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ABSTRACT 

 

 The dissertation includes three research papers on all-pay auctions. The first paper (Chapter 1) 

considers an all-pay auction for a product in which there is an option for bidders to guarantee 

purchases at a seller specified posted price P at any time. We find the symmetric pure-strategy 

equilibria in the first- and second-price all-pay auctions (also called war of attrition) with a buy-

price option. Under these equilibria the buy-price option will affect high-value bidders' behavior, 

and improve their welfare. At the same time, the seller can select the optimal posted price to 

collect more revenue, and the Revenue Equivalence Theorem holds as well. The second paper 

(Chapter 2) conducts empirical analysis on online penny auctions, which are seen as an 

adaptation of the famous dollar auction and as "the evil stepchild of game theory and behavioral 

economics." We use the complete bid and bidder history at a website to study if penny auctions 

can sustain excessive profits over time. The overwhelming majority of new bidders lose money, 

but they quit quickly. A very small percentage of bidders are experienced and strategically 

sophisticated, but they earn substantial profits. Our evidence thus suggests that penny auctions 

cannot sustain excessive profits without attracting a revolving door of new customers who will 

lose money. The third paper (Chapter 3) proposes a nonparametric estimation approach to 

empirical analysis of the war of attrition. In order to construct a tractable model, we consider the 

uncertain competition and derive a structural model with a stochastic number of bidders. We 

admit the contamination from observables and introduce a deconvolution problem with 



 

iv 

 

heteroscedastic errors into the nonparametric approach. By a two-step nonparametric procedure, 

we can attain a consistent estimator of the distribution of bidders' private values from the 

observables. Finally, we apply the estimation procedure to field data from penny auctions.  
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Chapter 1

All-pay Auctions with a Buy-price Option

1.1 Introduction

The Internet and online retailers have altered auction mechanisms in many ways. In this

paper, we study the role of buy-price options in the all-pay auctions. In addition to the chance

of winning a product by making the highest bid, buy-price options allow the consumers to

obtain the product at a certain posted price.

Most of the online auctions are English auctions, in which the highest bidder wins and pays

the second highest price, and the losing bidders don�t pay their bids. As the buy-price options

are available, the seller provides bidders the option to end the auction early at the posted

price (such prices are called "Buy-It-Now" on eBay, "Buy Price" on Yahoo!, and "Take-It" on

Amazon). The Buy-It-Now option at eBay is a "temporary" buy price, that is, the buy-price

option disappears once a bidder places a bid. Other buy prices are "permanent" option which

are available to bidders through the auction�s entire duration (Shunda 2009).

There is a growing literature on auctions studying buy-price options. Budish and Takeyama
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(2001) provide a simple discrete value example to show that the buy-price option can increase the

expected revenue when bidders are risk-averse. Mathews (2004) shows that eBay�s temporary

buy-price can be explained by impatience on both sides. Durham et. al. (2004) and Anderson

et. al. (2008) provide empirical evidence of the e¤ect of buy-price options on eBay auctions.

Hidvégi et. al. (2006) analyze the English auction when the buy-price option is permanent,

and they conclude that the buy-price option increases expected social welfare and expected

surplus to both sides when either buyers or seller are risk-averse. Kirkegaard and Overgaard

(2008) extend the model to multi-unit auctions, in which the buy-price option increases the �rst

auction�s revenue, but reduces the second auction�s revenue. Bose and Daripa (2009) examine

the optimal selling mechanism under the environment that a seller owns two venues: the �rst

venue is a store using a posted price to sell the object, and the second venue is an (online)

auction site. In these settings, they argue that the eBay auction with a temporary buy-price is

an optimal format in the second venue.

In this paper, we study the e¤ect of buy-price options on all-pay auctions. All-pay auctions

are widely used in economics because they capture the essential elements of contests, such as

rent seeking, R&D races, political contests, and job promotion tournaments. We haven�t seen

standard all-pay auctions with buy-price options in the real world. A recent internet auction

format, called penny auction or pay-to-bid auction, has the most similar features to all-pay

auctions. See Wang and Xu (2011) for more background.

The most related research is Anderson and Ødegaard (2011). Motivated by penny auctions,

they study a setting with two sales channels: a �xed posted price and an all-pay auction

with a buy-price option, and they propose a symmetric equilibrium bidding strategy under the

condition that the buy-price in the auction is much higher than the �xed posted price. Although
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our paper is related and complements their insights, there are some fundamental di¤erences.

First, we focus on a single sales channel, in which consumers only have access to the auction

market. Second, in addition to the standard all-pay auction (i.e., �rst-price all-pay auction),

we also consider the war-of-attrition (i.e., second-price all-pay auction).

The main contributions of the paper are as follows. First, we provide the symmetric bidding

equilibria for the �rst- and second-price all-pay auctions as the seller o¤ers the buy-price options.

Second, we analyze the setting of optimal posted prices by the seller. An interesting result is that

the seller should choose di¤erent posted prices in the �rst- and second-price all-pay auctions, but

both formats can attain the same expected revenue. Finally, we discuss the welfare e¤ect of the

buy-price options. Under the private valuation framework, the buy-price option can change the

high-value bidders�behavior and improve their surplus, but has no e¤ect on low-value bidders.

Meanwhile, this option has positive e¤ect on seller�s expected revenue.

This paper is organized as follows. In section 2, we set up a basic model. In section 3,

we discuss the bidders�equilibrium strategy in the �rst-price all-pay auction with a buy-price

option. In section 4, we analyze a parallel development for the second-price all-pay auction. In

section 5, we develop revenue comparisons in the view of the seller�s choice. We conclude in

section 6.

1.2 Basic Model

We extend the framework of Krishna and Morgan (1997) to a buy-price option setting. Consider

a seller who wants to sell a product in a market where N potential bidders i 2 f1; 2; � � �; Ng

exist. Assume each bidder has one unit of demand, and his valuation is in monetary units, v,
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which is drawn independently from the distribution function F (v) with a continuous density

function f (v). Without any loss of generality, we assume F (v) = 0, F (v) = 1, v � 0; v � 1

and bidders are risk-neutral. All of the above is common knowledge among buyers and the

seller.

We model the all-pay auction with a buy-price in the following manner. Prior to the start of

an auction, the seller posts the description of the product and the buy-price, P > v. Each bidder

knows his private value of the product based on the item description and his own preference.

The number of potential bidders and the distribution of valuations are commonly known, but

a bidder doesn�t know his rivals�values.

As the auction starts, each bidder submits his willingness to pay, bi. The seller collects all

bids, and then reveals all bids and the identity of the winner. In the �rst-price all-pay (FPA)

auction, the highest bidder wins the product and pays his bid. In the second-price all-pay (SPA)

auction, the highest bidder wins the product and pays the second-highest bid. If a tie happens,

the winner is selected randomly among the highest bidders. In all cases, losing bidders have to

pay the amount of their bids as well.

The buy-price option o¤ers each losing bidder an alternative to buy the product at the

reduced price P � bi after the end of auctions. And this option is not available for the winner.

This multi-unit assumption is di¤erent from the standard auction format, but it is reasonable

in the e-commerce market. As the seller receives an order, it takes days to deliver the product

and she can request more from the supplier even if the stock is not enough.
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1.3 Equilibrium in the FPA

Let�s start with the �rst-price auction. In this section, we discuss the bidders� behavior in

the FPA auction with a buy-price option. Since bidders are symmetric, we consider bidder

1�s bidding strategy. In what follows, let the random variable W�1 = max fvjgj 6=1 denote

the maximum value of bidder 1�s rivals. Under the independence assumption, the conditional

distribution function of W�1 given that v1 = v is FW�1 (� j v) = FW�1 (�) = FN�1 (�) and the

corresponding density function is fW�1 (� j v) = fW�1 (�) = (N � 1)FN�2 (�) f (�).

This is a two-stage game. In the �rst stage, bidders choose the bids to submit; in the second

stage, bidders decide whether to execute the buy-price option. We solve the game by backward

induction.

In the second stage, the seller reveals all bids and the identity of winner, and the highest

bidder wins one unit of product. Since each bidder has single-unit demand, the winner with

(v; b) would receive with payo¤ v � b. Under the alternative buy-price option, the posted price

P is given, and the losing bidders can choose whether to execute that option. For a non-winner

i with submitted bid bi, his payo¤ function for the binary choice is

8>><>>:
vi �max fP; big if execute buy-price option

�bi if otherwise

: (1.1)

So the condition to exercise the buy-price option is vi �max fP; big > �bi and the non-winner
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i0s payo¤ function is 8>>>>>><>>>>>>:

vi � bi if bi > P

vi � P if P � vi � bi � P

�bi if bi < P � vi

: (1.2)

In the �rst stage, all bidders submit their bids simultaneously and the condition for bidder

1 to win is b1 > max
j 6=1

fbjg.1 Consider bidder 10s payo¤ function in the second stage, and then

bidder 10s payo¤ function in the �rst stage is

8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:

v1 � b1 if b1 > max
j 6=1

fbjg

v1 � b1 if b1 � max
j 6=1

fbjg and b1 > P

v1 � P if b1 < max
j 6=1

fbjg and P � v1 � b1 � P

v1 � b1+P (#fj:bj=b1g�1)
#fj:bj=b1g if b1 = max

j 6=1
fbjg and P � v1 � b1 � P

�b1 if b1 < max
j 6=1

fbjg and b1 < P � v1

v1
#fj:bj=b1g � b1 if b1 = max

j 6=1
fbjg and b1 < P � v1

: (1.3)

We begin with a heuristic derivation of the symmetric equilibrium strategy. Suppose that

bidders j 6= 1 follow the symmetric strategy � (bj ; vj), which is de�ned as the probability that

a bidder with value vj bids less than bj . Then, bidder 1�s winning probability is

� (b1) = Pr

�
b1 > max

j 6=1
fbjg

�
= Pr (b2 < b1) Pr (b3 < b1) :::Pr (bN < b1) (1.4)

=

�Z
� (b1; v) dF (v)

�N�1
:

1 If b1 = max
j 6=1

fbjg, the object goes to each winning bidder with equal probability.
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Bidder 1�s expected payo¤ depends on his own bid, value, and the buy-price as follows:

�(b1; v1; P ) = (v1 � b1)� (b1) + (v1 � b1) [1� � (b1)] � 1 (b1 > P )

+ (v1 � P ) [1� � (b1)] � 1 (P � v1 � b1 � P ) (1.5)

�b1 [1� � (b1)] � 1 (b1 < P � v1) ;

where 1 (�) is the indicator function de�ned as follows,

1 (E) =

8>><>>:
1 if E is true

0 otherwise

:

From the payo¤ function, there is a trivial result as follows:

LEMMA 1: In the FPA auction with a buy-price option, bidders never bid (strictly) more

than the buy-price.

The lemma is straightforward since every bidder can obtain a unit of the product through

the buy-price option, and every bidder has a chance to win the product at a cost less than the

buy-price. So bidding over the buy-price is a dominated strategy. We will see that this result

holds for the SPA auction as well.

Since bidder 1 never bids more than the buy-price, his bidding strategy maximizes the
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expected payo¤ in the following way:

max
b1

8>>><>>>:
max

b1�P�v1
(v1 � b1)� (b1)� b1 [1� � (b1)]

max
P�v1�b1�P

(v1 � b1)� (b1) + (v1 � P ) [1� � (b1)]

9>>>=>>>;
= max

b1

8>>><>>>:
max

b1�P�v1
v1� (b1)� b1

max
P�v1�b1�P

v1 � P + (P � b1)� (b1)

9>>>=>>>; : (1.6)

In this paper, we focus on pure-strategy equilibria throughout. Suppose that bidder j 6=

1 with value vj uses the symmetric increasing bidding strategy � (vj). We have � (b1) =

FN�1
�
��1 (b1)

�
= FW�1

�
��1 (b1)

�
:

We denote g (b1) = v1� (b1) � b1 and h (b1) = v1 � P + (P � b1)� (b1) : De�ne the policy

functions � (v1) = arg max
b12[0;P�v1]

g (b1) and  (v1) = arg max
b12[P�v1;P ]

h (b1) : Thus

� (v1) =

8>><>>:
� (v1) if g (� (v1)) � h ( (v1))

 (v1) if g (� (v1)) � h ( (v1))

:

Case 1: v1 = v: The trivial result is � (v1) = 0 and � (v1) = 0:

Case 2: v1 > v: The �rst-order condition from g (b1) implies

� (v1) =

8>><>>:
R v1
v tfW�1 (�) dt for v1 � v�

P � v1 for v1 > v�
where

R v�
v tfW�1 (t) dt = P � v�:

Since  (v1) = arg max
b12[P�v1;P ]

h (b1) = arg max
b12[P�v1;P ]

(P � b1)� (b1), the policy function does

not depend on v1, and we can use v1 as a randomizing device to de�ne an increasing function

 (v1) with the following conditions:

(i)  (v�) = P � v�; and  (v1) � P ;

8



(ii) 0 (v1) > 0 for 8 v1 2 [v�; v] ;

(iii) (P �  (v1))� ( (v1)) is constant for 8 v1 2 [v�; v] :

Combine (i) and (iii), we have (P �  (v1))� ( (v1)) = v�FW�1 (v
�) : Since the bidding

strategy is an increasing function and  (v1) � P , it implies that � ( (v1)) = FW�1 (v1), and

we have  (v1) = P � v�FW�1 (v
�)

FW�1 (v1)
:

PROPOSITION 1: In the FPA auction with a buy-price option, there exists a symmetric

equilibrium bidding strategy � (�) as follows

� (v) =

8>><>>:
R v
v tfW�1 (t) dt for v � v�

P � v�FW�1 (v
�)

FW�1 (v)
for v > v�

; (1.7)

where the threshold point v� satis�es the following condition

Z v�

v
tfW�1 (t) dt+ v

� = P: (1.8)

Proof. If all bidders�valuations satisfy v � v�, we have the pure-strategy bidding strategy

� (v) =
R v
v tfW�1 (t) dt (as in Krishna and Morgan 1997). Since � (�) is an increasing function

under the all-pay auction, if v1 > v�; it is a dominated strategy to bid � (v1) < � (v�) = P �v�;

and her bid is at least P � v�: We prove the result by showing that g (� (v1)) � h ( (v1)) for

v1 � v� and g (� (v1)) � h ( (v1)) for v1 > v�:

If v1 � v�, we have g (� (v1)) � g (P � v1) = v1� (P � v1) � (P � v1) = h (P � v1) =

h ( (v1)). The last equality is implied from the result that the policy function does not depend

on v1: Likewise, if v1 > v�; we have g (� (v1)) = g (P � v1) = v1� (P � v1) � (P � v1) =

h (P � v1) = h ( (v1)) :
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COROLLARY 1: The buy-price option will increase bidders�surplus in the FPA auction.

Proof. For the standard FPA auction without a buy-price option, the symmetric equilib-

rium bidding strategy is �0 (v) =
R v
v tfW�1 (t) dt for all v 2 [v; v], and the bidders�expected

surplus is de�ned as

�0 (v) = vFW�1 (v)� �0 (v) = vFW�1 (v)�
Z v

v
tfW�1 (t) dt:

On the other hand, with a buy-price option, the bidding strategy is � (v), and the bidders�

expected surplus is

� (v) =

8>><>>:
vFW�1 (v)�

R v
v tfW�1 (t) dt for v � v�

v � P + v�FW�1 (v
�) for v > v�

:

For v � v�, we can see that �0 (v) = � (v). At the same time, we have �0 (v) > �00 (v) for all

v > v�; which implies � (v) > �0 (v) :

1.4 Equilibrium in the SPA

In a standard SPA auction, each bidder submits a sealed bid of bi; and the highest bidder wins

the product while paying the second-highest bid. All other bidders lose and pay their bids

exactly. Now we consider that the buy-price option is available for non-winners, and then we

extend the SPA auction to a two-stage game.

For a non-winner i with bid bi, his payo¤ is vi�max f0; P � big� bi = vi�max fP; big if he

uses the buy-price option at the retail price P , otherwise his payo¤ is �bi. So the condition to
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exercise the buy-price option is vi �max fP; big > �bi, and we have the same payo¤ function

for non-winners as (1.2):

8>>>>>><>>>>>>:

vi � bi if bi > P

vi � P if P � vi � bi � P

�bi if bi < P � vi

:

In the �rst stage, all bidders submit their bids and the condition for bidder 1 to win is

b1 > max
j 6=1

fbjg (in case of tying, a lottery is used), and the winner�s payment is the second-

highest bid. Thus, bidder 1�s payo¤ function is

8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:

v1 �max
j 6=1

fbjg if b1 > max
j 6=1

fbjg

v1 � b1 if b1 � max
j 6=1

fbjg and b1 > P

v1 � P if b1 < max
j 6=1

fbjg and P � v1 � b1 � P

v1 � b1+P (#fj:bj=b1g�1)
#fj:bj=b1g if b1 = max

j 6=1
fbjg and P � v1 � b1 � P

�b1 if b1 < max
j 6=1

fbjg and b1 < P � v1

v1
#fj:bj=b1g � b1 if b1 = max

j 6=1
fbjg and b1 < P � v1

: (1.9)

Once again we begin with a heuristic derivation of the symmetric equilibrium strategy for

the reduced game.

Suppose that bidders j 6= 1 follow the symmetric and increasing equilibrium strategies

� (vj). Then bidder 1�s expected payo¤ when he bids b1 is:
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�(b1; v1; P ) =

Z ��1(b1)

v
(v1 � � (t)) fW�1 (t) dt

+(v1 � b1)
�
1� FW�1

�
��1 (b1)

��
�1 (b1 > P ) (1.10)

+(v1 � P )
�
1� FW�1

�
��1 (b1)

��
�1 (P � v1 � b1 � P )

+ (�b1)
�
1� FW�1

�
��1 (b1)

��
�1 (b1 < P � v1) :

From the payo¤ function, we have the same result as in lemma 1, that bidders never bid

more than the buy-price: Thus bidder 1�s bidding strategy maximizes the following expected

payo¤:

max
b1

8>>><>>>:
max

b1�P�v1

R ��1(b1)
v (v1 � � (t)) fW�1 (t) dt� b1

�
1� FW�1

�
��1 (b1)

��
max

P�v1�b1�P

R ��1(b1)
v (v1 � � (t)) fW�1 (t) dt+ (v1 � P )

�
1� FW�1

�
��1 (b1)

��
9>>>=>>>; : (1.11)

In the case of b1 � P � v1, the �rst-order condition is v1fW�1

�
��1 (b1)

�
1

�0(��1(b1))
��

1� FW�1

�
��1 (b1)

��
= 0. At a symmetric equilibrium, we have b1 = � (v1) as well, and

it yields �0 (v1) = v1
fW�1 (v1)

1�FW�1 (v1)
: Thus we can solve the symmetric equilibrium as

� (v) =

Z v

v
t

fW�1 (t)

1� FW�1 (t)
dt (1.12)

if � (v) � P � v:

In the case of P�v1 � b1 � P , the �rst-order condition is (P � b1) fW�1

�
��1 (b1)

�
� 1
�0(��1(b1))

>

0, which means the expected payo¤ is a strictly increasing function, and the bidder 1 will bid
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the maximum bid. Thus we can conclude that � (v) = P as P � v � � (v) � P:

PROPOSITION 2: In the SPA auction with a buy-price option, there exists a symmetric

equilibrium bidding strategy � (�) as follows

� (v) =

8>><>>:
R v
v t

fW�1 (t)

1�FW�1 (t)
dt for v � v��

P for v > v��
; (1.13)

where the threshold point v�� will satisfy the indi¤erence condition:

� (v��) = P � v��;

that is Z v��

v
t

fW�1 (t)

1� FW�1 (t)
dt+ v�� = P: (1.14)

As we compare (1.8) and (1.14), the following result is straightforward. We need this result

in the next section.

COROLLARY 2: Under the same retail price P , the threshold point v� in the FPA auction

with a buy-price option is greater than the threshold point v�� in the SPA auction.

Similarly to the previous section, we have the following result on bidders�surplus.

COROLLARY 3: The buy-price option will increase bidders�surplus in the SPA auction.

Proof. For a SPA auction without a buy-price option, the symmetric equilibrium bidding
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strategy is �0 (v) =
R v
v t

fW�1 (t)

1�FW�1 (t)
dt for all v 2 [v; v]. And the bidders�expected surplus is

	0 (v) =

Z v

v

�
v � �0 (t)

�
fW�1 (t) dt� �0 (v)

�
1� FW�1 (v)

�
:

On the other hand, with a buy-price option, the bidders�expected surplus is

	(v) =

8>><>>:
R v
v (v � � (t)) fW�1 (t) dt� � (v)

�
1� FW�1 (v)

�
for v � v��R v

v (v � � (t)) fW�1 (t) dt+ (v � P )
�
1� FW�1 (v

��)
�

for v > v��
:

If v � v��; the bidders�expected surplus is the same; if v > v��; we can imply 	(v)�	0 (v) =R v
v��
�
1� FW�1 (t)

�
dt > 0:

1.5 Seller�s Choice

In this section we discuss the expected revenue to the seller from the all-pay auctions with

a buy-price option. As a benchmark, recall from Myerson (1981) and Riley and Samuelson

(1981), the Revenue Equivalence Theorem (RET) holds if there is no buy-price option, and the

expected payment by a bidder with value v is

e0 (v) =

Z v

v
tfW�1 (t) dt:

Thus the total expected revenue is N � E
�
e0 (v)

�
and

E
�
e0 (v)

�
=

Z v

v

�Z v

v
tfW�1 (t) dt

�
dF (v) ; (1.15)
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which is the same for all standard all-pay auctions without the buy-price option.

Now consider that the buy-price option is available. Given the distribution of each bidder�s

valuation, F , the demand in equilibrium for the all-pay auctions with a buy-price option is

expected to be

D (F ) = F (ev)n +N [1� F (ev)] ; (1.16)

where ev is the threshold point, i.e., ev = v� for the FPA, and ev = v�� for the SPA.

When the retail price P is the same in both formats, we have v� � v��; thus we can conclude

that 1 � D1 (F ) � D2 (F ), i.e., the equilibrium demand in the FPA is less than the equilibrium

demand in the SPA when the buy-price option exists, and the equilibrium demand is more than

1 unit for each format.

LEMMA 2: In both FPA and SPA auctions, the buy-price option increases the total social

surplus.

Note that in the all-pay auction with a buy-price option, the seller will choose the posted

price P . For each format, the seller�s objective function is to maximize her expected revenue.

In the FPA auction with a buy-price option, the expected payment in equilibrium by a

bidder with valuation v is

e1 (v) =

8>><>>:
� (v) for v � v�

� (v)� (� (v)) + P [1� � (� (v))] for v > v�

=

8>><>>:
R v
v tfW�1 (t) dt for v � v�

P � v�FW�1 (v
�) for v > v�

:

The equation (1.8) implies that P �v�FW�1 (v
�) =

R v�
v tfW�1 (t) dt+v

� �1� FW�1 (v
�)
�
:We
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can examine the total expected revenue collected from these bidders i 2 f1; 2; � � �; Ng : Given

the assumption of symmetric valuations, the total expected revenue is N � E
�
e1 (v)

�
:

E
�
e1 (v)

�
=

Z v�

v

�Z v

v
tfW�1 (t) dt

�
dF (v) (1.17)

+

"Z v�

v
tfW�1 (t) dt+ v

� �1� FW�1 (v
�)
�#
[1� F (v�)] :

We can see that the e¤ect of the buy-price option on seller�s expected revenue is N �

E
�
e1 (v)

�
�N � E

�
e0 (v)

�
:

E
�
e1 (v)

�
� E

�
e0 (v)

�
=

Z v

v�

�
v�
�
1� FW�1 (v

�)
�
�
Z v

v�
tfW�1 (t) dt

�
dF (v) : (1.18)

Analogously, in the SPA auction with a buy-price option, the expected payment in equilib-

rium by a bidder with valuation v is

e2 (v) =

8>><>>:
R v
v � (t) fW�1 (t) dt+ � (v)

�
1� FW�1 (v)

�
if v � v��R v��

v � (t) fW�1 (t) dt+ P
�
1� FW�1 (v

��)
�

if v > v��

=

8>><>>:
R v
v tfW�1 (t) dt for v � v��

P � v��FW�1 (v
��)�

R v��
v FW�1 (t) t

fW�1 (t)

1�FW�1 (t)
dt for v > v��

and the expected revenue for each bidder is E
�
e2 (v)

�
: At the same time, the equation (1.14) im-

plies that P�v��FW�1 (v
��)�

R v��
v FW�1 (t) t

fW�1 (t)

1�FW�1 (t)
dt =

R v��
v tfW�1 (t) dt+v

�� �1� FW�1 (v
��)
�
:
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We can derive that

E
�
e2 (v)

�
=

Z v��

v

�Z v

v
tfW�1 (t) dt

�
dF (v) (1.19)

+

"Z v��

v
tfW�1 (t) dt+ v

�� �1� FW�1 (v
��)
�#
[1� F (v��)] :

Similarly, we can see that the e¤ect of the buy-price option on seller�s expected revenue is

N � E
�
e2 (v)

�
�N � E

�
e0 (v)

�
:

E
�
e2 (v)

�
� E

�
e0 (v)

�
=

Z v

v��

�
v��

�
1� FW�1 (v

��)
�
�
Z v

v��
tfW�1 (t) dt

�
dF (v) : (1.20)

From the equations of (1.8) and (1.14), as the distribution of bidders�valuation is given,

the posted price P will be the unique determinate variable on the threshold points v� and v��:

Suppose that the seller knows the optimal threshold point bv, i.e., v� = v�� = bv;
bv 2 argmax

v�

Z v

v�

�
v�
�
1� FW�1 (v

�)
�
�
Z v

v�
tfW�1 (t) dt

�
dF (v) ; (1.21)

then she will choose the optimal posted price,

Z bv
v
tfW�1 (t) dt+ bv = P 1 (1.22)Z bv

v
t

fW�1 (t)

1� FW�1 (t)
dt+ bv = P 2; (1.23)

and P 1 < P 2; i.e., the optimal posted price in FPA is lower than that in SPA.

PROPOSITION 3: When the buy-price option is available, the seller will prefer a higher
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posted price in SPA than in FPA. Under the optimal posted prices, the Revenue Equiva-

lence Theorem holds.

Intuitively, under the settings without the buy-price option, the FPA auction and the SPA

auction satisfy the RET and the expected payment from each bidder is equivalent. As we

introduce the option of buy-price into the standard all-pay auctions, the behavior of low-value

bidders is unchanged, and the high-value bidders adjust their bidding behavior to attain higher

expected surplus. Given that the total social surplus increases at the same time, the seller can

attain higher expected revenue as well.

Let�s de�ne � (z) =
R v
z

�
z
�
1� FW�1 (z)

�
�
R v
z tfW�1 (t) dt

�
dF (v), z 2 [v; v] ; and then we

can show the following properties for � (z) :

(a) � (z) is a continuous and di¤erentiable function in z 2 [v; v] ;

(b) � (v) < 0;

(c) � (v) = 0 and �0 (v) = 0;

(d) If v � 1
12(N�1) , there exists an interval I � [v; v], such that � (z) > 0, z 2 I:

Based on these results, we can conclude as follows:

PROPOSITION 4: In general, there exists an optimal posted price, such that, the buy-price

option increases the seller�s expected revenue.

We provide a numerical example to illuminate the result:

Example: Uniform distribution. Suppose the distribution function of bidders� valuation is

F (v) = v; v 2 [0; 1] ; and N = 10 potential bidders. The following graph shows the value

of function � (z) :
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1.6 Conclusion

The buy-price option is more and more common in the internet auction market. A hybrid of

the posted price and the all-pay auction is relatively new in practice. In this paper, we have

studied the e¤ects of buy-price options on the all-pay auctions. Using the similar basic settings

as Krishna and Morgan (1997), we analyze two formats of all-pay auctions, the standard all-pay

auction, so called �rst-price all-pay (FPA), and the war-of-attrition, so called second-price all-

pay (SPA). First of all, there exist symmetric pure-strategy equilibria in the FPA and SPA with

buy-price options. The presence of buy-price options is known to a¤ect the bidders�behavior,

speci�cally, on high-value bidders, and it has no in�uence on low-value bidders. Second, the

option for losing bidders to attain the product at reduced-price makes more transactions happen,

and it increases buyers�welfare and the total social welfare as well. Finally, the seller can choose

the optimal price to post and then collect more expected revenue. From all of these perspectives,

the option of buy-price is a successful tool in the internet market.
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Chapter 2

Selling a Dollar for More Than a Dollar? Evidence

from Online Penny Auctions1

2.1 Introduction

Martin Shubik�s (1971) famous dollar auction suggests the possibility of selling a dollar for more

than a dollar. Overbidding may occur due to such reasons as the sunk cost fallacy or bidding

fever. Can a �rm adapt the dollar auction into a selling mechanism that sustains excessive pro�ts

over time? A new auction format recently emerged on the Internet, called the penny auction,

might be seen as such an attempt. Penny auctions, also known as pay-to-bid auctions, were

described by Richard Thaler in the New York Times as a �diabolically inventive�adaptation

of the dollar auction.2 An article in the Washington Post claims that penny auction is �the

evil stepchild of game theory and behavioral economics�because it ��endishly plays on every

1This chapter is a joint paper with Zhongmin Wang, who is a research fellow at the Resources
for the Future.

2Richard H. Thaler, �Paying a Price for the Thrill of the Hunt,�New York Times, November 15, 2009.
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irrational impulse buyers have.�3 In this paper, we use the complete bid and bidder history at a

major penny auction website to study if penny auctions can sustain excessive pro�ts over time.

We �nd that the overwhelming majority of new bidders lose money to the website, but they

quit quickly. A very small percentage of bidders are experienced and strategically sophisticated,

but they win most of the auctions and earn substantial pro�ts from the website. Our evidence

thus suggests that penny auction websites cannot sustain excessive pro�ts without attracting a

revolving door of new customers who will lose money.4 This conclusion is strongly supported

by a subsequent independent lab study of penny auctions (Caldara 2012).

Unlike eBay, penny auction websites sell products themselves, using rules similar to the

following. First, a bidder must pay a small non-refundable fee (e.g., $0.75) to place a bid. A

bid is an o¤er to buy the product at the current auction price. The auction price for any product

is initially 0 and is increased by a �xed amount whenever a bid is placed. The increment is

typically one penny, thus the name of penny auction. Second, the winner is the last bidder,

the person whose bid is not followed by any other bid before a timer (e.g., of 30 seconds)

expires. The timer is reset whenever a new bid is placed. The auction winner receives the

product and pays the auction price. Consider an example in our dataset. A bidder won an

iPad auction after placing 70 bids, and the auction price was $64.97. The winner paid a total

cost of $117.47 (= 70 � 0:75 + 64:97) for the iPad, and the website�s revenue was $4,937.72

(= 6; 497� 0:75 + 64:97)! A penny auction thus combines elements of an all-pay auction with

a series of lotteries.5

3Mark Gimein, �The Big Money: The Pennies Add Up at Swoopo.com,�Washington Post, July 12, 2009.
4This feature is shared somewhat by Ponzi schemes. We are not claiming that penny auctions are Ponzi

schemes or necessarily scams.
5A penny auction is not a standard auction in which the bidder who bids the most wins (Krishna 2002, p. 29).

The winner of a penny auction is often not the bidder who places the most bids. Another nonstandard auction
format is the lowest unique bid auction (e.g., Raviv and Virag 2009; Houba et al. 2011) or the lowest unique
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Our evidence comes from a nearly ideal bid-level dataset collected from a major penny

auction website (BigDeal.com). The dataset covers all of the over 22 million bids placed by

more than 200,000 bidders in over 100,000 auctions for a period of over 20 months, starting

from the website�s �rst day of operation to two days before the site�s closure. The dataset

records the complete bid history of each bidder as well as the precise timing of each bid. We

use a product�s retail price at Amazon as an estimate of the product�s market value. We de�ne

the auctioneer�s (excessive) pro�t as its revenue minus the market value of the products sold.

Similarly, we de�ne a bidder�s pro�t or loss as the market value of the products she won minus

her cost of bidding.

We �nd that the overwhelming majority of new bidders who join the website on a given

day play in only a few auctions, place a small number of bids, lose some money, and then

permanently leave the site within a week or so. This �nding of a revolving door of new bidders

re�ects the simple logic of individual rationality: no matter how e¤ective the penny auction

might be in exploiting bidder biases, it o¤ers bidders immediate outcome (win or lose) feedback

so that losing bidders can quickly learn to stop participating. We also �nd that the performance

of experienced bidders depends on their strategic sophistication. Sophisticated experienced

bidders start to earn positive pro�ts from their �rst few auctions and learn to play better

in subsequent auctions, but unsophisticated experienced bidders lose money in their �rst few

auctions and do not learn to play better over time.

Our paper relates to the behavioral industrial organization literature that focuses on how

pro�t-maximizing �rms exploit consumer biases. See sections of Ellison (2006) and DellaVigna

positive integer game (e.g., Ostling et al. 2011). A penny auction is clearly very di¤erent from eBay auctions.
See Bajari and Hortaçsu (2004) for a review of the literature on online auctions, and Einav et al. (2011) for a
recent example.
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(2009) for reviews of the literature.6 See Malmendier and Lee (2011) and the references therein

for empirical studies of overbidding in auctions. Our �nding suggests that learning can limit

overbidding, at least in auctions with clear feedback, and that �rms�ability to exploit consumer

biases is constrained by consumer learning.7

Our paper also relates to the behavioral game theory literature, which �nds that subjects�

behavior in experimental games often deviates from equilibrium because of limited strategic

sophistication or lack of prior experience/learning (e.g., Camerer 2003; Crawford et al. 2010).

Our results highlight the importance of learning across games and provide �eld evidence for

Crawford et al.�s (2010, p. 28) observation that strategic sophistication �is heterogeneous, . . .

so that no model that imposes homogeneity . . . will do full justice to [players�] behavior.�Our

paper adds to an emerging literature that uses the behavioral game theory approach to study

strategic interactions in �eld settings. Brown et al. (2012) study the implications of consumers�

limited strategic thinking in the movie industry. Goldfarb and Yang (2009) and Goldfarb and

Xiao (2011) �nd managers� strategic sophistication a¤ects �rms�performance. Both papers

measure managers�strategic sophistication by the number of iterations of best response they

perform in selecting an action in a static game, as in level-k/cognitive hierarchy models (e.g.,

Camerer et al. 2004; Costa-Gomes and Crawford, 2006). We measure an experienced bidder�s

lack of strategic sophistication by the frequency with which she places a bid in the middle of

the timer. Bids in the middle of the timer, we shall argue, indicate that a bidder is not mindful

of her competition.

Four papers on penny auctions (Augenblick 2011; Platt et al. 2010; Hinnosaar 2010; and

6DellaVigna and Malmendier (2006) is an exellent example of empirical behavioral industrial organization
study.

7See List (2003) for evidence that market experiences may eliminate some forms of market anomalies.
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Byers et al. 2010) appeared before our paper. All four papers use data from Swoopo, the

�rst penny auction website, and �nd that the website made excessive pro�t. Only Augenblick

(2011) looks into bidder behavior across auctions, and his conclusion is fundamentally di¤erent

from ours. He writes (p. 2) that overbidding at Swoopo is consistent with �a naive sunk cost

fallacy ... Surprisingly, pro�ting o¤ of this behavioral tendency appears to be a sustainable

business strategy. ... To explain this ..., I show that consumer learning occurs but is extremely

slow, allowing the auctioneer to pro�t during the learning process� (emphasis in original).

Our �ndings suggest that penny auctions are not a sustainable business strategy. We contend

that the �nding of extremely slow learning is questionable. First, each of Augenblick�s learning

regressions considers all bidders in his sample together, presuming that all bidders, sophisticated

or not, have the same learning function. Augenblick does not measure a bidder�s strategic

sophistication; instead, he attempts to measure the sophistication of individual bids, irrespective

of the bidder who places the bids. If our learning regression includes all bidders, we would also

�nd extremely slow learning: bidders in our sample, on average, do not start to earn a positive

pro�t until they have already played nearly 200 auctions. However, this is a spurious �nding,

resulting from the selection bias. The sophisticated and experienced bidders in our sample

start to make positive pro�ts from their �rst few auctions, but their behavior is lost in a

learning regression that considers all bidders together when the experience variable takes small

values: the overwhelming majority of bidders are inexperienced and lose money. Only when

the experience variable is large enough then the learning regressions re�ect the behavior of the

sophisticated and experienced bidders.

Second, even though his learning regressions consider all bidders together, his results still

indicate that bidders start to make positive pro�ts after placing a large number of bids. Logic
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suggests that such bidders would continue to play and make positive pro�ts in the periods

following Augenblick�s bid-level sample (which covers a period of about four months). This

raises the possibility of the existence of such bidders even at the beginning of his sample.

Platt et al. (2010) study auction-level data and attribute auctioneer pro�ts to bidders�

risk-loving preference. Byers et al. (2010) focus on bidder asymmetry as an explanation for

why Swoopo made exessive pro�ts. Hinnosaar (2010) deals largely with a technical issue in

modeling an individual penny auction.

Two papers on penny auctions (Caldara 2012; Goodman 2012) appeared after our paper.

Goodman (2012) focuses on the role of reputation in penny auctions. Caldara (2012) conducts

lab experiments to study penny auctions. He writes (p. 6) that his evidence supports �the

[�ndings] of Wang and Xu (2011) that pay-to-bid auction websites pro�t from a �resolving door

of new bidders��, and he concludes (p. 32) that �excessive revenues will only last as long as pay-

to-bid auction websites can attract new, inexperienced bidders�. His lab �ndings also strongly

support our measure of bidder strategic sophistication.

The remainder of this paper proceeds as follows. Section 2 describes the penny auction

industry, the auction rules, and the data. Section 3 provides some theoretical considerations,

emphasizing bidder learning across auctions and bidder heterogeneity in strategic sophistication.

Section 4 presents our empirical results. Section 5 concludes.

25



2.2 Background, Auction Rules, and Data

2.2.1 The Penny Auction Industry

Penny auctions are also known as pay-to-bid or bidding fee auctions. The �rst penny auction

�rm, Swoopo, was founded in Germany in 2005, and it started its U.S. website in 2008. By

November 2010, at least 125 penny auction websites targeting U.S. consumers were being moni-

tored by Compete.com, a web tra¢ c monitoring company. The total number of unique monthly

visitors to these penny auction websites reached 25.1% of that to eBay in November 2010, but

has since declined sharply. Table 1 lists the 11 websites whose tra¢ c was ranked in the top 5

of all penny auction sites for any two consecutive months from February 2010 through April

2011. We emphasize that among the 9 sites in Table 1 that were in existence in February 2010,

3 were closed in 2011, 2 barely attracted any visitors in October 2011, 1 was closed in 2012

(Bidrivals), and the other 3 sites experienced a dramatic tra¢ c decline in 2011. Most penny

auction websites attract little tra¢ c and do not last for long.

Penny auctions are highly controversial. The Better Business Bureau (BBB) has received

many consumer complaints against penny auction websites.8 In fact, it named penny auctions

one of the top 10 scams of 2011.9 Three sites in Table 1 (i.e., Bidsauce, Swoopo, and Wavee)

have an F rating, the worst BBB rating. Lawsuits have been �led against various penny

auction websites, claiming penny auctions are a form of gambling. The industry brands itself

as an entertainment shopping industry. Penny auction websites advertise that auction winners

obtain products at deep discounts. It has been reported that penny auction sites �have driven

8�Online Penny Auctions: Friend or Foe?�http://www.bbb.org/blog/2010/10/online-penny-auctions-friend-
or-foe/.

9http://www.bbb.org/us/article/bbb-names-top-ten-scams-of-2011-31711.
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Table 1: Monthly Tra¢ c on the Largest Penny Auction Websites

Website Number of unique visitors Win

Feb. 2010 Nov. 2010 Apr. 2011 Oct. 2011 BIN limit

BigDeal.com 480,230 1,324,947 943,327 Closed Yes Yes

Bidcactus.com 1,428,316 3,411,705 1,979,846 740,981 Yes Yes

Beezid.com 1,110,859 755,917 549,908 432,352 Yes Yes

Bidsauce.com 356,811 690,014 344,514 9,052 Yes Yes

Swoopo.com 286,142 171,141 Closed Closed Yes Yes

Quibids.com 173,142 4,541,783 4,586,523 2,638,490 Yes Yes

Bidrivals.com 63,329 419,945 490,751 144,468 Yes Yes

Wavee.com 26,863 1,696,803 62,214 Closed Yes ?

Bidhere.com 17,359 542,079 750,175 3,731 Yes Yes

Zbiddy.com 0 0 945,149 1,772,935 Yes Yes

Biggerbidder.net 0 0 120,078 664,636 No No

Total number of sites 47 125 158 116

All sites 4,710,541 16,866,475 12,524,625 9,234,509

eBay.com 64,766,668 67,197,011 69,929,590 77,232,991

% of eBay tra¢ c 7.3% 25.1% 17.9% 12.0%

Notes: The 11 websites shown in this table include all the penny auction sites whose tra¢ c was
ranked in the top 5 of all penny auction sites in any two consecutive months from February 2010
through April 2011. We obtained the tra¢ c data from Compete.com, and the Buy-It-Now (BIN)
and win limit information from each individual penny auction website. For websites that still
exist, the BIN and win limit information is as of March 2013.

up the price of advertising keywords on Google such as �cheap iPad.�Buying keywords on search

sites is the primary way the auction sites advertise products for sale.�10

Nearly all penny auction websites have two additional salient rules: win limits and a Buy-It-

Now (BIN) option. Win limits restrict the number of auctions a bidder can win. An individual

bidder at BigDeal, for example, was restricted to at most 10 wins during a 30-day period. Once

a bidder reached the win limit, she was prohibited from bidding in any auction until the 30-day

period expires. Some websites impose much more stringent win limits. For example, bidders at

Zbiddy.com, a relatively new entrant, are allowed to win only one product with a retail price of

$999 or higher during a 28-day period and to win only one product with a retail price of $499

or higher during a 7-day period.

10Brad Stone, �Penny Auction Sites Hurt by Glut of Competitors�, Bloomberg Businessweek, August 12, 2010.
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The BIN option in penny auctions works di¤erently from that found on eBay. A bidder

who exercises the BIN option in penny auctions does not stop the auction. Instead, she stops

her own bidding and obtains a product that is the same as the one under auction by paying

the di¤erence between the posted retail price for the product and the cost of her bids. Penny

auction websites post a retail price for any product to be auctioned. For example, the posted

retail price for an iPad auction with the BIN option in our dataset is $899.99. A losing bidder

in this auction placed 1,067 bids, so her cost of bids is $800.25 (= 1; 067 � 0:75). This bidder

only needs to pay $99.74 (= 899:99 � 800:25) more to exercise the BIN option and obtain an

iPad that is the same as the one being auctioned. With the BIN option, this bidder pays the

posted retail price of $899.99 to buy an iPad. Without the BIN option, this bidder would have

paid $800.25 for nothing. The BIN option allows losing bidders who placed a large number of

bids to recover some of their costs, which has the e¤ect of reducing the pro�tability of penny

auction websites. On the other hand, by eliminating the risk of losing a large amount of bids,

the BIN option may allow a website to attract more bidders, which is perhaps why almost all

penny auction websites now o¤er the BIN option.

2.2.2 BigDeal

BigDeal was one of the largest penny auction websites and appeared to be a serious business

endeavor. It received $4.5 million initial funding from well-known venture capital �rms.11 It

posted on its website photos and biographies of its management team and board members.

BigDeal had a BBB rating of A-. Perhaps to mitigate potential concerns of shill bidding,

11Brad Stone, �BigDeal Puts a New Spin on �Entertainment Shopping�,�New York Times Bits Blog, December
19, 2009.
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BigDeal displayed the bid history of all live and past auctions on its website. Bidders could

easily see the bid history of live and recently �nished auctions, but it was time-consuming to

see the bid history of auctions �nished more than a few days earlier.12

The rules of BigDeal auctions were representative of all penny auctions. Prior to bidding in

any auction, bidders had to buy packs of bid tokens. Each bid token cost $0.75. The auction

price for any product started at $0, and each bid cost a single nonrefundable token and raised

the auction price by a �xed increment. The price increment was $0.01 in most auctions, and

was $0.05 or $0.15 in a large number of auctions in the early part of our sample.

BigDeal typically released an auction with an initial countdown clock that last for 36 hours.

If a bid was placed when more than 30 seconds were left on the initial countdown clock, the

clock continued to run down. If a bid was placed when less than 30 seconds were left, however,

the timer would always be extended by 30 seconds. A bidder won only if her bid was not

followed by any other bid when the 30-second timer expired. It is not surprising that nearly

all bids were placed after the 30-second timer started. Once the 30-second timer started, the

timer was set to last 30 seconds ex ante, but whenever a bid was placed within this period, this

period ended immediately and a new period started. Hence, the length of a time period ex post

could range from 0 to 30 seconds.

In addition to her bidding cost, the winner also paid the auction price to attain the product.

BigDeal o¤ered losing bidders the BIN option in all auctions except for some bid pack and iPad

auctions. BigDeal o¤ered bidders a bid agent (called BidBuddy) that placed bids automati-

12BigDeal created a separate web page for each auction that contained the general information and bid history
of the auction. By clicking link buttons on the homepage or the �winner page�of BigDeal, one could have access
to such web pages. It required increasingly larger numbers of clicks to access web pages of auctions �nished
earlier.
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cally on their behalf. The bid agent did not bid strategically. A bidder could impose three

restrictions on her bid agent: the maximum number of bids, at what auction price to start to

bid, and at what auction price to stop. A bidder could also deactivate a bid agent at any time.

BigDeal auctioned several categories of products, including packs of bid tokens, video games

and consoles, Apple products, non-Apple electronics such as computers, TVs, phones, cameras,

and GPS, housewares, gift cards, handbags, jewelry, and movies.

2.2.3 Data

Our dataset, downloaded from BigDeal.com, covers the general information and the bidding

history of all auctions released by BigDeal from November 19, 2009, the �rst day of the website�s

operation, through August 6, 2011, two days before the website was closed. Auction-level

information includes the auction price increment, the posted retail price, product name and

description, the �nal auction price, the winner, and whether the BIN option was available.

We do not observe which losing bidder(s) exercised the BIN option. The BIN option was not

available for bid pack auctions until late November 2010, and it was also not available for iPad

auctions for some periods �due to inventory restrictions.�

Another auction-level variable is whether an auction was a beginner auction that only

accepted bids from new members. Most beginner auctions featured 10-token or 20-token bid

packs. Beginner auctions were not o¤ered until November 30, 2010.

The bid history for each auction includes every single bid: the exact second when a bid was

placed, the screen name of the bidder, and whether the bid was placed manually or by a bid

agent.

Figure 1 shows the number of regular (non-beginner) auctions ended each day for the entire
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Figure 1: Daily Number of Non-beginner Auctions
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sample period. There was a dramatic decline in the number of auctions per day in late April

2011, which was a sign that BigDeal was preparing to shut down. Because the operation of

BigDeal was no longer normal after that, we do not consider the auctions ended on or after May

1, 2011. For the sample period of November 19, 2009, through April 30, 2011, BigDeal o¤ered

a total of 110,703 auctions, including 78,634 regular auctions and 32,069 beginner auctions.

Among these auctions, 61 regular auctions and 3,423 beginner auctions failed to attract a

single bidder. A total of 207,069 bidders placed at least one bid during our sample period, and

together they placed a total of 22,598,036 bids.

2.2.4 The Bidder with the Most Bids Often Does Not Win

Since the winner of a penny auction is the bidder who bids last, the bidder with the most bids

in a penny auction often does not win the auction. The winner�s total number of bids is strictly

smaller than that of at least one losing bidder in 40.9% of the 77,944 regular auctions with two

bidders or more, and is equal to the maximum number of bids by any losing bidder in 12.9% of

the auctions. Hence, the winner has the (strictly) largest number of bids in less than half of the
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regular auctions. In fact, in 3,302 auctions, the total number of bids placed by the last bidder

is less than 10% of that by another bidder. In 154 auctions, the total number of bids placed by

the last bidder is less than 1% of that by another bidder. The winners of such auctions often

are �jumpers�in that they used the strategy of jumping in: starting to bid in an auction only

after a large number of bids had already been placed in the auction.

2.3 Theoretical Considerations

To address the question of whether penny auctions can sustain exessive pro�ts over time, we

focus on bidder learning across auctions instead of bidder behavior within individual auctions.

Models focusing on an individual auction presumably predict that a dollar can only sell for a

dollar, if all bidders are fully informed, rational, and risk-neutral or risk-averse.13 Such models

may generate the result of selling a dollar for more than a dollar, if bidders su¤er from behavioral

biases14 or are risk loving, but bidder learning across auctions constrains the auctioneer�s ability

to exploit bidders�behavioral biases.

After playing in at least one auction, a bidder needs to decide whether to participate in

another auction. This is a simple binary choice, and bidders are given accurate and immediate

feedback on their gains or losses in the auctions in which they have played. According to Tversky

13Augenblick (2011) and Platt et al. (2010) present an equilibrium model of a single auction that predicts
the zero-pro�t result. By assuming all bidders are homogeneous, fully informed, and rational; the number of
bidders is �xed and known; the BIN option is not present; and the timing of placing a bid within a period can
be ignored, the model can be solved by backward induction and is characterized by a mixed strategy equilibrium
in which bidders�expected value of placing a bid equals the cost of the bid so that they are indi¤erent between
bidding and not bidding. If there are two bidders or more, the expected revenue for the auctioneer is the value
of the product since all bidders�expected gain from bidding is zero in equilibrium. The BIN option complicates
any attempt to build equilibrium models of an individual penny auction, but it does not a¤ect our argument on
bidder learning across auctions.
14Byers et al. (2010) present a model in which overbidding occurs if bidders underestimate the true number of

bidders in the auction, and Augenblick (2011) sketches a model in which the sunk cost fallacy leads to overbidding.
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and Kahneman (1986, p. S274), �accurate and immediate feedback about the relation between

the situational conditions and the appropriate response�is conducive to e¤ective learning. We

then expect the principle of individual rationality to hold for all bidders with regard to the

decision of whether to bid in another auction.

Suppose bidders are risk-neutral or risk-averse. Under this assumption, bidders quit the

website if they lose enough to form a negative expected gain.

Suppose some bidders�preferences are similar to those of lottery players (Platt et al. 2010).15

Under this assumption, an auctioneer may obtain excessive pro�ts from experienced bidders

who continue to play even if they lose money.

Therefore, sustained excessive pro�ts may come from inexperienced bidders who have not

learned the consequences of playing penny auctions or experienced bidders with gamblers�

preferences.

If a bidder decides to play in another auction, she needs to make two more decisions: which

auction to participate in and how to bid in the chosen auction. These two decisions are much

more complicated in that they involve strategic thinking, and bidders are not given any direct

feedback on how to play better. Therefore, we hypothesize that some sophisticated bidders may

learn to play better, but unsophisticated ones may lack the strategic ability to do so. Not every-

one can learn to play chess or poker at a high level. Indeed, a major �nding of the behavioral

game theory literature is that subjects in experimental games exhibit heterogeneity in strategic

sophistication. We expect this lab �nding to extend to the �eld setting of penny auctions. That

15Chance plays an important role in determining the outcome of penny auctions. Penny auction bidders,
however, are unlikely to have the Friedman and Savage (1948) utility function that is concave at the current
wealth level and convex above it. The maximum return in penny auctions is relatively small; no product auctioned
at BigDeal had a retail price over $3,000. However, Golec and Tamarkin (1998) present evidence that horse track
bettors seek skewness in return, not risk. It is also possible that some bidders may derive intrinsic utility from
the mere act of bidding in penny auctions.
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is, we hypothesize that players in penny auctions di¤er in their strategic sophistication, and

strategically sophisticated players are more likely to win. These hypotheses, if proved to be

true, point to the existence of experienced bidders who are strategically sophisticated and may

earn positive pro�ts from the auctioneer. The existence of such players would make it harder

for inexperienced bidders to win penny auctions, and provides an explanation for why penny

auction websites impose win limits.

Testing these hypotheses raises the challenge of measuring bidders�strategic sophistication.

Similar to much of the behavioral game theory literature, our measure is based on players�

behavior in the game. We measure a bidder�s lack of strategic sophistication by the frequency

with which she places a bid in the middle of the 30-second time clock. Our basic argument

is that placing bids frequently and deliberately at the beginning or at the end of the time

clock, but not in the middle of the time clock, re�ects strategic thinking. To understand the

justi�cations, recall that strategic sophistication, according to Crawford (1997, p. 209), �refers

to the extent to which a player�s beliefs and behavior re�ect his analysis of the environment

as a game rather than a decision problem, taking other players� incentives and the structure

into account.�Our measure is based on the idea that unsophisticated bidders, those that do

not analyze the strategic environment, may place bids randomly during a time period, but

sophisticated bidders should not place a bid randomly during a time period.

A sophisticated bidder analyzes the bidding environment to learn who are competing with

her and what strategies her competitors are using so that she may respond optimally. Last-

second bids re�ect strategic thinking in that they allow a bidder to learn about her competitors.

If a player bids in the middle of the time clock, she loses the chance to observe if any other

bidder may place a bid between her bid and the end of the time period. If she waits for the last
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second to bid, she can observe if someone else bids before then and she can always plan to bid

at the last second of the following period. By bidding this way, she saves bids, keeps the auction

alive, and obtains more information about who are competing with her and what strategies her

competitors are using. A sophisticated bidder may not always bid this way. It may be optimal

for a bidder to bid aggressively (i.e., place a bid immediately after a competing bid) for some

periods when she thinks that she is competing with a small number of bidders who are not

sophisticated. Indeed, many bidders often place a bid immediately after a competing bid and

do so repeatedly for some periods. Since a bid in the middle of the period indicates that a

player is not mindful of her competition, a large number of middle bids thus suggests a lack of

strategic sophistication.

We note that aggressive bids, by themselves, are not a good indicator of a player�s strategic

sophistication because the e¤ectiveness of aggressive bids depends critically on the competitive

environment in which they are used.16 Augenblick (2011) studies the e¤ect of aggressive bids,

irrespective of the bidder who places the bids.

2.4 Empirical Analysis

2.4.1 A Revolving Door of New Bidders

In this subsection, we present compelling evidence that BigDeal was characterized by a revolving

door of new bidders. A vast majority of new bidders who joined BigDeal on a given day played

in only a few auctions, placed a small number of bids, and then quit the site within a week or so

16 Imagine a set of time periods during an auction when a large number of sophisticated bidders are actively
competing with bidder A, and a second set of time periods during the same auction when only a small number
of unsophisticated bidders are competing with bidder A. Aggressive bids by bidder A are, presumably, less likely
to be e¤ective during the �rst set of time periods than during the second set of periods.
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without winning any regular (i.e., non-beginner) auctions. This �nding is consistent with our

hypothesis that learning across auctions constrains the auctioneer�s ability to exploit bidders. A

very small percentage of bidders were persistent participants, but they won most of the regular

auctions. These �ndings con�rm that bidders are heterogeneous and suggest that the revolving

door of new bidders is a major source of pro�t for the auctioneer.

Table 2: Distribution of Three Measures of Bidder Participation Intensity

Percentiles

50% 75% 90% 95% 99% 99.5% 99.75% 99.95%

Number of auctions 3 8 16 25 76 128 201 422

Number of bids 22 55 150 300 1,350 2,622 4,954 16,928

Duration 1 4 29 84 258 319 364 430

Table 2 shows the distribution of three measures of bidder participation: the number of

auctions a bidder participated in, the number of bids submitted, and the duration of a bidder.

We de�ne the duration of a bidder by the number of days from the date she placed her �rst

bid through the date she placed her last bid in our sample. All three measures of participation

indicate that the vast majority of the bidders at BigDeal were �eeting participants. The 75th

percentile of the number of auctions participated is 8, the 75th percentile of the number of bids

is 55, and the 75th percentile of bidders�duration is only 4 days. A small percentage of bidders

were persistent participants. Only 5.2% of the bidders played in 25 auctions or more, 5.1% of

the bidders placed 300 bids or more, and 10.1% of the bidders lasted 29 days or more.

It is illuminating to consider the dynamics of bidder participation over time. The �nding

that most bidders were �eeting participants holds true for essentially all weeks. Figure 2(a)

shows the weekly sum of each day�s new bidders at BigDeal. Figure 2(b) shows the weekly

average of the daily percentage of new bidders whose duration was no more than 7, 14, or 28

days. Figure 2(c) shows the weekly average of the daily percentage of new bidders whose total
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number of auctions was no more than 7, 14, or 28. Note that bidders who joined BigDeal

toward the end of our sample naturally have lower participation intensity. Figure 2(d) shows

the weekly average of the daily percentage of bidders who appeared on the website for less than

7, 14 or 28 days. Most bidders on a given day were relatively new to the website. Note that

the weekly averages here are all weighted by the number of bidders on each weekday. Note

also that the sudden drop in the number of new bidders in Figures 2(a) and 2(d) around week

40 of 2010 was related to the sudden drop in the number of non-beginner auctions in Figure 1

around the same time.17

Figure 2(a): Weekly Sum of New Bidders Each Day
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17On September 27, 2010, the number of new bidders decreased suddenly and caused a big loss for BigDeal.
So BigDeal o¤ered fewer auctions the next day. Though the number of new bidders recovered in October,
BigDeal retained the low level of supply until the end of November. BigDeal started to o¤er beginner auctions
on November 30, 2010.
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Figure 2(b): Weekly Average of Daily Percentage of New Bidders Whose

Duration Is No More Than 7, 14, or 28 Days
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Figure 2(c): Weekly Average of Daily Percentage of New Bidders Who

Bid in No More Than 7, 14, or 28 Auctions
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Figure 2(d): Weekly Average of Daily Percentage of Bidders Who Joined

the Site No More Than 7, 14, or 28 Days Ago
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To facilitate exposition, we classify bidders into three mutually exclusive groups: persistent,

�eeting, or moderate bidders. Whether a bidder is �eeting or persistent is inherently a matter

of degree. We shall use the following working de�nition. A bidder is persistent if her total

number of auctions is at least 50. A bidder is �eeting if her total number of auctions is at most

15. Moderate bidders are those in between, neither persistent nor �eeting. Panel A of Table

3 presents summary statistics of the three groups of bidders. By our de�nition, 89.2% of the

bidders are �eeting, and only 1.8% persistent. However, the persistent bidders won 64.4% of

the regular or non-beginner auctions. Note that 96% of the �eeting bidders and 61% of the

moderate bidders never won a regular auction, and only 10.2% of the persistent bidders never

won a regular auction. Subsection 4.2 shows that 94% of the �eeting bidders lost money (after

considering the e¤ect of beginner auctions).

Why do most new bidders lose money and then quit quickly? Our interpretation is that

most bidders, before playing, did not know the di¢ culty of winning penny auctions or the

existence of persistent bidders who win most of the auctions. Though we do not have direct
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Table 3: Descriptive Statistics of Three Groups of Bidders

Fleeting Moderate Persistent All bidders

Panel A:

Number of bidders 184,689 18,634 3,746 207,069

(% of all bidders) (89.2) (9.0) (1.8) (100)

Number of bids 7,132,908 4,902,971 10,562,156 22,598,036

(% of all bids) (31.6) (21.7) (46.7) (100)

Number of regular auction wins 9,175 18,789 50,609 78,573

(% of all regular auction wins) (11.7) (23.9) (64.4) (100)

% of bidders who never won a

regular auction 96.1 60.9 10.2 91.3

Panel B:

Bidder pro�t in token auctions (0.9) -474,007 -378,930 -384,452 -1,237,389

Bidder pro�t in token auctions (0.8) -540,186 -445,885 -494,364 -1,480,435

Bidder pro�t in token auctions (0.7) -575,081 -485,693 -570,833 -1,631,608

Bidder pro�t in all auctions (0.9) -3,493,993 -1,176,934 924,342 -3,746,585

Bidder pro�t in all auctions (0.8) -3,560,172 -1,243,889 814,430 -3,989,631

Bidder pro�t in all auctions (0.7) -3,595,067 -1,283,697 737,961 -4,140,803

% of bidders who lost money (0.9) 94.3 86.1 66.7 93.0

% of bidders who lost money (0.8) 94.4 86.6 67.9 93.3

% of bidders who lost money (0.7) 94.5 86.9 68.8 93.4

Notes: Regular auctions refer to non-beginner auctions. The three numbers in parentheses
(0.9, 0.8, and 0.7) are the assumed possible discount rates for bid tokens bought through
the BIN option. See subsection 4.2 for explanations.

evidence, it appears plausible that many bidders may have been enticed by the advertisements

of deep discounts and joined the website in the hope of winning some items easily and cheaply.

If so, such bidders quickly realized that their expectations were wrong.

2.4.2 Bidder or Auctioneer Pro�t

In this subsection, we estimate the auctioneer�s pro�t and each bidder�s pro�t or loss. Our

results show that BigDeal made considerable pro�t from the �eeting and moderate bidders, but

lost money to the persistent bidders as a group. This �nding con�rms that the main source of

auctioneer pro�t is the revolving door of new bidders, suggesting that penny auctions cannot

sustain excessive pro�ts without attracting new bidders who will lose money. The persistent
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bidders di¤er greatly in their performance; while most persistent bidders lost money, a small

percentage of persistent bidders made signi�cant amounts of positive pro�ts, con�rming that

the experienced bidders are heterogeneous.

Pro�t De�nition and Computation

We de�ne a bidder�s pro�t as the total value of the products she won or bought minus her

total cost. We de�ne the auctioneer�s pro�t as its revenue minus the total value of the products

auctioned or sold through the BIN option. These two de�nitions suit the purpose of studying

whether penny auctions generate revenues that are above the values of the products sold, and

if so, which types of bidders are the sources of the excessive pro�t. We are not concerned with

the auctioneer�s pro�t over its cost, which we do not observe. Since the auctioneer�s revenue

equals bidders�total cost, one dollar lost by a bidder is one dollar of additional pro�t earned

by the auctioneer. We describe below how to compute pro�t from the bidders�perspective.

Following the literature on penny auctions, we approximate the value of a product by the

retail price of the same product at Amazon.com.18 We �nd 61.7% of the non-token BigDeal

auctions involved products sold at Amazon.19 For these auctions, the Amazon prices were, on

average, 78.0% of the retail prices posted by BigDeal. In 97.6% of these auctions, the Amazon

price was smaller than the BigDeal retail price. We assume that the value of a non-token

product that does not have a matched Amazon product was 78% of the retail price posted by

BigDeal. We will discuss the value of bid tokens below.

18We searched Amazon.com in mid-June 2011, and found an exact match for 601 of the 1,687 unique non-token
products auctioned by BigDeal. The vast majority of these matched products were sold by multiple sellers on
Amazon, often at di¤erent prices. We recorded the price posted by the main or featured seller, which is the
manufacturing �rm of the product or Amazon itself or a large seller. For iPads, we use Apple�s o¢ cial prices.
19Non-token auctions refer to any auctions that do not feature packs of bid tokens.
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A bidder�s pro�t depends on the number of auctions she won and lost and the dollar amount

she made in each of the auctions she played. Consider bidder i who participated in n =

1; 2; : : : ; N auctions. Let �in denote bidder i�s pro�t (or loss) from her nth auction. Her total

pro�t, �i, is then �i = �i1 + �i2 + � � �+ �iN . It is straightforward to calculate her pro�t in any

auction that she won. It is a bit involved to calculate her loss in an auction that she did not win

because of the need to estimate whether she exercised the BIN option. We use the following

two observations to estimate whether a bidder exercised the BIN option. Suppose bidder i lost

an auction after placing b bids, and the posted retail price for the product is r: To exercise the

BIN option, bidder i needs to pay r � bc to purchase the product, where c is the cost per bid.

If the BIN option is available, then (a) the inequality bc � r must hold; (b) bidder i exercises

the BIN option if and only if r � bc � v:

Part (a) says that bidder i�s cost of total bids should not exceed the posted retail price of the

product if the BIN option is available. Once a bidder�s cost has reached the posted retail price,

she can exercise the BIN option and obtain the product for free. We present some evidence for

this observation in subsection 4.5. Part (b) says that bidder i exercises the BIN option if and

only if her additional cost of bids, r � bc, is no more than v, the value of the product.

Assume her �rst auction is for a non-token product and the second auction is for bid tokens.

We demonstrate here how to compute her pro�ts in these two auctions. Her pro�ts for the other

N � 2 auctions can be similarly computed.

Suppose the posted retail price for the product in her �rst auction is r1, the value of the

product is v1, the �nal auction price is p1, and her number of bids is bi1. Then, if she won, her

42



pro�t is

�i1 = v1 � p1 � 0:75bi1: (2.1)

Note that the cost of a bid is always $0.75. The winner of a bid pack auction may obtain tokens

at substantial discounts, but when such tokens are used in subsequent auctions, the opportunity

cost of such a token should still be the price of a token, $0.75.

If bidder i lost, her pro�t depends on whether the BIN option is available, and if the option

is available, whether she exercises it. Suppose the BIN option is not available. Then her pro�t

is simply

�i1 = �0:75bi1: (2.2)

If the BIN option is available, bidder i�s pro�t depends on whether she exercises the BIN

option:

�i1 =

8>><>>:
�0:75bi1 if r1 � 0:75bi1 > v1

� (r1 � v1) if r1 � 0:75bi1 � v1

: (2.3)

If the cost of excising the option is bigger than the value of the product, r1 � 0:75bi1 > v1, she

does not exercise the option and her loss is simply her bidding costs, 0:75b. If she exercises the

option, she uses r1 to obtain a product of value v1; so her loss is r1�v1. Equation (2.3) assumes

implicitly that r1 > v1. In the rare event that r1 < v1, bidder i exercises the BIN option after

losing and obtains a positive pro�t.

Consider the second auction, which features bid tokens. If she won this auction, her pro�t

can be computed as in equation (2.1). Since a bid token�s price is $0.75, we presume its value

is $0.75 for any winner of any token auctions. If she lost this auction and the BIN option is

not available, then her loss can be computed as in equation (2.2). If she lost this auction but
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the BIN option is available, her loss can be computed as in equation (2.3). However, the value

of a bid token is no longer $0.75 when she is deciding whether to exercise the BIN option for

the following reason. When BigDeal made the BIN option available to token auctions in late

November 2010, it imposed a restriction upon tokens bought through the BIN option:20 such

tokens have reduced values toward exercising the BIN option in a subsequent auction.21 The

value of a token with this usage restriction should be smaller than $0.75, but we do not have a

way of estimating the reduced value.

Fortunately, our overall estimates of bidder pro�ts are not sensitive to how bidders discount

tokens bought through the BIN option. This is because the BIN option was available for token

auctions for only about 25% of the sample period and the discount rate only a¤ects bidders

whose number of bids in a token auction was signi�cant enough to consider exercising the BIN

option. Consider three possible reduced values for a BIN-purchased bid token: 0:9 � 0:75,

0:8 � 0:75, and 0:7 � 0:75. Call 0.9, 0.8, and 0.7 the discount rates. Table 4 contains the

distribution of bidder pro�ts from all auctions, with bidders�losses in token auctions computed

using these three possible discount rates. The di¤erence between any two of the three 10th

percentiles is less than a dollar, and so is the di¤erence between any two of the three 90th

percentiles. Only the extreme percentiles noticeably di¤er; a smaller discount rate, which

implies bigger loss upper bounds, leads to a slightly smaller extreme percentile. In addition,

the Spearman rank order correlation coe¢ cient is above 0.99 between any pair of the three

20Recognize that some usage restrictions have to be imposed on the BIN option for token auctions. Otherwise,
since the value of a token purchased through the BIN option is $0.75, all losing bidders will exercise the BIN
option and fully recover the bids they have lost; no bidder ever loses in such auctions. Since the winner of a
token auction may obtain a discount, the auctioneer most likely loses money by conducting such token auctions.
21Suppose a bidder lost an auction of 100 bid tokens after placing 90 bids. She can exercise the BIN option

and obtain 100 bid tokens by paying $7.50 (= 75� 90� 0:75), which is called the BIN price for this bidder. The
value of a bid obtained this way toward exercising the BIN option in a subsequent auction is only $0.075, which
equals the bidder�s BIN price ($7.50) divided by the number of bids obtained through the BIN option (100).
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bidder pro�ts.

Table 4: Distribution of Bidder Pro�t from All Auctions

0.05% 0.1% 1% 10% 50% 90% 95% 99% 99.9% 99.99%

Bidder pro�t (0.9) -1,798 -1,278 -342 -74 -9.0 -.75 6.25 166 2,499 15,433

Bidder pro�t (0.8) -1,860 -1,312 -352 -75 -9.0 -.75 5.96 160 2,471 15,395

Bidder pro�t (0.7) -1,974 -1,359 -358 -75 -9.8 -.75 5.59 156 2,448 15,358

Note: The three numbers in parentheses (0.9, 0.8, and 0.7) are the assumed possible

discount rates for bid tokens bought through the BIN option.

We use the relationship between bidder pro�t and bidder group to further illustrate that

our results are not sensitive to the assumed discount rate for tokens purchased through the

BIN option. Consider panel B of Table 3, which contains, by bidder group, bidder pro�ts from

token auctions only, bidder pro�ts from all auctions, and proportion of bidders who lost money

when considering all auctions. It is apparent that these three statistics are not sensitive to the

assumed discount rate (0.9, 0.8, or 0.7) for BIN-purchased tokens. Therefore, we shall report

results assuming 0.8 is the discount rate for such tokens.

Sources of Auctioneer Pro�t

The �eeting bidders together lost $3.56 million in all auctions, and 94.4% of the �eeting bidders

lost money. The moderate bidders together lost $1.24 million in all auctions, and 86.6% of

the moderate bidders lost money. The persistent bidders as a group, however, made a positive

pro�t of $0.81 million in all auctions, though 67.9% of the persistent bidders still lost money.

BigDeal thus generated a total pro�t of $3.99 million, 15.1% of the total value of the products

it auctioned or sold through the BIN option. The pro�t margin of 15.1% for BigDeal is much

smaller than the pro�t margin of 150% found by Augenblick (2011) for Swoopo. We present

some evidence in subsection 4.5 that the BIN option reduces the pro�t margins of auctions of

the same product. The total value of the products auctioned ($9.9 million) is smaller than the
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Figure 3: Number of Auctions Versus Bidder Pro�t (Persistent Bidders)
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total value of the products sold through the BIN option ($16.6 million).

Some of the persistent bidders lost a considerable amount of money while others earned

a signi�cant amount: 2 bidders lost over $10,000, while 30 earned over $10,000; 93 bidders

lost at least $2,000 each, and together they lost $333,291; 247 bidders earned at least $2,000

each, and together they earned $1,700,824. What causes the signi�cant di¤erence in bidders�

performance? Figure 3 shows the relationship between persistent bidders�pro�t and the number

of auctions they participated in. Somewhat to our surprise, it does not appear that larger

numbers of auctions are associated with bigger pro�ts. In subsection 4.3, we present evidence

that persistent bidders�performance is highly correlated with their strategic sophistication.

Figure 4(a) shows the auctioneer�s weekly pro�t. The pro�t was small in the �rst few

weeks since the number of auctions was small. Figure 4(b) shows the weekly average of the

percentage of pro�t each day generated from three groups of bidders: those who had appeared

on the website for 7 days or less, those between 8 and 28 days, and those 29 days or more.

The vast majority of the auctioneer�s pro�t in almost all weeks came from those who joined the

website less than 7 days earlier, and the auctioneer lost money in most weeks to those bidders

who stayed on the website for over 4 weeks.
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Figure 4(a): The Auctioneer�s Weekly Pro�t
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2.4.3 Strategic Sophistication and Persistent Bidders�Performance

In this subsection, we present evidence that (1) persistent bidders di¤er in their strategic sophis-

tication, and (2) strategic sophistication is predictive of persistent bidders�overall and future

performance.22 The existence of persistent bidders who make signi�cant positive pro�ts sug-

gests that not all bidders su¤er from behavioral biases when bidding in penny auctions. This

�nding also provides a natural explanation for why penny auction websites impose win limits.

22The results for moderate bidders, not presented here, are qualitatively similar, but our measure of strategic
sophistication does not characterize �eeting bidders well.
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The existence of persistent but unsophisticated bidders, on the other hand, suggests that a

small number of bidders may have gamblers�preferences. This subsection also provides some

evidence that higher proportions of aggressive bids are not associated with better performance.

Figure 5: Histogram of the Timing of Manual or Automatic Bids
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When measuring a bidder�s strategic sophistication, we only consider manual bids that were

placed in the middle of the 30-second timer. To see our de�nition of �the middle,� consider

Figure 5(a), which shows the histogram of the timing of all manual bids (21.5 million) that were

placed after the 30-second timer started. The vast majority of these manual bids were placed

either at the beginning or at the end of a time period; 68.5% were in the �rst 5 seconds and

13.7% in the last 4 seconds. We consider manual bids only because bidders do not have control

over the timing of those bids placed by the bid agent. Figure 5(b) shows the histogram of the

timing of all the bids (2.1 million) placed by the bid agent. To be conservative, we classify a

manual bid to be in the middle of the 30-second time period if it was placed from the 10th

second through the 22th second.

Persistent bidders di¤er in their degree of strategic sophistication. While 986 of the 3,746

persistent bidders placed less than 5% of their bids in the middle, 374 placed more than 20%
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Figure 6: Bidder Pro�t and Percentage of Middle or Aggressive Bids
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(a) Bidder profit v. percent of middle bids
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(b) Bidder profit v. percent of bids in the first five seconds

of their bids in the middle. Figure 6(a) shows the relationship between strategic sophistication

and bidder pro�t. Smaller proportions of middle bids are associated with higher bidder pro�ts.

The 986 persistent bidders with 5% or less middle bids together earned a pro�t of $1,149,395.

In contrast, the 374 persistent bidders with more than 20% middle bids together lost $120,458.

Figure 6(b) shows the relationship between persistent bidders�pro�ts and their proportions

of bids placed in the �rst 5 seconds. For the 14 most successful bidders, who each earned at least

$22,000, the percent of bids in the �rst 5 seconds is between 47% and 66%, and the percentage

of bids in the last 4 seconds is between 27% and 45%. None of these 14 bidders placed more

than 4.2% of their bids in the middle of the time clock. The most successful bidders thus tend

to place their bids at both the beginning and the end of the 30-second timer period, but not in

the middle of the time clock. Hence, more aggressive bidding does not necessarily imply more

bidder pro�ts. This �nding is consistent with our idea that aggressive bids, by themselves, do

not re�ect a bidder�s strategic sophistication.

We use the model below to estimate the relationship between strategic sophistication and

bidder pro�t:

�i = c+ �1Middlei + �2Ni + �3Middlei �Ni + �i; (2.4)
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where �i is bidder i�s total pro�t or loss, Middlei is bidder i�s proportion of middle bids, and

Ni is bidder i�s total number of auctions. The interaction termMiddlei �Ni is meant to capture

the idea that the impact of strategic sophistication on a bidder�s pro�t depends on the number

of auctions in which she has played. The impact of strategic sophistication is expected to be

bigger for bidders who participated in a larger number of auctions.

Table 5: The E¤ect of Strategic Sophistication on Bidder Pro�t

Dependent variable

Bidder pro�t in all Bidder pro�t after

auctions the �rst 30 auctions

(1) (2) (3) (4)

Proportion of middle bids -67.5��� 36.2���

in all auctions (-11.00) (3.90)

Proportion of middle bids in a bidder�s -36.93��� -7.75

�rst 30 auctions (-7.00) (-1.14)

Number of auctions 11.9���

(15.51)

Number of auctions - 30 5.40���

(9.12)

Proportion of middle bids�Number -0.92���

of auctions (-14.45)

Proportion of middle bids in the �rst 30 -0.29���

auctions�(Number of auctions - 30) (-6.56)

Constant 918.2��� -462.5��� 590.27��� 68.30

(11.82) (-3.95) (8.71) (0.77)

Number of observations 3,746 3,746 3,746 3,746

Adjusted R2 0.03 0.09 0.01 0.03

Notes: The numbers in parentheses are t-statistics. ��� p < 0:01:

Table 5 reports the ordinary least square (OLS) estimates for equation (2.4). In speci�-

cation (1), the proportion of middle bids is the only explanatory variable, and its coe¢ cient,

as expected, is signi�cantly negative. The marginal e¤ect of a 1% increase in proportion of

middle bids is estimated to be $-67.5. In speci�cation (2), we add in the number of auctions

and the interaction term. The estimated marginal e¤ect of the proportion of middle bids is

36:2� 0:92Ni, which is negative (since Ni � 50) and is increasingly negative for bigger Ni. The
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estimated marginal e¤ect of Ni is 11:9 � 0:92Middlei, which is negative for unsophisticated

bidders and positive for strategically sophisticated bidders. We note that the variable Ni is

endogenous, so we caution that the estimated marginal e¤ect of Ni is only suggestive. We o¤er

more discussions on the relationship between a bidder�s pro�t and her number of auctions in

the next subsection.

A concern with equation (2.4) is that a bidder�s proportion of middle bids and her total pro�t

are determined simultaneously. One way to address this endogeneity problem in equation (2.4)

is to see if our measure of strategic sophistication predicts bidders�future performance. That is,

we can de�neMiddlei as bidder i�s proportion of middle bids in her, say, �rst 30 auctions and �i

as her total pro�t after her �rst 30 auctions. In this case, Ni should be de�ned as bidder i�s total

number of auctions minus 30. Speci�cations (3) and (4) in Table 5 report the estimated results

for equation (2.4) using the new measures of the dependent and independent variables. The

results remain similar. When the proportion of middle bids in a bidder�s �rst 30 auctions is the

only independent variable, its coe¢ cient is again signi�cantly negative. When the interaction

terms are added, the estimated marginal e¤ect is again negative and increasingly negative for

bigger N , and the estimated marginal e¤ect of N is again negative for unsophisticated bidders

and positive for sophisticated bidders.

2.4.4 Strategic Sophistication and Learning

In this subsection, we �rst clarify what our measure of strategic sophistication is and is not. We

then present evidence that whether a persistent bidder learns to play better depends critically

on her strategic sophistication. Our results indicate strongly that not all bidders have the

same learning function. Sophisticated bidders start to make positive pro�ts from their �rst few
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auctions, and they learn to play better. Unsophisticated bidders, on the other hand, lose money

in their �rst few auctions and do not learn to play better; these bidders may be characterized

as gamblers in that they continue to play despite consistently losing money.

It turns out that persistent bidders, on average, do not decrease their proportion of middle

bids as they gain more experience. This �nding suggests that a bidder�s proportion of middle

bids re�ects a relatively stable attribute of a bidder. This attribute, in our opinion, is the degree

to which a bidder is mindful of her competition.

We emphasize that a bidder�s proportion of middle bids captures only a basic aspect of

her bidding behavior and does not fully characterize her strategic ability. That is, a bidder�s

proportion of middle bids is not a comprehensive measure of her strategic sophistication. Two

bidders with the same proportion of middle bids may not play penny auctions the same way;

they may di¤er in making such decisions as which auction to participate in and when to bid

aggressively in an auction. Since a high proportion of middle bids is indicative that a bidder

is not mindful of her competition, we hypothesize that such bidders are unlikely to learn to

play better in more complicated aspects of the game that are not captured by our measure of

strategic sophistication. On the other hand, a bidder with a low proportion of middle bids may

learn to play better in more complicated aspects of the game as she gains more experience.

An analogy might be useful. Proportion of middle bids as an imperfect measure of strategic

sophistication is similar to GRE quantitative score as an imperfect measure of research ability

in economics. GRE quantitative score is not a comprehensive measure of research ability, but

a student with a poor GRE quantitative score is unlikely to do well in economic research.

To see that experienced bidders, on average, did not learn to decrease their proportions of

middle bids, consider a simple �xed-e¤ect regression model in which the dependent variable is
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bidders�proportion of middle bids. A bidder�s proportion of middle bids in an auction in which

she placed only one or two bids is not a reliable measure of a bidder�s strategic sophistication.

Since many bidders do submit only one or two bids in some auctions and a bid may be placed

before the 30-second countdown clock started, we group consecutive auctions into groups and

consider bidders�proportion of middle bids in such groups of auctions. Consider the following

�xed-e¤ect model:

Middleig = c+ �Expig + �i + �ig; (2.5)

where Middleig is bidder i�s proportion of middle bids in auction group g, Expig is bidder i�s

experience when playing in group g, and �i is the bidder �xed e¤ect. To see how we measure

Middleig and Expig, consider an example. Suppose bidder i played in a total number of 58

auctions. Order these 58 auctions by time and let every 5 consecutive auctions constitute an

auction group; the �rst 5 auctions are the �rst group, auctions 6 through 10 the second group,

and so on. The experience variable, Expig, takes the value of 1 for the �rst group of auctions, 2

for the second group, and so on. In this example, bidder i�s last group includes three auctions

only. The results are not sensitive to the number of auctions included in a group.

Table 6 reports the estimates for equation (2.5). Speci�cation (1) considers all persistent

bidders, and the estimated coe¢ cient for the experience measure is 0.000093 and is not sta-

tistically signi�cant at the 5% level. Speci�cation (2) considers persistent bidders who made

a positive pro�t, and the estimated coe¢ cient for the experience measure is -0.000079 but is

statistically insigni�cant. We obtain similar results even if we restrict the sample to the highly

successful bidders only. Speci�cation (3) considers persistent bidders with a negative pro�t, and

the estimated coe¢ cient for the experience measure is 0.00023, with a p-value of 0.001. These
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results suggest that persistent bidders, on average, did not learn to place a smaller percentage

of bids in the middle of the 30-second timer.

Table 6: The E¤ect of Experience on Strategic Sophistication

All persistent Persistent bidders with Persistent bidders with

bidders a positive pro�t a negative pro�t

(1) (2) (3)

Experience 0.000093 -0.000079 0.00023���

(1.82) (-1.14) (3.19)

Constant 0.10��� 0.085��� 0.11���

(89.73) (50.2) (76.48)

Num. of bidders 3,738 1,199 2,539

Num. of observations 77,579 30,711 46,868

Note: Dependent variable is a bidder�s proportion of middle bids in a group of 5 auctions.

Bidder �xed e¤ects are included in all regressions. The reported constant is the average

bidder �xed e¤ect. In parentheses are t-statistics based on Huber/White robust standard
errors.��� p < 0:01:

We use the model below to study whether persistent bidders learn to play better (in other

aspects of the game that a¤ect outcome) as they gain more experience:

�in = c+ �1Expin + �2Expin �Middlei + �3Exp
2
in + 'i + �in; (2.6)

where the dependent variable �in is bidder i�s pro�t or loss in her nth auction, Expin is bidder

i�s experience when she plays her nth auction,Middlei is bidder i�s proportion of middle bids in

all of her auctions, and 'i is the bidder �xed e¤ect. The interaction term is meant to capture the

idea that experience improves a bidder�s performance only if she is strategically sophisticated

enough. In other words, a bidder with too low a strategic ability may not be able to learn to

play better at all. Here, Expin = n. The square of experience is added in equation (2.6) to

capture the idea that the marginal e¤ect of experience may diminish as experience increases.

The marginal e¤ect of experience is �1 + �2Middlei + 2�3Expin. We expect the estimated
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coe¢ cients for both �2 and �3 to be negative. After presenting the estimated results, we discuss

two concerns with the interpretation of equation (2.6).

Table 7 reports the estimated results for equation (2.6). Bidder �xed e¤ects are included

in all speci�cations. Speci�cation (1) considers all persistent bidders. The estimated marginal

e¤ect of experience from this speci�cation is 0:048� 0:0023 �Middlei� 0:000035 �n, con�rming

that the marginal e¤ect of experience diminishes as the proportion of middle bids increases or

as experience increases. Speci�cation (2) considers only persistent bidders whose proportion of

middle bids was smaller than 5%. The estimates from this speci�cation indicate that bidders

whose proportion of middle bids was 5% earned, on average, a small positive pro�t in their �rst

auctions and about $9.7 in their 100th auctions. Speci�cation (3) considers only persistent bid-

ders whose proportion of middle bids was more than 20%. The results for these unsophisticated

bidders are in stark contrast to those for the sophisticated bidders. Bidders whose proportion

of middle bids was 20%, on average, lost $2.6 in their �rst auctions and $3.4 in their 100th auc-

tions. These results indicate that sophisticated bidders learn to play better but unsophisticated

bidders do not. The unsophisticated but persistent bidders may be characterized as gamblers

in that they continue to play despite consistently losing money.

One concern with equation (6) is that the estimated learning e¤ect may simply be a selection

e¤ect. This alternative interpretation is based on the idea that more sophisticated players self-

select to play in more auctions. Bidder selection is an issue of concern, but its e¤ect depends

on the sample selected. If we include all of the bidders in our sample, whether they are �eeting,

moderate, or persistent, in the learning regression, as in speci�cation (5), the estimates are

driven by the selection e¤ect. Similar to the speci�cation (3) estimates for the unsophisticated

persistent bidders, the speci�cation (5) estimates for all bidders indicate that bidders on average
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Table 7: The E¤ect of Experience and Strategic Sophistication on Bidder Pro�t per Auction

Persistent bidders All

% of middle % of middle First 200 bidders

All bids < 5% bids > 20% auctions

(1) (2) (3) (4) (5)

Experience 0.048��� 0.149��� -0.011 0.087��� 0.017���

(4.88) (2.73) (-0.85) (4.40) (3.66)

% of mid. bids -0.0023��� -0.011 0.00006 -0.004���

�experience (-3.97) (-0.83) (0.13) (-4.28)

Experience^2 -0.000018��� -0.00013��� 0.00002��� -0.00007 -0.000009��

(-3.60) (-4.70) (2.58) (-0.82) (-2.36)

Constant -0.452 1.566 -2.599��� -0.700 -2.867���

(-1.08) (0.95) (-7.88) (-0.96) (-21.55)

Num. of bidders 3,746 986 374 521 207,069

Num. of obs. 457,016 115,284 40,175 104,200 1,697,192

Notes: Bidder �xed e¤ects are included in all regressions. Speci�cation (4) considers only the

�rst 200 auctions of the bidders whose number of auctions was greater than 200. The reported

constant is the average bidder �xed e¤ect. The numbers in parentheses are t -statistics based on

Huber/White robust standard errors. ��� p < 0:01;�� p < 0:05

lose money when the experience variable is not too large. This is expected, because the vast

majority of the more than 200,000 bidders lost money, and they dominate the sample when

the experience variable takes on small values. Speci�cation (5) estimates indicate that bidders

start to break even when the experience variable is large. This is also expected, because the

sophisticated and persistent bidders start to dominate when the experience variable is large

enough. If we take speci�cation (5) as the learning function for all bidders, we would obtain

the result of extremely slow learning, which is clearly misleading. In fact, the sophisticated and

persistent bidders start to earn positive pro�ts from their few auctions.

However, if we restrict the sample to persistent bidders only, as we do in this subsection,

the successful (persistent) bidders may not choose to play in more auctions than the losing

(persistent) bidders do. In fact, as shown in Figure 3, the relationship between a persistent

bidder�s total number of auctions and her total pro�t is not clear-cut. The selection e¤ect, if
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it exists, is attenuated. The argument that more sophisticated bidders self-select to play more

auctions has limited applicability to speci�cation (3), which considers only unsophisticated

persistent bidders. In fact, the argument does not apply to speci�cation (4), where we restrict

the sample to the �rst 200 auctions of the 521 bidders who played in more than 200 auctions.

This speci�cation answers the question of whether the bidders who played in over 200 auctions

learned to play better in their �rst 200 auctions. The estimates, again, indicate a positive

learning e¤ect for those bidders with a small proportion of middle bids, but not for those with

a large proportion of middle bids.

Another concern is that the estimated learning e¤ect may be a reputation e¤ect. This

alternative interpretation is based on the idea that experienced and sophisticated bidders may

have reputations that may help them win auctions. However, to be consistent with our results,

the reputation argument would require experienced but unsophisticated bidders not to have

positive reputations. While acknowledging that the estimated learning e¤ect may partly re�ect

a reputation e¤ect, we believe the role of reputation is small in our context. First, BigDeal was

characterized by a revolving door of new bidders, and most new bidders are unlikely to know

which bidders are experienced and sophisticated. It is time-consuming to check the bidding

history of previous auctions. Second, sophisticated bidders presumably are the players who may

attempt to learn whether their competitors are sophisticated or not. Since sophisticated bidders

can learn their competitors�degree of strategic sophistication from their bidding behavior in

the current auction, we suspect that few bidders try to memorize and recall their competitors�

degree of sophistication in the past, especially considering that the number of experienced

competitors is large.
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2.4.5 Impact of the BIN Option on Auction Outcome

The BIN option does not a¤ect our arguments on bidder learning across auctions, but it does

complicate our estimation of bidder pro�t or loss. In this subsection, we present evidence that

(1) a bidder�s total cost of bids23 in an auction should not exceed the posted retail price of the

product if the BIN option is available, and (2) the BIN option has the e¤ect of reducing pro�t

margin and attracting more bidders.

If a bidder�s total cost of bids in an auction reaches the posted retail price of the product

being auctioned, she can exercise the BIN option and obtain a product that is the same as

the one being auctioned for free. Thus any rational bidder does not want to bid more than

the posted retail price when the BIN option is available. Consider Figure 7, which shows the

maximum number of bids by any bidder for all the auctions featuring the iPad 64GB 3G. This

product was auctioned at BigDeal from May 1, 2010, to March 11, 2011, and the BIN option was

not available until November 13, 2010. Before the BIN option became available, the maximum

number of bids by any bidder exceeded 1,500 in a considerable number of auctions and exceeded

2,000 in �ve auctions. After the BIN option became available, the maximum number of bids by

any bidder exceeded 1,201 in only 6 of the 204 auctions. This is consistent with the fact that

the posted retail price for the iPad 64GB 3G is $899.99, a price that only required 1,200 bids

for a bidder to exercise the BIN option for free.

We use the fact that the BIN option was not available in some of the iPad and bid pack

auctions to study the e¤ect of the BIN option on auction outcomes. Several values of bid packs

(e.g., 30 tokens, 50 tokens, and other values) and two types of iPads experienced a change in

23The opportunity cost of a bid is always $0.75, but those bidders who have won token auctions, due to mental
accounting, may not consider the cost of a bid to be $0.75 in a subsequent auction.
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Figure 7: The Maximum Number of Bids by Any Bidder for iPad 64GB 3G Auctions
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the availability of the BIN option.24 In Table 8, we regress four measures of auction outcome

on whether the BIN option was available and product �xed e¤ects. The product was a bid pack

of a certain value (Panel A) or an iPad of a certain speci�cation (Panel B). Pro�t per dollar�s

worth of product, our measure of pro�t margin, is de�ned as the total pro�t generated by an

auction divided by the total value of the products this auction sold directly or through the

BIN option. The �xed e¤ect estimates indicate that the BIN option reduced the pro�t margin

for both bid pack and iPad auctions, and it reduced the absolute amount of pro�t for bid

pack auctions but not for iPad auctions. The absolute amount of pro�t for iPad auctions was

not signi�cantly reduced because iPad auctions with the BIN option attracted a much larger

number of bidders and bids per auction.

2.5 Conclusion

Can penny auctions sustain excessive pro�ts in the long run? Our evidence suggests it cannot.

A key �nding of this paper is that BigDeal pro�ted from a revolving door of new bidders, but

24As we mentioned earlier, the BIN option was not available for bid pack auctions until late November 2010.
When the iPad and iPad 2 were released at the beginning, the BIN option was not available �due to inventory
restrictions.�
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Table 8: The Impact of BIN on Auction Outcome

Pro�t per Num. of

Total pro�t dollar�s worth of actual Num. of

generated by product in bidders in bids in

an auction an auction an auction an auction

Panel A: Bid packs

BIN -40.89��� -179.33��� 4.77��� 25.37���

(-12.85) (-48.63) (14.50) (4.71)

Constant 98.60��� 183.71��� 23.60��� 210.72���

(47.57) (76.50) (110.12) (60.03)

Num. of observations 17,726 17,726 17,726 17,726

Panel B: iPads

BIN -168.81 -215.56��� 51.74��� 1168.62���

(-0.91) (-11.73) (4.38) (3.71)

Constant 1743.27��� 222.38��� 163.11��� 3323.49���

(14.00) (18.08) (20.64) (15.76)

Num. of observations 695 695 695 695

Notes: Constant is the average product �xed e¤ects. The numbers in parentheses are t-statistics.
The price increment is $0.01 for all auctions considered in this table. ���p < 0:01:

lost a signi�cant amount of money to experienced bidders as a group. This �nding suggests that

a penny auction website, to sustain excessive pro�ts, must continuously attract new bidders

who will lose money.

The key to understanding penny auctions as a selling mechanism is to focus on bidder

learning across auctions and bidder heterogeneity in strategic sophistication instead of possible

bidder biases within an auction. Experienced and strategically sophisticated bidders exploit

penny auctions. Inexperienced bidders might su¤er from various biases when playing, but they

receive immediate and clear outcome feedback so that they may learn to quit quickly. Our re-

sults thus highlight that behavioral biases are unlikely to persist in markets in which consumers

can obtain quick and unambiguous feedback, and that �rms�ability to exploit consumer biases

is limited by consumer learning.

Our paper also contributes to the large literature that studies what players actually do in
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games. A central theme of this behavioral game theory literature, based largely on experimental

games, is that learning and strategic sophistication are important for understanding subjects�

behavior. This naturally raises the question of whether learning and strategic sophistication are

important for understanding players�behavior in the �eld. Our �ndings in this paper provide

strong evidence that the concepts of learning and strategic sophistication are important for

understanding players�behavior in a large-scale �eld game, and that an equilibrium model that

presumes all bidders are experienced and fully rational are inadequent to understand this game.
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Chapter 3

Nonparametric Estimation of a War of Attrition

with a Stochastic Number of Bidders

3.1 Introduction

This paper proposes a nonparametric estimation approach to empirical analysis of a typical

all-pay auction: the war of attrition, in which bidders place cumulative bids until only one

bidder remains. In contrast to other ascending auctions, all bidders in the war of attrition must

pay regardless of whether they win, and the optimal bidding strategies are changed accordingly.

Pioneered by Guerre, Perrigne, and Vuong (2000), the nonparametric estimation approach

to auctions has attracted a lot of attention (see Athey and Haile (2007) for a recent survey). If

we can observe bids in a sample of auctions, we can estimate the distribution of bidders�private

values without parametric assumptions or the computations of the Bayesian Nash equilibrium

strategies. Recent research has proved that most of standard auctions can be identi�ed from the

observed bids (see, e.g., Perrigne and Vuong 1999; Guerre, Perrigne, and Vuong 2000; Athey and

Haile 2002, 2007), and all these studies presume that the structure of these auctions is captured
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well in a theoretical model and the value of the observed bids is an exact value without errors. In

practice, however, the true data-generating process is not perfectly characterized by the existing

models; that is, errors exist, and the implications from these abstractions may be misleading.

Haile and Tamer (2003) provide an approach to address this concern for the English auc-

tion. Instead of using a complete parametric model, they use an incomplete model consisting

of two simple assumptions: bidders neither bid more than their willingness-to-pay nor allow

an opponent to win at a price less than their willingness-to-pay. While they construct the in-

formative bounds on the distribution function characterizing bidder demand and information,

they cannot identify the distribution of bidders�values. But knowledge of these distributions

is so essential1 that we cannot avoid the issue of identi�cation.

In this paper, we introduce measurement errors into the observables. Based on a reliable

structural model, it links the distribution of bidders�private values with expected observables.

The data-generating in practice provides some observables which are not the true values of the

expected observables, and di¤erences are the measurement errors in our estimation process.

If the distribution of error terms is known, the main challenge of the identi�cation issue is a

deconvolution problem.

In particular, we focus on the war of attrition game with a stochastic number of bidders.

To our knowledge, this paper is the �rst to extend the nonparametric approach to all-pay

auctions. In general, especially in internet markets, the number of opponents is unknown,

and buyers can generate beliefs about the competition from past history. As we assume that

all participants make decisions on their bidding plans at the initial point, we can setup the

1For example, the distribution of bidders�private values is required to design the optimal format in selling
mechanisms.
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structural model using the classic framework of second-price sealed-bid all-pay auction. Indeed,

the theoretical model is a mapping from the distribution of bidders� private values into the

expected observables.

Based on the symmetric independent private value (IPV) paradigm, the standard nonpara-

metric estimation approach to auctions can identify the distribution of bidders�private values

when the distribution of the expected observables is revealed. Here we use the recently devel-

oped method for deconvolution problems with heteroscedastic errors.

The main contribution of this paper is to present a solution for the nonparametric estima-

tion of a war of attrition in which the observed bids are not perfect measures of the expected

observables. We develop a nonparametric procedure for recovering the distribution and density

of expected observables conditional on some requirements for the error terms. Our procedure

applies results from the recent literature on nonparametric deconvolution problems, e.g. De-

laigle and Meister (2008) and Wang, Fan, and Wang (2010). The deconvolution method can be

extended into the nonparametric estimation approach to auctions in general.

This paper also contributes to the literature on the issue of unobserved auction heterogene-

ity. Krasnokutskaya (2011) studies the �rst-price auction environment with private information

and unobserved auction heterogeneity. She assumes an environment with unobserved auction

heterogeneity which is characterized by two components. First, a common component repre-

sents information attributes that are available to all bidders. Second, an individual component

re�ects information attributes privately observed by each bidder. Based on the multifactor

measurement error model, she proposes a nonparametric estimation method to recover distri-

butions of both components from submitted bids. In her paper, the deconvolution method is

applied as well. However, unlike the assumption of known density for error terms in my paper,
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the multifactor measurement error model requires the common factor across bidders.

Our approach is motivated by a new online selling mechanism, i.e., penny auction. Penny

auctions, also known as pay-to-bid auctions, emerged recently on the internet to sell some

popular items, such as Apple�s products. Unlike the common English auction, the penny auction

is an all-pay mechanism, which runs as follows. Prior to participating in the competition, all

participants must buy a stock of bid-tokens. Each bid-token costs a small fee (e.g., $0.75).

Under the internet environment, bidders cannot observe opponents, and their beliefs on the

competition are ex ante determined. As the game starts, participants place bid-tokens in turn.

The placed bid-token is non-refundable, and it o¤ers the bidder an opportunity to buy the

product at the current auction price. The auction price for any product is initially 0 and

increases by a �xed amount whenever a bid-token is placed. The increment is typically one

penny, so they are called penny auctions. The auction winner is the last bidder whose bid-

token is not followed by any others. Note that while the winner receives the product and pays

the auction price, all losing bidders pay the costs of bid-tokens as sunk costs.

We model the penny auction as a war of attrition with a stochastic number of bidders.

Suppose that all bidders apply the automatic bid agents2 to set amounts of bid-tokens planned

to bid simultaneously at the beginning, and then the bid agents place the bid-tokens one-by-one

until only one bidder remains. Let us ignore the auction price since the increment is tiny. In

this case, the data-generating process is exactly the same as a classic war of attrition with a

stochastic number of bidders. In practice, however, bidding behavior in penny auctions can

be asymmetric and bidders�sophistication may matter; therefore, bidders may not follow the

2 In most of penny auction websites, bidder robots are available. The robot follows a bidder�s setting to place
bids automatically.
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theoretical predictions and it is di¢ cult to provide an exact interpretation of bidding data

(see e.g., Augenblick 2011; Wang and Xu 2012). Here we start from a model with strong

abstractions for tractability and then modify the inference of interests accordingly. We will

apply the nonparametric estimation procedure to the �eld data from penny auctions, and

analyze the inference of interest.

The remainder of the paper is organized as follows. We �rst describe our basic structural

model and the equilibrium bidding strategies. In Section 3 we consider identi�cation and the

nonparametric estimation procedure, and then analyze the asymptotic properties of estimators.

Section 4 provides Monte Carlo evidence. For empirical application, we discuss penny auctions

in Section 5, and apply the econometric model to �eld data from penny auctions. We conclude

in Section 6.

3.2 Theoretical Framework

In this section, we present the model of a war of attrition following Krishna and Morgan (1997)

and Bos (2012). Here we assume the war of attrition to be the IPV second-price sealed-bid all-

pay auction with a stochastic number of bidders, and then provide a simple theoretical analysis

of the model.

3.2.1 Basic Setup

A single indivisible object is sold through a second-price all-pay auction (i.e., war of attrition)

with an uncertain number of bidders. There exist at mostm potential risk-neutral bidders, with

1 < m <1. Bidders enter the game sequentially, and the arrival process is exogenously given.

Assume the actual number of bidders participating in the game is unknown to bidders. Let n
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denote the ex ante probability that n bidders are present, n = 1; :::;m; such that
Pm
n=1 n = 1.

The prior beliefs are exogenously given and commonly known to bidders: Once a bidder k

decides to participate in the competition, he updates his belief about the number of opponents.

Let pkn denote bidder k�s updated probability that there are n bidders present conditional upon

the event that he is an active bidder. With presumption of symmetric priors among active

bidders, we have

pn = pkn =
nnPm
l=1 ll

(3.1)

for all k and n (see McAfee and McMillan 1987).

Throughout we discuss the scenario within the symmetric independent private value (IPV)

paradigm. Each potential bidder k = 1; :::;m is assumed to have a private value vk for the

auctioned object. A bidder does not know other bidders�private values but believes that all

private values have been drawn independently from a common distribution function F (�), with

associated density function f (�) and support [v; v] � R+: All above information is common

knowledge, and all bidders are identical ex ante. The main idea of this paper is to use the

observable information in a sample of games along with the presumption of optimal bidding

strategies to learn about the latent private information F (�).

3.2.2 Equilibrium Bidding Strategies

Note that in a classic war of attrition model, all participants submit bids simultaneously, and

the highest bidder wins the object with the cost equal to the second-highest bid while all losing

bidders pay their bids exactly. As usual, in case of tying, a lottery is used. Let us assume

the bidding strategy for bidder k with value vk is bk, and we derive the symmetric equilibrium
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strategy as follows.

The payo¤ of the bidder k is

8>>>>>><>>>>>>:

vk �maxj 6=k bj if bk > maxj 6=k bj

�bk if bk < maxj 6=k bj

vk
#fj:bj=bkg � bk if bk = maxj 6=k bj

: (3.2)

We now derive a symmetric bidding equilibrium. Suppose that bidders j 6= k follow the

symmetric and increasing equilibrium bidding strategies � (�). In what follows, let the random

variable V n�k = max fvjgj 6=k denote the maximum value of bidder k�s rivals conditional on n

bidders participating. Under the independence assumption, the conditional distribution func-

tion of V n�k given that vk = v is FV n�k (�jv) = FV n�k (�) = Fn�1 (�) and the corresponding density

function is fV n�k (�jv) = fV n�k (�) = (n� 1)F
n�2 (�) f (�) : Since bidders do not know the number

of rivals, the expected payo¤ depends on the beliefs on the competitive environment. We have

bidder k�s expected payo¤ as follows:

�(bk; vk) =
mX
n=1

pn

"Z ��1(bk)

v
(vk � � (t)) fV n�k (t) dt� bk

h
1� FV n�k

�
��1 (bk)

�i#
: (3.3)

The maximization with respect to bk leads to:

mX
n=1

pn

"
vkfV n�k

�
��1 (bk)

� 1

�0
�
��1 (bk)

� � h1� FV n�k ���1 (bk)�i
#
= 0: (3.4)
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At the symmetric equilibrium, bk = � (vk), thus equation (3.4) yields

�0 (vk) =

Pm
n=1 pnvkfV n�k (vk)

1�
Pm
l=1 plFV n�k (vk)

=

Pm
n=1 pn (n� 1) vkFn�2 (vk) f (vk)

1�
Pm
l=1 plF

l�1 (vk)
; (3.5)

and we state the following result on the symmetric bidding equilibrium.

Proposition 1 Under the symmetric IPV paradigm, there exists a unique symmetric Bayesian

Nash equilibrium in a war of attrition with a stochastic number of bidders with bid function

� (v) =
mX
n=1

pn (n� 1)
Z v

v

tFn�2 (t) f (t)

1�
Pm
l=1 plF

l�1 (t)
dt: (3.6)

When m � 2, � (�) is a continuous and strictly increasing function.

Proof. First of all, we know that � (�) is a continuous and di¤erentiable function. And

then we need to verify the optimality of � (u) when bidder k�s value is v: Using equation (3.4)

we have

@�(� (u) ; v)

@b
=

mX
n=1

pnvfV n�k (u)
1

�0 (u)
�
"
1�

mX
n=1

pnFV n�k (u)

#

and

�0 (u) =

Pm
n=1 pnufV n�k (u)

1�
Pm
l=1 plFV n�k (u)

:

Plug the latter function into the former, thus we �nd that

@�(� (u) ; v)

@b
=
(v � u)
�0 (u)

mX
n=1

pnfV n�i (u) :
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When v > u; it follows @�(�(u);v)@b > 0; and @�(�(u);v)
@b < 0 if v < u. Since �(� (u) ; v) reaches the

optimal point at u = v, that means bidder k with value v should choose the bidding strategy

� (v) :

Though we don�t use the closed form of bidding strategies in the estimation procedure, it is

important to note that the unique symmetric Bayesian Nash equilibrium exists and the bidding

function is continuous and strictly increasing. For Monte Carlo experiments, we need the closed

form in the bidding data-generating process.

3.2.3 Unobserved Factors

The bidding strategy is a mapping from a bidder�s value to his bid, which is his expected

�willingness-to-pay�. However, in practice, there are a lot of unobserved factors changing bid-

ders�behavior such that bidders would bid more or less. For example, the generalized war of

attrition model proposed by Bulow and Klemperer (1999) characterizes the feature that bid-

ders would drop out immediately and pay less than expected. Augenblick (2011) has explored

the sunk cost fallacy that bidders would overbid over time in all-pay competition. Bidders�

individual heterogeneity also plays important roles on the bids�data-generating process. A so-

phisticated bidder may understand the optimal bidding strategy better than an unsophisticated

bidder.

To address this issue, a potential approach is to provide a more complicated model to

identify all of these e¤ects. But even if more information is available, we can never eliminate

all unobserved factors entirely. In fact, the perfect structural model does not exist.

The traditional method in econometric analysis is to introduce an error term which contains

unobserved factors. In this paper, we use the additive measurement error model to specify the
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relationship of observables and unobserved factors, and apply the deconvolution method to

identify the distribution of the latent variable. In particular, we distinguish the planned bid

and the observed bid, the former refers to the expected optimal bidding strategy following

the structural model, and the latter refers to the bid observed in practice. All unobservable

contamination is contained in the error term. Note the unobserved factors characterize some

individual heterogeneity, which is di¤erent from the unobserved auction heterogeneity examined

in literature (see, e.g., Krasnokutskaya 2011).

3.3 Econometric Model

In this section, we develop a nonparametric methodology to identify and estimate the war of

attrition with a stochastic number of bidders. More speci�cally, from observables in a sample

of war-of-attrition games, we can identify the distribution of bidders�values. To identify the

model, we consider bidders would not follow their planned bids perfectly and the observables

are measurements of those planned values with errors. As we have some information about

the error term, we can apply the recent developed methods in statistics and econometrics to

identify the distribution of the latent primitives.

3.3.1 Identi�cation

The model of the war of attrition is identi�ed if, given the implications of equilibrium behavior

in the model, the distribution of bidders� values is uniquely determined by the distribution

of observables. Given the symmetric Bayesian Nash equilibrium as the function (3.6), let Bk

denote the random variable for the planned bid made by player k; bk is the realization of the

variable, and naturally the ideal observables should be these bids. Let�s introduce the distri-
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bution G (�) of bk and its density g (�), and our nonparametric estimation relies upon the fact

that the �rst derivative �0 (�) and the distribution F (�) with its density f (�) can be eliminated

simultaneously from the di¤erential equation (3.5) by using the distribution G (�) and density

g (�) : The symmetric monotonic equilibrium bidding strategies provide the corresponding re-

lationship between bids and values. Speci�cally, for every b 2
�
b; b
�
= [� (v) ; � (v)] we have

G (b) = Pr
�eb � b

�
= Pr

�ev � ��1 (b)
�
= F

�
��1 (b)

�
= F (v) since b = � (v) ; and it follows

that g (b)�0 (v) = f (v). Therefore the di¤erential equation (3.5) becomes

vk = � (bk) �
1�

Pm
l=1 plG

l�1 (bk)

g (bk) �
Pm
n=1 (n� 1) pnGn�2 (bk)

: (3.7)

Equation (3.7) gives the individual private value vk as a function of the bidders�beliefs about

competition pn, the individual�s equilibrium bid bk; its distribution G (�) and density g (�).

In most literature on nonparametric estimation of auctions, the distributionG (�) and density

g (�) can be estimated nonparametrically by the empirical distribution and the kernel density

estimator using the observations fb1; b2; :::g (e.g., Guerre, Perrigne, and Vuong 2000). As is

widely known, this is no longer the case when measurement error arises and we need more

observables and information to identify the distribution of primitive interests.

Before proceeding, we introduce some notation for our econometric model. Suppose there

are T ex ante identical auctions, t = 1; :::; T . For auction t, we observe nt bidders with non-zero

bids, therefore the number of observations is N =
PT
t=1 nt: From now on, we use j to denote

the observation index, and i is de�ned as the imaginary number, i.e., i =
p
�1. Note that

j = 1; 2; :::; N refers to observations rather than any bidder�s identity k.

Consider the nonparametric estimation of a density from a sample contaminated by random
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error. This problem, which is called a deconvolution problem, arises very frequently in �elds

of data application (see, e.g., Li and Vuong 1998; An and Hu 2011; Krasnokutskaya 2011).

In particular, the observations are a sample of independent and identically distributed (i.i.d.)

variables (Yj ; Zj) generated by the additive measurement error model

Yj = Bj + "j (Zj) (3.8)

where Bj is the planned bid, which has an unknown density g (�), and the error term is "j (Zj) ;

follows the density fZj (�) which is determined by a variable Zj : Note that this model allows

heteroscedastic contamination, and each error term has its own density function, which may de-

pend on the observation Zj : Further, we assume that Bj and "j are real-valued and independent.

The independence of error terms is a standard condition in the deconvolution problem.3

In addition to the existing variable Bj , we require two auxiliary variables:

1. A proxy Yj ; which is a mismeasured version of Bj , e.g., the variable of observed bids,

where each Yj has the common density function fY (�).

2. An observation Zj to characterize the heteroscedastic error term, e.g., the standard

deviation of the error term may depend on the duration of participating in competition for

each bidder.

Under the independence assumption, the density function fY (�) is the convolution of g (�)

3The independence assumption is a strong condition. It may be extended to Conditional Independence (CI),
i.e., conditional on Z; the random variable B is independent of error term ": For example, a bidder with a higher
bid is more likely to deviate from his planned bid. As bidders change the bidding plans over time, the variance of
the error term is positively related to the duration. For bids with same duration, the error term is uncorrelated
with B:
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and fZ (�) ;

fY (y) =

Z
g (b) fZ (y � b) db: (3.9)

When both fY (�) and fZ (�) are known, g (�) is recovered by Fourier inversion, thus we refer

to the problem of estimating g (�) in the absence of parametric assumptions as deconvolution.

In the case of homoscedastic errors, Carroll and Hall (1988) and Stefanski and Carroll (1990)

proposed the deconvolution kernel density estimator. In recent literature, Delaigle and Meister

(2008) and Wang, Fan, and Wang (2010) extended the deconvolution kernel density estimator

to heteroscedastic errors. Here we brie�y introduce the identi�cation results, and the estimation

results are in the following subsection.

For each random variable X; let �X (t) denote its characteristic function, i.e., �X (t) =

EeitX =
R
eitxfX (x) dx. From equation (3.8) we have �Yj (t) = �B (t) � �"(zj) (t) ; which can be

used to derive �B (t) as a function of series of �Yj (t) and �"(zj) (t) ; for j = 1; 2; ::N: And then

we apply the following Fourier inversion to �B (t),

g (b) =
1

2�

Z
e�itb�B (t) dt: (3.10)

Therefore, under the conditions that the density function fZ (�) is known and we observe a

sample of (Yj ; Zj), we have nonparametric estimators for the distribution and denstiy functions

of B.

This result is important in the sense that not only does it state the density g (�) is identi�ed

by the sample of (Yj ; Zj), but it also gives an explicit formula for the nonparametric estimation

of the density g (�) : Based on the result, we have the following conclusion naturally.
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Proposition 2 Under the symmetric IPV paradigm, suppose that � (b) is strictly increasing in

b and error density fZ (�) is known, then the distribution of bidders� values is nonpara-

metrically identi�ed from the sample of (Y; Z).

Proposition 2 gives us an opportunity to attenuate the estimation bias, and the knowledge

of the distribution of the error term is a crucial challenge in practice. In particular, we may

assume density fZ (�) is a normal distribution with standard deviation that depends on Z: Note

that the monotonicity for � (b) is corresponding to the decreasing hazard rate of the highest

bids distribution. We discuss it as follows.

Equation (3.7) implies

� (�) �
Pm
l=1 pl

�
1�Gl�1 (�)

�Pm
n=1 pn (n� 1)Gn�2 (�) g (�)

=

Pm
l=1 pl (1� � (�))Pm
n=1 pn�

0 (�)

where � (�) = Gn�1 (�) and �0 (�) = (n� 1)Gn�2 (�) g (�) corresponds to the distribution and

density function of the highest bid. Thus, if the number of bids is �xed and known, we have

� (�) = (1��(�))
�0(�) ; and the monotonicity for � (�) requires that the hazard rate function of distrib-

ution � (�) is decreasing.

3.3.2 Nonparametric Estimation

The procedure of our nonparametric estimation is straightforward: if we know the distribution of

Y , given the distribution function for the error term, then we could estimate nonparametrically

the distribution G (�) and its density g (�). And then we could use the inverse of bidding strategy

(3.7) to estimate the distribution F (�). Hence we propose a constructive two-step procedure: in

the �rst step, we consider a nonparametric deconvolution problem with heteroscedastic errors;
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in the second step, we apply the established methodology for nonparametric estimation to

auctions. For most of this paper, we focus on the �rst step of the procedure, since the second

step is a well-established technique.

As we observe the numbers of bidders for T auctions, let nmax be the maximum number

of bidders present in T auctions. We de�ned m as the maximum number of potential bidders,

thus nmax � m, and the natural estimator for n is de�ned by the empirical probability that n

bidders are present,

bn = # ft : nt = ng
T

for n = 1; :::;1; (3.11)

which is a consistent estimator by the strong law of large numbers, bn ! n for every n, as

T !1; and then the empirical estimator for pn is de�ned simply from (3.1) as,

bpn = nbnPm
l=1 lbl for n = 1; :::; nmax: (3.12)

It is well de�ned and a consistent estimator of pn provided that
Pm
l=1 lbl 6= 0 by the continuous

mapping theorem:

Now, given the error term density fZ (�) is known and we observe a sample of (Yj ; Zj) ;

using (3.10) and �Y (t) = �B (t) ��"(z) (t) ; Delaigle and Meister (2008) propose a deconvolution

estimator for the density with heteroscedastic errors, which can be written as a form of a

kernel-type density estimator,

bgN (b) = 1

NhN

NX
j=1

eKj

�
b� Yj
hN

�
; (3.13)
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where

eKj (x) =
1

2�

Z
e�itx�K (t) "(zj) (t=hN ) dt;  "(zj) (t) =

�"(zj) (�t)
1
N

PN
l=1

����"(zl) (t)���2 ; (3.14)

and �K is the characteristic function of a symmetric probability kernel, K (�), with a �nite

variance, hN is a bandwidth with hN ! 0 and NhN !1 as N !1: In this context, we use

the second-order kernel4

K (x) =
48 cos (x)

�x4

�
1� 15

x2

�
� 144 sin (x)

�x5

�
2� 5

x2

�
: (3.15)

Delaigle and Hall (2006) recommend to use this kernel based on the performance of numerical

simulations; it is a commonly used kernel in the deconvolution problems (see Delaigle and

Gijbels 2006b; Delaigle and Hall 2006; Bonhomme and Robin 2010), and it corresponds to the

characteristic function

�K (t) =
�
1� t2

�3 � 1 ft 2 [�1; 1]g : (3.16)

If we assume the following conditions, the estimator bgN (b) is well de�ned. These conditions
are standard in deconvolution problems.

Condition A1 There exists some j such that
����"(zj) (t)��� 6= 0 for all t 2 R;

Condition A2 �K (t) is bounded, continuous at t = 0 and �K (0) = 1;

Condition A3
�
"(zj)

(�t)�K(thN )PN
l=1

����"(zl)(t)���2 2 L2 (R), that is, quadratically integrable functions.

4A second-order kernel satis�es
R
K (t) dt = 1;

R
tK (t) dt = 0; and

R
t2K (t) dt = 0:
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Meanwhile the distribution estimator bGN (b) is de�ned as simply the integral of bgN (�) over
(�1; b] : Following Wang, Fan, and Wang (2010), we have the distribution estimator as a form

of the kernel-type,

bGN (b) = Z b

�1
bgN (t) dt = 1

N

NX
j=1

eLj (b� Yj) ; (3.17)

where

eLj (x) = 1

2
+
1

2�

Z
sin (tx)�K (thN ) "(zj) (t)

t
dt; for j = 1; :::; N: (3.18)

To estimate the unknown support of bids
�
b; b
�
= [� (v) ; � (v)] ; we �rst recall that Proposi-

tion 1 implies the left endpoint b = � (v) = 0: For the right endpoint b; the largest observation

sup fBjg is a consistent estimator if the data of bids fBjg are observed without error. In the

case of measurement error, however, the simple estimator bY N = sup fYj : j = 1; :::; Ng is not

consistent for b: Indeed, under the assumption of mean zero for the error term, the simple

estimator converges to some value beyond the support of
�
b; b
�
; i.e., lim bY N � b. Delaigle

and Gijbels (2006a, 2006b) studied the boundary estimation in deconvolution problems, and

the performance of the consistent estimators in practice strongly depends on the choice of the

bandwidth. For simplicity, we consider the support of bids in the compact set of intervalh
0; bY Ni :
Under quite general conditions, bGN (b) and bgN (b) are L2-uniformly consistent estimators

of the distribution and density of planned bids B (Delaigle and Meister 2008, Wang, Fan, and

Wang 2010). Due to the boundary e¤ects of kernel estimator bgN (�) ; 1bgN (�) is an asymptotically
biased estimate at the boundaries. To overcome this problem, we introduce the trimming

method proposed by Guerre, Perrigne, and Vuong (2000), and thus, using (3.7) leads to de�ne

the pseudo private value bVj corresponding to any value bj in the inner compact subset of the
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support,

bVj = b�N (bj) =
8>><>>:

1�
Pm
l=1 bpl bGl�1N (bj)bgN (bj)�Pm

n=1(n�1)bpn bGn�2N (bj)
if �hN

2 � bj � bY N � �hN
2

+1 otherwise

; (3.19)

for j = 1; :::; N; with � < 1 is the length of the support of K (�) : While this inverse of the

bidding strategy is a strictly increasing function, the value distribution F (�) can be estimated

by

bFN (�) = bGN �b��1N (�)
�

(3.20)

where the support of F (�) is estimated as
hbv;bvi = hb�N ��hN2 � ;b�N �bY N � �hN

2

�i
; respectively5.

As we know, � (b) is the inverse bidding function, thus ��1 (v) = � (v) is the (quasi-) bidding

function. Here b��1N (�) is the estimator of the (quasi-) bidding function, and it is de�ned as an

extremum estimator

b��1N (v) = argmin
b

� �b�N (b)� v�2� (3.21)

for any value v 2
hbv;bvi suggested by Newey and McFadden (1994). When N is big enough,

b�N (�) is a continuous function in h�hN2 ; bY N � �hN
2

i
, thus, there exists a point bb = b��1N (v) such

that b�N �bb� = v.

3.3.3 Asymptotic Properties of Estimators

This subsection summarizes properties of the proposed estimators, and then provides the details

of the proofs. Given the estimators in the previous subsection, we need to show the uniform

5Note the estimators of the support of private values are not consistent. We focus on the property of inner
compact subset of the support. Since we cannot observe the value of Bj , we estimate the value distribution by
(3.20) rather than the empirical CDF.
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consistency of estimators of the bid distribution bGN (b), the bid density bgN (b), the pseudovalue
estimator function b�N (�) ; and the estimator for value distribution bFN (�) :

In this paper, we consider auctioned objects that are homogenous and bidders�private values

that are independent within or across auctions. Throughout, we work under the assumptions

that g (�) is continuous and bounded and hence square integrable. To evaluate the quality of

the estimator more precisely, we study the convergence rates and uniform consistency. Here we

need some regularity assumptions to obtain the upper bound and lower bound of the rates of

convergence of the estimator. Some de�nitions are provided as follows.

De�nition 1 Let F�;C denote the class of densities uniformly bounded relative to their Sobolev

(�-) norm. That is, the density of B, g (�) 2F�;C , such that

Z
j�B (t)j2

�
1 + t2

��
dt � C:

De�nition 2 (Ordinary smooth density) The error term " (Zj) follows an ordinary smooth

error density fZj (�) ; that is

C1 (1 + jtj)�� �
����"(zj) (t)��� � C2 (1 + jtj)�� ; for all t 2 R;

for some C2 > C1 > 0 and � > 0:

De�nition 3 (Supersmooth density) The error term " (Zj) follows a supersmooth error density

fZj (�), that is

C1 exp (�d1 jtj) �
����"(zj) (t)��� � C2 exp (�d2 jtj) ; for all t 2 R;
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for some C2 > C1 > 0; 0 < d2 < d1;  > 0:

Remark: Examples of ordinary smooth distributions are uniform, gamma, symmetric gamma,

double exponential, etc. Examples of supersmooth distributions are normal, Cauchy, mixture

normal, etc.

Condition A4 j�K (t)j � 1 for all t; �K is supported on [�1; 1] and j�K (t)� 1j = o
�
jtj�
�

with order �:

Proposition 3 Under conditions A1-A4, if the error term density fZj (�) is ordinary smooth

or supersmooth, then bgN (b) is a uniformly consistent estimator of g (b) :
Proof. From the Fourier inversion formula,

g (b) =
1

2�

Z
e�itb�B (t) dt;

and the kernel-type density estimator (3.13) can be written as

bgN (b) = 1

2�

Z
e�itbb�B (t) dt;

where

b�B (t) = 1

N

NX
j=1

eitYj�K (thN ) "(zj) (t) :

The (3.8) implies �Yj (t) = �B (t) � �"(zj) (t), and we can have

�B (t) =
NX
j=1

�Yj (t)
�"(zj) (�t)PN
l=1

����"(zl) (t)���2 =
1

N

NX
j=1

�Yj (t) "(zj) (t) :
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For each positive integer M

E

�
1

2�

Z M

�M

���b�B (t)� �B (t)��� dt� =
1

2�

Z M

�M
E
���b�B (t)� �B (t)��� dt

� 1

2�

Z M

�M
j�K (thN )j

0@E
������ 1N

NX
j=1

�
eitYj � �Yj (t)

�
 "(zj) (t)

������
21A1=2

dt

+
1

2�

Z M

�M
j�B (t)j j�K (thN )� 1j dt

� 1

2�

Z M

�M
j�K (thN )j

p
2p
N
max
j

��� "(zj) (t)���
+
1

2�

Z M

�M
j�B (t)j j�K (thN )� 1j dt

� M

�

p
2p
N

max
j;jtj�M

��� "(zj) (t)���+ 1

2�

Z M

�M
j�B (t)j j�K (thN )� 1j dt:

From conditions A1-A4 and
R
j�B (t)j dt < 1; it follows that a sequence M (=MN ) can be

chosen so that

E

�
1

2�

Z M

�M

���b�B (t)� �B (t)��� dt�! 0:

Hence

jbgN (b)� g (b)j =

���� 12�
Z
e�itbb�B (t) dt� 1

2�

Z
e�itb�B (t) dt

����
� 1

2�

Z M

�M

���e�itb��� ���b�B (t)� �B (t)��� dt+ 1

2�

Z
jtj>M

���e�itb��� j�B (t)j dt
=

1

2�

Z M

�M

���b�B (t)� �B (t)��� dt+ 1

2�

Z
jtj>M

j�B (t)j dt

is independent of b 2 R: Since
R
jtj>M j�B (t)j dt! 0 as M !1; it follows that

E

�
sup
b
jbgN (b)� g (b)j�! 0 as N !1:
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i.e.

sup
b
jbgN (b)� g (b)j = O (dN ) a.s.

where dN denote the rate of convergence6. Thus the estimate bgN (b) is a uniformly consistent
estimator of g (b) (see Theorem 3.1 in Liu and Taylor 1989).

Note that G (b) =
R b
�1 g (t) dt and bGN (b) = R b

�1 bgN (t) dt imply that ��� bGN (b)�G (b)��� �R b
�1 jbgN (t)� g (t)j dt � supt jbgN (t)� g (t)j � (b� b) : The support of g (�) is always �nite, indeed
0 = b � b < 1; and then the uniform consistency of estimator bGN (b) holds under the same
conditions.

Proposition 4 Suppose the conditions in Proposition 3 hold. Then, bGN (b) de�ned by (3.17)
is a uniformly consistent estimator of G (b) provided N !1; hN ! 0 and NhN !1:

Now we proceed to analyze the conditions of the boundary estimators. Since the left end

point b = 0 is well-known, the asymptotic property for the estimator of the right end point is

summarized in the following proposition.

Proposition 5 The consistent estimator of the right end point b for g (�) ; bbN ; is in the interval
of
h
0; bY Ni : That is

P
�
0 � limbbN � lim bY N� = 1:

Remark : The result suggests that the estimate of the right end point is not well-constructed.

In this situation, our consistency for all estimators is limited in a small subset of the interior

compact set. In the following content, we denote �(B) as the interior compact subset, and

6Li and Vuong (1998) established the rate of convergence for four di¤erent cases.
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�(B) �
�
0; b
�
�
h
0; bY Ni : In particular, the left end point of �(B) is 0, and the right end

point of �(B) is bounded by bY N .
In the next step, we analyze the uniform consistency of the pseudovalue estimator function

b�N (�). In order to recover private values, it is convenient that g (�) be bounded away from zero

in its support. The proofs of Proposition 6 and 7 follow the procedures in Krasnokutskaya

(2011, p. 323-324).

Proposition 6 Suppose the conditions A1-A4 hold and g (b) � cg > 0 for all bids b. Then

b�N (�) de�ned by (3.19) is a uniformly consistent estimator of � (�) provided N ! 1;

hN ! 0 and NhN !1:

Proof. Since we have proved the uniform convergence, we denote the rate of convergence

for bgN (b) as dN , and then bGN (b) converges to G (b) at the same rate of dN . Then we prove the
uniform consistency of the estimator for the individual inverse bid function b�N (�) : By Equation
(7), we know

v = � (b) =
1�

Pm
l=1 plG

l�1 (b)

g (b) �
Pm
n=1 (n� 1) pnGn�2 (b)

;

which is the inverse bidding function. The proposed estimator b�N (�) is constructed as follows
b�N (b) = 1�

Pm
l=1 bpl bGl�1N (b)bgN (b) �Pm

n=1 (n� 1) bpn bGn�2N (b)

in an interior compact subset �(B) �
�
0; b
�
�
h
0; bY Ni : Where bY N is well-de�ned as bY N =

sup fYj : j = 1; :::; Ng : Up to now, we have proved supb2�(B) jbgN (b)� g (b)j = O (dN ) a:s:

from Proposition 3 and supb2�(B)
��� bGN (b)�G (b)��� = O (dN ) a:s: from Proposition 4. And we

know bpn is a consistent estimator of pn for every n: Here we assume g (b) � cg > 0 for every
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b 2 �(B) : In the interior compact subset �(B) ; we have G (b) � cG > 0 for some cG: Note

that bgN (b) � cg > 0 and bGN (b) � cG > 0 for some cg 2 (0; cg] and cG 2 (0; cG] since bgN and

bGN uniformly converge to g and G, respectively. We de�ne the following notation:
� (b) = 1�

mX
l=1

plG
l�1 (b) ;

b�N (b) = 1� mX
l=1

bpl bGl�1N (b) ;

� (b) = g (b) �
mX
n=1

(n� 1) pnGn�2 (b) ;

b�N (b) = bgN (b) � mX
n=1

(n� 1) bpn bGn�2N (b) :

So we have � (b) = �(b)
�(b) and

b�N (b) = b�N (b)b�N (b) : Then b�N (b) � � (b) = b�N (b)�(b)b�N (b)�(b) � b�N (b)�(b)b�N (b)�(b) =
b�N (b)�(b)�b�N (b)�(b)b�N (b)�(b) implies

���b�N (b)� � (b)��� = jb�N (b)� (b)� b�N (b)� (b)jb�N (b)� (b) :

Note � (b) = g (b) �
Pm
n=1 (n� 1) pnGn�2 (b) � cg �

Pm
n=1 (n� 1) pnc

n�2
G > 0; b�N (b) = bgN (b) �Pm

n=1 (n� 1) bpn bGn�2N (b) � cg�
Pm
n=1 (n� 1) bpncn�2G > 0: Since the lower bounds cg�

Pm
n=1 (n� 1) pnc

n�2
G

and cg �
Pm
n=1 (n� 1) bpncn�2G do not depend on the variable b; we can �nd a constant C1 > 0;

such that

b�N (b)� (b) � C1:
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Then,

���b�N (b)� � (b)��� � 1

C1
jb�N (b)� (b)� b�N (b)� (b)j

� 1

C1
(jb�N (b)� � (b)j j� (b)j+ j� (b)j j� (b)� b�N (b)j) :

Let�s de�ne ecg = maxb2�(B) fg (b)g : It is well de�ned because g is continuous function and the
interior subset is a compact set. Then � (b) � ecg �Pm

n=1 (n� 1) pn � mecg and � (b) � 1: Thus
we have ���b�N (b)� � (b)��� � mecg

C1
jb�N (b)� � (b)j+ 1

C1
j� (b)� b�N (b)j :

Pointwise application of the delta method and uniform convergence of bgN and bGN to g and G

respectively allows us to conclude that

sup
b2�(B)

jb�N (b)� � (b)j = O (dn) ; a:s:

sup
b2�(B)

j� (b)� b�N (b)j = O (dn) ; a:s:

sup
b2�(B)

���b�N (b)� � (b)��� = O (dn) ; a:s::

Proposition 7 Suppose the conditions A1-3 hold and g (�) is continuous and bounded. Then,

bFN (v) de�ned by (3.20) is a uniformly consistent estimator of F (v) for all v 2 �(V )
provided N !1; hN ! 0 and NhN !1:
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Proof.

��� bFN (v)� F (v)��� =
��� bGN �b��1N (v)

�
�G

�
��1 (v)

����
�

��� bGN �b��1N (v)
�
�G

�b��1N (v)
����+ ���G�b��1N (v)

�
�G

�
��1 (v)

����
=

��� bGN �b��1N (v)
�
�G

�b��1N (v)
����+ jg (�)j � ���b��1N (v)� ��1 (v)

��� :
where � 2

�
0; b
�
: As we know, the estimator of the (quasi-) bidding function b��1N (v) is de�ned

as the solution to b�N (b) = v which can be abtained by solving

b��1N (v) = argmin
b

� �b�N (b)� v�2�

for any value v 2
hbv;bvi. Thus, in the interior subset �(V ) � hbv;bvi, we need to establish the

uniform convergence of the (quasi-) bidding function estimation. For a given v 2 �(V ), let

b0 = ��1 (v) and bN = b��1N (v) : Here b0 is some number from
�
0; b
�
and bN is a random variable

with realizations in
�
0; b
�
for large N: Note that b�N (�) is a continuous function, and for every

point v 2
hbv;bvi there exists a point b 2 �0; b� such that b�N (b) = v. For every realization of bN ,

there is a number b�N such that

� (b0)� � (bN ) = �0 (b�N ) (b0 � bN ) ; b�N 2 [b0; bN ] ;

since � (�) is continuously di¤erentiable on the interior compact set. Let us also denote by

b�N a random variable with realizations as above. Note that we allow b0 � bN or b0 � bN :

If b0; bN always belong to the interior of �(B) ; then b�N also always belongs to the interior

of �(B) : Since the inverse bidding function is strictly increasing on the compact set, then
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�0 (b�N ) � c� > 0 for some constant number c�; and therefore,

kb0 � bNk �
1

c�
k� (b0)� � (bN )k :

On the other hand, v = � (b0) = b�N (bN ) implies
� (b0)� � (bN ) = b�N (bN )� � (bN ) :

Since, as we have shown above, b�N (�) converges uniformly to � (�) ; then
k� (b0)� � (bN )k =

b�N (bN )� � (bN ) = O (dN ) a:s:

and thus we have

kb0 � bNk =
b��1N (v)� ��1 (v)

 = O (dN ) a:s:

by approach for optimization estimators (see Newey and McFadden 1994). Note here k�k =

sup j�j : That means we have proved the uniform consistency for estimator b��1N (�) : Therefore,

the uniform convergence of bGN (�) and the bounded property of g (�) obtain
sup

v2�(V )

��� bFN (v)� F (v)��� = O (dN ) a:s:
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3.4 Monte Carlo Experiments

In this section, we report the results from some Monte Carlo experiments for the two-step

nonparametric procedure. Supposem = 5 potential bidders participate in T = 200 homogenous

war-of-attrition games. The number of active bidders in each individual game is equally likely

to be 1 through 5; that is, n =
1
5 for n = 1; :::; 5; thus the expected number of observed bids for

each game is 3, and the expected number of observations is 500 in total. As in Guerre, Perrigne,

and Vuong (2000), we simulate for 1000 replications, and the true distribution of values F (�)

is log-normal with parameters zero and one, truncated in [0:055; 2:5] :

For each replication, we �rst generate randomly a series of numbers of bidders fn1; :::; nT g,

and then draw
PT
t=1 nt = N private values from the truncated log-normal distribution. Fol-

lowing the symmetric Bayesian Nash equilibrium, we compute numerically the corresponding

(planned) bids Bj using (3.6) for each private value. Second, since Bj and Zj are highly cor-

related, and the correlation has no e¤ect on estimation based on the assumption of error term

independence, we choose the duration Zj as a function of Bj , for simplicity, as Zj = Bj : Here

we assume the error term follows normal distribution " (Zj) � N
�
0; [0:5 + Zj=max (Zj)]

2
�
:

Third, we compute numerically the corresponding observed bids Yj using (3.8). Note the value

of Yj may be negative in this data-generating process.

Given the sample of (Y; Z), we apply our estimation procedure for each replication. First,

we estimate the distribution and density function of planned bids using (3.13) and (3.17). Sec-

ond, we compute the pseudovalue function (3.19) and then estimate the distribution function

of private values by (3.20). Delaigle and Gijbels (2004) compared several plug-in bandwidth

selectors with the cross-validation (CV) bandwidth selector and the bootstrap bandwidth selec-
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tor, and Wang and Wang (2011) generalized the plug-in and the bootstrap bandwidth selection

methods to the case of heteroscedastic errors and they also provided an R package decon on

the bandwidth selection for practical use. In this paper, we choose the bootstrap method with

real resampling generalized by Wang and Wang (2011).

To evaluate performance, we report the Monte Carlo results in Figure 1 and 2. Figure 1(a)

displays the estimator of bid distribution and Figure 1(b) for the estimator of density. From

these Figures, the estimators of distribution and density tend to be biased to one-side before we

correct the measurement errors. As we correct the impact of errors, the results converge toward

the true values just as we have expected. Figure 2 displays the true value distribution and

its estimator. In the interior compact subset on the left-hand side, the estimated distribution

converges uniformly to the true value, and the poor convergence on the right end point is due

to the boundary condition and the inconsistency of the estimate in Proposition 5.

Figure 1(a): True and estimated bids distribution
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Figure 1(b): True and estimated bids density

Figure 2: True and estimated private value distribution
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3.5 Empirical Application

In this section, we apply the proposed two-step estimation procedure to the data from penny

auctions, and get some empirical inferences from �eld data source.

3.5.1 Penny auctions

The penny auction is an online retail selling mechanism that has emerged very recently. Swoopo,

founded in 2005, was the pioneer in this industry. By November 2010, at least 125 penny auction

websites were running in the U.S. Some recent papers examine the bidders�behavior and the

auctioneer�s revenue in penny auctions. For example, Augenblick (2011) and Platt, Price, and

Tappen (2010) are impressed by the extremely high observed revenue from Swoopo�s data, and

they provide some explanations on the irrational bidding behavior. Anderson and Ødegaard

(2011) examine the penny auction under a setting with two sales channels: a �xed posted price

and a standard all-pay auction. In contrast to eBay auctions, the penny auction is a contest

game with elements of all-pay auctions and lotteries. In this paper, we use the data from

BigDeal.com, which was a typical penny auction website operating from November 2009 to

August 2011. More details on penny auctions and BigDeal are in Wang and Xu (2012). The

rules in most of penny auction websites are similar to the following.

Prior to participating in any auction, bidders must buy packs of bid-tokens. Each bid-

token costs a �xed price (e.g., $0.75). The website typically releases an auction with an initial

countdown clock that lasts for 1-2 days. Potential buyers can access the website to view the

description of the product. The posted retail price is also available, which is usually close to

the market price. And the auction price for any product starts at $0.
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First, a bidder must place a bid-token to bid. A bid is an o¤er to buy the product at the

current auction price. The auction price is initially 0 and is increased by a �xed tiny amount

whenever a bid is placed. The tiny increment is typically one penny, thus the name of penny

auction.

Second, as a bid is placed, a countdown clock starts and the timer lasts for a �xed length

of time (e.g., 30 seconds).

Third, the other bidders decide whether to follow before the clock expires. And the timer

is reset whenever a new bid is placed.

The winner is the last bidder, the person whose bid is not followed by any other bid by the

time the countdown clock expires. The auction winner receives the product and pays the auction

price. Since each bid-token cost is not refundable, every bidder actually pays the bidding cost.

3.5.2 Planned bids vs. observed bids

To analyze the mechanism of the penny auction, Augenblick (2011) provides a basic analysis

framework within the common value paradigm. All other existing literature follows his perspec-

tive. A penny auction is not a standard auction because of the rule that the last rather than the

highest bidder wins. Under this framework, most of papers focus on bidders�sophistication and

bidding behavior. Now we propose a new view under the independent private value paradigm,

in which the penny auction is a war of attrition with a stochastic number of bidders.

We propose the following mechanism in the data generating process for penny auctions:

Bid-agent game: Most penny auction websites o¤er automatic bid-agents to help bidders

to place bids. A bidder can set up with a maximum number of bids to place by a bid-agent.

The bid-agent will start to bid as soon as the bidder click the �Activate�button. When the
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bid-agent places a bid, the countdown clock resets to 30 seconds. If another bid follows during

the time period, the bid-agent will place another bid until the bids run out. While more than

two bid-agents are activated, they will bid in turn. Suppose that all bidders use bid-agents,

and they set their total bids at the beginning and activate the bid-agents simultaneously. No

new bidder enters in the midst, and bidders cannot modify the bidding plans. As the game

starts, bid-agents automatically place bids one-by-one, and the last bid wins. In each round,

each bidder gets the chance to place a bid. Thus the winner, the last bidder, is also the highest

bidder. This framework is a second-price sealed-bid all-pay auction.

Since the increment is tiny, assume we can ignore the e¤ect of the auction price. By the bid-

agent game, each bidder�s bidding plan is predicted as the planned bid B, which is unobserved.

The observed bid Y is a proxy of the planned bid, and the relation is the following, i.e., as

equation (3.8)

Y = B + ";

with " � N
�
0; �2Z

�
; where �Z denotes the standard deviation of the error term, Z is bidders�

duration in the game, and we assume �Z = log (1 + Z) in the empirical analysis.

3.5.3 Data Structure

In this paper, we use the data from a penny auction site, BigDeal.com. There are 1,686 di¤erent

products auctioned in BigDeal, and we choose 4 pairs from the top 20 products to analyze and

compare: 10 BigDeal Bid Tokens vs. 50 BigDeal Bid Tokens; $25 Gift Card vs. $100 Gift Card;

iPod Nano 16GB vs. iPad 3G 64GB; Amazon Kindle vs. Kindle DX. Table 1 summarizes the

statistics of them. The number of bids for each product is reasonable to achieve the convergence
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results.

Table 3.1: Data Description
Product Retail price Num. of auctions Num. of bids
10 BigDeal Bid Tokens 7.5 20,462 57,166
50 BigDeal Bid Tokens 37.5 7,839 176,824
$25 Gift Card 25 2,130 12,793
$100 Gift Card 100 509 13,355
iPod Nano 16GB 179 909 20,861
iPad 3G 64GB 900 410 82,897
Amazon Kindle 259 549 16,731
Kindle DX 379 620 46,350

Note that the penny auction is a second-price all-pay auction. In a standard second-price

auction, the highest bid is unobservable. This is a potential threat to our analysis. However, a

typical penny auction is not a standard auction, because the winner is not the highest bidder

but the last; therefore, we can observe the highest bids in most cases, with the cost of the last

bid biased downward.

3.5.4 Estimate Results

In this subsection, we report the estimate results based on the nonparametric structural model.

Suppose that the density function of error term is known, and then our results depend on the

speci�cations of f"(Z): Here we assume the error term follows the Normal distribution, i.e.,

" � N
�
0; �2Z

�
. In particular, we set �Z = log (1 + Z), and the variable Z denotes the duration

of bidders in each auction. Figures 3a-3d display the estimated distributions of private values

for these four pairs of products. We summarize two important �ndings. First, we �nd the

estimated private values are distributed around the retail prices. For example, in bid-token

auctions, about 70% of bidders hold values below the retail prices. The result is reasonable

since the retail prices can be seen as benckmarks of market values. Bidders are likely to refer
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the retail price when they generate their own values. Second, bidders�values are highly related

to the popularity of the products. For example, in Apple product auctions, more than 50%

of bidders are willing to pay the retail price for iPad while few of bidders treat iPod with the

same attitude. These �ndings are consistent with common intuition, and they provide some

justi�cations for our estimation approach.

Figure 3(a): 10 Bid Tokens ($7.5) vs. 50 Bid Tokens ($37.5)
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Figure 3(b): $25 Gift Card vs. $100 Gift Card

Figure 3(c): iPod Nano 16GB ($179) vs. iPad 3G 64GB ($899.99)
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Figure 3(d): Amazon Kindle ($259) vs. Kindle DX ($379)

3.6 Conclusion

As we apply the nonparametric estimation approach to auctions, our observables may be di¤er-

ent from the expected values which are predicted by the structural model. This paper provides

a two-step nonparametric procedure to estimate the war of attrition with a stochastic number

of bidders. In particular, we allow the observables are associated with heteroscedastic error. We

apply this approach to penny auctions and estimate the distribution of bidders�private values.

In this paper, we assume that the distribution of error terms is known, otherwise, the

unknown distribution of bidder�s private values is not identi�able. However, the distribution

of error terms is not speci�ed in many practical situations. This classical condition is relaxed

in some recent papers. As a trade-o¤, those models require either the availability of additional

direct data from the error distribution or replicated measurements or more restrictive conditions
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on the unknown density (see Li and Vuong 1998; Schennach 2004; Delaigle and Meister 2008;

Krasnokutskaya 2011).

This paper is the �rst to estimate all-pay auctions using the nonparametric approach. Penny

auctions provide the ideal data to conduct empirical analysis on all-pay auctions. The deconvo-

lution method can also be applied in the nonparametric estimation approach for other standard

auctions.
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