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PREFACE

‘A good scientist is a person with original ideas. A good engineer is a

person who makes a design that works with as few original ideas as

possible.”

Freeman Dyson

Institute for Advanced Study

“. . . Future planes will have one pilot and one dog in the cockpit. The

pilot’s job will be to feed the dog. The dog’s job will be to make sure

the pilot stays away from the instruments. “

MBA Professor

University of Southern California
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SUMMARY

Formal methods is a discipline of using a collection of mathematical tech-
niques and formalisms to model and analyze software systems. Motivated by the
new formal methods-based certification recommendations for safety-critical embed-
ded software and the significant increase in the cost of verification and validation
(V&V), this research is about creating a software development process for control
systems that can provide mathematical guarantees of high-level functional properties
on the code. The process, dubbed credible autocoding, leverages control theory in
the automatic generation of control software documented with proofs of their sta-
bility and performance. The main output of this research is an automated, credible
autocoding prototype that transforms the Simulink model of the controller into C code
documented with a code-level proof of the stability of the controller. The code-level
proof, expressed using a formal specification language, are embedded into the code
as annotations. The annotations guarantee that the auto-generated code conforms
to the input model to the extent that key properties are satisfied. They also provide
sufficient information to enable an independent, automatic, formal verification of the
auto-generated controller software.

xv



Chapter I

INTRODUCTION

1.1 Verification of Embedded Control Software

A wide variety of real-time embedded reactive systems, especially their most critical

parts, relies on a decision and control computational core. The decision and control

functions of an aircraft, a satellite, a ground vehicle, a turbine engine or a medical de-

vice are typically processed by a computational loop that is repeated during the active

period of the controlled device. This computational loop also models the acquisition

of new input values via sensors, from environment measures (wind speed, accelera-

tion, engine RPM, . . . ) and actuations, for example, the brakes, the accelerator, the

stick or wheel control.

For safety-critical applications i.e. the real-time control system of a civilian air-

craft, due to the significant costs of failure [67, 18], the avionics industry has had to

devote significant time and money towards convincing the regulatory authorities that

their on-board products are safe and sound. Part of this rigorous certification process

is Verification & Validiation (V&V). Verification is about determining if the output

software satisfies the input specifications i.e. is the produced software correct? In

contrast, validation is about determining if the specifications are complete and correct

i.e. satisfies the end customer’s needs.

The specifications may include a description of the software and/or the properties
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that the correctness of the software is dependent on. The description of the software

can vary in its level of abstraction or its level of details. For example, a description

can be some or all of below:

1. A mathematical equation. For example, one can specify the ordinary differential

equation that governs the behavior of the controller.

2. An informal natural language description of the tasks that the software need to

accomplish.

3. Pseudo-code implementation of the software. This description of the software

is very “close” to the actual software.

4. A model of the software in a synchronous language such as lustre, Simulink or

State-flow.

The properties or invariants, which also can be provided as part of the specifications,

are sets of states that holds for all possible executions of the software. The invariants

can range from a low level of abstraction, i.e. division by zero or buffer overflow, to the

satisfaction of high-level functional properties, such as the controller should achieve

a closed-loop bandwidth of 25hz.

The distinction between validation and verification may be blurred, for example,

in cases when high-level functional properties such as the performance of the system

is included in the specifications. For example, in the context of control software, the

control engineer can specify the exact differential equations of the controller along with

the expected robustness margins. In that scenario, formally verifying the software
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also validates the software against its robustness performance measures up to some

inaccuracies in the plant model. In this thesis, however, any activities regarding

proving the correctness of software is referred to as formal verification.

1.1.1 Old Certification Guidelines and the Cost Explosion

Currently, certification of safety-critical embedded control software employs tests or

simulation based methods. For example, the old FAA certification guideline, DO-

178B [78] recommends a process for certifying real-time embedded software but not

any specific goals or methods. This process boils down to testing or simulating the

software system for as many possible inputs as one can within a period of time. As

John Rushby once said: ”Because we cannot demonstrate how well we’ve done, we’ll

show how hard we’ve tried [16].”

The extensive simulations have reduced the frequency of on-board software failures

in the commercial air transport sector to almost zero [26], but at a great time and

cost disadvantage. Already, in the case of safety-critical computer controlled systems

such as those found on a modern commercial aircraft, the cost of developing the

on-board software approaches one half of the total project development budget [66].

Furthermore, in the software development budget itself, nearly one half is spent for

certification. The geometric explosion in the size and complexity of modern avionics

software has arguably made this process increasingly untenable. For example, if we

just consider code coverage analysis [60], which has a runtime that grows linearly

with the complexity of the code; if the current piece of code is one hundred times

more complex than its predecessor, what took a month of tests before, now will take

3



ten years.

1.1.2 Next Generation Certification Guidelines

In any case, extensive simulations, unless exhaustive, do not guarantee that the soft-

ware is sound for all possible inputs. Given the cost and time constraints, exhaustive

simulations is rarely if ever possible. The new FAA certification guideline, the DO-

178C [79], has three technology-specific supplements [80]. Two of the technological

supplements are relevant to the research in this thesis. The first one describes formal

methods [80]. Formal methods, from the field of computer science, is a collection of

formalisms and mathematical techniques for modeling and analyzing software. In-

stead of testing a program for bugs, the practitioners of formal methods seek to prove

the absence of bugs in programs.

The benefits of using formal methods in the certification process derives from the

potential replacement of tedious simulations with an automatic tool that proves the

correctness of the code [61]. It has been suggested, but not without controversy,

that the usage of formal methods can lead to a reduction in the cost of the safety-

critical software development process [102]. The reasoning for that argument is as

follows: any increase in cost due to integrating formal methods into the software

development process is dwarfed by the savings due to the reduction of tests in the

software certification process.

The second technology is model-based development (MBD). MBD is a software

development process, where the software is first written in a high-level modeling

language such as Simulink [82] or SCADE [2]. The software is then tested (simulated)

4



and debugged at this level of abstraction. The source code is eventually generated

automatically from the high-level description using a program called the autocoder.

One benefit of this approach, according to [84], is that it allows more bugs to be

eliminated early in the software development process e.g. at the design level. The

bugs that are found at the design level are a couple of orders of magnitude less costly

to fix compared to bugs that are discovered after code has gone through the last stages

of certification process [70]. The other potential benefit of MBD is that it enables a

more rapid and efficient prototyping of software because generally speaking, the higher

the level of abstraction, the easier and less mistake-prone it is for the domain experts

to write the software [85]. For example, at the level of differential equations, a linear

controller can be specified, by the control engineers, using only a few matrices. The

same linear controller expressed in Simulink [25] could result in a cluttered collection

of signals and blocks.

1.1.3 Contributions and Literature Review

This dissertation is motivated by the rising cost of V&V and seeks to leverage con-

cepts from formal methods, model-based development and control theory to make

improvements upon the current state of embedded software development process.

In formal methods, the behaviors of processes are modeled with mathematical

objects, such as state machines, transition systems, Petri nets, hybrid automaton,

process algebra, etc. With a few exceptions, these formal structures are well-suited

for analyzing systems with discrete behaviors and finite sets of states. Their power of
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description covers many types of processes including control systems, hardware cir-

cuits, mechanical machines, arbitrary computer programs, etc. Model checking [20],

which is a major technique in formal methods, automatically checks a finite-state

model of a program for their safety and liveness properties. A safety property is a set

of undesirable states, that the software system must not reach. An example of safety

property is the lack of division by zero. A liveness property is a property expressed

over the traces of the program i.e. sequences of instructions which are executed by the

program. An example of liveness property is the program will eventually terminate.

Abstraction interpretation [23], another major technique from formal methods, has

been applied to the flight control code of Airbus A380 [24]. In abstract interpreta-

tion, properties are computed directly from the code to prove the absence of low-level

runtime errors such as buffer overflow or division by zero.

Control theory is a field developed to analyze dynamical systems with inputs.

Complex computational cores in domain specific software such as control software

make their automatic analysis using traditional formal methods difficult in the ab-

sence of inputs from the domain experts i.e. the control engineers. The notions of

closed-loop and open-loop stability while trivial to control theorists but yet, as prop-

erties, are never expressed and proved on the code implementations of controllers. In

fact, any knowledge about the control properties of the system tend to be lost once

the development process has moved beyond the model level. At the level of the code,

control properties are difficult for analysis tools, based on either abstract interpreta-

tion or model-checking, to recover. This difficulty is due to a state-space explosion

problem since difference equations are state machines with an infinite state-space and
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because control systems typically yield quadratic invariants which makes it hard for

abstract interpretation tools to analyze.

In general, proof-checking a code documented with its proof is simpler than de-

ducing the proof automatically from the undocumented code. For control algorithms,

the engineers, who designed the controllers, are capable of producing proofs that can

greatly facilitate this analysis. However there are differences between the languages

of control theory and the ones of formal methods, which prevents meaningful com-

munications between the two disciplines. From the languages used to express the

semantic or the mathematical meaning of the system to the languages used in the

proof of correctness of the system, this semantic gap makes it difficult for either side

to use techniques from the other side. The main motivation for this thesis is the

closing of this semantic gap.

This thesis is about the translation of domain-specific knowledge from control

theory into a language suitable for program verification. We show how basic concepts

from the fields of formal method and control theory are intertwined. We argue that

information from control theory can be translated down to the level of code and

applied towards the verification of control programs. A proof of concept is built

which demonstrates this approach. To summarize, the main contributions of this

thesis are as follows.

1. Developing a novel translational framework that enables an efficient flow of

information from control theory to be applied towards formal verification of

control software.

7



2. Creating a new annotation language to express control properties and proofs

inside of an autocoding environment.

3. Building the first prototype autocoder that is capable of documenting control

properties and proofs on the level of the code.

4. Demonstrating the prototype on an example from the industry.

5. Accounting for implementation artifacts such as the effect of floating-point com-

putations on the stability proofs based on theory of real numbers.

The structure of this thesis and the publications produced are as follows. Chapter 2

describe the link established between Lyapunov-based methods and formal analysis

of software. Chapter 3 gives the development of the translational framework [47, 99].

Chapter 4 presents the realization of the translational framework i.e. the prototype

translator [96]. Chapter 5 describes methods to make the prototype translator sound

with regards to floating-point computation errors. Chapter 6 describes the application

of the prototype tool-chain to an example from industry [97]. Chapter 7 concludes

the thesis and discusses some future topics of explorations including the work which

extended credible autocoding to convex optimization algorithms [98].

1.1.4 Literature Review

This section provides an overview of past and concurrent research works that can be

divided into the following categories.

1. Background to the current research.

2. Techniques used in the current research.
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3. Works that inspired the current research.

4. Works that are directly related to the current research.

The intersection of two separate fields, control theory and formal methods, is

not empty. For example, a link between formal methods and control theory was first

established in the work of Jerome Feret [33], who analyzed a second order digital filter

using ellipsoidal templates within the abstraction interpretation framework. Ursula

Martin in [5] attempted at expressing control-theoretic concepts formally within a

Simulink environment. However that work did not result in producing proofs of high-

level control properties on the code. Feron in [34], which directly led to this thesis,

was the first to demonstrate that information provided by a control analysis can

potentially be documented on a controller code to support its verification.

The first person to conceptualize the process of proving programs was Alan Turing

in [93]. Turing’s work was remarkable as it provided a proof of a program using a

method that resembled the much later flowchart system of Robert Floyd [35]. Fast

forward to the 1960s, McCarthy was generally attributed as the first person to write

about mathematically proving programs [57], and Naur in [65] were among the first

along with Floyd to describe a working method for doing so. From that point on, more

formal systems of program verification were done by Charles Hoare with his Hoare

logic in [42] and Edsger Dijstra in [31]. In the credible autocoding framework, classic

concepts from program verification such as Hoare logic is used for the annotations of

the code.
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The model checking technique [19, 72] came in the early 1980s as the result of

simultaneous works of Clarke and Sifakis. Since then, the model checking approach

has been successfully applied to hardware systems [21]. For software systems, model

checking algorithms suffered with the issue of scalability as the state-space is signif-

icantly larger in computer programs. Recent advances in model checking techniques

such as efficient Boolean Satisfiability (SAT) solvers [64], and eventually Satisfiability

Modulo Theory (SMT) solvers [27] has improved greatly the scalability and scope

of model checking. Other advances in model checking have been in incorporating

abstractions into the construction of the program model [4, 90]. However, control

systems remain difficult for model checking techniques to analyze.

Abstract interpretation was first introduced by the Cousots in [23]. This technique

has since been used in practice to check for low-level errors such as buffer overflow

or divide by zero, of commercial aircraft software [24]. Practical advances in abstract

interpretation have been either in more efficient abstract domains [94]. or in more

efficient widening and narrowing algorithms [6]. Other recent research activities in

abstract interpretation include new relational abstract domains such as the zonotope

in [38] or new extensions for special properties such as floating-point errors [37].

A related work in [75], presented a framework to use a Lyapunov-based method

to check a control software for runtime errors. Unlike that work, which searches for

Lyapunov functions to verify low-level properties of the software, the current research

is focused on translating known high-level properties of the system down to the level

of the code.
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The following concurrent works are related to the current research. The first one,

by Garoche et al. in [77], uses ellipsoidal templates, computed from stability analysis,

for the static analysis of linear control programs. Another work, by Herencia-Zapana

et al. in [40] incorporated the mathematical theories, that are useful in the verification

of the annotated code produced by the credible autocoding framework, into a NASA

theorem prover.

The idea of closing the semantic gap is not new. For example, the prototype

described in [22] is a translational framework from Simulink to the various model

checking languages. There are many other works in the formal methods literature on

translational prototypes for transforming Simulink into another language that is more

suitable for verification. For example, the work in [17] presents a tool that translates

from a discrete-time subset of Simulink to Lustre or the work in [3] that translates

Simulink into hybrid automata. The key difference between that body of work and

this thesis is that we also provide formal guarantees of the functional properties of

the system. Other more direct approaches in the literature regarding the verification

of Simulink models, include creating formal semantics for the Simulink/Stateflow

models [89, 13].

On the matter of floating-point computation errors in control systems, the recent

thesis of Maisonneuve [55] produced similar results. Another recent work by Roux [76]

computes the over-approximation of ellipsoidal sets due to floating-point errors with

an application towards soundly checking if a matrix is positive-definite. Unlike that

work, this thesis is about accounting for the floating-point errors in the context of

the translation framework.
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Chapter II

AXIOMATIC SEMANTICS FOR CONTROL SYSTEMS

This chapter reviews some fundamental concepts from control theory and formal

methods. We first give an introduction to Lyapunov-based methods. The techniques

to compute quadratic invariants for linear and nonlinear systems are described. This is

followed by an introduction to concepts from program verification including axiomatic

semantics, Hoare logic and Dijkstra’s predicate transformer semantics. We show how

domain-specific knowledge from control theory can be applied towards the deductive

verification of a control program.

2.1 Lyapunov-based Methods

One of the main difficulties in software verification is being able to compute a fix-

point of a function. Consider a program while(true)f(x);end, where f(x) is an

abstraction of the loop body. A fix-point of the function f(x) is a set of program

states X such that f(X) = X. For the example while program, computing the fix-

point X of f leads to a loop invariant of the program. As per Rice’s Theorem [73],

no general algorithm exists that can decide the fix-point of arbitrary functions f(x).

An analogous concept from control theory is the Lyapunov function.

Lyapunov formalized the notion of stability for continuous dynamical systems in

1892 [54]. Here we give the definition of the discrete-time version [39]. Let G be the

12



discrete-time dynamical system

x(k + 1) = f(x(k)), x(0) = x0, k ∈ N (1)

where x(k) ∈ D ⊆ Rn is the system state vector, D ⊆ Rn and 0 ∈ D, f(0) = 0 and

f : D → Rn is continuous on D.

Definition 1.1 The zero solution to G is Lyapunov stable if, ∀ε > 0, there exists

δ (ε) > 0, such that if ‖x(0)‖ < δ, then ‖x(k)‖ ≤ ε for all k > 0.

Lyapunov’s second method is the more commonly used technique for demonstrating

the stability of dynamical systems.

Theorem 1.2 If there exists a function V (x) : D → R such that

1. V (0) = 0,

2. V (x(k)) is positive on x ∈ D/ {0} and V (0) = 0,

3. V (x(k + 1))− V (x(k)) ≤ 0∀k ∈ N ,

then (1) is stable (locally).

The function V (x) is a Lyapunov function candidate and if it satisfies the conditions

in Theorem 1.2 then it is a Lyapunov function. Let f in (1) be the linear function

f(x) = Ax, A ∈ Rn×n, then (1) becomes a linear discrete-time system

x(k + 1) = Ax(k), x(0) = x0, k ∈ N. (2)

For a linear discrete-time system, a sufficient condition for Lyapunov stability is the

existence of a quadratic Lyapunov function V (x) = xTPx where P is positive-definite.
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Theorem 1.3 If there exists a matrix P ∈ Rn×n such that P � 0, and ATPA−

P ≺ 0, then the system in (2) is Lyapunov stable.

Proof. Assume that V (x) = xTPx. We have V (0) = 0, V (x) > 0, x 6= 0 by the

definition of P � 0, and ATPA−P ≺ 0 =⇒ xT(k)ATPAx(k)−xT(k)Px(k) < 0 =⇒

V (x(k + 1))− V (x(k)) ≤ 0 for all x ∈ D.

The inequality ATPA − P ≺ 0, linear in the variable P , is a special case of linear

matrix inequality or LMI.

2.1.1 Quadratic Invariants

The sub-level sets of a quadratic Lyapunov function V (x) = xTPx form a family of

ellipsoids EP,c , {x ∈ Rn | xTPx ≤ c}. In this thesis, a predicate notation is used to

denote ellipsoidal sets. A predicate is a function f(x) that takes a variable x, which

belongs to some domain S, and returns true or false. For example, the predicate

f(x) = x < 0 returns false for any x ∈ N. The predicate notation is useful for

expressing ellipsoidal sets on variables in a program. For P ∈ Rn×n, and c > 0, we

have a family of quadratic predicates

p(P, c)(x) = xTPx ≤ c. (3)

The notation p(P, c)(x) is overloaded to also express the set {x ∈ Rn | p(P, c)(x)}. If

P � 0 then p(P, 1)(x) is an ellipsoidal set.

Another way of expressing ellipsoidal sets is to use the Schur-form. For a positive-

semidefinite matrix Q ∈ Rn×n, and a scalar c > 0, an ellipsoid in the Schur-form GQ,c
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is the set x ∈ Rn

 xT

x Q

 � 0

 . (4)

As in (3), we also use a predicate notation to express ellipsoids in the Schur-form.

We have for Q � 0, x ∈ Rn, and c > 0, the family of quadratic predicates

q(Q, c)(x) =

c xT

x Q

 � 0. (5)

Remark 1 If the matrix parameter Q in q(Q, c)(x) is singular, then the ellipsoidal

set q(Q, c)(x) is degenerate. An example of a degenerate ellipsoid in R3 is an ellipse.

If P in p(P, c)(x) is singular, then the set p(P, c)(x) becomes an elliptic cylinder. If

the matrix parameter Q in q(Q, c)(x) is not singular, and Q = P−1, then the two

ellipsoids q(Q, c)(x) and p(P, c)(x) are equivalent.

Computing a Lyapunov function V (x) = xTPx for (2) leads to a quadratic in-

variant p(P, c)(x). The quadratic invariant, including its sum of squares polynomial

extensions [69], exists for a wide range of control systems of interest. Classical design

methods such as the tuning of the proportional, integral and derivative (PID) gains,

while not relying on the computation of quadratic Lyapunov functions, yields control

systems that have quadratic invariants.

Theorem 1.4 For the linear system in (2), if there exists P � 0 such that V (x) =

xTPx is a Lyapunov function, then p(P, c)(x) is an invariant set of (2).
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Proof. If V (x) = xTPx is a Lyapunov function, then xT(k+1)Px(k+1)−x(k)Px(k) ≤

0, ∀x ∈ D. This implies that for c = xT

0Px0, x
T(k)Px(k) ≤ c for all k ∈ N.

Remark 2 Without a loss of generality, we can assume c = 1, since we can always

scale the matrix P by c−1.

We can also compute quadratic invariants for nonlinear systems consist of linear sys-

tems in feedback interconnections with bounded nonlinearities. A unifying framework

from robust control, the integral quadratic constraints (IQCs) [59], can be used to

analyze the stability of many of such systems. The technique generates quadratic

invariants as by-products.

2.1.2 Examples of Stability Analysis of Control Systems

We give two examples of stability analysis of control systems. Both analysis reduces

the stability problem into a linear matrix inequality problem. The first problem is a

linear system with bounded input. The second problem is the problem of absolute

stability i.e. the stability of a linear system with a nonlinearity in the actuation,

considered by Lur’e, Postnikov and others in the Soviet Union in the 1940s [53].

We first introduce the S-Procedure relaxation technique by Yakubovich [106].

Consider the quadratic forms q(x), q1(x), . . . , qm(x) defined on x ∈ Rn. The S-

Procedure is used to relax the problem of determining q1(x) ≥ 0 ∧ . . . ∧ qm(x) ≥

0→ q(x) ≤ 0 into a single matrix inequality.

Lemma 1.5 For the quadratic forms q(x), q1(x), . . . , qm(x), if there exist scalar

multipliers τi > 0 such that for all x ∈ Rn, q(x) +
∑
i

τiqi(x) ≤ 0, then q1(x) ≥
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0 ∧ . . . ∧ qm(x) ≥ 0→ q(x) ≤ 0.

The S-Procedure for quadratic inequalities was generalized to sum of squares poly-

nomials in [69].

Example 2.1.1 Consider a discrete-time linear system

x+ = Ax+Byref , x(0) = x0

y = Cx,

(6)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rk×n, D ∈ Rk×m and the input yref is bounded.

Lemma 1.6 Assume ‖yref‖ ≤ 1. If there exists P � 0 and a multiplier α > 0

such that ATPA− P + αP ATPB

BTPA BTPB − αIm×m

 � 0, (7)

then the ellipsoidal set p(P, c)(x) is invariant with respect to (6).

Proof. The proof is from Boyd et al. [14, p. 83]. Let V (x) = xTPx for some

P � 0. V (x+) − V (x) ≤ 0 implies that, for any x and yref satisfying xTPx ≥ 1 and

yT

refyref ≤ 1, (Ax+Byref )T P (Ax+Byref )− xTPx ≤ 0. Apply S-Procedure, we get

if there exist multipliers α > 0, β > 0 such that, for any x and yref ,

(Ax+Byref )
T P (Ax+Byref )−xTPx < 0+α (xTPx− 1)+β

(
1− yT

refyref
)
≤ 0, (8)

then EP,1 is an invariant set. Rewrite (8) as a quadratic form on

[
xT yT

ref

]T

with

β = α, we get the linear matrix inequality in (7).
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Example 2.1.2 Consider a discrete-time Lur’e system [48], with matrices A ∈ Rn×n,

B ∈ Rn×m, C ∈ Rk×n, D ∈ Rk×m, and a nonlinearity ∆.

x+ = Ax+B (yref −∆(y)) , x(0) = x0

y = Cx.

(9)

The second example contains a nonlinearity term ∆(y). The term ∆(y) can be used to

model many nonlinear and uncertain behaviors that are present in a realistic control

system. Examples of these nonlinear and uncertain behaviors include saturations,

noise, high-frequency dynamics, hysteresis, time-varying parameters in the system

matrices, etc. Consider (9) and assume ∆ is the output of a saturation function on

y. The saturation function has an upper and lower saturation level of ∆max > 0 and

∆min = −∆max. Assume |y| ≤ ymax > ∆max, we can capture the semantics of the

saturation function with the quadratic constraint

(∆ (y)−m1Cx) (∆ (y)−m2Cx) ≤ 0 (10)

for m1 =
∆max

ymax
, and m2 = 1. The quadratic constraint in (10) is a sector-bound

inequality and it is illustrated in Figure 1.

Lemma 1.7 Given that ∆(y) satisfies the sector-bound inequality in (10), ‖yref‖ ≤

1, σ = m1m2, and ν =
1

2
(m1 +m2), if there exists P � 0, multipliers α > 0 and

β > 0 such that
ATPA− P + αP − βσCTC ATPB −ATPB + βνC

BTPA BTPB − αIm×m −BTPB

−BTPA+ βνCT −BTPB BTPB − βIm×m

 � 0, (11)

and
√
CP−1CT ≤ ymax, then the ellipsoid p(P, c)(x) is invariant with respect to (9).
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Figure 1: Approximating saturation function with a sector-bound inequality

Proof. The proof is similar to the one for lemma 1.6 but with the additional quadratic

inequality  x

∆(y)


T  m1m2C

TC −1

2
(m1 +m2)C

−1

2
(m1 +m2)C

T Im×m


 x

∆(y)

 ≤ 0 (12)

obtained from the sector-bound condition in (10).

The inequalities in (7) and (11) are more examples of LMIs. The first explicit mention

of linear matrix inequalities in systems and control was by Yakubovich [105] in the

1960s. In the late 1980s, researchers realized that many system and control problems

reduces to computationally efficient problems in the form of LMIs [14]. With modern

digital computers, LMIs can be solved in practice [15]. If feasible, a solution P � 0

for either LMI in (7) or (11) can be computed using a semi-definite programming

(SDP) solver such as SeDuMi [88].
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2.2 Program Verification

We can show the stability of linear control systems and certain nonlinear control

systems by computing a quadratic Lyapunov function. Now we want to extend this

analysis down to the code level, in the form of a translated proof for code. A frame-

work from formal program verification is introduced here, as it enables us to formulate

an analogous proof of stability on the level of the code.

Axiomatic semantics is a method from computer science to assign mathematical

meanings to programs through predicates about the program state that hold before

the execution of the code and predicates that hold after the execution of the code [83].

A predicate that is expected to hold at a point in a program is called an assertion or an

invariant. In axiomatic semantics, there is a language to express assertions about the

program and followed by formal rules to prove the assertions. An example of language

for expressing program assertions is first-order logic which is used extensively in this

thesis. Here we introduce Hoare logic [42], which led to the notion of axiomatic

semantics. The main structure in Hoare logic is the Hoare triple.

Definition 2.1 A Hoare triple is the 3-tuple ({P} , C, {Q}), in which {P} is a

predicate or a set defined by a logic formula, and {Q} is also another predicate, and

C denotes a block of code.

The symbol P denotes a pre-condition and the symbol Q denotes a post-condition.

Definition 2.2 A Hoare triple ({P} , C, {Q}) is interpreted to be partially correct,

if {P} holds before the execution of C, and {Q} holds after the execution of C.
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1 // abs(x)<=1;

2 while (x*x >0.5) {

3 x=0.9*x;

4 }

5 // abs(x)<=1;

Figure 2: A while program in C

Remark 3 Program correctness requires a proof of termination. In the rest of this

thesis, correctness only refers to the notion of partial correctness.

The pre and post-conditions are expressed on the code as comments before and after

the block of code. For example, given the simple while program in Figure 2, If the set

|x| ≤ 1 holds before the execution of the loop, then it should hold for all executions

of the loop.

Definition 2.3 An loop invariant is a predicate that holds before and for all

executions of the loop.

The set |x| ≤ 1 is a loop invariant. It can be inserted into the code as both the

pre-condition and the post-condition, see the C comments in Figure 2. The Hoare

triple in Figure 2, therefore is {|x| ≤ 1} while a do C end {|x| ≤ 1}.

For a controller program implementing x+ = Ax + By, such as the Matlab code

in Figure 3, the loop invariant can be obtained from a Lyapunov stability analysis.

Assuming bounded input u, we can compute an ellipsoidal set EP,1 that is invariant

with respect to x+ = Ax+Bu by using lemma 1.6. The ellipsoidal set EP,1 is defined

by the logic predicate p(P, 1)(x). Note for the rest of this thesis, the predicate notation

p(P, 1)(x) will also be used to denote the set EP,1. The invariance of the set p(P, 1)(x)

enables us to express the logic formula p(P, 1)(x) as a loop invariant for the Matlab

21



code. The result is the annotated Matlab program in Figure 3. Next, the basics of

1 % x’*P*x<=1;

2 while t <5000

3 u=C*x+D*y;

4 x=A*x+B*y;

5 end

6 % x’*P*x<=1;

Figure 3: Annotated Lead/Lag Compensator in Matlab

deductive program verification are described.

2.2.1 Hoare logic and Deductive Verification

Hoare logic is a formal proof system that comes with a set of axioms and inference

rules for reasoning about the correctness of Hoare triples on various structures of an

imperative programming language i.e. if-else statements, assignment statements,

while statements, for statements, empty statements, etc.

For example, an axiom in Hoare logic for the while program construct is

{P ∧ a}C {P}
{P} while a do C end {¬a ∧ P}

. (13)

Syntactically speaking, the axioms and inference rules can be parsed as follows.

1. The formula above the horizontal line implies the formula below that line.

2. The correctness of the formula below the horizontal line can be proved by show-

ing the correctness of the formula above the line.

In the while axiom in (13), note that pre and post-conditions of the loop are neces-

sarily the same. This requirement for a loop invariant is the key reason why program
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Table 1: Hoare logic Inference Rules for a Imperative Language

{P1 → P2}C {Q1 → Q2}
{P1}C {Q2}

(14)
{P}C1 {R} ; {R}C2 {Q}

{P}C1;C2 {Q}
(15)

{P}SKIP {P}
(16)

{P [e/x]}x := expr {P}
(17)

verification is difficult. Some of the basic inferences rules for reasoning about impera-

tive programs using Hoare logic are listed in Table 1. The consequence rule in (14) is

used when a stronger pre-condition or weaker post-condition is needed. The set de-

fined by the stronger condition is a subset of the set defined by the weaker condition.

For example, x > 0 is a stronger pre-condition than x ≥ 0. The substitution rule in

(17) is used when the code is an assignment statement. The weakest pre-condition

expression P [x/expr] in (17) means P with all free occurrences of the expression expr

replaced by x. For example, given a post-condition y<=1 for the line of code y=x+1,

one can deduct that x+1<=1 is a weakest pre-condition using the backward substitu-

tion rule in (17). The skip rule in (16) can be used when the executing piece of code

does not change any variables in the pre and post-conditions.

To verify the Hoare triple in Figure 3, use the inference rules from Table 1 on

the code, starting from the post-condition x*P*x<=1. The process generates an

alternate pre-condition p(P, 1)(A ∗ x + B ∗ y) for the loop body. By the conse-

quent rule, the correctness of the initial Hoare triple can be checked by checking if

p(P, 1)(x1) → p(P, 1)(A ∗ x + B ∗ y). The process in Figure 4 is deductive. An

algorithmic reformulation of it is Dijkstra’s work on Predicate transformers [30]. By

using the Predicate transformers, the deductive process of Figure 4 is reduced to a

computational process of checking formulas expressed in prepositional logic.
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1. {p(P, 1)(x)} while a do C end {p(P, 1)(x)}.

2. {p(P, 1)(x)}C {p(P, 1)(x)} by the while axiom in (13).

3. {p(P, 1)(A ∗ x+B ∗ y)}x = A ∗ x+B ∗ y {p(P, 1)(x)} by the backward substi-
tution rule in (17).

4. {p(P, 1)(A ∗ x+B ∗ y)}u = C ∗ x+ B ∗ y {p(P, 1)(A ∗ x+B ∗ y)} by the skip
rule in (16).

5. {p(P, 1)(x), p(P, 1)(A ∗ x+B ∗ y)}C {p(P, 1)(x)} by the composition rule in
(15).

6. if p(P, 1)(x) → p(P, 1)(A ∗ x + B ∗ y), then {p(P, 1)(x)}C {p(P, 1)(x)} by the
consequent rule in (14).

Figure 4: Correctness of the program Using Hoare logic

2.2.2 Predicate Transformers

In the semantics of Predicate Transformers, the weakest pre-condition of C is a func-

tion wp that maps any post-condition Q to a pre-condition. The output of the weakest

pre-condition function wp(C,Q) is the largest set such that, after the execution of C,

Q holds. For example, the correctness of a Hoare triple, for a set of variables x in

the code C, is determined by checking if the logic formula ∀x, P → wp(C,Q) holds.

The wp function can be applied to various constructs in an imperative programming

language. Some examples are given in Table 2. The sequence of Ii in (21) can be

replaced by a single I if I is an invariant of the loop. Denote the while program as

P , in the case of partial correctness, wp(P , Q) = I is the weakest literal pre-condition

if I → wp(C, I). In the case of total correctness, wp(P , I) = I is the weakest pre-

condition, if I → Q and the loop terminates. Recall the control program in Matlab
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Table 2: Weakest Pre-condition Calculus

wp(C1; , ..., CN , Q) = wp(C1, wp(C2, wp(C3, ..., wp(CN , Q))
(18)

wp(skip, Q) = Q (19) wp(x := e,Q) = Q[e/x]
(20)

wp(while a do C end, Q) = ∀i ∈ N, Ii
I0 = true

Ii+1 = (¬a→ Q) ∧ (a→ wp(C, Ii))

(21)

from 3, which consisted of a while loop and satisfies the invariant p(P, 1)(x), Ap-

ply wp-calculus to that program i.e wp(P , p(P, 1)(x)) = p(P, 1)(x) leads to two logic

formulas:

1. I → Q and the loop terminates. The loop in 3 terminates after a finite number

of iterations and clearly p(P, 1)(x)→ p(P, 1)(x) is true.

2. I → wp(C, I) i.e. p(P, 1)(x)→ wp(C, p(P, 1)(x)).

The second condition is harder to verify since p(P, 1)(x)→ wp(C, p(P, 1)(x)) involves

checking if one quadratic inequality implies another. For programs that are purely

linear transformations, checking p(P, 1)(x) → wp(C, p(P, 1)(x)) might be automatic

using state of art SMT solvers, but there are nonlinearities in the example control

systems under consideration. Notice the formula p(P, 1)(x) → wp(C, p(P, 1)(x)) is

equivalent to the Hoare triple

{p(P, 1)(x), wp(C, p(P, 1)(x))C {p(P, 1)(x)} , (22)
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which means p(P, 1)(x) can be inserted as the pre and post-conditions of the loop

body C in Figure 3. Applied further wp-calculus on the loop body results in the

annotated code in Figure 5. The set of pre-conditions generated by wp-calculus i.e.

1 % x’*P*x<=1;

2 while (t <5000)

3 % x’*P*x<=1, wp(u=C*x+D*y,wp(x=A*x+B*y,x’*P*x<=1))=(A*x+B*y) ’*

↪→ P*(A*x+B*y) <=1

4 u=C*x+D*y;

5 % wp(x=A*x+B*y,x’*P*x<=1)=(A*x+B*y) ’*P*(A*x+B*y) <=1

6 x=A*x+B*y;

7 % x’*P*x<=1

8 end

9 % x’*P*x<=1;

Figure 5: Annotated Lead/Lag Compensator in Matlab

the displayed Matlab comments inside the loop in Figure 5, along with the Matlab

code itself, form a translated proof for the code. Verifying this translated proof implies

that p(P, 1)(x) is a loop invariant of the while program, which is an evidence that

the controller implementation is stable.

2.2.3 Strongest Post-condition

The dual of weakest pre-condition is the strongest post-condition. The strongest post-

condition function sp on C maps pre-condition P to the strongest post-condition that

holds after execution of C. The strongest post-condition sp(C,P ) is the smallest set

that holds after the execution of C, given that the set defined by P holds before the

execution of C. To check a Hoare triple {P}C {Q) using sp-calculus, first compute

sp(C,P ) or some over-approximation of sp(C,P ) and then check that sp(C,P )→ Q.

In this thesis, sp-calculus is used to generate the proof on the code. Traditionally,

the weakest pre-condition calculus is used to verify program since the automatic
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computation of strongest post-condition is rarely feasible. For the control systems

under consideration, we can apply ellipsoidal transformation rules, which allow us to

perform sp-calculus automatically.

2.2.4 Verifying the Proof on the Code Using a Theorem Prover

A theorem prover or a proof assistant is a computer program that provides an en-

vironment where mathematical theories can be expressed and then proved using an

interactive procedure. The soundness of a theorem prover is based on the collection

of accepted axioms on which the theories are built upon. A theorem prover is in-

teractive, whereby a human user has to input a proof step and the theorem prover

checks the correctness of the proof step. A theorem prover can be automatic in the

sense that, if provided with a right set of theories and strategies, it can check auto-

matically the correctness of a formula. A theorem prover, however cannot generate

a proof of a theory automatically for all but the most trivial ones. In this thesis,

the translated proof on the code is verified by a proof-checking program, based on

the theorem prover Prototype Verification System (PVS) [68]. The proof-checking

program is provided by the thesis of Romain Jobredeaux [46]. It uses the theories

and definitions from the NASA PVS linear algebra library [40].

2.2.5 Summary

Here we summarize the process of extending Lyapunov stability analysis down to the

code-level as illustrated by the Matlab example in Figure 5.

1. Lyapunov stability analysis is performed to compute an ellipsoidal invariant.
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2. The ellipsoidal invariant set EP,1 is translated into the first-order logic formula

p(P, 1)(x), and inserted as a pre-condition and a post-condition of the loop

body.

3. The rest of the pre- and post-conditions for each line of code in Figure 5 are

auto-generated using sp-calculus.

4. The translated proof is comprised of all the pre- and post-conditions, displayed

as Matlab comments in Figure 5 and the program P itself.

5. The correctness of the Hoare triples in Figure 5 implies that p(P, 1)(x) is a loop

invariant of P , and in turn this means P is stable.

6. Checking Hoare triples with quadratic invariants can be automated in a theorem

prover [46], by first proving the ellipsoid transformation theories used in sp-

calculus are correct, and then applying the ellipsoid transformation theories on

the Hoare triples extracted from the annotated code.

Remark 4 From the last summary statement above, the need for an independent

verification of all the theories used in the proof translation process before using the

same theories to check the translated proofs, is very important. This ensures a degree

of separation between the proof providers i.e. the producers of safety-critical software

and the proof checkers i.e. the certification authorities.
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1 /*@

2 requires x*x<=1;

3 ensures x*x<=1;

4 */

5 while (x*x>0.5) {

6 x=0.9*x;

7 }

Figure 6: ACSL annotations for a while loop Program

2.2.6 Annotation Language for Expressing Axiomatic Semantics of C
Programs

A prototype is developed in this thesis to automate the translation process, starting

from a high-level modeling language and ending with the C language. The C language

is chosen as the output language of the prototype because of its industrial popularity

and because there is a relatively popular formal annotation language developed for C.

The ANSI/ISO C Specification Language (ACSL [8]), which is a formal specification

language for C programs, is supported by the static analyzer frama-C [7]. The ACSL

annotations are expressed in special C comments denoted by the symbol /*@. The

main structure of ACSL is the function contract. A function contract consisted of a set

of requirements i.e. pre-conditions on the arguments to a function and/or another set

of properties that are ensured after the execution of the function i.e. post-conditions.

A function contract is inserted before a function C to form a Hoare triple {P}C {Q}.

The pre and post-conditions in an ACSL function contract are denoted respectively

using the ACSL keywords requires and ensures.

For example, inserting the invariant x*x<=1 as a ACSL function contract into the

C program from Figure 2 results in the ACSL-annotated program in Figure 6. The

ACSL comments are referred to as code specifications or annotations.
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1 /*@

2 behavior one:

3 assumes x<=2;

4 ensures x*x<=4;

5

6 behavior two:

7 assumes x<=1;

8 ensures x*x<=1;

9 */

10 while (x*x>0.5) {

11 x=0.9*x;

12 }

Figure 7: ACSL Behaviors

One can have multiple behaviors on the code, denoted by the ACSL keyword

behavior.

Definition 2.4 A behavior is defined as a set of invariants that the program

satisfies for some given set of assumptions.

For example, if one take the same code from Figure 6, but assumes two different

initial values of x. The result is two sets of invariants for the code (see Figure 7).

In ACSL, one can also express annotations on ghost code, which are annotative

code. Ghost code is denoted using the ACSL keyword ghost. For example, in Figure 8

the while loop from the previous examples can be expressed as a ghost code, and the

same invariant x*x<=1 can be inserted as a property of the ghost code. The ghost

code construct is useful for expressing properties that depend on the environment. For

example, some properties in control, such as the stability of the closed-loop system,

depends on the model of the plant. Using the ACSL ghost keyword, the plant model

can be embedded into the annotations and used as part of the analysis to prove

closed-loop stability on the code. More descriptions of ACSL are provided in the
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1 /*@

2 requires x*x<=1;

3 ensures x*x<=1;

4 */

5 {

6 /*@

7 ghost while (x*x>0.5) { x=0.9*x;}

8 */

9 }

Figure 8: ACSL Ghost Code

next chapter.
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Chapter III

CREDIBLE AUTOCODING

Autocoding is an automated programming process that transforms a system expressed

in a high-level modeling language such as Simulink or SCADE into a low-level imple-

mentation language such as C. In credible autocoding, the code is generated along with

mathematically verifiable guarantees of functional correctness. The concept of credi-

ble autocoding is analogous to Rinard’s credible compilation in [74]. Both processes

generate formally verifiable evidences that the output correctly preserves certain se-

mantics of the input. Unlike credible compilation of Rinard’s, the formally verifiable

evidences of interest in this research are the high-level functional properties of con-

trol systems which include stability, robustness and performance. While high-level

functional properties allows for a in-depth understanding of the underlying behavior

of the software, they can also be used to prove the absence of runtime errors such as

divide by zero [75].

3.1 Credible Autocoding Framework

Data-flow modeling languages such as Simulink or SCADE are the default industry

choice for Model-based development of safety-critical control systems. In a data-flow

language environment such as Simulink, there are two major elements: “blocks”, and

“lines.” The blocks are functions that perform some operations on its input(s) and

then output the result(s). The lines are directed edges that flow from an origin block’s
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output to a destination block’s input.

Within this framework of software development, systems are built using a language

of high-level abstraction in order to facilitate rapid design and prototyping. The

source code is then generated automatically from the input model using an automated

code generation tool or an autocoder. The trustworthiness of the autocoder has often

been questioned in the industry [28]. A related work [29], which is complementary to

this research used a model-based approach (meta-model approach since its applied

towards a model-based development tool) to assign provably correct semantics to a

set of Simulink blocks. The result of that research is a library of trustworthy blocks

i.e. the BlockLibrary language, with precise semantics, that can be reasoned about

formally.

In the framework of credible autocoding, instead of proving that individual block

transformations are correct i.e. building a collection of trustworthy blocks, the goal

is to be able to show that the output code also satisfies the high-level functional

properties of the input model. The functional properties of the input model are

dependent on the domain of the input model. In the domain of control systems, a

strong functional property is the stability of the closed-loop system and a weaker

property is the boundedness of the state of the system. The verification of the code

against high-level functional properties gives an additional layer of guarantee on the

correctness of the code. For example, if a gain in a Simulink model was inverted

accidentally before autocoding, the output code, while correct in the sense of each

individual block transformations, is not likely to satisfy a pre-computed property such

as the Lyapunov stability of the system.
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The current safety-critical software development process is based on the traditional

V-cycle in Figure 9. The V&V activities on the right is generating simulation results

which have to satisfy the testing requirements written by the developers on the left.

For example, at the model level description of the software, individual functions of

the program are specified and units tests are developed for them.

User 
Requirements

High-Level 
Specifications

Model

Code

Unit Tests

Integration
Tests

System
Validation

Simulation-based 
verification

Figure 9: Safety-critical software development process

A problem with the traditional V-cycle is that V&V do not occur until well after

the system is translated either manually or automatically into code. Furthermore,

the people performing the V&V are a different group of specialists than the people

doing the development. They have little if any domain-specific knowledge about the

system being developed. These knowledge could provide useful information about the

correctness of the produced code but they are often lost in the code generation process.

This time and communication gap between V&V and development activities worsens

as the process move into the last phases of the V-cycle. For example, critical problems
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discovered in the integration testing phase could result in the process starting over

at the high-level specifications phase. This slow and expensive feedback loop is one

of the reason for the explosion in the cost of safety-critical software development.

In this dissertation, a framework of credible autocoding is developed, which aims at

reducing the time and communication gap between V&V and software development.

An idealized vision of this framework is shown in Figure 10, where the high-level and

low-level specifications, along with their requirements and properties are translated

into code and proofs on the code, which can then be independently and automatically

checked by a proof-checker. In this idealized scenario, the time horizon between the

User 
Requirements

High-Level 
Specifications

Model

Code

System
Validation

Proof-checking

Autocoding with Proofs

Simulation-based 
Verification

Figure 10: Safety-critical software development process with credible autocoding

user requirements phase and the system validation phase is significantly reduced as

the unit and integration testing phases are supplanted by an automatic, proof based

process.
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In this thesis, credible autocoding is demonstrated on the domain of control sys-

tems. This process is summarized in Figure 11. The control semantics include the

stability property of the system and the plant models used in the stability analysis

for the closed-loop cases. The scope of this thesis is concerned with the left half of

the diagram in Figure 11, which is the credible autocoding portion. The framework

adds, on top of a classic model-based development cycle, another translation process,

that converts quadratic invariant sets, computed using Lyapunov-based methods, into

code annotations on the code, which form a proof of the correctness of the output

code. The work in this thesis is a first proof of concept and presumably it can be

Figure 11: Automated Credible Autocoding/Compilation Chain for Control Systems

further extended to other domains such as convex optimization [98]. The code anno-

tations include both the axiomatic semantics described in Chapter 2, and ghost code,

which are non-executed code. The ghost code is useful for representing the models of
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the plant, which are not part of the semantics of the program. For credible autocod-

ing of control software, compared against the traditional model-based development,

the only additional requirement on control engineers is that they provide the Lya-

punov function. The procedure for generating Lyapunov-type certificate of stability

and performance property of control systems can be mostly automated using LMIs

and the IQC framework. Each stability and performance property generated can be

encoded using an ellipsoid, which can then be transformed into a quadratic invariant

for the code.

The advantages of the framework developed in this research can be summarized

as follows.

1. All the advantages of model-based development are inherited.

2. The correctness of the autocoder is guaranteed by the correctness of its output

code. This is based on the idea of credible compilation in [74]. This replaces

the need to formally verify the autocoder.

3. Under credible autocoding, an independent verification of the produced code is

possible. This in contrast to the certified autocoder approach.

4. The properties carried in credible autocoding can be used to evince both safety

and liveness.

5. Credible autocoding provides guarantees of high-level functional properties,

which is a more useful characterization of the correctness of the whole system

for the certification authorities.
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6. The framework could generate feedback information to the domain expert so

errors in the construction of the model could be diagnosed more rapidly.

7. Credible autocoding could reduce the number of tests required for certification

of the control software. In traditional unit testing, a piece of code, such as a

controller function, is tested repeatedly for many possible different inputs and

scenarios. The credible autocoding framework enables a meta-testing proce-

dures, in which the function, is tested for all possible inputs and scenarios, in

one iteration.

3.1.1 Prototype Tool-chain

In this research, a prototype tool-chain has been developed for the demonstration

of credible autocoding. The prototype tool-chain is split into a credible autocoder

frontend and a proof-checker backend. The credible autocoder frontend translates

the model into annotated code. The proof-checking backend analyzes the annotated

code produce by the frontend and decides whether or not the proof is coherent. The

scope of this thesis falls on the frontend. The backend, which is developed in thesis

of Romain Jobredeaux [46] is also briefly mentioned in the context of proof-checking

the generated code.

3.1.1.1 Input Language

The input language of the framework should be a graphical data-flow modeling lan-

guage such as Simulink, since it is familiar to control engineers. The exact choice of

the input language is up to the domain users’ preference and does not affect the utility

of the framework as it can be eventually adapted to other modeling languages such
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as SCADE [11]. For the prototype tool-chain developed in this research, the choice of

the input language is a discrete-time subset of Simulink blocks, which includes basic

blocks such as unit delays, gain, input, output, plus, minus, multiplication, divide,

min, and max. This subset is sufficient to express any control systems of interest.

3.1.1.2 Language Extensions in Gene-Auto

The autocoding prototype is based on Gene-Auto [92, 45, 91, 12], which is an existing,

open-source, autocoding prototype for embedded systems. The prototype required

language extensions in the Simulink environment, the Gene-Auto environment and

ACSL. The language extensions are summarized as follows.

1. A library of Annotation blocks in Simulink/Gene-Auto.

2. An ACSL-like language within Gene-Auto.

3. Abstract types and their operators in ACSL: matrix, vector and quadratic pred-

icates.

The language extensions in Simulink/Gene-Auto and the ACSL abstract types are

described in Section 3.2. The syntax of the ACSL abstract types are briefly described.

The ACSL-like extensions within Gene-Auto is called GAVAModel. For more details

of GAVAModel, including its meta-model, please see block-library.enseeiht.fr/

html/Progress/geneautoAnnot.html. The GAVAModel language enables common

ASCL constructs such as: behavior, assumes-statement, function contract, require-

statement, ensure-statement, and ghost code to be expressed within an intermediate

representation in Gene-Auto.
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3.2 Language Extensions

An observer (see [101]) in Simulink takes an input signal and returns an output of

1 if the input satisfies a specific property, and 0 if otherwise. Both boundedness

and stability can be expressed, for example, using an observer with inputs x(i), i =

1, . . . , n, P � 0,

x→
∑

i,j=1,...,n

x(i)P (i, j)x(j) ≤ 1. (23)

To express observers as annotations on the Simulink model, we extended the Simulink

language and the Gene-Auto environment with a set of annotation blocks.

3.2.1 Annotation Blocks for Simulink

The Simulink language and Gene-Auto are extended by an annotation block library.

Annotation blocks have the same structure as the regular blocks but they are ignored

during code generation. The annotation block library is sufficient to express the

stability of linear systems and nonlinear systems. They can also express the semantics

of observer-based fault-detection systems.

The prototype annotation block library contains four symbols: vamux, constant,

quadratic, and system. Each annotation symbol denotes an annotation block type, To

illustrate the annotations blocks, we have Figure 12, which shows a Simulink model

of an engine controller, along with 6 annotation blocks. The annotation blocks are

highlighted in red for the purpose of clarity.

In Simulink, the vamux block type takes n scalar or vector inputs xi, and outputs a

concatenated signal y =

[
xT

1, . . . , xT

n

]T

. In Figure 12, there are three vamux blocks,

labeled as nh, xc and ybar. The vamux block type only accepts one parameter, which
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determines the number of inputs to the block type. The vamux block does not express

any property of the system. In Gene-Auto+, the main functionality of the vamux

block is to establish equivalence relations between its inputs and the ith entry of its

output. i.e. xi == yi. This enables the prototype to replace the pseudo-variables in

the templates within the other annotation blocks with the actual variables from the

code.

Figure 12: Simulink Model with annotation blocks

The constant block type accepts one scalar, vector, or matrix input x, and a

constant matrix parameter [c1] or [c1, . . . , cn] for n ∈ N. The type of the constants

ci are constrained to be the same type as the input x. The output of the block is

the boolean value x == c1 or
n∨
i=1

(x == ci), which implies n sets of behaviors for the

code.

Definition 2.1 A behavior is a set of unique assumptions on the parameters and
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input, and output of the model.

This block type is useful for expressing the semantics of parameter varying systems

such as a gain-scheduled controller. For example, the scheduling parameter of the

controller in Figure 12 is the input NH, which is annotated with a constant block

labeled sampled nh. In Gene-Auto+, the constant block type generates a set of

assumption(s) {x == ci}, i = 1, . . . , n.

The quadratic block type accepts a vector input ξ ∈ Rn, a matrix parameter

P ∈ Sn×n, a logic connective symbol � ∈ {<=, <,>,==}, a level-set constant c ∈ R,

and outputs the boolean value of ξTPξ � c. The quadratic block type can be used,

for example, to express ellipsoidal invariant sets, sector-bound inequalities, 2-norm

squared, sum of squares polynomial sets, etc. The quadratic block also accepts a

positive scalar parameter mu. This is used to indicate the multiplier computed in

stability analysis. The quadratic block type behaves like the observer from (23) in

Simulink. In Gene-Auto+, the quadratic block type represents a quadratic predicate

on its inputs: ∀ξ.ξTPξ ≤ c. An example of quadratic block can be found in Figure 12,

where the block stability express a quadratic invariant on the input signal xc. The

other quadratic block bounded input is used to express a bound on the input ybar

to the controller.

The system block type is parameterized by 4 matricesA, B, C, andD. An example

of a Simulink model annotated with the system block can be found in Section 3.2.3.

The system block type accepts two vector inputs u and y. The output of the system
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block type is the state x of the dynamical system

x+ = Ax+Bu, x(0) = x0

y = Cx+Du.

(24)

The semantics of the system block in Gene-Auto include the semantics of the discrete-

time linear state-space system in (24), and a set of relations {ỹi == yi, ui = ũi} that

establish equivalence between the annotation variables y and u and their correspond-

ing variables ỹ and ũ from the controller model. The system block type can be used,

for example, to express a model of the plant the controller is expected to interact with.

The same controller model can be annotated with multiple system blocks, which re-

sults in multiple sets of predicates for the code, which can be annotated using the

behavior keyword from ACSL.

3.2.2 Annotation Blocks and Behaviors in the Model

In a model, multiple system blocks s1, . . . , sn can be connected to the same set of

vamux blocks. This results in a set of n behaviors expressed by the formula
n∨
i

si.

If there are n system blocks connected to the controller model, then there are n

behaviors in the model.

If there are also k constant blocks in the model, each connected to a different

vamux block, and each with m behaviors, then we have a total of mk behaviors

resulting from the constant blocks:
k∧
i

(
m∨
i

ci

)
. The complete set of behaviors in the

model resulting from both the system and constant blocks is described by the formula

(
k∧
i

(
m∨
i

ci

))
∧

(
n∨
i

si

)
(25)
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or a total of nmk possible behaviors.

Lastly, if there are w quadratic blocks in the model as well, and they are all

connected to the same set of vamux block, then we have w number of behaviors ∨wi qi

due to the quadratic blocks. Combining this set of behaviors conjunctively with the

set of behaviors generated by the system and constant blocks results in(
k∧
i

(
m∨
i

ci

))
∧

(
n∨
i

si

)
∧

(
w∨
i

qi

)
(26)

for a possible total of wnmk behaviors in the model. However, each of the quadratic

blocks that encode an inductive property such as stability are assigned a behavior

produced by a system block. This is true for any examples, in which the quadratic in-

variant is computed based on some plant model. For example, if there are n quadratic

invariants and each is assigned a behavior from a system block, then there are only

n behaviors in the model:
n∨
i

(si ∧ qi) . (27)

Next, some annotated examples are given. Each example contains a different

possible set of control semantics.

3.2.3 Closed-Loop Stability of a Linear System with Bounded Input

The closed-loop stability of a control system with bounded input can be expressed

with a system block and a pair of quadratic blocks. An example of such is displayed

in Figure 13.

1. The quadratic block stability is used to express the ellipsoidal invariant that

encodes the closed-loop stability of the system.
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2. The quadratic block bounded input is used to express a 2-norm bound on the

input.

3. The system block plant is used to express the discrete-time linear state-space

system used in the closed-loop stability analysis.

Figure 13: Control system model annotated with control semantics

3.2.4 Open-loop Stability of a Control System with Saturations

Saturations are present in many realistic control systems. As described in Sec-

tion 2.1.2, their semantics can be over-approximated using a sector-bound inequality.

The sector-bound inequality, being quadratic, can also be expressed with a quadratic

block. For the altitude controller in Figure 14, obtained from NASA’s transport

class model [43], the relations between the inputs and outputs of the saturations

are captured using a single sector-bound inequality. This sector-bound inequality is

expressed by the quadratic block sector in Figure 14.
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Figure 14: Sector-bound condition for saturation operators in an altitude controller
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3.2.5 Expressing Semantics of Observer-based Fault-detection Systems
in Simulink

In an observer-based fault-detection system, the dynamics of the observer are designed

such that the output of the observer changes if the plant model changes or is subject

to a malicious attack. Once the change exceeds a certain pre-defined threshold, the

system is said to be in the faulty mode. To express the faulty and nominal behavior

of a fault-detection system, one can use two different system blocks. One system

Figure 15: Expressing multiple behaviors: observer-based fault-detection system

block is the model of the faulty plant that is predicted to trigger the faulty mode
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and the other is the nominal plant. This is displayed in Figure 15. The quadratic

blocks connected to the vamux blocks xf and xn express the closed-loop stability

of the system. They are assigned behaviors based on their physical connections to

the system block. For example, as displayed in Figure 15, the block cl faulty is

connected to the system block quanser faulty using the vamux block xf. The two

quadratic blocks connected to the vamux block xo are used to express the stability of

the observer dynamics. They are assigned the behaviors faulty and nominal based

on the labels in their names.

3.3 Credible Autocoding of Control Software

This section describes the credible autocoding process in a nutshell for a simple dy-

namical system, using a mixture of math, C and pseudo-ACSL. We make the following

assumptions on the credible autocoding of control semantics. The C code is executed

on a machineM capable of infinite precision arithmetic. This assumption is discarded

in Chapter 5 of this thesis, where floating-point computation errors are accounted for.

The process starts with computing a quadratic invariant set for the system. Given

a dynamical system G defined by x+ = Ax, the ellipsoid set p(P, 1)(x), constructed

by solving the LMI ATPA − P ≺ 0 for P � 0, is also invariant with respect to

G. The invariance of p(P, 1)(x) enable us to know a priori that the Hoare Triple

{p(P, 1)(x)}P {p(P, 1)(x)}, in which P is a code implementation of G in Figure 16,

is correct. Since P � 0 is invertible, then q(Q, 1)(x) with Q = P−1 is equivalent to

p(P, 1)(x). The credible autocoder inserts q(Q, 1)(x) as the pre- and post-condition

of the program.

48



Using the weakest literal pre-condition function from (21) on q(Q, 1)(x), one ob-

tains q(Q, 1)(x) as the pre- and post-condition of the loop body in P . The quadratic

invariant q(Q, 1)(x) is inserted into the code in Figure 16 as pre- and post-condition

of the loop body. This is displayed in lines 7 and 8 of Figure 16, with the loop body

enclosed in curly braces.

1 /*@

2 requires q(Q,1)(x);

3 ensures q(Q,1)(x);

4 */

5 while (true) {

6 /*@

7 requires q(Q,1)(x);

8 ensures q(Q,1)(x);

9 */

10 {

11 y1=0 .4990* x1 +0.1*x2;

12 y2=0 .01*x1 +1.0*x2;

13 x1=y1;

14 x2=y2;

15 }

16 }

Figure 16: P : code implementation of G

Next, given the pre-condition q(Q, 1)(x) on the loop body, the strongest post-

condition computations i.e. sp-calculus is performed on the code. In most cases,

computing the strongest post-condition is not feasible. However for ellipsoidal invari-

ants, there are transformation rules, which can be exploited to automate this process.

Denote the body of the while loop in P as B, the credible autocoding process com-

putes sp(B, q(Q, 1)(x)) and then checks that sp(B, q(Q, 1)(x))→ q(Q, 1)(x) to ensure

the correctness of {q(Q, 1)(x)}B {q(Q, 1)(x)}.

For a piece of code that is linear, as is the case in P , sp-calculus use the following

result regarding linear transformation of an ellipsoidal set.
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Lemma 3.1 Given a set q(Q, 1)(x), and given a linear transformation T (x) = Tx

for some matrix T , the image T (q(Q, 1)(x)) is the set q(TQT T, 1)(x) [51].

Using the formula TQT T, we can compute a strongest post-condition for every line

of code in B. Define Ci as the ith line of code in B. Denote xi as the state vector

after the execution of Ci. For example, the state vector starts with x =

x1

x2

 before

the execution of C1. The lines of code C1 and C2 respectively assigns some values to

the variables y1 and y2. Hence the state vector increases in dimension and becomes

x2 =

[
x1 x2 y1 y2

]T

after the execution of C2. The state vector is x again after

the execution of C4. because the variables y1 and y2 are discarded from the state

vector when they are not used in the code again. Next, from the state vectors xi−1, xi,

and the affine semantics of Ci, a linear transformation Ti from xi−1 to xi is deduced.

For example, C1 computes the expression 0.4990 ∗ x1 + 0.1 ∗ x2 and assigns it to the

variable y2. The affine semantics of C1 is y1 := Lx, in which L =

[
0.4990 0.1

]
. The

state vector x0 is x and the state vector x1 is x1 =

[
x1 x2 y1

]T

. Hence T1 =

I
L

.

Applying lemma 3.1, the strongest post-condition for Cm is

q(
1∏

i=m

TiQ

m∏
i=1

T T

i , xm, 1). (28)

By (28), the strongest-post condition of B i.e. sp(B, q(Q, 1)(x)) is q(Q4, x, 1), where

Q4 = T4T3T2T1QT
T

1 T
T

2 T
T

3 T
T

4 . (29)

The computed post-conditions are inserted into P as pseudo-ACSL annotations (see
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1 while (1) {

2 /*@

3 requires q(Q,1)(x);

4 ensures q(T1*Q*transpose(T1),1)(x1);

5 */

6 {

7 y1=0 .4990* x1 +0.1*x2;

8 }

9 /*@

10 requires q(Q,1)(x);

11 ensures q(T2*T1*Q*transpose(T1)*transpose(T2),1)(x2);

12 */

13 {

14 y2=0 .01*x1 +1.0*x2;

15 }

16 /*@

17 requires q(Q,1)(x);

18 ensures q(T3*T2*T1*Q*transpose(T1)*transpose(T2)*transpose(T3),1)

↪→ (x3);

19 */

20 {

21 x1=y1;

22 }

23 /*@

24 requires q(Q,1)(x);

25 ensures q(T4*T3*T2*T1*Q*transpose(T1)*transpose(T2)*transpose(T3)

↪→ *transpose(T4),1)(x);

26 */

27 {

28 x2=y2;

29 }

30 }

Figure 17: P from Figure 16 annotated with pseudo-ACSL
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Figure 17). Together with the loop invariant q(Q, 1)(x), they form a proof of cor-

rectness for P with respect to the invariance of q(Q, 1)(x). To check the inductive

invariance of q(Q, 1)(x). we still need to verify that sp(B, q(Q, 1)(x)) → q(Q, 1)(x).

This can done by verifying either Q − Q4 � 0 or Q−14 − P � 0 using a Cholesky

decomposition algorithm [56].

3.3.1 Abstract Types in ACSL

In Gene-Auto and Simulink, the control semantics are expressed using linear algebra

types such as matrix and vector. To express the same expressions in ACSL, a library

of linear algebra symbols and axioms in ACSL was defined. The ACSL matrix and

vector types are displayed in Figure 18. A matrix P ∈ Rn×n in ACSL is defined using

a function template mat of nxn scalar that takes in n2 arguments that corresponds

to the entries of the matrix. A vector x ∈ Rn is defined similarly.

logic matrix P = mat_of_nxn_scalar(a_1,.....,a_n*n)

logic vector x = vect_of_n_scalar(a_1,....,a_n)

ACSL

Figure 18: matrix and vector types in ACSL

To express the quadratic predicates p(P, x)(1) and q(Q, 1)(x)), two ACSL func-

tions, displayed in Figure 19, were defined.

in_ellipsoidP(P,vect_of_n_scalar(...));

in_ellipsoidQ(Q,vect_of_n_scalar(...));

ACSL

Figure 19: Predicate Types in ACSL

To express operations on the matrix and vector types, a set of additional ACSL
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functions were defined. Some of them are displayed in Figure 20. Note that the block

function takes in four matrices A, B, C, D and returns

A B

C D

.

mat_mult(matrix,matrix)

mat_add(matrix,matrix)

block(matrix,matrix,matrix,matrix)

transpose(matrix)

.

.

.

ACSL

Figure 20: matrix and vector arithmetic in ACSL
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Chapter IV

TRANSLATION PROTOTYPE

This chapter describes, in more details, the translation process in the credible au-

tocoding prototype. The running examples include a lead/lag compensator system

and a plant model for expressing closed-loop stability. From the input model to

the verified output, the property of open-loop and closed-loop stability is translated

and the formally verified using the backend to the prototype. The example lead/lag

compensator system is described by the state-space difference equation in (30). This

example is chosen because it has enough complexity to be representative of many con-

trollers used in the industry, and is simple enough such that its output annotations

can be displayed in this thesis.

Example 4.0.1 The compensator system consists of states x ∈ R2, input y ∈ R,

output u ∈ R, the state-transition and output functions in (30).

x+ =

0.4990 −0.05

0.01 1

x+

 0

0.01

 y
u =

[
564.48 0

]
x+

[
1280

]
y.

(30)

The plant model used in the closed-loop case is

x+ =

1.000 0.01

−0.01 1.000

x+

0.00005

0.01

 y
u =

[
1.0 0.0

]
x+

[
0.0

]
y.

(31)
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4.1 Constructing the Models for Credible Autocoding

The model annotated with the property of closed-loop stability is displayed in Fig-

ure 21. The reference input yd in Figure 21 is assumed to be bounded. This assump-

Figure 21: Control system annotated with closed-loop stability

tion is expressed by the quadratic block bounded input. A stability analysis for the

closed-loop yields a quadratic invariant defined by P � 0 such that

P =



0.1878 0.1258 −0.0813 0.0149

0.1258 0.3757 −0.0220 0.0100

−0.0813 −0.0220 0.0660 −0.0063

0.0149 0.0100 −0.0063 0.0012


(32)

and a multiplier α = 0.991. The ellipsoidal set p(P, 1)(x), which encodes the proof

of stability, is inserted into the model in Figure 21. It is expressed by the quadratic

block stability. The system block plant in Figure 21 expresses the dynamics of
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the plant model used in the closed-loop analysis. The first input port of the block

plant accepts the input from the controller to the plant. The second input port of

plant accepts the output from the plant to the controller. The output of plant is

the internal state of the plant model.

The model expressing open-loop stability is displayed in Figure 22. In the open-

Figure 22: Control system annotated with open-loop stability

loop case, the bounded input assumption is on the signal y− yd. This is expressed by

the quadratic block bounded input in Figure 22. A stability analysis of the open-loop

case produced the quadratic invariant p(P, 1)(x) where

P =

 0.0005859 4.8246× 10−5

4.8246× 10−5 0.002007

 , (33)

and a multiplier of α = 0.9991. This property is expressed by the block stability

in Figure 22.
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4.2 Gene-Auto+: A prototype credible autocoder

This section gives some details on the prototype credible autocoder. The current

prototype is capable of automated translation of control semantics, described in Sec-

tion 3.2, into verifiable ACSL annotations on the code.

4.2.1 Gene-Auto: Translation

Gene-Auto’s translation architecture consists of a sequences of independent model

transformation stages. This modular design allowed the insertion of additional anal-

ysis and verification stages, such as the annotation generation stage in the prototype,

without heavy modifications to the rest of the autocoder. The main translation mod-

ules within Gene-Auto, are the importer, the block sequencer and typer, the code

model generator, and the C printer. We re-use all the translation modules and added

additional modules to handle the translation of control semantics.

The Gene-Auto translation process goes through two layers of intermediate lan-

guages. The first one, called the GASystemModel, is a data-flow language that is

similar to Simulink. The input Simulink model, after being imported, is first trans-

formed into the system model. The system model, which is expressed in the GASys-

temModel language, is then transformed into the code model. The code model is

expressed in the GACodeModel language representation, which is a generic impera-

tive programming language. It shares many similarities with C and Ada. For the

translation of the control semantics, we added the sub-module annotations generator,

to the code model generator module. The annotations are expressed using GAVA-

Model, the ACSL-like language extension in Gene-Auto+. For more details about

57



GAVAModel, including its meta-model, please see [1]. The GAVAModel language

is used to express ASCL statements such as behavior, assumes-statement, function

contract, require-statement, ensure-statement, and ghost code, within the code model

representation in Gene-Auto+.

Figure 23 summarizes the main differences between the translation process of

Gene-Auto and Gene-Auto+. The top half of the figure shows the process in terms of

languages and intermediate representations while the bottom half of the figure shows

the translation modules. Of the four language representations used in the translation

process, only the GASystemModel representation remains unchanged. This is because

in term of syntax, the annotation blocks are identical to the regular blocks.

Simulink

Annotation 
Blocks

(Simulink)

GASystemModel C ACSL

GACodeModel GAVAModel

Manual

Both

Automatic

Gene-Auto/Gene-Auto+

Gene-Auto+

Code Model
Generator

C PrinterImporter
Annotation

Model
Generator

Block 
Sequencer/Typer

Gene-Auto+Gene-Auto/Gene-Auto+

Figure 23: Translation in Gene-Auto+ vs Gene-Auto

For an input controller model, Gene-Auto+ generates two C functions. One is the

initialization function and the other is the update function. The initialization function

is used to assign initial values to the controller states. This function is typically only
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called once before the execution of the controller. The update function is called once

per sample period by a loop. It computes the control outputs u = Cx + Dy and

updates the controller states x+ = Ax + By. The ASCL annotations described in

this chapter are for the update function. By proving the ellipsoidal set obtained from

stability analysis is a fix-point of the update function, we also prove that it is an

inductive invariant of the loop calling the update function.

4.2.2 Translation of Annotative Blocks

The annotation blocks are also first transformed into a GASystemModel represen-

tation. This translation stage is not modified from Gene-Auto. In the code model

generation stage, the blocks that express the control semantics are skipped since they

are categorized as annotations. Instead, they are imported into the annotations gen-

eration sub-module. The annotations generation sub-module is initiated after the

system model has been translated into the code model. This sub-module translates

the annotation blocks into either invariant or ghost code objects, and inserts them

into appropriate locations on the code model. Based on these inserted objects, an in-

variant propagation process is executed on the code model, which generates additional

invariants that are also inserted into their appropriate locations on the code model.

Finally, all the inserted objects on the code model are translated into GAVAModel

representations and inserted as annotations on the code model. The code model with

the annotations expressed in GAVAModel becomes the output of the annotations

generation sub-module. This new code model with axiomatic semantics is dubbed

the GAVA model.
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A high-level overview of all the translations, insertions, and proof generations

performed by the annotations generator is displayed in Figure 24. The important

System Model

Code Model

Translation

𝑦 = 𝐶𝑥

Quadratic Objects

Ghost Code

Plant Objects

1. Bounded-input
2. Sector-bound

Inductive Ellipsoids 
(Expressing stability)

Control
Flow

Graph

(Loop Invariant)
Pre-condition

Ghost Code

𝑥+ = 𝐴𝑥 + 𝐵𝑢

(Loop Invariant)

Post-Condition

Proof Generation/Translation

Post-condition
(For S-Procedure)

Proof Annotations 
expressed in 
GAVAModel

Translation/Insertion

GAVA 
Model

Figure 24: Transformation of control semantics from GASystemModel to GAVAModel

steps in transforming the annotation blocks into a GAVA model are as follows.

1. The code model is generated as in Gene-Auto.

2. The code model is analyzed and transformed into a control-flow graph structure

C.

3. The constant blocks are translated into invariant objects and inserted into C.

4. Constant propagation is executed on C with the definitions provided by the

constant blocks.

5. The system block is translated into two ghost code objects. The first ghost code

object corresponds to the output function of y = Cx, and is inserted into the
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beginning of c. The second ghost code object corresponds to the state-transition

function x+ = Ax+Bu, and is inserted into the end of C.

6. The quadratic blocks are typed based on their inputs as either inductive, bounded-

input, or sector-bound. They are translated into quadratic invariants and in-

serted into appropriate locations on C.

7. Ellipsoid propagation is executed i.e. either sp-calculus or wp-calculus. During

this process, quadratic invariants are generated for nearly every line of code.

and then inserted into C.

8. The resulting collection of invariants and ghost code objects from C are trans-

lated into annotations expressed in GAVAModel, and inserted into their corre-

sponding locations in the code model.

4.3 Translation and insertion of the system block

The system block, which represents the model of the plant, is split into two ghost

code objects representing respectively the output function y = Cx and the state-

transition function x+ = Ax + Bu. Each ghost code object contains a collection of

code templates and an affine transformation. The affine transformations are used in

the invariant propagation process to be described later. The code templates, param-

eterized by the state-space matrices, are used to generate C code representation of

the state-space system of the plant. They are instantiated with the data {A,B,C}

from the system block and become ghost code statements expressed in GAVAModel.

The GAVAModel ghost code statements are printed as ACSL ghost code statements
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1 /*@

2 ghost REAL Plant_0_1 [2];

3 */

4 /*@

5 ghost REAL Plant_xp_0_tmp;

6 */

7 /*@

8 ghost REAL Plant_xp_1_tmp;

9 */

10

11 /*@

12 requires \valid(_io_) && \valid(_state_);

13 requires _io_->y == 1.0 * Plant_0_1 [0];

14 .

15 .

16 */

17 void cl_result_compute(t_cl_result_io *_io_, t_cl_result_state *

↪→ _state_) {

18 REAL A11;

19 REAL A12;

20 .

21 .

22

23 /*@

24 .

25 .

26 requires in_ellipsoidQ(QMat_31,vect_of_6_scalar(

↪→ _state_->Integrator_1_memory,_state_->Integrator_2_memory,

↪→ Plant_0_1 [0] ,Plant_0_1 [1] ,_io_->u,Sum5));

27 ensures in_ellipsoidQ(QMat_32,vect_of_4_scalar(

↪→ _state_->Integrator_1_memory,_state_->Integrator_2_memory,

↪→ Plant_0_1 [0] ,Plant_0_1 [1]));

28 .

29 .

30 */

31 {

32 /*@

33 ghost Plant_xp_0_tmp = Plant_0_1 [0];

34 */

35 /*@

36 ghost Plant_xp_1_tmp = Plant_0_1 [1];

37 */

38 /*@

39 ghost Plant_0_1 [0] = 1.0 * Plant_xp_0_tmp + 0.01 *

↪→ Plant_xp_1_tmp + 5.0 E-5 * _io_->u;

40 */

41 /*@

42 ghost Plant_0_1 [1] = -0.01 * Plant_xp_0_tmp + 1.0 *

↪→ Plant_xp_1_tmp + 0.01 * _io_->u;

43 */

44

45 }

46 }

Figure 25: Ghost code representation of the plant dynamics
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during the C printer stage. The set of ACSL ghost code statements, generated from

the closed-loop example, is displayed in Figure 25. The pre-condition \valid( io )

&& \valid( state ); in line 12 requires that memories are allocated correctly for

the pointers io and state . The pre-condition io ->y == 1.0 * Plant 0 1[0]

in line 13 establishes the equivalence between the output y = Cx of the plant and

the input y to the controller. This pre-condition is used to establish one half of the

feedback interconnection between the plant model and the controller program. The

state-transition function of the plant is expressed by the block of ghost code state-

ments in lines 33 to 42. The output variable from the controller program io ->u is

the input to the plant. This establishes the other half of the feedback interconnec-

tion. Although ghost code statements are not executable i.e. it does not change the

semantics of the program, it can be used to change the semantics expressed in the

annotations. For example, there is a ACSL contract in lines 26 and 27 of Figure 25

for the block of ghost code from lines 33 to 42.

4.4 Translation of the quadratic blocks

A short description of the typing of the quadratic blocks and their translations is

given here. The semantics of stability are structured in such way that there is one

inductive quadratic invariant obtained from the stability analysis and one or more

assertive quadratic invariants which are assumptions or properties of the inputs. The

assertive quadratic blocks can express either a simple bounded-input type condition

or a more complex sector-bound type condition.
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4.4.1 Typing of Quadratic Blocks

The quadratic blocks are separated into two groups. The first group contains the

inductive blocks that encode the stability property of the system. To compute if a

quadratic block is inductive, the following conditions are checked.

1. Every input port of the quadratic block is connected to either an input port of

an unit delay block or to an output port of a system block.

2. Let set U be the set of all unit delay blocks connected to the quadratic block.

For any unit delay blocks in U , there must exist a path from its output node to

its input node on the system model.

The second group are the assertive blocks. These blocks encode certain assumptions

or properties on inputs. . Any quadratic blocks with one or more input connected to

blocks other than the unit delay block or the system block is categorized as an assertive

block. The assertive quadratic blocks are further grouped into either a sector-bound

type or a bounded-input type. The sector-bound type blocks are determined by

checking that its level-set parameter c is set to 0 and its inputs are connected to

outputs of saturation functions. The prototype autocoder assumes any saturation

function on the Simulink model is implemented with a pair of min and max blocks.

Next, the inductive blocks and the bounded-input type blocks are translated into

ellipsoidal invariants in the Schur-form. For example, if an inductive block expresses

the quadratic predicate p(P, x)(1), P � 0, then it is translated into the quadratic

invariant q(Q, 1)(x) where Q = P−1. This translation step is necessary as the sub-

sequent ellipsoid propagation process can produce degenerate ellipsoids where Q in
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q(Q, 1)(x) is singular. The sector-bound type blocks are not translated into the Schur-

form since they do not express ellipsoidal sets.

4.4.2 Insertion of Quadratic Invariants

An assertive quadratic invariant is inserted as a post-condition of a node on the

control flow graph. Consider a bounded-input quadratic invariant q(Qb, 1)(x) where

x is a vector of variable(s). The location of the node is determined using x.

1. Find all assignment statements x(i) := . . . for variables x(i) in x.

2. Choose the assignment statement that is executed last as the location of inser-

tion.

If x contains variables that are not arguments of the update function, then the pro-

totype will try to compute a weakest pre-condition q(Qb, 1)(x′) = wp(C, q(Qb, 1)(x))

where x′ contains affine expressions of the arguments of the update function. For

example, consider the quadratic block bounded input connected to the signal y −

yd in the open-loop case. The bounded input block is translated into the invari-

ant q(Q16, 1)(x) where x = [Sum4], which gets inserted as the post-condition of

Sum4=ol result y - ol result yd (see line 35 of Figure 26). Since the variable

Sum4 is not an argument of the update function, the autocoder initiates wp-calculus

which results in the weakest pre-condition q(Q0, 1)(x′), Q0 = Q16 in line 3 of Figure 26

where x′ = [ io − > y− io − > yd].

The insertion of an inductive ellipsoid is straightforward. The ellipsoid is dupli-

cated three times and inserted as pre and post-condition respectively at the beginning

and end of the update function body. The remaining duplicates are inserted as a pre-
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1 /*@

2 .

3 requires in_ellipsoidQ(QMat_0,vect_of_1_scalar(_io_->y - _io_->yd)

↪→ );

4 .

5 */

6 void simple_olg_compute(t_simple_olg_io *_io_, t_simple_olg_state *

↪→ _state_) \{

7 .

8 .

9 .

10 /*@

11 .

12 requires in_ellipsoidQ(QMat_11,vect_of_1_scalar(_io_->y - _io_->yd

↪→ ));

13 ensures in_ellipsoidQ(QMat_12,vect_of_1_scalar(ol_result_y -

↪→ _io_->yd));

14 @ PROOF_TACTIC (use_strategy (AffineEllipsoid));

15 */

16 {

17 ol_result_y = _io_->y;

18 }

19

20 /*@

21 .

22 requires in_ellipsoidQ(QMat_12,vect_of_1_scalar(ol_result_y -

↪→ _io_->yd));

23 ensures in_ellipsoidQ(QMat_14,vect_of_1_scalar(ol_result_y -

↪→ ol_result_yd));

24 @ PROOF_TACTIC (use_strategy (AffineEllipsoid));

25 .

26 */

27 {

28 ol_result_yd = _io_->yd;

29 }

30

31 /*@

32 .

33 .

34 requires in_ellipsoidQ(QMat_14,vect_of_1_scalar(ol_result_y -

↪→ ol_result_yd));

35 ensures in_ellipsoidQ(QMat_16,vect_of_1_scalar(Sum4));

36 @ PROOF_TACTIC (use_strategy (AffineEllipsoid));

37 .

38 */

39 {

40 Sum4 = ol_result_y - ol_result_yd;

41 }

42 .

43 .

44 }

Figure 26: wp-calculus on quadratic invariants expressed in ACSL
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and post-condition on the update function itself. These ellipsoids q(Q1, 1)(x) are

defined by the matrix variable QMat 1 in Figure 27. After the inductive ellipsoids

are inserted, the prototype autocoder generates a line by line proof, showing that

q(Q1, 1)(x) is a fix-point of the update function. The line by line proof is produced

automatically by using a set of strategies for transforming quadratic sets. The strate-

gies, based on ellipsoidal calculus, enables the prototype to perform sp-calculus on

the linear and nonlinear portions of the code. Next, we describe in some details about

these strategies.

4.5 Computing Post-conditions

In Gene-Auto+, sp-calculus for ellipsoidal invariants has been automated using a set

of transformation algorithms for ellipsoids. This set of transformation strategies can

be divided into two categories: affine transformations, and S-procedure transforma-

tions. The affine transformations compute the strongest ellipsoidal post-condition for

code that are linear transformations on the state of the program. The S-procedure

strategies compute over-approximations of the strongest post-condition for the non-

linear parts of the code.

4.5.1 Affine Transformation

The affine transformation has been described briefly in Section 3.3. For automating

the proof-checking of the affine transformations of ellipsoids, we define a proof tactic

denoted AffineEllipsoid, which corresponds to a proof strategy of the same name

defined in PVS [40]. This rule is applied whenever a linear abstraction of the code

can be computed. Recall from Section 3.3, given the pre-condition q(Q, 1)(x) and a
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1 /*@

2 logic matrix QMat_1 = mat_of_2x2_scalar (1710.0449662492558 ,-41

↪→ .101885746811455 ,-41 .101885746811455 ,499 .17657993449376);

3 */

4 .

5 .

6 .

7 /*@

8 requires in_ellipsoidQ(QMat_1,vect_of_2_scalar(

↪→ _state_->Integrator_1_memory,_state_->Integrator_2_memory));

9 ensures in_ellipsoidQ(QMat_1,vect_of_2_scalar(

↪→ _state_->Integrator_1_memory,_state_->Integrator_2_memory));

10 */

11 void simple_olg_compute(t_simple_olg_io *_io_, t_simple_olg_state *

↪→ _state_) {

12 /*@

13 .

14 .

15 requires in_ellipsoidQ(QMat_1,vect_of_2_scalar(

↪→ _state_->Integrator_1_memory,_state_->Integrator_2_memory));

16 .

17 .

18 */

19 {

20 Integrator_1 = _state_->Integrator_1_memory;

21 }

22 .

23 .

24 .

25 /*@

26 .

27 .

28 ensures in_ellipsoidQ(QMat_1,vect_of_2_scalar(

↪→ _state_->Integrator_1_memory,_state_->Integrator_2_memory));

29 .

30 .

31 */

32 {

33

34 }

35

36 }

Figure 27: Inductive ellipsoids in ACSL

68



line of code ẑ := Lx, then the linear transformation from x to x+ =

[
xT ẑ

]T

is T =[
I LT

]T

. Hence the strongest post-condition is q(Q+, 1)(x+) where Q+ = TQT T.

In the more general case, let ẑ := Ly, where y is a vector of m program variables,

and L ∈ R1×m. Let Qi(x) := q(Qi, 1)(x) where x is a vector of n program variables.

Let z denote a vector containing only the variable ẑ. Let x ∪ z denote the union of

the variables from x and z i.e. x ∪ z =

[
x(1) . . . x(n) ẑ

]T

if ẑ /∈ x. Note that if

ẑ ∈ x then x ∪ z = x. Let the function F be

F : (Qn, ψ(L, y, x), φ(ẑ, x))→ T (ψ(L, y, x), φ(ẑ, x))QnT T (ψ(L, y, x), φ(ẑ, x)) , (34)

where

T (ψ(L, y, x), φ(ẑ, x)) (i, j) =


1, 0 ≤ i, j < n ∧ i = j ∧ i 6= φ(ẑ, x)

0, 0 ≤ i, j < n ∧ i 6= j ∧ i 6= φ(ẑ, x)

ψ(L, y, x)(j), i = φ(ẑ, x) ∧ 0 ≤ j < n

ψ(L, y, x)(j) =


L(0, k), 0 ≤ j < n ∧ 0 ≤ k < m ∧ x(j) = y(k)

0, 0 ≤ j < n ∧ 0 ≤ k < m ∧ x(j) 6= y(k)

φ(ẑ, x) =


i, ẑ ∈ x ∧ ẑ = xi

n, ẑ /∈ x
(35)

The AffineEllipsoid strategy is

{Qn(x)} ẑ := Ly {Qn+1(x ∪ z)}
, Qn+1 = F (Qn, ψ(L, y, x), φ(ẑ, x)) . (36)

The function T computes the linear transformation matrix T such that Qn+1 =

TQnT
T. To clarify (35), we provide a simple example. Let x =

[
x1 x2 x3 x4

]T

.
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Consider the line of code x5 := 2x1 + 3x4. We have ẑ = x5, L =

[
2 3

]
and

y =

[
x1 x4

]T

. Since ẑ /∈ x hence φ(ẑ, x) = 4. According to the definition of T in

(35), for i 6= φ = 4, T returns a identity matrix. We have the first 4 rows of the T

being a identity matrix and the last row being unknown.

T =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

? ? ? ?


(37)

The function ψ (L, x, y) is used to fill in the last row of (37). For example, for the

fourth entry in the last row or at index j = 3, we have x(3) = x4 which is the same

as the variable located at index k = 1 in y. Hence we have x(3) = y(1) which means

ψ (L, x, y) (0) returns L(0, 1) which is 3. This is repeated for every column index

j = 0, . . . , 3 and we get the complete transformation matrix

T =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

2 0 0 3


. (38)

The ReduceEllipsoid strategy is also an affine transformation strategy. Given an

ellipsoid Qn(x) and x is a vector of program variables of dimension n. We want to

compute an ellipsoid Qn+1(x
′) where x′ = x\ z i.e. x′ is a vector of variables obtained

70



from removing the variable ẑ from x. This reduction in the dimension of the ellipsoid

invariant is necessary to generate a final post-condition that is not degenerate. Let

the function G be

G : (Qn, θ(ẑ, x))→ T (θ(ẑ, x))QnT (θ(ẑ, x))T , (39)

where

T (θ(ẑ, x)i,j) :=


1, 0 ≤ i, j ≤ n− 1 ∧ ((i < θ(ẑ, x) ∧ i = j) ∨ (i ≥ θ(ẑ, x) ∧ j = i+ 1))

0, 0 ≤ i, j ≤ n− 1 ∧ ((i < θ(ẑ, x) ∧ i 6= j) ∨ (i ≥ θ(ẑ, x) ∧ j 6= i+ 1))

θ(ẑ, x) :=


i, ẑ = x(i)

error, ẑ /∈ x
(40)

The ReduceEllipsoid strategy is

{Qn(x)}SKIP {Qn+1(x \ z)}
, Qn+1 = G (Qn, θ(ẑ, x)) . (41)

The reduction rule is applied whenever a variable in x is no longer used in further

program execution. The function T in the ReduceEllipsoid strategy is equivalent to

a function that deletes a row from a identity matrix In×n. The row deleted is I(i)

where i = θ(ẑ, x) is the index location of ẑ in x.

The control flow graph as well as any ghost code objects are analyzed for their

affine semantics. For each line of code that is linear, a matrix L is computed and

stored in the control flow graph. For example, for the line of code x = y+ 2*x, the

affine analysis algorithm returns the matrix L =

[
1 2

]
. For the ghost code objects,

their affine semantics are computed by instantiating the existing templates from the

system block.
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Figure 28 shows an example of the AffineEllipsoid usage in the closed-loop case.

In this example, the pre-condition is the ellipsoid defined by the matrix variable

1 /*@

2 logic matrix QMat_28 = mat_mult(mat_mult(mat_of_10x10_scalar (1.0,0

↪→ .0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0

↪→ .0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0

↪→ .0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0

↪→ .0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0

↪→ .0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0

↪→ .0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0

↪→ .0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0) ,QMat_27),transpose(

↪→ mat_of_10x10_scalar (1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0

↪→ ,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0

↪→ ,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0

↪→ ,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0

↪→ ,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0

↪→ ,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0

↪→ ,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1

↪→ .0)));

3 */

4 .

5 .

6 .

7 /*@

8 requires \separated(_io_,_state_);

9 ensures \separated(_io_,_state_);

10

11 behavior Plant_17:

12 requires in_ellipsoidQ(QMat_27,vect_of_10_scalar(

↪→ _state_->Integrator_1_memory,_state_->Integrator_2_memory,

↪→ Plant_0_1 [0] ,Plant_0_1 [1]

↪→ ,Integrator_1,Sum3,Sum4,_io_->u,Sum1,dt_));

13 ensures in_ellipsoidQ(QMat_28,vect_of_10_scalar(

↪→ _state_->Integrator_1_memory,_state_->Integrator_2_memory,

↪→ Plant_0_1 [0] ,Plant_0_1 [1]

↪→ ,Integrator_1,Sum3,Sum4,_io_->u,dt_,Sum2));

14 @ PROOF_TACTIC (use_strategy (AffineEllipsoid));

15 */

16 {

17 Sum2 = dt_ + Integrator_1;

18 }

Figure 28: Application of the AffineEllipsoid strategy

QMat 27, and the line of code assigns the expression dt + Integrator 1 to the

variable Sum2. The affine semantics of the code is ẑ := Ly, where ẑ = Sum2,
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y =

[
dt Integrator 1

]T

and L =

[
1 1

]
. Applying the AffineEllipsoid rule in

(35), we get the ellipsoid transformation matrix T defined by the ACSL function

mat of 10x10 scalar in line 2.

4.5.2 S-procedure

There are two strategies in Gene-Auto+ for computing over-approximation of the

strongest post-condition for the nonlinear parts of the code. The first strategy handles

simple bounded inputs. The second strategy handles any nonlinearity in the code in

which a sector-bound inequality can be used to over-approximate the semantics of

the nonlinearity. Both strategies are based on the S-procedure relaxation technique

described first in lemma 1.5 and then applied in the stability analysis of the open-loop

and close-loop cases. We first consider the strategy for bounded inputs.

4.5.2.1 Bounded Inputs

In the stability analysis of both the closed-loop and open-loop cases, the ellipsoid

invariants were computed along with a positive multipliers α > 0. This relaxation

multiplier α > 0 is used in sp-calculus when we have two pre-conditions q(Q, 1)(x)

and q(Qb, 1)(xi) where xi∩x = ∅, and a line of code ẑ := Ly where some variables in y

belongs to x and others belong to xi. Let the bounded-input ellipsoid be q(Qb, 1)(xi).

Let the inductive ellipsoid be q(Q, 1)(x). To ensure further ellipsoid propagation, a

strategy is used to combine q(Q, 1)(x) and q(Qb, 1)(xi) into a single ellipsoidal post-

condition q(Q+, 1)(x ∪ xi) where

Q+ =


1 + α

1
Q 0

0
1 + α

α
Qb

 . (42)
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The multiplier α > 0 computed with the S-procedure technique is used in this strategy.

This ensures the post-condition remains an inductive ellipsoid invariant.

For the general case of combining an inductive ellipsoid invariant Q0 (x0) with

bounded-input ellipsoids Qi(xi), i = 1, . . . ,m each with a multiplier of αi, we have

the SProcedure strategy as follows. Given dim : Rn×n → n, ρ(n) =
n∑
i=0

dim (Qi), and

H(Qi)(s, t) =


Qi(s− ρ (i− 1) , t− ρ (i− 1)), ρ (i− 1) ≤ s, t ≤ ρ (i)

0.0, otherwise

, (43)

the SProcedure strategy is

{Q0(x0) ∧Q1(x1) ∧ . . . ∧Qm(xm)}SKIP {Q+(x0 ∪ x1 ∪ . . . ∪ xn)}

Q+ =
N∑
i=0

µ

αi
H (Qi) ,

(44)

where α0 = 1 and µ =
m∑
j=0

αj. Note the function H returns the block matrices in Q+

Given a set of ellipsoidal pre-conditions {Qi(xi)} and a line of code ẑ := Ly, the

SProcedure strategy is activated only when all the following conditions are satisfied.

1. For the set {Qi (xi)} , i = 0 . . .m, y ⊆
m⋃
i=1

xi.

2. For Qi (xi) , i = 0, . . . ,m, y * xi ∧ y ∩ xi 6= ∅.

3. For 0 ≤ i, j ≤ m, xi ∩ xj = ∅ for i 6= j.

An example usage of the SProcedure strategy by the prototype autocoder is dis-

played Figure 29, This code is generated by Gene-Auto+ from the open-loop case. The

ellipsoidal pre-condition defined by the matrix variable QMat 18 reflects the bounded-

input condition. The other ellipsoidal pre-condition, defined by the matrix variable
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1 /*@

2 logic matrix QMat_20 = block_m(mat_scalar_mult (1.0009008207386647

↪→ ,QMat_19),zeros (6,2),zeros (2,6),mat_scalar_mult

↪→ (1111.111122222222 ,QMat_18));

3 */

4 .

5 .

6 .

7 /*@

8 requires \separated(_io_,_state_);

9 ensures \separated(_io_,_state_);

10

11 behavior ElllipsoidMain_9:

12 requires in_ellipsoidQ(QMat_18,vect_of_2_scalar(Sum4,D11));

13 requires in_ellipsoidQ(QMat_19,vect_of_6_scalar(

↪→ _state_->Integrator_1_memory, _state_->Integrator_2_memory,

↪→ Integrator_1,C11,Integrator_2,Sum3));

14 ensures in_ellipsoidQ(QMat_20,vect_of_8_scalar(

↪→ _state_->Integrator_1_memory,_state_->Integrator_2_memory,

↪→ Integrator_1,C11,Integrator_2,Sum3,Sum4,D11));

15 @ PROOF_TACTIC (use_strategy (SProcedure));

16 */

17 {

18

19 }

20 /*@

21 requires \separated(_io_,_state_);

22 ensures \separated(_io_,_state_);

23

24 behavior ElllipsoidMain_10:

25 requires in_ellipsoidQ(QMat_20,vect_of_8_scalar(

↪→ _state_->Integrator_1_memory,_state_->Integrator_2_memory,

↪→ Integrator_1,C11,Integrator_2,Sum3,Sum4,D11));

26 ensures in_ellipsoidQ(QMat_21,vect_of_9_scalar(

↪→ _state_->Integrator_1_memory,_state_->Integrator_2_memory,

↪→ Integrator_1,C11, Integrator_2,Sum3,Sum4,D11,control_output)

↪→ );

27 @ PROOF_TACTIC (use_strategy (AffineEllipsoid));

28 */

29 {

30 control_output = D11 + C11;

31 }

Figure 29: Application of the SProcedure strategy

75



QMat 19 is the inductive invariant. These two ellipsoids are combined to form the

post-condition ellipsoid using the SProcedure proof strategy. The definition of the

matrix variable QMat 20, which defines the post-condition ellipsoid, is displayed in

line 2 of Figure 29. The definition is expressed using the ACSL block matrix function

block m and the matrix scaling function mat scalar mult.

4.5.2.2 Sector-bound Condition

The second S-procedure ellipsoid combination rule is based on the relaxation of the

sector bound condition

(∆(y)−m1y) (∆(y)−m2y) ≤ 0 (45)

in the Lyapunov stability analysis. The sector-bound block expresses the quadratic

invariant p(H, 1)(xi) where

H =

 m1m2 −1

2
(m1 +m2)

1

2
(m1 +m2) 1

 , xs =

 y

∆(y)

 . (46)

with a multiplier of β > 0. The sector-bound strategy is applied to ensure ellipsoid

propagation when the AffineEllipsoid strategy could not be applied on the inductive

invariant q(Q, 1)(x). More specifically, the SectorBound strategy is executed when

the following conditions are satisfied.

1. For the pre-conditions q(Q, 1)(x) and p(H, 0)(xs), x * xs and xs * x.

2. The affine semantics of the code is ẑ := Ls where s * x and s * xs.

3. The variable y in xs is equal to a linear combination of the variables in x.
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We can assume there exists a transformation matrix C ∈ R1×n such that y = Cx

since this is one of the conditions to be satisfied before the strategy is executed. The

SectorBound strategy is

{Q(x) ∧ p(H, 0)(xs)}SKIP {Q+(x ∪ xs)}

Q+ =

Q 0

0 0

+


QCT

CQCT
0

0 1




(CQCT)−1 0

0 0

+ βH


−1

− I



QCT

CQCT
0

0 1


T

.

(47)

The ellipsoid combination rule in 47 has been proved in the PVS theorem prover and

can be checked automatically using the prototype backend.

4.5.3 Verifying the Inductive Condition

The final output of sp-calculus is an alternative post-condition for the update func-

tion. To show that the ellipsoid invariant obtained from the stability analysis is in-

ductive, we only need to check if the alternative post-condition is contained within it.

This inductive condition is normally expected to hold unless mistakes are introduced

into the model or there are bugs in the translation. Once the inductive condition

is verified, credible autocoding terminates with a positive result. In another words,

if this inductive condition holds, then we can claim the generated code satisfies the

property of stability.

To communicate this final proof step to the backend, an additional ACSL contract

is generated with the proof strategy PosDef. For the closed-loop example, this con-

tract is displayed in lines 15 and 16 of Figure 30. The pre-condition in the contract is
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q(Q32, 1)(x) and the post-condition is precisely q(Q1, 1)(x). This last ACSL contract

simply tells the backend to verify the inductive condition q(Q32, 1)(x)→ q(Q1, 1)(x)

by verifying if Q1 −Q32 is positive-definite. For the closed-loop example, because of

a bug in the original Gene-Auto, which causes the sign of a gain parameter to be

flipped during code generation, the inductive condition could not be discharged until

the bug was fixed.

1 /*@

2 .

3 requires in_ellipsoidQ(QMat_1,vect_of_4_scalar(

↪→ _state_->Integrator_1_memory,_state_->Integrator_2_memory,

↪→ Plant_0_1 [0] ,Plant_0_1 [1]));

4 requires in_ellipsoidQ(QMat_2,vect_of_1_scalar(_io_->yd));

5 ensures in_ellipsoidQ(QMat_1,vect_of_4_scalar(

↪→ _state_->Integrator_1_memory,_state_->Integrator_2_memory,

↪→ Plant_0_1 [0] ,Plant_0_1 [1]));

6 .

7 */

8 void cl_result_compute(t_cl_result_io *_io_, t_cl_result_state *

↪→ _state_) {

9 REAL A11;

10 REAL A12;

11 .

12 .

13 .

14 /*@

15 requires in_ellipsoidQ(QMat_32,vect_of_4_scalar(

↪→ _state_->Integrator_1_memory,_state_->Integrator_2_memory,

↪→ Plant_0_1 [0] ,Plant_0_1 [1]));

16 ensures in_ellipsoidQ(QMat_1,vect_of_4_scalar(

↪→ _state_->Integrator_1_memory,_state_->Integrator_2_memory,

↪→ Plant_0_1 [0] ,Plant_0_1 [1]));

17 @ PROOF_TACTIC (use_strategy (PosDef));

18 */

19 {

20

21 }

22 }

Figure 30: Verifying the inductive condition
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Chapter V

FLOATING-POINT COMPUTATION ISSUES IN

CREDIBLE AUTOCODING

5.1 Introduction

In computing, the manipulation of real numbers is carried out with a finite-precision

approximation. This is due to both practical reasons (finite memory and power)

and a theoretical bound on the quantity of information that can be stored within a

bounded volume of the universe [9]. A type of finite-precision representation, floating-

point number, has seen wide adoption in computing and is increasingly used in many

safety critical embedded applications [62]. It was noted in [36] that floating-point

computations can produce unpredictable and possibly large errors. In this chapter,

we present a refinement of the credible autocoding process, which makes it sound

with regard to floating-point computation errors.

5.1.1 Reasons not to Ignore Floating-point Computation Errors

Floating-point computation errors can affect systems in serious ways. Some high-

profile accidents caused by floating-point computation errors include the Ariane 5

explosion [67] and the Patriot missile overshoot incident [86]. These costly accidents

highlight a reason why a rigorous treatment of floating-point computation errors is

needed. But even more importantly, since credible autocoding is about providing

rigorous proofs on the code, we must make sure the process itself is correct. Up to
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now we have ignored the semantic gap that exists between floats and reals. Without

closing this gap, we cannot claim credible autocoding is sound.

5.1.2 A Robust Control Approach?

From the perspective of control theorist, a framework that immediately comes to

mind, which can be applied towards analyzing control systems with floating-point

computational errors, is robust control [49]. If one can model the floating-point errors

in the system using multiplicative uncertainties, then we can analyze the stability of

the system using the µ-analysis approach [32]. However, the problem with any robust

control analysis is that, there are no guarantees of bounds on the errors produced

by the floating-point computations performed in the analysis itself. In the context

of credible autocoding, without bounding those errors, we cannot claim the robust

control argument is sound.

5.2 Floating-point Numbers

A prototypical binary floating-point number [44] is encoded by three binary integers

s, τ and m. The first integer s is a sign bit. The two other integers τ and m encode

the exponent and mantissa respectively. Let M be the bitwise size of the mantissa,

and mi be the ith bit of the mantissa, then the value of the float sτm is precisely

(−1)s
(

1 +
M∑
i=1

mi−12
−i

)
× 2τ .

Example 5.2.1 Let M = 3, s = 0, τ = 10, and m = 100. The binary floating-point

number 010100 in decimal is exactly 6.
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Value computed with infinite 
precision arithmetic. 

Value after 
rounding.

Round-off Error

𝑓𝑙𝑖 − 𝑓𝑙𝑖+1 ∝ EXPONENT
Machine Epsilon: 0.125

0 0.5 1 2 4 8 16

Figure 31: A example floating-point number system with 3-bit mantissa and exponent

A set of floating-point numbers with the exponent τ can be visualized as a set of

2M equally spaced points on the real interval
[
2τ , 2τ+1

)
. The distance between any

two adjacent floating-point numbers, both with exponent τ , is
2τ

2M
. The example

floating-point number system in Figure 31 has a 3-bit mantissa and a 3-bit signed

exponent. For this example, spacing between consecutive floating-point numbers with

an exponent of 2 is 0.5. This distance increases to 1 for τ = 3. Note that most of

the floats between 0 and 1 in Figure 31 are not displayed since the spacings between

them are too small for them to be displayed clearly. The semantics of floating-

point arithmetic operators are defined using a rounding function that maps a real

number to its adjacent floating-point numbers. Let F� : Rn → Fn denotes a rounding

function with a rounding mode �. The rounding modes � ∈ {↑, ↓, 0, ε} corresponds

to the directions: towards +∞, towards −∞, towards zero, and towards the nearest

[36]. A correct implementation of the IEEE 754 standard implies the floating-point

arithmetic operators {⊕,	,⊗,�} return a value as if it was computed using infinite

precision arithmetic and then rounded to the nearest floating-point number. We have

81



a⊕ b = F ε (a+ b) ,

a	 b = F ε (a− b) ,

a⊗ b = F ε (a× b)

a� b = F ε (a / b) , b 6= 0.

(48)

The product or sum of two floats is unlikely to be a float, which leads to the

frequent round-off errors in floating-point computations. As indicated in Figure 31,

the round-off error per operation is bounded by the distance between the two floating-

point numbers that are closest to the result computed with real arithmetic. This

distance is
2x

2M
, and when normalized by the exponent 2x, we get a bound of

1

2M
on

the relative round-off error. This important quantity, denoted by the symbol υ, is the

machine epsilon. For the example in Figure 31, the 3-bit mantissa means a machine of

epsilon of
1

23
or 0.125. Floating-point operators are commutative but not associative

i.e. a⊕ (b⊕ c) does not have to equal to (a⊕ b)⊕ c. The final accumulated error for

a set of operations depends on the order of the operations. For the product operator,

there is also a possibility of an underflow error, that is, rounding error incurred when

the magnitude of the computed result is smaller than the smallest positive floating-

point number. The underflow error is bounded by the smallest positive floating-point

number, which is denoted using the symbol η. In Figure 31, the smallest representable

floating-point number is η = 2−4
1

23
or 2−7.

An overflow error can also occur when the result of a computation exceeds the

range of the numbers representable by the floating-point number system. In this

chapter, we assume no overflows. To summarize, we have the following properties on
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errors produced by floating-point addition and multiplication [87]. Given a, b ∈ F,

a⊕ b = (a+ b)(1 + ε1) |ε1| ≤ υ,

a⊗ b = (a× b)(1 + ε2) + η2 |ε2| ≤ υ, |η2| ≤ η.

(49)

The value of υ only depends on the bitwise size of the mantissa. The value of η

also depends on the bitwise size of the exponent. For example, the IEEE 754 double

precision type allocates 53 bits to the mantissa, and 10 bits to the exponent, which

means υ = 2−53 and η = 2−1074 for the double precision type.

5.2.1 Interval Arithmetic

Here we introduce interval arithmetic, which will be used later in this chapter to

bound floating-point computation errors. Let J be either a scalar of one, a vector

of ones or a matrix of ones. Let a be either a scalar, a vector or a matrix. Let the

dimensions of J be equal to the dimensions of a. For a scalar ε ≥ 0, an interval

a = [a − εJ, a + εJ ] has a center at a and a radius of ε. The function µ takes in an

interval and returns its radius µ (a). The radius of an interval can also be indicated

using a subscript i.e. aε. An interval a has a lower bound of a and an upper bound

of a. We overload operators {+,−×, /} to take intervals as arguments. They are

defined such that for any x ∈ a and y ∈ b,

x+ y ∈ a + b

x− y ∈ a− b

x× y ∈ a× b

x / y ∈ a / b, 0 /∈ b.

(50)
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To satisfy the property in (50) when there are floating-point errors, interval arithmetic

operators employ outward rounding. To illustrate outward rounding, we have

a⊕ b =
[
F↓ (a+ b) ,F↑

(
a+ b

)]
. (51)

Interval arithmetic is associative, commutative but only sub-distributive i.e. a (b + c) ⊆

ab + ac [63]. However, the distributivity property does hold for a special case.

Lemma 2.1 For intervals a,b and c, if µ(a) = 0 i.e. a = a ∈ R then

a (b + c) = ab + ac. (52)

This property extends to a matrix or vector interval multiplied by either a matrix or

a vector. We have the following lemma which will be used later in this chapter.

Lemma 2.2 For z ∈ Rl×n and A,B ∈ IRn×m then

z (A + B) = zA + zB. (53)

Proof. For i = 1, . . . , l, (x (A + B)) (i) =
n∑
j=1

xij (Aij + Bij), which by Lemma (2.1)

is exactly equal to
n∑
j=1

xijAij + xijBij. This is precisely the ith row of xA + xB.

5.2.2 Other Notations and Definitions

R denotes the set of real numbers. F ⊂ R denotes a set of real numbers exactly

representable by the floating-point number system. The entries of a matrix or a
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vector starts at 01. For a matrix expression A, A(i, j) or (A)(i, j) denotes the element

in the i − 1th row and j − 1th column of A. For A, the notation A(i, :) or (A)(i, :)

denotes its i − 1th row. For a vector expression v, v(i) or (v)(i) denotes the i − 1th

element of v. The infinity norm of a vector v ∈ Rn is ‖v‖∞ = max
0≤i≤n−1

|v(i)|. The

infinity norm of a matrix A ∈ Rn is ‖A‖∞ = max
i

{∑
j

|A(i, j)|

}
. The 2-norm of a

vector v ∈ Rn is ‖v‖2 =

√√√√n−1∑
i=0

v(i)2.

5.3 Refinement of Credible Autocoding

In this section, we introduce a refinement of the credible autocoding process described

in the previous chapter to account for floating-point computation errors.

5.3.1 Example of Credible Autocoding

The illustrating example is the linear system x+ = Ax, in which A =

0.4990 0.1

0.01 0.98

.

Its C implementation is a while loop that updates the array variable x with the value

of Ax during each iteration. The body of the loop is shown in Figure 32 along with

the ACSL comments expressing the control semantics of the system. Here we review

the predicate notation used to express ellipsoids on C code. For M ∈ Rn, M � 0,

x ∈ Rn, c ∈ R and c ≥ 0, the family of predicates q(M, c)(x) parameterized by M

and c is defined as

q(M, c)(s) =

c sT

s M

 � 0. (54)

Recall the notation q(M, c)(x) is overloaded to indicate the ellipsoidal set {x ∈ Rn | q(M, c)(x)}.

1To follow the convention in accessing arrays in C
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The control semantics expressed in Figure 32 include the loop invariant q(Q, 1)(x),

where Q =

 0.8879 −0.1344

−0.1344 0.53889

. The parameter Q was obtained from a stabil-

ity analysis, They also include the ellipsoidal pre- and post-conditions generated

for every line of code during the execution of sp-calculus i.e. a collection of ellip-

soidal transformation rules for forward propagation. For example, line 11 of Fig-

ure 32 computes 0.4990x(0) + 0.1x(1), assigns the result to y0. Line 11 is a lin-

ear transformation T =


1 0

0 1

0.4990 0.1

 on x. Apply the affine transformation rule

on the pre-condition q(Q, 1)(x) leads to the post-condition ellipsoid q(Q1, 1)(s1),

s1 =

[
x(0) x(1) y0

]T

. The same procedure is applied to line 18 to get the post-

condition ellipsoid q(Q2, 1)(s2), s2 =

[
x(0) x(1) y0 y1

]T

. The last post-condition

generated is q(Q4, 1)(x) in line 29 of Figure 32. This alternative post-condition of

the loop body leads to an inductive condition q(Q4, 1)(x)→ q(Q, 1)(x), which can be

verified by checking if the inclusion

q(Q4, 1)(x) ⊆ q(Q, 1)(x) (55)

holds. If (55) holds, then the loop invariant q(Q, 1)(x) is inductive and credible

autocoding terminates with a positive result.

5.3.2 Sources of Floating-point Errors

The are two sources of floating-point computation errors that we have to consider.

The primary floating-point errors come from the execution of the program on a target

machine. Denote Mr as a virtual machine that takes as argument, a numerical
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1 /*@

2 requires q(Q,1)(x);

3 ensures q(Q,1)(x);

4 */

5 {

6 /*@

7 requires q(Q,1)(x);

8 ensures q(Q1,1)(s1);

9 */

10 {

11 y0=0 .4990*x[0]+0.1*x[1];

12 }

13 /*@

14 requires q(Q1,1)(s1);

15 ensures q(Q2,1)(s2);

16 */

17 {

18 y1=0 .01*x[0]+0.98*x[1];

19 }

20 /*@

21 requires q(Q2,1)(s3);

22 ensures q(Q3,1)(s4);

23 */

24 {

25 x[0]=y0;

26 }

27 /*@

28 requires q(Q3,1)(s4);

29 ensures q(Q4,1)(x);

30 */

31 {

32 x[1]=y1;

33 }

34 }

Figure 32: x+ = Ax Annotated
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expression X , evaluates it with infinite-precision arithmetic, and returns the result

Mr (X ). For brevity’s sake, instances ofMr (X ) are abbreviated to X in this chapter.

Denote Mt as another virtual machine with the same floating-point number system

as the one on the target machine. For the example C code in Figure 32, we are looking

for a bound on the error Mt (Ax)−Mr (Ax).

The secondary floating-point errors are the byproducts of the computations per-

formed in the credible autocoding process. We assume that credible autocoding is

carried out by another machine represented by the virtual machine Ma. As in the

case of the target machine, we can set the rounding mode in Ma to the directions

+∞, −∞, or 0. This is denoted by M�
a, and � ∈ {↑, ↓, ε}. The directional rounding

is used to over-approximate the computations of upper bounds.

5.3.3 Credible Autocoding with Floating-point Errors

A method is proposed in this section, which makes credible autocoding sound with re-

gards to floating-point computation errors. The main idea behind the method is that

credible autocoding is already sound for programs executed with infinite-precision

arithmetic. For these hypothetical programs, the proof annotations generated by the

prototype autocoder are already correct modulo the secondary errors. We just need

to check if the proof annotations are also correct on the actual program, which can

be done as follows.

1. Compute a bound on the difference between the traces of the hypothetical

program and the actual program.

2. Treat the bound computed in step 1 as a perturbation term, and check to see
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if the original ellipsoid invariant is still inductive with the perturbation.

We now illustrate the method on the annotated C program example from Fig-

ure 32. Denote the C program from Figure 32 as P . One can duplicate P and then

replace all the floating-point variables and operations by their real number counter-

parts. The duplicate program is a hypothetical program, which we denote as R. The

duplicate program can be inserted into the original program P in the form of ACSL

ghost code statements (see Figure 33). Ghost code with real semantics is included in

the ACSL specifications though not implemented yet in Frama-C [7].

Notationally speaking, we now need to distinguish between the variables in P and

their counterparts in R. The floating-point variables shall be referenced with a tilde

i.e. the array variable x is x̃. The real number variables in R shall be referenced

without a tilde i.e. the array variable x real is x. For R, the ACSL contracts from

Figure 32, including the loop invariant q(Q, 1)(x), are already sound modulo the

secondary errors produced by Ma. For now, assume there are no secondary errors,

which means the annotations from Figure 32 can be duplicated and inserted as correct

annotations for R. For R, we can then say the loop invariant q(Q, 1)(x) is correct

i.e. the loop inductive condition

q(Q4, 1)(x)→ q(Q, 1)(x) (56)

holds. To express a similar loop invariant on the actual program P , the floating-point

analog of q(Q, 1)(x) is introduced here. Let M ∈ Rn×n, s ∈ Rn and M � 0, we have

a family of predicates

qf(M, c)(s) = q(M, c)(s) ∧ s ∈ Fn. (57)
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1 /*@

2 requires q(Q,1)(x_real);

3 ensures q(Q,1)(x_real);

4 */

5 {

6 /*@

7 requires q(Q,1)(x_real);

8 ensures q(Q1,1)(s1_real);

9 */

10 {

11 /*@

12 ghost y0_real=0 .4990* x_real [0]-0.1* x_real [1];

13 */

14 y0=0 .4990*x[0]+0.1*x[2];

15 }

16 /*@

17 requires q(Q1,1)(s2_real);

18 ensures q(Q2,1)(s3_real);

19 */

20 {

21 /*@

22 ghost y1_real=0 .01* x_real [0]+0.98* x_real [1];

23 */

24 y1=0 .01*x[0]+0.98*x[1];

25 }

26 /*@

27 requires q(Q2,1)(s3_real);

28 ensures q(Q3,1)(s4_real);

29 */

30 {

31 /*@

32 ghost x_real [0] =y0_real;

33 */

34 x[0]=y0;

35 }

36 /*@

37 requires q(Q3,1)(s4_real);

38 ensures q(Q4,1)(x_real);

39 */

40 {

41 /*@

42 ghost x_real [1] =y1_real;

43 */

44 x[1]=y1;

45 }

46 }

Figure 33: Annotations for R embedded within P
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Inserting the candidate loop invariant qf(Q, 1)(x̃) into P results in the first ACSL

contract in line 1 of Figure 34. Since x real[0]=x[0] and x real[1]=x[1], by the

substitution rule, we get the post-condition qf(Q, 1)(x) in line . This completes the

second ACSL contract in line in Figure 34. Note that qf(Q, 1)(x)→ q(Q, 1)(x), hence

by the consequent rule from Hoare logic, we can strengthen the pre-condition in line

7 of Figure 33 to qf(Q, 1)(x). This results in the pre-condition in line 16 of Figure 34.

The remaining ellipsoidal invariants q(Q1, 1)(s1) to q(Q4, 1)(x) hold as in Figure 33.

Now we take into account the primary floating-point error. We compute the

small-step error incurred during execution of each line of P . For line 17 of Figure 34,

computing a δ0 > 0 such that |ỹ0−y0| ≤ δ0 for all x̃ belonging to qf(Q, 1)(x̃) results in

the post-condition in line 12 of Figure 34. Next, for line 26 of Figure 34, computing

a δ1 > 0 such that |ỹ1 − y1| ≤ δ1 for all x̃ belonging to qf(Q, 1)(x̃) results in the

post-condition in line 21 of Figure 34. We will describe later this chapter how to

compute the error bounds δi. Moving further along into the code in Figure 34, we

have the assignment statements x[0]=y0; and x[1]=y1;. The assignment operator

does not cause floating-point computation errors, so we get the post-condition

1∧
i=0

|x̃(i)− x(i)| ≤ δi (58)

for the loop body (see line 39 of Figure 34).

With the floating-point error bounds in Figure 34, the inductive condition for the

loop invariant qf(Q, 1)(x̃) becomes

q(Q4, 1)(x) ∧ |x̃(0)− x(0)| < δ0 ∧ |x̃(1)− x(1)| < δ1 → qf(Q, 1)(x̃). (59)
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1 /*@

2 requires qf(Q,1)(x);

3 ensures qf(Q,1)(x);

4 */

5 { /*@

6 requires qf(Q,1)(x);

7 ensures qf(Q,1)(x_real);

8 */

9 { /*@ ghost x_real [0]=x[0]; ghost x_real [1]=x[1]; */ }

10 /*@

11 requires qf(Q,1)(x_real);

12 ensures q(Q1,1)(s1_real) && abs(y0-y0_real)<delta_0;

13 */

14 { /*@

15 ghost y0_real=0 .4990* x_real [0]-0.1* x_real [1];

16 */

17 y0=0 .4990*x[0]+0.1*x[2];

18 }

19 /*@

20 requires q(Q1,1)(s2_real) && abs(y0-y0_real)<delta_0 ;;

21 ensures q(Q2,1)(s3_real) && abs(y0-y0_real)<delta_0 && abs(

↪→ y1-y1_real)<delta_1;

22 */

23 { /*@

24 ghost y1_real=0 .01* x_real [0]+0.98* x_real [1];

25 */

26 y1=0 .01*x[0]+0.98*x[1];

27 }

28 /*@

29 requires q(Q2,1)(s3_real) && abs(y0-y0_real)<delta_0 && abs(

↪→ y1-y1_real)<delta_1 ;;

30 ensures q(Q3,1)(s4_real) && abs(x[0] -x_real [0]) <delta_0 && abs(

↪→ y1-y1_real)<delta_1;

31 */

32 { /*@

33 ghost x_real [0] =y0_real;

34 */

35 x[0]=y0;

36 }

37 /*@

38 requires q(Q3,1)(s4_real) && abs(x[0] -x_real [0]) <delta_0 && abs(

↪→ y1-y1_real)<delta_1;

39 ensures q(Q4,1)(x_real) && abs(x[0] -x_real [0]) <delta_0 && abs(x

↪→ [1] -x_real [1]) <delta_1;

40 */

41 { /*@

42 ghost x_real [1] =y1_real;

43 */

44 x[1]=y1;

45 }

46 }

Figure 34: Annotating P with Floating-point Error Bounds
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Remark 5 A method will be presented later to soundly check the validity of (59).

If (59) holds, then the candidate qf(Q, 1)(x̃) is a loop invariant of P , which means

credible autocoding will terminate with a positive answer. If (59) does not hold, then

credible autocoding is not feasible with the computed floating-point error bounds.

However this outcome is unlikely to happen as floating-point errors are small com-

pared to other uncertainties in a control system. With a well-designed controller, a

closed-loop system should be stable for disturbances orders of magnitudes larger than

floating-point computational noise. Later in this chapter, we present some numerical

experimentations that give some idea on the minimum size of mantissa needed to

ensure that credible autocoding with floating-point errors is feasible.

To summarize, we introduce the following modified credible autocoding process

that is sound with respect to the primary floating-point errors:

1. Duplicate P with semantics of real numbers to create R.

2. Insert the duplicate R into the original program P in the form of ACSL ghost

code statements.

3. Execute credible autocoding as described in the previous chapter on R.

4. Translate the loop invariant q(Q, 1)(x) from R into its floating-point analog

qf(Q, 1)(x̃), and then insert qf(Q, 1)(x̃) as the candidate loop invariant for P .

5. Perform floating-point error analysis of P to obtain bounds δi on |ṽi−vi|, where

ṽi and vi are respectively variables in P and their counterparts in R.
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6. Annotate each line of code in P with post-conditions |ṽi− vi| ≤ δi, where δi are

the bounds computed in step 5. For the running example, this step results in

the post-condition
0∧
i=0

|x̃(i)− x(i)| ≤ δi in line 42 of Figure 34.

7. Verify that the loop inductive condition holds with the floating-point error

bounds. For the running example, this step involves checking that (59) holds.

In the next few sections, we give a solution to eliminate the secondary errors. We

also give a formula to compute the bounds on the errors Mt (A(i, :)x)−Ax. Finally

we propose a method to numerically check the inductive condition in (59).

5.3.4 Secondary Errors

There are secondary errors as the result of the floating-point computations in the

execution of sp-calculus on R. A way to eliminate these errors is to compute the

ellipsoid transformations exactly with rational numbers [50]. Since the matrix Q that

defines the loop invariant q(Q, 1)(x) is computed using floats, we can be sure it does

not contain any irrational parameters. In the C program, any irrational constant

such as π is approximated using a floating-point number. Rational arithmetic are

computationally more expensive. For the affine ellipsoid transformation rule, which

is

TiQT
T

i , (60)

the number of arithmetic operations grows cubically with the dimensions of Q. How-

ever, we only need to use rational arithmetic once and in an off-line fashion during

the generation of the annotations. For the degenerate ellipsoids such as q(Q1, 1)(s1)

94



where Q1 is singular, using exact computations in ellipsoid transformations avoids

the problem of showing that Q̃1, computed with floats, is positive-semidefinite.

5.3.5 Bounding the Floating-point Errors

We give a formula to compute explicit values for error bounds in (58). The problem

is computing δi > 0 such that |Mt (A(i, :)x) − A(i, :)x| ≤ δi, i = 0, . . . , n − 1. Note

for the example x+ = Ax, useful error bounds can be computed because we can make

the assumption that x belongs to the bounded set qf(Q, 1)(x).

Algorithm 1 Algorithm to compute the dot product of a, b ∈ Fn

1. For a set S = {a1b1, . . . , anbn} with at least two elements. Choose any two
elements from the set.

2. Evaluate the elements if needed.

3. Sum the two elements together and put the result back into the set S.

4. Repeat until S has fewer than 2 elements.

For Algorithm 1, which allows arbitrary order of computations, we have a classic

result from Higham [41].

Theorem 3.1 Consider two vectors a, b ∈ Fn and their dot product aTb, then

|Mt (aTb)− aTb| ≤ nυ

1− nυ
aTb. (61)

Next, we have Algorithm 2, which computes A(i, :)x, i = 0, . . . , n − 1 in any

order permitted by Algorithm 1. Since the order of computations in Algorithm 1

is arbitrary, so is the order of computations in Algorithm 2. For the autocoding

prototype, it is better to have an error bound that works for any order of computation,
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Algorithm 2 Algorithm for x+ = Ax

1. For i = 0, . . . , n− 1, let a = A(i, :)T and b = x, compute aTb using Algorithm 1
and then assign the result to y(i).

2. Update x(i) with y(i) from step 1 for i = 0, . . . , n− 1.

since it is not known before code generation how Ax is computed. Using (61), a bound

on Mt (A(i, :)x)− A(i, :)x can be obtained using the following result.

Proposition 5.3.1 For x belonging to qf(Q, 1)(x), |Mt (A(i, :)x)− A(i, :)x| ≤ δi =

nυ

1− nυ
√
A(i, :)QAT(i, :).

Proof. The proofs follows from Theorem 3.1 and the fact thatA(i, :)x ≤
√
A(i, :)QA(i, :)T

for x in q(Q, 1)(x).

Remark 6 To soundly over-approximate the computation of δi, we can employ di-

rected rounding in the analyzer machine. The numerator is over-approximated while

the denominator is under-approximated. We get

δi =M↑
a

M↑
a

(
nυ
√
A(i, 0)2Q(0, 0)+, . . . ,+A(i, n− 1)2Q(n− 1, n− 1)

)
M↓

a (1− nυ)

 (62)

5.3.6 Verification of the Inductive Condition with Floating-point Errors

In this section, we present a sound method to verify the inductive condition (59).

First we rewrite (59) for the general case of x+ = Ax, A ∈ Fn×n. For M1 ∈ Rn×n,

M2 ∈ Rn×n, M2 � M1 � 0, scalars δi > 0, x ∈ Rn, and x̃ ∈ Fn, we want to check

whether
n−1∧
i=0

|x̃(i)− x(i)| ≤ δi ∧ q(M1, 1)(x)→ qf(M2, 1)(x̃). (63)
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Let δ = max
0≤i≤n−1

{δi}. Let SM1,δ =

{
x̃ ∈ Fn | q(M1, 1)(x) ∧

n−1∧
i=0

|x̃(i)− x(i)| < δi

}
.

Checking (63) is equivalent to checking the set inclusion

SM1,δ ⊆ qf(M2, 1)(x̃). (64)

5.3.6.1 Cholesky Decomposition

The Cholesky decomposition is introduced here since it will be used to check (63).

Cholesky decomposition (see Algorithm 3) is an algorithm that decomposes a positive-

definite matrix M into the product of a lower triangular matrix L and its transpose

LT. If M is nearly singular, then the Cholesky algorithm can fail due to round-off

Algorithm 3 Cholesky Decomposition Algorithm

1. L(i, j) =
1

L(j, j)

(
A(i, j)−

j−2∑
k=0

L(i, k)L(j, k)

)
for i > j.

2. L(j, j) =

√√√√M(j, j)−
j−2∑
k=0

L(j, k)2

errors. This failure usually occurs when computing the diagonal entry L(j, j), which

requires computing the square root of the value D(j, j) = M(j, j)−
j−2∑
k=0

L(j, k)2. If we

assume exact computations, then the algorithm should always terminate with a posi-

tive answer when the input is a positive-definite matrix. With inexact computations,

the algorithm may return false positives or false negatives. In this chapter, we use an

interval Cholesky decomposition algorithm, which accounts for all the round-off errors

produced during its execution. In an interval Cholesky algorithm, all the numerics are

replaced by intervals, and the floating-point operators are replaced by their interval

97



counterparts. The complexity of an interval Cholesky decomposition algorithm with

regards to the dimensions of the matrix input is the same as the regular algorithm.

An interval Cholesky algorithm has the advantage of producing only false negatives

i.e. inputs that are positive-definite but cannot be determined to be so due to floating-

point errors. More importantly, the interval Cholesky algorithm can also be used to

check efficiently if all matrices belonging to the interval M are positive-definite. To

see this is true, note that due to the fundamental property of interval arithmetic

operators in (50), the interval D(j, j) = Ma

(
M(j, j)−

j−2∑
k=0

L(j, k)2

)
contains, for

M(j, j) ∈M(j, j). all possible values of Ma

(
M(j, j)−

j−2∑
k=0

L(j, k)2

)
.

5.3.6.2 Verification Method

Before we present the method to check the inductive condition in (63), first we have a

pair of lemmas, which allows us to verify inclusions between sets of floats by checking

their corresponding sets of reals.

Lemma 3.2 Let S be a subset of Fn. Let M ∈ Rn×n be a positive-definite matrix.

If S ⊂ q(M, 1)(x), then S ⊆ qf(M, 1)(x).

Proof. If S ⊂ q(M, 1)(x), then for all x ∈ S, xTM−1x ≤ 1, which implies that every

member x of S is also a member of qf(M, 1)(x).

Lemma 3.3 Let M1 ∈ Rn×n be a positive-definite matrix. Let M2 ∈ Rn×n be

another positive-definite matrix. If q(M1, 1)(x) ⊂ q(M2, 1)(x), then qf(M1, 1)(x) ⊆

qf(M2, 1)(x).
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Proof. If qf(M1, 1)(x) 6⊆ qf(M2, 1)(x), then there exists z ∈ Rn such that qf(M1, 1)(z)

is true, and zTM−1
2 z > 1, Hence qf(M1, 1)(x) 6⊆ qf(M2, 1)(x) implies q(M1, 1)(x) 6⊂

q(M2, 1)(x). This completes the proof.

Now we are ready to give the main result for verifying (63). To check that SM1,δ is

contained within q(M2, 1)(x̃), we can search for an ellipsoid q(γM1, 1)(x) that is sim-

ilar to q(M1, 1)(x), but scaled with the factor γ > 1 such that q(γM1, 1)(x) contains

SM1,δ.

Theorem 3.4 If there exist scalar γ > 1 such that SM1,δ ⊂ q(γM1, 1)(x) and

q(γM1, 1)(x) ⊂ q(M2, 1)(x), then the inductive condition in (63) holds.

Proof. By Lemma 3.2, SM1,δ ⊂ q(γM1, 1)(x) implies SM1,δ ⊆ qf(γM1, 1)(x). By

Lemma 3.3, q(γM1, 1)(x) ⊂ q(M2, 1)(x) implies qf(γM1, 1)(x) ⊆ qf(M2, 1)(x). The

sets qf(M2, 1)(x) and qf(M2, 1)(x̃) are equivalent, hence we have that SM1,δ ⊆ qf(M2, 1)(x̃).

Using theorem 3.4, we can check if (63) holds using the following steps:

1. Computing a scaling factor γ > 1 such that ellipsoid q(γM1, 1)(x) contains

SM1,δ.

2. Checking if q(γM1, 1)(x) ⊂ q(M2, 1)(x) holds. This can be done by checking

M2 − γM1 � 0 using an interval Cholesky algorithm.

Here we give a sound method to compute the scaling factor γ. Denote the mini-

mum eigenvalue of M1 as λmin. For two similar and concentric ellipsoids q(M1, 1)(x)

and q(γM1, 1)(x), the minimum distance between their boundaries is
√
γλmin −√

λmin. We also have |x̃(i)− x(i)| ≤ δi, which implies ‖x̃− x‖2 ≤
√∑

i

δ2i . Hence a
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good choice of γ is one that ensures
√
γλmin −

√
λmin ≥

√∑
i

δ2i , which is satisfied

by

γ =

(√
λmin +

√∑
i δ

2
i√

λmin

)2

. (65)

We have the follwoing procedure to compute the scaling factor γ soundly.

1. Compute a matrix interval M1 such that M1 ∈M1. This is done because M1 is

computed using sp-calculus, which we assume that we are going to use rational

arithmetic for.

2. Compute the minimum eigenvalue of M1 use any off-the-shelf numerical algo-

rithm. Let the result of that be λ̃. Check if M1 − λ̃I � 0 with an interval

Cholesky algorithm. If the answer is negative then decrease λ̃ until it returns a

positive result.

3. Compute the scaling factor γ by replacing the λmin in (65) with λ̃ computed

in step 2. Apply directional rounding to either over-approximate or under-

approximate when evaluating (65) i.e. use M↑
a on the numerator in (65) and

use M↓
a on the denominator.

5.3.7 Numerical Values

This section populates the annotation variables used in Figure 34 with their numerical

definitions. The values are computed using results from Sections5.3.5 and 5.3.6. The

analyzer machine Ma has the floating-point accuracy of IEEE 754 double-precision

type or a machine epsilon of υ = 2−53. The computations with rationals are car-

ried out using the symbolic toolbox of Matlab. The interval arithmetic and directed
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rounding are provided by the interval arithmetic package INTLAB [81]. An inter-

val Cholesky algorithm is implemented by replacing all variables and operators in

Algorithm 3 with their interval counterparts.

First, we computed a P such that P satisfies the Lyapunov equation ATPA−P ≺

0. The computed P � 0 is inverted usingMa and we get the loop invariant q(Q, 1)(x),

where

Q =


181648207

204580391
− 25726097

191463773

− 25726097

191463773

61289389

113736401

 . (66)

Next, the ellipsoid transformations are computed exactly using rational arithmetic.

The transformations matrices Ti, i = 1, . . . , 4 and the resulting ellipsoidal post-

conditions q(Qi, 1)(si), i = 1, . . . , 4 are as follows.

T1 =


1 0

0 1

499

1000

1

10

 . (67)

Q1 =


499846779888669

562949953421312
− 302563871607443

2251799813685248

60464861593564939

140737488355328000

− 302563871607443

2251799813685248

4853729624558199

9007199254740992
− 14818065659079541

1125899906842624000
60464861593564939

140737488355328000
− 14818065659079541

1125899906842624000

59973480228900820597

281474976710656000000

 .
(68)

T2 =



1 0 0

0 1 0

0 0 1

1

100

49

50
0


. (69)
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Q2 =



499846779888669

562949953421312
−

302563871607443

2251799813685248

60464861593564939

140737488355328000
−

13825936148987369

112589990684262400

−
302563871607443

2251799813685248

4853729624558199

9007199254740992
−

14818065659079541

1125899906842624000

47445524772027373

90071992547409920
60464861593564939

140737488355328000
−

14818065659079541

1125899906842624000

59973480228900820597

281474976710656000000
−

484225770920637753

56294995342131200000

−
13825936148987369

112589990684262400

47445524772027373

90071992547409920
−

484225770920637753

56294995342131200000

11596501696848731647

22517998136852480000


.

(70)

T3 =


0 0 1 0

0 1 0 0

0 0 0 1

 . (71)

Q3 =


59973480228900820597

281474976710656000000
− 14818065659079541

1125899906842624000
− 484225770920637753

56294995342131200000

− 14818065659079541

1125899906842624000

4853729624558199

9007199254740992

47445524772027373

90071992547409920

− 484225770920637753

56294995342131200000

47445524772027373

90071992547409920

11596501696848731647

22517998136852480000

 .

(72)

T4 =

1 0 0

0 0 1

 . (73)

Q4 =


59973480228900820597

281474976710656000000
− 484225770920637753

56294995342131200000

− 484225770920637753

56294995342131200000

11596501696848731647

22517998136852480000

 . (74)

Assume Mt has a floating-point accuracy of IEEE 754 single-precision type or υ =

2−23. To compute the floating-point error bounds in (58), we apply Proposition 5.3.1

with n = 2 and we get

δ0 = 1.100525040801444× 10−7

δ1 = 1.710955867399860× 10−7.

(75)
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for the error bounds. Now we apply Theorem 3.4 by computing a scaling factor γ

such that SQ4,δ ⊆ q(γQ4, 1)(x). Since Q4 in (74) is not representable with floats, we

over-approximate it with the interval Q4 such that M↑
a (Q4) ,M↓

a (Q4) ∈ Q4. The

rational representation of Q4 is

Q4 =


[

26343265

123637479
,

36757143

172513183

] [
− 2151750

250157599
,− 5684351

660849819

]
[
− 2151750

250157599
,− 5684351

660849819

] [
46885511

91041926
,
43708163

84872176

]
 . (76)

Note that (76) is exactly representable with floats. To compute soundly the minimum

of the smallest eigenvalues of the matrices in Q4, we search for a λ̂ > 0 such that

Q4− λ̂I � 0. The initial guess for λ̂ is the minimum eigenvalue ofMa (Q4) computed

using the eigenvalue function in Matlab. This value i.e. λmin = 0.212823746331862

resulted in Q4 − λmin � 0 failing the interval Cholesky check. We rescaled λmin by a

factor of 0.9999 to obtain

λ̂ = 0.212802463957228. (77)

Using the interval Cholesky algorithm, we have Q4 − λ̂I � 0 with λ̂ from (77). By

substituting λmin and δi in (65) with (77) and (75), we obtain the scaling factor

γ = 1.000000881991857. Finally, note that Q from (66) is exactly representable

using floats since it is the output of a Matlab inverse algorithm. The Cholesky

decomposition of Q − γQ4 returns a positive result which completes the credible

autocoding process.

5.4 Stability Proofs with Floating-point Errors

In the last part of this chapter, we look for answers to the following two questions.
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1. Can we check soundly without going through credible autocoding, if the stability

proof generated for the control system, which is valid with exact computations,

is also valid with floating-point errors?

2. At what bit-size of mantissa should we expect that credible autocoding will fail?

The first question arises from the concern about credible autocoding being non-

iterative. For example, if the inductive condition does not hold, then credible au-

tocoding terminates with a negative result. It is not an iterative procedure that up-

dates the loop invariant until the inductive condition holds. For this reason, we need

to have some idea beforehand if credible autocoding will terminate with a positive

result. This was usually the case when floating-point errors were ignored. However

by taking floating-point computation errors into account, credible autocoding could

be infeasible if the size of the error bounds in Figure 34 are large. The second ques-

tion is related to the first question. It is partly motivated by the hypothesis that

floating-point errors are very small, hence only a toy floating-point number system

can make credible autocoding infeasible for most cases. The first question is ad-

dressed in this section. The second question is addressed in the section on numerical

experimentations.

For linear systems, checking if a stability proof still holds with floating-point errors

can be reduced to a problem of checking the positive-definite property of a matrix

interval.

Proposition 5.4.1 Consider the linear system x+ = Ax, A ∈ Fn×n and its C pro-

gram implementation P . Also consider R, which is a duplicate of P with semantics
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of real numbers. Assume the ellipsoid p(P, 1)(x) is an inductive invariant of R and

P � 0 is a matrix such that ATPA − P ≺ 0. Let y = Ax, and let ỹ = Mt (Ax).

Assume the error ỹ−y is bounded by δ > 0 for any x belonging to pf(P, 1)(x). Let yδ

denote the interval [y − δ, y + δ]. Assume there exists β > 0 such that yδ ⊆ Aβx for

all x belonging to pf(P, 1)(x). The set pf(P, 1)(x) is guaranteed to be an inductive

invariant of P if

P −AT

βPAβ � 0. (78)

Proof. By the definition of δ, we have that Mt (Ax) ∈ yδ for all x in pf(P, 1)(x).

If yδ ⊆ Aβx for all x in pf(P, 1)(x), then Mt (Ax) ∈ Aβx for all x in pf(P, 1)(x).

From (78), we also have that AT

βPAβ−P ≺ 0, which implies, for all x in pf(P, 1)(x),

xT
(
AT

βPAβ − P
)
x < 0. By the distributive property in lemma 2.2, we have

xT
(
AT

βPAβ − P
)
x < 0 =⇒

(
xTAT

βPAβx− xTPx
)
< 0 (79)

for all x in pf(P, 1)(x). Recall that Mt (Ax) ∈ Aβx for all x in pf(P, 1)(x), hence

Mt (Ax)T PMt (Ax)− xTPx < 0 (80)

for all x in pf(P, 1)(x).

Remark 7 Using Proposition 5.4.1, we can check the feasibility of credible autocod-

ing beforehand by running an interval Cholesky decomposition algorithm on the ma-

trix interval in (78). This is assuming that we can compute a β > 0 such that

yδ ⊆ Aβx for all x in pf(P, x1)(x). In the next section, we give a sound method to

compute β > 0 that only depends on the properties of the matrix A and the machine

epsilon ν.
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The result in Proposition 5.4.1 extends to a linear system with bounded input u.

For the linear system x+ = Ax+Bu, A ∈ Fn×n, B ∈ Fn×m, the analog of (78) isAT

βPAβ − P + αP AT

βPBβ

BT

βPAβ BT

βPBβ − αI

 ≺ 0, (81)

for a multiplier α > 0. Since checking (81) is exactly the same type of problem as

checking (78), we can apply the interval Cholesky method.

5.4.1 Algebraic Expression for the Error Bounds

In this section, we give an algebraic expression for estimating the quantity β from

Proposition 5.4.1. The results in this section hold for Algorithm 2, which allows

arbitrary order of computations.

First we obtain an alternative bound δ̂, which is a function of ‖x‖∞, on ‖Mt (Ax)−

Ax‖∞.

Proposition 5.4.2 Let A ∈ Fn×n and x ∈ Fn. Let ỹ = Mt (Ax) and y = Ax. Let

θ = ‖A‖∞, and φ = ‖x‖∞. If nυ ≤ 0.5, where υ is the machine epsilon of Mt, then

δ̂ =
nυ

1− nυ
θφ (82)

is a bound for ‖Mt (Ax)− Ax‖∞.

Proof. From (61), we have that

|Mt (A(i, :)x)−A(i, :)x| ≤ nυ

1− nυ
A(i, :)x ≤ nυ

1− nυ
∑
j

A(i, j)φ ≤ nυ

1− nυ
∑
j

|A(i, j)|φ.

(83)

By the definition of θ, we have θ ≥
∑
j

|A(i, j)| for i = 0, . . . , n−1. Hence |Mt (A(i, :)x)−

A(i, :)x| ≤ nυ

1− nυ
θφ for i = 0, . . . , n− 1.
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Remark 8 Note that n, θ, and ν are parameters of the system. Also note that

φ depends on x, which is a variable. The expression in (82) results in a family of

functions

δ̂(n, θ, ν)(φ) =
nυ

1− nυ
θφ, (84)

parameterized by n, θ, and υ. The parameters θ and n do not vary for a fixed A.

The machine epsilon ν is a property of the target architecture and is also constant

during runtime. For fixed parameters n, θ, ν, δ̂(n, θ, ν)(φ) can be simplified to δ̂(φ).

With the error bound function θ̂ from (84), we can find a β > 0 that is independent

of x. We have the following Proposition.

Proposition 5.4.3 Let φ = ‖x‖∞, θ = ‖A‖∞, and δ̂(x) > 0 be the error bound

function from (84). Let y = Ax and let yδ = [y − δ, y + δ], in which δ = δ̂(x). If

β =
nυ

1− nυ
θ, then for all x ∈ Fn,

yδ ⊆ Aβx. (85)

Proof. Let 0̂ and 0̄ denote respectively a vector and matrix intervals, both centered

at 0. Since δ = θ̂(x) =
nυ

1− nυ
θφ, β =

nυ

1− nυ
θ implies β =

1

φ
δ. If β =

1

φ
δ then,

(0̄βx) (j) =

[
−1

φ
δ

n∑
i=1

|xi|,
1

φ
δ

n∑
i=1

|x(i)|

]
, j = 0, . . . , n− 1. (86)

Since φ = ‖x‖∞ ≤
n−1∑
i=0

|x(i)|, then [−δ, δ] ⊆ (0̄βx) (j), j = 0, . . . , n − 1. Hence we

have that 0̂δ ⊆ 0̄βx, which implies, for y = Ax, yδ = y + 0̂δ ⊆ Ax + 0̄βx. By

Lemma 2.2, we have Ax+ 0̄βx = (A+ 0̄β)x = Aβx.
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Remark 9 To over-approximate the bound β =
nυ

1− nυ
θ, we can set appropriate

directional rounding in the analyzer machine to over-approximate on the numerator

nυθ, and under-approximate on the denominator 1 − nυ. For the linear system

x+ = Ax+Bu with bounded input u, the results from Proposition 5.4.3 on β applies

with only slight modifications. The modifications include replacing the dimensional

parameter n by n+m, and let θ = ‖
[
A B

]
‖∞.

5.5 Numerical Experimentation

In this section, we describe some numerical experimentations of using the proof-

checking technique described in Section 5.4 to check if stability proofs are still valid

with floating-point computation errors. The purpose of this experimentation is to

find an approximate estimate for the smallest bit-size wise mantissa or the largest

machine epsilon ν that could cause credible autocoding to become infeasible.

For linear systems x+ = Ax, A ∈ Fn×n, and ATPA − P ≺ 0, we check if P −

AT

βPA � 0 using the same interval Cholesky algorithm used in Section 5.3.7. We

consider variations in the dimensions of A, the machine epsilon ν and the spectral

radius ρ(A) = max {|λ1|, . . . , |λn} where λi are the eigenvalues of A. We have the

following two scenarios.

1. Varying ρ (A) and n.

2. Varying ρ (A), n, and the machine epsilon υ of Mt.

The system matrices A are randomly generated using UΣUT where Σ is a full-rank

diagonal that is stable i.e. ρ (Σ) < 1, and U is the left matrix from a singular value
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decomposition of a randomly generated full-rank square matrix. For the first scenario,

we assume a IEEE 754 single precision system for Mt i.e. υ = 2−23. The analyzer

machineMa has a IEEE 754 double precision system. The variation of n is from 14 to

86. The spectral radius of A are varied according to the scheme ρi =
i∑

j=1

9× 10−j. A

portion of the numerical results are listed in Table (3). A positive result is indicated

by 1 and a negative result is indicated by 0. A positive result means the stability

proof holds and implies that credible autocoding is feasible. Since here we are using a

more conservative estimate of the bound on the floating-point error than the interval

analysis method proposed for credible autocoding in Section 5.3.5, a negative result

only means that credible autocoding may fail. As expected, as the spectral radius of

Table 3: Varying spectral radius and dimension of A

ρ = 0.9 ρ = 0.99 ρ = 0.999 ρ = 0.9999
n = 14 1 1 1 0
n = 23 1 1 1 0
n = 32 1 1 0 0
n = 41 1 1 0 0
n = 50 1 0 0 0
n = 59 1 0 0 0

the system matrix approaches 1, the proof checking technique from Section 5.4 fails

for all n ≥ 14.

In the second scenario, the quality of the floating-point number system on the

target machine is incorporated into our analysis. We increase the machine epsilon υ

ofMt from the double-precision of 2−53 to 2−8 until the proof-checking process fails.

We also vary the dimensions of A and the spectral radii as done in scenario 1. The

setup is as follows. We have n ranging from 5 to 50 and the spectral radii ranges
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from 0.9 to 0.99999. The results are listed in Table 4. The entries of Table 4 are the

machine epsilons at which the proof-checking process returned a negative result.

Table 4: Maximum machine epsilon ν

ρ = 0.9 ρ = 0.99 ρ = 0.999 ρ = 0.9999 ρ = 0.99999

n = 5 2−9 2−11 2−15 2−18 2−22

n = 14 2−13 2−16 2−19 2−22 2−26

n = 23 2−15 2−18 2−21 2−25 2−28

n = 32 2−17 2−20 2−23 2−26 2−30

n = 41 2−18 2−21 2−24 2−27 2−31

n = 50 2−19 2−22 2−24 2−28 2−32

5.5.1 Control System Example

Lastly, we try the same proof-checking process on a linear system with inputs. Con-

sider a lead-lag compensator that stabilizes a double integrator system with closed-

loop damping of 0.583. The lead-lag compensator

x+ =

 0.9940 −0.0005

0.01 1.000

x+

 0.01

0

 y

u =

[
3.6667 1.4167

]
x+ 5y

(87)

is discretized using a Euler scheme at a sample rate of 0.01. Using the tool Se-

DuMi [88], we get the certificate of stability

P =

 0.005291827052310 0.000471456978220

0.000471456978220 0.000278807543788

 (88)
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for α = 1e − 4. Assume IEEE single precision for Mt, we get a β of 2.1191 × 10−5.

From the matrix error length, we get

A =

 [0.9939, 0.9941] [−0.0006,−0.0004]

[0.0099, 0.0101] [0.9999, 1.0001]



B =

 [0.0099, 0.0101]]

[−0.0001, 0.0001]


(89)

for the interval Tβ =

[
Aβ Bβ

]
. Note that the numbers above are truncated for

display purpose. From Tβ, we get the interval linear matrix inequality

1×10−3×


[0.0531, 0.0535] [0.0025, 0.0027] [−0.0528,−0.0525]

[0.0025, 0.0027] [0.0003, 0.0004] [−0.0047,−0.0046]

[−0.0528,−0.0525] [−0.0047,−0.0046] [0.1000, 0.1001]


≺ 0, (90)

which we verified with an interval Cholesky Decomposition algorithm implemented

in INTLAB.

5.6 Conclusion

In this chapter, we have provided a method to account for floating-point errors in

the credible autocoding of control software. The main contribution of this chapter

is a sound translation of Lyapunov stability proofs into the code domain. We also

provided a proof-checking process, which enables one to evaluate the correctness of

the stability proof in the floating-point number domain prior to credible autocoding.

Although the methods presented in this chapter are conservative since they are based
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on interval arithmetic, they can be adapted to use affine arithmetic which will give less

conservative estimates of the error bound. Some of the proposed extensions in this

chapter are already implemented in the credible autocoding prototype. The current

prototype is capable of annotating the original program with the duplicate program,

computing the floating-point error bounds and then annotating them on the code.

The parts that are yet to be integrated into the prototype include computing with

rational arithmetic and checking the inductive condition with the additional formulas

expressing floating-point error bounds.
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Chapter VI

AN EXAMPLE FROM INDUSTRY

The credible autocoding process (see Figure 35) is tested on a real Full Digital Author-

ity Engine Control (FADEC) system provided by Price Induction. The test system

used in this study is a high fidelity model of the DGEN 380 turbofan engine in the

form of a virtual test bench [71]. In credible autocoding, the results of stability

Simulink
Model C Code

PVS-based 
Proof-Checker

Stability proof
Code 

documented 
with properties 

and proofs

Credible Autocoding Frama-C

Certification 
Authority

End UserEnd User

Figure 35: A new software development process with credible autocoding

analysis are translated automatically along with a model of the controller into docu-

mented code. Given the documented code, the certification authorities can check its

correctness using only a proof-checker. For the example engine controller, an open-

loop stability analysis is performed. The results are used to annotate the Simulink

model of the FADEC system. From the annotated Simulink model, a documented

code is auto-generated using the prototype autocoder Gene-Auto+. This documented

code is proof-checked and then compiled into a binary. The binary is tested on Price

Induction’s virtual test bench for validation.
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6.1 DGEN 380 Turbofan Engine

The DGEN 380, shown in Figure 36a, is a two-spool, high bypass ratio (7.6), unmixed

flow turbofan engine. Its simple architecture yields up to 560 pounds of thrust in a

compact and lightweight format (the engine weighs 175 pounds and is 4 feet long)

while maintaining low noise and pollution levels. Beside its optimized performances,

the engine innovates with its all-electric system: its starter-generator located directly

on the high-pressure shaft, and oil and fuel pumps driven by electric motors are

controlled by the Engine Control Unit (ECU), allowing for a really fine and optimized

tuning of the DGEN control laws.

(a) DGEN 380 lightweight turbofan engine
(©Price Induction) [71]

(b) Price Induction WESTT CS-BV: DGEN
380 turbofan engine virtual test bench
(©Price Induction) [71]

6.1.1 Engine Hardware-in-the-Loop Simulator

The WESTT CS-BV, shown in Figure 36b, is a product dedicated to the study of the

DGEN 380 turbofan and its control. With the DGEN 380 actual ECU hardware and

its model running real-time and generating its sensors analog outputs, the CS-BV

constitutes a control Hardware-In-the-Loop (HIL) platform for the testing of engine
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control design. The hardwares used in the platform include the actual FADEC from

the turbofan engine. The on-board cpu MPC555, which constitutes the core of the

ECU, can be easily programmed through the already existing code framework with

different control logics and tested in real time with the use of the SIMMOT (software

real-time simulation of the engine). All engine outputs are displayed on screen and

all data recorded for later performance analysis.

6.2 Application of the Tool-chain on the Price Induction
Engine Controller

In this experimental study, the DGEN 380 engine controller model is pre-processed,

by hand, into a Simulink model accepted by Gene-Auto+. From the pre-processed

Simulink model, a state-space model of the controller is computed symbolically. An

open-loop stability analysis of the state-space model of the controller is performed.

As expected, it did not yield a common Lyapunov function for the entire range of

operating conditions of the engine controller. Instead, a weaker property which holds

for a set of operating points is expressed on the Simulink model and translated by

Gene-Auto+ into ACSL annotations.

6.3 Constructing the Input Model

The Simulink model of the DGEN 380 FADEC, provided by Price Induction, is dis-

played in Figure 37. The model contains three top-level subsystems. The “Pilote &

Conditions exterieurs” subsystem computes the high and low-pressure turbine speed

set-points NHc and NLc. The set-points are functions of the throttle input PLA and

other factors such as the temperature and pressure of the turbine.
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Figure 37: Simulink model of the Price Induction DGEN 380 controller

The ”REGULATION” subsystem from Figure 37 contains the engine controller.

The controller is designed using a gain scheduling technique. In gain-scheduling, the

model of the plant is linearized about points within a range of operating conditions.

For the example engine controller, the varying condition or the scheduling parameter

is the high-pressure turbine spool speed NH measured as a percentage of a reference

maximum spool rate per minute (rpm). The controller gains are designed for each of

the linearized system and typically arranged in a look-up table. During runtime, the

gains are computed by interpolating on the look-up table.

The subsystem “DGEN 380” is a Matlab model of the DGEN 380 engine. It is not

part of the input model to the autocoder since the property of interest is open-loop

stability. The original Simulink model from Price Induction contains Matlab functions

and compound blocks such as the transfer function block, the look-up table block,

and the saturation function block. None of these functions or blocks are accepted

by the prototype autocoder. The first step in the credible autocoding of the engine
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controller is to pre-process the model by rewriting any blocks not accepted by the

prototype with blocks that are. The pre-processing was done manually as there are

no automatic tools that can perform this action.

6.3.1 Stability Analysis

The result of the open-loop stability analysis of the controller subsystem in Figure 38 is

given in this subsection. The controller subsystem is comprised of two PID controllers

Figure 38: Controller subsystem

and a “Butee” subsystem arranged in a feedback loop. The Butee subsystem is a

safety limiter on the output from the PID controllers. The reference inputs to the

controller are the high and low pressure turbine spool speed commands NHc and

NLc. The sensor inputs to the controller are the high and low-pressure turbine spool

speeds NH and NL. In each of the PID subsystems, there are anti-windups for the

integrators. For example, the ”PID NL” control subsystem in Figure 39 has two

anti-windup subsystems. The output u ∈ R from the “PID” subsystem in Figure 38

is the input to the Butee subsystem. The Butee has two modes of operations. If the
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Figure 39: Inside the “PID NL” subsystem block of the controller subsystem

simple mode is switched on, then the Butee behaves like a saturation operator with a

range of [0.07, 0.098]. In the complex mode, the Butee employs a min/max switching

strategy typically used in engine controllers to prevent the violation of performance

limits. In this analysis, only the simple mode is considered. This is because even in

the complex mode, the output from the Butee is saturated by the same saturation

operator executed in the simple mode. The output û from the Butee subsystem is fed

back to both the PID subsystem and the PID NL subsystem. We can assume that û

is bounded since it is an output of a saturation operator.

The “Gains” subsystem block takes as input the scheduling parameter NH and

returns the gains used by the PID controllers. The controller gains are interpolated

using 4 polynomial functions pn, n = 1, . . . , 4 of degree 6 that map high-pressure

turbine spool speed NH to the PID gains Kp, Ki, Kd, and Td. The coefficients of
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the polynomials are provided by Price Induction. Another set of gains Kp,NL, Ki,NL,

Kd,NL, and Td,NL are computed from the PID gains using a constant scaling factor.

The PID subsystem only use the PID gains while the PID NL subsystem use both

sets of gains.

There are total of 11 discrete-time integrators in the model, which makes the

dimension of the state-space representation 11. Let yd =

[
NHc NLc

]T

and y =[
NH NL

]T

. Let x ∈ Rn, ŷ = y−yd, and ȳ =

[
ŷT û

]T

. The controller subsystem in

Figure 38 can be expressed as the discrete-time linear parameter varying state-space

system

x+ = A(NH)x+B(NH)ȳ,

u = C(NH)x+D(NH)ŷ,

(91)

where

A (NH) ∈ R11×11, B (NH) ∈ R11×3, C (NH) ∈ R1×11, D (NH) ∈ R1×2 (92)

are matrix rational polynomial functions of NH. The parameter varying matrices

in (92) are obtained through a manual analysis of the controller subsystem. First

the matrices are expressed as functions of the gain interpolation polynomials pi, i =

1, . . . , 4 and then as functions of the scheduling parameter NH.

Proposition 6.3.1 Consider the open-loop system in (91) and an operating range

NH ∈ [NHmin, NHmax]. Assume that ‖ȳ‖ ≤ 1. Let A =
[
A,A

]
, where A(i, j) ≤

(A(NH))(i, j) ≤ A(i, j) for all NH ∈ [NHmin, NHmax]. Let B =
[
A,A

]
, where

B(i, j) ≤ (B(NH))(i, j) ≤ B(i, j) for all NH ∈ [NHmin, NHmax]. If there exist
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P � 0, α > 0, such thatATPA− P + αP ATPB

BTPA BTPB− αI

 ≺ 0, (93)

then the set p(P, 1)(x) is an ellipsoid invariant for (91).

Of the 154 total possible entries in the matrix

[
A B

]
, 31 of them are parameter

varying. The rest are either constant or zero. Computing the existence of P � 0 such

that the linear matrix inequality in (93) holds requires computing a P for 231 corner

cases. Solving a feasibility problem with 231 linear matrix inequality constraints is not

computationally practical. The problem can be relaxed, as done in [10], to solving

a feasibility problem with 32 linear matrix inequality constraints. The relaxation

is necessarily conservative [10], with a precise measure of the conservatism by the

analytic formula in [58].

The range of operating conditions for the engine is from idle (NH = 75) to

the maximum thrust (NH = 106). In the open-loop case, a single ellipsoid invariant

P (P, 1)(x) that holds for the entire range of operations is not feasible. For the credible

autocoding of this example, a weaker property than stability is showcased. Instead of

computing a P such that (93) holds, we look for a common P such that the ellipsoidal

set p(P, 1)(x) is an invariant for

x+ = Ai +Biȳ

u = Cix+Diŷ,

(94)

where Ai = A(NHi), Bi = B(NHi), Ci = C(NHi), Di = D(NHi) and NHi ∈

[85, 106] , i = 0, . . .. The range NH = 85 to NH = 106 includes operating conditions
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normal cruise, maximum recommended cruise (NH = 95.7), maximum continuous

climb (NH = 97.7), and take-off power (NH = 101). Figure 40 shows some of the

parameter varying entries of the system matrices and the sample points NHi used in

the ensuing analysis.

Figure 40: Examples of the parameter varying entries of the engine controller system

Proposition 6.3.2 Assume that ‖ȳ‖ ≤ 1. If there exists a positive-definite matrix

P and a scalar ξ > 0 that satisfiesA
T

iPAi − P + ξP AT

iPB

BT

i PAi BT

i PBi − ξI

 ≺ 0, (95)

then p(P, 1)(x) is an invariant set with respect to (94).

Remark 10 The property given by Proposition 6.3.2 is weaker than bounded-input
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bounded-output stability. However it is still useful in the context of credible autocod-

ing since the idea is to be able to express a high-level property of the system and then

prove it on the code. In this case, the property is an inductive loop invariant for the

controller program at a sample of different operating conditions.

If the engine controller is re-designed in such way that the controller matrices

{A(NH), B(NH), C(NH), D(NH)} are computed by interpolating on the matri-

ces {Ai, Bi, Ci, Di}, then (95) implies a much stronger property of bounded-input

bounded-output stability. In this experimental test, however we did not redesign the

controller since the test is about demonstrating the credible autocoding process on

the controller. It is not about finding a modified controller that is best suited for

credible autocoding. For the FADEC example, solving (95) for 22 equally distributed

points in [85, 106] results in the ellipsoidal invariant p(P, 1)(x) where

P = 1× 10−6

0.6688 −0.0274 0.0004 −0.0076 0.0008 −0.0000 −0.0000 −0.0000 −0.3625 −0.0002 −0.0005

−0.0274 0.0388 0.0001 0.0095 0.0007 0.0000 −0.0000 −0.0001 −0.0052 −0.0000 −0.0007

0.0004 0.0001 0.0000 0.0000 0.0000 −0.0000 −0.0000 0.0000 −0.0002 −0.0000 −0.0000

−0.0076 0.0095 0.0000 0.0089 0.0007 0.0000 −0.0000 0.0001 −0.0008 −0.0000 −0.0005

0.0008 0.0007 0.0000 0.0007 0.0078 0.0000 −0.0000 −0.0000 −0.0010 −0.0000 −0.0025

−0.0000 0.0000 −0.0000 0.0000 0.0000 0.0115 −0.0000 −0.0000 −0.0000 0.0000 −0.0000

−0.0000 −0.0000 −0.0000 −0.0000 −0.0000 −0.0000 0.0115 0.0000 0.0000 0.0000 0.0000

−0.0000 −0.0001 0.0000 0.0001 −0.0000 −0.0000 0.0000 0.0118 −0.0000 −0.0000 0.0000

−0.3625 −0.0052 −0.0002 −0.0008 −0.0010 −0.0000 0.0000 −0.0000 0.6511 0.0004 0.0015

−0.0002 −0.0000 −0.0000 −0.0000 −0.0000 0.0000 0.0000 −0.0000 0.0004 0.0000 0.0000

−0.0005 −0.0007 −0.0000 −0.0005 −0.0025 −0.0000 0.0000 0.0000 0.0015 0.0000 0.0078



.

(96)
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6.3.2 Annotating the Simulink Model

The annotated FADEC Simulink model, which is the input model to the credible au-

tocoding prototype, is displayed in Figure 41. There are three annotation blocks in the

model, indicated by the three vamux blocks. The pair of quadratic blocks stability

and bounded input, which combined, express the invariant property of the engine

controller given by Proposition 6.3.2. The block stability expresses the inductive

ellipsoid invariant p(P, 1)(x), in which P is from (96). The block bounded input

expresses the assumption of a bound on ȳ. The third annotation block sampled nh,

which is a constant block, expresses the set of operating conditions i.e. values of NH

in which the analysis result in (96) holds.

Figure 41: Input FADEC Model to Gene-Auto+
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1 /*@

2 .

3 .

4 requires in_ellipsoidQ(QMat_0,vect_of_11_scalar(

↪→ _state_->delay_aw0_memory,

↪→ _state_->delay_aw1_memory,_state_->delay_E0_memory,

↪→ _state_->delay_E1_memory,_state_->delay_D0_memory,

↪→ _state_->delay_D1_memory,_state_->delay_x1_memory,

↪→ _state_->delay_x2_memory,_state_->delay_aw2_memory,

↪→ _state_->delay_E2_memory,_state_->delay_D2_memory));

5 requires \valid(_io_) && \valid(_state_);

6 ensures in_ellipsoidQ(QMat_1, vect_of_11_scalar(

↪→ _state_->delay_aw0_memory,

↪→ _state_->delay_aw1_memory,_state_->delay_E0_memory,

↪→ _state_->delay_E1_memory,_state_->delay_D0_memory,

↪→ _state_->delay_D1_memory,_state_->delay_x1_memory,

↪→ _state_->delay_x2_memory,_state_->delay_aw2_memory,

↪→ _state_->delay_E2_memory,_state_->delay_D2_memory));

7 */

8 void pla_compute(t_pla_io *_io_, t_pla_state *_state_) {

9 REAL NL;

10 REAL NH;

11 REAL P3_KPa_;

12 REAL PLA;

13 .

14 .

15 .

16 }

Figure 42: The function contract expressing the ellipsoid invariant on the update
function

6.4 Output Annotated Code

The autocoding generated two functions. The first one is the controller initialization

function. The second one is the controller update function. Figure 42 shows a func-

tion contract on the update function. This function contract express the invariant

ellipsoid set computed from the open-loop stability analysis. The function contract is

duplicated for each behaviors of the code. There are a total of 22 behaviors generated

for this example, which results in 22 proofs on the code. Each behavior corresponds to

a sampled operating point (see Figure 43). The annotated code took about 40 minutes
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1 /*@

2 behavior sampled_nh01:

3 requires _io_->NH==85 .0;

4 .

5 .

6 behavior sampled_nh02:

7 requires _io_->NH==86 .0;

8 .

9 .

10 behavior sampled_nh22:

11 requires _io_->NH==106 .0;

12 .

13 .

14 */

15 .

16 .

17 .

18 void pla_compute(t_pla_io *_io_, t_pla_state *_state_) {

19 REAL NL;

20 REAL NH;

21 REAL P3_KPa_;

22 REAL PLA;

23 .

24 .

Figure 43: Multiple behaviors of the controller update function

for the autocoding prototype to produce and the output lines of ACSL annotations

exceeds 150, 000.

6.4.1 Verification of the Annotated Code

The linear algebra libraries in PVS, used to check the correctness of the code anno-

tations generated for the Lead/Lag compensator example in Chapter 4, is sufficiently

rich to also check the proof annotations generated for the engine example. The

automated proof-checking of this example only requires the two custom strategies

AffineEllipsoid and S-Procedure.
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6.5 FADEC in the loop Simulation

This section presents the simulation result of the verified auto-generated code, shown

in the previous section, on the engine test bench running in close-loop with the real

FADEC.

Figure 44 shows a snapshot of the WESTT command screen for the case where

the original Price Induction binary is executing on the DGEN 380 turbofan engine

virtual test bench. The simulation plots displayed in the left half of the snapshot

illustrate the evolution of both engine spool speeds that closely follow their reference

signals, and also the engine fuel and oil pressure time histories.

Figure 44: Snapshot of the DGEN 380 turbofan engine virtual test bench running
the original code
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Figure 45 shows a snapshot of the WESTT command screen for the case where

the annotated code generated by Gene-Auto+ is running on the DGEN 380 turbofan

engine virtual test bench. The simulation outputs in the left half of the snapshot

confirm that the annotated code can run the FADEC-in-loop test bench just like the

C code provided by Price Induction.

Figure 45: Snapshot of the DGEN 380 turbofan engine virtual test bench running on
annotated code produced by Gene-Auto+

The right halves of the snapshots display the visualizations of the engine-related

avionics as well as real-time measurements of pressures (Pamb, P2, and P3), tempera-

tures (Tamb, and EGT ), speeds (NH, and NL), thrust, fuel pump rating, oil pump

rating, fuel consumption, fuel pressure, and oil pressure.
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Chapter VII

CONCLUSION AND FUTURE DIRECTIONS

This research concludes with a proof of concept prototype that is capable of producing

control software documented with verifiable properties of open-loop and closed-loop

stability. The prototype has also been further extended to handle observer-based

fault-detection systems as well as gain-scheduled control systems. Algorithms have

been proposed and partially implemented in the prototype to account for floating-

point errors. Finally, the credible autocoding approach was validated on a FADEC

model provided by the industry.

There are several new directions of future research. The first direction is an exten-

sion of the framework to the domain of real-time, convex optimization-based control

systems, about which we have an initial work [98]. For convex optimization algo-

rithms, such as a primal-dual interior-point algorithm, the invariant is provided by a

monotonically decreasing duality gap function. While this property exists for many

interior-point algorithms, there are two remaining challenges in credible autocoding

of convex optimization algorithms. First, the floating-point errors in interior-point al-

gorithms are more difficult to analyze. Unlike in control algorithms, an interior-point

algorithm computes a Hessian which requires inverting a matrix. The existing litera-

ture [95, 104, 103] only provides estimates of the floating-point error using the order
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notation. Another difficulty lies in the fact that for semi-definite programming algo-

rithms, the lack of strict complementarity makes precise floating-point error analysis

problematic [100]. Second, the predicted convergence rates of interior-point algo-

rithms are often conservative compared to their actual performances in practice. For

this reason, another challenge is to find alternative proofs of convergence for interior-

point methods, perhaps using a Lyapunov-based approach, that might yield less con-

servative predictions on their performances. This idea is inspired by a recent work of

Lessard and Packard, where the IQC framework was used to compute Lyapunov-type

certificates of performances for gradient-based optimization algorithms [52].

The quadratic invariant described in this thesis generalizes to the sum of squares

(SOS) polynomial type invariant. Hence another direction of research is to extend

credible autocoding to cover the much larger class of polynomial systems by automat-

ing the translation and verification of SOS type invariants. Along the same line of

research, credible autocoding could potentially extend to: robustness properties such

as vector margin; other useful measure of performance such as rise times and settling

times; the properties of fault-detection systems other than the observer-based ones;

and the properties of probabilistic systems. Furthermore, the dynamics of real-time

scheduling and the effects of time delays in the system need to be eventually explored

and accounted for in credible autocoding.

The current prototype only served as a proof of concept hence it was built in an ad

hoc manner. For the purpose of qualification and portability, the author suggests fur-

ther research into generalizing the library of control semantics and their translations

using a model-driven engineering approach.
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Prevosto, V., “Acsl: Ansi/iso c specification language. version 1.7..” http:

//frama-c.com/download/acsl.pdf.

[8] Baudin, P., Filliatre, J.-C., Marche, C., Monate, B., Moy, Y.,
and Prevosto, V., ACSL: ANSI/ISO C Specification Language, 2008.
http://frama-c.cea.fr/acsl.html.

[9] Bekenstein, J. D., “Black holes and entropy,” Physical Review D, vol. 7,
no. 8, p. 2333, 1973.

[10] Ben-Tal, A. and Nemirovski, A., “On tractable approximations of uncer-
tain linear matrix inequalities affected by interval uncertainty,” SIAM Journal
on Optimization, vol. 12, no. 3, pp. 811–833, 2002.

130

http://block-library.enseeiht.fr/html/Progress/geneautoAnnot.html
http://block-library.enseeiht.fr/html/Progress/geneautoAnnot.html
http://frama-c.com/download/acsl.pdf
http://frama-c.com/download/acsl.pdf


[11] Berry, G., Gonthier, G., Gonthier, A. B. G., and Laltte, P. S., “The
esterel synchronous programming language: Design, semantics, implementa-
tion,” 1992.

[12] Bordin, M., Naks, T., Toom, A., and Pantel, M., “Compilation of het-
erogeneous models: Motivations and challenges,” in ERTS, (http://www.sia.fr),
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