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SUMMARY

To fulfill the future aviation needs of the public and military, there are efforts

in industry and government to integrate aircraft with enabling technologies to achieve

aggressive goals and requirements for performance and capabilities. However, many

enabling technologies are immature, and system integrators incur the associated risk

when they integrate these technologies. This risk can be reduced through technology

development programs, but these programs often require over ten years and signifi-

cant resources before the technology can be transitioned to the vehicle. Ideally, the

process could be accelerated and the required resources reduced by creating the devel-

opment activities, such as physical experiments and tests, such that they maximize

performance improvement, maturation, and risk reduction during the development

program. The motivating question is How should technology development activities

be designed? The research in this dissertation comprises contributions toward a so-

lution this problem.

A review of the literature pertaining to the design of technology development

activities revealed that current practices are driven by a qualitative criterion called

Technology Readiness Level that does not provide a clear picture of the state of knowl-

edge about technology impacts. The immediate consequence of using this criterion

for decision making is that it does not capture all of the critical dimensions of the

consequence space for evaluating alternative activity designs and may result in mis-

informed decisions. Existing technology development activity design methodologies

were identified that improve upon current practices, but they fall short of providing

a complete path to designing a portfolio of technology development activities. To

address the gaps from the literature, a novel framework was proposed that comprises
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three phases: (1) thought experimentation, (2) detailed definition of the activities,

and (3) statistical design of experiments. Although the proposed framework can be

implemented as is for a given technology development program, opportunities were

identified to enhance the framework by adding rigor to the decision making processes.

Three enhancements to the proposed solution framework are presented in this

dissertation. Each enhancement improves upon methods from the literature by ad-

dressing research gaps. First, existing methodologies for planning and managing

technology development leverage sensitivity analyses to inform decisions regarding

which classes of development activities to pursue. It was argued that this approach

does not explicitly evaluate alternatives, but rather provides measures of the poten-

tial of any development activities to affect system-level uncertainty and performance.

Thus, a need was identified for an appropriate way for decision makers to evaluate the

alternatives for downselection. Second, existing quantitative methodologies make the

assumption that the combined epistemic and aleatory uncertainty surrounding tech-

nology integration impacts can be quantified from a combination of data and expert

elicitation. Bayesian inference has been proposed for sequentially updating initial

probability distributions with data from technology development activities, but mis-

leading inferences can arise when the data sources are heterogeneous. To overcome

this issue, there is a need for an appropriate way to quantify technology integra-

tion impact uncertainty in light of data from multiple, heterogeneous experiments.

Finally, as part of any decision process for the detailed design of the development ac-

tivities, there are multiple criteria that are important to include when evaluating the

alternatives. One of the most prominent criteria that is mentioned in the literature is

uncertainty reduction. To enable the evaluation of alternatives, a need was identified

for an appropriate way to quantitatively estimate expected uncertainty reduction for

planned technology development activities.
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The first research gap was addressed with a normative decision support methodol-

ogy that incorporates techniques from multiattribute utility theory. The methodology

entails establishing objectives and attributes, constructing a utility model to represent

decision makers’ values, modeling the impacts of the alternatives, and evaluating the

alternatives with expected utility. The product of the methodology is not simply a

single expected utility for each alternative but rather a capability that enables quan-

titative tradeoffs and sensitivity analyses to provide insights and stimulate deeper

thinking about the problem on the part of the decision makers. Compared with the

state of the art, the proposed methodology is an improvement because it was shown

to enable explicit evaluation of alternatives rather than only providing measures of

potential for each technology.

The second and third research gaps were addressed for two types of technology

development activities: computer experiments and physical experiments. Although

there are many types of technology development activities, these were the focus be-

cause they are crucial to development; technologies cannot be matured without them.

The ingredients for a solution were identified in the statistics and machine learning

literature. These ingredients were synthesized and adapted for the technology devel-

opment context to formulate a methodology that addresses the research gaps. The

first three steps of the methodology were borrowed from the data analysis literature.

These steps comprise the traditional pipeline of cleaning a data set, identifying a set

of predictive models, and evaluating and selecting from the set of models. The fourth

step is a novel contribution because it provides an approach for incorporating epis-

temic technology maturity uncertainty in Gaussian process model predictions. The

fifth step is also a novel contribution because it fuses a rigorous information theo-

retic framework for quantifying uncertainty reduction with predictive models that

incorporate the additional layer of epistemic uncertainty associated with technology

maturity.
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The second gap was also investigated for success/failure reliability tests. An adap-

tation of the traditional Bayesian beta-binomial probability model was formulated to

address the research gap. The novel Bayesian reliability analysis methodology begins

with traditional Bayesian data analysis steps. Then, a maturity weight is introduced

in the posterior beta distribution to enable discounting of the reliability data at a

given point in the development process. The flexibility provided by the infusion of a

maturity weight was shown to enable an analyst to inject additional subjective uncer-

tainty into the inference process, thereby enabling estimates of failure probabilities

that reflect this maturity uncertainty.

The objective of this research was to establish a framework for designing technol-

ogy development activities that improves the state of decision support capabilities.

Although the framework has been established so that it can be populated with ad-

ditional improvements in the future, the research objective was achieved because all

of the contributions presented in this dissertation have been shown to improve upon

existing methods and current practices.
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CHAPTER I

INTRODUCTION

To fulfill the future aviation needs of the public and military, systems integrators and

government organizations are striving to determine how to achieve aggressive goals

and requirements for performance and capabilities. One approach being pursued is to

infuse enabling technologies into aircraft. In the commercial aviation sector, current

goals and requirements are primarily motivated by concerns about the environmen-

tal impacts of aviation and the cost of fuels. For instance, Table 1 lists noise, NOx

emissions, and fuel burn goals for subsonic transport aircraft that are being targeted

by NASA under the Environmentally Responsible Aviation (ERA) project. In an

attempt to simultaneously meet these goals, airframe and propulsion technologies

are being pursued, in addition to advanced vehicle concepts and improved airspace

operations. On the military side, capability goals and requirements are driving the

development of aircraft concepts that introduce new technical challenges. For ex-

ample, the U.S. Navy’s interest in unmanned, autonomous aircraft systems for the

suppression of enemy air defenses led to the design and test of the Northrop Grumman

X-47B [1]. Due to the tailless design for low observability of the X-47B, achieving

satisfactory high lift and control during low-speed carrier operations is difficult with

conventional control methods. As a result, innovative control effectors, such as ac-

tive flow control (AFC) actuators, have been investigated to overcome stability and

control issues for tailless configurations.

AFC is an enabling technology that is used as one of the examples in this dis-

sertation. Here, the history of flow control serves as an example of the challenges

involved in transitioning enabling technologies to aircraft. Flow control involves the
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Table 1: NASA subsonic transport system-level goals (data from Ref. [2])

Technology benefitsa N+1 (2015) N+2 (2020b) N+3 (2025)
Noise (cumulative below stage 4) -32 dB -42 dB -52 dB
LTO NOx (below CAEP6) -60% -75% -80%
Cruise NOx emissions (relative to
2005 best in class)

-55% -70% -80%

Aircraft fuel/energy consumption
(relative to 2005 best in class)c

-33% -50% -60%

a
Projected benefits once technologies are matured and implemented by industry. Benefits vary by vehicle

size and mission. N+1 and N+3 values are referenced to a 737-800 with CFM56-7B engines, N+2 values
are referenced to a 777-200 with GE90 engines.

b
ERA’s time-phase approach includes advancing “long-pole” technologies to TRL 6 by 2015.

c
CO2 emission benefits dependent on life-cycle CO2e per megajoule for fuel and/or energy source used.

use of active or passive devices to achieve a desired change in wall-bounded or free-

shear flows [3]. Passive flow control does not require auxiliary power or a control

loop, whereas AFC entails energy addition to the flow with devices called actuators.

Although scientific AFC research has been ongoing since Prandtl’s suction flow con-

trol experiments over 100 years ago [4], few production vehicles currently operate

with applied AFC techniques. Most of these aircraft employ boundary layer con-

trol (BLC) for lift augmentation. Examples include the Mikoyan-Gurevich MiG-21,

which has an internally-driven BLC system, and the Boeing C-17 Globemaster III,

which uses externally-blown flaps. Also, some helicopters, such as the MD Helicopters

MD 600N, use BLC for anti-torque control in lieu of a tail rotor. Internally-driven

BLC systems became unpopular for aircraft applications by the late 1960s, primar-

ily because of integration issues. The ducting required for a BLC system introduces

additional weight and complexity to the vehicle. Efficiency is also a concern because

of the amount of compressed flow needed for effectiveness. According to Williams

and MacMynowski [5], in the 1970s the application of BLC shifted toward externally-

blown flaps for high lift during takeoff and landing, but there was still a demand for

more practical and reliable flow control techniques. In the 1980s, upon the acceptance

of the notion that organized flow structures are abundant in turbulent shear flows, the
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AFC paradigm changed from using BLC to modify the mean boundary-layer flow be-

havior to using “modern” AFC devices to operate on flow instabilities. Modern AFC,

hereafter referred to with the initialism AFC, is often proclaimed in the literature as

being superior to BLC and offering significant performance improvement for aircraft.

However, there are few examples of successful transition of AFC from a laboratory

setting to practical applications. A question naturally follows from this observation:

Why is the application of an enabling technology, such as AFC, to current and future

flight vehicles challenging?

Potential answers to this question are related to the uncertainty surrounding im-

mature technologies and the consequences of integration with aircraft. For instance,

efforts to transition AFC devices to full-scale applications began in the early 2000s,

and the system-level integration effects are still not well understood. Also contribut-

ing to the uncertainty is a lack of understanding of the governing physics of many

technologies. In addition to uncertainty, vehicle integrators may be wary of im-

mature technologies because of the possible business repercussions. The additional

complexity that enabling technologies add to aircraft can increase costs incurred by

the manufacturer and operator. For example, Liddle et al. [6] argued that integration

of AFC devices will result in increased cost associated with meeting safety standards,

particularly for application scenarios in which failure of the AFC system would be

catastrophic. They also claimed that unsuccessful AFC implementation could put an

aircraft manufacturer out of business. The perennial problem for the integration of

any immature technology can be summarized with one concept: risk.

1.1 Risk and Uncertainty in the Technology Development
Context

Sources of uncertainty combined with unwanted consequences hinder the application

of promising but immature technologies. Uncertainty and consequences are common
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components of definitions for risk. Risks associated with adopting an immature tech-

nology must be managed to ensure successful application. In order to understand

how risk can be managed, precise definitions of risk and uncertainty are required.

Unfortunately, there is not one general definition of risk that is widely accepted

across all professional fields. In medicine, risk is the probability of an undesirable

event. For example, doctors report cancer risk to their patients, indicating the proba-

bility that the patients will develop cancer. Some economists view risk as uncertainty,

with variance as a measure of the uncertainty. Consequences are implicit in both of

these definitions. In engineering, risk definitions are typically based on events that

result in unwanted consequences and the probability of those events. The same can

be said of technology development, as seen in the following examples. Moorhouse [7]

defined risk as “the judgment of probability and consequence to the system appli-

cation of failure of that technology to match predictions adequately.” Smaling and

de Weck [8] defined risk as “the likelihood that a system design or architecture will

not satisfy the performance objectives and the negative consequences thereof.” Many

organizations and researchers, such as Mankins [9], promote the use of a risk matrix

for assessing risk in a technology development program. The risk matrix captures

the interaction of probability of technical failure and the consequences of failure. Al-

though there are differences in the risk definitions from these technology development

examples, all of them contain probability (or likelihood) and consequences. A general

definition of risk that encapsulates these elements states that risk is the combination

of possible consequences and associated uncertainties [10]. This can be written more

compactly as (A,C, U), where A represents possible events, C represents consequences

of A occurring, and U is the uncertainty surrounding A and C.

In the context of interest, risk is a burden of decision makers who must determine

whether to transition a technology from development to vehicle application. If deci-

sion makers could attain a state in which there is no uncertainty and thus no risk,
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a decision could be made that would guarantee desired outcomes. A definition of

uncertainty that aligns with this notion is provided by Nikolaidis [11], who defined

uncertainty indirectly from certainty. Nikolaidis defined certainty as the condition of

possessing all knowledge that is required to choose the action with the most desir-

able consequences. Uncertainty is the gap between certainty and a decision maker’s

present state of knowledge, as shown by the top bar in Fig. 1. A decision maker’s un-

certainty can be decomposed using a taxonomy that the risk assessment community

has developed over the past couple of decades [12]:

• Aleatory uncertainty : uncertainty due to inherent randomness

• Epistemic uncertainty : uncertainty due to lack of knowledge

These are the two kinds of uncertainty that surround the integration impacts of

a technology at any point in time. Aleatory uncertainty is a property of the system

being observed, and variability exhibited by the system cannot be reduced unless the

system itself is modified. No matter how much information is attainable regarding

an observable system (e.g., a die rolled by a human), sources of aleatory uncertainty

are unpredictable. Aleatory uncertainty is often treated as irreducible because of this

perception. The term “aleatory” was derived from the Latin alea, which translates

to English as “die” (i.e., the singular form of “dice”). An engineering example of a

source of aleatory uncertainty is Young’s modulus of a material. Although Young’s

modulus is reported as a constant, there is variability between material samples due

to the manufacturing process. Variability in Young’s modulus can be reduced only by

improving the manufacturing process, not by simply observing measurements of the

material samples. The term “epistemic” comes from the Greek “episteme”, mean-

ing knowledge; hence, epistemic uncertainty can be reduced by acquiring additional

knowledge. An example of an epistemic uncertainty source is a calibration parameter

in a deterministic computer model of a physical system. The value of the calibration

parameter, such that the model predictions will match reality, is uncertain. After
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Figure 1: Depiction of the definition of uncertainty (adapted from Ref. [11]).

obtaining data from physical experiments, discrepancies between the model predic-

tions and the system behavior can be minimized using a calibration process. Another

example of an epistemic uncertainty is a person’s knowledge of the current popula-

tion of Atlanta, which would vary from one person to another. One could reduce this

uncertainty by observing the latest U.S. census results. These examples help to illus-

trate that epistemic uncertainty is a property of an observer and not the observable.

Aleatory (irreducible) and epistemic (reducible) uncertainties are the components of

a decision maker’s total uncertainty, as illustrated by the bottom bar of Fig. 1.

The research presented in this dissertation requires quantitative representation of

aleatory and epistemic uncertainties. Although it is generally accepted that probabil-

ity theory is appropriate for representing aleatory uncertainties, epistemic uncertainty

representation is a controversial topic. Multiple frameworks for epistemic uncertainty

representation have been proposed, such as interval analysis, evidence theory, and pos-

sibility theory. However, there is not a unified, authoritative position regarding which

technique is the most appropriate. Probability theory is used to represent aleatory

and epistemic uncertainties in this dissertation because it provides a well-established
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mathematical framework for quantifying uncertainty, and, as argued by Zang [13], it

seems that many engineers and scientists (decision makers) desire answers to their

questions in terms of subjective, probabilistic interpretations of uncertainty.

1.1.1 The Nature of Technology Integration Impact Uncertainty

The integration impact of a technology must be observed using a scientific approach to

reduce uncertainty. When the integration impacts are measured in a physical experi-

ment, measurement errors are present due to bias (epistemic) and precision (aleatory)

sources [14]. If a deterministic computer model is used to estimate technology perfor-

mance, then uncertainty surrounding the output can be due to model input variables

(epistemic/aleatory), model form (epistemic), and numerical approximations (epis-

temic) [15]. With any kind of activity designed to characterize technology integration

impacts, there is an additional layer of epistemic uncertainty associated with fore-

casting the future.

Since the future performance of a technology is of particular interest for stake-

holders, forecasting is a necessity. The result of any technology forecasting exercise

is laden with epistemic uncertainty because the impacts of the technology on the

system cannot be known with a high degree of certainty until the technology has

been fully integrated with the system and demonstrated in real operations. Prior to

this, knowledge of things such as technology design variable settings, system design

variable settings, and technology scalability is limited.

Kirby and Mavris [16] proposed a model that helps to illustrate how technology

integration impact uncertainty changes with technology maturation. They proposed

the characterization of technology impact uncertainty with Weibull distributions that

are a function of technology readiness levels (TRL)s. TRLs are a commonly used ma-

turity metric for technologies, and they are described further in Chapter 2. A notional

example of their approach for wing weight reduction, due to the use of a composite
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Figure 2: Notional technology impact distributions for a range of TRLs (adapted
from Ref. [16]).

structure on a supersonic transport aircraft, is shown in Fig. 2. As illustrated by the

probability density function (PDF) shapes in the figure, they argued that relatively

large uncertainty is present at lower TRLs, when there is significant lack of knowledge

about the technology. As TRL increases with knowledge acquisition, the variability

of the distributions reduces, and the mode value shifts toward an expert-defined value

at the highest maturity level of TRL 9. The expert-defined value, 20% wing weight

reduction, represents the desired level of performance improvement for the technology.

1.1.2 Risk Management

For a system development program, risks are commonly grouped into three categories:

schedule, budget, and performance. In addition to demonstrating improved perfor-

mance and maturation, one of the goals of technology development is to reduce these

risks for subsequent research [9]. If technology development is not executed properly,

the product development program that incorporates the immature technology can

encounter schedule delays, cost overruns, and performance shortfalls. For example,

the F-22 program was justified as being a more capable aircraft than other fighters

of the time. This motivated the inclusion of immature technologies that are critical
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to the F-22’s performance and distinguish it from other fighters. According to a 2006

U.S. Government Accountability Office (GAO) analysis of the F-22 aircraft program,

technology maturation issues substantially contributed to the 189% cost growth per

aircraft that the U.S. Air Force incurred [17]. The Air Force responded by reducing

the number of procured aircraft by over 70%.

Successful organizations avoid undesirable consequences by managing technology

risk before transitioning a technology to a product development program. Generic

options for risk management include risk reduction, risk transfer, self-retention, and

risk avoidance. Technology risk reduction is often implemented by laboratories within

the same company as the product developers or in external organizations such as

NASA. Common technology risk reduction phases are exploration, development, and

transition of technologies. Figure 3 illustrates the relationship between technology

development and product development activities. The exploration phase is where

technology application ideas are proposed and evaluated based on factors such as rel-

evance to future products, competitiveness in the market, cost, manufacturing issues,

and life cycle management issues. The development phase entails improving under-

standing of the technology, maturing the technology (typically to TRL 6 or 7), and

refining the solution with a particular product line in mind. Once the technology has

been demonstrated in an operational environment, decision makers must determine

whether their confidence in the success of the technology for a given product line is

enough to warrant transition.

In order to build confidence in the success of a technology, the uncertainty com-

ponent of risk is reduced. This requires costly experimentation and research. For

example, over 17% of the $69.7 billion (2013 dollars) U.S. Department of Defense

(DoD) budget for research, development, test, and evaluation was allocated for tech-

nology development in fiscal year 2013 [18]. The time required to reduce technology

risk to an acceptable level for transition is also substantial; the time from start of
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During the transition phase, labs and product lines must complete a 

number of activities for transition to go smoothly. For example, labs must 

demonstrate that the technology meets product line cost, schedule, and 

performance requirements. In addition, production costs must be 

identified and acceptable to the product line. According to 3M officials, 

past experience has shown that costly manufacturing is a major reason for 

product line managers deciding not to transition a technology. Labs must 

also address intellectual property concerns, a step that is crucial to the 

company’s ability to be a market leader. Product lines must address any 

people or organizational issues, such as the transition of jobs and training 

requirements that may result from using the new technology. They must 

Page 14 GAO-06-883 DOD Technology Transition 

Figure 3: The relationship between technology development (top) and product de-
velopment (bottom) (from Ref. [17]).

technology development to transition is frequently more than ten years. Naturally,

accelerating the technology development process is a goal in both commercial and

military organizations. Successful implementation of novel technologies by a com-

pany before others can result in valuable gains in market share. In the military,

accelerating technology development can help countries keep pace with or exceed the

technological progress of adversaries.

1.2 Technology Development Activities

The development progress of advanced technologies viewed over time or effort has

been shown to follow an S-shaped evolutionary path [19], as notionally depicted in

Fig. 4. Performance of technologies is relatively poor at the initial stage, then it

improves rapidly as research and development is conducted. The growth becomes

approximately linear once a threshold of knowledge and understanding is reached. At
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Figure 4: Notional technology S-curve evolution.

this point, the technology is commercially exploited. With additional time or effort,

improvements become more difficult to achieve, and the technology asymptotically

approaches a technological limit. This limit can be set by social considerations, such

as safety regulations, or it can be due to constraints imposed by nature.

During the research and development stages of technology evolution, reduction

of technology integration impact uncertainty is effected through the acquisition of

knowledge and understanding of the technology by conducting development activi-

ties, such as computer experiments, physical experiments, tests, and system studies.

Experiments and tests can be differentiated by their objectives. Experiments are

often performed to improve the understanding of a physical process, improve math-

ematical models of well-understood physical processes, or to validate mathematical

models, whereas tests are usually conducted to measure the goodness of a particular

component, subsystem, or system in terms of reliability, performance, or safety [12].

The relationship between data that are generated by development activities and the

knowledge built from them provides the connection between technology risk reduction

and development activities.

An example of real technology development activities that were conducted by
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NASA and Boeing for an AFC technology is depicted in Fig. 5. The integration ap-

proach for this technology is to install an AFC architecture on board an aircraft to

control flow separation over the vertical tail, thereby substantially increasing direc-

tional control authority. The vertical tail of a commercial transport airplane is sized

to counteract asymmetric thrust during rare engine failure scenarios at low speeds,

and it is oversized for the majority of flight conditions during a typical mission, such

as cruise. Also, the vertical tails of many transport aircraft families are the same

size within a given model family. The vertical tail of a model family is sized for the

member with the shortest fuselage length. Thus, the longer family members carry an

oversized vertical tail due to the longer moment arms of each. Integration of an AFC

architecture with sweeping jet actuators has the potential to enable vertical tail area

reduction for the entire model family while still meeting the constraints of emergency

scenarios. The primary benefit of this integration approach is that the drag of the

vehicles will be reduced throughout the flight envelope, resulting in fuel cost savings

for airlines. Sub-scale wind tunnel experiments were completed to graduate the tech-

nology to a maturity of TRL 4, a full-scale wind tunnel experiment was conducted to

mature the technology to TRL 5, and the technology was demonstrated in flight to

achieve TRL 6. Depending on the risk tolerance of a system integrator, technologies

are typically transitioned from the technology development program to the system

development program at TRL 6 or 7. As the development activities were completed,

greater confidence was gained in the side force enhancement achieved by the AFC

technology, and this is depicted in the top of the figure. As epistemic uncertainty

surrounding this integration impact was reduced, the epistemic uncertainty surround-

ing the cruise drag reduction for a vision large twin aisle (LTA) airplane integrated

with the AFC technology was also reduced.

As a technology development program progresses and epistemic uncertainty is re-

duced, the technology should mature through demonstration in increasingly complex
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Figure 5: AFC technology development activities conducted during the ERA project
and the associated technology integration impact uncertainty (from Ref. [20]).

integration scenarios. Also, the S-curve model suggests that performance of a tech-

nology should be improved through development activities. If development activities

do not help technologists achieve these objectives, then resources will be squandered,

and a critical technology may not be transitioned to a system. Or, a poorly devel-

oped technology may be transitioned and negatively impact the system development

program. This result highlights the importance of intelligently designing the devel-

opment activities, which is a perennial problem in technology development. This

problem is summarized with the following question that motivated the work in this

dissertation.

Motivating Question: How should technology development activities be de-

signed?

This problem is difficult for a number of reasons. One of the key reasons is that

there exists a wide variety of alternatives. Largent [21] enumerated some possible
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classes of technology development activities. These activities varied greatly in com-

plexity and cost. For example, at the early stages of development a simple paper

study may be appropriate to define the technology and estimate performance us-

ing low-order methods. As the technology matures, expensive physical experiments

and demonstrations may be of more value. There are some activities that Largent

claimed would be appropriate for any maturity level, including design space explo-

ration using physics-based models and creation of analysis capabilities for predicting

technology performance. Even when a class of activity has been chosen, there can

remain many degrees of freedom for fully specifying the activity to be conducted. For

example, defining a physical experiment requires selecting the facility, the scale, the

measurement equipment, the experimental apparatus, the independent and depen-

dent variables, etc. Given the large variety of development activities, it is important

to have criteria to compare alternatives. However, some or all of the criteria that

characterize value of the activities are not easily quantified before the activities are

conducted, and some of the criteria may be conflicting with others. For example, how

can one estimate the performance improvement and uncertainty reduction obtained

from conducting a given set of development activities, and how will these criteria

conflict with cost and time? There is an additional layer of difficulty associated with

the fact that there is uncertainty surrounding the attributes of each alternative. For

instance, the cost and time required to complete a specific type of technology de-

velopment activity may be known with low precision before details of the activity

are determined. And finally, the number of alternatives available to decision makers

grows with the number of technologies that are being developed within a program.

Nevertheless, decision maker must somehow prioritize technologies since not all of the

technologies in a given program will be affected by the selected development activities.
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1.3 Research Objective

The objective of the research presented in this dissertation is to establish a framework

for designing technology development activities that improves the state of decision

support capabilities. As a first step toward meeting this objective, research gaps in

the literature are identified in Chapter 2. Then, a novel framework for addressing

these gaps is presented, and the need for multiple quantitative capabilities to add

rigor to the framework is defined in Chapter 3. Next, three contributions toward

improving the framework are presented in Chapters 4, 5, and 6. Arguments are

established in the beginning of each of these three chapters. The common theme of

the claims is that these contributions fill previous capability gaps in an appropriate

manner. Finally, the contributions of this dissertation are summarized, limitations

are discussed, future research opportunities are described, and the overarching thesis

statement is presented in Chapter 7.
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CHAPTER II

LITERATURE REVIEW

In the first part of this chapter, the existing body of research that is pertinent to

the design of technology development activities is reviewed. Then, current practices

are discussed. Finally, research gaps are identified with regard to what is needed to

address the motivating question from the introduction chapter.

The literature that is germane to the problem area of interest can be partitioned

into two categories: writings that provide guidance for designing technology devel-

opment activities and those that present methods for designing a portfolio of tests

and experiments in a system development program. The latter body of literature is

considered relevant because although the focus is on integrated system development,

one of the cardinal objectives of executing both tests and experiments in this context

is to reduce uncertainty surrounding system performance.

2.1 Overview of the Literature: Guidance for Designing
Technology Development Activities

Existing guidance for the type of technology development activities that should be

implemented as a technology matures is based on technology readiness level (TRL)

scales. Introduced by NASA in the mid-1970s, TRL is a discipline-independent, pro-

grammatic figure of merit that is used to assess and communicate the maturity of

technologies [22]. The first TRL definitions were later established in a white paper by

Mankins [23]. Since then, TRLs have been widely used by government and interna-

tional organizations such as the U.S. DoD, the U.S. Department of Energy, and the

North Atlantic Treaty Organization. TRL scales are ordinal, with most containing

the integers 1 through 9. A TRL of 1 represents the lowest maturity level and a
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Table 2: NASA technology readiness levels (definitions from Ref. [24])

TRL Definition
1 Basic principles observed and reported
2 Technology concept and/or application formulated
3 Analytical and experimental critical function and/or characteristic

proof-of-concept
4 Component and/or breadboard validation in laboratory environ-

ment
5 Component and/or breadboard validation in relevant environment
6 System/subsystem model or prototype demonstration in a relevant

environment (ground or space)
7 System prototype demonstration in a target/space environment
8 Actual system completed and “flight qualified” through test and

demonstration (ground or flight)
9 Actual system “flight proven” through successful mission opera-

tions

TRL of 9 represents a technology that has been proven through successful mission

operations. Each readiness level is accompanied by a definition that indicates the

development status of a technology. An example TRL scale from NASA is shown in

Table 2.

There is not an explicit indication of the uncertainty or risk associated with each

maturity level in most TRL definitions. The NASA TRL definitions in Table 2 serve

as an example of this fact. Additionally, TRL scales do not capture how difficult

or costly the maturation process is. Mankins [25] introduced a measure called the

“Research and Development Degree of Difficulty” (R&D3) to help decision makers

understand and communicate the difficulty and likelihood of achieving technology

research and development (R&D) objectives. The R&D3 scale is also ordinal, with

integers from 1 to 5. A level of 1 means that a very low degree of difficulty is antici-

pated and that the probability of success with “normal” R&D effort is 99%. On the

opposite end of R&D3, level 5 means that the anticipated difficulty is high enough

that a fundamental breakthrough is required and that the probability of success with

“normal” R&D effort is 20%. Mankins [9] later developed an approach for integrated

technology readiness and risk assessment using TRL, R&D3, and an additional factor
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called the technology need value (TNV). The TNV scale has five levels, with each

corresponding to a weighting factor based on the importance of developing a given

technology. The importance can be related to system-level improvement or the po-

tential for the development efforts to support decisions. TRL, R&D3, and TNV were

fused into a summary of technology readiness and risk using a risk matrix. Here,

Mankins [9] defined risk as the combination of the probability of technical failure

and the consequences of failure. Probability of failure is related to R&D3, and con-

sequence is quantified as TNV multiplied by the difference between the current TRL

and the TRL that must be achieved before the transition phase. Using the combina-

tion of quantified consequence and probability of failure, one can identify a location

in the risk matrix to obtain a qualitative description of risk. This risk description

can then be used to inform management decisions regarding future development ac-

tivities. Moorhouse [7] established detailed TRL definitions to provide guidance on

how to graduate technologies from one level to higher levels. In his definitions, he

elaborated on the types of physical experimentation that should be conducted and the

numerical models that should be constructed at each TRL. His definitions also pro-

vide qualitative descriptions of the risk and uncertainty associated with system-level

integration of a technology as well as tasks for predicting technology-related costs at

each level.

Largent [21] identified a need for a process focused on planning and managing

technology development, and he hypothesized that it is possible to reduce uncer-

tainty and programmatic risk in a technology development program by implementing

such a process. He argued that the process should link performance, cost, and sched-

ule uncertainty so that all three key dimensions can be accounted for when making

decisions about development activities. He also claimed that technology-level devel-

opment activities should focus on reducing system-level uncertainty to ensure that

at the end of development, risk has been reduced to a point where the technology is
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ready for system integration. Based on the identified need, Largent [21] formulated

the Technology Development Planning and Management (TDPM) process. There are

two foci of the TDPM process. The first focus is to provide a way to systematically

identify technology performance uncertainties and to plan activities to reduce the

uncertainties and maximize performance. The second focus is to provide a method

for assessing risks in the initial development plan and to reassess the plan as de-

velopment activities are completed. The TDPM process begins with defining the

technology. The purpose of the first step is to gather existing information about the

technology being developed through literature search, input from experts, etc. This

information is divided into seven categories: defining the need for the technology,

describing the physics that govern the operation of the technology, describing the

way that the technology integrates with the system, identifying similar technologies,

identifying previous development efforts, identifying analysis capabilities for model-

ing the technology and system, and identifying the current TRL for the technology.

The second TDPM process step begins with identifying performance metrics at all

levels of the system hierarchy, such as the technology level, the subsystem level, the

system level, and the system of systems level. After identification of relevant met-

rics, the uncertainty associated with technology-level metrics is characterized using

a probabilistic approach. The third step entails the propagation of technology-level

uncertainties up to the system level and prioritization of uncertainties based on the

contribution of each uncertainty source to higher level metrics. The fourth TDPM

process step, mitigate technical uncertainty, is where activities such as numerical and

physical experiments are planned to reduce uncertainty. Largent [21] claimed that

development activities should be designed for the purpose of targeted uncertainty

reduction, based on the results of step three, but there was no method identified for

how this should be accomplished. However, he did provide some guidance as to what

kind of development activities should occur at a given TRL. Steps five through seven
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involve quantifying and assessing project risks to determine whether to proceed with

the uncertainty mitigation plan or to modify the development activities so that the

risks are acceptable. After devising a plan with acceptable risks, step eight is con-

ducted. In the first phase of step eight, activities are completed up to a particular

milestone or date. The second phase of step eight entails updating the uncertainties

for activities that have been completed. In the last phase of step eight, a risk analysis

is performed to determine whether another iteration is required that would begin at

the planning stage (step four) or at the beginning of the TDPM process. Largent [21]

explored the use of Bayesian inference for updating uncertainties, and he suggested

further examination of updating techniques in future work. He also identified the

use of joint probability distributions to capture correlation of performance metrics as

possible future work.

Gatian [26] formulated a methodology to aid in risk-informed decision making

during a technology development program. Her methodology addressed technology

experimentation in addition to three other phases of technology development. Tech-

nology readiness assessment was combined with a probabilistic approach to quantify

uncertainty to aid in the identification of experimental goals. The readiness assess-

ment involves morphological analysis of the experiment characteristics and existing

TRL definitions to identify the kind of experimentation that is appropriate for each

TRL. The technologies that are part of the development program are prioritized

according to the readiness risk and performance risk of each. Technologies that are

preferred for experimentation are those with a combination of relatively high readiness

risk and large contributions to the uncertainty surrounding the system-level metrics.

Once one or more of the highest-priority technologies are selected for development

activities, the next step in her methodology is to identify the objective of the exper-

iments. The objective is selected based on which sources of uncertainty should be

targeted and the current TRL of the technologies. As in Largent’s [21] approach, the
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details of the experiment design are left to technologists.

2.2 Overview of the Literature: Test and Experiment Se-
lection for System Development

Wong [27] presented a methodology for providing decision makers with test resource

allocation guidance by prioritizing the testing of subsystems within a large system.

He argued that some subsystems should be tested more exhaustively than others and

that the highest priority should be given to the subsystems that have the largest per-

formance uncertainty and greatest effect on system performance. Two forms of the

methodology were discussed. The first form, called the “extensive” form, has three

phases. In the first phase, the sensitivities are modeled. The subsystems at all levels

of the system hierarchy and their interactions are defined, and performance indices

are established for each subsystem. A model of each performance index for every

subsystem, as a function of lower level subsystem performance indices, must then

be identified for all levels. In the second phase, probability density functions PDFs

are used to characterize uncertainty in the performance indices. Wong [27] suggested

eliciting the distributions from the developers of the system. The third phase entails

determining test priorities. First, the total uncertainty in the system performance is

quantified by propagating uncertainty from all of the lower level subsystems. Next,

the uncertainty in system performance is computed as a PDF under the assumption

that the ith subsystem operates at full capability with a probability of one. Then,

the value of testing the ith subsystem is determined by calculating the difference

between the expected performance of the system with the ith subsystem operating

at full capacity and the expected performance of the system with total uncertainty.

This is repeated for all subsystems. An alternative form of the methodology, called

the “diminutive” form, offers multiple simplifications to reduce the cost and difficulty

of using the “extensive” form. The focus of testing in his research is to reduce un-

certainty surrounding the performance of a system that has already been developed.

21



Although this test resource allocation problem is different from the problem of in-

terest in this dissertation, an important concept from his work is that the value of

testing a subsystem depends on the uncertainty in the subsystem performance and

the sensitivity of the total system performance to subsystem performance. His paper

may be the first in the literature to mention this idea.

Thomke [28] studied how the economics of experimentation in product design

have been affected by the use of multiple methods, or what he called “modes”, for

conducting experiments. Examples of different modes are physical experiments with

prototypes, numerical experimentation, and thought experiments. He presented a

generic, iterative experimentation cycle with four steps: designing the experiment,

building the physical or virtual apparatus, running the experiment, and analyzing

the results. At the end of each cycle, the analysis step indicates whether the quality

of a design can be improved cost-effectively. If improvements can be made, then the

design is modified based on what was learned from the experiment. However, at some

point, the cost required to improve the design will outweigh the benefit of improve-

ment. To help study the effectiveness of this experimentation cycle, Thomke [28]

coined the term “experimentation efficiency”, which is a ratio of the economic value

of information gained during the experimental cycle and the cost of conducting the

experiment. He proposed that as a design process progresses and experimental cycles

are repeated using a given mode, the experimentation efficiency decreases because

of diminishing returns from experimentation in that mode. And, he proposed that

different modes can exhibit different rates of decay in experimentation efficiency. A

notional illustration of these propositions that has been adapted for the technology

development context is shown in Fig. 6. Note that this figure shows the overall value

of information gained from the activities to the stakeholders. In Fig. 6, the point at

which the curves cross was termed the “optimal switching point” by Thomke [28].

This is where one would ideally transition to the more efficient (higher value) mode
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Figure 6: Notional relationships between the value of development activities and
maturity for two different modes (types) of activities (adapted from Ref. [28]).

as an economic strategy. He proposed that finding this point can result in signifi-

cant improvements in innovation cost and time. Thomke [28] conducted an empirical

study that involved the collection of data on experimentation strategies from several

hundred integrated circuit designers in the U.S., and the data strongly supported

his propositions. His research findings are more relevant to the product development

phase shown in Fig. 3 than they are to technology development, but the concepts

are valuable for the design of technology development activities. In a technology de-

velopment program, the modes of experimentation could be not only numerical and

physical experimentation, but also the various levels of fidelity for each type. Also,

one idea explored by him is that the optimal mode switching point can shift if the

efficiency curve of a given experimentation mode changes. This idea can be useful in

technology development as well. For example, the experimentation efficiency curve

of numerical models can shift as data from physical experiments is used to validate

the models, perhaps making the use of the numerical experimentation mode more

appealing.

Thomke and Bell [29] developed mathematical models to study how to select the

optimal frequency, timing, and fidelity of sequential testing activities for product de-

sign. In their work, test fidelity refers to the ability of a test to uncover problems
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with a product design, and fidelity varies with the “completeness” of a test prototype

and/or the realness of the testing environment. A full-fidelity test can detect all ac-

crued problems at a given time in the development project, whereas a low-fidelity test

can only detect a fraction of the problems. The mathematical models were designed

to capture the behavior of total project cost due to testing and rework for solving

problems identified from tests. The problems referred to by the authors are conse-

quences of a lack of complete understanding of customer expectations, called customer

uncertainty, or difficulty in predicting the feasibility of a design before testing, called

technical uncertainty. These sources of uncertainty result in the accumulation of

problems in a product design that are only revealed after physical or virtual testing.

Three relationships between sequential low-fidelity tests were considered. One, called

the fully overlapping case, is where the set of problems identified in an earlier test

are also contained in the later test. Another, called the partially overlapping case,

is for a scenario in which only a fraction of the problems identified in an earlier test

could be “rediscovered” in a later test. The last, called the complementary case, is

where none of the problems identified in the earlier test are detectable in the later

test. The authors exercised their mathematical model to determine testing strate-

gies that minimize total cost in different scenarios. Analysis of the model resulted in

three key observations. The first is that the optimal testing strategy depends on the

behavior of the redesign cost as a function of time, test cost as a function of fidelity,

and the relationship between sequential tests. The second key observation was that

the optimal number of tests is approximately the square root of the ratio of avoidable

cost and the cost of a single test, where the avoidable cost is the difference between

total cost with testing and rework only at the end of the development project and

total cost with continuous testing and rework throughout the project. The third key

observation is that the relationship between sequential tests affects the testing strat-

egy. Thomke and Bell [29] found that few high-fidelity tests are optimal for sequential
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tests that are refinements of one another (fully overlapping case), whereas a larger

number of low-fidelity tests are ideal for complementary tests. They analyzed sce-

narios that are similar to a technology development program, where decision makers

must select the fidelity of the experiments, when they occur, and how many to do.

For this reason, the insights gained from their analysis are valuable for the research

in this dissertation.

Loch et al. [30] studied the problem of how to determine the ideal amount of paral-

lel and serial testing that is conducted during a product design process. In their work,

the purpose of testing is to reduce uncertainty surrounding which design is the most

preferred solution out of a set of multiple design alternatives. Loch et al. [30] based

their work on the premise that parallel testing can require less time than serial testing

but does not leverage the learning between tests that serial testing can, resulting in a

larger number of required tests. They modeled this trade-off as a dynamic program

in order to derive an optimal testing strategy that minimizes the total cost of testing

and time. In their mathematical model, they accounted for test cost, lead time, prior

knowledge of designers, and learning between tests. Acknowledging the fact that no

one test can fully disclose whether a design alternative is the most preferred solution,

Loch et al. [30] quantified the remaining uncertainty by employing a measure from

information theory called entropy [31]. Using their model, they showed three impor-

tant insights, two of which are relevant to this dissertation. First, they demonstrated

that more expensive tests make sequential testing more economical, whereas slower

tests make parallel testing more attractive. Second, they found that the selection of

lower fidelity tests increases the appeal of sequential tests. Here, the term fidelity was

defined as the ability of a test to identify a design alternative as the most preferable.

The research by Loch et al. [30] is more applicable to evaluating alternative product

designs than to technology development activity design, but the insights that they

produced are pertinent. Also, their work is one of the earliest in the test selection
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literature that uses the entropy measure to quantify uncertainty.

Urbina et al. [32] developed a methodology for allocating resources to increase

confidence in performance predictions for high-consequence systems. Their definition

of confidence was associated with the amount of uncertainty surrounding the proba-

bility of failure relative to an established threshold. In their work, resources could be

related to physical experiments, model simulations, or model refinement. The type

of problems that motivated their work involved systems with multiple components

at various hierarchical levels, limited available data from expert input and physical

experiments, and limited or no data at the system level. Urbina et al. [32] formulated

the resource allocation problem as an optimization problem. They linked the objec-

tive function with measures of confidence in the system-level performance predictions.

It is noteworthy that they specifically identified entropy as a potential metric to be

used in the objective function as well. In their optimization problem, design vari-

ables could be related to increased budget for testing, refinement of computational

models to reduce errors between model predictions and existing experimental data,

or alternative models for representing the physics of the system. The only constraint

included in the optimization problem was that total cost, as a function of the design

variables, should be less than or equal to a given budget. They utilized a probabilis-

tic model called a Bayesian network to quantify epistemic and aleatory uncertainties

at all levels of the system hierarchy, including uncertainty in the performance met-

ric that fed the objective function. A nice feature of Bayesian networks is that one

can easily update probabilities in the network with new observations. However, the

methodology proposed by Urbina et al. [32] hinges on how new observations are “vir-

tually” generated when solving the optimization problem. For example, if the design

variables are mapped to additional physical experiments, then their methodology re-

quires simulation of the acquisition of data from the experiments. Specifying a PDF

for a physical experiment that has not yet occurred could be problematic, particularly
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in a technology development program.

Motivated by the difficulty of planning test programs months or years in advance

of testing for a System of Systems, Hess and Valerdi [33] presented a framework for

quickly and effectively planning and re-planning as information is obtained. Under

the assumption that an organization is more likely to run out of time than money,

they focused on the problem of scheduling. In order to select the best schedule with

their framework, they needed to determine value for each test. Hess and Valerdi

assumed that the purpose of testing is to determine whether a system under test has

passed or failed each of its measures of performance, and they described the value

of a test by its ability to reduce uncertainty surrounding this objective. The ideas

presented by Hess and Valerdi are intriguing, but their paper left many elements of

the framework for future work.

Sankararaman et al. [34], Sankararaman [35], and Sankararaman et al. [36] devel-

oped a methodology that extended the work of Urbina et al. [32] to multiple levels of

models and tests. These authors also employed a Bayesian network for uncertainty

quantification that linked computational models at all levels of the system hierarchy.

An additional step was added to the methodology for selecting important types of

tests to consider in the resource allocation problem. In this step, global sensitivity

analysis was employed to identify important model parameters that significantly con-

tribute to the system-level performance prediction uncertainty. The tests that could

reduce uncertainty in these parameters were then used in an optimization problem

for test resource allocation. Their optimization problem involved minimizing the ex-

pected variance in the system-level prediction by testing within a given total budget.

This optimization problem answered the questions of which tests to do and how many

repetitions of each test to do in order to capture inherent variability. Their approach

also required the simulation of “virtual” test data to quantify the objective function.

An important observation made by the authors after exercising their methodology
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on example problems is that the uncertainty reduction achieved beyond a given in-

vestment may not be worth the additional resources. In other words, there could be

diminishing return on investment.

Bjorkman [37] and Bjorkman et al. [38] formulated an approach for allocating test

resources in a DoD test and evaluation program. In the first step of their method-

ology, test objectives are defined for each test required in a portfolio. The second

step requires identification of multiple alternatives for each test. Step three entails

determination of the portfolio cost constraint and estimation of technical uncertainty

reduction for each test alternative. Based on a thorough review of the uncertainty

measure literature, they decided to use entropy to quantify uncertainty reduction in

this step. In step four, one alternative is selected for each test event that needs to

occur. For a small portfolio, subject matter experts (SMEs) may be able to select

the optimal combination of tests. But, for a large portfolio, they proposed resource

allocation by solving an optimization problem. The last two steps of their method-

ology involve optional sensitivity analysis and further analysis. Using a case study,

they showed that the methodology was easily applied and could generate optimized

test portfolios with 5%–20% more total value than those selected by SMEs.

2.3 Analysis of the Literature

Most, if not all, of the research in the literature pertaining to guidance for creating

technology development activities uses TRLs in some way. TRLs are an accepted way

to capture technology maturity, and the definitions provide guidance for the fidelity,

or realness of the experimental environment, of activities that must occur to gradu-

ate each level. Although TRL definitions provide some valuable guidance as to what

kind of development activities should be conducted to mature a technology, they are

still too vague to help decision makers and technologists design a set of development
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activities in a defensible manner. Largent [21] and Gatian [26] formulated compre-

hensive technology infusion methodologies that include more specific guidelines for

planning and managing technology development activities. A common theme in these

processes is an emphasis on informing decisions about which development activities

to pursue by prioritizing sources of technology-level performance uncertainty (i.e.,

integration impacts) and tracking the likelihood of meeting system-level performance

goals. Prioritization of uncertainty sources is based on how sensitive the uncertainty

surrounding system-level performance metrics is to technology-level uncertainties.

Because building system prototypes integrated with immature technologies is not

always viable, system-level performance effects and sensitivities are quantified with

physics-based modeling and simulation (M&S) environments. Gatian [26] also iden-

tified sensitivities of the probability of meeting established system-level performance

goals as being useful for prioritizing technologies for activities. This information is

valuable as well because the purpose of integrating most advanced technologies is to

close an established system-level performance gap.

The literature on test and experiment selection for system development provides

important insights and approaches. A few of the papers present methodologies that

come close to being directly applicable to selecting activities in a technology devel-

opment program. The goal of testing in Refs. [32, 34, 35, 36, 37, 38] is to reduce

uncertainty surrounding model parameters in order to reduce uncertainty in system-

level performance predictions. Based on this objective, tests can be selected using

optimization or experts to maximize the amount of uncertainty reduction obtained.

An analogous problem is found in technology development. However, the types of sys-

tems tested in the aforementioned references are well defined and have been fielded

or close to it, whereas in technology development program, the technology and the

system that adopts the technology can start out with relatively low maturity. As

TRL increases, the types of development activities may change in order to reduce
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uncertainty, improve performance, and further mature the technology. For exam-

ple, at a low TRL a sub-scale exploratory experiment may be the most appropri-

ate choice for reducing performance uncertainty and increasing TRL, but at a high

TRL a full-scale flight test with fewer available design degrees of freedom may be

needed to reduce important uncertainties and increase TRL. The methodologies in

Refs. [32, 34, 35, 36, 37, 38] do not capture these kinds of imperative considerations.

2.4 Current Practices for Designing Technology Develop-
ment Activities

Although the planning and implementation details of technology development pro-

grams are not published due to proprietary concerns, there is evidence that current

practices involve TRL-driven decision making. The GAO’s knowledge-based acquisi-

tion practices require that technologies achieve TRL 7 before transition to the system

development program [39]. With TRL maximization as an objective, a typical devel-

opment activity design process involves establishing a goal for technology performance

and designing a series of activities to demonstrate technology performance at multiple

TRLs. The AFC-enhanced vertical tail technology discussed in Sec. 1.2 serves as a

recent example. The goal of the development program implemented by NASA and

Boeing “was to use AFC to achieve a substantial increase in the control authority

of the vertical tail of a commercial transport airplane” [40]. With this goal in mind,

the technologists designed three phases of activities to push the maturation of the

technology from TRL 3 to TRL 6: sub-scale wind tunnel experimentation, full-scale

wind tunnel experimentation, and flight experimentation.

The GAO’s use of TRL in the definition of a knowledge point in its acquisition

practices implies that TRL can be used as a measure of the degree of knowledge

gained about a technology for supporting decisions. However, one of the criticisms

of TRL scales is that they do not convey the uncertainty associated with graduat-

ing each level [41]. Thus, many alternative versions of development activities can
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be designed to satisfy TRL definitions, but it is possible that the alternatives will

be unequal in terms of uncertainty reduction and other characteristics, such as per-

formance improvement. As an analogy, consider a student’s development through

schooling. The grades of school can be thought of as TRLs, and the use of TRL to

represent the degree of knowledge gained is analogous to the use of grade level that a

student passes as a measure of the student’s knowledge. Not all school curricula are

created equal, and despite the fact that a student can pass two different curricula for

a specific grade, the student’s knowledge and understanding of the subjects hinges

on the quality of the learning process.

2.5 The Need for a Technology Development Activity De-
sign Process

The primary problem with relying on TRL definitions for design decisions about fu-

ture development activities for a technology is that TRL scales do not characterize

the state of uncertainty surrounding the integration impacts of a technology. Ide-

ally, epistemic uncertainty will be maximally reduced with each activity. The more

epistemic uncertainty reduction achieved for a technology with integration benefits

that clearly outweigh the costs, the more likely decision makers will be inclined to

fund further development activities and to ultimately transition the technology to a

system development program. With a focus on increasing TRL, the extent to which

current practices for designing development activities target epistemic uncertainty is

simply to meet the requirements of TRL definitions.

The quantitative techniques developed in the literature improve upon the current

practices because they provide additional decision support information about what

sources of uncertainty are most important and the impact of uncertainty on the knowl-

edge of closing system-level performance gaps. However, this additional information

can be difficult for decision makers to synthesize with their preferences to arrive at

decisions, and much of the activity design decisions are delegated to technologists.
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Hence, the methodologies from the literature fall short of providing a complete path

to designing a portfolio of technology development activities.

The use of TRL as a representation of the degree of knowledge about a technol-

ogy can result in misinformed decisions. Without a clear understanding of the state

of knowledge about technology impacts, it is difficult for decision makers to deter-

mine what development activities to pursue to reduce uncertainty. A more serious

consequence is that poor design of development activities may place the success of a

promising technology in jeopardy. To increase the likelihood of development success,

a novel approach is needed that incorporates methods from the literature for char-

acterizing technology uncertainty and leverages this information to better inform the

design of development activities. To fulfill this need, a framework is formulated in

Chapter 3.
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CHAPTER III

A NOVEL FRAMEWORK FOR DESIGNING

TECHNOLOGY DEVELOPMENT ACTIVITIES

In technology development programs, decision makers must plan a series of activities

that will contribute to achieving goals of uncertainty reduction, performance improve-

ment, and maturation. There are three primary questions that must be answered to

design technology development activities to achieve these goals:

1. Which types of activities should be selected?

2. What is the best setup of the physical or computational environment for each

activity?

3. How should each activity be executed to maximize the value of information that

is generated?

It is proposed that the design of technology development activities be divided into

three phases that correspond with answering each question: (1) thought experimenta-

tion, (2) detailed definition of the activities, and (3) statistical design of experiments.

Each of these three phases are discussed in the following sections. Then, the frame-

work is applied to a case study to derive new insights about better ways an actual

technology development program could have been conducted. Finally, opportunities

to add rigor to the framework are discussed.

3.1 Phase 1: Thought Experimentation

It is ideal to be able to select the types of activities that will meet the goals of

technology development while simultaneously minimizing the cost and time required
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for the development program. Due to the significant resource expenditure that may

be required for the candidate activities, this decision must be made before any of

the candidate activities have been designed in detail and conducted. To make this

decision systematically, defensibly, and rationally, a mental exercise called a thought

experiment is necessary. In this section, thought experiments are characterized, and

the concept is applied to the technology development context for selecting types of

activities.

3.1.1 Literature Concerning the Characterization of Thought Experi-
ments

Sorensen defined a thought experiment as an experiment that “purports to achieve

its aim without the benefit of execution” [42]. Thought experiments have been pro-

claimed as important instruments for the discovery of multiple fundamental laws

of physics, such as Archimedes’ law of the lever and Einstein’s theory of relativity.

Some philosophers differentiate between thought experiments in general and scientific

thought experiments, which is the type that is well known in physics. Gendler [43]

characterized thought experiments as reasoning about a scenario, where the “mode

of access to the scenario” is imagination in lieu of observation, with the purpose

of testing a hypothesis or theory. She identified an additional feature for scientific

thought experiments: the hypothesis or theory involves the physical world. Reason-

ing about a scenario entails mentally simulating alternative events or actions and

their likely consequences. Shepard [44] identified cognitive characteristics of humans

that are necessary for thought experiments to be effective with regard to producing

new knowledge through mental simulation: (1) a motivation to understand our sur-

roundings, (2) the ability to evaluate alternatives objectively, and (3) language for

communicating and analyzing arguments. These observations from the literature can

be synthesized to derive a process for a thought experiment. A motivation to gain new

knowledge and understanding must first be established. Following the motivation, the
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scenario or problem can then be defined. Next, the measures that characterize the

consequences of interest need to be identified. Then, the alternative actions or events

must be mentally generated. The next step is to evaluate each alternative in terms

of the likely values of the measures. The final step is to draw conclusions from the

mental observations.

3.1.2 An Example of a Thought Experiment

As an example of the implementation of the thought experiment steps, they are

applied to a version of Galileo’s law of falling bodies thought experiment presented

by Shepard [44]. Prior to Galileo, the reigning claim attributed to Aristotle was

that falling object drop toward the ground with velocities that are proportional to

their weights. Galileo’s motivation was to understand the motion of all objects in

nature. The scenario defined in the modified version of his thought experiment was

to simultaneously drop objects from the top of the leaning tower at Pisa and observe

the motion of each one, while neglecting the effects of air resistance. The measure

in this thought experiment that corresponds with the consequence of interest is the

difference in the time at which each of the objects hits the ground. The alternative

actions were defined to be either dropping three identical bricks at the same time

or dropping one of the bricks and the other two bricks, glued to each other, at the

same time. To evaluate these two alternatives, one must imaging dropping the bricks

at the same time and observing whether there is a nonzero difference in the time of

arrival at the ground between any of the objects. There is no reason why the three

identical bricks should arrive at the ground at different times. When two of the bricks

are glued to each other, they form a larger brick that is twice as heavy (neglecting

the relatively insignificant weight of the glue). Would the larger brick fall faster than

as the separate third brick? The answer is no, because the glue used to make the two

bricks into a larger single brick would not cause the object to fall more quickly. Thus,
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the correct conclusion was reached without performing the physical experiment, and

Aristotle’s claim was refuted.

3.1.3 Application of Thought Experimentation to Technology Develop-
ment Activity Design

How does the thought experimentation procedure apply to technology development?

The steps of a thought experiment can be used to arrive at a conclusion regarding

which types of development activities should be pursued. The motivation for pursuing

technology development activities in any case stems from the fact that many advanced

technologies have the potential to benefit integrated systems, thereby improving prof-

its for manufacturers and operators and ultimately the lives of the end users. Knowl-

edge and understanding of the technology must be gained to build confidence in the

benefits of integration to ensure success. Specifics of the problem formulation may

vary from one development program to another, but some common elements can be

identified. In any program, there will be one or multiple target systems for technology

infusion. The purpose of infusing the technologies is to close performance or capability

gaps that are present at the system level. By working toward the three primary goals

of technology development, the confidence in the magnitude of the technology im-

pacts should increase, and the technology should improve with maturation such that

it meets the system-level requirements. Thus, the problem is to design the activities

for simultaneous maximization of uncertainty reduction, performance improvement,

and maturation, subject to resource limitations. The measures that characterize the

consequences of interest naturally follow from the problem formulation. These mea-

sure serve as criteria for making a decision in the last step. Measures of potential

performance improvement, uncertainty reduction, maturation, and costs or resources

are needed. In the current practice, the primary measure of interest is TRL which is

not sufficient because it can only satisfy the maturity measure; it does not explicitly

characterize any of the other consequences. Next, the alternative actions need to be
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generated. The alternatives may only be defined coarsely as a portfolio of activities,

with many of the details undetermined. For example, one alternative may be a set

of physical experiments at multiple scales for an individual technology. The alterna-

tive creation process requires the synthesis of multiple sources of information. The

sensitivity analysis information from the techniques described in Chapter 2 should be

used to identify the most important sources of uncertainty. There may be data from

earlier development activities or even previous development programs that can be

leveraged to inform the creation of alternatives. Because TRL is currently critical in

development programs, the alternatives will likely be created to meet the constraints

of TRL definitions so that the alternatives can be claimed as elevating the technology

to a specific degree of maturation after the activities have been conducted. All of this

information must be considered so that the alternatives are intelligently created to

target the largest sources of uncertainty, leverage learning from previous activities,

and achieve maturation goals. After the alternatives have been created, they all need

to be evaluated by estimating the consequences associated with each. Since the activ-

ities have not been executed at this point, there will be uncertainty surrounding the

measures of consequence. The final step of drawing conclusions is making a decision

in this context, and the uncertainty surrounding the consequences of each alternative

action increases the difficulty of the final step.

These steps form the first phase of the technology development activity design

framework shown in Fig. 7. In the next phase, each of the selected activities must be

defined in more detail. This process is described in the following section.

3.2 Phase 2: Detailed Definition of the Activities

In the second phase, many characteristics of each activity must be decided to deter-

mine the best setup of the physical or computational environment. To accomplish

this, many questions need to be answered regarding the components shown in Fig. 8.
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Figure 7: The proposed framework for designing technology development activities
in three phases.

In general, any development activity consists of a physical or virtual system that

produces outputs, given a set of inputs. This system is a combination of things such

as a model of the technology, measurement devices, processes, people, hardware, and

other resources that function altogether. The dependent variables are the outputs of

the system that technologists wish to measure and observe. The inputs to this system

are divided into three types of variables. The independent variables are under the

control of technologists and can be set at target levels. Uncontrollable variables are

either difficult or impossible to control for a given setup. The other inputs include

any variables that must be decided to conduct the activity but are not of particular

interest with regard to their effects on the dependent variables.

Development activities almost invariably concern learning the relationship be-

tween the independent variables and dependent variables for achieving objectives

such as [45]:

• To determine which independent variables are most influential on the dependent
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Figure 8: Conceptual model of a technology development activity.

variables

• To determine where to set the influential independent variables to achieve the

best (minimum, maximum, or target) values of the dependent variables

• To determine where to set the influential independent variables to minimize the

variability in the independent variables that is due to uncontrollable variables

and other sources of uncertainty

With these objectives in mind, a series of decisions must be made to select the best

components of the environment depicted in Fig. 8. Some of these decisions will

involve simply selecting from existing devices, whereas other decisions will require

a more creative approach. For example, consider choices that must be made for a

physical wind tunnel experiment. Often times measurement devices such as pressure

ports will be selected from off-the-shelf candidates, whereas the wind tunnel model

will likely have to be uniquely designed and manufactured. Nevertheless, a rigorous

approach to any kind of decision should follow a series of generic steps. For this

purpose, the decision-making steps proposed by Mavris, Baker, and Schrage [46] are

proposed for anchoring the decision process:
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1. Establish the need.

2. Define the problem.

3. Establish value objectives.

4. Generate feasible alternatives.

5. Evaluate alternatives.

6. Make decision.

For the problem of interest here, the first step of establishing the need is not necessary

because a motivation has already been identified in the first phase. In general, the

definition of the problem in step two is to design a particular component of the activity

to fulfill all requirements that have been defined. The value objectives in step three

are criteria that will be used to evaluate the alternatives that are generated in step

four for each component. Each alternative must then be mapped to these criteria,

qualitatively or quantitatively, in step five so that the best one can be selected in step

six. Each of these steps can be followed for every component of the activity, whether

it be a concrete component such as a piece of hardware or a more abstract component

such as the mathematical definition of a dependent variable. These decision processes

can be followed for each activity, as depicted in the phase two portion of Fig. 7. Note

that in the figure, the term “equipment” includes any component besides variables.

After the components of each activity have been determined, a plan of execution

must be established. Many aspects of this plan are completely problem dependent,

but a critical part of the plan that is common to all activities is the selection of settings

for the independent variables at which the dependent variables will be measured. This

is the focus of the third phase in the proposed framework.
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3.3 Phase 3: Statistical Design of Experiments

Design of experiments (DoE) is a branch of applied statistics that aims to maximize

the knowledge gained from experiments in an efficient way through strategic planning

and execution. DoE began with the work of R. A. Fisher in the 1920s and 1930s for

improving the way agricultural experimentation was conducted. Since then, DoE has

become popular in many fields. Of particular relevance to the technology develop-

ment context is the application of DoE to product and process (systems) development.

Montgomery [45] identified three phases of systems design through experimentation:

characterization, control, and optimization. Characterization is the process of learn-

ing the relationship between the inputs to the system of interest and the outputs,

with a focus on identifying the inputs that drive the variability of the outputs. The

control phase entails exploration of which variables affect the mean and/or variance of

the outputs so that consistent performance of the system of interest can be achieved.

The optimization phase is where the important input variables are manipulated to

obtain the best compromise system performance. The word “compromise” is used

here because there are typically multiple, conflicting outputs that characterize per-

formance.

The phases of characterization, control, and optimization involve sequential ex-

perimentation to improve the state of knowledge about the system of interest. Each

phase involves the selection of a type of experimental design, which consists of the

independent variable settings at which the dependent variable measurements will be

observed. For characterization, full factorial and fractional factorial designs are popu-

lar options. An example of a two-level fractional factorial design for three independent

variables is shown in Fig. 9. Notice that the observations, marked by the large black

circles, are only at four of the eight corners of the space, whereas the two-level full

factorial design would include all eight corners. The fractional factorial design strate-

gically places the observations to enable efficient estimation of main effects, where a
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Figure 9: A notional two-level fractional factorial design for three independent vari-
ables.

main effect is the effect of an independent variable on the dependent variable averaged

over the levels of other independent variables. Estimation of main effects provides

knowledge of which independent variables are the most significant drivers of the de-

pendent variables, and this information can be used to screen independent variables to

reduce the dimensionality of the problem. A key feature of fractional factorial designs

is their projection property. As an example, suppose that an analysis of main effects

showed that the variable x2 in Fig. 9 is not an important contributor to a dependent

variable. If the x2 dimension were to then be collapsed, then the resulting design

in the two remaining variables would be a two-level full factorial in two dimensions.

This can be mentally visualized by imagining the collapse of x2 resulting in a design

with large black circles at all four corners of the square.

If many independent variables are initially investigated, then the characterization

phase may result in a reduced number of important independent variables. This re-

duced set can then be carried into the next two phases of control and optimization.

The control and optimization phases are usually facilitated by representing the data
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from an activity as a mathematical surface. Techniques for constructing this repre-

sentation are often referred to as response surface methodology (RSM). In general,

the idea of RSM is to fit a model to represent the dependent variables y as a linear

combination of a function of the independent variables f(x) and a measurement error

term ε:

y = f(x) + ε (1)

A popular choice for the function of the independent variables is a first-order or

second-order polynomial model that is fit to the data using least squares. Several

experimental designs have been proposed for the polynomial models, such as the

central composite design for second-order models. When the relationship between

the dependent variables and independent variables is not well fit by a second-order

model, transformations and/or higher-order terms are used in an attempt to improve

the fit. When a polynomial model is not sufficient, other models are used, such

as artificial neural networks and Gaussian processes. Special experimental designs,

including the Latin hypercube, have been proposed for nonpolynomial regression

models. Once a response surface model has been constructed with the available

data, it can be used to query the value of the dependent variables at locations where

observations are not available. This capability expedites the processes of exploring the

relationship between the independent variables and dependent variables, searching for

robust settings of the independent variables, and optimization.

For each technology development activity, all or a subset of the phases charac-

terization, control, and optimization should be pursued to gain knowledge about the

technology. Selecting appropriate experimental designs is a decision problem, and the

generic decision-making steps used in phase two have also been applied for the last

phase of activity design. The steps are shown at the far right in Fig. 7, and they must

be implemented for each activity at least once. The theme of the problem formulation

will virtually always be that an experimental design must be selected to maximize

43



the value of the activity while constrained by a resource budget. The decision crite-

ria selected in the second step quantitatively define the value of a DoE. The criteria

must be selected to correspond with the purpose of the activity. For example, a phys-

ical experiment may be conducted for the purpose of constructing a response surface

with low prediction uncertainty. In this example, an appropriate criterion would be

an estimate of prediction uncertainty obtained with an experimental design. Next,

feasible DoEs need to be generated. Many considerations can limit the feasibility of

the alternatives. For instance, a two-level fractional factorial is not a feasible design

for a second-order polynomial response surface model because at least three levels

are needed in each dimension for which second-order terms will be estimated. In the

fourth step, each alternative is evaluated by quantifying the decision criteria. Finally,

the preferred statistical design is selected in step five.

The proposed framework ends after a statistical design has been selected. Other

problem-dependent decisions need to be made about the details of execution, but

the critical characteristics have been determined by this point in the design of each

activity.

3.4 Case Study: AFC-Enhanced Vertical Tail Technology
Development

To provide an overview of how the proposed framework can be implemented, a case

study based on the AFC-enhanced vertical tail technology introduced in Sec. 1.2 is

presented here. The sequence of activities shown in Fig. 5 that were actually con-

ducted were evaluated within the proposed framework and modifications are suggested

based on the assessment.

3.4.1 Phase 1

It is apparent from Fig. 5 that the goal of developing the AFC technology was to

reduce cruise drag of a future LTA vehicle by 1.5%, which would contribute to the
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ERA fuel burn reduction goal. Thus, the motivation is directly linked with the

motivation of ERA, which is to reduce the impact of aviation on the environment.

The problem is to maximize uncertainty surrounding cruise drag, meet or exceed the

1.5% drag reduction goal, and mature the technology within resource constraints.

The activities that were actually conducted indicate that a maturation goal of TRL

6 was used. Following this problem formulation, the decision criteria for thought

experimentation would be cruise drag uncertainty reduction, cruise drag performance

improvement, TRL increase, and cost. However, there are other important sources

of uncertainty for this technology besides cruise drag reduction. A system integrator

would be interested in other impacts of the AFC technology as well, such as the weight

of the AFC architecture. The important impacts can be identified with a sensitivity

analysis.

Boeing conducted a system integration study for a three-member, twin-aisle air-

craft family where the family members with the shorter fuselages were assumed to be

the only members with sweep jet AFC systems [47]. The value of infusing AFC tech-

nology was quantified as net present value (NPV) for the manufacturer, the operator,

and total NPV. The impacts of the technology that were modeled included weight

increase of the AFC architecture, weight reduction of a reduced size vertical tail, AFC

system costs, vertical tail recurring cost reduction, nonrecurring costs, maintenance

costs, drag reduction, and specific fuel consumption (SFC) increase. Uncertainty

bounds were established for each of the impacts, and an NPV sensitivity analysis was

used to rank the sources of uncertainty by their contribution to total NPV. It was

clear from the results that the top four impacts, in order, were the drag impact, the

vertical tail recurring costs, SFC increase, and the weight impact. Since NPV is a

key figure of merit to the system integrator, a more appropriate problem formulation

in the proposed framework includes objectives to maximize uncertainty reduction

surrounding NPV, to meet or exceed one or more NPV goals (e.g., NPV ≥ 0), and
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to mature the technology within resource constraints. Also, the decision criteria list

would be expanded to include uncertainty reduction and performance improvement

for each of the important impacts. As can be seen in Fig. 5, the Boeing system in-

tegration study was conducted after sub-scale and full-scale wind tunnel experiments

had already been conducted. The study should have been conducted before either

of these activities so that the results could be used to inform the selection of the

activities.

The next step in the framework is to generate alternative activity portfolios. The

ranking of uncertainty sources from Boeing’s system integration study could have been

used to identify activity portfolios that would target the most important impacts. The

focus of the actual activities that were executed was to investigate vertical tail side

force enhancement with sweeping jet actuators. Since the side force enhancement

is directly linked with vertical tail area reduction, one could argue that uncertainty

reduction of side force enhancement contributed to uncertainty reduction of the drag

impact and weight reduction of the vertical tail. Additional activities should have

been proposed for targeting the SFC, vertical tail recurring cost, and AFC architecture

weight impacts. For example, computer-based studies could have been suggested to

estimate these impacts accurately and precisely, and to investigate ways to improve

performance for each of the impacts. The physical experiments that were conducted

could have been modified to target AFC architecture weight uncertainty by weighing

key components of the experimental equipment. Additionally, high-fidelity computer

experiments could have been proposed to explore a larger technology design space

than what was possible in the physical experiments. For instance, the impact of design

variables such as actuator spacing, actuator geometry, and vertical tail geometry on

side force enhancement could have been investigated computationally.

Once a set of alternative activity portfolios is generated, each alternative is evalu-

ated by qualitatively or quantitatively assigning a measure of each decision criterion
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to the portfolios. Alternatives that include computer-based studies in addition to

the physical experiments that were actually conducted would likely have been seen

by decision makers as adding value to the portfolio for a small cost penalty. Simi-

larly, minor modifications to the physical experiments may have resulted in negligible

consequences in terms of the resources required for the experiments. High-fidelity

computer experiments may have resulted in more substantial costs to pursue, but the

value of the knowledge gained from the activities would need to be weighed against

the costs by decision makers. To make a decision in the final step of the framework,

decision makers must balance these kinds of tradeoffs among the decision criteria to

arrive at the most preferred alternative. The more alternatives and decision criteria

that are involved, the more difficult this decision would be. Also, it is difficult to

assign measures of uncertainty reduction and performance improvement to each al-

ternative. Nevertheless, even qualitative considerations of the complete set of decision

criteria is an improvement on the current practices that focus on TRL.

3.4.2 Phase 2

In the second phase of the framework, each of the selected activities must be designed

in more detail. The wind tunnel experiments that were actually conducted were

designed well because they included variations of multiple independent variables.

A valuable but potentially expensive improvement for these activities would be to

take measurements using at least one additional vertical tail geometry. The decision

process in the framework could be applied to selecting a representative vertical tail

configuration that is perhaps designed for use with the AFC system. However, the

additional costs involved may have been prohibitive for physical experiment, but the

investigation would likely be deemed appropriate for a computer experiment. For any

computational activities that may have been selected in phase 1 using the framework,

the phase 2 decision process would be followed to select the appropriate computer

47



M&S environments, independent variables, and dependent variables.

3.4.3 Phase 3

In phase three, experimental designs must be selected for each activity. A small

subset of the data from the actual physical experiments that were conducted is pub-

lished, so it is impossible to thoroughly evaluate the DoEs that were used. However,

some suggestions can be made based on the DoE methodology. If at least one expen-

sive, high-fidelity computer experiment had been selected, it could have been used

for characterization with a fractional factorial design to identify the most important

independent variables that affect the side force enhancement of a vertical tail. Then,

the physical experiments could have been planned with statistical designs to facili-

tate response surface construction. The resulting response surfaces could be used for

determining independent variable settings for the best performance of the AFC tech-

nology and for validating computer model predictions. The DoE approach encourages

sequential experimentation, and these ideas could have been leveraged to better plan

not just the physical experiments independently but rather to link the experimental

designs to efficiently build knowledge as the complexity and scale of the experiments

increased. Similarly, the DoE approach could have been applied to computer-based

predictions for the SFC, vertical tail recurring cost, and AFC architecture weight

impacts for the purposes of characterization, design space exploration, and robust

design.

3.4.4 New Insights From the Framework

The overview of the implementation of the framework for the case study reveals

important insights for how the AFC technology development activities should have

been designed:

• The Boeing system integration study should have been conducted before the

physical experiments so that the activities could have been designed to target
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the most important sources of technology impact uncertainty.

• Additional computer-based development activities should have been proposed

to improve the value of the portfolio by increasing the potential of gaining

performance improvement and uncertainty reduction of the technology impacts.

• Additional vertical tail geometries should have been used in a physical or com-

puter experiment to investigate the effect of the vertical tail design on side for

enhancement, and the phase two decision process could have been applied for

designing the vertical tail model used in the experiments.

• In phase three, the DoE methodology of sequential experimentation should

have been leveraged to efficiently build knowledge of the technology impacts by

planning the experimental designs of multiple activities simultaneously.

It is impossible to quantify the added value of these suggested changes to the AFC

development program without the luxury of implementing them, but it is clear that

these modifications would have resulted in additional uncertainty reduction and po-

tentially more performance improvement while still graduating the technology to TRL

6.

3.5 Opportunities to Enhance the Proposed Framework

Although the proposed framework can be implemented as is by interpreting and

applying each of the steps for a given technology development program, there are

opportunities to enhance the framework by adding rigor to the decision making pro-

cesses that comprise the framework. In phase one, decision makers must evaluate each

of the activity portfolio alternatives by estimating the decision criteria measures and

mentally balance tradeoffs to arrive at a decision. A quantitative decision aid would

elucidate aspects of the decision process and provide a traceable tool for justifying
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the selection. In Chapter 4, a decision analysis methodology is proposed for quantita-

tively evaluating technology development activity portfolios in phase one. Phase two

is highly dependent on the type of activity being designed, but the selection process

for equipment and variables could also benefit from quantitative evaluation of alterna-

tives. In phase three, quantitative evaluation of experimental designs would be ideal.

However, this would require estimation of measures such as performance improvement

potential and uncertainty reduction potential. Also, the capability to quantify the

uncertainty surrounding technology impacts would be useful for supporting decisions

in phases one and three. Chapter 5 presents novel capabilities for characterizing the

uncertainty surrounding technology impacts and estimating the uncertainty reduc-

tion associated with a statistical experimental design. A methodology for the special

case of uncertainty characterization for a particular type of reliability development

activity is presented in Chapter 6.

In the following three chapters, the novel capabilities that are presented are in-

tended to provide quantitative components for the proposed framework to improve

the decision making process. In Chapter 7, the contributions are summarized, limita-

tions are enumerated, future research opportunities are discussed, and an overarching

thesis statement is presented for the framework.
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CHAPTER IV

MULTIATTRIBUTE UTILITY ANALYSIS FOR

EVALUATING TECHNOLOGY DEVELOPMENT

ACTIVITIES

In this chapter, the problem of how to inform decisions regarding the selection of

technology development activity classes before details of the activities have been

defined is confronted. Details of the problem are described in Sec. 4.1. Then, the state

of the art is identified and the foundation for an improved approach is established in

Sec. 4.2. Next, techniques from multiattribute utility analysis are incorporated and

the proposed methodology is formulated in Sec. 4.3. The primary argument is as

follows.

Argument 1: The proposed methodology improves upon the state of the art and is

an appropriate way to evaluate technology development activity alternatives because

1. It aggregates decision makers’ preferences, risk attitude, and system-level per-

formance goals in the analysis

2. It quantitatively represents uncertainty surrounding the impacts of the alter-

natives

3. It enables the quantitative evaluation of alternatives under conditions of risk

and uncertainty with a theoretically valid measure of value

An illustrative example is shown to support this claim in Sec. 4.4, and the chapter

closes with a discussion and conclusions in Sec. 4.5.
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4.1 Problem Definition

This section begins by introducing key assumptions that are made throughout this

chapter. Then, features of the problem addressed in this chapter are discussed.

4.1.1 Overarching Assumptions

It is assumed that a technology has or a set of technologies have been chosen for and

entered into a development program. If technology selection has been done properly,

this assumption implies that a system has been identified for technology infusion, the

important system-level metrics have been selected for defining the performance goals

and describing the performance gap, and the uncertainty surrounding the integra-

tion impacts has been represented mathematically. With a mathematical model of

the uncertainty surrounding technology impacts, an M&S environment, or surrogate

models of the environment, can be used to propagate technology-level uncertainty up

to system-level uncertainty. Given that such an M&S environment or surrogate mod-

els would have been built as part of the technology selection process, it is assumed

that this environment is available to analysts. Lastly, it is acknowledged that there

are proprietary best practices and methods for managing and planning technology

development programs. An assumption is made that this type of process is being

followed to manage programmatic risks. It is also assumed that any such process

includes a taxonomy of development activities to select from. For an example of

this type of process that is published in the open literature, the reader is referred

to Ref. [21]. The methods presented in this chapter are not meant to compete with

established procedures for managing the overall development program but rather to

enhance them.

4.1.2 Technology Development Activity Portfolio Selection

An important overarching assumption mentioned in Sec. 4.1.1 is that a taxonomy of

technology development activities exists in a given technology development program.
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For generality, a specific taxonomy will not be used here. However, classes of activities

that are likely to appear in any taxonomy will be mentioned throughout this chapter.

The more extensive and detailed the taxonomy, the more alternatives that will be

available to select from. Once a class of development activity is selected, there may

be subclasses to choose from as well. Then, many characteristics of the activity need

to be defined in later phases.

The component of the technology development activity design problem that is

the focus of this chapter is the selection or prioritization of activity classes, not the

detailed design of the activities. This corresponds with phase one in Fig. 7. Why is

this component the focus? Although many characteristics of technology development

activities must be nailed down to completely define them, the attributes of the activi-

ties that have important programmatic implications are largely determined when the

class of activity is selected. Analogously, when an architect designs the floor plan of a

building, he or she locks in a large percentage of construction costs before details such

as flooring material have been decided. Based on the literature, it is clear that some

of the most important attributes of technology development activities include uncer-

tainty reduction, performance improvement, maturation, and required resources. To

illustrate how the identification of activity class can bracket these attributes, consider

the differences between a numerical design space exploration activity and a full-scale

physical experiment. As notionally depicted in Fig. 10, the design space exploration

activity would likely shed light on ways to improve the performance of the technology

but not significantly reduce epistemic uncertainty, whereas the full-scale physical ex-

periment may not result in changes to the technology for performance improvement

but would primarily reduce epistemic uncertainty. Large differences are also present

in maturation and the amount of resources required. It is possible that experts would

decide that the physical experiment justifies a graduation of the technology to a higher

TRL, whereas, depending on the TRL definitions used, the design space exploration
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Figure 10: Notional depiction of where two types of technology development activities
will lie in the attribute space of uncertainty reduction and performance improvement.

activity may not be considered as a contributor to TRL progression whatsoever. In

terms of resources, costs associated with computational resources and man-hours re-

quired for design space exploration would almost certainly be dwarfed by the costs

incurred to build and execute a full-scale physical experiment.

This notional comparison helps to highlight a key characteristic of the problem,

which involves uncertainty surrounding the effects that a given technology develop-

ment activity class will have on important attributes. Existence of this uncertainty

is the reason Fig. 10 is drawn with ellipses instead of points for each activity. Design

space exploration can lead to performance improvement, but before conducting this

activity it is nearly impossible to know exactly how much performance improvement

is attainable. Similarly, if the full-scale experiment is the first time the technology will

be scaled up in an experiment, then technologists may discover that the technology

performs slightly worse or better than when observed at a smaller scale. This addi-

tional epistemic uncertainty will be present in all of the activity attributes, including

required resources. Thus, a solution to the activity selection problem must account

for this uncertainty.

Based on the discussion up to this point, the problem addressed in this chapter

can be summarized as follows. During the planning of a technology development
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Figure 11: Components of the decision problem that is addressed in this chapter.

program, decision makers must choose a set of classes of technology development

activities from an established taxonomy that will be associated with specific tech-

nologies. Each alternative will result in consequences for achieving the program goals

of uncertainty reduction, performance improvement, and maturation, as well as con-

sequences in terms of resource expenditure. However, decision makers cannot be

certain of precisely what consequences will result from each alternative. As stated

in Sec. 4.1.1, assumptions are made about the technology development program and

what resources are available to the decision makers. The primary research question

is:

Research Question 1.0: Given alternatives defined by combinations of technol-

ogy development activity classes and technologies, what is an appropriate way for

decision makers to evaluate the alternatives for downselection?

Figure 11 provides a graphical summary of the problem.
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4.2 Establishing a Decision Framework

Although selecting technology development activity classes is difficult and prior re-

searchers have pursued quantitative methods, the reader may still ask Why should

one expend the effort to use a quantitative decision aid? With any decision, one can

informally weigh tradeoffs in his or her mind, but it is believed that a more formal

approach to prioritizing alternatives is indispensable for two reasons. First, as argued

by Tversky and Kahneman [48] in their seminal paper, unaided humans use heuristic

principles that reduce the complexity of difficult judgment tasks under uncertainty,

which can lead to systematic errors in judgments. Similarly, in discussing the bene-

fits of a quantitative approach to rank ordering design alternatives, Hazelrigg stated

that “the comparison is generally too complex to make accurately and consistently

without the use of a mathematical value model, particularly given the presence of

uncertainty” [49]. Second, decisions regarding allocation of resources in a technology

development program often must be justified to stakeholders, the public, and others,

and quantitative analysis provides traceable, transparent decision support.

In this section, a foundation for the proposed methodology is formulated by syn-

thesizing the current state-of-the-art approach to the activity downselection problem

with additional elements from decision theory. First, the current state of the art is

described and gaps are identified to motivate the need for a novel approach. Then,

the decision-making process introduced as phase one in Sec. 3.1 is exploited to provide

the foundation for the methodology. This process is built upon for the problem of

interest by incorporating ideas from multiattribute utility theory (MAUT) and the

current state of the art in Sec. 4.3.

4.2.1 The Current State of the Art

Although the methodologies presented in Refs. [21, 26] are each unique, pertinent

steps for the activity selection problem have been extracted and combined. These
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steps include:

1. Conduct readiness risk assessments for all technologies.

2. Conduct sensitivity analysis for the contribution of each technology to system-

level metric probabilities of success.

3. Conduct sensitivity analysis for the contribution of each technology integration

impact to system-level metric variability.

4. Select technologies for development activities.

5. Select technology integration impacts to target.

6. Select classes of development activities and proceed with detailed design of

development activities.

The first step involves locating the technologies on a risk matrix with two axes: esti-

mated number of years until highest TRL is achieved and current TRL. Technologies

with the highest readiness risk are those that fall into a region of largest number of

years until highest TRL is achieved and lowest current TRL, whereas those with the

lowest readiness risk fall into the opposing corner of the matrix. The second step en-

tails conducting a sensitivity analysis that quantifies the contribution of integrating

each technology to variability of the probability of success (POS) for each system-

level metric. POS is quantified by propagating uncertainty surrounding technology

impacts to system-level metrics with an M&S environment, then calculating the prob-

ability of meeting or exceeding an established goal for each metric. A notional PDF

representing uncertainty surrounding fuel burn reduction is shown in Fig. 12. The

shaded region shows the area under the curve that meets or exceeds the established

goal of 2%; this is POS. The POS is affected by which technologies are integrated

with the aircraft, so sensitivities can be derived by calculating the POS with mul-

tiple combinations of the technologies in the development program. The third step
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Figure 12: Notional fuel burn reduction PDF showing probability of successfully
meeting to exceeding a goal of 2% as the gray area.

is a sensitivity analysis to quantify the contribution of each technology integration

impact to the variability of the system-level metrics. This can be accomplished by

using local or global sensitivity analysis methods. Local methods are typically based

on partial derivatives of model outputs with respect to model inputs around nominal

values, whereas global methods are based on statistical frameworks so that the entire

range of the inputs is considered in the analysis. Global methods are preferred for

the technology development context because they are capable of providing a decom-

position of system-level metric variance for a given probabilistic model of technology

integration impacts.

With sensitivity analysis results and readiness risk assessments available, tech-

nologies can be selected for development activities in step four. Technologies that

are preferred are those with a combination of relatively high readiness risk and large

contributions to POS and variability of the system-level metrics. Once technologies

have been selected for development activities, integration impacts for each technology

must be selected as targets for the activities in step five. Results from the sensitivity

analysis in step three are used to inform this selection. The final step of the selection

process is delegated to technologists, who must design the activities to target the
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integration impacts within the constraints of TRL definitions.

The methods that comprise the state of the art are beneficial for informing a

decision about which technologies and technology impacts to target with development

activities, but there are some shortcomings. Decision makers must first consider

tradeoffs between technologies based on a readiness risk description, the effect each

technology has on improving or degrading the POS for all system-level metrics, and

the effect each technology has on the uncertainty of all system-level metrics. Thus,

the decision makers have to analyze a space with two dimensions for readiness risk,∑q
i=1 gi dimensions for gi POS sensitivities for each of the q system-level metrics, and

q sensitivities for system-level metric variability. In total, that is a space of dimension

2+
∑q

i=1 gi+ q. Even with only one system-level metric and one performance goal for

that metric, the objective space would have four dimensions, and this neglects other

metrics that may be important, such as the projected costs of development activities

for each technology. Once technologies have been selected for development activities,

the decision makers must then analyze a smaller q-dimensional space with sensitivities

for system-level metric variability to decide which technology impacts to target with

development activities. Although multidimensional criteria spaces can complicate the

decision process, there are many techniques that have been proposed to handle these

kinds of problems, such as multiobjective genetic algorithms. However, a more critical

shortcoming of the state of the art is that it is not capable of quantitatively evaluating

alternatives like the notional set shown in Fig. 11. This is because the criteria of

readiness risk, POS sensitivity, and system-level metric uncertainty sensitivity are

invariant under different development activity classes; these criteria only quantify the

potential of any development action, targeting each technology and its impacts, to

have value. Thus, any two development activity packages that target the same set of

technology impacts would be considered to have equivalent value under the state-of-

the-art approach, despite the fact that the two packages may result in very different
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degrees of uncertainty reduction, performance improvement, etc.

4.2.2 A Decision-Making Process

Motivated by the need for a decision-based approach to selecting technology develop-

ment activity classes, the novel methodology is anchored in the decision-making steps

proposed in phase one of the novel framework for designing technology development

activities, which are repeated here:

1. Establish the motivation.

2. Formulate the problem.

3. Establish decision criteria.

4. Generate alternative activity portfolios.

5. Evaluate alternatives.

6. Select development activity portfolio.

The important inputs to this process are described in Sec. 4.1.1, but there may be

others depending on the technology. The first step of this process, establish the

motivation, is assumed to be part of any technology management method and was

discussed in the framework chapter. The second step is discussed in Sec. 4.1.2. The

third step entails choosing measures that quantify value to the decision makers so

that alternatives can be evaluated. This step is explored further in Sec. 4.3. The

fourth step requires that decision makers select the alternatives that will be consid-

ered in the decision analysis. The approach described in Sec. 4.2.1 is viewed as a

valid way to generate feasible alternatives. As part of this step, some technology

development activity classes may be filtered out based on objectives at a particular

point in a development program. For instance, if a decision maker wishes to only
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consider development activity classes that correspond with TRLs 4–6, then the num-

ber of feasible alternatives could be greatly reduced. In this chapter, it is assumed

that a set of feasible alternatives is available. Each alternative must be assigned a

measure of value in step five so that the decision makers can quantitatively evaluate

the alternatives to make an informed decision in the final step.

To better inform step six of the decision-making process, additional components

are needed for steps three and five. Evaluation of alternatives in step five requires

that a measure of value to the decision makers be established in step three. Ad-

ditionally, quantitative evaluation of alternatives implies that a way to model the

impacts of alternatives on the value measure is needed. These gaps in knowledge can

be summarized with the following research questions:

Research Question 1.1: How should the value of technology development activ-

ities be quantified?

Research Question 1.2: What is an appropriate way to model the impact of

technology development activities on a value measure before those activities have

been performed?

4.2.3 Selecting an Enabler From the Literature

In answering RQs 1.1 and 1.2, some characteristics of a solution were identified in

addition to those that are obvious from the problem definition. To answer RQ 1.1,

concerning how value should be quantified, a function was needed such that it ac-

curately represents the decision makers’ preferences over the consequence space. For

instance, a function could be defined to map uncertainty reduction to a measure of

value. This function must not be restricted to a linear form, as decision makers’ pref-

erences may, for example, initially increase quickly with more uncertainty reduction

and then level off. Regarding RQ 1.2, any solution must account for the uncertainty

surrounding the impacts of the development activities. As discussed previously, this
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implies that the consequences (attributes) cannot be known with certainty, and un-

certain consequences propagate to an uncertain value measure.

The solution characteristics helped with selecting an enabler. Most decision mak-

ing aids can be divided into multicriteria decision making (MCDM) methods and

MAUT methods. MCDM methods are employed for alternative selection when the

objective functions or attributes are deterministic and the decision maker’s value

function is implicit or not modeled at all, whereas MAUT is used when risk and un-

certainty are critical to the evaluation of alternatives and when a value function is

explicitly represented [50]. Because of these characteristics, MCDM techniques, such

as multicriteria optimization, were ruled out. For the discrete alternative problem

that is of interest here, analytic hierarchy process (AHP) [51]—which is sometimes

classified as a MAUT approach—and the traditional MAUT method of Keeney and

Raiffa [52] are two of the most mathematically-rigorous and commonly-used decision

aids. Incorporating uncertainty and risk into the decision analysis is an integral part of

MAUT, whereas the original formulation of AHP is deterministic. However, multiple

ways of adjusting AHP to model uncertainty have been proposed. The reader is re-

ferred to Lafleur [53] for an example and a history of modifications to AHP to account

for uncertainty. Loken et al. [54] applied MAUT and modified AHP methods to incor-

porate uncertainty in the process of local energy planning, and they concluded that

MAUT is better at handling uncertainties than any of the modified AHP methods.

Some researchers have published claims about the merits of both MAUT and AHP.

With regard to decision-based engineering design, Thurston asserted that “multiat-

tribute utility analysis is the tool best suited for making normative tradeoff decisions

which exhibit one or both of the following features; nonlinearity of preference over

an attribute range, and uncertainty which affects desirability (where that uncertainty

can be modeled probabilistically)” [55]. Also within the engineering design context,

Hazelrigg asserted that “Subject to the six axioms of [von Neumann-Morgenstern]
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vN-M utility, not only does the expected utility theorem provide a valid utility mea-

sure (that is, a valid measure for rank ordering design alternatives), it is the only

valid measure. All other measures are wrong (or equivalent)” [49]. On the opposing

side, Gass [56] provided arguments to refute criticisms of AHP and claimed that it

seems AHP has replaced MAUT and its variants in the realm of practical multicrite-

ria decision-making problems. MAUT was selected as the enabler for the technology

activity downselection problem primarily because MAUT provides a way to quantify

value under conditions of risk and uncertainty, whereas consensus has not even been

reached regarding how to augment AHP to handle uncertainties. For this reason,

another originally deterministic decision making tool called the technique for order

preference by similarity to ideal solution (TOPSIS) [57] was also judged to be an

inferior option.

4.3 Evaluating Alternatives With Multiattribute Utility Anal-
ysis

Multiattribute utility analysis is a normative decision-making approach, meaning that

its purpose is not to imitate an unaided human decision maker but rather to help

recognize a decision that is better than what the unaided decision maker may have

selected [55]. To overcome the problems of unaided human judgment, MAUT is based

on axioms of rational behavior [58]. Instead of quoting these abstract axioms directly,

an informal version from Keeney is presented here for ease of interpretation:

• (Generation of Alternatives). At least two alternatives can be specified.

• (Identification of Consequences). Possible consequences of each alternative can

be identified.

• (Quantification of Judgment). The relative likelihoods (i.e., probabilities) of

each possible consequence that could result from each alternative can be speci-

fied.
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• (Quantification of Preference). The relative desirability (i.e., utility) for all the

possible consequences of any alternative can be specified.

• (Comparison of Alternatives). If two alternatives would each result in the same

two possible consequences, the alternative yielding the higher chance of the

preferred consequence is preferred.

• (Transitivity of Preferences). If one alternative is preferred to a second alter-

native and if the second alternative is preferred to a third alternative, then the

first alternative is preferred to the third alternative.

• (Substitution of Consequences). If an alternative is modified by replacing one

of its consequences with a set of consequences and associated probabilities (i.e.,

a lottery) that is indifferent to the consequence being replaced, then the original

and the modified alternatives should be indifferent. [59]

The key result obtained from these axioms, called the expected utility theorem,

shows that the expected utility of an alternative is an indication of its desirability,

and that expected utility is a valid measure of value for ranking alternatives under

risk and uncertainty. The utility function is a scalar function that aggregates decision

makers’ preferences over all of the attributes as well as risk attitude.

To enable the decision-making process presented in Sec. 4.2.2 for the problem

of interest here, techniques were incorporated from MAUT in five steps, as shown

in Fig. 13. The first three steps correspond with step three of the decision-making

process, and the last two steps correspond with step five. The notation and termi-

nology used here is similar to that presented in one of the most popular references

for multiattribute utility analysis, the text by Keeney and Raiffa [52].
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Figure 13: The proposed methodology for evaluating alternatives with multiattribute
utility analysis.

4.3.1 Step One: Establish Objectives and Attributes

Establishing objectives typically involves an enumeration of the consequences of the

alternatives and ultimately selection of low-level objectives from a hierarchy. Detailed

guidelines for generating objectives are documented in the decision analysis literature

(e.g., see Ref. [59] for an overview) and are not presented here. Established objectives

must indicate direction of improvement, then attributes can be identified to measure

degrees to which the objectives are attained. For instance, decision makers may

wish to “maximize uncertainty reduction” as an objective. The attribute in this

example is a measure of uncertainty reduction. Goals are different from objectives

and attributes in that they are either achieved or not. For example, a goal would be

to “reduce uncertainty by 10%”.

Some researchers would contend that the primary objective of technology develop-

ment is knowledge creation, with no specific objectives for improving the performance
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of systems that are integrated with the technologies. However, many decision mak-

ers may view technology development similarly to how Bigwood views what he calls

“new technology exploitation”, which “lies in a gray area between [new product de-

velopment] NPD and pure science, borrowing from the former the intent to produce

something useful while exploiting the basic principles uncovered by the latter” [60].

Therefore, at a minimum, objectives concerning performance improvement, uncer-

tainty reduction, and cost should be defined. In this formulation, attributes are

suggested for uncertainty reduction, system-level performance, and cost.

4.3.1.1 Uncertainty Reduction

Two of the most commonly used measures of uncertainty for random variables are

variance and entropy, defined for a random variable Y respectively as:

Var(Y ) = E
[
(Y − EY )2

]
(2)

h(Y ) = −
∫
R
p(y) log p(y) dy (3)

where, E[·] is the expectation operator, and p(y) is the PDF of Y . Decision makers

are likely to be concerned with the uncertainty surrounding a set of system-level met-

rics (M1,M2, . . . ,Mq) rather than the lower-level technology impacts. The simplest

approach to using variance as a measure of uncertainty in this case is to calculate the

variance of all q marginal distributions using Eq. (2). A drawback of this approach is

that q attributes would result, and decision makers would then need to create q utility

functions. Equation (3) can be generalized to produce a single uncertainty measure

for a random vector, but variance is likely to be a more intuitive measure for decision

makers whom may not be familiar with information theory. In lieu of using q different

uncertainty reduction attributes derived from the variance of the system-level metric

marginal distributions, aggregate variance measures can be defined. In this chapter,
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the following average variance reduction attribute is used:

Average Variance Reduction (%) = 100

(
1− 1

q

q∑
i=1

Var(Mi)

Var(MiPresent
)

)
(4)

where, MiPresent
represents the system-level metric random variable Mi defined under

the present state of uncertainty.

4.3.1.2 System-Level Performance

Within the technology infusion literature, each system-level metric has an associated

goal value used to calculate POS. Thus, an obvious choice for an objective is to

maximize POS for all metrics. The corresponding attributes would simply be q POS

probabilities. Depending on the nature of each metric, decision makers might wish

to use more than one goal for some. As an example, consider aircraft fuel burn

reduction, for which there is a goal of meeting or exceeding 2% with some probability.

In addition to this goal, decision makers also want to see a very high probability of

fuel burn reduction exceeding a lower bound, such as 0.5%. Again, as the number

of attributes grows, the number of utility functions grows. In addition to lowering

the difficulty of quantifying preferences, a minimal set of attributes diminishes the

possibility of violating independence conditions of utility theory, which will be briefly

described in the third step.

To provide decision makers with flexibility in establishing system-level perfor-

mance objectives, an attribute was formulated that incorporates specific POS goals.

It is assumed that decision makers wish to meet all POS goals simultaneously. The

idea is to first determine a target joint probability distribution on technology impacts

that can be propagated to the system-level metrics and will simultaneously meet all

of the stated POS goals, then to calculate the probability that the joint distribution

representing the state of uncertainty under the alternatives will meet or exceed the

performance of the target distribution.
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To produce a single attribute instead of one for each system-level metric, a com-

posite function D called a desirability function is used [61]:

D = (d1
w1d2

w2 · · · dqwq)
1∑
wi , wi > 0 (5)

where, di is a desirability function corresponding with system-level metric Mi, and wi

is a weight that represents the relative importance of each system-level metric. Each

desirability function is a transformation from a system-level metric to a desirability

value between 0 and 1, with a value of 1 being the most desirable. The form of Eq. (5)

follows a weighted geometric mean, and this form has the important property that

D = 0 if any di = 0. Following the popular approach of Derringer and Suich [62], the

transformation for a metric to be maximized is:

di =


0 Mi ≤Mi∗(
Mi−Mi∗
Mi

∗−Mi∗

)ri
Mi∗ < Mi < Mi

∗

1 Mi ≥Mi
∗

(6)

where, Mi∗ is the minimum acceptable value of Mi, Mi
∗ is the value of Mi above which

there is no additional value, and ri is a parameter that controls the behavior of the

desirability function in the interval (Mi∗,Mi
∗). Note that the case of minimization

of Mi is equivalent to maximization of −Mi. There is another desirability function

form for achieving a target value, but it will not be discussed here since system-

level performance objectives are virtually always concerned with minimization or

maximization. Figure 14 shows a plot of Eq. (6) for multiple values of ri.

The interpretation of desirability functions is the same as utility functions, and

some of their mathematical characteristics represent decision makers’ risk attitude.

One of the results of utility theory is that a strictly concave utility function represents

a risk-averse attitude, a strictly convex utility function represents a risk-prone atti-

tude, and a linear utility function represents a risk-neutral attitude. Therefore, the
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Figure 14: Plot of desirability functions for five values of ri.

desirability function parameter ri controls the implied risk attitude of the decision

maker in the interval (Mi∗,Mi
∗).

Once the desirability functions di and weights wi are specified, all POS goals must

be propagated to the composite desirability D. Unfortunately, it is not possible to

analytically propagate the POS goals to D. A solution to this problem is to find a joint

distribution on the system-level metrics that meets the POS goals, then to propagate

this distribution to composite desirability. For a finite number of POS goals, there

is an infinite number of distributions that can meet the goals simultaneously. One

way to constrain the search space is to require that this distribution be technically

feasible within reasonable bounds of technology impact uncertainty. Here, a “feasible”

distribution is one that is defined on the technology impact variables within a set

domain such that it can be propagated, via M&S, to the system-level metrics and

will simultaneously meet all of the POS goals. A technique for finding a feasible

distribution is described in Sec. 4.3.2. Once this distribution is found, the system-level

performance attribute can be defined as the probability of the desirability quantified

for the state of uncertainty under the alternatives being greater than or equal to the

desirability under the target distribution: P (D ≥ DTarget).

Other attributes can be derived that are also based on POS goals. For instance,
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the probabilities of meeting or exceeding each individual system-level metric goal

can be calculated and multiplied to produce a single attribute. Some alternative

formulations may be simpler to implement, but ultimately the selection should be

based on how easily the attribute can be interpreted by the decision makers. Note

that the step described in Sec. 4.3.2 is not necessary if an alternative performance

attribute is used.

4.3.1.3 Cost

There are many ways that the cost to conduct technology development activities can

be mathematically represented. Any valid representation may be used in a utility

analysis, so long as the resulting attribute is meaningful to decision makers. Through-

out this chapter, the cost attribute used is percentage of the available budget.

4.3.2 Step Two: Conduct Probabilistic Inversion

The state of the art for finding a feasible target distribution is a set of algorithms for

a generic problem called probabilistic inversion. Within the technology development

context, the idea behind probabilistic inversion is as follows: given a random vector

of system-level metrics M ∈ Rq and an M&S environment f : Rl → Rq, find a joint

distribution on the technology impacts k ∈ Rl such that f(k) ∼M, where ∼ indicates

identical distributions. In practice the joint distribution on M is characterized with

a set of quantiles for each of the marginal distributions on the q system-level metrics;

these are the POS goals. Since it can be difficult or impossible to invert the model f ,

probabilistic inversion algorithms that do not require model inversion are preferred.

Algorithms called Iterative Proportional Fitting (IPF) [63] and PARameter Fitting

for Uncertain Models (PARFUM) [64] have been fused with an idea called sample re-

weighting to produce techniques for generic probabilistic inversion that do not require

model inversion [65]. To illustrate the steps of probabilistic inversion, a notional AFC

technology example is used.
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4.3.2.1 Specify Uncertain Model Input Variables and Ranges

Uncertain model inputs that represent technology impacts have been referred to as

“k-factors” by some authors (e.g., see Ref. [16]). As an example of how these impacts

are implemented, consider the Breguet range equation rearranged to calculate aircraft

fuel burn:

WF = kWE
WE

[
exp

(
RkCD

CDct
CLV∞

)
− 1

]
(7)

where, WE is the empty weight of the aircraft, R is range, CD is the aircraft drag

coefficient, ct is thrust-specific fuel consumption, CL is the aircraft lift coefficient, and

V∞ is cruise velocity. Supposing that the AFC technology helps reduce wing drag, a

variable is required for modeling this impact. Also, AFC technologies need a power

supply architecture to supply flow or electricity to the actuators, and this additional

equipment will add weight to the vehicle. Thus, the k-factors kCD
and kWE

were

added to the equation to model AFC technology impacts of drag change and weight

change, respectively. These are the uncertain model input variables for this example.

After specifying the input variables, the ranges of each must be defined. This

is accomplished in the technology development context by considering physical con-

straints on the variables and determining reasonable domains of uncertainty. For the

AFC technology example, suppose that the ranges have been defined as [0.97, 1.0] for

kCD
and [1.0, 1.03] for kWE

.

4.3.2.2 Specify Output Variables and Marginal Distribution Quantiles

In the technology development context, the output variables are the system-level

metrics of interest M. Quantiles are required for each model output variable, and

these quantiles serve as constraints for the probabilistic inversion algorithms. As

previously mentioned, for technology development the quantiles are defined by the

system-level goals for POS. Specification of the quantiles entails enumeration of sets

of pairs of values for each output variable. Each pair contains the quantile Q and a
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probability π, where Q(π) = {m |P(M ≤ m) = π}.

For the AFC technology example, suppose that the output variables are fuel burn

of three different aircraft, and the system-level metrics are percentage reduction of

fuel burn for each. For simplicity, it was assumed that the k-factors are identical for all

three aircraft. The constant variables in Eq. (7) are shown in Table 3 for each aircraft.

The quantiles are identical for all three aircraft, and they include {0.01, 0.5%} and

{0.5, 1.0%}, where the first number in each pair is the probability π, and the second

number is the quantile Q.

Table 3: Breguet range equation constants for the three aircraft in the notional AFC
example

Variable Aircraft 1 Aircraft 2 Aircraft 3
WE (lb) 524,000 149,300 330,000
R (nmi) 5700 1600 3700
CL/CD 19 17 18
ct (1/hr) 0.5 0.5 0.5
V∞ (ft/s) 832 760 779

4.3.2.3 Generate Samples

Probabilistic inversion requires that samples be generated in the input variable do-

main, then propagated to a joint distribution on the output variables. To the best of

the author’s knowledge, there is not any guidance in the literature regarding how the

samples should be generated. A common approach is to sample from independent

uniform distributions on each input variable. With samples generated in the input

variable domain, the propagation task is accomplished by uncertainty propagation

to the system-level metrics. There are many uncertainty propagation techniques in

the literature (e.g., see Ref. [66]), but when samples are inexpensive to generate with

a rapidly executed M&S environment or surrogate models of it, Monte Carlo simu-

lation provides accurate results with a relatively large sample size. Mathematically,

the uncertainty propagation task entails computation of the joint cumulative distri-

bution function (CDF) for the system-level metrics (the model outputs) given the
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input variable joint distribution:

P(M ≤m) = P(f(k) ≤m)

= P(f(k) ∈ C)

= P(k ∈ f−1(C))

=

∫
f−1(C)

p(k) dk

(8)

where, C = {x |xi ∈ (−∞,mi], i = 1, 2, . . . , q}, p(k) is the joint PDF on the k-factors,

and f−1(·) is the preimage of the M&S environment.

In the AFC example, the samples were generated from the following indepen-

dent uniform distributions: kCD
∼ Uniform(0.97, 1.0) and kWE

∼ Uniform(1.0, 1.03).

Then, Monte Carlo simulation was used to propagate the samples through Eq. (7)

for all three aircraft.

4.3.2.4 Conduct Sample Re-Weighting

Once the samples are generated for the input variables and propagated to the output

variables, they must be assigned initial probability weights. The approach used in

the probabilistic inversion literature is to assign all samples weights according to a

discrete uniform distribution, i.e., for N samples a weight of 1/N would be assigned

to all samples. For technology development, another option is to use initial weights

from the joint distribution on the k-factors that represents the present state of uncer-

tainty. Then, PARFUM or IPF is used to re-weight the samples so that the quantile

constraints are met. If the problem is feasible, then the quantile constraints will be

met within a specified tolerance. If the problem is infeasible, then PARFUM will pro-

vide a solution such that the quantile constraints are met as closely as possible. To

measure “closeness”, Kullback-Leibler (KL) distance between two probability mass

functions R(y) and K(y) is used:

DKL(R||K) =
∑
y∈Y

R(y) log
R(y)

K(y)
(9)
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where, Y is the support of the random variable Y . The value of DKL(R||K) is always

nonnegative and is zero if and only if R = K [67]. When the logarithm to base 2 is

used in this equation the units are bits, whereas the units are nats when the natural

logarithm is used. Eq. (9) is used to measure the “distance” between the desired

quantiles and those obtained from the sample. A feasible probabilistic inversion

problem will result in KL distance at or close to zero. In the case of an infeasible

problem, PARFUM will minimize the KL distance, whereas the convergence behavior

of IPF is not as predictable. IPF has been show to converge more quickly than

PARFUM, but the speed of both is not a practical concern with modern computers.

For the application of interest here, it is important that the probabilistic inversion

problem be a feasible problem so that the quantile constraints are met. If it is not

feasible, then the bounds on the k-factors and/or the desired quantiles for the system-

level metrics may need to be adjusted. An exploratory analysis of the system-level

metric samples can be used to quickly determine whether the desired quantiles are

feasible given the k-factor bounds. Also, increasing the sample size can help in some

cases. Once a feasible problem is established, it is possible that IPF and PARFUM

will produce different solutions. If this is the case, then the solution that is closer

to that which characterizes the present state of uncertainty may be preferred by an

analyst. Csiszar [68] showed that IPF is capable of converging to the distribution

that has minimum KL distance relative to the initial distribution out of the set of

distributions that meet the quantile constraints. PARFUM has not been shown to

share this property with IPF. For a thorough illustration and comparison of the two

algorithms, the reader is referred to Ref. [69].

The k-factor samples for the AFC example are shown in Fig. 15a. Since N =

5,000 was used, each sample had an initial weight of 1/5,000. The resulting discrete

distribution after applying the IPF algorithm for sample re-weighting is shown in

Fig. 15b. This figure shows how the weights were changed after running IPF until
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(a) Initial sample probability weights (b) Probability weights after IPF

Figure 15: k-factor samples before and after probabilistic inversion for the notional
AFC example.
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Figure 16: CDFs for the notional AFC example before and after probabilistic inver-
sion.

the KL distance between the desired quantiles and the solution was 1E-8. When

propagated to the fuel burn metrics, this proabilistic inversion solution meets the

quantile constraints. Evidence of this is shown for all three aircraft in Fig. 16. The

CDFs before probabilistic inversion do not meet the quantile constraints, which are

drawn as dotted lines, whereas the solution after probabilistic inversion aligns with

the constraints.

4.3.3 Step Three: Create Value Model

This step comprises the creation of a model of the decision makers’ value that can

be used to evaluate the alternatives. To accomplish this, Keeney [59] proposed a
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five-step process. Each of these steps is briefly described here.

4.3.3.1 Introduce Nomenclature and Concepts

To conduct a decision analysis properly, decision makers must be educated to under-

stand terms and concepts that are necessary for communicating their preferences. Of

particular importance is that the decision makers have a thorough understanding of

the attributes, the corresponding objectives, and the approach to modeling impacts

of the alternatives on the attributes. The analyst must also ensure that the decision

makers know there are no right or wrong preferences and that the model of their

preferences can be modified at any time during the analysis.

4.3.3.2 Determine the Form of the Multiattribute Utility Function

The analyst has to determine the form of the multiattribute utility function by deter-

mining which of three value independence conditions hold: preferential independence,

utility independence, and additive independence. Preferential independence means

that the decision makers’ rank ordering of preferences for any single attribute is in-

dependent of the fixed values of all other attributes. Preferential independence is

implied by utility independence, so preferential independence need not be tested if

utility independence is satisfied. Utility independence between two attributes X1 and

X2 means that the degree of risk aversion encoded in the utility function of X1 for a

fixed setting of X2 does not depend on the value of that fixed setting. The test for

utility independence is shown in Fig. 17. In this figure the subscripts A, B, and C

indicate different levels of the attributes. Note that utility independence and prefer-

ential independence conditions lack a reflexive property, meaning, for example, that

X1 being utility independent of X2 does not imply that X2 is utility independent

of X1. All attributes in a decision analysis are mutually utility independent if all

subsets of {X1, X2, . . . , Xl} are utility independent of the complement of each [52].

If attributes X1, X2, . . . , Xl are mutually independent, then the appropriate form of
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Figure 17: A test to determine if X1 is utility independent of X2 (adapted from
Ref. [55]).

the multiattribute utility function is the multiplicative form, defined as:

U(x) =
1

K

[[
l∏

i=1

(KλiUi(xi) + 1)

]
− 1

]
(10)

where, U(x) is the overall utility, scaled from 0 to 1, for the attribute vector x =

(x1, x2, . . . , xl); xi is the level of attribute Xi; the Ui(xi) are single-attribute utility

functions, also scaled from 0 to 1; the λi are single-attribute scaling constants; and

K is a normalizing constant that ensures the range of U(x) is 0–1. By enforcing that

U(x∗) = 1 and all Ui(x
∗
i ) = 1 when the attributes are at the best levels x∗, Eq. (10)

reduces to an equation that can be used to solve for K:

K + 1 =
l∏

i=1

(Kλi + 1) (11)

A simpler form of the multiattribute utility function is used when the additive inde-

pendence condition in Fig. 18 is also satisfied. Again, in this figure the subscripts A

and B indicate different levels of the attributes. The additive form is

U(x) =
l∑

i=1

λiUi(xi) (12)

77



Figure 18: A test for additive independence between X1 and X2 (adapted from
Ref. [55]).

Note that the single-attribute scaling constants are denoted by λi instead of ki, which

is the notation commonly found in the literature. This is done here to avoid confusion

with k-factors.

One of the reasons that as few attributes as possible should be used is to mini-

mize the number of independence conditions that must be checked. Practitioners of

utility analysis have documented claims that in most practical problems attributes

will fail the test for additive independence. This is likely to be the case for technol-

ogy development activity downselection as well. It is more difficult to make general

statements about mutual utility independence for all attributes. For example, some

decision makers’ preference for cost risk aversion may be dependent on the level of

uncertainty reduction achieved, and the test in Fig. 17 for these two attributes may

be negative. If this is the case, it may still be possible to construct a multiattribute

utility function, but the form of the function will be more complex and require elici-

tation of many more preferences over the consequence space. Keeney and Raiffa [52]

proposed multiple options for a case of utility dependence. One of the simplest meth-

ods is to aggregate the attributes into one. This could be done with the attributes

of cost, uncertainty reduction, and system-level performance by, for example, multi-

plying or summing normalized versions of the three. Then, there would not be any
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independence conditions to check and only one utility function to assess, but the at-

tribute might be more difficult for decision makers to understand and make preference

statements for.

After selecting a multiattribute utility function, one might be tempted to interpret

the scaling constants λi as indicators of relative attribute importance. Keeney and

Raiffa [52] stressed that the scaling constants cannot be interpreted this way. For

example, if λUncertainty = 0.75 and λCost = 0.25, it cannot be concluded that uncer-

tainty reduction is three times more important than cost. This is because changing

the ranges of one attribute could result in scaling constants that would lead to a com-

pletely different interpretation of importance. What can be said about the scaling

constants is that they indicate which attributes the decision makers would prefer to

see improvements in. For instance, if the decision makers would prefer to see the level

of uncertainty reduction shift from the lower bound to the upper bound than cost

shift from the lower bound to the upper bound, then λUncertainty > λCost.

4.3.3.3 Elicit Single-Attribute Utility Functions

Procedures for eliciting decision makers’ preferences over single attributes and mul-

tiple attributes are abundant in the literature. A summary of the general process is

discussed here.

Before beginning the assessment, the analyst must specify bounds on the at-

tributes. The bounds can be global, best and worst expected, or acceptable. As

an example, global bounds of 0 and 1 are appropriate for the proposed system-level

attribute P(D ≥ DTarget) because it is a probability. For cost as a percentage of bud-

get, the analyst may decide to limit the range to 60%, for example, if none of the

alternatives are expected to reach that level of cost. Once the attribute bounds have

been established, the next task is to assess the decision makers’ risk attitude. To be

clear, risk aversion in MAUT means that decision makers always prefer a consequence
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xA+xB

2
with probability 1 to a lottery yielding xA with probability 0.5 and xB with

probability 0.5, where A and B indicate low and high levels of the attribute X. This

means that the decision makers would rather accept the average of the two attribute

values than participate in a 50-50 gamble that could result in either the better or

worse consequence. Risk prone decision makers would prefer the opposite.

The standard approach to eliciting risk attitudes is to use a series of questions re-

garding lotteries. Decision makers can exhibit different degrees of risk aversion/proneness

depending on what region of the attribute range the lottery questions pertain to. In

his seminal paper, Pratt [70] argued that decision makers’ risk attitude over the

attributes restricts the functional form of the single-attribute utility functions. To

measure the local risk aversion of a risk averse utility function, he proposed the func-

tion

γ(x) = −U
′′
i (x)

U ′i(x)
(13)

Lottery questions form the basis for building utility functions, but analytical func-

tions are typically selected and then fit to particular points over the attribute range.

Although many functional forms for utility functions can be considered, an exponen-

tial form is often used because it models constant risk aversion/proneness over the

attribute range. An example is the form

U(x) = a+ becx (14)

where, c captures the degree of risk aversion/proneness, and a and b are constants

that ensure Ui(x) is normalized between 0 and 1. Note that for this exponential

form, γ(x) = −c. If c > 0 and utility increases with the attribute, then γ(x) is

negative for all x indicating a convex utility function with constant risk proneness.

If c < 0 and utility increases with increasing attribute level, then γ(x) is positive for

all x indicating a concave utility function with constant risk aversion. For a utility

function that decreases with increasing attribute level, the negative is dropped in
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Figure 19: An example of a lottery question for building the single-attribute utility
function for cost.

Eq. (13), and the inequalities for c are reversed.

After selecting the form of the utility function, the constants must be determined.

For instance, the constants in Eq. (14) would be found by eliciting three points on the

utility function to provide three independent equations, then simultaneously solving

the three equations. Suppose that this process is followed for the attribute cost,

as a percentage of total budget, and bounds have been set at 0% and 100%. The

utility function would be anchored at the lower and upper bounds as UCost(0%) = 1

and UCost(100%) = 0 to provide two equations. The third equation is then found

by first asking the decision makers a lottery question about what their indifference

probability πCost is, which is illustrated in Fig. 19. The indifference probability is

that at which the decision makers are indifferent between a cost of 50% of the budget

with probability 1 and a lottery in which there is a πCost probability of the cost being

0% and a 1 − πCost probability of the cost being 100%. Then, because the decision

makers are indifferent between the two options, the expected utilities are set equal:

UCost(50%) = πCostUCost(0%) + (1− πCost)UCost(100%).

4.3.3.4 Determine Scaling Constants

To solve for the scaling constants λi in Eq. (10) or (12), a system of l independent equa-

tions is needed. Certainty scaling, probabilistic scaling, or a combination of the two

can be used to generate the set of equations. Certainty scaling entails identification of

two levels of all attributes that are considered indifferent and equating the utilities at

those levels. For two attributes, this would mean that levels A and B need to be found
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such that U(x1A
, x2A

) = U(x1B
, x2B

). Probabilistic scaling involves a lottery question

with all attributes to find an indifference probability. In the case of two attributes, an

indifference probability π1 must be found so that (x1B
, x2A

) with certainty is indifferent

to a lottery with π1 probability of (x1B
, x2B

) and 1−π1 probability of (x1A
, x2A

). Then,

the expected utilities are equated: U(x1B
, x2A

) = π1U(x1B
, x2B

)+(1− π1)U(x1A
, x2A

).

If Eq. (10) is used for the multiattribute utility function, then the normalizing con-

stant K is solved for using Eq. (11) after the scaling constants have been determined.

4.3.3.5 Check for Consistency

After the multiattribute utility function has been constructed, the final step is to test

for consistency of the utility function. Tests for consistency are capable of revealing

whether the utility function properly represents decision makers’ preferences. This is

an important step because the efficacy of evaluating alternatives with MAUT hinges

on the accuracy of the utility function. Keeney and Raiffa [52] suggested three con-

sistency checks. One check entails pairwise comparisons of points in the consequence

space to make sure that the preferred points have higher utility than the less preferred

points. Another check involves lottery questions to determine whether the decision

makers are risk averse/prone along multiple vectors in the consequence space. The

third consistency check is to use lottery questions to ensure the appropriate sign of

the scaling constants.

If any consistency checks are failed, the decision makers should be made aware of

this and at least part of the elicitation procedure repeated. If the decision makers are

unsure about some of their preference statements, sensitivity analysis can be used to

study the effects of their uncertainty on the valuation of alternatives.

At this point in the formulation, it is appropriate to mention how the preference

elicitation process can be implemented when multiple decision makers are involved.

One relatively complex approach is to aggregate the utilities of multiple decision
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makers with a group utility function that requires additional value assessments to

quantify the relative importance of each decision maker. The reader is referred to

Refs. [71, 72, 52] for details of the elicitation process for a group utility function. A

simpler approach is to elicit utility functions from the group of decision makers, treat-

ing the group as an individual decision maker. The potential issue with this technique

is that consensus may not be reached with the group. Finally, the utility analysis

can be conducted for each decision maker individually. In the ideal scenario, the top

alternatives will be common to all decision makers, or at least some dominated alter-

natives can be removed from the set. With this approach, sources of conflict between

the assessments of each decision maker can be identified to stimulate discussion and

adjust the assessments, ultimately converging on a single ranking of alternatives.

4.3.4 Step Four: Model Impacts of Alternatives

Up to this point in the formulation, RQ 1.1 has been addressed. Steps four and five

address RQ 1.2. As previously mentioned, one of the overarching assumptions is that

a probabilistic model of technology impacts, also referred to as k-factors, exists. To

model the effects of technology development activities on the probabilistic model,

mathematical operations that map these effects to changes in the characteristics of

the joint distribution are needed. Following the rationale for the objectives and at-

tributes defined in Sec. 4.3.1, the primary effects that are of interest at the technology

level are uncertainty reduction and performance change, as these will directly affect

the attributes for system-level uncertainty reduction and system-level performance.

Additionally, the cost for each activity needs to be estimated.

If a parametric distribution is used to characterize the technology-level uncer-

tainty, then it is possible to model the effects of technology development activities by

modifying the parameters of the distribution. As an example, suppose that the k-

factor uncertainty is represented by a multivariate normal distribution: k ∼ N(µ,Σ),
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where, µ is the vector of mean values and Σ is the covariance matrix. To implement

a change in the mean of any technology impact ki, one could add a constant δi to

the corresponding element in the mean vector µi. For a change in variance, a new

variance value Σii would be substituted in the covariance matrix. Modeling these

impacts is simple for the multivariate normal distribution, but the majority of para-

metric distributions do have parameters that are as easily interpreted. Besides, it is

possible that a nonparametric distribution characterizes uncertainty. This would be

the case if the k-factor distribution is quantified by Monte Carlo simulation. Then,

there would not be any parameters to vary the characteristics of the distribution with

but rather one would have to resort to operations on the sample.

To build a more widely applicable methodology it was decided that an approach for

modeling the effects of technology development activities on the k-factors was needed

that can accommodate both parametric and nonparametric distributions. From prob-

ability theory, it is know that adding a constant δ to a random variable k results in a

translation of the mean by that constant amount: E[k+ δ] = E[k] + δ. Based on this

result, it was decided to model performance change as a translation of the distribution

on the k-factors. Variance change is more complicated. If a random variable k is mul-

tiplied by a constant α, the variance is changed to Var(αk) = α2Var(k), but the mean

is affected as well: E[αk] = αE[k]. Ideally, the translation of mean and change in

variance can be implemented independently, so a method called the mean-preserving

transformation [73] was borrowed from the operations research literature for model-

ing variance change. To simultaneously model performance translation and variance

change for a joint k-factor distribution, the following equation has been derived:

kTransformed = α ◦ k + (1−α) ◦ E[k]︸ ︷︷ ︸
mean-preserving transformation

+ δ︸︷︷︸
mean translation

(15)

where, kTransformed is the transformed distribution on the k-factors, α is a vector of

variance-scaling parameters, δ is a vector of mean-translating parameters, and the
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symbol ◦ denotes the Hadamard product (element-wise multiplication). The effect

of α is found by deriving the variance of the marginal distributions of kTransformed:

Var (kiTransformed
) = α2

iVar(ki). Thus, if αi < 1, the variance of ki is reduced, and the

variance is increased for αi > 1. The means, however, are translated by δ and not

affected by α: E [kiTransformed
] = E[ki] + δi.

Note that the dependence characteristics of the joint distribution will not neces-

sarily be maintained after scaling variance. As an example of this, consider a joint

distribution on two k-factors with the variance of one of the variables scaled. It can

be shown that the covariance of the two k-factors after transforming one of them is:

cov (k1Transformed
, k2) = α1cov (k1, k2). Hence, if variance reduction is implemented by

setting α1 to a value less than one, then the covariance will be reduced as well. This

effect is one of the drawbacks of the proposed approach, but it is a necessity if each

component of k is to be transformed independently.

4.3.4.1 Probability Distribution Elicitation Methods From the Literature

Determining the mapping between technology development activities and α, δ, and

cost requires input from technologists who are familiar with the technology and the

alternatives that are being considered. Since the purpose of this methodology is to

support decisions before the activities have been designed in detail, it is unlikely that

any of the mean-translation parameters, variance-scaling parameters, or costs can be

specified with certainty. To represent the epistemic uncertainty surrounding these

variables, probability distributions should be elicited from technologists. When the

variables are treated independently, elicitation would typically entail the technologist

first identifying multiple probabilities over intervals or multiple quantiles of their sub-

jective distributions. Then, either parametric or nonparametric distributions would

be fit to the summaries provided by the technologist. Finally, consistency checks

are used to determine how well the fitted distributions agree with the technologist’s
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opinions. The elicitation process is more complicated when there are dependencies be-

tween the activity impacts. For instance, performance translations could be positively

correlated with cost. A vast literature exists regarding the elicitation of probabilities.

The reader is referred to the paper by Garthwaite et al. [74] for a review of the state

of the art. When probabilities must be elicited from multiple technologists, the ap-

proach taken depends on whether the technologists interact or not during elicitation.

If they do not interact, then separate elicitation sessions occur for each technologist,

and the results are aggregated using weighted combinations of each technologist’s

probabilities. If the technologists interact, then the typical elicitation approach is to

facilitate a discussion between the technologists in an attempt to reach a consensus

view. The reader is referred to the seminal paper by Genest and Zidek [75] for a

review and critique of techniques for combining probability distributions.

It should be noted that scaling the variance of k-factors to model epistemic un-

certainty reduction is not entirely appropriate if the joint distribution is composed of

aleatory and epistemic uncertainties. If it is possible to decompose the distribution

into epistemic and aleatory sources, then one way around this is to scale only the

epistemic component.

4.3.5 Step Five: Quantify Expected Utility for Each Alternative

With a multiattribute utility function constructed and the effects of all alternatives

mathematically represented as cost and changes to the technology impact distribu-

tions, distributions on overall utility must be characterized for each alternative. This

is an uncertainty propagation problem with multiple layers, as shown notionally with

two k-factors and two system-level metrics in Fig. 20. First, distributions on δ and

α are sampled to generate multiple distributions on k. Each sample from the δ

and α distributions corresponds with a joint k-factor distribution that has trans-

lated means and scaled marginal variances. Next, each of the distributions on k is
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propagated through the M&S environment to produce a series of joint distributions

on the system-level metrics M. Then, each joint distribution on M is evaluated in

terms of performance and variance reduction to ultimately generate distributions on

P (D ≥ DTarget) and average variance reduction. The distributions on all three at-

tributes are then propagated to distributions on each of the single-attribute utility

functions. Finally, the uncertainty surrounding the single-attribute utility functions

is propagated to the multiattribute utility, and the expected utility is computed:

E[U ] =

∫ 1

0

u p(u) du (16)

The value of Eq. (16) can be used to rank the alternatives. At this point, sen-

sitivity analyses should be carried out to determine the effect of preferences elicited

from the decision makers and distribution assumptions on the expected utility of the

alternatives. The sensitivity analyses may reveal that the ranking of the top alterna-

tives is sensitive to certain parameters that the decision makers and/or technologists

are unsure of. This kind of result can help identify the parameters that are most

important to establish conclusively.

4.4 Illustrative Example: Technology Development Activity
Evaluation

An example problem was built to illustrate the merits of the proposed methodol-

ogy. Three modern technologies have been selected for the example. The problem

entails the evaluation of four technology development activity alternatives, each of

which targets uncertainty reduction and performance improvement for one of the three

technologies. For simplicity, it is assumed that there is a single decision maker. In

this section, the problem setup is described, the methodology implementation details

are explained, and the results are presented and discussed.
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Figure 20: Propagation of uncertainty to multiattribute utility.

4.4.1 Problem Setup

Setting up the problem involved identifying the elements that are assumed to exist,

which are described in Sec. 4.1.1, and generating alternatives.

4.4.1.1 Integrated System and Advanced Technologies

The integrated system that was identified for technology infusion is an LTA com-

mercial aircraft, similar in baseline technology and performance to the Boeing 777.

For the example, the goal of technology infusion for this aircraft is to simultaneously

reduce block fuel burn and sideline noise while restricting the increase of takeoff field

length (TOFL) with one engine operative. These goals were characterized with sets of

values and associated minimum probabilities of success. The baseline values for each

system-level metric, desired lower bound of reduction, and target reduction, are listed

in Table 4. The probabilities of meeting or exceeding the goals are in parentheses

next to the values.
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Table 4: LTA aircraft system-level metric baseline values and goals for the example

Metric Baseline Value Lower Bound Target
Sideline Noise 97.6 dB 0.1% (0.99) 0.7% (0.6)

Block Fuel 229,567 lb 1.0% (0.99) 5.0% (0.6)
TOFL 8979 ft -2.5% (0.99) N/A

The technologies that have been selected for development and are slated for in-

fusion with the LTA vehicle include: (1) an AFC technology for enhancing the side

force generated by the vertical tail, (2) an adaptive compliant trailing edge (ACTE)

technology for wing gust-load alleviation, and (3) a fan vertical acoustic splitter to

suppress the aft fan discharge noise during takeoff. The aim of the AFC technology

is to control flow separation over the vertical tail to increase side force during critical

one-engine-operative low-speed conditions. By increasing the side force of a vertical

tail, the AFC technology enables the design of smaller vertical tails, resulting in drag

and weight reduction for the vehicle. However, the addition of an AFC power supply

architecture on board an aircraft will result in additional weight, and the subsystem

supplying pressurized flow to the fluidic actuators, such as an auxiliary power unit

(APU), would burn additional fuel. The idea behind the ACTE technology is to

actively reduce wing bending moments during gusts in flight, thereby enabling wing

design with a lighter structure. The fan vertical acoustic splitter technology is simply

a splitter plate mounted in the engine bypass flow aft of the fan.

4.4.1.2 M&S Environment

In order to map the impacts of the three technologies to the three system-level met-

rics, a credible M&S environment was required. The Environmental Design Space

(EDS) was selected for this purpose. EDS was developed for the U.S. Federal Avi-

ation Administration (FAA) Office of Environment and Energy to enable thorough

assessment of the environmental effects of aviation [76]. EDS is physics-based, in-

tegrated, and multidisciplinary. It consists of core modules originally developed by
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Figure 21: Diagram of the M&S environment used in the example.

NASA, and the modules are coupled with design rules and user-defined propulsion

and airframe design parameters to generate and analyze aircraft designs with engine-

to-airframe matching. A flow chart of EDS execution for a single aircraft is shown

in Fig. 21. Propulsion system design modules include CMPGEN for compressor map

generation, Numerical Propulsion System Simulation (NPSS) for thermodynamic cy-

cle analysis, and Weight Analysis of Turbine Engines (WATE++) for engine flow

path analysis and weight estimation. Vehicle sizing and synthesis is accomplished

with the FLight OPtimization System (FLOPS) code, and vehicle noise is predicted

with Aircraft Noise Prediction Program (ANOPP). EDS has been vetted through its

use in multiple programs of record.

An existing EDS baseline LTA vehicle model was used. To model the three tech-

nologies, EDS k-factors were identified to represent the impacts. After the k-factors

were identified, Weibull probability distributions were constructed to model the base-

line uncertainty surrounding the technology impacts. The distributions are notional,
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Figure 22: Baseline PDFs for the k-factors used in the example.

but their selection was partly informed by documented performance of the real tech-

nologies. For the purposes of illustration, each k-factor distribution is independent of

all others, and they are plotted in Fig. 22. For the AFC technology, kVT Area represents

vertical tail area reduction due to design with enhanced side force, and kAPU Weight

represents increased vehicle weight due to the installation of an AFC power supply

architecture that delivers flow from an APU bleed point to the actuators. The ACTE

technology wing weight reduction impact was represented by kWing Weight. Noise re-

duction at takeoff for the fan vertical acoustic splitter was modeled with kFan Noise.

Note that there are performance enhancements and penalties associated with the use

of all three technologies, but only the salient impacts were used in this example.
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The EDS environment runs relatively quickly on a desktop computer, but it was

decided to expedite the uncertainty propagation process by using surrogate models

to approximate EDS predictions. Surrogate models were available for the system-

level responses of interest here. These surrogate models were created by generating

a 15,000-case design of experiments sample, filtering out failed cases, and fitting

artificial neural network regression models. Although four EDS inputs were used as k-

factors for the example, the surrogate models were built with over 200 input variables.

An assessment of the predictive accuracy of the surrogate models is presented in

Appendix A.

4.4.1.3 Alternatives

Four alternatives were generated for evaluation, and they are enumerated in Table 5.

The first activity involves a computer experiment with a high-order, physics-based

model to characterize the relationship between control variables for the fan vertical

acoustic splitter and engine noise. The second activity entails a full-scale wind tunnel

experiment to characterize the relationship between AFC system control variables and

side force enhancement for a vertical tail model. The third alternative is a computer

model-based design study to estimate wing weight reduction due to the use of ACTE

on a clean-sheet wing design. The last alternative is a full-scale flight test to measure

the effectiveness of ACTE for gust-load alleviation. Note that it is unlikely that these

alternatives would be compared in a real technology development setting. They have

been selected solely for the purpose of demonstrating the mechanics of the proposed

methodology with a diverse set of alternatives. This is discussed in more detail in

Sec. 4.5.

4.4.2 Implementation of the Proposed Methodology: Expected Utility

The steps described in Sec. 4.3 were followed for this example, and the details of each

step are presented here.
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Table 5: Technology development activity alternatives for the example problem

Alternative Description
A1 Computer experiment to investigate the effects of control variables on noise

reduction for the fan vertical acoustic splitter technology
A2 Full-scale wind tunnel experiment to investigate the effects of control vari-

ables on AFC effectiveness for the AFC-enhanced vertical tail technology
A3 Design study to predict wing weight reduction for a clean-sheet wing design

with the ACTE technology
A4 Full-scale flight test to measure gust-load alleviation effectiveness of the

ACTE technology
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Figure 23: Desirability functions for the system-level metrics used in the example
problem.

4.4.2.1 Step One: Establish Objectives and Attributes

The objectives used in the example included maximization of uncertainty reduction,

maximization of system-level performance, and minimization of cost to execute the

activities. The corresponding attributes formulated in Sec. 4.3.1 were used. For the

performance attribute, desirability functions were created that correspond with the

goals listed in Table 4, and these functions are shown in Fig. 23. The block fuel

reduction and sideline noise reduction desirability functions are shown for exponent

parameter r values of 0.1 (concave), 1 (linear), and 10 (convex). The TOFL desir-

ability is a step function because there is only a lower bound for this metric.

4.4.2.2 Step Two: Conduct Probabilistic Inversion

The steps for probabilistic inversion described in Sec. 4.3.2 were applied to the exam-

ple problem and are discussed here.
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The uncertain input variables for the EDS M&S environment were specified in

Sec. 4.4.1.2. The ranges on each of the k-factors were selected to encompass the

probability distributions shown in Fig. 22, and these ranges are listed in Table 6.

Table 6: k-factor ranges for probabilistic inversion

Technology Impact Range for Probabilistic Inversion
kVT Area [−20, 0] (%)

kAPU Weight [0, 75] (%)
kWing Weight [−40, 0] (%)
kFan Noise [−6, 0] dB

The output variables and quantiles for the marginal distributions are enumerated

in Table 4. Note that the quantile probabilities in the table are defined such that

π = 1− P(Mi ≤ mi) for i = 1, 2, 3.

The k-factor space was sampled with 500,000 draws from independent uniform

distributions with the bounds listed in Table 6. Then, the joint k-factor distribution

was propagated through the EDS surrogate models to produce samples for the three

system-level metrics.

As an experiment, probabilistic inversion was conducted using two methods for

generating the initial weights. One method is the business-as-usual approach of as-

signing weights associated with a discrete uniform distribution, and the other method

is to assign weights from the baseline distribution on k. The iterative PARFUM and

IPF algorithms were used for sample re-weighting with both weighting methods to

investigate which algorithm would provide a solution that is closer to the initial dis-

tribution. The probabilistic inversion problem was found to be feasible, and both

algorithms were converged to a KL distance of 1E-8. For the experiment, 100 replica-

tions of 500,000 draws from the k-factor space were used to capture variability due to

pseudo-random sampling. A measure often referred to as J distance is the sum of two

KL distances, as they are defined in Eq. (9): J(R||K) = DKL(R||K) + DKL(K||R).
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Figure 24: Effectiveness of IPF and PARFUM at producing solutions similar to the
baseline k-factor distribution.

J distance was used to estimate the distance between: (1) the solutions that corre-

sponded with the uniform initial sample weights and the k-factor distribution, and (2)

the distance between the solutions that corresponded with the k-factor initial sam-

ple weights and the k-factor distribution. Then, ∆J was calculated by subtracting

the second distance from the first to quantify whether using initial weights from the

k-factor distribution would result in a solution that is closer to the k-factor distri-

bution. It was hypothesized that IPF would produce relatively closer solutions than

PARFUM because of the theoretical result from Csiszar [68] that was discussed in

Sec. 4.3.2.4. The results of this experiment support this hypothesis and are summa-

rized in Fig. 24. IPF consistently resulted in ∆J > 0, indicating that IPF produced

solutions that were relatively closer to the baseline k-factor distribution. ∆J < 0

for all of the PARFUM solutions, indicating that PARFUM consistently produced

solutions that were relatively farther from the baseline k-factor distribution.

The IPF solution with initial weights specified according to the baseline k-factor

Weibull distributions was carried through the rest of the example. For comparison,

solutions from both uniformly distributed initial weights and k-factor distribution

initial weights were computed. Samples of size 3,000 were drawn from the solutions
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(a) Uniform initial weights

(b) Weibull initial weights

Figure 25: Scatterplots showing two solutions from probabilistic inversion.

and are shown in Fig. 25. The plots illustrate that higher probability density was

placed at large wing weight reductions to meet the quantile constraints, indicating the

significant sensitivity of the system-level metrics to the wing weight k-factor. Minor

differences in density of the samples can be found when visually comparing the two

solutions.
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4.4.2.3 Step Three: Create Value Model

The value model was created by the author, who acted as decision maker and analyst

simultaneously. Thus, the steps for introducing nomenclature and concepts and check-

ing consistency were not necessary. However, sensitivity analyses were completed and

are presented in Sec. 4.4.4.

Mutual utility independence was assumed for all three attributes, so the multi-

plicative utility function defined in Eq. (10) was used. The single-attribute utility

functions were defined with global bounds. The author decided to approach the

problem with a constantly risk-averse attitude over all of the attributes, and the ex-

ponential utility function form in Eq. (14) was selected to reflect this attitude. The

constants in Eq. (14) were determined by anchoring the lower and upper bounds of

each utility function with a value of 0 or 1, then using lottery questions to assess

single-attribute indifference probabilities. The results of the lottery questions are

shown in Table 7. Note that the indifference probabilities correspond with the prob-

ability of the best value for each attribute in the lotteries. With three points on each

utility curve, the MATLAB fsolve function was used to solve the system of three

equations and three unknowns, and the resulting single-attribute utility functions are

shown in Fig. 26.

Table 7: Results of lottery questions to determine single-attribute indifference prob-
abilities

Lottery Value Cost Average Uncertainty Reduction P (D ≥ DTarget)
Certainty 50% 50% 0.5

Best 0% 100% 1
Worst 100% 0% 0

Indifference Probability 0.6 0.95 0.8

With the single-attribute utility functions determined, the next task was to specify

the scaling constants in Eq. (10). This was accomplished by implementing probabilis-

tic scaling. The results of the lottery questions are shown in Table 8. Having used

probabilistic scaling, the λi values are interpreted as indifference probabilities for the
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Figure 26: Single-attribute utility functions used in the example problem.

certainty attribute vector versus a lottery in which the best attribute vector has a

probability of λi and the worst attribute vector has a probability of 1−λi. The order

of attributes in the vectors follows the left-to-right order of the attributes at the top

of the table. Finally, the normalizing constant K was calculated using Eq. (11) to be

−0.9699.

Table 8: Results of lottery questions to determine multiattribute scaling constants

Lottery Value Cost Average Uncertainty Reduction P (D ≥ DTarget)
Certainty (0%,0%,0) (100%,100%,0) (100%,0%,1)

Best (0%,100%,1) (0%,100%,1) (0%,100%,1)
Worst (100%,0%,0) (100%,0%,0) (100%,0%,0)
λi 0.8 0.7 0.6

4.4.2.4 Step Four: Model Impacts of Alternatives

Following the approach proposed in Sec. 4.3.4, variance-scaling distributions, mean-

translation distributions, and cost distributions were established for each alternative.

Uniform distributions were used to model uncertainty surrounding all of the activity

impacts. The lower and upper bounds of the uniform distributions are listed in

Table 9. Blank entries in the table correspond with no change in the variable.
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Table 9: Uniform distribution bounds for k mean translation, k variance scaling, and
cost of each alternative

Variable A1 A2 A3 A4

δFan Noise (dB) (-2,0) - - -
δWing Weight (%) - - (-5,0) (-10,0)
δVT Area (%) - (-3,0) - -

δAPU Weight (%) - - - -
αFan Noise (0.9,0.95) - - -
αWing Weight - - (0.95,1) (0.8,0.9)
αVT Area - (0.7,0.85) - -

αAPU Weight - - - -
Cost (%) (5,10) (20,30) (3,5) (50,60)

4.4.2.5 Step Five: Quantify Expected Utility for Each Alternative

Before propagating uncertainty to multiattribute utility, it was decided to expedite the

computations by building surrogate models for P (D ≥ DTarget) and uncertainty re-

duction. A design of experiments was conducted with P (D ≥ DTarget) as the response

and α, δ, and desirability parameters ri as the factors. A two-level full-factorial with

1,024 points was generated in addition to 8,976 Latin hypercube points, for a total

sample of 10,000. The Latin hypercube design was optimized with a maximin criterion

for 5,000 iterations using the MATLAB lhsdesign function. For each sample, 100,000

draws from the probabilistic inversion solution and the k-factor distribution were used

to compute P (D ≥ DTarget). A MATLAB Gaussian process regression model was fit

to 7,500 randomly-selected points from the results, and the remaining 2,500 points

were used for validation of the regression model. The training and validation residuals

are shown in Fig. 27. A similar procedure was used to build a surrogate model for

the sum of nondimensional variances for all of the system-level metrics as a function

of α and δ. A total of 8,000 samples were generated. The Gaussian process model

was trained using 6,000 randomly selected points from the results, and the remaining

2,000 points were used for validation. The training and validation residuals are shown

in Fig. 28. Due to the lack of any obvious patterns in any of the residual plots and low

errors for the predictions of the validation data, the surrogate models were deemed
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(a) Training data (b) Validation data

Figure 27: Residuals for the P (D ≥ DTarget) Gaussian process regression model.

appropriate for use.

To propagate uncertainty from the impacts of the alternatives to multiattribute

utility, 10,000 samples were drawn from the α, δ, and cost uniform distributions, and

utility was computed for each sample, similar to the flow of data shown in Fig. 20.

Expected utility of each alternative was computed using the sample mean from 10,000

samples, and the results are shown in Fig. 29. For a detailed illustration of the

propagation process for A1, see Appendix B. It may be surprising to the reader that

the top two activities are both computational. In Sec. 4.4.4, results from sensitivity

analyses are presented to probe for further understanding of the relationship between

the parameters of the utility model and the rankings.

4.4.3 The Current State of the Art

Two sensitivity analyses were conducted to represent the state of the art. The first

sensitivity analysis quantified the effect each technology had on the POS goals listed

in Table 4. The sensitivities were quantified by calculating the change in each POS

between the LTA vehicle operating with all three technologies and operating with

each technology removed one-at-a-time. The other sensitivity analysis quantified the

percentage contribution of uncertainty surrounding performance of each technology
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(a) Training data (b) Validation data

Figure 28: Residuals for the nondimensional net system-level metric variance Gaus-
sian process regression model.
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Figure 29: Expected utilities of the four alternatives in the example.
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Figure 30: Sensitivity analysis using the state-of-the-art approach.

to the variance of the system-level metrics. These contributions are called first-order

sensitivity indices and were calculated with 10,000,000 samples using the variance

decomposition global sensitivity analysis technique described in Ref. [77]. The results

are shown in Fig. 30. Positive changes in probability indicate that removing a par-

ticular technology had a performance benefit, whereas a negative probability change

means that removing the technology degraded performance.

This sensitivity study provides information that can support a selection of the

alternatives. It is assumed that the readiness risk is the same for all three technologies,

so that dimension does not need to be considered for this example. Due to the

fact that the ACTE technology is the largest contributor to variance in two out of

three system-level metrics and positively affects three out of five POS measures, a

decision maker would likely prioritize any activity that targets uncertainty reduction

and/or performance improvement of that technology. However, the sensitivity results

are indifferent between A3 and A4. Next in priority would come the fan acoustic

splitter technology since it drives sideline noise POS changes and variability. The AFC
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technology is clearly not contributing to performance improvement or uncertainty

reduction as much as the other two technologies. These observations may lead one

to believe that alternatives that target ACTE should be preferred. The expected

utility assessment resulted in alternative 1, which targets a noise technology, having

the highest quantified value. This result may be surprising to a decision maker, even

if he or she has an approximate estimate of cost.

Prioritization of the alternatives using the results in Fig. 30 may not be overwhelm-

ing for many decision makers with only three technologies and four alternatives to

consider, but the difficulty would increase greatly if technologies, system-level met-

rics, POS goals, and/or alternatives were added to the problem. Also, an additional

dimension of cost would need to be considered. An important advantage of the utility-

based approach is that it quantitatively incorporates the decision makers’ preferences

and risk attitudes over the consequence space to aid in the decision process, rather

than decision makers qualitatively synthesizing this information in their minds.

4.4.4 Implementation of the Proposed Methodology: Sensitivity Analysis

To demonstrate sensitivity analysis with the utility-based approach, three scenarios

were devised. In the first scenario, the decision maker was unsure of the indiffer-

ence probability πPerformance elicited for the system-level performance utility function.

The second scenario was similar to the first with the only difference being that the

cost indifference probability πCost was of interest. In the third scenario, the decision

maker was unsure of the multiattribute utility function scaling constant λUncertainty

for the uncertainty reduction attribute. In addition to the analysis of these scenarios,

visualization of the attribute and utility space are presented as additional tools for

conducting sensitivity analyses.
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4.4.4.1 Scenario 1: Uncertain Degree of Performance Risk Aversion

For the first scenario, the notional decision maker was confident of being risk averse

with regard to system-level performance improvement, but the specific degree of risk

aversion was not established conclusively. Thus, it was decided to do an experiment to

investigate the importance of the precise specification of the indifference probability.

The indifference probability πPerformance was varied between values of 0.6 and 0.95, and

expected utility was calculated for 20 levels of πPerformance. The single-attribute utility

functions corresponding with these bounds are shown in Fig. 31a. The expected

utilities of all four attributes over the range of values for πPerformance are shown in

Fig. 31b. The expected utility magnitudes were affected, but the ranking of the

alternatives did not change. This result means that for this scenario, the decision

maker’s specification of the indifference probability was not critical.

One may study the πPerformance sensitivity results and question why the expected

utilities for all alternatives increased with increasing degree of risk aversion. The con-

cept of risk premium helps to explain the causality. For an increasing utility function,

risk premium is defined as the expected value of a lottery minus the certainty equiv-

alent of that lottery. For example, the lottery used to elicit the baseline indifference

probability for the performance attribute had a consequence of 1 with probability

πPerformance and a consequence of 0 with probability 1− πPerformance, and the certainty

equivalent was 0.5. The baseline indifference probability was set at 0.8, so the ex-

pected consequence of the lottery was 1 ·0.8 + 0 ·0.2 = 0.8. The risk premium for this

example is 0.8 − 0.5 = 0.3. As shown in Fig. 31c, the risk premium increases as the

indifference probability increases. According to Keeney and Raiffa, the risk premium

can be interpreted as “the amount of the attribute that the decision maker is willing

to ‘give up’ from the average (i.e., the amount less than the expected consequence) to

avoid the risks associated with the particular lottery” [52]. As πPerformance increases,

the utility of lower performance attribute values increases, as the decision maker is
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Figure 31: Scenario 1 utility function range (a), expected utilities (b), and risk pre-
mium (c).

more willing to budge on performance to avoid the risk of a lottery. This is why the

expected utility values of all alternatives increases with πPerformance.

4.4.4.2 Scenario 2: Uncertain Cost Risk Attitude

For the second scenario, the notional decision maker was unsure about risk attitude

with regard to cost. An experiment was conducted to investigate the importance

of the indifference probability for cost. The indifference probability πCost was varied

between values of 0.1 and 0.9, and expected utility was calculated for 20 levels of πCost.

The single-attribute utility functions corresponding with these bounds are shown in
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Fig. 32a. The expected utilities of all four attributes over the range of values for

πCost are shown in Fig. 32b. For this scenario, the ranking of the alternatives was

affected. A1 and A3 switched rankings for highly risk prone cost utility functions,

and A4 surpassed the expected utility of A3 and approached A1 for highly risk averse

cost utility functions.

The causality behind the trends of the rankings can be explained by considering

the shape of the cost utility function and the risk premium. The estimated range

of cost for A1 is higher than A3, so as πCost decreased, the cost utility of the more

expensive A1 decreased. This result may not agree with the reader’s intuition, as

one’s concept of risk might lead one to conclude that highly risk-prone cost preference

would lead to the more expensive alternative having higher expected utility. The risk

premium behavior in Fig. 32c is contradictory, as the decision maker was willing to

“give up” negative cost to avoid the lottery. In other words, the risk-prone decision

maker prefers the risk of the lottery to the expected consequence of the lottery. The

behavior of the expected utility curves for A2 and A4 can be explained with similar

logic. As πCost increased, risk premium increased and the utility curve changed shape

such that larger cost percentages had relatively higher utility. One might intuitively

expect that a highly risk-averse cost preference would lead to higher value of the

least expensive alternatives. On the contrary, as utility over the cost range of 20%

to 60% increased rapidly with πCost, the expected utility of A2 and A4 rose quickly

as well. For A4, this change in expected utility was so aggressive that it surpassed

the much less expensive A3. If the decision maker had a risk-prone attitude, then

a determination of which side of πCost = 0.18 is preferred would have needed to be

made, as this was the point at which A1 and A3 had the same expected utility. If

the decision maker had a risk-averse attitude, then a determination of which side of

πCost = 0.83 is preferred would have needed to be made, as this was the point at

which A3 and A4 had the same expected utility. A similar determination would have
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Figure 32: Scenario 2 utility function range (a), expected utilities (b), and risk pre-
mium (c).

been made if indifference probabilities greater that 0.9 were considered as well.

4.4.4.3 Scenario 3: Uncertain Strength of Preference for Uncertainty Reduction

For the final scenario, the notional decision maker was unsure about the strength of

preference for increasing the attribute for uncertainty reduction. An experiment was

conducted to investigate the importance of the mutliattribute utility scaling constant

for average variance reduction. The scaling constant λUncertainty was varied between

values of 0.1 and 1, and expected utility was calculated for 20 levels of λUncertainty. The

expected utilities of all four attributes over the range of values for λUncertainty are shown
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in Fig. 33. The ranking of the alternatives was also affected in this scenario. In a

similar behavior as seen for cost, A1 and A3 switched rankings for high values, and A4

surpassed the expected utility of A3 and approached A1 for low values. Additionally,

A2 and A4 switched rankings.

The causality behind these trends was different than for the other two scenarios.

λUncertainty can be interpreted as a probability, as it was elicited in this example

through probabilistic scaling. The higher the probability value, the more risk averse

the decision maker was with regard to selecting between the certainty equivalent

and the lottery shown in Table 8. A higher value of λUncertainty resulted in a larger

contribution of uncertainty reduction utility to the multiattribute utility. This effect

combined with the fact that A4 reduced uncertainty in wing weight, which is a large

contributor to overall system-level uncertainty, is why the expected utility increased

rapidly. For λUncertainty ≤ 0.24, A1 had lower expected utility that A3 because the

uncertainty reduction attribute contributed less to overall utility. A1 was sensitive to

this effect, whereas A3 was relatively more robust. The implications for the decision

maker were similar to what was found in scenario 2; a determination would need to

be made as to which λUncertainty interval between crossover points in expected utility

was preferred, not what the specific value was.

4.4.4.4 Visualization of Utility and Attributes

Another kind of sensitivity analysis that can be performed with the proposed method-

ology is to explore the effects of each development activity impact on utility. One

approach to accomplish this is by visualizing the multiattribute utility function, as

shown in Fig. 34. This visualization technique plots slices of utility as a function

of the variables that were used to model the impacts of the technology development

activity alternatives. Each plot shows how utility varies as a function of the inde-

pendent variable, with all other variables fixed. When this type of plot is used on a
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Figure 33: Scenario 3 expected utilities.

computer, the slider bars enable dynamic exploration of the utility function. When

a slider bar is changed for one variable, the plots for all other variables are updated.

The plots indicate that utility is sensitive to translations and variance scaling of the

wing weight and fan noise k-factors, whereas the impacts for APU weight and vertical

tail area are small contributors to changes in utility. It is also evident that utility is

largely affected by cost.

Decision makers may also wish to see a similar presentation of the attributes.

Similar plots are shown for system-level performance and average variance reduction

in Figs. 35 and 36, respectively. The performance plots include the log base 10 of the

desirability function exponents for block fuel reduction and sideline noise reduction on

the far right. Two interesting observations from the performance plots are: (1) there

are diminishing returns for noise impact translation, whereas δWing Weight improves

performance over its entire range, and (2) performance is relatively insensitive to

variance scaling of any impacts. Note that these observations are only valid at the

region of the space shown in the figure. Fascinating observations can also be made

from the uncertainty reduction plot. For instance, it may be surprising to some that

translations of the fan noise and wing weight variables contribute to average variance

reduction.
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A potential application of the multidimensional sensitivity plots is the generation

of alternatives. For example, decision makers and analysts can perform quick analyses

with the utility function plots to roughly determine what kind of activities might be

appropriate to maximize utility.

4.5 Discussion and Conclusions

This chapter explored the problem of how to inform decisions regarding the selection

of technology development activity classes before details of the activities have been

defined. Through an analysis of the literature, the current state of the art was iden-

tified, and it was argued that there was still a need to close research gaps in order

to enable a formal, systematic approach to supporting activity selection decisions.

A decision process provided the foundation for a novel methodology, and techniques

from MAUT were incorporated to address the research gaps.

The proposed methodology for prioritizing development activity alternatives was

applied to a notional problem in the illustrative example. The key steps of the

methodology were illustrated, and the results were compared with sensitivity anal-

yses from the state-of-the-art approach. The notional decision maker’s preferences,

risk attitudes, and system-level performance goals were synthesized to produce a

valid measure of value for the alternatives. Uncertainty surrounding the impacts of

the technology development activity alternatives was explicitly modeled with proba-

bilities. The proposed approach was shown to be capable of quantitatively evaluating

the set of alternatives using expected utility, rather than only providing measures of

potential for each technology. Sensitivity analyses were conducted to demonstrate the

flexibility of the novel methodology for studying the impacts of the decision maker’s

preferences and risk attitude on the expected utilities.

In the example problem, the alternatives were all defined as an individual activ-

ity class coupled with a technology. The problem was set up this way to facilitate
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demonstration and understanding of the approach. In a more realistic problem, some

of the alternatives would most likely not be compared as they are defined in the

example problem. For example, A3 and A4 may both be necessary to conduct at

some point during technology development, but the example expected utility results

might lead one to conclude that A3 “beats” A4. This is not the intended use of the

capability in a practical setting. A more appropriate use of the methodology in prac-

tice would be to compare alternatives comprised of sets of activities. For instance,

decision makers may wish to compare multiple portfolios of development activities

that are aimed at maturing a single technology from TRL 4 to TRL 6. For this type

of assessment, sets of activities can be modeled by eliciting distributions on α, δ, and

cost for each activity and adding the distributions together to obtain the net impacts

of the portfolios.

Compared with the state of the art method for development activity selection, the

proposed methodology requires significant modeling effort on the part of the analyst

and the decision makers. Besides the reasons to use a quantitative decision aid that

were presented in the beginning of Sec. 4.2, another reason the effort is worthwhile

is that a formal decision analysis is intended to provide insight and stimulate deeper

thinking to help decision makers make better decisions. The additional modeling

effort also results in more degrees of freedom for mathematically representing the

alternatives. Similar to the adage “with great power comes great responsibility”,

with the flexibility provided by the novel methodology comes the responsibility to

take great care when modeling the decision problem. Although a benefit of evaluating

alternatives with expected utility is the aggregation of information that is pertinent

to the problem, this characteristic can also make it difficult to identify errors or poor

assumptions in the analysis.

The author also acknowledges that there may be many other considerations in the

decision problem. For example, political and social considerations may significantly
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affect a decision maker’s preferences. Decision makers must assess the implications

of a formal decision analysis with other considerations that are not included in the

analysis. This observation highlights the fact that the results of a decision analysis

should not be interpreted as a dogma but rather as an additional input to the decision

problem.
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CHAPTER V

UNCERTAINTY QUANTIFICATION WITH MULTITASK

GAUSSIAN PROCESSES FOR TECHNOLOGY

DEVELOPMENT EXPERIMENTS

In this chapter, two problems are addressed: (1) how to quantify technology inte-

gration impact uncertainty in light of data from multiple, heterogeneous experiments

and (2) how to quantitatively estimate the uncertainty reduction that a planned ex-

periment will achieve. These problems are characterized in Sec. 5.1. Then, a novel

methodology for solving these problems is formulated in Sec. 5.2. The primary argu-

ments are as follows.
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Argument 2: The proposed methodology provides an appropriate way to quantify

the uncertainty surrounding technology integration impacts in light of data from

multiple, heterogeneous technology development experiments because

1. It is anchored in proven machine learning methods for making predictions

under uncertainty

2. It provides a flexible, quantitative approach to model the epistemic uncer-

tainty associated with extrapolating technology impacts to the future

Argument 3: The proposed methodology provides an appropriate way to quanti-

tatively estimate uncertainty reduction for a planned experiment because

1. It implements a rigorous information theoretic framework that is the state of

the art in experiment design

2. It aggregates prediction uncertainty from a probabilistic regression model and

the additional layer of epistemic uncertainty associated with technology ma-

turity in the estimation process

Due to a gap in knowledge regarding identified enablers, called multitask Gaussian

process models, an experiment was conducted, and this experiment is described in

Sec. 5.3. Next, an illustrative example is presented in Sec. 5.4 to demonstrate the

key contributions of the methodology. Finally, the chapter closes with a summary in

Sec. 5.5.

5.1 Problem Definition

In this section, the problems addressed in this chapter are presented. First, the need

for methods to model technology impact uncertainty and the reduction of uncertainty

with technology development activities are discussed. Then, characteristics of the

problems are described, and two research questions are presented to concisely define
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them.

5.1.1 Quantifying Technology Impact Uncertainty

The technology development management processes from the literature that were dis-

cussed in Chapter 2 assumed that the combined epistemic and aleatory uncertainty

surrounding technology impacts can be mathematically represented using probabil-

ity theory. These uncertainty models are important for tracking technical progress,

as shown for a real development program in Fig. 5; quantifying system-level uncer-

tainty; and informing decisions regarding the design of future activities. After a set

of activities has been conducted, the uncertainty models must be updated to re-

flect the changes in epistemic uncertainty that are associated with the acquisition

of new knowledge. As previously discussed, uncertainty reduction is one of the at-

tributes that constitutes the overall value of technology development activities. If

decision makers were capable of estimating the epistemic uncertainty reduction due

to a planned activity, then this information could be used to guide the design of the

activity.

Each class of technology development activity effects a change in particular sources

of uncertainty through different mechanisms. A diverse set of examples based on the

taxonomy of development activities in Ref. [21] helps to illustrate this idea. One class

of activity is called a feasibility study, and its purpose is to demonstrate whether

the technology functions as intended or at the minimum level of performance that

has been established. In other words, the result of a feasibility study is binary: the

technology works for its intended purpose or it does not. The creation of an analysis

capability is another type of technology development activity. The analysis capability

is often realized in the form of a physics-based M&S environment that is used to pre-

dict technology performance. If the M&S environment is shown to be more accurate

than what already exists, then this activity reduces model form uncertainty, which
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is uncertainty due to assumptions and the selection of the mathematical model [12].

The practical consequence is technology performance prediction with more credibil-

ity. Design studies are another type of computational activity. Their purpose is to

numerically investigate the design space of the technology, with the goal of finding

regions of the space with the best performance. Uncertainty is impacted by the reduc-

tion of ranges on the design variables after decisions are made regarding the settings

of these variables. Physical experiments are the final example. The traditional pur-

pose of experiments is to improve the understanding of physical phenomena. This

usually entails measuring dependent variables (responses) at various settings of inde-

pendent variables (factors) with the goal of characterizing the relationship between

them. The uncertainty surrounding technology performance in the proximity of the

measurements is directly reduced as a result.

Different approaches are required for quantifying the change of epistemic uncer-

tainty due to each type of technology development activity. The focus of this chapter

was limited to activities involving physical and computer experimentation. Exper-

imental activities were selected as the focus due to their importance in technology

development. These are the types of activities that are an integral part of all TRL

definitions; technologies cannot be considered as maturing without them.

5.1.2 Characteristics of the Problem

There are multiple aspects of the problem that make uncertainty quantification with

technology experimental data a difficult task. One issue is accounting for the matu-

rity dimension. Some experiments are more realistic and credible than others. For

example, the uncertainty associated with extrapolating sub-scale wind tunnel data to

the future performance of an aircraft is likely going to be larger than extrapolation

uncertainty from data collected during a full-scale flight experiment. Another aspect

that makes the uncertainty quantification task difficult is that data may be sparse
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and only partially relevant. For an instance of this, consider the vertical tail AFC

data shown in Fig. 37. It was not possible to take measurements in flight for the AFC

technology in the shaded regions, and because of this, flight test data was not avail-

able in the “critical β range” which was of primary interest. The solid black lines in

the figure show the result of flight simulation predictions after correcting for the flight

test setup and the measurements that were available. A related challenge is how to

quantitatively represent learning from previous experiments. For the AFC technology

example, knowledge about AFC effectiveness was gained through sub-scale and full-

scale wind tunnel experimentation before the flight experiment. Although data from

multiple experiments can be similar, there are usually differences between the experi-

mental setups such that the results are not identical. For example, dynamic similarity

may not be satisfied across multiple fluids experiments due to different geometries,

constraints of the facilities, etc. In the vocabulary of statistics, the data from multiple

heterogeneous experiments may be nonexchangeable. These observations led to the

following research question:

Research Question 2.0: What is an appropriate way to quantify the uncertainty

surrounding technology integration impacts in light of data from multiple, hetero-

geneous technology development experiments?

Once an uncertainty model has been constructed, it would be valuable to have

the capability to then estimate how much uncertainty reduction a given experimental

plan will achieve. This capability could be used to quantify one of the attributes

needed to evaluate alternatives. The corresponding research question investigated in

this chapter is as follows:

Research Question 3.0: What is an appropriate way to quantitatively estimate

expected uncertainty reduction for a planned technology experiment?
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Figure 37: Vertical tail AFC effectiveness predictions for a range of sideslip angles
(from Ref. [40]). The shaded area indicates regions where no flight test data was
available, including the “critical beta range”, which was of primary interest.

5.1.3 Literature Review

The most relevant existing work that addresses RQ 2.0 was produced by Largent [21].

He assumed that probability distributions on technology impacts could be built from

a combination of sources, and he proposed the use of Bayesian inference to update the

technology impact uncertainty once development activity data are collected. How-

ever, he acknowledged that sequential updating using data from multiple, hetero-

geneous development activites could result in misleading inferences. There are also

large bodies of literature in statistics and machine learning that are relevant to learn-

ing from multiple, heterogeneous sources of information. A statistical data fusion

approach used in many disciplines is called meta-analysis, which has been defined

by Christine Anderson-Cook as “information synthesis using multiple data sources

to answer a global question(s) by leveraging knowledge and statistical power through

understanding data connections” [78]. As an example, a typical application of meta-

analysis is to combine data from multiple, similar medical studies that aim to test

the same hypothesis. In the machine learning literature, the broad research area of

transfer learning involves transferring knowledge from source tasks to target tasks in
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order to improve the learning process for the target tasks [79]. Transfer learning is

motivated by the fact that humans can apply knowledge from one domain to another

to find better solutions to new problems and do it more efficiently. For instance,

learning to play a guitar may help one with learning to play a banjo.

There are also large bodies of literature that pertain to answering RQ 3.0. In the

test resource allocation literature summarized in Chapter 2, the authors of Refs. [32,

34, 35, 36] used simulated test data combined with Bayesian inference to estimate

uncertainty reduction. In the statistics literature, Lindley [80] proposed the idea

of designing experiments to maximize expected information gain, which is an infor-

mation theoretic representation of uncertainty reduction. Several other authors have

used a similar framework to evaluate experiments based on the information contained

in them (e.g., see Refs. [81, 82, 83]).

5.2 Methodology Formulation

In general, the measured dependent variables of an experiment depend on the set-

tings of independent variables that are under the control of the experimenter and

environmental effects that are not. In addition to characterizing the uncertainty

surrounding experimental data, it is ideal to have the capability to characterize the

relationships between dependent variables and independent variables. With models

of these relationships, predictions can be made to estimate technology performance

at locations in the independent variable space where data do not exist; this is called

generalization. There are many benefits of having this ability, including facilitating

understanding of physical phenomena and informing decisions regarding the design

of future experiments.

The disciplines of machine learning and statistics provide the tools to characterize

uncertainty surrounding both the data obtained from experiments and predictions

for future data. The types of tools that are applicable to data from most technology
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Figure 38: The proposed methodology for quantifying technology impact uncertainty
and estimating uncertainty reduction for future experiments.

development experiments are categorized as supervised learning methods. The goal

of these methods is to learn a mapping from inputs (independent variables) to out-

puts (measured dependent variables) from data. To address RQ 2.0, the proposed

novel methodology shown in Fig. 38 begins with three steps to construct a supervised

learning model. These steps were derived by synthesizing best practices from the lit-

erature. It is assumed that the outputs are real-valued, and this assumption restricts

the focus to a learning problem called regression.

Once a regression model has been built by training it with experimental data

for a technology, uncertainty surrounding its predictions can be quantified. However,

there is an additional layer of epistemic uncertainty that these models do not capture:

uncertainty associated with the maturity of the technology. A method for accounting

for this uncertainty in forecasts produced by regression models is proposed in step

four of the methodology. The final product is a predictive model that can be used to

forecast technology impacts with quantified aleatory and epistemic uncertainty.

The purpose of the last step of the methodology is to use the predictive model to
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estimate uncertainty reduction for proposed experiments that have not yet been per-

formed. To implement this, ideas from the test resource allocation literature and the

information theoretic framework are borrowed. Uncertainty reduction is quantified

by estimating the expected information gain from each of the proposed experiments.

To help the reader locate this proposed methodology in the overall solution to

the motivating question from the introduction chapter, it is useful to consider where

the methodology fits in Fig. 7. This methodology provides a predictive model for

forecasting technology performance at a point in the future when the technology has

been fully matured. This capability can be used to establish k-factor distributions

to enable the evaluation of development activity alternatives in the decision process

from phase one, which was discussed in Chapter 4. Having the capability to estimate

uncertainty reduction from proposed experimental designs is crucial for enabling the

evaluation of alternatives in the decision process from phase three.

The steps of the methodology are described in the following sections. Although the

methodology can be adapted—with some effort—to virtually any type of regression

model, the descriptions of steps two, four, and five are specific to Gaussian process

(GP) models. GPs were selected for three reasons: (1) they are nonparametric mod-

els that are flexible enough to fit highly nonlinear data, (2) they naturally provide

a probabilistic representation of aleatory and epistemic uncertainty, and (3) there

is substantial prior research in modifying GPs for transfer learning. According to

Wolpert’s “no free lunch” theorem [84], there cannot be a universally best learning

model. Hence, by this theorem GPs cannot be the best type of regression model

for all problems. However, the intent of selecting GPs is to provide a methodology

that is flexible enough to be directly applied to experiments for a wide variety of

technologies.
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5.2.1 Step One: Collect and Clean Data

Once raw data are available from one or more experiments, the raw data must be

collected and processed before they can be used for training regression models. Pro-

cessing the raw data may involve the use of data reduction equations and other

transformations to arrive at desired measures. The details of data processing are

dependent on the technology and the best practices of the disciplines involved. The

end goal of this step is a set of tables conforming to what Wickham defined as a tidy

data set, where

1. Each variable forms a column.

2. Each observation forms a row.

3. Each type of observational unit forms a table [85].

Note that the term “observation” is used in this chapter, but observations are usually

referred to as “examples” in the machine learning literature and as “data points” in

statistics.

5.2.2 Step Two: Identify Regression Model Alternatives

Although the scope has been limited to GP models, there are still many models that

can be selected as feasible alternatives. A brief overview of GP regression with a

single training data set (single-task setting) is presented first. Then, GPs that are

designed for learning with multiple data sources simultaneously (multitask setting)

are discussed. The notation and terminology loosely follows Ref. [86].

5.2.2.1 Single-Task Gaussian Process Regression

The tidy data from step one serves as the training data for the GP models. This

training set with n observations is denoted by D = {(xi, yi) | i = 1, 2, . . . , n}, where

x is a D-dimensional input vector (independent variables) and y is a scalar output
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(dependent variable). Note that the output is often referred to as the “target”, and

this terminology is used here. The data for the n observations of the column vector

inputs are collected in the design matrix X of dimension D×n, and the n observations

of the target are assembled in the vector y. With this notation, the training data can

be written D = (X,y). The goal is to make inferences about the underlying target

function f that maps the inputs to the targets.

According to Rasmussen and Williams, a GP is defined as “a collection of random

variables, any finite number of which have a joint Gaussian distribution” [86]. For

GP regression, the idea is to specify a GP prior distribution over the target func-

tion f(x) and infer a posterior distribution p(f |D) after observing the training data.

This posterior distribution over functions can then be used to make predictions with

uncertainty. The prior distribution over the target function is

f(x) ∼ GP(m(x), κ(x,x′)) (17)

where, x and x′ are any two locations in the input space, and the mean function m(x)

and covariance function (or kernel) κ(x,x′) are defined respectively as

m(x) = E[f(x)] (18)

κ(x,x′) = E [(f(x)−m(x))(f(x′)−m(x′))] (19)

Note that the covariance function must be positive definite. Given any finite set of n

input points, the GP specifies a joint Gaussian distribution:

f |X ∼ N(µ,K) (20)

where, f = (f(x1), f(x2), . . . , f(xn)))>, µ = (m(x1),m(x2), . . . ,m(xn)))>, and Kij =

κ(xi,xj).

A common practice is to use a mean function of m(x) = 0 in Eq. (17) because

the GP regression model is flexible enough to model the mean quite well. Parametric

models for the mean function can also be used. When a set of fixed basis functions is
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used, the regression model behaves as a global linear model with the residuals being

modeled by a GP. Murphy referred to this approach as semi-parametric modeling

because it “combines the interpretability of parametric models with the accuracy of

non-parametric models” [87]. Note that throughout the remainder of the formulation

a mean function of zero is used.

It is assumed that the observations of the target are noisy realizations of the

underlying function: y = f(x)+ ε, where ε ∼ N(0, σ2
y). With the addition of the noise

term, the covariance of the targets is

cov(yp, yq) = κ(xp,xq) + σ2
yδpq (21)

where, δpq is the Kronecker delta that is equal to one if p = q and zero otherwise.

Written in matrix form:

cov(y|X) = K + σ2
yI (22)

Note that the second matrix in Eq. (22) is diagonal because of an assumption of

independent noise terms.

Given a set of prediction locations X∗ of size D× n∗, generating predictions from

the GP regression model begins with constructing the joint distribution of the training

targets and the latent target function f∗ at the prediction locations:y

f∗

 ∼ N

0,

K + σ2
yI K∗

K>∗ K∗∗


 (23)

where, K + σ2
yI is an n × n matrix, K∗ = κ(X,X∗) is an n × n∗ matrix, and K∗∗ =

κ(X∗,X∗) is an n∗×n∗ matrix. By conditioning using standard rules for multivariate

Gaussian distributions, the posterior distribution is obtained:

f∗|X,y,X∗ ∼ N(f∗, cov(f∗)), where (24)

f∗ = K>∗
[
K + σ2

yI
]−1

y, (25)

cov(f∗) = K∗∗ −K>∗
[
K + σ2

yI
]−1

K∗ (26)
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For noiseless observations, the noise variance term σ2
yI is simply removed from these

equations. This the approach that is often used when regressing data from computer

experiments [88, 89]. However, Gramacy and Lee [90] argued that the noise variance

term should be included for better statistical properties of the regression model.

Before a GP regression model can be used as a prediction tool, decisions must be

made about the form of the covariance function and its hyperparameters; this process

is referred to as “training” a GP. Many covariance functions have been proposed, such

as the squared exponential, polynomial, and Matérn forms. The squared exponential

covariance function is a common choice and can be parameterized as follows:

κ(xp,xq) = σ2
f exp

(
−1

2
(xp − xq)

>M(xp − xq)

)
+ σ2

yδpq (27)

where, θ = ({M}, σ2
f , σ

2
y)
> is a vector of hyperparameters, and {M} is the set of

hyperparameters contained in the symmetric matrix M (not to be confused with the

symbol for the vector of system-level metrics in Chapter 4). When M = diag(`)−2,

the hyperparameters `1, `2, . . . , `D are characteristic length-scales. These parameters

govern how far apart two points in input space must be for the regression function

values at those points to become uncorrelated. This type of covariance function

structure implements automatic relevance determination (ARD) because the inverse

of the length-scale indicates how relevant each input is; if the length-scale is relatively

large for an input, then the covariance is virtually independent of that dimension.

The hyperparameters ` control the smoothness of the regression function, whereas σ2
f

controls the magnitude of the regression function.

One the covariance function form has been selected, the values of all hyperpa-

rameters must be determined. This is typically done by selecting θ to maximize the

natural logarithm of the marginal likelihood: log p(y|X,θ). For a description of this

technique and others, the reader is referred to Ref. [86].
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5.2.2.2 Multitask Gaussian Process Regression

The machine learning concept of transfer learning is intriguing for the problem of

interest, where there are multiple data sources to learn from. If regression models

that implement transfer learning can be used to improve predictive accuracy and

quantitatively represent the effects of knowledge transfer on uncertainty, then they

are preferred. According to the transfer learning taxonomy of Pan and Yang [79], the

regression problem of interest here is classified as a type of inductive transfer learning

called multitask learning. Here, the word “task” refers to two components: (1) the

underlying target function and (2) the label space, which is the set of possible values

for the targets. The idea behind multitask learning is to learn the target functions

of multiple related data sets simultaneously, while sharing information across the

different tasks, in order to improve the generalization performance of the models [91].

Multitask variants of multiple classes of regression and classification models have

been proposed, including GP models. One of the earliest methods proposed was to

learn a set of common hyperparameters using data from all tasks [92]. This method in-

cluded an informative vector machine (IVM) [93] to select the most informative train-

ing observations from all tasks to lower computational expense. Borrowing the con-

cept of hierarchical Bayesian modeling commonly used for meta-analysis, hierarchical

GP models have also been proposed for multitask learning (e.g., see Refs. [94, 95]).

Motivated by the need to borrow strength from multiple computer codes, Kennedy

and O’Hagan [96] proposed an autoregressive multitask model. Two other examples

are learning a covariance matrix to model inter-task dependencies [97] and construct-

ing covariance functions with convolution processes [98, 99].

An open issue in transfer learning is knowing when transfer should occur. In

some situations, transfer can degrade performance, which is referred to as negative

transfer. Caruana [91] showed empirical evidence of negative transfer with multi-

task artificial neural networks, and he concluded that the benefits of a multitask
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approach are problem-dependent. He also identified characterization of what related

tasks are as an open problem. Rosenstein et al. [100] showed that the performance

of a hierarchical naive Bayes classifier was hindered when the tasks were dissimi-

lar. More recently, Toal [101] empirically demonstrated negative transfer with an

autoregressive GP model using analytical functions that represented computationally

expensive and cheap deterministic computer codes. Based on the results of his ex-

periments, he derived a set of guidelines for when a multitask approach should be

used. There are other examples in the literature where transfer has been shown to

improve and degrade learning performance through experimentation with data from

practical problems. For the GP regression class of models, there is still a lack of

knowledge and understanding regarding when a multitask approach will outperform

a single-task GP and which multitask techniques are robust to dissimilarity between

tasks. Toal’s observations partially fill this gap, but he restricted his investigation

to one type of multitask GP and noiseless observations. The existing research gap is

summarized with the following research question:

Research Question 2.1: Under what conditions will a multitask GP regression

model provide better generalization performance than a single-task GP regression

model?

An experiment has been conducted to investigate RQ 2.1. The setup of the experiment

and the results are presented in Sec. 5.3.

5.2.3 Step Three: Assess the Performance of the Regression Models and
Select the Best Alternative

This step involves selecting the best regression model from the set of alternatives. The

objective of regression analysis is to accurately infer the underlying target function,

not to fit the noise, which has no predictive value. Thus, the model that exhibits

the highest generalization performance (predictive accuracy) should be selected. The
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accuracy of the fit to the noisy training data, called postdictive accuracy, is not as

important as predictive accuracy because it is possible for a model to fit the training

data perfectly but have poor predictive accuracy for new data.

5.2.3.1 Model Assessment Methods From the Literature

In an ideal data-rich scenario, the best method for evaluating the alternatives is to

divide the available data into three separate parts: (1) a training set, (2) a validation

set, and (3) a test set [102]. The training set is then used to train all of the models.

Once they are trained, predictive accuracy is estimated using the validation set to

inform model selection. Finally, the test set is used to estimate the generalization

performance of the chosen model.

In most practical situations, the data are too scarce to set aside validation and

test data sets. Analytical criteria have been proposed to approximate the validation

step, such as the Akaike information criterion and Bayesian information criterion.

Re-sampling methods called cross-validation (CV) and bootstrapping are also used

to estimate predictive accuracy. These re-sampling methods are both capable of esti-

mating the average generalization error when models are used to predict independent

test observations. CV and bootstrap require more computation than analytical cri-

teria, but re-sampling methods are universally applicable to any learning method

and have been shown to provide better estimates of generalization error (e.g., see

Ref. [102]).

5.2.4 Step Four: Model Uncertainty Associated With Technology Matu-
rity

The nature of the uncertainty surrounding future technology impacts was described

in Sec. 1.1.1. There are two key characteristics of this forecasting uncertainty that

change as the technology matures: (1) the uncertainty reduces, which is usually rep-

resented as reductions in variability of the PDFs that characterize the uncertainty,

131



and (2) technologies tend to change in performance, typically demonstrating improve-

ments over time. As shown notionally in Fig. 2, one approach to model technology

forecasting uncertainty is to use a probability distribution with parameters that are

a function of TRL. A similar idea is used in this step.

The prediction uncertainty from the GP posterior predictive distribution in Eq. (24)

is Gaussian. Hence, the uncertainty surrounding the GP predictions is modeled with a

symmetric distribution. This is appropriate when there is no justification for skewing

the predictive distribution. There may be compelling arguments for why the predic-

tive distributions on technology impacts should be skewed, even when experimental

data is available that suggests otherwise. Nevertheless, the approach taken here is

to model the additional layer of epistemic uncertainty by augmenting the variance of

the symmetric predictive distribution.

The magnitude of epistemic uncertainty inflation due to technology maturity is

inherently subjective. What is needed is the mathematical machinery to map the

degree of technology maturity to uncertainty inflation. The measure of technology

maturity that was selected for this purpose is TRL because it is already in widespread

use. Since most TRL scales are ordinal, cardinal versions must be defined for use in

mathematical operations. Conrow [103] formulated an approach to establish cardinal

TRL scales by using expert opinion combined with AHP. As an example, he estimated

the cardinal TRL coefficients, adjusted to a maximum TRL of 9, shown in Table 10.

He also provided a cubic regression equation that can be used to map the ordinal

TRLs to the cardinal coefficients:

Cardinal TRL Coefficient = 0.346 + 0.012(TRL)3 (28)

This relationship between the ordinal and cardinal values is shown in Fig. 39. Note

that Eq. (28) can be used to calculate cardinal TRL coefficients for noninteger TRLs.

With a set of cardinal TRL coefficients, ratios and differences of the coefficients can

be used to quantify the differences in maturity between ordinal TRLs. For example,
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Table 10: Ordinal TRLs and the corresponding cardinal TRL coefficients, adjusted
to 9.0 (data from Ref. [103])

Ordinal TRL Value Cardinal TRL Coefficient
1 0.26
2 0.53
3 0.71
4 1.14
5 1.97
6 2.74
7 4.26
8 6.81
9 9.00
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Figure 39: The relationship between ordinal TRLs and the cardinal TRL coefficients
dictated by Eq. (28).

a technology at TRL 8 is likely to be more than twice as mature as a technology

at TRL 4. The corresponding ratio of cardinal TRL coefficients from Table 10 is

6.81/1.14 = 5.97, indicating a much larger gap in maturity than the ratio of the

ordinal TRLs.

The mean and 95% prediction intervals are shown in Fig. 41 for a single-task

GP fit to noisy data generated from the equation y = x2. This example illustrates

how GP prediction uncertainty changes throughout the independent variable space.

When x ∈ [0, 10], the prediction uncertainty is tight around the data, but as x moves

away from the data regime, the prediction uncertainty grows rapidly. When modeling

additional epistemic uncertainty due to maturity level, it is desirable to maintain this
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behavior. However, the prediction uncertainty does not account for the additional

uncertainty associated with forecasting technology performance.

One option for modeling the additional uncertainty is to scale the prediction uncer-

tainty as a function of TRL. This could be implemented by multiplying the variance

of the predictions, at each input location, by a function of a maturity measure. Three

problems arise if scaling is used. Scaling can lead to unnecessarily large prediction

uncertainty when extrapolating. For example, adding additional uncertainty to pre-

dictions when x approaches -10 in Fig. 41 may not be of any practical use because

the prediction uncertainty of the GP is already so large. Another problem is that

scaling operates on a distribution with combined epistemic and aleatory uncertainty.

A more appropriate approach would not scale the aleatory contribution because the

maturity component of uncertainty is epistemic in nature, but scaling is not capable

of this since the two components of uncertainty cannot be separated in the predictive

distribution. The third problem is that the scaled uncertainty will be zero if the pre-

diction uncertainty is zero. This scenario can occur if a GP is used to fit data from

a computer experiment that are modeled as noiseless observations. The prediction

uncertainty collapses to zero at the location of the observations.

Another option for modeling the additional technology maturity uncertainty is to

add variance to the predictive distributions. This approach does not have the same

problems as the use of scaling does. To add variance, it was decided to take advan-

tage of the fact that the sum of independent normal distributions is also normally

distributed, both in the univariate and multivariate cases. The additional epistemic

uncertainty is modeled by adding a multivariate normal random vector τ to Eq. (24).
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Figure 40: Behavior of the variance term in Eq. (30) for three settings of ν and σ2
τ = 1.

The random vector has perfectly correlated elements to ensure that the correct be-

havior of the GP model is maintained. τ is defined as

τ ∼ N(0, cov(τ )), where (29)

cov(τ )ij = (TRLCmax − TRLC)νσ2
τ , ∀i, j (30)

In Eq. (30), TRLC denotes the cardinal TRL coefficient corresponding with the ex-

perimental data, TRLCmax is the highest achievable cardinal TRL coefficient (9.0 in

the Table 10 example), ν governs the rate at which the maturity uncertainty grows,

and σ2
τ is the characteristic variance. The value of σ2

τ must be specified to properly

model the scale of the additional epistemic uncertainty. This variable has the units

of the target variable squared. Specification of the exponent ν must also be selected

according to how one wishes to model the rate of uncertainty change as TRLC is

varied. The behavior of Eq. (30) for three different settings of ν and σ2
τ = 1 is shown

in Fig. 40. As can be seen in the figure, the multiplier on the characteristic variance

grows quickly with increasing values of ν, particularly for small values of TRLC.

The additive uncertainty model has some desirable characteristics. One is that

it provides a lower bound for the forecasting uncertainty when TRLC < TRLCmax.

If the diagonal terms of Eq. (26) approach zero in regions of the input space that
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Figure 41: GP predictions for the mean (solid line) and 95% prediction intervals for
TRLs of 2, 6, and 8 (all dashed lines) and TRL 9 (dotted line) for notional data (©
symbols).

are densely populated with data, the additional maturity uncertainty modeled with

Eq. (29) ensures that the prediction uncertainty cannot shrink below the specified

bound. As TRLC → TRLCmax, the maturity uncertainty approaches zero and the

GP prediction uncertainty approaches that governed by Eq. (26). This behavior is

illustrated in Fig. 41. The dashed lines show prediction bounds for multiple TRLs.

As TRL increases, the prediction intervals shrink toward the TRL 9 interval shown

as the dotted lines. Another desirable characteristic is the behavior of prediction

uncertainty in sparsely-populated regions of the input space and when extrapolating.

As shown in Fig. 41, the prediction intervals for all TRLs converge with the dotted

lines as x moves away from the data. Thus, the uncertainty for scenarios where

TRLC < TRLCmax does not grow unnecessarily large in sparse regions of the input

space.

In the case that training data from computer experiments are used, one may wish

to include model form uncertainty in addition to maturity uncertainty. This can be

accomplished by specifying another multivariate normal random variable, similar to

Eq. (29), that has a covariance matrix with variance terms that are estimated based
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on validation of the computer model. Note that the model form uncertainty will not

be constant throughout the input space, as it will be relatively small in regions where

validation data exist and grow larger with distance from the validation data.

As indicated in Fig. 38, after this step is complete, a predictive GP model has

been built. This model can then be used for additional modeling tasks, such as

propagating uncertainty to system-level metrics or building k-factor distributions.

If another round of experimentation is being planned, then the next step of the

methodology should be used to evaluate the uncertainty reduction of the proposed

experiments.

5.2.5 Step Five: Quantify Expected Information Gain From Proposed
Experiments

To estimate the uncertainty reduction that can be expected from a proposed experi-

ment, an information theoretic framework has been implemented. In this framework,

uncertainty of GP model predictions f∗|X∗, Tj with PDF p(f∗|X∗, Tj) is measured

using the differential entropy, which is defined as follows:

h(f∗|X∗, Tj) = E[− log p(f∗|X∗, Tj)] (31)

where, Tj = {D1,D2, . . . ,Dj} is the set of all training data available from previous

experiments 1 through j, and X∗ denotes prediction locations of interest. After a

proposed experiment j + 1 has been conducted, the information gained by collecting

the data is h(f∗|X∗, Tj)−h(f∗|X∗, Tj+1). The posterior entropy after experiment j+1

cannot be quantified until the experiment has been conducted and a GP regression

model trained on the data. Before the proposed experiment, the targets at X∗ are

uncertain and can be treated as random. As an estimate, the average posterior un-

certainty Eyj+1|x[h(f∗|X∗, Tj+1)], where Eyj+1|x[·] is the expectation with respect to the

distribution of the target variable conditioned on the inputs, can be computed be-

fore the proposed experiment has been conducted. With this approach, the expected
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information gain from experiment j + 1 is

I(f∗|X∗, Tj ; Dj+1) = h(f∗|X∗, Tj)− Eyj+1|x[h(f∗|X∗, Tj+1)] (32)

This quantity is called mutual information, and it can be interpreted as the reduction

in the uncertainty of f∗|X∗, Tj due to the knowledge of Dj+1 [67]. Ideally, a planned

experiment will maximize mutual information.

An assumption that is made in this methodology is that the prior entropy h(f∗|X∗, Tj)

is not a function of the design of the planned experiments. With this assumption,

maximization of mutual information is equivalent to minimizing the expected pos-

terior uncertainty Eyj+1|x[h(f∗|X∗, Tj+1)]. Thus, in practice it is not necessary to

quantify the prior entropy; the expected posterior entropy can be used in place of

mutual information.

Steps for estimating the expected posterior entropy for a given planned experiment

are presented here. It is assumed that there are locations in the input space that are of

interest. A simulation-based approach is used to estimate the joint posterior entropy

at these points, for each realization of experimental observations. Then, the results

are averaged.

5.2.5.1 Establish Points of Interest

For any technology experiment, there will be points in the independent variable space

where technologists want to measure performance. These points may be contained in

the convex hull defined by the training data or outside of it. The former is referred

to as interpolation and the latter as extrapolation. As a notional example, consider

the data shown for two inputs in Fig. 42. The circle symbols represent locations for

measurements in an experiment, and the solid line is the corresponding convex hull.

The + symbols represent points of interest. Prediction for the four points of interest

inside of the convex hull require interpolation using a regression model, whereas the

other 12 points of interest require extrapolation with the regression model. The
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Figure 42: Notional training data (© symbols), the corresponding convex hull (solid
line), and notional points of interest (+ symbols).

farther the points of interest are outside of the convex hull, the larger the uncertainty

in predictions due to extrapolation.

For a real example where points of interest lie outside of the domain of the training

data, consider Fig. 37. The points of interest for this example lie in the range β ∈

[−7.5◦, 0◦]. If only data from a flight experiment were to be used to train a regression

model for β ∈ [0◦, 15◦], then predictions for the points of interest would require

extrapolation.

5.2.5.2 Simulate Observations From the Proposed Experiment

Before simulating data from a proposed experiment, the design matrix Xj+1 must

be specified. It is assumed that this information is given. To completely define a

simulated experiment, the targets are needed as well. To simulate the targets at

locations in the design matrix, a target function is drawn from Eq. (24), then targets

are sampled with or without noise. If noisy data are simulated, then the noise variance

σ2
yj+1

must be selected. The most accurate way to do this is to estimate the precision

that can be achieved in the proposed experiment. Nevertheless, it is assumed that

the noise variance can be specified. The process of simulating data is repeated Nsim
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Figure 43: Target function realizations (dashed lines and solid line), simulated data
(© symbols), and the GP 95% prediction intervals (gray area).

times.

To illustrate the sampling method, multiple random target function draws are

plotted in Fig. 43. These functions were sampled from a single-task GP trained with

the data shown in Fig. 41. The four observations, designated with circle symbols,

were then sampled for one of the random target function realizations (solid line) from

a normal distribution with mean defined as in Eq. (25) and variance σ2
yj+1

= 10. The

95% prediction intervals are shown as the gray area for reference.

5.2.5.3 Train Regression Models for Each Simulated Experiment

For each of the Nsim sets of simulated training data, a regression model must be

trained. A single-task or multitask GP model can be used. The value of Nsim should

be selected based on computational budget, as GP models can be expensive to train

and use for predictions when the number of observations is large. For a fair comparison

between proposed experiments, the same GP model architecture should be used for

all of the experiments. The selected architecture may not be ideal for all data sets.

However, for this step the primary objective is not predictive accuracy but rather to

measure uncertainty in the predictions at the points of interest.
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5.2.5.4 Estimate Posterior Entropy

In order to estimate Eyj+1|x[h(f∗|X∗, Tj+1)], predictions at the points of interest must

be made with all Nsim GP models. Of particular interest is the covariance matrix for

the joint distribution of the predictions. The covariance matrix of the predictions is

the sum of Eqs. (26) and (30). The TRLC value corresponding with the proposed

experiment should be used in Eq. (30). With the covariance matrix computed, the

posterior joint entropy for a single realization of training data is that of a multivariate

normal distribution [67]:

hq(f∗|X∗, Tj+1) =
1

2
log ((2πe)nj+1|cov(f∗) + cov(τ )|) (33)

where, nj+1 is the number of observations for the proposed experiment, | · | denotes

the determinant, and the entropy is in units of nats. Note that differential entropy

for continuous variables, unlike entropy for discrete variables, can be negative. To

include model form uncertainty, an additional covariance term can be used in Eq. (33).

Finally, the posterior entropy mean is estimated as follows:

Eyj+1|x[h(f∗|X∗, Tj+1)] ≈
1

Nsim

Nsim∑
q=1

hq(f∗|X∗, Tj+1) (34)

where, the ≈ symbol indicates that the quantity is an estimator for the true mean.

On a practical note, many GP regression model software packages do not explicitly

produce the full posterior predictive covariance matrix but rather the diagonal of this

matrix. This is because the diagonal of the covariance matrix is all that is needed

to estimate prediction intervals. If one prefers not to perform the matrix algebra to

obtain the full covariance matrix, there is an alternative uncertainty measure that

can be used in lieu of Eq. (33). The alternative measure is the upper bound for joint

differential entropy, which is the sum of the entropies of each random variable in the

joint distribution [67]. For GPs, the distribution at each point of interest is Gaussian,

so the upper bound of the posterior joint entropy for a single realization of training
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data is

hq(f∗|X∗, Tj+1) =

NPOI∑
d=1

1

2
log(2πe(cov(f∗)dd + cov(τ )dd)) (35)

where, NPOI is the number of points of interest.

5.3 Gaussian Process Comparison Experiment

In Sec. 5.2.2.2 a research gap was identified. For convenience, the research question

is repeated here:

Research Question 2.1: Under what conditions will a multitask GP regression

model provide better generalization performance than a single-task GP regression

model?

An experiment was conducted to investigate this research question. Four different

multitask GP models and one single-task GP were compared based on generalization

performance for analytical functions under different scenarios. The setup and results

are presented here.

5.3.1 Setup of the Experiment

The baseline single-task GP regression model selected for the experiment is the MAT-

LAB built-in implementation [104]. Special options used for training the single-task

GPs include a squared exponential ARD covariance function, a lower bound on σ2
y of

1E-15, and no basis functions. All other options were left at the default settings.

The training data for all cases were standardized before regression. For the inputs,

the simulated observations were standardized by subtracting the mean of the obser-

vations from the data, then dividing by the standard deviation of the observations.

The same approach was used to standardize the targets.

The four multitask GP models were selected from the literature to provide re-

sults for different approaches to inductive transfer learning. Each of the models and

their implementation settings are presented here. Then, the analytical functions used
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in the experiment are presented. Finally, the training data generation process and

performance measures are described.

5.3.1.1 MT-IVM

The multitask IVM (MT-IVM) GP model [92] was selected to represent a model

structure where all tasks communicate only by sharing the same set of hyperparam-

eters. To illustrate the model architecture, a graphical model for MT-IVM is shown

in Fig. 44b for three tasks. For comparison, a single-task GP architecture is shown

in Fig. 44a. No information is shared between tasks for the single-task GP model;

GP models for all three tasks are trained independently. Information sharing across

tasks for MT-IVM is achieved through the common set of hyperparameters θ. These

hyperparameters are determined through maximization of the marginal likelihood.

Note that independent noise variance parameters σ2
y are used for each task.

The IVM component of the method enables the use of only the most informative

observations during training. The size of this “active point” set is an input to the

IVM algorithm, and the selection process occurs both within and across tasks. For

fair comparison, all of the observations were used in this experiment.

To implement MT-IVM, a software package written by one of the authors of

Ref. [92] was used in MATLAB (see Ref. [105]). A squared exponential ARD co-

variance function and a Gaussian noise model were used for all experiments. Hyper-

parameter optimization was limited to a maximum iteration number of 30,000. All

other options were left at the default settings.

5.3.1.2 MTGP

Bonilla et al. [97] formulated a multitask GP with the goal of obtaining regression

models that have improved performance when tasks are related and do not suffer

performance degradation when tasks are unrelated. They proposed the use of a “free-

form” task-similarity matrix to model inter-task dependencies. To help minimize
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the possibility of over-fitting in situations where observations are sparse, a common

covariance function is used for all tasks. This model was selected for the experiment

because it uses shared hyperparameters for the tasks and also explicitly models the

relatedness of the tasks. Assuming zero-mean GP priors on the target functions for

all tasks, the key feature of the model is the form of the GP covariance:

cov(fl(x), fm(x′)) = Kf
lmκ(x,x′) (36)

where, fl and fm are target functions from two different tasks, and Kf is a positive

semi-definite matrix that defines inter-task similarities. The graphical model for this

architecture is shown in Fig. 44c. The undirected edges connect all of the latent

target functions because the inter-task relationships are explicitly modeled. Note

that independent noise variance parameters σ2
y are used for each task in this model.

An interesting property of this model is that when noiseless observations are all at

the same input locations for all tasks, there is no inter-task transfer.

This multitask model was implemented using a software package called “Multi-

task Gaussian process” (MTGP) [106], which was written by one of the authors of

Ref. [97]. A squared exponential ARD covariance function was used, and the option

to use full rank Kf matrix was selected. Hyperparameter optimization was limited

to a maximum iteration number of 30,000. All other options were left at the default

settings.

5.3.1.3 Co-Kriging

An autoregressive multitask GP model referred to as co-Kriging (CK) was also used

in the experiment. It was selected due to its success in multifidelity optimization.

The seminal work for this application domain is that of Forrester et al. [107]. The

CK model was built on the following assumption regarding two levels of computer

codes Zt(·) and Zt−1(·), where Zt(·) is the higher level (fidelity/order/expense) code:

cov(Zt(x), Zt−1(x
′)|Zt−1(x)) = 0 ∀x′ 6= x (37)
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(a) Single-task GP

(b) MT-IVM (c) MTGP

Figure 44: Graphical models representing three different ways to learn three tasks.

The interpretation of Eq. (37) is that given the nearest observation of Zt−1(x), no

more can be learned about Zt(x) from any other observation Zt−1(x
′) for x′ 6= x. Note

that the notation found in Ref. [96] is used here, where the task index t is equivalent

to j+ 1 used in Sec. 5.2.5. The assumption in Eq. (37) led to the autoregressive form

Zt(x) = ρt−1Zt−1(x) + δt(x), where t = 2, 3, . . . , s (38)

where, Zt−1(x) is a GP modeling the lower level code, δt(x) is a GP that repre-

sents location adjustment that is independent of Zt−1(·), . . . , Z1(·), and ρt−1 is a scale

adjustment parameter. The CK model has the most explicit knowledge transfer mech-

anism of the multitask models selected for this experiment; the regression model of

one task is built as a corrected model of a GP for a lower level task. One of the

disadvantages of CK is that it requires nested training observations Dt ⊆ Dt−1. This

facilitates estimation of the adjustment terms in Eq. (38). For data sets that are not

nested, a GP model can be used to estimate the Zt−1(x) observations at the locations

in Dt. This is the approach used in the experiment.

A CK model was implemented in the R programming language [108] with the

MuFiCoKriging package [109]. A “Gauss” (squared exponential ARD) covariance

function was used for the experiment. Constant basis functions were used for both

tasks. The nugget (noise variance) estimation option was turned on for all cases. All
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other options were left at the default settings. The DiceKriging package [110] was

used to predict observations for task j at locations of the data for task j + 1 with

a single-task GP. The settings used in DiceKriging were the same as those used for

MuFiCoKriging.

5.3.1.4 MULTIGP

Álvarez and Lawrence [98, 99] proposed the representation of each task as the con-

volution of a smoothing kernel and a latent function. With certain restrictions, their

model reduces to the MTGP architecture. The convolution process approach was

selected for the experiment because it provides a sophisticated class of covariance

structures. As with MTGP, the key ingredient is the GP covariance form:

cov(fl(x), fm(x′)) =
S∑
s=1

∫ ∞
−∞

κls(x− z)

∫ ∞
−∞

κms(x
′ − z′)κusus(z, z

′) dz′dz (39)

where, κls(·) and κms(·) are smoothing kernels for tasks l and s, respectively, and

κusus(z, z
′) is the covariance function for the latent function us(z). Note that inde-

pendent noise variance parameters σ2
y are used for each task in this model.

A convolution process model was implemented using the Multi-output Gaussian

Processes (MULTIGP) software package [111]. The full GP model was used, rather

than one of the approximations offered in the software. One latent function was

used for the experiment. A squared exponential ARD form was used for the latent

function covariance function and the smoothing kernel. Hyperparameter optimization

was limited to a maximum iteration number of 30,000. All other options were left at

the default settings.

5.3.1.5 Analytical Functions

Since the behavior of technology performance measured in experiments can vary from

one technology to another due to differing governing physics and setups of the experi-

ments, it was decided to use analytical functions in lieu of measurements from specific
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technology experiments. Another reason analytical functions were used is that they

provide a truth function for comparison with predictions from the regression models.

Three analytical functions were used to simulate a scenario in which a data set is

available from an “expensive” higher-TRL experiment and another data set is avail-

able from a “cheap” lower-TRL experiment. Each set of functions provides a range

of task similarities.

The first analytical function is the Branin function [112], which has been used by

many researchers to test the performance of optimization algorithms and regression

models. The Branin function served as the expensive target function, and the equation

is

fe(x) =

(
x2 −

5.1

4π2
x21 +

5

π
x1 − 6

)2

+ 10

(
1− 1

8π

)
cos(x1) + 10 (40)

For the cheap experiment, a parametric function formulated by Toal [101] was used:

fc(x) = fe(x)− (A1 + 0.5)

(
x2 −

5.1

4π2
x21 +

5

π
x1 − 6

)2

(41)

where, A1 ∈ [0, 1] is a parameter that governs the degree of similarity in behavior

between fe and fc. The domain used for Eqs. (40) and (41) is x1 ∈ [−5, 10], x2 ∈

[0, 15]. The similarity between the two functions was quantified with the squared

sample correlation r2 and the root mean square error (RMSE), which are defined

respectively as

r2 =

( ∑n
i=1(yei − ye)(yci − yc)√∑n

i=1(yei − ye)2
∑n

i=1(yci − yc)2

)2

(42)

RMSE =

√√√√ 1

n

n∑
i=1

(yei − yci)2 (43)

where, ye and yc are targets for the expensive and cheap functions, and ye and yc

are the expected values of the n observations from each. The correlation and RMSE

between the expensive Branin function and the cheap function for a range of A1

values are shown in Fig. 45. As can be seen, varying A1 simulates multiple types

147



0 0.2 0.4 0.6 0.8 1

A1

0

0.2

0.4

0.6

0.8

1

r
2

20

40

60

80

100

120

R
M
S
E

Figure 45: Behavior of correlation (solid line) and RMSE (dashed line) between the
expensive and cheap Branin functions as A1 varies.
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Figure 46: Contour plots of the expensive Branin function and the cheap function
with two different settings of A1. Lighter gray indicates high magnitude of f .

of scenarios. Low values of A1 correspond with high correlation between the two

functions and relatively low error. As A1 approaches values in the neighborhood of

0.5, the correlation approaches zero. Higher values of A1 dictate high correlation with

relatively large error.

To further facilitate understanding of how A1 affects the similarity between the ex-

pensive and cheap functions, contour plots are shown in Fig. 46. Comparing Figs. 46a

and 46b, one will see that the contours are similar but not identical. When these fig-

ures are compared with Fig. 46c, the effect of A1 is apparent. At a value of 0.514,

where the correlation reaches a minimum, A1 almost nullifies the entire squared term

in Eq. (41), and the cosine term dominates.
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The second analytical function used was also of input dimension two, and it is

referred to as the Paciorek function [101]. The expensive and cheap versions are

defined respectively as

fe(x) = sin

(
1

x1x2

)
(44)

fc(x) = fe(x)− 9A2
2 cos

(
1

x1x2

)
(45)

where, A2 ∈ [0, 1] is a parameter that governs the degree of similarity between fe

and fc. The domain used for Eqs. (44) and (45) is x1 ∈ [0.3, 1], x2 ∈ [0.3, 1]. The

correlation and RMSE between the two functions is plotted in Fig. 47. The figure

illustrates that the Paciorek function with A2 = 1 provides a scenario where the

correlation and error are both at their respective maxima. Also, the Paciorek function

with A2 = 0 provides a situation in which the expensive and cheap functions are

identical. Contours of the cheap Paciorek function for two different settings of A2 are

shown in Figs. 48b and 48c. Comparing these with the expensive function contours in

Fig. 48a, it can be seen that the correlation reduction is due the cosine term shifting

the contours and introducing a local minimum in the top right corner of the cheap

function plots.

The third analytical function used in the experiment was the Trid function with 10

input dimensions [113]. This function is popular for testing unconstrained optimiza-

tion algorithms. A cheap version of the Trid function was also used from Ref. [101].

The equations for the expensive and cheap functions, respectively, are

fe(x) =
10∑
i=1

(xi − 1)2 −
10∑
i=2

xixi−1 (46)

fc(x) =
10∑
i=1

(xi − A3)
2 − (0.65− A3)

10∑
i=2

ixixi−1 (47)

where, A3 ∈ [0, 1] is a parameter that governs the degree of similarity between fe

and fc. The domain used for Eqs. (46) and (47) is xi ∈ [−100, 100] for all i. The

correlation and RMSE between the two Trid functions are plotted in Fig. 49. Note
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Figure 47: Behavior of correlation (solid line) and RMSE (dashed line) between the
expensive and cheap Paciorek functions as A2 varies.

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
2

(a) fe(x)

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
2

(b) fc(x), A2 = 0.35

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

x1

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x
2

(c) fc(x), A2 = 1

Figure 48: Contour plots of the expensive Paciorek function and the cheap function
with two different settings of A2. Lighter gray indicates high magnitude of f .
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Figure 49: Behavior of correlation (solid line) and RMSE (dashed line) between the
expensive and cheap Trid functions as A3 varies.

150



that the term (0.65−A3) in Eq. (47) was published as (A3− 0.65) in Ref. [101]. The

author believes that this was a mistake, as the correlation and RMSE behavior did not

follow what was published by Toal. The Trid function was included in the experiment

to investigate whether the results would differ significantly from the two-dimensional

functions. Since D = 10 for the Trid function, it is not easily visualized.

5.3.1.6 Training Data Generation

To simulate a variety of scenarios, data was generated from the analytical functions

a number of ways. The training data size for the expensive functions was fixed, but

it was varied for the cheap functions. All input points were determined by the MAT-

LAB Latin hypercube generator lhsdesign with 100 iterations to improve the designs

according to the maximin criterion. The Latin hypercube design strategy was selected

due to its demonstrated superiority over other techniques, within the context of GP

regression, in the literature. To simulate both physical and computer experiments,

training data were generated using Gaussian noise with variance corresponding to two

signal-to-noise ratios (SN) or using deterministic observations. Data were generated

with 11 settings of the A parameters for all functions. For each combination of sam-

ple sizes, SN values, and A parameter settings, Nrep = 50 replicates were generated

to capture variability in the results due to the random nature of Latin hypercube

sampling and noisy observations.

In all cases, five points per input dimension, NDe = 5, were sampled from the

expensive functions. In other words, 10 data points were used for the Branin and

Paciorek functions, and 50 points were sampled from the Trid function. The speci-

fication of NDe = 5 was partly motivated by the arguments presented by Loeppky

et al. [114] that 10 observations per input dimension is a sufficient rule for the ini-

tial sampling of computer experiments. They demonstrated that this sampling rule

typically provides sufficient accuracy in GP predictions. For this experiment, it was
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desirable for the single-task GP predictive accuracy to be relatively low so that the

effect of knowledge transfer would be evident. This situation is aligned with a technol-

ogy development setting where there may be sparse data from expensive experiments.

Thus, it was decided to halve the suggested sample size. If a much denser sampling

of the input space had been used, there may not have been clear differences between

the regression models. Another reason five points per dimension was used is that

Toal [101] observed significant differences between a single-task model trained with

this sampling rule and a CK model trained with a variety of different sampling rules.

Samples for the cheap functions were generated using 5, 10, and 15 observations

per input dimension, NDc. For the Branin and Paciorek functions, this resulted in

10, 20, and 30 observations, respectively. For the Trid function, the sampling rules

resulted in 50, 100, and 150 observations, respectively. For each sample size rule, the

data were generated from the target cheap functions using A values ranging from 0

to 1 by 0.1 increments.

The cheap and expensive functions were sampled using three SN values: 100, 400,

and∞. The setting SN =∞ is a deterministic sampling, where the observations were

drawn directly from the analytical function without added noise. For the other two

SN settings, noise was generated with a normal distribution having zero mean. The

variance of the normal distribution was determined by dividing the squared difference

between the maximum and minimum truth function values by SN: (fmax−fmin)
2

SN
. Hence,

the noise variance for the expensive functions was fixed for a given SN, whereas the

noise variance also depended on A for the cheap functions. All four combinations

of noise on/off for the cheap and expensive functions were run. In all cases where

both cheap and expensive functions were sampled with noise, the same SN was used

for the cheap and expensive functions to reduce the number of cases. This was

done to simulate scenarios where both are physical experiments, both are computer

experiments, or one of the experiments is a physical experiment and the other is a
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Table 11: Summary of the data generation scenarios investigated in the GP compar-
ison experiment

Independent Variable Settings
NDe 5
NDc 5, 10, 15
SNe 100, 400, ∞
SNc 100, 400, ∞
A 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1

computer experiment.

The data generation scenarios investigated in the experiment are summarized in

Table 11. In total, 11,550 scenarios were simulated for each of the three analytical

functions.

5.3.1.7 Performance Measures

A multitask GP was trained for each of the data sets that were generated. For

comparison, a single-task GP was trained only with the data from the expensive

function. The generalization performance of each regression model was estimated

using Eqs. (42) and (43). In these equations, the mean of the GP predictions at

validation points were used in lieu of yc. The validation points were selected using a

32-level full factorial design for the Branin and Paciorek functions, resulting in a total

of 1,024 validation cases. The Trid function validation points were selected using a

combination of a 2-level full factorial design and 18,976 Latin hypercube samples,

resulting in a total of 20,000 validation cases. A Latin hypercube design was used for

the Trid function to provide space-filling coverage. The 2-level full factorial provided

samples of the performance measures at the corners of the input space. A large full-

factorial design was not possible due to the combinatorial explosion in 10 dimensions.

All validation cases were generated in MATLAB using the fullfact function for the

full factorial designs and the lhsdesign function for the Latin hypercube designs.
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5.3.2 Hypotheses

A set of hypotheses was established before the experiment to guide the analysis of the

results. The rationale for the hypotheses is developed first, then the list of hypotheses

is presented.

Caruana [91] identified the lack of a particular way to characterize task related-

ness as an important open problem in inductive transfer learning. Chai suggested

that “two tasks are related to each other when they benefit mutually under meta-

learning” [115]. This is the definition that is used here. There is an assumption based

on this definition that is implicit in all of the following hypotheses: higher r2 correla-

tion between the cheap and expensive functions implies more relatedness between the

functions, and more relatedness between tasks improves the performance of multitask

learning. Toal [101] showed empirical evidence that supports this supposition. In the

experiment, r2 between tasks was not an independent variable, but the A parameters

were used to control it through functional dependence.

In the context of technology development, the goal of a multitask modeling ap-

proach is to improve the predictive capability for the expensive or higher-TRL ex-

periment. With this in mind, the hypotheses that were formulated pertain to the

generalization capability for the expensive function only.

With the work of Toal [101] as a precedent, an interaction effect between the

number of cheap function observations and the correlation between the expensive and

cheap functions was anticipated. It was expected that the multitask model predictive

performance would increase as the r2 correlation between the functions increased, for

any fixed setting of the other independent variables in this experiment. Similarly,

for fixed correlation between the target functions beyond a critical value, it was also

anticipated that the multitask models would perform better as more cheap training

data became available. However, for fixed correlation between the target functions

below a critical value, the multitask models were expected to perform worse as more
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cheap training data became available. This is because the more cheap data that are

available, the more heavily the cheap function influences the training process. These

predictions were expected to be exhibited regardless of the SN for the cheap and

expensive functions. The corresponding hypothesis is listed first in the enumeration

below.

The effect of SNc was also expected to exhibit an interaction effect with the corre-

lation between the cheap and expensive functions. For correlation between functions

beyond a critical value, higher values of SNc were anticipated to improve general-

ization performance. The rationale is as follows. The less noisy the cheap function

observations are, the less masked the cheap target function is. If the cheap function

were to be highly correlated with the expensive function, then data sampled from the

cheap function with higher SNc should help more with learning the highly correlated

expensive function. The opposite effect was expected when the correlation between

functions was below a critical value. In this case, the less masked the cheap target

function, the more likely inductive transfer would degrade performance with increas-

ing SNc. These predictions were expected to be exhibited regardless of SNe and NDc.

Hypothesis 2 follows from this rationale.

With regard to comparison of the multitask GP models described in Sec. 5.3.1,

hypotheses were formulated by considering the inductive transfer approach of each

model. Predictions of which model would perform best when the correlation between

functions was high were not justifiable. However, expectations of the generalization

performance of each model in difficult scenarios was possible. Scenarios that were con-

sidered to be particularly difficult were any where the correlation between tasks was

close to zero. The effects of other independent variables were expected to amplify

this effect. Due to the explicit relationship between tasks that the CK model im-

plements, it was predicted that the generalization performance of this model would
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decrease below that of the single-task model as the correlations between tasks ap-

proached zero. It was reasoned that this would be the case because the CK model

for the expensive function is a correction of the cheap model regression. Also, the

results from Toal [101] support this prediction. A similar prediction was established

for MT-IVM because of the possibility that the hyperparameters would be biased by

the cheap data in such a way that predictions for the expensive function would be

poor. MTGP and MULTIGP were designed with sophisticated covariance functions

to avoid negative transfer. Thus, it was anticipated that the generalization perfor-

mance of these two models would be less sensitive to the correlation between tasks.

The term used here for this insensitivity, regardless of the predictive performance, is

“robust”. Hypothesis 3 summarizes this prediction.

Hypotheses:

1. If r2 of the target functions is above a critical value and NDc is increased with

SNe and SNc held fixed at any settings, then the generalization performance

of the multitask GP regression models will increase.

2. If r2 of the target functions is above a critical value and SNc is increased with

SNe and NDc held fixed at any settings, then the generalization performance

of the multitask GP regression models will increase.

3. If r2 of the target functions is decreased with SNc, SNe, and NDc held fixed at

any settings, then the generalization performance of MTGP and MULTIGP

will decrease at a slower rate than the generalization performance of CK and

MT-IVM.

Evidence that either supports or refutes each of the hypotheses is presented in the

following sections for all three analytical functions.
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5.3.3 Branin Function Results

To investigate the validity of the hypotheses, the results were summarized by plotting

the RMSE and r2 between the regression predictions and the true expensive Branin

function at the validation points. These measures were computed for the multitask

and single-task models using the same training data sampled from the expensive

function. Note that there were some cases where the training algorithms failed and

predictions could not be made.

Evidence supporting hypothesis 1 is shown in Fig. 50 for the lowest SN for both

expensive and cheap functions. In these plots, the points represent the median of

all 50 replicates (minus any failures) at each value of A1. The horizontal dashed

line in each plot indicates the median for the single-task model. The median was

used as a summary instead of mean because of certain cases in which some of the

training algorithms had difficulty converging. For a small number of these cases,

the RMSE was much larger than the bulk of the other replicates, and these outliers

would have heavily biased a mean estimate. Instead of discarding these cases, the

median was used, which is more robust to outliers. As observed by Toal [101], the

behavior of r2 and (-)RMSE mimic r2 in Fig. 45. For certain values of A1, all models

showed improvement in r2 as NDc increased, with CK having the largest change. The

sensitivity of CK performance to the sample size of the cheap data is not a surprising

result because of the dependence structure the model uses. The critical values of A1

appeared to be near 0.4 and 0.6, which correspond with r2 of the target functions of

approximately 0.45 and 0.3, respectively. Similar behavior was observed for RMSE.

Comparable results are shown in Fig. 51 for the case where SN of both functions

was set to 400. However, the large critical value of A1 appeared to extend beyond

0.6 for MTGP and CK. The plots in Fig. 52 exhibit similar trends for the case when

both functions were sampled deterministically. These observations suggest that the

performance of MTGP and CK were either unaffected or degraded by an increasing
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Figure 50: Branin function prediction r2 and RMSE for multiple values of NDc, with
SNc = 100 and SNe = 100.

amount of cheap data even when correlation between target functions was near 0.8.

Nonetheless, the plots shown here support hypothesis 1. Also, none of the cases that

are not plotted here refuted hypothesis 1.

At the highest correlation between target functions, where A1 = 0, the case where

SNc = 400 and SNe = 400 showed small improvements in r2 and RMSE for all of

the models, relative to the other noise settings. To more precisely probe the results

regarding the validity of hypothesis 1, box plots are shown in Fig. 53. The lower

and upper edges of all boxes are the 25th and 75th percentiles of the replicates,

respectively. The solid horizontal line within each box was placed at the median

of the replicates. As before, the horizontal dashed line indicates the median of the

measures for the single-task model. The whiskers were drawn to a maximum length

of 1.5 times the vertical length of the boxes, and any data that fell outside of the

whiskers is shown with a circle marker. Note that one CK case at NDc = 5 produced

an RMSE value on the order of 1016, but this point is not shown. The contraction
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Figure 51: Branin function prediction r2 and RMSE for multiple values of NDc, with
SNc = 400 and SNe = 400.
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Figure 52: Branin function prediction r2 and RMSE for multiple values of NDc, with
SNc =∞ and SNe =∞.
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Figure 53: Box plots of Branin function prediction r2 and RMSE for multiple values
of NDc, with SNc = 400, SNe = 400, and A1 = 0.

of the box plots with increasing NDc indicates that the performance of all multitask

models besides MT-IVM did improve with more cheap data, despite the small shift

in the medians of certain models. Interestingly, MT-IVM performance appeared to

improve as NDc changed from 5 to 10, but moving to NDc = 15 did not make a

large difference. With the exception of MT-IVM performance, these results support

hypothesis 1.

Data for assessing the validity of hypothesis 2 is shown in Fig. 54. As SNc in-

creased, all of the models showed small gains in performance for certain settings of

A1 that corresponded with high correlation between the target functions. CK was

the only model that appeared to have been virtually unaffected by increasing SNc at

A1 = 0.

The effect of increasing SNc with NDc = 15 is illustrated in Fig. 55. An interaction

effect between NDc and SNc is not clearly observed by comparing Figs. 50, 51, and 52.

When Fig. 54 is compared with Fig. 55, the interaction is clearly seen. The gains in

160



0 0.2 0.4 0.6 0.8 1

A1

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r
2

NDc = 5, SNc = 100, SNe = ∞

MTGP

MULTIGP

MT-IVM

CK

(a)

0 0.2 0.4 0.6 0.8 1

A1

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r
2

NDc = 5, SNc = 400, SNe = ∞

MTGP

MULTIGP

MT-IVM

CK

(b)

0 0.2 0.4 0.6 0.8 1

A1

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r
2

NDc = 5, SNc = ∞, SNe = ∞

MTGP

MULTIGP

MT-IVM

CK

(c)

0 0.2 0.4 0.6 0.8 1

A1

0

10

20

30

40

50

60

70

80

90

R
M
S
E

NDc = 5, SNc = 100, SNe = ∞

MTGP

MULTIGP

MT-IVM

CK

(d)

0 0.2 0.4 0.6 0.8 1

A1

0

10

20

30

40

50

60

70

80

90

R
M
S
E

NDc = 5, SNc = 400, SNe = ∞

MTGP

MULTIGP

MT-IVM

CK

(e)

0 0.2 0.4 0.6 0.8 1

A1

0

10

20

30

40

50

60

70

80

90

R
M
S
E

NDc = 5, SNc = ∞, SNe = ∞

MTGP

MULTIGP

MT-IVM

CK

(f)

Figure 54: Branin function prediction r2 and RMSE for multiple values of SNc, with
NDc = 5 and SNe =∞.

performance for more cheap data were larger than for less cheap data. This observa-

tion is confirmed by the box plots in Fig. 56. Interestingly, the performance measures

of MT-IVM and MULTIGP were not as significantly affected as the other two models.

This was particularly true for MT-IVM, as changes in performance for the model were

possibly due to variability in the experiment rather than an underlying effect due to

increasing SNc. Although the performance of MULTIGP was not as sensitive to SNc

as MTGP and CK, the majority of replicates outperformed the median performance

of the single-task model. Overall, the results suggest that hypothesis 2 is valid.

The validity of hypothesis 3 was not apparent from information found in the

figures presented thus far. MULTIGP appeared to be the least sensitive to changes in

the correlation between the target functions, but all three of the other models showed

varying degrees of sensitivity in different scenarios. As additional evidence, RMSE

and r2 values are plotted in Fig. 57 for the median of all Branin function results for

different A1 settings. The relative insensitivity of MULTIGP is clear in both plots,

161



0 0.2 0.4 0.6 0.8 1

A1

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r
2

NDc = 15, SNc = 100, SNe = ∞

MTGP

MULTIGP

MT-IVM

CK

(a)

0 0.2 0.4 0.6 0.8 1

A1

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r
2

NDc = 15, SNc = 400, SNe = ∞

MTGP

MULTIGP

MT-IVM

CK

(b)

0 0.2 0.4 0.6 0.8 1

A1

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r
2

NDc = 15, SNc = ∞, SNe = ∞

MTGP

MULTIGP

MT-IVM

CK

(c)

0 0.2 0.4 0.6 0.8 1

A1

0

10

20

30

40

50

60

70

80

90

R
M
S
E

NDc = 15, SNc = 100, SNe = ∞

MTGP

MULTIGP

MT-IVM

CK

(d)

0 0.2 0.4 0.6 0.8 1

A1

0

10

20

30

40

50

60

70

80

90

R
M
S
E

NDc = 15, SNc = 400, SNe = ∞

MTGP

MULTIGP

MT-IVM

CK

(e)

0 0.2 0.4 0.6 0.8 1

A1

0

10

20

30

40

50

60

70

80

90

R
M
S
E

NDc = 15, SNc = ∞, SNe = ∞

MTGP

MULTIGP

MT-IVM

CK

(f)

Figure 55: Branin function prediction r2 and RMSE for multiple values of SNc, with
NDc = 15 and SNe =∞.

whereas MTGP exhibited relatively large changes in RMSE and r2 as the correlation

between target functions decreased. To more clearly visualize the robustness of each

model, second-order finite differences were computed for the performance measures

and are shown in Fig. 58. In these figures MTGP and CK behaved similarly in terms

of local partial derivatives with respect to A1. For the majority of A1 values, MT-

IVM had smaller local derivatives than CK and MTGP. The derivatives plots serve

to confirm that MULTIGP was the most robust overall. Thus, the evidence supports

hypothesis 3 with regard to MULTIGP, but the evidence does not support hypothesis

3 with regard to MTGP.

5.3.4 Paciorek Function Results

Figure 59 shows evidence that hypothesis 1 is valid for the Paciorek function as well.

The performance of all of the models besides MT-IVM noticeably improved with more

cheap data at low values of A2. As seen with the Branin function, the behavior of

r2 and RMSE in the prediction results followed a similar pattern to r2 of the target

162



MTGP MULTIGP MT-IVM CK

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r
2

NDc = 5, SNc = 100, SNe = ∞, A1 = 0

(a)

MTGP MULTIGP MT-IVM CK

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r
2

NDc = 5, SNc = 400, SNe = ∞, A1 = 0

(b)

MTGP MULTIGP MT-IVM CK

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r
2

NDc = 5, SNc = ∞, SNe = ∞, A1 = 0

(c)

MTGP MULTIGP MT-IVM CK

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r
2

NDc = 15, SNc = 100, SNe = ∞, A1 = 0

(d)

MTGP MULTIGP MT-IVM CK

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
r
2

NDc = 15, SNc = 400, SNe = ∞, A1 = 0

(e)

MTGP MULTIGP MT-IVM CK

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r
2

NDc = 15, SNc = ∞, SNe = ∞, A1 = 0

(f)

MTGP MULTIGP MT-IVM CK

0

10

20

30

40

50

60

70

80

90

R
M
S
E

NDc = 5, SNc = 100, SNe = ∞, A1 = 0

(g)

MTGP MULTIGP MT-IVM CK

0

10

20

30

40

50

60

70

80

90

R
M
S
E

NDc = 5, SNc = 400, SNe = ∞, A1 = 0

(h)

MTGP MULTIGP MT-IVM CK

0

10

20

30

40

50

60

70

80

90

R
M
S
E

NDc = 5, SNc = ∞, SNe = ∞, A1 = 0

(i)

MTGP MULTIGP MT-IVM CK

0

10

20

30

40

50

60

70

80

90

R
M
S
E

NDc = 15, SNc = 100, SNe = ∞, A1 = 0

(j)

MTGP MULTIGP MT-IVM CK

0

10

20

30

40

50

60

70

80

90

R
M
S
E

NDc = 15, SNc = 400, SNe = ∞, A1 = 0

(k)

MTGP MULTIGP MT-IVM CK

0

10

20

30

40

50

60

70

80

90

R
M
S
E

NDc = 15, SNc = ∞, SNe = ∞, A1 = 0

(l)

Figure 56: Box plots of Branin function prediction r2 and RMSE for multiple values
of SNc and two levels of NDc, with SNe =∞, and A1 = 0.
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Figure 57: Branin function prediction r2 and RMSE for all results.
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Figure 58: First partial derivatives of Branin function prediction r2 and RMSE for
all results.
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Figure 59: Paciorek function prediction r2 and RMSE for multiple values of NDc,
with SNc = 100 and SNe = 100.

functions in Fig. 47. An unexpected result is that the performance of MT-IVM was

virtually unaffected by the correlation between target functions or the addition of

cheap data. Another unanticipated result is that MULTIGP was more sensitive to

reduced correlation between the target functions for the Paciorek function than for

the Branin function. The critical value of A2 is near 0.6, which corresponds with r2

between the target functions of approximately 0.06.

The behavior of generalization performance for high SN values is shown in Figs. 60

and 61. As with the Branin function, the critical value of A2 made a slight shift with

higher SN, in this case toward 0.5. MT-IVM remained nearly insensitive to SN and

A2, whereas the performance of MULTIGP degraded rapidly with increasing values

of A2 for all of the SN settings.

The performance increase for all of the models at A2 = 0 was comparable for all

SN values. The case where the cheap and expensive were both sampled determin-

istically had some of the smallest performance changes, most noticeably for MTGP

165



0 0.2 0.4 0.6 0.8 1

A2

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r
2

NDc = 5, SNc = 400, SNe = 400

MTGP

MULTIGP

MT-IVM

CK

(a)

0 0.2 0.4 0.6 0.8 1

A2

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r
2

NDc = 10, SNc = 400, SNe = 400

MTGP

MULTIGP

MT-IVM

CK

(b)

0 0.2 0.4 0.6 0.8 1

A2

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

r
2

NDc = 15, SNc = 400, SNe = 400

MTGP

MULTIGP

MT-IVM

CK

(c)

0 0.2 0.4 0.6 0.8 1

A2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
M
S
E

NDc = 5, SNc = 400, SNe = 400

MTGP

MULTIGP

MT-IVM

CK

(d)

0 0.2 0.4 0.6 0.8 1

A2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
M
S
E

NDc = 10, SNc = 400, SNe = 400

MTGP

MULTIGP

MT-IVM

CK

(e)

0 0.2 0.4 0.6 0.8 1

A2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

R
M
S
E

NDc = 15, SNc = 400, SNe = 400

MTGP

MULTIGP

MT-IVM

CK

(f)

Figure 60: Paciorek function prediction r2 and RMSE for multiple values of NDc,
with SNc = 400 and SNe = 400.
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Figure 61: Paciorek function prediction r2 and RMSE for multiple values of NDc,
with SNc =∞ and SNe =∞.
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Figure 62: Box plots of Paciorek function prediction r2 and RMSE for multiple values
of NDc, with SNc = 400, SNe = 400, and A2 = 0.

and MULTIGP. To more thoroughly investigate the validity of hypothesis 1 for the

Paciorek function, box plots are shown in Fig. 62. The r2 boxes for MTGP did not

consistently contract with increasing NDc as the boxes for the other models did, but

the the median and the box shifted upward, and the whisker length also shortened.

The same trend was exhibited for RMSE. All of the evidence suggests that hypothesis

1 is appropriate for the Paciorek function.

The evidence shown in Fig. 63 does not strongly support hypothesis 2. The shift in

performance for all of the models was small, and the strong interaction effect between

SNc and NDc observed for the Branin function was not evident for the Paciorek

function. The box plots in Fig. 64 also show that the evidence does not strongly

support or refute the hypothesis. The changes in performance for all of the models

were small enough that they may have been due to variability in the experiment

rather than an underlying effect.

The evidence presented thus far for the Paciorek function refutes hypothesis 3
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Figure 63: Paciorek function prediction r2 and RMSE for multiple values of SNc and
two levels of NDc, with SNe =∞.
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Figure 64: Box plots of Paciorek function prediction r2 and RMSE for multiple values
of SNc and two levels of NDc, with SNe =∞, and A2 = 0.
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Figure 65: Paciorek function prediction r2 and RMSE for all results.

because MT-IVM clearly was the most robust to changing correlation between the

target functions. The MTGP and CK models were the next best in terms of robust-

ness, but MULTIGP was the worst. Additional evidence supporting these claims is

shown in Figs. 65 and 66. As found in the other plots, the median performance for

MT-IVM taken over all cases was not sensitive to A2, and MULTIGP performance

degraded rapidly as A2 increased from 0 to 1. The derivative plots show this behavior

more clearly. The derivatives for MT-IVM remained close to 0 for all values of A2.

MULTIGP r2 derivatives were consistently larger than all other models in the A2

range of [0.3,0.9], and the RMSE derivatives were consistently larger than all other

models in the A2 range of [0.3,0.7]. The derivatives plots confirmed that MTGP and

CK were similar in terms of robustness, with MTGP performing slightly better at the

majority of A2 values.

5.3.5 Trid Function Results

The results shown in Fig. 67 are not conclusive regarding the validity of hypothesis

1 for the Trid function. The performance of all GP models appears to improve with

increasing NDc at the highest correlation point A3 = 0.5, but this may have been due

to experimental variability rather than an underlying effect. Similarities between the
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Figure 66: First partial derivatives of Paciorek function prediction r2 and RMSE for
all results.

behavior of the r2 and RMSE performance and the correlation between the target

functions in Fig. 49 were not as apparent as they were for the other two analytical

functions. The critical value of A3 was in the vicinity of 0.8, which corresponded

with a correlation between the target functions near 0. Note that all RMSE results

presented for the Trid function were been divided by 1E4.

The performance results in Fig. 68 support hypothesis 1. At A3 values near 0.5, the

performance of all models improved, which aligns with the hypothesis. But, there was

not a single critical value of A3 that corresponded with a correlation between target

functions below which the performance of all models remained the same or decreased.

The performance at A3 = 0.8, which corresponded with the lowest correlation between

target functions in the range of discrete A3 values, remained similar for all models

besides MT-IVM. Also, the performance of MTGP degraded with increasing cheap

data at A3 values of 0.9 and 1. Thus, the critical value of correlation differed for

each model. Another interesting observation is that CK performance followed the

correlation between the target functions as A3 varied more closely than any of the

other GP models. This was most likely because of the explicit relationship between

the two data sources that is built into the autoregressive structure. Comparing the
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Figure 67: Trid function prediction r2 and RMSE for multiple values of NDc, with
SNc = 100 and SNe = 100.

figures for SN values of 100 and ∞, one will also notice that the interaction effect

between SN and NDc is more apparent for the Trid function than the other two

analytical functions. This interaction effect resulted in larger changes in performance

as NDc increased for the higher SN value.

At the highest correlation between target functions, where A3 = 0.5, the case

where SNc = 100 and SNe = 100 showed small improvements in r2 and RMSE for all

of the models, relative to the other noise settings. To more precisely probe the results

regarding the validity of hypothesis 1, box plots are shown in Fig. 69. Although

the improvements were small, the boxes and medians did shift toward higher r2 and

RMSE performance as NDc increased. This observations implies that hypothesis 1 is

valid.

The evidence shown in Fig. 70 strongly supports hypothesis 2 for all models beside

MT-IVM. This is because the performance of MT-IVM did not appear to be affected

by increasing SNc for NDc = 5. To visualize the performance more clearly at the
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Figure 68: Trid function prediction r2 and RMSE for multiple values of NDc, with
SNc =∞ and SNe =∞.
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Figure 69: Box plots of Trid function prediction r2 and RMSE for multiple values of
NDc, with SNc = 100, SNe = 100, and A3 = 0.5.
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highest correlation between the target functions, box plots are in Fig. 71. The change

in MT-IVM r2 performance was small, but the bottom whisker shifted upward as

SNc increased. However, MT-IVM RMSE performance was virtually the same across

all levels of SNc. Performance improvements for all three of the other models was

obvious. For this reason, the validity of hypothesis 2 is inconclusive.

The evidence presented thus far for the Trid function refutes hypothesis 3 because

MT-IVM is the most robust to changing correlation between the target functions.

Additional evidence supporting this claim is shown in Figs. 72 and 73. The me-

dian performance of MT-IVM taken over all cases was nearly unchanged, and the

derivatives plots confirmed this. Although CK has the best performance overall, it

was the worst in terms of robustness to the correlation between the target functions.

MTGP was the second in robustness next to MT-IVM but third in overall predictive

performance.

5.3.6 Discussion and Conclusions

With the exception of some of the MT-IVM performance results, the evidence sup-

ports hypothesis 1. When the correlation between the target functions was above a

critical value, the generalization performance of the multitask models CK, MULTIGP,

MTGP, and (sometimes) MT-IVM improved with increasing NDc. Below the critical

value of correlation, there were instances where the generalization performance either

did not change significantly or degraded as NDc increased. The critical value is not

necessarily identical for each multitask model, as evident in the Trid function results.

The results for all of the analytical functions suggest that diminishing returns are

reached once NDc increases beyond a certain level. This was observed for the cases in

which a noticeable improvement in predictive performance was achieved when NDc

was changed from 5 to 10 but minimal improvement was found for NDc increasing

from 10 to 15.
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Figure 70: Trid function prediction r2 and RMSE for multiple values of SNc and two
levels of NDc, with SNe =∞.
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Figure 71: Box plots of Trid function prediction r2 and RMSE for multiple values of
SNc and NDc = 5, with SNe =∞, and A3 = 0.5.
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Figure 72: Trid function prediction r2 and RMSE for all results.
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Figure 73: First partial derivatives of Trid function prediction r2 and RMSE for all
results.

The validity of hypothesis 2 is not clearly defined by the results presented here. Al-

though increasing SNc resulted in generalization performance improvements in many

cases, there were instances where performance was not noticeably affected at the

highest settings of correlation between the target functions.

Hypothesis 3 is refuted for all three of the analytical functions. Although MT-

IVM was outperformed in many cases by at least one other multitask model, it was

more robust to changes in the correlation between the target functions than MTGP

was for all three analytical functions, and MT-IVM was more robust than MULTIGP

for the Paciorek and Trid functions.

Due to the limited number of GP model architectures and data scenarios that

were used in this experiment, an answer to RQ 2.1 for all regression problems is not

possible. However, conclusions can be derived with a degree of uncertainty. Also,

the conclusions for the three hypotheses imply how conditions can be changed to

better ensure when a multitask GP regression model will outperform a single-task

GP regression model.

When the correlation between the underlying cheap and expensive target func-

tions is above the critical value, this experiment indicates that a multitask GP can
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outperform a single-task GP when the number of cheap observations is equivalent

to the number of expensive observations, despite the level of noise in the data. The

validity of hypothesis 1 suggests that increasing the number of cheap data will in-

crease the likelihood that a multitask GP will outperform a single-task GP. However,

there are diminishing returns. The opposite effect is true as well; if the correlation

between the target functions is below the critical value, then increasing the number

of cheap observations can degrade generalization performance. Although hypothesis

2 cannot be definitively verified with the results from this experiment, it is possible

that increasing the signal-to-noise ratio of the cheap data will also increase the likeli-

hood that a multitask GP will outperform a single-task GP, if the correlation between

the target functions is above the critical value. The opposite effect was observed as

well; if the correlation between the target functions is below the critical value, then in-

creasing the signal-to-noise ratio of the cheap observations can degrade generalization

performance. Hence, it is best to use cheap data from a low-noise experiment, such

as a computer experiment, as long as the correlation between the target functions is

above the critical value. The interaction effect between the cheap data signal-to-noise

ratio and sample size that was observed for the Branin function and Trid function

suggests that the improvements in generalization performance gained by increasing

these parameters can be much greater if both are increased simultaneously.

The sample size of the expensive data was not varied in this experiment. For

the five points-per-dimension used in this experiment, there were cases in which the

r2 and RMSE performance measures were significantly improved. As the number of

observations increases, there will be a point at which a multitask model will result in

diminishing returns in terms of generalization performance. When the generalization

performance of a multitask GP is close to but not worse than a single-task GP, it

should only be used if it results in justifiably less prediction uncertainty.
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In the case that the correlation between the target functions is low, the complex-

ity of the functions may have an effect on the success of a multitask GP. This was

suggested by Toal [101], and the results presented here further support this obser-

vation. The Branin and Paciorek functions are both multimodal with multiple local

minima, whereas the Trid function is convex. This may be part of the reason that

the multitask GPs outperformed the single-task GPs for the Trid function in many

cases when the correlation between the target functions was close to zero. Also, the

robustness of a given multitask GP for a given problem determines when it should

be used under the condition of low correlation between the target functions. These

observations imply that the critical value of correlation between the target functions

can vary depending on the problem complexity and the multitask architecture used.

Toal [101] suggested a critical value of r2 = 0.9, but this may be conservative for

relatively simple functions such as the Trid function.

The observations that the behavior of the generalization performance measures

as the A parameters were varied is similar to the correlation between the target

functions suggests that correlation is a valid measure of task relatedness, or degree

of homogeneity, for regression. However, in practice the true correlation between the

target functions will generally not be known. The correlation can be estimated for

two functions, but the final decision regarding whether to use a multitask GP or not

should be informed by an appropriate model selection process.

5.4 Illustrative Example: AFC Technology Experiments

An analysis of notional AFC technology experiments was conducted to demonstrate

the proposed methodology. The setup of the example problem is described first. Then,

the implementation of the proposed methodology is presented. Implementation of the

first three steps of the methodology are not described in detail here because the focus

of this example is on the primary contributions in steps four and five.
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Figure 74: Summary of AFC-enhanced vertical tail technology development activities
(from Ref. [40]).

5.4.1 Problem Setup

The technology that motivated this example is the AFC-enhanced vertical tail tech-

nology that was described in Sec. 1.2. This technology was part of a development

program operated by NASA and Boeing, and the experiments that were conducted

are shown with corresponding TRLs in Fig. 74. For the illustrative problem, it was

assumed that only data existed from the sub-scale wind tunnel experiment that is

associated with TRL 4. The objectives were (1) to characterize the uncertainty sur-

rounding this experiment, (2) to estimate the uncertainty reduction from a proposed

full-scale wind tunnel experiment corresponding with TRL 5 and a proposed full-

scale flight experiment corresponding with TRL 6, and (3) to compare the estimated

uncertainty reduction values with “truth” values.

Because of the proprietary nature of the data for the real experiments, few data

have been published in the open literature. Thus, synthetic data were created for

all three of the notional experiments. To ground the example in the real physics of

the technology, “truth” functions were extracted from the published results shown
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in Fig. 37. The sub-scale wind tunnel truth function is the “30◦ rudder” line in the

figure, and the truth function for the two proposed experiments is the “20◦ rudder”

line in the figure. These choices of truth functions were motivated by the fact that

the real technology showed reduced AFC effectiveness as the scale and fidelity of the

experiments increased over time. The actual behavior of AFC effectiveness in the full-

scale wind tunnel and flight experiments were not identical, but they were assumed

to have the same truth function in this example. Notional sub-scale wind tunnel

observations were generated by adding Gaussian noise to the truth function at 11

evenly-spaced points in the β interval [−7.5◦, 7.5◦]. The Gaussian noise distribution

had an SN value of 5,000. The synthetic data are shown as circle markers in Fig. 75.

All notional full-scale wind tunnel data were generated at 7 evenly-spaced points in

the β interval [−7.5◦, 7.5◦]. To simulate the real constraints of flying the technology

on an aircraft, the notional full-scale flight experiment data were generated at 7

evenly-spaced points in the β interval [0◦, 15◦].

5.4.2 Implementation of the Proposed Methodology

The first step of the methodology regarding cleaning of the data was not necessary

since all data were synthetic. The Gaussian Processes for Machine Learning (GPML)

toolbox v3.6 [116] was used to build a regression model for the sub-scale wind tunnel

data. The squared exponential covariance function was used, and a linear basis func-

tion for the mean was selected because of the global linear trend of the observations.

Predictions from the GP model are shown in Fig. 75. The prediction mean approxi-

mately followed the trend of the true target function over the β interval [−8◦, 8◦], but

it diverged from the truth function beyond 8◦. The additional epistemic uncertainty

due to immaturity of the AFC technology was modeled using σ2
τ = 0.1, ν = 1 and

ν = 2, and TRLC = 1.14 from Table 10. The 95% prediction intervals for the sub-

scale wind tunnel GP regression model with the additional maturity uncertainty are
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Figure 75: Notional sub-scale wind tunnel experiment data (© symbols), underlying
true target function (dashed line), mean GP prediction (solid line), GP 95% predic-
tion intervals (gray area), and GP 95% prediction intervals inflated with technology
maturity uncertainty (dash-dotted lines).

plotted as dash-dotted lines in Fig. 75.

The next implementation step was to estimate the uncertainty reduction from

the proposed experiments. The points of interest were selected to coincide with the

critical β range in Fig. 37: 20 evenly-spaced points in the β interval [−7.5◦, 0◦]. Then,

observations from the proposed experiments were simulated by drawing Nsim = 1,000

random functions from the sub-scale wind tunnel GP model. Two of the random

function realizations are plotted as dotted lines in Fig. 76 for the ν = 2 scenario.

These random functions were drawn from the GP model that included the covariance

matrix that models the epistemic uncertainty due to immaturity of the technology.

If the standard GP model had been used, the random function realizations would

have been distributed more closely to the gray area shown in Fig. 75. For each of the

1,000 random functions, observations were simulated at the design points for both

of the proposed experiments. Observations were generated by sampling from normal

distributions with means at the true target function location and variances equal to

the noise variance estimated by the single-task sub-scale wind tunnel GP model. The

noise variance was estimated by the GP training process to be 0.09. Examples of the
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Figure 76: Simulating observations for the proposed experiments with the sub-scale
wind tunnel GP model for ν = 2. The solid line and gray area show the GP mean
predictions and 95% prediction intervals, respectively. Two random function draws
from the GP are shown (dotted lines), and simulated observations from the flight ex-
periment (© symbols) and full-scale wind tunnel experiment (� symbols) are shown.

generated observations for the proposed experiments are shown as square and circle

markers in Fig. 76. It is clearly seen in the figure that, with the exception of β = 0◦,

the flight experiment observations were outside of the region of interest, whereas the

full-scale wind tunnel experiment included four observations in the region of interest.

The next steps for estimating uncertainty reduction from the proposed experi-

ments were to train regression models with the simulated observations and to estimate

posterior entropy at the points of interest. For comparison, MTGP and the MATLAB

built-in GP capability were both used to perform regression of the simulated data.

The options used for both models were the same as in the GP comparison experi-

ment, except a constant basis function was implemented for the single-task GP. After

each regression model was trained, the sum of entropies of the marginal distribu-

tions was estimated at the points of interest using Eq. (35). Entropy estimation was

conducted both with the addition of the cov(τ )dd term and without it. The TRLC

values in Table 10 corresponding with TRL 5 and TRL 6 were employed for modeling

maturity uncertainty surrounding the full-scale wind tunnel and flight experiments,
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respectively.

Since the notional true target functions were known in this example, the “true”

posterior uncertainties were also computed to compare with the estimates. This

was accomplished by simulating observations from the notional experiments after

execution, training GP models with the data, and calculating posterior entropy at

the points of interest. The observations from the wind tunnel and flight experiments

were generated by sampling from normal distributions centered at the truth function

with SN values of 2,500 and 1,000, respectively. The SN was decreased as the TRL of

the experiments progressed to model more noise in the data due to a decreasing degree

of control in the experiments. Also, in the real flight experiment, it was not possible to

measure the vertical tail side force directly; side force was calculated using the flight

experiment data as an input to proprietary models. Single-task and multitask GP

models were trained with 1,000 realizations of observations from the two experiments.

Posterior entropy was calculated at the points of interest, and predictive performance

of the models was quantified at the points of interest with RMSE and r2 between the

mean predictions and the underlying truth function.

5.4.3 Results

First, results and observations are presented for the ν = 2 scenario. Then, results are

presented for the ν = 1 scenario to demonstrate the effect of the maturity uncertainty

growth rate parameter on posterior entropy. The truth entropies are presented, and

the predictive performance of the single-task GP model is compared with MTGP.

Finally, the evolution of uncertainty with maturation is demonstrated for this example

problem.

5.4.3.1 Scenario 1: ν = 2

The posterior entropy results from the single-task GP predictions for the two proposed

experiments are plotted as histograms in Fig. 77. For brevity, hWT and hFE denote
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Figure 77: Posterior entropies from the single-task GP predictions with and without
maturity uncertainty and ν = 2. The sample mean is plotted as a vertical dashed
line.

posterior entropy for the full-scale wind tunnel experiment and the flight experiment,

respectively. The vertical dashed lines are plotted at the location of the mean entropy.

Entropy without maturity uncertainty is shown in the top two plots (TRLC = 9),

whereas entropy with maturity uncertainty included is shown in the bottom two

plots. Comparing the two scenarios, one will immediately notice that the inclusion

of maturity uncertainty resulted in larger entropies.

Histograms of the differences of the posterior entropies for the two proposed ex-

periments from the single-task GP predictions are plotted in Fig. 78. Any positive
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Figure 78: Differences of the posterior entropies for the two experiments from the
single-task GP predictions with and without maturity uncertainty and ν = 2. The
sample mean is plotted as a vertical dashed line.

values in these plots indicate larger posterior uncertainty from the flight experiment

and vice versa. The expected values in both scenarios were positive, so the conclu-

sion for this example was that the full-scale wind tunnel experiment would result in

more uncertainty reduction than the flight experiment. This is not surprising con-

sidering that the GP model trained with the simulated flight experiment data had to

extrapolate to make predictions in the region of interest. Comparing the cases with

and without maturity uncertainty, the effect of including maturity uncertainty is ap-

parent; the difference in expected entropy between the two experiments was smaller

when maturity uncertainty was included.

The conclusion that the wind tunnel experiment would result in more uncertainty

reduction than the flight experiment was derived from an entropy estimation process

in which no knowledge transfer had been captured in the regression predictions. The

posterior entropies from the multitask GP predictions for the two proposed experi-

ments are plotted as histograms in Fig. 79. Comparing the expected values in Figs. 77

and 79, one will notice that the multitask cases were lower. This is evidence that the

multitask GP predicted lower uncertainty than the single-task GP.
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Figure 79: Posterior entropies from the multitask GP predictions with and without
maturity uncertainty and ν = 2. The sample mean is plotted as a vertical dashed
line.
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Figure 80: Differences of the posterior entropies for the two experiments from the
multitask GP predictions with and without maturity uncertainty and ν = 2. The
sample mean is plotted as a vertical dashed line.

The differences of the posterior entropies for the multitask case are shown in

Fig. 80. Although the individual entropies were lower for the multitask model, the

expected value of the differences for the case without maturity uncertainty was higher

than it was in the single-task results. However, when maturity uncertainty was ac-

counted for, the expected value was less than zero, which indicated that the flight

experiment would reduce uncertainty more than the wind tunnel experiment. This

is evidence that transfer learning combined with modeling maturity uncertainty can

result in nontrivial predictions. Despite the extrapolation uncertainty surrounding

predictions at the points of interest, the lower maturity uncertainty of the flight

experiment combined with knowledge transfer from the sub-scale wind tunnel data

resulted in higher predicted uncertainty reduction.

To present clearer evidence of the differences between the single-task GP model

and MTGP results, box plots are shown in Fig. 81. In the figure, the subscripts ST

and MT are abbreviations for “single-task” and “multitask”, respectively. Any values

above zero corresponded with the multitask model predictions having less uncertainty

than the single-task predictions. The evidence suggests that in the majority of the
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Figure 81: Differences of the posterior entropies for the two experiments from the
multitask GP and single-task GP predictions with and without maturity uncertainty
and ν = 2.

cases, the MTGP prediction had less uncertainty at the points of interest than the

single-task GP.

5.4.3.2 Scenario 2: ν = 1

As expected, the entropies for ν = 1 plotted in Fig. 82 for the cases with TRLC 6= 9

were lower than the ν = 2 case in Fig. 77. The histograms for the cases without ma-

turity uncertainty are similar. This demonstrates the effect of lowering the maturity

uncertainty growth rate with a fixed characteristic variance σ2
τ . The differences of the

posterior entropies are plotted in Fig. 83. A larger margin between the entropies is

shown for the ν = 1 scenario, which is not surprising because of the smaller shrink-

age in maturity uncertainty from TRL 5 to TRL 6 relative to the ν = 2 scenario.

Once again, the results for the case without maturity uncertainty are similar for both

scenarios.

The individual posterior entropy histograms for the multitask model are in Fig. 84.

As with the single-task GP case, the multitask entropies were lower for the ν = 1

scenario with maturity uncertainty accounted for. The only noticeable difference

for the case without maturity uncertainty was the shift of the sample mean to a
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Figure 82: Posterior entropies from the single-task GP predictions with and without
maturity uncertainty and ν = 1. The sample mean is plotted as a vertical dashed
line.
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Figure 83: Differences of the posterior entropies for the two experiments from the
single-task GP predictions with and without maturity uncertainty and ν = 1. The
sample mean is plotted as a vertical dashed line.

lower value for the flight experiment. However, the differences histogram in Fig. 85

indicates that the posterior entropy of the flight experiment was higher than the full-

scale wind tunnel experiment. Hence, by changing the maturity uncertainty growth

rate parameter from two to one, the conclusion was the opposite for the multitask

case.

As in scenario 1, the box plots shown in Fig. 86 indicate that the majority of

multitask GP predictions had less uncertainty than the single-task GP.

5.4.3.3 Truth Results

The true differences in posterior entropy between the two proposed experiments for

the single-task GP model are shown in Fig. 87. These results indicate that the sim-

ulated flight experiment reduced uncertainty more than the wind tunnel experiment

in all three cases. None of the predictions made using the single-task GP model

predicted that this would be the result. The causality behind the higher entropy in

predictions for the wind tunnel experiment was that the single-task GP model at-

tributed the variability in the observations to noise rather than signal and thus the

uncertainty surrounding predictions for the points of interest was relatively large.
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Figure 84: Posterior entropies from the multitask GP predictions with and without
maturity uncertainty and ν = 1. The sample mean is plotted as a vertical dashed
line.
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Figure 85: Differences of the posterior entropies for the two experiments from the
multitask GP predictions with and without maturity uncertainty and ν = 1. The
sample mean is plotted as a vertical dashed line.
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Figure 86: Differences of the posterior entropies for the two experiments from the
multitask GP and single-task GP predictions with and without maturity uncertainty
and ν = 1.
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Figure 87: True differences of the posterior entropies for the two experiments from
the single-task GP predictions with and without maturity uncertainty. The sample
mean is plotted as a vertical dashed line.

-3 -2 -1 0 1 2

hFE − hWT (nats)

0

20

40

60

80

F
re
q
u
en

cy

(a) ν = 2

0 5 10 15

hFE − hWT (nats)

0

20

40

60

80
F
re
q
u
en

cy

(b) ν = 1

0 25 50 75 100 125 150

hFE − hWT (nats)

0

50

100

150

200

F
re
q
u
en

cy

(c) TRLC = 9

Figure 88: True differences of the posterior entropies for the two experiments from
the multitask GP predictions with and without maturity uncertainty. The sample
mean is plotted as a vertical dashed line.

The true differences in posterior entropy between the proposed experiment for the

multitask GP model are plotted in Fig. 88. These results were consistent with the

predictions made in both scenarios; the scenario where ν = 2 was the only one in

which the flight experiment had less uncertainty than the wind tunnel experiment.

Hence, the transfer of knowledge with the multitask GP models resulted in predictions

that led to the correct conclusions about the relative uncertainty reduction between

the two experiments.

The differences in accuracy of predictions at the points of interest of the two GP

models for the simulated truth data are shown in Fig. 89. In both box plots, any

results that are above the zero line correspond with a case where the multitask model

194



Wind Tunnel Flight Exp.

-0.2

0

0.2

0.4

0.6

0.8

r
2 M
T
−

r
2 S
T

(a)

Wind Tunnel Flight Exp.

-1

0

1

2

3

4

5

R
M
S
E
S
T
−
R
M
S
E
M
T

(b)

Figure 89: Differences in RMSE and r2 between the single-task GP and MTGP
predictions at the points of interest for the simulated truth data.

outperformed the single-task model. Clearly the multitask model had better predic-

tive performance for the wind tunnel data. A larger variability in the performance

results was exhibited for the flight experiment data because of the fact that extrapo-

lations were made to all but one point of interest. Nevertheless, the evidence suggests

that the multitask model performed better than the single-task model for the flight

experiment as well.

To visualize the differences between MTGP and the single-task model, predictions

for a single realization of the full-scale wind tunnel experiment and the flight exper-

iment are shown in Figs. 90 and 91, respectively. For both experiments, the MTGP

prediction intervals were observed to be shorter at certain points in the region of in-

terest, particularly near β = −7.5◦. For the wind tunnel experiment, the single-task

GP attributed variability in the training data to aleatory noise, and the predictions

were smoother than for MTGP. This difference was likely due to the fact that the

MTGP model leveraged the trend of the sub-scale wind tunnel data during training.

A similar effect was observed for the flight experiment predictions, where the mean

predictions for MTGP were closer to the true target function than the single-task GP

mean predictions. However, as shown in Fig. 89, there were some realizations of the
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Figure 90: Predictions from MTGP and the single-task GP for a single realization of
wind tunnel experiment truth data.

flight experiment data for which the predictive accuracy of the multitask regression

model did not perform as well as the single-task model.

5.4.3.4 Evolution of Uncertainty With Maturation

In addition to estimating uncertainty reduction for the proposed experiments, entropy

at the points of interest can be used to track the evolution of uncertainty as exper-

iments are conducted and the technology matures. This is possible with single-task

or multitask predictive modeling, and both techniques were used for this illustrative

example to compare the two. Also, the predictive models were built with and without

explicitly characterizing the additional layer of epistemic maturity uncertainty. The

exponent ν was set to 2 for this demonstration.

Single-task and multitask GPs were constructed for the full-scale wind tunnel and

flight experiments using the same settings described in Sec. 5.4.2 and a single real-

ization of observations for the experiments. For the full-scale wind tunnel predictive

model, the multitask GP was trained with the sub-scale wind tunnel data as well, for

a total of two data sources. The multitask model for the full-scale flight experiment

was trained with the sub-scale wind tunnel data and the full-scale wind tunnel data,
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Figure 91: Predictions from MTGP and the single-task GP for a single realization of
flight experiment truth data.

for a total of three data sources. The sum of entropies at the points of interest were

computed with the predictive models built for all three experiments, and the results

are plotted in Fig. 92. The × symbols in the plot at TRL 4 are the entropies at the

points of interest for the sub-scale wind tunnel GP predictions. The higher-entropy

point is the case where maturity uncertainty was accounted for, and the lower point

is the case where it was not accounted for. The circle symbols are the entropies from

the single-task GPs without maturity uncertainty for the full-scale wind tunnel ex-

periment (TRL 5) and the flight experiment (TRL 6). In this case, the uncertainty

increased from TRL 4 to TRL 5, then decreased slightly at TRL 6. The triangle

symbols mark the entropies of the multitask GP predictions without maturity uncer-

tainty for the two experiments. Notice that the entropies at TRLs 5 and 6 were much

lower than the single-task case because of transfer learning with information from the

two previous data sets. Once again the uncertainty increased from TRL 4 to TRL 5,

but it decreased more noticeably at TRL 6. The square and + symbols represent the

same single-task and multitask predictions, respectively, with maturity uncertainty

accounted for. The multitask GP with maturity uncertainty was the only model that

exhibited uncertainty reduction consistently as TRL increased.
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Figure 92: Evolution of entropy with maturation for various GP predictive models in
the illustrative example.

At this point one may ask, Is the lower uncertainty exhibited by the multitask GP

appropriate in this example problem? In this example, it is appropriate because of

the improved generalization performance. For the full-scale wind tunnel predictions

at TRL 5, the RMSE of the single-task predictions at the points of interest was 0.87,

and the RMSE of the multitask predictions was 0.49. A difference was also found

for r2 correlation between the predictions and the target function at the points of

interest, with a value of 0.93 for the single-task model and 0.99 for the multitask

model. For the flight experiment predictions, the single-task model predictions had

an RMSE of 2.56, whereas the multitask model predictions had an RMSE of 0.58.

The r2 correlations for the single-task and multitask predictions were 0.41 and 0.98,

respectively.

5.4.4 Discussion and Conclusions

For this example problem, the results indicate that entropy estimation with the multi-

task GP model was more accurate than with the single-task model, but this conclusion

was based on the established underlying target functions. The r2 correlation between

the target functions shown in Fig. 37 is 0.91. For a problem in which the correlation
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is much lower, it is possible that the multitask GP model would not provide any

entropy-estimation benefits over the single-task model.

The GP comparison experiment presented in Sec. 5.3 focused on the predictive

accuracy of the GP models and did not measure differences in predictive uncertainty.

The AFC technology illustrative example discussed in this section demonstrated that

a multitask approach is capable of modeling decreased prediction uncertainty, rela-

tive to a single-task approach, due to knowledge gained from an auxiliary data source.

This result follows the intuitive behavior of one’s epistemic uncertainty as data is gen-

erated from multiple, heterogeneous experiments. However, the reduced uncertainty

is only appropriate when a multitask model has better generalization performance. A

larger uncertainty band that contains the truth is preferred to a smaller uncertainty

band that does not. This is why step three of the methodology is important.

5.5 Summary

This chapter explored the problems of how to quantify technology integration impact

uncertainty in light of data from multiple, heterogeneous experiments and how to

quantitatively estimate the uncertainty reduction that a planned experiment will

achieve. These problems have not been satisfactorily addressed in the technology

development literature, but key elements of a solution were identified in the statistics

and machine learning literature. These elements were synthesized and adapted for

the technology development context to formulate a methodology that addresses the

research gaps.

The use of a maturity measure in the proposed methodology can be viewed as

a necessary disadvantage. However, there is no way around somehow incorporat-

ing subjective judgments in the epistemic uncertainty characterization process. The

modeling approach proposed in this chapter includes a more traceable and defensible

way to incorporate subjective judgments than experts simply applying an inflation
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based on their opinion. Despite the disadvantage of using a maturity measure, the

proposed methodology provides an appropriate way to quantify the uncertainty sur-

rounding technology integration impacts in light of data from multiple, heterogeneous

technology development experiments because: (1) it is anchored in proven machine

learning methods for making predictions under uncertainty and (2) it provides a

flexible, quantitative approach to model the epistemic uncertainty associated with

extrapolating technology impacts to the future. The methodology also provides an

appropriate way to quantitatively estimate uncertainty reduction for a planned exper-

iment because: (1) it implements a rigorous information theoretic framework that is

the state of the art in experiment design and (2) it aggregates prediction uncertainty

from a predictive model and the additional layer of epistemic uncertainty associated

with technology maturity in the estimation process.

Although the proposed methodology is generally applicable with any kind of re-

gression model, the scope was limited to GP regression models. Multitask GPs were

identified as enabling techniques that are capable of borrowing strength from multiple,

potentially heterogenous data sources for improving generalization performance and

reducing epistemic prediction uncertainty. The primary contribution of the method-

ology is an approach for incorporating epistemic technology maturity uncertainty in

GP predictions and estimates of uncertainty reduction for proposed experiments.

Due to limited empirical evidence in the literature, a gap in knowledge and under-

standing was identified regarding when a multitask GP will have better generalization

performance than a single-task GP. An experiment was conducted, and it was deter-

mined that the conditions under which a multitask GP is the best option vary with the

way transfer learning is accomplished and the complexity of the regression problem.

Also, some guidelines regarding the characteristics of the regression problem were

established for how to increase the likelihood that transfer learning will be beneficial.
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The proposed methodology was implemented for a notional AFC technology ex-

perimentation example. It was shown that the multitask GP provided benefits in

terms of generalization performance and reduced prediction uncertainty due to trans-

fer learning with an auxiliary data source. The methodology was shown to provide

nontrivial conclusions for which of the two notional proposed experiments would pro-

vide more uncertainty reduction. This is because the proposed approach aggregates

prediction uncertainty from the GP model and the additional epistemic uncertainty

associated with the anticipated maturation level of the proposed experiments.

A possible application of the methodology is to use the uncertainty reduction

estimates as a component of an objective function to optimize the placement of ob-

servations for a planned experiment. This was not pursued in this work, but there is

a large literature in adaptive sampling that can be leveraged toward this end.
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CHAPTER VI

MATURITY-WEIGHTED BAYESIAN INFERENCE FOR

RELIABILITY ANALYSIS OF SUCCESS/FAILURE DATA

The problem of how to quantify probability of failure for success/failure reliabil-

ity data when data are potentially heterogeneous. First, the characteristics of the

problem are described and the state of the art is identified in Sec. 6.1. Then, a

maturity-weighted Bayesian inference methodology is formulated in Sec. 6.3. The

primary argument is as follows.

Argument 4: The proposed methodology improves upon the state of the art and

is an appropriate way to modify the Bayesian inference process because it provides

analysts with the flexibility to incorporate epistemic uncertainty associated with

technology or design maturity in the Bayesian reliability analysis process.

An illustrative example problem involving a rocket engine reliability analysis is pre-

sented in Sec. 6.4 to support this claim. Finally, the chapter closes with a summary

in Sec. 6.5.

6.1 Problem Definition

Reliability, which can be defined as the ability of an item to perform a required

function under given conditions for a stated period of time [117], is an important

evaluation criterion in the engineering design decision-making process for complex

systems. For high-consequence systems, such as space launch vehicles, reliability can

be as crucial as performance and other considerations for evaluating design alterna-

tives. As depicted in Fig. 93, decisions are made during the early design phases that

lock in the life-cycle cost committed for the system, and it is desirable to intelligently
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Figure 93: Notional changes in knowledge about the system design, cost committed,
and design freedom over time (adapted from Ref. [118]).

select design options to avoid costly redesign in later phases. Thus, it is especially

critical to credibly predict system reliability, among other system characteristics, in

the early design phases. When advanced technologies are integrated with design op-

tions, the uncertainty surrounding reliability will grow. The focus of this chapter

is how to properly quantify the uncertainty surrounding subsystem and component

reliability predictions during technology development and the early design phases and

how to fuse these predictions with data from multiple stages of maturity.

An integrated system is a collection of subsystems, each of which is composed of

lower-level subsystems and ultimately components at the lowest level in the system

hierarchy. In order to assess the reliability of an integrated system, the reliability

of individual components and subsystems must be estimated. Reliability analysis

frequently depends on multiple data sources such as physics-based modeling, expert

elicitation, historical data from similar subsystems or components, and physical test-

ing. Data are generated from these types of sources at multiple phases of the design

or technology development process as uncertainty surrounding the system reliability
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is reduced. The reducible component of this uncertainty is epistemic in nature. For

example, the probability of failure of a given component or subsystem is a source of

epistemic uncertainty. One can reduce this uncertainty by observing the outcomes of

reliability tests. The outcome of a reliability test (e.g., the number of failures in a

series of Bernoulli experiments), for a fixed failure probability, is aleatory in nature.

This type of uncertainty can only be reduced by modifying the system that generates

the test observations.

As a design or technology development program progresses, components and sub-

systems evolve as knowledge is accumulated and decisions are made. Bayesian and

frequentist inference techniques can be used to quantify the uncertainty surrounding

reliability of components throughout the design process. However, unlike frequentist

inference, the Bayesian approach naturally enables one to explicitly represent both

kinds of uncertainty with probability; the prior distribution represents one’s epistemic

uncertainty for the present state of knowledge about a parameter before acquisition of

data, the likelihood characterizes aleatory uncertainty associated with observations,

and the posterior distribution reflects the updated epistemic uncertainty after ob-

serving the data. A Bayesian approach is the focus in this chapter because of two

important advantages of Bayesian inference in the context of reliability estimation

as technologies and designs mature. One advantage is that when reliability data are

scarce, the Bayesian approach can produce more realistic reliability estimates with

uncertainty. As an example, if no failures occur during a reliability test, the bino-

mial failure probability quantified using the frequentist maximum likelihood estimate

(MLE) will be zero, which is not realistic. For a nonpathological prior distribution,

Bayesian inference will produce a nonzero posterior point estimate of failure prob-

ability. The other advantage is that because posterior distributions from Bayesian

inference are “true probability statements”, they can be directly propagated through

system reliability models, such as fault trees [119].
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During the progression of a design process or technology development program,

test articles, test conditions, and physics-based models will almost certainly change.

Although it is desirable to employ Bayes’ theorem to infer reliability based on all

available data collected throughout the design process, it is likely that this approach

would violate a necessary assumption called exchangeability. This exchangeability

assumption is only appropriate when all characteristics of the experiments or processes

that generate the data have been judged to be similar. The potential consequence of

violating this assumption is poor inference of reliability, which could negatively affect

the decision-making process.

Success/failure reliability data are the focus here, and there are three options for

proceeding with a Bayesian reliability analysis given possibly nonexchangeable data:

(1) continue with inference under the assumption of exchangeability, (2) perform

inference without data pooling, or (3) modify the prior and/or likelihood to account

for the data heterogeneity. The first option could lead to the consequences described

in the previous paragraph. For the second option, inference could be conducted after

each test, without the use of previous data. But, this approach would require the

elicitation of a new prior for each test and would not leverage the information gained

during earlier design stages. The third option, while lacking negative attributes of

the first two options, begs the following question.

Research Question 4.0: What is an appropriate way to modify the Bayesian

inference process to enable the proper representation of epistemic uncertainty when

the success/failure reliability data are potentially nonexchangeable?

Answering this question is difficult because of the subjective nature of epistemic

uncertainty; an approach is needed that enables analysts to quantitatively represent

their uncertainty according to their lack of knowledge.
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6.2 Literature Review

Multiple researchers have proposed solutions to similar reliability problems. Whit-

more et al. [120] and Young [121] formulated three approaches to accumulate life test

data for multiple versions of a given device in order to reduce the burden on manufac-

turers to demonstrate reliability after each design modification. This was achieved by

either modifying the prior distribution on failure rate for a given design, which was

the posterior distribution for the previous design, based on engineering judgment or

modeling the relationship between the failure rates of different designs. Modification

of the prior distribution was implemented by multiplying the distribution parameters

with constants that represent similarity of the failure rates between designs. Huang

and Jin [122] proposed a “consistency” measure, based on a χ2 statistic, that quanti-

fies the level of consistency among success/failure data sets from various sources. It

should be noted that this consistency measure quantifies differences in the data sets,

not differences in the data sources. Their approach requires the selection of a mapping

from the consistency measure to a “data adjustment score” that multiplies the num-

ber of successes and failures in a selected data set. An algorithm is used to determine

which data sets contribute to inconsistency and the data adjustment score discounts

these data during the Bayesian inference process in order to achieve statistical con-

sistency. Peng et al. [123] developed an approach to assess reliability throughout the

life cycle of new products that is based on a Bayesian updating method for combin-

ing reliability data at all life cycle stages. A key feature of their Bayesian updating

method is that they use a “reliability improvement factor” that quantifies experts’

judgments about the difference in reliability between the new product and similar,

existing products. A distribution on the reliability improvement factor is elicited from

experts and is included as subjective information in the uncertainty updating process.

The prior and data validation and adjustment scheme (PDVAS) proposed by

Huang and Jin [122] has been identified as the current state of the art for answering
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RQ 4.0. However, the potential weakness of their approach is that data from a test of

a more mature component or subsystem could be inconsistent with earlier test data

and would then be erroneously discounted. A novel approach is proposed here that

incorporates concepts that have been established by previous authors. In particular,

the concept of a maturity weight with uncertainty is used that is akin to the method

introduced by Peng et al. [123], and this maturity weight is used to modify the prior

distribution at each development phase in a manner that is similar to Whitmore et

al. [120] and Young [121].

6.3 A Maturity-Weighted Bayesian Inference Approach

According to Gelman et al., any Bayesian analysis follows three generic steps:

1. Setting up a full probability model—a joint probability distribution for all observ-

able and unobservable quantities in a problem. The model should be consistent

with knowledge about the underlying scientific problem and the data collection

process.

2. Conditioning on observed data: calculating and interpreting the appropriate

posterior distribution—the conditional probability distribution of the unob-

served quantities of ultimate interest, given the observed data.

3. Evaluating the fit of the model and the implications of the resulting posterior

distribution: how well does the model fit the data, are the substantive conclu-

sions reasonable, and how sensitive are the results to the modeling assumptions

in step 1? In response, one can alter or expand the model and repeat the three

steps [124].

These steps serve as a foundation for the Bayesian inference approach that is proposed

here and is shown in Fig. 94. Evaluation of the model fit is not explicitly included in

this methodology because it is not anticipated that one would modify the probability
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Figure 94: Steps of the proposed Bayesian inference methodology for success/failure
reliability data.

model based on how well the model fits the data at a particular point in the design

process. The approach has been designed such that the model fit may be poor for

certain data sets. The maturity weight that controls this effect is the salient feature

of the proposed methodology. Steps 1, 2, and 4 are all typical of a Bayesian reliability

analysis of success/failure data. The novel components are described in the following

subsections.

This proposed methodology fits in phase one of the overall solution shown in

Fig. 7. This methodology provides a predictive model for forecasting technology

reliability at a point in the future when the technology has been fully matured. This

capability can be used to establish k-factor distributions to enable the evaluation of

development activity alternatives. The methodology is also applicable to any system

design process.

6.3.1 The Traditional Beta-Binomial Model

To construct a full probability model for inference of success or failure probability,

three elements are needed: a sampling model, a prior distribution for success or failure

probability, and the number of failures and successes from each data source. Under
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the conditions of a fixed number of test articles or trials n and tests that are assumed

to be conditionally independent given success or failure probability θ, the binomial

distribution is an appropriate sampling model for the success/failure data [119]. The

binomial probability mass function (PMF) can be written as

p(x|θ) =

(
n

x

)
θx(1− θ)n−x, x ∈ Z≥0 (48)

where, x can represent the number of successes or failures; in this chapter, x denotes

the number of failures and θ denotes the failure probability. A commonly selected

prior distribution for the unknown failure probability is the beta distribution, with

probability density function (PDF)

p(θ) =
Γ(α + β)

Γ(α)Γ(β)
θα−1(1− θ)β−1, α, β ∈ R+ (49)

where, α and β are hyperparameters that can be interpreted as the prior number of

failures and successes, respectively, and Γ(·) is the gamma function [119]. The beta

distribution is a convenient choice of failure probability prior because it provides a

conjugate structure with the binomial sampling model and the distribution support,

the interval [0,1], is appropriate for a probability measure. By constructing a likeli-

hood function with the sampling model and the available data and applying Bayes’

theorem

p(θ|x) =
p(x|θ)p(θ)
p(x)

(50)

it can be shown that the posterior failure probability distribution, given data x, is

also beta:

p(θ|x) =
p(x|θ)p(θ)
p(x)

=
Γ(α + β + n)

Γ(α + x)Γ(β + n− x)
θα+x−1(1− θ)β+n−x−1 (51)

For brevity, the posterior distribution of θ will be written in the form θ|x ∼ Beta(α+

x, n− x+ β).
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In step 1 of Fig. 94, the prior distribution will either be an initial prior, with the

form shown in Eq. (49), or a posterior distribution from a previous iteration through

the first three methodology steps. For example, suppose that data (x1, n1) from

tests conducted during a given development phase and an initial prior distribution

on θ0 have been pushed through Bayes’ theorem to infer failure probability θ1. Also,

additional test data (x2, n2) are generated after some modifications of the component

or subsystem. If the posterior failure probability θ1 from the first inference is employed

as the prior for the second inference, then the posterior distributions for θ0, θ1, and

θ2 would be defined as follows:

θ0 ∼ Beta(α, β) (52a)

θ1|x1 ∼ Beta(α + x1, n1 − x1 + β) (52b)

θ2|x1, x2 ∼ Beta(α + x1 + x2, n2 + n1 − x2 − x1 + β) (52c)

An implicit assumption that is made in performing such an inference is that the data

sets are exchangeable. An exchangeability assumption means that one can “express

uncertainty as a joint probability density p(y1, . . . , yn) that is invariant to permu-

tations of the indexes” for uncertain quantities yi [124]. Thus, the indexes on the

uncertain quantities in the joint distribution do not convey any information about

the outcomes of the quantities yi. In practice, this means that the characteristics of

all tests that produced the observations have been judged to be similar. A desirable

consequence of exchangeability is that it justifies the treatment of the reliability data

as conditionally independent given the failure probability. However, when reliability

data are generated by different types of sources and for multiple evolutionary ver-

sions of a particular component or subsystem, the assumption of exchangeability is

questionable at best.
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6.3.2 Adaptation of the Traditional Beta-Binomial Model to Account for
Maturity

In order to account for potentially nonexchangeable success/failure data and to prop-

erly capture the epistemic uncertainty surrounding failure probability as a design or

technology matures, the traditional beta-binomial model has been adapted with a

maturity weight γ. This weight modifies the parameters of all posterior distributions

that are computed throughout the development process. To illustrate the implemen-

tation for two data sets obtained sequentially, the maturity weights have been placed

at the appropriate locations in Eqs. (52b) and (52c) as follows:

θ1|x1, γ1 ∼ Beta(γ1(α + x1), γ1(n1 − x1 + β)) (53a)

θ2|x1, x2, γ1, γ2 ∼ Beta(γ2(γ1(α + x1) + x2), γ2(n2 − x2 + γ1(n1 − x1 + β))) (53b)

Because the parameters of the beta distribution must be greater than zero, the

maturity weight must also be greater than zero. Mathematically, there is no need to

establish an upper bound on the maturity weight. However, moments of the modified

posteriors in Eqs. (53a) and (53b) have been examined to determine a practical upper

bound. The variances for these distributions are

Var(θ1|x1, γ1) =
(α + x1)(n1 − x1 + β)

(α + n1 + β)2(γ1(α + n1 + β) + 1)
(54a)

Var(θ2|x1, x2, γ1, γ2) =
(γ1(α + x1) + x2)(n2 − x2 + γ1(n1 − x1 + β))

(γ1(α + n1 + β) + n2)2(γ2(γ1(α + n1 + β) + n2) + 1)
(54b)

By inspecting Eq. (54a) one will see that for γ1 ∈ (0, 1) the variance of the posterior

distribution is increased relative to the traditional case where γ1 = 1. This is a

desired effect when using data that is produced at an early phase of the development

process; when the system or technology is immature, one’s epistemic uncertainty is

higher than it is during later design phases. Mathematically, larger variance in the

posterior distribution on failure probability represents this higher uncertainty that is

due to lack of knowledge. γ2 has the same effect on the variance in Eq. (54b), and
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the impact of γ1, which is not as apparent, also increases variance in this equation.

The expected values of the failure probabilities in Eqs. (53a) and (53b) are

E[θ1|x1, γ1] =
α + x1

α + n1 + β
(55a)

E[θ2|x1, x2, γ1, γ2] =
γ1(α + x1) + x2

γ1(α + n1 + β) + n2

(55b)

One will immediately notice that γ1 is not present in Eq. (55a) and γ2 is not present

in Eq. (55b). Thus, the expectation after the first inference is no different than

the traditional result. However, because γ1 is present in Eq. (55b), it affects the

expectation after the second inference iteration. As γ1 → 0, the hyperparameters α

and β and the first dataset (x1, n1) are discounted in Eq. (55b), and E[θ2|x1, x2, γ1, γ2]

approaches the MLE result for the binomial distribution: θ̂2 = x2/n2. This is also

a desired effect, as the expected value should be affected less by data from previous

design phases and more by data from recent design phases.

Examination of variance and expected values of the posterior distributions in

Eqs. (53a) and (53b) has revealed the behavior of these important moments, given a

range of values for the maturity weights. It was deduced that γ must be greater than

zero; that γ ∈ (0, 1) results in a discounting of the data, relative to the traditional

approach; and that γ = 1 produces the traditional Bayesian inference results. As

the development progresses, the author believes that γ should approach a value of

1 and only a value of greater than 1 in certain scenarios. For example, if critical

hazards have been mitigated after a given test, the analyst may strongly believe that

a maturity weight greater than 1 is appropriate to shrink the uncertainty surrounding

failure probability. Using values greater than 1 could result in misleading inferences

that are too optimistic with regard to the uncertainty surrounding failure probability.

6.3.3 Specification of Maturity Weight Values

The purpose of the maturity weight is to provide a way to quantitatively represent the

differences between the characteristics of the experimental apparatus that generates
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success/failure data at a given point in the development process and the character-

istics of the fully matured system or technology. This “experimental apparatus” can

be anything that is used during the design process to predict reliability. For example,

reliability data from an existing system may be used as an estimate during conceptual

design, an M&S environment can be used to predict reliability during preliminary de-

sign, or a sub-scale physical laboratory test could be conducted during any stage of

the development process. The “differences” between characteristics of the experimen-

tal apparatus and the fully matured system or technology can be any discrepancies

that could result in dissimilar failure probabilities. Given that all differences are im-

possible to enumerate, due in part to the fact that the final product is unknown until

maturation, the maturity weight must be estimated. As indicated in step 3 of the

methodology in Fig. 94, the maturity weight should be elicited from SMEs.

A practicing engineer that would use the proposed updating approach is obviously

free to use any process to establish the maturity weight γ. However, some suggestions

for doing so are provided. In general, there are two primary sources that result in dif-

ferences between a given experimental apparatus and a mature system or technology.

The first source of differences is due to dissimilarities between the conditions and

physical characteristics of the experimental apparatus and the mature operational

device, which can be due to limited resources and lack of knowledge. The second

source of differences pertains to the fidelity of M&S environments that are used to

generate reliability data.

It is suggested that the degree to which the first source of differences affects the

Bayesian inferences be quantified with a metric that captures lack of component

maturity during the development process. An example of this type of metric that is

widely used in the systems engineering community for technology development is the

TRL scale. A limiting attribute of many maturity scales, such as TRL scales, is that

they are defined on ordinal scales. For example, a technology that is rated with a
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TRL of 3 may be much less than half as mature as a technology at TRL 6. Thus,

ordinal maturity scale values must be converted to a cardinal scale and mapped to

the interval (0,1] before they are used in Bayesian calculations. An example of one

approach to converting TRLs to cardinal coefficients process is presented in the work

of Conrow [103].

The effects of the second source of differences can be quantified through model

verification and validation processes. Verification quantifies the uncertainties due

to numerical approximations in the M&S environment, whereas validation quantifies

model accuracy by comparing simulation results with credible experimental data [15].

Based on verification and validation results, a determination should be made about

how much the reliability data generated by a modeling and simulation environment

should be discounted. As with the maturity metric, this model fidelity metric should

be mapped to a value in the interval (0,1].

The components of the maturity weight that are attributed to design maturity

and fidelity of M&S environments are denoted here as wM and wF , respectively.

Once these values are established, they can be combined to form the maturity weight

by simply multiplying the two: γ = wMwF . If the reliability data are generated

from a physical experimental apparatus, then wF should be set to a value of 1. The

author acknowledges that specifying point values for wM and wF may be difficult

due to epistemic uncertainty inherent in an SME’s belief about these quantities.

This uncertainty can be accommodated by placing probability distributions on these

quantities. Uncertainty surrounding γ can then be integrated out of the posterior

distributions that are computed using the procedure presented in Section 6.3.2. For

instance, suppose that uncertainty surrounding γ1 in Eq. (53a) is represented with

distribution p(γ1). Then the posterior distribution on failure probability θ1, with γ1

marginalized out, is

p(θ1|x1) =

∫
R
p(θ1|x1, γ1)p(γ1)dγ1 (56)
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Table 12: Rocket engine reliability data for the example problem (data from
Ref. [122])

Design stage Data category Number of failures Number of successes
Concept ex-
ploration

Demonstrated reliability from
heritage engine A

0 69

Demonstrated reliability from
heritage engine B

0 13

Conceptual
design

Combination of SCA and PBMS 1 999

Embodiment
design

Laboratory test result 1 4

Development Subscale development test results 2 18
Full scale development test re-
sults

3 147

Certification Certification test results 0 120

6.4 Illustrative Example: Rocket Engine Reliability

In this section, the proposed Bayesian reliability analysis methodology is compared

with the traditional approach and PDVAS [122]. First, the problem setup is described.

Then, the application of the proposed methodology is presented. Finally, results of

the three methods are presented and compared.

6.4.1 Problem Setup

The example problem entails reliability analysis for a rocket engine. Notional data

have been obtained chronologically from multiple points in the design process. These

data were extracted from the paper by Huang and Jin [122] and are shown in Table 12.

The first two data sets are from two heritage engines that are fully mature. The third

data set is from a combination of a similarity and comparative assessment (SCA) and

physics-based modeling and simulation (PBMS). The remaining data set categories

are self-explanatory. The problem is that estimates of failure probability are needed

to support design decisions.
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Figure 95: First-order sensitivity indices for failure probability mean and variance.

6.4.2 Global Sensitivity Analysis

Before selecting maturity weights to use in the proposed methodology, suppose that

the analyst wishes to understand the impact of the weights on the inference with

all of the data. A global sensitivity analysis can provide this information, and it

was implemented by specifying distributions on each of the maturity weights and

calculating first-order sensitivity indices using the method described in Ref. [77]. The

first two data sets were lumped into one with a corresponding maturity weight. Thus,

there were six data sets and maturity weights used. Uniform distributions were used

for all of the maturity weights, with a lower bound of 0.1 and an upper bound of 1. An

initial noninformative beta prior distribution with parameters α = 0.5 and β = 0.5

was used. First-order sensitivity indices were calculated using 100,000 samples for the

mean and variance of the final beta distribution on θ6. The sensitivity indices for the

mean and variance of failure probability are shown in Figs. 95a and 95b, respectively.

Comparing the mean sensitivities with Eq. (55b), it is not surprising that the

maturity weight used to perform inference with the fifth data set was the largest

contributor to variability. The mean sensitivities for data sets two, three, and four

were also relatively significant. The weight for the second data set was a large driver
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because the test involved a large number of trials, and any data set with significant

evidence will have a large impact on the posterior distribution. The impact tapered

off with the third and fourth data sets, as these had smaller trial sizes. However,

these data sets pulled the posterior distributions toward failure probabilities on the

order of 10−2, away from the inference for the second data set of the order 10−4. The

behavior of the variance sensitivities was similar, with the most noticeable difference

being that the weight corresponding with the sixth data set was the largest driver.

This difference was not unexpected and follows from the effect observed in Eq. (54b).

6.4.3 Comparison of the Inference Methods

The traditional Bayesian inference technique is straightforward to implement by fol-

lowing the analytical updating scheme shown in Eqs. (52b) and (52c). PDVAS is

more complicated to implement because it requires the selection of multiple param-

eters. To ensure that the intended implementation of PDVAS was reflected in the

comparison, the results published in Ref. [122] for the example problem were used.

The proposed methodology was applied using the maturity weights shown in Fig. 96a.

These weights represent the judgment of the author and are notional. For all of the

methods, an initial noninformative beta prior distribution with parameters α = 0.5

and β = 0.5 was used. For each of the methods, the mean and 95% credible sets were

calculated from the posterior distributions at all chronological stages, and the results

are shown in Fig. 96b.

The impact of the low maturity weight on the first inference step was apparent;

the means of all three methods were identical, but the maturity weight clearly inflated

the uncertainty relative to the traditional method and PDVAS. The large trial size

of the second data set pulled the posteriors of all methods toward a lower mean and

reduced variance. The third data set indicated that failure probability may be much

higher than predicted by the M&S results, but PDVAS and the traditional method
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maintained low uncertainty and means relative to the weighted method. The fourth

data set also indicated a higher failure probability than the first two data sets, yet

the traditional approach and PDVAS had low means and uncertainty, whereas the

proposed approach exhibited a higher mean and larger uncertainty. The fifth and sixth

tests indicated lower failure probability, and the proposed approach estimated lower

means and uncertainty accordingly. The weighted method and traditional method

were more sensitive to the last two data sets than PDVAS. An important observation

from these results is that even with the third, fourth, and fifth tests having MLEs of

0.2, 0.1, and 0.02, respectively, the final PDVAS posterior had a mean of 0.0018 and

a standard deviation of 0.0012. It is possible that the true engine failure probability

decreased over the final phases of design, but conservative reliability engineers might

not have been convinced. If mitigation actions had been taken, then it may have been

appropriate use higher maturity weights. The creators of PDVAS explained that the

low final posterior values were due to the discounting of the “inconsistent” data sets

that had relatively high failure probabilities. This is an optimistic approach that can

be misleading. The weighted method does the opposite; the tests with higher failure

probability had higher weights than earlier tests, and the weighted method estimated

more conservative failure probabilities as a result.

Another option that the analyst has is to specify distributions for the maturity

weights to reflect the analyst’s epistemic uncertainty surrounding the appropriate

weighting. As a comparison, the proposed approach was implemented with uniform

distributions on the maturity weights for all data sets. The upper and lower bounds

of the uniform distributions were 1 and 0.1, respectively. The means and 95% credible

sets of the proposed inference approach are plotted along side the traditional Bayesian

approach and PDVAS in Fig. 96c. Comparing the cases with deterministic maturity

weights and uniformly-distributed maturity weights, some interesting observations

can be made. One of the most apparent differences is that the length of the credible
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sets for data sources 1–4 were shorter when uncertainty surrounding the maturity

weights was modeled, whereas the credible sets increased in length for data sources

5 and 6. This was due to the significant jump in the deterministic maturity weights

between data sources 4 and 5, as can be seen in Fig. 96a. Another key observation

is that modeling the uncertainty in how much each data source should have been

discounted resulted in lower means, particularly for data sources 4, 5, and 6. This

was due to the propagation of high maturity weight samples for the more optimistic

test results, such as data source 2, to the later stages. A takeaway from this example

is that modeling uncertainty in the maturity weights will not necessarily lead to

more uncertainty surrounding the failure probabilities at all stages of development,

compared to a deterministic setting.

6.5 Summary

This chapter investigated the problem of how to incorporate multiple data sources in

the Bayesian reliability analysis of success/failure data during the design or technol-

ogy development process. Through an analysis of the literature, the current state of

the art was identified, and it was argued that a novel approach was needed to properly

represent epistemic uncertainty when the success/failure reliability data are poten-

tially nonexchangeable. An adaptation of the traditional beta-binomial probability

model was formulated to address the research question.

The proposed methodology was applied to a rocket engine reliability example prob-

lem and compared to traditional Bayesian inference and the state-of-the-art method

PDVAS. A global sensitivity analysis was conducted with the weighted method to

demonstrate the effects of the maturity weights on the final posterior distribution

mean and variance. Notional maturity weights were established, and results of the

three methods were presented. PDVAS and the traditional methods consistently

estimated lower variance than the weighted method, indicating that the weighted
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Figure 96: Plots of (a) the maturity weights used in the comparison with determin-
istic weights; (b) the means and 95% credible sets of the traditional Bayesian ap-
proach (� symbols), the proposed methodology with deterministic maturity weights
(4 symbols), and PDVAS (© symbols); and (c) the means and 95% credible sets
of the traditional Bayesian approach (� symbols), the proposed methodology with
uniformly-distributed weights (4 symbols), and PDVAS (© symbols). The maximum
likelihood estimates for each data set are shown above the credible sets.
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method more conservatively represented the epistemic uncertainty surrounding fail-

ure probability. The final failure probability posteriors of the traditional method and

PDVAS were highly influenced by tests from early design phases, where low failure

probabilities were predicted. Thus, the final mean and variance predictions were po-

tentially too optimistic. Due to relatively large maturity weights for the later stages

of design, the weighted method demonstrated higher failure probability means. A

scenario in which large uncertainty surrounded the maturity weights was also investi-

gated, and the results showed more optimistic failure probabilities in the late stages

of design. Also, it was shown that incorporating additional uncertainty through the

maturity weights will not always result in increased uncertainty surrounding failure

probabilities because of the influence of the weights on variance of failure probability.

Although the proposed methodology requires elicitation of a maturity metric, it is

more appropriate than existing Bayesian methods for inference of component or sub-

system failure probability because it provides analysts with the capability to model

their epistemic uncertainty as a design or technology matures, all at the cost of few

implementation steps.
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CHAPTER VII

CONCLUSIONS

To fulfill the future aviation needs of the public and military, there are efforts in

industry and government to integrate aircraft with enabling technologies to achieve

aggressive goals and requirements for performance and capabilities. However, many

enabling technologies are immature, and system integrators incur the associated risk

when they integrate these technologies. This risk can be reduced through technology

development programs, but these programs often require over ten years and signifi-

cant resources before the technology can be transitioned to the vehicle. Ideally, the

process could be accelerated and the required resources reduced by creating the devel-

opment activities, such as physical experiments and tests, such that they maximize

performance improvement, maturation, and risk reduction during the development

program. The research in this dissertation comprises contributions toward this vi-

sion, and these contributions are summarized here. Additionally, future research

opportunities are discussed, and an overarching thesis statement is presented.

7.1 A Novel Framework for Designing Technology Devel-
opment Activities

The framework presented in Chapter 3 was formulated to address the motivating

question:

Motivating Question: How should technology development activities be de-

signed?

It was argued that to meet the technology development goals of uncertainty reduction,

performance improvement, and maturation, there are three primary questions that
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must be answered to design technology development activities:

1. Which types of activities should be selected?

2. What is the best setup of the physical or computational environment for each

activity?

3. How should each activity be executed to maximize the value of information that

is generated?

The framework comprises three phases that correspond with answering each ques-

tion: (1) thought experimentation, (2) detailed definition of the activities, and (3)

statistical design of experiments. These phases were applied to a case study for an

AFC technology to derive new insights for how the actual technology development

program should have been conducted. Also, opportunities for adding rigor to the

framework were discussed, and three contributions were presented in Chapters 4, 5,

and 6 toward this end.

7.1.1 Limitations and Future Research Opportunities

Future improvements for phase one of the framework are discussed in Sec. 7.2.1.

For phase two, the development of quantitative methods for evaluating alternative

equipment and variables for each activity is an opportunity for future research. In

phase three, there are decision criteria that are difficult to estimate for experimental

designs before the activity has been executed. An approach for estimating uncertainty

reduction was formulated in Chapter 5, but the need for estimating other decision

criteria remains. For instance, how should one estimate the performance improvement

potential of an activity with a specific experimental design a priori? To add further

rigor to the selection of an experimental design, this type of question must be answered

for the decision criteria that are pertinent to each activity.
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Even if the framework is improved through further research, there are fundamental

limitations that should be considered when implementing it. The framework is not

intended to be used for selecting which technologies enter a development program;

there are methodologies in the literature that can be used for this purpose. The

framework does not include explicit steps for determining the best plan for conducting

the portfolio of development activities. There is a tradeoff between minimizing the

time to complete a set of development activities and leveraging learning between

activities. A processes should be followed for planning execution of the activities to

minimize the risks of schedule slips and cost growth while maximizing the uncertainty,

performance, and maturation benefits of the activities. Also, the framework was

formulated to be generic, and there are many ways which the decision processes

can be interpreted and implemented for a given set of activities. Technologists with

disciplinary backgrounds must exercise their knowledge and understanding of each

technology in phase two to select the most appropriate equipment and variables for

each activity. In phase three, it is impossible to list specific steps from DoE theory

that are foolproof for any technology and any type of activity. An applied statistician

or at least a professional with substantial knowledge of DoE should be consulted for

applying the decision process to select a statistical design.

7.2 Multiattribute Utility Analysis for Evaluating Technol-
ogy Development Activities

Chapter 4 explored the problem of how to inform decisions regarding the selection

of technology development activity classes before details of the activities have been

defined. The corresponding RQ follows.

Research Question 1.0: Given alternatives defined by combinations of technol-

ogy development activity classes and technologies, what is an appropriate way for

decision makers to evaluate the alternatives for downselection?
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It was argued that the primary drawback of the state of the art is the lack of a

capability to explicity evaluate alternatives. Thus, it does not address RQ 1.0. A

generic decision process provided the foundation for a novel methodology, and ideas

from multiattribute utility theory were incorporated to address RQ 1.0. The nor-

mative decision support methodology entails establishing objectives and attributes,

constructing a utility model to represent decision makers’ values, modeling the im-

pacts of the alternatives, and evaluating the alternatives with expected utility. As

demonstrated in the illustrative example, the product of the methodology is not sim-

ply a single expected utility for each alternative but rather a capability that enables

quantitative tradeoffs and sensitivity analyses to provide insights and stimulate deeper

thinking about the problem on the part of the decision makers. Compared with the

state of the art, the proposed methodology is an improvement because it was shown

to enable explicit evaluation of alternatives rather than only providing measures of

potential for each technology. The answer to RQ 1.0 is summarized by the following

argument.

Argument 1: The proposed methodology improves upon the state of the art and is

an appropriate way to evaluate technology development activity alternatives because

1. It aggregates decision makers’ preferences, risk attitude, and system-level per-

formance goals in the analysis

2. It quantitatively represents uncertainty surrounding the impacts of the alter-

natives

3. It enables the quantitative evaluation of alternatives under conditions of risk

and uncertainty with a theoretically valid measure of value

225



7.2.1 Limitations and Future Research Opportunities

Although key attributes were proposed in the methodology, an opportunity for future

work is to identify an exhaustive list of attributes that can be used. In practice, some

or all of the attributes may not be mutually utility independent in the minds of some

decision makers. Another research opportunity is to formulate one or multiple at-

tributes in such a way that mutual utility independence is satisfied and the attributes

are still easily interpreted by decision makers. Finally, there may be a feasible way

to use the mapping between the technology development activity impacts and mul-

tiattribute utility to perform inverse design of activities. In other words, there may

be a way to establish a distribution on utility and back out distributions on the ac-

tivity impacts. Then, a set of technology development activities could be identified

that map to those activity impact distributions. Probabilistic inversion is a potential

enabler for this inverse design approach.

7.3 Uncertainty Quantification with Multitask Gaussian Pro-
cesses for Technology Development Experiments

Chapter 5 explored the problems of how to quantify technology integration impact

uncertainty in light of data from multiple, heterogeneous experiments and how to

quantitatively estimate the uncertainty reduction that a planned experiment will

achieve. The RQs are as follows.

Research Question 2.0: What is an appropriate way to quantify the uncertainty

surrounding technology integration impacts in light of data from multiple, hetero-

geneous technology development experiments?

Research Question 3.0: What is an appropriate way to quantitatively estimate

expected uncertainty reduction for a planned technology experiment?

It was argued that these problems have not been fully addressed in the technology

development context, but the ingredients for a solution were identified in the statistics
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and machine learning literature. These ingredients were synthesized and adapted for

the technology development context to formulate a methodology that addresses the

research gaps. The first three steps of the methodology were borrowed from the data

analysis literature. These steps comprise the traditional pipeline of cleaning a data

set, identifying a set of predictive models, and evaluating and selecting from the set

of models. The fourth step is a novel contribution because it provides an approach for

incorporating epistemic technology maturity uncertainty in Gaussian process model

predictions. The fifth step is also a novel contribution because it fuses a rigorous in-

formation theoretic framework for quantifying uncertainty reduction with predictive

models that incorporate the additional layer of epistemic uncertainty associated with

technology maturity. The key capabilities provided by the methodology were demon-

strated with a simple one-dimensional illustrative example. The following arguments

answer RQs 2.0 and 3.0.
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Argument 2: The proposed methodology provides an appropriate way to quantify

the uncertainty surrounding technology integration impacts in light of data from

multiple, heterogeneous technology development experiments because

1. It is anchored in proven machine learning methods for making predictions

under uncertainty

2. It provides a flexible, quantitative approach to model the epistemic uncer-

tainty associated with extrapolating technology impacts to the future

Argument 3: The proposed methodology provides an appropriate way to quanti-

tatively estimate uncertainty reduction for a planned experiment because

1. It implements a rigorous information theoretic framework that is the state of

the art in experiment design

2. It aggregates prediction uncertainty from a probabilistic regression model and

the additional layer of epistemic uncertainty associated with technology ma-

turity in the estimation process

The Gaussian process comparison experiment is also a contribution not only to

technology development but to the engineering design, statistics, and machine learn-

ing communities as well. New empirical evidence was presented to support claims

concerning when multitask Gaussian processes will outperform single-task Gaussian

processes.

7.3.1 Limitations and Future Research Opportunities

The methodology formulation is limited to Gaussian process regression models. Thus,

an important research opportunity is to extend the ideas to other classes of regres-

sion models. Also, the posterior entropy metric can be a component of a composite

objective function for selecting experimental designs in phase three of the framework.
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Other measures, such as expected performance improvement, could be incorporated

to balance exploration and exploitation in the independent variable space. Another

future research opportunity is to apply the methodology to real technology develop-

ment programs that have been conducted and publish the results as a case study that

can inform the implementation for future programs. In particular, a valuable exercise

would be to calibrate the subjective parameters that govern the maturity uncertainty

inflation using actual data from technologies that have been successfully developed.

The calibrated parameters would provide an example for the evolution of these pa-

rameters as a technology matures. Finally, Gaussian process prediction uncertainty

is represented by symmetric distributions. In some situations, analysts may wish

to skew the prediction uncertainty distributions. To do this, an approach is needed

to parametrically skew the distributions at any desired locations in the independent

variable space. The multivariate skew-normal distribution [125] is a potential enabler

for this purpose.

7.4 Maturity-Weighted Bayesian Inference for Reliability
Analysis of Success/Failure Data

Chapter 6 investigated the problem of how to incorporate multiple data sources in

the Bayesian reliability analysis of success/failure data during a design process or a

technology development process. The RQ follows.

Research Question 4.0: What is an appropriate way to modify the Bayesian

inference process to enable the proper representation of epistemic uncertainty when

the success/failure reliability data are potentially nonexchangeable?

It was argued that the current state of the art produces overly-optimistic estimates

of the epistemic uncertainty surrounding failure probability and does not provide the

flexibility to incorporate the maturity dimension in the Bayesian reliability analysis.

An adaptation of the traditional beta-binomial probability model was formulated to
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address the research gap. The novel Bayesian reliability analysis methodology begins

with traditional Bayesian data analysis steps. Then, a maturity weight is introduced

in the posterior beta distribution to enable discounting of the reliability data at a given

point in the development process. An illustrative example was presented to compare

the proposed methodology with the state of the art. The flexibility provided by the

infusion of a maturity weight was shown to enable an analyst to inject additional

subjective uncertainty into the inference process, thereby enabling more conservative

estimates of failure probabilities, if so desired. The overarching claim answers RQ

4.0.

Argument 4: The proposed methodology improves upon the state of the art and

is an appropriate way to modify the Bayesian inference process because it provides

analysts with the flexibility to incorporate epistemic uncertainty associated with

technology or design maturity in the Bayesian reliability analysis process.

7.4.1 Limitations and Future Research Opportunities

Since this work was limited to success/failure reliability data, there is a research

opportunity to extend the idea of discounting data with maturity weights to other

types of reliability data. The weighted likelihood approach [126] is one option for

injecting a maturity weight into the Bayesian inference procedure in a more generic

way. Also, the methodology should be applied to real reliability data for systems that

have been developed previously. The maturity weights should be calibrated using the

data to provide an example of how they actually vary with maturation.

7.5 Thesis Statement

In Sec. 2.4, the current practices for designing technology development activities were

described. The primary problem with the current practices that was identified is the

reliance on TRL definitions for design decisions about future development activities.
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The issue with using TRL scales as the main driver in these decisions is that they

do not characterize the state of uncertainty surrounding the integration impacts of

a technology. A result of this is that decisions can be misinformed because they

hinge on a maturation criterion and less significantly or not at all on uncertainty

reduction criteria. Also, there is not a clear-cut procedure for designing technology

development activities in the literature; many important decisions are delegated to

decision makers and technologists. The proposed framework addresses these gaps,

and the other contributions in this dissertation add rigor to the framework. The

overarching thesis statement is as follows.

Thesis Statement: The proposed framework for designing technology develop-

ment activities improves upon the current practices because

1. It incorporates a set of generic decision-making steps in three phases to provide

a systematic process for determining the types of activities that should be

pursued, the best setup for each activity, and how each activity should be

executed to maximize the value of information that is generated

2. It integrates multiple decision criteria for evaluating alternatives during the

activity design process

3. It provides a foundation for the use of quantitative methods to improve the

state of decision-support capabilities

The first reason stated in the thesis highlights that the framework is the first—to

the best of the author’s knowledge—to decompose the activity selection process into

explicit decision-making steps. The second reason in the thesis statement is impor-

tant because the framework fuses multiple decision criteria to qualitatively or quan-

titatively capture the value of the alternatives, which is a key improvement on the

current practices. The third reason in the thesis points out a key characteristic of
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the framework: it lays out a generic process with steps that quantitative methods

can be “plugged into” to improve decision support capabilities. Three such contribu-

tions have been presented in this dissertation, but there are more opportunities that

have been identified. Researchers are encouraged to continue this work of populating

the framework in the future and to apply the framework in technology development

programs. By doing so, the author’s hope is that development efficiency will be in-

creased for promising advanced technologies, thereby accelerating the delivery of the

technology benefits to society.
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APPENDIX A

EDS SURROGATE MODEL ASSESSMENT

In the illustrative example described in Sec. 4.4, artificial neural network surrogate

models were used to expedite the uncertainty propagation process for mapping the

technology impacts to the system-level metrics with the EDS M&S environment. In

this appendix, an analysis of the EDS surrogate models is presented.

To improve the fits of all system-level metric surrogates, the aircraft design takeoff

gross weight (TOGW) computed by EDS was used as an input to the models. Thus, a

surrogate model of design TOGW was needed as well, and the fit statistics are shown

in Fig. 97. The model fit error (MFE) plot shows a histogram of the relative error

(%) of the predictions for the training data. The MFE distribution appears to be

symmetric with mean near zero and a standard deviation of much less than one, which

is a preferred result. Similarly, the model representation error (MRE) histogram is

the relative error (%) of the predictions for validation data that was not used in the

training process. The MRE mean is also small with a low standard deviation. Any

skewness in the MFE or MRE distributions would be a cause for concern because

it would indicate a surrogate model that either under-predicts or over-predicts the

true values from EDS. The actual by predicted plot shows the actual EDS values

plotted against the values predicted by the surrogate model. The ideal case is where

the values all lie on a straight line, as indicated in the plot by the solid black line.

The validation and training points all lie close to this perfect fit line, which is a good

result. Finally, the residual by predicted plot shows the residual values (absolute error

between the true EDS values and the predictions) on the vertical axis plotted against

the predicted values on the horizontal axis. Ideally, this plot looks random like a
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Figure 97: Fit statistics for the design TOGW EDS surrogate model.

shotgun blast, with not obvious patterns. Any pattern in this plot would indicate

that a more complex model may be required to fit the data well. A conservative

estimate of the worst case prediction error can be identified in this plot by finding the

maximum residual value and dividing it by the smallest predicted value. The worst

case in the plot is a validation case with a residual of approximately -25,000 divided

by the smallest predicted value of approximately 360,000, which results in an error

of just under 7% (absolute value). A typical rule of thumb when fitting regression

models is to aim for this error to be less than 10%. The coefficient of determination

R2 is a less important evaluation criterion. Nevertheless, a value as close to one as

possible is another indication of a good predictive model. This model fit within the

evaluation criteria and was judged to be appropriate for use in the example problem.

The fit statistics for the aircraft design block fuel surrogate model are shown

in Fig. 98. The MFE and MRE distributions both appear to be symmetric with
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Figure 98: Fit statistics for the design block fuel EDS surrogate model.

low means and standard deviations. The actual by prediction plot exhibits samples

that were tightly grouped around the perfect fit line. The residual by predicted plot

indicates no obvious patterns, and the worst case prediction error was approximately

2%. These results were satisfactory for use of the surrogate model in the example

problem.

The fit statistics for the aircraft sideline noise surrogate model are shown in Fig. 99.

The MFE and MRE distributions both appear to have a small degree of skewness

with low means and standard deviations. The actual by prediction plot exhibits

samples that were grouped around the perfect fit line but with a few points that were

separate from the high-density region. The residual by predicted plot indicates no

obvious patterns, and the worst case prediction error was approximately 2%. These

results were also judged to be satisfactory for use of the surrogate model in the

example problem.
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Figure 99: Fit statistics for the sideline noise EDS surrogate model.

The fit statistics for the aircraft TOFL with one engine inoperative surrogate

model are shown in Fig. 100. The MFE and MRE distributions both appear to

be symmetric with means and standard deviations that are larger than the other

surrogates. The actual by prediction plot exhibits many samples that were not tightly

grouped around the perfect fit line. The residual by predicted plot indicates that a

pattern may be present, and the worst case prediction error was approximately 58%.

TOFL has been a notoriously difficult EDS output to regress, and although many

of the evaluation criteria were violated, this was the best surrogate model that the

analyst was able to produce. It was decided to use this surrogate model in the

illustrative example despite the poor predictive performance because the results are

notional and will not be used for high-consequence decision making.
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Figure 100: Fit statistics for the TOFL EDS surrogate model.
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APPENDIX B

EXPECTED UTILITY COMPUTATION EXAMPLE

In the description of step five of the methodology for evaluating technology devel-

opment activities, Fig. 20 is presented to illustrate the flow of uncertainty from the

effects of each alternative to multiattribute utility. The details of this propagation

process are not shown for the illustrative example problem described in Sec. 4.4. In

this appendix, results from each level of the hierarchy are shown for the alternative

defined as a computer experiment for the fan vertical acoustic splitter technology

(A1) in the example problem.

The effects of the activities on the baseline technology impact distributions are at

the lowest level of the propagation hierarchy. For A1, the performance effects were

modeled as a translation of the takeoff noise k-factor and a scaling of the variance

with the parameters δFan Noise and αFan Noise, respectively. A cost impact was modeled

as well. The uniform distributions for these effects are shown in Fig. 101. The bounds

of the distributions correspond with Table 9. The interpretation of the distribution

on δFan Noise is that the computer experiment is expected to result in performance im-

provement between 0 and -2 dB. The distribution on αFan Noise represents anticipated

variance reduction between 100(1 − 0.952) = 9.75% and 100(1 − 0.902) = 19% from

the baseline. The cost distribution indicates that the activity is expected to require

between 5% and 10% of the total budget.

Each random sample drawn from the distributions on δFan Noise and αFan Noise was

used in Eq. (15) to effect a change of the fan noise technology impact k-factor. The

baseline distribution on kFan Noise is plotted in Fig. 102a, along with two transformed

versions that correspond with two random samples of mean translation and variance
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Figure 101: Uniform distributions used to represent the effects of conducting a com-
puter experiment for the fan vertical acoustic splitter technology.

scaling. The dashed line PDF was created with a mean shift of -1.17 dB and a vari-

ance reduction of 100(1 − 0.912) = 17.19%, whereas the dotted line had a smaller

mean shift of -0.56 dB and a smaller variance reduction of 100(1− 0.942) = 11.64%.

A sample of 10,000 such kFan Noise distributions were generated in a similar way. For

each kFan Noise distribution and the baseline distributions shown in Fig. 22a, Fig. 22b,

and Fig. 22c, the EDS M&S environment surrogate models were used to propagate

uncertainty to the system-level metrics. As expected, the primary effect of the vari-

ous realizations of kFan Noise distributions was observed for the marginal distribution

characteristics of the sideline noise metric. The baseline sideline noise distribution is

plotted in Fig. 102b, along with the distributions associated with two versions of the

transformed distributions on kFan Noise. By comparing the PDF shapes of kFan Noise and

sideline noise reduction, one will notice an intuitive trend: as δFan Noise and αFan Noise

simultaneously decreased to shift kFan Noise toward lower noise with lower variance,

the impact propagated to better sideline noise performance with lower variance.

At the next higher level of the propagation hierarchy were the attributes. For

each of the 10,000 distributions of the system-level metrics, the performance attribute

P(D ≥ DTarget) and average variance reduction attribute were quantified. The his-

tograms of these attributes are shown in Fig. 103. Cost is also an attribute, and

the distribution on this attribute is shown in Fig. 101c. The performance attribute

values lying between 0.16 and 0.24 were small, considering that the minimum and
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Figure 102: Baseline and modified noise technology impact distributions and the
corresponding system-level noise marginal distributions.

maximum possible values for the attribute were 0 and 1, respectively. Considerable

average variance reduction values were quantified given that the uncertainty in the

marginal distributions on fuel burn reduction and TOFL reduction were unaffected

by A1 and that the uncertainty reduction attribute was defined as an average variance

reduction of all three system-level metrics.

With the attribute distributions characterized, the next step was to propagate

these distributions through the single-attribute utility functions show in Fig. 26. The

results of propagation were the three single-attribute utility distributions shown in

Fig. 104. Comparing the three utility distributions, it is apparent that the cost utility

was highest of the three for A1 due to the low cost of the computer experiment that

was modeled. The skewed shape of the performance and uncertainty reduction utility

distributions was due to a combination of the skew of the attribute distributions and

the high slope of the single-attribute utility functions over the range of the samples

from the attribute distributions. The final step in the propagation process was to

push the three single-attribute utility distributions through Eq. (10) to compute a

distribution on multiattribute utility. The resulting distribution is plotted in Fig. 105,

and the vertical dashed line marks the expected utility for A1, which was estimated
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Figure 103: Histograms of the performance and uncertainty reduction attributes that
summarize changes in the system-level metric distributions due to the effects of A1.
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Figure 104: Histograms of the single-attribute utilities.

by computed the sample mean. Comparing the multiattribute utility distribution

with the three single-attribute utility distributions, it is clear that the magnitude of

the multiattribute utility samples would not have been nearly as high without the

contribution of the high cost utilities. The performance and uncertainty reduction

utilities had the effect of discounting the high cost utilities. The relatively large

scaling constant value for cost from Table 8 also had a role due to the high weighting

of the cost utility.

The process illustrated here for quantifying expected utility was repeated for the

three other alternatives to produce the results shown in Fig. 29. For the sensitivity

analyses described in Sec. 4.4.4, this process was followed to compute the expected
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Figure 105: Histogram of multiattribute utility with the expected utility for A1 indi-
cated by the vertical dashed line.

utilities of all four alternatives at 20 different levels of the indifference probabilities

(Scenarios 1 and 2) and the uncertainty reduction scaling constant (Scenario 3).
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