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SUMMARY

Uncertainty-based Multidisciplinary Optimization (UMDO) relies on propa-

gation of uncertainties across several disciplines. A typical aircraft design process in-

volves collaboration of multiple and diverse teams involving high-fidelity disciplinary

tools and experts. Therefore, traditional methods such as “All-In-One” (AIO), which

integrates all the disciplines and treats the entire multidisciplinary analysis process

as a black box becomes infeasible for uncertainty propagation and analysis. If all the

disciplines cannot be tightly integrated, then it is helpful to use a method that con-

ducts uncertainty propagation in each discipline independently and combines their

results to evaluate the system level uncertainty.

Distributed UMDO methods based on Collaborative Optimization (CO), Concur-

rent Subs-Space Optimization (CSSO), Analytical Target Cascading (ATC), etc. use

the strategy of decomposition and coordination to carry out distributed uncertainty

analysis and optimization by preserving disciplinary autonomy. However, there are

shortcomings in these methods which lead to inaccurate quantification of uncertainty

at the system level. One such disadvantage is the inability to handle statistical de-

pendencies among coupling variables. In most cases, the statistical dependencies

manifest due to the underlying functional relationship between the variables. Most

of the existing distributed UMDO methods in literature assume that the coupling

variables are independent of each other. Although under certain conditions this as-

sumption is valid, nonetheless it may lead to inaccurate estimation of uncertainty

quantification at system level if the dependencies of coupling variables are significant

and if the system level metric is sensitive to the dependencies. Another limitation
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in the existing distributed UMDO literature is related to interdisciplinary compati-

bility. One of the common strategies to achieve interdisciplinary compatibility is by

moment matching method. In most of the existing distributed UMDO methods only

marginal distribution of coupling variables are considered in the moment matching,

which works well when coupling variables are statistically independent. However,

when coupling variables are dependent, this strategy does not guarantee that inter-

disciplinary compatibility is satisfied for every instantiation of uncertain variables.

Also, most of these methods assume that the uncertain coupling variables have fixed

functional form of probability density function, most commonly a Gaussian density

function. This assumption breaks down when the local uncertainties in disciplines are

non-Gaussian and disciplines are non-linear functions of input variables which may

lead to non-Gaussian disciplinary responses.

To overcome these limitations, Probabilistic Analysis of Distributed Multidisci-

plinary Architectures (PADMA) has been developed. PADMA is a bi-level distributed

uncertainty-based multidisciplinary analysis (UMDA) method which allows each dis-

cipline to carry out uncertainty propagation independently and concurrently. It is a

non-iterative method in which dependence and interdisciplinary compatibility is han-

dled by evaluating the probability of Event of Interdisciplinary Compatibility (EIC).

Probability of EIC is evaluated using conditional probability density functions of disci-

plinary metrics. A quantile copula regression method has also been developed which is

used to build probabilistic model of multivariate disciplinary metrics. In quantile cop-

ula regression, the conditional probability density functions are modeled by regressing

multiple levels of quantiles of disciplinary metric, allowing a comprehensive represen-

tation of overall conditional distribution without any assumption of functional form of

probability density function. Also, quantile copula regression models the dependen-

cies between disciplinary metrics using copula functions when disciplines have multiple

xxiii



outputs. Finally, a distributed UMDO method, Concurrent Optimization using Prob-

abilistic Analysis of Distributed Multidisciplinary Architectures (CO-PADMA), has

been developed using PADMA and quantile copula regression. CO-PADMA is a bi-

level distributed UMDO method which allows distributed analysis and optimization,

while handling the dependencies and interdisciplinary compatibility, to find optimum

design and quantify the uncertainty of system metrics accurately. The advantages of

the methods developed in this thesis have been demonstrated by their application to

analytical and physics-based problems.
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CHAPTER I

INTRODUCTION

An inherent property of a complex system design is uncertainty [1]. Uncertainty

arises due to fidelity of analysis model, experimental data, interdisciplinary interfaces,

operating conditions, immature technologies and so on. Uncertainty can be also be

due to future requirements and other market factors like fuel cost, market demands,

etc. Moreover, uncertainties evolve over time during any design process. For example,

as the design progresses, more information and data becomes available from high

fidelity models or experiments leading to reduction in uncertainties of model. Also,

as the requirement changes with time, constraints can be relaxed or tightened to

influence the uncertainties. Aircraft are one such complex system. It is important

to consider uncertainty in the aircraft design process to avoid an expensive redesign

process or performance penalty.

Aircraft design requires simultaneous design of its multiple systems like wing,

fuselage, etc.; its subsystems like control surfaces, panels, etc; and its components

like actuators, hydraulics, etc. This requires analysis from various disciplines like

aerodynamics, structure, control, mission analysis, etc. The performance of the air-

craft not only depends on each subsystem independently, but also on the complicated

inter-dependencies among its subsystems and components. Typically, the effects of

the inter-dependencies among these disciplines and subsystems are not evident and

failure to incorporate these in the design process may lead to the necessity for redesign

which can be expensive and time consuming. To address these issues, various multi-

disciplinary design analysis and optimization (MDO) methods have been developed

to carry out the design process while handling the iteration among the disciplines.
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Besides, the complexity of these interdisciplinary interactions increases when there

are uncertainties in the design. In order to accurately quantify the uncertainty on

the system level metric, it is important to capture the uncertainties associated with

the interactions among disciplines, in addition to quantifying uncertainties in each

discipline independently. This challenge can be addressed by setting up an integrated

analysis of all the critical subsystems and disciplines which can be used to evaluate

system level metrics like reliability, robustness, etc. and identifying the configuration

which satisfies the stakeholder’s requirement with optimal performance. This requires

uncertainty quantification and management in a MDO setting, which is also referred

here as Uncertainty-based Multidisciplinary Design Optimization (UMDO).

Traditional deterministic multidisciplinary analysis (MDA) methods [2], such as

All-In-One (AIO), build an integrated workbench, linking all the disciplines involved

in the design process. These methods treat integrated MDA environment as a black

box to carry out analysis and design. Similarly, uncertainty analysis can be carried

out for multidisciplinary systems using various techniques of uncertainty propagation

and by treating the integrated MDA environment as a black box. However, in a com-

plex and coupled system like aircraft, there is a huge computational burden to run

a multidisciplinary analysis (MDA) for one design because it involves several itera-

tions to converge to a design which satisfies interdisciplinary compatibility. Therefore,

carrying out uncertainty analysis using these integrated methods are not always prac-

tical. Also, as the high-fidelity analysis gets involved in the design process, it may

not be feasible to integrate the discipline into a single integrated workbench.

An aircraft design typically involves collaboration of multiple and diverse teams

of engineers from different disciplines or subsystems [3]. As the complexity increases,

it becomes increasingly difficult to design and manage distributed design [4, 5]. This

has a direct consequence of cost overrun and delay for the aircraft manufacturer.

For example, there has been a delay of two years in developing the Boeing 787,
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with a cost overrun of $10 billion [5, 6] due to the difficulties in coordination among

the suppliers. Similarly, Airbus delayed the delivery of A380 by two years with

cost overrun of 2 billion euros [7, 8] due to lack of coordination among distributed

disciplinary boundaries.

As will be discussed in this chapter, there are computational and organizational

challenges to carry out the UMDO process in an industrial setting. In a typical

aerospace industry, multiple teams and experts are involved in the design process

using their own design and analysis tools, and they are often globally dispersed.

Therefore, a distributed UMDO process is desirable to carry out concurrent and

collaborative uncertainty-based design to support the system level design while com-

plying with the disciplinary organization structure in the industry, and maintaining

disciplinary autonomy.

With the distributed UMDO process as the focus of the current work, the chal-

lenges associated with distributed UMDO methods will be discussed and subsequently

the research objective will be stated in the following sections.

1.1 Motivation

The aerospace industry has played a major role in civil transportation, space travels,

nation’s defense strategy, warfare, etc. since the invention of Wright Flyer by Wright

Brothers in 1903. It plays an important role in making the world well connected and

readily accessible for international trade and travel. In addition to generating GDP of

$606 billion in 2014, the industry provides employment for 58 million people worldwide

in aviation and related tourism, out of which 8.7 million people work directly in the

aviation industry [9]. Based on historical trends, it is anticipated that world GDP

will grow at the rate of 3.1% annually over next 20 years with a forecast of growth

of 4.9% of passenger traffic and 4.7% of air cargo traffic [10]. With the increase in

civil traffic, it is projected that commercial air traffic is expected to increase to about
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47,500 aircraft by 2036, out of which more than 90% will be with new generation

technology [11], as shown in Figure 1.
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Figure 1: Expected number of commercial aircraft by 2036 [11]

As the number of civil aircraft is expected to double in the next 20 years, there is

a need to replace aging aircraft with more efficient and environmentally responsible

aircraft. Also, key factors like future fuel price, economic growth, environmental

regulations, infrastructure limitation, emerging markets, changes in other modes of

transportation, technology changes, etc are going to play a major role in designing new

aircraft. For example, NASA Environmentally Responsible Aviation (ERA) program

has set up targets for emission, noise and fuel burn as stated in Table 1. Similarly,

the Advisory Council for Aeronautics Research in Europe (ACARE ) has established

its Vision 2020, that targets an overall reduction of CO2 emissions by 50%.

To achieve market demand of efficient aircraft in future while maintaining the

additional requirements like lower maintenance costs, environmental regulations, etc.

there is a strong need to include advanced technology in the newer aircraft, redesign

of the existing aircraft configuration (derivative aircrafts), and to explore unconven-

tional design etc. For example, recent fleets of Boeing 787, Airbus 380, Bomabardier
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Table 1: NASA ERA system-level goals [12]

Technology benefitsa N+1 (2015) N+2 (2020) N+3 (2025)
Noise (cum. below stage 4) -32 dB -42 dB -52 dB
LTO NOx (below CAEP6) -60% -75% -80%
Cruise NOxb -55% -70% -80%
Aircraft fuel burnb -33% -50% -60%
aN+1 and N+3 values are referenced to a Boeing 737-800 with CFM56-7B engines,
and N+2 values are referenced to a Boeing 777-200 with GE90 engines
bRelative to 2005 best in class

C-Series, etc., feature as much as 70% content in advanced material like composites,

leading to as much as 15% of weight savings [11]. Aerodynamic technologies like

Natural Laminar Flow (NLF) [13], Active Flow Control (AFC) [14], etc. are possible

approaches to improving aerodynamic performance of aircraft. Similarly, technolo-

gies like open rotors [15], advanced gear turbofan [16], etc. are evolving to improve

the propulsive performance. Recently aircraft manufactures have also redesigned and

manufactured efficient derivative aircrafts like Boeing 737 Next Generation, A320neo,

A330ceo, A350-1000 XWB, etc. to fulfill the growing demand to satisfy customer con-

straints and future regulations. Research is also being carried out on unconventional

configurations like Blended Wing Body [17], Strut Braced Wing [18], Truss Braced

Wing [19], etc. to improve the performance over the traditional tube and wing con-

figurations.

Use of advanced technologies or advanced concepts introduce a lot of uncertainties

in the design process. This is due to the fact that these technologies or concepts are

still under development or they have not been integrated into the aircraft system

yet. With the expansion of the global market for civil aircraft and the necessity to

address other stringent environmental, financial, social and operational requirements

under these uncertainties, the complexity of the design process for new vehicles is

increasing. There is a need to move from traditional deterministic design methods

to uncertainty based design techniques to handle these evolving requirements while
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minimizing the risk, cost and design time. Uncertainty based design can give the

decision makers tools to carry out trade-off analysis between various elements of

design, take mitigating action to manage uncertainties, and allow resource allocation

in appropriate technologies or design to avoid any future adverse situation. With the

advancement in computational power, modeling techniques, computational methods,

and numerical methods, advanced design methods have opened the doors to new

opportunities and challenges in the uncertainty-based design process.

1.2 Aircraft Design Process: The Paradigm Shift

While the aerospace industry is expanding, there has been a paradigm shift in the

design process within the design community with system affordability being the focus

[20]. In “Design for Affordability” the decisions in the design process is not only

dictated by the aircraft’s capabilities, effectiveness and other characteristics but also

by cost associated with the design. This requires a robust decision-making process

which balances the benefits and costs of the system.
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One of the major activities of a design process is making decision on allocation

6



of resources like money, personnel, and infrastructure after carrying out trade study

and analyses so that an appropriate design is selected that satisfies the goals, product

objectives, customer needs and technical requirements [22, 23] while controlling the

costs. In traditional design methods, the major part of aircraft life cycle cost is

allocated in the early design stages as shown in Figure 2.
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Figure 3: Paradigm shift in aircraft design process

The National Science Foundation 1996 Strategic Planning Workshop [24] empha-

sized a paradigm shift change in aerospace engineering which allows design freedom

at later stages of the design process and helps to avoid expensive redesign. Conceptu-

ally, the paradigm shift is shown in Figure 3 by comparing the current design process

to a theoretical future design process. There are three main elements of the paradigm

shift; design knowledge, design freedom and cost commitment. It is desirable to com-

mit the largest part of cost and resources available for a project towards the later

phase of the aircraft design process. Also, it is beneficial to have more design freedom

available in the later phase of design. The availability of more knowledge in the early

phase of the aircraft design allows the flexibility of the cost commitment and greater

design freedom towards the later phase. This paradigm shift requires new methods

to generate data, information and knowledge, support synthesis and analysis, and
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facilitate the decision-making process early in the design phase. Uncertainty-based

design is one such method to gain knowledge and information during the early design

decision process.

There are three main phases in an aircraft design process [22]; Conceptual, Pre-

liminary, and Detailed as shown in Figure 4. The change of design phase is generally

linked with the level of details in representation and analyses. The main purpose of

conceptual design is to explore a large number of design alternatives, carry out trade

studies, identify and select a feasible and viable design concept which can be further

developed and refined during the preliminary design phase. In the conceptual phase

the development of overall aircraft configuration is driven by the design requirement,

which can be revised or relaxed according to the requirements. This is the most

important phase considering the number of concepts explored, investigation of tech-

nologies, feasibility study, and mapping between the requirements and configurations.

The analyses in this phase are not very detailed but it is important to consider the

interaction among various disciplines, subsystems, and technologies. However, there

is a dearth of data, information and knowledge regarding the problem, requirements,
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constraints, technologies to be considered, tools and models to be used, and so on.

For example, most of the models and tools used in this phase are lower order/fidelity

models or empirical models which are based on historical data. Therefore, account-

ing for the uncertainties in the design process is one of the critical aspects in the

conceptual design phase.

Once the final design configuration is down-selected in the conceptual design

phase, the design process moves to the preliminary design phase. It is in this phase

that high-fidelity tools are introduced to carry out analysis on higher details to op-

timally size various subsystems and components to obtain a design that meets the

requirements and the constraints. During this phase, specialists and experts in the

area of aerodynamics, structures, control system, landing gear, etc. become involved

in carrying out design and analysis. Other non-conventional disciplines such as eco-

nomics, maintainability, reliability and safety are also introduced during this phase.

The final goal of the preliminary design phase is to come up with a full-scale de-

velopment proposal for the detailed design phase. Although more information and

knowledge is available in this phase, uncertainty is still prevalent during this phase.

The detailed design phase starts with the design of actual pieces to be fabricated

based on information and knowledge available from the preliminary phase. This is the

most expensive part of the design process which involves a large number of designers

supported by Computer Aided Design (CAD) and Computer Aided Manufacturing

(CAM) tools. The smallest possible pieces which are not considered during prelimi-

nary design like flap, tracks, brackets, clips, doors, etc, including the pieces involved

in hydraulic, electrical, pneumatic, fuels and other system are designed in this phase.

1.3 Uncertainty in Design

Uncertainty as defined by Booker et al. [25] is defined as “What is not known pre-

cisely” while precision is defined as “Abilities in making good predictions, being exact,
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Figure 5: Definition of uncertainty [26]

being correct, maintaining control, operating within specifications, and representing

the physical world”. Nikolaidis et al.[26] defines uncertainty as the gap between the

current state of knowledge and certainty, where certainty is defined as “the condition

in which a decision maker knows everything needed in order to select the action with

the most desirable outcome”. The uncertainty can be further classified into reducible

and irreducible uncertainty as shown in Figure 5.

In the aircraft design process uncertainty can be due to fidelity of analysis model,

experimental data, interdisciplinary interfaces, operating conditions, immature tech-

nologies and so on [27, 28, 29, 30, 31, 32]. Moreover, the uncertainties evolve over

time as shown in Figure 6. For example, in the conceptual design phase, uncertainty

is more prevalent compared to the preliminary and detailed design phases. This is pri-

marily because of two reasons. The first reason is the model form uncertainty, which

is associated with the accuracy of low fidelity models used in the conceptual design

phase. The second reason is the parameter uncertainty, which is associated with the

parameters or variables which are not known accurately early in the design phase.

For example, aerodynamics analysis of a wing in the conceptual design phase requires
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lift curve slope (Clα) of airfoils. This is not accurately known until the late prelimi-

nary or detailed design phases when the shape of the wing has been fixed. Thus, Clα

have to be considered as an uncertain parameter during aerodynamic analysis in the

conceptual design phase. Uncertainty can also arise due to future requirements and

other market factors like fuel cost, market demands, etc. As the requirements change

with time, constraints can be relaxed or tightened to influence the uncertainties.

Typically, it takes a decade to design a new aircraft, a production time of 20 to 30

years with the service life of the aircraft being 25 to 45 years [11]. As the designers

have very limited knowledge and information at beginning of the design process of a

new system, the uncertainty is at a maximum. Freezing a design configuration without

considering these uncertainties early in the design process may lead to performance

degradation, requirement and constraint violation. This may cause an expensive

redesign leading to cost overrun and delay.

To overcome this issue the designers need to account for uncertainty early in the

design stage such that appropriate decisions can be taken to avoid expensive redesign

process later in design stages. As the design progresses and more information and
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data gets accumulated, the designer’s present knowledge moves towards certainty thus

reducing the uncertainty. In the early phase of design, availability of more knowledge

and consideration of uncertainty when making a decision reduces the risk of not

achieving the target of the system and avoids costly redesign. Therefore, for a lengthy

product life cycle, it is important to carry out uncertainty management early in the

design process to make critical design decisions for investment in future technologies,

engine, airframe configuration, etc. One such recently developed approach is called

Probabilistic Certificate of Correction which is used as metric to make decisions under

uncertainty at all the stages of design process.

1.3.1 Probabilistic Certificate of Correction (PCC)

Probabilistic Certificate of Correction (PCC) has been developed as part of DARPA

Adaptive Vehicle Make program with the goal of reducing the design and integration

time for a complex system [33]. In a complex system, there are many requirements,

constraints and regulatory threshold which needs to be fulfilled at the system level. To

ensures that the final product or the system is able to perform at the level of customers

satisfaction, a certification process is carried out on a physical benchmark test. The

certification process generally involves a verification process, which ensures that the

right processes were used to build the product and a validation process, which ensures

that the product meets the customers requirements. In the current design process,

the verification and validation process is carried out by comparing a virtual prototype

with the physical prototype. Since, the physical prototypes are not available early

in the design process, chances of finding the error and incompatibilities are delayed.

This significantly increases the risk of redesign of system, leading to program cost

overruns.

To overcome this challenge, virtual prototype metric called Probabilistic Certifi-

cate of Correctness (PCC) [34] has been developed which incorporates:
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� Probability of satisfying requirements: Gives the expected behavior as an

estimated probability as computed with a statistical sampling technique.

� Confidence in the probability of satisfying requirements: Gives a sta-

tistical confidence in the estimated probability; related directly to the number

of samples and the approach taken for estimating the probability of satisfying

a requirement.

� Systematically modeled and verified set of assumptions: Eliciting and

building assumptions into a simulation model facilitates a comprehensive ap-

proach to model verification, error reduction, inconsistencies, and in appropriate

applications of a model.

PCC estimates the probability that the physical prototype will satisfy the cer-

tification or acceptance test by using the behavior of virtual prototype with known

confidence and verified model assumptions. PCC is estimated by rigorously account-

ing all sources of uncertainty including model verification, manufacturing tolerances,

human factors, confidence in the stochastic sampling, etc.

The core idea of PCC is to quantify uncertainty by using modeling and simula-

tions to minimize the variation in the product development process for a given set of

requirement. Instead of applying certification process at the late design state, PCC

can be applied in the early design phases. For example, one of the common approach

of product development process is V-cycle system engineering process [36] as shown

in Figure 7a. In the V-cycle process, the testing and integration of hardware with the

physical prototype is done later in the design process. Therefore, most of decisions

on redesign or rework on the system, subcomponent or design process is delayed.

The traditional V-cycle process can be improved by adding the PCC metric in each

milestone gates as shown in Figure 7b. Using PCC metric with virtual prototype

enables finding the errors and problems earlier in design phase and reduces the load
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on the expensive rework or redesign at the end of physical certification phase.

Approaches like PCC allows decision making under uncertainty early in the de-

sign process to reduce the risk of expensive redesign process during the later phases.

The core machinery of such methods lies in accounting for various sources of uncer-

tainty and appropriately quantify the effect on the system level metrics of interest.

This requires a rigorous and quantitative approach of Uncertainty Quantification and

Management at different stages of design process to account for uncertainty in making

appropriate decisions.

1.4 Uncertainty Quantification and Management

The existence of uncertainty in the aircraft design process is well known among de-

signers. The traditional way of handing these uncertainties in a deterministic design

process has been the use of safety factor or safety margin. However, these safety fac-

tors are generally based on historical data and expert judgment. Also, use of safety

factors is a qualitative approach and does not quantify the actual reliability of the

system. For example, as shown in Figure 8, a safety margin has been applied to both

requirement and the capacity. Since, the uncertainty on the requirement (shown here

as probability density function) has not been considered in the deterministic process,

the actual reliability of the system is not known, which can lead to over design of

system or result in low reliability.
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Unlike qualitative approaches like safety factors, uncertainty quantification meth-

ods refer to a quantitative process of assessment or evaluation of uncertainty based

upon models, data, expertise, etc [37]. An uncertainty quantification, typically in-

volves:

� Mathematical model of the system

� Identifying the sources of uncertainties affecting the system

� Decision-making criteria motivating the uncertainty quantification like robust-

ness, reliability, safety, optimization etc.

The mathematical model can be represented as a function (Equation 1) linking

the inputs (fixed and uncertain variables) and the output variables of interest upon

which decision criteria is applied.

z = G(x,u) (1)

The fixed variables (denoted here as x) are generally comprised of design variables,

scenario variables or the fixed parameters of the system. The uncertain variables

(denoted here as u) are generally comprised of all types of uncertainties like parameter

uncertainty, model form uncertainty, data form uncertainty, etc. The output variables

of interest (denoted here as z) can be scalar, or a vector if there are multiple criteria for

decision making. The mathematical model function (G) can represent a deterministic

physics model (like Computational Fluid Dynamics (CFD) or Finite Element Model

(FEM)) or an intrinsically stochastic or non-deterministic model (model for failure

rates at component or system level in risk analysis).

Depending upon the field of research and requirement there can be different goals

for uncertainty quantification [27]:
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Understand To understand the influence of the uncertainties and rank them based

on importance and sensitivity to guide any additional measurement, modeling

or experiments.

Accredit To give credit to a model to reach an acceptable fidelity and accuracy for

its use by carrying out calibration, estimation of the parameters of the model

inputs, simplifying the system model physics, and finally validation.

Select To compare relative performance and optimize the choice of system, architec-

ture, technologies, concepts, etc.

Comply To demonstrate compliance of the system with requirements, constraints

and regulatory threshold.

1.4.1 Steps for Generic Uncertainty Quantification and Management (UQM)
Methodology

Irrespective of research, a generic uncertainty quantification methodology is shown in

Figure 9 which consists of the following steps:

Input 
Variables

Uncertain: u
Fixed: x

Model
G(x,u)

Variables 
of 

Interest
Z = G(x,u)

Quantity of 
Interest
Mean, 

Variance, etc. 

Step-1: Specification of the problem
Step-2: 

Quantification 
of uncertainty 

sources

Uncertainty 
Modeling

Step-3: Propagation of uncertainty sources

Step-4: 
Uncertainty 
ManagementSensitivity 

Analysis

RDO,RBDO, etc

Figure 9: Generic Uncertainty Quantification (UQ) methodology
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1. Specification of the problem: Specify the model G (analytical, complex

computer code or experimental process) and identify the fixed variables x, the

uncertain variable u, and output variables of interest z.

2. Characterize and quantify source of uncertainties: This can be decom-

posed into two steps

(a) Uncertainty source characterization: Characterize each source of un-

certainties into reducible (aleatory) and irreducible (epistemic) uncertainty

based on the current state of knowledge

(b) Uncertainty source quantification: Various mathematical theories for

uncertainty can be used to model uncertainty such as Probability The-

ory [38], Possibility Theory [39], Dempster Shafer Evidence Theory[40],

Random Intervals [41], etc. Uncertain variables are quantified based on

experimental data or expert’s opinion using direct method like statistical

fitting [42] or using indirect methods from data generated from separate

models [43].

3. Propagation of uncertainties: Propagate the uncertainties in input u to

uncertainties on variable of interest z through the model. Various uncertainty

propagation techniques can be applied based on the computational complexity

of the model like analytical formula, geometrical approximations, Monte Carlo

sampling strategies, metamodel-based techniques, etc.

4. Uncertainty Management: The design variables are adjusted and modi-

fied such that the uncertainties can be managed and the goal of the uncer-

tainty quantification can be achieved. Robust Design Optimization (RDO) and

Reliability-Based Design Optimization (RBDO) are two typical methodologies

applied in this step. Sensitivity analysis is another integral part of this step.
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Sensitivity analysis [44, 45] evaluates the contribution of different uncertainty

sources on the output of the model and ranks them according to their influence.

This allows decision makers to carry out resource allocation to manage the

critical uncertainty sources to reduce the overall uncertainty on system metric.

As discussed and shown in Figure 9 uncertainty quantification and management

methodology is an iterative process. Multiple iterations are required to change the

design variables appropriately to achieve the required goals (robustness or reliabil-

ity). Generally an optimizer is used to carry out uncertainty management (RDO

or RBDO), which increases the computational requirement by orders of magnitude

higher than a deterministic optimization.

1.5 Uncertainty-Based Multidisciplinary Design Optimiza-
tion (UMDO)

Research on uncertainty-based design can be found in literature as old as 1950’s

[46, 47] but was restricted by computational requirements. Although, with the ad-

vancement in computational power various methods and algorithms have been devel-

oped in last few decades, most of these methods were restricted to single disciplinary

uncertainty analysis [48, 49, 50]. For example, aerospace engineering uncertainty-

based designs were mainly focused in the area of structure [51], aerodynamics [52, 53],

aeroelasticity [54] and control [55, 56]. As an aircraft system consists of multiple dis-

ciplines, uncertainty-based disciplinary design is not sufficient. An uncertainty-based

multidisciplinary design optimization (UMDO) methodology is required to carry out

uncertainty assessment to evaluate over all system reliability and robustness to sup-

port the design decision process.

To carry out the UMDO process on a complex system like aircraft, the model

defined by the function G(x,u) in the UQM methodology described by Equation 1

has to be replaced with a full multidisciplinary analysis (MDA) function consisting
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of all the critical disciplines to evaluate system level metrics. Propagation of un-

certainty through multidisciplinary framework becomes complicated due to coupling

when compared to uncertainty propagation in a single discipline. Due to coupling

of the disciplines, the cross propagation of uncertainties is difficult to manage and

can become a computationally expensive process. Therefore, a holistic approach is re-

quired to carry out design under uncertainty for a multidisciplinary system to improve

the overall system design by exploiting the coupling between disciplines.

UMDO process is an extension of the deterministic MDO process to quantify

uncertainties at system level due to uncertainties at discipline level and their inter-

actions. The UMDO process allows generation of a robust and reliable design by

using the synergistic effect of interdisciplinary coupling and interactions. Due these

benefits, UMDO has attracted wide research interest and has been an active field

of research in many areas. For example, Zang [3] has addressed various needs and

opportunities for uncertainty-based multidisciplinary designs for aerospace vehicles

in a NASA white paper. Various UMDO approaches have been successfully applied

in the field of aerospace and they have demonstrated the benefit of this advanced

design method [57, 20, 29, 58, 50, 27, 59, 60]. Many research works have been pub-

lished in various elements of the UMDO process such as uncertainty classification and

quantification, multidisciplinary uncertainty cross propagation and analysis, approxi-

mation methods for reducing calculation burden, optimization under uncertainty, and

multidisciplinary organization of UMDO problems. The application of many of these

methods on aerospace vehicles has been reviewed by Yao et al. [61].

1.5.1 Need for Distributed UMDO

As discussed in the previous section, it is crucial to bring in information, knowledge

and data early in the design process for better decision making. From the MDO per-

spective, this requires bringing in high-fidelity mathematical models for disciplinary
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analysis early in the design stage. Typically, these high-fidelity analyses require ex-

perts and sometimes teams to carry out design analysis. For example, carrying out

aerodynamic analysis using Computational Fluid Dynamics (CFD) requires fine tun-

ing of various parameters depending upon the type of problem and setting, which

can only be handled by an expert in CFD methods. Therefore , a distributed UMDO

architecture is preferred because it is not always feasible to integrate the high-fidelity

analysis models into a single monolithic and integrated UMDO architecture.

Figure 10: Multinational collaboration at Airbus [62]

Also, from an industrial design perspective, there are other challenges in engi-

neering and design such as market globalization, short delivery time, evolution of

customer requirements, supply chain management, complex industrial chain creation

and so on [62]. This necessitates a tighter integration of diverse knowledge, multiple

disciplines and collaboration of engineers and experts. On the other hand, market

globalization demands decentralization and distribution of design, development and

manufacturing work into multiple teams, often located at different global locations

[63]. Also, large industries tends to transfer parts of their design work to multiple

suppliers and contractors [64]. In Figure 10, the distribution of work completed by

multiple companies from different countries in development of an Airbus aircraft has

been depicted. This leads to a paradox of “integration vs distribution” [62] from an
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industrial design perspective. A collaborative engineering [65] approach is generally

adopted by industries to overcome this paradox by coordinating the activities of mul-

tiple teams, design groups and experts based on information flow, available resources,

and other constraints.

Typically, the teams, design groups and experts have their own domain specific

design methods and tools to work on their part of the design problem. For example,

some of the advanced CFD or FEM analysis and design tools have intrinsically em-

bedded adjoint solver to calculate derivatives [66], which are much more efficient for

optimization compared to a gradient-based optimizer applied externally on a system

level. Similarly, for uncertainty analysis, a discipline level expert generally has better

knowledge, experience and tools to carry out uncertainty quantification on a discipline

level rather than on the system level. For example, some of the advanced structural

design tools come with an intrinsic uncertainty propagation method like Polynomial

Chaos Expansion (PCE) [67] which are computationally efficient at the disciplinary

level than on the system level. Therefore, a distributed UMDO process supports col-

laborative engineering by decomposing a complex problem into sub-problems, which

can be solved independently by different entities, teams and experts, each using their

domain specific analysis and design tools.

In conclusion, there are two main motivations of distributed UMDO architecture

from an industrial perspective; concurrency and autonomy. Concurrency is achieved

by allowing each discipline to use its computational and human resources to work on

the analysis and design problem. Autonomy is accomplished by granting freedom to

each discipline to make their own design decisions using their own design and analysis

tools for their part of the over all problem. Distributed UMDO architecture helps

to manage design under uncertainty of a complex system by decomposing the prob-

lem into a manageable sub-uncertainty-based optimization problem at disciplinary or

subsystem level, with certain coordination strategy. Keeping these needs and benefits
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of collaborative engineering in mind, distributed UMDO architecture is the focus of

the current research.

1.6 Research Objective

As discussed in this chapter, as the global market for civil aviation continues to grow,

requirement such as regulations, cost, performance, and so on are getting stringent.

There is a huge pressure on design engineers in terms of time and overall life cycle cost

for design and development of newer, more efficient aircraft. With the paradigm shift

from performance-based design to affordability-based design, it has been the focus to

bring in more information and knowledge earlier in the design phase. This changed

the perspective of the design process from disciplinary-based design to over all system

design so that the synergism of mutually interacting phenomena of subsystems and

disciplines can be exploited to design systems and subsystems coherently. To support

these, various MDO techniques have been developed in the last few decades to support

the decision maker to assess the impact of interdisciplinary couplings on system level

metrics and to carry out design trade off early in the design phase.

Although advanced MDO methods have been developed, most of them are applica-

ble for deterministic design. Since uncertainty is the integral component of complex

system design, there has been a need for incorporating uncertainty in the design

and decision making process. This has led to the development of uncertainty-based

multidisciplinary design optimization (UMDO) methodology to quantify and manage

uncertainty in a multidisciplinary system. Although there are many challenges in

managing complex system designs under uncertainty with the UMDO process, two

important ones are computational and organizational challenges. This has led to the

current focus of research on distributed UMDO process.

Based on the challenges associated with the distributed UMDO process, the overall

research objective of the current work is as follows:
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Research Objective: : Develop an Uncertainty-based Multidisciplinary

Design and Optimization (UMDO) methodology to accurately quantify the

effect of uncertainties from disciplines to system level metrics of interest

and provide an environment for Uncertainty Quantification and Management

(UQ&M) in a distributed multidisciplinary setting.

With this objective, a detailed background on overall UMDO procedure and existing

methods for distributed UMDO methodologies is presented in Chapter 2. In Chapter

3, the challenges and the gaps in the existing distributed UMDO method are discussed

and the research questions are formulated. The hypothesis to the research questions

are discussed and tested in Chapters 4, 5, and 6. Finally, the overall contribution of

this dissertation, limitations and future work are summarized in Chapter 7.
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CHAPTER II

BACKGROUND

In this chapter, deterministic MDO is briefly introduced to set up the foundation

for an uncertainty-based multidisciplinary optimization (UMDO) procedure. This

is followed by a description of general UMDO procedure, methods and techniques

for uncertainty modeling, analysis, propagation, and uncertainty-based optimization.

Then a background on existing distributed UMDO architectures are discussed.

2.1 Multidisciplinary Design Optimization (MDO): A Brief
Background

As discussed in the previous chapter, decisions made in the early phase, particularly

in the conceptual design phase and early preliminary design phase, have tremendous

impact on life cycle cost and development time of aircraft systems. To gain more

knowledge at an earlier stage to support informed decision making, accurate and

physics-based analyses with the use of mathematical modeling need to be carried out.

For example, to carry out aerodynamic analysis mid-fidelity models like vortex lattice

method or high-fidelity methods like Computational Fluid Dynamics (CFD) can give

better insight into the problem compared to historical data-based empirical methods.

Traditionally, high-fidelity tools and models are generally used in the preliminary

design stage but there is a huge benefit in moving these analyses upstream to a

conceptual design stage. The challenge of using mathematical models and tools early

in the design phase comes from the characteristics of the aircraft system itself. As

defined by Ackoff [68], a system is defined as
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A system is a set of two or more interrelated elements of any kind

that satisfies the following conditions:

� The properties or behavior of each element of the set has an

effect on the properties or behavior of the set taken as a whole.

� The properties and behavior of each element, and the way they

affect the whole, depend on the properties and behavior of at

least one other element in the set. Therefore, no part has an

independent effect on the whole and each is affected by at least

one other part.

� Every possible subgroup of elements in the set has

the first two properties: each has a non-independent

effect on the whole. Therefore, the whole cannot

be decomposed into independent subsets. A system

cannot be subdivided into independent subsystems.

An aircraft is a complex system consisting of many such elements or contributing

analyses (CAs) that contribute to the performance of the entire system. The CAs

consist of disciplinary analyses, processes, or subsystems in the design of the complex

system. For example, an aircraft system consists of multiple complex and hetero-

geneous elements like wing, tail, fuselage, landing gear, engine, etc. which require

analyses from disciplines like aerodynamics, structures, propulsion, etc. The main

driver of the complexity of the design process is the complex non-linear interdisci-

plinary interaction among various CAs leading to coupling [69, 70]. An optimum

aircraft cannot be obtained by combining the optimal solutions from each discipline

or optimally designed components and technologies. For example, increasing the fan
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Figure 11: Optimal design from a disciplinarian’s view [71]

diameter of an engine would reduce the noise level. But, it will generate weight and

drag penalty resulting in an increase in fuel consumption. Also, carrying out dis-

ciplinary design without considering the coupling effect from other disciplines can

lead to incompatible system design. For example, if the structure and aerodynamic

disciplines are assigned to designing the wing independently, the structure discipline

will tend towards shorter wing span to reduce the wing weight, whereas aerodynamic

discipline will tend towards a larger wing span to improve aerodynamic performance.

Although, disciplinary performance from each discipline (weight and aerodynamic

performance) can improve the system level performance, like range, but this leads to

interdisciplinary incompatibly (large span versus short span). A pictorial example of

interdisciplinary incompatibility among multiple disciplines is shown in Figure 11.

Therefore, a trade-off is required among discipline-driven designer to generate an

interdisciplinary compatible and feasible solution with optimal system level perfor-

mance as shown in Figure 12. As Moir [72] mentioned,“ the success or failure in the

Aerospace and Defense sector is determined by the approach taken in the development

of systems and how well or otherwise the systems or their interactions are modeled,

understood and optimized.”; therefore it is necessary to move from a discipline or
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component-based design to a Multidisciplinary Design Optimization (MDO) proce-

dure, which handles the coupling and interdisciplinary compatibility among multiple

disciplines while carrying out a system level optimization.

MDO can be defined as “an evolving methodology, i.e. a body of methods, tech-

niques, algorithms, and related application practices, for design of engineering sys-

tems coupled by physical phenomena and involving many interacting subsystems and

parts”1. The initial development work on MDO can be seen in work done by Schmit

and Haftka [73, 74, 75, 76, 77] in the field of structural optimization. Some of the

earliest applications of MDO on wing design involving multiple disciplines like aero-

dynamics, structures, and controls disciplines can be found in [78, 79, 80] which

has been further extended to complete aircraft systems in [81, 82, 83, 84, 85, 86].

Currently, the MDO applications have also involved non-traditional disciplines like

manufacturing[87], subsystem[88], emission[89], noise[90], economics[91], etc. Vari-

ous benefits of industrial level MDO application can be found in Agte et al. [92].

Although, MDO has been embraced in almost all phases of aircraft design [93], its

1Defined by AIAA MDO Technical Committee (info.aiaa.org/tac/adsg/MDOTC/default.aspx)
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greatest impact and benefit is recognized at conceptual design phase.

A general mathematical formulation for a MDO process is as follows:

minimize fo(x,y) +
N∑
i=1

fi(x0,xi,yi) (2a)

with respect to x, ŷ,y, ȳ

subject to co(x,y) ≥ 0 (2b)

ci(x0,xi,yi) ≥ 0 for i = 1, . . . , N (2c)

cci = ŷi − yi = 0 for i = 1, . . . , N (2d)

Ri(x0,xi,yi, ŷj 6=i, ȳi) = 0 for i = 1, . . . , N (2e)

xL ≤ x ≤ xU (2f)

where x is vector of design variables, y is vector of coupling variables, ȳ is vector of

state variables used by a specific disciplinary analysis, f is the objective function, c is

the design constraints, cc is the interdisciplinary compatibility constraints, R is the

residual form of the governing equation in disciplinary analysis and N is the number

of disciplines. Variables with ()0 are the functions or variables shared by more than

one discipline, ()i are the functions or variables that apply to only ith discipline, (̂)

are independent copies of variables distributed to other disciplines. Four important

constraints in MDO problems are:

� Disciplinary analysis constraints are the equality constraint implicit in disci-

plinary analysis given by Equation 2e.

� Design constraints are linear or nonlinear constraints generally based on design

requirements and are given by Equation 2b and Equation 2c.

� Interdisciplinary compatibility constraints are the auxiliary constraints intro-

duced to relax interdisciplinary coupling, given by Equation 2d.
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� Side constraints specify the design space range of design variables, given by

Equation 2f.

One of the main aspects of implementing MDO is the architecture. An MDO archi-

tecture defines how different contributing analyses (CAs) or the disciplinary analysis

models are coupled, how constraints are handled, use of approximation models, use

of optimization strategy, information and data transfer, coordination strategy, and so

on for a given problem such that the overall optimization is carried out to achieve the

optimal design fulfilling all the constraints and requirements. Most of the MDO archi-

tecture can be categorized into two groups; monolithic or single level and distributed

or multi-level.

� Monolithic or single level architecture: A single system-level optimizer is

used to carry out optimization and for determining the state of the system. For

example, Equation 2 is equivalent to the procedure for single level All-In-One

(AIO) approach.

� Distributed or multi-level architecture: The optimization problem is de-

composed or partitioned, typically among the CAs, where each CA solves the

sub-problems containing small subsets of the variables and constraints.

Distributed architecture can be further decomposed into bi-level and multi-level

architecture, and hierarchical and non-hierarchical. Review of MDO architectures

can be found in Martins et al. [2].

Selection of appropriate architecture is very important as it influences the solu-

tion time and optimal design. Typically, selection of MDO architecture depends on

factors like level of fidelity and complexity of CAs, organizational structure and so

on. Sobieszczanski and Haftka [94] suggested three approaches to carry out the MDO

process depending upon complexity of model and organizational structure. The first

approach is for the situation when two or three disciplines are highly coupled. In this
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case, a single analysis can analyze all the coupled disciplines in a monolithic fash-

ion. This has led to creation of new disciplines like aeroelasticity, thermoelasticity,

structural control, etc. This can minimize the complexities arising due to organiza-

tional structure and MDO itself. In the second approach, simple analysis tools are

integrated into a single and modular monolithic MDO environment. This is generally

possible at the conceptual design phase when the analysis tools are simple and does

not require experts. The third approach is applied while using high-fidelity models

and complex simulation models which are hard to integrate into a single monolithic

architecture. This approach requires distributed architecture which applies decom-

position methods and global sensitivity techniques so that the overall optimization

process can be carried out with minimum changes to the disciplinary codes. A brief

background of four commonly used distributed MDO architecture; Collaborative Op-

timization (CO), Concurrent SubSpace Optimization (CSSO), Bi-Level Integrated

System Synthesis (BLISS), and Analytical Target Cascading (ATC), is discussed in

Appendix I.

2.2 General Uncertainty-Based Multidisciplinary Design Op-
timization (UMDO) Process

The UMDO process is an extension of the deterministic MDO process to handle

uncertainties in a multidisciplinary environment. There are two main blocks of the

UMDO process as shown in Figure 13.

1. Uncertainty System Modeling: This is the first step of the UMDO process

which mathematically describes the optimization problem under uncertainty.

This is done by system modeling and uncertainty modeling.

� System modeling : This step consists of building mathematical models

and tools of various subsystems and disciplines associated with the system.

This step also includes formulation of optimization problem such as design
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Figure 13: General UMDO process flowchart [61]

variables, optimization objectives, constraints, design space, etc. similar

to deterministic optimization.

� Uncertainty modeling : In this step, the uncertainty sources are identi-

fied and modeled using various mathematical theories.

2. UMDO Procedure: This procedure focuses on building efficient formulation

to manage the interaction and information transfer between multiple disciplines

to carry out the design process under uncertainty. This is done by uncertainty

analysis and propagation and optimization under uncertainty.

� Uncertainty Analysis and Propagation : This process handles un-

certainty analysis in each discipline, cross propagation of uncertainties be-

tween disciplines, and maintenance of interdisciplinary compatibility to

quantify uncertainty at system level.
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� Optimization under Uncertainty : Similar to deterministic optimiza-

tion, this step carries out design space exploration to find a robust and

reliable solution while incorporating uncertainties.

The following section discusses mathematical details of uncertainty modeling, un-

certainty propagation and analysis, optimization under uncertainty and UMDO pro-

cedure.

2.2.1 Uncertainty Modeling

One of the first and important steps for design under uncertainty is uncertainty mod-

eling. Uncertainty modeling includes identification and classification of uncertainty

sources using appropriate taxonomy based on the area of study and modeling and

representation of the uncertainties using suitable mathematical tools. Uncertainty

modeling may also include sensitivity analysis to screen out the sources which have

unsubstantial effects on design so that the UMDO process could be simplified.

2.2.1.1 Uncertainty Classification

As discussed in Chapter 1, one of the commonly used taxonomies categorizes uncer-

tainty into two types: aleatory and epistemic. Aleatory uncertainty is the inherent

uncertainty in the system or the environment under consideration and it cannot be

reduced even by gathering more information or data. Aleatory uncertainty is also

known as variability, type A, stochastic uncertainty or irreducible uncertainty. Epis-

temic uncertainty is the uncertainty arising due to lack of knowledge and can be

reduced by gaining more knowledge, data or information about the system under

consideration. Epistemic uncertainty is also know as subjective, type B, cognitive un-

certainty or reducible uncertainty [95, 96]. This taxonomy is commonly used in many

fields of research including risk assessment, decision analysis, scientific computing and

modeling, and simulation [97].

33



Different fields of research have developed their own taxonomies of uncertainties

based on their application. For example, in economics uncertainty is classified as

fundamental and ambiguity [98], in decision making uncertainty is classified into risk

and uncertainty (ignorance) [99], in policy and risk analysis uncertainty is classified

into quantity and model form uncertainty [100] while physical science mainly classifies

uncertainty as error [101]. Similarly in engineering, controls and dynamical systems

uncertainty is classified as structured and unstructured [102], civil engineering clas-

sifies uncertainties into abstracted, non-abstracted, and unknown [103], in mechani-

cal engineering uncertainty is classified into imprecision, probabilistic uncertainty and

possibility [104], and so on. In aerospace engineering, one of the common taxonomy in

vehicle synthesis and design uncertainty is classified as input, model parameter, mea-

surement and operational uncertainties [57]. Another taxonomy from the aerospace

system design point of view classifies uncertainties into operational/environmental,

system level and discipline level [105].

Thunnissen [28] provided a generalized categorization for uncertainty in design

and development of a complex system, in which uncertainty is classified into am-

biguity, epistemic, aleatory and iterations. Ambiguity is the uncertainty related to

imprecision or vagueness due to the use of imprecise terms and expressions in general

communication and linguistics. Aleatory and epistemic uncertainty are defined in

the same way as discussed before. Epistemic uncertainties can be further classified

into different categories as shown in Figure 14. Interaction uncertainty is due to the

unanticipated iterations between teams and disciplines. This is particularly linked

with information transfer and coupling variables in MDO environments.

2.2.1.2 Uncertainty Modeling

One of the key elements of uncertainty-based design and UMDO is the mathematical

modeling of uncertainties. Uncertainty can be mathematically represented by its
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range or set and some measure within the range or set. Depending on the theory

of measure, uncertainty can be modeled by different approaches. The choice of the

theory or approaches to modeling uncertainties depends upon the type of uncertainty

and available information. Some of the commonly used theories to model uncertainties

are briefly discussed here.

� Probability Theory: Modern probability theory was introduced by Kol-

mogorov [106] who combined the notion of sample space with measure theory.

In probability theory uncertainty is represented by random variables and proba-

bility measure is used to represent the magnitude of uncertainty. For a discrete

random variable X, a sample space is defined as the set of all possible outcomes

denoted by Ω = (x1, . . . , xn). For each element of sample space X ∈ Ω, a
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probability f(x) is assigned to each sample such that

f(x) ∈ [0, 1] for all x ∈ Ω (3a)∑
x∈Ω

f(x) = 1 . (3b)

The function f(x) also called probability mass function, which is a mapping

from sample space to probability space, i.e. f : Ω → [0, 1]. For an event set

E ∈ Ω, the probability of X being in the event E is given as

P(X ∈ E) =

∫
x∈E

f(x)dx (4)

Similarly, for a continuous random variable X ∈ R defined in real space, cumula-

tive distribution function (CDF) or simply distribution function F (x) is defined

by F (x) = P(X ≤ x), where P is the probability and x is a particular realization

of random variable. If F (x) is absolutely continuous, then differentiating F (x)

with respect to x yields probability density function (PDF) f(x).

Similarly, probability for more than one continuous variable is given by joint

distribution and density function. For example, for two random variables X

and Y , joint PDF f(x, y) has following properties

f(x, y) ∈[0, 1] for all (x, y) ∈ Ω (5a)∫ ∞
−∞

∫ ∞
−∞

f(x, y)dxdx = 1 (5b)

P[(X, Y ) ∈ E] =

∫ ∫
(X,Y )∈E

f(x, y)dxdx (5c)

which can be further extended to more than two variables. For given joint dis-

tribution P (X, Y ) of two variables X and Y , distribution of individual vari-

able (P(X) or P(Y )) can be evaluated by marginalizing over the distribu-

tion of other variable i.e. integrating over the domain of other variable as

fx(x) =
∫
y

P(x, y)dy or fy(y) =
∫
x

P(x, y)dx, where fx(x) and fy(y) are called

marginal distributions of X and Y , respectively. Similarly, conditional distribu-

tion P(Y |X) is defined as distribution of Y when X is known to be of particular
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value and vice versa for P(X|Y ). The joint distribution, marginal distributions

and conditional distributions are related as

P(X, Y ) = P(X|Y )P(Y ) = P(Y |X)P(X) (6)

which can be reformulated to represent Bayes’ theorem [107]

P(Y |X) =
P(X|Y )P(Y )

P(X)
(7)

Typically, the probability distribution over random variables is defined by some

parametric models (like Gaussian distribution, Uniform distribution, Poisson

distribution, Exponential distribution, etc.) or by non parametric model (like

Kernel density estimates, Mixture models, etc.) [38, 108]. These models are

a function of some parameters θ which has to be estimated based on evidence

or data. The parameters θ can be estimated by parametric estimation meth-

ods like methods of moment, Maximum Likelihood Estimation (MLE) method,

Maximum a Posteriori (MAP) method, etc. [38, 108]. These methods can be

broadly classified into two schools of philosophies of probability theory: Fre-

quentist [38] and Bayesian [109] approach. In frequentist approach, an event’s

probability is the limit of its relative frequency in a large number of trials. For

statistical inference of unknown parameters, frequentist approach assumes the

parameter to have a fixed but unknown value which has to be inferred from

trails. For example, nt is the total number of trials and nE is number of trials

when event E occurred, then P(E) ≈ nE/nt. According to frequentist approach,

as the number of trials approaches infinity the relative frequency converges to

true probability, i.e. P(x) = limnt→∞ nx/nt.

Whereas, in Bayesian approach, probability is interpreted as degree of belief or

by state of knowledge. Unlike frequentist approach, a probability is assigned

to a hypothesis for a parameter. The statistical inference in Bayesian approach
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is based on Bayes’ theorem, where some prior subjective probability can be

updated in light of some new evidence as

P(θ|D) ∝ P(D|θ)P(θ) (8)

where P(θ) is called prior probability, P(D|θ) is called likelihood function and

P(θ|D) is called the posterior probability. Therefore, Bayesian approach allows

subjectivity or prior knowledge to be taken into account when sufficient data is

not available.

Typically aleatory uncertainties are modeled using probability theory if suffi-

cient information is available. For epistemic uncertainty, when subjectivity or

prior information is important, Bayesian approach of probability is preferred

[110].

� Evidence Theory: Evidence theory is also known as Dempster-Shafer theory

(D-S theory) developed by Dempster and Shafer [111]. In evidence theory, the

metrics to measure uncertainty are belief and plausibility, which are determined

from known evidence and information for a proposition. Instead of assigning a

precise probability for a proposition, this metric defines the ranges, i.e. lower

and upper bounds of the probability based on the evidence.

Let Σ be the universal set consisting of all the possible set of system and PΩ

(or 2Σ) be the power set. Evidence theory defines a mass assignment function

m such that

m : PΩ → [0, 1] (9a)∑
E∈PΩ

(m(E)) = 1 (9b)

which assigns positive mass to the elements of power set PΩ. Mass assign-

ment can be used to bind the precise probability through belief and plausibility,

Bel(E) ≥ P(E) ≥ Pl(E). The belief Bel(E) is the sum of mass of all the subsets
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of A, which represents the amount of all the evidence supporting the fact that

the actual state belongs to A. Plausibility Pl(E) is the sum of mass of all the

sets that intersect with A, which represents the amount of all the evidence that

does not rule out the fact that the actual state belongs to A.

Bel(E) =
∑

B|B⊆E

m(B) (10a)

Pl(E) =
∑

B|B∩E 6=φ

m(B) (10b)

Both metrics are related to each other as

Pl(E) = 1− Bel(E) (11a)

Bel(E) + Bel(Ē) ≤ 1 (11b)

Pl(E) + Pl(Ē) ≥ 1 (11c)

where Ē is the complement of E.

Evidence theory can be used to represent both aleatory and epistemic uncer-

tainty. Theoretically, as the availability of information or data increases, the

uncertainty representation by evidence theory approaches probability theory.

Evidence theory also allows combination of data from multiple sources by using

the rules of combination of evidence. Some of the drawbacks of the evidence

theory is that it is difficult to interpret and it might be difficult to get informa-

tion from experts. Also, there are associated computational burdens in terms

of uncertainty propagation. More details on Evidence theory can be found in

Dempster [40].

� Possibility Theory: Possibility Theory introduced by Zadeh [112] extends the

concept of fuzzy set to represent uncertainties. In possibility theory, information

is available through possibility distribution r which expresses the degree the

analyst considers at which an event can occur. The subjective knowledge is
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modeled with a pair (χ, r) to characterize the uncertain variable x, where χ

is the set of possible values of x and r is the possibility distribution such that

r :→ [0, 1] ∀x ∈ χ and sup{r(x) : x ∈ χ} = 1. The possibility distribution

function r defines a measure of confidence assigned to each element of χ. Similar

to evidence theory, possibility theory uses two metrics which define the measure

of likelihood for subset of χ: possibility and necessity. For a subset E, possibility

and necessity are defined as

Pos(E) = sup(r(x) : x ∈ E) (12a)

Nec(E) = 1− Pos(Ē) (12b)

where Ē is complement of E. Pos(E) measures the amount of information that

does not refute that E contains the instantiation x of the uncertain variable X.

Nec(E) measures the amount of uncontradicted information that supports the

affirmation that E contains the instantiation x of the uncertain variable X.

Possibility theory, like evidence theory, can be used to model both aleatory and

epistemic uncertainty. Drawbacks of the possibility theory is that it is difficult

to interpret and it might be difficult to get information from experts. Also,

there are associated computational burdens in terms of uncertainty propagation.

More details on Possibility theory can be found in Dubois and Prade [39].

� Interval Analysis: Interval analysis [113, 41] is a commonly used method to

represent rounding errors and measurement errors in mathematical computa-

tion. In interval analysis uncertainty on a variable is represented by a pair of

numbers, i.e. maximum and minimum values that the variable is expected to

take. Uncertainty propagation is typically carried out using optimization meth-

ods or by using interval arithmetic rules. Though interval analysis is an intuitive

and straightforward approach, it is unable to consider additional information

related to expert’s subjectivity or current state of knowledge.
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Comparison Selection of mathematical framework to model uncertainty depends

upon many factors like available knowledge, available data, ease of implementation,

interpretation and understanding, computational requirements for uncertainty prop-

agation process, etc. Though interval analysis seems to be a very intuitive option,

it does not allow for any additional information other than the ranges of uncer-

tainties. Evidence theory and possibility theory capture more information and may

need relatively less information than probability theory to model uncertainty. Also,

both these theories allow a better approach in handling the epistemic uncertainty.

However, evidence theory and possibility theory are not commonly used in indus-

trial settings. Also, mathematical methods for uncertainty propagation are typically

computationally expensive and still an open area of research. On the other hand,

probability theory is one of the well developed theories and it is commonly used in

the engineering and scientific community. Uncertainty propagation methods using

probability theories are well developed and there are many approaches to overcoming

computational burdens to carry out uncertainty propagation. Though there are is-

sues in handling epistemic uncertainty, Bayesian approach helps in overcoming them.

Bayesian approach also allows combination and updating of uncertainty with increase

in availability of information. Although, choice of uncertainty modeling is very sub-

jective, in the current work probability theory is used because it is well developed,

well understood and because of its familiarity among engineers and the scientific

community.

2.2.1.3 Uncertainty Identification and Sensitivity Analysis

During the conceptual and preliminary design of an aircraft, a large number of uncer-

tainty sources can exist. Carrying out uncertainty propagation by taking into account

all the sources may lead to a huge computational burden due to dimensionality issues.

Therefore, it is beneficial to identify the sources of uncertainty that cause significant
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uncertainty in the output of the system and screen out the ones which do not have

significant impact. Sensitivity Analysis (SA) is the study of how the variation in

the model output can be apportioned, qualitatively or quantitatively between vari-

ations in model inputs [114]. Sensitivity analysis is typically used before carrying

out uncertainty propagation to identify and rank the most influential input uncer-

tainties. Screening out the uncertainty sources based on rank and influence decreases

computational cost and model complexity for uncertainty propagation. It also allows

allocation of resources on the sources having higher impact on the output so that

uncertainty can be managed and reduced.

Most of the sensitivity analysis can be categorized into two groups: local and global

[44]. Local methods are typically involved in taking partial derivative with respect to

uncertain variable around a design. Adjoint methods and Automated Differentiating

falls under this category. Global methods explore the entire uncertainty space and its

impact on output. Some of the commonly used global methods are variance decompo-

sition methods (Sobol’ Indices [115], ANalyse Of VAriance [116]), linear relationship

measures (Correlation Coefficients, Partial Correlation Coefficients, Standardized Re-

gression Coefficient), etc.

2.2.2 Uncertainty Analysis and Propagation

Uncertainty analysis is a procedure to quantify uncertainties on system output by

propagating the uncertainties from various sources through the system model. The

uncertainty propagation method can be broadly classified into two groups: intrusive

and non-intrusive. In intrusive methods, the mathematical model and the governing

equation of the system are reformulated so as to incorporate the uncertainty directly

into the system modeling. One of the commonly used approaches for intrusive meth-

ods is Polynomial Chaos Expansion (PCE) method [67]. In intrusive PCE methods,

the coefficient of the expansion is defined by substituting the stochastic process with

42



its polynomial chaos expansion in the original governing equations. This leads to

a coupled system of deterministic equations which can be solved by modifying the

existing analysis codes.

Non-intrusive approaches on the other hand treats the deterministic system or

simulation model as a black box and does not need any modification of existing

simulation codes. Non-intrusive propagation approaches based on probability theory

can be broadly classified into six categories.

2.2.2.1 Simulation based methods

In these methods, the input uncertainty space is repeatedly sampled and output of

the analysis is evaluated for each sample. Monte Carlo Simulation (MCS) [117] is one

such method used to carry out uncertainty propagation. For example, sample mean

or expected value of output can be evaluated as E[Y ] =
∑N

i=1 f(ui), where f is the

analysis function, u is the uncertain variable, and N is the number of samples. The

error associated with the estimation is proportional to 1/
√
N and does not depend

on the dimension of u. If sufficiently large number of samples are used, MCS method

can give statistical analysis with fairly accurate results. Therefore, the result of MCS

is used as a benchmark for evaluating any other uncertainty propagation technique.

Since the MCS method can easily become computationally expensive, other efficient

sampling-based methods such as Importance Sampling [118], Adaptive Sampling[119],

etc are also used as an alternative.

2.2.2.2 Local Expansion methods

Local expansion methods like Taylor series expansion locally approximates the analy-

sis function and associated moments due to uncertain inputs. For example, a function

can be approximated around a local point u0 as f(u) = f(u0)+
∑k

i=1 ∂f(u0)/∂ui(ui−

u0(i)). Based on this approximation, mean and standard deviation can be estimated
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as

µY 'f(u0) (13a)

σY '

√√√√ k∑
i=1

(
∂f(u0)

∂ui

)2

σ2
ui

+
k∑
i=1

k∑
j=i+1

(
∂f(u0)

∂ui

)(
∂f(u0)

∂uj

)
cov(ui, uj) (13b)

where cov(ui, uj) is the covariance between ui and uj. Although these methods are

computationally efficient the accuracy of these methods decrease as the function be-

comes non-linear and the range of input uncertainties increase. Also, these methods

require partial derivatives that may be difficult to evaluate for complex models.

2.2.2.3 Reliability methods

Reliability methods are mainly used to estimate the reliability of a system with respect

to a given constraint g(x) ≤ 0, where the function g is called limit state function. The

main purpose of reliability analysis is to estimate the probability of failure given by

pf =
∫
D
p(x)dx, where D is the region defined by g(x) > 0. Two widely used reliabil-

ity methods for engineering problems are First Order Reliability Method (FORM) and

Second Order Reliability Method (SORM) [120]. In both these methods, the original

non-Gaussian random variable x are transformed into an uncorrelated Gaussian ran-

dom variable u with zero mean and unit variance in the standard normal space using

Rosenblatt transformation [121], where the transformation is denoted as x = T (u).

Then, the probability of failure is redefined as pf =
∫
Du
φ(u)du, where DU represents

the failure region in U space defined by limit state function G(u) = g(T (u)) = 0.

Next, the Most Probable Point (MPP), most likely failure point, design point or check

point) which is of maximum probability density on the limit state function as shown

in Figure 15a is evaluated using an optimization problem

minimize β = ||u|| (14a)

with respect to u

such that G(u) = 0 (14b)
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Finally, the limit state function is approximated using first or second order approx-

imation at MPP and the probability of failure is estimated using the approximated

limit state function. For example, FORM fits a tangent hyperplane at MPP and the

probability of failure is given by pf ≈ Φ(−β) as shown in Figure 15b. Similarly,

SORM assumes a quadratic function at MPP to evaluate probability of failure.
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Figure 15: Most Probable Point (MPP) and First Order Reliability Method (FORM)

2.2.2.4 Numerical Integration-Based Methods

These methods evaluate the statistical moments of output of an analysis by using

approximation of multidimensional integral by appropriate quadrature formula [122].

These methods can be used to evaluate any statistical moments of an output. For

example, the expected value of the output y = f(u) is given by

E(y) =

∫
Ω

f(u)f(u)du '
N∑
i=1

f(ui)wi (15)

where p(u) is the probability density function of u, ui are the quadrature points

or collocation points and wi are the quadrature coefficients. Quadrature points are

generally chosen randomly or according to Gaussian quadrature where the Gaussian

quadrature are roots of a polynomial q which is orthogonal to the probability density

function
∫

Ω
q(u)p(u)w(u)du = 0. Two commonly used numerical integration-based

methods are full factorial numerical integrations [123] and sparse grid approach [124].
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2.2.2.5 Functional Expansion Methods

These methods approximate the function on the entire domain of analysis rather than

locally as in local expansion methods. Two commonly used methods are Polynomial

Chaos Expansion (PCE) [125] and Stochastic Collocation (SC)[126]. In PCE, function

is approximated using polynomial orthogonal basis as

y = f(u) = a0 +
∞∑
i=1

aiP1(ui) +
∞∑
i=1

i∑
j=1

P2(ui, uj) + . . . (16)

where Pi are orthogonal basis functions of degree i. The choice of polynomial function

depends upon the type of distribution of uncertain variables u. The expansion is gen-

erally truncated depending on some degrees d and approximation can be rearranged

as f(u) '
∑d

i=1 αiΨi(u). The coefficient of the polynomial is estimated through

orthogonal spectral projection or by regression method. If appropriate polynomials

are used, then the moments of outputs are defined directly as the function of the

coefficients.

Similarly, in SC the expansion is based on the Lagrange interpolation polynomial

and the expansion is given as

Y (u) '
m1∑
j1=1

m2∑
j2=1

· · ·
mk∑
jk=1

f(uj11 , . . . u
jk
k )(Lj11 (u1, u

j1
1 )⊗ · · · ⊗ Ljkk (uk, u

jk
k )) (17)

where Lj11 is jth1 Lagrange polynomial term for the interpolation in the u1 direction

and ⊗ is the tensor product.

2.2.2.6 Surrogate Modeling-Based Methods

Similar to functional expansion methods, surrogate models build the approximate

functional forms of analysis function in the domain of interest but unlike PCE or SC

the surrogate modeling does not depend on the distribution of input uncertainties.

Surrogate models or metamodels can be built using a relatively small number of sam-

ples compared to MCS using Design of Experiment (DoE) [23] techniques. Depending
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on the usage and complexity of the analysis function surrogate modeling techniques

can be chosen from several families such as Response Surface Method (RSM) [127],

Artificial Neural Network (ANN), Support Vector Regression (SVR), Radial Basis

Function (RBF), Gaussian Processes (GPs), [108] etc. Since, these surrogate models

are algebraic functions, it can be used in place of the original analysis function to

carry out MCS to propagate uncertainties in a computationally efficient manner.

2.2.3 Optimization under Uncertainty

In a typical aircraft design process, two important criteria or goals for design under

uncertainties are robustness and reliability. The following definitions are used in the

current work:

Robustness : “The degree of tolerance of the system to be insensitive to variations

in both the system itself and the environment” [3].

Reliability : “The probability that a component (or a system) will perform its in-

tended function without failure for a specified period of time under stated operating

conditions” [26].

The uncertainty management methodologies applied to achieve these goals are

called Robust Design Optimization and Reliability Based Design Optimization. The

choice of the methodology depends upon the impact of an adverse event and the

frequency of the adverse event as shown in Figure 16.

2.2.3.1 Robust Design Optimization (RDO)

Robust Design Optimization (RDO) method was originally formulated by Japanese

engineer Genichi Taguchi. He developed this method to improve the quality of manu-

factured products such that the product’s performance is insensitive to the variation

in the variables beyond the control of designer [128]. RDO is a systematic and ef-

ficient method to optimize design which is insensitive to variations. Based on the

original idea, the mathematical formulation of the RDO method is stated as follows
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[129]:

minimize F (µf (x,u), σf (x,u)) (18a)

with respect to x

such that g(x,u) ≤ 0 (18b)

xL ≤ x ≤ xU (18c)

where x and u are the design and the uncertain variables, µf and σf are the mean,

and the standard deviation of the variable of interest is given by function f(·), and

F (·) is the reformulated objective function with respect to µf and σf . One of the

simplest forms of F (·) is the weighted sum of µf and σf given as

F (µf (x,u), σf (x,u)) = k
µf (x,u)

wµf
+ (1− k)

σf (x,u)

wσf
(19)

where k is the weighing factor, and wµf and wσf are scaling factors. The graphical

illustration of RDO is shown in Figure 17.
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Figure 17: Graphical illustration of Robust Design Optimization (RDO)

2.2.3.2 Reliability-Based Design Optimization (RBDO)

The main focus of Reliability-Based Design Optimization (RBDO) is to obtain an

optimal design while meeting the reliability constraints. It is a methodology to op-

timize design such that the system is reliable with a small chance of failure under

a predefined acceptable level [130, 131]. The mathematical formulation of RBDO

method is stated as follows:

minimize µf (x,u) (20a)

with respect to x

such that P (g(x,u) ≤ 0) ≥ R (20b)

xL ≤ x ≤ xU (20c)

where P (·) is the probability of the events described in the function within the paren-

thesis, and R is the acceptable level of reliability. The graphical illustration of RDO

is shown in Figure 18.

In scenarios, where both robustness and reliability are the criteria of the design,

both RDO and RBDO can be combined to formulate Reliability-Based Robust Design
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Optimization (RBRDO) [130]. The mathematical formulation is given as:

minimize F (µf (x,u), σf (x,u)) (21a)

with respect to x

such that P (g(x,u) ≤ 0) ≥ R (21b)

xL ≤ x ≤ xU (21c)

2.2.4 UMDO Procedure

A general mathematical framework for a UMDO procedure is given as:

minimize Υ[f(x,u,y)] = Υ0[f(x,u,y)] +
N∑
i=1

Υi[f(x0,xi,ui,yi)] (22a)

with respect to x

such that Θ[gj(x0,xi,ui,yi) ≤ 0] > Rieqj for j = 1, . . . , ng (22b)

Θ[hk(x0,xi,ui,yi) ≤ 0] > Reqk for j = 1, . . . , nh (22c)

xL ≤ x ≤ xU (22d)

u is the vector of uncertain variables, Υ is the measure of metric of interest like

expected value, variance, extreme value, etc. of the variable of interest, Θ is the

measure of reliability like probability, plausibility, etc. gj and hk are the inequality
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and equality constraints and Rieqj and Reqk are the required reliability level. All the

other notations are similar to MDO procedure.

A traditional approach to carry out the optimization given in Equation 22 is to

replace the model G(x,u) in Equation 1 by a fully integrated monolithic multidis-

ciplinary analysis (MDA) process. This is also referred to as double-loop strategy

as shown in Figure 19. In this strategy, uncertainty based multidisciplinary analysis

(UMDA) is carried out by propagating uncertainties through a multidisciplinary sys-

tem for a fixed setting of design variables in the inner loop. The outer loop carries out

optimization process based on the outcomes of UMDA process. The entire process,

including the outer loop, inner loop, and multidisciplinary analysis constitutes the

uncertainty based design optimization (UDMO) procedure.

The traditional double-loop approach of UDMO procedure can become computa-

tionally challenging if high-fidelity disciplinary analyses are involved. Let’s consider

that the optimizer takes Nopt steps to converge to the optimum and at each step of

optimization process, an UMDA is carried out using Monte Carlo Simulation (MCS)

by propagating NMCS samples of uncertainty variables through a deterministic MDA.

Therefore, to carry out UMDO using the traditional double-loop method it requires
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Nopt × NMCS deterministic MDA function calls. Also, it should be noted that each

deterministic MDA generally requires multiple iterations of disciplinary analyses to

achieve interdisciplinary compatibility.

To overcome this computational problem, various UMDO processes have been

proposed and can be classified into two categories [61]:

1. Single level procedure: In this method, the optimization loop and the un-

certainty analysis are either decoupled or are executed in a sequential order or

merged into a single equivalent deterministic optimization problem [132, 133,

134, 135, 136, 137]. The main benefit of these methods is that the existing

MDO process can be used directly to enhance the efficiency. However single

level procedure generally requires an integrated MDA. which can still lead to

computational challenges for MDA with high-fidelity disciplinary analysis.

2. Distributed procedure: Also called as decomposition and coordination-

based procedure or multi-level procedure for UMDO, applies an equivalent

approach of distributed or a multi-level MDO architecture discussed in Section

2.1. In this approach, the overall problem is decomposed and distributed among

the discipline or subsystem which carries out disciplinary or subsystem level un-

certainty optimization problems, so that each sub-problem is within manageable

control. In addition to reducing the computational burden on a single optimizer,

the benefit of decomposition and coordination-based procedure is that it allows

concurrency and autonomy among all the teams and disciplines.

2.2.5 Distributed UMDO Procedure

Based on the deterministic MDO architecture, many distributed UMDO procedures

have been developed in which large scale computationally restrictive problems are de-

composed and distributed into several manageable small scale uncertainty optimiza-

tion problems. The main engine of this UMDO procedure is coordination strategy

52



by which a consistent optimum is achieved. Some of the commonly used distributed

UMDO procedures are discussed here.

2.2.5.1 Collaborative Optimization (CO)-based UMDO Procedure

One of the first UMDO procedures based on Collaborative Optimization (CO) frame-

work was proposed by McAllister et al. [138]. The optimization problem both at

system and subsystem level is formulated using multi-objective mathematical formu-

lation called Decision Support Problem (DSP). At system level, DSP carries out a

robust optimization while minimizing mean and variance of system level metric while

maintaining subsystem compatibility constraints. At subsystem level multi-objective

compromise DSP is carried out with its first priority being minimization of discrep-

ancy between the target specified by the system level and the local outputs. Second

priority is given to optimization of local objectives which are not dealt with at sys-

tem level. The uncertainty propagation at both levels are carried out using first order

Taylor series expansion for mean and variance estimation. It is assumed that the

variation of uncertainties are small and the sources of uncertainties are independent.

It has been found that the method needs significant iteration to achieve system level

compatibility due to equality constraint at system level optimization.

To overcome the problem with convergence caused by the compatibility equality

constraints imposed on system level, Gu et al. [139] proposed a Robust Collabora-

tive Optimization (RCO) framework based on an Implicit Uncertainty Propagation

(IUP) method. In IUP method, the state variable is considered as an auxiliary design

variable and its interval is estimated by calculating the Global Sensitivity Equations

(GSE). Also, it models the uncertainties as an interval given by range of the uncer-

tainties. Based on the IUP method, another RCO approach to handle probabilistic

uncertainties has also been developed [140]. However, methods based on IUP relies

on first order Taylor series expansion of state variables, which can generate errors
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when disciplinary functions are non-linear. Also, IUP methods require repeated GSE

calculation, which can be computationally expensive and sometimes it may not be

available for certain design points.

To overcome the issues of IUP-based methods, a Moment-Matching RCO (MM-

RCO) [141] was proposed in which mean and standard deviation of the state variables

are also considered as auxiliary design variables in each of the disciplines rather than

being estimated by IUP module. During the optimization process, the target for state

variables are not only the mean but also the standard deviations. Also, additional

interdisciplinary compatibility constraints on the state variable standard deviation

are added at the system-level optimization. For example, Equation 23 shows the

optimization problem at system level where the auxiliary variables at system level

are shared design variable x0
sh and mean and standard deviation of coupling variables

µ0
yij

and σ0
yij

, respectively. The compatibility constraints are given by Ji = 0, which

are the objective function for ith subsystem.

System Optimization

minimize F = µf + κσf (23a)

with respect to X0
sys = [xsys, x

0
sh, µ

0
yij
, σ0

yij
]

such that Ji = 0 ∀i (23b)

The optimization problem at subsystem level is given as

ith Subsystem Optimization

minimize Ji = ((x0
sh)i − xish)2 + ((µ0

yij
)i − µiyij)

2 + ((σ0
yij

)i − σiyij)
2 (24a)

with respect to X i
ss = [xiloc, x

i
sh, µ

i
yij
, σiyij ]

such that µgi + κσgi ≤ 0 (24b)

where the objective is to minimize the discrepancy with respect to the target given by

system level (variables with superscript (0)) and the output of subsystem while satisfy-

ing the local reliability constraint. The design variables are subsystem local variables
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Figure 20: Design architectures of Robust Collaborative Optimization (RCO)

xish, local copy of shared variable xish, local copy of mean and standard deviation of

coupling variable associated with each discipline i.e. µiyij and σiyij , respectively.

Although MM-RCO overcomes some of the issues of IUP-based RCO methods, it

is assumed that it cannot handle the statistical dependency between the coupling vari-

ables. To overcome this issue, Ghosh et al. [142] developed a Covariance Matching

Collaborative Optimization (CMCO) in which discrepancy with respect to correla-

tions among coupling variables are also considered in addition to mean and standard

deviation. CMCO assumes that ranges of uncertainty are small and the coupling

variables follow multivariate Gaussian distribution.

In another approach based on CO, a novel dual surface based RCO [143] method

was proposed where two response surfaces replace the mean and standard deviation

estimation of the state variables and system metric. However, a large number of

samples are required to build the response surface of mean and standard deviation

which can make this process computationally very expensive. Additionally, errors

associated with the response surface may also lead to large impact on the uncertainty

estimation of system metric.

UMDO methods based on CO does not enforce disciplinary consistency explicitly

at each iteration and sensitivities calculated from subsystems are not consistent until

the system level optimizer has satisfied the compatibility constraints. This may lead to
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inaccuracy of the uncertainty analysis and further influence optimization convergence.

2.2.5.2 Concurrent Subspace Optimization (CSSO)-based UMDO Procedure

Similar to CO, deterministic Concurrent Subspace Optimization (CSSO) framework

has also been used for the UMDO procedure. One such method was proposed by

Padmanabhan and Batill [144] in which CSSO architecture has been used to realize

reliability-based optimization for an MDO problem. In this procedure, system level

carries out reliability analysis using FORM method to obtain outputs of objective,

intermediate variables, reliability constraints and their sensitivities with respect to

deterministic and uncertain variable at the initial design point. This information is

then used with first order Taylor series approximation models to build metamodels,

which are used in the subspace optimization for estimation of non-local state variables

and reliability constraints. These metamodels are then used by subspace optimizer

which are executed concurrently to carry out their local optimization. Approximation

models are then built using the data obtained from subspace optimization. Next, a

Coordination Procedure (CP) is carried out with approximation model and the design

solution is updated and passed to the system analysis and reliability analysis for next

cycle. This process is repeated until convergence is achieved. The process flowchart

is shown in Figure 21.

Game Theory-based Composite SubSpace Uncertainty Optimization (GBCSSUO)

proposed by Yao et al. [145] integrates Game Theory with CSSO procedure and was

applied successfully on a space system design problem [60] under uncertainty. In this

procedure, approximation model of objectives and coupling variables are built using

design of experiment techniques. In each subspace, optimization is carried out where

mean and standard deviation of objectives are optimized while satisfying the local

reliability constraints. During subspace optimization only accurate analysis tools
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associated with the subspace are used, while non-local variables are estimated us-

ing approximation models to reduce the computational burden. In the coordination

procedure, approximation models are used from each subspace to carry out system

optimization. After each cycle, approximation models are updated at the new opti-

mum, which is used for the next cycle. This process is repeated until convergence is

achieved. Although the method is flexible in order to carry out system and subsys-

tem optimization, this procedure ignores the cross propagation effect of uncertainties

which can lead to inaccurate uncertainty analysis.

2.2.5.3 Analytical Target Cascading (ATC)-based UMDO Procedure

Since Analytical Target Cascading (ATC) is a multilevel MDO method (Figure 22a),

the probabilistic version of ATC helps in carrying out uncertainty propagation in

a multilevel distributed architecture. One of the earliest UMDO approaches using

ATC was proposed by Kokkolaras et al. [146]. The method assumes that the initial

uncertainty information is available at the bottom of the hierarchy. A bottom to top

coordination strategy is used to propagate uncertainty from lower level to higher level

elements in hierarchy. The Advanced Mean Value (AMV) method is used to propagate
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Figure 22: Probabilistic Analytical Target Cascading (PATC) architecture

uncertainty and quantify the outputs of each element. The mean and the standard

deviation of the responses are then passed on to the parents of the component. The

optimization problem is solved in each element, from lower level to upper level, in

conjunction with the propagation of the uncertainties in each element. Once the top

most level is reached, new targets are cascaded downwards, from top to bottom. With

the new targets, elementary optimization is carried out from bottom to top again.

The process is continued until convergence is achieved.

In the method proposed by Kokkolaras, coordination is carried out by only match-

ing the mean values of coupling variables between the levels. This creates issues in

accurate quantification of uncertainty leading to an inconsistent optimum. Based on

the same process, moment-matching formulation of ATC [147] has been developed in
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which standard deviations are also matched in addition to the mean values of cou-

pling variables. The information flow for a ith level element is shown in Figure 22b.

Further, enhanced probabilistic ATC (EPATC)[148] has been developed, in which

covariances are also matched to handle the dependencies of the coupling variables.

It has been demonstrated that these improved methods of ATC can solve the same

problems as that of the All-In-One (AIO) approach if the uncertainty can be charac-

terized by only two moments and the joint distributions can be represented by joint

Gaussian distribution.
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CHAPTER III

PROBLEM DEFINITION

In the previous chapter, a brief background on general UMDA and UMDO procedure

and state of the art methods on distributed UMDO methods have been discussed.

While focusing on the research objective of developing an UMDO methodology to

accurately quantify the effect of uncertainties from distributed disciplines on system

level metrics of interest, some of the challenges associated with distributed UMDA

and UMDO architectures in the existing methods are discussed in this chapter. Based

on the gap analysis, the problem definition is carried out by stating the research

questions.

3.1 Challenges in Distributed UMDA

A distributed uncertainty based multidisciplinary analysis (UMDA) requires propa-

gation of uncertainties through the disciplines in a parallel, concurrent, independent

or “decoupled” manner. This leads to handling of following challenges:

3.1.1 Dependencies among Uncertain Coupling Variables

Dependence is defined as a statistical relationship between two random variables.

For example, two random variable X and Y are statistically dependent if their joint

probability P (X, Y ) is not equal to the product of their probabilities P (X) and P (Y ),

i.e. P (X, Y ) 6= P (X)P (Y ). If P (X, Y ) ≥ P (X)P (Y ) then X and Y are called

positively dependent, else they are, negatively dependent when the inequality sign is

reversed. The degree of dependence may be quantified by some suitable measure of

association such as correlation coefficient.

To carryout any arithmetic on random variables it is important to quantify the
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dependence among the random variables. For example, mean and variance of the sum

of two dependent random variables X and Y with mean of µX and µY and standard

deviation of σX and σY and correlation of ρXY is given as

µX+Y = µX + µY (25a)

V arX+Y = σ2
X + σ2

Y + 2ρXY σ
2
Xσ

2
Y (25b)

If the magnitude of correlation is relatively small, then the third term on the right

hand side of Equation 25b can be neglected. In such a case, assumption of inde-

pendence among the random variables may be considered. However, if magnitude of

correlation is significant, then assumption of independence among random variables

will lead to inaccurate quantification of uncertainty for even a simple arithmetic such

as X+Y . Similarly, in a multidisciplinary analysis under uncertainty, the dependence

among disciplinary variables can affect the uncertainty quantification of system level

metric. For example, consider a notional multidisciplinary problem of the aircraft

weight estimation problem as shown in Figure 23a. At the system level, aircraft

weight discipline estimates the take-off gross weights, WTOGW . There are two sub-

systems, wing and empennage subsystem, which provides wing weight WWING and

empennage weight WEMPG to the system level weight discipline. Now, consider that

the material properties are uncertain (defined here as U) which affects both wing and

empennage subsystems. For uncertainty propagation, Monte Carlo Simulation (MCS)

can be used to sample U and for each sample of U a deterministic multidisciplinary

analysis is carried out to estimate the uncertainty on WWING, WEMPG, and WTOGW .

A single sample of MCS run is notionally shown as star symbol in Figure 23a. Since,

the source of uncertainty U is common for both wing and empennage subsystem, the

coupling variables WWING and WEMPG will be dependent or correlated. For example,

let’s assume that the uncertain variable is the material density. A random draw of
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U with higher material density will generate a heavier wing weight and heavier em-

pennage weight and vice versa. This dependency is not lost while evaluating WTOGW

because of the integrated multidisciplinary environment where MDA is carried out

for each sample of U .
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(b) Dependency lost in distributed UMDA

Figure 23: Dependency of coupling variables

Now consider a distributed design in Figure 23b where uncertainty is propagated

independently in wing weight and empennage subsystem. Since, the uncertainty on

WWING and WEMPG is quantified in an independent or decoupled manner, the infor-

mation of the association of these variables with respect to the uncertainty variable

U is lost. With only marginal distribution of WWING and WEMPG available to the

system level discipline, it has to assume independence between WWING and WEMPG.

This leads to inaccurate quantification of uncertainty on system level metric WTOGW .

Therefore, handling of dependency is one of the challenging aspects of distributed

UMDA.
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3.1.2 Interdisciplinary Compatibility

This challenge is generally concerned with any equality constraints in distributed

UMDA. However, it is most critical for interdisciplinary compatibility constraint.

Without satisfying this constraint, a consistent solution cannot be achieved. In Sec-

tion 2.1, the interdisciplinary constraint is stated by Equation 2d, which ensures that

the coupling variables are consistent in all the disciplines. For example, consider a

simple deterministic multidisciplinary problem with aerodynamics and weight as two

disciplines, with weight W and lift to drag ratio L/D as coupling variables. WA is the

input and L/DA is the output of aerodynamic discipline and L/DW is the input and

WW is the output of weight discipline. Subscripts ()A and ()W refer to the variables

associated with aerodynamic and weight discipline respectively. The interdisciplinary

compatibility is satisfied when WA = WW = W ∗ and L/DA = L/DW = L/D∗. A

typical method to achieve this in a deterministic MDA is using Fixed Point Iteration

(FPI) method. In FPI, a guess weight W ∗ is used as input to the aerodynamic dis-

cipline to evaluate L/D∗. This L/D∗ is then used as an input to weight discipline

to evaluate W ′. If W ∗ 6= W ′, the guess value of W ∗ is updated and the process is

repeated until W ∗ = W ′ within some specified tolerance.

Now, consider the same multidisciplinary problem under uncertainty, where un-

certainties U are associated with aerodynamic and weight disciplines. To carry out

uncertainty propagation in an integrated and coupled MDA framework a relatively

simple method, Sampling Outside Fixed Point Iteration (SOFPI) can be used. In

SOFPI, Monte Carlo sampling is used to sample uncertainty variables U and for each

sample of U an FPI is carried out in a deterministic MDA framework. Since, the

interdisciplinary compatibility is satisfied for each sample of U , the joint distribution

is given by the converged samples of L/D∗ and W ∗ is the true joint distribution of

interdisciplinary compatible solutions.

To carry out uncertainty propagation in a distributed fashion, one of the common
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Figure 24: Handling of interdisciplinary compatibility by matching marginal distri-
butions

state of the art approaches is Moment-Matching strategy (used at each step of opti-

mization process in UMDO methods based on CO, ATC, etc.). In Moment-Matching

matching strategy, the system designer sets target moments for each coupling vari-

able (L/DT and WT ) as shown notionally in Figure 24. Generally, the target mo-

ments are specified by the first few moments like mean and standard deviation. Each

subsystem carries out uncertainty analysis independently and optimizes probability

distribution of input variables to reduce the discrepancy between target moments and

the moments of local coupling variables. For example, weight discipline minimizes

JW = ||µWT
− µWW

||2 + ||σWT
− σWW

||2 + ||µL/DT − µL/DW ||2 + ||σL/DT − σL/DW ||2 by

optimizing the probability distribution of its input variable WW by tweaking µL/DW

and σL/DW . Each discipline reports the discrepancy JW and JA to the system level

after finishing their optimization process. Based on the discrepancy information, the

system designer provides new target moments of L/DT and WT to each subsystem for

the next iteration of disciplinary optimization. This is repeated until the discrepancy
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is less than the specified tolerance.

However, there are few shortcomings in the Moment-Matching strategy.

� Matching only few moments such as mean and standard deviation is not suf-

ficient. Two probability distributions can have the same mean and standard

deviation but can have a different probability density functions as shown in

Figure 25a.

� Matching only the marginal distributions are also not sufficient. Different dis-

ciplines can have different dependencies between input and output coupling

variables while having the same marginal distributions. Figure 25b shows two

joint distributions of random variables y1 and y2. Both joint distributions have

very similar marginals but their dependencies are different.

� Moment-matching strategy does not ensure that interdisciplinary compatibility

is satisfied for each instantiation of uncertain variables. Although, other meth-

ods based on approximate model sharing strategy (used by distributed UMDO

methods based on CSSO) may ensure compatibility for each instantiation of

uncertain variables, most of these methods are not applicable when disciplinary

analyses are stochastic or non-deterministic, i.e. disciplinary functions are not

explicit functions of uncertain variables and outputs of the disciplinary analyses

are random variables (defined by joint probability density) for a fixed determin-

istic value of input. This generally happens when aleatory uncertainties are

present in the disciplinary analyses and act as noise or natural randomness.

For example, if a wing aerodynamic discipline requires a physical experiment,

then for a fixed wing design the aerodynamic performance evaluated by wind

tunnel test can have uncertainty due to various experimental noises and errors.

In a modeling and simulation environment, there can be implicit uncertainty

due to numerical error, model form error, uncertainty associated with expert
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judgment, etc. Under such scenarios, the disciplinary outputs cannot be mod-

eled by explicit function of uncertain variables and approximate model sharing

strategy cannot be used for UMDA.

Effect of dependency in UMDA: A numerical demonstration Consider a

simple analytical problem with two disciplines given in Equation 26.

y1 = x2
1 + x2 + x3 − 0.2y2 (26a)

y2 =
√
y1 + x1 + x3 (26b)

where y1 and y2 are the coupling variables and x1, x2 and x3 are the uncertain vari-

ables. The uncertain variables are assumed to have Gaussian distribution with mean

µxi = 1.0 and standard deviation σxi = 0.1. Uncertain variables x1 and x3 are as-

sumed to be dependent with correlation ρx1,x3 . The correlation is varied between

(−0.95, 0.95) and for each setting of ρx1,x3 an integrated UMDA process is carried out

to estimate the joint distribution of coupling variables. In each integrated UMDA
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process, 500,000 samples of uncertain variables are used and for each instance of

uncertain variables a deterministic MDA problem is solved to find the solution of

coupling variables. Samples of converged coupling variables are then used to evaluate

the correlation of coupling variables for each setting of ρx1,x3 . Figure 26a shows the

correlation of coupling variables ρy1,y2 as a function of correlation of input uncertain

variables ρx1,x3 .

Consider a system metric of the form

f = y2 − αy1 (27)

where statistics on f is estimated by using the samples of converged solutions of the

coupling variables and α is a parameter which is varied between 0.5 and 0.9. Fig-

ure 26b shows the trend of standard deviation of the system metric, σf as a function

of ρx1,x3 for different setting of α. As observed, only in the case of α = 0.9, σf is

not sensitive to the dependency of uncertain variables. Only in this scenario, dis-

tributed UMDA methods based on Moment-Matching such as CO and ATC-based

UMDA methods are appropriate, which assumes independence in the coupling vari-

ables. However in all the other setting of α, σf is sensitive to the dependency of

uncertainty variables. Under these scenarios, it is important to handle the depen-

dency among uncertainty variables, which is not handled by the distributed UMDA

methods based on Moment-Matching approach.

The challenges related to dependency and interdisciplinary compatibility leads to

the first research question:

Research Question 1.0: What is an appropriate method to accurately quan-

tify the uncertainty on system metric and joint distribution of coupling vari-

ables while handling the dependency and interdisciplinary compatibility in a

distributed multidisciplinary analysis under uncertainty?
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(a) Correlation of coupling variables ρy1,y2

as a function of correlation of input uncer-
tainty variables ρx1,x3

(b) Standard deviation of the system metric,
σf as a function of ρx1,x3 for different setting
of α

Figure 26: Effect of dependency between uncertainty variables on the coupling vari-
ables and system metric

3.2 Challenges with Probabilistic Modeling of Disciplines

One of the commonly used approaches to improve the computational efficiency for

design space exploration and optimization in a deterministic multidisciplinary analysis

is to build deterministic surrogate models [23]. Deterministic surrogate models are

built for disciplinary output as a function of input variables, yi = f̃i(x) . This

approach allows each discipline to carry out their analysis independently and build

a deterministic surrogate of disciplinary output as a function of design variables and

input coupling variables. System level uses these surrogates to execute a integrated

single-level multidisciplinary analysis to achieve interdisciplinary compatible solutions

and consistent system level metrics. Beside, these surrogate models are of simple

algebraic forms, which makes them a computationally efficient option to carry out

optimization and design space exploration in a multidisciplinary setting.

A similar approach is also used in UMDO, where each discipline build surrogates

of disciplinary metrics as a function of input variables and uncertainty variables,

yi = f̃i(x,ui). Nevertheless, in many scenarios the disciplines may have inherent
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aleatory uncertainties or noises such as numerical error, structural uncertainty, ex-

perimental uncertainty, interpolation uncertainty, etc. In some cases, expert judgment

is also used to improve the disciplinary models. For example, safety factors used in

engineering analysis are provided by the disciplinary experts based on their expe-

riences and expert judgment. Generally, these factors are also uncertain and add

up to the overall uncertainty of the discipline. Unlike parameter uncertainty, these

uncertainties may not always have an explicit form and generally act like a noise.

Therefore, instead of deterministic surrogate model of the form yi = f̃i(x,ui), a non-

deterministic model of the form yi = f̃i(x) + εi is more applicable, where εi is the

inherent noise or uncertainty associated with the discipline.

Probabilistic modeling is one of the common approaches to model disciplinary

function of the form yi = f̃i(x) + εi. In probabilistic modeling, the uncertainty or the

noise is defined by a certain probability distribution function and hence disciplinary

output is given by conditional probability distribution for any given input variable set-

ting. For example, assuming the uncertainty is defined by Gaussian distribution, con-

ditional probability of disciplinary output is given as P(y|x,w) = N (y|µ(x,w), β−1),

where µ(x,w) is the function determining the mean for a given value of x, w are

the unknown parameters of the mean function, β is the unknown precision or inverse

of variance of the uncertainty. Some of the commonly used probabilistic models are

Bayesian regression, Gaussian Processes, Probabilistic Neural Network, etc [108].

Although many probabilistic models exist in statistics and machine learning liter-

ature, there are some limitations in these models when applied to probabilistic mod-

eling of engineering disciplines for multidisciplinary analysis. The limitations which

have the most effect on uncertainty quantification in an UMDA are non-Gaussian

noises, heteroskedasticity, and multivariate responses. Generally, most of the proba-

bilistic models assume that the uncertainty on output variables have Gaussian dis-

tribution. Although these assumptions are valid for most of the scenarios where
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these uncertainties arise due to random noise, this may not be valid if some local

disciplinary uncertainty causes non-Gaussian behavior in the disciplinary outputs.

Although probabilistic models like the Generalized linear model (GLM) allows uncer-

tainty distribution models other than Gaussian distribution, this approach assumes

that uncertainty will follow the same distribution form in the entire space of x. How-

ever, this assumption breaks down when the form of uncertainty distribution varies

with x.

Another challenge is to model heteroskedasticity, which refers to the situation

when variance of output variables varies in the range of input variables. Most of

the probabilistic models assume that the variance or precision of output variable

is constant in the design space. Nonetheless, this is not always true for a typical

disciplinary analysis. For example, consider an aerodynamic discipline which uses

the Euler equation to carry out aerodynamic analysis. Since the Euler equation is

valid for inviscid flow, uncertainty of the analysis will be small for smaller values of

Mach number. However, as the Mach number increases, the uncertainty will rise due

to the viscous effect of the flow condition.

Also, engineering subsystem or disciplinary analysis may have multiple responses

and these responses are functionally dependent and in the presence of uncertainties

these multiple responses are also statistically dependent on each other. Therefore,

it is also important to model their dependencies in addition to their conditional dis-

tributions. An approach to extend the probabilistic modeling of a single response

to multivariate responses is by using a parametric multivariate distribution function

such as multivariate Gaussian distribution as P(y|x,w) = N (y|µ(x,w),Σ), where

y ∈ R1×n is vector of n outputs and µ(x,w) is multivariate regression of condi-

tional mean and Σ ∈ Rn×n is a covariance matrix. The limitation of using multi-

variate Gaussian distribution is that it assumes that the marginal distribution for
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each response is a Gaussian distribution. Limited options are available to model non-

Gaussian marginal distributions using a parametric multivariate distribution function

such as Matrix gamma distribution, Multivariate t-distribution, Wishart distribution,

Hotelling’s T-squared distribution, etc. Models using any of these parametric multi-

variate distribution functions have the limitation that the marginal distribution and

dependence structures are fixed and the dependence information is coupled with the

marginal distribution.

This leads to the second research question:

Research Question 2.0: What is an appropriate probabilistic modeling

technique to comprehensively model conditional probability of multivariate

disciplinary response with heteroskedasticity and statistical dependence ?

3.3 Challenges in Distributed UMDO

In a general procedure to carryout distributed UMDO, system optimizer carries out

uncertainty-based design on system level metric, provides uncertainty information

on the coupling variables to the subsystems, and maintains the interdisciplinary

compatibility and design constraints. Each subsystem level optimizer carries out

uncertainty-based design at subsystem level while considering the local uncertainties

and maintaining its local reliability constraints. The uncertainty on non-local or cou-

pling variables are handled through some coordination procedure. The coordination

procedure also provides sensitivity information to the subsystem optimizer to deter-

mine the cost function for the optimization process. For example, if increasing the

range is the purpose of a system level optimizer, an aerodynamic discipline will try

to minimize “negative” of lift to drag ratio (−L/D) while a structural discipline will

minimize “positive” of take-off gross weight (WTOGW ).

Two commonly used coordination procedures are target matching strategy and

approximate model sharing strategy (both discussed in detail in Chapter 6). Methods
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based on target matching strategy such as CO-based method, ATC-based methods,

etc. can carry out distributed optimization under uncertainty; however handling of

dependencies of coupling variable is limited. Although these methods can handle non-

deterministic disciplines, they assume coupling variables have Gaussian distribution

and represent the uncertainty on coupling variables by using the mean and standard

deviation. A method based on approximate model sharing strategy such as a CSSO-

based method, can handle the dependencies and non-Gaussian coupling variables.

However, they are not applicable to non-deterministic disciplines, as they are limited

by deterministic approximated models. The characteristics of distributed UMDO

methods are compared in Table 2.

All the aforementioned characteristics such as handling of dependencies, interdis-

ciplinary compatibility, non-Gaussian uncertainties and heteroskedasticity are impor-

tant for accurate quantification of dependencies as well as uncertainty on coupling

variables and system level metrics. Based on the limitation of existing distributed

UMDO method the third research question is:

Research Question 3.0: What is an appropriate procedure to carry out

distributed optimization of a multidisciplinary system under uncertainty to

accurately quantify the dependency and uncertainty on coupling variables and

system metrics for non-deterministic disciplinary analyses ?
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CHAPTER IV

PROBABILISTIC ANALYSIS OF DISTRIBUTED

MULTIDISCIPLINARY ARCHITECTURES (PADMA)

In this chapter, Probabilistic Analysis of Distributed Multidisciplinary Architecturess

(PADMA) methodology has been developed to answer the first research question.

Research Question 1.0: What is an appropriate method to accurately quan-

tify the uncertainty on system metrics and joint distribution of coupling vari-

ables while handling the dependency and interdisciplinary compatibility in a

distributed multidisciplinary analysis under uncertainty?

Hypothesis 1.0: In a distributed multidisciplinary analysis under uncer-

tainty, if accurate conditional probability density functions of disciplinary

metrics are available from each discipline, then Probabilistic Analysis of Dis-

tributed Multidisciplinary Architectures (PADMA) can accurately quantify

the uncertainty on system metrics and joint distribution of coupling variables

by evaluating probability of Event of Interdisciplinary Compatibility (EIC).

In the next section, a general overview of dependence of random variables and

modeling of joint probability density function with probabilistic graphical model is

discussed. Then, PADMA methodology is discussed in detail for both feed-forward

and feedback couplings. This is followed by a discussion on the numerical procedure to

carry out the PADMA method. The hypothesis is then validated by using numerical

experiments on two problems, and results are compared with benchmark and state of

the art method. In the last section, an overall summary of the chapter is discussed.
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4.1 Approach Overview

In statistics two random variables, A and B are dependent if their joint probability

is not equal to the product of their probabilities i.e P(A,B) 6= P(A)P(B). One of the

common metrics to quantify dependency is correlation coefficients, ρ. Pearson’s cor-

relation coefficient is one of the commonly used correlation coefficient to model linear

dependencies. For examples, consider n continuous random variables x = [x1, . . . , xn]

with Gaussian distribution with mean vector µ = [µx1 , . . . , µxn ]T , standard deviation

σ = [σx1 , . . . , σxn ]. If a correlation coefficient matrix R is defined such that ith col-

umn and jth row contains the correlation coefficient of xi and xn i.e. Rij = ρij and

Rij = Rji, then the joint distribution of x is given as x ∼ N (µ, Σ), where

N (µ, Σ) =
1√

(2π)n|Σ|
exp

(
−1

2
(x− µ)TΣ−1(x− µ)

)
, (28a)

where Σ = diag(σ)Rdiag(σ) (28b)

where diag(σ) is a diagonal matrix with diagonal entries σx1 , . . . , σxn . However, Pear-

son’s correlation coefficient is only sensitive to the linear relationship between random

variables, and Equation 28 assumes a multivariate Gaussian dependency structure

with Gaussian marginal distributions. Although other correlation coefficients and

joint distribution functions exist for non-linear dependencies and non-elliptical de-

pendency structures, they are limited.

A general form of joint density function is given by general product rule in prob-

ability theory [38]. Using general product rule for n continuous random variable

x1, . . . , xn, joint probability density function is given as

fx(x1, . . . , xn) = fxn(xn|xn−1, . . . , x1)fxn−1(xn−1|xn−2, . . . , x1) · · · fx1(x1) (29)

where the order of the variables is arbitrary and fxk(xk|xk−1, . . . , x1) is the conditional

probability density function of xk given xk−1, . . . , x1. This formulation does not as-

sume any correlation or dependency structures. The dependencies are embedded
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Figure 27: A notional example of directed acyclic graph used by Bayesian Network
(BN) representing variables and their dependencies

in the conditional probability density functions which define the overall dependency

structure of the joint distribution. For a two random variable x1 ∼ N (µx1 , σx1) and

x2 ∼ N (µx2 , σx2) and correlation coefficient ρ, one can retrieve Equation 28 by us-

ing fx2(x2) = N (µx1 , σx1) and fx1(x1|x2) = N
(
µx1 +

σx1

σx2
ρ(x2 − µx2), (1− ρ2)σ2

x1

)
in

Equation 29.

The general form of the joint density function is particularly appropriate for an

engineering analysis problems under uncertainty where the functional relationship

between the input and output variables are non-linear and the probability density

function of input or output does not have a general parametric form. As in an

engineering analysis with x as an input and y as an output, modeling joint distribution

with Equation 29 as fxy(x, y) = fy(y|x)fx(x) allows greater flexibility as compared to

assuming a fixed joint distribution function as in Equation 28.

In the domain of Probabilistic Graphical Model of Machine Learning [149], the

general form of joint distribution given by Equation 29 forms the fundamental equa-

tion to model joint distribution of random variables. Bayesian Network (BN) [150]

is one of the commonly used probabilistic graphical models which represent the de-

pendencies among random variables using a directed acyclic graph and evaluate the

joint distribution using the general form of joint distribution. In Bayesian Network,
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the random variables are represented using a node and the conditional dependencies

are depicted using arrows. For examples, Figure 27a shows a Bayesian Network of

five random variables x1, x2, x3, x4, and x5. Two arrows going into x3 from x1 and x2

signify that x3 is conditionally dependent on x1 and x2 with some conditional prob-

ability fx3(x3|x1, x2). In this case, x3 is called child node and x1 and x2 are called

parent nodes. The joint distribution of all the variables can be given by

fx(x1, x2, x3, x4, x5) =fx5(x5|x4, x3, x2, x1)fx4(x4|x3, x2, x1)×

fx3(x3|x2, x1)fx2(x2|x1)fx1(x1)

(30)

The graph in Figure 27a is also called a saturated graph as each node is connected

to all the other nodes. In other words, each variable is directly dependent on all

the other variables. However, in most realistic scenarios some variables are only

directly dependent on only a few other variables. For example, Figure 27b shows an

unsaturated graph where only a few variables are directly dependent on each other.

Since in an unsaturated graph some variables have fewer parent nodes, conditional

independence [151] can be applied to their conditional probabilities. For example, as

x5 only depends on x1 in an unsaturated graph, the conditional probability of x5 can

be simplified as

fx5(x5|x4, x3, x2, x1) = fx5(x5|x1) (31)

Applying conditional independence to all the other variables, the joint probability

function of all the variables in the unsaturated graph given in Figure 27b can be

simplified as

fx(x1, x2, x3, x4, x5) = fx5(x5|x1)fx4(x4|x3)fx3(x3|x2, x1)fx2(x2)fx1(x1) (32)

Applying the concept of conditional independence for any arbitrary unsaturated

graph, the the general form of joint distribution given by Equation 29 can be simplified

as

fx(x1, . . . , xn) =
n∏
k=1

fxk(xk|Parent(xk)) (33)
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where Parent(xk) are the set of variables which are the parent nodes of xk.

A variable in an unsaturated graph which is not directly linked or dependent

on some other variable, can still have indirect dependence through the intermediate

variables which lie in the path between the variables 1. For example, consider the

unsaturated graph in Figure 27b. Variable x4 which is the child node of x3 is not

directly dependent on x1. However, x3 is the child node of x4 and is directly dependent

on it. Therefore, any change in x1 will influence x3 which will indirectly affect x4.

In a multidisciplinary problem there exists both direct and indirect dependency.

For example, consider a multidisciplinary problem under uncertainty shown in Fig-

ure 28b. The problem consists of three variables; wing area(S), drag (D), and thrust

(T). Drag is conditionally dependent on wing area due to aerodynamics with con-

ditional probability function fD(D|S). Thrust is conditionally dependent on drag

through propulsion physics, with conditional probability function fT (T |D). Although,

thrust is not directly dependent on wing area, it is indirectly dependent through the

intermediate variable, drag. The joint density function of wing area, drag, and thrust

using Equation 33 is given as

fSDT (S,D, T ) = fT (T |D)fD(D|S)fS(S) (34)

where fS(S) is the probability density function of wing area. The formulation of joint

density function of random variables given by Equation 33 allows modeling of direct

as well indirect dependencies of random variables and is the building block of the

PADMA method developed in the following section.

4.2 PADMA Methodology

Probabilistic Analysis of Distributed Multidisciplinary Architectures (PADMA) is

a distributed UMDA procedure, where each discipline carries out their uncertainty

1Under certain conditions absence of direct dependency between variables may lead to conditional
independence. Please refer to concept of D-separation in the theory of Bayesian Network [150]
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Figure 28: A notional example of MDA problem under uncertainty and Bayesian
Network (BN) of the disciplinary variables

propagation and analysis independently and concurrently. It consists of two levels,

disciplinary level and system level. At the disciplinary level, each discipline carries

out uncertainty propagation independently and concurrently and coordinates with

the system level. At the system level, probability of interdisciplinary compatibility is

evaluated to calculate the accurate joint probability distribution of coupling variables

and system level metrics.

4.2.1 Handling Dependency in Distributed UMDA

In an UMDA with completely decoupled disciplines or subsystems, estimating marginal

distributions of coupling variables is sufficient to accurately quantify the uncertainty

on system metrics. However, if there is coupling between disciplines or if some vari-

ables are shared between disciplines, then it is important to estimate joint distribution

of coupling variables to accurately quantify the uncertainty on system metrics. Joint

distribution of coupling variables not only contains the information of marginal dis-

tribution of each variable, it also contains the dependency information among the

variables.
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Figure 29: Notional examples of completely decoupled and feed-forward coupled
Uncertainty-based Multidisciplinary Analysis (UMDA)

y1 = f1(u1) (35a)

y2 = f2(u2) (35b)

z = fz(y1, y2) (35c)

For example, consider the notional example of completely decoupled UMDA prob-

lem in Figure 29a and given by Equation 35. The output of the first discipline is y1

and and the output of the second discipline is y2. u1 and u2 are uncertain variables

associated with first and second discipline respectively. The disciplinary analyses may

or may not be an explicit functions of uncertain variables, i.e. uncertain variables

can either be parametric (or epistemic uncertainty) or random noise (aleatory uncer-

tainty) or both. System level metric z is a function of y1 and y2. Since the first two

disciplines are completely decoupled from each other, y1 and y2 are statistically inde-

pendent to each other. Therefore, marginal distribution of y1 and y2 is sufficient to

estimate accurate distribution of z. Uncertainty propagation can be carried out inde-

pendently and concurrently by each discipline to estimate the marginal distributions

of y1 and y2.
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y1 = f1(u1) (36a)

y2 = f2(y1, u2) (36b)

z = fz(y1, y2) (36c)

Now, consider the MDA problem with feed-forward coupling in Figure 29b and

given by Equation 36. The only difference in this problem is that it has a feed-forward

coupling from the first discipline to the second discipline. The output of the second

discipline y2 is now also a function of y1. There is a functional relationship between

y1 and y2 in the second discipline which leads to a statistical dependency due to the

presence of uncertain variables u1 and u2. Therefore, to evaluate the uncertainty on

system level metric z, accurate estimation of joint distribution of y1 and y2 is required.

A straightforward approach to carry out uncertainty propagation in feed-forward

MDA is by propagating uncertainty through the first discipline to evaluate uncer-

tainty on y1, given by probability density function fy1(y1). The uncertainty on y1 is

then propagated through the second discipline to evaluate the uncertainty on y2 and

the joint distribution fy1,y2(y1, y2). fy1,y2(y1, y2) is then used to evaluate uncertainty

on z. However, uncertainty propagation independently and concurrently in a dis-

tributed fashion is not a straightforward process because the second discipline needs

the information on uncertainty on y1, i.e. fy1(y1). Therefore, the second discipline

has to wait until the first discipline finishes its uncertainty propagation process. This

creates a sequential process, counteracting the benefit and the need for distributed

UMDA.

However, the general form of joint probability distribution given by Equation 33

paves the path for a way to evaluate joint distribution of coupling variables in feed-

forward UMDA while allowing each discipline to carry out concurrent and indepen-

dent uncertainty propagation. According to Equation 33 the joint density function
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of compatible solutions of coupling variables for feed-forward MDA given by Equa-

tion 36, can be evaluated as

f ∗y1,y2
(y1, y2) = fy1(y1)fy2(y2|y1) (37)

As shown in Figure 30 the first term on the left hand side of the equation fy1(y1)

can be evaluated by carrying out uncertainty propagation in the first discipline in-

dependently. The second term, which is the conditional density function fy2(y2|y1),

is evaluated by following process. At first, a probability density function on y1 for is

guessed for the second discipline. Let gy1(y1) be a guessed density function of y1. The

second discipline uses gy1(y1) to propagate the uncertainty independently and con-

currently to evaluate the joint density of input and output variable as gy1,y2(y1, y2).

Applying the product rule of probability theory, the conditional density function of

y2 given y1 is given as

fy2(y2|y1) =
gy1,y2(y1, y2)

gy1(y1)
(38)

Using this conditional density function evaluated by the second discipline and fy1(y1)

evaluated by the first discipline, joint density function of y1 and y2 is estimated using

Equation 37.

Extending the formulation for n disciplines, the joint probability density function

of compatible solutions coupling variables in feed-forward UMDA under uncertainty

is given as

f ∗y1,...,yn
(y1, . . . ,yn) =

n∏
i=1

fyi|y.i(yi|y.i) (39)

where yi represents output coupling variables of ith discipline, y.i represents input

coupling variables to ith discipline, and fyi|y.i(yi|y.i) is conditional probability density

of outputs of ith discipline. To evaluate fyi|y.i(yi|y.i), each discipline carries out

uncertainty propagation with a guessed density function gy.i(y.i) on input coupling

variables and evaluates the joint distribution of input and output coupling variables
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Figure 30: Distributed uncertainty analysis and propagation in feed-forward coupled
MDA under uncertainty

gyi,y.i(yi,y.i). The conditional density function is then given as

fyi|y.i(yi|y.i) =
gyi,y.i(yi,y.i)

gy.i(y.i)
(40)

4.2.2 Handling Interdisciplinary Compatibility in Distributed UMDA

When there is a feedback coupling in an UMDA, interdisciplinary compatibility is

critical to accurately quantify the uncertainty on coupling variables. Interdisciplinary

compatibility is defined as reaching a consistent solution of coupling variables which

satisfies all the disciplinary relationships simultaneously. This is mathematically

equivalent to a achieving a solution of system of coupled equations, where equations

represent disciplinary analyses.

To understand the concept of interdisciplinary compatibility in feedback coupled

UMDA let’s consider a notional two discipline multidisciplinary problem as shown in

Figure 31a and given by Equation 41.

y1 = f1(y2, u1) (41a)

y2 = f2(y1, u2) (41b)
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Figure 31: Notional demonstration of deterministic multidisciplinary analysis

In this case, y1 and y2 are coupling variables and u1 and u2 are uncertainty vari-

ables. In a deterministic setting, the value of u1 and u2 are known precisely, say

u1 = u′1 and u2 = u′2. Under such a case, the solution of a system of equations

given by Equation 41 is the interdisciplinary compatible solution. Graphically, the

intersection point (y∗1, y
∗
2) of notional disciplinary functions shown in Figure 31b is

the interdisciplinary compatible solution.

In a non-deterministic scenario, the interdisciplinary compatible solution is given

by a joint probability density function over the coupling variables, f ∗y1,y2
(y1, y2). A

straightforward way to evaluate f ∗y1,y2
(y1, y2) is to sample u1 and u2 and evaluate the

deterministic interdisciplinary compatible solution for each instance of u1 and u2.

The joint probability density function f ∗y1,y2
(y1, y2) is evaluated by samples of all the

deterministic solutions. One such method is Simulation Outside Fixed Point Iteration

(SOFPI) where Fixed Point Iteration (FPI) is used to find the deterministic solutions

for each instance of uncertain variables. This is pictorially demonstrated in Figure 32.

Methods like SOFPI are only applicable when the disciplinary functions can be

explicitly determined as a function of uncertain variables. When the disciplinary
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Figure 32: Notional demonstration of uncertainty-based multidisciplinary analysis for
integrated architecture using Simulation Outside Fixed Point Iteration (SOFPI)
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Figure 33: A non-deterministic function
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Figure 34: Notional Fixed Point Iteration (FPI) examples for deterministic and non-
deterministic cases

functions are non-deterministic with implicit uncertainty, it cannot be represented

by an explicit function of uncertain variables. Under such condition, the disciplinary

model generates random output for a fixed value of input due to inherent uncertainty

in the disciplinary analyses. In other words, the output of a disciplinary model for a

fixed value of input is not a deterministic value but a conditional probability density

function of the output as shown in Figure 33.

Under such a circumstance, any root solving algorithm such as fixed point iteration

(FPI) will lead to convergence issues. For example, to solve a notional deterministic

MDA (Figure 34a) using FPI, a guessed value for y1 = y10 is assumed. Note that i in

y1(i)
represents the iteration number. Using y1 = y10 function f2 is used to evaluate

y21 . Next, function f1 is used to evaluate y11 with y21 as input. This completes one

iteration of FPI. If y11 is not same as y10 , convergence is not achieved; then FPI

carries out another iteration to evaluate y22 and y12 . The process is repeated until

convergence is achieved.

To understand FPI in an uncertainty scenario, consider a similar MDA problem

with disciplinary uncertainty. For simplicity, it is assumed that only the second

discipline f2 is non-deterministic. As explained earlier, if f2 is evaluated with the

fixed value of y1 multiple times, then each time it will generate a random sample of
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Figure 35: Integrated UMDA without feedback coupling used in Likelihood Approach
for Multidisciplinary Analysis (LAMDA)

y2. To carry out FPI, a guessed value for y1 = y10 is assumed and a random instance

of f2 is used to evaluate y21 with y10 as input. Next, the deterministic function f1 is

used to evaluate y11 with y21 as input. In the next iteration, another random instance

of f2 is used to evaluate y22 with y11 as input. This is carried on until convergence

is achieved. But as seen in Figure 34b, due to non-deterministic behavior of f2, it is

infeasible to achieve convergence, i.e. y1i = y1i−1
or y2i = y2i−1

cannot be achieved.

Alternatively, a probabilistic approach can be used to find solutions which satisfy

interdisciplinary compatibility. One such approach has been developed by Sankarara-

man and Mahadevan [152] and it is called Likelihood Approach for Multidisciplinary

Analysis (LAMDA). In LAMDA, the entire UMDA is considered as a single function

by removing all the feedback coupling links. For given values of coupling variables,

uncertainty propagation is carried out through integrated UMDA without feedback

coupling and the likelihood of interdisciplinary compatibility is evaluated. The like-

lihood information is then used to calculate the converged probability distribution of

uncertain coupling variables.

For example, consider the coupled multidisciplinary analysis with two disciplines

given by non-deterministic functions y1 = f1(y2) and y2 = f2(y1). Both disciplines

are integrated into a single function given by yo2 = G(y2) = f2(f1(y2)) as shown

in Figure 35. G(y2) is non-deterministic, therefore for a given value of y2 = y∗2, it
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will generate a probability distribution on yo2 given by fyo2(yo2|y∗2). Interdisciplinary

compatibility is satisfied if y∗2 = yo2. Since, yo2 is a random variable given by a con-

ditional probability density, the likelihood that a given value of y2 = y∗2 will satisfy

interdisciplinary compatibility is given as

L(y∗2) ∝ P(yo2 = y∗2|y∗2) =

∫ y∗2+ε/2

y∗2−ε/2
fyo2(yo2|y∗2)dy2 (42)

for some specified tolerance ε. The probability density of converged coupling variable

is given as

f(y∗2) =
L(y∗2)∫
L(y2)dy2

(43)

The probability distribution of y1 can then be evaluated by propagating uncertainty

through y1 = f1(y2) using the converged distribution of y2 as input.

Although, LAMDA can evaluate the probability density of interdisciplinary com-

patibility solutions for non-deterministic disciplines, it requires propagation of uncer-

tainty through an integrated UMDA. Therefore, the LAMDA method is not appro-

priate for distributed and concurrent multidisciplinary problems.

To achieve an interdisciplinary compatible solution in a distributed UMDA, let’s

look into a different view point of interdisciplinary compatibility using the exam-

ple given in Equation 41. In a deterministic scenario with fixed value of uncertain

variable u1 = u′1 and u2 = u′2, a setting y1 = y∗1 and y2 = y∗2 is considered to be

interdisciplinary if the first discipline yields y∗1 as an output by taking y∗2 as input

and the second discipline yields y∗2 as an output by taking y∗1 as input. Analogous

to a deterministic setting, if f ∗y1,y2
(y1, y2) is the joint probability density of interdis-

ciplinary compatible solutions with f ∗y1
(y1) and f ∗y2

(y2) as marginal density function

of y1 and y2 respectively, then uncertainty propagation of y2 with probability density

function f ∗y2
(y2) through the first discipline will yield the f ∗y1,y2

(y1, y2) as the joint den-

sity function of input (y2) and output (y1). Also, uncertainty propagation of y1 with

probability density function f ∗y1
(y1) through the second discipline will yield same joint
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density function, f ∗y1,y2
(y1, y2), of input (y1) and output (y2). This is shown pictorially

in Figure 36

ଵݕ = ଵ݂ ଵݑ,ଶݕ

ଶݕ = ଶ݂ ଶݑ,ଵݕ
ଵݕ

ଶݕ
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௬݂భ௬మ
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௬݂భ
∗ (ଵݕ)

௬݂భ௬మ
∗ (ଶݕ,ଵݕ)

Figure 36: Another view point of interdisciplinary compatible solution under uncer-
tainty

Since, the probability density of interdisciplinary compatible solutions of coupling

variables are not known apriori, one can guess some probability density function of

input coupling variable, and propagate that through its respective discipline concur-

rently and independently. For example, as shown in Figure 37, g
(1)
y2 (y2) is a guessed

probability density function over y2 and is propagated through the first discipline to

evaluate joint distribution of g
(1)
y1,y2(y1, y2). Concurrently, g

(2)
y1 (y1) is a guessed prob-

ability density function over y1 and is propagated through the second discipline to

evaluate joint distribution of g
(2)
y1,y2(y1, y2). Please note superscript ()(i) signifies the

variable and density function associated with ith discipline. If g
(1)
y2 (y2) and g

(2)
y1 (y1)

are marginal density functions of interdisciplinary compatible solutions then the joint

distribution g
(1)
y1,y2(y1, y2) and g

(2)
y1,y2(y1, y2) will be same. Otherwise, one can iteratively

modify g
(1)
y2 (y2) and g

(2)
y1 (y1) until D

(
g

(1)
y1,y2(y1, y2), g

(2)
y1,y2(y1, y2)

)
= 0, where D() is the

distance metric for a probability density function such as K-L Divergence [153]. This

procedure is similar to the Moment-Matching method where instead of matching only
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a few moments of probability density function, the entire joint density function of cou-

pling variables from each discipline are matched. However, the iterative nature of this

procedure may be computationally expensive and can easily become intractable for

high dimensional problems.
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ଵݕ = ଵ݂ ଵݑ,ଶݕ ଶݕ = ଶ݂ ଶݑ,ଵݕ

ଵݕ

݃௬భ
ଶ (ଵݕ)

Figure 37: Propagation of uncertainty concurrently in each discipline with some as-
sumed density functions over coupling variables

Instead of the iterative approach, in PADMA methodology the likelihood of Event

of Interdisciplinary Compatibility (EIC) is calculated using the information from

g
(1)
y1,y2(y1, y2) and g

(2)
y1,y2(y1, y2). Event of Interdisciplinary Compatibility or EIC for

some setting of coupling variables (y∗1, y
∗
2) takes the value of 1 if it satisfies the de-

terministic interdisciplinary compatibility for some instance of uncertain variable,

otherwise the value of EIC is 0. For example, for the notional example the EIC is

given by Equation 44.

EIC(y∗1, y
∗
2) =


1 if y∗1 = f1(y∗2, u1) & y∗2 = f2(y∗1, u2) for a instance of (u1, u2)

0 otherwise

(44)
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One can sample multiple instances of uncertain variables to evaluate the joint

probability of P(EIC(y∗1, y
∗
2) = 1), which is equivalent to the probability of (y∗1, y

∗
2)

satisfying interdisciplinary compatibility. The process can be repeated for different

settings of y1 and y2 to estimate a joint probability density function f ∗y1,y2
(y1, y2)

of interdisciplinary compatible solutions. However, for non-deterministic disciplines

where sampling of disciplinary uncertain variables cannot be controlled, the likelihood

of EIC(y∗1, y
∗
2) = 1 is estimated. The likelihood of EIC(y∗1, y

∗
2) = 1 is given as

L (EIC(y∗1, y
∗
2) = 1) ∝ f

(1)
y1|y2

(y∗1|y∗2) · f (2)
y2|y1

(y∗2|y∗1) (45)

where f
(1)
y1|y2

(y1|y2) is the conditional probability density function of y1 conditioned on

y2 evaluated by first discipline, and f
(2)
y2|y1

(y2|y1) is the conditional probability density

function of y2 conditioned on y1 evaluated by the second discipline, as depicted in

Figure 38. The conditional probability density function is evaluated using the general

product rule as f
(1)
y1|y2

(y1|y2) = g
(1)
y1,y2(y1, y2)/g

(1)
y2 (y2), where g

(1)
y2 (y2) is the guessed

probability density of y2 and g
(1)
y1,y2(y1, y2) is the joint density of input y2 and output

y1 evaluated after uncertainty propagation through the first discipline. Similarly,

f
(2)
y2|y1

(y2|y1) = g
(2)
y1,y2(y1, y2)/g

(2)
y1 (y1), where g

(2)
y21(y1) is the guessed probability density

of y1 and g
(2)
y1,y2(y1, y2) is the joint density of input y1 and output y2 evaluated after

uncertainty propagation through the second discipline.

The joint probability density function for interdisciplinary compatibility is then

given as

f ∗y1,y2
(y1, y2) =

1

c
f

(1)
y1|y2

(y1|y2)f
(2)
y2|y1

(y2|y1) (46)

where c is the constant such that probability axiom
∫
fy1,y2(y1, y2)dy1dy2 = 1 holds.The

constant c is given as

c =

∫
y1

∫
y2

f
(1)
y1|y2

(y1|y2)f
(2)
y2|y1

(y2|y1)dy1dy2 (47)

Extending the formulation of the probability of interdisciplinary compatibility for

91



��

��

���|��

(�)
 (��|��)

���|��

(�)
 (��|��)

(��, ��)

��

��

Figure 38: Notional representation of evaluation of probability of event of interdisci-
plinary compatibility

n disciplines, the joint probability density function of coupling variables is given as

f ∗y1,...,yn
(y1, . . . ,yn) =

1

c

n∏
i=1

f
(i)
yi|y.i(yi|y.i) (48)

where yi represents output coupling variables of ith discipline, y.i represents input

coupling variables to ith discipline, and f
(i)
yi|y.i is the conditional probability density of

ith discipline. Please note that the boldface is used to represent coupling variables to

suggest that the disciplines can have more than one input and output. The constant

c is given as

c =

∫
y1

· · ·
∫
yn

n∏
i=1

f
(i)
yi|y.i(yi|y.i) dy1 . . . dyn (49)

To evaluate the conditional density function f
(i)
yi|y.i(yi|y.i) of ith discipline, each

discipline carries out uncertainty propagation with a guessed density function g
(i)
y.i(y.i)

on input coupling variable and evaluates the joint distribution of input and output

coupling variables g
(i)
yi,y.i(yi,y.i). The conditional density function is then given as

f
(i)
yi|y.i(yi|y.i) =

g
(i)
yi,y.i(yi,y.i)

g
(i)
y.i(y.i)

(50)

It must be noted that the form of joint density function of coupling variables

for feed-forward coupled UMDA given by Equation 39 and feedback coupled UMDA
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given by Equation 48 are similar, except for the constant c in Equation 48. However,

Equation 48 is a general form of joint density function of coupling variables which

can be used for purely feed-forward coupled UMDA or UMDA with a mixture of

feed-forward and feedback coupling.

4.2.3 Criteria for Guessed Probability Density Functions

The conditional density function given by Equation 50 is only valid within the domain

or support of guessed probability density function g
(i)
y.i(y.i). For any value of y.i outside

the domain of guessed probability density g
(i)
y.i(y.i), the conditional probability of y.i is

zero and f
(i)
yi|y.i becomes indeterminate. Therefore, it is important that the domain of

guessed probability density function g
(i)
y.i(y.i) is large enough such the interdisciplinary

compatible solutions lie within this domain. For example, if Ω∗y1,y2
is the domain of

interdisciplinary compatible solutions for notional examples given by Equation 41 and

Ω′y1,y2
is the domain or support of guessed probability density function of y1 and y2,

then Ω∗y1,y2
⊂ Ω′y1,y2

must satisfy, as shown in Figure 39.
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ᇱ
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݃௬భ
ଶ (ଵݕ)

Figure 39: Criteria for domain of guessed density functions

Since, the probability distribution of compatible solution or its domain is not

known apriori, engineering judgment can be used to start with conservatively wider
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domain for guessed density functions. However, if the assumed domain of input cou-

pling variables are excessively large then it might lead to an increase in computational

expense for uncertainty propagation.

A semi-iterative alternative is to start with relatively smaller guessed domain of

g
(i)
y.i(y.i) around the predefined deterministic baseline. Carry out the PADMA process

to evaluate the likelihood of interdisciplinary compatibility of the coupling variables

at the boundary of the guessed domain. If the likelihood is zero or smaller than some

specified tolerance εEIC , at all the domain boundaries, then the guessed domain is

appropriate. Otherwise, if the likelihood at any boundary is non-zero or greater than

some specified tolerance εEIC , then domain boundaries are extended and g
(i)
y.i(y.i) is

redefined for the extended domain and PADMA process is repeated.

If the disciplines are deterministic, then a quantitative approach to estimate a

good approximation of the domain of compatible solutions can be done by carrying

out a deterministic analysis at the mean of uncertain variables to evaluate the first

order mean value of all coupling variables. First order variance of coupling variable

yij which is the output of ith discipline, and input to jth discipline is estimated as

V ar(yij) =
n∑
k=1

(
dyij
duk

)
V ar(uk) (51)

where uk are uncertain variables and the first order derivatives are calculated using

Sobieski’s Global Sensitivity Equations (GSE) [154] as

dyij
duk

=
∂yij
∂uk

+
∂yij
∂yji

∂yji
∂uk

(52)

where all the derivatives are evaluated at mean of uncertain variables. Using the

first order values of mean and variance of compatible solutions, one can estimate the

domain of coupling variable as [µyij − κσyij , µyij + κσyij ], where κ is a parameter to

represent confidence interval. For example, if the coupling variable follows a Gaussian

distribution, then the domain represented with κ = 3.0 will cover 99.7% of compatible

solutions.
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Functional form of guessed probability density functions No assumption is

made for the functional form of guessed probability density functions g
(i)
y.i(y.i). Any

parametric or non-parametric probability density function with appropriate domain

can be used to carry out the PADMA method. However, using a functional form

of uniform distribution for a guessed density function has an advantage. If uniform

distribution is assumed, then g
(i)
y.i(y.i) is constant for any value of y.i. In such cases,

the conditional density function of disciplinary output is given as

f
(i)
yi|y.i(yi|y.i) ∝ g(i)

yi,y.i
(yi,y.i) (53)

Therefore, the conditional density function f
(i)
yi|y.i(yi|y.i) can be directly estimated

from the samples of coupling variables generated by disciplinary uncertainty propa-

gation if uniform distribution is assumed for g
(i)
y.i(y.i).

4.2.4 Sampling of Interdisciplinary Compatible Solutions

In an UMDA with only feedback coupling, the dependency structure and the form of

joint density function given by Equation 39 is exactly same as directed acyclic graph-

based probabilistic model such as Bayesian Network. Any method used in Bayesian

Network such as Markov Chain Monte Carlo (MCMC) method, Likelihood-weighting

sampling [155], Importance sampling [156], Acceptance-Rejection sampling [157], etc.

can be directly used for feed-forward UMDA problems. However, in feedback coupled

UMDA, the dependency structure is not a directed acyclic graph due to feedback

loops, and sampling methods used in Bayesian Network cannot be directly applied.

To sample interdisciplinary compatible solutions in feedback UMDA, the main

challenge is to evaluate the integral c used in Equation 48 and given by Equation 49.

The integral can be evaluated using numerical integration techniques such as Gaussian

quadrature, Simpson’s quadrature, etc [158]. Although most of the quadrature based

algorithms are applicable only for a one-dimensional integral, one can decompose

this multidimensional integral into multiple one-dimensional integrals and apply the
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quadrature algorithm recursively.∫
y

∫
x

f(x, y)dxdy =

∫
y

(∫
x

f(x, y)dx

)
dy (54)

Alternatively, Monte Carlo methods such as Metropolis Hastings algorithm, Gibbs

sampling, etc [117] can be used to evaluate the integral. Some methods like Slice

sampling [159] can bypass the evaluation of the integral c and directly sample the

interdisciplinary compatible solutions by using the proportionality information

f ∗y1,...,yn
(y1, . . . ,yn) ∝

n∏
i=1

f
(i)
yi|y.i(yi|y.i). (55)

In the current work a hybrid method for sampling has been used using Bayesian

Network sampling and weighted sampling [160]. In the first step of the hybrid method,

all the feedback coupling is ignored and samples of coupling variables are generated

utilizing any approach used in Bayesian Network, such as Likelihood-weighting sam-

pling, Importance sampling, Acceptance-Rejection sampling, etc. Next, each sample

is given a weight based on conditional probability of feedback coupling variables. A

weight associated with the kth sample is given as

wk =
n∏
i=1

f
(i)
yc
i |y.i

(yc
i k|y.ik) (56)

yc
i k is the vector of values of feedback coupling variables of ith discipline in kth sample

and y.ik is the vector of values of input to ith discipline in kth sample. A weighted

re-sampling is carried out using the samples generated by Bayesian Network with

feed-forward sampling and associated weight given by wk.

For example, consider the dependency graph of coupling variables in Figure 40.

Each arrow represents a conditional probability. The black arrow represents the feed-

forward coupling and the red dashed arrow represents the feedback coupling. Since the

graph is not a directed acyclic graph, a Bayesian Network sampler cannot be used to

sample the coupling variables. However, if the feedback couplings are removed, then
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Figure 40: A notional dependency graph of coupling variables in UMDA

samples of coupling variables can be generated using any efficient Bayesian Network

sampling method from the joint density function given as

fy(y1, . . . , y5) = fy5(y5|y2, y3)fy4(y4|y2)fy2(y2|y1)fy1(y1)fy3(y3) (57)

Once the samples are generated from a feed-forward network, each of the samples is

given a weight based on the conditional probability of feedback coupling as

wk = fy1(y1k |y5k)fy3(y3k |y4k) (58)

where y1k , y3k , y4k and y5k is the value of y1, y3, y4 and y5 in kth sample and fy1(y1|y5)

and fy3(y3|y4) are the conditional probability function of y1 and y3. Finally a weighted

re-sampling is carried with wk as weight associated with kth samples generated by

Bayesian Network sampler. The new set of samples of y1, . . . , y5 satisfies the depen-

dency given by the dependency network Figure 40 and are interdisciplinary compatible

solutions.

4.3 Numerical Procedure for PADMA

The flow chart of numerical procedure for PADMA is given in Figure 41. The details

of each step are as follows:

1. Start
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Figure 41: Flow chart of PADMA procedure

2. Guess probability density function of input coupling variables: Prob-

ability density functions of input coupling variables, g
(i)
y.i(y.i) are guessed. Al-

though the functional form of probability density functions are not critical, but

it is important that the assumed domain of input coupling variables should con-

tain the compatible solutions, i.e. Ω∗y·i
⊂ Ω′y·i

. Therefore, a best possible size

of domain Ω′y·i
is estimated to define the guessed probability density function.

3. Concurrently carry out uncertainty propagation in each discipline:

Uncertainty propagation is carried out in each discipline concurrently and inde-

pendently. Each discipline can use its preferred method of uncertainty propaga-

tion such as Monte Carlo Simulations, Markov Chain Monte Carlo, Polynomial

Chaos Expansion, etc [161]. Next, the conditional probability density function
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of output coupling conditioned on input coupling variable f
(i)
yi|y.i(yi|y.i) is eval-

uated and modeled. Conditional probability density functions can be modeled

by using parametric methods like Bayesian regression, etc. or non-parametric

approaches such as Gaussian Processes etc. In the current work quantile copula

regression is used, details of which will be discussed in the following chapter.

4. Generate samples of interdisciplinary compatible solutions: After un-

certainty propagation and modeling of conditional probability density functions

of coupling variables in each discipline, samples of interdisciplinary compatibles

solutions are generated using Equation 48 and joint density function coupling

variables are evaluated.

5. Check for convergence: In the last step, the domain of interdisciplinary

compatible solutions of all coupling variables are estimated. Domain (Ω∗y·i
) of a

coupling variable y·i can be given as [µy·i−κσy·i , µy·i+κσy·i ], where µy·i and σy·i

is the statistical mean and standard deviation of interdisciplinary compatible

samples of y·i evaluated in step 4 and with a nominal value of κ = 3.0. If

Ω∗y·i
6⊂ Ω′y·i

, then the process is repeated by updating the assumed domain Ω′yij

in step 2, such that Ω∗y·i
⊂ Ω′y·i

. Otherwise, if Ω∗y·i
⊂ Ω′y·i

, then process is

terminated.

4.4 Numerical Experiments

Purpose of experiments: To prove that the PADMA method can accurately quantify

the dependence among coupling variables and uncertainty on system metric, while al-

lowing distributed and concurrent uncertainty analysis in a multidisciplinary problem

under uncertainty
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4.4.1 Benchmark and State of the Art methods

The benchmark method against which the results of the PADMA method is com-

pared is Simulation Outside Fixed Point Iteration (SOFPI) which is a fully integrated

UMDA method. The results are also compared with the Moment-Matching (MM)

method, which is the current state of the art on decomposition and coordination-based

UMDO strategy for non-deterministic disciplinary functions. Since most commonly

used MM-based methods in literature (ex, CO-based, ATC-based, etc.) are developed

for UMDO, MM method used in this chapter carries out UMDA by only minimiz-

ing the discrepancy between system target moments (mean and standard deviation)

and disciplinary achievable moments of coupling variables to achieve interdisciplinary

compatibility.

4.4.2 Experimental Metrics

To measure the accuracy of PADMA method to quantify the uncertainty on system

metric, statistical mean (µ), standard deviation (σ), and skewness (γ) are compared

with the SOFPI and MM methods. To compare the probability density functions of

system metric, Kullback-Leibler (K-L) divergence is used, which is a commonly used

divergence measure in probability theory and information theory.

Kullback–Leibler (K-L) divergence Kullback-Leibler (K–L) divergence is a di-

vergence measure which measures the relative entropy between two probability distri-

butions. K-L divergence is also used as a measure of mismatch between two probabil-

ity density functions. For two distributions P and Q for continuous random variables

K-L divergence is give as:

DKL(P‖Q) =

∫ ∞
−∞

p(x) log
p(x)

q(x)
dx. (59)

K-L divergence is not symmetric, i.e. DKL(P‖Q) 6= DKL(Q‖P ), and does not follow

the triangle inequality. Therefore, it is not a true distance measure. KL divergence is
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always non-negative and it is zero if and only if p(x) and q(x) are exactly the same.

To measure the accuracy of the PADMA method to capture the dependencies of

coupling variables, two metrics are used: Pearson’s correlation coefficient (ρ) and

Mutual Information (MI).

Pearson’s correlation coefficient Pearson’s correlation coefficient (ρ) is the mea-

sure of linear dependence between two random variables. The Pearson’s correlation

coefficient between two random variables X and Y is given as

ρX,Y =
E[(X − µX)(Y − µY )]

σXσY
(60)

where µX and µY are the statistical mean and σX and σY are the standard deviation

of X and Y respectively and E is the expectation. The value of Pearson’s correlation

coefficient lies between −1 and 1, where −1 signifies total negative correlation, 0

signifies no correlation, and 1 signifies total positive correlation. Any non-zero value of

correlation signifies there is some dependence between variables, however the reverse

is not true.

Mutual Information Mutual Information (MI) is a measure of the mutual depen-

dence between two random variables. For two discrete events A and B, the amount

of information provided by the occurrence of an event B about the occurrence of an

event A is known as the Mutual Information between A and B. For two continuous

random variables X and Y Mutual Information is given as

MI(X;Y ) =

∫
Y

∫
X

p(x, y) log

(
p(x, y)

p(x) p(y)

)
dx dy, (61)

where p(x, y) is the joint probability distribution function of X and Y , and p(x) and

p(y) are the marginal probability distribution functions of X and Y respectively. High

Mutual Information indicates a large dependency, low Mutual Information indicates a

small dependency, and zero Mutual Information between two random variables means
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Figure 42: Comparison of Pearson’s correlation coefficient and Mutual Information
between random variable with linear and non-linear dependence

the variables are independent. Mutual information is more general and determines

how similar the joint distribution p(X, Y ) is to the products of factored marginal

distribution p(X)p(Y ). As elaborated by Kraskov et al. [162]; ’In contrast to the

linear correlation coefficient like Pearson’s ρ, MI is sensitive also to dependencies

which do not manifest themselves in the covariance. Indeed, MI is zero if and only if

the two random variables are strictly independent ’. For example, consider the scatter

plots of two random variables x and y in Figure 42. In Figure 42a, the variables are

linearly dependent and they are well quantified by the Pearson correlation coefficient

(ρ = 0.90) as well as Mutual Information (MI = 0.75). In Figure 42b the random

variables are non-linearly dependent on each other with an underlying sinusoidal

function. Mutual Information has been able to quantify the non-linear dependence

with a value of MI = 0.42; however Pearson correlation coefficient being a linear

dependence measure was unable to capture the non-linear dependence (ρ = 0.00).

4.4.3 Test Problem Characteristics

Test problems to carry out experiments are selected such that they have following

characteristics:
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� The UMDA problem can be hierarchically decomposed such that disciplinary

analyses can carry out independent uncertainty analysis.

� The UMDA problem should have low to mid level of coupling between disci-

plines, both feed-forward and feedback.

� Disciplinary analyses have non-linear behavior, i.e. disciplinary state variables

are a non-linear function of input coupling variables and uncertainty variables.

� The uncertainty variables can be embedded into disciplinary analyses such that

disciplinary functions can be executed as non-deterministic functions.

� Characteristics of disciplinary uncertainty variables can be modified such that

the method can be tested for non-Gaussian variables.

� Low to moderate number (∼ 3 to 10) number of coupling variables.

� Problem can be evaluated using benchmark UMDA method, SOFPI.

Based on these characteristics two problems are selected. The first problem is

a toll road bridge which is a feed-forward coupled UMDA problem. It has three

disciplines, five coupling variables and five uncertainty variables. The second problem

is an analytical problem with feedback coupling. It has two coupled disciplines,

four coupling variables and five uncertainty variables. In both the problems two

case studies have been carried out, one with all uncertainties defined by Gaussian

distribution and the other one with uncertainties consisting a mixture of Gaussian

and non-Gaussian distribution.

4.4.4 Toll Road Bridge Problem

The toll road bridge [163] is a low-fidelity beam loading analysis consisting of two

subsystems, load analysis and beam analysis, and a system level economics discipline.
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Figure 43: Information flow in toll road bridge problem

There is only feed-forward coupling in the subsystems. The flow of information is

shown in Figure 43.

Load Discipline

X =
1

2
CdρV

2Lt (62a)

Y = Wfreq (62b)

The load analysis evaluates the load on the bridge based on the traffic conges-

tion and aerodynamic forces on the cross-section of the bridge as given by Equa-

tion 62. The input uncertainty variables to the load analysis are traffic frequency

freq (1/vehicle), vehicle weight W (lbf/vehicle), wind speed V (in/sec), and beam

thickness t (in). Other deterministic parameters used in the discipline are coefficient

of drag Cd = 0.5, air density ρ = 4.14× 10−5(lb/in3), and beam length L = 100(in).

The output of the discipline are beam vertical load Y (lbf) and beam horizontal load

X (lbf).
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Beam Discipline

s =
600

wt2
Y +

600

w2t
X (63a)

d =
4L3

Ewt

√
Y

t2

2

+
X

w2

2

(63b)

v = Lwt (63c)

The beam analysis carries out structural analysis on the bridge using a low fidelity

beam model as given by Equation 63. The input uncertainty variables are beam

width w (in), beam thickness t (in), vertical load Y (lbf), and beam horizontal load

X (lbf). Deterministic parameters are beam length L = 100(in) and Modulus of

Elasticity E = 2.9 × 106(lbf/in2). The output of the discipline are maximum stress

s (lbf/in2), maximum displacement d (in), and beam volume v (in3).

Economics

p = freq − v − vol
vol

− s− S
S
− d−D

D
(64)

The economic discipline is the system level discipline which estimates system

level metric, the non-dimensional profit p. The non-dimensional profit is calculated

considering the over all earnings due to traffic and losses due to the maintenance of

the bridge as given by Equation 64. The inputs to the system discipline are maximum

stress s (lbf/in2), beam volume v (in3), and traffic frequency freq (1/vehicle). The

deterministic parameters are maximum displacement D = 7.0(in), maximum beam

volume vol = 1600(in3), and yield stress S = 2× 104(lbf/in2).

Two case studies are carried for the toll bridge problem. In the first case, the

uncertain variables freq,W, V, t and w are assumed to have Gaussian distribution.

The parameters of the distribution are given in Table 3. In the second case non-

Gaussian distribution is assumed for uncertain variables as given in Table 4.

To carry out the PADMA method, the guessed distribution over horizontal load

and vertical load has been assumed to be uniform. The domain of coupling variables

has been estimated by propagating uncertainty through each discipline sequentially
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Table 3: Description of characteristic of uncertainty variables for Toll Road Bridge
problem case-1

Variable Density Function Parameters

freq Gaussian µ = 1.0, σ = 0.01
W Gaussian µ = 1000, σ = 10
V Gaussian µ = 160, σ = 4.47
t Gaussian µ = 4, σ = 0.707
w Gaussian µ = 4, σ = 0.707

Note: µ is mean and σ is standard deviation for Gaussian distribution

Table 4: Description of characteristic of uncertainty variables for Toll Road Bridge
problem case-2

Variable Density Function Parameters

freq Triangular a = 0.0, b = 0.3, c = 2.0
W Uniform l = 960, u = 1030
V Uniform l = 145, u = 175
t Triangular a = 3.0, b = 4.3, c = 4.5
w Uniform l = 3.2, u = 4.8

Note: For triangular distribution a is lower limit, b is peak location, and c is upper limit.

For uniform distribution l the is lower bound, and u is the upper bound.

using 100 samples of uncertain variables. Based on the result of the uncertainty prop-

agation, domain of horizontal load and vertical load were assumed to be X ∈ [60, 150]

and Y ∈ [−500, 2500]. Since, traffic frequency and beam thickness are common un-

certainty variables, they are treated as coupling variables while modeling the con-

ditional probability functions. Next, uncertainty propagation is carried out in load

discipline and beam discipline independently and concurrently. For each discipline,

1000 samples of uncertain variables have been used to carry out uncertainty propaga-

tion. Based on the results of uncertainty propagation, conditional probability models

fy1(X, Y |freq, t) and fy2(d, s, v|X, Y, t) are built in load and beam discipline. To

model the conditional probability models, quantile copula regression has been used

which is discussed in the next chapter. Joint probability density of coupling variables

is then estimated as

f ∗y(X, Y, s, d, v, freq, t) = fy1(X, Y |freq, t)fy2(d, s, v|X, Y, t)ffreq(freq)ft(t) (65)
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To estimate the uncertainty on system metric p, samples of d, s, v and freq are

generated from joint density function given by Equation 65.and used as an input to

the system level economics discipline. The scripts of the disciplinary functions have

been written in MATLAB [164]. Also, to automate the PADMA process, scripts for

PADMA method have been written and executed in MATLAB.

4.4.4.1 Results: Case-1

The probability density function (PDF) and cumulative distribution function (CDF)

of system level metric p evaluated by PADMA method is plotted in Figure 44 and

compared with benchmark result of SOFPI and MM methods. PDF and CDF esti-

mated by PADMA method have been able to follow very closely to SOFPI method.

However, the PDF estimated by the MM method has been found to be much wider.

The inaccuracy in the MM method is mainly due to the assumption of independence

of coupling variables. The true distribution has been found to be negatively skewed,

which is well predicted by the PADMA method, whereas the MM method estimated

a symmetrical distribution.

The statistics of system level metric, the non-dimensional profit p, is given in

Table 5. Both MM and PADMA methods have been able to accurately estimate the

mean; however the standard deviation estimate by the MM method has an error of

166% as compared to 27% by the PADMA method. Also, negative skewness has been

estimated by the SOFPI method and the PADMA method, whereas the MM method

estimates a very low value of skewness. In terms of closeness to the true distribution

estimated by the SOFPI method, probability density function of p estimated by the

PADMA method has been found to close with K–L div.= 0.13 as compared to the

MM method with K–L div. = 0.86.

Scatter plot matrix of interdisciplinary compatible solutions of coupling variables

is shown in Figure 45. In addition to scatter plot, each subplot also shows a single
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Figure 44: Comparison of probability density function and cumulative distribution
function of non-dimensional profit p estimated using benchmark SOFPI method, Mo-
ment Matching method (MM) and PADMA method for toll road bridge problem
case-1

Table 5: Comparison of statistical metrics of non-dimensional profit p for toll road
bridge problem case-1

SOFPI MM PADMA

Mean(µp) 1.68 1.65 1.66
Std. Dev.(σp) 0.18 0.48 0.23
Skewness (γf ) -1.79 -0.15 -1.43
K-L div. - 0.86 0.13
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iso-probability contour of value 0.02Pmax, where Pmax is the maximum probability

density value attained by the true solution using the SOFPI method. As observed,

vertical load Y , maximum stress s and maximum displacement d have been found to

be strongly dependent on each other. Also, the dependency structure among these

disciplines has been found to be non-Gaussian. Figure 46 compares the contour plot

of joint probability density of optimum interdisciplinary compatible solution of Y and

s estimated by all the SOFPI, MM and PAMDA methods. In addition to the strong

dependency, the PADMA method has been able to capture the overall trend of joint

probability density better than the MM method.

The linear dependency of coupling variables are compared between the SOFPI

and PADMA methods in Table 6. The PADMA method has been able to capture all

the linear dependency within 5% error. To compare the underlying non-linear depen-

dency, Mutual Information is compared between the SOFPI and PADMA methods

in Table 7. The difference of Mutual Information between SOFPI and PADMA has

been found to be within tolerable limit, with maximum discrepancy of ∆ MI = 0.21

between d and s.

4.4.4.2 Results: Case-2

In this case, the uncertain variables are assumed to have a non-Gaussian distribu-

tion. Comparison of probability density function (PDF) and cumulative distribution

function (CDF) of system level metric p evaluated by the PADMA method is shown

in Figure 47. PDF and CDF estimated by the PADMA method has been able to

follow very closely to the SOFPI method, however similar to case-1, the MM method

estimated a much wider distribution. The true distribution has been found to be

negatively skewed, which is well predicted by the PADMA method, whereas the MM

method estimates a almost symmetrical distribution.

The statistics of p is given in Table 8. The PADMA method has been able to
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Figure 45: Scatter plot matrix of interdisciplinary compatible solution of coupling
variables for toll road bridge problem case-1
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(a) SOFPI (b) MM (c) PADMA

Figure 46: Contour plot of joint probability density of interdisciplinary compatible
solution of s and Y for toll road bridge problem case-1

Table 6: Comparison of Correlation Matrix of coupling variables for toll road bridge
problem case-1

Correlation Matrix

SOFPI

X Y s d v
X 1.00 -0.01 -0.24 -0.35 0.50
Y -0.01 1.00 0.91 0.85 -0.04
s -0.24 0.91 1.00 0.99 -0.41
d -0.35 0.85 0.99 1.00 -0.48
v 0.50 -0.04 -0.41 -0.48 1.00

PADMA

X Y s d v
X 1.00 -0.02 -0.24 -0.37 0.50
Y -0.02 1.00 0.92 0.80 -0.04
s -0.24 0.92 1.00 0.95 -0.36
d -0.37 0.80 0.95 1.00 -0.50
v 0.50 -0.04 -0.36 -0.50 1.00

|∆ρ|

X Y s d v
X 0.00 0.00 0.00 0.03 0.00
Y 0.00 0.00 0.01 0.05 0.00
s 0.00 0.01 0.00 0.04 0.05
d 0.03 0.05 0.04 0.00 0.02
v 0.00 0.00 0.05 0.02 0.00
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Table 7: Comparison of Mutual Information Matrix of coupling variables for toll road
bridge problem case-1

Mutual Information Matrix

SOFPI

X Y s d v
X 1.30 0.02 0.05 0.09 0.17
Y 0.02 1.29 0.83 0.67 0.02
s 0.05 0.83 1.31 1.21 0.12
d 0.09 0.67 1.21 1.35 0.15
v 0.17 0.02 0.12 0.15 1.29

PADMA

X Y s d v
X 1.33 0.02 0.05 0.09 0.16
Y 0.02 1.31 0.87 0.55 0.03
s 0.05 0.87 1.30 1.00 0.09
d 0.09 0.55 1.00 1.33 0.16
v 0.16 0.03 0.09 0.16 1.28

∆ MI

X Y s d v
X 0.03 0.00 0.00 0.00 0.01
Y 0.00 0.02 0.04 0.11 0.00
s 0.00 0.04 0.00 0.21 0.03
d 0.00 0.11 0.21 0.02 0.00
v 0.01 0.00 0.03 0.00 0.01
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Figure 47: Comparison of probability density function and cumulative distribution
function of non-dimensional profit p estimated using benchmark SOFPI method, Mo-
ment Matching method (MM) and PADMA method for toll road bridge problem
case-2

112



Table 8: Comparison of statistical metrics of non-dimensional profit p for toll road
bridge problem case-2

SOFPI MM PADMA

Mean(µp) 1.66 1.89 1.64
Std. Dev.(σp) 0.31 0.64 0.36
Skewness (γp) -2.65 -0.04 -2.04
K-L div. - 1.03 0.22

Table 9: Comparison of Correlation Matrix of coupling variables for toll road bridge
problem case-2

Correlation Matrix

SOFPI

X Y s d v
X 1.00 -0.02 -0.16 -0.25 0.33
Y -0.02 1.00 0.91 0.86 0.04
s -0.16 0.91 1.00 0.98 -0.30
d -0.25 0.86 0.98 1.00 -0.34
v 0.33 0.04 -0.30 -0.34 1.00

PADMA

X Y s d v
X 1.00 -0.04 -0.21 -0.34 0.38
Y -0.04 1.00 0.92 0.79 0.01
s -0.21 0.92 1.00 0.95 -0.30
d -0.34 0.79 0.95 1.00 -0.39
v 0.38 0.01 -0.30 -0.39 1.00

|∆ρ|

X Y s d v
X 0.00 0.02 0.05 0.09 0.05
Y 0.02 0.00 0.00 0.07 0.03
s 0.05 0.00 0.00 0.04 0.00
d 0.09 0.07 0.04 0.00 0.05
v 0.05 0.03 0.00 0.05 0.00

accurately estimate the mean and the standard deviation, whereas, the MM method

over predicted the mean by 13.8% and variance by 106%. Similar to case-1 PADMA

has been able to capture the negative skewness whereas skewness evaluated by the

MM method has been very close to zero. In terms of closeness to the true distribution

estimated by the SOFPI method, probability density function of p estimated by the

PADMA method has been found to be close with K–L div.= 0.23 as compared to the

MM method with K–L div. = 1.03.

Scatter plot matrix of interdisciplinary compatible solutions of coupling variables
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Figure 48: Scatter plot matrix of interdisciplinary compatible solution of coupling
variables for toll road bridge problem case-2
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(a) SOFPI (b) MM (c) PADMA

Figure 49: Contour plot of joint probability density of interdisciplinary compatible
solution of s and Y for toll road bridge problem case-2

Table 10: Comparison of Mutual Information Matrix of coupling variables for toll
road bridge problem case-2

Mutual Information Matrix

SOFPI

X Y s d v
X 1.17 -0.00 0.02 0.04 0.07
Y -0.00 1.17 0.80 0.70 0.00
s 0.02 0.80 1.24 1.16 0.06
d 0.04 0.70 1.16 1.31 0.07
v 0.07 0.00 0.06 0.07 1.24

PADMA

X Y s d v
X 1.20 -0.01 0.03 0.08 0.09
Y -0.01 1.12 0.77 0.51 0.00
s 0.03 0.77 1.18 0.90 0.06
d 0.08 0.51 0.90 1.33 0.10
v 0.09 0.00 0.06 0.10 1.20

∆ MI

X Y s d v
X 0.03 0.00 0.01 0.04 0.02
Y 0.00 0.05 0.02 0.19 0.00
s 0.01 0.02 0.06 0.25 0.00
d 0.04 0.19 0.25 0.02 0.03
v 0.02 0.00 0.00 0.03 0.04
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Figure 50: Information flow in analytical problem

is shown in Figure 48. Similar to case-1, vertical load Y , maximum stress s and

maximum displacement d have been found be strongly dependent on each other. Due

to non-Gaussian uncertain variables, almost all the dependencies have been found to

be non-Gaussian. Also, the marginal distribution of Y , s, and d has been found to be

non-Gaussian with positive skewness. The skewness is well predicted by the PADMA

method, however MM estimates a symmetrical distribution. Figure 49 compares

the contour plot of joint probability density of optimum interdisciplinary compatible

solution of Y and s estimated by all the SOFPI, MM and PAMDA methods. The

PADMA method has been able to capture the overall trend of joint probability density

better than the MM method.

The linear dependency of coupling variables are compared between the SOFPI

and PADMA methods in Table 9. The PADMA method has been able to capture

all the linear dependency within a 9% error. To compare the underlying non-linear

dependency, Mutual Information is compared in between the SOFPI and PADMA

methods in Table 10. Similar to case-1, the difference of Mutual Information between

SOFPI and PADMA has been found to be within tolerable limit with maximum ∆

MI = 0.25 between d and s.
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4.4.5 Analytical Problem

The analytical problem is a modified version of a problem discussed by Du and

Chen [165] and used by [166] as shown in Figure 50. The problem consists of two

coupled disciplines and a system level analysis. There are four coupling variables

y = [u12, v12, u21, v21] and five uncertainty variables [x1, x2, x3, x4, x5]. The analytical

equations of each discipline is given as

System fsys = u12v12 − u21v21 (66)

Subsystem-1 u12 = x2
1 + 2x2 − x3 + 2

√
u21 − 0.22v21 (67)

v12 = 2x1 + x2x3 − 0.31
√
u21 + 0.2v21

Subsystem-2 u21 = x1x4 + x2
4 + x5 + u12 + 0.1

√
v12 (68)

v21 = x1x5 + x1x4 + x1 + 0.15u12 − 0.3v12

Two case studies have been carried out with the analytical problem by changing

the characteristics of uncertain variables.

Case-1: In the first case, the uncertain variables are characterized with Gaussian

distribution with mean µxi = 1.0 and standard deviation of σxi = 0.1.

xi ∼ N (1.0, 0.12) ∀i = 1, . . . , 5 (69)

Case-2: In the second case, shared uncertainty variable x1 is characterized with

Gaussian distribution with mean µ1 = 1.0 and standard deviation of σ1 =

0.1, while x2, x3, x4, x5 are characterized with shifted Gamma distribution with

shape parameter K = 1.0, scale parameter θ = 0.1 and shift δ = 1.0.

x1 ∼ N (0, 0.12) (70a)

xi ∼ 1.0 + Γ(1.0, 0.1) ∀i = 2, . . . , 5 (70b)
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In the first step of the PADMA method, an approximate domain of coupling

variables are estimated. To evaluate an approximate domain of coupling variables,

deterministic analysis is carried out at mean value of uncertainty variables to eval-

uate the mean value of coupling variables. The mean value of coupling variables

y = [u12, v12, u21, v21] are estimated to be µy = [7.9, 2.6, 11.07, 3.39]. Next, sensitivity

analysis is carried out with respect to uncertainty variables and a rough estimate

of variance of coupling variables using Global Sensitivity Equation is found to be

σ2
y = [0.17, 0.074, 0.39, 0.096]. With the assumption that the compatible solutions lies

within µy±6.0σy, lower bound of coupling variables is set at yLB = [5.4, 0.96, 7.3, 1.5]

and upper bound is set at yUB = [10.4, 4.2, 14.8, 5.3]. By assuming uniform distribu-

tion on all coupling variables with lower and upper bound specified by yLB and yUB

respectively, uncertainty propagation is carried out in both the subsystems indepen-

dently and concurrently.

To carry out uncertainty propagation in each discipline, 1000 samples of uncer-

tainty variables and input coupling variables are used. After execution of uncertainty

propagation, models of conditional probability functions fu12,v12(u12, v12|u21, v21, x1)

and fu21,v21(u21, v21|u12, v12, x1) are built in subsystem-1 and subsystem-2, respectively.

Since the uncertainty variable x1 is shared between both disciplines it is also treated

as a coupling variable and is used to build models of conditional probability functions.

The conditional probability function is modeled using quantile copula regression which

is discussed in the next chapter. Joint distribution of the interdisciplinary compatible

coupling variable is given as

f ∗y,x1
(u12, v12, u21, v21, x1) ∝ fu12,v12(u12, v12|u21, v21, x1)fu21,v21(u21, v21|u12, v12, x1)fx1(x1)

(71)

The joint density function is then used to generate samples of interdisciplinary com-

patible solutions of coupling variables which is then used to estimate the system metric

fsys. The scripts of the disciplinary functions have been written in MATLAB. Also,
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Figure 51: Comparison of probability density function and cumulative distribution
function of system metric fsys estimated using benchmark SOFPI method, Moment
Matching method (MM) and PADMA method for analytical problem case-1

to automate the PADMA process, scripts for PADMA method have been written and

executed in MATLAB.

4.4.5.1 Result: Case-1

In the first case, all the uncertain variables are assumed to have Gaussian distribu-

tion. The probability density function and cumulative distribution function of system

metric estimated by the PADMA methods is plotted in Figure 51 and compared with

the SOFPI and MM method. The general trend of the distribution has been found to

be very similar to Gaussian distribution. Both the PADMA and MM methods have

been found to be close to the SOFPI solution however; probability density function

estimated by the MM method has been found to be slightly wider. The statistics of

system metric is compared in Table 11. The mean estimated by the PADMA and

MM methods has been found to be very close to the SOFPI solution. However, the

MM method over predicted the standard deviation and the PAMDA method slightly

under predicted the standard deviation. The skewness estimate by PADMA methods
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Table 11: Comparison of statistical metrics of system metric fsys for analytical prob-
lem case-1

SOFPI MM PADMA

Mean(µf ) -16.75 -16.68 -16.70
Std. Dev.(σf ) 3.47 4.45 3.05
Skewness (γf ) -0.36 -0.02 -0.44
K-L div. - 0.09 0.01

has been found to be close to the SOFPI solution, whereas skewness estimated by

MM method has been found to be very close to zero. In terms of over all closeness

of probability density function, the PADMA method with K-L div. = 0.01 has been

found to be closer to the SOFPI solution when compared to the MM method, for

which K-L div. = 0.09.

Scatter plot matrix of interdisciplinary compatible solutions of coupling variables

is shown in Figure 52. In addition to scatter plot of interdisciplinary compatible

samples from each method, each subplot also shows a single iso-probability contour

of value 0.02Pmax, where Pmax is the maximum probability value attained by the

true solution using the SOFPI method. All the coupling variables are found to be

statistically dependent on each other. The dependency structure among all the cou-

pling variables has been found be very close to Gaussian form. The PADMA method

has been found to closely match the dependency structure with the SOFPI solution.

Although the MM method has been able to match the marginal distribution of all

the coupling variables, it has assumed that the coupling variables are all indepen-

dent. Figure 53 compares the contour plot of joint probability density of optimum

interdisciplinary compatible solution of u12 and u21 estimated by all the SOFPI, MM

and PAMDA methods. In addition to the strong dependency, the PADMA method

has been able to capture the overall trend of joint probability density better than the

MM method.

The linear dependency of coupling variables are compared between the SOFPI
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variables for analytical problem case-1
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(a) SOFPI (b) MM (c) PADMA

Figure 53: Contour plot of joint probability density of interdisciplinary compatible
solution of u12 and u21 for analytical problem case-1

and PADMA methods in Table 12. The PADMA method has been able to capture

all the linear dependency within a 7% error. To compare the underlying non-linear

dependency, Mutual Information is compared in between SOFPI and PADMA meth-

ods in Table 13. The difference of Mutual Information (∆ MI) between SOFPI and

PADMA has been found to be within tolerable limit with maximum value of ∆ MI

= 0.12.

4.4.5.2 Results: Case-2

In the second case, all the uncertain variables are assumed to have gamma distribution

except for x1. The probability density function and cumulative distribution function

of system metric estimated by PADMA method is plotted in Figure 54 and compared

with the SOFPI and MM methods. Unlike case-1, the distribution of system metric

has been found to be non-Gaussian and with negative skewness. The distribution

estimated by the PADMA method has been found to be close to the SOFPI solution;

however the MM method has been found to have a wider distribution. The statistics

of system metric is compared in Table 14. Both the PADMA and MM methods have
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Table 12: Comparison of Correlation Matrix of coupling variables for analytical prob-
lem case-1

Correlation Matrix

SOFPI

u12 v12 u21 v21

u12 1.00 0.71 0.89 0.73
v12 0.71 1.00 0.65 0.76
u21 0.89 0.65 1.00 0.85
v21 0.73 0.76 0.85 1.00

PADMA

u12 v12 u21 v21

u12 1.00 0.64 0.89 0.69
v12 0.64 1.00 0.61 0.75
u21 0.89 0.61 1.00 0.79
v21 0.69 0.75 0.79 1.00

|∆ρ|

u12 v12 u21 v21

u12 0.00 0.07 0.00 0.05
v12 0.07 0.00 0.04 0.01
u21 0.00 0.04 0.00 0.06
v21 0.05 0.01 0.06 0.00

Table 13: Comparison of Mutual Information Matrix of coupling variables for ana-
lytical problem case-1

Mutual Information Matrix

SOFPI

u12 v12 u21 v21

u12 1.33 0.34 0.71 0.38
v12 0.34 1.34 0.29 0.42
u21 0.71 0.29 1.37 0.59
v21 0.38 0.42 0.59 1.32

PADMA

u12 v12 u21 v21

u12 1.31 0.29 0.73 0.33
v12 0.29 1.32 0.27 0.42
u21 0.73 0.27 1.37 0.47
v21 0.33 0.42 0.47 1.25

∆ MI

u12 v12 u21 v21

u12 0.02 0.05 0.03 0.05
v12 0.05 0.02 0.01 0.00
u21 0.03 0.01 0.00 0.12
v21 0.05 0.00 0.12 0.07

123



-50 -40 -30 -20 -10 0
f
sys

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Pr
ob

ab
ili

ty
 D

en
si

ty
 F

un
ct

io
n SOFPI

MM
PADMA

(a) Probability density function

-50 -40 -30 -20 -10 0
f
sys

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
Fu

nc
tio

n

SOFPI
MM
PADMA

(b) Cumulative distribution function

Figure 54: Comparison of probability density function and cumulative distribution
function of system metric fsys estimated using benchmark SOFPI method, Moment
Matching method (MM) and PADMA method for analytical problem case-2

Table 14: Comparison of statistical metrics of system metric fsys for analytical prob-
lem case-2

SOFPI MM PADMA

Mean(µf ) -18.79 -19.25 -19.34
Std. Dev.(σf ) 3.90 5.27 3.54
Skewness (γf ) -1.03 -0.15 -0.58
K-L div. - 0.17 0.04
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been found to slightly over predict the mean. However, similar to case-1, the MM

method over predicted the standard deviation and PAMDA method slightly under

predicted the standard deviation. Although, the PADMA method has not be able to

estimate the skewness very accurately, it has performed better than the MM method.

In terms of over all closeness of probability density function, the PADMA method

with K-L div. = 0.04 has been found to be closer to the SOFPI solution when

compared to the MM method, for which K-L div. = 0.17.

Scatter plot matrix of interdisciplinary compatible solutions of coupling variables

is shown in Figure 55. All the coupling variables are found to be statistically de-

pendent on each other. Unlike case-1, the dependency structure has been found to

be non-Gaussian, which has been well captured by the PADMA method. Similar to

case-1, the MM method has been able to match the marginal distribution of all the

coupling variables, but it has assumed that the coupling variables are all independent.

Figure 56 compares the contour plot of joint probability density of optimum inter-

disciplinary compatible solution of u12 and u21 estimated by all the SOFPI, MM and

PAMDA methods. Similar to case-1, the PADMA method has been able to capture

the overall trend of joint probability density better than the MM method.

The linear dependency of coupling variables are compared between SOFPI and

PADMA methods in Table 15. The PADMA method has been able to capture all

the linear dependency within an 8% error. To compare the underlying non-linear

dependency, Mutual Information is compared between SOFPI and PADMA methods

in Table 16. The difference of Mutual Information (∆ MI) between SOFPI and

PADMA has been found to be within tolerable limit with maximum value of ∆ MI

= 0.12.
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Figure 55: Scatter plot matrix of interdisciplinary compatible solution of coupling
variables for analytical problem case-2
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(a) SOFPI (b) MM (c) PADMA

Figure 56: Contour plot of joint probability density of interdisciplinary compatible
solution of u12 and u21 for analytical problem case-2

Table 15: Comparison of Correlation Matrix of coupling variables for analytical prob-
lem case-2

Correlation Matrix

SOFPI

u12 v12 u21 v21

u12 1.00 0.67 0.85 0.67
v12 0.67 1.00 0.57 0.73
u21 0.85 0.57 1.00 0.79
v21 0.67 0.73 0.79 1.00

PADMA

u12 v12 u21 v21

u12 1.00 0.73 0.90 0.75
v12 0.73 1.00 0.69 0.81
u21 0.90 0.69 1.00 0.83
v21 0.75 0.81 0.83 1.00

|∆ρ|

u12 v12 u21 v21

u12 0.00 0.06 0.04 0.07
v12 0.06 0.00 0.12 0.08
u21 0.04 0.12 0.00 0.04
v21 0.07 0.08 0.04 0.00
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Table 16: Comparison of Mutual Information Matrix of coupling variables for ana-
lytical problem case-2

Mutual Information Matrix

SOFPI

u12 v12 u21 v21

u12 1.29 0.36 0.73 0.44
v12 0.36 1.30 0.29 0.45
u21 0.73 0.29 1.37 0.58
v21 0.44 0.45 0.58 1.30

PADMA

u12 v12 u21 v21

u12 1.38 0.46 0.80 0.53
v12 0.46 1.33 0.40 0.57
u21 0.80 0.40 1.35 0.61
v21 0.53 0.57 0.61 1.34

∆ MI

u12 v12 u21 v21

u12 0.08 0.10 0.07 0.09
v12 0.10 0.03 0.11 0.12
u21 0.07 0.11 0.03 0.03
v21 0.09 0.12 0.03 0.04

4.5 Chapter Summary

In this chapter, a Probabilistic Analysis of Distributed Multidisciplinary Architectures

(PADMA) has been developed to accurately quantify the uncertainty on system met-

rics and joint distribution of coupling variables by evaluation of probability of Event

of Interdisciplinary Compatibility (EIC), in a distributed multidisciplinary analysis

under uncertainty. The methodology allows each discipline to carry out uncertainty

quantification and propagation independently and concurrently and build the models

of conditional probability functions of disciplinary metrics. The conditional proba-

bility functions of disciplinary metrics are then used by a system level analyzer to

evaluate the joint distribution of interdisciplinary compatible solutions.

The formulation of joint distribution of coupling variables is derived from gen-

eral product rule of probability. For an UMDA, with only feed-forward coupling, the

formulation is very similar to Bayesian Network, which is a probabilistic graphical

model for a directed acyclic graph. However, for an UMDA with feedback coupling,
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joint distribution is evaluated by estimating the probability of event of interdisci-

plinary compatible solutions. One of the critical aspects of PADMA is guessing the

probability distribution of input coupling variables to each discipline. Although the

functional form of the probability distribution does not matter, the domain of the

guessed probability should be large enough to encompass the interdisciplinary com-

patible solutions. If the domain of guessed probability density functions is too large,

then it leads to computation expense as well as inaccuracy in building conditional

probability models. On the other hand, if the domain of guessed probability den-

sity functions is smaller than the domain of interdisciplinary compatible solutions,

then evaluation of joint distribution of interdisciplinary compatible solutions will be

inaccurate and another iteration of the PADMA process will be required.

To validate the hypothesis to the first research question, two numerical problems

have been selected. For each problem, two case studies have been carried out, one with

all uncertainty variables with Gaussian distribution and another one with mixture of

Gaussian and non-Gaussian distribution. In both problems, strong dependencies have

been observed among some of the coupling variables. In the cases with non-Gaussian

uncertainty, the dependency structure have been found to be non-Gaussian. In all

cases the PADMA method has been able to capture the dependency structure as

well as accurately estimate correlation coefficient and Mutual Information among

coupling variables. The PADMA method has also been able to accurately quantify

the uncertainty on system metric as compared to state of art Moment-Matching

method for distributed UMDO.

The only assumption in the PADMA method is that accurate models of conditional

probability functions are available from each discipline. In this work, quantile copula

regression is used to model the conditional probability functions which is discussed in

next chapter. The accuracy of the PADMA method to quantify the uncertainties is

directly related to the accuracy of the probabilistic models. Figure 57 shows accuracy
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Figure 57: Accuracy of PADMA method measured by K–L divergence of system
metric when compared to SOFPI method as a function of number of disciplinary
samples

of the PADMA method as a function of number of samples used to build the models

of conditional probability functions. Accuracy is evaluated as K-L divergence of

system metrics estimated by the PADMA method when compared with the SOFPI

solution. The results are shown for case-1 of both the toll road problem and the

analytical problem. As observed, lower samples leads to higher error in the models

of conditional probability functions, which leads to possible higher inaccuracy in the

PADMA method.
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CHAPTER V

PROBABILISTIC MODELING USING QUANTILE

COPULA REGRESSION

Building surrogate models or emulators of disciplinary metrics is one of the compu-

tational efficient ways to carry out design space exploration and optimization. This

is one of the common approaches in UMDO, where each discipline builds disciplinary

surrogates of disciplinary metric as a function of input variables and uncertainty vari-

ables. If the disciplinary analyses are explicit functions of local uncertain variables i.e

, yi = fi(xi,ui), where xi are input variables and ui are local uncertain variables, then

it is appropriate to build a surrogate model with local uncertain variables ui as one

of the input variables, i.e. ỹi = f̃i(xi,ui). Please note that (̃) used on any function in

this chapter signifies approximate models for both deterministic and non-deterministic

functions unless stated otherwise. Nevertheless, in many scenarios the disciplines may

have inherent uncertainties or noises such as numerical error, structural uncertainty,

experimental uncertainty, interpolation uncertainty, expert judgment, etc. Processes

like multi-fidelity analysis and intrusive error propagation can also create inherent

uncertainties in the disciplinary metrics. In these scenarios, a statistical surrogate

model or a probabilistic model, i.e. P(yi|xi) = f̃yi(yi|xi), is appropriate, where the

surrogate model does not have local uncertainties as input but the effect of the local

uncertainties on outputs are captured probability distribution.

In this chapter, quantile copula regression is developed to build models of con-

ditional probability density function. The hypothesis to research question 2 is given

as
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Research Question 2.0: What is an appropriate probabilistic modeling

technique to comprehensively model conditional probability of multivariate

disciplinary responses with heteroskedasticity and statistical dependence ?

Hypothesis 2.0: If the disciplinary responses are continuous variables and

if the dependencies among responses are monotonic, then quantile copula

regression is an appropriate method to comprehensively model the conditional

probability density functions of disciplinary metrics using quantile regressions

and model dependencies among them using copula.

In the next section, a general overview of probabilistic modeling is discussed. After

that, the theory of quantile regression will be presented, which is used to model the

conditional probability density of each response. Next, Copula theory is presented

which is used to model the statistical dependencies among the responses. Following

that, quantile copula regression is developed which merges the theory of quantile

regression and copula theory to build a probabilistic model for multiple responses

with dependencies. Next, a numerical demonstration is presented on an application

of quantile copula regression. Finally, the chapter is summarized in the last section.

5.1 Overview: Probabilistic Modeling

In machine learning literature, probabilistic models can be categorized into two broad

categories; generative models and discriminative models. Let’s say input vari-

ables (also called explanatory, predictor, covariates, independent variables etc.) are

defined as x and output variables (also called response, predicted , measured, out-

come, dependent, target variables, etc.) are defined by y. Generative models specify

joint probability distribution of input and output variables, i.e. P(x, y). Examples

of generative models are Gaussian distribution, kernel density estimation, Gaussian

mixture model, Naive Bayes, Hidden Markov Models, Bayesian Networks, Markov

random fields, and so on [108]. Discriminative models on the other hand specify
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dependencies of output variables on input variables through conditional probability

distribution P(y|x). Examples of discriminative models are Bayesian linear regres-

sion, generalized linear regression, neural networks, support vector machines, etc.

[108]. As discussed in the last chapter, conditional probabilities are used to evaluate

the dependency and compatibility of the coupling variables; discriminative models are

preferred to model disciplinary functions. Although it should be noted that any joint

distribution from generative models can be converted to a discriminative conditional

model by Bayes’ rule as

P(y|x) =
P(x, y)

P(x)
(72)

The main goal of a discriminative probabilistic model is to predict the uncertainty

of output variables y at a new value of input variable x on the basis of available

set of N training data X = (x1,x2, . . . ,xN)T and their corresponding outputs y =

(y1, y2, . . . , yN)T , where each input training data consists of D predictor variables

x = (x1, x2, . . . , xD). The uncertainty over the output variables are expressed using

probability distribution. Generally, it is assumed that for a given value of x, y follows

a fixed parametric probability distribution family like Gaussian distribution as

P(y|x,w) = N (y|µ(x,w), β−1) (73)

where µ(x,w) is the function determining the mean for a given value of x, w are

the unknown parameters of mean function, β is the unknown precision or inverse

of variance. Typically homoscedasticity, is assumed, i.e. dependent variables have

constant variance across the range of input variables, therefore β is independent of

x. Details of parameter estimation in a discriminative probabilistic model is given in

Appendix II.

5.1.1 Types of Discriminative Probabilistic Models

Depending upon the functional form of µ(x,w), the discriminative models can be

categorized into three classes; linear models, nonlinear models, and non-parametric
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models.

5.1.1.1 Linear Models

These are the models µ(x,w) which are a linear function of w. The simplest linear

model can be given as

µ(x,w) = w0 + w1x1 + . . .+wDxD (74)

Although the model represented by Equation 74 is linear with respect to input vari-

ables x, it can be extended to handle a nonlinear relationship with x by considering

a linear combination of fixed nonlinear functions φ(x) as

µ(x,w) =
M−1∑
j=0

wjφj(x) = wTφ(x) (75)

where φj(x) are known as basis functions. Please note that the model given by

Equation 75 is nonlinear with respect to x but still linear with respect to w, therefore

this still falls under the linear model category. One of the commonly used models in

statistics literature is called Response Surface Methodology (RSM) and is given as

µ(x,w) = w0 +
N∑
i=1

wixi +
n∑
i=1

n∑
j=i

wijxixj (76)

RSM can be further extended by including higher order polynomial terms to

introduce more nonlinearity in the model.

5.1.1.2 Nonlinear Models

These are the models µ(x,w) which are nonlinear functions of parameters w. As

discussed in the last section, to capture nonlinear behavior with respect to input

space x, a linear model can use fixed basis functions with higher order terms. An

alternate approach is to use adaptive basis functions, i.e. to use a parametric basis

function, while fixing the number of basis functions in advance. In this approach
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both w and the parameters of the basis function are evaluated during the training.

A general form of this kind of model is given as

µ(x,w) = f

(
M∑
j=1

wjφj(x)

)
(77)

where f(.) is a nonlinear activation function and the basis function φj(x) depends on

some parameters, which get adjusted along with wj during the training.

One of the commonly used nonlinear models is Feed-Forward Neural Network. A

general function form of a Feed-Forward Neural Network with two-layer is given as

µ(x,w) =
M∑
j=0

w
(2)
kj h

(
D∑
i=0

w
(1)
ji xi

)
(78)

where h(.) is a nonlinear activation function such as hyperbolic tangent function,

radial basis function, etc.

5.1.1.3 Non-parametric Models

Both linear and non-linear models assume a fixed functional form to model the entire

input space. In non-parametric models, the functional form of the model is not

predetermined but is constructed according to the information derived from the data.

One of the simplest approaches is to divide the input space into regions and use

different basis function in each region, for example a Gaussian basis function

φj(x) = exp

{
−(x− γj)2

2s2

}
(79)

where γj is the location parameter in input space and s governs the spatial scale. In

machine learning literature Kernel methods [167] are commonly used to build non-

parametric models. These are memory-based methods in which the training data

set or subset of them are stored and used during prediction for new data points.

The prediction at a new value of x is carried out using kernel function evaluated at

training point and by recasting the linear parametric model into an equivalent “dual

representation” as

µ(x) = wTφ(x) = k(x)T (K + λIN)−1y (80)
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where k(x) is a vector with elements in kernel function kn(x) = k(xn,x) evaluated

at point xn, K is Gram matrix K = ΦΦT , Φ is the design matrix whose nth row is

given as φ(xn)T , and λ is regularization parameter with λ ≥ 0. For a fixed nonlinear

feature space mapping φ(x) , the kernel function is given by the relation

k(x,x′) = φ(x)Tφ(x′). (81)

Two commonly used kernel method-based models are Radial Basis Function Network

and Gaussian Processes which uses radial basis kernel function k(x,x′) = h(||x−x′||)

and Gaussian kernel k(x,x′) = exp(||x− x′||2/2σ2) respectively.

5.1.2 Applicability and Limitation

The discriminative probabilistic models discussed in the previous section have a wide

range of application in building surrogate models for engineering analysis. Depending

on the functional behavior of the analysis, linear or nonlinear models can be selected

and applied. These models can be built using a relatively lower number of data from

analysis or experiments and are an order of magnitude faster to execute compared to

actual analysis. Applying these models instead of actual analysis during the design

process reduces the computational cost and allows the designer to carry out quick

trade studies such as optimization. These probabilistic models not only allow the

designer to quantify the random uncertainty or the noises, but also help in quantifying

the model form uncertainty which arises due to limited number of experimental or

analysis data.

Although there are a few limitations of these models like the curse of dimensional-

ity, under fitting, over fitting, etc., there are three limitations that are of relevance to

the current work, namely non-Gaussian noises, heteroskedasticity, and multivariate

response. Generally, most of the models discussed in the previous sections assume

that the uncertainty on output variables has Gaussian distribution as given in Equa-

tion 73. Although, these assumptions are valid for most of the scenarios where these
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uncertainties arise due to random noise. But, these may not be valid if some local

disciplinary uncertainty causes non-Gaussian behavior in the disciplinary outputs. To

overcome this problem, some other distribution form in Equation 73 can be used or

Generalized linear model (GLM) [168] can be used which allows an uncertainty dis-

tribution model other than Gaussian distribution. But, this approach assumes that

uncertainty will follow the same distribution form in the entire space of x. Another

challenge is to model heteroskedasticity, which refers to the situation where variance

of output variables varies in the range of input variables. As stated in Equation 73,

typically these models assume that the variance or precision of output variable is con-

stant in the design space. One way to overcome this issue is to model the precision

as a function of input variables similar to the mean function as β(x,v), where v is

the parameter of the precision model.

Probabilistic models can be tweaked to overcome some of the limitations of non-

Gaussian noises and heteroskedasticity, but their applicability will be limited to a

fixed distribution form of uncertainty of output variables. Also it is necessary to have

some prior information regarding the behavior of output so that the proper form of

the noise or uncertainty can be selected. It also becomes challenging when the noise

or the uncertainty does not have a fixed parametric form. For example, consider an

empirical equation of aircraft wing weight [169] given by

WWing

WOEW

= p1n
p2

ultt
p3
r,max

(
b

cos Λc/2

)p4
(

1 +

√
p5 cos Λc/2

b

)(
WOEW

S

)p6

(82)

The nominal values of parameters pi are p1 = 0.0017, p2 = 0.55, p3 = −0.3, p4 =

1.05, p5 = 6.25 and p6 = −0.3. These are parameters are generally estimated by

fitting historical data and therefore they have some uncertainty associated with it.

Let’s consider uncertainty on parameter p4 is given by a Gaussian distribution as

p4 ∼ N (1.05, 0.002). With uncertainty on p4, the samples of normalized wing weight

WWing/WOEW as a function of span b for a notional aircraft is plotted in Figure 58a.
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Figure 58: Comparison of Bayesian regression and quantile regression on predictive
capability of conditional statistics of normalized wing weight data

As observed, the samples have heteroskedasticity and the noises are not of Gaus-

sian form, even for a simple empirical equation with only one Gaussian uncertainty.

If Bayesian regression is used as probabilistic model, then the conditional density

functions are not accurate (also shown in Figure 58a). To handle these challenges,

an alternate approach is to build models for the quantiles of the output variables,

and use the quantile information to generate the distribution of the uncertainty. For

example, Figure 58b shows regression curve of different conditional quantiles of nor-

malized wing weight as a function wing span. The conditional quantiles provides a

overall and a comprehensive view of conditional probability density without assuming

any functional form of conditional distribution.
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5.2 Quantile Regression

The main focus of the probabilistic model discussed in the previous section is to

evaluate the conditional mean and the uncertainty with some parametric assump-

tion of probability densities. Instead of mean, modeling of quantiles allows a broader

approach to predict the conditional distribution without any assumptions of the un-

certainty distribution. For example, for uncertain variables with skewed distribution,

the 50th quantile or median, when used as a measure of center, is more robust than

mean [170]. This can be seen in Figure 59 where two distributions may differ by

mean or by specific quantiles. Also, quantile provides a straightforward and a bet-

ter approach to estimate tail probabilities which are required for reliability analysis.

Therefore, in a scenario where output variable may not strictly follow a fixed para-

metric probability density function and is heteroscedastic with respect to input space,

regression on conditional quantiles or Quantile regression provides a more complete

statistical model than the mean regression.

Koenker and Bassett (1978) [171] pioneered the development of quantile regression

and discussed its various properties. Since then, these methods have been further de-

veloped and improved by many researchers, and have been comprehensively reviewed

by Koenker [172]. Quantile regression has found its application in various fields of re-

search including medicine, finance and economics, environmental modeling, etc, some

of which are discussed by Keming et al. [173].

For a random variable Y with distribution function F (Y ) = P(Y ≤ y), τ th quantile

is defined as

Q(τ) = F−1
Y (τ) = inf{y : F (y) ≥ τ} (83)

where 0 ≤ τ ≤ 1. Q(0.25), Q(0.5) and Q(0.75) are generally known as lower quar-

tile, median, and upper quartile. Similar to distribution function F (Y ) and density

function f(Y ), a quantile function Q(τ) provides a better characterization of the ran-

dom variable Y . To evaluate the sample quantile Q(τ) based on a random sample
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Figure 60: Check function ρτ (u) for quantile regression

{y1, y2, . . . , yn}, one common approach is to define the sample quantile in terms of

order statistics y(1) ≤ y(2) ≤ . . . y(n), by rearranging and sorting the original sample.

Rather, a more generalized approach is given in terms of an optimization problem,

where τ th sample quantile can be found by solving

min
ξ∈R

n∑
i=1

ρτ (yi − ξ) (84)

where ρτ (.) is a “check function” as shown in Figure 60 and is given as ρτ (u) =

|u(τ − I(u<0))| and I is the indicator variable.

Similar to conditional mean in regression, τ th conditional quantile is defined as

QY |x(τ |x) = F−1
Y |x(τ |x) (85)

where x is a vector of input variables and FY |x is the conditional distribution function
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of Y given x. In quantile regression, τ th conditional quantile is modeled by a para-

metric function of input variable x as QY |x(τ |x) = yτ (x,βτ ), where βτ is the vector

of quantile regression coefficients of parametric function yτ (x,βτ ). The parameter βτ

is evaluated by modifying the optimization problem Equation 84 as

β̂τ = arg min
β∈Rk

n∑
i=1

ρτ (yi − yτ (xi,βτ )) . (86)

This optimization problem is analogous to estimating the conditional mean by mini-

mizing the sum of squared error
∑n

i=1(yi − µ (xi,βτ ))
2.

5.2.1 Modeling and Estimation

One of the common approaches to model quantile regression function for τ th condi-

tional quantile yτ (x,β) is linear models which is given as

yτ = Xβτ + ε (87)

where yτ ∈ Rn×1 the vector of τ th quantiles, βτ ∈ Rq×1 is the vector of quantile

regression coefficient for τ th quantile and ε ∈ Rn×1 is the vector of errors. X ∈ Rn×q

is the design matrix given as

X =



xT
1

xT
2

...

xT
n


=



x11 · · · x1q

x21 · · · x2q

...
. . .

...

xn1 · · · xnq


, (88)

xi = [xi1, . . . , xiq]
T is the vector of q predictors for ith sample.

To set this up as a standard linear programming minimization problem, quantile

regression is rewritten as

yτ = Xβτ + (u− v) (89)

where u = εI(ε > 0) and v = |ε|I(ε < 0). Then the optimization problem given by

141



Equation 86 can be remodeled into standard linear programming as

minimize τ1Tnu + (1− τ)1Tnv (90a)

with respect to βτ ,u,v

subject to yτ −Xβτ = u− v (90b)

βτ ∈ Rq×1,u ≥ 0,v ≥ 0.

The optimization problem in Equation 90 can be solved by Simplex methods or inte-

rior point methods [172, 174, 175].

Two other common approaches to estimate the parameters of quantile regression

are likelihood-based approach [176] and full Bayesian treatment [177, 178]. For exam-

ples, in a full Bayesian treatment, a prior distribution is assumed on the parameters

π(βτ ) and posterior distribution is estimated by employing the asymmetric Laplace

likelihood function as

π(βτ |y) ∝ L(y|βτ )π(βτ ) (91)

Yu et al. [179] has demonstrated the full Bayesian treatment by taking improper

uniform prior distribution for βτ . Kottas et al. [180] proposed an approach of using

mixture model for the errors to estimate the median regression model.

In current work, each quantiles are modeled with linear models. Approaches for

non-linear models-based quantile regression includes Neural Network [181], Gaussian

Process [182], non-parametric models [183], etc.

5.2.2 Modeling Multiple Quantile Regressions

Previous section provides the approaches to model quantile regression for τ th con-

ditional quantile. However to estimate the entire conditional quantile distribution

comprehensively, quantile regressions are required for multiple settings of τ1, . . . , τk,

where τi ∈ (0, 1). For the ease of implementation, it is assumed the the setting of τi

are monotonically increasing, i.e. τi > τi−1.
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A straightforward approach is to model separate quantile regressions for each

τ thi quantile, QY |x(τi|x) = yτi(x,βτi), where βτi is the vector of quantile regression

coefficients of τ thi quantile. For the linear modeling approach given by Equation 87, it

can be assumed that each quantile regression are built using the same design matrix

X, such the length of each vector βτi is same. Let β = [βτ1 , . . . ,βτk ] be a matrix of

size q× k, containing the coefficients of the quantile regressions for all the settings of

τ . Then, for a given value of predictor x, quantiles are estimated as ŷ = xTβ, where

ŷ = [ŷτ1 , . . . , ŷτk ] is the vector containing all the estimated quantiles corresponding to

τ = [τ1, . . . , τk]. In the current work, multiple quantile regression models of a variable

y is represented as QY |x(τ |x) = yτ (x,β), unless otherwise specified.

For a monotonically increasing setting of τ1, . . . , τk, the conditional quantiles

yτ1 , . . . , yτk should also be monotonically increasing for any given value of x. However,

in some scenarios the estimated quantiles ŷτ1 , . . . , ŷτk at some values of x using quan-

tile regression may not be monotonically increasing, i.e. ŷτi 6> ŷτi−1
, for some values

of i. This occurs when the quantile curves cross each other, also known as quan-

tile crossing problem, which can occurs when inaccuracy is introduced in quantile

regression modeling due to sparse data, non-linearity, etc. An approach to overcome

the issue of quantile crossing problem is to build the quantile regression models for

all the levels of τ simultaneously and impose the non-crossing quantile constraints

[184]. In the current work an approach known as quantile bootstrap or quantile rear-

rangement [185] is used, which allows natural monotonization of quantiles by using

estimated non-monotonic conditional quantiles from quantile regression and applying

a monotone rearrangement procedure, which results in conditional quantiles which

by construction are monotonic.

In quantile bootstrap or quantile rearrangement approach, a non-monotone quan-

tile function Q̂(τ |x) is transformed into a monotone function Q̂∗(τ |x), which is used to

generate monotonic quantiles. Q̂∗(τ |x) is the quantile function of a random variable
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Y , which is related to the original quantile as Y := Q̂(U |x) where U ∼ Uniform(0, 1).

The quantile function of Y is given as

Q̂∗(τ |x) = F̂−1(τ |x) = inf{y : F̂ (y|x) ≥ τ} (92)

which is naturally monotonic with respect to τ . If the original quantile function

Q̂(τ |x) is monotonically increasing then Q̂∗(τ |x) coincide with Q̂(τ |x). An example

of quantile rearrangement approach is shown in Figure 61.

5.2.3 Probability Density Estimation Using Conditional Quantile

If QY |x(τ |x) is the conditional quantile function and FY |x(y|x) is the distribution

function of a random variable Y for given x, then FY |x
(
QY |x(τ |x)

)
= τ . Taking the

derivative, one gets fY |x
(
QY |x(τ |x)

)
Q′Y |x(τ |x) = 1, which is used to estimate the

conditional probability density function as

fY |x(y|x) =
1

Q′Y |x

(
Q−1
Y |x(y|x)

) (93)

where Q′Y |x(.) is also called quantile density function.

In terms of implementation, quantile regressions QY |x(τ |x,β) = yτ (x,β) are

only modeled for a finite number of levels of τ = [τ1, . . . , τk]. If ŷτ1 , . . . , ŷτk are non-

decreasing conditional quantiles estimated by quantile regression at τ1, . . . , τk, the
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predictive density p̂(y) is estimated by interpolating between the estimated quantiles.

For the lower and upper tails, probability density is assumed to decay exponentially

ensuring that the probability density function integrates to one [186]. Probability

density p̂(y) at any value y is estimated as

1. If ŷτ1 < y < ŷτk and τi and τi+1 are such that ŷτi < y < ŷτi+1
then

p̂(y) =
τi+1 − τi
ŷτi+1

− ŷτi
(94)

2. else if, y < ŷτ1 , then

p̂(y) = α1 exp

(
−|y − ŷτ1|

β1

)
(95)

where α1 = (τ2 − τ1)/(ŷτ2 − ŷτ1) and β1 = τ1/α1

3. else if, y > ŷτk , then

p̂(y) = αk exp

(
−|y − ŷτk |

βk

)
(96)

where αk = (τk − τk−1)/(ŷτk − ŷτk−1
) and βk = τk/αk

An example of interpolated predictive density estimation using quantile information

at τ = [0.10, 0.15, 0.3, 0.5, 0.7, 0.84, 0.9] for a Gaussian distribution is given in Fig-

ure 62a.

Similarly, the cumulative distribution function F̂ (y) at any value y is estimated

by taking the derivative of probability density and is given as

1. If ŷτ1 < y < ŷτk and τi and τi+1 are such that ŷτi < y < ŷτi+1
then

F̂ (y) = τi +
τi+1 − τk
ŷi+1 − ŷi

(ŷi − y) (97)

2. else if, y < ŷτ1 , then

F̂ (y) = α1β1 exp

(
−y − ŷτ1

β1

)
(98)

where α1 = (τ2 − τ1)/(ŷτ2 − ŷτ1) and β1 = τ1/α1
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3. else if, y > ŷτk , then

F̂ (y) = 1− αkβk exp

(
−y − ŷτk

βk

)
(99)

where αk = (τk − τk−1)/(ŷτk − ŷτk−1
) and βk = τk/αk

5.2.4 Quantile Formula for Mean and Variance

If QY |x(τ |x) is the conditional quantile function of a random variable Y for given x,

then the mean and variance is given as

EY |x(Y |x) =

∫ ∞
−∞

ydFY |x(y|x) =

∫ 1

0

QY |x(τ |x)dτ (100a)

V arY |x(Y |x) =

∫ 1

0

(QY |x(τ |x)− EY |x(Y |x))2dτ (100b)

Similarly, higher order moments can be estimated.

5.2.5 Distribution Parameters from Quantiles

If Y is assumed to follow some parametric distribution family, then quantile informa-

tions at fewer values of τ can be used to evaluate the parameters of the distribution.

For example, if Y is assumed to follow any of the two parameter families like normal,
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log normal, Cauchy, Weibull, gamma, and inverse gamma, then the quantile at two

different values of τ is sufficient to determine the parameters. For example, y1 and

y2 are two quantiles with respect to τ1 and τ2. For consistency, it is required that

(y1− y2)(τ1− τ2) > 0. Then, for normal distribution, mean µ and standard deviation

σ are given as

µ =
y1Φ−1(τ2)− y2Φ−1(τ1)

Φ−1(τ2)− Φ−1(τ1)
(101a)

σ =
y2 − y1

Φ−1(τ2)− Φ−1(τ1)
(101b)

where Φ is the cumulative distribution function (CDF) of the standard normal dis-

tribution Z with mean 0 and standard deviation 1. For derivation and parameters of

other distribution families please refer to Cook [187].

5.2.6 Sampling Using Conditional Quantile

If U is a random variable with uniform distribution U ∼ Uniform(0, 1), then for any

quantile function QY (τ)

P[QY (U) ≤ y] = P[U ≤ F (y)] = F (y) = P(Y ≤ y) (102)

Therefore, samples of Y can be generated by sampling a standard uniform distribu-

tion U ∼ Uniform(0, 1) and evaluating the quantiles for each samples using QY (u).

Similarly, conditional sample of Y can be generated using conditional quantiles by

using Y =
d
QY |x(U |x), where conditional quantiles can be estimated using quantile

regression QY |x(τ |x).

As discussed earlier, quantile regressions QY |x(τ |x,β) = yτ (x,β) are only mod-

eled for a finite number of levels of τ = [τ1, . . . , τk]. If ŷτ1 , . . . , ŷτk are non-decreasing

conditional quantiles estimated by quantile regression at τ1, . . . , τk, the predictive

quantiles ŷτ at a new value of τ = u is estimated as

1. If τ1 < τ < τk and ŷτi+1
and ŷτi are such that τi < τ < τi+1 then

ŷτ = ŷi +
ŷi+1 − ŷi
τi+1 − τi

(τ − τi) (103)
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2. else if τ < τ1 then

ŷτ = ŷτ1 + β1 log

(
τ1

α1β1

)
(104)

where α1 = (τ2 − τ1)/(ŷτ2 − ŷτ1) and β1 = τ1/α1

3. else if τ > τk then

ŷτ = ŷτk − βk log

(
1− τk
αkβk

)
(105)

where αk = (τk − τk−1)/(ŷτk − ŷτk−1
) and βk = τk/αk

An example of interpolated quantile estimation using quantile information at τ =

[0.10, 0.15, 0.3, 0.5, 0.7, 0.84, 0.9] for a Gaussian distribution is given in Figure 62b.

The interpolated quantile can then be used to generate samples of conditional Y .

5.3 Modeling Dependence Between Multiple Responses

In the last section, modeling conditional probability density of responses of a sub-

system or disciplinary analysis has been discussed. In general, due to underlying

functional dependency and uncertainty, these responses are statistically dependent.

For example, in an aircraft sizing, discipline empennage area and wing area are two

possible outcomes, which are functionally dependent based on a stability factor. Fur-

ther, in the presence of uncertainties, these multiple responses are also statistically

dependent on each other. Therefore, it is important to model their dependencies to

carry out uncertainty propagation and quantification accurately.

One approach is to extend the probabilistic modeling described in section 5.1 for

multivariate responses by using a parametric multivariate distribution function such

as multivariate Gaussian distribution in place of univariate Gaussian distribution in

Equation 73 for multiple responses. A multivariate Gaussian distribution is given as

P(y|x,w) = N (y|µ(x,w),Σ) (106)

where y ∈ R1×n is the vector of n outputs and µ(x,w) is the multivariate regression

of conditional mean and Σ ∈ Rn×n is a covariance matrix. The issue with using
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multivariate Gaussian distribution is that it assumes that marginal distribution for

each response is a Gaussian distribution. Limited options are available to model non-

Gaussian marginal distributions using a parametric multivariate distribution function

such as Matrix gamma distribution, Multivariate t-distribution, Wishart distribution,

Hotelling’s T-squared distribution, etc. Models using any of these parametric multi-

variate distribution function have the following limitations:

1. The marginal distributions and dependency structures are fixed.

2. The dependence information is coupled with the marginal distributions.

For example, consider the scatter plot of two random variables given in Figure 63a. In

this example, both the marginals have Gaussian distribution; however the dependency

structure is non-Gaussian. Therefore, these random variables cannot be modeled with

multivariate Gaussian distribution as it assumes an elliptical dependency structure.

Also, consider the scatter plot of two random variables given in Figure 63b. In this

case one of the marginals is a Gaussian distribution whereas the other one is a gamma

distribution. This cannot be modeled with any parametric multivariate distribution

function as there does not exist any such parametric function which can model a

Gaussian distribution and a gamma distribution as marginals.

To overcome these challenges Copula theory is used in the current work to model

multivariate dependencies of the responses. Copulas are multivariate distribution

functions defined over n unit space, whose marginals are uniform distribution over

unit interval, i.e. U ∼ Uniform(0, 1). Since, by using probability integral transforma-

tion, any continuous random variable can be transformed into a unit random variable,

copula can be used to couple different marginal distributions to construct multivariate

distributions. The main benefit of copula is that it decouples the marginal distribu-

tion from the dependency structure, therefore allows multiple options for dependency

structures.
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Figure 63: Example of joint distribution of random variables with different marginals
and dependency structure

Copula-based models have been used in various fields including but not limited to

modeling of financial risk [188, 189, 190], modeling credibility and losses [191, 192],

modeling correlated event times and competing risks [193, 194], reliability analysis

in engineering [195, 196, 197], and so on. A brief introduction is given in the next

section.

5.3.1 Introduction to Copula Theory

In Latin, the word coupla means “ a link, tie, bond”. The word copula was employed in

the field of statistics by Abe Sklar (1959) [198] which was defined as the function that

“join together one-dimensional distribution functions to form multivariate distribution

functions”. One of the comprehensive books in this topic by Nelson [199] describe

it as “Copulas are functions that join or couple multivariate distribution functions

to their one dimensional marginal distribution functions. Alternatively, copulas are

multivariate distribution functions whose one-dimensional margins are uniform on

the interval [0, 1]”.

The main idea behind copula theory is to decompose an n-dimensional distribution
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151



0 0.5 1
x 9 Unif(0; 1)

0

0.2

0.4

0.6

0.8

1

y
9

U
n
if

(0
;1

)

(a) Clayton Copula

0.94 0.96 0.98 1 1.02 1.04
x 9 N (1; 0:12)

0.8

0.9

1

1.1

1.2

y
9

N
(1

;0
:2

2
)

(b) Joint distribution with Gaussian
and Gamma distribution as marginals

0.94 0.96 0.98 1 1.02 1.04
x 9 N (1; 0:12)

0

2

4

6

8

10
y
9
!
(2

;1
)

(c) Joint distribution with Gaussian
and Gamma distribution as marginals

Figure 65: Example of joint distribution of random variables with different marginals
and dependency structure using Clayton Copula
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function F into marginal distribution functions Fi and the copula C which defines

the structure of the dependence of the distribution.

Definition: Copula Let U = (U1, . . . , Un)T be an n dimensional random vector with

Ui be a uniform random variable over the unit interval, then the copula C is defined

as

C(u1, . . . , un) = P(U1 ≤ u1, . . . , Un ≤ un) (107)

which is a joint cumulative distribution function of (U1, . . . , Un) and function C is

called an n-dimensional copula.

Using probability integral transformation, any multivariate distribution function

can be defined with copula. Consider a random vector (x1, . . . , xn)T with joint dis-

tribution function F (x1, . . . , xn). If Fi, i = 1, . . . , n are the marginal cumulative

distribution function of Xi, then Ui = Fi(Xi) is a uniform random variable over a

unit area. Therefore, a copula can be defined as

C(u1, . . . , un) = F
(
F−1

1 (u1), . . . , F−1
n (un)

)
(108)

Similarly, copula can be used to construct a multivariate distribution with any

arbitrary marginal distributions. Suppose if ith component of random vector X is

desired to have marginal distribution of Gi, then a multivariate distribution function

of G is defined as

G(x1, . . . , xn) = C (G1(x1), . . . , Gn(xn)) (109)

Equation 108 and Equation 109 demonstrate a close relationship between copula

and multivariate distribution which is generalized by Sklar’s thoerem.
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Sklar’s Theorem. Let F ∈ F(F1, . . . , Fn) be an n dimensional distribution

function with marginal distribution F1, . . . , Fn. Then there exists an n dimensional

copula C such that, for a x in the domain of F ,

F (x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)) (110)

C is unique if F1, . . . Fn are continuous, other wise C is uniquely determined on

RanF1×· · ·×RanFn whereRanH is the range ofH. Similarly, if C is an n dimensional

copula and F1, . . . Fn are marginal distributions, then F defines the n dimensional

distribution function of x1, . . . , xn.

The details of the proof of Sklar’s theorem can be found in Sklar [200]. Sklar’s the-

orem decouples the marginal distribution from the dependence structure, thereby al-

lowing analysis of the marginal and dependence separately. The relationship between

copula and multivariate density function f is derived by differentiating Equation 110

and is given as

f(x1, . . . , xn) = c(F1(x1), . . . , Fn(xn))
n∏
i=1

fi(xi) (111)

where fi are marginal density functions and c is the density function of copula given

as

c(u1, . . . , un) =
∂nC(u1, . . . , un)

∂u1 . . . ∂un
(112)

5.3.2 Concordance Measure for Copula

Copula of two random variables can be used to evaluate dependence measure be-

tween the random variables. Conversely, dependence measures, also called copula

parameters, can be used to construct different families of copulas. Since, copula

are invariant under monotonically increasing transformations [199], it is desirable to
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have a dependence measure which are scale invariant under monotonically increasing

transformation of the marginal distribution. For example, the most commonly used

dependence parameter, Pearson’s rho correlation, which measures linear correlation

between random variables, does not always satisfy this property.

Commonly used dependence measures in copula modeling are called concordance

measures. Two random variables are said to be concordant if large values of one

variable can be associated with large values of the other and correspondingly small

values of one variable with small values of the other. Concordance is defined by

concordance function Q which is the difference between the probability of concordance

and the probability of discordance between a pair of random variables. Concordance

function between two continuous random vectors (X1, X2) and (X ′1, X
′
2) with different

joint distributions G and H but common marginal distribution F1 and F2 is given as

Q = P((X1 −X ′1)(X2 −X ′2) > 0)− P((X1 −X ′1)(X2 −X ′2) < 0) (113)

which can be shown to be

Q = Q(CG, CH) = 4

∫ 1

0

∫ 1

0

CG(u, v)dCH(u, v)− 1 (114)

where CG and CH are the copulas of G and H, respectively.

Two most widely used concordance measures are Kendall’s tau and Spearman’s

rho. Kendall’s tau is defined asQ(C,C) of two independent and identically distributed

observations and is given as

τ = 4

∫ 1

0

∫ 1

0

C(u1, u2)dC(u1, u2)− 1 (115)

where τ ∈ [−1, 1]. Kendall’s tau can also be evaluated from samples of data. Let

[(x1, y1), . . . , (xns, yns)]
T be ns paired samples of data. Two paired samples (xi, yi)

and (xj, yj) are concordant if xi < xj and yi < yj or xi > xj and yi > yj, else they

are discordant. Then Kendall’s tau is defined as

τ =
c− d
c+ d

=
c− d(
ns
2

) (116)
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where c and d are the number of concordant and discordant pairs among
(
ns
2

)
pairs,

respectively.

Spearman’s rho is defined as 3Q(C,Π), where Π is the product copula obtained

under independence. Spearman’s rho is given as

ρ = 12

∫ 1

0

∫ 1

0

u1u2dC(u1, u2)− 3 (117)

where ρ ∈ [−1, 1]. Let [(x1, y1), . . . , (xns, yns)]
T be ns paired samples, Spearman’s rho

can be evaluated as

ρ = 1− 6
∑ns

i=1 d
2
i

ns(ns2 − 1)
(118)

where di is the difference of two rankings.

5.3.3 Types of Copulas

Two commonly used copulas are Elliptical copulas and Archimedean copulas.

5.3.3.1 Elliptical Copulas

Copulas of elliptical distribution are called elliptical copulas. A multivariate elliptical

distribution is defined by the characteristic function of form eit
TµΨ(tTΣt) [201], where

t ∈ Rn, specific or mean vector µ ∈ Rn and positive definite dispersion matrix Σ ∈

Rn×n. Typically, for copula modeling the distribution is centered around zero, i.e.

µ = 0 and the dispersion matrix Σ is parameterized such that Σij = Cov(Xi, Xj) [202],

where Cov(., .) is the covariance measure. If rij is the Pearson’s linear correlation

coefficient and τij is the Kendall’s tau between two random variables Xi and Xj, they

are related as

τij =
2

π
arcsin(rij). (119)

This relationship between Pearson’s correlation matrix and Kendall’s tau matrix al-

lows a wide range of dependence structures.
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Elliptical copulas provide a wide range of multivariate distributions with array

of dependence structures which enable modeling of multivariate extremes and non-

normal dependencies. Another advantage of elliptical copulas is that they share

similar tractable properties of multivariate distribution. Two most commonly used

elliptical copulas are Gaussian copulas and t copulas which are derived from multi-

variate Gaussian and multivariate t distributions.

Let ΦΣ be the joint cumulative distribution function of a multivariate Gaussian

distribution with correlation matrix Σ. Let Φ be the cumulative distribution function

of standard Gaussian distribution with zero mean and unit standard deviation. A

Gaussian copula with dispersion matrix Σ is given as

C(u1, . . . , un; Σ) = ΦΣ

[
Φ−1(u1), . . . ,Φ−1(un)

]
(120)

Similarly, for t copula consider joint cumulative distribution function of a multi-

variate Student’s t distribution is given by TΣ,ν where Σ is the correlation matrix and

ν specifies the degree of freedom. Let Ftν be the cumulative distribution function of

univariate t distribution with ν degrees of freedom. Then t copula with dispersion

matrix Σ and ν degrees of freedom is given as

C(u1, . . . , un; Σ, ν) = TΣ,ν

[
F−1
tν (u1), . . . , F−1

tν (un)
]

(121)

Gaussian and t copulas given by Equation 120 and Equation 121, respectively,

can be used with Equation 110 to construct multivariate distribution with range of

dependence structure by modifying the parameters Σ and ν. Gaussian copula and t

copula at different settings of parameters are plotted in Figure 66. Due to tractable

calculus of Gaussian copula it is widely used in various fields of research.

5.3.3.2 Archimedean Copula

Archimedean copulas are another class of popular copula which are different from

elliptical copula in the way it is generated. To construct an Archimedean copula a

157



(a) Gaussian Copula, ρ =
0.1

(b) Gaussian Copula, ρ =
0.5

(c) Gaussian Copula, ρ =
0.9

(d) t Copula, ρ = 0.1, ν = 2 (e) t Copula, ρ = 0.5, ν = 2 (f) t Copula, ρ = 0.9, ν = 2

Figure 66: Commonly used Elliptical copulas at different setting of parameters

generator function is required and it has to be a completely monotonic decreasing

function. Let ϕ(t) be a continuous strictly decreasing function such that ϕ : [0, 1] ×

Θ → [0,∞), where θ is a parameter within some parameter space Θ. If ϕ(1; θ) = 0

and ϕ(0; θ) =∞ and the inverse ϕ−1 is monotonic on [0,∞), then an n dimensional

Archimedean copula is given as

C(u1, . . . , ud; θ) = ϕ−1 (ϕ(u1; θ) + · · ·+ ϕ(ud; θ); θ) (122)

for n ≥ 2 and the function ϕ is called the generator of copula. Each Archimedean

copula has a unique generator function which can be used to generate the copula

function. For Archimedean copula, the concordance measure Kendal’s tau can be

evaluated using generator function as

τ = 1 + 4

∫ 1

0

ϕ(t; θ)

ϕ′(t; θ)
dt (123)
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Table 17: Copula Functions, Generator Functions, and Domains of Correlation Pa-
rameters

Copula C(u, v|θ) ϕθ(t) θ ∈ Σθ

Clayton
[
max

{
u−θ + v−θ − 1; 0

}]−1/θ 1
θ

(t−θ − 1) θ ∈ [−1,∞)\{0}
Frank −1

θ
log
[
1 + (exp(−θu)−1)(exp(−θv)−1)

exp(−θ)−1

]
− log

(
exp(−θt)−1
exp(−θ)−1

)
θ ∈ R\{0}

Gumbel exp
[
−
(
(− log(u))θ + (− log(v))θ

)1/θ
]

(− log(t))θ θ ∈ [1,∞)

AMH 1 uv
1−θ(1−u)(1−v)

log
[

1−θ(1−t)
t

]
θ ∈ [−1, 1)

This equation can be used with Equation 116 to estimate the theoretical value of pa-

rameter of assumed parametric copula family so that it equates the sample Kendall’s

tau measure.

Archimedean copulas have been used in a wide range of applications because of

the ease with which they can be constructed, the great variety of families of copulas

belonging to this class, and the many useful properties possessed by the members

of this class. Table 17 summarizes a few commonly used Archimedean copulas with

one parameter and Figure 67 shows various elliptical copulas at different settings of

parameters.

5.3.4 Statistical Inference

One of the methods used to infer the parameters of copula from a given set of samples

is maximum likelihood (ML) approach. Let (Xi1, . . . , Xip)
T , i = 1, . . . , n be the

observed n random samples of p dimensional data. Let the parameter be γ = [φ,θ],

where φ = [φ1, . . . ,φp] and φi is the vector of parameters associated with ith marginal

distribution and θ is the vector of parameters associated with copula function C.

Then, the log-likelihood of the parameter vector γ is given as

L(γ) =
n∑
i=1

log c
[
F1(Xi1|φ1), . . . , Fp(Xip|φp)|θ

]
+

n∑
i=1

p∑
j=1

log fj(Xij|φj) (124)

1Acronym for Ali-Mikhail-Haq copula
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(a) Clayton Copula, θ =
0.5

(b) Clayton Copula, θ =
2.0

(c) Clayton Copula, θ =
10.0

(d) Frank Copula, θ =
−10.0

(e) Frank Copula, θ = 2.0 (f) Frank Copula, θ = 15.0

(g) Gumbel Copula,θ = 2.0 (h) Gumbel Copula, θ =
5.0

(i) Gumbel Copula, θ =
15.0

Figure 67: Commonly used Archimedean copulas at different values of θ

where c() is the copula density function, Fj() and fj() are the cumulative distribution

functions and probability density function of ith marginal. Then, ML estimator of γ

can be evaluated by optimizing

γ̂ML = arg max
γ∈Γ

L(γ) (125)
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where Γ is the parameter space.

Instead of optimizing the entire set of parameters of copula and marginal distribu-

tion to estimate φ̂ML = [φ̂ML, θ̂ML], another approach known as Inference Functions

for Margins (IFM) as proposed by Joe and Xu [203] can be used, which is based on

the following decomposition:

L = LC(θ,φ) +

p∑
j=1

Lj(φj) (126)

where LC(θ,φ) =
∑n

i=1 log c
[
F1(Xi1|φ1), . . . , Fp(Xip|φp)|θ

]
is the log-likelihood con-

tribution from the dependence structure in the data represented by copula C and

Lj(βj) =
∑n

i=1 log fi(Xij|φj), j = 1, . . . , p are the log-likelihood contribution from

each marginals. Since,
∑p

j=1 Lj(φj) is exactly similar to the log-likelihood under

independence assumption, the first stage of IFM method estimates the maximum

likelihood of marginal parameters as

φ̂j
IFM

= arg max
φj

Lj(φj) = arg max
φj

n∑
i=1

log fi(Xij|φj) (127)

In the next stage of IFM method, maximum log-likelihood of copula parameters θ is

computed by maximizing LC , while replacing marginals parameter φj with φ̂j
IFM

as

θ̂
IFM

= arg max
θ

LC(θ, φ̂
IFM

) =
n∑
i=1

log c
[
F1(Xi1|φ̂

IFM

1 ), . . . , Fp(Xip|φ̂
IFM

p )|θ
]

(128)

IFM method estimator has been found to be consistent and asymptotically normal

under the usual regularity condition and a highly efficient alternative to MLE esti-

mation of multivariate models parameters [204].

5.4 Quantile-Copula Regression for Dependent Responses

As discussed in the section 5.2, quantile regression provides an approach to modeling

conditional quantile function QY |x(τ |x,β), which can be used to evaluate the con-

ditional distribution function FY |x(y|x,β). If there are multiple responses, quantile
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regression models can be built for each response separately as QYi|x(τ |x,βi) which can

be used to evaluate conditional the marginal distribution function for each response,

FYi|x(yi|x,βi). To model the complete joint distribution for multiple responses, one

also has to model a dependence structure in addition to the marginal distribution.

Copula theory discussed in section 5.3.1 provides the mechanism to decouple the

marginal distributions from the dependence structure so that each of them can be

modeled separately. Quantile regressions can be combined with copula functions to

build a Quantile-Copula regression model, which can be used to model a wide range

of marginal distributions with arrays of dependence structures.

Let β1, . . . ,βp be the matrices of parameters associated with quantile regressions

of p responses and θ be the parameter associated with the copula function. Then the

quantile copula regression model is given as

F (y|x,β1, . . . ,βp,θ) = C(F1(y1|x,β1), . . . , Fp(yp|x,βp)|θ) (129)

where Fi(y|x) = Q−1
Yi|x(yi|x,βi) and QYi|x(τ |x,βi) is the quantile regression model

for ith response. Equation 129 assumes that the copula parameter θ is fixed for all

values of x, i.e. the dependence structure does not vary with x. If the dependence

parameter varies with x, a regression model can be used for copula parameters as

θ = fθ(x,α), for example θ = Xα. Then, Equation 129 can be modified as

F (y|x,β1, . . . ,βp, α) = C(F1(y1|x,β1), . . . , Fp(yp|x,βp)|x,α) (130)

Parameter inference for Quantile-Copula regression for dependent responses can

be built in two stages in a manner which is similar to the Inference Function for

Margins (IFM) method discussed in Section 5.3.4 and is referred in the current work

as modified IFM method. In the first stage, models for quantile regressions are built

for each response separately as discussed in Section 5.2.1, to estimate the parame-

ters associated with quantile regression, i.e. β̂1, . . . , β̂p. In the second stage copula
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parameters α are estimated by maximizing the log likelihood function as

α̂ = arg max
α

n∑
i=1

log c
[
F1(y1|x, β̂1), . . . , Fp(yp|x, β̂p)|x,α

]
(131)

Details of implementation and a tutorial on parameter estimation of quantile copula

regression is given in Appendix III. In the current work, quantile copula regression

models of multivariate variable y is represented as f̃qcry(y|x, β̂1, . . . , β̂p, α̂), unless

otherwise specified.

5.4.1 Copula Selection for Quantile Copula Regression

Many copula functions exist in literature [199] and some of the commonly used cop-

ula functions are given in Section 5.3.3. However, in the quantile copula regression

discussed in the previous section it is assumed that copula function is fixed for the

entire input space x. An appropriate copula function can be selected based on the in-

formation available from the data. Some of the quantitative methods to select copula

functions are the Akaike Information Criterion (AIC) [205], the Bayesian Information

Criterion (BIC) [206], the Deviance Information Criterion (DIC) [207], etc. For more

details please refer to [208, 209]. Other graphical techniques to determine the copula

type are QQ plot [210], Kendall’s tau plot[211], etc.

In the current work the Gaussian copula function is used to model quantile copula

regression. The reason are as follows

� Most of the engineering disciplinary analysis contains multiple responses. Gaus-

sian copula is one of the few copulas that have a practical n-dimensional gen-

eralization.

� In a Gaussian copula, the joint probability density function or cumulative den-

sity function can be uniquely determined based on marginals of the variables

and the correlation coefficient matrix [212].
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� Both positive and negative correlations can be handily represented by a Gaus-

sian copula [212].

� In a typical engineering problem, the number of data samples are limited due

to the expense associated with engineering analyses. For a limited amount of

data, only marginals and correlation information can be determined, which are

the only input to a Gaussian copula [213].

� There is a large statistical uncertainty associated with identifying the best fit

copula for limited data [213].

� In some scenarios, complete multivariate data are not available. A Gaussian

copula is the only copula that can be constructed using bivariate data informa-

tion [213].

However, careful consideration should be made about using elliptical copulas like the

Gaussian copula when extreme values are critical, as an elliptical copula does not

capture the tail dependence appropriately [42].

5.4.2 Conditional Probability Density Function Using Quantile Copula
Regression

With the assumption that the Gaussian copula is used in the current work, the copula

density function c used in Equation 131 for a p-dimensional distribution is given as

c(u|Σ) =
1√
|Σ|

exp

(
−1

2
uT (Σ−1 − I)u

)
(132)

where ui = Φ−1(Fi(yi)), Φ−1 is the inverse cumulative distribution function of stan-

dard normal, Fi(yi) is the marginal cumulative distribution function of yi, i = 1, . . . , p,

and Σ is the correlation matrix with the entries ρij being the pairwise correlation be-

tween yi and yj.
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If β̂1, . . . , β̂p are the matrices of parameters associated with quantile regression

models of y1, . . . , yp and α̂ is the vector of parameters associated with copula pa-

rameter regression, then the conditional probability function fy|x(y|x, β̂1, . . . , β̂p, α̂)

conditioned at x is given as

fy|x(y|x, β̂1, . . . , β̂p, α̂) =
1√
|Σ|

exp

(
−1

2
uT (Σ−1 − I)u

) p∏
j=1

fyj |x(yj|x, β̂i) (133)

where each element Σij = θ̂ij is estimated using the model θ̂ = fθ(x, α̂) which is used

for copula parameter regression. ui = Φ−1(Fi(yi|x, β̂i)) where Φ−1 is the inverse cu-

mulative distribution function of standard normal and Fi(yi|x, β̂i) is the conditional

cumulative distribution function and fyj |x(yj|x, β̂i) is the conditional probability den-

sity function estimated using quantile regression of yi at x for given quantile regression

parameter matrix β̂i.

5.4.3 Conditional Sampling Using Quantile Copula Regression

With the assumption that the Gaussian copula is used in the current work, sampling

from a quantile copula regression conditioned at x for given quantile copula regression

parameters [β̂1, . . . , β̂p, α̂], the following steps are carried out

1. Estimate correlation matrix Σ, where each element Σij = θ̂ij using the model

θ̂ = fθ(x, α̂) for given x.

2. Generate samples of p-dimensional random variables z = [z1, . . . , zp] from a

p-dimensional joint standard Gaussian distribution with correlation matrix Σ.

3. Evaluate ui = Φ(zi), where Φ is the cumulative standard Gaussian distribution

function, for i = 1, . . . , p.

4. Determine yi = QYi|x(ui|x, β̂i) for given x using quantile regression with pa-

rameter matrix β̂i, for i = 1, . . . , p.
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Beam Model

Horizontal Load, X (lbf)
Vertical Load, Y (lbf)

Maximum stress, s, (lbf/in2)
Maximum displacement, d (in)

Volume, v (in3)

Uncertainty
Thickness, t (in)
Width, w (in)

Figure 68: Variables associated with beam model

5.5 Numerical Demonstration

For the numerical demonstration of quantile copula regression a low fidelity beam

model is used as given by Equation 63. As shown in Figure 68, the input space is

defined by vertical load Y (lbf) and horizontal loadX (lbf). The uncertainty variables

are beam width w (in) with distribution Unif(3.2, 4.8) and beam thickness t (in)

with distribution Triangular(3.0, 4.3, 4.5), which are assumed to be embedded in the

discipline such that the discipline acts like a non-deterministic function. Deterministic

parameters are beam length L = 100(in) and Modulus of Elasticity E = 2.9 ×

106(lbf/in2). The outputs of the discipline are maximum stress s (lbf/in2), maximum

displacement d (in), and beam volume v (in3).

To demonstrate modeling of quantile copula regression, the uncertain variable t

is assumed to have a triangular distribution and w is assumed to have a uniform

distribution. The ranges of input variables are assumed to be X ∈ [500, 1500] and

Y ∈ [1500, 2500]. 10, 000 samples are uniformly generated within the range of X and

Y . For each sample, a beam model is executed to generate a random sample of s, d

and v.

To build quantile copula regression, quantile regression models have been built for

20 levels of τ uniformly spaced between 0.02 and 0.98. For each quantile regression

model, a quadratic response surface model has been used as a function of X and
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(a) Quantile surface of max stress s
(lbf/in2)

(b) Quantile surface of maximum dis-
placement d (in)

(c) Quantile surface of beam volume v
(in3)

Figure 69: Quantile surfaces of responses at level τ = [0.1, 0.5, 0.9] as function of
input variables, horizontal load X (lbf) and vertical load Y (lbf)

Y . The quantile surface with τ level of 0.1, 0.5 and 0.9 is shown in Figure 69. It is

observed that for both s and d the gap between the quantile surfaces are not constant

in the input space. This signifies heteroskedasticity in these variables. However, the

gap between the quantiles surfaces of v are nearly constant, which signifies that v has

homeostatic behavior. Also, the quantiles surfaces of v are very flat. This is due to

the fact that v is not a function of X and Y .
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(a) Correlation between maximum dis-
placement d and max stress s

(b) Correlation between maximum dis-
placement d and beam volume v

(c) Correlation between max stress s and
beam volume v

Figure 70: Correlation regression surfaces as function of input variables, horizontal
load X (lbf) and vertical load Y (lbf)

Similar to quantile regression, correlation parameters are regressed with quadratic

response surfaces as a function X and Y . A pairwise correlation regression surface

between s, d and v is shown in Figure 70. As observed, the correlations between

any pair of variables are not constant in the input design space. The correlation

between d and s has been found to be positive and very close to 1.0 in the entire

design space, which also validates the fact that with increase in displacement, stress
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Figure 71: Scatter plot from joint distribution between variables at X = 1000 and
Y = 2000 generated by true disciplinary analysis and quantile copula regression
(QCR)
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Figure 72: Scatter plot from joint distribution between variables at X = 700 and
Y = 1700 generated by true disciplinary analysis and quantile copula regression
(QCR)

increases. Correlation of d and s with v is negative in entire design space. This is

because reduction in beam volume leads to increase in displacement and stress.

To study the accuracy of quantile copula regression, conditional samples are gen-

erated at five different locations in input space (X, Y ) at (1000, 2000), (700, 1700),

(1300, 2300), (700, 2300), (1300, 1700). The bivariate scatter plots between the re-

sponse variables generated by quantile copula regression at the aforementioned loca-

tions are compared with samples from true disciplinary analysis in Figure 71, 72, 73,
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Figure 73: Scatter plot from joint distribution between variables at X = 1300 and
Y = 2300 generated by true disciplinary analysis and quantile copula regression
(QCR)
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Figure 74: Scatter plot from joint distribution between variables at X = 700 and
Y = 2300 generated by true disciplinary analysis and quantile copula regression
(QCR)

74 and 75. As observed, the trend of the scatter plot generated by quantile copula

regression has been found to be very similar to true disciplinary analysis. To compare

the dependency structure, a single iso-probability contour of value 0.02Pmax, where

Pmax is the maximum probability value attained by the true solution, is plotted in

each figure. The dependency between s and d has been found to be very close to

elliptical. The dependency of s and d with respect to v has been found to have a

non-linear trend. The dependency structure generated by quantile copula regression
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Figure 75: Scatter plot from joint distribution between variables at X = 1300 and
Y = 1700 generated by true disciplinary analysis and quantile copula regression
(QCR)
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Figure 76: Quantile-Quantile (Q–Q) plot of variables at X = 1000 and Y = 2000

has been found to match very closely that of true dependency. Each figure also shows

the marginal probability density function of each response. Although almost all the

marginal distribution variables are non-Gaussian, quantile copula regression has been

found to capture these accurately.

The accuracy of the marginal distributions generated by quantile copula regression

at aforementioned location is also validated with the Quantile-Quantile (Q–Q) plot

in Figure 76, 77, 78, 79 and 80. Almost all the sample quantiles have matched very

closely with true quantiles. Some discrepancy has been found near the upper tail of

both s and d. This is due to the fact that both these variables are positively skewed
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Figure 77: Quantile-Quantile (Q–Q) plot of variables at X = 700 and Y = 1700

2 4 6 8
True Quantile #104

0

2

4

6

8

Sa
m

pl
e 

Q
ua

nt
ile

#104

(a) QQ plot of s

0 20 40
True Quantile

0

10

20

30

40
Sa

m
pl

e 
Q

ua
nt

ile

(b) QQ plot of d

1000 1500 2000 2500
True Quantile

500

1000

1500

2000

2500

Sa
m

pl
e 

Q
ua

nt
ile

(c) QQ plot of v

Figure 78: Quantile-Quantile (Q–Q) plot of variables at X = 1300 and Y = 2300
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Figure 79: Quantile-Quantile (Q–Q) plot of variables at X = 700 and Y = 2300

and have a longer upper tail. The accuracy near the tail can be improved by adding

more samples and modeling additional quantile regression near the tails.
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Figure 80: Quantile-Quantile (Q–Q) plot of variables at X = 1300 and Y = 1700

Table 18: Comparison of difference in K-L divergence of variables between true
marginal distribution and marginal distribution estimated by quantile copula regres-
sion

d s v

(X, Y ) = (1000, 2000) 0.04 0.02 0.01
(X, Y ) = (700, 1700) 0.02 0.01 0.01
(X, Y ) = (1300, 2300) 0.01 0.02 0.02
(X, Y ) = (700, 2300) 0.02 0.01 0.00
(X, Y ) = (1300, 1700) 0.01 0.01 0.01

To quantify the accuracy of quantile copula regression to model the marginal dis-

tributions, K-L divergence is used for each test case and presented in Table 18. As

observed, quantile copula regression has been able to accurately estimate the proba-

bility density functions of each response. To quantify the accuracy of quantile copula

regression to capture the dependence, the difference between mutual information of

Table 19: Comparison of difference in mutual information (∆MI) among variables
between true joint distribution and joint distribution estimated by quantile copula
regression

s vs d d vs v v vs s

(X, Y ) = (1000, 2000) -0.01 0.03 -0.03
(X, Y ) = (700, 1700) 0.01 0.00 0.03
(X, Y ) = (1300, 2300) 0.03 -0.04 0.00
(X, Y ) = (700, 2300) -0.02 -0.02 -0.02
(X, Y ) = (1300, 1700) -0.02 -0.02 -0.02
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Figure 81: Limitation of Gaussian copula to model data with tail dependence and
non-linear with non-monotonic dependence

true solution and quantile copula regressions for each test case is presented in Ta-

ble 19. It has been found that quantile copula regression has been able to closely

match with true mutual information with the worst case of ∆MI = −0.04.

5.6 Chapter Summary

In this chapter, quantile copula regression is presented to model conditional proba-

bility density of multivariate responses of a discipline, model, subsystem or even a

multidisciplinary system, as a function of predictor or input variables. The quan-

tile copula regression uses quantile regression technique to model the conditional

probabilities of each response independently. Since the quantile regression does not

assume any functional form of probability densities and instead models different levels

of quantiles, it provides a comprehensive information regarding the true probability

densities. To handle the dependence between multiple responses, copulas are used

to couple the the conditional probabilities with the statistical dependencies. One of
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the main advantages of a copula is that it can couple any arbitrary marginal dis-

tribution with various ranges of dependency structures. Since copula decouples the

marginal distributions from the dependence structure, it allows independent modeling

of marginal distributions which are carried out by quantile regression.

To test the hypothesis, a simple beam problem with three responses and two

input variables has been used. The uncertainty variables in the beam models are

assumed to have non-Gaussian distribution. Due to non-Gaussian uncertainties, the

true probability distribution of responses are non-Gaussian. It has been observed that

quantile copula regression has been able to accurately and comprehensively estimate

the marginal distributions as well as dependencies.

Since multiple quantile regressions are used to estimate the conditional probabil-

ity densities, the accuracy of the method increases with an increase in number of

quantile levels. Also, accuracy of the quantile regression depends upon the number

of samples available. This is particularly important to capture the tail probabilities,

where the inaccuracy of the quantile regression increases due to relatively smaller

samples around that region. In the current work, a quadratic response surface has

been used to model the quantile surfaces. For non-linear problems, higher order

models or non-linear methods like spline, Artificial Neural Network can be used.

One of the main assumptions in this work is the use of a Gaussian copula to model

the dependencies. Although a Gaussian copula is very robust and easily applicable

to a large variety of problems, one should be careful while using it. For example, the

Gaussian copula is an elliptical copula and cannot model the tail dependence accu-

rately. This is shown in an example given in Figure 81a. Although a Gaussian copula

can handle certain non-linear dependencies, it cannot capture the non-monotonic de-

pendencies. This is shown in Figure 81b, where the true data has both non-linear

and non-monotonic dependency.
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CHAPTER VI

CONCURRENT OPTIMIZATION USING

PROBABILISTIC ANALYSIS OF DISTRIBUTED

MULTIDISCIPLINARY ARCHITECTURES (CO-PADMA)

In the previous chapters, a method to carry out uncertainty-based multidisciplinary

analysis (UMDA) in a distributed procedure while capturing the functional dependen-

cies and interdisciplinary compatibility using PADMA, and modeling of conditional

probability densities using quantile copula regression has been discussed. A straight-

forward way to carry out design optimization is to run an optimization algorithm by

treating the UMDA process using the PADMA method as an analysis block. But,

as discussed in Chapter 3 and problem set-up research question 3.0, it is desirable to

allow each discipline to carry out a local optimization process so that the computa-

tional load on system optimization is reduced, in addition to allowing the disciplinary

experts to make the best decision in their area of expertise.

In the current chapter, Concurrent Optimization using Probabilistic Analysis of

Distributed Multidisciplinary Architectures (CO-PADMA), is developed to carry out

distributed multidisciplinary design optimization for non-deterministic disciplines.

CO-PADMA is a bi-level optimization procedure where the top level or the sys-

tem level is mainly responsible for system level optimization and interdisciplinary

compatibility using PADMA method. At a lower level, subsystem or disciplines are

responsible for carrying out uncertainty propagation and optimization using their

respective high fidelity disciplinary analyses and using quantile copula regression of

non-local variables. The proposed method is derived by taking features from deter-

ministic MDO methods like the surrogate-based CSSO method. The hypothesis to
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the third research question is given as:

Research Question 3.0: What is an appropriate procedure to carry out

distributed optimization of a multidisciplinary system under uncertainty to

accurately quantify the dependency and uncertainty on coupling variables and

system metric for non-deterministic disciplinary analyses ?

Hypothesis 3.0: If accurate models of conditional probability densities of

disciplinary metrics can be built, then Concurrent Optimization using Proba-

bilistic Analysis of Distributed Multidisciplinary Architectures (CO-PADMA)

can find the optimum design and estimate the uncertainty and dependence of

system metrics and state variables accurately, while allowing distributed op-

timization and uncertainty analysis for a multidisciplinary system.

In the next section, an overview of the approach is discussed. Next, the CO-

PADMA method is presented in detail which is followed by the numerical procedure.

After that, numerical experiments are carried out on two problems to test the hy-

pothesis. Finally the chapter is summarized in the last section.

6.1 Approach Overview

A probabilistic formulation for the uncertainty-based multidisciplinary design opti-

mization (UMDO) problem can be stated as

minimize F = F (µysys(x,y), σysys(x,y)) (134a)

with respect to x

such that P[gj(x,y) ≤ 0] > Rieqj for j = 1, . . . , ng (134b)

xL ≤ x ≤ xU (134c)

where F () is the cost or objective function. For example, to carry out robust design

optimization one can use F = κµysys(x,y) + (1 − κ)σysys(x,y), where µysys is the

statistical mean and σysys is the standard deviation of system level metric ysys and
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0 ≤ κ ≤ 1 is a numerical factor specified by the designer. x is the vector of design

variables consisting of shared design variables xsh and disciplinary design variables

x1, . . . ,xn, where xi is the design variable vector associated with ith discipline and n

is the total number of disciplines. y is the vector of disciplinary state variables and

is uncertain due to uncertainties associated with disciplinary analyses. The system

level response ysys is assumed to be an element of state variable vector y. Also, the

uncertain coupling variables yij :: ∀i, j i.e. the variables which are the output of ith

discipline and input to jth discipline, are assumed to be a subset of state variable

vector y. The state variables for a given setting of design variable are evaluated by

carrying out an UMDA such that the coupling variables satisfy the interdisciplinary

compatibility constraints.

A straightforward approach to carry out uncertainty-based multidisciplinary de-

sign optimization (UMDO), while allowing concurrent and independent disciplinary

uncertainty analysis, is to execute the PADMA procedure for UMDA at each step of

the optimization step. As shown in Figure 82, system level optimization is carried out

with respect to design variable x and during each step of the optimization process the

PADMA procedure is executed to evaluate the interdisciplinary compatible state vari-

able y. The state variable y evaluated by the PADMA procedure is used to evaluate

the system level cost function and all the design reliability constraints. During each

step of the optimization process the PADMA procedure allows all disciplines or sub-

systems to carry out uncertainty analysis independently and concurrently. Although

this approach allows decomposition and concurrent execution of uncertainty analysis

among disciplines, the entire burden of optimization lies on the system level optimizer.

This approach does not decompose the optimization process among disciplines and

exploit the advantages of high fidelity disciplinary subspace exploration.

Decomposition and coordination-based UMDO are categories of methods which
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Figure 82: An UMDO approach using PADMA enabling concurrent and independent
disciplinary uncertainty analysis

allow decomposition of large scale computationally prohibitive problems into manage-

able disciplinary sub-optimization problems which are coordinated through a certain

strategy to achieve a interdisciplinary compatible optimum solution. The core dif-

ference between these methods lies in their coordination strategies through which

information between disciplinary optimizer and system optimizer are coordinated so

that a compatible and optimum solution is achieved. There are two commonly used

coordination strategies; first one is target matching strategy and the second one is

approximate model sharing strategy.

6.1.1 Target Matching Strategy

This strategy is used by UMDO methods based on Collaborative Optimization (CO),

Analytical Target Cascading (ATC), etc. In the first strategy, the system optimizer

sets the target for the disciplinary optimizers and applies interdisciplinary compat-

ibility constraints such that the optimum solution is a consistent design. The main

goal of a subsystem or disciplinary optimizer is to achieve the targets set by the sys-

tem level optimizer. In a typical bi-level UMDO procedure based on target matching

strategy, the optimization process is decomposed into system level optimization at the
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Figure 83: A general target matching strategy for decomposition and coordination-
based UMDO

top level and disciplinary level optimization at the lower level as shown in Figure 83.

A general system level optimization statement is given by Equation 135.

System Optimization

minimize F = f(Ξ1(ysys), . . . ,Ξk(ysys)) (135a)

with respect to xsh0 ,Ξ1(y0), . . . ,Ξk(y0)

such that P[gj0(xsys,xsh0 ,y0) ≤ 0] > Rieqj for j = 1, . . . , ng0 (135b)

Cci(Ξ(y0i),Ξ(yi),xsh0i
,xshi) = 0 ∀i (135c)

The cost function of system optimization is a function of uncertainty measure (Ξi)

of system level metric ysys. Some of the commonly used measures (Ξi) in probability

theory are expected value, standard deviation, higher order moments, percentile,

correlation, etc. The design variables consist of copies of shared design variables (xsh0)

and copies of statistical measures of disciplinary state variables y0. Please note that

the subscript ()0 signifies copies of variables associated with system level optimization.

g0
j (xsys,xsh0 ,y0) are the system level constraints and Rieqj is the reliability factor set

up by the designer. Similarly, xsh0i
is the subset of xsh0 consisting of copies of shared

design variables associated with ith discipline. xshi and Ξ(yi) are the shared design

variables and statistical measures of state variables evaluated and received from the
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ith discipline. Cci(Ξ(y0i),Ξ(yi),xsh0i
,xshi) = 0 are the interdisciplinary compatibility

constraints required to achieve a consistent solution at the optimum. For example,

in MM-RCO [141] method interdisciplinary compatibility constraints are given as

Cci = ||xsh0i
− xshi ||+ ||µy0i

− µyi ||+ ||σy0i
− σyi || (136)

where µ() and σ() are mean and standard deviation of respective variables. [144]

At subsystem level, the optimization procedure is given by Equation 137.

ith Subsystem Optimization

Given Ξ1(y0i), . . . ,Ξk(y0i),xsh0i
(137a)

yi = fi(xloci ,xshi ,y.i,ui) or yi = fi(xloci ,xshi ,y.i) + εi (137b)

minimize fci (137c)

with respect to xloci ,xshi ,Ξ1(yi), . . . ,Ξk(yi)

such that P[gij(xloci ,xshi ,yi) ≤ 0] > Rieqj for j = 1, . . . , nig (137d)

where target value of Ξ1(y0i), . . . ,Ξk(y0i), and xsh0i
are set and given by the system

optimizer. Disciplinary analyses are available either as an explicit function of uncer-

tain variables yi = fi(xloci ,xshi ,y.i,ui) or non-explicit and non-deterministic function

yi = fi(xloci ,xshi ,y.i)+εi, where εi is the random noise function due to inherent uncer-

tainty in the subsystem. Design variables at subsystem level are local design variables

xloci , local copies of shared design variables xshi and statistical measure of state vari-

ables Ξ1(yi), . . . ,Ξk(yi). The objective of the disciplinary optimization is to reduce

the discrepancy from the target specified by the system level.

fci = ||xsh0i
− xshi||+

k∑
i=1

||Ξi(y0i)− Ξi(yi)|| (138)

The objective may also include optimizing the disciplinary metrics which are not dealt

with at system level.
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Comments Uncertainty quantification and propagation (UQP) takes place during

each step of subsystem optimization to evaluate the uncertainty on local state vari-

ables and constraint. It is inconsequential if disciplinary analyses are deterministic

(yi = fi(xloci ,xshi ,y.i,ui)) or non-deterministic (yi = fi(xloci ,xshi ,y.i) + εi) or can or

cannot be represented explicitly as a function of uncertain variables. The optimiza-

tion formulation only requires statistical information of disciplinary state variables

from the disciplinary uncertainty analysis process.

Another point to be noted here is that this strategy does not guarantee inter-

disciplinary compatibility at each step of the optimization process. Therefore, if the

optimization process is terminated before the optimum solution is reached, the design

may be inconsistent.

6.1.2 Approximate Model Sharing Strategy

This strategy is used by UMDO methods based on Concurrent SubSpace Optimiza-

tion (CSSO), etc. In this strategy, approximate models of state variables are built and

used in both system optimization as well as subsystem optimization as shown in Fig-

ure 84. The first step in this strategy is to build approximate models of disciplinary

state variables ỹi = f̃i(xi,xsh,ui) by executing individual disciplinary analysis sepa-

rately using appropriate design of experiment techniques or global sensitivity meth-

ods. Some methods directly build the approximate model of interdisciplinary compat-

ible solution of all the state variables ỹ = f̃(x,u), where x = [xsys,xsh,x1, . . . ,xn] and

u = [u1, . . . ,un] by executing an integrated UMDA. The approximate models of state

variables are then used to carry out system level optimization given by Equation 139.

Please note that (̃) used on any function in this chapter signifies approximate models

for both deterministic and non-deterministic functions unless stated otherwise.

182



Uncertainty Based MDA

Disp-1

Disp-2

Disp-3

Database
Interdisciplinary 

Compatible 
Solutions

Approximate 
Model Building

System Optimization

UQ&P

Approx. 
System Model

Subsystem Optimization

UQ&P

Disciplinary 
Analysis-1

Subsystem 
Optimization-1

UQ&P

Disciplinary 
Analysis-2

Subsystem 
Optimization-2

UQ&P

Disciplinary 
Analysis-3

Subsystem 
Optimization-3

Uncertainty Based MDA
Disp-1

Disp-2

Disp-3

Data Flow

Process Flow

Start

࢞∗ ࢞∗

࢞૚∗ ,࢞૛∗ ,࢞૜∗

࢞∗, ∗ܡ

,∗࢏࢞ ∗ܑܡ

෤ܡ ෤ܡ

Figure 84: An approximate model sharing strategy for decomposition and coordina-
tion based UMDO

183



System Optimization

Given ỹi = f̃i(xi,xsh,ui) or ỹ = f̃(x,u) (139a)

minimize F = f(ỹsys) (139b)

with respect to x

such that P[gj(x, ỹ) ≤ 0] > Rieqj for j = 1, . . . , ng (139c)

where design variable x consists of shared design variables xsh and disciplinary level

design variables xi. A system level objective function is similar to a target matching

strategy. If an approximate model of interdisciplinary compatible solution of state

variables ỹ = f̃(x,u) is available, then the system cost function can be directly

evaluated from the model. If approximate models of disciplinary state variables ỹi =

f̃i(xi,xsh,ui) are available, then UMDA needs to be carried out using approximate

models to evaluate interdisciplinary compatible state variables and system level cost

function. Once the optimum design variable at kth cycle, x∗k is evaluated, UMDA

using the actual disciplinary analyses is carried out to evaluate the true solution and

error associated with the approximate model. The true solution is also added to the

database which is used to update the approximate models in the following cycle.

At subsystem level, subspace optimization is carried out using local design vari-

ables. The coupling variables which the are output of other disciplines and input to

the subspace analysis are evaluated using approximate models. The subspace opti-

mization formulation is given in Equation 140.
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ith Subsystem Optimization

Given x∗k, ỹ·i = f̃·i(x,u) (140a)

yi = fi(xi,xsh, ỹ·i,ui) (140b)

minimize f(ỹ·i,yi) (140c)

with respect to xiloc,x
i
sh

such that P[gj(x, ỹ·i,yi) ≤ 0] > Rieqj for j = 1, . . . , ng (140d)

where system level optimum solution of kth cycle x∗k is used for non-local design

variables. The approximate model ỹ·i = f̃·i(x,u) is used to estimate input coupling

variables ỹ·i. Local state variable is evaluated by true or high-fidelity disciplinary

analysis yi = fi(xi,xsh, ỹ·i,ui). The cost function is similar to system level opti-

mization. Similarly, in the constraint function gj(x, ỹ·i,yi) local state variables are

estimated using true disciplinary analysis and non-local state variables are estimated

using approximate models. Once the optimum is evaluated from each subsystem,

an UMDA is carried out to evaluate the true solution and is added to the database

which is used to update the approximate models in the following cycle. The cycle is

repeated until convergence criteria set by designer are met.

Comments Since interdisciplinary compatible solutions of state variables y are

evaluated using approximate models of disciplinary state variables ỹi = f̃i(xi,xsh,ui),

interdisciplinary consistency constraint is not required in the optimization process.

Also, at the end of the each cycle, an UMDA is carried out at optimum solution

to ensure a consistent solution is achieved. Therefore, if the optimization process is

terminated at any intermediate cycle, interdisciplinary compatibility is guaranteed.

However, the approximate models built in this strategy are deterministic models and

are a function of uncertainty variables u as well. Generally, it is assumed that the

disciplinary analyses can be determined as a explicit function of uncertain variables
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yi = fi(xloci ,xshi ,y.i,ui). Therefore most UMDO methods based on this strategy

may not be directly applicable for problems which have non-deterministic disciplinary

analyses or the disciplinary analyses which have inherent uncertainty and cannot be

explicitly determined as functions of uncertain variables.

The CO-PADMA methodology is based on the approximate model sharing ap-

proach. To overcome some of the shortcomings of existing methods based on the

approximate model sharing approach, PADMA procedure and quantile copula re-

gression is used. PADMA procedure enables distributed and concurrent disciplinary

analysis to estimate an interdisciplinary compatible solution, therefore reducing the

computational burden associated with an integrated UMDA procedure required in

each cycle of the approximate model sharing approach. Quantile copula regression

allows modeling of non-deterministic disciplinary analysis, where disciplinary state

variables cannot be explicitly determined as a function of uncertain variables. Quan-

tile copula regression also enables the handling of the dependencies and allows mod-

eling of non-Gaussian marginal distributions of the state variables.

6.2 CO-PADMA Methodology

Concurrent Optimization using Probabilistic Analysis of Distributed Multidisciplinary

Architectures (CO-PADMA) is a bi-level UMDO procedure which uses an approxi-

mate model sharing approach as coordination strategy. The CO-PADMA method

starts by executing UMDA to evaluate samples of interdisciplinary compatible so-

lutions of state variables at multiple design points and store them in a database.

Instead of solving an integrated UMDA, CO-PADMA uses the PADMA procedure to

evaluate the interdisciplinary compatible solutions of state variables. Next, approx-

imate probabilistic models are built using quantile copula regression incorporating

the samples of state variables in the database. Instead of building a separate quan-

tile copula regression model of each state variable, a single probabilistic model using
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quantile copula regression f̃qcry(y|x) is built, which models the joint probability den-

sity function of interdisciplinary compatible solutions of all the state variables as a

function of design variables x, where y = [y1, . . . ,ynD ] is the vector of all the state

variables, yi is the vector of state variables which are output of ith discipline and nD

is the number of disciplines. Please note that the quantile copula regression are also

function of model parameters β̂1, . . . , β̂p, and α̂ as f̃qcry(y|x, β̂1, . . . , β̂p, α̂). However

for clarity, these parameters are omitted in this chapter and the quantile copula re-

gression models are represented as f̃qcry(y|x). The design variable vector x consists

of vector of shared design variable xsh and vector of disciplinary design variables xi

, i.e. x = [xsh,x1, . . . ,xn]. Building a single quantile copula regression model is the

necessary criteria to capture the dependence between the state variables. If reliability

constraints gj are present, then a quantile copula regression model of constraints is

also built as f̃qcrgj (gj|x), for j = 1, . . . , nD, where j signifies jth discipline and nD

is the total number of disciplines. If dependence between state variables and con-

straints is required during the optimization or disciplinary analyses process, then a

single quantile copula regression model of combined variable ycombined = [y,g], can

be built.

6.2.1 System Optimization

The next step is to carry out system optimization using a quantile copula regression

model of state variables instead of true disciplinary analyses. The formal optimization
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statement of system optimization at rth cycle is given by Equation 141.

Given f̃qcry(y|x), f̃qcrgj (gj|x) (141a)

ỹsys = fsys(x, ỹ1, . . . , ỹnD) (141b)

minimize F̃ = fobj(Ξ1(ỹsys), . . . ,Ξk(ỹsys)) (141c)

with respect to x

such that P[g̃j(x) ≤ 0] > Rieqj for j = 1, . . . , nD (141d)

xL(r) ≤ x ≤ xU(r) (141e)

Output x∗(r), f̃ ∗(r)ysys (ysys), F
∗(r) (141f)

where f̃qcry(y|x) and f̃qcrgj (gj|x) are quantile copula regression models which are used

to quantify the uncertainty or probability density function on state variables ỹ and

constraint g̃j, respectively. Please note that the (̃) over any variable represents that

uncertainty or probability density function on that particular variable is estimated

directly or indirectly using quantile copula regression model. The uncertainty of

system metric ỹsys is evaluated by system level function fsys(x, ỹ1, . . . , ỹnD), where

ỹi ⊆ ỹ is the state variable vector of ith discipline. The cost function of system

optimization fobj() is a function of uncertainty measure (Ξi) of approximate system

level metric ỹsys. xL(r) and xU(r) are lower and upper limits of design variable at

rth cycle. x∗(r) is the optimum design variable, f̃
∗(r)
ysys (ysys) approximate probability

density function of system metric, and F̃ ∗(r) is the optimum cost function at the end

of rth cycle. At the end of the optimization process, the PADMA procedure is carried

out using high-fidelity disciplinary analyses at the optimum design of rth cycle, x∗(r),

to evaluate the accurate probability density of system metric f
∗(r)
ysys (ysys), accurate cost

function F ∗(r), and samples of interdisciplinary compatible solutions of all the state

variables. The samples of accurate interdisciplinary compatible solutions of state

variables at x∗(r) are added to the database, which are used to update the quantile

copula regression for the (r + 1)th cycle.
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If the convergence is not achieved, the system level optimum design point x∗(r)

is passed on to all the disciplines, where it is used as the initial point for subsystem

optimization.

6.2.2 Subsystem Optimization

Subsystem optimization is carried out independently and concurrently by each disci-

pline or subsystem. In the subsystem optimization, the high fidelity or the true dis-

ciplinary analysis is used to evaluate the local state variables yi and local constraints

gi. The non-local state variables yj 6=i and non-local constraints gj 6=i are estimated

using quantile copula regression used by the system level optimization. The formal

optimization statement of system optimization at rth cycle is given by Equation 142.

Given f̃qcry(y|x), f̃qcrgj (gj|x),x∗(r) (142a)

yi = fi(xi, ỹ·i,ui) + εyi (142b)

gi = gi(xi, ỹ·i,ui) + εgi (142c)

ỹSSi = fsys(x, ỹ1, . . . , ỹi−1,yi, ỹi+1, . . . , ỹnD) (142d)

minimize F̃i = fobj(Ξ1(ỹSSi), . . . ,Ξk(ỹSSi)) (142e)

with respect to x

such that P[gi(x, ỹ·i) ≤ 0] > Rieqi (142f)

P[g̃j(x) ≤ 0] > Rieqj for j 6= i (142g)

xL(r) ≤ x ≤ xU(r) (142h)

Output x
∗(r)
i , f̃ ∗(r)ySSi

(ySSi), F
∗(r)
i (142i)

where yi = fi(xi, ỹ·i,ui) + εyi is the true high-fidelity disciplinary analysis function

and gi = gi(xi, ỹ·i,ui) + εgi is the true high-fidelity disciplinary constraint function,

which are function of parametric or epistemic uncertainties ui and aleatory uncer-

tainties or random noise εyi and εgi . xi ⊆ x are the local design variables and ỹ·i ⊆ ỹ
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is the vector of non-local state variables. Uncertainty on ỹ·i are estimated through

quantile copula regression f̃qcry(y|x). The system metric function fsys and the cost

function fobj on the system metric is same as in system optimization. To estimate the

uncertainty on system metric, uncertainty of local state variables yi are estimated

with true high-fidelity local disciplinary analysis while uncertainty on non-local state

variables ỹj for j 6= i are estimated using quantile copula regression. The local relia-

bility constraints are evaluated using local disciplinary analysis whereas reliability on

non-local constraints are estimated through quantile copula regression f̃qcrgj (gj|x) for

j 6= i. Instead of optimizing with respect to local design variables xi only, subsystem

optimization uses the entire set of system level design variable x. This allows the

subsystem to explore non-local design space as well, by evaluating the non-local state

variables with quantile copula regression. The final output of subsystem optimiza-

tion after rth cycle are optimum design variable x
∗(r)
i , probability density function of

system metric f̃
∗(r)
ySSi

(ySSi), and optimum cost function F̃
∗(r)
i .

At the end of all subsystem optimizations, PADMA analysis is carried out using all

the high-fidelity disciplinary analyses at each subsystem optimum designs, x
∗(r)
i ,∀i =

1 . . . nD, to evaluate the accurate probability density function f
∗(r)
ySSi

(ySSi) and true

cost function F
∗(r)
i . Also, samples of accurate interdisciplinary compatible solutions

are generated at the subsystem optimum design and are added to the database which

are in turn used to update and improve the quantile copula regression for the (r+1)th

cycle.

6.2.3 Design Space Reduction

The main reason to add accurate samples of interdisciplinary compatible solutions of

system and subsystem optimum designs to the database is to improve the accuracy

of quantile copula regression near the optimum region in the design space. This al-

lows both system and subsystem optimizer to exploit the region of probable optimum
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with better accuracy. However, to improve the exploratory behavior of the optimizer,

accuracy of quantile copula regression models needs to be improved in overall design

space. To achieve this, design space of x is reduced at the end of each cycle. As

the design space is reduced with every passing cycle, the nonlinear trend of the re-

sponse variables tend to reduce. This allows the quantile copulate regression model,

which assumes some fixed order of polynomial functions, to improve the accuracy of

estimating uncertainty on state variables. An example of design space reduction and

effect on quantile regression is shown in Figure 85 with notional data. As seen in the

figure, the original data is generated from a nonlinear noisy function and quantile

regression is built using quadratic model for quantile level of τ = 0.1, 0.5 and 0.9.

With reduction of design space in each cycle, the accuracy of the quantile regression

tends to improve.

In CO-PADMA, design space reduction is carried out after the completion of

all the subsystem optimizations. Also, the domain size is reduced gradually with

iterations so that premature convergence to unreliable optimum can be avoided. The

methods used here are modified from the method used by Altus [214]. First an

arbitrary reduction factor Rf is selected, typically between 5% to 20%, which defines

the maximum percentage of design space reduction after each cycle. The lower and

upper bound of design variables for (r + 1)th cycle is given by Equation 143.

x(i)L(r+1) = x∗(i)min −
(

1− Rf

100

)(
x∗(i)min − x(i)L(r)

)
(143a)

x(i)U(r+1) = x∗(i)max +

(
1− Rf

100

)(
x(i)U(r) − x∗(i)min

)
(143b)

where x(i)L(r+1) and x(i)U(r+1) is the lower and upper bound of ith variable in design

variable vector x for the (r+1)th cycle. x∗(i)min is the minimum of ith design variable

among the optimum solutions of all the previous cycles. Similarly, x∗(i)max is the

maximum of ith design variable among the optimum solutions of all the previous
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Figure 85: Improvement of accuracy of quantile regression based on quadratic poly-
nomial with reduction of design space
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cycles. x(i)L(r) and x(i)U(r) is the lower and upper bound of ith variable in the rth

cycle. This formulation guarantees that design space in (r+1)th cycle will encompass

all the optimum design estimated in all the previous cycles. Once the design space

reduction is complete, samples of interdisciplinary compatible solutions are selected

from the database which are within the reduced design space. These selected samples

are then used to rebuild quantile copula regression for the (r + 1)th cycle.

With every cycle, the domain of design variables converges towards the region

around the optimum solution with the design space reduction technique. Therefore,

the designer can start the CO-PADMA process with design of experiment consisting

of a relatively smaller number of experiments in the first cycle. With each cycle, the

designer can carry out additional experiments in the reduced design space and add the

samples of interdisciplinary compatible solutions to the database. These additional

samples allow further improvement of the accuracy of quantile copula regression.

Also, this approach can prevent wastage of experimental resources by generating

experiments adaptively after each cycle around the region of optimum solution.

6.2.4 Convergence Criteria

At the end of each cycle, convergence criteria of the CO-PADMA process is checked

to decide if another cycle is necessary. The convergence criteria are:

Convergence of design variable This is similar to deterministic optimization tech-

niques where current optimum design is compared with optimum design from

last cycle.

‖x∗(r)sys − x∗(r−1)
sys ‖ ≤ εDV or ‖

(
x∗(r)sys − x∗(r−1)

sys

)
/x∗(r−1)

sys ‖ ≤ εDVnorm (144)

where x
∗(r)
sys and x

∗(r−1)
sys are the optimum design variables estimated by system

optimizations from current and previous cycle respectively, εDV and εDVnorm are

the tolerance limit set by designer
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Convergence of cost function Like the design variable, convergence of cost func-

tion is checked by

‖F ∗(r)sys − F ∗(r−1)
sys ‖ ≤ εF or ‖

(
F ∗(r)sys − F ∗(r−1)

sys

)
/F ∗(r−1)

sys ‖ ≤ εFnorm (145)

F
∗(r)
sys and F

∗(r−1)
sys are the optimum cost functions estimated by system optimiza-

tions from current and last cycle respectively, εF and εFnorm are the tolerance

limits set by designer

Convergence of distribution of system metric Although this convergence cri-

teria is not important, it is necessary when probability distribution of system

metric is a critical factor. Convergence of the distribution of system level metric

can be verified by checking

DKL(f ∗(r)ysys‖f
∗(r−1)
ysys ) < εf (146)

where DKL() is the K-L divergence.

Maximum number of cycles rmax This criteria is important when the cost func-

tion is noisy or when the optimizer starts oscillating around the optimum.

.

6.3 Numerical Procedure for CO-PADMA

The flow chart of the CO-PADMA method is given in Figure 86. The step by step

numerical procedure to carry out CO-PADMA is given as

1. Start

2. Initialize the variables

(a) Initialize the ranges of design variables, xL(1) and xU(1)

(b) Define baseline design xbaseline which is used as a starting point for opti-

mization
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(c) Characterize uncertainty variables ui,∀i = 1, . . . , nD if required

(d) Start cycle count: r = 1

3. Experimental design and quantile copula regression modeling

(a) If this is the first cycle (r = 1)

i. Generate samples of design points within the domain xL(1) and xU(1).

The samples of design points are generated using methods like Latin

hypercube designs, Response Surface Designs, D-Optimal designs, etc.

[127]. The number of design point samples can be kept relatively low;

however the limit on the minimum number of design points depends

on the order of polynomial used in quantile copula regression. For

example, for a quantile copula regression with linear models for n

dimensional design variables, at least n+ 1 design points are required.

ii. For each design point, carry out UMDA using the PADMA procedure

to evaluate samples of interdisciplinary compatible solutions of all the

state variables y and the constraints gj for j = 1, . . . , nD.

iii. Add the design point and respective samples of the interdisciplinary

compatible state variables and the constraints to the database.

iv. Build quantile copula regression of all the state variables f̃qcry(y|x)

and the constraints f̃qcrgj (gj|x) using the samples from database.

(b) If this is not the first cycle (r > 1)

i. Filter and select the samples from the database which are within the

reduced domain defined by xL(r) and xU(r)

ii. Generate a new set of samples of design points within the reduced

domain xL(r) and xU(r).

iii. For each new design point, carry out UMDA using the PADMA pro-

cedure to evaluate samples of interdisciplinary compatible solutions of
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the state variables y and the constraints gj for j = 1, . . . , nD.

iv. Add design point and respective samples of the state variables and the

constraints to the database.

v. Re-build or update quantile copula regression of all the state variables

f̃qcry(y|x) and the constraints f̃qcrgj (gj|x) using the new samples and

filtered samples from database.

4. System Optimization:

(a) Using the quantile copula regression of the state variables f̃qcry(y|x) and

the constraints f̃qcrgj (gj|x), carry out system optimization as given by

Equation 141.

(b) Carry out the PADMA procedure using the high-fidelity disciplinary analy-

ses at the optimum design of rth cycle, x∗(r), to evaluate the accurate proba-

bility density of system metric f
∗(r)
ysys (ysys), accurate cost function F ∗(r), and

samples of interdisciplinary compatible solutions of all the state variables

and the constraints.

(c) Add the samples of accurate interdisciplinary compatible solutions of all

the state variables and the constraints to the database and pass on the

optimum design variables x∗(r) to subsystem optimizers.

5. Subsystem Optimization:

(a) Using the quantile copula regression of state variables f̃qcry(y|x) and con-

straints f̃qcrgj (gj|x), and x∗(r) as starting point, carry out optimization

using high-fidelity disciplinary analysis as given by Equation 142 in each

subsystem, concurrently and independently.

(b) Carry out the PADMA procedure using high-fidelity disciplinary analyses

at all the subsystem’s optimum design of rth cycle, x
∗(r)
i ,∀i = 1, . . . , nD,

196



to evaluate the accurate probability density of system metric f
∗(r)
ySSi

(ySSi),

accurate cost function F
∗(r)
i , and samples of interdisciplinary compatibles

solutions of all the state variables and the constraints.

(c) Add the samples of accurate interdisciplinary compatible solutions of all

the state variables and the constraints to the database

6. Check Convergence: Check the convergence criteria given in Section 6.2.4.

(a) If converged, STOP

(b) Otherwise:

i. Increment the cycle count (r = r + 1)

ii. Design Space Reduction: Reduce the domain of design variables using

Equation 143.

iii. Repeat from Step 3.

6.4 Numerical Experiments

Purpose of experiments: To prove that the CO-PADMA method can find the optimum

design and estimate the uncertainty and dependence of system metrics and state vari-

ables accurately, while allowing distributed optimization and uncertainty analysis for

a multidisciplinary system for non-deterministic disciplinary analyses.

6.4.1 Benchmark and State of the Art methods

The benchmark method against which the results of CO-PADMA method is com-

pared is a fully integrated UMDO method. In the fully integrated UMDO method,

uncertainty propagation and analysis of an integrated multidisciplinary system is

carried out using Simulation Outside Fixed Point Iteration (SOFPI). Treating the

uncertainty analysis using SOFPI as a black box function, an optimizer is wrapped

around it to carry out the UMDO process.
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The results are also compared with Moment-Matching (MM), mean and standard

deviation matching method. Moment-Matching methods are the current state of the

art on a decomposition and coordination-based UMDO method for non-deterministic

disciplinary functions, which is based on target matching strategy. There are multiple

Moment-Matching-based UMDO methods in literature (ex, CO based, ATC based,

etc.). The efficiency and accuracy of these methods to find the optimum design de-

pends on the coordination strategies, the optimization algorithm and the UMDO

problem itself. Therefore, it is not fair to compare these methods to problems which

favor one method over another. Moreover, the motivation behind the CO-PADMA

method is to overcome deficiencies with respect to accurate quantification of uncer-

tainty and dependencies of state variables and system metric as compared to existing

decomposition and coordination-based methods. The claim of the hypothesis is not

that the CO-PAMDA method is more efficient than the current state of the art.

Therefore, it is assumed that the current state of the art methods based on the

Moment-Matching method can accurately estimate the true optimum design. Only

the accuracy of uncertainty quantification of optimum system metrics and other state

variables are compared between the CO-PADMA method and the Moment-Matching

method, by executing Moment-Matching analysis at true optimum.

6.4.2 Experimental Metrics

To measure the accuracy of the CO-PADMA method to find the true optimum de-

sign, optimum design variable evaluated by the CO-PADMA method (x∗CO−PADMA)

is compared to true optimum evaluated by the UMDO-SOFPI method (x∗True) using

metric ∆x∗norm = ‖x∗CO−PADMA−x∗True‖. To measure the accuracy of the CO-PADMA

method to estimate the uncertainty characteristics, the statistical mean (µysys), stan-

dard deviation (σysys), and skewness (γysys) of optimum system metric is compared

with the UMDO-SOFPI and MM methods. To compare the overall uncertainty, KL
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divergence of probability density function of system metric estimated by the CO-

PADMA and MM methods are compared with UMDO-SOFPI.

To evaluate the strength of the CO-PADMA method to capture the dependence

among state variables, error in Pearson’s correlation (ρ) and Mutual Information

(MI) among state variables are estimated as

∆ρ error = ‖ρCO−PADMA − ρTrue‖ (147a)

∆MI error = ‖MICO−PADMA −MITrue‖ (147b)

6.4.3 Test Problem Characteristics

The test problems to carry out experiments are selected such that they have following

characteristics:

� The UMDO problem can be hierarchically decomposed such that disciplinary

analyses can carry out independent uncertainty analysis and optimization.

� The UMDO problem should have low to mid level of coupling between disci-

plines, both feed-forward and feedback.

� Disciplinary analyses are of low to mid fidelity. This ensures that the opti-

mization and uncertainty analyses are tractable to study the behavior of the

method.

� Disciplinary analyses have non-linear behavior, i.e. disciplinary state variables

are non-linear function of local design variables, input coupling variables and

uncertainty variables.

� The uncertainty variables can be embedded into disciplinary analyses such that

disciplinary functions can be executed as non-deterministic functions.

� Characteristics of disciplinary uncertainty variables can be modified such that

the method can be tested for non-Gaussian variables.
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Figure 87: Notional multidisciplinary analysis example with feedback coupling

� Low to moderate number (∼ 3 to 10) number of design and coupling variables,

with design constraints.

Based on these characteristics two problems are selected. The first problem is an

analytical problem with two coupled disciplines and a system level discipline. The

second problem is a mid-fidelity Supersonic Transport (SST) aircraft design problem

with three coupled disciplines and a system level discipline.

6.4.4 Analytical Problem

The analytical problem is given by Figure 87 and is similar to the analytical problem

in Chapter 4. The problem consists of two coupled disciplines with four coupling vari-

ables. There are five input variables [x1, x2, x3, x4, x5]. Uncertainty is associated with

the input variables, while the mean of input variables are design variables. Analytical

equations of each discipline are given as
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System f = u12v12 − u21v21 (148)

Subsystem-1 u12 = x2
1 + 2x2 − x3 + 2

√
u21 − 0.22v21 (149)

v12 = 2x1 + x2x3 − 0.31
√
u21 + 0.2v21

g1 = u12v12

Subsystem-2 u21 = x1x4 + x2
4 + x5 + u12 + 0.1

√
v12 (150)

v21 = x1x5 + x1x4 + x1 + 0.15u12 − 0.3v12

g2 = u21v21

The optimization problem is given as

minimize µf (151a)

with respect to µx = [µx1 , µx2 , µx3 , µx4 , µx5 ]

such that P[g1 ≤ 24.6] ≥ 0.9 (151b)

P[g2 ≤ 48.2] ≥ 0.9 (151c)

0.8 ≤ µxi ≤ 1.2 ∀i = 1, . . . , 5 (151d)

where µf is the mean of system metric f and µxi is the mean of system metric xi.

To decouple design variables from uncertain variables, input variables are modeled as

xi = µxi + εi, where µxi are the design variables and εi are the uncertain variables.

For the CO-PADMA process, the disciplinary analyses are modeled such that the

uncertainties associated with the variables x2, x3, x4 and x5 (except shared variable
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x1) are embedded in discipline. Subsystem-1 is re-modeled as

u12 = µ2
x1

+ 2(µx2 + ε2)− (µx3 + ε3) + 2
√
u21 − 0.22v21 (152a)

v12 = 2µx1 + (µx2 + ε2)(µx3 + ε3)− 0.31
√
u21 + 0.2v21 (152b)

g1 = u12v12 (152c)

where ε2 and ε3 are the uncertainties associated with x2 and x3 respectively. This

makes the subsystem-1 a non-deterministic function of design variables, i.e. for a given

value of [µx1 , µx2 , µx3 , u21, v21] subsystem will generate a random value of u12, v12 and

g1. Similarly, subsystem-2 is re-modeled as

u21 = µx1(µx4 + ε4) + (µx4 + ε4)2 + (µx5 + ε5) + u12 + 0.1
√
v12 (153a)

v21 = µx1(µx5 + ε5) + µx1(µx4 + ε4) + µx1 + 0.15u12 − 0.3v12 (153b)

g2 = u21v21 (153c)

where ε4 and ε5 are the uncertainties associated with x4 and x5, respectively. The

uncertainty of the design variable x1 is not embedded in the subsystems because it is a

shared uncertain variable and will influence the dependence of the coupling variables

from both disciplines.

Two case studies are carried out with the analytical problem by changing the

characteristics of uncertain variables.

Case-1: In the first case, the uncertain variables are characterized with a Gaussian

distribution with zero mean µi = 0.0 and standard deviation of σi = 0.1.

εi ∼ N (0.0, 0.12) ∀i = 1, . . . , 5 (154)

Case-2: In the second case, ε1 is characterized with a Gaussian distribution with

zero mean µ1 = 0.0 and standard deviation of σ1 = 0.1, while x2, x3, x4, x5 are

characterized with a Gamma distribution with shape parameter k = 1 and scale
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parameter θ = 0.1.

ε1 ∼ N (0.0, 0.12) (155a)

εi ∼ Γ(1.0, 0.1) ∀i = 2, . . . , 5 (155b)

6.4.4.1 CO-PADMA Procedure

The step by step numerical procedure of the CO-PADMA method for solving analyt-

ical problem is given as follows.

1. Start

2. Initialize the variables

(a) Ranges of design variables are initialized: µ
L(1)
xi = 0.8 and µ

U(1)
xi = 1.2

∀i = 1, . . . , 5.

(b) Baseline design is defined as µxibaseline = 0, ∀i = 1, . . . , 5, which is used as

starting point for optimization.

(c) Uncertainty variables εi,∀i = 1, . . . , 5 are characterized as mentioned in

the previous section.

(d) Cycle counter is set to r = 1.

3. Experimental design and quantile copula regression modeling

(a) For the first cycle (r = 1)

i. 50 samples of design points [µx1 , µx2 , µx3 , µx4 , µx5 ] are generated within

the domain defined in Step 2(a) using Latin hypercube design.

ii. For each design point, UMDA using the PADMA procedure is carried

out to evaluate 300 samples of interdisciplinary compatible solutions

of y = [u12, v12, u21, v21].

iii. Design points and respective samples of state variables are added to

the database.
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iv. Using the samples from the database, quantile copula regression of all

the state variables, f̃qcry(y|µx1 , µx2 , µx3 , µx4 , µx5), is built.

(b) For cycle (r > 1)

i. Samples are filtered and selected from the database which are within

the reduced domain defined by Step 6(b).

ii. nnew set of new samples of design points are generated within the

reduced domain, where nnew = nfilter − 50 and nfilter is the number

of unique design points in the database which are within the reduced

domain. This allows the maintaining of at least 50 unique design

points to model quantile copula regression.

iii. For each new design point, UMDA using the PADMA procedure is car-

ried out to evaluate samples of interdisciplinary compatible solutions

of disciplinary state variables y = [u12, v12, u21, v21].

iv. Design points and their respective samples of state variables are added

to the database.

v. Using new and filtered samples from the database, quantile copula

regression of all the state variables, f̃qcry(y|µx1 , µx2 , µx3 , µx4 , µx5), is

built.

4. System Optimization:

(a) Using the quantile copula regression of state variables system optimization
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is carried out as:

Given f̃qcry(y|µx1 , µx2 , µx3 , µx4 , µx5) (156a)

where ỹ ≡ [ũ12, ṽ12, ũ21, ṽ21]

f̃ = fsys(ũ12, ṽ12, ũ21, ṽ21) (156b)

g̃1 = g1(ũ12, ṽ12) (156c)

g̃2 = g2(ũ21, ṽ21) (156d)

minimize F̃ = µf̃ (156e)

with respect to µx1 , µx2 , µx3 , µx4 , µx5

such that P[g̃1 ≤ 24.6] ≥ 0.9 (156f)

P[g̃2 ≤ 48.2] ≥ 0.9 (156g)

µL(r)
xi
≤ µxi ≤ µU(r)

xi
∀i = 1, . . . , 5 (156h)

Output µ∗(r)x , f̃
∗(r)
f (f), F̃ ∗(r)

where uncertainty on state variables ỹ are estimated through quantile cop-

ula regression f̃qcry(y|µx1 , µx2 , µx3 , µx4 , µx5) and are used to evaluate the

uncertainty on system metric f .

(b) The PADMA procedure is carried out using high-fidelity disciplinary anal-

yses at the optimum design of rth cycle, µ
∗(r)
x , to evaluate the accurate

probability density of system metric f
∗(r)
f (f), accurate cost function F ∗(r).

Also 300 samples of interdisciplinary compatible solutions of all the state

variables are generated at the system optimum design and added to the

database.

5. Subsystem Optimization:

(a) Subsystem optimization is carried out using high-fidelity disciplinary anal-

ysis, while uncertainty on non-local state variables are approximated using
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quantile copula regression. The subsystem-1 optimization problem is given

as:

Subsystem-1 Optimization

Given f̃qcry(y|µx1 , µx2 , µx3 , µx4 , µx5) (157a)

where ỹ21 ≡ [ũ21, ṽ21]

y1 = SS1(µx1 , µx2 , µx3 , ũ21, ṽ21) (157b)

where y1 ≡ [u12, v12, g1]

g̃2 = g2(ũ21, ṽ21) (157c)

f̃ = fsys(u12, v12, ũ21, ṽ21) (157d)

minimize F̃ = µf̃ (157e)

with respect to µx1 , µx2 , µx3 , µx4 , µx5

such that P[g1 ≤ 24.6] ≥ 0.9 (157f)

P[g̃2 ≤ 48.2] ≥ 0.9 (157g)

µL(r)
xi
≤ µxi ≤ µU(r)

xi
∀i = 1, . . . , 5 (157h)

Output µ∗(r)x |SS1, f̃
∗(r)
f (f)|SS1, F̃

∗(r)|SS1

where the uncertainty of non-local state variables ũ21 and ṽ21 is approxi-

mately estimated through quantile copula regression. The uncertainty on

local state variables is estimated using high-fidelity subsystem function

y1 = SS1(µx1 , µx2 , µx3 , ũ21, ṽ21). Also, the local constraint g1 is evalu-

ated using high-fidelity data while the non-local constraint g̃2 is evaluated

quantile copula regression. Once the optimization is over, the PADMA

procedure using the high-fidelity analyses of all subsystems is carried out

for µ
∗(r)
x |SS1, to evaluate the accurate probability density of system metric

f
∗(r)
f (f)|SS1, and accurate cost function F ∗(r)|SS1. Also, 300 samples of

interdisciplinary compatible solutions of all state variables are generated
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at the subsystem optimum design and added to the database.

Similarly, subsystem-2 optimization problem is given as:

Subsystem-2 Optimization

Given f̃qcry(y|µx1 , µx2 , µx3 , µx4 , µx5) (158a)

where ỹ12 ≡ [ũ12, ṽ12]

y2 = SS2(µx1 , µx4 , µx5 , ũ12, ṽ12) (158b)

where y2 ≡ [u21, v21, g2]

g̃1 = g1(ũ12, ṽ12) (158c)

f̃ = fsys(ũ12, ṽ12, u21, v21) (158d)

minimize F̃ = µf̃ (158e)

with respect to µx1 , µx2 , µx3 , µx4 , µx5

such that P[g̃1 ≤ 24.6] ≥ 0.9 (158f)

P[g2 ≤ 48.2] ≥ 0.9 (158g)

µL(r)
xi
≤ µxi ≤ µU(r)

xi
∀i = 1, . . . , 5 (158h)

Output µ∗(r)x |SS2, f̃
∗(r)
f (f)|SS2, F̃

∗(r)|SS2

where the uncertainty of non-local state variables ũ12 and ṽ12 is approx-

imately estimated through quantile copula regression. The uncertainty

on local state variables is estimated using high-fidelity subsystem func-

tion y2 = SS2(µx1 , µx4 , µx5 , ũ12, ṽ12). Once the optimization is over, the

PADMA procedure using the high-fidelity analyses of all subsystems is

carried out at µ
∗(r)
x |SS2, to evaluate the accurate probability density of sys-

tem metric f
∗(r)
f (f)|SS2, and accurate cost function F ∗(r)|SS2. Also, 300

samples of interdisciplinary compatible solutions of all state variables are

generated at the subsystem optimum design and added to the database.

6. Check Convergence: Check the convergence criteria given in Section 6.2.4.
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(a) If converged, STOP

(b) Otherwise:

i. Increment the cycle count (r = r + 1)

ii. Design Space Reduction: The domain of design variables is reduced

by factor of Rf = 20% using approach given in Equation 143.

iii. Repeat from Step 3.

For all the optimization processes, Covariance Matrix Adaptation Evolution Strat-

egy (CMAES) [215] has been used for optimization, which is an Evolution Strategy

(ES)-based stochastic, derivative-free method for non-linear, non-convex and noisy

problem. The scripts of the disciplinary functions have been written in MATLAB.

Also, to automate the CO-PADMA process, scripts for CO-PADMA method have

been written and executed in MATLAB.

6.4.4.2 Results: Analytical Problem Case-1

In case-1 of the analytical problem, all the uncertain variables are assumed to have

Gaussian distribution. The problem is solved using the CO-PADMA method and

compared with true optimum which is evaluated using the benchmark UMDO-SOFPI

method. Moment matching (MM) method is also used to carry out analysis at true

optimum to study the improvement in accuracy with current state of the art for the

distributed UMDO method.

The CO-PADMA procedure is carried out using the methodology discussed in the

previous section and the optimum has been achieved within 12 cycles. The optimum

design variables estimated by the CO-PADMA procedure are compared with the

UMDO-SOFPI method in Table 20. The CO-PADMA procedure has been able to

find the optimum design with reasonable accuracy, with the worst case being that of

∆x∗error = 5% for µx5 .
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Table 20: Comparison of optimum design for analytical problem case-1

µ∗x1
µ∗x2

µ∗x3
µ∗x4

µ∗x5

UMDO-SOFPI 0.89 0.79 0.79 1.20 1.20
CO-PADMA 0.91 0.82 0.80 1.16 1.14
∆x∗norm 0.03 0.03 0.01 0.03 0.05

Table 21: Comparison of statistical metrics of objective function for analytical prob-
lem case-1

UMDO-SOFPI MM CO-PADMA

Mean(µf ) -24.70 -24.84 -24.82
Std. Dev.(σf ) 3.83 4.68 3.44
Skewness (γf ) -0.35 -0.19 -0.29
K-L div. - 0.06 0.03

The probability density function and cumulative distribution function of system

metric at optimum design evaluated by the CO-PADMA method is compared with

the integrated UMDO-SOFPI method and MM method estimated at true optimum

in Figure 88. It is observed that the system metric has similar characteristics as a

Gaussian distribution. As seen from the cumulative distribution plot, both MM and

CO-PADMA methods were able to estimate the similar trend as compared to the

UMDO-SOFPI solution. The statistical metric of f is compared in Table 21. The

statistical mean of f evaluated by the MM and CO-PADMA methods is very close

to the benchmark method. However, the MM method over predicted the standard

deviation by 22% while the CO-PADMA method under-predicted by 10%. The true

skewness of the distribution has been found to be γ = −0.35. The CO-PADMA

method has been able to find a better estimate of skewness (γ = −0.29) when com-

pared to the MM method (γ = −0.19). In terms of closeness to the true distribution,

measured using K-L divergence, the CO-PADMA method has been found to be closer

(K-L div. = 0.03) when compared to MM method (K-L div. = 0.06).

Figure 89 shows the optimum design estimated by the system and subsystem

optimizer at the end of each cycle. As observed, all the optimizers converged to
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Figure 88: Comparison of probability density function and cumulative distribution
function of system metric f at optimum design estimated using benchmark UMDO-
SOFPI method, Moment Matching method (MM) and CO-PADMA method for an-
alytical problem case-1

the same optimum solution for all the design variables at the end of the 12th cycle.

Figure 89 also shows design space used to carry out optimization in each cycle. The

rate of reduction of design space has been found to be different for each design variable.

The design space reduction strategy ensures that the design space at any given cycle

will encompass all the optimum solutions achieved by the system optimizer in all the

previous cycles. Therefore, the rate and the limit of design space reduction depends

upon inconsistencies and variation of the optimum solution achieved by the system

optimizer in the initial cycles. For example, system and subsystem optimizers have

been found to be inconsistent in finding the optimum value of design variable µx2 in

the first four cycles. The inconsistency is due to the inaccuracy of initial quantile

copula regression with respect to µx2 . The inconsistency of the optimizers forced the

design space reduction strategy to not reduce the design space beyond a certain limit

and keep the design space open so that the optimizers can find a consistent solution

with the improvement of quantile copula regression in the later cycle. On the other
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Figure 89: Optimum design estimated by system and subsystem optimizers and design
space reduction at the end of each cycle analytical problem case-1
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hand, the consistency of the optimizer to find the optimum design for µx3 and µx4

allows the design space reduction techniques to reduce the design space to less than

20% of initial range after 12 cycles.

In addition to the design space reduction technique, additional design points in the

reduced design space and samples of interdisciplinary compatible solutions are added

to the database at the end of each cycle. The histogram of design points at the end of

the 1st, 6th and 12th cycle is shown in Figure 90. It is observed that with each cycle,

the new design point gets concentrated near the expected minimum which further

allows improvement in the accuracy of quantile copula regression. The improvement

in accuracy of a quantile copula regression is shown in Figure 91. The figure shows

the uncertainty quantification, represented by probability density function (PDF), of

optimum system metric f using quantile copula regression at the end of 1st, 6th and

12th cycle and is compared with true uncertainty evaluated using integrated SOFPI

analysis. As observed and expected, the accuracy of uncertainty quantification using

quantile regression improves with each cycle.

To compare the dependency of the coupling variables, scatter plot matrix of cou-

pling variables at the optimum design is compared between UMDO-SOFPI, MM and

CO-PADMA in Figure 92. In addition to scatter plot of interdisciplinary compatible

samples from each method, each subplot also shows a single iso-probability contour

of value 0.02Pmax, where Pmax is the maximum probability value attained by the

true solution using the UMDO-SOFPI method. As observed, all the coupling vari-

ables are positively dependent with respect to each other, which is well predicted by

the CO-PADMA method. On the other hand, the MM method assumed the coupling

variables are independent and does not capture the dependencies. Figure 93 compares

the contour plot of joint probability density of optimum interdisciplinary compatible

solution of u12 and u21 estimated by all the UMDO-SOFPI, MM and CO-PAMDA

methods. In addition to the strong dependency, the CO-PADMA method has been
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Figure 90: Histogram of design points at end of 1st, 6th and 12th cycle for analytical
problem case-1

-40 -20

f

0

0.05

0.1

0.15

PD
F

UMDA-SOFPI
QCR

(a) Cycle-1

-40 -20

f

0

0.05

0.1

0.15

PD
F

UMDA-SOFPI
QCR

(b) Cycle-6

-40 -20

f

0

0.05

0.1

0.15

PD
F

UMDA-SOFPI
QCR

(c) Cycle-12

Figure 91: Improvement in accuracy of quantile copula regression (QCR) with each
cycle for analytical problem case-1
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Table 22: Comparison of Correlation Matrix of coupling variables of analytical prob-
lem case-1

Correlation Matrix

UMDO-SOFPI

u12 v12 u21 v21

u12 1.00 0.61 0.85 0.68
v12 0.61 1.00 0.56 0.81
u21 0.85 0.56 1.00 0.79
v21 0.68 0.81 0.79 1.00

CO-PADMA

u12 v12 u21 v21

u12 1.00 0.60 0.88 0.66
v12 0.60 1.00 0.57 0.82
u21 0.88 0.57 1.00 0.77
v21 0.66 0.82 0.77 1.00

∆ρ error

u12 v12 u21 v21

u12 0.00 0.02 0.02 0.02
v12 0.02 0.00 0.01 0.02
u21 0.02 0.01 0.00 0.03
v21 0.02 0.02 0.03 0.00

able to capture the overall trend of joint probability density better than the MM

method.

The dependencies of coupling variables are quantified using Pearson’s correlation

matrix and compared between the UMDO-SOFPI and CO-PADMA methods in Ta-

ble 22. All correlations estimated by the CO-PADMA process have been found to be

within 3% of true correlation estimated by the UMDO-SOFPI method. To quantify

the non-linear dependency, Mutual Information (MI) among coupling variables are

estimated and compared between the UMDO-SOFPI and CO-PADMA methods in

Table 23. The CO-PADMA method has also been able to accurately estimate any

underlying non-linear dependencies with maximum ∆MI of 0.04.

To study the convergence characteristics of the CO-PADMA method, convergence

of the optimum objective function with respect to disciplinary uncertainty quantifi-

cation and propagation (UQP) function calls are plotted and compared in Figure 94.

It must be noted that the number for actual disciplinary function calls for each UQP

function call can vary depending upon method used for uncertainty propagation and
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(a) UMDO-SOFPI (b) MM (c) CO-PADMA

Figure 93: Contour plot of joint probability density of optimum interdisciplinary
compatible solution of u12 and u21 for analytical problem case-1

Table 23: Comparison of Mutual Information (MI) matrix of coupling variables of
analytical problem case-1

Mutual Information Matrix

UMDO-SOFPI

u12 v12 u21 v21

u12 1.28 0.25 0.61 0.31
v12 0.25 1.37 0.19 0.51
u21 0.61 0.19 1.29 0.47
v21 0.31 0.51 0.47 1.29

CO-PADMA

u12 v12 u21 v21

u12 1.35 0.27 0.68 0.32
v12 0.27 1.30 0.23 0.55
u21 0.68 0.23 1.29 0.43
v21 0.32 0.55 0.43 1.27

∆MI error

u12 v12 u21 v21

u12 0.07 0.02 0.07 0.01
v12 0.02 0.06 0.03 0.04
u21 0.07 0.03 0.00 0.04
v21 0.01 0.04 0.04 0.02
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accuracy required. In the current case, Monte Carlo simulations with 10, 000 disci-

plinary function calls has been used for each UQP call for both the UMDO-SOFPI

and CO-PADMA methods. One can use any other efficient methods to carry out un-

certainty propagation in each discipline which requires far less disciplinary function

calls. Therefore, to separate out the effect of disciplinary UQP method used, the

convergence history is plotted against UQP function calls rather than disciplinary

function calls.

As observed in Figure 94, both the UMDO-SOFPI and CO-PADMA methods

have the similar trend of convergence history. Both methods have been able to reach

the optimum solution with around 2, 000 UQP function calls (end of cycle 5 for

CO-PADMA method). However, the convergence history with respect to UQP calls

does not depict the actual benefit of the CO-PADMA process. The main advantage

of the CO-PADMA process is the concurrent uncertainty quantification and design

optimization of each disciplines. This allows the CO-PADMA process to carry out

parallel UQP in each discipline. Assuming that each disciplinary UQP call takes an

average time of tavg, the convergence history of the optimum objective function is

plotted against time in Figure 95. As depicted in the figure, CO-PADMA process

reaches the optimum solution in around half the time (Cycle 5, with 2, 000 UQP calls)

as compared to the UMDO-SOFPI method. This is due to the fact that there are

two disciplines in the problem which can be run in parallel for UQP analysis in the

CO-PADMA process.

6.4.4.3 Results: Analytical Problem Case-2

In case-2 of the analytical problem, all the uncertain variables, except x1, are assumed

to have a gamma distribution. As in case-1, a study has been carried out with the

CO-PADMA method and compared it with the UMDO-SOFPI and MM methods.

Due to non-Gaussian uncertain variables, case-2 took longer to converge both with
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Table 24: Comparison of optimum design for analytical problem case-1

µ∗x1
µ∗x2

µ∗x3
µ∗x4

µ∗x5

UMDO-SOFPI 0.84 0.82 0.80 1.20 1.02
CO-PADMA 0.84 0.84 0.88 1.18 1.03
∆x∗norm 0.01 0.02 0.10 0.02 0.01

the CO-PADMA and UMDO-SOFPI methods. The CO-PADMA procedure took 15

cycles (5, 000 UQP calls) while UMDO-SOFPI took 7, 000 UQP calls to converge. The

optimum design variables estimated by the CO-PADMA procedure is compared with

the benchmark UMDO-SOFPI method in Table 24. Other than µx3 (with ∆x∗error =

10%) the CO-PADMA procedure has been able to find the optimum design with

reasonable accuracy (within ∆x∗error = 2%) for all the design variables.

The probability density function and cumulative distribution function of system

metric f at optimum design evaluated by the CO-PADMA method is compared with

the integrated UMDO-SOFPI and MM methods in Figure 96. Unlike case-1, the

probability density function of f has been found to be non-symmetrical and skewed

towards the lower end. The skewness has been found to be well captured by the

CO-PADMA process; however the MM method assuming Gaussian distribution has

not been able to capture it. The statistical metric of f is compared in Table 25. The

statistical mean of f evaluated by the MM and CO-PADMA methods has been found

to be reasonably accurate with the true solution. However, similar to case-1 the MM

method over predicted the standard deviation by 29%. The CO-PADMA method has

been found to be accurate (less than 5% error), while considering the numerical noises

associated with the statistical estimation of standard deviation. The CO-PADMA

method has also been able to accurately estimate the skewness (γ = −0.75) when

compared to true skewness estimated by the UMOD-SOFPI method (γ = −0.71).

In terms of closeness to the true distribution measured using K-L divergence, the

CO-PADMA method has been found to be very close (K-L div. = 0.03) to the true

solution when compared to the MM method (K-L div. = 0.13).
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Table 25: Comparison of statistical metrics of objective function for analytical prob-
lem case-1

UMDO-SOFPI MM CO-PADMA

Mean(µf ) -23.78 -23.01 -23.31
Std. Dev.(σf ) 3.77 4.87 3.94
Skewness (γf ) -0.71 -0.03 -0.75
K-L div. - 0.13 0.03

-50 -40 -30 -20 -10 0

f

0

0.05

0.1

0.15

Pr
ob

ab
ili

ty
 D

en
si

ty
 F

un
ct

io
n

UMDO-SOFPI
MM
CO-PADMA

(a) Probability density function

-50 -40 -30 -20 -10 0

f

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
Fu

nc
tio

n

UMDO-SOFPI
MM
CO-PADMA

(b) Cumulative distribution function

Figure 96: Comparison of probability density function and cumulative distribution
function of system metric f at optimum design estimated using benchmark UMDO-
SOFPI method, Moment Matching method (MM) and CO-PADMA method for an-
alytical problem case-2
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Figure 97 shows the optimum design evaluated by system and subsystem optimiz-

ers at the end of each cycle. Although all the subsystem optimizers did not converge

to the same optimum design by 15th cycle, they were close to a system level optimum

solution. Figure 97 also shows the design space used to carry out optimization in

each cycle. Compared to case-1, more inconsistencies have been found among the

optimizers in the intial cycles.

In addition to the design space reduction technique, additional design points and

samples of interdisciplinary compatible solutions in the reduced design space are

added to the database at the end of each cycle. The histogram of design points at the

end of 1st, 6th and 12th cycle is shown in Figure 98. It is observed that with each cycle,

the new design points get concentrated near the expected optimum solution which

further allows improvement in accuracy of quantile copula regression. However, due

to the inconsistencies among the optimizers, the peak of the histogram has not been

found near the optimum solution for µx3 and µx5 .

The improvement in accuracy of the quantile copula regression is shown in Fig-

ure 99. The figure shows the uncertainty quantification, represented by the probabil-

ity density function (PDF), of the optimum system metric f using quantile copula

regression at the end of the 1st, 6th and 12th cycle and is compared with true uncer-

tainty evaluated using integrated SOFPI analysis. Similar to case-1, the accuracy of

uncertainty quantification using quantile regression improved with each cycle.

The dependency structure of the coupling variables at the optimum design is com-

pared between UMDO-SOFPI, MM and CO-PADMA and shown in the scatter plot

matrix in Figure 100. Similar to case-1, each subplot in scatter plot matrix also shows

a single iso-probability contour of value 0.02Pmax, where Pmax is the maximum prob-

ability value attained by the true solution using the UMDO-SOFPI method. As in

case-1, all the coupling variables are positively dependent with respect to each other,

however all the dependency structures are non-elliptical. The dependecny structure
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Figure 97: Optimum design estimated by system and subsystem optimizers and design
space reduction at the end of each cycle analytical problem case-2
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Figure 98: Histogram of design points at end of 1st, 6th and 12th cycle for analytical
problem case-2
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cycle for analytical problem case-2
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(a) UMDO-SOFPI (b) MM (c) CO-PADMA

Figure 101: Contour plot of joint probability density of optimum interdisciplinary
compatible solution of u12 and u21 for analytical problem case-2

Table 26: Comparison of Correlation Matrix of coupling variables of analytical prob-
lem case-2

Correlation Matrix

UMDO-SOFPI

u12 v12 u21 v21

u12 1.00 0.55 0.85 0.65
v12 0.55 1.00 0.48 0.77
u21 0.85 0.48 1.00 0.74
v21 0.65 0.77 0.74 1.00

CO-PADMA

u12 v12 u21 v21

u12 1.00 0.56 0.85 0.66
v12 0.56 1.00 0.49 0.78
u21 0.85 0.49 1.00 0.73
v21 0.66 0.78 0.73 1.00

∆ρ error

u12 v12 u21 v21

u12 0.00 0.02 0.00 0.01
v12 0.02 0.00 0.01 0.01
u21 0.00 0.01 0.00 0.01
v21 0.01 0.01 0.01 0.00
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Table 27: Comparison of Mutual Information (MI) matrix of coupling variables of
analytical problem case-2

Mutual Information Matrix

UMDO-SOFPI

u12 v12 u21 v21

u12 1.34 0.24 0.70 0.37
v12 0.24 1.35 0.20 0.51
u21 0.70 0.20 1.37 0.48
v21 0.37 0.51 0.48 1.31

CO-PADMA

u12 v12 u21 v21

u12 1.29 0.25 0.67 0.34
v12 0.25 1.27 0.20 0.53
u21 0.67 0.20 1.32 0.42
v21 0.34 0.53 0.42 1.29

∆MI error

u12 v12 u21 v21

u12 0.05 0.01 0.03 0.04
v12 0.01 0.07 0.01 0.02
u21 0.03 0.01 0.05 0.06
v21 0.04 0.02 0.06 0.02

has been well captured by the CO-PADMA process, while the MM method assumed

the coupling variables are independent and does not capture the dependencies. Fig-

ure 101 compares the contour plot of joint probability density of optimum interdisci-

plinary compatible solution of u12 and u21 estimated by all the UMDO-SOFPI, MM

and CO-PAMDA methods. Similar to case-1, the CO-PADMA method has been able

to capture the overall trend of joint probability density better than the MM method.

The dependencies of coupling variables are quantified using Pearson’s correlation

matrix and compared between the UMDO-SOFPI and CO-PADMA methods in Ta-

ble 26. All correlation estimated by the CO-PADMA process has been found to be

within 2% of true correlation estimated by the UMDO-SOFPI method. To quantify

the non-linear dependency, Mutual Informations (MI) among coupling variables are

estimated and compared between the UMDO-SOFPI and CO-PADMA methods in

Table 27. The CO-PADMA method has also accurately estimated any underlying

non-linear dependencies with maximum ∆MI of 0.07.
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with respect to time for analytical problem case-2, where tavg is the average time for
each disciplinary UQP call
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The convergence history of the optimum objective function with respect to disci-

plinary uncertainty quantification and propagation (UQP) function calls are plotted

and compared in Figure 102. Unlike the case-1, UMDO-SOFPI required around

7, 000 UQP calls to converge to an optimum solution. This also shows the increase

in complexity of the problem due to non-Gaussian uncertain variables. Similarly, the

CO-PADMA method also took around 5, 000 UQP calls when compared to 2, 000 UQP

calls in case-1. The convergence history of the optimum objective function is plotted

against time in Figure 103, where tavg is the average time for each disciplinary UQP

call. As in case-1 and depicted in figure, the CO-PADMA process took around half

the time to reach the optimum solution as compared to the UMDO-SOFPI method.

6.4.5 Supersonic Transport (SST) Design Problem

This problem was designed for Supersonic Transport (SST) by Sobieszczanski [216]

and has been used as a test bench for the deterministic BLISS process. The dis-

ciplinary analysis are mid-fidelity models which allow users to examine the effects

of interdisciplinary interactions in an aircraft design problem while minimizing the

computational requirements. The multidisciplinary analysis consists of four disci-

plinary modules: structures, aerodynamics, propulsion and range. The overall flow

of information is given in Figure 104.

The problem consist of ten design variables x = [λ, x, Cf , t/c, h,M,AR,Λ, Sref ].

Among ten design variables, six are shared design variables xsh = [h,M,AR,Λ, Sref ],

while four are disciplinary design variables, xs = [λ, x] for structures, xa = Cf for

aerodynamics, and xp = T for propulsion. The details of design variables are given in

Table 28. There are nine state variables y = [WT ,Wf , θ, L,D, L/D, SFC,ESF,WE],

with ys = [WT ,Wf , θ] as the output of structures, ya = [L,D,L/D] as output of

aerodynamics and yp = [SFC,ESF,WE] as output of propulsion. The description

and deterministic baseline value of state variables are given in Table 29.
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Figure 104: Supersonic Transport (SST) reliability-based robust design optimization
problem

There are five disciplinary parameters p = [WFO,WO, NZ ,WBE, CDMIN ] as given

in Table 30, which are assumed to be uncertain. The uncertain variables are embed-

ded in the disciplinary analyses such that each discipline acts like a non-deterministic

function with aleatory uncertainty. For the UMDO problem, there are six disciplinary

inequality constraints given in Table 31. The disciplinary constraint consist of both

deterministic (gd = [σavg, θ, ESF ]) and non-deterministic (gr = [∂p/∂x,ETemp, T ])

variables. For non-deterministic variables reliability constraints are applied, for ex-

amples P(gr < gmaxr ) > 0.9. The system level metric is range (ysys = R), which is

evaluated by range discipline using Equation 159.

R =
661
√

0.7519(L/D)M

SFC
log

(
WT

WT −WF

)
(159)

The objective of the problem is to find the robust solution with respect to the

range while maintaining the disciplinary reliability constraints. The optimization
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Table 28: Description of shared and subsystem’s design variables for SST problem

Variable (unit) Symbol (x) Discipline
Lower
Bound
(xL)

Upper
Bound
(xU)

Baseline

Taper Ratio λ Structures 0.25 0.35 0.3
Wingbox x-sect
thickness ratio

x Structures 0.75 0.85 0.8

Skin friction coeff. Cf Aerodynamics 0.75 0.85 0.8
Throttle Setting T Propulsion 0.1 0.4 0.25
Thickness/Chord t/c shared 0.05 0.09 0.07
Altitude (ft) h shared 50, 000 60, 000 55, 000
Mach No. M shared 1.4 1.6 1.5
Aspect Ratio AR shared 2.5 5.5 3.5
Sweep (o) Λ shared 55 70 60
Wing Area (ft2) Sref shared 1200 1500 1350

statement is given by Equation 160

minimize F = −µR + 3.0σR (160a)

with respect to x

such that P(g1 < 1.09) > 0.9 (160b)

P(0.96 < g2 < 1.04) > 0.9 (160c)

g3 < 1.04 (160d)

P(0.5 < g4 < 1.5) > 0.9 (160e)

g5 < 1.02 (160f)

g6 < 0.0 (160g)

xL ≤ x ≤ xU (160h)

where µR is the mean and σR is the standard deviation of system metric range (R).

Two case studies are carried out with the SST design problem by changing the

characteristics of uncertain parameter variables.

Case-1: In the first case, all the uncertain variables are characterized with Gaussian
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Table 29: Description of state variables for SST problem

Variable (unit) Symbol (y) Discipline (Output)
Baseline (De-
terministic)

Total Weight (lb) WT Structures 6.76× 104

Fuel Weight (lb) Wf Structures 1.66× 104

Twist (n/a) θ Structures 0.95
Lift (lb) L Aerodynamics 6.76× 104

Drag (lb) D Aerodynamics 1.107× 104

Lift to Drag ratio L/D Aerodynamics 6.1
Specific Fuel Con-
sumption (1/hr)

SFC Propulsion 1.048

Engine Scale Factor ESF Propulsion 0.91
Engine Weight (lb) WE Propulsion 1.19× 104

Note: Variables with unit n/a are unit-less and normalized with reference value

Table 30: Description of uncertain disciplinary parameters for SST problem

Variable Symbol Discipline

Misc. Fuel Weight (lb) WFO Structures
Misc. Weight (lb) WO Structures
Max. Load Factor NZ Structures
Min. Drag Coeff. CDMIN Aerodynamics
Baseline Engine Weight (lb) WBE Propulsion

Table 31: Description of disciplinary constraints for SST problem

Variable Symbol Discipline Constraint

Avg. Stress a(n/a) g1 = σavg Structures P(σavg < 1.09) > 0.9
Twist (n/a) g2 = θ Structures P(0.96 < θ < 1.04) > 0.9
Pres. Grad. (n/a) g3 = ∂p/∂x Aerodynamics ∂p/∂x < 1.04
Engine Scale Factor g4 = ESF Propulsion P(0.5 < ESF < 1.5) > 0.9
Engine Temp. (n/a) g5 = ETemp Propulsion ETemp < 1.02
Throt. Setting (n/a) g6 = T Propulsion T < 0
Note: Variables with unit n/a are unit-less and normalized with reference value

a non-dimensional stress averaged over five different locations on wing
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Table 32: Description of characteristic of uncertainty variables for case-1 of SST
problem

Variable Density Function Parameters

WFO Gaussian µ = 2000, σ = 20
WO Gaussian µ = 25000, σ = 250
NZ Gaussian µ = 6, σ = 0.06
CDMIN Gaussian µ = 4360, σ = 43.6
WBE Gaussian µ = 1.375× 10−2, σ = 1.375× 10−4

Note: µ is mean and σ is standard deviation for Gaussian distribution

Table 33: Description of characteristic of uncertainty variables for case-2 of SST
problem

Variable Density Function Parameters

WFO Gaussian µ = 2000, σ = 20
WO Triangular a = 24200, b = 24500 , c = 25600
NZ Gaussian µ = 6, σ = 0.06
CDMIN Triangular a = 4250, b = 4300, c = 4500
WBE Shifted Gamma δ = 1.34× 10−2, k = 3.0, θ = 1.375× 10−4
Note: For triangular distribution a is lower limit, b is peak location, and c is upper limit.

For shifted gamma distribution δ is shift, k is shape parameter, and θ is scale parameter.

distribution with mean and standard deviation given in Table 32.

Case-2: In the second case, mixture of Gaussian and non-Gaussian distribution is

used. The density functions and parameters are given in Table 33.

The uncertain variables are embedded in their respective disciplines so that each of

the disciplinary functions are non-deterministic and cannot be explicitly determined

as a function of uncertain variables.

6.4.5.1 CO-PADMA Procedure

The step by step numerical procedure of the CO-PADMA method for the analytical

problem is given as follows.

1. Start

2. Initialize the variables.
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(a) Ranges of design variables are initialized: x ∈ [xL,xU ].

(b) Baseline design is defined as xbaseline, which is used as the starting point

for optimization.

(c) Uncertainty variables are characterized, as defined in the previous section.

(d) Cycle counter is set to r = 1.

3. Experimental design and quantile copula regression modeling

(a) For the first cycle (r = 1)

i. 100 samples of design points x are generated using Latin hypercube

design within the domain defined in Step 2(a).

ii. For each sample of design, UMDA using the PADMA procedure is

carried out to evaluate 300 samples of interdisciplinary compatible

solutions of y and constraints g.

iii. Design points and respective samples of state variables and constraints

are added to the database.

iv. Using the samples from the database, quantile copula regression f̃qcry(y|x)

of all the state variables are built. Also quantile copula regression of

all the reliability constraints f̃qcrgr (gr|x) are built. For the determin-

istic constraints, quadratic response surface models are built similar

to deterministic CSSO method gd = f̃rsmgd
(x).

(b) For cycle (r > 1)

i. Samples are filtered and selected from the database which are within

the reduced domain defined by Step 6(b).

ii. nnew set of new samples of design points are generated within the

reduced domain, where nnew = nfilter − 100 + 5r and nfilter is the

number of unique design points in the database which are within the
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reduced domain. This allows the maintaining of at least 100 unique

design points to model quantile copula regression.

iii. For each new sample of design, UMDA using the PADMA procedure

is carried out to evaluate samples of interdisciplinary compatible so-

lutions of disciplinary state variables y and constraints g.

iv. Design points and their respective samples of state variables are added

to the database.

v. Using new and filtered samples from the database, quantile copula

regression of all the state variables f̃qcry(y|x) are built. Similarly

quantile copula regression of all the reliability constraints f̃qcrgr (gr|x)

are built. For the deterministic constraints, quadratic response sur-

face models are built similar to the deterministic CSSO method gd =

f̃rsmgd
(x).

4. System Optimization:

(a) Using the quantile copula regression, system optimization is carried out as
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given by:

Given f̃qcry(y|x), f̃qcrgr (gr|x), f̃rsmgd
(x) (161a)

R̃ = fsys(x, ỹ) (161b)

minimize F̃ = −µR̃ + 3.0σR̃ (161c)

with respect to x

such that P(g̃1 < 1.09) > 0.9 (161d)

P(0.96 < g̃2 < 1.04) > 0.9 (161e)

g̃3 < 1.04 (161f)

P(0.5 < g̃4 < 1.5) > 0.9 (161g)

g̃5 < 1.02 (161h)

g̃6 < 0.0 (161i)

xL(r) ≤ x ≤ xU(r) (161j)

Output x∗(r), f̃
∗(r)
R (R), F̃ ∗(r)

where uncertainty on state variables ỹ is estimated through quantile copula

regression which is used to approximate the uncertainty on system metric

f̃
∗(r)
R (R).

(b) The PADMA procedure is carried out using high-fidelity disciplinary anal-

yses at the optimum design of rth cycle, x∗(r), to evaluate the accurate

probability density of system metric f
∗(r)
R (R), accurate cost function F ∗(r).

Also 300 samples of interdisciplinary compatible solutions of all the state

variables are generated and added to the database.

5. Subsystem Optimization:
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(a) Subsystem optimization is carried out using high-fidelity disciplinary anal-

ysis, while non-local state variables are approximated using quantile cop-

ula regression. The structure discipline subsystem optimization problem

is given as:

Structure Discipline Optimization

Given f̃qcry·s (y·s|x), f̃qcrgr (gr|x), f̃rsmgd
(x) (162a)

[ys,gs] = fStructure(xsh,xs, ỹ·s) (162b)

R̃ = fsys(x,ys, ỹ∼s) (162c)

minimize F̃ = −µR̃ + 3.0σR̃ (162d)

with respect to x

such that P(g1 < 1.09) > 0.9 (162e)

P(0.96 < g2 < 1.04) > 0.9 (162f)

g̃3 < 1.04 (162g)

P(0.5 < g̃4 < 1.5) > 0.9 (162h)

g̃5 < 1.02 (162i)

g̃6 < 0.0 (162j)

xL(r) ≤ x ≤ xU(r) (162k)

Output x∗(r)s , f̃
∗(r)
Rs

(Rs), F̃
∗(r)
s

where uncertainty on input coupling variables to structure disciplines ỹ·s is

evaluated using the quantile copula regression while output coupling vari-

ables (ys) and constraints (gs = [g1, g2]) of structures disciplines are evalu-

ated using high-fidelity disciplinary analysis fStructure(xsh,xs, ỹ·s). System

response R is evaluated as a function of design variables x, high-fidelity

state variables of structures discipline ỹ·s, and approximate state variables

of other disciplines ỹ∼s. Uncertainty on non-local reliability constraints are
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estimated using f̃qcrgr (gr|x). Similarly, non-local deterministic constraints

are estimated using f̃rsmgd
(x).

The aerodynamics discipline subsystem optimization problem is given as:

Aerodynamics Discipline Optimization

Given f̃qcry·a (y·a|x), f̃qcrgr (gr|x), f̃rsmgd
(x) (163a)

[ya,ga] = fAerodynamics(xsh,xa, ỹ·a) (163b)

R̃ = fsys(x,ya, ỹ∼a) (163c)

minimize F̃ = −µR̃ + 3.0σR̃ (163d)

with respect to x

such that P(g̃1 < 1.09) > 0.9 (163e)

P(0.96 < g̃2 < 1.04) > 0.9 (163f)

g3 < 1.04 (163g)

P(0.5 < g̃4 < 1.5) > 0.9 (163h)

g̃5 < 1.02 (163i)

g̃6 < 0.0 (163j)

xL(r) ≤ x ≤ xU(r) (163k)

Output x∗(r)a , f̃
∗(r)
Ra

(Ra), F̃
∗(r)
a

where uncertainty on input coupling variables to aerodynamic disciplines

ỹ·a is estimated using the quantile copula regression while output coupling

variables (ya) and constraints (ga = [g3]) of aerodynamics disciplines are

evaluated using high-fidelity disciplinary analysis fAerodynamics(xsh,xa, ỹ·a).

System response R is evaluated as a function of design variables x, high fi-

delity state variables of aerodynamics discipline ỹ·a, and approximate state

variables of other disciplines ỹ∼a. Uncertainty on non-local reliability con-

straints are estimated using f̃qcrgr (gr|x). Similarly, non-local deterministic
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constraints are estimated using f̃rsmgd
(x).

The propulsion discipline subsystem optimization problem is given as:

Propulsion Discipline Optimization

Given f̃qcry·p (y·p|x), f̃qcrgr (gr|x), f̃rsmgd
(x) (164a)

[yp,gp] = fPropulsion(xsh,xp, ỹ·p) (164b)

R̃ = fsys(x,yp, ỹ∼p) (164c)

minimize F̃ = −µR̃ + 3.0σR̃ (164d)

with respect to x

such that P(g̃1 < 1.09) > 0.9 (164e)

P(0.96 < g̃2 < 1.04) > 0.9 (164f)

g̃3 < 1.04 (164g)

P(0.5 < g4 < 1.5) > 0.9 (164h)

g5 < 1.02 (164i)

g6 < 0.0 (164j)

xL(r) ≤ x ≤ xU(r) (164k)

Output x∗(r)p , f̃
∗(r)
Rp

(Rp), F̃
∗(r)
p

where uncertainty on input coupling variables to propulsion disciplines

ỹ·p is estimated using the quantile copula regression while output coupling

variables (yp) and constraints (gp = [g4, g5, g6]) of propulsion disciplines are

evaluated using high-fidelity disciplinary analysis fPropulsion(xsh,xp, ỹ·p).

System response R is evaluated as a function of design variables x, high

fidelity state variables of propulsion discipline ỹ·p, and approximate state

variables of other disciplines ỹ∼p. Uncertainty on non-local reliability con-

straints are estimated using f̃qcrgr (gr|x). Similarly, non-local deterministic

constraints are estimated using f̃rsmgd
(x).
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Once the subsystem optimizations are over, the PADMA procedure using

the high-fidelity analyses of all the subsystems are carried out for x
∗(r)
s ,x

∗(r)
a

and x
∗(r)
p , to evaluate the accurate probability density of system metric

f
∗(r)
Rs

(Rs), f
∗(r)
Ra

(Ra) and f
∗(r)
Rp

(Rp), and accurate cost function F
∗(r)
s , F

∗(r)
a

and F
∗(r)
p . Also, 300 samples of interdisciplinary compatible solutions of

all the state variables are generated at each subsystem optimum design

and added to the database.

6. Check Convergence: Check the convergence criteria given in Section 6.2.4.

(a) If converged, STOP

(b) Otherwise:

i. Increment the cycle count (r = r + 1)

ii. Design Space Reduction: Reduce the domain of design variables using

Equation 143.

iii. Repeat from Step 3.

Similar to analytical problem, the CMAES optimization algorithm has been used

to carry out all the optimization processes. The scripts of the disciplinary functions

have been written in MATLAB. Also, to automate the CO-PADMA process, scripts

for CO-PADMA method have been written and executed in MATLAB.

6.4.5.2 Results: SST design problem Case-1

In the first case of the SST design problem all the uncertain variables are assumed

to have a Gaussian distribution. Similar to the analytical problem, a study has been

carried out with the CO-PADMA method and compared it with the UMDO-SOFPI

and MM methods.

For the SST design problem case-1 the CO-PADMA method took 15 cycles to

converge to optimum solution. The system level optimum design variables are listed
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in Table 34 and subsystem level optimum design variables are listed in Table 35. The

table also compares the results of the CO-PADMA process with true optimum results

evaluated using the UMDO-SOFPI method. All the system level design variables have

been found to converge with a 1% error. Except for t/c and Sref , all the other system

design variables have converged at the boundary of design space. The subsystem

design variables also converged to the value very close to a true solution with the

worst cases of λ (2.5% error) and Cf (3.6% error).

The probability density function and cumulative distribution function of optimum

system metric range (R) evaluated by the CO-PADMA process is plotted in Fig-

ure 105. Results are compared with the probability density function and cumulative

distribution function estimated by the UMDO-SOFPI and MM methods estimated at

true optimum obtained by the UMDO-SOFPI method. The uncertainty of the range

has been found to follow the Gaussian distribution very closely. The CO-PADMA

process has been able to estimate the uncertainty very close to the UMDO-SOFPI

method; however the MM method seems to predict a wider variance. The statistical

metrics of range is listed and compared in Table 36. Both the CO-PADMA and MM

methods have been able to predict the statistical mean accurately. However, as pre-

dicted by probability density plot, the standard deviation of the MM method is off

by 31% when compared to the CO-PADMA method which is off by only 2%. Due to

the symmetric nature of the probability density function, the skewness is very close

to zero, which is well predicted by both the MM and CO-PADMA methods. In terms

of closeness of overall distribution measured by K-L divergence, the CO-PAMDA

method with K-L div. = 0.02 has been able to find a better solution when compared

to the MM method with K-L div. = 0.09.

Figure 106 shows the optimum system level design variables evaluated by system

and all the subsystem optimizers at the end of each cycle. All the optimizers have been

found to be very consistent for all the system design variables which allow a design
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Table 34: Comparison of optimum system level design variables for SST design prob-
lem case-1

t/c h(ft) M AR Λ(o) Sref (ft
2)

UMDO-SOFPI 0.0839 60000.00 1.40 2.50 70.00 1460.00
CO-PADMA 0.0841 59985.28 1.40 2.50 70.00 1462.94
∆x∗norm 0.0024 0.00 0.00 0.00 0.00 0.002

Table 35: Comparison of optimum subsystem level design variables for SST design
problem case-1

λ x Cf T

UMDO-SOFPI 0.281 0.751 0.760 0.156
CO-PADMA 0.274 0.750 0.787 0.156
∆x∗norm 0.025 0.001 0.036 0.001
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Figure 105: Comparison of probability density function and cumulative distribution
function of system metric range (R) at optimum design estimated using benchmark
UMDO-SOFPI method, Moment Matching method (MM) and CO-PADMA method
for analytical problem case-1

Table 36: Comparison of statistical metrics of system metric range (R) for SST design
problem case-1

UMDO-SOFPI MM CO-PADMA

Mean(µR) 3765.15 3765.09 3761.58
Std. Dev.(σR) 26.61 34.81 27.15
Skewness (γR) 0.10 0.01 0.06
K-L div. - 0.09 0.02

242



0 5 10 15

0.06

0.08
t/c

Sys
Struct.
Aerod.
Propl
Design Space

0 5 10 15
5

5.5

6

h(
ft

)

#104

Sys
Struct.
Aerod.
Propl
Design Space

0 5 10 15
1.4

1.5

1.6

M

Sys
Struct.
Aerod.
Propl
Design Space

0 5 10 15

3

4

5

A
R

Sys
Struct.
Aerod.
Propl
Design Space

0 5 10 15
55

60

65

70

$
(o

)

Sys
Struct.
Aerod.
Propl
Design Space

0 5 10 15

Cycle

1200

1300

1400

1500

S
re

f(f
t2

) Sys
Struct.
Aerod.
Propl
Design Space

Figure 106: Optimum system design variables estimated by system and subsystem
optimizers and design space reduction at the end of each cycle for SST design problem
case-1
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Figure 108: Variation of uncertainty on range (R) with respect to Taper Ratio (λ)
and Throttle Setting (T ) around the baseline for SST design problem

space reduction strategy to reduce the design space to less than 10% of initial design

space for h, M , AR, and Λ. Figure 107 shows the optimum subsystem level design

variables evaluated by system and all the subsystem optimizers at the end of each

cycle. Compared to system level variables, convergence history of subsystem design

variables have not been very smooth. The fluctuations of optimum design variable

happens when the system objective function is not very sensitive with respect to that

particular variable. For example, system objective in case of the SST problem is not

very sensitive to taper ratio λ, which causes considerable fluctuation in convergence

history. Whereas, throttle setting has a greater impact on system objective function

which leads to a smoother convergence history. The sensitivity of system metric R

with respect to λ and T can be observed in Figure 108 where uncertainty on R is

plotted for a different setting of λ and T while keeping all the other variables fixed

at baseline setting. As observed, uncertainty on range does not change much with λ

whereas change in setting of T has a greater impact on range.

Figure 109 and Figure 110 shows histograms of design samples at the end of 1st,

7th and 15th cycle for system and subsystem design variables, respectively. Similar

to the analytical problem, it is observed that with each cycle, design samples start
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Figure 109: Histogram of design points for system design variables at end of 1st, 7th

and 15th cycle for SST design problem case-1
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Figure 110: Histogram of design points for subsystem design variables at end of 1st, 7th

and 15th cycle for SST design problem case-1
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concentrating near the optimum setting of the design variable. Figure 111 shows

improvement in accuracy of a quantile copula regression with cycle. The probability

density functions of range estimated using quantile copula regression are plotted for

cycles 1, 3, 7 and 15 at the optimum design at the respective cycle and compared

with true uncertainty estimated using the SOFPI method. As observed, the quantile

copula regression has been able to achieve an accurate estimate of uncertainty from

the 7th cycle. It is also observed that with improvement in accuracy of quantile

copula regression, the performance of system metric also improved with each cycle

which is seen by the shift of probability density function towards higher values of

system metric, range (R), with increment of cycle.

Figure 112 shows the scatter plot matrix of coupling and state variables at opti-

mum design of SST design problem case-1 estimated by the CO-PADMA method and

compared with the UMDO-SOFPI and MM methods. Almost all the dependencies

have been found to be elliptical, similar to a multivariate Gaussian distribution. Very

strong statistical dependency has been found among WT , L and θ, which has been well

captured by the CO-PADMA method. Although the MM method has been able to

accurately estimate the marginal distributions of coupling variables, it was unable to

capture these dependencies because it has been assumed that the coupling variables

are independent. Figure 113 compares the contour plot of joint probability density

of optimum interdisciplinary compatible solution of WT and WE estimated by all the

UMDO-SOFPI, MM and CO-PAMDA methods. Although the dependency between

WT and WE is not very high, the CO-PADMA method has been able to capture the

overall trend of joint probability density better than the MM method.

The linear dependencies are quantified with Pearson’s correlation matrix in Ta-

ble 37. Almost all the correlation coefficients estimated by the CO-PADMA process

have been found to be within 5% error except the dependency between WT and Wf ,

which has an error of 13%. To quantify any underlying non-linear dependency Mutual
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Figure 111: Improvement in accuracy of quantile copula regression (QCR) with each
cycle for SST design problem case-1
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Table 37: Comparison of Correlation Matrix of coupling and state variables of SST
design problem case-1

Correlation Matrix

UMDO-SOFPI

WT (lb) Wf (lb) θ L(lb) D(lb) WE(lb) ESF
WT (lb) 1.00 0.08 -1.00 1.00 0.25 0.49 0.25
Wf (lb) 0.08 1.00 -0.08 0.08 -0.03 -0.08 -0.03
θ -1.00 -0.08 1.00 -1.00 -0.24 -0.49 -0.24

L(lb) 1.00 0.08 -1.00 1.00 0.25 0.49 0.25
D(lb) 0.25 -0.03 -0.24 0.25 1.00 0.57 1.00
WE(lb) 0.49 -0.08 -0.49 0.49 0.57 1.00 0.57
ESF 0.25 -0.03 -0.24 0.25 1.00 0.57 1.00

CO-PADMA

WT (lb) Wf (lb) θ L(lb) D(lb) WE(lb) ESF
WT (lb) 1.00 -0.04 -1.00 1.00 0.29 0.53 0.29
Wf (lb) -0.04 1.00 0.04 -0.04 -0.01 -0.05 -0.01
θ -1.00 0.04 1.00 -1.00 -0.29 -0.53 -0.29

L(lb) 1.00 -0.04 -1.00 1.00 0.29 0.53 0.29
D(lb) 0.29 -0.01 -0.29 0.29 1.00 0.58 1.00
WE(lb) 0.53 -0.05 -0.53 0.53 0.58 1.00 0.58
ESF 0.29 -0.01 -0.29 0.29 1.00 0.58 1.00

∆ρ error

WT (lb) Wf (lb) θ L(lb) D(lb) WE(lb) ESF
WT (lb) 0.00 0.13 0.00 0.00 0.04 0.04 0.04
Wf (lb) 0.13 0.00 0.13 0.13 0.02 0.02 0.02
θ 0.00 0.13 0.00 0.00 0.05 0.04 0.05

L(lb) 0.00 0.13 0.00 0.00 0.04 0.04 0.04
D(lb) 0.04 0.02 0.05 0.04 0.00 0.01 0.00
WE(lb) 0.04 0.02 0.04 0.04 0.01 0.00 0.01
ESF 0.04 0.02 0.05 0.04 0.00 0.01 0.00

Information is computed and compared in Table 38. CO-PADMA has been able to

estimate the Mutual Information among the coupling variables within 5% error.

Convergence history of optimum objective function with respect to disciplinary

uncertainty quantification and propagation (UQP) function calls are plotted and com-

pared in Figure 114. Convergence history trend with respect to UQP function calls

for the UMDO-SOFPI and CO-PADMA methods has been found to be very similar.

The convergence history of optimum objective function is plotted against time in

Figure 126, where tavg is the average time for each disciplinary UQP call. While the

optimization routine could have been stopped by around 4, 000tavg (4, 000 UQP calls
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Table 38: Comparison of Mutual Information (MI) matrix of coupling and state
variables of SST design problem case-1

Mutual Information Matrix

UMDO-SOFPI

WT (lb) Wf (lb) θ L(lb) D(lb) WE(lb) ESF
WT (lb) 1.17 0.03 1.17 1.17 0.05 0.16 0.05
Wf (lb) 0.03 1.20 0.03 0.03 0.03 0.04 0.03
θ 1.17 0.03 1.17 1.17 0.05 0.15 0.05

L(lb) 1.17 0.03 1.17 1.17 0.05 0.16 0.05
D(lb) 0.05 0.03 0.05 0.05 1.18 0.20 1.18
WE(lb) 0.16 0.04 0.15 0.16 0.20 1.19 0.20
ESF 0.05 0.03 0.05 0.05 1.18 0.20 1.18

CO-PADMA

WT (lb) Wf (lb) θ L(lb) D(lb) WE(lb) ESF
WT (lb) 1.19 0.04 1.19 1.19 0.08 0.18 0.08
Wf (lb) 0.04 1.15 0.04 0.04 0.04 0.03 0.04
θ 1.19 0.04 1.19 1.19 0.08 0.18 0.08

L(lb) 1.19 0.04 1.19 1.19 0.08 0.18 0.08
D(lb) 0.08 0.04 0.08 0.08 1.18 0.22 1.18
WE(lb) 0.18 0.03 0.18 0.18 0.22 1.15 0.22
ESF 0.08 0.04 0.08 0.08 1.18 0.22 1.18

∆MI error

WT (lb) Wf (lb) θ L(lb) D(lb) WE(lb) ESF
WT (lb) 0.02 0.01 0.02 0.02 0.02 0.02 0.02
Wf (lb) 0.01 0.05 0.01 0.01 0.01 0.01 0.01
θ 0.02 0.01 0.02 0.02 0.03 0.02 0.03

L(lb) 0.02 0.01 0.02 0.02 0.02 0.02 0.02
D(lb) 0.02 0.01 0.03 0.02 0.00 0.01 0.00
WE(lb) 0.02 0.01 0.02 0.02 0.01 0.04 0.01
ESF 0.02 0.01 0.03 0.02 0.00 0.01 0.00
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(a) UMDO-SOFPI (b) MM (c) CO-PADMA

Figure 113: Contour plot of joint probability density of optimum interdisciplinary
compatible solution of WT and WE for SST design problem case-1

for UMDO-SOFPI and cycle 3 for CO-PADMA method), the optimization routine

has been continued to ensure overall convergence. Both the UDMO-SOFPI and CO-

PADMA methods took almost similar time to achieve overall convergence, but it is

observed that the first near-optimum solution achieved by the CO-PADMA method

(end of cycle-1) has been achieved in around one-third the time of the UMDO-SOFPI

method (required around 2, 000 UQP calls). This is mainly due to the fact that

there are three disciplines which have been analyzed concurrently in the CO-PADMA

process.

6.4.5.3 Results: SST design problem Case-2

In the case-2 of SST design problem some of the uncertain parameters (WO, CDMIN

and WBE) are assumed to have non-Gaussian distribution. Similar to case-1, 15

cycles of CO-PADMA have been carried to evaluate the optimum solution. The

system level optimum design variables are listed in Table 39 and subsystem level

optimum design variables are listed in Table 40. The tables also compare the results
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of the CO-PADMA process with true optimum results evaluated using the UMDO-

SOFPI method. All the system level design variables have been found to converge

with 1.2% error. The optimum design evaluated in case-2 has been found to be very

similar to the case-1 problem. Except for t/c, all the other system design variables

have converged at the boundary of design space. The subsystem design variables also

converged to a value very close to a true solution with the worst cases being λ (3.8%

error) and x (1.4% error).

The probability density function and cumulative density function of optimum sys-

tem metric range (R) evaluated by the CO-PADMA process is plotted in Figure 116.

Results are compared with probability density function and cumulative density func-

tion estimated by the UMDO-SOFPI and MM methods estimated at true optimum

obtained by the UMDO-SOFPI method. Unlike case-1, the probability density func-

tion of range has been found to be negatively skewed. The skewness of the probability

density function is well captured by the CO-PADMA method whereas the MM method

predicted a symmetrical distribution. The statistical metrics of range is listed and

compared in Table 41. Both the CO-PADMA and MM methods have been able to

predict the statistical mean accurately. However, as predicted by the probability den-

sity plot the standard deviation of the MM method is off by 14.3% when compared

to the CO-PADMA method which is off by only 6.9%. Skewness estimated by the

CO-PADMA process has been found to be very close to the UMDO-SOFPI method,

whereas the MM method predicted a very low value of skewness. In terms of closeness

of overall distribution measured by K-L divergence, CO-PAMDA method with K-L

div. = 0.01 has been able to find better solution when compared to the MM method

with K-L div. = 0.14.

Figure 117 shows the optimum system level design variables evaluated by system

and all the subsystem optimizers at the end of each cycle. Similar to case-1, all the

optimizers have been found to be very consistent for all the system design variables
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Table 39: Comparison of optimum system level design variables for SST design prob-
lem case-2

t/c h(ft) M AR Λ(o) Sref (ft2)

UMDO-SOFPI 0.085 60000 1.4 2.5 70.0 1492.766
CO-PADMA 0.084 60000 1.4 2.5 70.0 1498.286
∆x∗norm 0.012 0.0 0.0 0.0 0.0 0.004

Table 40: Comparison of optimum subsystem level design variables for SST design
problem case-2

λ x Cf T

UMDO-SOFPI 0.278 0.781 0.755 0.156
CO-PADMA 0.289 0.770 0.758 0.156
∆x∗norm 0.038 0.014 0.005 0.000

3500 3600 3700 3800 3900 4000

Range (NM)

0

0.005

0.01

0.015

Pr
ob

ab
ili

ty
 D

en
si

ty
 F

un
ct

io
n UMDO-SOFPI

MM
CO-PADMA

(a) Probability density function

3500 3600 3700 3800 3900 4000

Range (NM)

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e 

D
is

tr
ib

ut
io

n 
Fu

nc
tio

n
UMDO-SOFPI
MM
CO-PADMA

(b) Cumulative distribution function

Figure 116: Comparison of probability density function and cumulative distribution
function of system metric range (R) at optimum design estimated using benchmark
UMDO-SOFPI method, Moment Matching method (MM) and CO-PADMA method
for SST design problem case-2

Table 41: Comparison of statistical metrics of system metric range (R) for SST design
problem case-2

UMDO-SOFPI MM CO-PADMA

Mean(µR) 3771.09 3776.86 3776.31
Std. Dev.(σR) 47.16 53.93 43.90
Skewness (γR) -1.13 -0.06 -1.12
K-L div. - 0.14 0.01
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which allow design space reduction strategy to reduce the design space to less than

10% of initial design space for h, M , AR, and Λ. Figure 118 shows the optimum

subsystem level design variables evaluated by system and all the subsystem optimizers

at the end of each cycle. As in case-1, optimum value of λ varies a lot with each cycle

compared to the other variables.

Figure 119 and Figure 120 shows histogram of design samples at the end of the 1st,

7th and 15th cycles for system and subsystem design variables, respectively. Similar

to case-1, it is observed that the with each cycle, design samples start concentrating

near the optimum setting of system design variable. However, due to a large varia-

tion in the optimum solution of subsystem design variables, the design samples were

uniformly distributed in the reduced space. This is particularly seen in λ, x, and Cf .

Figure 121 shows improvement in accuracy of quantile copula regression with cycle.

The probability density functions of range estimated using quantile copula regression

are plotted for cycles 1, 3, 7 and 15 at the optimum design at the respective cycle and

compared with true uncertainty estimated using the SOFPI method. The quantile

copula regression has been found to be have very high inaccuracy in the 1st cycle,

but accuracy improved significantly after the 3rd cycle. It is also observed that with

improvement in the accuracy of quantile copula regression, the performance of system

metric also improved with each cycle, which is seen by the shift of probability density

function toward the higher value of system metric, range (R), with each cycle.

Figure 122 shows the scatter plot matrix of coupling and state variables at opti-

mum design as estimated by the CO-PADMA method and compared with the UMDO-

SOFPI and MM methods. Unlike case-1, dependencies among only few variables have

been found to be elliptical. Most of the dependencies with respect to D, WE and ESF

have been found to be non-elliptical, which has been well captured by the CO-PADMA

method. Very strong statistical dependency has been found among WT , L and θ, sim-

ilar to case-1, which has been well estimated by the CO-PADMA method. Figure 123
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Figure 117: Optimum system design variables estimated by system and subsystem
optimizers and design space reduction at the end of each cycle for SST design problem
case-2
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Figure 119: Histogram of design points for system design variables at end of 1st, 7th

and 15th cycle for SST design problem case-2
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and 15th cycle for SST design problem case-2
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Figure 121: Improvement in accuracy of quantile copula regression (QCR) with each
cycle for SST design problem case-2
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(a) UMDO-SOFPI (b) MM (c) CO-PADMA

Figure 123: Contour plot of joint probability density of optimum interdisciplinary
compatible solution of WT and WE for SST design problem case-2
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Figure 124: Comparison of probability density function of Drag (D) and Engine
Scale Factor (ESF ) at optimum design estimated using benchmark UMDO-SOFPI
method, Moment Matching method (MM) and CO-PADMA method for SST design
problem case-2
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Figure 125: Comparison of convergence characteristics of optimum objective function
with respect to disciplinary uncertainty quantification and propagation function calls
for SST design problem case-2

compares the contour plot of joint probability density of optimum interdisciplinary

compatible solution of WT and WE estimated by all the UMDO-SOFPI, MM and

CO-PAMDA methods. Similar to case-1, the CO-PADMA method has been able to

capture the overall trend of joint probability density better than the MM method. In

addition to not capturing these dependencies, the MM method has not been able to

accurately estimate the marginal distribution of D, WE, and ESF . The true proba-

bility density functions of D and ESF are skewed whereas the MM method assumed

a symmetrical Gaussian distribution for these variables as shown in Figure 124.

The linear dependencies are quantified with Pearson’s correlation matrix in Ta-

ble 42. Almost all the correlation coefficients estimated by the CO-PADMA process

has been found to be within 5% error. To quantify any underlying non-linear de-

pendency Mutual Information is computed and compared in Table 43. Most of the

Mutual Information among state variables has been captured by the CO-PADMA

method with 4% error, except for Mutual Information between WT , L and θ.

265



Table 42: Comparison of Correlation Matrix of coupling and state variables of SST
design problem case-2

Correlation Matrix

UMDO-SOFPI

WT (lb) Wf (lb) θ L(lb) D(lb) WE(lb) ESF
WT (lb) 1.00 -0.02 -1.00 1.00 0.42 0.60 0.42
Wf (lb) -0.02 1.00 0.02 -0.02 -0.03 -0.08 -0.03
θ -1.00 0.02 1.00 -1.00 -0.42 -0.60 -0.42

L(lb) 1.00 -0.02 -1.00 1.00 0.42 0.60 0.42
D(lb) 0.42 -0.03 -0.42 0.42 1.00 0.73 1.00
WE(lb) 0.60 -0.08 -0.60 0.60 0.73 1.00 0.73
ESF 0.42 -0.03 -0.42 0.42 1.00 0.73 1.00

CO-PADMA

WT (lb) Wf (lb) θ L(lb) D(lb) WE(lb) ESF
WT (lb) 1.00 -0.04 -1.00 1.00 0.43 0.63 0.43
Wf (lb) -0.04 1.00 0.04 -0.04 -0.02 -0.03 -0.02
θ -1.00 0.04 1.00 -1.00 -0.43 -0.63 -0.43

L(lb) 1.00 -0.04 -1.00 1.00 0.43 0.63 0.43
D(lb) 0.43 -0.02 -0.43 0.43 1.00 0.69 1.00
WE(lb) 0.63 -0.03 -0.63 0.63 0.69 1.00 0.69
ESF 0.43 -0.02 -0.43 0.43 1.00 0.69 1.00

∆ρ error

WT (lb) Wf (lb) θ L(lb) D(lb) WE(lb) ESF
WT (lb) 0.00 0.02 0.00 0.00 0.01 0.03 0.01
Wf (lb) 0.02 0.00 0.02 0.02 0.01 0.05 0.01
θ 0.00 0.02 0.00 0.00 0.00 0.03 0.00

L(lb) 0.00 0.02 0.00 0.00 0.01 0.03 0.01
D(lb) 0.01 0.01 0.00 0.01 0.00 0.03 0.00
WE(lb) 0.03 0.05 0.03 0.03 0.03 0.00 0.03
ESF 0.01 0.01 0.00 0.01 0.00 0.03 0.00
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Table 43: Comparison of Mutual Information (MI) matrix of coupling and state
variables of SST design problem case-2

Mutual Information Matrix

UMDO-SOFPI

WT (lb) Wf (lb) θ L(lb) D(lb) WE(lb) ESF
WT (lb) 1.06 0.04 1.06 1.06 0.11 0.22 0.11
Wf (lb) 0.04 1.22 0.04 0.04 0.04 0.03 0.04
θ 1.06 0.04 1.07 1.06 0.12 0.22 0.12

L(lb) 1.06 0.04 1.06 1.06 0.11 0.22 0.11
D(lb) 0.11 0.04 0.12 0.11 1.23 0.36 1.23
WE(lb) 0.22 0.03 0.22 0.22 0.36 1.11 0.36
ESF 0.11 0.04 0.12 0.11 1.23 0.36 1.23

CO-PADMA

WT (lb) Wf (lb) θ L(lb) D(lb) WE(lb) ESF
WT (lb) 1.20 0.02 1.20 1.20 0.13 0.26 0.13
Wf (lb) 0.02 1.11 0.02 0.02 0.03 0.03 0.03
θ 1.20 0.02 1.20 1.20 0.13 0.26 0.13

L(lb) 1.20 0.02 1.20 1.20 0.13 0.26 0.13
D(lb) 0.13 0.03 0.13 0.13 1.22 0.33 1.22
WE(lb) 0.26 0.03 0.26 0.26 0.33 1.15 0.33
ESF 0.13 0.03 0.13 0.13 1.22 0.33 1.22

∆MI error

WT (lb) Wf (lb) θ L(lb) D(lb) WE(lb) ESF
WT (lb) 0.14 0.02 0.14 0.14 0.01 0.04 0.01
Wf (lb) 0.02 0.12 0.02 0.02 0.02 0.00 0.02
θ 0.14 0.02 0.13 0.14 0.01 0.04 0.01

L(lb) 0.14 0.02 0.14 0.14 0.01 0.04 0.01
D(lb) 0.01 0.02 0.01 0.01 0.01 0.03 0.01
WE(lb) 0.04 0.00 0.04 0.04 0.03 0.04 0.03
ESF 0.01 0.02 0.01 0.01 0.01 0.03 0.01
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Figure 126: Comparison of convergence characteristics of optimum objective function
with respect to time for SST design problem case-2, where tavg is the average time
for each disciplinary UQP call

The convergence history of the optimum objective function with respect to disci-

plinary uncertainty quantification and propagation (UQP) function calls are plotted

and compared in Figure 125. Similar to case-1, the convergence history trend with

respect to the UQP function calls for both the UMDO-SOFPI and CO-PADMA

methods has been found to be very similar. The convergence history of the optimum

objective function is plotted against time in Figure 126, where tavg is the average time

for each disciplinary UQP call. Although both the UDMO-SOFPI and CO-PADMA

methods took almost similar time to achieve overall convergence, it is observed that

the first close to optimum solution achieved by the CO-PADMA method (end of cycle-

1) has been achieved in around one-third of the time of the UMDO-SOFPI method

(required around 2, 500 UQP calls). This is mainly due to the fact that there are

three disciplines which were concurrently analyzed in the CO-PADMA process.
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6.5 Chapter Summary

The chapter presents the Concurrent Optimization using Probabilistic Analysis of

Distributed Multidisciplinary Architectures (CO-PADMA) method, to carry out dis-

tributed multidisciplinary design optimization for non-deterministic disciplines. In

the CO-PADMA method top level or the system level is mainly responsible for inter-

disciplinary compatibility and system level optimization using the PADMA method.

At the subsystem or discipline level, uncertainty propagation and optimization is car-

ried out using their respective high-fidelity disciplinary analyses and using quantile

copula regression for non-local variables.

The CO-PAMDA method is based on model sharing strategy, where quantile

copula regressions are used to coordinate the information of non-local variables among

the discipline. The accuracy of the method depends on the accuracy of quantile copula

regressions. To improve the accuracy of the models, CO-PADMA is iterated through

multiple cycles and in each consecutive cycle the domain of the models is reduced

based on the information of optimum solution from the previous cycles. Also, at

the end of each cycle additional samples of interdisciplinary compatible solutions are

added to the database which is used to further improve the accuracy of quantile

copula regressions.

The main goal of subsystem optimization is to find high-fidelity optimum based on

high-fidelity disciplinary analysis. The interdisciplinary compatible solutions of high-

fidelity disciplinary optimum is also added to the database, which helps in improving

the accuracy of quantile copula regression near the possible optimum solution for the

following cycle.

To test the hypothesis 3.0, the CO-PADMA method is used to carry out dis-

tributed optimization for two problems; an analytical problem and a Supersonic

Transport (SST) aircraft design problem. To test the robustness of the CO-PADMA
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method, two cases in each problem has been tested, one with uncertainties with Gaus-

sian distribution and the other with non-Gaussian distributions. In all the cases, the

CO-PADMA method has been able to accurately estimate the optimum solution and

accurately quantify the dependence and uncertainty on coupling variables and system

metric. The CO-PADMA method has been able to out perform the state of the art,

Moment-Matching method, when the uncertainties are non-Gaussian and where the

system metric has a significant effect on the dependence of coupling variables.

The main assumption of the CO-PADMA method is the assumption associated

with quantile copula regression. In the current work, a quadratic model has been used

to model the quantiles of disciplinary metric as well the parameters of copula function.

Although CO-PADMA allows improvement in accuracy of quantile copula regression

in each cycle, high order or non-linear models are recommended when the design space

has high non-linearity or multi-modality. Also, the quantile copula regression used in

this work has assumed dependence based on Gaussian copula. In a scenario, where

there is tail dependence or non-monotonic dependence, an assumption of Gaussian

copula may not be valid.
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CHAPTER VII

CONCLUSION

An inherent property of complex system design is uncertainty. One such complex

system is aircraft. Design of aircraft without considering uncertainty may lead to

over-design or under-design. Therefore, it is important to consider uncertainty in the

aircraft design process to avoid an expensive redesign process or performance penalty.

To quantify the uncertainties on the system level metric accurately, it is important

to capture the interaction of coupling variables among the disciplines in addition to

quantifying uncertainties in each discipline independently. Uncertainty-based Mul-

tidisciplinary Optimization (UMDO) is a procedure which relies on propagation of

uncertainties across several disciplines to quantify the uncertainty of system perfor-

mance while handling the interdisciplinary interactions. However, in an industrial

setting, all the disciplines and subsystems cannot be integrated into a single work-

bench to carry out uncertainty analysis using an integrated or single level UMDO

method.

A distributed or decomposition-based UMDO, is an alternative to integrated

UMDO which allows each discipline to carry out uncertainty analysis and design

optimization independently and concurrently in a distributed fashion. Nevertheless,

there are some shortcomings to the current state of the art of distributed UMDO

methods. One of the main challenges in the distributed UMDO process is handling of

dependencies and interdisciplinary compatibilities. Most of the current state of the art

methods assume that the coupling variables are independent of each other. The as-

sumption of independence may lead to inaccurate quantification of uncertainty when

the system level metric is sensitive to the dependence of coupling variables. Also,
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interdisciplinary compatibility is generally handled by matching the statistics, such

as statistical moments of coupling variables. This does not ensure that the interdisci-

plinary compatibility is satisfied for each instance or sample of coupling variables and

can also lead to inaccurate quantification of system level metric. To overcome some

of these challenges, distributed UMDO methods based on approximate model sharing

strategy uses approximate models of disciplinary analysis to handle the dependencies

and interdisciplinary compatibility. The methods are based on deterministic approx-

imate models which are only applicable for deterministic disciplines with parametric

or epistemic uncertainty, such that the disciplinary metric can be modeled explic-

itly as a function of uncertain variables. However, in many scenarios disciplines are

non-deterministic and have aleatory or inherent uncertainty due to numerical error,

structural uncertainty, experimental uncertainty, interpolation uncertainty, expert

judgment, etc. For non-deterministic disciplines, probabilistic models of disciplinary

state variables can capture the inherent uncertainties in the discipline. Nonethe-

less, there are limitations in the existing probabilistic models in literature to handle

non-Gaussian noises or uncertainties, heteroskedasticity and dependence among the

multivariate responses.

The research presented in this dissertation comprises methodologies to overcome

the limitations in distributed UMDO methods and are summarized in this chapter.

7.1 Research Question 1.0 and Hypothesis

Research Question 1.0: What is an appropriate method to accurately quantify

the uncertainty on system metric and joint distribution of coupling variables while

handling the dependency and interdisciplinary compatibility in a distributed multidis-

ciplinary analysis under uncertainty?
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Hypothesis 1.0: In a distributed multidisciplinary analysis under uncertainty, if

accurate conditional probability density functions of disciplinary metrics are available

from each discipline, then Probabilistic Analysis of Distributed Multidisciplinary Ar-

chitectures (PADMA) can accurately quantify the uncertainty on system metric and

joint distribution of coupling variables by evaluating probability of Event of Interdis-

ciplinary Compatibility (EIC).

Probabilistic Analysis of Distributed Multidisciplinary Architectures (PADMA) is

a distributed UMDA method, that quantifies the uncertainty on system metric and

joint distribution of coupling variables by evaluating the probability of Event of Inter-

disciplinary Compatibility (EIC). The probability of EIC is evaluated by conditional

probability models built by each discipline by carrying out uncertainty quantification

and propagation independently and concurrently. To carry out uncertainty propa-

gation in each discipline, the converged or interdisciplinary compatible distributions

of input coupling variables are not required. One can use guessed probability dis-

tributions with any functional form for the input coupling variables and use that to

carry out uncertainty propagation in each discipline concurrently and independently.

However, the domain of the guessed probability distributions should be large enough

such that it can encompass the true interdisciplinary compatible solutions. The only

assumption in the PADMA method is that accurate models of conditional probabil-

ity density functions of disciplinary metrics be available from each discipline. In this

work, quantile copula regression has been used to model these conditional probability

functions.

The hypothesis has been tested on two numerical problems with both Gaussian

and non-Gaussian cases. In all the test cases, the PADMA method has captured

the dependency structure as well as accurately estimating the correlation coefficient

and mutual information among coupling variables. The PADMA method has also

accurately quantified the uncertainty on system metric as compared to the state of
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art Moment-Matching method for distributed UMDO.

7.2 Research Question 2.0 and Hypothesis

Research Question 2.0: What is an appropriate probabilistic modeling technique to

comprehensively model conditional probability of multivariate disciplinary responses

with heteroskedasticity and statistical dependence ?

Hypothesis 2.0: If the disciplinary responses are continuous variables and if the

dependencies among responses are monotonic, then quantile copula regression is an

appropriate method to comprehensively model the conditional probability density func-

tions of disciplinary metrics using quantile regressions and model dependencies among

them using copula.

A quantile copula regression method has been developed in the current work to

comprehensively model the conditional probability distributions of multivariate re-

sponses, and model the dependencies with copula. Quantile copula regression does

not assume any functional form of probability densities and instead models different

level of quantiles which provides a comprehensive information of the true probabil-

ity densities. The copula function decouples the marginal distributions from the

dependence structure and allows independent modeling of any arbitrary marginal

distributions using quantile regression.

In the current work a quadratic response surface model has been used to model

both quantiles of responses and copula parameters. Also, the Gaussian copula func-

tion has been used in the current work to model the dependencies. The hypothesis

has been tested with a simple beam problem with both Gaussian and non-Gaussian

responses and non-linear dependencies
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7.3 Research Question 3.0 and Hypothesis

Research Question 3.0: What is an appropriate procedure to carry out distributed

optimization of multidisciplinary system under uncertainty to accurately quantify

the dependency and uncertainty on coupling variables and system metric for non-

deterministic disciplinary analyses ?

Hypothesis 3.0: If accurate models of conditional probability densities of disci-

plinary metrics can be built, then Concurrent Optimization using Probabilistic Analy-

sis of Distributed Multidisciplinary Architectures (CO-PADMA) can find the optimum

design and estimate the uncertainty and dependence of system metrics and state vari-

ables accurately, while allowing distributed optimization and uncertainty analysis for

a multidisciplinary system.

Concurrent Optimization using Probabilistic Analysis of Distributed Multidisci-

plinary Architectures (CO-PADMA) method has been developed to carry out dis-

tributed multidisciplinary design optimization for non-deterministic disciplines. In

the CO-PADMA method the top level or the system level is mainly responsible for

interdisciplinary compatibility and system level optimization by applying the PADMA

method and using quantile copula regression models of disciplinary metrics. At sub-

system or discipline level, uncertainty propagation and optimization is carried out

using their respective high-fidelity disciplinary analyses and using quantile copula

regression for non-local variables.

To improve the accuracy of the quantile copula regression model, CO-PADMA it-

erates through multiple cycle and in each consecutive cycle the domain of the models

is reduced based on the information of optimum solution from the previous cycles.

Also, at the end of each cycle additional samples of interdisciplinary compatible so-

lutions are used to update and improve the accuracy of quantile copula regressions.
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The hypothesis has been tested on an analytical problem and a Supersonic Trans-

port (SST) aircraft design problem for both Gaussian and non-Gaussian uncertainties.

In all the cases, the CO-PADMA method has been able to accurately estimate the op-

timum solution and accurately quantify the dependence and uncertainty on coupling

variables and system metric. The CO-PADMA method has also been able to out

perform the state of the art, Moment-Matching method, when the uncertainties are

non-Gaussian and when the system metric has a significant effect on the dependence

of coupling variables.

7.4 Limitations

Accuracy of both the PADMA and CO-PADMA methods developed in the current

work is limited by the accuracy of conditional probability models, for which quantile

copula regression has been used. There are mainly three critical aspects which affect

the accuracy of quantile copula regression.

� Number of samples: Similar to deterministic regression model, accuracy of

quantile copula regression is also affected by the number of samples to train

it. Quantile regressions of multiple quantiles are required to comprehensively

estimate the conditional probability densities. This is particularly important for

capturing the tail probabilities, where the inaccuracy of the quantile regression

increases due to relatively fewer samples around that region. As the number of

quantile levels increase, the required number of samples to model these quantiles

also needs to be increased to maintain accuracy. Also, the accuracy of copula

parameters estimation improves with the increase in number of samples.

� Model of quantile and copula function: The quadratic response surface

model has been used in the current work to model both the quantiles of responses

and the copula parameters. However, for non-linear problems or problems with
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multi-modality, higher order models or non-linear methods like spline, Artificial

Neural Network, etc might be required.

� Copula function: One of the main assumptions in this work is use of the

Gaussian copula to model the dependencies. Although the Gaussian copula is

very robust and easily applicable for a variety of problems, it also has some

limitations. For example, the Gaussian copula is an elliptical copula and can-

not model the tail dependence accurately. Although the Gaussian copula can

handle certain non-linear dependencies, it cannot capture the non-monotonic

dependencies.

7.5 Recommendation for Future Work

Although all the hypothesis tested in the current work have been able to fulfill the

research objective under certain conditions, some of the possible extensions of the

presented research work are:

� Application of the PADMA and CO-PADMA methods on coupled

high-fidelity multidisciplinary problems: In the current work, low to mid-

fidelity problems have been used to demonstrate the PADMA and CO-PADMA

methods with the purpose of validating the hypothesis. A recommendation for

the future work is to study the applicability and behavior of these methods on

high-fidelity coupled multidisciplinary problems.

� Multi-objective distributed UMDO: The CO-PADMA method developed

in current work has only been formulated for single objective optimization prob-

lems. However, many industrial level engineering problems are multi-objective

in nature. A recommendation for future work is to extend the formulation of

CO-PADMA method for multi-objective problems.
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� Discrete uncertainty variables: In the current work all the uncertain vari-

ables are assumed to be continuous. Although, the PADMA and CO-PADMA

procedure can be extended for discrete uncertain variables in a straightforward

way, a new formulation is required for probabilistic modeling using quantile

copula regression to handle both continuous and discrete uncertainties simulta-

neously.

� Trust-region methods for optimization: In the CO-PADMA method, de-

sign space reduction technique has been used to improve the accuracy of the

probabilistic models near the optimum region, by reducing the size of design

space at the end of each cycle. However, only reduction of design space may not

guarantee capturing an optimum solution, particularly for a highly nonlinear

problem. An extension of design space reduction technique is to apply trust-

region based methods [217] which allows more flexibility in terms of improving

the model as well handing the optimization process.

� Non-linear quantile copula regression model: As discussed previously,

for a non-linear and multi-modal problems, assumption of quadratic response

surface will generate inaccuracy in quantile copula regression. A recommen-

dation for future work is to extend quantile copula regression using non-linear

models such as spline, Artificial Neural Network, etc.

� Generalized copula function modeling: In the current work, Gaussian

copula function has been used to model the dependencies. An extension to this

assumption is to formulate a generalized copula function modeling in which the

best possible copula functions can be selected based on the information from

the data.

� Quantifying model form uncertainty quantification of quantile cop-

ula regression model: In the current work only the uncertainties associated
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with the disciplinary analyses have been quantified. However, assumptions used

in building the conditional probability model using quantile copula regression

introduce model form uncertainty. It might be necessary to quantify the uncer-

tainty associated with the quantile copula regression when they are built with

sparse data with non-linear trend and the possible uncertainty due to the model

form is high.

7.6 Overall Contribution

There are three main contributions in this work:

1. Probabilistic Analysis of Distributed Multidisciplinary Architectures

(PADMA) method to accurately quantify the uncertainty on system metric

and joint distribution of coupling variables in a distributed multidisciplinary

analysis under uncertainty.

2. Quantile Copula Regression technique to comprehensively model the con-

ditional probability density functions and dependencies for multivariate disci-

plinary responses.

3. Concurrent Optimization using Probabilistic Analysis of Distributed

Multidisciplinary Architectures (CO-PADMA) method to carry out UMDO

to find optimum design and estimate the uncertainty and dependence of system

metrics and state variables accurately, while allowing distributed optimization

and uncertainty analysis for a multidisciplinary system.
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APPENDIX I

DISTRIBUTED MDO METHODS

A.1 Collaborative Optmization

Collaborative Optimization (CO) introduced by Braun and Kroo [218] is a bi-level

MDO process. In CO, the overall optimization process is decomposed into disci-

plinary subproblems. To handle the coupling between disciplines, each discipline uses

copies of shared variables and coupling variables from other disciplines, which are also

called auxiliary variables. These copies of shared variables and auxiliary variables are

shared between all the disciplines and are set as a target. At each iteration, all the

the subsystems minimize the discrepancy between the target set up by system level

and disciplinary outputs, while satisfying the local constraints by optimizing the lo-

cal design variables. After each disciplinary optimization, optimum disciplinary state

variables are passed on to the system level optimizer. The system level optimizer

carries out optimization using shared design variables and auxiliary design variables

to minimize the system objective, while maintaining the disciplinary compatibility

constraints. Disciplinary compatibility constraints are enforced by matching the aux-

iliary design variables to the real coupling state variables passed on from subsystem

optimization. The system optimization problem is given as
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System Optimizer

minimize f0(x0, x̂1, . . . , x̂N , ŷ) (165a)

with respect to x0, x̂1, . . . , x̂N , ŷ

such that c0(x0, x̂1, . . . , x̂N , ŷ) ≥ 0 (165b)

J∗i = ||x̂0i − x0||2 + ||x̂i − xi||2+

||ŷ − yi(x̂0i, xi, ŷj 6=i)||2 = 0 for i = 1, . . . , N (165c)

and ith subsystem optimization is given as

ith Subsystem Optimizer

minimize Ji(x̂0i, xi, yi(x̂0i, xi, ŷj 6=i)) (166a)

with respect to x̂0i, xi

such that ci(x̂0i, xi, yi(x̂0i, xi, ŷj 6=i)) ≥ 0 (166b)

where x is a vector of design variable, y are coupling variables, f is the objective

function, c is the design constraints, and N is the number of disciplines. Subscript

()i specifies variables that apply to discipline i, Subscript ()0 specifies variables that

are shared between more that one discipline, superscript ()∗ specifies the variable at

optimum values, and circumflex (̂) specifies independent copies distributed to other

disciplines.

A.2 Concurrent SubSpace Optimization

Concurrent Subspace Optimization (CSSO) [219]is also a bi-level MDO process which

decomposes the MDO problem into independent subspace problems. The subspace

optimizer carries out the optimization process concurrently using its local design

variables while the non-local coupled state variables are approximated using global

sensitivity equations (GSE). At the system level, in addition to system level optimiza-

tion using all the design variables, a coordination problem is solved to compute the
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“responsibility” coefficients which are assigned to each discipline. These coefficients

provide information on the design variables preferences for non-local constraint satis-

faction and allows disciplines to have certain degrees of autonomy within the system

as a whole. Surrogate-based CSSO [220] is another version where surrogates are built

for state variables from each discipline. These surrogates are used to approximate

non-local coupled variables in each discipline instead of using GSE. To improve the

computational efficiency, disciplinary surrogates are used to model multidisciplinary

interaction at system level. The system optimization problem is given as

System Optimizer

minimize f0(x, ỹ(x, ỹ)) (167a)

with respect to x

such that c0(x, ỹ(x, ỹ)) ≥ 0 (167b)

ci(x0, xi, ỹ(x0, xi, ỹj 6=i)) ≥ 0 for i = 1, . . . , N (167c)

and ith subsystem optimization is given as

ith Subsystem Optimizer

minimize f0(x, yi(xi, ỹj 6=i), ỹj 6=i) (168a)

with respect to x0, xi

such that c0(x, ỹ(x, ỹ)) ≥ 0 (168b)

ci(x0, xi, ỹ(x0, xi, ỹj 6=i)) ≥ 0 (168c)

cj(x0, ỹj(x0, ỹ)) ≥ 0 for i = 1, . . . , i− 1, i+ 1, . . . N

(168d)

where tilde (̃) specifies an approximation of the variables and other notations are

similar to the one used in CO.
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A.3 Bilevel System Integrated System Synthesis

Similar to CO and CSSO, Bilevel system integrated system synthesis(BLISS) [221] is

bi-level architecture which decomposes the overall MDO problems into disciplinary

subproblems. However, unlike CSSO, local design variables are optimized at discipline

level while shared variables are optimized at system level. Information transfer among

disciplines is done by building a series of approximation models within the user-

defined boundaries of design variables. The original BLISS formulation builds these

model through linear approximation by using coupled sensitivity information. In a

different formulation called BLISS-2000 [216], information exchange between system

and discipline subproblems occurs through surrogate models of the discipline optima

and copies of coupling variables are used to enforce consistency at the optimum.

The system optimization problem is given as

System Optimizer

minimize f0(x, ỹ(x, ŷ)) (169a)

with respect to x0, ŷ, w

such that c0(x, ỹ(x, ỹ, w)) ≥ 0 (169b)

ŷi − ỹi(x0, xi, ŷj 6=i, wi)) = 0 for i = 1, . . . , N (169c)

and ith subsystem optimization is given as

ith Subsystem Optimizer

minimize wTi yi (170a)

with respect to xi

such that c0(x, ỹ(x, ỹ)) ≥ 0 (170b)

ci(x0, xi, yi(x0, xi, yi(x0, xi, ŷj 6=i))) ≥ 0 (170c)

where wi are weighing coefficients attached to the discipline states which represent

sensitivity of system level metric with respect to disciplinary metric.
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A.4 Analytical Target Cascading

Analytical Target Cascading (ATC) is a hierarchical target cascading method which

has been developed to propagate targets through a hierarchical system to achieve

a feasible design satisfying these targets [222]. In an MDO formulation of ATC

[223], system level optimizes system level objective function with a penalty function

using the system level design variables and auxiliary variables. The penalty function

consists of discrepancy of system target and optimum solution from elements next in

the hierarchy.

Let’s say the system is decomposed into N levels and M elements. The subscript

()ij denotes the jth element of the system in the ith level. fij, gij ≤ 0, and hij = 0

denotes the objective function, the inequality and the equality constraints, respec-

tively. The local variables of element j are denoted by xij and rij is the output of

jth element’s analysis model aij and Cij is the set of children of element j. Let π

represent a consistency constraint relaxation function, then the optimization problem

of jth element is given as

minimize fij(xij) + π(tij − rij) +
∑
k∈Cij

π(t(i+1)k − r(i+1)k) (171a)

with respect to xij

such that gij(xij) ≤ 0 (171b)

hij(xij) = 0 (171c)

where xij = [xij, t(i+1)k] ∀k ∈ Cij

where tij is the target for jth element of ith level and variables tij and r(i+1)k for k ∈ Cij

are constants with respect to element j.
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APPENDIX II

PROBABILISTIC MODELING: PARAMETER

ESTIMATION

The main goal of a discriminative probabilistic model is to predict the uncertainty on

output variables y, given some new value of input variable x on the basis of an available

set of N training data X = (x1,x2, . . . ,xN)T and their corresponding outputs y =

(y1, y2, . . . , yN)T , where each input training data consists of D predictor variables x =

(x1, x2, . . . , xD)T . The uncertainty over the output variables are expressed using some

probability distribution. Generally, it is assumed that for a given value of x, y follows

some fixed parametric probability distribution family like Gaussian distribution as

P(y|x,w) = N (y|µ(x,w), β−1) (172)

where µ(x,w) is the function determining the mean for a given value of x, w are

the unknown parameters of mean function, β is the unknown precision or inverse

of variance. Typically homoscedasticity is assumed, i.e. dependent variables have

constant variance across the range of input variables, therefore β is independent of x.

One of the criteria for determining the unknown parameters w and β is by using

the training data to find the parameter values which maximize the likelihood function,

which is also known as maximum likelihood (ML) approach. If the data are assumed

to be drawn independently from the distribution given in Equation 73, then the

likelihood function is given as

P(y|X,w, β) =
N∏
n=1

N (yn|µ(xn,w), β−1) (173)

In machine learning and statistics, instead of maximizing the likelihood function,

the log likelihood function is maximized for convenience. Using the functional form
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of Gaussian distribution, the log likelihood function is given as

ln P(y|X,w, β) = −β
2

N∑
n=1

{µ(xn,w)− yn}2 +
N

2
ln β − N

2
ln2(π) (174)

Generally as the first step, the log likelihood function is only maximized with respect

to w. The solution is denoted as wML. The last two term in Equation 174 are

constant with respect to w, therefore maximizing log likelihood function with respect

to w is equivalent to minimizing the sum-of-squares error function.

Next, the log likelihood function is used to evaluate the precision parameter β to

evaluate βML, which is given as

1

βML

=
1

N

N∑
n=1

{µ(xn,wML)− yn}2 (175)

Once the parameters are estimated, the predictive distribution of y for any new

value of x is given by substituting maximum likelihood parameters in Equation 73

and is given as

P(y|x,w) = N (y|µ(x,wML), β−1
ML) (176)

In addition to maximum likelihood approach two other commonly used approaches

are maximum posterior (MAP) approach and full Bayesian treatment. In MAP ap-

proach, a prior distribution is introduced over the unknown w. For example, a prior

in the form of Gaussian distribution can be assumed as

P(w|α) = N (w|0, α−1I) (177)

where α is the precision of the distribution (also known as hyperparameters) and I

is the identity matrix. Using the Bayes’ theorem, the posterior distribution of w is

proportional to the product of prior distribution and the likelihood function as

P(w|X,y, α, β) ∝ P(y|X,w, β)P(w|α) (178)

The parameter w is then evaluated by finding the value wMAP which maximizes the

posterior distribution which is equivalent to minimizing

β

2

N∑
n=1

{µ(xn,w)− yn}2 +
α

2
wTw. (179)
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Unlike ML and MAP approaches where a fixed value of w, i.e. wML and wMAP ,

is used to evaluate predictive distribution, full Bayesian approach uses the posterior

distribution of w to evaluate the predictive distribution. The posterior distribution of

w is evaluated in the similar way as in MAP approach. Assuming that the parameters

α and β are fixed (although in full Bayesian treatment distribution of these parameters

are also inferred [108]), the predictive distribution is given as

P(y|x,X,y) =

∫
P(y|x,w)P(w|X,y) dw. (180)

where P(y|x,w) is given by Equation 73 and P(w|X,y) is evaluated by normalizing

the right hand side of Equation 178. Please note that α and β notations are omitted

to simplify the notation. If the likelihood function is a Gaussian function and prior

distribution is a Gaussian distribution in Equation 178, then the posterior distribution

also follows Gaussian distribution. Additionally, if the mean function is given as the

polynomial function µ(X,w) = wTφ(X), where φi(X) are some basis functions such

as polynomial function φi(X) = xi, then integration in Equation 180 can be performed

analytically and the predictive distribution is given by a Gaussian distribution as

P(y|x,X,y) = N (y|m(x), s2(x)) (181)

where the mean and variance are given by

m(x) = βφ(x)TS
N∑
n=1

φ(xn)yn (182a)

s2(x) = β−1 + φ(x)TSφ(x) (182b)

where matrix S is given as

S−1 = αI + β
N∑
n=1

φ(xn)φ(xn)T (183)

As seen in Equation 180, in full Bayesian approach, mean as well as variance of

the predictive distribution depends on x. The first term in Equation 182b captures
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the uncertainty due to noise on output which is similar to β−1
ML and β−1

MAP . In addition

to that, the second term captures the uncertainty in the parameters w due to full

Bayesian treatment, which allows the capture of model form uncertainty.
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APPENDIX III

TUTORIAL: QUANTILE COPULA REGRESSION

Quantile Copula Regression is a probabilistic modeling technique to model the joint

distribution of multiple responses of a discipline, model, subsystem or even a multidis-

ciplinary system, as a function of predictor or input variables. Let y = [y1, y2, . . . , yp]

be the p output variables of a stochastic or non-deterministic system and x be the vec-

tor of input variables, then according to quantile copula regression, joint distribution

of outputs at a given predictor x is given as

F (y|x,β1, . . . ,βp,α) = C (F1(y1|x,β1), . . . , Fp(yp|x,βp)|x,α) (184)

where β1, . . . ,βp are the matrices of parameters associated with quantile regressions

of p responses such that Fi(yi|x) = Q−1
Yi|x(yi|x,βi) and QYi|x(τ |x,βi) is conditional

quantile functions of yi estimated using the quantile regression models for ith re-

sponse. C is a copula function which models the dependency among the disciplinary

responses. The copula function is selected either qualitatively by the expert judg-

ment or quantitatively by using methods like Akaike Information Criterion (AIC)

[205], the Bayesian Information Criterion (BIC) [206], the Deviance Information Cri-

terion (DIC) [207], etc. In the current work the Gaussian copula function has been

used to model the dependencies and is given as

C(u1, . . . , up; Σ) = ΦΣ

[
Φ−1(u1), . . . ,Φ−1(up)

]
(185)

where Φ is the cumulative distribution function of a standard Gaussian distribution

with zero mean and unit standard deviation and ΦΣ is the joint cumulative distribu-

tion function of a multivariate Gaussian distribution with correlation matrix Σ. Σ is

a symmetric matrix and has p(p+ 1)/2 elements. The elements of correlation matrix
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θ = [ρ1, . . . , ρp(p+1)/2] are Gaussian copula parameters and are modeled as a function

of input variables x as θ = fθ(x,α), where α is the vector or matrix of regression

coefficients.

In the current work, modified Inference Function for Margins (IFM) method is

used to estimate the quantile copula parameters β1, . . . ,βp and α. Modified IFM is a

two stage process in which the first stage estimates the parameters of the marginal dis-

tribution, i.e. the matrices of regression coefficients of quantile regressions β1, . . . ,βp

and the second stage estimates the regression coefficients of copula parameters, i.e.

α.

To demonstrate the parameter estimation of quantile copula regression the beam

model shown in Figure 68 has been selected where vertical load Y (lbf) and horizon-

tal load X (lbf) are the inputs. The outputs of the discipline are maximum stress

s (lbf/in2), maximum displacement d (in), and beam volume v (in3). The uncer-

tainty variables are beam width w (in)∼ Unif(3.2, 4.8) and beam thickness t (in)

∼ Triangular(3.0, 4.3, 4.5), which are assumed to be embedded in the discipline such

that the discipline acts like a non-deterministic function. Deterministic parameters

are beam length L = 100(in) and Modulus of Elasticity E = 2.9× 106(lbf/in2). The

beam model is given as

s =
600

wt2
Y +

600

w2t
X (186a)

d =
4L3

Ewt

√
Y

t2

2

+
X

w2

2

(186b)

v = Lwt (186c)

In the current work, the computer program for quantile copula regression modeling

is built using two softwares, MATLAB® [164] and statistical software package, R

[224]. 10,000 samples are generate in the input space given by X ∈ [500, 1500] and

Y ∈ [1500, 2500] and stored in a MATLAB matrix variable x of size 10000× 2. The

the random outputs s, d and v are evaluated for each sample of input and stored in a
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MATLAB matrix variable y of size 10000× 3. The MATLAB script to generate the

data is given as

1 n= 10000;
2 pd = makedist('Triangular','a',3,'b',4.3,'c',4.5);
3 t =random(pd,n,1);
4 w= unifrnd(repmat([3.2],n,1),repmat([4.8],n,1));
5 X= 500 + rand(n,1)*1000;
6 Y = 1500 + rand(n,1)*1000;
7 [s,d,v] = beam(X,Y,w,t);
8 x = [X,Y];
9 y = [s,d,v]

The MATLAB function [s,d,v] = beam(X,Y,w,t) is given as

1 function [s,d,v] = beam(X,Y,w,t)
2 L =100; % beam length
3 E =2.9e6; % Modulus of Elasticity
4 s = 600./(w.*t.ˆ2) .*Y + 600./(w.ˆ2.*t).*X;
5 d = 4*L.ˆ3./(E*w.*t).*sqrt((Y./(t.ˆ2)).ˆ2 + (X./(w.ˆ2)).ˆ2);
6 v = L*w.*t;

To model and estimate the parameters of quantile copula regression for the beam

model, steps of IFM process is given as follows.

C.1 Modified IFM Stage-1: Quantile Regression Modeling

The first stage of modified IFM method is to model the marginal distribution of re-

sponses with quantile copula regression. The first step to model quantile regression is

to normalize the input variables and built the design matrix of input variables, which

depends on the polynomial model of quantile regression. In this example, quantile

regression models are built for 20 quantiles for τ equally spaced between 0.02 and

0.98. Each quantile regression is modeled using quadratic polynomial model. Follow-

ing MATLAB script is used to build quantile regression models of each response, and

all the information are stored in a structure array QCRmdl

1 RScriptPath = 'C:\Program Files\R\R−3.2.3\bin\x64\Rscript'; % ...
Path of R script
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2 srcPath = '../src/QR'; % Path of all the source file quantile ...
copula regression

3 xmin = [500,1500]; % minimum of design space
4 xmax = [1500,2500]; % maximum of design space
5 QCRmdl.xmin = xmin;
6 QCRmdl.xmax = xmax;
7 ny = size(y,2); % Number of responses
8 varname = {'d';'s';'v'}; % Name of response variables
9 QCRmdl.varname = varname; % Store infomration in QCRmdl

10 % Save normalize predictors in QCRmdl
11 dx = xmax − xmin;
12 xnorm = (x − repmat(xmin,size(x,1),1)) ./ repmat(dx,size(x,1),1);
13 % Build quantile regression for each response
14 QRmodel = 'quadratic'; % polynomial model for quantile regression
15 for i = 1:ny
16 QCRmdl.QRmdl(i) = ...

BuildQR(xnorm,y(:,i),srcPath,RScriptPath,xmin,xmax,...
17 QRmodel,linspace(0.02,0.98,20));
18 end
19 QCRmdl.QRmodel = QRmodel;

The quantile regression coefficients are evaluated in R software, which is called

by the MATLAB function BuildQR using the Rscript file stored in the location

specified by RScriptPath. Rscript is the batch file of R software which comes

with the installation package of R and is used to run R software in batch mode. The

MATLAB function BuildQR is given below.

1 function[mdl] = BuildQR(xnorm,y,srcPath,Rpath,xmin,xmax,varargin)
2 reg model = varargin{1};
3 quant list = varargin{2};
4 % Create design matrix
5 X = x2fx(xnorm,reg model);
6 X = X(:,2:end);
7 % Format quat list for R software
8 [m,n] = size(quant list);
9 if n > m

10 quant list = quant list';
11 end
12 % Store data for quantreg library in R software
13 csvwrite('data.csv',[X,y]);
14 csvwrite('quantiles.csv',quant list);
15 % Format path naming
16 RScriptPath = ['"',strrep(Rpath,'\','/'),'"'];
17 CurrentDirectory=strrep(srcPath,'\','/');
18 % Call R software in batch mode
19 system([RScriptPath,' ','"',CurrentDirectory,'\R Scrip QuantReg.R"'])
20 % Import quantile regression coefficients into MATLAB
21 Coeff = csvread('Rquantreg out.csv',1,1);
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22 % Store information in model struture
23 mdl.xmin = xmin;
24 mdl.xmax = xmax;
25 mdl.reg mdl = reg model;
26 mdl.quant list = quant list;
27 mdl.coeff = Coeff;

To evaluate the quantile regression coefficients, Quantreg [225] library in R soft-

ware is used. MATLAB function BuildQR runs script R Scrip QuantReg.R in R

software package in a batch mode to evaluate the quantile regression coefficients.

The script R Scrip QuantReg.R is given below.

1 library("quantreg")
2 rawdat <− read.csv('data.csv',header=FALSE)
3 quant list <− read.csv('quantiles.csv',header=FALSE)
4 q <− data.matrix(quant list)
5 y <− data.matrix(rawdat[ncol(rawdat)])
6 x <− data.matrix(rawdat[,1:ncol(rawdat)−1])
7 rq mdl <− rq(y ∼ x,q)
8 write.csv(rq mdl$coefficients,file='Rquantreg out.csv')

At the end of modified IFM stage-1, all the information regarding quantile regres-

sion of ith response is stored in QCRmdl.QRmdl(i). The matrix of quantile regression

coefficients for ith variables, β̂i, is stored as matrix QCRmdl.QRmdl(i).coeff, where

jth column of the matrix contains the quantile regression coefficient of τ thj quantile.

For the beam problem with quadratic polynomial model for the quantile regression,

size of the matrix QCRmdl.QRmdl(i).coeff is 6× 20.

C.2 Modified IFM Stage-2: Copula Parameter Regression
Modeling

In the second stage of modified IFM method, the regression coefficients of copula

parameters are evaluated. At first, the samples of all the response variables are

transformed into uniform distribution by carrying out inverse probability transform

using quantile regression built in stage-1. Probability inverse transform of jth sample

of ith variable is carried out by evaluating the value of conditional cumulative distri-

bution function of y(j,i) at input value of x(j,:). The MATLAB script is given
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below

1 ynorm = zeros(size(y,1),ny);
2 for i = 1:ny
3 for j = 1:size(y,1)
4 ynorm(j,i) = condStats(x(j,:),y(j,i),QCRmdl.QRmdl(i),'cdf');
5 end
6 end

The MATLAB function condStats evaluates the conditional statistics of a sample

of y(j,i) at input x(j,:), where probability density function is evaluated using the

Equations 94, 95, and 96, cumulative distribution function is evaluated using the

Equations 97, 98, and 99, and quantile is evaluated using Equations 103, 104, and

105. The MATLAB code is given below

1 function [stats] = condStats(x,y,mdl,type)
2 % type: type of statistics: 'pdf', 'cdf' or 'quantile'
3 % mdl: Quantile regression model struture
4 % Note for quantile estimation variable y represents tau
5

6 % Normalize input for quantile estimations
7 dx = mdl.xmax − mdl.xmin;
8 xnorm = (x − mdl.xmin) ./dx;
9 % Evaluate the terms of quantile regression polynomilas

10 X = x2fx(xnorm,mdl.reg mdl);
11

12 % Evaluate each quantiles
13 ytau = X * mdl.coeff;
14 tau = mdl.quant list;
15

16 % Estimate the terms for interpolations
17 alpha1 = (tau(2) − tau(1))/(ytau(2) − ytau(1));
18 beta1 = tau(1)/alpha1;
19 alphaN = (tau(end) − tau(end−1))/(ytau(end)−ytau(end−1));
20 betaN = (1−tau(end))/alphaN;
21

22 % Estimate the ranges of tau
23 mintau = min(tau);
24 maxtau = max(tau);
25 % Estimate the ranges of quantiles
26 miny = min(ytau);
27 maxy = max(ytau);
28 % Define interpolation function
29 interp mdl = 'linear';
30

31 if strcmp(type,'cdf')
32 for i = 1:length(y)
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33 if y(i) < miny
34 stats(i,1) = alpha1*beta1*exp((y(i)−miny)/beta1);
35 elseif y(i) > maxy
36 stats(i,1) = 1− alphaN*betaN*exp((maxy−y(i))/betaN);
37 else
38 stats(i,1) = interp1(ytau,tau,y(i),interp mdl,'extrap');
39 end
40 end
41 elseif strcmp(type,'pdf')
42 for i = 1:length(y)
43 if y(i) < miny
44 stats(i,1) = alpha1 *exp(−abs(y(i)−miny)/beta1);
45 elseif y(i) > maxy
46 stats(i,1) = alphaN *exp(−abs(y(i)−maxy)/betaN);
47 else
48 stats(i,1) = (tau(idx+1)−tau(idx))/(ytau(idx+1) − ...

ytau(idx));
49 end
50 end
51 elseif strcmp(type,'quantile')
52 for i = 1:length(y)
53 if y(i) < mintau
54 stats(i,1) = ytau(1) + beta1 * log(y(i)/alpha1/beta1);
55 elseif y(i) > maxtau
56 stats(i,1) = ytau(end) − betaN*log( (1 − ...

y(i))/alphaN/betaN);
57 else
58 stats(i,1) = interp1(tau,ytau,y(i),interp mdl,'extrap');
59 end
60 end
61 end

After carrying out probability inverse transform, the regression coefficients of each

copula parameter are estimated by maximizing the log-likelihood or minimizing the

negative of log-likelihood of all the samples with respect to regression coefficients of

Gaussian copula parameters and stored in QCRmdl.Cmodel as

1 Cmodel = 'quadratic'; % polynomial model for copula parameter ...
regression

2 for i = 1:ny−1
3 for j = i+1:ny
4 QCRmdl.Cmdl(i,j).p = GaussCopulaCorrFuncFit(xnorm,...
5 [ynorm(:,i),ynorm(:,j)],Cmodel);
6 end
7 end
8 for j = 1:ny−1
9 for i = j+1:ny

10 QCRmdl.Cmdl(i,j) = QCRmdl.Cmdl(j,i);
11 end
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12 end
13 QCRmdl.Cmodel = Cmodel;

GaussCopulaCorrFuncFit function carries out optimization to minimize the

negative of log-likelihood as

1 function pmin = GaussCopulaCorrFuncFit(x,u,model)
2 v = norminv(u);
3 d = size(x,2);
4 p0 = zeros(1 + d + d*(d−1)/2,1);
5 options = optimset('Display','iter','TolCon',10ˆ−12,...
6 'TolFun',10ˆ−4,'TolX',10ˆ−6);
7 A = [];
8 b = [];
9 [pmin,fval] = fmincon(@(p)evalCorrRegLikelihood(p,x,v,model),p0,A,b);

The negative log-likelihood with respect to regression coefficients p is evaluated

by function evalCorrRegLikelihood as

1 function nlogl = evalCorrRegLikelihood(p,x,y,model)
2 r = evalCorr(x,p,model); % evaluate correlation at different ...

value of x
3 maxr = max(abs(r)); % evaluate absolute maximum value of ...

correlation coefficient
4 if maxr >= 1
5 nlogl = 10ˆ50; % Impose penalty if abs(correlation) >1
6 else
7 nlogl = nLogLGaussCopulaReg(y,r);
8 end

The function evalCorr estimate the correlation at given predictor value for the

specified polynomial model, model and regression coefficient, p.

1 function r = evalCorr(x,p,model)
2 % evaluate correlation at different value of x for givem ...

model and
3 % parameter p
4 d = size(x,2);
5 xmat = x2fx(x,model);
6 r = xmat*p;

The function nLogLGaussCopulaReg evaluate the negative log-likelihood of sam-

ples y with respect to regression coefficients p for a Gaussian copula.
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1 function nlogl GC = nLogLGaussCopulaReg(y,R)
2 % evalaute negative likeliood of gaussian copula for ...

copula−quantile
3 % regression
4 % Note: this evaluates bivariate copula. For multivariate, ...

loop through all
5 % pairwise varaible for each combinations
6 nlogl GC = −log((1−R.ˆ2).ˆ(−0.5)) + (y(:,1).ˆ2 + y(:,2).ˆ2 − ...

2.*R.*y(:,1).*y(:,2))./(1−R.ˆ2)./2;
7 nlogl GC = sum(nlogl);

The coefficients of copula parameter regressions between ith and jth variables are

stored in the (i,j)th element of cell matrix QCRmdl.Cmd. For the beam problem, size

of QCRmdl.Cmd matrix is 3× 3 and each element of the cell matrix contains a vector

of regression coefficients of size 6× 1.

C.3 Model Prediction

Once the quantile copula regression is built, it can be used to evaluate the joint

probability densities or generate samples of multivariate responses for any given value

of predictor within the domain which has been used to build the models.

C.3.1 Joint Probability Density Estimation

The joint probability density is estimated using QCRmdlPDF(QCRmdl,x,y,var) func-

tion by specifying the the quantile copula regression model QCRmdl, value of predictor

variables x, value of response variables y, and variable name var.

1 function stats = QCRmdlPDF(QCRmdl,x,y,var)
2 % Evaluate joint PDF of variable(s) given in var using the QCR model
3 % conditioned at x
4 % var is the cell carry containting the variable name
5

6 ny = size(var,1);
7

8 % Find the id of variables in var
9 for i = 1:ny

10 idx(i) = find(strcmp(QCRmdl.varname,var{i}));
11 end
12

13 % Normalize predictor variable
14 dx = QCRmdl.xmax − QCRmdl.xmin;
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15 xnorm = (x − QCRmdl.xmin)./dx;
16

17 % Evaluate correlation matrix
18 c = zeros(ny,ny);
19 for i = 1:ny−1
20 for j = i+1:ny
21 p = QCRmdl.Cmdl(idx(i),idx(j)).p;
22 c(i,j) = evalCorr(xnorm,p,QCRmdl.Cmodel);
23 end
24 end
25 c = c + c';
26 c = c + eye(ny);
27

28 % Check for positive definiteness
29 eigen = eig(c);
30 if min(eigen) < 0
31 c = nearestSPD(c);
32 c = corrcov(c);
33 end
34

35 % Evaluate joint PDF
36 for i = 1:ny
37 u(:,i) = condStats(x,y(:,i),QCRmdl.QRmdl(idx(i)),'cdf');
38 u(:,i) = norminv(u(:,i));
39 pdfy(:,1) = condStats(x,y(:,i),QCRmdl.QRmdl(idx(i)),'pdf');
40 end
41

42 cpdf = mvnpdf(u,zeros(1,ny),c);
43 stats = prod(pdfy,2).*cpdf;

Since each correlation coefficients are evaluated independently, there is a possibility

that correlation matrix is not a positive semidefinite matrix due to error associated

with copula parameter regression models. The MATLAB function nearestSPD(c)

is used to estimate the nearest positive semidefinite matrix in case c is not positive

semidefinite. The method used in nearestSPD(c) is developed by Higham [226] and

is available at MATLAB’s file exchange server (www.mathworks.com/matlabcentral/

fileexchange).

For example, quantile copula regression model built for the beam model can be

used to estimate joint probability density of d and s at X = 800 and Y = 2000 by

executing the following script.

1 varname = {'d';'s'};
2 xin = [800,2000];
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Figure 127: Contour of joint probability density of d and s estimated at X = 800 and
Y = 2000 using quantile copula regression

3 y1 = linspace(5,30,100);
4 y2 = linspace(1e4,6e4,100);
5 [Y1,Y2] = meshgrid(y1,y2);
6 for i = 1:100
7 for j = 1:100
8 pdf(i,j)=CQRmdlPDF(CQRmdl,xin,[Y1(i,j),Y2(i,j)],varname);
9 end

10 end
11 contourf(Y1,Y2,pdf);

Figure 127 shows the joint probability density contour estimated by quantile cop-

ula regression.

C.3.2 Sampling of Multivariate Responses

The samples are generate using QCRmdlSample(QCRmdl,x,var,ns) function by

specifying the the quantile copula regression model QCRmdl, value of predictor vari-

ables x, variable names of the responses specified using cell array var, and number

of samples required, ns.

1 function ys = QCRmdlSample(QCRmdl,x,var,ns)
2 % generate sample of variable(s) given in var using the QCR model
3 % conditioned at x
4 % var is the cell carry containting the variable name
5 % ns is the number of samples to be generated
6

7 ny = size(var,1);
8
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9 % Find the id of variables in var
10 for i = 1:ny
11 idx(i) = find(strcmp(QCRmdl.varname,var{i}));
12 end
13

14 % Normalize predictor variable
15 dx = QCRmdl.xmax − QCRmdl.xmin;
16 xnorm = (x − QCRmdl.xmin)./dx;
17

18 % Evaluate correlation matrix
19 c = zeros(ny,ny);
20 for i = 1:ny−1
21 for j = i+1:ny
22 p = QCRmdl.Cmdl(idx(i),idx(j)).p;
23 c(i,j) = evalCorr(xnorm,p,QCRmdl.Cmodel);
24 end
25 end
26 c = c + c';
27 c = c + eye(ny);
28

29 % Check for positive definiteness
30 eigen = eig(c);
31 if min(eigen) < 0
32 disp(['x =',num2str(x)]);
33 c = nearestSPD(c); % Find the nearest positive semidefinite ...

matrix
34 c = corrcov(c);
35 end
36

37 % Generate uniform samples by probability inverse transform of
38 % multivariate standard normal with correlation matrx c
39 u = normcdf(mvnrnd(zeros(1,ny),c,ns));
40

41 % Generate samples by estimating the quantiles using quantile ...
copula regression

42 for i = 1:ny
43 ys(:,i) = condStats(x,u(:,i),QCRmdl.QRmdl(idx(i)),'quantile');
44 end

For example, quantile copula regression model built for the beam model can be

used to generate 500 samples of d and s at X = 800 and Y = 2000 by executing the

following script.

1 varname = {'d';'s'};
2 xin = [800,2000];
3 ns = 500;
4 ys = QCRmdlSample(QCRmdl,xin,varname,ns);
5 h=scatterhist(ys(:,1),ys(:,2));

301



Figure 128: Scatter plot of samples of d and s generated at X = 800 and Y = 2000
using quantile copula regression

Figure 128 shows the scatter plot of the samples generated by quantile copula

regression.
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