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SUMMARY

Bluff bodies have a wide range of applications where low-cost, light weight

methods are needed to stabilize flames in high-speed flow. The principles of bluff body

flame stabilization are straightforward, but many details are not understood; this is

especially true in vitiated environments where measurements are difficult to obtain.

Most work has focused on premixed flames but changing application requirements

are now driving studies on non-premixed gaseous and spray flames. This thesis aims

to improve the understanding of vitiated, bluff body stabilized flames, specifically on

non-premixed, spray flames, through the use of Large Eddy Simulation (LES).

The single flameholder facility at Georgia Tech was chosen as the basis for the

simulations in this thesis. The flameholder was a rectangular bluff body with an

aerodynamic leading edge with discrete liquid fuel injectors embedded just upstream

of the trailing edge in a configuration described as “close-coupled.” The liquid phase

was modeled using a Lagrangian particle approach where discrete fuel droplets were

injected into the domain. Experimental data was used to tune model parameters as

well as the stripped droplet velocities and sizes. The discharge coefficient needed to

be taken into account to achieve the correct fuel jet penetration.

The experiments were conducted over a range of global equivalence ratios; lean

equivalence ratios, φglobal ≈ 0.5, exhibited symmetric flame shedding and conversely

large scale sinusoidal Bérnard/von-Kármán shedding was observed when the equiva-

lence ratio was near unity. Reacting flow LES were computed at these two fuel flow

rates to improve understanding of the different flame dynamics. LES were first com-

pleted using a quasi-laminar subgrid turbulence-chemistry interaction model. Span-

wise averaging of instantaneous and time-averaged LES results were compared with

xix



experimental high- and low-speed imaging and showed the LES was in qualitative

agreement at both fuel flow rates. At φglobal ≈ 0.5, the fuel jet did not penetrate as

far into the crossflow compared to φglobal ≈ 0.95 and thus more fuel was delivered to

the shear layers of the bluff body resulting in higher heat release in the shear layers

for the low fuel flow rate. The heat release damped the large sinusoidal structures

via gas expansion and baroclinic torque generation. Higher fuel jet penetration in the

φglobal ≈ 0.95 case meant less fuel was delivered to the shear layers and so less heat

release occurred directly behind the bluff body so the large scale sinusoidal shedding

was not damped. The impact of the subgrid turbulence-chemistry interaction model

on the flame dynamics was tested by comparing the quasi-laminar LES with LES

using the subgrid linear eddy model (LEMLES). The flame structure predicted with

LEMLES matched that of the quasi-laminar LES, at both fuel flow rates in the near-

field behind the bluff body but deviated farther downstream. A flame edge analysis

showed little sensitivity to the choice of subgrid model in the region x < 4D.

A high-order hybrid finite-difference solver with consisting of a WENO upwind

method and compact central scheme was implemented to assess the effects of the

numerical method. A series of test cases was used to verify, validate and compare

several of the available spatial and temporal methods before the high fuel flow rate

bluff body case was run. For the simple test cases the higher-order methods were

clearly more efficient but for more complex cases the differences between the second-

order and high-order methods are smaller.

To test the hypothesis that the fuel jet penetration was the main factor in the flame

dynamics another configuration with a modified fuel injector diameter was simulated.

The injector size was chosen to match the spray penetration of φglobal ≈ 0.5 case

while maintaining the fuel flow rate of the φglobal ≈ 0.95 case. The results confirmed

the hypothesis as the flame dynamics of this configuration match the original low fuel

flow rate case.
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CHAPTER I

INTRODUCTION AND MOTIVATION

1.1 Motivation

Bluff bodies are used in a variety of applications to stabilize flames in high-speed flow.

They are commonly found in aerospace gas turbine applications for stabilization of

primary or secondary combustion (thrust augmentation) due to their light weight,

low cost and simplicity. Bluff bodies are also important in scramjet, ramjet and

ground-based gas turbine flame-holding.

The principles of bluff body flame stabilization are straightforward: the bluff body

provides a region of recirculation which allows hot combustion products to interact

with incoming reactants and sustain burning. The actual combustion process is com-

plicated by the interaction of the reaction zone with the vortical structures generated

by the flow separation from the bluff body. These structures range in size and am-

plitude from small-scale turbulence to Kelvin-Helmholtz shear-layer instabilities and

large coherent Bérnard/von-Kármán vortex streets. These flow structures can directly

effect the reaction zone by altering the location of reactants and products and their

mixing, as well as create a feedback mechanism for acoustic-vortical interactions.

While most research has focused on premixed applications, changing application

requirements are now driving studies on non-premixed gaseous and spray bluff body

stabilized flames [118]. The difficult task of observation and measurement of combus-

tion only becomes more complicated at vitiated conditions and with the addition of

fuel spray. Computational tools need to be developed and validated with the limited

data available in order to help better understand the underlying flow physics and

provide insight that cannot be obtained through experiments alone.
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1.2 Background

1.2.1 Non-reacting bluff body flow

A simple two-dimensional bluff body is shown in Figure 1 that illustrates the main

flow features of typical non-reacting flows. Boundary layers on the bluff body walls

grow before flow separation at the trailing edge. At low Reynolds numbers stable,

symmetric recirculation zones attach to the trailing edge. Shear layers form aft of the

trailing edge and envelop the recirculation zones. As the Reynolds number increases,

the shear layers are subject to the inviscid hydrodynamic instability known as the

Kelvin-Helmholtz instability, in which small coherent vortices appear downstream

of the separation point and shed symmetrically. Once a shape-dependent critical

Figure 1 Two-dimensional non-reacting bluff body flow (reprinted from [190] with
permission)

Reynolds number is reached, large scale coherent vortices are alternately shed from

each side of the bluff body. The rate at which these Bérnard/von-Kármán vortices

are shed is often described by the non-dimensional Strouhal number,

St =
fD

U
(1)

where U is the incoming flow velocity, D is the characteristic height of the bluff body,

and f is the instability frequency. Typical Strouhal numbers range between 0.2–0.29.

The large vortical structures occur due to the interaction of the shear layers from

both sides of the bluff body.
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1.2.2 Heat release effects on bluff body flows

Heat release due to combustion generally has a stabilizing effect on bluff body flows.

Large scale asymmetric fluctuations are damped leaving symmetric shear layer rollup.

This phenomenon can be explained by examining Eq. (2), the vorticity transport

equation.

D~ω

Dt
= (~ω · ∇) ~V︸ ︷︷ ︸

vortex stretching

− ~ω
(
∇ · ~V

)

︸ ︷︷ ︸
gas expansion

− ∇ρ×∇p

ρ2︸ ︷︷ ︸
baroclinic torque

+ ν∇2~ω︸ ︷︷ ︸
viscous diffusion

(2)

Several factors have stabilizing influences: gas expansion takes place acting as a

vorticity sink, baroclinic torque is produced and for gas flows, viscosity increases with

temperature increasing vorticity diffusion. Although it may appear the production

of baroclinic torque has a destabilizing effect, for confined bluff body flames this

vorticity is generated in the opposite direction to that of the vorticity in the shear

layers thus decreasing the magnitude [190]. Both gas expansion and baroclinic torque

are proportional to the dilation ratio, ρu/ρb, the ratio of unburned density to burned

product density.

Experiments and computational studies have both demonstrated this reduced

shear layer vorticity under reacting conditions. Chaudhuri and coworkers examined

simultaneous OH PLIF and PIV measurements and found that for stable flames max-

imum OH concentrations lie in the same region as the high vorticity shear layer [21].

It is interesting to note that high speed images from this study showed the possi-

bility of flame reignition due to downstream wake burning even after reactions cease

in the shear layer. Mehta and Soteriou showed the gas expansion effect to be the

dominant factor in the near field of the bluff body with the baroclinic vorticity am-

plifying the effect several diameters downstream [133]. Large eddy simulations of

premixed bluff body flames showed strong baroclinic torque and weakening of the

Bérnard/von-Kármán structures [156].
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Several studies have addressed numerical aspects of simulating bluff body stabi-

lized flames; specifically for LES, the influence of subgrid turbulence-chemistry closure

models has been investigated. Fureby tested finite rate chemistry models including

quasi-laminar, partially stirred reactor, thickened flame, and presumed PDF models

and compared them with flamelet methods [57]. He concluded that for this type of

flow the finite rate methods were superior since the the flamelet method assumptions

are not valid for all combustion regimes in the flow. The finite rate methods all per-

formed reasonably well. Fureby also compared two chemical mechanisms with the

finite rate methods, a one- and a two-step mechanism. As expected, the two-step

mechanism showed better agreement with experimental results.

Porumbel and Menon simulated the same case as Fureby and compared the sub-

grid eddy breakup (SEBU) model with the subgrid linear eddy model, a methodology

known as LEMLES [156]. LEMLES more accurately predicted vorticity and tempera-

ture fields as well as the velocity fluctuations, though it should be noted the LEMLES

approach is more computationally expensive than the subgrid eddy breakup model.

1.2.3 Influence of vitiation

As the incoming reactant temperature is increased, the ρu/ρb ratio decreases reducing

the stabilizing effects of gas expansion and baroclinic torque generation. Erickson et

al. completed a computational study demonstrating the reduction in Bérnard/von-

Kármán vortices as the Tb/Tu ratio increased [46]. Figure 2 shows the transition from

asymmetric to symmetric shedding.

Varying the equivalence ratio also changes the ρu/ρb ratio and thus the stability of

the flame, with vitiation amplifying the effects. This has major implications especially

for lean flames near blowout. Figure 3 shows a sequence of snapshots of a vitiated

flame as the equivalence ratio is reduced [100].
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Figure 2 Vorticity and flame location for bluff body flames at different temperature
ratios (reprinted from [46] with permission of the American Institute of Aeronautics
and Astronautics)
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Figure 3 Blowout sequence for low-density ratio/highly vitiated flames (reprinted from
[100] with permission of the American Institute of Aeronautics and Astronautics)

Kiel investigated non-reacting and reacting V-gutter bluff body flows under non-

vitiated and vitiated conditions using LDV and high speed imaging and used unsteady

Reynolds averaged Navier-Stokes (URANS) simulations to study the non-reacting

cases [102, 101]. They reported that under non-vitiated conditions the flow was

dominated by smaller vortices generated in the boundary layer. High speed images

of high Reynolds number flows under vitiated conditions near lean blowout clearly

showed the flow was dominated by the large scale Bérnard/von-Kármán vortices.

Tuttle et al. completed experiments using the same geometry as Chaudhuri et al.

taking high speed images of vitiated bluff body flames near lean blowout [217, 21]. In

contrast to the non-vitiated results, no reignition events were recorded; once reactions

were no longer visible in the shear layers the flame would eventually blowout. Another

important conclusion from this study is that the ρu/ρb density ratio at blow-off is

significantly less for vitiated flows compared with non-vitiated flows. The authors

state that this indicates the Bérnard/von-Kármán instability is more important for
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blow-off in vitiated flames than in non-vitiated flames.

In a separate study the same authors looked at fuel distribution effects for vitiated

premixed flames [218]. They varied the equivalence ratio of the incoming fuel/air

mixture across the height of the bluff body and observed that the lean side exhibited

a fragmented flame sheet structure even under stable operating conditions. The

global equivalence ratio at blowout increased with increasing equivalence ratio non-

uniformity suggesting that fuel distribution effects can significantly influence stability

even for premixed flames. Both studies were completed with inflow temperatures

between 720–820 K and bluff body Reynolds and Mach numbers around 10000 and

0.1, respectively.

LES has been performed on vitiated premixed bluff body flames as well. Smith

et al. simulated a V-gutter type bluff body in 700 K inlet air at Re = 29000 with a

propane/air mixture [200]. They matched the trends of experimental results showing

that lean blowout occured for at higher equivalence ratio for vitiated flames than

non-vitiated flames. Although the simulations helped to improve understanding of

the blowoff mechanisms, they did not run at the same conditions as their experimental

data and thus could not be directly compared. They noted their simulations could be

improved by using a two-step chemical mechanism, fuel first going to carbon monoxide

and water, then carbon monoxide to carbon dioxide, rather than the single step global

mechanism.

Khosla completed LES on two different blunt-nose bluff body geometries, with

and without vertical tabs at the trailing edge [100]. The tabs were attached to

eliminate the large scale Bérnard/von-Kármán vortices in an effort to determine if

these vortices were a significant contributor to blowout. The simulation conditions

were 90 m/s, 700 K, using two-step kinetics for Jet-A fuel. They conclude that

although the Bérnard/von-Kármán vortices may affect blowout, the most important

factor seems to be the ratio of flow speed to flame speed. They also suggest that
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future works investigate non-premixed spray configurations and determine the effects

of turbulence-chemistry interaction.

Gokulakrishnan et al. attempted to determine the influence of turbulence-chemistry

models in their premixed LES study [66]. They simulated two different propane/air

reaction mechanisms (a skeletal 30 species and 110 reactions, and a 44 step semi-

global mechanism), on two grids (0.65 M and 2.4 M cells), with two subgrid models

(Eddy-Dissipation Concept (EDC) and laminar chemistry). The flow conditions were

similar to that of Smith et al. [200]. When using the laminar chemistry model, the

choice of chemical mechanism did not affect the flame structure; the mechanism did

change the flame structure with the EDC model, the skeletal mechanism showing

an unstable flame at φ = 0.6 whereas the semi-global mechanism blows out. There

were stark differences between the subgrid models in the shear layers. The laminar

chemistry model showed symmetric shedding for several bluff body diameters down-

stream before Bérnard/von-Kármán vortices appear in contrast to the EDC model

where the flow wass much more unstable with Bérnard/von-Kármán vortices directly

behind the bluff body.

1.2.4 Non-premixed vitiated bluff body stabilized flames

Khosla et al. limited the scope of their study to premixed flames as fuel injection

adds additional complexities, however, more research is necessary for non-premixed

bluff body stabilized flames as they will continue to play a role in aerospace applica-

tions [118]. In such applications, increasing temperatures and demands for simplified

combustors has led to integrated fuel injectors/flameholders. Advantages of such a

configuration are increased cooling to the flameholder by the liquid fuel and decreased

susceptibility to autoignition. The disadvantage is the fuel spray can directly interact

with the wake flow and have a much larger influence on flame dynamics.
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Kim and Mungal studied the role of bluff body trailing edge geometry in close-

coupled gaseous-fueled systems [106]. In this thesis, the term “close-coupled” refers to

the proximity of the fuel injectors to the flame stabilization location [118]. They found

that bluff bodies with small cavities in the trailing edge can extend the blowout lim-

its for some situations. El-Asrag and coworkers studied non-premixed close-coupled

gaseous fueled bluff body flames experimentally and numerically at vitiated condi-

tions but relatively low velocities [45]. They note that most industrial applications

actually use liquid fuel and operate at high velocities.

An important part of understanding liquid fueled close-coupled bluff bodies is the

characterization of liquid jets in cross flow (LJICF) under the conditions of interest.

Brown and coworkers outlined some of the difficulties in obtaining data under vitiated

conditions and made observations about available data [15]. They noted that most

LJICF data comes from water at ”room temperature” and there is a large amount

of discrepancy between the data, some of which can be contributed to the discharge

coefficient of the injector, a parameter with a large effect on the spray but often

not reported. Studies by Lubarsky et al. have shown that spray modeling is also

complicated by the fact the spray is affected by the presence of a flame for close-

coupled bluff body spray applications [122, 123]. Many spray models only consider

a single mode, the most unstable mode, when predicting droplet breakup though

other experiments by Lubarsky suggest in certain Weber number regimes there exists

multimode breakup [167, 124].

Cross et al, performed experiments at realistic high temperature, high velocity

conditions with liquid fuel [33, 32]. Their results suggested that fuel distribution and

thus heat release distribution plays an important role in flame stability. Higher fuel

flow rates with global equivalence ratios closer to unity exhibited more large scale

Bérnard/von-Kármán instabilities than lower global equivalence ratios. The more

symmetric flame shedding seen at the low fuel flow rate conditions was similar to
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the flame dynamics of the combustor using an upstream-fueled configuration. The

differences in the flame dynamics at the two different fuel flow rate operating condi-

tions was attributed to differences in the fuel penetration of the fuel spray and the

subsequent spatial distribution of the heat release.

To the author’s knowledge no computational studies for this type of problem have

been completed, specifically for liquid fueled close-coupled bluff bodies at vitiated

conditions. Time accurate simulations are needed to capture combustion dynamics

which rules out Reynolds Averaged Navier-Stokes (RANS) simulations leaving Large

Eddy Simulation (LES) or Direct Numerical Simulation (DNS) as possible methods,

though DNS for practical combustors is computational intractable. This class of

problem presents many challenges for any numerical study including but not limited to

choice of chemical mechanism, multiphase modeling methodology, boundary condition

specification, spatial and temporal integration methods and subgrid models. Once

the appropriate parameters and models are selected simulations can be completed to

supplement the knowledge gained through experiments.
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CHAPTER II

OBJECTIVES

The overall objective of this work is to use LES to improve understanding of vitiated,

bluff body stabilized flames, with a specific emphasis on spray flames. This objective

is quite broad and as such will be broken down into several objectives each with

subtasks necessary for completion. Each objective should address at least one of

three areas: physics, numerics and modeling.

1. Assess the effects of fuel distribution and mixing on flame dynamics. For non-

premixed problems, spray penetration directly effects where fuel is located in

time and space and as such is a controlling factor for the heat release and thus

flame dynamics. The spray penetration and fuel distribution predicted by LES

is dependent on many factors including spray injection and break-up models,

turbulent mixing parameters and physical injection parameters.

(a) Select a suitable experimental test facility for vitiated bluff body stabi-

lized spray flames and simulate a non-reacting case to validate the flow

simulation methodology and establish a baseline for reacting cases.

(b) Simulate several reacting conditions that show different flame dynamics

and compare with experimental results.

(c) The primary and secondary breakup models currently in use were de-

veloped for use with RANS and/or for use at specific operating condi-

tions [128, 167]. Identify the sensitivities of liquid droplet distribution and

evaporated fuel vapor distribution to breakup model parameters, e.g. jet

regime stripped droplet velocities and sizes, and model tuning parameters,

at typical operating conditions for bluff body stabilized spray flames.
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2. Investigate the role of the LES subgrid turbulence-chemistry interaction closure

model for non-premixed vitiated bluff body stabilized flames. Several studies

have shown that simple models such as the quasi-laminar chemistry provide

adequate accuracy while others have shown that the subgrid model can have

a significant effect on the results [57, 66, 156]. The previous studies focused

on premixed applications only; work now needs to be done for non-premixed

configurations as well.

(a) Simulate a reacting case with the baseline grid and simple turbulent closure

such as quasi-laminar chemistry and compare with experiments.

(b) Researchers have previously shown good results for spray combustion with

more complex closures, such as LEM, at increased computational cost [135,

148]. Simulations will be conducted with LEMLES and compared with

previous results to determine if the added cost is necessary to accurately

simulate this configuration.

3. Address the impact of the numerical method on the simulation solution, as

some studies have indicated under certain conditions the numerical method is

as important as the choice of subgrid models [228, 27]. To achieve this, a high-

order numerical method will be implemented and simulations with this method

compared with the baseline results.

The goal for industrial application is the use of LES as a predictive tool. The final

step in completing the thesis will be to select a different operating condition and run

a final reacting simulation with the goal of predicting the flame dynamics based on

the simulation conditions.
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CHAPTER III

MATHEMATICAL FORMULATION AND MODELING

3.1 The Navier-Stokes equations

The Navier-Stokes equations describe the motion of unsteady, compressible, multi-

species, reacting fluids. Neglecting body forces such as gravity and assuming the fluid

of interest is a continuum, the equations for the conservation of mass, momentum,

total energy and species are as follows:

∂ρ

∂t
+

∂ρui

∂xi

= ρ̇s (3)

∂ρui

∂t
+

∂

∂xj
[ρuiuj + pδij − τij ] = Ḟs,i (4)

∂ρE

∂t
+

∂

∂xi
[(ρE + p) ui + qi − ujτij ] = Q̇s (5)

∂ρYk

∂t
+

∂

∂xi

[ρuiYk + Ji,k] = ω̇k + Ṡs,k, k = 1, . . . , Ns. (6)

In the above Navier-Stokes equations, ρ is the density, p is the pressure, ui is the

Cartesian velocity vector and Yk is the mass fraction of species k where there are

a total of Ns species in the flow. The total energy, E is a combination of internal

energy, e and kinetic energy:

E = e +
1

2
ukuk (7)

where for the internal energy is the summation of the internal energies for all the

species present:

e =

Ns∑

k=1

Ykek (8)

where ek is the sensible energy of the kth species. The viscous stress tensor is denoted

as τij ; the heat flux vector is qi and the species diffusion flux is Ji,k. The species

chemical reaction rates are ω̇. The formulation here includes source terms from a
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dispersed phase, indicated by the the subscript s, that may possibly be present.

These quantities will be described in more detail later.

3.1.1 Equation of state

Under the conditions studied in this work, all gases are assumed to obey the perfect

gas equation of state.

p = ρRT (9)

where R is the gas constant and T is the temperature. The gas constant is determined

based on the species mass fractions and their molecular weights,

R = Ru

Ns∑

k=1

Yk

Wk

(10)

where Ru is the universal gas constant and Wk is the molecular weight of the kth

species.

The internal energy of each species is a function of temperature only:

ek = e0k +

∫ T

T0

Cv,k (T
′) dT ′ (11)

where Cv,k is the constant volume specific heat for the kth species and e0k is the

reference sensible energy at the reference temperature T0.

It is often convenient to use enthalpy,

h = e+
p

ρ
(12)

and defining the enthalpy of the kth species as

hk = h0
k +

∫ T

T0

Cp,k (T
′) dT ′ (13)

where Cp,k is the specific heat at constant pressure and h0
k is the reference enthalpy.

The specific heats are related:

Cp,k (T ) = Cv,k (T ) +
Ru

Wk
. (14)
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The ratio of the specific heats, γ is defined as:

γk (T ) =
Cp,k (T )

Cv,k (T )
. (15)

3.1.2 Viscous stress tensor

The viscous stress tensor for Newtonian fluids is defined as

τij = µ

(
∂ui

∂xj

+
∂uj

∂xi

)
+ λ

∂uk

∂xk

δij (16)

where µ is the dynamic viscosity, λ is the bulk viscosity and δij is the Kronecker delta:

δij =





1 if i = j

0 if i 6= j
. (17)

All fluids under consideration in this study are assumed Newtonian, i.e., the stresses

are linearly proportional to the rate of strain. In addition here we follow Stokes’

hypothesis which postulates that the trace of the stress tensor should be zero which

implies that the bulk viscosity is λ = −2/3µ. With this assumption, the stress tensor

can be written as

τij = 2µ

(
Sij −

1

3
Skkδij

)
(18)

where the rate of strain tensor, Sij, is defined as:

Sij =
1

2

(
∂ui

∂xj

+
∂uj

∂xi

)
. (19)

The dynamic viscosity can be computed in a variety of ways with varying complexity

and accuracy. For all methods used in this study the dynamic viscosity is a function

of temperature and composition only.

3.1.3 Heat flux vector

The heat flux vector in the energy equation is

qi = −κ
∂T

∂xi

+ ρ
Ns∑

k=1

hkYkVi,k. (20)
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The first term is heat conduction due to temperature gradients where κ is the thermal

conductivity. This relationship is known as Fourier’s law. Like with the dynamic

viscosity, in this work κ is a function of temperature and composition only and often

computed using the definition of the Prandtl number,

Pr =
Cpµ

κ
. (21)

The second term is the energy flux due to species diffusion.

3.1.4 Species diffusion flux

The species diffusion flux term is modeled with a Fickian diffusion approximation and

neglects any Soret effects

Ji,k = ρYkVi,k = −ρDk
Wk

W

∂Xk

∂xi
(22)

where Vi,k is the species diffusion velocity in the i−th direction for the k−th species.

The diffusion coefficient, Dk, is generally a function of the temperature, pressure and

local species concentrations and can be related to other thermodynamic and transport

properties with the Lewis number,

Le =
κ

ρCpDk
. (23)

Using the expression in Eq. (22) in Eq. (6) can result in mass conservation problems

so a correction velocity defined as

V c =
Ns∑

k=1

Dk
Wk

W

∂Xk

∂xi

(24)

is added to the species diffusion term [153],

Ji,k = ρYk (Vi,k + V c) (25)

Direct numerical simulations (DNS) discretize and numerically solve these equa-

tions. Doing so requires that all features of the flow are sufficiently resolved. This
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becomes computationally intractable for many turbulent combustion applications at

high Reynolds numbers where the small scales of turbulence are orders of magnitude

smaller than the large mean flow scales governed by the combustor geometry. To

mitigate this problem one method where the large flow scales are simulated and the

small scales are modeled has been developed which is known as Large Eddy Simula-

tion (LES). LES provides the basis for the work in this thesis and will be described

in more detail in the following section.

3.2 Large Eddy Simulation equations

The large and small scales are separated by applying a spatial filter to the governing

equations which decomposes flow variables into resolved and unresolved quantities.

Thus a generic flow variable, f , can be written as f = f + f ′′ where the (·) denotes

resolved scales and the (′′) indicates the unresolved, subgrid scales. The separation

of scales for a variable f is achieved by applying a filter kernel, G, over the domain,

Ω,

f (x, t) =

∫

Ω

f (x′, t)G (x− x′) dx′ (26)

where x and x′ are position vectors and t is time. There are a variety of filter kernels

that can be use and in practice the three-dimensional filter kernel is often the product

of three one-dimensional kernels

G (x− x′) =
3∏

i=1

gi (xi − x′

i) . (27)

The specific filter kernel is the Box or top-hat filter defined as

gi (xi − x′

i) =





1

∆i
|xi − x′

i| <
∆i

2

0, otherwise

(28)

where ∆i is the filter size in the i−direction. The three-dimensional filter size can be

expressed as

∆ = (∆1∆2∆3)
1/3 . (29)
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The spatial filtering operation is sufficient to derive the LES equations but it is

convenient to define a mass-weighted filtered variable, also known as a Favré-filtered

variable, for LES of compressible flows,

f̃ =
ρf

ρ
. (30)

This Favré-filtering reduces the number of unclosed terms in the filtered, compress-

ible Navier-Stokes equations. Further information concerning the properties of the

filtering operations can be found in works by Sagaut and collaborators [177, 63].

3.3 Filtered Navier-Stokes equations

To obtain the resolved-scale filtered Navier-Stokes equations, the spatial filter is first

applied then the commutative property of the filter with both spatial and temporal

derivatives is used and finally the resulting expressions are simplified with the Favré-

averaging procedure. The filtered equations for mass, momentum, energy and species

conservation are

∂ρ

∂t
+

∂ρũi

∂xi

= ρ̇s (31)

∂ρũi

∂t
+

∂

∂xj

[
ρũiũj + pδij − τ ij + τ

sgs
ij

]
= Ḟs,i (32)

∂ρẼ

∂t
+

∂

∂xj

[(
ρẼ + p

)
ũj + qj − ũiτ ij +H

sgs
j + σ

sgs
j

]
= Q̇s (33)

∂ρỸk

∂t
+

∂

∂xi

[
ρũiỸk + Ji,k + Y

sgs
i,k + θ

sgs
i,k

]
= ω̇k + Ṡs,k (34)

The filtered viscous stress tensor and heat flux vector are

τ ij = 2µ

(
S̃ij −

1

3
S̃kkδij

)
(35)

and

qi = −k
∂T̃

∂xi

+ ρ
Ns∑

k=1

h̃kỸkṼi,k +
Ns∑

k=1

q
sgs
i,k (36)

where the filtered strain rate is

S̃ij =
1

2

(
∂ũi

∂xj
+

∂ũj

∂xi

)
. (37)
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The filtered total energy is the sum of the filtered internal energy, resolved kinetic

energy and subgrid kinetic energy,

Ẽ = ẽ+
1

2
ũiũi + ksgs, (38)

and the subgrid kinetic energy is defined as,

ksgs =
1

2
(ũiui − ũiũi) . (39)

The species diffusion flux is

Jik = ρỸk (Vik + V c
i ) . (40)

Assuming Fickian diffusion and a mixture-averaged diffusion coefficient, the diffusion

velocity term is

ỸkṼi,k = −Dk
Wk

W

∂X̃k

∂xi
. (41)

To avoid computing mole fractions this term is sometimes approximated using

mass fraction gradients rather than mole fraction gradients,

ỸkṼi,k ≈ −Dk
∂Ỹk

∂xi

. (42)

To maintain mass conservation, the correction velocity is added,

V c
i =

Ns∑

k=1

Dk
∂Ỹk

∂xi
. (43)

The filtered perfect gas equation of state is used to relate the conservative and prim-

itive variables,

p = ρ
(
R̃T̃ + Csgs

)
, (44)

where

R̃ =
Ns∑

k=1

Ỹk
Ru

Wk

. (45)

The source terms from the dispersed phase will be discussed further later in Sec-

tion 3.6.
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All subgrid-scale terms, indicated with the sgs superscript, are “unclosed” and will

require modeling,

τ
sgs
ij = ρ (ũiuj − ũiũj)

H
sgs
i = ρ

(
Ẽui − Ẽũi

)
+ (uip− ũip)

σ
sgs
i = ujτij + ũjτ ij

Y
sgs
i,k = ρ

(
ũiYk − ũiỸk

)

θ
sgs
i,k = ρ

(
Ṽi,kYk − Ṽi,kỸk

)

q
sgs
i,k = ρ

(
hkDk

∂Yk

∂xi

− h̃kDk
∂Ỹk

∂xi

)

Csgs = R̃T − R̃T̃ .

Models for τ
sgs
ij , H

sgs
i , σ

sgs
i , Y

sgs
i,k and filtered reaction rate, ω̇k, are presented in the

following sections. The remaining unclosed terms θ
sgs
i,k , q

sgs
i,k , and Csgs are neglected

as is done in other LES studies [58].

3.4 Closures for the LES equations

3.4.1 Momentum transport closure

The subgrid terms in the momentum equation are closed using an eddy viscosity

and gradient diffusion approach. The filter width is ∆ = (cell volume)1/3. The eddy

viscosity and subgrid stress tensor are,

νt = Cν∆
√
ksgs (46)

τ
sgs
ij = −2ρνt

(
S̃ij −

1

3
S̃kkδij

)
+

2

3
ksgsδij . (47)

3.4.2 Subgrid kinetic energy transport

Subgrid kinetic energy, ksgs, is computed using a transport equation derived by sub-

tracting the resolved kinetic energy equation from the filtered kinetic energy equation,

∂ksgs

∂t
+

ρũik
sgs

∂xi
= Tksgs + Pksgs −Dksgs (48)
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where Tksgs, Pksgs, and Dksgs are diffusion, production and dissipation terms, respec-

tively. Again using a gradient diffusion approach and an eddy viscosity assumption

the diffusion, production and dissipation terms are modeled as

Tksgs =
∂

∂xi

[(
ρνt
σk

+ µ

)
∂ksgs

∂xi
+

ρνtR̃

P rt

∂T̃

∂xi

]
(49a)

Pksgs = −τ
sgs
ij

∂ũj

∂xi

(49b)

Dksgs =
ρCǫ (k

sgs)3/2

∆
. (49c)

3.4.3 Energy and scalar transport closure

The two unclosed terms from the energy equation are modeled together,

H
sgs
i + σ

sgs
i = − (ρνt + µ)

∂ksgs

∂xi
− ρνtCp

Prt

∂T̃

∂xi
+ ũjτ

sgs
ij . (50)

Subgrid diffusion of species is modeled as

Y
sgs
i,k = −ρνt

Sct

∂Ỹk

∂xi
. (51)

In this work the turbulent Schmidt number is a constant, in many cases Sct = 1.0.

Some cases Sct = 0.4 as suggested for LES by Pitsch and Steiner [152] and used by

other researchers [228, 212], with the exact value detailed on a case by case basis. All

other coefficients computed using the dynamic approach outlined below.

3.4.4 Localized Dynamic ksgs Model (LDKM)

The coefficients Cν , Cε, and Prt used for the mometum, energy and subgrid kinetic

energy equations are determined using a dynamic procedure originally developed by

Kim and Menon[105] and extended to include compressibility effects by Génin and

Menon[65]. The model is based on experimental observations that the subgrid stress

tensor, τ
sgs
ij computed at the grid filter, ∆, is self-similar to the Leonard’s stress,

Eq. (52), computed at a larger test filter, ∆̂. The notation 〈f〉 indicates a variable
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that is explicitly filtered at the test filter which in this work is ∆̂ = 2∆.

Lij = 〈ρ〉
(〈ρũiũj〉

〈ρ〉 − 〈ρũi〉
〈ρ〉

〈ρũj〉
〈ρ〉

)
. (52)

At the test filter level the resolved kinetic energy is the trace of the Leonard stress

tensor

ktest =
1

2

Lkk

〈ρ〉 =
1

2

(〈ρũkũk〉
〈ρ〉 − 〈ρũk〉

〈ρ〉
〈ρũk〉
〈ρ〉

)
. (53)

The similarity between the Leonard stress at the test filter level and the subgrid stress

tensor can be used to cast the Leonard stress in terms of the test filter resovled kinetic

energy

Lij = −2 〈ρ〉Cν

√
ktest∆̂




〈
ρS̃ij

〉

〈ρ〉 − 1

3

〈
ρS̃kk

〉

〈ρ〉 δij


 +

2

3
〈ρ〉 ktestδij . (54)

The only unknown is the coefficient Cν which can be estimated using a least squares

method

Cν = −
MijL′

ij

MijMij
, (55)

Mij =
√
ktest∆̂



〈
ρS̃ij

〉
− 1

3

〈
ρS̃kk

〉

δij


 , (56)

L′

ij = Lij −
2

3
〈ρ〉 ktestδij . (57)

The transport equation for kinetic energy at the test filter can be derived in a similar

way to that of subgrid kinetic energy with the exception that the terms for diffusion,

production and dissipation are defined completely with resolved quantities and sub-

grid stresses. The dissipation of ktest is assumed to be similar to the dissipation of

ksgs allowing the definition of the dissipation coefficient as

Cε =
∆̂

〈ρ〉 (ktest)
3
2

{
(µ+ µt)

[〈
Σ̃ij

∂ũj

∂xi

〉
− 1

〈ρ〉
〈
Σ̃ij

〉〈
ρ
∂ũj

∂xi

〉]
−

2

3

[〈
ρ
∂ũk

∂xk

〉
− 1

〈ρ〉 〈ρk
sgs〉

〈
ρ
∂ũk

∂xk

〉]}
.

(58)
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where Σ̃ij = 2
(
S̃ij − 1

3
S̃kkδij

)
. The similarity approach is also used to dynamically

compute the turbulent Prandtl number. The temperature-velocity correlation is com-

puted exactly at the test filter level and the least squares method is used to solve the

over-specified system,

1

Prt
= −dini

didi
, (59)

di = cν
√
ktest∆̂

1

〈ρ〉

〈
ρ
∂T̃

∂xi

〉
, (60)

ni =

〈
ρũiT̃

〉

〈ρ〉 − 〈ρũi〉
〈ρ〉

〈
ρT̃
〉

〈ρ〉 . (61)

3.4.5 Turbulence-chemistry interaction

The simplest turbulence-chemistry interaction model is the quasi-laminar or “no

model” closure,

ω̇k = ω̇
(
ρ, T̃ , Ỹi

)
, (62)

i.e., the filtered rates are determined directly from the filtered LES quantities ne-

glecting subgrid species and temperature fluctuations. Several studies have shown

that simple models such as the quasi-laminar chemistry provide adequate accuracy

[67, 57, 12, 205, 43] while others have shown that the subgrid model can have a sig-

nificant effect on the results, especially under unstable conditions such as blow-out

[66, 156].

3.5 Subgrid Linear Eddy Model

Instead of solving the filtered species equation, Eq.( 6), turbulent convection at large

and small scales, molecular diffusion and chemical reactions are all modeled separately

and solved at their own respective time scales using method originally developed for

standalone turbulent scalar mixing and combustion applications [92, 93, 94, 97,

95, 96, 98] and then integrated into LES as a subgrid model and applied for many
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premixed and non-premixed turbulent combustion simulations [89]. The method will

be outlined here for completeness.

The exact species transport equation is written as,

ρ
∂Yk

∂t
=− ρ

[
ũi + (u′

i)
R
+ (u′

i)
S
] ∂Yk

∂xi

− ∂

∂xi
(ρYkVi,k) + ω̇ (63)

where the exact velocity is split into three components, ui = ũi + (u′

i)
R + (u′

i)
S:

LES resolved velocity, ũi, LES resolved subgrid fluctations, (u′

i)
R, which is obtained

via ksgs, and unresolved subgrid velocity fluctuations, (u′

i)
S. The LEM-LES subgrid

model solves this equation is a two steps, one for large scale advection,

Y n+1
k − Y ∗

k

∆tLES
= −

[
ũi + (u′

i)
R
] ∂Y n

k

∂xi
(64)

and one for the subgrid reaction-diffusion process,

Y ∗

k − Y n
k =

∫ t+∆tLES

t

−1

ρ

{
ρ (u′

i)
S ∂Y n

k

∂xi

+
∂

∂xi

[
ρYk

(
Vi,k − V C

k

)]
ω̇n
k − Ṡn

k

}
dt′. (65)

3.5.1 Subgrid reaction-diffusion process

One-dimensional lines are embedded in each LES cell on which an unsteady reaction-

diffusion equation is solved with turbulent convection modeled through a series of

instantaneous stirring events

ρ
∂Yk

∂t
= Fk,stir −

∂

∂s

[
ρYk

(
Vk,s − V C

k

)]
+ ω̇k (66)

The total length of the LEM line equals that of the LES filter width, ∆, and the

number of LEM cells is chosen such that all turbulent scales scales are revolved. Unlike

the species, the energy equation is still solved at LES level. An energy equation is

solved in the non-conservative, incompressible form on the LEM lines where viscous
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work and viscous dissipation are ignored.

ρCp
∂T

∂t
=FT,stir − ρ

∂T

∂s

[
Ns∑

k=1

Cp,kYk

(
Vk,s − V C

k

)
]
+

∂

∂s

(
κ
∂T

∂s

)
−

Ns∑

k=1

hkω̇kWk. (67)

It should also be noted that LES inter-cellular diffusion effects cannot be included

in either the subgrid species or temperature equations because LEM lines are non-

contiguous.

3.5.2 Subgrid stirring

Turbulent convection on the subgrid LEM lines, ρ (u′

i)
S ∂Y n

k

∂xi
= Fk,stir, is modeled

through a series of instantaneous stirring events. The turbulent field is assumed to

be isotropic and with no boundaries and/or body forces which allows the use of well-

established inertial range and scaling laws. The stirring frequency is computed based

on scaling laws

λ =
54

5

νRe∆

Cλ∆
3

[(
∆/η

)5/3 − 1
]

[
1−

(
η/∆

)4/3] (68)

where the subgrid Reynolds number is Re∆ =
√
2ksgs∆/ν and an estimate of the

Kolmogorov length scale is η = Nη∆Re
−3/4

∆
. For the current simulations Cλ = 15

and Nη = 1. There has been some confusion about the Cλ as it has appeared in both

the numerator and denominator of Eq. (68) in previously published works. This is

not a problem as long as the reported value is adjusted properly, i.e., if it were in

the numerator here, the value would be Cnum
λ = 1/15 ≈ 0.067. If this is reported

improperly the stirring frequency would be 225 times to large. The eddy size, ℓ, is

selected randomly from a distribution ranging from η to ∆,

f(ℓ) =
5

3

ℓ−8/3

η5/3 −∆
5/3

. (69)

The eddy location randomly selected from a uniform distribution over the LEM do-

main. The most common stirring algorithm is known as triplet mapping in which a
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Figure 4 An initial three species LEM line (upper left) is stirred using block inversion
(upper right), triplet mapping, n = 3 (lower left), and quintuplet mapping, n = 5 (lower
right).

segment is copied, compressed by a factor of three and reinserted three times, with

the middle segment reversed. Triplet mapping is part of a family of n-tuplet maps

which can be stated mathematically as

ĉ (x, t0) =





c (nx+ (1− n)x0, t0) x0 ≤ x ≤ x0 +
1

n
ℓ

c (−nx+ (n+ 1)x0 + jℓ, t0) x0 +
j − 1

n
ℓ ≤ x ≤ x0 +

j

n
ℓ for j = 2, 4, 6, . . .

c (nx+ (1− n)x0 + (1− j) ℓ, t0) x0 +
j − 1

n
ℓ ≤ x ≤ x0 +

j

n
ℓ for j = 3, 5, 7, . . .

c (nx+ (1− n)x0 (1− n) , t0) x0 ≤ n− 1

n
x ≤ x0 + ℓ

.

(70)

It has be argued that the triplet map physically represents a two-dimensional eddy

passing through a scalar gradient. This rationale makes sense as each stirring event

represents the action of a single turbulent eddy, but since the nature of all small eddies

is not known and in most real-life scenarios turbulent eddies are three-dimensional,

n−tuplet mappings should not be overlooked with careful analysis. It should also

be noted that all these maps are measure preserving and all n-tuplet maps maintain

continuity of the scalar field, but not with the scalar gradients. Figure 4 shows an

example of three different stirring algorithms on a three species LEM line.
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The physical processes at the LEM level are each integrated at their own time

scales, the LES time step, ∆tLES, the diffusion time step, ∆tdiff , the chemical time

step, ∆tchem, which for this work is assumed equal to the diffusion time step, ∆tchem =

∆tdiff , and the stirring time step, ∆tstir.

3.5.3 Subgrid scalar transport: splicing

Subgrid structures are advected across LES cells via a Lagrangian transport process

called splicing. Mass fluxes at each LES cell face are computed based on the LES re-

solved scale density and momentum equations. The mass flux determines the number

of LEM cells to be transferred across each LES cell face noting that partial LEM cells

can be spliced. The receiving cells order the fluxes based on their magnitudes, from

largest to smallest, and the LEM subgrid cells to be exchanged are then queued based

on that flux ordering. The flux ordering ensures subgrid splices travel through the

LES cell in a first-in, first-out manner. Once the LEM cells are exchanged across LES

cell faces, the LEM lines are regridded back to to uniform lines. The entire process

is explained in Figure 5.

3.5.4 LEMLES coupling

The LES resolved fields provide information for subgrid stirring and splicing opera-

tions. The subgrid LEM lines provide filtered species mass fractions back to the LES

resolved field via an explicit Favré-averaging

Ỹk =

∑NLEM

i=1 ρiYki∑NLEM

i=1 ρi
. (71)

The filtered temperature field

T̃ ∗ =

∑NLEM

i=1 ρiTi∑NLEM

i=1 ρi
(72)

at the LES level from LEM is tracked but not used at the LES level since the energy

equation is still solved. In practice the LEM and LES temperature fields usually only
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δm

δm

δm

δm

(a) Mass fluxes computed based on the
LES resolved scale density and momentum
equations

(b) LEM cells queued in the receiving LES
cell based on flux magnitude

(c) LEM cells move across LES cells re-
sulting in a non-uniform LEM field

(d) LEM fields regridded back to uniform
lines

Figure 5 LEMLES transport process of subgrid fields called “splicing”
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deviate by a few percent but to ensure zero drift the LEM temperature field is often

rescaled based on the LES resolved temperature, T LEM

i = T LEM

i

(
T̃ /T̃ ∗

)
.

3.5.5 LEMLES summary

The LEMLES simulation timeline is as follows:

1. Solve the filtered equations for density, momentum and energy at the LES level.

Since the species equations are not solved at the LES level the filtered density

equation must be solved there.

2. Solve the subgrid reaction-diffusion equation with stirring on the LEM line in

each LES cell.

3. Compute large scale advection of species based on filtered values (splicing).

4. Filter LEM fields back to the LES level to couple the subgrid and resolved

scales.

For simulations that satisfy the underlying assumptions of LEMLES, this simulation

strategy is attractive for several reasons: subgrid strain effects are captured via the

stirring events, there is no need to solve for filtered reaction rates since the species

equation is solved at the DNS level, premixed, non-premixed and partially premixed

flames can be simulated with the same framework and there is little to no model

tuning. The main disadvantage of LEMLES is the increased computation cost asso-

ciated with solving the reaction-diffusion equation on each of the subgrid lines. In

well-resolved regions of the flow with little turbulence neglecting inter-LES-cell dif-

fusion can also cause errors. The splicing algorithm can cause excessive numerical

diffusion, especially the regridding step if only a few small partial LEM cells are trans-

ferred at each time step. LEMLES is most successful when there is a large disparity

in grid resolution requirements, i.e., a relatively coarse grid can be used to accurately
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model the main features of the underlying fluid dynamics but a fine grid is needed to

capture the flame.

3.6 Lagrangian phase equations

Simulations involving solids or liquids as well as gases at subcritical conditions are

generally split into two main classes depending on how the solid or liquid phase is

handled, using an Eulerian or a Lagrangian approach. Eulerian-Eulerian simulations

treat both the gas and liquid phases as continuums and are solved in an Eulerian ref-

erence frame. In the Eulerian-Lagrangian approach, the liquid is modeled as discrete

droplets solved in a Lagrangian reference frame and thus each droplet or group of

droplets must be tracked independently.

The main advantage of the Eulerian-Eulerian approach is computational efficiency

when a large number of droplets are present in the domain since the droplets do not

need to be explicitly tracked in the simulation. This method also allows for the use

of the same numerical algorithm for both phases although thermodynamic relations

and boundary conditions are often more difficult to apply. Physically it is difficult to

account for droplet size effects and droplet-fluid interactions.

The Eulerian-Lagrangian approach, while computationally expensive, easily in-

cludes droplet size effects, which are especially important for droplet evaporation.

Errors due to numerical diffusion are generally less of a concern for this method com-

pared with the Eulerian-Eulerian approach [48]. Other complex droplet physics are

also more easily modeled including droplet-droplet interactions, droplet-wall collisions

and, most critically for the current study, droplet breakup effects. For these reasons,

all simulations conducted in this work will use the Eulerian-Lagrangian approach.

For the current simulations the dispersed phase is assumed to be dilute [47, 48],

i.e., droplet-to-droplet interactions are neglected, which is generally valid except for
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near injectors. This assumption significantly reduces the computational effort in-

volved since droplet-to-droplet distances do not need to be tracked and simplifies

thermodynamic and transport property calculations [49]. The Lagrangian governing

equations for the dispersed phase [34] are:

ẋi,d = ui,d, (73)

u̇i,d = (3CDµRed) /
(
16ρdr

2
d

)
(ui − ui,d), (74)

ṁd = −2πρmDmrdSh
∗ ln (1 +BM) , (75)

mdCdṪd = hdπd
2
d(T̃ − Td)− ṁdLv. (76)

The subscripts i, d and m correspond to coordinate index, the dispersed phase and

an average gas-fuel mixture, respectively. The drag coefficient, away from injectors,

is obtained from empirical correlations:

CD =





(
1 + 1

6
Re2/3

)
if Re ≤ 1000

0.424Re if Re > 1000
(77)

where the Reynolds number is calculated as

Re =
ρgureldd

µm

(78)

where the density is taken as the gas density but the viscosity is computed as some

kind of average value [243], and urel is the relative velocity between the gas and the

liquid drop.

The droplet heat and mass transfer correlations are based on assumption of spher-

ically symmetric droplets, each at a uniform temperature using the model by Abram-

zon and Sirginano [1]. The non-dimensional parameter Sh∗, is defined as

Sh∗ = 2 +
Sh0 − 2

FM
. (79)

The correction function FM = F (BM ) where the Spalding mass transfer number is

BM =
YF,s − YF,∞

1− YF,s
(80)
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and

F (B) = (1 +B)0.7
ln (1 +B)

B
(81)

which is needed to take into account the film effects around evaporating droplets. If

a droplet is boiling, i.e., YFs
= 1, the heat and mass transfer are computed using the

energy-balance approach,

ṁ = 2πdp
km
Cp,m

Nu∗ ln (1 +BT ) (82)

where the Spalding heat transfer number is

BT =
Cp,m (T∞ − Td)

Lv
(83)

and

Nu∗ = 2 +
Nu0 − 2

FT

(84)

and similarly FT = F (BT ) with F from Eq. 81. The Sherwood and Nusselt numbers

are corrected based on local Reynolds, Schmidt and Prandtl numbers using expres-

sions from Frössling [56] and Clift et al. [25].

Sh0 = 1 + (1 +ReSc)1/3

Nu0 = 1 + (1 +RePr)1/3





Re ≤ 1,

Sh0 = 1 + (1 +ReSc)1/3 Re0.077

Nu0 = 1 + (1 +RePr)1/3 Re0.077





1 < Re ≤ 400,

Sh0 = 2 + 0.552 +Re1/2Sc1/3

Nu0 = 2 + 0.552 +Re1/2Pr1/3





400 < Re

. (85)

The modified Sherwood and Nusslet numbers are related to their actual values by

Sh = Sh∗
ln (1 +BM)

BM
, Nu = Nu∗

ln (1 +BT )

BT
. (86)

The convective heat transfer coefficient used in the droplet temperature equation is

h = Nu
km
2rp

. (87)
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Under unsaturated conditions the Spalding heat transfer coefficient is related to the

mass transfer coefficient via

BT = (1 +Bm)
φ − 1 (88)

where

φ =

(
Cp,F

Cp,g

)(
Sh∗

Nu∗

)
. (89)

These equations assume that the Kolmogorov length scale is larger than the size of

the droplets. The reference mixture properties, denoted with the m subscript, are

computed using the M3 method described by Kolatis and Founti [111]. For any

property, φ, such as viscosity, thermal conductivity or diffusivity,

φm =
χrefφv

χref + (1− χref)
+

(1− χref)φG

χrefΩGv + (1− χref)
(90)

where v and G indicate the fuel vapor and local gas mixture properties, respectively

and

ΩvG =

(
MWG

MWv

)1/2

=
1

ΩGv
. (91)

The surface fuel vapor mole fraction is computed using the temperature-dependent

vapor pressure and local pressure

χref =
pvp
p
. (92)

This method for computing heat and mass transfer has been validated with a test

case involving the evaporation of a single droplet of decane in a quiescent environment

based on the experiments of Wong and Lin [236]. Figure 6 shows the droplet diameter

and temperature profiles compared with the experiments. The numerical experiments

used mixture-averaged transport propertes [233].

The effect of turbulence on the dispersed phase, is included by the Stochastic

Separated Flow (SSF) model [48, 135] in which a velocity fluctuation is added to the

resolved fluid velocities at the droplet locations according to ui = ũi + X
√
2ksgs/3
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Figure 6 Simulations using the Abramzon and Sirignano [1] model of a single decane
droplet evaporating in a quiescent environment compared with experiments [236].

with X , a random number generated from a uniform distribution with zero mean.

It can be shown that this approach provides an important correction to the particle

path due to the subgrid turbulent fluctuations. Finally, the source terms are obtained

by a filtering process using a top hat filter:




˜̇ρs
˜̇Fs,i

˜̇Qs

˜̇Si,k

Fd




=
1

∆̂3




∑
ṁd

∑
[ṁdui,d −mdu̇i,d]

∑[
ṁdhv,s − hdπd

2
d

(
T̃ − T

)]

∑
ṁd

∑[
˜̇Fs,iui − ˜̇F s,iũi

]




. (93)

Here, ui,d, ρd, rd are the velocity, density and radius of the ith particle, respectively.

The summation above is over all parcels within the computational volume defined by

∆̂3.

3.7 Liquid breakup models

The Lagrangian approach for simulating the liquid phase allows for relatively straight-

forward inclusion of models for droplet breakup. The breakup model for this study is

used for simulating liquid jets in crossflow and can broadly be split into two regimes:

the jet regime where the liquid is an intact column prior to fragmentation and the

secondary breakup regime after the column breaks up and droplets deform and finally
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Figure 7 Liquid jet in crossflow as simulated by a Lagrangian breakup model, (1) liquid
jet regime, (2) droplets stripped from the liquid column, (3) column breakup point and
(4) secondary breakup regime.

break apart [128, 129]. Figure 7 diagrams a Lagrangian simulation of a liquid jet in

crossflow.

3.7.1 Jet regime

Liquid spherical droplets are injected into the domain with diameters related to the

size of the injector. The droplet velocity is determined based on the mass flow rate,

density of the liquid and the size of the droplet. The injector discharge coefficient

must be taken into account when setting the actual droplet injection diameter and

velocity. This often overlooked parameter is important to capture the correct jet

penetration, as detailed by Brown, McDonell and Kiel [15]. Discharge coefficients

lower than unity result in droplets that are smaller than the physical dimension of

the injector with higher velocities, in order to maintain the same mass flow rate,

which yields increased liquid jet penetration.

The drag coefficient of the droplets in the liquid columns is set to a constant value,

CD = 1.48, until the time when the liquid column fragments and breaks apart [128].
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The column breakup time occurs at:

tcb = 3.44
D0

ug

√
ρl
ρg

(94)

where D0 is the original droplet diameter and ug is the gas phase cross flow velocity.

Small droplets are stripped from the surface of the liquid column and carried down-

stream. In the original Madabhushi model [128] the size of these stripped droplets was

determined by the wave model of Reitz [167]. In the updated Madabhushi model [129],

stripped droplet diameters were computed from on correlations based on experimental

data.

In the wave model, the stripped droplets have the radius,

rs = B0Λ (95)

where B0 is a tunable constant which for these simulation is set to the recommended

value of B0 = 0.61 [167] and Λ is the most unstable wavelength:

Λ

a
= 9.02

(1 + 0.45Z0.5) (1 + 0.4T 0.7)
(
1 + 0.87We1.67g

)0.6 . (96)

Z = (Wel)
0.5 /Rel is the Ohnesorge number and T = Z

√
Weg is the Taylor number.

The liquid and gas Weber numbers are Wel = ρlu
2
rela/σl and Weg = ρgu

2
rela/σ, the

liquid Reynolds number is Rel = ρlurela/µl and a is the jet radius. The rate of change

of the parent droplet is:

da

dt
= −(a− rs)

τ
(97)

with the breakup time constant,

τ = 3.726
B1a

ΛΩ
. (98)

The growth rate of the most unstable wave is:

Ω

(
ρla

3

σ

)0.5

=

(
0.34 + 0.68We1.5g

)

(1 + Z) (1 + 1.4T 0.6)
. (99)
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The constant B1 is dependent on the initial disturbance level on the liquid jet and is a

tunable parameters. Reitz [167] used B1 = 10 and values ranging from 1.73 to 10 were

suggested by Liu, Mather and Reitz [114]. Liu et al note that decreasing B1 leads to

an increased rate drop breakup which decreases the overall fuel jet penetration. Most

simulations in this work use B1 = 7 which is tuned for the specific injectors used in

this study and lies in the recommended range.

In this work, the two methods for assigning stripped droplet sizes, the method

based on the wave model and the method based on correlations, are blended linearly,

rstripped = (RND) rwave + (1− RND) rcorr, (100)

where RND is a random number selected from a uniform distribution between 0 and

1, rwave is stripped droplet size based on the wave model, Eq. 95, and rcorr is the

stripped droplet size based on the correlations of Madabhushi [129]. The stripped

droplet size in that work is calculated as

rcorr = 1.68D0

√
νl
Vj

y

D2
0

. (101)

where D0 is the injector diameter, ν is the kinematic viscosity of the liquid, Vj is

the injection velocity and y is the vertical distance from the injection location and is

based on the work of Sallam et al [179]. This is done to match limited experimental

droplet data from the current configuration. The experimental data and results from

using each of the methods and the combined method are presented in Sec. 6.3.1.1.

The particles stripped from the liquid column are assigned velocities using a

method that combines the stripped velocity magnitude specified by Madabhushi[129],

which were based on experimental curve fits of Chou [24], and random number feature

of Khosla[99]. The random number adds some unsteadiness since the Madabhushi[129]

model was originally used in Reynolds-averaged Navier-Stokes (RANS) calculations.
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ushed = uparent + 7
√

ρg/ρl RND (ug − uparent) , (102a)

vshed = vparent + 0.6 (RND) (vg − vparent) , (102b)

wshed = wparent + 0.175 (RND − 0.5) (urel − wparent) . (102c)

The stripped droplet radius modifications were guided by experimental data from

the specific injector configuration used in this work. It should be reemphasized that

since all Lagrangian injection models cannot model the injection process from first

principles, some amount of experimental data driven tuning is required.

Droplet are shed when the accumulated mass reaches a user defined percentage of

the original mass of the droplet which for these simulations that was 0.5%.

3.7.2 Secondary breakup

Following column breakup the droplets deform into disks and finally breakup [128].

The characteristic breakup time scale is:

t∗ =
D0

urel

√
ρl
ρg

. (103)

The deformation time is tdef = 1.6t∗. The total breakup time, including deformation

is:

tb
t∗

=





6 (We− 12)−0.25 12 < We < 18

2.45 (We− 12)0.25 18 < We < 45

14.1 (We− 12)−0.25 45 < We < 351

0.766 (We− 12)0.25 351 < We < 2670

5.5 2670 < We

(104)

where the Weber number is We = ρgu
2
relD0/σl. Droplet frontal diameter increases

as:

D

D0
= 1 + 0.19

√
We

t

tdef
t < tdef (105)
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and the drag coefficient is changed:

CD = (CD)sphere

(
1− t

tdef

)
+ (CD)disk

t

tdef
t < tdef (106)

where (CD)disk = 1.2. The CD is kept at a constant value at the end of the de-

formation period. After breakup the Sauter Mean Diameter (SMD), D32, is given

by:

SMD

D0
= 1.5

Oh0.2

We0.25corr

. (107)

The Ohnesorge number is Oh = µl/
√
ρlDσl and Wecorr is the corrected Weber num-

ber:

Wecorr =
We

1 + 1.077Oh1.6
Oh > 0.1 (108)

Volumetric distribution of droplets after breakup follows a root-normal distribution:

f (D) =
x

2
√
2πσD

exp

[
−1

2

(
x− µ

σ

)2
]

(109)

with x =
√
D/D0.5, µ = 1, σ = 0.238 and D0.5/SMD = 1.2. Droplets are assigned

the same velocity as their parent with an additional component in the normal plane

at a random direction with

vt =
5D0

tb − tdef
(110)

to take into account rim expansion effects.

Following secondary breakup, the droplets smaller than a user-specified size are no

longer allowed to breakup and are tracked as spherical droplets until they evaporate

enough to reach a minimum size criteria or leave the domain. The wave model

stripping breakup [167] is applied to large droplets until they reach the minimum

breakup size criteria.

3.8 Boundary conditions

Numerical simulations must be performed on a finite domain so the accurate speci-

fication and treatment of the boundary conditions is essential. Unsteady, turbulent
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simulations such as direct numerical simulations and large eddy simulations require

schemes with low levels of numerical dissipation making them vulnerable to problems

arising with non-physical initial conditions and artificial boundary conditions. This is

especially true for turbulent reacting flows where the vorticity, entropy and acoustics

are all closely coupled which includes many practical combustion devices such as gas

turbines and rocket engines. The coupling between heat release and pressure oscilla-

tions in these enclosed chambers has the potential to severely affect performance or

cause system failure. In addition, the geometry of many of these systems dictates that

the inflow and outflow boundaries must be in close proximity to the heat release zone

again emphasizing the need for the proper representation of the boundary conditions.

The accurate description of and control over waves entering and leaving the domain

is achieved with non-reflective or partially non-reflective boundary conditions. The

seminal work by Thompson [211] used a method that converts a system of hyperbolic

conservation laws into a system of nonlinear wave equations each with a characteristic

propagation velocity. Based on the propagation velocity of each wave at the boundary,

it can be determined if a boundary condition for that wave needs to be supplied, i.e.,

if a wave is exiting the domain all the information necessary for that wave is known

whereas if the wave is entering the domain boundary condition information is needed.

3.8.1 Formulation

The Navier-Stokes equations, Eqs. (3)–(6), can be written in a non-conservative form

∂U

∂t
+A1

∂U

∂x1
+A2

∂U

∂x2
+A3

∂U

∂x3
−D (111)

where U is the vector of primitive variables,

U = (u1, u2, u3, ρ, p, Yi)
T (112)

noting that there are several different choices for the primitive variable set with pres-

sure used here [211, 8] instead of temperature [154], D is a vector containing viscous
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and source terms, and A1, A1, and A1 are coefficient matrices. The coefficient matrix

A1 is defined as

A1 =




u1 0 0 0 1/ρ 0

0 u1 0 0 0 0

0 0 u1 0 0 0

ρ 0 0 u1 0 0

ρc2 0 0 0 u1 0

0 0 0 0 0 u1




(113)

with the other directions computed similarly. The conservative state variables, Q =

(ρ, ρu1, ρu2, ρu3, ρET , ρi)
T are computed using the Jacobian

P =
∂Q

∂U
=




0 0 0 1 1/ρ 0

ρ 0 0 u1 0 0

0 ρ 0 u2 0 0

0 0 ρ u3 0 0

ρu1 ρu2 ρu3
∂ρET

∂ρ
∂ρE
∂p

∂ρE
∂Yi

0 0 0 Yi 0 ρ




(114)

for ideal gases the necessary thermodynamic derivatives are

∂ρET

∂ρ
=

1

2

(
u2
1 + u2

2 + u2
3

)
, (115)

∂ρE

∂p
=

1

γ − 1
, (116)

∂ρE

∂Yi
= ρ

(
hi −

CpT

Wi

)
. (117)

The coefficient matrices Ai are not simultaneously diagonalizable so the boundary

condition analysis is performed one direction at a time, in the direction normal to the

boundary. The matrix A1 is diagonalized

S−1A1S = Λ (118)
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where Λ is the diagonal matrix of eigenvalues, λi, the columns of S are the right

eigenvectors, ri of A1 and S−1 are the left eigenvectors, li. The eigenvalues are

λ1 = u1 − c, λ2 = λ3 = λ4 = λ5+i = u1, λ5 = u1 + c (119)

Using Eq. (118) and Eq. (111),

S−1∂U

∂t
+ L + S−1C = 0 (120)

where L is the wave amplitude vector

L =




L1

L2

L3

L4

L5

L5+i




=




λ1

2

(
∂p

∂x1

− ρc
∂u1

∂x1

)

λ2

(
∂ρ

∂x1
− 1

c2
∂p

∂x1

)

λ3
∂u2

∂x1

λ4
∂u3

∂x1

λ5

2

(
∂p

∂x1
+ ρc

∂u1

∂x1

)

λ5+i
∂Yi

∂x1




(121)

and

C = A2
∂U

∂x2

+A3
∂U

∂x3

−D (122)

Multiplying by S gives

d = SL =




d1

d2

d3

d4

d5

d5+i




=




(L5 − L1) /ρc

L3

L4

L2 + (L5 + L1) /c
2

L5 + L1

L5+i




(123)
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Neglecting the viscous and source terms, D, the conservative variables are updated

using,

∂

∂t




ρ

ρu1

ρu2

ρu3

ρET

ρi




+




d4

u1d4 + ρd4

u2d4 + ρd2

u3d4 + ρd3

∂ρET

∂ρ
d4 + ρ (u1d1 + u2d2 + u3d3) +

Ns∑

k

ρd5+k

(
∂E

∂Yk

)

ρ,p,Yl

+
∂ρE

∂p
d5

Yid4 + ρd5+i




= 0

(124)

in what are known as the Local One-Dimensional Inviscid relations [154].

3.8.2 Subsonic reflecting inflow

If the velocity, temperature and species mass fractions are all specified, the inflow

boundary is reflecting or “hard”. The wave amplitude changes cane be computed

with

L3 = L4 = L5+i = 0, (125)

L2 =
γ − 1

c2
(L1 + L5) , (126)

L1 = L5. (127)

In other situations the mass flow rate is fixed rather than the

L1 = L5
1 + γM

1− γM
= (u1 + c)

1 + γM

2

∂p

∂x
, (128)

L3 = −u2

ρ

(
L2 +

L5 + L1

c2

)
, (129)

L4 = −u3

ρ

(
L2 +

L5 + L1

c2

)
. (130)

3.8.3 Subsonic non-reflecting inflow

For many problems it is desirable to reduce spurious wave reflections at inflow bound-

aries while simultaneously maintaining control over the inlet variables. Yoo et al. [241,
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242] suggest modified LODI relations

L1 = β1 (u1 − u1,0) ,

L2 = β2 (T − T0) ,

L3 = β3 (u2 − u2,0) ,

L4 = β4 (u3 − u3,0) ,

L5+i = β5+i (Yi − Y1,0) ,

(131)

where the subscript 0 indicates target values and the β values are relaxation coef-

ficients. Large β values, near 1/∆t, give more control over the inlet variables but

oscillations are more likely to occur. Near zero values for β reduce wave reflections

but result in poor control over the inlet. For some simplified conditions optimal values

for the relaxation coefficients can be estimated [174, 175] as

β1 = η1ρc
2 1−M2

2lx
,

β2 = η2
ρR

clx
,

β3 = η3
c

lx
,

β4 = η4
c

lx
,

β5 = η5+i
c

lx
,

(132)

where M is the Mach number, lx with η1 = η2 = η3 = η4 = −η5 = −0.278. The

species relaxation factors are usually set to zero, η5+i = 0 [209]. These values are

used as guides for any pratical problem and in practice must be adjusted for each

simulation.

3.8.4 Supersonic inflow

At supersonic inflows no waves leave the domain. All variables, velocity, temperature

and species mass fractions are explicitly set.
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3.8.5 Subsonic non-reflecting outflow

For this boundary condition, all waves are leaving the domain excluding one acoustic

wave that travels upstream. All the wave amplitudes except L1 are computed using

one-sided derivatives. To ensure well-posedness, Poinsot and Lele [154] suggest,

L1 = α (p− p∞) + L1,exact (133)

where p∞ is the target or ambient pressure, and α is a relaxation coefficient, and

L1,exact is the desired steady-state value of L1 which is usually L1,exact = 0. The

relaxation coefficient is defined as [154]

α = σ
(1−M2) c

lx
(134)

where σ is a constant, c is the local speed of sound and M is the maximum Mach

number in the flow. Recent test have shown that defining this Mach number locally or

with an averaged value on the boundary can reduce pressure oscillations [73]. Higher

values of α give greater control over the outlet pressure but cause more pressure

reflections. Poinsot and Lele suggest a value of σ = 0.25 when used in combination

with a low dissipation numerical method whereas Rudy and Strikwerda used σ = 0.58

with the MacCormack scheme which contains inherent numerical dissipation. For

viscous flows additional conditions must also be satisfied,

qx = τx1x2
= τx1x3

= 0 (135)

3.8.6 Supersonic outflow

At supersonic outflow boundaries all the waves propagate from the interior of the

domain outward. The waves can be directly computed with Eq. ( 124) so no modeling

is required.

3.8.7 Edges and corners

Several methods for applying characteristic boundary conditions at edges and cor-

ners of multidimensional boundaries have been proposed. Lodato, Domingo and
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Vervisch [117] recommend solving coupled equations at edges and corners to properly

account for the multidimensional effects. Coussement and coworkers [31] propose a

simpler approach where if the mean tangential velocities are accounted for, it is un-

necessary to solve a coupled system and the boundary conditions can be repeatably

applied in all directions independent of one another. This later approach is used in

this work.
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CHAPTER IV

NUMERICAL METHOD AND IMPLEMENTATION

This chapter presents the numerical methods used to simulate the governing equations

of motion. All of the numerical methods presented here and used in this study were

implented in the main CFD code in the Computational Combustion Lab at Georgia

Tech known as LESLIE (Large Eddy Simulation with the LInear Eddy model). The

code uses spatial domain decomposition in combination with the Message Passing

Interface (MPI) to run in parallel on distributed memory systems and has been suc-

cessfully utilzed on a variety of machines ranging from workstations to large scale

Department of Defense and NASA supercomputers. During the course of this the-

sis work the code went through substantial updates and modernization; where it is

appropriate, details about these improvements will be given. One example is the

conversion of most of the code base from Fortran 77/90 to Fortran 95/2003/2008.

Additionally, many pre- and post- processing tasks were shifted to Python which

allowed for quicker development and took advantage of tools such as Numpy[220],

Scipy [88] and Matplotlib [83] for data analysis and plotting. The configuration and

compilation of the code on many different systems is facilitated by the use of the

CMake [107] build system. Arguably the most important tool currently in use is the

git [215] distributed version control system, which allows for easy tracking of code

changes and collaboration amongst lab members.
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4.1 Finite volume method

The Navier-Stokes equations, either in their original or filtered form, can be written

as,

∂Q

∂t
+

∂F

∂x
+

∂G

∂y
+

∂H

∂z
= S (136)

where Q is the vector of conserved state variables, F, G, and H are the fluxes in each

of the coordinate directions, including viscous terms, and S are the source terms. The

equations are integrated over a control volume, V ,

y

V

∂Q

∂t
dV +

y

V

(
∂F

∂x
+

∂G

∂y
+

∂H

∂z

)
dV =

y

V

S dV. (137)

Using the divergence theorem this set of equations can be rewritten as

y

V

∂Q

∂t
dV +

∮

A

(F · dAx +G · dAy +H · dAz) =
y

V

S dV (138)

where Ax, Ay, Az are the normal components in each coordinate direction for the

faces of the control volume. The first and third terms can be defined in terms of

the volume-averaged state variables and volume-averaged source terms, respectively,

denoted with an ·,

∂Q

∂t
+

1

V

∮

A

(F · dAx +G · dAy +H · dAz) = S. (139)

In the finite volume method the physical domain of interest is discretized into

small control volumes known as computational cells and Eq. (139) is solved in each

one. The values of the volume-averaged state variables can be stored at the nodal

grid points, which is called a node-centered finite volume method, or at the centroid

of the cell leading to a cell-centered method. In general, there is no restriction on

the shape of the computational cell though in practice cells, in three dimensions,

are often shaped in hexahedrons, tetrahedrons or prisms. If we limit all the cells

to hexahedrons arranged in regular, rectangular shapes in computational space, we

arrive at a structured finite volume method.
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All finite volume methods in this work fall into the cell-centered structured finite

volume category. Cell-averaged values are stored at the cell centers which are labeled

with their computational coordinates (i, j, k) and fluxes are computed at the six cell

faces,
(
i± 1

2
, j, k

)
,
(
i, j ± 1

2
, k
)
and

(
i, j, k ± 1

2

)
. At each time sub-iteration the state

vector is updated with the delta value computed as

∆Q = −∆t

V

∑

l=1,6

FlAl + S∆t (140)

where the fluxes computed normal to the six faces are

Fl = Fnx +Gny +Hnz. (141)

Complex geometry is handled by a multiblock approach where a number of non-

overlapping structured blocks are used to fill the simulation domain of interest. In

most instances each cell at a block interface has a one-to-one correspondence with a

neighboring block. To solve the equations of interest on the interior of the block, cell

extensions are added in all directions and neighboring cell information is copied into

these local “ghost” cells. The ghost cell also allows for parallelization on distributed

memory systems and is used in the application of boundary conditions. It should

also be noted that the one-to-one cell correspondence criteria can be relaxed using a

static mesh refinement method described in Section 4.10.

4.2 MacCormack’s predictor-corrector method

This method is a finite volume version of the MacCormack’s method [127] that couples

the time and spatial integration schemes. Fluxes are computed on the cell faces

by a simple first order extrapolation of cell-averaged values that alternates between

the upwind and downwind direction at each predictor/corrector step, resulting in a

second-order accurate scheme in both time and space. The fluxes at the i + 1/2
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Table 1 Flux differencing sequence for MacCormack’s method to avoid bias.

i-direction j-direction k-direction
Time step Predictor Corrector Predictor Corrector Predictor Corrector

n + − + − + −
n+ 1 − + + − − +
n+ 2 + − − + + −
n+ 3 − + − + + −
n+ 4 + − + − − +
n+ 5 − + + − + −
n+ 6 + − − + − +
n+ 7 − + − + − +

...

interface are computed at the predictor and corrector steps as,

F s,n

i+ 1
2

= F (Un
i ) (142a)

F s,∗

i+ 1
2

= F
(
U∗

i+1

)
(142b)

The forward and backward differencing directions are alternated for successive time

steps and spatial directions as shown in Table 1. This is done to avoid any solution

bias due to the one-sided differencing [210, 131].

4.2.1 Predictor-corrector viscous fluxes

Face-averaged derivatives needed for the viscous fluxes are computed using a “finite

difference-like” approach where the metrics, ∂ξ/∂x, ∂η/∂x, ∂ζ/∂x, etc, are determined

from the grid and calculated and stored during simulation start-up. The derivative

for any cell-averaged variable, u, is computed using the chain rule

∂u

∂x
=

∂u

∂ξ

∂ξ

∂x
+

∂u

∂η

∂η

∂x
+

∂u

∂ζ

∂ζ

∂x
(143)
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and a central explicit method,

∂u

∂ξ

∣∣∣∣
i+ 1

2
,j,k

= ui+1,j,k − ui,j,k, (144a)

∂u

∂η

∣∣∣∣
i+ 1

2
,j,k

=
1

2

(
ui+ 1

2
,j+1,k − ui+ 1

2
,j−1,k

)
, (144b)

∂u

∂ζ

∣∣∣∣
i+ 1

2
,j,k

=
1

2

(
ui+ 1

2
,j,k+1 − ui+ 1

2
,j,k−1

)
. (144c)

The variables at the faces, ui+ 1

2
,j±1,k±1 are estimated using the same upwinding /

downwinding method of the inviscid flux, Eq. (142). Estimating the cell- or face-

centered variables from the cell- or face-averaged values is second order accurate

which is consistent with the rest of the scheme. Computing the derivatives in this

way allows inviscid and viscous fluxes to be computed one computational direction

at a time. This scheme has been successfully applied to a variety of reacting flow

LES [148, 199].

4.2.2 Advantages and limitations

The main advantages of the predictor-corrector method over other second-order ac-

curate methods are computational efficiency and simplicity. All quantities needed

to compute the fluxes, pressure, velocities, etc, are also needed at the cell centers

regardless of flux scheme, so the face flux values are calculated very efficiently.

The combination of upwinding and downwinding provides inherent dissipation

that stabilizes numerical oscillations without artificial dissipation or explicit filtering

operations. This not only simplifies the code, it reduces the amount of parameters

that need to be tuned by the user on a case-by-case basis.

One of the main limitations of the MacCormack method occurs when using this

scheme in combination with multiblock grids. Multiblock grids are required when

applying a structured finite volume or finite difference method to complex geome-

try without using embedded boundaries. When the computational coordinates of

neighboring grid blocks are not aligned, the flux computed across block faces is not
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j

i

i

j

i, j i+ 1, j i, ji, j + 1

Block 1 Block 2

Figure 8 Computationally mis-aligned structured blocks

consistent. These types of grids are common in industrial applications and include

any simulation with O-grids.

Figure 8 shows a simple example a simple two-dimensional simulation where the

blocks are not aligned; the i-coordinate direction of Block 1 lines up with the j-

coordinate direction of Block 2. The block interface is an i+3/2 face for Block 1 and

a j+3/2 for Block 2. At the n time step, as per Table 1, Block 1 computes the fluxes

for its local (i + 3/2, j) cell face at the predictor step using the values from the (+)

cell, (i+2, j). The Block 1 (i+2, j) cell is a ghost cell whose value is taken from the

Block 2 (i, j + 1) cell. Block 2 computes the fluxes for its local (i, j + 3/2) cell face

using the (+) cell, (i, j+2), which is a ghost cell whose value is equal to that of Block

1 (i, j+1). This means that Block 1 and Block 2 will compute different values for the

flux at the same cell face resulting in a scheme that is no longer strictly conservative

this cell face.

The main symptom of the non-conservative cell fluxes is excess numerical dissipa-

tion. This can be demonstrated by simulating a simple vortex with periodic boundary

conditions similar to the setup used in Section 5.1.3. Figure 9 shows the axial ve-

locity after one, five and ten flow-through periods using MacCormack’s method on
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a two-dimensional domain split into four different blocks. The left images show the

simulation where the blocks are all computationally aligned whereas the right images

show the simulation where all four blocks are misaligned.

Figure 9 Axial velocity contours of an inviscid convecting vortex with periodic bound-
ary conditions using the MacCormack predictor-corrector method after one (top), five
(middle) and ten (bottom) flow-through periods for computationally aligned blocks
(left) and misaligned blocks (right).

To solve this problem, mis-aligned blocks could be identified in a preprocessing
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step and the fluxes across any such interfaces could be computed using a pure cen-

tral scheme (with artificial dissipation or numerical filtering if necessary) or with an

upwind scheme that does not rely solely on the computational coordinates but takes

the physical direction of wave propagation into account. For the simulations in this

thesis no explicit steps are taken to avoid this problem noting that the geometries

involved in the simulations of this study are relatively simple so this issue is avoided

except in a few areas away from the regions of interest.

Higher-order interpolation versions of MacCormack’s predictor-corrector method

have been used in the context of both finite differences [70, 91] and finite volumes [64]

which are implemented into the LESLIE code. They are found to be superior to the

second-order method on uniform grids but are quite sensitive to grid stretching and

have lower CFL limits for stability. Due to their predictor-corrector nature, they also

suffer from the non-aligned multiblock issue addressed above. Further analysis of

these schemes will not be performed noting that in general, for uniform grids, their

accuracy and efficient lie somewhere between the second-order predictor-corrector

method and the finite volume scheme with higher order interpolation that is presented

next.

4.3 Finite volume scheme with higher order compact inter-
polation

A finite volume scheme recently introduced by Fosso P., Deniau, Sicot and Sagaut [146]

uses a compact interpolation scheme to estimate face-averaged values from cell-

averaged values. Fluxes are then computed based on these interpolated face-averaged

values. For linear equations the order of accuracy is the same as that of the interpo-

lation but for non-linear problems the scheme, and others like it, are formally second

order accurate since only a single integration point on the cell faces are used[244]. Two

versions of the scheme were presented [146], one for ”Cartesian-like” grids and the

other for general curvilinear grids, both take into account the physical grid coordinates
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when determining the coefficients for interpolation. Currently only the ”Cartesian-

like” version has been implemented which works well for smoothly-varying grids. This

scheme is denoted as CompactCART.

The original scheme, which was designed for and applied to computational aeroa-

coustics [158], used only two ghost layers and an explicit scheme at block boundaries

is extended here to use three ghost layers allowing the block boundary cell face-values

to be computed with a sixth-order explicit central scheme. At internal faces for any

generic variable, u, the interpolation scheme is identical to the original,

αũi− 1
2
,j,k + ũi+ 1

2
,j,k + βũi+ 3

2
,j,k =

aui−1,j,k + bui,j,k + cui+1,j,k + dui+2,j,k. (145)

Here the tilde indicates variables at the cell faces and the bar denotes cell-averaged

values. At block boundaries the sixth-order explicit central scheme is shown below.

A centered scheme is used to maintain the conservative property of the finite volume

method across block boundaries regardless of the computational block alignment,

ũi+ 1
2
,j,k =eui−2,j,k + aui−1,j,k + bui,j,k+

cui+1,j,k + dui+2,j,k + fui+3,j,k. (146)

At inflow and outflow boundaries a one-sided fourth-order compact scheme utilizing

a single boundary ghost layer is used to estimate the face-averaged values at the

incoming or outgoing cell face,

ũ 1
2
,j,k + βũ 3

2
,j,k =

bu0,j,k + cu1,j,k + du2,j,k. (147)

The coefficients for the interpolation are based on the physical spacing of the grid

cells. The complete details of the procedure are given in the appendix of [146].

Table 2 shows the coefficients for grids with uniform spacing.
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Table 2 Interpolation coefficients for uniform grids

Internal Block Boundaries Inflow/Outflow Boundaries

α 1/3 – –
β 1/3 – 1
a 1/36 2/15 –
b 29/36 37/60 1/6
c 29/36 37/60 10/6
d 1/36 2/15 1/6
e – 1/60 –
f – 1/60 –

The interpolation is applied to the cell-averaged conservative variables to compute

cell face values. Primitive variables at the cell faces necessary for the flux calculations

are computed based on these interpolated conservative variables. Since this is a purely

central scheme additional numerical stabilization is required. This is achieved using

a filtering process detailed in Section 4.8.

4.3.1 Notes on the implementation of the high-order interpolation finite
volume scheme

The MacCormack predictor-corrector method was the original scheme implemented in

LESLIE and is the default solver. In the original form, the spatial and time integration

were closely coupled throughout the code. The addition of this numerical method

to the LESLIE code required revision to break this coupling and split the spatial

and time integration into discrete program modules. While this took substantial

programming effort, it allows for relatively straightforward code modifications to add

new spatial or temporal integration schemes. The motivation for the implementation

of this scheme was the discovery of the issue of non-conservative fluxes across non-

computationally-aligned blocks with the MacCormack method. In addition to the

compact interpolation, schemes using explicit interpolation for all faces, interior and

at block boundaries, were also implemented for second- through sixth-order.
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4.3.2 Viscous fluxes

Derivatives for the viscous fluxes are again computed using a “finite difference-like”

approach as with the previous scheme, however, the order of accuracy of the approxi-

mation is increased to fourth-order. This is also slightly different than the traditional

second-order method employed by the original authors [145]. The higher-order ap-

proximation of the derivatives may decrease errors but it should be again emphasized

that the formal order of accuracy is still second-order. The grid metrics are also com-

puted to second-order accuracy for this and all finite volume methods implemented

in this study [223].

∂u

∂ξ

∣∣∣∣
i+ 1

2
,j,k

=
1

24
(ui−1,j,k − 27ui,j,k+

27ui+1,j,k − ui+2,j,k) , (148a)

∂u

∂η

∣∣∣∣
i+ 1

2
,j,k

=
1

12

(
ui+ 1

2
,j−2,k − 8ui+ 1

2
,j−1,k+

8ui+ 1

2
,j+1,k − ui+ 1

2
,j+2,k

)
, (148b)

∂u

∂ζ

∣∣∣∣
i+ 1

2
,j,k

=
1

12

(
ui+ 1

2
,j,k−2 − 8ui+ 1

2
,j,k−1+

8ui+ 1
2
,j,k+1 − ui+ 1

2
,j,k+2

)
. (148c)

4.4 Upwind flux-difference splitting scheme

When simulating flows with discontinuous features the predictor-corrector and com-

pact interpolation finite volume schemes previously presented fail, like all central

schemes, near large gradients due to their dispersive nature. Either additional artifi-

cial dissipation needs to be added or an alternative numerical method that takes the

local flow physics into account is needed. In this study the later method is used; fluxes

near discontinuities are computed using an upwind flux-difference splitting scheme.

This method reconstructs left and right side interface values at each finite volume cell

face and then solves the Riemann problem to compute the flux.
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4.4.1 Interface reconstruction

The left and right cell face states are determined using the Monotonic Upstream

Centered Schemes for Conservation (MUSCL) method of van Leer [221] noting that

the reconstruction is done independently in each computational direction thus the j

and k subscripts have been dropped for clarity,

UL
i+1/2 = Ui +

ǫ (1− ξi)

4

[
(1− κ)∆+

i−1/2 (U) + (1 + κ)∆−

i+1/2 (U)
]
,

UR
i+1/2 = Ui+1 +

ǫ (1− ξi+1)

4

[
(1− κ)∆+

i+1/2 (U) + (1 + κ)∆−

i+3/2 (U)
]
.

(149)

Setting ǫ = 0 limits the overall extrapolation to first order whereas ǫ = 1 allows for

higher order approximations. The parameter κ also plays a role in the order of the

extrapolation with κ = −1 corresponding to a second-order upwind method, κ = 1

giving a second-order central method and κ = 1/3 yielding a third-order upwind

biased scheme. The variable ξi is used for a flattening procedure needed in some

situations near strong shocks. Limiting functions are used to enforce monotonicity

since the extrapolated face values should not create local extrema. The ∆±

i+1/2 (U)

are defined using

∆i+1/2 (U) = Ui+1 − Ui (150)

r+i+1/2 =
∆i+3/2 (U)

∆i+1/2 (U)
=

Ui+2 − Ui+1

Ui+1 − Ui

,

r−i+1/2 =
∆i−1/2 (U)

∆i+1/2 (U)
=

Ui − Ui−1

Ui+1 − Ui
=

1

r+i−1/2

,

(151)

∆+
i+1/2 (U) = ∆i+1/2 (U)φ

(
r+i+1/2

)
,

∆−

i+1/2 (U) = ∆i+1/2 (U)φ
(
r−i+1/2

)
,

(152)

where the φ are the limiter functions. Eq. (149) can be rewritten as

UL
i+1/2 = Ui +

ǫ (1− ξi)

4

[
(1− κ)φ

(
r+i−1/2

)
(Ui − Ui−1)+

(1 + κ)φ
(
r−i+1/2

)
(Ui+1 − Ui)

]
,

UR
i+1/2 = Ui+1 +

ǫ (1− ξi+1)

4

[
(1− κ)φ

(
r−i+3/2

)
(Ui+2 − Ui+1) +

(1 + κ)φ
(
r+i+1/2

)
(Ui+1 − Ui)

]

(153)
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and simplified further

UL
i+1/2 = Ui +

ǫ (1− ξi)

4

[
(1− κ)φ

(
r+i−1/2

)
+

(1 + κ)φ

(
1

r+i−1/2

)
r+i−1/2

]
(Ui − Ui−1) ,

UR
i+1/2 = Ui+1 +

ǫ (1− ξi+1)

4

[
(1− κ)φ

(
r−i+3/2

)
+

(1 + κ)φ

(
1

r−i+3/2

)
r−i+3/2

]
(Ui+2 − Ui+1) .

(154)

Many different limiters have been developed but in this work the only limiter used is

the monotonized central limiter [221]

φ (r) = max

[
0,min

(
2r, 2,

1 + r

2

)]
. (155)

This limiter is symmetric, i.e., φ (r) /r = φ (1/r), and total variation diminishing

(TVD) thus making the scheme monotonic [78]. The symmetry property also elim-

inates the influence of κ on the extrapolation and thus limits the order to second

resulting in

UL
i+1/2 = Ui +

ǫ (1− ξi)

4
φ
(
r+i−1/2

)
(Ui − Ui−1) ,

UR
i+1/2 = Ui+1 +

ǫ (1− ξi+1)

4
φ
(
r−i+3/2

)
(Ui+2 − Ui+1) .

(156)

The primitive variables ui, p and ρ or ρk, or their filtered/Favré-averaged variants

in LES, are reconstructed at the cell interfaces and used to compute temperature

and other thermodynamic properties needed for the Riemann solver. The limiting

procedure described up to this point ensures that the primitive reconstructed variables

are TVD but further limiting operations are required to make sure that all other

variables needed for the Riemann solver are TVD and that the gradients of each

variables do not change sign at the interface. This monotonicity of the gradients

is enforced by checking the sign of (Ui+1 − Ui)
(
UR
i+1/2 − UL

i+1/2

)
. If this product

becomes negative, the interface variables are recomputed as [64]

UL,new
i+1/2 =

1

2

(
UL,old
i+1/2 + UL,odl

i+1/2

)
, UR,new

i+1/2 = UL,new
i+1/2 . (157)
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The monotonicity of other variables like temperature are also checked to ensure

max (Ti, Ti+1) ≥ TL,R
i+1/2 ≥ min (Ti, Ti+1) . (158)

If the temperature does not satisfy this condition a first-order approximation is used

for both the left and right side approximations. If the temperature is increasing Ti

is used whereas if the temperature is decreasing, the interface value is set to Ti+1. If

the temperature is modified either the pressure or density needs to be recomputed for

thermodynamic consistency [64, 131]; in this work the pressure is recomputed [64].

4.4.2 Riemann Solver

The Riemann problem consists of an initial value problem of a conservation equation

with piecewise constant data separated by a central discontinuity,

u (x, t = 0) =





uL x ≤ 0

uR x > 0
. (159)

The classic physical example of such a system is a shock tube where gases with

different thermodynamic states are separated by a very thin wall. Numerical methods

used to compute such problems are called Riemann solvers which fall into two general

classes: exact or approximate. Exact Riemann solvers are generally only used in

combination with simple thermodynamics due their computational expense. A family

of approximate Riemann solvers based on the work of Harten, Lax and van Leer [78]

(HLL) have been implemented into LESLIE. In this work, most simulations use a

version modifed by Toro [214] that takes the contact wave speed into account known

as HLLC. Complete details about the Riemann solvers and their implementation can

be found elsewhere [64, 189].

4.4.3 Boundary condition implementation

The characteristic boundary conditions for inflow and outflow described in Section 3.8.1

are implemented using a separate library from the main LESLIE code appropriately
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referred to as BCLib. The boundary conditions were split from the main code to

facilitate unit testing and improved documentation. The BCLib code was written

using advanced Fortran 2003 features. Using such features actually caused problems

early in the development in 2011 because both the Intel and GNU Fortran compilers

at the time did not fully support the Fortran 2003 standard.

The boundary conditions equations themselves are applied in the first ghost layer

at inflows and outflows. The equations are actually only coded in a single direction

which requires all derivatives to be transformed inside LESLIE before being passed to

BCLib for calculation. This method has since been utilized by other researchers [31].

Spatially constant boundary conditions values and relaxation coefficients are set in an

XML file; spatially-varying inflow conditions can be prescribed using HDF5 files.

4.5 Central/upwind hybrid flux scheme

As noted in Section 4.4, an upwind numerical method or artificial dissipation is needed

near flow discontinuities. Unfortunately these methods are generally much more

dissipative and/or computationally expensive in smooth regions of the flow. Hybrid

methods seek to combine the low dissipation and lower cost of central methods with

the capabilities of upwind schemes to handle flow discontinuities. For a hybrid method

the flux at cell face is computed using

Fi+1/2 = Λi+1/2F
c
i+1/2 +

(
1− Λi+1/2

)
Fu

i+1/2 (160)

where Fc
i+1/2 is the flux obtained using the low-dissipation central scheme, Fu

i+1/2

is the flux computed with the upwind scheme, and Λi+1/2 is a switching parameter

computed based on the local flow field. In theory the switching parameter could be

a continuous function between zero and one but often times, this work included, is a

Heaviside step function. The hybrid switch is computed using curvature of a variable,
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φ, where the smoothness parameter is [65]

Sφ,i =





|φi+1 − 2φi + φi−1|
|φi+1 − φi|+ |φi − φi−1|

− φth if |φi+1 − 2φi + φi−1| ≥ ǫφφi

−φth otherwise

(161)

where φth and ǫφ are user-defined inputs and the hybrid switch at the cell interface

is calculated as

Λi+1/2 =





1 if max
φ,n

(Sφ,i−n, Sφ,i+1+n) ≤ 0

0 otherwise

(162)

For flows involving shocks, the hybrid switch is computed using both pressure and

density. The pressure switch is not computed for subsonic flows where only large

density gradients exist due to flames or evaporating fuel. Previous studies [64] suggest

default values for the user-defined inputs are ǫρ = ǫp = 0.05, ρth = 0.125 and pth =

0.5. These parameters must be tuned on a case-by-case basis to avoid using the

upwind scheme is too many places, which would overly dissipate the solution and

cause excessive computational runtime, or conversely cause the solution to blow up

if the central scheme is applied at a large gradient.

4.6 Conservative finite difference methods

Finite difference methods solve the governing equations in differential form

∂Q

∂t
+

∂F

∂x
+

∂G

∂y
+

∂H

∂z
= S (136)

as opposed to the finite volume methods which solve the integral form,

y

V

∂Q

∂t
dV +

∮

A

(F · dAx +G · dAy +H · dAz) =
y

V

S dV. (138)

Solving the differential form simplifies the construction of higher-order methods since

only a high-order numerical approximation to the derivative operator is required to

achieve a truly high-order solution in contrast to the high-order quadratures for flux

integration needed for finite volume schemes. For a conservative finite difference
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method the numerical flux function for one direction, f (u (x)), can be defined in

terms of a function h (x) as

f (u (x)) =
1

∆x

∫ x+∆x
2

x−∆x
2

h (ξ) dξ (163)

thus the flux derivatives are

∂f (u (xi))

∂x

∣∣∣∣
xi

=
1

∆x

[
h
(
xi+1/2

)
− h

(
xi−1/2

)]
(164)

The flux vectors in the Navier-Stokes equations, like ∂F/∂x, are computed as

∂F

∂x

∣∣∣∣
i

=
Fi+1/2 − Fi−1/2

∆x
(165)

where the computational indices j and k are not listed because they are constant [86].

To compute the derivatives the numerical fluxes at the “cell” interfaces, Fi+1/2, etc,

need to be computed. The order of accuracy of the derivative equals that of the

reconstruction operation used to compute the interface flux values.

4.6.1 Central conservative finite difference schemes

A family of explicit or tridiagonal compact schemes of up to eighth-order can be

described by

αFi−1/2 + Fi+1/2 + αFi+3/2 =a (Fi−3 + Fi+4) + b (Fi−2 + Fi+3)+ (166)

c (Fi−1 + Fi+2) + d (Fi + Fi+1) (167)

where F is any flux component. The coefficients required for these schemes on uniform

grids are listed in Table 3. It is interesting to compare the values in Table 3 for the

compact sixth-order conservative finite difference coefficients with those in Table 2 for

the CompactCART finite volume scheme. The coefficients are the same [195]. Note

that in the finite volume scheme it is the cell-averaged conservative variables that are

being interpolated whereas fluxes are interpolated in the finite difference scheme.

As with the finite volume schemes, a ghost layer approach is used near compu-

tational block boundaries and physical boundaries such as inflows and outflows. All
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Table 3 Central finite difference flux interpolation coefficients for Eq. 166

Scheme α a b c d

Explicit O(2) 0 0 0 0 1/2
Explicit O(4) 0 0 0 −1/12 7/12
Explicit O(6) 0 0 1/60 −2/15 37/60
Explicit O(8) 0 −1/280 29/840 −139/840 533/840
Compact O(4) 1/4 0 0 0 3/4
Compact O(6) 1/3 0 0 1/36 29/36
Compact O(8) 3/8 0 −1/480 23/480 199/240

Table 4 One-sided finite difference flux interpolation coefficients for Eq. 168

Scheme α a b c d

Explicit O(2) 0 1/2 1/2 0 0
Explicit O(4) 0 1/4 13/12 −5/12 1/12
Compact O(4) 1 1/6 10/6 1/6 0

of the central schemes require O(−)/2 ghost layers at computational boundaries and

use a single ghost layer at inflows and outflows. The compact schemes use explicit

numerical flux reconstruction at the computational block boundaries and high-order

schemes drop to lower-order one-sided approximations near inflows and outflows which

is consistent with other high order methods [209],

Fi+1/2 + αFi+3/2 = aFi + bFi+1 + cFi+2 + dFi+3 (168)

with the coefficients shown in Table 4.

To complete simulations on non-uniform grids the governing equations are trans-

formed into generalized coordinates,

∂Q̂

∂t
+

∂F̂

∂ξ
+

∂Ĝ

∂η
+

∂Ĥ

∂ζ
= 0 (169)
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where

Q̂ = J−1Q (170)

F̂ = ξ̂xF+ ξ̂yG+ ξ̂zH (171)

Ĝ = η̂xF+ η̂yG+ η̂zH (172)

Ĥ = ζ̂xF+ ζ̂yG+ ζ̂zH (173)

with the Jacobian and grid metrics usually described by [40],

J−1 =

∣∣∣∣
∂ (x, y, z)

∂ (ξ, η, ζ)

∣∣∣∣ = xξyηzζ − xξyζzη + xηyζzξ − xηyξzη − xζyηzξ (174)

ξ̂x = J−1ξx = yηzζ − yζzη,

ξ̂y = J−1ξy = zηxζ − zζxη,

ξ̂z = J−1ξz = xηyζ − xζyη,

η̂x = J−1ηx = yζzξ − yξzζ ,

η̂y = J−1ηy = zζxξ − zξxζ , (175)

η̂z = J−1ηz = xζyξ − xξyζ,

ζ̂x = J−1ζx = yξzη − yηzξ,

ζ̂y = J−1ζy = zξxη − zηxξ,

ζ̂z = J−1ζz = xξyη − xηyξ,

No metric time derivatives are included here since all simulations in this work involve

static grids. In order to maintain the accuracy and stability of the curvilinear finite

difference method, the grid metrics need to be computed in a conservative manner

using the same method to compute both the grid derivatives and flow derivatives [227,

140, 40]. For this work, the grid metrics were implemented using the Symmetric
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Conservative Metric Method S3 of Deng et al [40],

ξ̂x =
1

2

[
(zyη)ζ + (yzζ)η − (zyζ)η − (yzη)ζ

]

ξ̂y =
1

2

[
(xzη)ζ + (zxζ)η − (xzζ)η − (zxη)ζ

]

ξ̂z =
1

2

[
(yxη)ζ + (xyζ)η − (yxζ)η − (xyη)ζ

]

η̂x =
1

2

[
(zyζ)ξ + (yzξ)ζ − (zyξ)ζ − (yzζ)ξ

]

η̂y =
1

2

[
(xzζ)ξ + (zxξ)ζ − (xzξ)ζ − (zxζ)ξ

]

η̂z =
1

2

[
(yxζ)ξ + (xyξ)ζ − (yxξ)ζ − (xyζ)ξ

]

ζ̂x =
1

2

[
(zyξ)η + (yzη)ξ − (zyη)ξ − (yzξ)η

]

ζ̂y =
1

2

[
(xzξ)η + (zxη)ξ − (xzη)ξ − (zxξ)η

]

ζ̂z =
1

2

[
(yxξ)η + (xyη)ξ − (yxη)ξ − (xyξ)η

]

(176)

and the Jacobian calculated as

J−1 =
1

3

[
(xξx + yξy + zξz)ξ + (xηx + yηy + zηz)η + (xζx + yζy + zζz)ζ

]
(177)

At each time sub-iteration the state vector is updated in a similar manner as Eq. 140

∆Q = − ∆t

J−1

(
F̂i+1/2,j,k − F̂i−1/2,j,k

∆ξ
+

Ĝi,j+1/2,k − Ĝi,j−1/2,k

∆η
+

Ĥi,j,k+1/2 − Ĥi,j,k−1/2

∆ζ

)
(178)

4.6.2 Viscous fluxes

The simplest method of computing the viscous fluxes in the conservative finite differ-

ence framework is to treat them in a similar manner as the inviscid fluxes: compute

the derivatives at the cell centers and then reconstruct them to the “cell” faces. First

derivatives at the grid points can be computed using second-, fourth-, or sixth-order
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accurate approximations which are shown below for a single computational direction,

but are equivalent in all three,

∂u

∂ξ

∣∣∣∣
i,j,k

=
1

2∆ξ
(ui+1,j,k − ui−1,j,k) +O

(
∆x2

)
(179a)

∂u

∂ξ

∣∣∣∣
i,j,k

=
1

12∆ξ
(ui−2,j,k − 8ui,j,k+

8ui+1,j,k − ui+2,j,k) +O
(
∆x4

)
(179b)

∂u

∂ξ

∣∣∣∣
i,j,k

=
1

60∆ξ
(−ui−3,j,k + 9ui−2,j,k − 45ui,j,k+

45ui+1,j,k − 9ui+2,j,k + ui+3,j,k)

+O
(
∆x6

)
(179c)

Unfortunately, the repeated application of the first derivative operator can cause an

odd-even decoupling problem [207, 91]. This issue can be mitigated using a filtering

operation, which will be described in Section 4.8, to remove instabilities [226]. The

application of such a filter is limited to smooth regions of the flow which excludes

discontinuities such as flame fronts. Since the viscous terms are very important in

flames, a more general solution for the odd-even decoupling problem is required.

The Navier-Stokes equations without source terms in generalized coordinates,

Eq. (169), can be rewritten splitting the flux terms into inviscid and viscous con-

tributions

∂Q̂

∂t
+

∂F̂

∂ξ
+

∂Ĝ

∂η
+

∂Ĥ

∂ζ
=

∂F̂v

∂ξ
+

∂Ĝv

∂η
+

∂Ĥv

∂ζ
(180)

with detailed definitions of the viscous terms of Eq. (3)-(5) written in generalized

coordinates given by Visbal and Gaitande [227]. Following the method of Sun et

al [207] the viscous derivative terms like
∂F̂v

∂ξ
can be rewritten as

∂F̂v

∂ξ
=

∂
(
F̂v − F̂′

v

)

∂ξ
+

∂F̂′

v

∂ξ
(181)
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where for single species Navier-Stokes equations

F̂′

v
= J−1




0

µ

(
4

3
ξ2x + ξ2y + ξ2z

)
∂u

∂ξ

µ

(
ξ2x +

4

3
ξ2y + ξ2z

)
∂v

∂ξ

µ

(
ξ2x + ξ2y +

4

3
ξ2z

)
∂w

∂ξ

uµ

(
4

3
ξ2x + ξ2y + ξ2z

)
∂u

∂ξ
+vµ

(
ξ2x +

4

3
ξ2y + ξ2z

)
∂v

∂ξ

+wµ

(
ξ2x + ξ2y +

4

3
ξ2z

)
∂w

∂ξ
+k
(
ξ2x + ξ2y + ξ2z

) ∂T
∂ξ




(182)

The term ∂
(
F̂v − F̂′

v

)
/∂ξ is computed using the straightforward manner described

previously where the first derivatives are calculated with Eq. 179 at the cell-centers

and the “cell” face fluxes computed using Eq. 166 and coefficients in Table 3. Since

this term does not contain any repeated first derivatives in the same direction the

odd-even decoupling problem is eliminated [207]. The ∂F̂′

v
/∂ξ terms are computed

using a method similar to that presented by Shen and coworkers [191, 193, 192].

The derivative of the F̂′

v
term is calculated in a conservative manner,

(
∂F̂′

v

∂ξ

)

i

=

(
˜̂
F

′

v

)

i+1/2

−
(
˜̂
F

′

v

)

i−1/2

(183)

where the interface values are computed as

(
˜̂
F

′

v

)

i+1/2

=
i+n∑

I=i−m

αI

(
˜̂
Fv

)

I

(184)

The values for αI for second-, fourth- and sixth-order are given in Table 5. All the

terms in Eq. 182 at each interface in the local stencil need to be calculated at the

desired order of accuracy. Properties such as µ, u, v, w, and the grid metrics needed

to compute the flux,

(
˜̂
Fv

)

I

, at each interface are determined with the following

expression

µI =
n∑

l=m

CI
l µi+l (185)
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Table 5 Coefficients of αI [193, 192].

Order \I i− 3/2 i− 1/2 i+ 1/2 i+ 3/2 I + 5/2

2 – – 1 – –
4 – −1/24 26/24 −1/24 –
6 9/1920 −116/1920 2134/1920 −116/1920 9/1920

Table 6 Fourth-order coefficients of CI
l [193].

I CI
−1 CI

0 CI
1 CI

2

i− 1/2 5/16 15/16 −5/16 1/16
i+ 1/2 −1/16 9/16 9/16 −1/16
i+ 3/2 1/16 −5/16 15/16 5/16

Several options exist for the coefficients CI
l . Shen et al [193, 192] suggest the values

listed in Tables 6 and 7 whereas Zingg and De Rango [165, 247, 248, 166] use “cen-

tered” values like those listed in Table 10. The advantage of the former coefficients is

that they achieve the same order of accuracy as the latter on a smaller stencil. Un-

fortunately this is much more computationally expensive as at each interface all the

other interface values need to be recomputed since they are not “centered”. Deriva-

tives in the computational normal direction at the “cell“ interfaces are calculated in

a similar manner

∂u

∂ξ

∣∣∣∣
I

=
1

∆ξ

s∑

l=r

DI
l µi+l (186)

again with non-centered, Tables 8 and 9, and centered, Table 11, coefficients. For the

derivatives, the non-centered coefficients use the same stencil as the centered values

but are one order higher in accuracy; the computational efficiency disadvantages still

exist.

This method is only used for the ∂F̂′

v
/∂ξ term, which as noted by Sun et al. [207],

is computationally less expensive than using this method exactly as Shen et al. [191,

193, 192] since the cross derivative terms do not need to be computed at the “cell”

faces. It should be noted here that, to the author’s knowledge, this is the first work
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Table 7 Sixth-order coefficients of CI
l [192].

I CI
−2 CI

−1 CI
0 CI

1 CI
2 CI

3

i− 3/2 63/256 315/256 −105/128 63/128 −45/256 7/256
i− 1/2 −7/256 105/256 105/128 −35/128 21/256 −3/256
i+ 1/2 3/256 −25/256 75/128 75/128 −25/256 3/256
i+ 3/2 −3/256 21/256 −35/128 105/128 105/256 −7/256
i+ 5/2 7/256 −45/256 63/128 −105/128 315/256 63/256

Table 8 Fifth-order coefficients of DI
l [193].

I DI
−2 DI

−1 DI
0 DI

1 DI
2 DI

3

i− 1/2 71/1920 −141/128 69/64 1/192 −3/128 3/640
i+ 1/2 −3/640 25/384 −75/64 75/64 −25/384 3/640
i+ 3/2 −3/640 3/128 −1/192 −69/64 141/128 −71/1920

Table 9 Seventh-order coefficients of DI
l [192].

I DI
−3 DI

−2 DI
−1 DI

0 DI
1 DI

2 DI
3 DI

4

i− 3/2 3042/107520 −5353/5120 4731/5120 733/3072 −239/1024 597/5120 −167/5120 143/35840
i− 1/2 −143/35840 185/1024 −1185/1024 1175/1024 −125/3072 −51/5120 5/1024 −5/7168
i+ 1/2 5/7168 −49/5120 245/3072 −1225/1024 1225/1024 −245/3072 49/5120 −5/7168
i+ 3/2 5/7168 −5/1024 51/5120 125/3072 −1175/1024 1185/1024 −185/1024 143/35840
i+ 5/2 −143/35840 167/5120 −597/5120 239/1024 −733/3072 −4731/5120 5353/5120 −3042/107520

Table 10 Centered coefficients of CI
l , I = i+ 1/2 [165, 247, 248, 166].

Order CI
−2 CI

−1 CI
0 CI

1 CI
2 CI

3

2 – – 1/2 1/2 – –
4 – −1/16 9/16 9/16 −1/16 –
6 3/256 −25/256 75/128 75/128 −25/256 3/256

Table 11 Centered coefficients of DI
l , I = i+ 1/2 [165, 247, 248, 166].

Order DI
−2 DI

−1 DI
0 DI

1 DI
2 DI

3

2 – – −1 1 – –
4 – 1/24 −27/24 27/24 −1/24 –
6 −3/640 25/384 −75/64 75/64 −25/384 3/640
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to combine the method of Sun et al. [207] with the coefficients of Zingg and De

Rango [165, 247, 248, 166]. This further increases the computationally efficiency of

the method compared with that of Shen et al. [191, 193, 192]. A laminar flame test

case presented in later in Section 5.3 shows the importance of addressing the odd-even

decoupling problem near flame fronts when simulating reacting flows with high-order

finite difference methods.

4.6.3 Conservative finite difference method implementation notes

The conservative finite difference methods were implemented in the existing finite vol-

ume framework. Since the finite volume methods already in place were cell-centered

no major changes to the data structures inside the code were necessary; the only

distinction is that the stored variable in the finite volume schemes are cell-averages

whereas in the finite difference methods they are point values. The capability to run

with different methods at different orders allows for error estimation without explicit

grid resolution studies [172]. The finite volume grid metrics are computed for both

frameworks which allows integration of the Lagrangian phase into the finite difference

methods simple. Locating the Lagrangian parcels still occurs using the “finite volume

cells” even when the finite difference method. The time update algorithms had to be

adjusted slightly to use the grid point Jacobian rather than the cell volume during

integration. Because the high-order finite difference methods rely on the metrics also

being computed to high-accuracy, grid singularities such as those found in O-grids

pose a larger problem for these schemes compared to the formally second-order ac-

curate finite volume methods. Currently the only way to solve this problem is to

use the static mesh refinement method, detailed in Section 4.10, for such locations

in the domain. Using methods of this type may degrade accuracy slightly but for

the problems of interest in this work it is not of a concern since grid singularities

are avoided in the region of interest. While this hybrid central/upwind conservative
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finite difference solver is similar to others [30, 42, 246], the exact combination of the

various methods and strategies is unique. It is also interesting to note that the cur-

rent high-order conservative finite difference implementation was extended to solve

the governing equations for magnetohydrodynamics [189].

4.6.4 Weighted Essentially Non-Oscillatory (WENO) Method

The compact and explicit central conservative finite difference schemes suffer the same

problems near discontinuities as their finite volume counterparts, namely dispersive

errors, so non-oscillatory finite difference methods are also required for many flows

of interest. Several methods have been introduced including the piecewise parabolic

method (PPM) [28], the essentially non-oscillatory method (ENO) [77] and weighted

essentially non-oscillatory (WENO) scheme [115]. High-order WENO schemes, es-

pecially in combination with high-order central schemes, have shown promise in the

area of shock-turbulence interaction [150, 116] where highly vortical turbulent struc-

tures are in close proximity to large gradients. This situation also occurs in turbulent

combustion thus leading to the current investigation and implementation of WENO

schemes.

For both ENO and WENO, the fluxes at the i+1/2 “cell” interface are computed

using n candidate stencils, Sk, k = 0, 1, . . . , r − 1 where

Sk = (xi+k−r+1, xi+k−r+2, . . . , xi+k) (187)

Each stencil provides an rth order approximation to the flux at the interface. Figure 10

shows the three stencils used in the fifth-order WENO scheme, where each stencil

provides a third-order approximation.

In ENO schemes, the single “smoothest” stencil is chosen to calculate the final

flux which is advantageous at discontinuities since this avoids using data from dis-

continuous stencils. Away from discontinuities is smooth flow regions this limits the
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Figure 10 Fifth-order WENO stencils for computing the flux at i+ 1/2

order of accuracy of the overall scheme to that of the flux approximation for each sten-

cil. WENO schemes remedy this situation by instead of selecting a single stencil to

compute the flux, all stencils are combined using dynamically and locally computed

weights. At flow discontinuities, discontinuous stencils will be assigned near-zero

weights while in smooth regions of the flow, information from all stencils will be used

to achieve a higher order of accuracy [86]. The flux computed at i+ 1/2 is

Fi+1/2 =

r∑

k=0

ωkF
k
(
xi+1/2

)
(188)

The flux at i+ 1/2 computed from each available stencil, k, is

F k
(
xi+1/2

)
= F k

i+1/2 =
r∑

j=0

ckjFi−k+j, i = 0, . . . , n (189)

where ckj are reconstruction coefficients that depend only on k. The weights, ωk, are

caclulated as

ωk =
αk∑n
l=0 αl

, αk =
dk

(βk + ǫ)p
(190)

Here the dk are the ideal weights which are used when all stencils are smooth and βk

are the local smoothness indicators,

βk =
n∑

l=1

∆x2l−1

∫ x+1/2

x−1/2

(
dl

dxl
F k (x)

)2

dx (191)

For r = 3, the fifth-order WENO scheme the reconstruction coefficients and ideal

weights are listed in Table 12 and the smoothness indicators at each of the three
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Table 12 Reconstruction coefficients and ideal weights for r = 3, the 5th order WENO
scheme [86]

Stencil Reconstruction coefficients Ideal weights

Sk ck0 ck1 ck2 dk

S0 1/3 −7/6 11/6 1/10
S1 −1/6 5/6 1/3 3/5
S2 1/3 5/6 −1/6 3/10

Table 13 Reconstruction coefficients and ideal weights for r = 2, the 3rd order WENO
scheme [86]

Stencil Reconstruction coefficients Ideal weights

Sk ck0 ck1 dk

S0 −1/2 3/2 1/3
S1 1/2 1/2 2/3

stencils are

β0 =
13

12
(Fi−2 − 2Fi−1 + Fi)

2 +
1

4
(Fi−2 − 4Fi−1 + 3Fi)

2

β1 =
13

12
(Fi−1 − 2Fi + Fi+1)

2 +
1

4
(Fi−1 − Fi+1)

2

β2 =
13

12
(Fi − 2Fi+1 + Fi+2)

2 +
1

4
(3Fi − 4Fi+1 + Fi+2)

2

(192)

Third-, seventh- and ninth-order schemes have also been implemented though most

of this work will focus on the fifth-order scheme. This is consistent with many other

works [86, 191, 230, 137, 90, 245] as this represents a compromise between accuracy,

stencil size and cost. For completeness, Tables 13–15 give the reconstruction coef-

ficients and ideal weights for the other implemented order and the the smoothness

indicators are as follows:

• Third-order, r = 2 [86]

β0 = (Fi − Fi−1)
2

β1 = (Fi+1 − Fi)
2

(193)
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Table 14 Reconstruction coefficients and ideal weights for r = 4, the 7th order WENO
scheme [6]

Stencil Reconstruction coefficients Ideal weights

Sk ck0 ck1 ck2 ck3 dk

S0 −1/4 13/12 −23/12 25/12 1/35
S1 1/12 −5/12 13/12 1/4 12/35
S2 −1/12 7/12 7/12 −1/12 18/35
S3 1/4 13/12 −5/12 1/12 4/35

• Seventh-order, r = 4 [6]

β0 =Fi−3 (547Fi−3 − 3882Fi−2 + 4642Fi−1 − 1854Fi)

+ Fi−2 (7043Fi−2 − 17246Fi−1 + 7042Fi)

+ Fi−1 (11003Fi−1 − 9402Fi) + 2107F 2
i

β1 =Fi−2 (267Fi−2 − 1642Fi−1 + 1602Fi − 494Fi+1)

+ Fi−2 (2843Fi−1 − 5966Fi + 1922Fi+1)

+ Fi−1 (3443Fi − 2522Fi+1) + 547F 2
i+1

β2 =Fi−1 (547Fi−1 − 2522Fi + 1922Fi+1 − 494Fi+2)

+ Fi (3443Fi − 5966Fi+1 + 1602Fi+2)

+ Fi+1 (2843Fi+1 − 1642Fi+2) + 267F 2
i+2

β3 =Fi (2107Fi − 9402Fi+1 + 7042Fi+2 − 1854Fi+3)

+ Fi+1 (11003Fi+1 − 17246Fi+2 + 4642Fi+3)

+ Fi+2 (7043Fi+2 − 3882Fi+3) + 547F 2
i+3

(194)

• Ninth-order, r = 4 [6]
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Table 15 Reconstruction coefficients and ideal weights for r = 5, the 9th order WENO
scheme [6]

Stencil Reconstruction coefficients Ideal weights

Sk ck0 ck1 ck2 ck3 ck4 dk

S0 1/5 −21/20 137/60 −163/60 137/60 1/126
S1 −1/20 17/60 −43/60 77/60 1/5 10/63
S2 1/30 −13/60 47/60 9/20 −1/20 10/21
S3 −1/20 9/20 47/60 −13/60 1/30 20/63
S4 1/5 77/60 −43/60 17/60 −1/20 5/126

β0 =Fi−4 (22658Fi−4 − 208501Fi−3 + 364863Fi−2 − 288007Fi−1 + 86329Fi)

+ Fi−3 (7043Fi−2 − 17246Fi−1 + 7042Fi)

+ Fi−1 (11003Fi−1 − 9402Fi) + 2107F 2
i

β1 =Fi−3 (6908Fi−3 − 60871Fi−2 + 99213Fi−1 − 70237Fi + 18079Fi+1)

+ Fi−2 (138563Fi−2 − 464976Fi−1 + 337018Fi − 88297Fi+1)

+ Fi−1 (406293Fi−1 − 611976Fi + 165153Fi+1)

+ Fi (242723Fi − 140251Fi+1) + 22658F 2
i+1

β2 =Fi−2 (6908Fi−2 − 51001Fi−1 + 67923Fi − 38947Fi+1 + 8209Fi+2)

+ Fi−1 (104963Fi−1 − 299076Fi + 179098Fi+1 − 38947Fi+2)

+ Fi (231153Fi − 299076Fi+1 + 67923Fi+2)

+ Fi+1 (104963Fi+1 − 51001Fi+2) + 6908F 2
i+2

β3 =Fi−1 (22658Fi−1 − 140251Fi + 165153Fi+1 − 88297Fi+2 + 18079Fi+3)

+ Fi (242723Fi − 611976Fi+1 + 337018Fi+2 − 70237Fi+3)

+ Fi+1 (406293Fi+1 − 464976Fi+2 + 99213Fi+3)

+ Fi+2 (138563Fi+2 − 60871Fi+3) + 6908F 2
i+3

β4 =Fi (107918Fi − 649501Fi+1 + 758823Fi+2 − 411487Fi+3 + 86329Fi+4)

+ Fi+1 (1020563Fi+1 − 2462076Fi+2 + 1358458Fi+3 − 288007Fi+4)

+ Fi+2 (1521393Fi+2 − 1704396Fi+3 + 364863Fi+4)

+ Fi+3 (482963Fi+3 − 208501Fi+4) + 22658F 2
i+4

(195)
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The parameter ǫ is needed to avoid division by zero. The choice of this parameter can

affect the solution [80], since depending on the values of the smoothness indicators, ǫ

can dominate the αk terms. As currently implemented, ǫ is computed as

ǫ = ǫuser maxF 2 + 10−99 (196)

noting that the fluxes have been pre-multiplied by the metric terms so that ǫ =

K∆x2 which is needed to maintain the desired order of accuracy of the scheme near

discontinuities [52, 239, 5, 19]. Scaling the user-input value by the local flux values

also removes some of the burden of case-by-case user parameter tuning. The power

parameter, p, magnifies the relative ratio between the smoothness indicators and for

the base WENO scheme is set to 2.

4.6.4.1 WENO-Z scheme

Several methods have been introduced to improve on the classical WENO method

presented in the previous section. The revised methods generally involve modifying

how the non-linear weights are computed to reduce dissipation at flow discontinuities

and/or to obtain optimal convergence at critical points [80, 14, 19, 41, 51, 50]. The

WENO-Z scheme [14, 19] was selected due to its ease of implementation and favorable

results compared with other methods in terms of both accuracy and computational

efficiency for reacting flows [245].

The WENO-Z scheme differs from the original WENO scheme, often denoted as

WENO-JS, in the definition of the smoothness indicators. Instead of each sub-stencil

having an independent smoothness indicator, a higher-order smoothness indicator is

formed based on information at all the stencils which then affects the stencil weights.

This global smoothness indicator is defined for WENO schemes with r ≥ 3 as

τ2r−1 =





|β0 − βr−1| , mod (r, 2) = 1,

|β0 − β1 − βr−2 + βr−1| mod (r, 2) = 0
(197)
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The normalized and un-normalized weights are computed using the global smoothness

indicator

ωz
k =

αz
k∑n

l=0 α
z
l

, αk =
dk
βz
k

= dk

[
1 +

(
τ2r−1

βk + ǫ

)q]
, k = 0, . . . , r − 1 (198)

4.6.4.2 Characteristic decomposition

The WENO method described in the previous sections can be directly applied to

the fluxes computed using the conservative variables but studies have shown this can

result in spurious oscillations near discontinuities [160]. Instead it is recommended

that the fluxes be computed in their local characteristic fields [86, 168, 195, 207]

especially when using WENO schemes greater than third order. The solution method

when using a characteristic decomposition is described below [207]:

1. At each interface, i+ 1/2, compute an averaged state of conservative variables,

Qi+1/2, using a simple arithmetic mean of the i and i + 1 variables. A more

complicated Roe average could be computed but testing during scheme imple-

mentation showed the Roe averaging made no difference to the solution and

was computationally more expensive.

2. Compute the left eigenvectors, L
(s)
i+1/2, the right eigenvectors, R

(s)
i+1/2 [38, 173],

and eigenvalues, λ
(s)
i+1/2 of the flux Jacobian matrix, A = ∂F/∂Q, where s =

1, 2, 3, 4, 5, . . . , 5 +Ns.

3. Use the left eigenvectors to project the conservative variables and inviscid fluxes

into characteristic space resulting in characteristic variables, φ and fluxes w,

φ(s)
m = L

(s)
i+1/2Qm, m ∈ [i− r + 1, i+ r]

w(s)
m = L

(s)
i+1/2Fm, m ∈ [i− r + 1, i+ r]

(199)

4. The WENO procedure is then applied to split interface fluxes, w+
i+1/2 and w−

i+1/2

where

wi+1/2 = w+
i+1/2 + w−

i+1/2 (200)
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This flux splitting can be accomplished in a variety of ways. The simplest is a

Roe-type local characteristic decomposition





w+
m = wm

w−

m = 0
if λi+1/2 ≥ 0





w+
m = 0

w−

m = wm

if λi+1/2 < 0

(201)

Another option is the local Lax-Friedrichs (LF) flux splitting

w(s),+
m =

w
(s),+
m

2
max

∣∣∣λ(s)
l

∣∣∣φ(s)
m

w(s),−
m =

w
(s),−
m

2
max

∣∣∣λ(s)
l

∣∣∣φ(s)
m

(202)

The w+
i+1/2 is computed using a reconstruction with a biased stencil with one

more point to the left and w−

i+1/2 is calculated symmetrically with a stencil

biased with one more point to the right, to allow for the correct upwinding.

The Roe-type flux splitting is less dissipative than the Lax-Friedrichs splitting

but admits rarefaction waves which do not satisfy the entropy condition. To

avoid this problem, the flux splitting methods are combined into a single Roe-

type with entropy fix procedure

w
(s)
i+1/2 =





w
(s),±Roe
i+1/2 if λ

(s)
i λ

(s)
i+1 > 0

w
(s),±LF
i+1/2 otherwise

(203)

A slight alternative to this procedure is to use the Roe-type with entropy fix

flux splitting for genuinely nonlinear characteristics but always use the local

Lax-Friedrichs splitting for the linearly degenerate characteristics [86, 6]. This

method is slightly more dissipative but provides extra stability in the solution.

Special care must also be taken for multidimensional simulations with strong

shocks to avoid the “Carbuncle” phenomenon. To achieve this, the Roe-type
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procedure with the entropy fix is modified slightly [168, 180, 147]

w
(s)
i+1/2 =





w
(s),±Roe
i+1/2 if min

(∣∣∣λ(s)
i

∣∣∣ ,
∣∣∣λ(s)

i+1

∣∣∣
)
> ηi+1/2,j,k

w
(s),±LF
i+1/2 otherwise

(204)

where ηi+1/2,j,k is computed as

ηi+1/2,j,k = max
(
ηxi+1/2,j,k,

ηyi,j−1/2,k, η
y
i,j+1/2,k, η

y
i+1,j−1/2,k, η

y
i+1,j+1/2,k,

ηzi,j,k−1/2, η
z
i,j,k+1/2, η

z
i+1,j,k−1/2, η

z
i+1,j,k+1/2

)
(205)

and

ηxi+1/2,j,k = |ui+1,j,k − ui,j,k|+ |ai+1,j,k − ai,j,k|

ηyi,j+1/2,k = |vi,j+1,k − vi,j,k|+ |ai,j+1,k − ai,j,k|

ηzi,j,k+1/2 = |wi,j,k+1 − wi,j,k|+ |ai,j,k+1 − ai,j,k|

(206)

Here ai,j,k is the speed of sound at the point (i, j, k).

5. Finally, the characteristic fluxes are projected back into physical space using

the right eigenvectors

Fi+1/2 = Ri+1/2

(
W+

i+1/2 +W−

i+1/2

)
(207)

4.7 Time Integration

All the of the time integration schemes used in the current work are explicit which

means that updating the solution to the n + 1 time step only requires information

about the solution at the n or previous time levels. This is in contrast to implicit

methods where updating the solution to the n + 1 time step actually involves the

solution at the n + 1. Implicit methods are more computationally expensive per

time step but allow for time steps to be as large as the temporal features of interest.

Explicit methods are less computationally expensive per time step and generally more

accurate and easier to implement, especially for higher-orders, compared to implicit
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methods [87]. In addition, in compressible, reacting flow LES the physical time scales

of interest, acoustics, turbulence, chemical reactions, etc., dictate that the time step

must be reasonably small to maintain accuracy thus explicit integration methods are

used more often. The disadvantage of explicit methods is the associated numerical

stability requirements which can limit the maximum allowable time step size to below

even the time step required for the desired accuracy.

The maximum allowable time step for stability is defined as

∆t = CFL× V

vw
(208)

where V is the cell volume, CFL is the Courant-Friedrich-Levy number and vw is a

wave velocity. Inviscid wave propagation due to convection and acoustics are usually

grouped together. In computational space this convective wave speed is,

vc = |u · dAi|+ |u · dAj|+ |u · dAk|+ c |dA| (209)

where |u · dAi| represents the absolute value of the velocity in the i-direction and

|dA| represents the magnitude of the surface normal vectors and c is the speed of

sound. Simulations involving viscosity are further limited by the diffusive wave speed

estimated as,

vd = Kλ
|dA|2
V

. (210)

The variable λ can take different forms: for momentum diffusion, λ = ν, for species

diffusion λ = maxDk and for temperature diffusion λ = κ/ (ρCv). For this work the

constant K = 2 and the diffusion wave speed is computed based on the maximum of

momentum, species and temperature,

vd = 2max (λ)
|dA|2
V

. (211)

The time step is determined based on the combination of the convective and diffusive

wave speed,

∆t = CFL× V

vc + vd
. (212)
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Table 16 Time integration coefficients in αik − βik format for SSPRK(2,2) [71]

i \ k k = 0 k = 1

αik
1 1
2 1/2 1/2

βik
1 1
2 0 1/2

The maximum stable CFL number depends on the time integration scheme being

used but for all explicit schemes it is O (1). To avoid any instabilities when using the

second-order scheme, described next, CFL is set to 0.5. For the higher-order time

integration methods this value is usually set closer to unity.

The time integration scheme in use with the predictor-corrector finite volume

scheme is a second-order predictor-corrector time integration scheme which is equiva-

lent to a strong stability preserving (SSP) second order Runge-Kutta scheme. Runge-

Kutta schemes can be written in an α− β format,

U (0) = Un (213a)

U (i) =

i−1∑

k=0

(
αikU

(k) +∆tβikL
(
U (k)

))
, i = 1, 2, . . . , s (213b)

Un+1 = U (s) (213c)

with the second-order coefficients listed in Table 16. Due to the coupling of the spatial

integration with the time integration, the predictor-corrector scheme can only be used

with Runge-Kutta schemes with an even number of stages such as the classical fourth-

order Runge-Kutta method given in Table 17. Numerical experiments have shown

that this allows for larger stable time steps and the error is decreased for equivalent

time steps, there is no gain in efficiency since the error is dominated by the second-

order spatial scheme.

The spatial integration of high-order interpolation finite volume scheme and the
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Table 17 Time integration coefficients in αik − βik format for classical RK4 [196]

i \ k k = 0 k = 1 k = 2 k = 3

αik
1 1
2 1/2 1/2
3 1/9 2/9 2/3
4 0 1/3 1/3 1/3

βik
1 1/2
2 −1/4 1/2
3 −1/9 −1/3 1
4 0 1/6 0 1/6

Table 18 Time integration coefficients in αik − βik format for SSPRK(3,3) [71]

i \ k k = 0 k = 1 k = 2

αik

1 1
2 3/4 1/4
3 1/3 0 2/3

βik

1 1
2 0 1/4
3 0 0 2/3

hybrid compact/WENO finite difference scheme are not coupled with the time in-

tegration scheme allowing more flexibility in this regard. For the tests conducted

here we use either the SSPRK(3,3) or SSPRK(5,4) methods with their α − β coeffi-

cients listed in Tables 18 and 19 [71, 176]. The high-order interpolation finite volume

scheme is formally second-order, as previously discussed, so the SSPRK(3,3) is often

sufficient whereas the hybrid compact/WENO finite difference is truly higher order.

This necessitates a higher order time integration scheme to avoid having the time

integration scheme dominate the overall error and convergence.

Several explicit low-storage Runge-Kutta methods of the 2-N type [234] were also

implemented including a five stage, fourth-order method [18] and a six stage, fourth-

order method [13]. Brief initial testing showed these methods were not noticeably

superior to the SSPRK(5,4) method so they will not be discussed any further.
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Table 19 Time integration coefficients in αik − βik format for SSPRK(5,4) [176]

i \ k k = 0 k = 1 k = 2 k = 3 k = 4

αik

1 1
2 0.444370493651235 0.555629506348765
3 0.620101851488403 0 0.379898148511597
4 0.178079954393132 0 0 0.821920045606868
5 0 0 0.517231671970585 0.096059710526147 0.386708617503269

βik

1 0.391752226571890
2 0 0.368410593050371
3 0.620101851488403 0 0.251891774271694
4 0.178079954393132 0 0 0.544974750228521
5 0 0 0 0.063692468666290 0.226007483236906

4.8 Numerical Stabilization

High-order central schemes lack inherent dissipation and as such are subject to nu-

merical instabilities. For the high-order compact interpolation finite volume scheme

and the compact finite difference schme, a compact filter introduced by Gaitonde

and Visbal [59, 60, 61] is applied to the conservative variables at the end of the

Runge-Kutta time integration step as often as every time step if necessary.

αf ûi−1 + ûi + αf ûi+1 =
N∑

n=0

an
2

(ui+n + ui−n) . (214)

To maintain the order near boundaries a one-sided scheme is used [60, 62],

αf ûi−1 + ûi + αf ûi+1 =

N∑

n=1

an,iun. (215)

The references provide tables for computing the central and boundary filter coef-

ficients for a user-input αf value for second- through tenth-order filters. One cell

remains unfiltered but as Fosso et al. note [146], this is a ghost layer cell. The filter-

ing operation is completed in each computational direction successively though the

order in which it occurs changes to avoid bias. It should also be noted that an extra

communication step is required after the filtering step to ensure the fluxes across

block boundaries are computed correctly at the next time step.

The current implementation allows varying the order of the filter and αf at block

or physical boundaries. Generally the order of the filter is selected to be at least the
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same order as the interpolation or derivative scheme [158] usually two to four orders

higher [61]. For the current simulations, unless otherwise noted, the eighth-order

filter is used for all internal and block boundary cells and a sixth-order filter is used

at the inflow and outflow boundaries. The values for αf vary between 0.45 and 0.499

depending on the grid resolution.

4.8.1 Numerical stabilization near discontinuities

Applying the high-order compact filter across discontinuities results in numerical os-

cillations. Several methods have been presented to handle flow discontinuities when

using compact filtering including dropping the order of the filter and/or turning off

the filter completely [224]. Here a method similar to the hybrid compact/Roe scheme

[224] and the hybrid compact filter/characteristic filter method [116] is implemented

to disable the high-order compact filter at discontinuities. The filter is disabled at

grid points wherever the shock capturing scheme is used to compute both the left

and right “cell” fluxes. Near these regions the second-order filter is applied and the

order of the filter progressively increased further from the discontinuity as seen in

Figure 11. To avoid excessive dissipation, the value of αf is set to match the dissipa-

tion characteristics of the highest order scheme at a non-dimensional wavenumber of

π. For example, if an eigth-order filter with αf = 0.49 is used in smooth regions, near

discontinuities sixth-, fourth- and second-order filters will have αf = 0.495, 0.4975,

and 0.49875, respectively.

4.9 Numerical method for the Lagrangian phase

The equations of motion for the Lagrangian phase droplets, Eq. (74)–(76), are in-

tegrated in time independently from the Eulerian solver with the coupling between

the phases occurring via the interpolation of Eulerian properties to the droplet loca-

tion and the Eulerian phase source terms from the droplets, Eq. (93). Because the

Lagrangian phase and Eulerian phase are integrated separately there is an O (∆t)
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Figure 11 Filtering scheme for numerical stabilization near discontinuities

coupling error, but with the small time steps used in the current LES this error is

assumed to be small. This method of time coupling has been used with success in

many other simulations [187, 135, 149, 203]. One advantage of this method is that

it allows each Lagrangian droplet to be integrated at the smallest relevant physical

time scale [23, 48, 186]:

• LES Eulerian time step

• Droplet velocity relaxation time: The time constant for the exact solution of

the local linearized equation of motion, Eq. 74, is

τrelax =
16

3

ρd
ρg

r2d
νg

1

CDRed
(216)

• Droplet lifetime: For evaporating droplets the time step should be limited to

ensure that the drop size stays positive. The droplet life time is estimated based

on the evaporation rate

τlife =
4πr3dρd
3ṁd

(217)

• Droplet heating/evaporation time: If a droplet heats up too quickly in a single

time step this could cause large amounts of evaporation and mass loading on

the Eulerian phase. To avoid numerical instabilities the droplet time step is
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also limited by

τevap =
ρdCvdd
6hd

(218)

• Droplet-turbulent eddy interaction time: A droplets is assumed to interact with

a turbulent eddy over a time that is either the lifetime of the eddy or the time

required for the droplet to traverse the eddy, whichever is smaller. The eddy

lifetime is estimated using the LES filter width and the subgrid kinetic energy

τeddy =
∆√

2ksgs/3
(219)

and the eddy transit time estimated as

τtransit = τrelax ln

(
1− ∆

τrelax |ui − ui,d|

)
(220)

Using these relations the droplet-turbulent eddy interaction time is computed

as

τeddy,int =





τeddy ∆ > τrelax |ui − ui,d|

min (τeddy, τtransit) ∆ ≤ τrelax |ui − ui,d|
(221)

• Local grid cell transit time: Droplets are limited to travel only a single cell in

each time step so that local Eulerian properties can be interpolated accurately

and droplets can be located easily.

τcell =
∆

2 |ud|
(222)

Explicit Runge-Kutta time integration schemes from second- to fourth-order have

been implemented for the Lagrangian phase which were previously presented in con-

text of the Eulerian phase in Section 4.7. The finite volume simulations conducted

in this study use the classic fourth-order scheme with coefficients of Eq. (213) given

in Table 17. In simulations where the SSPRK(5,4) scheme, Table 19, is used for the

Eulerian phase, the same scheme is applied for the Lagrangian phase. The ability

to choose different time integration schemes for the Lagrangian and Eulerian phases
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is another advantage of this Eulerian-Lagrangian approach. Computational memory

requirements are also significantly reduced since multiple time sub-stages for droplet

variables, positions, velocities, temperatures, etc., do not have to be stored simulta-

neously for all droplets.

Several methods for interpolating properties from the Eulerian cells to the La-

grangian parcels have been implemented. The most inexpensive method is simply

taking the Eulerian value directly from the cell that contains that parcel. A more

accurate approach uses a scheme based on Taylor series expansions [130].

ud ≈ uc +
∂u

∂x

∣∣∣∣
c

(xd − xc) +
∂u

∂y

∣∣∣∣
c

(yd − yc) +
∂u

∂z

∣∣∣∣
c

(zd − zc) (223)

where u can be any Eulerian property needed at the droplet location. Since only first-

order terms are included, this method is formally second order accurate, O (xi,d − xi,c)
2,

where xi,c is the location of the nearest Eulerian cell-center, as long as the underly-

ing scheme used for the Eulerian equations and grid metrics computations is as at

least second order accurate as well. For the structured, curvilinear finite volume or

finite difference schemes used in this study this can be written using a second-order
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accurate central difference method for the derivatives as

ud ≈ ui,j,k +

[
ui+1,j,k − ui−1,j,k

2∆ξ

∂ξ

∂x

∣∣∣∣
i,j,k

+

ui,j+1,k − ui,j−1,k

2∆η

∂η

∂x

∣∣∣∣
i,j,k

+

ui,j,k+1 − ui,j,k−1

2∆ζ

∂ζ

∂x

∣∣∣∣
i,j,k

]
(xd − xi,j,k)+

[
ui+1,j,k − ui−1,j,k

2∆ξ

∂ξ

∂y

∣∣∣∣
i,j,k

+

ui,j+1,k − ui,j−1,k

2∆η

∂η

∂y

∣∣∣∣
i,j,k

+

ui,j,k+1 − ui,j,k−1

2∆ζ

∂ζ

∂y

∣∣∣∣
i,j,k

]
(yd − yi,j,k)+

[
ui+1,j,k − ui−1,j,k

2∆ξ

∂ξ

∂z

∣∣∣∣
i,j,k

+

ui,j+1,k − ui,j−1,k

2∆η

∂η

∂z

∣∣∣∣
i,j,k

+

ui,j,k+1 − ui,j,k−1

2∆ζ

∂ζ

∂z

∣∣∣∣
i,j,k

]
(zd − zi,j,k)

(224)

where i, j, k is the computational index of the nearest Eulerian cell-center and the grid

metrics computed as described in previous sections. A moving least squares (MLS)

method using polynomials of arbitrary order of accuracy was also implemented. The

mathematics of the MLS procedure are described in the context of static mesh refine-

ment in Section 4.10. Figure 12 compares these methods on a steady two-dimensional

sinusoidal flow [130]. The Marchioli method is generally a good compromise between

accuracy and cost.

To simulate realistic fuel flow rates very large numbers of physical droplets, on the

order of 106 or more [143], need to be tracked making such simulations computation-

ally demanding. In order to reduce the cost statistically similar groups of droplets

are tracked by a single computational “parcel” [135, 148, 4]. The center of mass of
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Figure 12 Comparison of Eulerian to Lagrangian interpolation methods on a steady
two-dimensional sinusoidal flow.

the parcel is tracked with all constituent droplets assuming the properties of the par-

cel. The equations of motion for the Lagrangian phase droplets, Eq. (74)–(76), are

applied to the parcel instead of an individual droplet. This approach captures the

global features of droplet dispersion and combustion while saving substantial com-

putational cost, though errors are incurred. The magnitude of these errors depends

largely on the flow conditions and how many physical droplets are grouped into each

computational parcel [203]. The source terms of Eq. (93) are modified to include the

number of physical particles in the computational parcel.



˜̇ρs
˜̇Fs,i

˜̇Qs

˜̇Si,k

Fd




=
1

∆̂3




∑
ndṁd

∑
nd [ṁdui,d −mdu̇i,d]

∑
nd

[
ṁdhv,s − hdπd

2
d

(
T̃ − T

)]

∑
ndṁd

∑
nd

[
˜̇Fs,iui − ˜̇F s,iũi

]




. (225)

Here, nd is the number of particles per parcel, ui,d, ρd, rd are the velocity, density and

radius of the ith particle, respectively. The summation above is over all parcels within

the computational volume defined by ∆̂3. Some method of Lagrangian phase source
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term distribution or smoothing is necessary to avoid numerical instabilities [136]; here

the source terms are distributed to the computational cell containing the parcel and

its 26 nearest neighbors using the same method as Patel et al [149].

The parcels are tracked until the representative particle size reaches a predefined

cutoff radius at which point the parcel is completely evaporated.

4.9.1 Lagrangian parcel multiblock parallel communication implementa-
tion

The original parallel implementation of the Lagrangian phase inside the LESLIE code

used the so-called gather-scatter communication approach [203]. This method uses

a master-slave paradigm where the processor in the Lagrangian MPI communicator

handles most of the bookkeeping operations. All processors involved in the simulation

allocate enough memory for a predefined maximum number of computational parcels

in the domain. At the beginning of each time step, the root processor scatters the

information about all parcels to all processors. Each processor then loops over the

entire parcel list to check each parcel to see if it is located within the physical domain

of that processor. If the parcel is located within processor the numerical integration

for that parcel will occur, if not, all global parcel arrays associated with that parcel

are zeroed out within that processor. At the end of the time step, a reduction back

to the root processor occurs and the root processor cycles through all the parcels and

removes those that have evaporated or left the physical domain and reorganizes the

global arrays.

Figure 13 shows a simplified diagram of a parcel crossing a block boundary. As-

suming that Block 1 and Block 2 are located in different processors, Processor 1 and

2 respectively, the gather-scatter communication algorithm can be described in the

following steps:

1. At t = t0, the root processor sends out all the information, position, velocity,

temperature, breakup information, etc, about the parcel to all processors.
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(a) t = t0 Parcel located in the
interior of Block 1.

(b) t = t1 Parcel located in the
interior of Block 1.

(c) t = t2 Parcel located in the
ghost layer of Block 1.

(d) t = t3 Parcel located in the
interior of Block 2.

Figure 13 Lagrangian parcel traversing a block boundary.

2. All processors check to see if the parcel is in their physical domain.

3. Processor 1 determines the parcel is located within its bounds and numerically

integrates the parcel to the next time step, while Processor 2 zeros out all the

values in its global array associated with the parcel.

4. Processor 1 and Processor 2 send all array information back to the root proces-

sor.

5. The previous steps are repeated at t = t1, t = t2 and t = t3. At the end of t = t2

the parcel moves into the ghost layer of Block 1 so at the beginning of t = t3,

Processor 1 will no longer flag the parcel as being located within its domain;

instead, Processor 2 will begin to integrate that parcel.

One important thing to note about this communication method is parcel commu-

nication occurs at every time step even if parcels have not moved across processor

boundaries.
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The point-to-point communication method differs significantly in that no global

arrays are maintained and communication of parcel array information only occurs

if parcels cross processor boundaries. Each block maintains several doubly linked

lists of parcels: one main list for parcels within the block, and a buffer list for each

block with which communication occurs. The doubly linked list, implemented using

modern Fortran capabilities of pointers and derived types, allows for easy insertion

and removal of parcels as they evaporate, exit the domain or need to be communicated.

When a parcel is in the interior cells of a block it resides in the main linked list, but

if the parcel moves into a ghost layer during temporal integration it is moved into a

buffer list corresponding to the block to which parcel will be sent. At the end of each

time step all processors that could possibly have parcels communicate with each other

the amount of data that will be sent to one another. This handshake occurs at every

time step regardless of the number of parcels to be sent. If the size of the data to

be sent is non-zero, the sending and receiving parcels prepare buffers and use direct

communication calls via MPI to transfer the data. If neighboring blocks reside in the

same processor, a simple memory copy is used rather than MPI. The communication

buffers are then unpacked and the parcels added to the new block’s main linked list.

This process can also be described for the simple diagram in Fig. 13, again as-

suming that Block 1 resides in Processor 1 and Block 2 inside Processor 2.

1. At t = t0 and t = t1, the parcel is in the main list of Block 1. Block 1 integrates

the parcel in time. At the end of each step the handshake step occurs with

Block 1 and Block 2 telling each other that there is nothing to be exchanged.

No further data is communicated and Block 2 has no knowledge of the parcel.

2. At the end of t = t3, the parcel is located in the ghost layer of Block 1 which

corresponds to an interior cell of Block 2. Block 1 moves the parcel from the

main list to the list that will be sent to Block 2. During the handshake, Block 1

indicates to Block 2 that data will be sent; the size of the data depends on the
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type of parcel that is crossing the boundary, i.e., whether it is an evaporating

parcel, whether it has breakup information, etc. Since the blocks are on different

processors, buffers are prepared and the data is communicated. Block 2 unpacks

the data and places the parcel into its main list.

3. At t = t4, the parcel is in the main list of Block 2. Block 2 integrates the parcel

in time. The handshake occurs and indicates no data will be communicated

between Blocks 1 and 2.

The total amount of data that is communicated at each time step is significantly less

with the point-to-point algorithm compared to the gather-scatter approach. This is

amplified further for breakup simulations. With liquid jet-in-crossflow simulations

only a small number of parcels in the entire domain are in the jet regime at a single

time. For the simulations conducted in this study (see Chapter 6 for details), only 1

to 2% of all parcels in the domain are actively undergoing breakup at any give time.

With the gather-scatter method, arrays for all the extra jet-in-crossflow information,

initial diameter, initial Weber number, breakup times, etc., must be communicated for

all parcels even if they are zeroed out. The point-to-point method only communicates

this information when needed. Additionally, even within a block once a breakup parcel

no longer needs the extra information, since it has undergone breakup or reached a

minimum size, the extraneous information is deallocated for that parcel and thus no

longer stored.

Even with the point-to-point communication algorithm, load balancing for Eulerian-

Lagrangian simulations is made difficult based on the uneven physical spacing of the

parcels in the domain. This is especially true for simulations involving injectors since

parcels will generally be clustered there. To mitigate this, the user should attempt to

create smaller blocks with fewer number of Eulerian cells near the injector to balance

the Eulerian vs. Lagrangian load. Also, after the simulation has been run for some

time, the spatial distribution of the parcels is incorporated into the load balancing
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algorithm to rebalance the simulation across processors. Currently this does not oc-

cur during run time thus it requires the user to stop the simulation, rebalance and

restart.

Scaling tests using millions of particles uniformly distributed in isotropic turbu-

lence have been carried out and showed essentially linear scaling on thousands of

cores [69]. The same test was conducted on various machines, all showing the ideal

speedup. It was not possible to run this test case for that number of particles using

the gather-scatter approach due to memory limitations.

4.10 Static mesh refinement

All the numerical methods presented is this work are formulated for structured, multi-

block grids. Compared to unstructured grids, structured grids allow for simpler code

structure and easier implementation of higher-order schemes but creating meshes for

complex geometry is significantly more difficult. Clustering grid points in regions of

interest without overly refining areas far away is also more challenging with structured,

multiblock grids due to one-to-one grid point matching requirements. A technique was

developed and implemented to relax the one-to-one grid point matching requirement

across structured blocks allowing for static mesh refinement or coarsening.

There is no restriction is placed on the refinement/coarsening ratio or on the

placement of nodes on the block interfaces. The number of points may or may not

be the same along the interface and the nodes do not have to overlap. In order to

make this possible, the procedure in both blocks must be identical and independent

of the configuration of the neighboring block. This is distinct from other approaches,

which either limit the refinement ratios possible [11, 10] and/or treat the coarse-to-fine

procedure different than the fine-to-coarse procedure [222, 161]. The curent approach

made it relatively simple to incorporate into existing code with minimal changes to

the communication or numerical algorithm routines.

95



x = 0

x = 0

Figure 14 Ghost cell construction/population technique for a standard block-
structured interface.

4.10.1 Preprocessing

The unstructured connectivities between the block interfaces is generated as a pre-

processing step and stored in files for each block. For the structured block interfaces,

a mapping is generated and stored for each neighbor that indicates the alignment of

the computational coordinates. This mapping dictates the order of variable packing

during message passing and are strictly one-to-one. For any unstructured interfaces

in the simulation domain, there may be a one-to-one, one-to-many or many-to-one

mapping. Only the blocks flagged during the grid generation process as having an

unstructured interface require extra information. All other interfaces and blocks are

still treated using the original structured approach.

The implementation of the static algorithm in an existing code needs to be simple

and must retain the original performance of the code. As described previously, the

original code uses a structured, multi-block framework where each grid block is sur-

rounded by at least one layer of ghost cells that exactly match the cells on the interior

of the neighbor block, as shown in Fig. 14. Higher-order scheme requre additional

layers of ghost cells which are built in a similar fashion. At the end of each sub-step
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Restriction

Reconstruction

Figure 15 Structure of the block-unstructured grid containing refinement or coarsen-
ing. Note, the physical boundaries remain unchanged after coarsening, while the ghost
cells are clearly larger and simply extrapolated from the block rather than copied from
the neighbor.

in the time integration routine or after any numerical stabilization, the ghost cells

are updated by communicating the values from the interior cells marked with a bold

outline to the respective ghost layers as indicated by the arrows in Figure 14. These

ghost layers provide the boundary conditions for each block and allow the same nu-

merical method to be used at all interior cells. In contrast, the block-unstructured

topology shown in Figure 15. For the block-unstructured interface, two procedures

are required to populate the ghost cells in Figure 15. Data restriction is the process

of moving information from the fine grid to the coarse grid ghost cells while the data

reconstruction procedure is the process of moving information from the coarse grid to

the fine grid ghost cells [161]. In the current approach, both procedures are treated

the same. The preprocessing procedure uses a spatial tree structure to determine

the point cloud of nearest neighbors to each ghost layer cell involved in the data re-

striction and reconstruction processes. These nearest neighbors are the cell-centers of

the neighboring blocks. Within a block some points may require restriction from the
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neighboring block while some may require reconstruction depending on the topology.

Determining and detecting this is expensive, requiring the intersection of each cell vol-

ume with cells across the interface to be determined and the relative ratio of volumes

to be computed. The expense can be mitigated if the refinement or coarsening ratios

are fixed to known ratios between blocks but this limits the generality and usefulness

of the method. The restriction and reconstruction procedures, which are detailed in

the following section, are performed by the sending block before the communication

phase of each sub-time step, just as the normal ghost cell filling technique. This is

the only change required in the core of the underlying code.

4.10.2 Data restriction and reconstruction for large eddy simulations

Data restriction for large eddy simulations can be completed in three ways: inter-

polation, filtering, and a hybrid method which requires determining the underlying

field. The hybrid approach requires the use of an approximate deconvolution method

(ADM) [112, 204] to determine the unfiltered field on the fine grid and then filter-

ing the resulting field onto the coarse grid. The filtering approach with and without

ADM is attractive but the actual filter size must be known on both the fine and coarse

sides. This is difficult to determine for anisotropic, non-uniform refinements and un-

less the LES is performed with explicit filtering, even if the filter sizes were known,

the form of the filter is not [39]. The interpolation approach is selected here due to

the difficulty and uncertainty in the other approaches. The data reconstruction pro-

cess has two primary methods: interpolation and the ADM with filtering approach.

Similar to data restriction, filtering is a complicated so interpolation is used for data

reconstruction as well.

The approximation of a variable is indicated with (̂·) and the superscripts c and

f indicate the coarse and fine grid respectively, the interpolation approach for data
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restriction and data reconstruction of a Favré-averaged variable, f̃ , yield:

̂̃
f c = L(f̃ f) + E(f̃ c, f̃ f) (226a)

̂̃
f f = L(f̃ c) + E(f̃ f , f̃ c) (226b)

where L() is the interpolation operator. The term E() is the error, the form of

which is unknown but the order of magnitude may be determined, and includes two

components. The first is the error due to the interpolation operator. The second

accounts for the difference between filtered values on the different grids. Here the

error terms are neglected. The interpolation method is chosen such that the error

due to the approximation is of a smaller order than the truncation errors inherent to

the numerical scheme. The second component of the error term requires modeling

and will be investigated in the future.

Numerous forms of the interpolation operator exist. The two methods imple-

mented in the current code and discussed here, inverse distance weighting and weighted

moving least squares, were chosen for their ease of implementation and adaptability

to arbitrary orders of accuracy. This should reduce the influence of the neglected

error terms.

4.10.2.1 Inverse Distance Weighting

Inverse distance weighting (IDW) is a general class of interpolation methods where

points nearest the point of interest contribute more to the interpolation value than

points far away. These methods are often also called Shepard’s methods are well stud-

ied [3, 171, 194]. The method generates a continuous function that is well-bounded

by the underlying data used. However, it is not as efficient as other approaches and

suffers from isotropy in it’s weighting due to dependance only on distance between

points and the success of the method depends entirely on careful selection of the

parameters [3]. Advantages of this method include the fact that it is non-oscillatory,

inexpensive, and simple to implement. The interpolated value is computed at a point
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x0 using N neighboring points [194]:

L (u (x0)) =
N∑

i=0

wi(xi)∑N
i=0wi(xi)

ui (xi) (227)

where

wi(x) =
1

(|x0 − xi|+ ǫ)p
(228)

are the weights based on the distance from the point of interest located at x0 to the

point in the support domain located at xi. The ǫ is a small number added to the

distance to ensure there is no singularity. The exponent p is a fall-off parameter used

to further localize the weighting. Usually the fall-off parameter is set to two [3], but

any value is permitted.

4.10.2.2 Weighted Moving Least Squares

The weighted moving least squares (MLS) interpolation method gives an interpolated

value with:

L (u (x0)) =
N∑

i=0

wi (xi) ui (xi) (229)

where the weights, wi, are determined by:

wi (xi) = Wi (xi) p (xi)
T A (xi)

−1 p (xi) (230a)

A (x) =

N∑

i=0

Wi (xi) p (xi) p (xi)
T (230b)

The basis function p (x) can be chosen freely. Here a polynomial basis of a user-

specified order is used. For example a second-order polynomial basis is p (x) =

[1, x, y, z, x2, xy, xz, y2, yz, z2]. The weighting functions Wi(x) can likewise be chosen

freely, including the use of the IDW weights from the previous section. All results

with MLS use a Gaussian weighting function.

Both the inverse distance weighted and weighted least squares interpolation meth-

ods require the user to specify the neighborhood size around the nearest neighbor

point. For the IDW method, this parameter can range from zero to the number of
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points in the neighboring block. If zero is chosen, this puts the nearest neighbor value

into the ghost cell and no interpolation is performed. For the MLS, the selection of

stencil size has more limitations because the matrix in Eq. (230b) must be invertable

and non-singular. Ideally, for points not near the block boundaries, the stencil size can

be minimally one more than the order of the basis function. However, near corners,

this will be too small and yield a singular matrix. Careful selection of the numeri-

cal matrix inversion technique can minimize problems due to near-singular matrices.

Although relatively slow, singular value decomposition (SVD)-based matrix solution

techniques are the safest way to solve the MLS matrix. The maximum number of

points is again the size of the neighboring block. The stencil size should be kept as

small as possible to minimize smearing of the fields.

This method has been used with success for several different flow conditions and

geometry [72, 199, 104]. Additionally, lagrangian parcels can also be convected across

refinement boundaries.

4.11 Conclusions

This work involved the implementation of many numerical methods and it is im-

portant to highlight unique contributions. The addition of the conservative finite

difference methods inside the existing structured multiblock finite volume framework

provides an example for other researchers interested in extending current CFD codes

with new spatial integration methods. This allows for the reuse of many important

code routines, such as thermodynamics, transport, chemical kinetics, input/output,

etc, that are not directly associated with the spatial integration scheme.

While the concept and implementation of a hybrid compact/WENO finite differ-

ence scheme is not new, the combination of the necessary components, the compact

central scheme in flow regions without discontinuities, the WENO-Z scheme near dis-

continuities, the high-order compact filter for numerical stabilization and adaptive
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filter near discontinuities, the computation of viscous terms specifically to avoid odd-

even decoupling and high-order SSPRK(5,4) time integration scheme, is unique. In

addition, the application of such a solver to multiphase, reacting flow on non-uniform

grids, which will be shown in Chapter 6, to the author’s knowledge, has not been

previously demonstrated.
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CHAPTER V

NUMERICAL SCHEME COMPARISON

The central and upwind finite volume and finite difference schemes implemented in the

LESLIE code are tested on a variety of non-reacting and reacting test cases in order to

verify their implementation and compare their performance. In cases where analytic

solutions are available errors are explicitly computed and performance is based on

error versus computational effort. For other cases only qualitative comparisons are

possible between the implemented schemes and against other published studies.

5.1 Comparison of numerical schemes on two-dimensional
non-reacting test cases

To illustrate the differences between cost and accuracy of the numerical methods

presented, three simple test cases are completed. Both use the Euler equations so

only highlight differences in the inviscid flux schemes.

5.1.1 Linear Euler system

This test case is a special case where the Euler equations are linear and is useful for

testing linear scheme convergence [244]. The initial conditions are





ρ (x, y, 0) = 1 + 1
2
sin (π (x+ y)) ,

u (x, y, 0) = 1,

v (x, y, 0) = 1,

p (x, y, 0) = 1,

(231)
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using periodic boundary conditions. The exact solution is





ρ (x, y, t) = 1 + 1
2
sin (π (x+ y − 2t)) ,

u (x, y, t) = 1,

v (x, y, t) = 1,

p (x, y, t) = 1,

(232)

Here the test case is run until t = 0.2 s. In a finite volume formulation, cell-averaged

values are stored rather than point-wise values. If we assume rectangular cells (in

2D) and alignment of the physical x, y with computational coordinates i, j such that

x(i) and y(j) the exact solution is

ρ (xi, yj, t) =
1

Ai,j

∫ x
i+1

2

x
i−1

2

∫ y
j+1

2

y
j− 1

2

1 +
1

2
sin (π (x+ y − 2t)) dxdy (233)

evaluating the integral

ρ (xi, yj, t) =
1

Ai,j

{
Ai,j +

1

2π2
[ − sin

((
xi− 1

2
+ yj− 1

2
− 2t

)
π
)
+

sin
((

xi+ 1
2
+ yj− 1

2
− 2t

)
π
)
+

sin
((

xi− 1
2
+ yj+ 1

2
− 2t

)
π
)
−

sin
((

xi+ 1

2
+ yj+ 1

2
− 2t

)
π
)]}

(234)

where the cell area is Ai,j =
(
xi+ 1

2
− xi− 1

2

)(
yj+ 1

2
− yj− 1

2

)
. A calorically perfect

gas with a constant specific heat ratio, γ = 1.4, is used, i.e., the total energy is

E = p/ (γ − 1) + 1
2
ρ (u2 + v2) and the equation of state, T = p/ρ.

Table 20 showing the L2 errors and orders of accuracy for this test case show each

scheme converges at the expected rate. The predictor-corrector FV scheme is run

with the SSPRK(2,2) time integration scheme at CFL values of 1.0, 0.5, 0.25, 0.125,

and 0.0625 for each of the grids in increasing grid size; the remaining schemes use the

SSPRK(5,4). The time steps for this case are all sufficiently small so that overall error
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Table 20 L2 errors and orders of accuracy for density for the linear Euler test case

Predictor-Corrector FV O(2) MUSCL FV Compact CART66 FV Compact O(6) WENO-Z O(5)
h Error Order Error Order Error Order Error Order

2/20 7.10× 10−2 – 1.58× 10−2 – 4.09× 10−5 – 4.08× 10−5 – 2.39× 10−4 –
2/40 1.82× 10−2 1.96 3.24× 10−3 2.29 1.85× 10−7 7.79 1.85× 10−7 7.79 7.08× 10−6 5.08
2/80 4.57× 10−3 2.00 8.22× 10−4 1.98 1.20× 10−9 7.27 1.19× 10−9 7.27 2.21× 10−7 5.00
2/160 1.14× 10−3 2.00 2.21× 10−4 1.90 1.38× 10−11 6.43 1.38× 10−11 6.44 6.91× 10−9 5.00

Table 21 Scaled CPU time for the linear Euler test case

Predictor-Corrector FV MUSCL FV Compact CART66 FV Compact FD O(6) WENO-Z FD O(5)
h CPU Time CPU Time CPU Time CPU Time CPU Time

2/20 1.00 5.85 3.17 1.99 13.40
2/40 14.55 75.06 37.12 24.22 191.07
2/80 210.43 1064.00 503.13 324.62 2846.05
2/160 3533.40 16928.77 7851.97 4893.78 45649.29

is attributed to the spatial scheme alone. CPU time and error are both important but

efficiency is the best way to compare numerical methods. Efficiency in the context of

time-dependent flow problems is measured by comparing error against CPU time for

simulations run to the same physical time, seen here for the linear Euler test case in

Figure 16. The closer each data point is to the origin the more efficient the scheme.

For this case the Compact FD O(6) scheme is clearly the most efficient though because

the test case is linear, the CompactCART66 FV almost matches the performance

of the finite difference scheme. The increased cost is incurred during calculation of

primitive variables at the cell faces needed in each computational direction to compute

the fluxes. This operation is not necessary in the finite difference framework since

fluxes are computed at grid points and reconstructed at the “cell” faces.
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Figure 16 Computational efficiency comparison between schemes for the linear Euler
equation test case, (· ·+ · ·) Predictor-Corrector FV, (- · N · -) MUSCL FV, (—⋆—)
WENO-Z FD O(5), (— —) CompactCART66 FV, (− − � − −) Compact FD O(6)

5.1.2 Passive scalar convection

Another linear test of scheme performance is convection of a passive scalar. The

initial conditions are 



u (x, y) = 1

v (x, y) = 1

T (x, y) = 1

P (x, y) = 1

Y1 (x, y) = exp [−r2/ (2σ2)]

Y2 (x, y) = 1− Y1

(235)

where r2 = x2+y2 and σ = 1 on the domain [−5, 5]× [−5, 5] using periodic boundary

conditions. The simulation is run until the vortex convects back to its original location

at t = 10 s.

The errors and convergence rates are shown in Table 22. Again for this test all

schemes converge at their maximum rate; the CompactCART66 FV scheme is able

to converge at sixth-order.
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Table 22 L2 errors and orders of accuracy for density for the passive scalar convection
test case

Predictor-Corrector FV O(2) MUSCL FV Compact CART66 FV Compact FD O(6) WENO-Z FD O(5)
h CFL Error Order Error Order Error Order Error Order Error Order

10/20 0.8 8.94× 10−2 – 3.48× 10−2 – 1.38× 10−3 – 1.39× 10−3 – 9.48× 10−3 –
10/40 0.4 3.25× 10−2 1.46 7.42× 10−3 2.23 2.72× 10−5 5.66 2.71× 10−5 5.67 4.84× 10−4 4.29
10/80 0.2 8.86× 10−3 1.88 1.06× 10−3 2.81 6.60× 10−7 5.36 6.59× 10−7 5.36 1.62× 10−5 4.90
10/160 0.1 2.23× 10−3 1.99 1.36× 10−4 2.97 3.57× 10−8 4.21 3.56× 10−8 4.21 5.15× 10−7 4.98

Table 23 Scaled CPU time for the passive scalar convection test case

Predictor-Corrector FV O(2) MUSCL FV Compact CART66 FV Compact FD O(6) WENO-Z FD O(5)
h CFL CPU Time CPU Time CPU Time CPU Time CPU Time

10/20 0.8 1.00 2.06 4.84 1.96 12.59
10/40 0.4 15.59 28.11 62.34 23.89 183.72
10/80 0.2 254.15 393.58 890.45 327.54 2824.13
10/160 0.1 4330.47 6271.96 13990.67 5152.11 44906.38
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Figure 17 Computational efficiency comparison between schemes for the passive scalar
convection test case, (· ·+ · ·) Predictor-Corrector FV, (- · N · -) MUSCL FV, (—⋆—)
WENO-Z FD O(5), (— —) CompactCART66 FV, (− − � − −) Compact FD O(6)
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Figure 18 Cell-center contours of Y1 on the [80× 80] grid using the predictor-corrector
FV scheme (left) and the predictor-corrector FV scheme with LEMLES (right).

This test can also be used to demonstrate one of the deficiencies of the LEMLES

model, namely the numerical diffusion due to the splicing and re-gridding process.

Figure 18 compares contours of Y1 after one convective flow through time using the

predictor-corrector FV scheme and the predictor-corrector FV scheme with LEMLES.

The LEMLES solution is much more diffuse especially in the direction 90◦ off the

convection direction. This non-grid-aligned convection test case is in fact the worst

case scenario for LEMLES due to the nature of the LEMLES splicing flux ordering

and first-in, first-out algorithm.
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5.1.3 Two-dimensional vortex convection

An isentropic convecting vortex is used to test convergence on a non-linear problem.

The initial conditions are [240]





u (x, y) = 1− y
ε

2π
e

1
2(1−(x2+y2)),

v (x, y) = 1 + x
ε

2π
e

1
2(1−(x2+y2)),

T (x, y) = 1− (γ − 1) ε2

8γπ2
e1−(x

2+y2),

(236)

with ε = 5 and on the domain [0, 20]×[0, 20] using periodic boundary conditions. The

simulation is run until the vortex convects back to its original location at t = 20 s.

The size of the domain is chosen to be large enough that boundary effects do not

significantly increase the error or reduce the convergence at the highest resolution

when using the most accurate scheme.

The errors and convergence rates are shown in Table 24. All of the finite volume

schemes converge at second order for this non-linear case, though the difference in the

magnitude of the errors is quite substantial. The finite difference schemes converge

at orders greater than two demonstrating their efficiency advantages for non-linear

problems as compared with this class of finite volume schemes. The WENO-Z scheme

is much less efficient than the compact scheme for smooth flows which clearly illus-

trates the need for the hybrid approach of combining the two schemes for flows with

discontinuities. Canonical test cases verifying the operation of the upwind (MUSCL

and WENO-Z) schemes for flows with discontinuities are provided in Section 5.2.

5.2 Verification and validation of upwind schemes

Several test cases are provided here for the verification and validation of the upwind

solvers for both finite volume and finite difference formulations used in the simulations

presented in this paper.
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Table 24 L2 errors and orders of accuracy for density for the 2D vortex test case

Predictor-Corrector FV O(2) MUSCL FV Compact CART66 FV Compact FD O(6) WENO-Z FD O(5)
h CFL Error Order Error Order Error Order Error Order Error Order

20/20 0.8 7.95× 10−3 – 7.81× 10−3 – 1.18× 10−3 – 9.65× 10−4 – 1.54× 10−3 –
20/40 0.4 3.55× 10−3 1.16 5.16× 10−3 0.60 1.77× 10−4 2.73 9.91× 10−6 6.61 1.72× 10−4 3.16
20/80 0.2 9.85× 10−4 1.85 9.88× 10−4 2.39 4.45× 10−5 1.99 1.07× 10−7 6.54 8.08× 10−6 4.41
20/160 0.1 2.47× 10−4 2.00 2.47× 10−4 2.00 1.11× 10−5 2.00 1.56× 10−9 6.10 2.80× 10−7 4.85

Table 25 Scaled CPU time for the 2D vortex test case

Predictor-Corrector FV O(2) MUSCL FV Compact CART66 FV Compact FD O(6) WENO-Z FD O(5)
h CFL CPU Time CPU Time CPU Time CPU Time CPU Time

20/20 0.8 1.00 4.01 6.38 3.97 34.45
20/40 0.4 21.74 65.99 101.00 62.76 519.98
20/80 0.2 394.83 799.35 1452.85 917.37 7992.04
20/160 0.1 5832.54 11415.35 21229.69 13179.65 174778.50
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Figure 19 Computational efficiency comparison between schemes for the 2D vortex
convection test case, (· ·+ · ·) Predictor-Corrector FV, (- · N · -) MUSCL FV, (—⋆—)
WENO-Z FD O(5), (— —) CompactCART66 FV, (− − � − −) Compact FD O(6)
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5.2.1 Shock-entropy wave interaction test case

This test case consists of an one-dimensional shock propagating into a sinusoidal

entropy wave [197]. A region of high frequency and amplitude oscillations occur

immediately after the shock passes through. The high frequency oscillations decay

further downstream of the shock, forming a region of long wavelength oscillations.

These eventually steepen into shocks forming an N-wave pattern. To simulate this

problem correctly, a method that accurately captures short wavelength smooth flow

features as well as computing the shock propagation at the correct speed is needed.

This makes this seemingly simple test particularly useful for evaluating the imple-

mentation and performance of numerical methods that will be used for simulations

of shock/turbulence interaction.

The one dimensional domain, x ∈ [0, 10] is discretized by 400 computational points

with an initial shock positioned at x = 2. The initial conditions are given by:





ρ = 3.857143,

u = 2.62936,

p = 10.33333

x < 2,





ρ = 1 + 0.2 sin 5x,

u = 0,

p = 1

x ≥ 2 (237)

The left boundary condition is set to supersonic inflow with post-shock conditions

and the right boundary at x = 10.0 is a supersonic outflow.

The density profile at t = 1.872 plotted in Fig. 20 shows the hybrid Compact

FD O(6) / WENO-Z FD O(5) method most accurately captures the location and

amplitude of the oscillations. Note that the reference solution is computed using the

WENO FD O(9) scheme with 10000 points.
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Figure 20 Density profile at t = 1.872 for several selected numerical methods.

5.2.2 Shock-vortex interaction

In this two-dimensional test case an isentropic vortex convects through a stationary

Mach 1.1 shock [86]. The initial conditions of the vortex are





u′ = ετ expα(1−τ2) sin θ

v′ = −ετ expα(1−τ2) cos θ

T ′ = − (γ−1)ε2 exp(2α(1−τ2))
4αγ

S ′ = 0

(238)

where entropy is defined as S = ln (P/ργ), the equation of state is T = P/ρ and the

non-dimensional vortex radius is described by τ = r/rc and r =
√

(x− xc)
2 + (y − yc)

2.

The stationary shock located at x = 0.5 has the following conditions,

(ρ, u, v, p) =





(
1, 1.1

√
γ, 0, 1

)
x < 0.5

(1.169, 1.1134, 0, 1.245) x ≥ 0.5
. (239)

The simulation is conducted on a domain of size [0, 2]× [0, 1]. As is done in [86], the

vortex strength parameter, ε, is set to ε = 0.3, the vortex radius is taken as rc = 0.05

and the vortex decay parameter, α is set to α = 0.204.

The grid used for this test has 251 × 101 grid points with uniform spacing in

the y dimension and clustered around x = 0.5 using a Roberts transformation (see
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transformation three, Eq. (5.221) in [210]). The top and bottom boundary conditions

are periodic and the left boundary is set as a supersonic inflow and the Neumann

outflow boundary conditions are imposed on the right side.

A constant time step of 5× 10−4 is used for the MacCormack/MUSCL FV simu-

lation which uses second-order accurate predictor-corrector time integration. A con-

stant time step of 1×10−3 is used in combination with the Compact CART66/MUSCL

FV and Compact O(6)/WENO-Z O(5) FD as these spatial schemes are combined with

the SSPRK(5,4) time integration scheme [176].

Both of the hybrid finite volume schemes use ǫρ = ǫP = 0.001 and Sth
ρ = Sth

P = 0.1

as sensor parameters, described in Section 4.5, used to switch between the central and

upwind scheme. The upwind finite volume scheme uses second-order accurate MUSCL

reconstruction, with characteristic wave speeds computed using Roe-averaged vari-

ables, and an HLLC approximate Riemann solver. At large discontinuities the re-

construction is forced to first order and the monotonized-central limiter is used to

ensure the reconstructed variables are TVD. The compact CART66 FV scheme uses

an eighth-order compact filter described in Section 4.8 with α = 0.49.

For the finite difference simulations, ǫρ = ǫP = 0.01. The power parameter for

the finite difference WENO-Z scheme is set to p = 1, ǫ = 1× 10−5, Roe flux splitting

is used for genuinely nonlinear characteristics and the Local Lax-Friedrichs flux for

linearly degenerate characteristics.

Pressure contours at t = 0.6 are shown in Fig. 21. The finite difference solution

captures the shock and maintains the vortex with the least amount of dissipation.

There is less noise in the solution with the hybrid finite difference solution as well.

5.2.3 Double Mach reflection test case

This test case, first introduced by Woodward and Colella [237], features a Mach 10

shock in air initially at a 60◦ angle with a reflecting wall and passing through the
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Figure 21 Ninety pressure contours from 1.19 to 1.37 of the 2D shock-vortex interac-
tion problem at t = 0.6 using the Predictor-Corrector / MUSCL finite volume scheme
(left), the CompactCART66 / MUSCL finite volume scheme (middle) and the Compact
O(6) / WENO-Z O(5) finite difference scheme (right)

point x, y = 1/6, 0. The specific heat ratio is γ = 1.4 and the exact initial conditions

are:




ρ

u

v

p




=








8

8.25 cosπ/6

−8.25 sin π/6

116.5




x < 1/6 + y tan−1 π/3




1.4

0

0

1




x ≥ 1/6 + y tan−1 π/3

(240)

on a domain of [0, 4]×[0, 1]. The left hand side and bottom region between x = [0, 1/6)

boundary conditions are supersonic inflows set to the post-shock conditions. The right

hand boundary is a supersonic outflow. The bottom part of the domain, x ≥ 1/6, is a

reflective slip wall. The top boundary is time-dependent and set to the exact motion

of initial shock wave.

Three hybrid numerical methods are tested with similar parameters used as with

the shock-vortex test case. Each method is tested on three different grids: 100× 400,

200 × 800 and 400 × 1600 cells with uniform spacing in the x and y directions.
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Figure 22 Thirty density contours from 1.731 to 20.92 of the double Mach reflection
problem at t = 0.2 using three schemes, the Predictor-Corrector / MUSCL finite volume
scheme (left column), the CompactCART66 / MUSCL finite volume scheme (middle
column) and is the Compact O(6) / WENO-Z O(5) finite difference scheme (right
column) on three different grid resolutions ∆x = ∆y = 1/100 (top row), ∆x = ∆y =
1/400 (middle row) and ∆x = ∆y = 1/800 (bottom row).

As the numerical dissipation decreases, either by using a higher-order scheme or

increasing the grid resolution, the number of visible features in the region around the

double Mach stems increases. These results are similar to those observed by Castro,

Costa and Don [19] who tested WENO-Z finite difference schemes at different orders

of accuracy and grid resolutions. Comparing the current results in Figure 22 to

Figure 10 of Castro et al. [19]), qualitatively the hybrid CompactCART66/MUSCL

FV and Compact O(6)/WENO-Z O(5) FD density contours look similar to the pure

WENO-Z O(9) and O(11), respectively, which highlights the advantages of using a

low dissipation central scheme away from discontinuities.
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5.2.4 Shock-mixing layer interaction

The final test case used to evaluate and compare the hybrid central/upwind schemes

is the case of an oblique shock interacting with a viscous shear layer [240]. A 12◦

oblique shock enters the rectangular 200× 40 domain from the upper left corner and

interacts with the incoming spatial shear layer with a convective Mach number

Mc =
u1 − u2

c1 + c2
= 0.6. (241)

The mean inflow profile at the left boundary is

u = 2.5 + 0.5 tanh (2y) (242)

which gives an upper stream velocity u1 = 3 and a lower stream velocity of u2 = 2.

Time-dependent velocity fluctuations are added to the v component of the inflow

velocity according to

v′ =

2∑

k=1

ak cos (2πkt/T + φk) exp
(
−y2/b

)
(243)

where the period T = λ/uc, the wavelength λ = 30, b = 10 and

uc =
u1c2 + u2c1
c1 + c2

= 2.68 (244)

The coefficients for each mode are a1 = a2 = 0.05, φ1 = 0 and φ2 = π/2.

The bottom boundary is a reflective slip wall, the right side boundary is a su-

personic outflow and the upper boundary is set to the post-oblique shock conditions.

These conditions, and conditions for other regions in the domain, are given in the

original reference [240] and repeated here in 26 for completeness. The reference den-

sity is the average of the upper and lower stream densities and the reference pressure

is,

pref =
(ρ1 + ρ2) (u1 − u2)

2

2
(245)

The Prandtl number is set as 0.72, the specific heat ratio γ = 1.4 and the Reynolds

number is 500. The viscosity is computed using Sutherland’s law.
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Table 26 Flow properties for the shock-mixing layer test case [240]

Property (1) (2) (3) (4) (5)

u-velocity 3.0000 2.0000 2.9709 2.9792 1.9001
v-velcoity 0.0000 0.0000 -0.1367 -0.1996 -0.1273
θ (◦) 0.0000 0.0000 2.6343 3.8330 3.8330
Density, ρ 1.6374 0.3626 2.1101 1.8823 0.4173
Pressure, p 0.3327 0.3327 0.4754 0.4051 0.4051
Sound speed, c 0.5333 1.1333 0.5616 0.5489 1.1659
Mach number, M 5.6250 1.7647 5.2956 5.4396 1.6335

Note: (1) upper inflow stream, (2) lower inflow stream, (3) upper stream
after oblique shock, (4) upper stream after expansion fan, (5) lower stream
after shock wave

The simulations were conducted on a 320 × 80 cell grid with uniform spacing in

the x-direction and stretching in the y-direction using,

y =
Ly

2

sinh (byη)

sinh (by)
(246)

where Ly = 40, by = 1 and η varies uniformly from -1 to 1.

The upwind finite volume scheme settings used in combination with the predictor-

corrector finite volume scheme are same as those used with the CompactCART66

finite volume scheme.

For the finite difference calculations the WENO-Z scheme with the power param-

eter q = 1 wherever the upwind scheme is switched on. Fluxes are split using the

Roe scheme with the entropy fix and ε = 1 × 10−6. The hybrid sensor parameters

are The central scheme is the compact O(6) method with the eighth-order compact

filter, α = 0.49

The predictor-corrector finite volume scheme is paired with a second-order explicit

time integration method and the time step is set at ∆t = 0.05. The other two hybrid

methods again employ the SSPRK(5,4) method [176] with a time step of ∆t = 0.1.

The results for all three simulations are shown in 23 at t = 120. The higher-

order schemes show less dissipation at the oblique shock and less diffuse vortices
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(a) Predictor-Corrector O(2) / MUSCL finite volume
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(b) CompactCART66 / MUSCL finite volume
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(c) Compact O(6) / WENO-Z O(5) finite difference

Figure 23 Ninety pressure contours from 1.19 to 1.37 of the 2D shock-mixing layer
interaction problem at t = 120.

downstream. The solutions generated by the CompactCART66/MUSCL FV scheme

and the compact O(6)/WENO-Z O(5) FD scheme for this case are more similar to

one another than the other test cases previously discussed. As opposed to those cases,

this shock-mixing layer case involves physical viscosity at a relatively low Reynolds

number which will mask numerical viscosity when the scheme-related dissipation is

small.
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5.3 One-dimensional laminar flame

To verify that all schemes work properly for reacting flows, a one-dimensional laminar

flame was simulated at three different grid resolutions. The inlet conditions were

methane-air at φ = 0.7 at an unburned temperature of Tu = 800 K. These conditions

are the same as the premixed slot burner studied by Sankaran and coworkers [183,

182, 181, 184, 185].

5.3.1 Chemical mechanism

The chemical mechanism used for the current simulations was a reduced mechanism

developed from the GRI-1.2 made of 13 species [182]: H2, H, O, O2, OH, H2O, HO2,

CH3, CH4, CO, CO2, CH2O and N2.

The mechanism in CHEMKIN-II CKWYP format was obtained from the au-

thors [121] and implemented via the Cantera library. Modifications to the base Can-

tera library were carried out to allow any CHEMKIN-II CWKYP Fortran files to

be used for both standalone Cantera simulations or using LESLIE. In addition, the

performance of the methane-air mechanism used here was improved by reordering

internal operations to remove costly divisions.

5.3.2 Thermodynamic and transport properties

Thermodynamic properties for individual species were computed using standard seven

parameter CHEMKIN/NASA polynomials fits for constant pressure specific heat and

enthalpy. Mixture properties were computed based on local mass fractions and molec-

ular weights.

Transport properties were computed using a power law approach for viscosity,

thermal conductivity related through the Prandtl number and mass diffusion coeffi-

cients are based on constant, but not equal species-specific Lewis numbers

µ = µ0

(
T

T0

)β

, λ =
µCp

Pr
, Dk =

µ

ρLekPr
(247)
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Table 27 Transport property constants and reference values

Parameter Current Simulation Reference [201]

T0 (K) 298 298
µ0 (kg/m-s) 1.87384× 10−5 1.82664× 10−5

Pr 0.703 0.708
β 0.665 0.7

This approach is similar to that used by Smooke and Giovangigli [201] for lean pre-

mixed flames with the viscosity computed directly via the power law instead of the

thermal conductivity. Constants and reference values µ0, T0 and Lek are tuned for the

given system rather than use previously published values. A one-dimensional flame

was computed in Cantera [68] using the same chemical mechanism that will be used

for the full simulation but with mixture-averaged transport properties. The reference

temperature was selected to be 298 K and the reference viscosity and exponent were

determined using a non-linear least squares fitting procedure based on all points from

the one-dimensional simulation. The Prandtl number was computed in a similar way

using the tuned power law viscosity and the simulation data for specific heat and

thermal conductivity. Finally the species Lewis numbers were fit using the same least

squares method. The constants and reference values used in the current simulations

are given in Table 27 as well as values from Smooke and Giovangigli for comparison.

Similarly, species Lewis numbers are provided in Table 28.

The effect on flame speed and flame thickness for one-dimensional laminar flame

simulations in Cantera are shown in Table 29. It should be noted that the diffusion

velocities are estimated based on the simplified assumption of mass fraction gradients

rather than compute mole fraction gradients similar to Eq. (42). Although using

the tuned parameters provides only a slight improvement over the reference values,

the tuning process is quite simple and fast and as such it is recommended for any

premixed application where simple transport properties are desired.
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Table 28 Species Lewis numbers

Species Current Simulation Reference [201]

H2 0.296 0.30
H 0.177 0.18
O 0.691 0.70
O2 1.072 1.11
OH 0.704 0.73
H2O 0.793 0.83
HO2 1.069 1.10
CH3 0.969 1.00
CH4 0.973 0.97
CO 1.077 1.10
CO2 1.346 1.39
CH2O 1.233 1.28
N2 1.031 1.00

Table 29 Effect of transport property values on flame characteristics

Mixture-Averaged Current Simulation Reference[201]

SL (m/s) 1.815 1.812 1.839
δL (mm) 0.304 0.308 0.310

5.3.3 Initialization and boundary conditions

The solution from the steady-state solution obtained using Cantera was interpolated

to the finite volume/difference grid cell center locations and used as the initial condi-

tions. The full CFD simulation grid size is set to L = 0.03 m, which is approximately

100 times the flame thickness. Since the Cantera simulation provides a constant

pressure solution and the full CFD simulations were conducted using a compressible

code, there were some initial pressure waves that occur in the solution. Partially non-

reflective boundary conditions were imposed at the inlet and outlet. The relaxation

factor at the inlet was set at close to 1/∆t to provide nearly a hard inlet condition

in order to have more control over the inlet conditions. The outlet relaxation factor

constant of Eq. (134), was set at σ = 0.25 regardless of the simulation type.
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5.3.4 Results

The three simulation methods of predictor-corrector FV, CompactCART66 FV, and

Compact O(6) FD were again simulated here on three grid sizes, ∆x = 20µm, ∆x =

60µm, and ∆x = 100µm. The smallest grid size was chosen based on the DNS

solutions of the premixed slot burner simulations referenced earlier. At the coarsest

resolution the density gradient at the flame front required the use of the hybrid

central/upwind scheme to be numerically stable; the upwind scheme was only used at

a few locations at the flame front. The central finite volume schemes were paired with

the MUSCL upwind scheme whereas the finite difference scheme used the WENO-Z

O(5) method. At the ∆x = 60µm resolution, the flame can be computed using the

pure central methods but small pressure oscillations occur with the CompactCART66

FV and Compact O(6) FD methods due to the application of the high-order filter at

the flame front. The use of the hybrid methods at this resolution removed those small

oscillations. The finite difference simulations used the fourth-order accurate method

for computing the viscous terms with modifications to avoid odd-even decoupling

with the “centered” coefficients found in Tables 10 and 11.

Each simulation ran for approximately one flow through time defined as τ = L/SL

and the flame speed and thickness computed using 50 snapshots from the second half

of the flow through time. The flame speed was calculated by finding the location the

temperature (Tu + Tb) /2 at two time instances to determine how far the flame trav-

eled. The flame thickness was computed using the maximum gradient of temperature

δL =
Tb − Tu

dT/dx|max

. (248)

Table 30 shows the results for all the simulations. All schemes on all three grids

match relatively well with the Cantera and reference solutions for both flame speed

and thickness verifying that the schemes were implemented correctly for reacting

flows. The results for the CompactCART66 FV and Compact O(6) FD schemes
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Table 30 Flame speed for 1D laminar methane-air, φ = 0.7, Tu = 800 K simulations
with various numerical methods and grid spacings.

Grid spacing, Flame speed, Flame thickness,
Method ∆x [µm] SL [m/s] δL [mm]

Reference [182] 20 1.800 0.300
Cantera – 1.812 0.308
Predictor-Corrector O(2) FV 20 1.819 0.312
CompactCART66 FV 20 1.811 0.308
Compact O(6) FD 20 1.812 0.309

Predictor-Corrector O(2) FV 60 1.839 0.323
CompactCART66 FV 60 1.812 0.328
Compact O(6) FD 60 1.812 0.324

Hybrid CompactCART66 / MUSCL FV 60 1.812 0.315
Hybrid Compact O(6) / WENO-Z O(5) FD 60 1.812 0.318

Hybrid Predictor-Corrector O(2) / MUSCL FV 100 1.812 0.383
Hybrid CompactCART66 / MUSCL FV 100 1.812 0.337
Hybrid Compact O(6) / WENO-Z O(5) FD 100 1.812 0.360

are very close as expected since in one dimension the finite volume scheme is truly

high-order.

This test case is also useful to evaluate the various methods for computing the vis-

cous terms for finite difference simulations as described in Section 4.6.2. When using

the pure central schemes at the finer resolutions, there are no discernible difference

between the repeated application of the first derivative operator and the improved

methods. In this situation the high-order numerical filter is applied everywhere thus

removing any instabilities [226]. At the coarsest resolution when the hybrid scheme is

used, the numerical filter is disabled at the flame front and the effects of the viscous

term treatment are evident. Figure 24 shows the velocity near the flame front for all

three methods, no odd-even decoupling corrections, odd-even decoupling corrections

with “centered” coefficients and odd-even decoupling corrections with “non-centered”

coefficients. Without the use of the odd-even decoupling corrections small oscillations

appear in the solution. More important than the small oscillations in velocity are the

differences in the post-flame velocity and temperature profiles. Without any odd-even
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Figure 24 Velocity profile upstream of the flame front (left), downstream of the flame
(middle) and post-flame temperature profile for hybrid Compact O(6) / WENO-Z O(5)
finite difference simulations using no odd-even decoupling correction for the viscous
terms (-+-), “centered” coefficients (– –) and “non-centered” coefficients (–N–).

decoupling corrections, the post-flame velocity and temperature are overpredicted.

There are no discernible difference between the results using the different odd-even

decoupling coefficients. The simulation using the “non-centered” coefficients took

27.5% longer than the simulation using the “centered” coefficients exemplifying the

efficiency advantages of the latter coefficients detailed earlier.

5.4 Premixed reacting planar slot burner

The configuration under consideration is a premixed methane-air planar slot burner

physically similar to that given in the original DNS paper [182] with the details re-

peated here for clarity. The preheated methane-air mixture enters the central slot at

an equivalence ratio of 0.7 and a temperature of 800 K. The slot is surrounded on

both sides by the complete combustion products of the inner methane-air mixture.

At this equivalence ratio and temperature the flame thickness based on maximum

temperature gradient is δL = 0.3 mm. These are the same conditions and same chem-

ical mechanism that were presented in the one-dimensional flame test, Section 5.3.

The actual flow conditions tested here correspond with Case C described in [181].

Two of the available numerical methods will be used here: the hybrid predictor-

corrector/MUSCL finite volume scheme and the hybrid compact O(6)/WENO-Z O(5)
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finite difference scheme.

5.4.1 Computational Grid

The domain size slot width, h, is Lx × Ly × Lz = 13h× 12h× 3h with h = 1.8 mm

for this configuration. The structure of the LES grid is similar to the DNS grid; the

cell size is uniform in the streamwise, x, and spanwise, z, directions and stretched

in the crosswise, y, direction. The grid has uniform spacing from the centerline of

the domain to y ± 2.5h then stretched uniformly to the domain edge. The number

of cells in the crosswise direction is selected to limit stretching, ∆yj/∆yj−1 − 1, to

less than 2.5%. Two different grid resolutions will be used to test the performance of

the numerical methods. The finer of the two grids has ∆xLES = 3∆xDNS = 60µm

The total number of cells in the y direction based on the aforementioned stretching

function is 180 so the resulting grid is Nx ×Ny ×Nz = 400× 180× 60 = 4.32 million

cells meaning over a 20 times reduction in total spatial degrees of freedom (DOF)

compared with the DNS finite difference calculation. At this resolution a maximum

of 9% of the turbulent kinetic energy is unresolved at the grid level. The cell size of

the coarser grid is ∆xLES = 5∆xDNS = 100µm which is chosen based on turbulence

resolution requirements; here a maximum of 22% of the turbulent kinetic energy is

unresolved at the grid level. The grid contains of Nx×Ny×Nz = 144×118×36 = 1.02

million cells, an 85 times reduction in DOF compared to the DNS.

5.4.2 Boundary Conditions

The boundary conditions are periodic in the spanwise z direction and subsonic,

partially-reflective boundary conditions based on the works of Yoo, Wang, Trouvé

and Im [241] and Yoo and Im [242] are used at the inflow and outflow in the axial x

direction as well as at the outflow boundaries in the cross stream y direction. The

outflow relaxation coefficient is σ = 0.58 which is the value used by Rudy and Strikw-

erda [174]. They found this relaxation coefficient gave improved results as compared
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with “optimal” value of 0.27 when used in combination with the MacCormack spa-

tial integration scheme. The inflow relaxation coefficient for all variables is set to

slightly less than 1/∆t resulting in a nearly reflective boundary condition. Larger

relaxation coefficients which give greater control over the prescribed inflow variables

are necessary when using time-dependent turbulent inflow.

5.4.2.1 Mean inflow conditions

The mean axial velocity profile was specified analytically as

ũ (0, y, z) =Uc

[
1− 1

2

(
tanh

(
y + ysl
δsl

)
− tanh

(
y − ysl
δsl

))]
+

Uj

[
1

2

(
tanh

(
y + ysl
δsl

)
− tanh

(
y − ysl
δsl

))]
(249)

where Uc = 25 m/s, Uj = 100 m/s, ysl = 0.51 mm and δsl = 0.03 mm. The mean

fluctuating velocity was specified as

ũ′ (0, y, z) =
U ′

2

[
tanh

(
y + ysl
δsl

)
− tanh

(
y − ysl
δsl

)]
(250)

with U ′ = 33 m/s and the other constants the same as the mean velocity. The mean

progress variable profile was specified as

c (0, y, z) = 1− 1

4

[
1− tanh

(
y − yc
σc

)]

×
[
1 + tanh

(
y + yc
σc

)]
(251)

with yc = 1.05 mm and σc = 0.15 mm.

The resulting Reynolds number defined as, Rejet = Ujeth/ν, is 1400. The shear

layer thickness is the same as the flame thickness so at the two different grid res-

olutions there are 5 and 3 cells within the flame thickness/shear layer thickness,

respectively. Many industrial LES grids are much coarser, relative to the flame thick-

ness, than the grids used for this study. For this configuration if the grid resolution

was decreased any further the shear layers would not be resolved which would inhibit

the simulation from even properly capturing the fluid mechanics.
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5.4.2.2 Inflow turbulence

The inflow turbulence for was the same as used in the DNS except it was filtered to

the LES grid. The isotropic turbulence field was initialized with the Passout-Pouquet

spectrum,

E (k) = 16

√
2

π
u′2k

4

k5
0

exp

(
−2

k2

k2
0

)
(252)

with u′ = 25 m/s and l = 1.6 mm. The turbulence was introduced to the domain

with Taylor’s hypothesis with Uconv = 100 m/s.

5.4.3 Initialization

Since both simulations are purely numerical, i.e., there are no representative physical

simulations corresponding to these DNS, the reference slot width does not necessarily

imply a physical slot of the same size. The DNS inflow conditions were carefully

designed to anchor the flame outside the shear layer at the inflow [184]. The flow

was initialized with a triangular flame with an estimated turbulent flame speed of 6

m/s and was simulated for a total of six flow through times, where τU = 0.24 ms,

with statistics taken over the final four flow through times. Both the initialization and

physical simulation time are consistent with the DNS [181]. The finite volume method

was run using the SSPRK(2,2) time integration scheme with constant ∆t = 6µs and

∆t = 10, µs for the grids with ∆x = 60µm and ∆100µm, respectively. The finite

difference scheme was run with the SSPRK(5,4) time integration method with larger

time steps of ∆t = 15µs and ∆t = 25µs.

5.4.4 Results

A contour image of the progress variable c = 0.65, where c is computed as:

c = 1−
YO2

− 0.067

0.224− 0.067
(253)

from both methods was created and compared with the DNS solution in Figure 25.

The results from the finite difference method capture the small wrinkling better than
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the finite volume solution since there is less numerical diffusion. The slot burner walls

are in the images for reference only; in the LES images they are placed at the exact

slot burner width but it is not known if the DNS slot walls are to scale. The domain

size is known to be identical so the images were scaled based on the domain length. In

all simulations, DNS included, there are small contours at c = 0.65 that are leaving

the domain, thus allowing the length of the domain to be determined from these

images. The fact that the flame surface at some time instances leaves the domain

exit boundary may adversely affect the statistics, especially the mean length based on

the c = 0.65 progress variable contour. More accurate statistics would be achieved by

a longer domain though here, at least, the results are post-processed in a consistent

manner with the DNS so the comparisons are still applicable. The mean flame

lengths, shown in Figure 26, for all simulations are shorter than the DNS though the

high-order finite difference solution is closer to the DNS value. The reaction rates in

the core of the jet are over-predicted leading to the reduced flame length.

Figures 27 and 28 compare the results from the finite difference and finite volume

schemes at both grid resolutions for several time and spanwise averaged quantities.

At the x = 0.005 m location, all the LES results are similar with the fine resolution

finite difference solution slightly closer to the DNS data on the centerline. Farther

downstream at x = 0.015 m, the finite difference results are much closer to the DNS

data than the finite volume results on the centerline. The maximum percentage

centerline error for the fine grid finite difference results at this location is the error

on CH4 mass fraction of 21% compared with an error of 40% for the finite volume

solution of the same grid. The centerline density errors for these two solutions are

0.1% and 9.7% on the ∆x = 60µm grid for the finite difference and finite volume

results, respectively.

Figures 29 and 30 show the flame thickness at ∆x = 60µm and ∆x = 100µm

conditioned by the progress variable. The finite difference flame thickness results

128



(a) DNS (b) Finite volume
∆x = 60µm

(c) Finite difference
∆x = 60µm

(d) DNS (e) Finite volume
∆x = 100µm

(f) Finite difference
∆x = 100µm

Figure 25 Instantaneous iso-contours of c = 0.65 for Case C. (DNS flame image
reprinted from [185] with permission)
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compare more favorably to the DNS near the flame front, c = 0.65. At low values of

the progress variable, c ≈ 0.25, the finite volume results are closer to the DNS with the

finite difference results over-predicting the flame thickness. Both LES under-predict

the flame thickness on the coarser of the two tested grids.

These results show that the higher-order method does show some improvements

over the lower-order method but the differences for this more complex case are smaller

than the simpler test cases presented earlier. The previous test cases involved simple

thermodynamics, a single species and no chemical reaction which avoids these possible

sources of additional errors. Both methods yield decent results compared with the

DNS especially considering that the boundary conditions were very close to the flame

itself and the relaxation coefficient were not tuned for either scheme.

5.5 Summary and conclusions

The test cases presented here verify the operation of the numerical methods imple-

mented in LESLIE and show how the scheme choice can affect the results. For simpli-

fied geometries the higher-order methods are preferred for accuracy and efficiency. It

must also be noted that the higher-order methods generally involve more user input

with regards to tunable parameters resulting in schemes that are less robust. Also,

while the finite difference methods have been tested on these and numerous other test

cases not presented here, further verification and validation on other configurations,

especially those with more “industrial” geometry, needs to be completed.
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(a) Finite volume
∆x = 60µm

(b) Finite difference
∆x = 60µm

(c) Finite volume
∆x = 100µm

(d) Finite difference
∆x = 100µm

Figure 26 Averaged contour plots of the progress variable for Case C. The solid lines
show the progress variable contour c̃ = 0.65 with the DNS in black and LES in white.
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Figure 27 Time and spanwise averaged density, temperature and axial velocity at
x = 0.005 m (left), and x = 0.015 m (right), (—) FD ∆x = 60µm, (– –) FD∆x = 100µm,
(—) FV ∆x = 60µm, (– –) FV ∆x = 100µm, (�) DNS (results from [213]).
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Figure 28 Time and spanwise averaged CH4, O2 and H2O mass fractions at x = 0.005
m (left), and x = 0.015 m (right), (—) FD ∆x = 60µm, (– –) FD ∆x = 100µm, (—)
FV ∆x = 60µm, (– –) FV ∆x = 100µm, (�) DNS (results from [213]).
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(a) Finite volume (b) Finite difference

Figure 29 Conditional means of |∇c| δL for Case C on the fine grid, ∆x = 60µm, at
three axial locations;
(·····) Laminar, (—) DNS 1/4, (- - - ) DNS 1/2, (- · -) DNS 3/4, ( ) LES 1/4, (N) LES
1/2, (�) LES 3/4

(a) Finite volume (b) Finite difference

Figure 30 Conditional means of |∇c| δL for Case C on the coarse grid, ∆x = 100µm,
at three axial locations;
(·····) Laminar, (—) DNS 1/4, (- - - ) DNS 1/2, (- · -) DNS 3/4, ( ) LES 1/4, (N) LES
1/2, (�) LES 3/4
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CHAPTER VI

SIMULATIONS OF A CLOSE-COUPLED

NON-PREMIXED FLAMEHOLDER

6.1 Computational setup

The simulations are designed to study the single flame holder test facility located at

the Georgia Tech combustion lab. The facility consists of a natural gas preburner, a

pretest flow conditioning section and the flameholder/test section. The maxmimum

test section inlet velocities and temperatures were 250 m/s and 1150 K, respectively.

Optical access was available at a few locations upstream of the bluff body inside

the test section and all axial locations downstream of the bluff body, but not at the

preburner. The top and bottom walls were water cooled and the front and rear quartz

windows were air cooled. Complete details of the test rig and instrumentation can be

found elsewhere [33].

6.1.1 Combustor Geometry and Grid

The grid used for these studies contains 10.9 million cells split into 2356 structured

blocks with refinement near all no-slip walls and the bluff body trailing edge with

the block configuration shown in Figure 31. In the boundary/shear layers, ∆xmin =

Figure 31 Multiblock structured grid containing 10.9 million cells split over 2356
blocks.

∆ymin = ∆zmin = 0.254 mm which is approximately 10 − 20 η based on estimates
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using ksgs. Figure 32 shows the resolved turbulent kinetic energy spectrum at a point

in the shear layer one diameter aft of the bluff body trailing edge, which confirms

that the grid resolution is acceptable by reasonably recovering an inertial range [148].

The entire physical domain from the exit of the preburner to the end of the test

section, shown in Fig. 33a, is simulated in order to capture longitudinal acoustic

modes, although for this particular rig experimental data suggests a lack of coupling

between the large scale BVK fluctuations and the combustion chamber acoustics

[33, 120]. The bluff body has a length 203.2 mm long, a height D = 47.625 mm, a

spanwise depth of 76.2 mm, and an elliptical leading edge. The coordinate system

is defined such at x is in the axial direction, y in the vertical direction and z in the

spanwise direction with the origin in the center on the combustor centerline at the

bluff body trailing edge. The test section height is 152.4 mm resulting in a blockage

ratio of 31.25%. The only differences in the experimental and computational domains

is the shape of the preburner exit. The experimental preburner is circular whereas

the computational grid is rectangular in order to simplify the creation and maintain

the quality of the structured multiblock grid. The shape difference is not expected

to alter boundary conditions significantly especially in light of the uncertainty in the

specification of boundary conditions explained later.

6.1.2 Boundary and Flow Conditions

The inflow boundary conditions are approximated from experimental data and set

via an iterative process described in the next section. The nominal inflow velocity is

Uref = 230 m/s which gives M = 0.347 and a Reynolds number based on bluff body

height of Re = 7.2 × 104. The Strouhal number defined by St = fD/U typically

ranges from 0.2 to 0.29 for this type of flow configuration. Experimental data re-

ported a value of St = 0.25 [33] and non-reacting simulation data here gives f = 1266

Hz or St = 0.26. The inflow chemical composition consists of products of complete
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Figure 32 Normalized resolved turbulent kinetic energy in the shear layer at x = D for
non-reacting LES

(a)

(b)

Figure 33 Single flameholder test rig, (a) View of entire computational domain with an
isosurface of temperature showing flame structure typical of the φglobal ≈ 0.5 operating

condition; (b) Detail view of bluff body showing the locations of discrete staggerd fuel
injectors
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lean combustion from the preburner at a temperature of 1150 K and a volumetric

oxygen content of 14%. Partially non-reflective inflow and outflow boundary condi-

tions are used [242] with synthetic turbulence injected using the method described by

Smirnov, Shi and Celik [198]. The outlet pressure is set to the estimated conditions

of slightly over one atmosphere, 107400 Pa. All wall boundary conditions are no-slip,

constant temperature boundaries, with estimated temperatures of 850 K for the top

and bottom walls and 900 K for the side walls. The bluff body trailing edge is set at

1150 K.

Liquid Jet-A fuel is injected from four 0.635 mm staggered injectors, two on the

top of the bluff body at z = −19.05 mm and z = 6.35 mm and two on the bottom

at z = 19.05 mm and z = −6.35 mm, all located 25.4 mm upstream of the trailing

edge, as seen in Fig. 33b. The proximity of the discrete fuel injectors to the flame

stabilization location gives rise to the “close-coupled” distinction. The injectors in

the actual system are recessed into small cavities approximately 6.35 mm wide and 5

mm deep but these are not modeled in the computational system.

6.2 Chemical kinetics, thermodynamics and transport prop-

erties

The choice of a chemical mechanism for Jet-A is difficult since many simple mecha-

nisms exist that can be tuned for a single premixed equivalence ratio or conversely,

contain hundreds of species and reaction steps making them computationally in-

tractable for three-dimensional simulations. The mechanism chosen here is seen a

good compromise between these two disparate options. The chemical rates are deter-

mined from a two-step kerosene mechanism modified by correction functions known
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as 2S KERO BFER introduced by Franzelli, Riber, Sanjosé and Poinsot [53]. The mech-

anism is described by the following reactions:

KERO + 10O2 ⇒ 10CO + 10H2O (254a)

CO +
1

2
O2 ⇔ CO2 (254b)

with the rate coefficients written as:

kf,1 = A1f1 (φ) e
(−Ea,1/RT ) [KERO]nKERO [O2]

nO2,1 (255)

kf,2 = A2f2 (φ) e
(−Ea,2/RT ) [CO]nCO [O2]

nO2,2 (256)

The reaction rate parameters are listed in the table below.

Table 31 Reaction rate parameters [53]. Units in: mol, s, cm3, J and cal/mol

KERO oxidation CO-CO2 equilibrium

Activation energy 4.15× 104 2.0× 104

Pre-exponential factor 8.00× 1011 4.5× 1010

Reaction nKERO 0.55 nCO 1.00
exponents nO2

0.90 nO2
0.50
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The correction functions based on local equivalence ratio are:

f1 (φ) = 2×






1 + tanh



φ0,1 − φ

σ0,1





+

B1


1 + tanh



φ− φ1,1

σ1,1





+

C1


1 + tanh



φ− φ2,1

σ2,1











−1

(257)

f2 (φ) =
1

2


1 + tanh



φ0,2 − φ

σ0,2





+

B2

2


1 + tanh



φ− φ1,2

σ1,2





+

C2

2


1 + tanh



φ− φ2,2

σ2,2





×


1 + tanh



φ3,2 − φ

σ3,2





 (258)

Table 32 Parameters for correction functions [53]

φ0,j σ0,j Bj φ1,j σ1,j Cj φ2,j σ2,j φ3,j σ3,j

j = 1 1.173 0.04 0.29 1.2 0.02 7.1 1.8 0.18 - -
j = 2 1.146 0.045 0.00015 1.2 0.04 0.035 1.215 0.03 1.32 0.09

The local equivalence ratio, which is computed using the following method. First,

all carbon atoms are summed YC =
∑Ns

k=1 (NC,kWC/Wk) Yk, where NC,k is the number

of carbon atoms in species k and WC is the molecular weight of carbon. Next, a

progress variable is calculated, Z = (YC − YC,Ox) / (YC,F − YC,Ox), along with the

stoichiometric progress variable, Zs = (1 + AFRstoich)
−1. The equivalence ratio is

computed as φ = Z (1− Z)−1 (1− Zs)Z
−1
s . For this fuel and air, AFRstoich = 14.715.

Franzelli et al. validated the reaction mechanism with exhaust gas recirculation and

it accurately predicts flame speeds and burnt gas temperatures with no modifications.

This mechanism has also been used for non-premixed spray applications [76] so it is
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expected to perform well for the current simulations. Past research has shown that

two-step mechanisms perform better than single step mechanisms in applications

similar to the current setup [57].

Kerosene/Jet-A is modeled as a single fuel represented by C10H20. The thermody-

namic properties are described using the seven coefficient NASA polynomials of the

form:

c◦p
R

(T ) = a0 + a1T + a2T
2 + a3T

3 + a4T
4 (259)

h◦

p

R
(T ) = a0 +

a1
2
T +

a2
3
T 2 +

a3
4
T 3 +

a4
5
T 4 +

a5
T

(260)

s◦p
R

(T ) = a0 ln (T ) + a1T +
a2
2
T 2 +

a3
3
T 3 +

a4
4
T 4 + a6 (261)

The coefficents for two temperature ranges are given in Table 33. Note that the a6

NASA polynomial coefficient for the high temperature range given in the paper is

incorrect (Franzelli personal communication, 2011).

Table 33 NASA polynomial coefficient for kerosene for two temperature ranges [53]

Coefficient T ∈ [300; 1000] K T ∈ [1000; 5000] K

a0 −4.15 22.0
a1 1.28× 10−1 5.61× 10−2

a1 −1.08× 10−4 5.61× 10−5

a1 6.53× 10−8 −2.09× 10−9

a1 −2.08× 10−11 −2.30× 10−13

a1 −2.83× 10+4 −3.61× 10+4

a6 5.09× 10+1 −8.60× 10+1

Since the mechanism is a global mechanism, a simple model for transport is used

as well. The dynamic viscosity is computed as µ (T ) = µ0 (T/T0)
α. The thermal con-

ductivity is λ = µcp/Pr0 and the diffusion coefficients are determined from the Lewis

number, Lek = λ/ (ρcpDk), which is constant and for this case set to unity for all

species. For this mechanism, Pr0 = 0.739, µ0 = 1.8456× 10−5 kg m−1 s−1, T0 = 300

K, α = 0.6695. All thermodynamic and transport properties are computed using
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resolved quantities, i.e., cp

(
T̃
)
, µ
(
T̃
)
, etc. The chemical reaction rates are com-

puted using Cantera [68], which is coupled to the main CFD solver. The mechanism

was originally implimented in Cantera and provided by the author (Franzelli personal

communication, 2011) which provided the initial motivation to couple LESLIE with

Cantera. This functionality has proven quite useful [75, 104, 202, 16]. Initially the

thermodynamics and transport properties were also computed using the Cantera li-

brary but it was found to be much more computationally efficient to compute them

inside LESLIE due to the requirements of passing data between the LESLIE data

structures and the Cantera data structures. The performance penalty for computing

thermodynamic properties in Cantera is relatively small but is quite significant for

transport properties. The flame speed tests completed in the original work at several

inlet temperatures and pressures were replicated here to ensure the mechanism was

implemented properly and shown in Figure 34.

Liquid properties are computed by fitting experimental data [29] with various

functional forms [36] in a manner similar to other CFD codes [232]. The functions

and coefficients are listed in Table 34. Figure 35 compares the density and surface

tension of Jet-A to other fuels.

Table 34 Jet-A property curve-fit parameters

NSRDS
Property Function [36] a b c d e f Tc

ρ kg/m3 5 64.9 0.255 680.0 0.294 - - -
pv Pa 1 84.4 −7000.0 −9.95 1.6× 10−5 2.0 - -
hv 6 660.0 4.5× 105 0.4 0.0 0.0 0.0 -
cp 0 1758.183 −1.391 7.546× 10−3 0.0 0.0 0.0 -
h 0 −2699436.152 v1958.182 −0.6954 0.00251 0.0 0.0 -
cp,g 7 1175.106 3762.167 1614.1 2658.045 742.0 - -
µ 1 −18.1 1950.0 0.875 0.0 0.0 - -
µg 2 2.64× 10−8 0.9487 71.0 0. - - -
λ 0 0.1665 −1.75× 10−4 0.0 0.0 0.0 0.0 -
λg 2 −668.4 0.9323 −4.071× 109 0.0 0.0 0.0 -
σ 6 680.0 0.0486 1.3095 0.0 0.0 0.0 -
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Figure 34 Laminar flame speed versus equivalence ratio at several fresh gas tempera-
tures, (−,−·−,−−) Franzelli [53], (�, •,N) Luche [125], (⋄, ◦,△) Dagaut [35], (▽,♦,�)
Current simulations, for pressures of 1, 3, and 12 atm, respectively.
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Figure 35 Liquid density and surface tension for selected fuels including Jet-A. (–)
Experimental Data, (– –) C12H26, (– ·) C10H22, ( ) Jet-A, (–N–) C7H16
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6.3 Non-reacting results

6.3.1 Non-reacting LES validation

Due the configuration of the test rig, it is very difficult to obtain data at the exit plane

of the preburner where the computational domain begins. Optical access was available

inside the rectangular section upstream of the bluff body at one flow condition with

a centerline Mach number of M = 0.25, as measured with a pitot tube several bluff

body diameters upstream of the bluff body. Velocity data is available at locations

x = −12.3D and x = −8.5D upstream of the bluff body trailing edge. Experimental

measurements of velocity near the bluff body trailing edge are also available for several

non-reacting conditions ranging from M = 0.25 to M = 0.4, though no velocity

data exists for the exact reacting condition of M = 0.347. The experimental data

also shows that in this range of centerline Mach numbers the velocity profiles varied

linearly. Taking advantage of this linear variation, the non-reacting experimental

velocity profiles are all scaled to the reacting flow condition of M = 0.347 and used to

set the inflow boundary conditions. Conditions are estimated at the computational

inlet and modified until non-reacting simulations showed reasonable agreement at

these data locations.

Figures 36 and 37 show comparisons between experiments and LES. All velocities

are non-dimensionalized by the upstream reference velocity and all length measure-

ments are non-dimensionalized by the bluff body height. It is more important to at-

tempt to match the time-averaged velocity profiles near the bluff body trailing edge,

where the flames are anchored, than at the upstream locations hence there are larger

differences between experiments and simulations in Figure 36 compared to Figure 37.

In Figure 37, the gray shaded regions define the range in the experimental data. Also

note that the ordinate axis is the distance from the bluff body non-dimensionalized

by the bluff body width so that ŷ/D = 0 is the shear layer location. This is denoted

as ŷ to avoid confusion. Experimental data was only taken on the top surface of the
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bluff body. Disparities could arise given that not all objects in the physical system

were included in the computational domain including the aforementioned pitot tube

with an estimated diameter of over 0.125D located upstream of the bluff body.

Overall the results of the non-reacting simulations give confidence that the flow

conditions for the LES reasonably approximate the experiments and provide a baseline

for the reacting simulations.
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6.3.1.1 Non-reacting spray validation

As was the case for the gas phase, experimental results for the liquid phase were not

obtained at the exact conditions of the final reacting simulations. Droplet statistics

including velocities and diameters were obtained at an incoming Mach number, tem-

perature and oxygen content of M = 0.355, Tin = 850◦C and O2 = 14%. The fuel

flow rate for all four injectors was ṁ = 21.46 g/s. This flow rate is inbetween the two

fuel flow rates simulated under reacting conditions, as described in Section 6.4.1.

This data was used to tune the parameters for the spray model introduced in

Section 3.7 using a single-injector reduced model with inlet velocity profiles scaled to

M = 0.355. Initial simulations were run setting the stripped droplet diameter based

on the correlations used by Madabhushi [129] described by Eq. 101. These simulations

were then repeated setting the stripped droplet diameters based only on the wave

model of Reitz [167] (see Equations 95 and 96). Figure 38 shows these results along

with the results of the new model which blends the correlation and wave model, where

the blending is described by Equation 100. Based on the experimental data, the idea

for blending the two previous models is apparent. In addition to the stripped droplet
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Figure 38 Comparison of several spray models for the recessed injector used in the
bluff body simulations

diameter being modified, the stripped droplet velocity was also changed slightly based
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on the data from Khosla [99]. The stripped droplet velocites are set as shown in

Equation 102. This was a relatively minor change and involved the introduction of a

random number that adds some unsteadiness since the Madabhushi[129] model was

originally used for steady-state calculations. The final modification was to the B1

model parameter from the default value of B1 = 10 to B1 = 7. Figure 39 shows

the arithmetic mean diameter at several locations downstream of the injector, where

for this test case, the injector location is x = 0. The updated model matches with

the experimental data much more closely than the original model as implemented in

the solver. The original model predicted too much spray penetration and not enough

droplets near the surface. The axial velocities of the droplets for this case are shown in

Figure 40. The original model generally under-predicts the axial velocity compared

with the experiments while the updated model has better agreement. Figure 41

compares the droplet diameter profiles for ṁf = 16.11 g/s, ṁf = 21.46 g/s and

ṁf = 32.23 g/s with the updated breakup model to show the effect that fuel flow

rate has on droplet statistics. Note that the maximum and minimum “distance from

the surface” points indicate the fuel jet penetration; no droplets in the simulation

were above or below the indicated range. The old model penetrates the crossflow to

a much greater extent than the updated model and clearly over-predicts penetration

relative to the experimental data.

Experimental spanwise droplet data measuring lateral spreading was not avail-

able for this particular injector configuration; some data does exist for the same sin-

gle flameholder geometry but with larger, flush-mounted injectors [122]. Figure 42a

shows the lateral spreading of the current simulations compared with various exper-

imental data presented by Becker [9], which was fit with the following expression:

ẑ/di = 2.32q0.09 (x̂/di)
0.32 where here the ·̂ indicates coordinates relative to the injec-

tor. The experimental data momentum ratio, q = ρlU
2
l /ρgU

2
g , lies in the range of 1–26

whereas the current momentum ratio is approximately 80, based on the actual droplet
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Figure 39 Arithmetic mean diameter of droplets at several axial locations downstream
of the liquid injector for the test case with M = 0.355 and ṁf = 21.46 g/s. Original
breakup model with B1 = 10 (–N–), Updated breakup model with B1 = 7 (–�–), Exp.
(–•–)
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Figure 41 Droplet diameter comparison for three fuel flow rates using the updated
breakup model, ṁ = 16.11 g/s (–N–), ṁ = 21.46 (–�–), ṁ = 32.23 g/s (–•–)

injection velocity. Although the momentum ratio has a small effect on spreading, this

partially explains why the simulation data lies on the lower boundary of the other

experimental data especially near the injector. For the high fuel flow rate case at

the trailing edge of the bluff body, x̂/di ≈ 55, the lateral spreading is approximately

±7.25 mm which based on actual injected droplet diameter is 15.7 d which compares

well to measurements on this geometry, using a slightly different injector, where the

spreading at the trailing edge was ≈ 15d [120]. Figure 42b compares the simulated

transverse droplet sizes to the experimentally obtained data for the aforementioned

flush-mounted injector case on the single flameholder rig [122]. The experimental

data obtained from a Phase Doppler Particle Analyzer (PDPA) system is shown for a

single vertical height away from bluff body surface with the error bars indicating the

extent of the droplet sizes at all vertical locations at each particular x̂/di location.

Near the centerline, the CFD droplet sizes lie within the bounds of the experimental

data and the lateral spreading is also similar. The droplets at the periphery of the

spray in CFD are larger than those measured in the experiments. This phenomenon

has been observed in other numerical studies [163] which postulated this was due to

competing effects of turbulent dispersion and droplet inertia. Large droplets stripped
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off of the column are carried to the edges of the spray plume based on their assigned

velocities and are not as affected by the gas phase as smaller droplets. Model improve-

ments could possibly be made by assigning child droplet velocities based on stripped

droplet size but no such effort was attempted in this study.
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Figure 42 Transverse spray characteristics, (a) Droplet lateral spreading, experimental
data range with curve fit [9] (–//–//–), and simulation spray data (—) and (b) span-
wise droplet size comparisons between the current simulations (—) and experimental
data [122] (—) at x̂/di ≈ 30 and x̂/di ≈ 60.

All of the breakup model tuning was completed after taking the orifice discharge

coefficient into account. As previously noted, this subtle but important parame-

ter can have a large impact on the liquid jet penetration. Initial drop sizes in the

Lagrangian model are based on the effective area, which differs from the 0.635 mm

injector diameter due to orifice effects. Computing vinj based on dinj does not provide

the correct spray penetration. The mass flow rate of a single injector is computed as

ṁ = CdρV A, where Cd is the nozzle discharge coefficient. The injection velocity and

droplet injection diameter must be computed on the assumption that the effective

injection area is Aeff = CdAinj. The discharge coefficients for the present simulations

lie in the range 0.52 − 0.59. Figure 43 shows the effect of changing the discharge

coefficient from unity to the more appropriate value of 0.527. The spray penetration

qualitatively matches with the experimental images much more closely.
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Figure 43 Comparison of modeled spray penetration with different discharge coeffi-
cients, (left to right) Cd = 1.0, Cd = 0.527, instantaneous and time-averaged experi-
mental results

To summarize, tuning of the spray model based on the available experimental

data was necessary to get the liquid jet penetration correct. Equally important, if

not more important, was taking the injector discharge coefficient into account when

computing the Lagrangian spray model injection parameters. Without the correct

discharge coefficient the liquid jet did not penetrate into the crossflow far enough.

Once this was corrected, the spray model tuning ensured the jet did not penetrate

too far and the stripped droplets have the correct sizes and velocities. Appendix A

gives implementation details for the final Lagrangian liquid jet in crossflow breakup

model.

6.4 Reacting results

6.4.1 Reacting LES comparison with experimental data

Two operating conditions are simulated: ṁ = 16.11 g/s and ṁ = 31.23 g/s cor-

responding to global equivalence ratios of φglobal ≈ 0.5 and φglobal ≈ 0.95, both at

M = 0.347 as measured on the centerline upstream of the bluff body. Experimental

observations show marked differences in flame oscillations at these two conditions

[33]. Specifically, large scale sinusoidal Bérnard/von-Kármán oscillations are seen at

the higher equivalence ratio but are suppressed at φglobal ≈ 0.5. At the lower fuel

flow rate, the flame exhibited symmetric shedding typical of stable premixed bluff
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body flames. This is an critical distinction since the large flame oscillations are often

associated with blow out [33, 190].

Most of the available experimental data is CH∗ and C∗

2 chemiluminescence and

images from high- and low-speed cameras. To compare with these data the com-

putational results are averaged in the spanwise direction to create 2D images. A

comparison between high-speed experimental flame images and LES results is shown

in Figures 44 and 45 for both fuel flow rates over a span of 0.8 ms which is approx-

imately one period of the Bérnard/von-Kármán flame oscillations. The LES images

were created by overlaying CO and CO2 mass fractions on heat release rate. Specif-

ically, an opacity function was applied to the heat release rate field such that in

areas where the heat release rate is low, another variable is visible. In this case, that

other variable is the sum of CO and CO2 mass fractions. The effect of overlaying

the species mass fractions “fills in” in image especially in the downstream regions.

Figure 46 shows one flame image with only the heat release and the same snapshot

with the species overlay technique. While this method is not ideal it does provide

qualitative comparisons of flame dynamics. Absolute comparisons with chemilumi-

nescence are quite difficult if the chemical mechanism does not include the excited

species since the chemiluminescence intensity does not vary linearly with heat release

rate and the intensity is a function of equivalence ratio, pressure, temperature and

strain [141, 142]. This is complicated in the current combustor due to the non-uniform

fueling nature of the close-coupled spray configuration where reactions occur over a

wide range of local equivalence ratios and preheat temperatures.

The LES is able to correctly capture the two distinct flame shapes seen at the

different fuel flow rates [199].

Time averaged heat release rate from the simulations are also compared with

time averaged CH∗ chemiluminescence in Figure 47. For the low fuel case, the heat

release rate predicted by LES is much more concentrated in the shear layers than in
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Figure 44 Comparison of experimental flame image sequence [33] with LES (spanwise
averaged CO and CO2 mass fraction overlaid on heat release rate) at φ ≈ 0.95
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Figure 45 Comparison of experimental flame image sequence [33] with LES (spanwise
averaged CO and CO2 mass fraction overlaid on heat release rate) at φ ≈ 0.5
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Figure 46 Example of an image with spanwise averaged heat release overlayed with
the sum of CO and CO2 mass fractions (top) and with spanwise averaged heat release
alone (bottom).

the experiments. The high fuel flow rate qualitatively matches with the experiments

better with most of the heat release occurring in the close-out region [120].

Previous analysis of the experimental results suggests that the flame oscillations

are controlled by the heat release in the shear layers just behind the bluff body

trailing edge [33]. This heat release is dictated by the spatial location of fuel and

thus directly impacted by the liquid spray jet penetration. Since the flame dynamics

are correctly predicted with the LES, it is assumed that the jet-in-crossflow breakup

model simulates the real spray injection with sufficient accuracy. There is no detailed

experimental droplet data at these reacting flow conditions, geometry and injector

configuration but comparisons can be made for overall jet penetration using low-speed

camera data. Figure 48 shows the low-speed camera images along side LES images

of time-averaged CO and CO2 mass fractions overlaid on heat release rate with a

collection of Lagrangian liquid particle snapshots. The outer jet penetration for both

fuel flow rates matches quite well.

6.4.2 Analysis of flame dynamics with respect to fuel jet penetration

Heat release due to combustion generally has a stabilizing effect on bluff body flows.

Large scale asymmetric fluctuations are damped leaving symmetric shear layer rollup.

This phenomenon is explained by examining the vorticity transport equation [120],
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Figure 47 Comparison of experimental time averaged CH∗ [33] with simulation time
averaged heat release rate
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(a) φglobal ≈ 0.5 (b) φglobal ≈ 0.95

Figure 48 Comparison of experimental spray penetration (top) [33] with simulations
(bottom). Note that the high fuel flow rate of the experimental image is slightly
different than the simulation.

written for a compressible fluid [55],

Dωi

Dt
= ωjSij︸ ︷︷ ︸

vortex

stretching

−ωi
∂uj

∂xj︸ ︷︷ ︸
gas

expansion

−εijk

(
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− ∂

∂xj

(
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ρ

∂τkl
∂xl

)

︸ ︷︷ ︸
viscous

diffusion

)
. (2)

Several factors have stabilizing influences: gas expansion takes place acting as a

vorticity sink, baroclinic torque is produced and for gas flows, as temperature rises

viscosity increases resulting in increased vorticity diffusion. Although it may appear

that the production of baroclinic torque has a destabilizing effect, for confined bluff

body flames this vorticity is generated in the opposite direction to that of the vorticity

in the shear layers thus decreasing the magnitude [190].

To understand these effects on the close-coupled configuration in this study, the

time and spanwise averaged fuel vapor mass fraction is plotted at several locations in

the near-field downstream of the bluff body trailing edge in Fig. 49. The results from

the shear layers on the top and bottom of bluff body are also averaged and the results

normalized by the maximum value at the x = D/4 location, YF,max = 0.092. These
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plots highlight what is apparent from the spray penetration images, i.e., the low fuel

flow rate, with its lower jet penetration, on average delivers more fuel to the near-field

shear layers. The differences between the fuel mass fraction in the shear layers then

give rise to large differences in heat release rate also shown in Fig. 49, normalized

with Q̇max = 6 × 108 W/m3. Finally the effect on baroclinic torque generation and

gas expansion is seen, with the plots normalized by 9 × 108 s−2 and 3 × 108 s−2,

respectively. This evidence supports the hypothesis [33, 120] explaining the observed

differences between the flame structures at the two operating conditions.
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Figure 49 Spanwise and time-averaged quantities in the shear layers at several axial
locations, (– –) φglobal ≈ 0.95, (–N–) φglobal ≈ 0.5

6.4.3 Fuel mixing and reaction zone analysis

Although the previous section compared CFD results with the available spanwise-

averaged experimental results, the highly three-dimensional nature of this combustor

configuration should be emphasized. The close-coupled discrete fuel injectors limit

significant premixing prior to the reaction zone making the flame structure funda-

mentally different from purely premixed systems or upstream-fueled non-premixed
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systems. Because of this, flame sheet approximations traditionally used to describe

those other configurations cannot be used here [119].

To examine the flame structure, a flame index is calculated [22], which indicates

whether combustion is occurring in a diffusion mode (FI = 0) or a premixed mode

(FI = 1). The flame index is related to the alignment of the fuel and oxidizer

gradients and is calculated according to the definition,

FI =
1

2

(
1 +

∇YF · ∇YOx

|∇YF | |∇YOx|

)
(262)

Figure 50 shows a slice of the flame index multiplied by heat release rate on the

spanwise centerline plane for the high fuel flow rate case. The results indicate regions

of non-premixed and premixed reactions, consistent with experimental images [119],

in the inner portion of the near-field region. Local premixed conditions exist in the

thin shear layers surrounding recirculation zone. Far downstream local premixed

conditions are intermixed with non-premixed conditions.

Figure 50 Centerline slice of flame index multiplied by heat release rate for the high
fuel flow rate case.

Instantaneous planar cuts of the fuel mass fraction, combustion heat release and

flame index conditioned on heat release rate are shown in Figure 51. These axial

flame index slices again indicates mixed non-premixed/premixed conditions within

the reaction zone, and with non-premixed combustion surrounding the fuel jets, and

partially premixed conditions locally within the thin surrounding shear layers. At

x = 5D, the partially premixed region has widened and distorted in correlation to the
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location of the fuel jets. Far downstream, the flow structure becomes more uniformly

distributed across the wake flow but there remains some degree of correlation to the

remnants of the fuel jets suggesting that combustion field is still closely related to the

instantaneous fuel jet distribution.

The strongest heat release occurs in the shear layers between and below the fuel

jets at around x = 2D. Enough mixing has occurred at this point for reactions to be

taking place at near stoichiometric mixture conditions.

Slices at the same axial locations for the low fuel flow rate case are shown in

Figure 52. More intense heat release is observed at the x = D compared with the

high fuel flow rate case. Although most heat release occurs in premixed zones, more

reactions in the non-premixed regime occur at x = D and x = 2D at the low fuel flow

rate versus the high fuel flow rate. The fuel jets are in closer proximity to the hot

recirculating products and reactions in the shear layer promoting the non-premixed

combustion. More fuel is seen farther downstream in the high fuel flow rate case

since less evaporation and burning happens near the bluff body and simply due to

the larger mass flow rate.

CFD simulations can provide the detailed information about the flame regimes

not available with experiments; the premixed flame regimes within the flow field can

be computed. Figure 53 shows a flame regime map calculated across the combusting

flow field for reaction zones that satisfy a flame index greater than 0.5, plotted in

terms of the computational subgrid scale ∆ and the local equivalence ratio entering

the reaction zone. The results show reactions occurring in a range of flame regimes

spanning corrugated flamelets to broken reaction zones. The results indicate that the

reactions associated with high local equivalence ratio (indicated in yellow), such as

those near and surrounding the fuel jets, occur primarily in the thin reaction zone and

broken reaction zone regimes. The reactions that occur near stoichiometric conditions

(orange) extend into the corrugated flamelet regime as the reaction zone thickness is
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Figure 51 Axial slices at x = 0,D, 2D, . . . , 8D showing fuel mass fraction (top), heat
release rate (middle), and flame index (bottom) along with fuel droplets for the high
fuel flow rate case.
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Figure 52 Axial slices at x = 0,D, 2D, . . . , 8D showing fuel mass fraction (top), heat
release rate (middle), and flame index (bottom) along with fuel droplets for the low
fuel flow rate case.
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expected to be very thin.
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Figure 53 Premixed flame regime map colored by local equivalence ratio.

Figure 54 instead plots the premixed flame regime colored by axial location down-

stream of the bluff body. The reactions occurring in the near-field shear layers and

reaction zone, for x/D < 2, are colored black. These data indicate the partially

premixed reactions span the thin reaction and broken reaction zone regimes. The re-

actions existing farther downstream, 2 < x/D < 4, which are colored blue, similarly

span only the thin reaction and broken reaction zone regimes. Only the reactions

that are shown in red, which occur in the region far downstream of the bluff body,

i.e., x/D > 4, are calculated to be in the corrugated flame regime.

These include reactions far downstream in the CFD domain where the length

scale becomes very large, greater than the flameholder characteristic length D. In

addition, the simulations show that far downstream of the bluff body, the subgrid

kinetic energy has been damped significantly by the heat release, which lowers the

Karlovitz number associated with those reactions. The premixed flame regimes cal-

culated from these simulations support the hypothesis that reactions occur over a
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Figure 54 Premixed flame regime map colored by axial location.

wide range of flame regimes and that in the near-field regions they are dominated by

thin reaction and broken reaction zones at these conditions. The simulation results

indicate the combustion process spans non-premixed and premixed flame types and

that the reaction zones are correlated with the spatial and temporal position of the

fuel jets consistent with the experimental data.

6.4.4 Effect of Lagrangian injection model on flame dynamics

As was discussed in Section 6.4.2, the flame dynamics in this configuration are largely

influenced by the liquid fuel jet penetration. Section 6.3.1.1 discussed the sensitivity

of the fuel penetration to the Lagrangian model so it is clear that in turn the flame

dynamics are sensitive the Lagrangian injection model as well. The initial simulations

in this study did not correctly account for the injector discharge coefficient and no

tuning was completed. The net result was fuel jets with penetration that was much

lower than experimentally observed.

Figure 55 shows the results of both the low and high fuel rate cases compared with
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experimental results. The simulations actually show the opposite flame dynamics as

the experiments; the low fuel flow rate case has large scale sinusoidal shedding whereas

the flame is damped in the near-field of high fuel flow rate simulation. For the high

fuel flow rate case, the simulated fuel jet penetration is similar to the experimentally

observed fuel jet penetration for the low fuel flow rate. Under these conditions fuel

penetrates far enough for adequate premixing but low enough to deliver the fuel and

partially premixed fuel-air mixture to the shear layers. For the low fuel flow rate case

the jet penetration is extremely low and does not allow for substantial mixing prior

to reaching the bluff body trailing edge. The mixture in the shear layers just behind

the trailing edge of the bluff body is much greater than stoichiometric so the heat

release is reduced and the large scale shedding is not suppressed. This phenomenon

is similar to the flame dynamics observed for a different, but related, close-coupled

liquid fueled bluff body configuration [119].

6.5 Effect of subgrid turbulence-chemistry interaction model

Past research has shown that in some instances the subgrid turbulence-chemistry

interaction model used in LES has a large influence on the results of bluff body

stabilized reacting flows [66, 156]. Conversely, others have demonstrated that simple

models provide satisfactory accuracy [57]. To determine the effect of the subgrid

turbulence-chemistry interaction on this configuration, both high and low fuel flow

rate conditions simulated with the simple quasi-laminar approach were also computed

using the subgrid Linear Eddy Model.

The grid resolution in the shear layers behind the bluff body were estimated to be

10 − 20 η based on resolved subgrid kinetic energy, ksgs. In order to resolve subgrid

fluctuations to approximately η, 18 subgrid LEM cells were used in each LES cell.

The LEM stirring constants were set as Nη = 1 and Cλ = 15 with the LEMLES

standard triplet mapping algorithm used. The LES time step for this simulation was
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Figure 55 Instantaneous and time-averaged comparisons of experimental data with
LES using an injector discharge coefficient of Cd = 1 and no Lagrangian injection model
tuning
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approximately 1 × 10−7 s while the LEM subgrid stirring time step was as small as

1 × 10−8 s. Most cells in the domain had ∆tstir ≈ 5 × 10−8 s, thus for every LES

time step two subgrid LEM stirring events took place, though in a small number of

cells within the shear layer 8–10 stirrings per LES time step occurred. The subgrid

LEM reaction-diffusion equation and stirring were computed once at the beginning

of each time step; the splicing, coupling and temperature rescaling operations were

completed at both the predictor and corrector steps. The use of the LEMLES incurs

a significant computational cost; the simulations take approximately one and a half

times as long as the quasi-laminar chemistry model.

Figures 56 and 57 show instantaneous comparisons between the LEMLES and

quasi-laminar (QL) LES results at the two fuel flow rates. Qualitatively the LEMLES

results match those of the QL LES results and are consistent with the high speed

images from the experimental data. The LEMLES flame images are most consistent

with the QL LES and experimental data in the region just downstream of the bluff

body, ≈ x ≤ 3D. Farther downstream the instantaneous snapshots appear smoother

with fewer small scale structures. Time-averaged and spanwise averaged results for

LEMLES are compared with those from QL LES in Figure 58. The LEMLES results

show a slightly shorter reaction zone but more intense reactions in the shear layers.

This will be discussed further in Section 6.6 where these results are compared with

simulations using a high-order finite difference method.

In order to elucidate what is occurring in the subgrid LEMLES model, Figure 59

shows five instantenous snapshots of temperature and CO mass fraction on the em-

bedded LEM lines at three different spanwise locations in the shear layer at x ≈ D for

the high fuel flow rate case. The dashed lines are the averaged values over the entire

simulation and the symbols are the instantenous values. The shifts of the entire line

from one time instance to the next demonstrates the large scale convection at the LES

resolved level and occurs on the subgrid level via splicing. Subgrid reaction, diffusion

167



LEMLES

QL LES





t = 0.0 ms

LEMLES

QL LES





t = 0.2 ms

LEMLES

QL LES





t = 0.4 ms

LEMLES

QL LES





t = 0.6 ms

LEMLES

QL LES





t = 0.8 ms

Figure 56 Comparison of LEMLES flame image sequence with QL LES (spanwise
averaged CO and CO2 mass fraction overlaid on heat release rate) at φ ≈ 0.95
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Figure 57 Comparison of LEMLES flame image sequence with QL LES (spanwise
averaged CO and CO2 mass fraction overlaid on heat release rate) at φ ≈ 0.5
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QL LES

(a) φglobal ≈ 0.5
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QL LES

(b) φglobal ≈ 0.95

Figure 58 Comparison of time averaged heat release rate obtained with LEMLES and
QL LES.
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Figure 59 Instantaneous snapshots of temperature and CO mass fraction on subgrid
LEM lines within LES cells at three spanwise locations in the shear layer of the high fuel
flow rate case. The dashed lines represent the mean values over the entire simulation.

and, most notably, stirring events are seen as the non-uniformities across the LEM

lines. The subgrid LEM line do show signs of stirring events but are qualitatively not

very “mixed up”. This is a consequence of the relatively few number of subgrid LEM

stirring events per LES time step as previously described. Outside of the shear layers,

subgrid turbulent kinetic energy is even lower meaning even less subgrid stirring. This

helps explain why the flame dynamics, i.e. symmetric vs. asymmetric shedding, in

the near field are insensitive to the choice of the quasi-laminar or LEMLES approach.

The centerline time-averaged axial velocity for the QL and LEMLES simulations

at the high fuel flow rate are similar as shown in Figure 60. The low fuel flow

rate simulations show larger differences especially at locations far downstream of the

bluff body. Investigating the species mass fractions closer reveals some differences in

the simulations. Time-averaged line plots of species along the spanwise centerline are

shown in Figure 61–63. As with the axial velocity, there are generally more differences

between the LEMLES and QL LES for the low fuel flow rate case. The high fuel flow
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rate case has more large scale structures that result in more convective mixing while

in the low fuel flow rate case diffusion may be more important. Thus neglecting the

inter-LES-cell diffusion in LEMLES may cause more differences for the low fuel flow

rate configuration.

The time-average temperatures at the centerline, show in Figure 65, show that

this quantity is also insensitive to the choice of the subgrid turbulence-chemistry

interaction model. No experimental product species data, temperature or velocity

data exists for this configuration so comparisons against the experiments in this regard

is not possible. The spray penetration is not directly affected by the choice of subgrid

turbulence-chemistry interaction model as seen in Figure 64.
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Figure 60 Centerline time-averaged axial velocity, (—) QL LES φ ≈ 0.95, (– –)
LEMLES φ ≈ 0.95, (– –) QL LES φ ≈ 0.5, (– –) LEMLES φ ≈ 0.5

Although there are differences in the solution, results show that for this configura-

tion and flow conditions, the flame dynamics are relatively insensitive to the subgrid

turbulence-chemistry interaction model. Specifically, switching subgrid turbulence

model does not dramatically alter the flame shedding in the bluff body near field. Sim-

ilar conclusions concerning the sensitivity of combustion dynamics to subgrid models

have been made for other simulations with various models [67, 57, 7, 12, 205, 43] and

specifically with LEMLES [131, 216, 79].

172



0.00 0.05

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5
y
/
D

x = D/2

0.00 0.05

x = D

0.00 0.05

x = 2D

0.00 0.05

x = 4D

0.00 0.05

x = 8D

CO mass fraction
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φ ≈ 0.5
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Figure 62 Time-averaged H2O mass fraction along centerline at several axial locations,
(—) QL LES φ ≈ 0.95, (– –) LEMLES φ ≈ 0.95, (– –) QL LES φ ≈ 0.5, (– –) LEMLES
φ ≈ 0.5
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Figure 64 Time-averaged fuel mass fraction along centerline at several axial locations,
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QL LES φ ≈ 0.95, (– –) LEMLES φ ≈ 0.95, (– –) QL LES φ ≈ 0.5, (– –) LEMLES
φ ≈ 0.5

Subgrid kinetic energy is often used as an input to subgrid turbulence-chemistry

interaction models, as is the case for LEMLES, and can be used to estimate the

influence of the model. In regions where ksgs is high compared to the total turbulent

kinetic energy, the subgrid turbulence-chemistry interaction model is expected to have

more of an impact. Figure 66 shows the time-averaged ratio of subgrid kinetic energy

to the total turbulent kinetic energy along the centerline. In the near-field behind the

bluff body, the peak ksgs is about 10% of the total turbulent kinetic energy, well below

the threshold of 20% for a “good” LES [155]. Here the model is expected to have

some impact especially considering the ratio of total turbulent kinetic energy, subgrid

and resolved, to the total kinetic energy shown in Figure 67. For this bluff body

configuration, most reactions occur past one bluff body diameter downstream of the

trailing edge as seen in the instantaneous experimental images and LES snapshots.

By this location the peak ksgs is less than 10% of the total turbulent kinetic energy

indicating the diminshing importance of the subgrid turbulence-chemistry interaction

model. In addition the total amount of turbulent kinetic energy decreases away from

the bluff body. This simplified a posteriori analysis does not imply that the impact of

subgrid turbulence-chemistry interaction models is always limited, only that for this
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geometry, flow conditions, grid, numerical method, etc. the main flow features are

relatively insensitive to the model selection. The interactions of numerical method,

grid resolution and subgrid model are all interconnected increasing the difficulty of

assessing LES [108, 26].

0 5 10 15

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

y
/
D

x = D/2

0 5 10 15

x = D

0 5 10 15

x = 2D

0 5 10 15

x = 4D

0 5 10 15

x = 8D

ksgs / Total turbulent kinetic energy ×100%

Figure 66 Time-averaged ratio of subgrid kinetic energy to the total turbulent kinetic
energy along centerline at several axial locations, (—) QL LES φ ≈ 0.95, (– –) LEMLES
φ ≈ 0.95, (– –) QL LES φ ≈ 0.5, (– –) LEMLES φ ≈ 0.5
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Figure 67 Time-averaged ratio of turbulent kinetic energy to the total kinetic energy
along centerline at several axial locations, (—) QL LES φ ≈ 0.95, (– –) LEMLES
φ ≈ 0.95, (– –) QL LES φ ≈ 0.5, (– –) LEMLES φ ≈ 0.5

The spanwise-averaged shear layer vorticity analysis was repeated for the LEMLES

results and compared with the QL LES results in Figure 68. Again, there are few
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obvious differences between the LEMLES and QL LES. To understand the differences

in the shear layers at the two different flow rates, and how this possibly affects the

overall flame dynamics, deltas were computed, i.e., ∆ = uφ≈0.5 − uφ≈0.95, where u

refers to any quantity of interest; here those quantities include fuel mass fraction, heat

release rate, baroclinic torque and gas expansion. The deltas were normalized by the

same values discussed in Section 6.4.1 and plotted in Figure 69. The LEMLES and QL

both show the same trends for all four values. Comparing the deltas of the baroclinic

torque term and gas expansion term shows that both the normalized and, based on

the normalization factor, absolute difference in the baroclinic torque term between

the low fuel flow rate case and the high fuel flow rate case is greater than the delta in

the gas expansion term. The comparatively larger delta is most apparent in the near-

field just behind the bluff body. This relative importance of the increased baroclinic

torque generation over the gas expansion for the suppression of large scale vortical

structures has also been observed in other bluff body flame studies [156, 157, 138, 139].

Figure 70 shows axial slices of the time averaged baroclinic torque term and the
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Figure 68 Spanwise and time-averaged quantities in the shear layers at several axial
locations, (– –) φglobal ≈ 0.95 QL LES, (–N–) φglobal ≈ 0.5 QL LES, (- - - -)

φglobal ≈ 0.95 LEMLES, (- - - -) φglobal ≈ 0.5 LEMLES
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Figure 69 Normalized differences between low fuel flow rate and high fuel flow rate
spanwise and time-averaged quantities in the shear layers at several axial locations,
(–N–) QL LES, (- - - -) LEMLES

slices of gas expansion the high and low fuel LEMLES; all are plotted using the

same scale. Baroclinic torque and gas expansion have peak values in the shear layers

due to the wall generated vorticity present and the large density ratio between the

hot recirculating products and the colder incoming reactants. At these near-field

locations the density and temperature gradients are much steeper for the low fuel

flow rate case compared with the high fuel flow rate case, as also seen in Figure 65,

which contributes to the larger baroclinic torque generation. Both baroclinic torque

and gas expansion also appear in the regions surrounding the fuel jets where some

non-premixed combustion occurs. On average, baroclinic torque and gas expansion

are seen in the same physical locations though the gas expansion is less intense.

The baroclinic torque is also greater than the gas expansion father downstream since

density and pressure gradients along the flame front still exist but the wall generated

vorticity is reduced noting that the gas expansion term is related to the magnitude

of the vorticity itself. At the x = D and x = 2D locations the high fuel flow rate

case starts to show higher values of baroclinic torque and gas expansion in the center
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region directly behind the bluff body. At this downstream position the large scale

shedding is entraining the evaporated fuel from the liquid jets and high heat release

takes place.

Instantaneous snapshots of the same quantities are shown in Figure 71. As ex-

pected, the low fuel flow rate images look very similar to their time averaged counter-

parts since the lack of large scale shedding results in a stable flame. The instantaneous

pictures of the high fuel flow rate are much less diffuse than the time averaged im-

ages and at this relatively close downstream location the baroclinic torque and gas

expansion show strong correlation with the fuel jet locations.

In an effort to quantify the fluctuations of the flame and compare with exper-

imental results, image processing was used to measure the locations of the flame

edges. This is still a somewhat qualitative measure, however, since the experimen-

tal and computational images are not showing the exact same value and some user

input is required to select the inputs for image processing. A series of images from

the LES and high-speed movies were processed with the following method. Each

spanwise-averaged image was modified to increase the contrast which was followed by

the application of a canny filter [17] to detect the flame edges. Figure 72 shows an

example of the original image, the modified image and the flame edges as detected

by the Canny filter. The maximum and minimum edge locations in the y-direction

as identified by the filter were computed at each axial location. The mean and rms

values of the flame location were then plotted and compared for both the low fuel flow

rate and the high fuel flow rate and shown in Figures 73. These data reinforce the

earlier observation that in the near-field behind the bluff body the LEMLES and QL

LES simulations give similar results. Both the mean and rms flame edge values begin

to deviate from each other around x = 4D. For both fuel flow rates, the LEMLES

predicts a narrower flame in the vertical direction with more fluctuations. In the first

two to three bluff body diameters both the LEMLES and QL results match well with
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Figure 70 Time averaged baroclinic torque and gas expansion at several axial locations
for the high and low fuel LEMLES.
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Figure 71 Instantaneous snapshots of baroclinic torque and gas expansion at several
axial locations for the high and low fuel LEMLES.
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Figure 72 Sequence of image processing used for the flame edge analysis, original
image (top), enhanced contrast (middle) and flame edges after applying a Canny filter
(bottom).

the experimental data. The LEMLES results from the high fuel flow rate case do not

deviate with the QL and experiments significantly until x/D > 6 whereas the low fuel

flow rate rms results from LEMLES show much larger fluctuations after x/D > 4.

The fluctuations in the flame width were computed based on the upper and lower

flame edges and shown in Figure 74. The upper and lower flame edges were averaged

to compute the mean flame location in the previous figure hence the mean flame width

is simply twice that value so here the only quantity of interest is the rms of the flame

width. The comparative trends for the flame width fluctuations are nearly identical

to those for the edge rms, though in this case the low fuel LEMLES results match

more closely with experiments farther downstream. It is also interesting to note that

at the high fuel flow rate both the QL LES and LEMLES show the small peak in

flame width oscillations around x/D = 0.75 and the trough near x/D = 1.25 − 1.45

that is seen in the experiments.

The Strouhal number for the high fuel flow rate cases was calculated by computing

a fast Fourier transform (FFT) of the flame edge location, ŷ, at the downstream

location of peak fluctuations, x/D ≈ 4. Analysis from the experiments, QL LES

and LEM LES yield Strouhal numbers of St = 0.21, St = 0.22 and St = 0.22,
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Figure 73 Time-averaged flame edge vertical distance away from the bluff body (top)
and root mean squared value of the same quantity (bottom), (- - –) Exp φ ≈ 0.95, (-
- - -) Exp. φ ≈ 0.5, (—) QL LES φ ≈ 0.95, (– –) LEMLES φ ≈ 0.95, (– –) QL LES
φ ≈ 0.5, (– –) LEMLES φ ≈ 0.5
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Figure 74 Root mean squared flame width, (- - –) Exp φ ≈ 0.95, (- - - -) Exp.
φ ≈ 0.5, (—) QL LES φ ≈ 0.95, (– –) LEMLES φ ≈ 0.95, (– –) QL LES φ ≈ 0.5, (– –)
LEMLES φ ≈ 0.5

respectively, based on the bluff body lip velocity. This successful prediction of the

shedding frequency gives additional confidence in the simulations.

6.6 Influence of numerical method on reacting high fuel
flow simulation

To understand the effect of numerical method on this class of problems, the high

fuel flow rate simulation was repeated using the conservative finite difference method

detailed in Section 4.6. [151, 44, 231] This study is conducted since previous re-

search has emphasized the importance of the numerical method for reacting flow

simulations [151, 228, 27]. The quasi-laminar subgrid turbulence-chemistry interac-

tion model was used to understand the direct impact of the numerical method alone.

As with the finite volume simulations, a hybrid methodology was used because of

the large density gradients due to the evaporating fuel and the density discontinuity

at the flame front. The central scheme selected was the sixth-order compact scheme

which was paired with the fifth-order WENO-Z method with complete details of the

numerical methods given in Chapter 4.
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Compact central finite difference methods are often used for simulating turbulent

flows because of their low numerical dissipation [113, 227, 225], but because of this,

cannot be used in flows where large gradients are present. WENO schemes, which are

more dissipative but are applicable in flows with large gradients, have been applied by

themselves to LES of non-reacting and reacting flows, [43, 192, 90, 245]. WENO meth-

ods have also been used to solve the Euler equations in combination with Lagrangian

particle tracking methods [85, 134, 37, 42] and reacting flows with Lagrangian parti-

cles [178]. Hybrid explicit central, compact central or compact upwind / WENO finite

difference methods have also been used for a variety of DNS and LES on Cartesian

and curvilinear grids [150, 168, 103, 30, 191, 208, 20, 229, 246, 42, 169, 206, 159, 162]

None of these hybrid methods use the same combination of central, WENO, vis-

cous and time integration schemes as the method developed in this thesis, and only

a few have been used for reacting flows [246, 159] or Eulerian-Lagrangian simula-

tions [170]. This brief review of the use of similar numerical methods in various

applications again highlights the uniqueness of the current approach in terms of the

numerical method, specifically the combination of methods required for the hybrid

central/upwind scheme, as well as the problem on which it is being applied. To the

author’s knowledge, this is the first application of a hybrid compact/WENO-Z finite

difference solver for LES of multiphase, reacting flows on curvilinear grids.

The specific details of the flow solver are provided here for reference. The fluxes for

the WENO procedure were split using the Roe flux with entropy fix for all genuinely

non-linear characteristics and the local Lax-Friedrichs flux for the linearly degenerate

characteristics. The WENO-Z power parameter was set as p = 2 and the epsilon value

was ǫ = 1× 10−40. The compact eigth-order filter was used away from discontinuities

with αf = 0.49. The viscous terms were computed using the fourth-order accurate

method with odd-even decoupling correction “centered” coefficients. These solver

settings were selected to minimize numerical dissipation yet still provide a stable
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solution.

Time was advanced using the SSPRK(5,4) method for both Eulerian and La-

grangian phases. The use of the high-order time integration scheme allows for larger

time steps; here the time step was increased by approximately 30% compared with the

baseline simulation. Overall the high-order finite difference simulations took around

35% more total CPU time than the second-order finite volume simulations.

Instantaneous spanwise averaged images are shown; in this instance the finite dif-

ference simulation results are compared with the finite volume results in Figure 75.

These spanwise-averaged results show little differences between the two simulations,

with the flame dynamics of the experiments being correctly captured by both meth-

ods.

The spanwise and time averaged heat release rate of the FD simulations is com-

pared with the FV results in Figure 76. Here some differences can be seen, particularly

in the shear layers just behind the bluff body. Figure 77 focuses on this region and

compares the experiments with the results from all three simulations, QL LES FV,

LEMLES (FV) and QL LES FD. The highlighted shear layer zone in the experimental

image clearly shows some heat release anchored to the bluff body in the shear layer

and a region of little heat release just behind the bluff body in the recirculation zone.

The QL LES FV does have some heat release in the shear layers but it is less intense

than the experiments and the “dead” zone behind the bluff body is smaller than in

the experiments. The LEMLES results show much more pronounced shear layer heat

release that matches more closely with the experiments. The QL LES FD results, in

this particular region, appear to match with the experimental data the best though

the heat release layers in the upper and lower bluff body shear layers are slightly less

diffuse than the experiments. The “dead” zone behind the bluff body is larger than

in the other two simulations but still slightly smaller than the experiments. These
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results are not too surprising in the sense that the LEMLES acts more like the high-

order scheme in the shear layer region. The subgrid lines provide additional resolution

in the flame/shear layer-normal direction. As discussed in Section 6.5, the subgrid

linear eddy model has the most impact in the regions where subgrid turbulent kinetic

energy is highest, which is in the shear layers just behind the bluff body.

The flame edge analysis was repeated for this dataset and compared to the ex-

perimental data in Figure 78. The mean and rms flame edge positions for the finite

difference and finite volume solution are nearly identical with the high-order method

rms value slightly closer to the experimental data. Due to the still somewhat quali-

tative nature of this image analysis, this particular evidence is not enough to say the

FD method is conclusively better than the FV method. The similarity of the two sim-

ulations does give more confidence to the baseline simulations. The FFT analysis was

also repeated for the FD simulation of the high fuel flow rate case and gave St = 0.22.

All simulated values, regardless of numerical method or subgrid turbulence-chemistry

interaction model, were close to the experimental value of St = 0.21.

The flame width rms shows the FD results under-predicting the flame width oscil-

lations around x/D = 3 as shown in Figure 79. The FD also under-predicts the first

peak at x/D = 0.75 but matches better with the experiments for the FV solution at

the local rms minimum at x/D = 1.24− 1.45.

Time-averaged centerline line plots also reveal subtle differences. The finite dif-

ference solution has slightly higher temperatures in the recirculation zone and higher

temperature fluctation values in the shear layers as seen in Figure 80 and Figure 81,

respectively. This could indicate the ability of the higher-order method to resolve

smaller fluctuations in the shear layer because of lower numerical diffusion. This

difference in shear layer feature resolution is shown in Figure 82 which shows a slice

in the spanwise direction taken at a fuel injector location of temperature for both

the simulations. The finite difference solution shows much more defined small-scale

187



QL LES FD

QL LES FV





t = 0.0 ms

QL LES FD

QL LES FV





t = 0.2 ms

QL LES FD

QL LES FV





t = 0.4 ms

QL LES FD

QL LES FV





t = 0.6 ms

QL LES FD

QL LES FV





t = 0.8 ms

Figure 75 Comparison of finite difference LES with the finite volume LES flame image
sequence (spanwise averaged CO and CO2 mass fraction overlaid on heat release rate)
at φ ≈ 0.95
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QL LES FD

QL LES FV

(a) φglobal ≈ 0.95

Figure 76 Comparison of time averaged heat release rate obtained with finite differ-
ence and finite volume LES for the high fuel flow rate case.

Figure 77 Comparison of time averaged heat release rate in the bluff body near field
for the high fuel flow rate case for (a) experiments, (b) QL LES FV, (c) LEMLES, and
(d) QL LES FD.
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ŷ/
D

0 2 4 6 8 10
x/D

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

R
M

S 
fla

m
e 

ed
ge

 d
is

t. 
fr

om
 b

lu
ff

 b
od

y 
ŷ/
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Figure 78 Time-averaged flame edge vertical distance away from the bluff body (top)
and root mean squared value of the same quantity (bottom), (- - –) Exp φ ≈ 0.95,
(—) QL LES FV φ ≈ 0.95, (- - - -) QL LES FD φ ≈ 0.95
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Figure 79 Root mean squared flame width, (- - –) Exp φ ≈ 0.95, (- - - -) Exp.
φ ≈ 0.5, (—) QL LES FV φ ≈ 0.95, (- - - -) QL LES FD φ ≈ 0.95
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Figure 80 Time-averaged temperature along centerline at several axial locations, (—)
QL LES FV φ ≈ 0.95, (- - - -) QL LES FD φ ≈ 0.95
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Figure 81 Time-averaged root mean squared temperature along centerline at several
axial locations, (—) QL LES FV φ ≈ 0.95, (- - - -) QL LES FD φ ≈ 0.95

structures in the shear layers behind the bluff body.

The time- and spanwise-averaged heat release rate comparisons suggest the high-

order FD results are more accurate than the second-order FV solutions, as expected.

With the limited experimental data available for comparison, it is difficult to explicitly

quantify the improvements. These simulations do demonstrate that high-order FD

methods can be successfully applied to multiphase, reacting LES.

Based on the coldflow analysis presented in Section 6.3.1, the resolved turbulent ki-

netic energy spectrum shown in Figure 32 and the fact that the reacting LES captured

the two distinct flame dynamics using the baseline grid, we assume the grid has ade-

quate resolution and thus no explicit grid independence study was completed for the

reacting flow simulations, which is similar to previous research [104, 54, 219, 149, 135].

Repeating simulations on the same grid with higher-order methods, as done for this

study, is another method to prove grid insensitivity [172, 108]. The overall results

were shown to be similar between the second-order FV and high-order FD, though

some differences do exist in the near-field shear layers, indicating the adequate mesh

resolution.

In this study coarser grids or lower-order methods were not examined, though
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Figure 82 Temperature contours comparing shear layer structures between the finite
volume (top) and finite difference (bottom) solutions.
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grids are often coarser in industry compared with academic settings. Thus it would

be useful to estimate the impact of the subgrid model or numerical method for coarser

grids in the current application. Many industrial CFD codes allow for user-defined

functions to implement subgrid models but the main flux schemes usually cannot

be modified. As such, here the focus is only on the impact of the subgrid model,

specifically LEMLES, on coarser grids. Limiting the discussion to “good” LES, where

the subgrid kinetic energy only accounts for 20% of the total kinetic energy [155], the

results from the low fuel flow rate cases in Figure 66 show that such a simulation

would have approximately twice as much subgrid kinetic energy as the current LES.

Based inertial range scaling estimates, the mesh size in the shear layer layer would

be between 1.5 − 2 times the current grid. In order to maintain the correct subgrid

LEM resolution the amount of LEM cells per LES cell would also increase by a factor

of 1.5 to 2. The explicit time step for the coarser grid could be as much as four times

larger since the near-wall viscous stability limits scale as ∆x2. With the combination

of more subgrid kinetic energy, more LEM cells per LES cell and larger time step,

implying a larger number of subgrid turbulent stirrings per LES time step, the impact

of LEMLES is expected to be greater, and thus the differences between LEMLES and

the QL model larger, in the near-field and persist farther downstream. The greater

number of stirring events and larger physical time step would also mitigate scalar

dissipation errors related to the splicing events [132]. Larger grid sizes would also

reduce the error associated with the lack of inter-cell molecular diffusion [188, 79] in

the LEMLES model.

The simulations in this work indicate relative insensitivity of the overall flame

dynamics to numerical method, Figure 75, or subgrid model, Figures 56 and 57,

but Figure 77 shows that the near-field in the shear layers and reaction zone are

sensitive. At coarser mesh resolutions, the dominant flame dynamics, i.e. symmetric

vs sinusoidal shedding, would most likely be observed with a less sophisticated subgrid
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model as long as the liquid jet-in-crossflow was correct, but the details of the near-field

reaction zone, including the reaction rate and temperature profiles, may be predicted

incorrectly. The near-field reaction and recirculation zone is particularly important

for the estimation of temperatures near the bluff body which have an impact on heat

transfer and cooling requirements for the system [118].

6.7 Simulations with modified fuel injectors

Based on the previous analysis, the main driver of the flame dynamics of this liquid-

fueled, close-coupled injector configuration is the fuel spray penetration. In order to

further test this hypothesis, a third configuration was simulated by modifying the fuel

injector diameter to match the spray penetration of the low fuel flow rate case while

maintaining the fuel flow rate of the high flow rate case. This required a fuel injector

diameter of 0.9525 mm compared to 0.635 mm used for the baseline cases. With the

total mass flow rate of 31.23 g/s and a discharge coefficient set to 0.5555, the spray

jet inlet velocity was set to 25.082 m/s. Different injector diameters have been tested

experimentally on a similar rig [110], but not on this particular configuration.

Figure 83 shows an image of the spray penetration of the original injector at the low

and high fuel flow rates and the new injector at the high fuel flow rate. Qualitatively,

the liquid jet penetration of the new injector closely matches that of the low fuel flow

rate with the baseline injector. It must be emphasized that apart from the injector

Figure 83 Comparison of spray penetration for φglobal ≈ 0.95 with the original injectors

(left), φglobal ≈ 0.5 with the original injectors (middle), and φglobal ≈ 0.95 with the

modified, larger injectors (right)
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size, the injector spray breakup model and all parameters associated with that model

are identical across all simulations. The spanwise-averaged, time-averaged fuel mass

fraction is shown in Figure 84.
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Figure 84 Spanwise-averaged, time-averaged fuel mass fraction at the bluff body trail-
ing edge for (—) φglobal ≈ 0.95 with the original injectors, (– –) φ ≈ 0.5 with the

original injectors and (–+–) QL LES φ ≈ 0.95 with the modifed larger injectors.

Based on the fuel penetration, the resulting flame dynamics of the larger injector

at the high fuel flow rate should be similar to the baseline injector at the low fuel

flow rate: relatively symmetric shedding without large scale sinusoidal Bérnard/von-

Kármán vortices. Figure 85 shows several instantaneous spanwise images of the simu-

lations with the modified fuel injectors. As expected, these images, as well as the time-

and spanwise-average images in Figure 86 look very similar to the low fuel flow rate

simulations using the original injector. The fuel jet penetration was high enough to

allow for some premixing so the fuel-air mixture delivered to the shear layers was not

too rich, but low enough such that the mixture ignited in the shear layer and damped

out the large scale sinusoidal structures. Figure 87 shows the spanwise-averaged fuel

mass fraction, heat release rate, baroclinic torque and gas expansion for all three sim-

ulations, high fuel with the original injector, low fuel with the original injector and

the high fuel case with the modified larger injector. The fuel delivered to the shear
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layer and subsequent heat release and vorticity quantities of the modified injector

case are nearly the same as those quantities computed from the low fuel flow rate

case with the original injectors. This test case confirmed the hypothesis regarding

the relationship between the flame dynamics and the fuel jet penetration.

Figure 85 Spanwise averaged snapshots of the simulation with modified (larger) fuel
injectors (spanwise averaged CO and CO2 mass fraction overlaid on heat release rate)
at φ ≈ 0.95
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Figure 86 Comparison of time averaged heat release rate obtained for the low fuel
flow rate case (top), high fuel flow rate case with modified (larger) injectors (middle),
and high flow rate case with the original injectors.
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Figure 87 Spanwise and time-averaged quantities in the shear layers at several axial
locations, (– –) φglobal ≈ 0.95 original injector, (–N–) φglobal ≈ 0.5 original injector,

(– –) φglobal ≈ 0.95 modified (larger) injector
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CHAPTER VII

CONCLUSIONS AND FUTURE WORK

7.1 Conclusions

The main goal of this thesis was to use simulations to improve understanding of

vitiated, non-premixed bluff body stabilized flames with liquid fueling using com-

putational fluid dynamics. This final chapter summarizes the efforts to achieve the

proposed objectives along with key findings from the results.

Large eddy simulations were conducted for non-reacting and reacting flow at two

different fuel flow rate conditions on a vitiated, liquid fueled bluff body combustor.

The fuel injectors were located just upstream of the bluff body trailing edge in a

“close-coupled” configuration. The LES used a second-order finite volume method

combined with a second-order predictor-corrector time integration scheme and a sim-

ple quasi-laminar subgrid turbulence-chemistry interaction model. The liquid phase

was simulated using a Lagrangian parcel approach. Experiments at two fuel flow

rates, ṁ = 16.11 g/s and ṁ = 31.23 g/s, which correspond to global equivalence

ratios of φglobal ≈ 0.5 and φglobal ≈ 0.95 based on the incoming air mass flow rate,

showed markedly different flame dynamics; at φglobal ≈ 0.5, the flame exhibited sym-

metric flame shedding, whereas the φglobal ≈ 0.95 flame was characterized by large

scale sinusoidal Bérnard/von-Kármán shedding. Comparisons to experimental data

were limited to high- and low-speed imaging so the LES data required averaging in

the spanwise direction. CFD images combining heat release and combustion prod-

ucts qualitatively agree with the flame shedding behavior observed in the experimen-

tal images, i.e., the LES images show symmetric flame shedding at a fuel flow rate

of ṁ = 16.11 g/s and sinusoidal shedding at ṁ = 31.23 g/s. The time-averaged,

200



spanwise-averaged heat release CFD images were similar to the experimental data

though for the low fuel flow rate the CFD predicted more concentrated heat release

in the shear layers. At the high fuel flow rate, the flame shedding Strouhal number

of St = 0.22 computed via a flame edge analysis based on the LES spanwise images

was very close to the experimental value of St = 0.21 which was calculated using

the same method. The mean flame edge location, flame edge fluctuations and flame

width fluctuations were also calculated from the flame edge analysis for both the

LES and experiments. At the high fuel flow rate, the LES slightly under-predicted

the flame edge location near the bluff body, x/D < 2, but downstream was close to

the experimental values. The LES mean flame spreading rate, as determined by the

slope of the flame edge position versus downstream location, was nearly identical to

the experiments except for two small inflection points at x/D ≈ 2.5 and x/D ≈ 5

present in the experimental data but absent from the LES. For the low fuel flow rate

case, the LES flame edge location was consistent with the experiments in the range

2 ≤ x/D ≤ 8 but showed a narrower flame in the very near-field and far downstream

of the bluff body. The experimental flame edge fluctuations showed different trends at

the two different fuel flow rates, at the low fuel flow rate flame edge rms values steadily

increased downstream of the bluff body whereas at the high fuel flow rate a peak in

flame edge rms was observed around 3 ≤ x/D ≤ 4 with a much larger magnitude

than that of the low fuel flow rate case. The LES predicted these trends correctly.

At the low fuel flow rate the LES matched the experimental flame edge rms magni-

tudes throughout the domain. For the high fuel flow rate case the LES gave the same

peak rms value but showed a more steady decrease of fluctuations x/D > 6 than the

experiments. The LES also correctly captured the trends in flame width fluctuations

where at the high fuel flow rate experiments showed a sharp peak at x/D ≈ 0.75,

a trough at x/D ≈ 1.25 − 1.45 and another wider peak farther downstream. Both

the magnitude and location of these local maxima and minima computed from the
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LES were quite close to the experimental values. In the absence of more complete

experimental data the flame edge analysis provides limited validation of the reacting

flow LES.

These simulations required accurate thermophysical properties for both the Eule-

rian and Lagrangian phases along with a computationally tractable reaction mecha-

nism that worked over a wide range of equivalence ratios. The simulations not only

provided a baseline for subsequent analysis in this thesis, but a starting point for

future researchers conducting LES for similar configurations.

Analysis of the simulation setup and results yielded several key findings. The

first is that the injector breakup model and subsequent spray penetration are key

to successful simulations of this configuration. Initial simulations did not take the

injector discharge coefficient into account, which for these injectors ranged from 0.52

to 0.59, and the spray model itself was not properly tuned for the injectors in this

study. These deficiencies caused fuel spray that did not penetrate the free-stream far

enough compared to experiments and resulted in flame dynamics that were opposite

of those observed in the experimental study. Once the discharge coefficient was set

properly the spray model was tuned based on experimental data at conditions sim-

ilar but not identical to the reacting flow cases. The tuning was limited to the jet

regime model where the stripped droplet velocities and sizes along with the Reitz B1

parameter were determined based on the experimental data. The flame dynamics in

the reacting simulations completed after correcting these issues matched those from

the experiments. Since the injectors used in this study were not “standard” flush-

mounted orifice style injectors, the actual tuned model parameters developed in this

work may not be applicable to other injector configurations.

Previous work hypothesized that fuel spray penetration was the controlling factor

for the flame dynamics for this “close-coupled” configuration. The LES of this work

support this hypothesis. At the low fuel flow rate, the shear layer analsysis showed
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that the fuel jet did not penetrate very far into the crossflow thus delivering fuel

to the shear layers of the bluff body. Some premixing did occur prior to reaching

the trailing edge resulting in a complex partially premixed flow field. The recircula-

tion bubble behind the bluff body helped ignite the fuel in the shear layers and the

subsequent heat release damped the large scale sinusoidal structures via gas expan-

sion and baroclinic torque generation where the baroclinic torque generation was a

slightly more dominant factor. In the high fuel flow rate case, the fuel penetrated

farther into the free stream so less fuel was delivered to the shear layers, and thus

fewer reactions occurred directly behind the bluff body. The large scale sinusoidal

shedding characteristic of bluff body flows was not damped. The maximum time and

spanwise-averaged heat release rate in the shear layers just behind the bluff body,

x ≤ 2D, was over 100 times larger for the low fuel flow rate case than the high fuel

flow rate case resulting in baroclinic torque and gas expansion values one and a half

times larger. More supporting evidence for the hypothesis was supplied by running

an additional simulation with no experimental analogue. This third configuration was

simulated by modifying the fuel injector diameter to match the spray penetration of

the low fuel flow rate case while maintaining the fuel flow rate of the high flow rate

case. As expected, the shear layer analysis and flame dynamics of this configuration

matched the original low fuel flow rate case since the fuel jet penetration was similar.

The low and high fuel flow rate reacting cases were repeated using the subgrid

linear eddy model and the results compared to the baseline LES simulations. The

results of this investigation on the impact of the subgrid turbulence-chemistry inter-

action model showed the model had little effect for this configuration on the overall

flame dynamics as both models qualitatively matched the experiments. Time- and

spanwise-averaged heat release rate images of the high fuel flow rate case did show that

the LEMLES results were closer to the experiments in the near-field region behind

the bluff body than those using the quasi-laminar chemistry model. The similarity
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of the flame dynamics between the two models was attributed to the time step of

the simulation. The time step dictated by the CFL condition for the simulation was

small enough that in the majority of the flow field only 1–2 LEM stirrings occurred

during each LES time step. Without significant subgrid stirring the LEMLES results

do not significantly differ from the quasi-laminar simulations. Subgrid kinetic energy

was only significant in the near-field region in the shear layers behind the bluff body

and consequently 8–10 subgrid stirring events took place per LES time step in some

cells in this region. Here the additional resolution provided by LEMLES enhanced

the solution.

A high-order hybrid compact central / WENO-Z finite difference method was

implemented in the existing finite volume framework which allowed for easy compar-

isons between the two methods. The numerical scheme was a unique combination of a

compact central scheme in smooth regions of the flow, the WENO-Z scheme near dis-

continuities, and special treatment of the viscous terms to avoid odd-even decoupling

instabilities along with an explicit five-step, fourth order SSPRK time integration

method. The lack of inherent dissipation in the compact central scheme required the

use of a filtering operation to avoid instabilities in the smooth regions and a method

to smoothly transition to turn off the filtering where the WENO-Z scheme was used.

A series of linear, non-linear, non-reacting and reacting test cases were used to vali-

date the method and demonstrate that the high-order methods are more efficient and

the odd-even decoupling viscous terms are important to avoid oscillations where in

regions where the filtering is inactive.

The high-order hybrid finite difference scheme was applied to the high fuel flow

rate bluff body case and compared with the second-order finite volume results. The

application of high-order hybrid finite difference methods to multiphase, reacting LES

is not widespread and this is the first known usage of a hybrid compact/WENO-Z

204



scheme for multiphase, reacting LES on curvilinear grids. As with the subgrid tur-

bulence model comparisons, the flame dynamics were relatively insensitive to the

numerical method. The similarities were attributed to the fact that complex thermo-

dynamics, multiple species, chemical reactions and multiphase models are all addi-

tional sources of error not directly controlled by the temporal or spatial integration

method and are more difficult to quantify. The time- and spanwise-averaged heat

release rate images from the high-order FD simulations matched more closely to the

experiments in the shear layers just behind the bluff body than the second order FV

simulations. The LEMLES FV and high-order QL LES FD showed similar features in

this region demonstrating the capability of LEMLES to achieve high-resolution-like

results in regions of high subgrid kinetic energy. Overall, the baseline and high-order

simulations were actually quite similar giving more confidence in the baseline solution.

7.2 Recommendations for future work

As computing power in industry increases the use of LES as a design tool will also

become more widespread complimenting existing RANS and URANS methods. For

an engineering design tool for flows with liquid injectors Eulerian-Lagrangian meth-

ods will most likely remain the tool of choice. The accuracy of the liquid injector

model is critical to the success of the types of simulations presented in this work and

often times experimental data for model tuning is limited or completely unavailable.

Further research into first-principles modeling of the liquid injectors into a gaseous

environment is needed [81, 82, 164]. Vitiated environments, like the one studied here,

emphasize the need to advance these techniques to be able to simulate density ratios

of over 2000, which is much greater than currently published results [238]. Many of

these schemes include front tracking methods that could be improved with the use

of the WENO-Z scheme employed in this thesis [144]. An Eulerian-Eulerian method

that includes surface tension effects coupled to an Eulerian-Lagrangian solver may not
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currently be computationally tractable for full reacting flow LES. Instead simulations

on simplified but representative geometry using such a methodology could be used

instead of experiments to tune the more efficient but simpler Eulerian-Lagrangian

injector models.

The flame dynamics of the LES presented here did not show extreme sensitivity to

the subgrid combustion model but time- and spanwise-averaged image comparisons

did show the model had some effect. LEMLES has proven to be an effective model

in other simulations and some improvements could be made to increase performance.

To improve the overall efficiency, modifying the model to only be applied in certain

physical regions of the domain would be the first step; in fact some efforts have already

begun in this respect. Eliminating the numerical diffusion associated with splicing is

important as is the inclusion of molecular diffusion across LES cell faces [188, 216, 79].

Extending LEMLES to work in the finite difference framework developed in this work

could be especially advantageous; the high-order temporal and spatial schemes would

allow for larger cell and time-step sizes increasing the advantages of the subgrid linear

eddy model. This would most likely be straightforward if the Lagrangian splicing step

was eliminated [216].

The expanded use of high-order numerical methods to improve computational ef-

ficiency is another area of future work. High-order finite difference methods are quite

attractive for simple geometries though usage can be limited in complex industrial

geometries unless additional tools such as overset grids or static grid refinement meth-

ods, like the one presented in Section 4.10, are employed. The currently implemented

numerical methods could be improved based on recent advances for both the central

and upwind schemes [206, 2]. Other high-order methods like discontinuous Galerkin

methods [74, 126] and flux reconstruction methods [84] seem promising since they can

be used with unstructured grids and are particularly efficient on multicore hardware

such as graphical processing units (GPUs) [109, 235]. These high-order methods,
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which are generally first developed for single phase, non-reacting flows, need to be

extended to include multi-species, reactions and two-phase flow capabilities.
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APPENDIX A

IMPLEMENTATION OF THE LAGRANGIAN LIQUID

JET-IN-CROSSFLOW MODEL

The Lagrangian liquid jet in crossflow spray model used in this study is based on

existing models, namely those by Reitz [167] and Madabhushi [128, 129], but tuned

to match experimental data for the specific injectors of interest. The model was

described in detail in Section 3.7 with details of the tuning given in Section 6.3.1.1.

Explicit steps on the implementation of the model are given below:

1. Compute the Lagrangian injection diameter, di, based on the actual injector

diameter, d0, and the injector discharge coefficient, Cd, which ranged for this

experiment from 0.52 to 0.59:

di =
√

d20Cd. (263)

2. Compute the fuel density using the NSRDS functions [36] and values listed

in Table 34 based on the estimated fuel injection temperature which for this

simulation was estimated as 325 K.

ρl =
64.0

0.25511(1+(1−T/680.0)0.29368)
(264)

3. Compute the Lagrangian injection velocity, Vj, based on the Lagrangian injec-

tion diameter, fuel density and fuel mass flow rate:

Vj =
4ṁ

ρlπd2i
(265)

4. Integrate the parcel in time using the Madabhushi [128] breakup model with

the following modifications: In the jet regime (see Figure 7), when the parcel
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time is less than the column breakup time defined by

tcb = 3.44
D0

ug

√
ρl
ρg

, (94)

instead of using the wave model [167], as in the 2003 Madabhushi model [128],

or correlations of Sallam et al. [179] as in the 2004 Madabhushi model [129],

compute the stripped droplet size based on a linear combination of the two

methods

rstripped = (RND) rwave + (1− RND) rcorr, (100)

with complete details of the two sizes rwave and rcorr given in Section 3.7.1. Note

that the wave model constant was set to B1 = 7, as described in the breakup

model formulation section.

The stripped droplet velocities are set using

ushed = uparent + 7
√

ρg/ρl RND (ug − uparent) , (102a)

vshed = vparent + 0.6 (RND) (vg − vparent) , (102b)

wshed = wparent + 0.175 (RND − 0.5) (urel − wparent) . (102c)

which are based on the works of Chou [24] and Khosla [99]. In the simulations

in this work, droplets were shed once the stripped mass reached 0.5% of the

initial injected droplet mass.

Stripped computational parcels have a maximum of 36 particles per parcel but

often have less due to the mass cutoff value.

5. After column breakup, continue integrating the parcels using the secondary

breakup model of Madabhushi.

6. If any large parcels are still left in the domain, continue using the Reitz model

after secondary breakup while the parcels have diameters larger than 20µm.
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7. Integrate the parcels until they reach a user-defined cutoff radius which for these

simulations was 4µm.
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tbus, Brandenburg, Germany, 2003.

[39] Denaro, F. M., “What does finite volume-based implicit filtering really re-
solve in Large-Eddy Simulations?,” Journal of Computational Physics, vol. 230,
no. 10, pp. 3849–3883, 2011.

[40] Deng, X., Min, Y., Mao, M., Liu, H., Tu, G., and Zhang, H., “Further
studies on Geometric Conservation Law and applications to high-order finite
difference schemes with stationary grids,” Journal of Computational Physics,
vol. 239, pp. 90–111, 2013.

[41] Don, W.-S. and Borges, R., “Accuracy of the weighted essentially non-
oscillatory conservative finite difference schemes,” Journal of Computational
Physics, vol. 250, pp. 347–372, 2013.

[42] Don, W.-S., de Gregorio, A., Suarez, J.-P., and Jacobs, G. B., “As-
sessing the performance of a three dimensional hybrid central-WENO finite dif-
ference scheme with computation of a sonic injector in supersonic cross flow,”
Advances in Applied Mathematics and Mechanics, vol. 4, pp. 719–736, 12 2012.

[43] Duwig, C., Nogenmy, K.-J., ki Chan, C., and Dunn, M. J., “Large
eddy simulations of a piloted lean premix jet flame using finite-rate chemistry,”
Combustion Theory and Modelling, vol. 15, no. 4, pp. 537–568, 2011.

[44] Ekaterinaris, J. A., “High-order accurate, low numerical diffusion methods
for aerodynamics,” Progress in Aerospace Sciences, vol. 41, pp. 192–300, 2005.

[45] El-Asrag, H. A., Pitsch, H., Kim, W., Do, H., and Mungal, M. G.,
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