     
Lat.  Ribs 60 cm Caudal to Scapula         5.2         
Lat.  Ribs 70 cm Caudal to Scapula         4.9         
Lat.  Ribs 80 cm Caudal to Scapula         7.6         
Lat.  Ribs 90 cm Caudal to Scapula         5.6         

Lat.  Ribs 100 cm Caudal to Scapula         8.3         
Lat.  Ribs 110 cm Caudal to Scapula         7.5         
Lat.  Ribs 120 cm Caudal to Scapula         9.9         
Lat.  Ribs 130 cm Caudal to Scapula         7         
Lat.  Ribs 140 cm Caudal to Scapula         7.8         

Vertebrae Midway Down Back         13.3         
Vertebrae Midway Down Tail         15         
Last Vertebrae on Tail           4.3 3.9 4 3.2 

6.3 

 

The information gained from this study demonstrates how AEP techniques may 

be used to evaluate the existence of sound conduction pathway outside of the traditional 

pinna-to-cochlea conduit.  EFRs can be isolated using in at the 600 Hz AM rate with 15 

and 24 kHz carrier signals, although those in the 24 kHz carrier generally produced 

potentials with greater amplitudes.  AEPs were found for all positions tested with all four 

subjects, regardless of their being positioned in air or in water.  These results suggest that 

manatees have evolved a way to compensate for their occluded external auditory meatus; 

the exact means by which they have accomplished this however, remains a conundrum 

that requires further investigation.  AEP techniques offer potential insight for solving this 
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puzzle and future AEP investigations should incorporate systematic and multiple 

measurements of identical positions on each subject’s body. 
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Chapter Five: The Importance of Understanding the Auditory Sensory System of 

the Florida Manatee, Trichechus manatus latirostris: Concluding Remarks 

 
The Florida manatee (Trichechus manatus latirostris) is protected by both the 

Marine Mammal Protection Act (1972) and the Endangered Species Act (1973).  It is the 

only marine mammal known to annually migrate from turbid saltwater habitats to 

freshwater springs during the winter months and reverse this pattern during the summer 

months (Reynolds & Wilcox, 1986; Reynolds & Odell, 1991).  The manatee is a semi-

social species, often grazing or traveling alone, but able to find conspecifics for 

socialization or reproductive purposes (Reynolds, 1979).  Manatee mortality caused 

specifically by watercraft remains relatively stable ranging between 19-31% of the annual 

mortalities (Table 1.1) (Florida Fish and Wildlife Research Institute, 2007).  

While field research has provided information about the manatee’s social 

structure, habitat usage, and annual migratory behaviors.  Sensory biology investigations 

have indicated that the manatee’s auditory system almost certainly plays a principal role 

in their ability to find one another, determine directionality and avoid danger in their vast 

habitat.  The manatee’s hearing range has been found to be quite wide, spanning between 

0.2-40 kHz (Bullock et al., 1980, 1982; Popov & Supin, 1990; Gerstein et al., 1999; 

Mann et al., 2005) and perhaps as high as 60 kHz (Klishen et al., 1990).  Previous 

investigations have shown that manatees have the capacity to localize broadband and 

tonal stimuli of various durations and levels within a 0.2-20 kHz frequency range from 

176 
 



 

four locations in the frontal 180° of the azimuth plane (Gerstein, 1999; Colbert 2005).   

These capabilities indicate that manatees are able to detect and localize, at least from 

some directions, conspecific vocalizations which typically range between 2.5–5.9 kHz 

(Nowacek, et al., 2003) and recreational boat engine noise which generally range 

between 0.01–2 kHz (Gerstein, 2002; Richardson et al., 1995). 

Given this information, it could be assumed that the manatee auditory system is 

constructed and functions similarly to that of typical mammalian species, however, this 

assumption is inaccurate.  The manatee’s external and middle ears have been found to be 

unusually structured.  The external auditory meatus is occluded and separated from the 

tympanic membrane making it an unlikely channel for sound transmission, the 

tympanoperiotic complex is located intracranially but not ossified to the skull, and the 

ossicles are massive (Ketten, 1992; Ketten et al., 1992; Chapla et al., 2007).   

Although much has been learned about the manatee’s auditory system, a plethora 

of questions remain.  The primary objective of this dissertation was to address some of 

these uncertainties by ascertaining if manatees have the ability to determine sound source 

directionality within all 360o of the azimuth plane and to identify the possible means by 

which they do so.    

Chapter Two investigated the manatees’ abilities to localize test signals that were 

systematically varied across dimensions of bandwidth, duration and level as they 

originated from 45o angles within all 360o of the azimuth plane at a distance of 3.05 m.  

Test signals included a tonal stimulus and three broadband stimuli, one of which spanned 

a wide range of frequencies, one that was restricted to higher frequencies that had 

wavelengths shorter than a manatee’s interaural time distances, and one that was 
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restricted to lower frequencies that had wavelengths longer than a manatee’s interaural 

time distances (Table 2.3).  

  Both subjects performed well above the 12.5% chance level for all of the 

broadband stimuli, however performance decreased dramatically (14% and 20%) with the 

4 kHz tonal stimulus.  Both were able to localize the broadband stimuli at a short duration 

that prohibited head movement and over a large level range and little contralateral 

confusion occurred.  Accuracy decreased with the shorter duration and when signals 

originated from the posterior locations.  Errors were typically located at the speakers 

neighboring the test speaker but became somewhat more dispersed when they originated 

from 135o and 180o for Buffett and more widely dispersed when they originated from 

180o and 225o for Hugh.  Although accuracy was lower when signals came from behind 

them, the subjects were able to localize from these positions (with the exception of Hugh 

at 180o) without the aide of visually orienting towards these areas and front to back 

confusions were minimal.   

Results from this study indicate that manatees have good directional hearing 

capabilities, at least with broadband sounds which are typical in their natural 

environment, in all azimuth angles relative to their bodies, including those in the 

frequency range of boats and conspecifics.  Their ability to localize may be a function of 

visual orientation responses when sounds originate in their visual field (Brown, 1994; 

Heffner, 1997), however it is likely that some type of interaural cue(s) are also interpreted 

to assist with discriminations from all angles, but particularly from those outside of their 

visual field.   
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Chapter Three investigated how different frequencies of a test signal, presented in 

different locations on the azimuth plane, are filtered by the manatees’ head and torso by 

measuring head/body related transfer functions.  Head/body related transfer functions 

were determined by subtracting the averaged ‘animal present’ FFTs from the averaged 

‘animal absent’ FFTs and the magnitude of interaural level differences was derived for all 

frequencies in addition to specific 0.2-1.5, 0.2-5 and 18-30 kHz bands of frequencies.   

These are the first head/body related transfer function data collected for any 

Sirenian species and results demonstrated that interaural level differences (ILD) were 

present for all frequencies as a function of source location.   ILDs were of the greatest 

magnitude with frequencies in the 18-30 kHz noise band which had wavelengths shorter 

than the manatee’s intercochlear distance, however the 0.2-1.5 kHz noise band, which 

had wavelengths longer than the manatee’s intermeatal distance, produced greater ILDs 

than the wider 0.2-5 kHz noise band of low frequencies.  Test signals originating at 90o 

and 270o provided the greatest ILD cues however, ILDs were greater when the signal 

originated behind the subjects than when it originated in front of them.    

Results from this study suggest that manatees are able to utilize ILD cues to 

localize sounds via head and torso filtering effects.  The amplified ILD cues produced by 

their unique body shape when sounds originate from the lateral and posterior angles of 

the body may compensate for the inability to utilize visual orienting responses when 

sounds originated from these angles. Although ILDs are typically found with 

wavelengths shorter than a species’ interaural distances, manatees may also have the 

ability to utilize ILDs with wavelengths longer than their interaural distances.  
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Chapter Four utilized auditory evoked potential (AEP) techniques to investigate 

the possible existence of sound conduction pathways that manatees may use as a means 

to overcome outer ear limitations and benefit from the middle ear’s unique structure and 

geometry.  AEPs were collected in-water for positions on the manatee head, and in-air for 

positions on the head and torso using 15 and 24 kHz carrier tone bursts that were 

amplitude modulated (AM) with a 600 Hz rate.   

Results demonstrated that AEPs were found at every position the transducer was 

placed on their bodies, regardless of whether they were positioned in water or air.  AEP 

amplitudes were usually greater with the 24 kHz carrier however patterns between 

carriers at identical body positions were highly variable between subjects.  Data from the 

24 kHz carrier showed that identical or similar AEP amplitudes were found at six of 

seven positions that were common between subjects when tested in-water, and four of 

five positions when tested in-air.  Data from the 15 kHz carrier showed that AEP 

amplitudes were inconsistent for all but one of the common positions when tested in-

water, and two subjects (out of the three) had similar amplitudes at four of five common 

positions, however the third subject had similar amplitudes at only one of nine common 

positions.  Evoked potentials, averaged together from positions along the vertebral 

column and lateral ribs that were more than 20 cm caudal to the scapula, were greater 

than those averaged together from positions at and dorsal to the meatus, those averaged 

from positions along the zygomatic process, and those averaged from positions along the 

vertebral column and lateral ribs that were cranial to 20 cm behind the scapula.  

Results indicate that manatees demonstrate AEPs from all parts of their body and 

have evolved a means to compensate for their occluded external auditory meatus.  The 
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increased AEP amplitudes found along the vertebral column and lateral ribs which were 

more than 20 cm caudal to the scapula may suggest that the unique structure of the 

manatee’s plural cavities and ribs may facilitate bone conduction to the inner ear, 

however the data included in this study should be considered cautiously.   

The information gained from the individual experiments presented in Chapters 2, 

3, and 4 provide valuable knowledge about how the manatee’s ability to localize sounds 

of different frequencies, durations and intensities in all 360o of the azimuth plane, how 

interaural intensity cues may facilitate this ability, and how sounds may be received 

across their entire body and not through only one primary sound conduction pathway.  

Additional consideration should be given however, to the information that can be learned 

when the results of all three experiments are taken into account together.     

Investigations with many terrestrial species have shown that ILDs provide cues 

for sound localization, but they are typically only found with frequencies having 

wavelengths shorter than intermeatal or intercochlear distances (Brown & May, 1990; 

Brown, 1994; Blauert, 1997).  Anatomical investigation of the manatee ear has shown 

that the tympanoperiotic complex is located intracranially, thereby creating a shorter 

intercochlear distances than would be found if it were located extracranially as is the case 

with cetaceans (Ketten et al., 1992; Chapla et al., 2007).    

Using the manatee’s intercochlear measurement, it appears that only frequencies 

of 18 kHz or higher would provide useful ILDs.  Results from the sound localization 

study however, demonstrate that manatees are able to localize frequencies well below this 

range in all azimuth directions.  Head/body related transfer measurements show that ILDs 

can be found for all frequencies as a function of sound source location and suggest that 
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ILD cues are being used to facilitate this localization ability.  Comparisons between ILD 

magnitudes found from contralateral speaker pairs when noise bands of 18-30 kHz 

(wavelengths < intercochlear distance), 0.2-5 kHz and 0.2-1.5 kHz (both with 

wavelengths > intermeatal distance) and the sound localization selection distributions 

found with the 18-24 kHz and 0.2-1.5 broadband test signals demonstrate how ILDs may 

facilitate localization (Figures 5.1, 5.2, 5.3 & 5.4).  ILD magnitudes were greatest when 

the test signal originated at 90o and 270o and were smallest when they originated at 0o.  

These results suggest that ILDs play an important role in sound localization especially 

when sounds originate from the lateral and posterior half of the manatee’s large body.    
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Figure 5.1 Contralateral comparison between ILD magnitudes and sound localization selection distributions 
at 0o and 180o. ILD differences are shown in 0.2-1.5 kHz, 0.2-5 kHz, and 18-30 kHz noise bands.  Sound 
localization selection distributions are shown for the 0.2-1.5 kHz and 18-24 kHz test signals.  
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Figure 5.2 Contralateral comparison between ILD magnitudes and sound localization selection distributions 
at 45o and 225o. ILD differences are shown in 0.2-1.5 kHz, 0.2-5 kHz, and 18-30 kHz noise bands.  Sound 
localization selection distributions are shown for the 0.2-1.5 kHz and 18-24 kHz test signals.  
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Figure 5.3 Contralateral comparison between ILD magnitudes and sound localization selection distributions 
at 90o and 270o. ILD differences are shown in 0.2-1.5 kHz, 0.2-5 kHz, and 18-30 kHz noise bands.  Sound 
localization selection distributions are shown for the 0.2-1.5 kHz and 18-24 kHz test signals.  
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Figure 5.4 Contralateral comparison between ILD magnitudes and sound localization selection distributions 
at 315o and 135o. ILD differences are shown in 0.2-1.5 kHz, 0.2-5 kHz, and 18-30 kHz noise bands.  Sound 
localization selection distributions are shown for the 0.2-1.5 kHz and 18-24 kHz test signals.  
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ILD magnitudes were also greatest with the high frequency 18-30 kHz stimuli, 

however the 0.2-1.5 kHz stimuli had larger magnitudes than the 0.2-5 kHz stimuli (Figure 

3.15).  These results are surprising given that the wavelengths of these frequencies are 

longer than the manatee’s interaural distances.  In humans, an occlusion effect occurs 

when the external auditory canal is blocked and bone-conducted sound vibrations cannot 

radiate out of the ear canal (Gelfand, 2004).  The sound vibrations are instead reflected 

back toward the tympanic membrane and have been found to boost sound pressure in the 

ear canal by 20 dB with frequencies below 500 Hz.  Since the manatee’s external 

auditory meatus is occluded, this effect may serve an important role for amplifying ILDs 

with frequencies longer than their interaural distances.    

When considering the anatomical means by which manatees are able to detect and 

localize sounds, Chapla et al. (2007) have suggested that the large 3.1 x 104 mm3 airspace 

which ventrally surrounds each cochlear capsule and the independent hypotympanic 

recesses may play an important role in both tasks.  Investigations have demonstrated that 

tympanoperiotic complex of cetaceans are isolated and shielded from the dorsal, medial 

and posterior surfaces of the skull by air-filled sinuses which provide reflective barriers 

to the passage of sounds between the ears (Dudok van Heel, 1962; Fleischer, 1980; 

Oelschläger, 1986; Houser et al., 2004).   The separation of the tympanoperiotic 

complexes from each other and the skull likely facilitates sound localization by 

enhancing interaural level differences resulting from the shadowing effects of the 

cetacean’s head and torso (Houser et al., 2004).  Aroyan (1996) found that airspaces 

within soft tissues, such as those found surrounding the manatee cochlear capsules, act as 

acoustic energy reflectors.  Similar to cetaceans, it may be that the resonance vibrations 
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found in the airspaces surrounding the manatee’s cochlear capsules and the independent 

hypotympanic recesses serve to isolate the middle ears from one another.  This 

anatomical design may facilitate sound localization by providing the means to interpret 

ILD cues caused by the shadowing effects of the manatee’s head and torso.     

The unusual arrangement of the manatee’s pleural cavities, which are supported 

by two independent hemidiaphragms, instead of the typical single mammalian diaphragm 

may also play an important role in determining the means by which manatees detect and 

localize sounds.  The airspaces of the lungs may also act as acoustic energy reflectors and 

the resonance vibrations found in these airspaces may be transmitted to the ribs and/or 

spinal column and to the skull and ear bones (Chapla et al., 2007).  Rommel & Reynolds 

(2000) have further suggested that the separation of the hemidiaphragms may provide 

additional cues to aid in sound localization. 

The results from the investigations included in this manuscript have provided 

critical information about the manatee’s ability to localize sounds and the means by 

which it may accomplish this to find conspecifics, determine directionality and avoid 

danger in its vast habitat.  This information augments our knowledge of how the 

manatee’s auditory sensory system assimilates information and reacts to environmental 

stimuli and should be considered when making conservation management decisions about 

this endangered species.  Additional knowledge about the manatee auditory sensory 

system however, could be gained through future investigations.  

Manatee sound localization investigations (Gerstein, 1999; Colbert, 2005; Chapter 

2) and head/body related transfer function measurements (Chapter 3) have only 

investigated within the azimuth plane to date.  Controlled boater approaches to free-
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ranging manatees demonstrated that subjects typically increased their swim speed and 

oriented to deeper channel waters as boats approached (Nowacek et al., 2004).  

Localization ability assessments and head/body related transfer function measurements 

obtained in the vertical plane may demonstrate that ILD cues hold equal or more salience 

to those in the azimuth plane.  This information may provide insight into the importance 

of determining sound source directionality above and below the animals and may 

partially explain why they increase depth in response to boater approaches.  

Auditory evoked potential techniques have been shown to be a valuable tool for 

assessing possible sound conduction pathways (Chapter 4).  Future investigations should 

incorporate systematic and multiple measurements of identical positions on each 

subject’s body.  In addition, the resonance frequencies for the manatee’s lungs and air 

spaces surrounding the cochlear capsules should be measured to determine if these 

anatomical characteristics facilitate more pronounced sound conduction pathways.    

Finally, anatomical investigations of the human inner ear have demonstrated that 

the tonotopic organization of the cochlea plays an important role in determining the range 

of hearing (Ruggero & Temchin, 2002).  Bandwidth of hearing in the cochlea is 

determined by the tonotopic frequency map found along the length of the basilar 

membrane by which higher frequencies stimulate the base stereocilia and lower 

frequencies stimulate the apex stereocilia.  Studies with cetaceans have shown that 

functional morphometric analyses of basilar membrane measurements and auditory 

ganglion cell density counts within the cochlea provide a reliable estimate of hearing 

sensitivity (Wever, et al., 1971; Parks, et al., 2004).  Mann et al. (2005) measured the 

manatee’s auditory system temporal resolution through envelope following response 
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techniques and found they have a temporal resolution of 600 Hz which is approximately 

half the 1,200 Hz resolution of cetaceans (Dolphin et al., 1995; Supin & Popov, 1995) but 

over ten times the 50 Hz resolution of humans (Kuwada et al., 1986).  Although the 

manatee’s resolution is half that of the dolphins, it is still impressive considering that 

manatees cannot echolocate which is what the dolphins high temporal resolution is 

thought to be an adaptation for.  The anatomy and physiology of the manatee’s inner ear 

has not been investigated to date, but may provide information about how their auditory 

ganglion cell density may be correlated to their range of hearing, frequency resolution 

abilities, and possibly an increased sensitivity to timing accuracy. 
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Appendix A:  RPvds language used to generate signals used in the manatee sound 

localization experiment. 

 
In the manatee sound localization experiment, RPvds language was used to 

generate signals and record trial information via the button box that interfaced with the 

computer and signal generation equipment.  Specific RPvds language was developed to 

generate each subject’s call to station (Figure A-1), the initiation of each trial (Figure A-

2), each subjects secondary bridge reinforcement if correct (Figure A-3) and 

documentation of incorrect selections (Figure A-4). 

 
Figure A-1.  RPvds language used to generate each subject’s call to station. 
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Appendix A: (Continued) 
 

 
Figure A-2.  RPvds language used to generate the initiation of each trial. 
 

 
Figure A-3.  RPvds language used to generate each subject’s secondary bridge when correct. 

197 
 



 

Appendix A: (Continued) 
 

 
Figure A-4.  RPvds language used to document when incorrect selections were made. 
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Appendix B:  Computer protocols used for setting up the manatee sound 

localization and head/body related transfer function experimental conditions. 

A graphical user interface, programmed in Visual C, was designed to run each 

phase of the experimental conditions (Figure B-1).  A drop-down subject menu was 

designed to distinguish which subject was being tested, and this selection automatically 

referenced and played that animal’s stationing and reinforcement tones throughout the 

block.  A “notes” section allowed any comments to be digitally recorded relative to that 

block.   

The “set-up” section defined how many speaker locations were to be tested, how 

many trials were to be run from each of those speakers, and how many of the test sounds 

could be played from the same location in a row.  In addition, broad-band noise bursts or 

tonal signals were defined as were the frequency range to be tested, the sound duration, 

the dB level and if the sounds were to be automatically digitally recorded.  The correct 

experimental conditions were incorporated for each portion of the session, including the 

warm-up, testing, and cool-down trials.  In all portions of a sound localization and 

head/body related transfer function session, eight speaker locations and a maximum of 

two trials in a row per location were held constant.    

In the warm-up trials, one trial was set up per speaker for a total of eight trials.  

The noise button was selected and the frequency range was defined from 24,000-200 Hz.  

The sound duration was defined as 3 seconds. 

In the testing trials, all of the settings for the conditions being tested were defined 

and the number of trials per speaker was changed from one to two, for a total of sixteen 

trials.  These settings were maintained until five blocks were completed per condition. 
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Appendix B: (Continued) 

In the cool-down trials, one trial was set up per speaker for a total of eight trials.  

The noise button was selected and the frequency range was defined from 24,000 to 200 

Hz.  The sound duration was defined as 3 seconds. 

In the head/body related transfer function experiment, two trials were set up per 

speaker for a total of sixteen trials.  The noise button was selected and the frequency 

range was defined from 30,000 to 200 Hz.  The sound duration was defined as 3 seconds. 

The “speaker” section provided information about which speaker location each 

test sound was played from.  If needed, a manual switching check box was included, 

which allowed the Data Recorder to select the location of the test sound to be played, 

rather than the randomized location generated by the program.  

The “status” section defined and digitally recorded how many trials had been 

completed within the block, and of those, how many were correct and how many were 

wrong.  The start button initiated the block of sixteen trials once the subject and 

conditions were defined, and the stop button was used only if the block had to be ended 

prior to the completion of the twelve trials. 
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Appendix B: (Continued) 
 

 
Figure B-1: The graphical user interface screen (programmed in Visual C) used to setup the experimental 
conditions and automatically download the results into an Excel file during the testing sessions. 
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Appendix C: Data recording protocols used to document each sound localization 

session. 

All of the session’s general information was documented on a data sheet (Figure 

C-1).  This included the date and the identities of the Test Trainer, Data Recorder and 

Stationing Trainer.  Specific information was documented for all for portions of the 

session (warm-up, test blocks and cool-down trials) per subject including frequency(ies), 

duration and level of the stimulus, start and end times of the session and each block, the 

location of each trials’ test sound, if the subject was correct or incorrect and, if incorrect, 

the location the subject erroneously selected.   In the data sheet shown, the 4 kHz tonal 

probes were randomly distributed on four of the sixteen trials of each block and are 

denoted by the shaded cells.   

Additional information was included for each test block including the video tape 

number and counter start and stop times, the number of times the test subject left or 

attempted to leave in that block, the number of times the test subject was interrupted by 

the other animal, the amount of time the other animal was on task and the test subject’s 

behavioral rating from a scale of one to five, where one indicated that the animal did very 

poorly and was not able to complete the task and five indicated that he did an excellent 

job.  A comment section was also provided to add additional information if needed. 
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Appendix C: (Continued) 
 

Sound Localization Task 

Date:   

Hugh  Buffett 

W A R M - U P S  W A R M - U P S 

Frequency 0.2-24 kHz Duration - 3000 ms  Frequency 0.2-24 kHz Duration - 3000 ms    

Trainer:  Speaker Correct? Comments  Trainer:  Speaker Correct? Comments 

# Speakers: 8 1      # Speakers: 1     

Begin Time: 2      Begin Time: 2     

Times Left: 3      Times Left: 3     

Leave Attempts: 4      Leave Attempts 4     

#Interrupted 5      #Interrupted: 5     

Buf On Task: 6      Hugh On Task: 6     

End Time: 7      End Time: 7     

Rating: 8      Rating: 8     

T  E  S  T  I  N  G  T  E  S  T  I  N  G 

Frequency 4kHz Probes (0.2-24) Duration -200 ms  Frequency 4kHz Probes (0.2-24) Duration -200 ms    

Trainer:  Speaker Correct? Comments  Trainer:  Speaker  Comments 

# Speakers: 8 1 3     # Speakers: 1 3    

Begin Time: 2 5     Begin Time: 2 5    

Tape #: 3 4     Tape #: 3 4    

Tape Start: 4 7     Tape Start: 4 7    

Times Left: 5 2     Times Left: 5 2    

 6 6      6 6    

Leave Attempts: 7 1     Leave Attempts: 7 1    

 8 1      8 1    

#Interrupted: 9 3     #Interrupted: 9 3    

 10 0      10 0    

Buf On Task: 11 2     Hugh On Task: 11 2    

 12 7      12 7    

Tape End: 13 4     Tape End: 13 4    

End Time: 14 5     End Time: 14 5    

Rating: 15 6     Rating: 15 6    

 16 0      16 0    

COOL-DOWNS  COOL-DOWNS 

Frequency 0.2-24 kHz Duration - 3000 ms  Frequency - 0.2-24 kHz Duration - 3000 ms    

  Speaker Correct? Comments    Speaker Correct? Comments 

Times Left: 1      Times Left: 1     

Leave Attempts: 2      Leave Attempts 2     

#Interrupted 3      #Interrupted: 3     

Rating: 4      Rating: 4     

 = Tonal Probe @ 4 kHz  = Tonal Probe @ 4 kHz 

Figure C-1.  The tank-side data-recording sheet used to document each session.   
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Appendix D: MATLAB program used to determine and chart the manatee 

head/body related transfer functions. 

The data collected for the manatee head/body related transfer function 

investigation was analyzed and charted via the MatLab program below.  Four data 

analyses were conducted per subject.  The first compared FFT ratios received at the left 

and right hydrophones as a function of sound source location with ‘animal absent’ and 

‘animal present’ conditions.  The second determined head/body related transfer functions 

by subtracting the averaged ‘animal present’ FFTs from the averaged ‘animal absent’ 

FFTs.  The third determined the magnitude of interaural level differences for all 

frequencies.  The final analysis determined the magnitude of interaural level differences 

for specific 0.2-1.5, 0.2-5, and 18-30 kHz bands of frequencies.   

 

MatLab Program: 

%Code for calculating the FFT's for each fftpts segment of the kept 

signals 

fftpts=488; %200Hz frequency resolution (srate/150) 
cc1=[]; 
cc2=[]; 
directoryname = uigetdir; 
cd(directoryname); 
filenames = dir(directoryname); % allows a directory to pop up to 
select all files from animal present trials 
for n=3:length(filenames); 
    load(filenames(n).name); 
    npts=length(channel1chunk); 
    x=floor(npts/fftpts); 
    cc1=[cc1 channel1chunk(1:x*fftpts)]; 
    cc2=[cc2 channel2chunk(1:x*fftpts)]; 
end 
%[filename, pathname] = uigetfile({'*.mat'},'File Selector Manatee 
Present'); % allows a directory to pop up to select one animal present 
file %cd (pathname); 
%load (filename); 
aa1=[]; 
aa2=[]; 
directoryname = uigetdir; 
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Appendix D: (Continued) 
 
cd(directoryname); 
filenames = dir(directoryname); % allows a directory to pop up to 
select all files from animal absent trials 
  
for n=3:length(filenames); 
    load(filenames(n).name); 
    npts=length(channel1); 
    x=floor(npts/fftpts); 
    aa1=[aa1 channel1(1:x*fftpts)]; 
    aa2=[aa2 channel2(1:x*fftpts)]; 
end  
srate=97656.25; %sample rate 
binwidth=srate/fftpts;   
hpts=fftpts/2; 
npts=length(cc1); 
w=hann(fftpts)'; % windowing 
mALLFFTS1=[]; 
mALLFFTS2=[]; 
  
for n=0:floor(npts/fftpts)-1;       %floor rounds down to keep whole 
number, ceil rounds up 
    startindex=(n*fftpts)+1;        %start of each fftpts segment 
    endindex=startindex+fftpts-1;   %end of each fftpts segment 
    SIGNAL1=fft(cc1(startindex:endindex).*w,fftpts);  %channel 
1(manatee's left ear);Calculates FFT 
    SIGNAL1_f=abs(SIGNAL1); % Absolute value, calculates magnitude at 
each frequency, gets rid of phase info 
    SIGNAL1_s=SIGNAL1_f/hpts; % Scales the results appropriately for y-
axis 
    mALLFFTS1=[mALLFFTS1;SIGNAL1_s(1:hpts)];   
    SIGNAL2=fft(cc2(startindex:endindex).*w,fftpts);%channel 2 
(manatee's right ear);Calculates FFT 
    SIGNAL2_f=abs(SIGNAL2);         
    SIGNAL2_s=SIGNAL2_f/hpts;        
    mALLFFTS2=[mALLFFTS2;SIGNAL2_s(1:hpts)];  
end 
 
%Averages FFTs for manatee absent recordings 
npts=length(channel1); 
npts=length(channel2); 
ALLFFTS1=[]; 
ALLFFTS2=[]; 
  
for n=0:floor(npts/fftpts)-1; %floor rounds down to keep whole number, 
ceil rounds up 
    startindex=(n*fftpts)+1;  %start of each fftpts segment 
    endindex=startindex+fftpts-1; %end of each fftpts segment 
    SIGNAL1=fft(aa1(startindex:endindex).*w,fftpts);  %channel 
1(manatee's right ear);Calculates FFT 
    SIGNAL1_f=abs(SIGNAL1); % Absolute value, calculates magnitude at 
each frequency, gets rid of phase info 
    SIGNAL1_s=SIGNAL1_f/hpts; % Scales the results appropriately for y-
axis 
    ALLFFTS1=[ALLFFTS1;SIGNAL1_s(1:hpts)];   
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    Appendix D: (Continued) 
 
SIGNAL2=fft(aa2(startindex:endindex).*w,fftpts); %channel 2 (manatee's 
right ear);Calculates FFT .*w = windows each point on waveform 
    SIGNAL2_f=abs(SIGNAL2);         
    SIGNAL2_s=SIGNAL2_f/hpts;        
    ALLFFTS2=[ALLFFTS2;SIGNAL2_s(1:hpts)];  
end 
  
F=(0:hpts-1)*binwidth; % Creates frequency scale for x axis 
MAchannel1=(20*log10(mean(ALLFFTS1)));  % Variable for Manatee Absent 
Left ear 
MPchannel1=(20*log10(mean(mALLFFTS1))); % Variable for Manatee Present 
Left ear 
MAchannel2=(20*log10(mean(ALLFFTS2)));  % Variable for Manatee Absent 
Right ear 
MPchannel2=(20*log10(mean(mALLFFTS2))); % Variable for Manatee Present 
Right ear 
Lear=(MAchannel1)-(MPchannel1);  % Subtracts Manatee Absent from 
Manatee Present in Left ear 
Rear=(MAchannel2)-(MPchannel2);  % Subtracts Manatee Absent from 
Manatee Present in Right ear 
  
HRTFoverlay; 
figure(2); % plots frequency averages of left & right ears 
hold off; 
plot (F(1:165)/1000,Lear(1:165));  %/1000 to plot in kHz 
hold on; 
plot (F(1:165)/1000,Rear(1:165),'r'); % blue (manatee's left ear), red 
(manatee's right ear) 
xlabel('Frequency (kHz)') 
ylabel('dB'); 
  
figure(3)   %plots the signal from the right ear subtracted from the 
left ear 
Dear=Lear-Rear;  %diff between ears 
plot(F(1:165)/1000,Dear(1:165)) 
xlabel('Frequency (kHz)') 
ylabel('dB'); 
  
binHz=200;  % 200 Hz bins 
startf=floor(200/binHz)+1;  % bin corresponding to 200 Hz 
endf=floor(1500/binHz)+1;; %Bin corresponding to 1500 Hz; this is what 
was used for localization 
lowfdiff=mean(Dear(startf:endf)) 
  
startf=floor(200/binHz)+1;  % bin corresponding to 200 Hz 
endf=floor(5000/binHz)+1;; %Bin corresponding to 5000 Hz; this freq has 
a wavelenght close to intermeatal distance 
lowfdiffintermeatal=mean(Dear(startf:endf)) 
  
startf=floor(18000/binHz)+1;  % bin corresponding to 18000 Hz 
endf=floor(30000/binHz)+1;; %Bin corresponding to 30000 Hz 
highfdiff=mean(Dear(startf:endf)) 
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