
AGENT AND MODEL-BASED SIMULATION FRAMEWORK FOR
DEEP SPACE NAVIGATION DESIGN AND ANALYSIS

A Thesis
Presented to

The Academic Faculty

by

Evan Anzalone

In Partial Fulfillment
of the Requirements for the Degree

Doctor of Philosophy in the
School of Aerospace Engineering

Georgia Institute of Technology
August 2013

Copyright c© 2013 by Evan Anzalone

AGENT AND MODEL-BASED SIMULATION FRAMEWORK FOR
DEEP SPACE NAVIGATION DESIGN AND ANALYSIS

Approved by:

Prof. Dimitri Mavris, Advisor
School of Aerospace Engineering
Georgia Institute of Technology

Dr. Carrie Olsen
Marshall Space Flight Center
National Aeronautics and Space Adminis-
tration

Dr. Jason Chuang
Marshall Space Flight Center
National Aeronautics and Space Adminis-
tration

Dr. Russell Peak
School of Aerospace Engineering
Georgia Institute of Technology

Prof. David Spencer
School of Aerospace Engineering
Georgia Institute of Technology

Date Approved: 17 May 2013

To Tarra

iii

ACKNOWLEDGEMENTS

This work was made possible by the financial support of NASA External Training Requests

and the Air, Space, and Missile Defense Association 2011 Mayor Loretta Spencer Schol-

arship. Many individuals contributed to help and support me while working through this

dissertation and I am grateful for all of them.

First of all, I would like to express my gratitude and appreciation for the members of my

committee, Profs. Mavris, Spencer, and Peak, and Drs. Olsen and Chuang. I appreciate the

time spent discussing this work with me, reviewing the research, providing your comments,

and guiding me through this process. I have a great amount of respect for each of you and

am extremely grateful for the time and energy you have invested in me.

I would like to specifically acknowledge Prof. Mavris for his years of support and advis-

ing, from offering me the opportunity to perform research in the Aerospace Systems Design

Laboratory to supporting me in my pursuit of a PhD and serving as my advisor as I entered

the post-graduate workforce in Huntsville. I appreciate the emails, phone calls, and meet-

ings we had as this work was coming to a close. My engineering skills and design approach

are strongly rooted in what I learned under your tutelage.

I must also acknowledge Dr. Olsen for her continued support of my PhD as I hired into

her branch at MSFC. Thank you for pushing me forward, providing encouragement, and

helping me to get my ideas out. I am also grateful to Dr. Olsen for making the drive to

Atlanta and serving on my committee.

I also owe gratitude to Dr. Chuang. On my first day at MSFC, Dr. Chuang had already

provided me with a great paper on strapdown inertial navigation. That paper and all of the

work we have done together at MSFC have continued to feed my interest and fascination

with space navigation approaches. I also am grateful to him for making the journey to

Atlanta twice, advising me on the research at Huntsville, providing an outlet to brainstorm

navigation with, and serving on my proposal and defense committees.

iv

I also must acknowledge Prof. Spencer for serving on my proposal and defense commit-

tee. I am grateful to have your excellent feedback from your exceptional experience in deep

space mission analysis and design. Your feedback helped steer this thesis into the work that

it is, providing support for the focused analysis and presentation of the results.

I also must recognize Dr. Peak for his help and support through emails, reviews of my

models, and also for serving on my defense committee. I am grateful for your time and

recommendations in support of my modeling implementation and analysis.

Also, a great deal of thanks is due to the administrative staff at ASDL, specifically Ms.

Loretta and Allison for helping to get all of the paperwork processed. Your assistance was

invaluable and I appreciate your time and help.

This thesis was also supported by multiple reviews by Donna Hamby, who helped read

over the document and provide editorial support. Thank you for helping to catch all of the

comma splices and grammatical errors.

I also must acknowledge my gratitude and appreciation for my friends and classmates at

Georgia Tech. From that first year of long nights in the basement of ESM, to the qualifier

study nights in the house on Mount Royal, to the continued visits. You have been with me

through this journey from my early classes, through qualifiers, and on to my thesis defense.

All of the long days and long nights we worked and played made this journey incredible,

and also created everlasting memories.

I also owe a large debt of gratitude to my parents, for always supporting me in the

pursuit of my dreams, and trusting me to chart my own course. You have always supported

me and given me unending encouragement and understanding. Thank you for always being

there for me, and all the trips and moves over the years.

Lastly, I owe a special debt of gratitude to my wife, Tarra. You have supported me,

encouraged me, and been at my side since we met that wonderful summer of 2009. Thank

you for your understanding, patience, support, and love on the long nights and weekends I

worked on this dissertation and followed my dreams.

v

TABLE OF CONTENTS

DEDICATION . iii

ACKNOWLEDGEMENTS . iv

LIST OF TABLES . ix

LIST OF FIGURES . xi

LIST OF SYMBOLS OR ABBREVIATIONS xv

SUMMARY . xviii

I INTRODUCTION . 1

1.1 Overview . 1

1.2 Need for Navigation in Space-Based Applications 4

1.3 Complexity in Space Navigation . 6

1.4 State of the Art Space Navigation Systems 13

1.5 Current Research . 21

1.6 Comparison of Current Methods . 29

1.7 Summary of Current Methods . 33

II NETWORK-BASED NAVIGATION (NNAV) 35

2.1 Confluence of Navigation and Communication 35

2.2 Communication Architecture Research . 36

2.3 Possible Paths Forward . 42

2.4 Proposed Navigation Approach . 44

2.5 Integration with Current Protocols . 47

2.6 Benefits of NNAV . 48

2.7 Expected Navigation Capabilities . 49

2.8 Research Question Development . 51

2.9 Summary of Navigation Concept . 53

III NAVIGATION ANALYSIS APPROACH 56

3.1 Need for Navigation Analysis . 56

3.2 Required Functionality of Framework Implementation 58

vi

3.3 Current Methods of Navigation System Analysis 63

3.4 Generic Framework Approaches . 65

3.5 Current Tools and Implementations . 67

3.6 Gaps of Current Tools to Required Functionality 68

3.7 Framework for Navigation System Simulation and Analysis 69

3.8 Proposed Capabilities of Navigation Framework 80

3.9 Research Focus . 83

IV SPACE NAVIGATION ANALYTICAL BACKGROUND 86

4.1 Analysis Frame . 86

4.2 State Propagation . 87

4.3 Dynamic Clock Modeling . 88

4.4 State Estimation . 89

4.5 Measurement Models . 92

4.6 Link Analysis . 95

4.7 Packet Analysis Models . 96

V SPACE NAVIGATION ANALYSIS AND PERFORMANCE EVALUA-
TION FRAMEWORK (SNAPE) CONCEPTS AND IMPLEMENTA-
TION . 100

5.1 Usage of Model-Based Systems Engineering and SysML 100

5.2 Modeling of Generic Space Navigation Systems 103

5.3 SNAPE Architecture Design . 118

5.4 SNAPE Implementation . 127

5.5 Simulation Integration and Operation of SNAPE 139

5.6 Discussion of Implementation . 150

5.7 Summary of Implemented SNAPE Capabilities 154

VI VERIFICATION OF SNAPE IMPLEMENTATION 161

6.1 Overview of Test Cases . 161

6.2 General Assumptions and Analysis Approach 162

6.3 Framework Functional Verification . 164

6.4 Framework Implementation Validation . 171

6.5 Measurement Optimization . 199

vii

6.6 Summary of Verification and Validation . 207

VII EVALUATION OF NETWORK-BASED NAVIGATION (NNAV) . . 210

7.1 Analysis Scenario Description . 210

7.2 Implementation and Vehicle Definitions . 214

7.3 Packet and Measurement Content . 216

7.4 Simulation Variables of Interest . 218

7.5 Sensitivity to Packet Content . 219

7.6 Packet Measurement Performance . 220

7.7 Packet Timing Optimization . 223

7.8 Comparison to Current Methods . 225

7.9 NNAV Limitations . 234

7.10 Summary of Demonstrated Performance 234

VIIICONCLUSIONS . 237

8.1 NNAV Concept of Operations . 238

8.2 Requirements Development of NNAV . 240

8.3 Analysis and Modeling of SNAPE Framework 241

8.4 Implementation of SNAPE Simulation Environment 242

8.5 Verification of SNAPE Implementation . 246

8.6 Evaluation of NNAV . 248

8.7 Hypotheses Overview . 252

8.8 Summary of Contributions . 255

8.9 Future Work . 259

8.10 Closing Comments . 262

REFERENCES . 264

viii

LIST OF TABLES

1 Structure of Thesis . 3

2 Deep Space Network Operating Frequencies 17

3 Overview of Navigation Methods . 30

4 CCSDS Space Packet Structure . 48

5 CCSDS Space Packet Primary Header . 48

6 Requirements to Address (RQ1) . 61

7 Requirements to Address (RQ2) . 61

8 Requirements to Address (RQ3) . 62

9 Requirements to Address (RQ4) . 63

10 Requirements to Address (RQ5) . 63

11 Software Package Capabilities . 70

12 Implementation of SNAPE Prototypes . 155

13 Implementation of Framework Requirements 158

14 Comparison to Framework Implementation 160

15 Initial State Error Analysis Space . 172

16 Position Measurement Error Analysis Space 176

17 Timing Behavior Input Variables . 181

18 Timing Measurement Analysis Space . 183

19 Position Measurement Analysis Space . 189

20 Measurement Content Analysis Inputs . 194

21 Measurement Delay Analysis Space . 197

22 Position Measurement Optimizer Inputs . 200

23 Position Measurement Optimizer Outputs 200

24 Optimizer Results Comparison . 204

25 SNAPE Implementation Functional Verification Cases 208

26 SNAPE Framework Validation Cases . 209

27 NNAV Evaluation Cases . 236

28 Implementation of SNAPE Framework Analysis Requirements 247

29 Summary of SNAPE Validation Cases . 249

ix

30 Summary of NNAV Evaluation Cases . 251

31 Addressing of Hypotheses within Research 253

x

LIST OF FIGURES

1 CRAIVE Structure of Research . 2

2 New Horizons Trajectory . 9

3 Light Travel Time to Earth . 9

4 Cassini Spacecraft (NASA/JPL) . 11

5 Juno Spacecraft with One Solar Array Extended (NASA/JPL-Caltech/KSC) 12

6 Orbit Determination via Lunar Observation (NASA) 15

7 Deep Space Network Antenna (NASA/JPL) 16

8 Deep Space 1 Image of Comet Borrelly (NASA/JPL) 25

9 XNAV Positioning Concept (NASA) . 28

10 MRO Data Return (NASA/JPL-CalTech) 38

11 SCAWG Space Communication Architecture (NASA) 39

12 Interplanetary Internet Concept Architecture 40

13 NNAV Concept of Operations . 45

14 Typical Algorithm Flow Diagram . 72

15 Navigation Systems Requirements . 104

16 Navigation Measurement Processing Use Cases 106

17 Navigation Packet Processing Use Cases . 107

18 Navigation System External Packet Processing 109

19 Navigation Measurement Processing . 110

20 Navigation System Operational Modes . 112

21 Navigation System Structure . 113

22 Navigation System Internal Structure . 115

23 Navigation System Requirement Satisfaction 117

24 SNAPE Framework Requirements . 119

25 Relationship Between Navigation System and SNAPE Framework Require-
ments . 120

26 SNAPE Framework Use Cases . 121

27 SNAPE Run Analysis Algorithm . 122

28 SNAPE Framework Design Model . 124

xi

29 SNAPE Analysis Scenario . 126

30 SNAPE Software Design . 129

31 SNAPE Software Requirements Satisfaction 130

32 Simulation Coordinator Functional Requirements 131

33 Packet Processing Modes . 137

34 Data Input Interface . 140

35 Agent Definition Interface . 141

36 Data Collection Interface . 142

37 Design Variable Interface . 143

38 Simulation Interface . 145

39 Optimizer Interface . 147

40 Data Processing Interface . 149

41 STK Propagator Performance . 165

42 Framework Propagator Performance . 167

43 Position Estimation Errors for ODTBX . 168

44 Velocity Estimation Errors for ODTBX . 169

45 Position and Velocity Normalized Estimation Errors for Framework 170

46 Effect of Initial Velocity Estimate Errors on Integrated Error 174

47 Effect of Time Between Measurements on Integrated Error 175

48 Effect of Position Measurement Error on Integrated Error 178

49 Effect of Time Between Measurements on Integrated Error 179

50 Comparison of Estimation Error for Fixed Dt (top) and Variable Dt (bottom)180

51 Dynamic Clock Behavior without Measurements 182

52 Dynamic Clock Error with Measurements 182

53 Comparison of Integrated Clock Error for Variable h0 (top) and h−2 (bottom)185

54 Comparison of Integrated Position Error for Variable h0 (top) and h−2 (bottom)186

55 Effect of Time Between Clock Measurements on Integrated Position (top)
and Velocity Errors (bottom) . 187

56 Dynamic Clock Error . 188

57 Comparison of Integrated Errors Versus Position Measurement Error 190

58 Comparison of Integrated Errors Versus Time Between Measurements . . . 191

xii

59 Position Error . 192

60 Comparison of Final Errors Versus Measurement Error 193

61 Position Error as Function of Measurement Content 195

62 Detailed Comparison of State versus Position Updates 196

63 Correlation Coefficient Values . 198

64 Probability Coefficient Values . 198

65 Measurement Position Error over Optimization 201

66 Time between Measurements over Optimization 202

67 Time between Batches over Optimization 202

68 Number in a Batch over Optimization . 202

69 Position Error in Last Generation . 203

70 Velocity Error in Last Generation . 203

71 Clock Error in Last Generation . 204

72 Dynamics of Error State with Clock Measurement 206

73 Dynamics of Clock Error State with Time Measurement 207

74 MSL Cruise Design Trajectory . 213

75 MSL Cruise Configuration (NASA/JPL) . 214

76 MRO Vehicle Model (NASA/JPL) . 215

77 (N1)Position Error for Packet with Full Content 219

78 (N2)Position Error for Packet with only Timing 220

79 Dispersed Simulation Errors . 221

80 Effect of Measurement Errors on Final Position Error 222

81 Final State Errors vs. Measurement Errors 223

82 Integrated State Errors vs. Measurement Errors 223

83 Input Variables over Optimization . 224

84 Final Errors over Optimization . 224

85 Integrated Errors over Optimization . 225

86 Position Error with Weekly State Updates 227

87 Velocity Error with Weekly State Updates 228

88 Position Error with Packet Updates . 230

89 Velocity Error with Packet Updates . 230

xiii

90 Position Estimation Performance after 60 days with and without Navigation
Packets . 232

91 Integrated Position Error after 60 days with and without Navigation Packets 232

92 Clock Estimation Performance after 60 days with and without Navigation
Packets . 233

93 CRAIVE Research Approach and Structure 237

94 NNAV Concept of Operations . 238

95 NNAV Capability Hypotheses . 239

96 SNAPE Framework Hypotheses . 240

97 Linking Analysis Process to NNAV Hypotheses 254

98 Navigation System Linkage to Framework Requirements 256

xiv

LIST OF SYMBOLS OR ABBREVIATIONS

ABM Agent-Based Modeling.

b Clock Bias.

c Speed of Light.

CB Central Body.

CCSDS Consultative Committee for Space Data Systems.

C&DH Command and Data Handling.

COBE Cosmic Background Observer.

CRAIVE Concept, Analysis, Implementation, Verification, and Evalu-
ation.

d Clock Drift.

DEAP Distributed Evolutionary Algorithms in Python.

DSN Deep Space Network.

DTN Delay and Disruption-Tolerant Networking.

ET Ephemeris Time.

F Applied Force.

f Filter Dynamics Model.

GNSS Global Navigation Satellite System.

GPS Global Positioning System.

Gr Receiver Gain.

Gt Transmission Gain.

(H) Hypothesis.

h Measurement Model.

H Measurement Observation Model.

h−1 Flicker Frequency Noise.

h−2 Random Walk Frequency Noise.

h0 White Frequency Noise.

h1 Flicker Phase Noise.

h2 White Phase Noise.

xv

HEAO High Energy Astrophysics Observer.

HPOP High Performance Orbit Propagator.

INCOSE International Council On Systems Engineering.

IPN Interplanetary Internet.

K Kalman Gain.

kBoltzman Boltzman Constant.

λ Wavelength.

LEO Low Earth Orbit.

Lr Receiver Line Losses.

Lspace Space Transmission Losses.

Lt Transmission Line Losses.

LTP Licklider Transmission Protocol.

MBSE Model-Based Systems Engineering.

MER Mars Exploration Rover.

MGA Medium Gain Antenna.

MRO Mars Reconnaissance Orbiter.

MSL Mars Science Laboratory.

µ Gravitational Constant.

N Noise Power.

NNAV Network-Based Navigation.

N(x,y) Random Noise Variable with x Mean and y Standard Devia-
tion.

OMG Object Management Group.

P Covariance Matrix.

PLGA Parachute Low Gain Antenna.

PReceived Power Received.

Pt Power Transmitted.

Q Process Noise.

R Measurement Error Matrix.

r Position of Agent.

xvi

(RQ) Research Question.

S Spectral Density of Clock Noise.

s Transmission Distance.

σr Error in Position.

σv Error in Velocity.

σ2y Allan Variance.

SNAPE Space Navigation Analysis and Performance Evaluation.

SNR Signal to Noise Ratio.

SysML Systems Modeling Language.

τ Time Period of Clock Averaging.

TDB Barycentric Dynamical Time.

TDRS Tracking Data and Relay Satellite.

x State Vector.

Tn Noise Temperature.

TONS TDRS Onboard Navigation System.

TWTA Traveling Wave Tube Amplifier.

UML Unified Modeling Language.

v Dynamic Noise.

v Velocity of Agent.

VLBI Very Long Baseline Interferometry.

w Random Noise in Model.

XNAV X-Ray Based Navigation.

y Measurement.

xvii

SUMMARY

As the number of spacecraft in simultaneous operation continues to grow, there is an

increased dependency on ground-based navigation support. The current baseline system for

deep space navigation utilizes Earth-based radiometric tracking, which requires long dura-

tion, often global, observations to perform orbit determination and generate a state update.

The age, complexity, and high utilization of the assets that make up the Deep Space Net-

work (DSN) pose a risk to spacecraft navigation performance. With increasingly complex

mission operations, such as automated asteroid rendezvous or pinpoint planetary landing,

the need for high accuracy and autonomous navigation capability is further reinforced.

The Network-Based Navigation (NNAV) method developed in this research takes ad-

vantage of the growing inter-spacecraft communication network infrastructure to allow for

autonomous state measurement. By embedding navigation headers into the data pack-

ets transmitted between nodes in the communication network, it is possible to provide an

additional source of navigation capability. Simulation results indicate that as NNAV is

implemented across the deep space network, the state estimation capability continues to

improve, providing an embedded navigation network.

To analyze the capabilities of NNAV, an analysis and simulation framework is designed

that integrates navigation and communication analysis. Model-Based Systems Engineering

(MBSE) and Agent-Based Modeling (ABM) techniques are utilized to foster a modular,

expandable, and robust framework. This research has developed the Space Navigation

Analysis and Performance Evaluation (SNAPE) framework. This framework allows for

design, analysis, and optimization of deep space navigation and communication architec-

tures. SNAPE captures high-level performance requirements and bridges them to specific

functional requirements of the analytical implementation. The SNAPE framework is imple-

mented in a representative prototype environment using the Python language and verified

using industry standard packages.

xviii

The capability of SNAPE is validated through a series of example test cases. These

analyses focus on the performance of specific state measurements to state estimation per-

formance, and demonstrate the core analytic functionality of the framework. Specific cases

analyze the effects of initial error and measurement uncertainty on state estimation per-

formance. The timing and frequency of state measurements are also investigated to show

the need for frequent state measurements to minimize navigation errors. The dependence

of navigation accuracy on timing stability and accuracy is also demonstrated. These test

cases capture the functionality of the tool as well as validate its performance.

The SNAPE framework is utilized to capture and analyze NNAV, both conceptually

and analytically. Multiple evaluation cases are presented that focus on the Mars Science

Laboratory’s (MSL) Martian transfer mission phase. These evaluation cases validate NNAV

and provide concrete evidence of its operational capability for this particular application.

Improvement to onboard state estimation performance and reduced reliance on Earth-based

assets is demonstrated through simulation of the MSL spacecraft utilizing NNAV processes

and embedded packets within a limited network containing DSN and MRO. From the

demonstrated state estimation performance, NNAV is shown to be a capable and viable

method of deep space navigation. Through its implementation as a state augmentation

method, the concept integrates with traditional measurements and reduces the dependence

on Earth-based updates. Future development of this concept focuses on a growing network

of assets and spacecraft, which allows for improved operational flexibility and accuracy in

spacecraft state estimation capability and a growing solar system-wide navigation network.

xix

CHAPTER I

INTRODUCTION

From the earliest nomadic tribe to the latest world traveler, the capability of determining

and tracking one’s location has enabled longer and further journeys, from coast to coast

and ground to sky. Knowledge of one’s current position in relation to starting and ending

points allows for the definition of the trajectory required to reach a certain destination.

The guidance and navigation process is defined by knowing where you are and using that

to inform the direction of travel needed to reach your endpoint. These techniques are

used constantly in one’s life and by a multitude of species from the tiniest ant to largest

whale, traveling from breeding grounds to food supplies and back again. This can occur

over ranges of a few meters to thousands of kilometers, from the depths of the oceans to

the vastness of space. The focus of this dissertation is on the continued development of

navigation algorithms and techniques for spacecraft traveling beyond Low Earth Orbit.

1.1 Overview

This research presents a new approach for deep space navigation that takes advantage

of the growing communication infrastructure, specifically utilizing increased spacecraft-to-

spacecraft transmissions. The layout of this thesis is based upon proven Systems Engineer-

ing and design methods [27] [68]. The research approach and organizational structure used is

captured by the acronym CRAIVE, with individual steps focused on capturing the Concept

of Operations, Requirements of the navigation system, Analysis and modeling of the sys-

tem, Implementation of analytical tools, Verification of their operation, and Evaluation of

the proposed concept.

This can be visually displayed by a v-shaped diagram, as given in Figure 1, with refer-

ences to specific chapters which focus on each. The left side of the diagram focuses on the

description and modeling of the navigation system and analysis framework. This captures

the decomposition from the high level concept to the analysis requirements to the modeling

1

ConceptVofV
Operations

RequirementsV
Capture

AnalysisVandV
ModelingVofV

System

EvaluationV
ofVConcept

ImplementationV
ofVFramework

VerificationVofV
ModelingVTools

ChapterV2

ChapterV3

ChapterV4,V5 ChapterV5

ChapterV6

ChapterV7

Figure 1: CRAIVE Structure of Research

of the specific navigation system under study. The right side of this model begins at the

lowest level and provides an implementation of the system models. This modeling and sim-

ulation framework is then utilized to perform verification of its capabilities to demonstrate

that the implemented framework meets the analysis needs. Finally, this verified framework

is used to evaluate the navigation concept and provide numerical analysis of its capabilities.

The specific focus of each chapter is given in Table 1. This chapter discusses the need

and importance of navigation capability to mission performance and success for deep space

and human exploration programs. The Network-based Navigation (NNAV) architectural

foundation and concept are described in Chapter 2. With the concept defined, Chapter 3

develops an approach to modeling of deep space navigation systems and compares it to

other current approaches. The proposed method integrates aspects of Model-Based Systems

Engineering and Agent-Based Modeling to capture the complexities and intricacies of the

navigation systems design space. To provide increased insight into the analysis process,

Chapter 4 describes the analytical background in terms of the underlying modeling and

estimation assumptions.

Chapter 5 documents the development and implementation of a Space Navigation Anal-

ysis and Performance Evaluation (SNAPE) Framework to capture the architecture, design,

2

Table 1: Structure of Thesis
Chapter Focus

1 Introduction to Deep Space Navigation

2 Proposed Network-Based Navigation Concept

3 Analysis Requirements, Methods, and Approach

4 Navigation Analytical Background

5 Implementation of Modeling and Simulation

6 Verification of Analysis Framework

7 Evaluation of Network-Based Navigation

8 Summary of Research, Contributions, Future Work

and capabilities of a deep space navigation system. This chapter documents the develop-

ment of Model-Based Systems Engineering techniques using SysML tools to capture the

analysis framework requirements, processes, and structure, which are derived from the re-

quirements and needs of a generic navigation system. This chapter also demonstrates the

linkage of these developed models to the Python-based software implementation of the mod-

eling and simulation aspects of the SNAPE framework. With the analysis tool developed,

verification test cases utilizing standard tools are described in Chapter 6. These results

capture high-level trends in navigation system design that demonstrate the capabilities of

the simulation framework and its application to system analysis requirements. Additionally,

these tests serves as validation of SNAPE’s functionality.

SNAPE is then executed to analyze the capabilities of and validate NNAV. Chapter 7

documents the test cases for the proposed navigation architecture and presents a series

of analyses to capture the characteristics of NANV using the implemented modeling and

simulation framework. The results of these test cases demonstrate the applicability of NNAV

to deep space navigation, particularly capturing its benefits in terms of robustness to delays

in ground-based tracking and onboard navigation capability, with operation autonomous of

Earth-based ground support. This thesis concludes in Chapter 8 with a summary of the

presented research, its contributions, and forward research directions and future work.

3

1.2 Need for Navigation in Space-Based Applications

Since the first successful insertion of a man-made object into orbit about the Earth, engi-

neers and scientists have continued to develop more complex satellites performing increas-

ingly complex missions. The functionality of space-borne assets has increased dramatically

from the simple beacon transmission of the Sputnik satellite. As the capability of launch

systems and satellite components increase, it is possible to put larger and more complex

hardware into orbit. With each mission and continued advancement of spacecraft technol-

ogy, missions have ventured farther out from Earth to our planetary neighbors, such as

the Messenger mission to Mercury, and distant locales, such as the New Horizons mission

to Pluto and Charon. As the missions and spacecraft have become more complex, the

requirements on spacecraft navigation become more stringent[80]. Advances in navigation

techniques have also proven to be an enabler for new missions[99]. The main drivers for

spacecraft navigation are a function of the spacecraft’s trajectory from orbital entry and

cruise, its onboard hardware capabilities, planetary orbit entry errors and uncertainty, and

scientific observation requirements.

1.2.1 Orbital Correction Maneuvers

Even with advanced celestial dynamics models and navigation measurements, it is not

possible to perfectly predict spacecraft ephemeris (trajectory over time). This is due to the

complexity of the system being modeled, and assumptions used in the modeling of dynamic

effects in deep space. As such, there is inherent error in predicting and propagating a

spacecraft’s trajectory. This is limited due to a range of issues from gravitational model

uncertainty to finite precision computations.

Due to these effects, most spacecraft’s mission concepts include several trajectory cor-

rection maneuvers (TCM) in order to tweak the spacecraft’s flight path. These corrections

are needed to ensure correct planetary flyby conditions, orbit insertions, and correct for

initial launch orbit errors. The primary information used to plan a TCM is the navigation

data. Again, the accuracy of the TCM is limited by the accuracy of the initial estimated

state. Orbit observations allow for an analysis of the observed trajectory compared to the

4

planned. Ground analysis compares the observed to the predicted state and desired state

to ascertain if any thrust is needed. Improvements in both navigation accuracy and state

update rate will increase knowledge of the spacecraft’s position. This will further reduce

the need for large TCMs by the minimization of initial state error and increasing the effec-

tiveness of corrections[129]. Overall error is still limited by the assumptions made in the

predicted dynamics, which high precision navigation dynamics models can improve.

1.2.2 Landing Requirements

Some of the most difficult missions involve landing a probe or rover on an extraterrestrial

planetary surface. There have been many successes and several failures. For stationary

assets, such as the Phoenix Martian Lander, the science data collected is limited to the

probe’s location on the planetary surface. Rovers, such as the Mars Exploration Rovers

(MERs) Spirit and Opportunity, contain the capability to traverse the planetary surface.

This increases the scientific range of these assets to kilometers over large lengths of time.

Even so, this capability is limited and much deliberation and analysis goes into choosing a

landing site.

For scientific missions, it is desired to arrive in a general vicinity of scientific interest or

region. But as man begins to push outwards from Earth, the need to deliver supplies to a

Lunar or Martian outpost will become very frequent. It will be increasingly important to

accurately land these resources close to a predefined location (nearby to the human presence,

or within range of any local surface vehicles) to minimize the time and effort required to

retrieve the supplies.

Typical landing systems have relied on techniques involving aerobraking or parachutes

to gently land with minimal control during descent. As such, it is paramount to have knowl-

edge of the spacecraft’s state well ahead of planetary entry. This knowledge allows ground

operators to predict the spacecraft’s entry vector and estimated landing site. With increas-

ing accuracy of the navigation knowledge, the operators can issue more precise thrusting

commands to the spacecraft to tune its entry trajectory. This increased navigation perfor-

mance allows for the capability of precise directed planetary entries and landing.

5

Martian probes provide a good example of the accuracies involved in planetary entry

conditions. For the MERS, the navigation error at Martian atmospheric entry was 9 kilo-

meters, which propagated to 80 kilometers of surface landing uncertainty and error[74].

As Lightsey and Mogensen [74] describe, even systems with in-atmosphere correction such

as the Mars Science Laboratory, are predicted to have best-case error on the order of 10

kilometers. As such, the landing error is directly related to navigation knowledge. Due to

transmission time delay and on-ground processing time, the last control update is limited to

six hours prior to atmospheric entry [74]. Further trajectory corrections must be executed

by onboard navigation and guidance systems, with the accuracy directly affecting landing

capability.

1.2.3 Scientific Pointing Requirements

Modern deep space probes typically contain instrumentation allowing radar ranging, com-

plex spectroscopy, and high definition imagery. In order to use such powerful high-resolution

instruments, stricter requirements are placed on spacecraft pointing performance. To meet

these needs, onboard attitude state determination has steadily improved to enable focusing

observations on specific areas of interest.

With the growth in quality and quantity of data, it is important to link the measure-

ments accurately to a physical location (and site observed). This is needed both to link

various independent data sets (from multiple spacecraft for example), as well as to build up

repeated measurements of a specific area. The spacecraft’s state is also needed to process

any observations. The combination of these two data sets allows scientific researchers to

link the observations to an exact physical location on a planetary body. This is impor-

tant both for Earth-based and extraterrestrial observations. Reducing the error of on-orbit

positioning reduces the error in data collection, allowing maintenance of the required high

accuracy position information on measurements with increasing resolution and capability.

1.3 Complexity in Space Navigation

The navigation problem of ascertaining one’s current position and velocity is a very com-

plex problem. This is due to uncertainties in dynamics models, measurement accuracy,

6

and resolution limitations. For ground-based navigation, this can be performed relatively

accurately with imprecise measurement (such as simply using a map, compass, and obser-

vations of the landscape). But as spacecraft travel farther and farther from Earth, and the

distances traveled increase to such large values, navigation becomes increasingly difficult.

This is due to limited observation data, and finite precision. For example, to maintain

a relative positioning accuracy as a spacecraft’s distance from Earth increases requires a

continual improvement in observation resolution. At the most fundamental level, numerical

precision and computational accuracy limit this capability. The driving effects are due to

many parts, including uncertainty in the dynamic models, physical spacecraft limitations,

and the measurement process.

1.3.1 Gravitational Uncertainty

No calculated or predicted ephemeris is perfect. Simulation of celestial dynamics is a very

complex problem, and it is impossible to capture every effect. Additionally, simulation

capability is limited at the lowest level on numerical round-off errors. Analytical models of

general relativity paired with ground observations do allow for an accurate determination

of planetary ephemeris.

Even so, there is still some associated error. From the observations and dynamic models,

a planet’s mass can be estimated. Propagating a spacecraft in that planet’s orbit with an

accuracy on the order of meters or centimeters requires much more detailed information on

the planet’s mass and gravitational potential distribution. Such models exist for Earth[89]

and Mars[59], which capture the data to a very high degree. Additional effects such as drag

in the interstellar medium and solar radiation pressure must also be accounted for to enable

high accuracy state propagation.

The prediction capability is directly related to the knowledge of the dynamics being

modeled. For principal investigators of science instruments, the primary information re-

quired is not predicted trajectory but actual traveled trajectory (and location of spacecraft

at the time of observation). This data is generated by post-processing navigation data,

which can be more accurate then forward-prediction due to the use of smoothing functions

7

on large data sets. Even with advanced filtering and least squares estimation approaches,

the accuracy of this information is limited by navigation measurement uncertainty [124].

Due to this limitation, it is important to capture high quality navigation measurements

in order to capture all effects in the true dynamics and aid in trajectory prediction and

reconstruction.

1.3.2 Signal Travel Time

One of the main complexities in generating this navigation data is a product of the envi-

ronment itself and the distances involved. Typically, deep space navigation is performed

by Earth-based assets. As seen in Figure 3, the time for a signal to reach its destination

can vary from several minutes to several hours based on the geometry involved. For the

New Horizons probe with corresponding trajectory given in Figure 2, the round trip light

time increases with distance. This data was generated using the published trajectory of

New Horizons from January 19, 2006 to January 1, 2010 1. As the probe reaches Pluto and

Charon, the one way light travel time ultimately reaches nine hours[8]. This large distance

drives the signal strength required from Earth that the spacecraft is able to detect Similarly,

very large and sensitive receivers are required to receive any signals being transmitted in

return, especially due to the spacecraft’s limited transmission capability.

The transmission travel time, along with the time required for post-processing and anal-

ysis on the ground, produces a latency in any state measurement based on this observation.

As such, a calculated navigation solution is a measurement of where the spacecraft was and

not where it is. This delay also affects transmission capabilities, in that the ground-based

assets must be pointed based on the predicted delay and where the satellite will be when

the signal has traveled such a distance. The ground assets must therefore track ahead of the

spacecraft. Additionally, the efficiency of transmitting to a spacecraft is driven by knowl-

edge of the spacecraft’s position, which can drive pointing losses. As navigation fixes are

generated, errors in pointing and data transmission can be reduced.

1http://naif.jpl.nasa.gov/pub/naif/pds/data/nh-j p ssspice-6-v1.0/nhsp 1000/

8

−2

0

2

x 10
8

−2

−1.5

−1

−0.5

0

x 10
9

−8

−7

−6

−5

−4

−3

−2

−1

0

x 10
8

J2000 X (km)J2000 Y (km)

J2
00

0
Z

 (
km

)

New Horizons
Earth

Figure 2: New Horizons Trajectory

0 500 1000 1500
0

20

40

60

80

100

120

140

t(s) past 2006 JAN 19 19:50:13.15

O
ne

 W
ay

 L
ig

ht
 T

im
e

(m
in

)

Figure 3: Light Travel Times to Earth

9

1.3.3 Spacecraft Subsystem Limitations

Due to the issues involved with signal travel and deep space communication, the ideal

solution involves the spacecraft performing navigation autonomously on-board. There are

several limitations to using onboard satellite systems to perform complex navigation and

state estimation routines. Some research has been performed to begin to implement this,

but in limited scope[20]. There are limitations both in the field of algorithm development

and the required hardware and computational systems.

These limitations are intrinsically linked. Due to the long lead time for deep space

missions and focus on flight-proven systems, the amount of computing power limits the

implementation of advanced algorithms. The hardware available is further reduced by

requirements on radiation hardening. This also limits on-board memory storage. Due to

these limitations, it is difficult to develop autonomous algorithms of sufficient capability to

be run on memory- and processing-constrained systems. As more powerful computers are

flown, there is a possibility for improvement of these algorithms. Even so, any algorithm

must be incredibly efficient to be used on-board during flight.

Additionally, the spacecraft itself is physically constrained. Due to launch vehicle lim-

itations, both the volume and mass are limited. This constrains which and how many

instruments can be installed on the spacecraft. To transmit information back to Earth, a

large directional antenna is required. For example on Cassini, seen in Figure 4, the commu-

nications dish is maximized to the allowable launch volume, with a diameter of four meters.

The size of the dish and receiver determine the strength of any transmitted signal. This

also limits available power reception capability and required signal-to-noise ratios SNR for

communication. The transmission strength is also limited by the limited onboard generated

power available.

As a spacecraft travels farther from the sun, the solar flux reduces proportionally to the

square of the distance. Solar panels are thus decreasingly useful the farther a spacecraft

travels from the sun. The Juno spacecraft, destined for study of Jovian system, in Figure 5,

is the first spacecraft of its size to generate power solely via solar arrays at a distance as far

as from the Sun as Jupiter. It contains three solar panels, with a total effective solar cell

10

Figure 4: Cassini Spacecraft (NASA/JPL)

11

Figure 5: Juno Spacecraft[53]

area of forty-five square meters[53].

Typically, radioisotope thermoelectric generators (RTG) are used to provide power for

deep space missions. Even when these generators are used to provide steady power, the

spacecraft consumption rate is still limited. Therefore onboard processes and instrumen-

tation must be very efficient, and operations must be coordinated and scheduled ahead of

time in order to stay within operational bounds and maintain power margins.

As such, any onboard navigation hardware needs to have limited power requirements

and a minimal affect on other spacecraft operations. Due to these factors, spacecraft nav-

igation is inherently difficult due to the environment involved, the signal delay, and the

tight spacecraft physical and operational constraints. Many methods of navigation are cur-

rently used, most external to the spacecraft. But as autonomy and navigational accuracy

requirements increase, it is necessary to shift these functions onboard.

12

1.4 State of the Art Space Navigation Systems

As satellite and space technology has evolved, the capability for space navigation and track-

ing has also increased. The earliest methods involved optically tracking an object across

the sky. Optical observations led to the earliest solar system models and continue to aid

in developing and maintaining planetary body ephemerides. Observations of the motion of

fixed stars in the sky also informed early models of the Earth’s orientation.

Current navigation methods utilize a range of signals and observation techniques to per-

form in-spacecraft positioning and external tracking. Some positioning techniques involve

the use of ranging signals from beacon satellites, optical observations of planetary bodies,

and internal tracking of the spacecraft’s state. External tracking has been performed us-

ing primarily radio waves to both measure an asset’s position in the sky (right ascension

and declination) as well as direct measurement of the distance to and radial rate of the

spacecraft.

1.4.1 Optical Navigation

The measured ephemerides of planetary bodies have been utilized for deep space navigation

of spacecraft to the outer solar system[24] [38] via the method of Optical Navigation for

missions as early as Mariner. The use of optical cameras on spacecraft is the key enabler

for utilizing these techniques. The primary optical observation instruments are often used

in lieu of a dedicated navigation camera. Performing this analysis requires three main ex-

ternal pieces of information: the spacecraft’s attitude during the observation, the planetary

body’s physical dimensions, and the current position of the body being observed. This data

is compiled in a range and bearing-type method[130]. Other implementations of optical

navigation measure the angle between a guide star and the planetary object being tracked

[24].

The attitude is obtained by analysis of the image generated. The planetary body must

not fill the entire observation, in order to gain a viewing of the background stars. Post-

processing on the ground uses techniques similar to star trackers, which look for known con-

stellations or groupings of stars and then uses this information to obtain an inertial pointing

13

reference. The key assumption is that the celestial background is relatively inertially-fixed

with respect to our solar system. The resulting attitude is then joined with further analysis

of the body’s state to obtain a range vector.

Multiple methods exist to analyze the observed planetary body[130]. Information about

the size and shape of the body must be assumed. Typically, this amounts to knowledge

of the body’s diameter, which has been estimated by celestial dynamics models or direct

observation (i.e., linking optical observations from other spacecraft using other navigation

methods).

This analysis works best for bodies with very well known shape and dimensions. The

accuracy of this method is limited by the knowledge of the body. Due to this fact, this

method is usually limited to observations of planets, which have well defined shapes that

are easy to capture.

Determining the observed dimensions is done by analysis of the observed shape. The

centroid and outer shape of the planet is determined by fitting curves to the observed

planetary images. This is limited by the resolution and quality of the camera used and

its capability is linked to distance to the object. As the spacecraft approaches the body,

a greater number of pixels are used, providing more data for analysis. Conversely, as the

spacecraft is very near the body, the whole shape is not observed and horizon tracking

techniques must be used to fit the observed arc of the planet’s shape. Additionally, higher

quality optics can allow the ground-based analysis team to distinguish between atmosphere

and surface to improve the results.

Sextants have also been used for optical navigation. During Apollo 8, sextants were

tested to obtain navigation fixes by measuring the angle between stars and Lunar surface

features [20]. A diagram showing operationally how this was performed is given in Figure 6

[122]. An expansion of this to autonomous use is the Space Sextant [47]. This device was

developed to be used for high altitude spacecraft in Earth orbit. It involves a gimballing

platform with two telescopes. The instrument tracked a star’s observed position in relation

to the limb of the moon. Integrating this angular information for two stars with ephemeris

knowledge of the moon provides enough information to calculate a position fix[19]. Studies

14

Figure 6: Orbit Determination via Lunar Observation [122](NASA)

predicted this approach would have an accuracy of 800 feet in position and .01 feet per

second in velocity [47].

As seen, navigation by optical observations is a well-used and proven method of deep

space navigation. Its application, though, is limited by the geometry of the trajectory.

The combination of fixed camera optics and planetary ephemerides limit the use of optical

navigation to only during certain observation-capable periods. Additionally, a large amount

of ground analysis and support is required to calculate the actual navigation solution.

This ground support comes at a high cost. Other methods instead utilize Earth-based

measurements to track the spacecraft.

1.4.2 Radio-based Tracking

Radio signals can also be used as navigation sources. Worldwide systems such as LORAN-C

have seen continuous use for at-sea tracking. Simple tracking involves a bearing-bearing

method where measures of angles to multiple radio sources provide a two dimensional posi-

tion fix [55]. A simple implementation of bearing determination utilizes a loop antenna [60].

The received power is proportional to the orientation of the plane of the antenna to the

signal. When the two are orthogonal, no power is received and a heading can be determined.

With multiple measurements to different beacons, a position fix can be calculated.

More advanced radio navigation systems have been developed for use in orbit. Early

space navigation techniques involved tracking of a beacon signal emitted by the spacecraft.

Radio systems are thus able to obtain a fix on the signal and determine its position in the

15

Figure 7: Deep Space Network Antenna (NASA/JPL)

sky. Analysis of a series of observations can provide orbital information [7]. As radio and

computing technology has advanced, the techniques have evolved to include the spacecraft

itself and multiple ground stations on Earth.

The Deep Space Network (DSN) [121] is the state-of-the-art technology for radiometric

tracking. An overview of the architecture is given in Figure 7 [103]. The network consists of

3 large 70-meter diameter radio telescopes/transmitting stations outside of Madrid, Spain;

Canberra, Australia; and Goldstone, California. These sites were selected to allow for con-

tinuous coverage of any deep space craft; however, with only one asset in the Southern

Hemisphere, total sky coverage is limited. With the proven capability of DSN, some space-

craft missions have switched to using only radiometric tracking for navigation to reduce

spacecraft development costs [121].

Several radiometric techniques are available via DSN: one-way, two-way, and three-way

tracking at several frequencies, which are given in Table 2 [121]. One-way tracking is the

method mentioned above, with the ground station tracking a beacon generated by the

spacecraft to obtain right ascension and declination. Over time, this integrated information

16

Table 2: Deep Space Network Operating Frequencies
Band Uplink Frequency (MHz) Downlink Frequency (MHz)

S 2110-2120 2290-2300

X 7145-7190 8400-8450

Ka 34,200-34,700 31,800-32,300

can be used to determine orbital parameters, similar to way a series of optical observations

of planets led to proven planetary ephemeris.

Two-way tracking can be utilized for spacecraft reasonably close to Earth. The two-way

tracking consists of both a ranging code and a radial velocity tracking. This method is

limited to use when the total length of observation with one site is greater than the round-

trip signal transmission time. It is desired to minimize the number of stations used in this

method of tracking in order to reduce errors, such as timing errors between ground stations.

In this ranging method, a predefined tone is transmitted to the spacecraft. Upon recep-

tion of the signal, it is re-transmitted back to the ground station. The ground site contains

reference hardware to emulate the return signal. This reference is compared to the received

tone, and the difference in phase represents a round-trip travel time. From this measure-

ment and knowledge of the speed of light, the range to the spacecraft is determined. The

round-trip time is used to reduce errors from one-way transmission.

As a spacecraft travels farther from Earth, and a transmitted signal cannot be received

within one ground pass at a particular site, the ranging is handed off to the next station,

thus becoming three-way ranging. To enable this transfer, the clocks and reference signals

of the selected stations must be very well synchronized. This is typically done by having

similar hardware and high bandwidth connections linking the ground stations together.

Additionally, highly accurate clocks are used to minimize clock drifts between stations.

The main error source of this ranging technique is clock and oscillator instability [121].

Any difference between the actual transmitted signal and reference signal will result in an

error. For example, in one-way ranging, the spacecraft produces the reference signal. The

most stable space-qualified crystal oscillators fluctuate about one part in 10E13 over aver-

aging intervals of 1000 seconds. In two-way tracking, ground-based crystals and oscillators

17

are used that are stable to a few parts in 10E15 over a typical round trip travel time. As

such, there is a clear benefit to using two-way ranging, and one-way tracking is limited by

the accuracy of the onboard oscillators.

In addition to generating ranging data, the DSN also measures the Doppler shift of

signals received from the spacecraft. The Doppler shift is a measured change in frequency

due to a difference in velocity between the observer and the tracked object. Doppler data

is typically recorded continuously during a tracking pass at the DSN station. From a

single pass, it is thus possible to determine spacecraft radial velocity, right ascension, and

declination. Velocities normal to the line-of-sight are inferred from several days or more of

Doppler data (tracking right ascension and declination change).

The primary source of error is frequency stability. With current ground-based clocks

this error is on the order of one millimeter for objects at a distance of one Astronomical

Unit. But these timing synchronization errors have a larger effect on three-way ranging.

For example, if two stations clocks are offset by ten nanoseconds, they can produce an error

of three meters [121].

Recent advances in DSN methods [121] utilizing Very Long Baseline Interferometry

(VLBI) have vastly increased the resolution of one-way signal tracking [132]. The technique

is called δ Differential One-way Ranging (DOR) which can achieve as high as 40 nrad reso-

lution in angular position resolution. VLBI techniques utilize simultaneous observations of

a signal from multiple sites to determine precisely the angular position of the source. These

methods require very high accuracy time synchronization in order to combine the observa-

tion data. The use of combining data from spacecraft separated by such great distances

allows for greater angular resolution of the observations using interferometry techniques.

Delta VLBI introduces a second, very well-known quasar source to compare the original

signal to, in order to improve calibration and reduce error. The main limitation is the avail-

ability of local strong sources to use as references. An angularly close source with a very

well known position is required. Explicit differencing of observations from nearby sources

removes or substantially reduces the effects of common observation errors (such as atmo-

spheric noise). This can be used to account for clock and instrumentation timing errors,

18

which is very important due to the need for the observation times to be synchronized to

high precision in order to overlay and integrate the data from multiple ground stations.

Additional improvements in error analysis and estimation have increased the accuracy of

these positioning systems [33].

The New Horizons mission to Pluto and Charon uses top-of-the-line DSN procedures

with δDOR. This mission presents some of the most demanding constraints on radiometric

tracking [77]. The mission utilizes δDOR three-way ranging from DSN to provide Earth-

based observations of range and range-rate, which integrated over time can give heliocentric

orbital parameters. Because Pluto and Charon are at such a great distance and their

individual masses are not exactly determined, (though the dynamics give the mass ratio

fairly well), it is difficult to ascertain where exactly New Horizons is in relation to the

celestial bodies. Observations of the bodies are required to analyze their location to obtain

a relative position. Additionally, the optical imagers onboard the spacecraft will be used

to image Pluto and Charon and to give the spacecraft orientation during the passes. Over

time, as New Horizons nears the bodies, its onboard capability will outperform ground

observations of Pluto and Charon, with observations at higher quality than is possible

from Earth. The ground-based filters will include optical observation data and radiometric

tracking to solve for parameters relating to the physical properties. The tracking data

and ephemeris of the spacecraft will further refine the two bodies’ orbits, both locally

and heliocentrically, as well as provide increased information about their rotation, prime

meridian, mass, etc. Due to the large range of mission, when ranging signals are received

from Earth, there is more signal than noise. To correct this, the New Horizons engineering

team implemented a pseudonoise signal base to allow them to better distinguish the actual

data and utilize a series of filters to increase signal quality on retransmission to Earth [25].

This shows a great example of where optical and radio tracking can be combined to form

better navigation information and also demonstrates the strength of optimal estimation

techniques.

Some current and developing methods utilize Doppler tracking for inter-spacecraft nav-

igation [29] [28] [74]. Such experiments have been performed using the Tracking Data and

19

Relay Satellites (TDRS) and the Cosmic Background Observer (COBE) satellite [29]. Ex-

periments have also been conducted using the Explorer Platform on the Extreme Ultraviolet

Explorer Mission [52] in testing of the TDRS Onboard Navigation System (TONS). The

TDRS satellites are used to relay data between ground assets and space assets to allow for

always-connected/always-on data connections. This is used for data communication with

the International Space Station and Hubble, as well as other highly utilized assets. It was

also used extensively during Shuttle operations to enable constant communications.

The satellites have the capability to participate in Doppler and one-way ranging to

other assets and to act as a repeater for ground sites. Several experiments in the late

1980s and 1990s studied their application. The TDRS relays forward data from and to the

spacecraft acting as intermediaries for ground-based tracking and ranging. True spacecraft

to spacecraft tracking and ranging is limited to the accuracy and stability of onboard crystals

and oscillators. As such, many of these early studies focused on the application and use of

Ultra-Stable Oscillators [29] to reduce the timing uncertainties.

1.4.3 Global Navigation Satellite Systems

Some methods implementing simultaneous ranging solutions have also been developed. The

current Global Positioning Systems (GPS) using ranging measurements to multiple satel-

lites to obtain a position fix. This is currently extensively used for air, ground, and sea

assets. Additionally, this has been shown to work well for Low Earth Orbit (LEO) satel-

lites. Currently, it is becoming standard practice for satellites to include a GPS receiver.

The current GPS system is a constellation of 24 satellites in highly inclined Earth orbits.

The design of their orbits is such that at any time, four satellites are in view of any location

on the surface of Earth. Several other Global Navigation Satellite Systems (GNSS) are

being implemented and put into similar constellations, increasing the available number of

assets able to be observed.

The GPS satellites act as a series of beacons that continually transmit specified codes

on their predefined frequencies. GPS is an implementation of a ranging positioning method.

Upon reception of a signal, a receiver computes a time difference between the GPS satellites

20

and its internal clock. This information is used to calculate a range to a satellite. Each

receiver also tracks the ephemeris of the satellites. Multiple simultaneous range measure-

ments are combined to calculate the receiver’s position. Typically four satellites are used

with the last measurement included to correct for clock error. As seen before, clock error

and stability are very important and drive the accuracy. But for local Earth systems, the

accuracy is on the order of meters, which is well within operational-desired capability. Us-

ing high fidelity GPS ephemeris (typically post-processed) and advanced error correction

techniques (such as carrier-phase analysis), the accuracy of GPS can be increased to 15

centimeters.

The primary downside to GPS is the large number of satellites involved to build a

usable constellation. Several studies have looked at building such a network around another

planetary body [91] [74]. To calculate a three-dimensional fix to reasonable accuracy requires

simultaneous observations from four satellites. Once such a network is in place, though, it

is extremely powerful.

1.5 Current Research

To meet the increasing demands on spacecraft positioning and the drive towards autonomous

spacecraft, several methods are being investigated [20]. Several different approaches are

being taken in this field of research. These techniques include performing Doppler and

ranging between spacecraft in local orbits, moving optical navigation analysis methods

onboard, and a new method utilizing observations of high energy pulsars.

1.5.1 In-space Radio-based Ranging

As previously mentioned, landing accuracy and knowledge (even with the capability to

perform a controlled descent) is limited by planetary entry navigation accuracy. Due to

round trip travel time and the time required for ground-based analysis and mission planning

to support any last minute orbital corrections, the last navigation command can be sent

at eight hours prior to atmospheric entry (for a Martian mission). Thus, initial knowledge

and ground-based landing estimates are driven by these errors.

There are two primary aspects to increasing navigation knowledge and capability for

21

improving landing capability. These are the time required for analysis and the round trip

travel times of the Earth-based measuring method. The ideal solution addresses both of

these issues. Increasing spacecraft autonomy and computational power can provide a reduc-

tion in the time for the last command point. The window for commanding is thus reduced,

with the only limit being the time required on the ground to obtain a position fix and the

few minutes required to return the navigation information. By utilizing onboard navigation

capabilities, the role of humans in the loop is reduced and reduces the responsibility of the

ground support crew and transfers it to the spacecraft. Additionally, the software should

be very powerful and well verified.

To obtain additional accuracy in navigation knowledge and reduction of response time,

additional assets must be used that are closer to the landing site. This requires forward

planning and the placement of assets in orbit in preparation for such a landing. In terms

of landing on Mars, this has been taken into account via the Electra payload on the Mars

Reconnaissance Orbiter (MRO). An example of this method is given in [74].

The Electra payload is a software-defined radio engineering package [44]. The unique

features of this device are that it can be reprogrammed over the course of its life to commu-

nicate via new protocols and coding schemes, as well as new software-driven functionality.

Electra also includes the capability to perform Doppler ranging. As such, it is planned to

aid arriving vehicles destined for the surface of Mars, by providing local navigation and relay

services. It can also be used to track an object’s entry and perform post-landing trajectory

analysis. This capability has been tested by tracking the MERs.

This asset also includes an ultra-stable oscillator to allow for increased accuracy in

ranging. As such, the spacecraft is able to provide high-accuracy navigation solutions. The

primary limiting factor is the reception and transmission power of other spacecraft, which

may not have as powerful communications systems. Mission operations were developed

to use the Electra payload as a guiding asset for the planetary entry of the Mars Science

Laboratory [74] which successfully launched on November 27, 2011.

This was intended to serve as an additional verification of its capabilities and show

the benefit for use of local in-orbit navigation-aiding spacecraft. MRO, in acting as a

22

relay between Earth and the growing number of Martian assets, shows the capability of

implementing and investing in a local orbit communication relay satellite. As such, MRO

can be considered to be the first node of an inter-planetary communication and navigation

network.

However, there are a few drawbacks to this approach. The current Martian planetary

exploration plan has been to launch rovers and satellites on alternate two-year periods.

This is due to the celestial mechanics aligning in such a way as to minimize travel time

between Earth and Mars. For such an active planetary network, implementing an Electra-

type payload is very cost-effective and has a very high benefit due to the steady stream of

incoming missions. But this is not so for more remote destinations, such as the Juno mission

to Jupiter, where such an infrastructure does not exist. Additionally, missions to the outer

parts of the solar system are increasingly constrained due to power requirements and the

reductions in the solar flux at such distances. As such, these missions currently tend to be

one-off missions to explore new areas. Placing the precursor assets in place is as much of

a challenge as placing the probe. For some missions, such as the New Horizons mission to

Pluto and the Charon, there remains uncertainty about the two objects’ orbits about each

other, and one of the main science objectives is to track the spacecraft’s observed flight

to determine planetary properties of the two Kuiper-Belt Objects [77]. When traveling

to new locales where there is not a steady manifest of planned missions, it is not cost

effective to include specific payloads that occupy weight and volume and do not achieve their

true benefit until additional spacecraft arrive. This mass may be much better partitioned

for increased fuel, allowing a longer scientific mission, increased development margins, or

additional scientific payloads, increasing the knowledge return and overall value of the

spacecraft.

1.5.2 Autonomous Optical Navigation

The Electra payload offers a clear benefit for orbital locations with a high density of oper-

ating and planned spacecraft as part of a long-term exploration plan. But for independent

missions to new areas, where there may not be additional infrastructure available to perform

23

navigation duties, a powerful option is to use observations of the space environment from

the spacecraft and perform the position-fixing onboard. The most plentiful, historically

used, and easily observable element of deep space is the celestial background. The positions

of the stars are relatively fixed compared to our solar system due to the vast distances

separating galaxies within the proper motion of the Milky Way galaxy. Star charts have

served sea-faring vessels very well before the times of radio navigation and GPS. Due to the

location of the craft in deep space, optical observations can be very successful.

As mentioned previously, optical navigation has been extensively used in deep space

exploration on programs such as Mariner and Voyager [24]. An image containing a star

background with observations of a celestial object can be used to give the orientation of

the spacecraft as well as the distance to the object. This analysis is performed on the

ground, due to the complex methods required to identify the star background, identify

the planetary body, and perform the needed calculations with the planetary ephemeris.

For early spacecraft, with limited memory space and computational power, this analysis

was relegated to ground analysis teams, with the spacecraft focused on data collection and

transmission.

With the rapid increases in computation power and storage capability onboard space-

craft, it is now possible to move these algorithms onboard the spacecraft with a technique

called Autonav [96]. Onboard autonomous navigation systems are desired for spacecraft

which operate at large round trip light times, such as New Horizons [8]. This has been

implemented with the micro Advanced Stellar Compass and other star cameras to observe

planetary bodies against a star background. To enable the algorithms to identify the ce-

lestial body and perform the object centroiding and recognition to obtain a measured or

apparent size, the spacecraft is pre-programmed to know where over its trajectory to point

in which direction. For the recent implementation with Dawn and Deep Space-1 [97], the

main observables were asteriods.

As such, the spacecraft stored onboard the ephemeris of the asteroids it expected to see.

According to its onboard mission profile, it knew where to look and when to look, in order

to determine what object it was observing. This produced an interesting artifact in the

24

Figure 8: Deep Space 1 Image of Comet Borrelly [10](NASA/JPL)

flight navigation performance due to the selection of targets. Due to the size of the optics

required to obtain reasonably scaled images of planets, observations of asteroids needed

to be used as opposed to planets [11]. The asteroids have fairly well known ephemeris

from Earth-based optical and radar observations. The main difficulty with the process is in

the complex algorithms required to centroid the asteroids, which can be quite oblique. An

example of an image captured onboard is shown in Figure 8 [10] of Deep Space 1’s encounter

with the comet Borrelly.

Additionally, even though there have been radar observations of some of these asteroids

from Earth, there are still gaps in knowledge of the complete shape. Unless the body is

undergoing rotations such that it is entirety visible to Earth ground assets over time, the

radar generated capture is limited to the face pointing towards Earth. Additionally, the

dynamics and pointing is very different between an Earth-based asset and the spacecraft.

As such, parts of the asteroid that may be visible to the spacecraft are not visible to Earth.

The optical observations onboard are much more sensitive to lighting conditions, due to

the pointing relative to the sun, which radar is imperious to. Due to the complex nature

and incomplete information on these asteroids, it is reasonable to expect some errors in

the centroiding algorithms, thus producing erroneous navigation fixes. This nuance was

25

captured in-flight on the Deep Space 1 [10] and Deep Impact [45] mission performance

reports [96].

Studies have additionally been performed for navigation at Jupiter [115]. This concept

utilized only bearing measurements to capture position relative to the Jovian moons through

observation and has been shown to be viable. Additional work has been performed at JPL

to advance the algorithms to include precise landmark tracking for landing on celestial

bodies such as asteroids [98].

This method has been successfully used in flight and continues to be developed and im-

proved with current work focusing on improving the analysis algorithms and integration [96].

The method does have its limitations, primarily in the required pre-planning of observations

of targets, as well as potential gaps in information about the targets being observed. To

allow the camera system to capture and image larger planetary bodies at greater distances

will require more complex optics, directly affecting the instrument’s size and limiting the

times of application to when there are available bodies that meet the instrument’s viewing

capability.

1.5.3 Advanced Deep Space Timing Sources

The development of improved clocks and onboard oscillators is another method under anal-

ysis [92]. Current research efforts were recently awarded funding to enable a year-long

mission to characterize and flight-test an advanced Mercury ion deep space atomic clock2.

This research effort focuses on improving the stability of a spacecraft’s oscillators. With this

capability, spacecraft will be able to perform one-way ranging with ground-assets. Thus,

during a navigation pass, instead of requiring a two-way tone transfer, the measurement of

phase offset can be performed onboard. This is enabled by the improved stability over the

observation. This capability will enable additional methods and realtime onboard process-

ing of the navigation measurements.

2http://www.nasa.gov/mission pages/tdm/clock/index.html

26

1.5.4 X-Ray-Based Pulsar Navigation

Other approaches exist to navigate using celestial observations. Instead of utilizing mea-

surements in the radio or optical bands, X-Ray Navigation (XNAV) observes in a higher

energy band of the electromagnetic spectrum. The main sources used for XNAV are rapidly

rotating, highly magnetized neutron stars [30]. These sources produce regular oscillating

emissions with very stable frequencies. It has also been suggested using these for timing

standards and atomic clocks due to this regularity. Alternate observations of these sources

could be in the radio. In order to focus enough signal a very large dish or very high gain

and low noise amplifier would be required.

Instead, the focus is on the X-ray emissions. This is desirable due to the low noise in

this part of the spectrum and the relatively small sensor size. The trade-off is that very

long integration times are required to gain sufficient signal to noise ratios. Also, complex

statistical processes are required to fold the data from multiple observations to capture

the phase and frequency of the observation [105]. Initial results show that a square meter

detector with observations integrated over a thousand seconds can provide an accuracy

of one kilometer [105]. The time required and detector size are inversely related, as one

increases the other decreases to maintain a set accuracy.

Studies have analyzed the performance of XNAV for attitude [57], timing [105], absolute

position [106], and relative position [30]. By measuring the observed position relative to

background stars, it is possible to determine attitude, similar to a star tracker. Using

the High Energy Astrophysics Observatory (HEAO), XNAV techniques provided a .012

degree attitude uncertainty in spacecraft roll [57]. Studies were also performed with the

Advanced Research and Global Observation Satellite Unconventional Stellar Aspect high

energy detector. Sheikh [106] was able to demonstrate calculation of orbital position from

observation data and obtained an error of two kilometers. Errors in the GPS onboard

solution (which was being used as the true inertial position) increased the calculated error

to 15 kilometers [105].

27

Figure 9: XNAV Positioning Concept (NASA)

Position estimation using XNAV [54] is shown in Figure 93. In order to perform posi-

tioning, a highly detailed pulsar timing model is required to determine the time of arrival of

pulses from a pulsar at the solar system barycenter (labeled SSB). By observing a series of

pulses, it is possible to capture the difference in measured arrival time and modeling arrival

time at the barycenter. This information is then used to determine a relative location, using

pulsar angular position [105].

By observing multiple sources, it is possible to ascertain full three-dimensional position-

ing [54]. The performance is limited by timing accuracy onboard, which affects the binning

capability of long integrations, attitude pointing, which maximizes SNR of an observed

source, and gravitational modeling accuracy. This is important as the trajectory is propa-

gated via optimal estimation techniques to determine the position-fixing over the course of

the long integration [106].

3http://gcd.larc.nasa.gov/projects/deep-space-x-ray-navigation-and-communication/

28

The limitations to these methods are the required detector sizes coupled with long in-

tegration times. The spacecraft launch volume limits the available detector size, but as

detector technology continues to improve, it will be possible to use smaller instruments.

For long integration times, complex gravitational models are required in estimating the

spacecraft’s trajectory. This also limits the applicability of this method to certain parts of

the trajectory with well-defined gravitational properties. Applications of XNAV that are

unaffected by these parameters have been discussed. For example, Sheikh suggests devel-

oping beacon satellites that are in very stable orbits and can perform long integrations to

track their position to a very high degree of accuracy and also to act as pulsar timing mod-

els. These satellites could be used to operate as timing and position references [105]. The

procedures to support XNAV are in active development and are documented in [99] as being

a promising future development path for deep space navigation. A large focus of this work

is on detector development, building pulsar libraries, and developing optimal estimation

algorithms, working towards eventual mission implementation and flight qualification.

1.6 Comparison of Current Methods

The previous sections provided a summary of the current navigation methods and ongoing

research. It is important to compare and contrast the strengths and weaknesses of each

to gain some higher level insight to the implemented approaches. The methods can be

broken down into the two categories as put forward by Groves [55], positioning and track-

ing. Positioning is the spacecraft’s internal determination of its location by observation of

some physical entity, such as optical observations of stars or acceleration. In contrast to

positioning, tracking is the use of external measurement assets, such as DSN, to determine

the object’s position.

Table 3 breaks down how the methods fit into each category. Even though optical

navigation is based on observations of the spacecraft’s environment, it is listed as an ex-

ternal measurement due to the requirement of ground-based analysis. Similarly, due to

its autonomous nature, Autonav is considered an internal method. DSN tracking, inter-

spacecraft tracking (both TDRS and Electra), are all considered external methods. X-ray

29

Table 3: Overview of Navigation Methods
Method Type Observation

Optical Navigation External optical imaging of celestial
bodies against a star back-
ground analyzed on ground

AutoNav Internal optical imaging of celestial
bodies processed onboard

DSN Tracking/Electra External round trip light travel time to
spacecraft and frequency shift
of received signal

TONS External ranging and Doppler measure-
ments relayed through TDRS

X-ray Navigation Internal time of arrival of radiation
pulse from pulsars

GPS Internal range relative to multiple
GPS satellites by measuring
dt from GPS broadcast sig-
nals

Dead Reckoning Internal angular velocity and acceler-
ation integrated to propagate
position

Navigation, dead reckoning, and GPS systems are internal methods, due to the spacecraft

itself performing the position fixing.

Each of these navigation systems has their own unique advantages and disadvantages.

The characteristics of each design also provide insight into the overall requirements and

needs for a navigation system. Additionally, they give direction into how to design a new

navigation system. Optical navigation (including Autonav) is the use of observations to

provide for navigation fixes. Observation of the environment is important in that it is inde-

pendent of Earth assets. The drawback to this method is incomplete information about the

sources used. There is inherent uncertainty in a planet’s ephemeris, and in some planet’s

physical properties. Strict observation rules and defined assumptions must be present when

correlating flight observation data to previously known values. Autonav proved to be bene-

ficial in cases where exact ephemeris may not be known and local onboard guidance must be

used to navigate relative to a target, but also demonstrated the effects on navigation with

incomplete object data. These navigation techniques are also very beneficial in their use

30

of onboard scientific instruments to perform the observations, taking advantage of dual-use

payloads.

Similarly X-ray navigation takes this same approach, but focuses on high energy parti-

cles. X-rays were chosen to take advantage of new advances in high energy detectors. In

comparison to planetary observations, there is a much more spread out pattern of X-ray

pulsars, whose observation is independent of location in the solar system. Yet similar to

optical observations, this method begins to break down with assumptions in the modeling,

particularly of the signal’s arrival times at the barycenter. The pulsars themselves also

present some problems. Even though their emissions have proven to be highly repeatable,

it is still possible for random outbursts or other events to change the spectrum or phase of

the emitted signals. As such, they must be tracked and models updated over time. This is

also pointing dependent, and the spacecraft must have highly accurate attitude knowledge

to be able to point at a particular source. Long-term pointing capability is important to

maintain observations during long data collection times to obtain sufficient accuracy.

Radiometric tracking has proven to be very successful and very capable for deep space

navigation. Many recent spacecraft have chosen to use purely DSN for navigation purpose,

eschewing traditional optical observations, to minimize development cost and time [121].

This works particularly well for missions with very well understood dynamics, such as

Earth-Mars transfers, due to the existing highly detailed Martian observations. The high

resolution of δDOR observations can be used to solve for force models and to understand

more information about planetary physical properties. For example, this will be used for the

New Horizons mission to link observed ephemeris of the spacecraft to optical observations

in order to better understand the orbit and mass distribution in the Pluto-Charon system

[77].

The primary drawback to this method is the reduction in accuracy and noise in returned

signals with distance from Earth. Additionally, observations can be limited or occluded by

other objects between Earth and the spacecraft, such as the sun or other planets. The

Electra radio addresses this limitation by placing radiometric tracking assets farther out

into the solar system. This allows for Doppler and ranging and bounds error as a function

31

of distance from the closest asset. The primary bounds on tracking are due to the geometry

and transmission distances.

Spacecraft volume constraints also limit the size and capability of the radio equipment,

primarily the antenna dish. Deployable antennas for radar use have been used on orbit

with sizes from 4.9 to 12 meters [62]. Current research into deployable antennas is working

towards a 35 meter diameter Ka-band dish[62]. Operational power limitations in deep

space also reduce the amount of power available for transmission to assets. Additionally,

the spacecraft’s oscillator stability directly affects the accuracy of the method and will

increase errors with tracking distance. As such, the Electra radio provides an expansion

of radiometric tracking farther out, but its operation and performance tie directly into the

spacecraft’s requirements and design trades made. TDRS inter-spacecraft tracking follows

the same analysis. These spacecraft operating as deep space radiometric tracking hubs

must have onboard timing sources to maintain this capability, which affects other subsystem

designs.

GPS operates as a mix between external and internal. GPS receivers observe the timing

signals sent out by the satellites in the constellation, and the measurement of location is

performed relative to these sources. As such, the transmissions are artificially creating

an observable, that are used similar to planets in optical navigation. This method shows

that it is possible to accurately and repeatedly perform position-fixing at high rates with

high accuracy by tracking these broadcast signals. The drawbacks to this method are

that the satellites must be very well synchronized and a large body of knowledge about

them (such as ephemeris) must be tracked, updated, and broadcast to all elements in the

network to maintain its accuracy. Additionally, building out the constellation requires

a large investment to design, build, launch, and maintain the large number of satellites

required. They must utilize very accurate onboard clocks and oscillators to maintain the

integrity of their transmissions. This affects both operational support and lifetime, as well

as subsystem trades early in the design process.

These methods encompass multiple development paths and options to implement nav-

igation systems. It is important to capture the key features that make each unique. The

32

observational techniques utilize the background environment to perform navigation. This

is important in that it requires no external or special signals generated to perform this

operation. The fundamental requirement to enable observational navigation is detailed

knowledge of the source. This refers to its position and physical characteristics. Libraries

must be developed to capture this information for the sources, whether they are celestial or

planetary.

External navigation tracking signals have been used to achieve very high accuracy state

tracking, though at the cost of very complex analysis and ground support. There has been

work to automate these processes and place them on orbit, but the main limitations are

on spacecraft requirements and sizing constraints. The location of the transmission source

must be well known and a priori knowledge about the target available in order to successfully

track. As such, regardless of the method used, some assumptions must be made to provide

a navigation fix, but that information varies depending on the method used. In all of the

methods, these assumptions affect the state estimation error as much as the measurement

sources.

1.7 Summary of Current Methods

This chapter has presented the need for deep space navigation. It is crucial to continue to

develop and advance the capabilities in order to support autonomous vehicle operations,

complex missions that require real-time navigation support, and improve the capability to

land planetary asset to maximize scientific return. With the implementation of extrater-

restrial habitats and human exploration beyond low Earth orbit, the need for advanced

autonomous navigation techniques is increasingly important to support both in-space ma-

neuvering and trajectory planning. Additionally, the need to support high accuracy pinpoint

landing is important not just for scientific return bu also to support a sustained human pres-

ence by delivering supplies directly where they are needed. The various approaches have

been summarized, and provide a variety of methods to develop deep space navigation sys-

tems. Each of the proposed paths either depend on complex hardware development and

testing or ground-based orbit determination efforts and human feedback to ensure continued

33

operation.

34

CHAPTER II

NETWORK-BASED NAVIGATION (NNAV)

2.1 Confluence of Navigation and Communication

As shown in the previous chapter, current proven methods of deep space navigation rely

upon ground updates and support. The advanced computational flexibility coupled with

the ever-expanding data storage capability of ground assets enables a greater level of vehicle

orbit determination. Additionally, performing this analysis using ground assets and person-

nel also enables debugging and continual improvement of analysis routines much more easily

than going through the required validation, testing, and uploading required for on-orbit soft-

ware updates. As such, communication with Earth is crucial to deep space navigation and

time tracking, both for maintaining contact and for performing the measurements required.

The enabling data for current methods involve the observation of change in phase be-

tween the transmission and reception using a predefined tone signal or series of tones. This

allows for a measurement of range to the spacecraft. The two-way range is thus measured.

This is used rather than a one-way ranging signal (from Earth to the spacecraft or vice versa

due to the limited stability capability of spacecraft oscillators). The two-way measurements

allow for a reduction in measurement range by averaging two observations. Recent advances

in spacecraft atomic clock design such as the Deep Space Atomic Clock [92] 1 will allow for

the additional use of one-way ranging signals. The ranging carrier tone can also potentially

be mixed with the data ranging signal. As such, the capabilities of ranging and communica-

tion are inherently linked to ground-based measurements. These measurements also drive

the requirements for post-processing, verification, and generation of state updates to the

spacecraft. The inherent delay between measurement and state update is due to human-

in-the-loop error checking, tweaks to gravity and dynamics models, as well as advanced

filtering routines running over a very large set of data.

1http://www.nasa.gov/mission pages/tdm/clock/index.html

35

For current methods, limitations include the amount of available time on the ground

stations, as well as the cost to support ground operations. As additional spacecraft utilize

the existing ground work, the communication infrastructure will become increasingly con-

strained due to increased users. Along with increased data fidelity, this will limit available

time to each asset to gather the required observations. There is some initial work done to

increase the frequency of communications to Ka-band [119] as well as optical communica-

tions. The move to these frequencies will enable greater bandwidth at the cost of greater

power systems and receiver systems (due to increased space loss at higher frequencies, in-

sert space loss equation below). Due to the fact that ground-based measurements are only

possible when communication is also possible demonstrates the intrinsic link between com-

munication and navigation. This will be discussed below in addition to the opportunities

it enables for advanced autonomous deep space navigation.

2.2 Communication Architecture Research

As more spacecraft are launched with greater reliability and improved scientific instruments

return higher resolution data of a greater quantity, the communication system bandwidth

begins to become constrained. In order to meet the growing data requirements from in-

dividual spacecraft and the overall increase in network traffic to deep space, the current

communication system must be advanced in order to meet this growing demand. There are

several ways to address this. A simple approach is to develop data compression schemes to

reduce total data transmitted. But there is a limit to the effectiveness of this, and currently

methods are fairly mature. A more productive method is switching to higher frequency

standards in order to operate at increased data rates. This has been implemented with the

switch from early S-Band to X-band and currently to Ka-Band communication standards

which allowed for increased bandwidth. These higher frequencies required advancements in

radio processing, receivers, and transmitters both on the ground and in space.

To achieve higher data rates by frequency alone requires a fundamental shift in the

underlying physics. This change is from transmission and reception of electromagnetic

waves to generation and detection of photons generated by an optical source. This method

36

is known as optical communication and has been in development as an alternative to radio

communication [58] [12]. Much work has been done in this area to improve data rates,

transmission power, and detection sensors. Recently, the NASA Office of Chief Technologist

Technology Demonstration Mission program funded a proposal to fly a next generation

optical communications system [116]. Additionally, the NASA Lunar Environment and

Dust Environment Explorer (LADEE) satellite, with a planned launch in 2013, includes

the Lunar Laser Communications demonstration2. This payload will implement a laser

communications terminal to demonstrate high bandwidth Lunar orbit to Earth surface

communications. The drawback to such a well-performing receiver is the requirement of

new satellite hardware, as well as ground infrastructure. In terms of the communication

method, development is reaching a point where new spacecraft or hardware may begin to be

built into or replace some of the existing infrastructure. For a built-in navigation system,

it would be preferable to be independent of transmission medium in order to be applicable

across any communication method.

A different approach is to build out a network architecture into the solar system, breaking

down the network into a series of local networks and utilizing relays with high bandwidth

data trunks [18]. However, this is not the ideal solution for small networks with a lim-

ited number of assets. This is due to increased complexity of designing and operating an

additional relay satellite. Coupled with a limited lifetime and power limitations on trans-

missions, it quickly becomes a very complex problem. This is in comparison to putting

large communications receivers on Earth, which has ample power and space and manpower

to operate it and very stable clock sources.

But as the number of space assets in operations continue to grow and a growing ex-

traterrestrial surface presence is initiated, the network architecture will increase and mature

along with it to support full operations and data transfer between networks. These relays

are important due to severe power and size limitations for any surface exploration system.

An operational example of this is the Mars Reconnaissance Observer (MRO). This

spacecraft contains a very powerful transmission capability utilizing powerful Ka-band and

2 http://www.ll.mit.edu/news/lunarlasercomm.html

37

Figure 10: MRO Data Return (NASA/JPL-CalTech) [119]

X-band transmitters. Figure 10 shows the vast increase in data capability enabled. One of

the satellite’s missions is to operate as a relay for the Mars Exploration Rovers and other

Mars surface assets. All of the MER’s data is forwarded from the surface of Mars to in-

orbit relays and from there to Earth. The relay concept has also been used for the Phoenix

lander through use of the Proximity-1 protocol [118]. The Promixity-1 protocol is defined by

the Consultative Committee for Space Data Systems CCSDS, an international standards

body for space transfer protocols focusing on point-to-point networks. This protocol is

implemented on multiple Mars orbiters that act as relays, including MRO [119].

Another example of implementing a dedicated Earth-Mars high bandwidth data trunk is

the Mars Telecommunications Observer (MTO) [44]. This satellite was planned for a 2009

launch and 2010 Mars arrival with over 10 years of operations including extended missions.

Its primary operational goal was to act as a dedicated communications relay in Martian

orbit. Primary payloads included the Electra radio, with a Proximity-1 implementation, as

well as a laser communications package to demonstrate optical communications from Mars.

Given the communication system, it was expected to be capable of delivering 10 gigabits

of data per day for an 8-hour DSN contact [44]. Autonav capabilities were also being

planned for implementation for on-orbit technology demonstration. The mission, though,

was canceled in 2005, due to funding constraints within NASA’s budget to support other

38

Figure 11: SCAWG Space Communication Architecture [103](NASA)

programs3.

Additional studies have been conducted on expanding the assets in Martian orbit into

a Mars Network for data communications amongst assets and to Earth [14] and using these

sources for navigation [74]. As more surface assets are utilized, the need for a dedicated

data trunk between local orbit and Earth will increase. The use of relays for local commu-

nications and rovers has been well proven and will continue to be an aspect our deep space

communication architecture.

This can be seen in the current plans for the development and immediate growth of the

current space communications architecture. The NASA Space Communications Architec-

ture Working Group developed a set of heuristics to develop a growth plan to meet data

return requirements and frequency constraints in the immediate timeframe [103]. The re-

sulting architecture is given in Figure 11 [103] and displays a combination of direct satellite

communications combined with data relays and trunk links as they become cost-effective to

handle increasing data traffic. The architecture thus provide pathways for additional data

relays as part of an evolving and growing infrastructure.

3http://www.spaceref.com/news/viewpr.html?pid=17424

39

InterPlaNetary Internet (IPN):
a long term architecture for a
connected Solar System

http://www.dtnrg.org
dtn-interest@mailman.dtnrg.org

Figure 12: Interplanetary Internet Concept Architecture[15]

2.2.1 Delay Tolerant Networking

The concept of data relays is the base of the Interplanetary Internet (IPN) concept, which

is shown in Figure 12 [15]. The IPN studies focused on how to implement a Internet-like

approach to networking for space systems. In order to achieve networking in space, a new

data transfer protocol is required in order to take into the long light travel times between

nodes. Using TCP/IP data protocols with such large delays causes timeout errors. Most

ground system network protocols assume near-instantaneous data transfer capability. But

this amount of time is barely long enough to enable communication with the moon [35].

This inspired the creation of Delay and Disruption-Tolerant Networking (DTN), protocols,

such as the bundle protocol and Licklider Transmission Protocol (LTP).

Farrel and Cahill give a thorough overview of the protocols and results from ground

testing in their book [35]. The bundle protocol is designed for a large network of intercom-

municating assets. As the nodes communicate, bundles are passed from node to node until

it reaches its final destination. A bundle is defined as a closed group of data that combine

both reported data and status. Additionally, a bundle can include a series of commands

40

and settings meant for a scientific payload or rover. The progress of the bundles is tracked

through the network, as is the ownership of the packet, to insure it has reached its des-

tination before it is cleared from the source’s memory. The protocol is also developed to

optimize retransmissions due to lost pieces of the bundles and efficiently only retransmit

what is needed, reducing redundant data transfers and allowing for increased throughput.

The bundle protocol proves incredibly useful in integrating data from several distant

sources such as commanding and receiving data from a scientist on Earth to a Mars rover,

which goes through several hops through relays and ground processing networks. DTN

methods have also been implemented on the Commerical Generic Bioprocessing Apparatus

payload on the International Space Station [81][51] in processing data from orbit to primary

investigators on the ground.

Similarly, this work has also led to new developments in spacecraft point-to-point trans-

mission protocols. LTP is an implementation of delay tolerant networking for point-to-point

communication for long travel time deep space links. This protocol is developed in contrast

to standard CCSDS file delivery protocols which are typically implemented mission to mis-

sion. LTP was developed to be a standard development of a transfer protocol implementing

many of the same functions as CCSDS’s file delivery protocols. The main concept of LTP

is the use of freezing timeout timers, when a spacecraft knows that it cannot receive data

due to planetary eclipses for example. This reduces unnecessary timeouts and retransmits

of data. Additionally, each bundle is broken down into a series of individual packets based

on max transmission size. Each piece of data can be prioritized as to reliability desired,

to ensure the important information is transferred whereas less important, potentially re-

dundant data is not transferred or retransmitted. To reduce retransmits, upon reception

of the end-of-message packet, the receive station tracks which packets were successfully

received and transmits that data back to request any missing data. It is also possible to

add headers to these messages to contain information such as a digital signature and host

information. This user-defined header, and also bundles, provide a great vehicle to transfer

additional information to be used in a navigation system. Several implementations of LTP

are currently under development. One project is the Interplanetary Overlay Network being

41

developed by NASA, John Hopkins University Applied Physics Laboratory, and Ohio State

University which includes the bundle protocol, LTP, and other space standards in an open

source package4.

The combination of LTP and DTN protocols enable a very efficient method of transfer-

ring data at large distances, increasing data throughput my minimizing redundant transmis-

sions. These become especially useful as the deep space communication network continues

to grow and additional surface and space assets are integrated into the network. There has

been ongoing development and growing flight experience in deep space, such as EPOXI [67]

and the Deep Impact Network Experiments [104]. Experiments were also performed with

the Disaster Monitoring Constellation satellite sensor network utilizing the bundle protocol

to download images from orbit [64]. These protocols have proved their value in point-to-

point communications as well, increasing efficiency, and provide a communication standard

that can be implemented across transmission mediums to effectively transfer data. The in-

herent structure of the bundles (and breaking down the data sets into transmittable chunks)

provides a great asset and potential for the standard integration of additional information

to support space operations, such as dynamic routing network information or navigation

aids.

2.3 Possible Paths Forward

To develop a new navigation to meet the needs of current and future missions, which will

require increased autonomy and increased accuracy, one can identify several options for

forward development in terms of the current research. For optical navigation, there are

multiple paths forward including improvement and use of variable optics to improve the

range and accuracy. Additional standardization of processing algorithms will also lead to

improved results and increased implementation of Autonav. X-ray navigation can also be

improved by advanced model development and sensor technology upgrades.

Improvements to DSN Earth-based tracking include additional assets to increase ca-

pacity and throughput. Additional research into VLBI techniques utilizing large arrays of

4https://ion.ocp.ohiou.edu/

42

smaller satellites also shows promise [65]. The Electra payload can provide improvements

in several aspects as mentioned above.

There have been several studies looking at implementing GPS constellations around

other celestial bodies such as the Marco Polo Martian navigation system [91]. The main

drawback to this is the large investment and long development time to implement such an

infrastructure. Other studies are looking at building a Navigation Receiver [131], to enable

satellites in High Earth Orbit (HEO) to better observe the GPS satellites and obtain a

fix. Current GPS implementations are evolving to include transmission channels from the

receivers as well as transmission for use during emergencies such as Search and Rescue5.

These advances though are limited to improvements in local orbit, and are not directly

applicable to deep space navigation.

Due to these options, the most robust algorithms operate in a middle ground between

observation and tracking. Being observationally-focused is important to allow for inherent

onboard spacecraft navigation regardless of external signals. But the incorporation of an

external source allows for highly sensitive information about information such as ephemeris,

which can be used in the development of position-fixing algorithms. The main initial dis-

advantage of radio tracking payloads, such as Electra, and a planetary GPS system, is

their reliance on initial infrastructure. GPS has also shown that a very limited data set,

ephemeris and time, can be used by multiple observations to attain an position fix (range

method). Additionally, optical navigation techniques have proven that an observation and

an attitude can also give a fix (range and bearing method). These show the capability of

using each method.

A potential path forward is to combine the two methods, in that the spacecraft is

observing a signal both in terms of the signal and its source, by embedding additional infor-

mation. Ideally a signal used for navigation is an inherent observable deep space. In terms

of potential signals to use, one that has become prevalent in our continuing operations is

communication and data transmissions to spacecraft. For the foreseeable future, communi-

cation with spacecraft will be via means of electromagnetic waves, whether radio, X-ray, or

5http://www.gsa.europa.eu/go/home/galileo/applications/

43

photonic. The planned advancements and current research into the deep space communica-

tion architecture provide an even more prevalent communication signal that can be utilized

for positioning in a range and bearing approach. This can combine the advantages of an

observational and tracking-based navigation system.

2.4 Proposed Navigation Approach

As opposed to ground station infrastructure updates and technology investments in commu-

nications subsystems, this thesis proposes a different solution. Similar to the ranging tones

currently in use during communication, this method considers the integration of navigation

measurements within the information transmitted via the communication data structure.

As opposed to processing the measurements on the ground, the data is processed onboard

the spacecraft, enabling autonomous updates of state during a communication pass. The

operation is considered to be autonomous to the state estimation being performed onboard

the spacecraft, as opposed to ground-based orbit determination techniques, which provide

a state update to the vehicle. The continual improvement in microprocessor computational

capability allows for this shift of analysis from large ground-based computing resources to

onboard processing.

The expanding sources for positioning will be the relays and spacecraft that will form the

InterPlanetary Internet and will integrate into the digital signals from a growing communi-

cation infrastructure. The main assumption that will be analyzed as part of this work, is

the existence of a growing network of satellites operating as relays, fulfilling roles similar to

MRO. The size of the navigation network directly drives its overall performance. This is due

to the increased distribution of signal and measurement sources. The driving aspect behind

network growth is the assumption that as the total number of assets in operation (such as on

or around Mars and on the Moon) saturates to a point in which it is no longer viable to use

only Earth-to-asset communications, a growing network will be implemented. Along with

the discussed studies, this is accomplished by the integration of a new network relay node

spacecraft. The method is applicable to cases involving a minimal number of relays and the

capabilities of point-to-point navigation will also be studied. A minor assumption is the

44

implementation of an LTP-type protocol (or DTN bundle protocol) to increase bandwidth

and allow for increased efficiency in communication between assets, which is standardized

and implemented across all assets in space.

The proposed concept of NNAV is to embed headers containing navigation information

into the communication packets. This information coupled with onboard state estimation of

other spacecraft and planetary bodies can be integrated to perform range, position, velocity,

and ranging measurements. Due to the high rate of communication packet transmissions,

a large number of navigation packets can be integrated to allow for onboard estimation

of the navigation state with multiple measurements. Additionally, it is possible for the

spacecraft to intercept other navigation packets by observing any communication signals.

This capability is directly limited by orbit geometry and signal reception strength. A

concept of operations is shown in Figure 13.

Figure 13: NNAV Concept of Operations

NNAV is an implementation of a multiple ranging method of positioning. By embedding

position and timing information into transmitted navigation packets, each relay or ground

station essentially doubles as a navigation beacon similar to GPS satellites. The main

45

difference is that instead of using four independent instantaneous measurements to perform

a position fix, repeated observation of range from multiple satellites is used for NNAV.

Multiple observations will increase the performance, and this capability grows with the

expansions of navigation assets into the solar system. For example, as a craft approaches

Mars it may reorient to acquire positioning from a Mars relay, such as MRO, in addition

to an Earth orbit-based relay or ground asset.

There are several advantages to embedding navigation packets and performing position-

ing automatically whenever an asset is in communication. As a spacecraft’s orbit becomes

increasingly well-defined, supporting navigation methods, such as DSN tracking, become

secondary. The DSN assets are then primarily used to debug or in safe mode situations.

This frees the Earth-tracking assets to focus on initial Earth-based trajectory characteriza-

tion, and communication, increasing communication bandwidth and simplifying operations.

Additionally, the need for Earth-based navigation analysis is reduced and those facilities

can focus on other development and operations. These assets can then be fully utilized as

high bandwidth Earth data relays.

The other major component of NNAV is the development and determination of what

data to include in the navigation header. One of the main thrusts of this work is to

determine the optimal data set that needs to be propagated, in order to minimize positioning

error. The basic packet simply includes the inertial position and its time of transmission or

simply a transmission location identifier and a time. Combining this with the spacecraft’s

onboard ephemeris estimates can provide a complete measurement of state. The other

information comes from the spacecraft’s onboard clock. Assuming the speed of light in a

vacuum6, the difference between the transmission time and reception time can be calculated

to ascertain the range. This range calculation is similar to that performed by GPS receivers

in calculating psuedorange information. Additionally, the stochastic behavior of the clock

must be modeled and integrated into the analysis methods. Together, this information

forms the base set that can provide a position fix.

6All designed methods of communications involve electromagnetic radiation traveling at the speed of
light, just as different frequencies.

46

Additional information can be integrated to reduce errors and increase accuracy. This

information can include calculated error terms or updated ephemeris of the source’s trajec-

tory through inertial space. Information on the navigation beacon’s attitude can also be

transmitted to help bound errors. A central goal of this analysis is to analyze the packet

structure to ascertain the ideal header to minimize error, while also taking into account the

bandwidth required. Over the course of a conversation between two assets, the traveling

asset can also broadcasting its calculated position back to the navigation host. As this in-

formation is updated and the two sites continue to generate fixes in relation to each other,

the two can converge to a nominal solution. As the two communicate, other data such as

time updates and corrections can be inserted into the packet.

2.5 Integration with Current Protocols

This proposed method requires integration with the data transmission protocols in order

to meet international space data standards [41]. These standards of both transmission

protocols and data packaging are controlled and published by the CCSDS. The Proximity-1

protocol, as mentioned above, serves as a definition of the data packaging, signal generation,

and processing for close proximity space data links [40]. This allows for common definition

of how to implement and utilize these types of communication links to allow for common

operation across multiple vehicles and mission, enhancing inter-operability. This protocol

focuses on the how of the data transmission and the structure of the overall packet to allow

for tracking and error checking. There also exist several standards for packing the data to

put into these transmissions.

The primary international standard is called the Space Packet Protocol [42]. This cap-

tures the basic unit of data transfer between assets and is embedded within other data

transmission protocols. It consists of a primary header, a potential secondary header, and

the user data field. An overview of the Space Packet is given in Table 4 The primary header

content is described in Table 5. This is the required data that must be included in every

Space Packet in order to be properly processed and adhere to the standards. The total

header has a length of sixteen bits and includes a diverse data set: the protocol version,

47

Table 4: Space Packet Structure
Packet Content Byte Length

Packet Primary Header 6

Packet Data Field
Packet Secondary Header 0 to 65536
User Data Field 65536 - Secondary Header Length

Table 5: Space Packet Primary Header
Data Type Number of Bits

Packet Version 3

Packet ID
Packet Type 1
Sec. Header Flag 1
Application Process ID 11

Packet Sequence Control
Sequence Flag 2
Packet Sequence Count 14

Packet Data Length 16

the packet type, whether there is a secondary header, the identification of the application

process, packet sequence flag and count, and number of bits in the total packet. This

information allows for successful parsing and decomposition of the transmitted data.

The NNAV approach takes advantage of the capability of the standard protocols to includes

additional header information. To enable interoperability with the standard Space Packet,

this concept utilizes the secondary header information to include the require navigation data

content. Using already defined pieces of the communication protocols fosters integration

across multiple missions and vehicles by simplifying method implementation. Additionally,

integration into the standard protocols reduces additional design work. Upon implemen-

tation, the methods must be thoroughly tested to ascertain data processing latency, to

support the navigation measurements.

2.6 Benefits of NNAV

These methods provide many advantages in terms of its lifecycle engineering aspects. If

pursuing a new method of navigation, it is desirable to consider the total lifecycle of the

implementation, from initial development to upgrades and maintenance. This is to ensure

that the method is approached in a manner to allow for long-term use.

48

An initial aspect of this relates to the difficulty of implementation. In order to gain wide

acceptance and use, as is required to fully grow the network and increase the benefit of such

a navigation system, it must be easily integrated into existing software and communication

infrastructure. This method is inherently robust, as it is digital and operates independent

of communication medium. The only upgrade required for existing spacecraft is a software

update to enable processing of the header and the algorithms required to acquire a posi-

tion fix. The only potential limit to implementation is the amount of processing power

available, which may be constrained by onboard programming space, computational speed,

and power limitations. As given, it does not require any fundamental hardware upgrades

to be implemented for existing craft, and is independent of communication method. This

demonstrates the practicality of implementation of this approach.

It is also important to develop an approach that can grow and improve over time. This

insures that the initial investment in the algorithms and infrastructure developed (i.e., the

communication relays) provides maximum return, achieves continued performance gains

over time and grows with subsystem technology. As mentioned above, each method of navi-

gation has several paths forward and a majority of these technology development programs

can also be applied to NNAV by taking advantage of improving communication technolo-

gies or integrating additional measurement sources. Additionally, as advances are made

in spacecraft subsystems, such as clock stability, transmission and reception performance,

and computational capability, the proposed architecture can expand and integrate to take

advantage of the additional resources, by using more numerically intensive algorithms, in-

creasingly complex state estimation algorithms, and improved measurement integration and

processing.

2.7 Expected Navigation Capabilities

NNAV integrates and reinforces the current research focused on the improvement of deep

space navigation, enabling increased spacecraft autonomoy. This proposed architecture can

be used in coordination with any of the other navigation systems both in use and in devel-

opment. As the communication network evolves and new spacecraft are integrated into the

49

network, integration of the data headers into the transmission data can be easily attained

through software development and standards. As the specific communication methods de-

velop, the packets can continue to be inserted into the communication packets, independent

of transmission medium. Additionally, as new measurement approaches are implemented

and tested, NNAV will allow for further autonomous navigation integration and augmenta-

tion. From the description and concept of operations, several hypothesis, identified by (H),

can be developed:

(H1) NNAV, which utilizes embedded navigation packets to enable state up-

dates simultaneously with communication, is a viable method of deep space

autonomous navigation.

In order for the navigation system to be deemed viable, it must demonstrate that per-

formance can be gained by the use of these packets to justify their cost in terms of data

transmission requirements. Additionally, the methods must show some verifiable enhance-

ment to current approaches to gain a foothold in further research and at a minimum show

benefit compared to direct propagation of state. This thesis proposes that the integration

of navigation packets into the communication protocol will enable autonomous navigation,

by allowing the spacecraft to perform in-space state updates independent of Earth. The

development of onboard state estimation algorithms and transmission of navigation pack-

ets will enable this capability. Additionally, this is viewed as a simple addition to current

communication protocols through the use of standard header formatting.

(H2)Augmenting traditional navigation state update techniques with NNAV

will provide improved onboard state estimation capability for deep space mis-

sions, especially with a limited network implementation.

As the NNAV architecture is implemented across the growing communication network,

all assets utilizing NNAV will benefit from the increased number of measurement sources.

For early implementations though with a limited number of communicating assets, the

maximum capability of NNAV is as an augmentation of traditional navigation methods.

50

By integrating with other navigation methods early in its implementation, its capability

can be demonstrated and can allow for additional mission navigation redundancy. Through

the embedding of navigation packets into the communications, the spacecraft can continue

to correct its navigation state providing increased frequency of navigation corrections and

updates, minimizing state estimation errors.

(H3) NNAV will reduce the reliance on ground-based state updates and limits

the growth of navigation errors between updates.

By the integration of navigation packets with a limited data set, the frequency of ground-

based state updates can be reduced from current levels of once a week. Even though the

packets may not contain a full state update, their increased frequency of navigation mea-

surements provide a bounding effect on state estimation errors. This is due to daily com-

munication and multiple measurements during a single communication pass. As the NNAV

algorithms are demonstrated on-orbit and further refined and improved, their capability will

increased. Due to the increase in navigation information and spacecraft state estimation

capability, it will possible to increase the time between ground-based state updates and still

maintain navigation accuracy.

2.8 Research Question Development

In order to evaluate the navigation method against the declared hypotheses, analysis must be

performed to capture the performance of NNAV in relation to current navigation methods.

Each of these hypotheses can be linked due to a specific analysis that must be performed.

To capture overall performance, an analysis and testing environment must be developed

to measure navigation capability. This leads directly into the following research questions

which drive the analysis, identified as (RQ):

(RQ1) How can the NNAV architecture be analyzed to capture its navigation

capability?

In order to answer the hypothesis a series of experiments must be performed to capture

the performance and capability of the analysis method. This approach must be able to both

51

capture the processing of state measurements as well as packet-based updates. An anal-

ysis approach is required that can allow for architecture design studies, system definition,

and system evaluation. The end goal of this analysis will be a demonstration of NNAV’s

capability.

(RQ2) How do the NNAV onboard algorithms analyze the embedded navigation

packets into a measurement that can be processed by onboard state estimation

filters?

In order to process the packet-based data, the spacecraft must contain orbit estimation

and propagation routines. Additionally, a range of algorithms and techniques are available

for tracking a spacecraft’s state and processing state updates. A method must be chosen

and rationale given as to the reasoning for the selection of state estimation procedure. These

algorithms will drive the performance of NNAV, as state estimation and propagation are key

aspects of deep space navigation. Additionally, analysis is required on how the packet-based

information can be converted into a typical state measurement that can be used within the

state estimation algorithms.

(RQ3) How are NNAV packets and traditional measurements integrated into a

common framework, both operationally and algorithmically?

To address the hypotheses above that focus on integrated performance of NNAV with

traditional state updates, the state estimation algorithms must be able to process both type

of data within one implementation. The selected state update architecture must allow for a

range of data to be processed and analyzed to generate position, velocity, and time updates

to be processed by the state estimation routines. These must be integrated into a unified

architecture, that can handle a range of data formats and content.

(RQ4) What is the sensitivity of onboard state estimation performance change

to NNAV navigation packet information content?

In order to ascertain the capability of the navigation system, the ideal format of the

embedded navigation header must be ascertained. Additionally, the performance of update

52

algorithms should be captured to show the trade-off between data content, packet size, and

overall navigation system accuracy. The developed analysis must be able to thus capture a

range of potential content information.

(RQ5) What specific NNAV use cases must be analyzed to demonstrate re-

duced reliance on ground-based updates and verify operation in an initial space

demonstration?

To capture the performance, a series of well-defined analysis cases must be defined in

order to allow for the capture of the capability of the navigation system. This provides for

an environment in which to exercise the experiments to capture system performance and

capability. The chosen use cases must also coincide with expected initial implementation

and operation of the developed algorithms in a flight environment and mission scenario.

2.9 Summary of Navigation Concept

Due to the complexity of deep space navigation and need for increasing levels of autonomy

to enable increasingly complex missions, there exists a wide swath of research methods to

define, evaluate, refine, and evolve the current state of the art in deep space navigation

and measurement. The current methods are well-defined and executed but have a large

requirement on ground resources to support state measurement, analysis, and onboard

updating. The current research looks to move the processing to the spacecraft computer

systems with additional sensor measurements, whether by optical, X-ray, or in-space radio

instruments.

This thesis proposes a new approach to deep space navigation that combines aspects

of multiple research approaches to develop a novel integration of the technologies. For the

standard radiometric tracking techniques, these signals are embedded into the communica-

tion transmission by means of toning signals embedded into the spacecraft. These signals

are not processed by vehicle, but rather are simply transmitted back to allow for two-(or

three-)way ranging and ground-based orbit determination. A large amount of ranging and

Doppler observations is required to calculate an accurate state estimate. This new tech-

nique looks to change how these navigation signals are embedded. Rather then at the analog

53

signal level, the proposed method embeds this information into the data being transmitted,

allowing for the onboard processing to process the board, perform a navigation measure-

ment, and update its state autonomously using its onboard state estimation processes. This

allow for state estimation independent of ground-based orbit determination and reduces the

need for long navigation passes. Additionally, by moving the navigation processing to the

spacecraft, the latency of state updates is reduced due to the time required by ground-based

data processing and analysis.

The navigation architecture envisions the growing in-space communication infrastruc-

ture, in particular the data relay nodes, additionally serving as a navigation network. This

expands on other research focused on inter-spacecraft ranging techniques [34] [113]. By

utilizing a physically dispersed group of hosts for measurements of range and range-rate,

this method includes some aspects of GPS. The main difference is the usage of embedded

navigation packets into the transmission packets as opposed to the use of a signal processing

approach. GPS receivers measure range by observation of the phase of a predefined ranging

sequence using embedded psuedorandom sequences, known as Gold Codes [87]. Interspace-

craft ranging has also been used for gravity determination and characterization [93], such

as the Gravity Recovery and Climate Experiment Mission [117], though the orbit determi-

nation and gravity analysis are done via complex ground analysis models. These missions

and techniques provide the legacy implementations and inspirations to the proposed com-

munication and navigation integrated architecture.

The proposed communication-based packet architecture provides an alternate path for-

ward via the integration of navigation data into the transmitted data content. Prior research

in interspacecraft and communication network design provide a strong foundation for the

NNAV architecture. Through the embedding of these navigation packets, this method

augments traditional navigation methods allowing for onboard state estimation and pro-

cessing. Spacecraft-based processing enables vehicle position estimation autonomous of

ground-based orbit determination processes, reducing the need for lengthy navigation ob-

servation passes and reducing the navigation update latency. To capture the performance

of this navigation system and demonstrate its capabilities, the proposed research questions

54

must be addressed to support the hypotheses via a series of experiments.

55

CHAPTER III

NAVIGATION ANALYSIS APPROACH

This chapter presents the developed approach to designing, architecting, and modeling the

navigation concept presented. A tool is needed that can capture a wide range of function-

ality in terms of state estimation, communication modeling, and state propagation. The

proposed approach integrates elements of Model-Based Systems Engineering and Agent-

Based Modeling into a unified conceptual framework. This approach enables development

of a simulation environment that can capture both the performance of specific navigation

systems, and model network-wide emergent behavior. This modeling and simulation envi-

ronment is driven by the conceptual framework development. Additionally this will enable

evaluation of state estimation performance as the individual agents increase in autonomy

and the network evolves over time. The motivation for this and an overview of the analytical

approach is described in this chapter.

3.1 Need for Navigation Analysis

To answer the research questions required to test the hypotheses, a series of experiments

must be performed to address the performance and capability of the proposed packet-

based navigation system compared to current state-of-the-art methods. Several methods are

available, these include analysis by comparison to already existing systems, extrapolation

from existing systems, and implementation and observation of performance. Due to the

unique aspects of this navigation method, its performance cannot be extrapolated from

current analysis methods. Additionally, state estimation performance data is not readily

available to enable for comparison or extrapolation for comparison.

A standard implementation of state estimation or measurement processing for deep

space navigation does not exist. Though some basic algorithms and techniques carry over

from mission to mission, the algorithms are customized to suit the specific scenario under

analysis. This includes varying the navigation requirements as well as the level of fidelity

56

used in gravitational modeling. For example, the New Horizons spacecraft takes advantage

of Earth-based measurements for observation [77]. Due to the great distances involved in

performing two-way ranging, advanced tonal signals are being used to enable signal detection

in such a low level of received power detection. Additionally, due to the uncertainties in

mass distribution and orbit between Pluto and Charon, the ground-based measurements

are being used to determine both the position of New Horizons as well as the orbits and

gravitational properties of Pluto and Charon. This requires a very complex state estimation

filter in which both the vehicle position, the precise planetary positions, and gravitation

fields must be modeled.

There is no standard spacecraft navigation performance analysis suite for deep space

navigation from which to infer. Therefore, additional experiments must be performed to

gather data on the proposed navigation system’s performance to enable design and analysis.

The greatest fidelity data comes from real-world experiments. But due to the extreme cost

and time required to develop a deep space probe, this is not possible. Because of the large

amount of investment in such systems and lengthy development cycles, it is not possible

to integrate this test into existing spacecraft (though it could be via means of a software

update). A large amount of forward planning and integration is required to perform any

tests on an orbital platform.

As such, the data required for analysis must take its basis in analytic and computational

methods. A modeling and simulation environment will serve as the experimental tool to

perform analysis on system capability. This will need to address a range of use cases and

measurement types in order to track the system performance over time for a variety of nav-

igation architectures. The environment will act as a surrogate to physical experimentation

in order to allow for system analysis. This approach does have some slight limitations.

It is impossible to develop exact gravitational and force models. An analytical tool will

provide evaluation to levels of accuracy that are considered reasonable for this type of early

conceptual development. Additionally, even though ever-increasing fidelity models can be

included, it is important to focus on initially capturing high level performance parameters,

such as state estimation errors. The implementation of this framework will demonstrate a

57

proof of concept mission, allowing it to prove the feasibility of NNAV for further develop-

ment and analysis. As initial analysis results are captured and processed, it is possible to

identify the key system performance drivers and focus further modeling efforts on improving

the fidelity of the environment. The specific requirements of the analysis environment are

given in the following section.

In addition to developing an modeling and simulation environment to conduct analysis

for a specific mission and navigation system, there are also higher-level needs that the

conceptual framework must meet. As discussed previously, there is no standard deep space

navigation analysis suite. Due to the wide range of mission scenarios being planned and

large investments in these missions, it is important to develop a validated, proven, and

open conceptual framework to centralize mission planning and performance verification.

This seeks to integrate deep space navigation functionality into a unified environment to

allow for improved collaboration and mission planning across the design cycle. This requires

thorough analysis of a generic deep space navigation system in term of its requirements,

use cases, operational scenarios, and structure. Capturing this data will allow for shared

verification, validation, and documentation of the underlying analysis approach and serves

as a method to spread knowledge of the tool among its users. In order to be applicable

to all deep space navigation methods, this conceptual framework can be used to develop

generic models that can be implemented across missions and scenarios.

3.2 Required Functionality of Framework Implementation

The defined hypothesis and research questions form the basis of the requirements for the

implemented framework’s modeling and simulation functionality. These needs will inform

the development environment selection that will then be used to perform the analysis. The

defined navigation functional requirements follow from the research questions as follows:

To address (RQ1), defined in the previous chapter, a series of functions can be identified

to define the operation and functionality of the software-based simulation environment.

These describe the main capabilities required to answer the research questions, enabling

analysis on the identified hypothesis. This research question focuses on the need to capture

58

system-level navigation performance. First, the performance parameters must be identified.

Typically, a navigation system’s capability in measured in terms of its state estimation

errors. For an inertial frame I, the navigation position and velocity error can be identified

as follows:

εPosition =
√

(xtrue − xest)2 + (ytrue − yest)2 + (ztrue − zest)2 (1)

εV elocity =
√

(vx,true − vx,est)2 + (vy,true − vy,est)2 + (vz,true − vz,est)2 (2)

εclock = tsc,estimated − ttrue (3)

This measure captures the difference between the estimated and true state. Another

parameter that must be included is the clock error, due to the timestamping of packet

arrivals being used in processing. For performance analysis and comparison, typically the

normalized value of each error will be used. An additional performance measure is the

number of measurements and the data of the required packets. Also, to capture the time-

based nature of the navigation problem, integrated error terms have also been identified

to capture the total integrated position and velocity error over time. These are given in

Equations 4, 5, and 6. Due to the stochastic nature of the analysis, these values are typically

numerically integrated from step to step, or they are calculated via post-processing analysis.

εposition,integrated =

∫ tf

t0
|εposition(t)|dt (4)

εvelocity,integrated =

∫ tf

t0
|εvelocity(t)|dt (5)

εclock,integrated =

∫ tf

t0
|εclock(t)|dt (6)

These terms track cumulative error over time. Due to the infrequent and varying time

intervals between measurements, this measure captures the integrated performance of the

59

state updates and propagation effects. This is preferred to average error, which cannot

capture the time between updates. These identified parameters focus solely on the state

estimation performance of the navigation method.

With the desired measures identified, it is possible to break down each requirement

into the functions required to calculate each. At the highest level, the simulation must

track the true state of the spacecraft and the estimated state of the vehicle. To capture

the state of a vehicle, whether true or estimated, the implementation must be able to load

reference initialization data as well as include propagation models to integrate the vehicles

estimated or true position. Additionally, for reference to true missions, the toolset must be

capable of loading true reference vehicle data. In order to propagate the vehicle state, the

simulation must estimate the inertial and non-inertial states on the vehicles. To capture the

time-based nature of the simulation, the tool must also be capable of modeling clock error,

as well as any onboard corrections that may be performed. Additionally, to integrate the

state method, the implemented framework must include the capability to solve Ordinary

Differential Equations in order to propagate the modeled state.

In order to capture the navigation performance of the proposed method, it is necessary to

capture both the measurement modeling and the state estimation capability. To trade and

capture the widest variety of measurements possible, the implementation of the framework

must have a well-defined modular interface to additional analytic models to capture a range

of spacecraft-based observations. The ability to integrate modular state estimation models

is also necessary in order to trade various algorithms. A well-defined interface is required

in order to allow for a wide range of analysis cases and vehicle scenarios. A summary of

these requirements is given in Table 6.

The second research questions focuses on the capability to capture the performance of

the navigation packets. The simulation environment must be capable of modeling space- and

ground-based communication assets in terms of their transmission and reception capability.

This is needed to monitor when two spacecraft can close a communication link and transfer

data. Modeling the deep space telecommunication link is crucial to identifying when the

60

Table 6: Requirements to Address (RQ1)
Capture Navigation Performance

1.1 Initialize body to reference/input data

1.2 Compare estimated to reference/truth data

1.3 Calculate non-inertial forces on body

1.4 Capture inertial forces on body

1.5 Integrate body’s state

1.6 Modular measurement interface

1.7 Modular state estimation interface

1.8 Calculate State Errors as a function of time

Table 7: Requirements to Address (RQ2)
Capture Packet Performance

2.1 Perform Deep Space Link Analysis

2.2 Autonomous Packet Generation

2.3 Capture Transmission Delays

2.4 Autonomous Reception and Processing of Packet

2.5 Integration of Packet with State Estimator

2.6 Onboard estimation of other SC states

packets can be processed. Additionally, the implemented simulation framework must be

capable of the generation of the navigation header content based on an asset’s best known

state information. The simulator must also process the packets forward in time to determine

the true time of arrival to capture transmission delays, and forward the packet to the

correct agent at the true arrival time. This autonomous generation of outgoing packet

and their reception is a key component in the simulation infrastructure. Additionally,

the state estimation models must be capable of processing the packet content into usable

measurements which can be integrated into a state update. In order to process the received

packet, the spacecraft can make no assumptions on the packet content, and therefore must

propagate the other body’s state in addition to its own. This is used both for packet

processing as well as determining when to initiate communication links and when it may

be in contact range with other assets. These requirements are all summarized in Table 7.

To analyze the trade-offs between navigation packets and state measurements, it is im-

portant to utilize a state estimation algorithm that can integrate both types of information

61

Table 8: Requirements to Address (RQ3)
Packet and Measurement Integration

3.1 Interface to external measurement models

3.2 Model Autonomous or Scheduled Measurements

3.3 Process measurement into state estimator

into its state estimation techniques. Additionally, the simulation environment must be ca-

pable of generating measurements at predefined intervals (or autonomously generated) to

model an onboard navigation sensors. To enable comparison against a wide range of obser-

vation methods, the estimator must have a well-defined interface for external measurement

generation and integration to the state estimation filter. An overview of these is given in

Table 8.

The fourth research question (RQ4) addresses the need to perform design space explo-

ration and analysis. In order to trade packet, measurement, and spacecraft parameters, the

simulation environment must provide links to standard design tools. These include a Monte

Carlo analysis package to facilitate statistical design space exploration and identification of

trends in performance due to variable inputs. Additionally, the tool must support an ex-

ternal file input interface to allow for loading of predefined analysis cases to enable design

space exploration and sensitivity studies. An interface to optimization routines is required

to allow for the determination of optimal packet content, as well as optimal measurement

updates. These design tools are required to support analysis trades and optimization. As

part of the analysis, the specific frequency of measurements and packets, specific packet

content, and state estimation parameters will require the use of Monte Carlo analysis and

optimization in order to provide optimal parameters for a given vehicle and mission sce-

nario. Additionally, other design tools may be needed to support identification of system

performance trends. This can be implemented by means of a well-defined interface to the

framework implementation. Table 9 provides a summary of these requirements.

Lastly, the implemented simulation framework must be capable of running a variety

of cases to capture specific analysis scenarios. (RQ5) focuses on the development of these

62

Table 9: Requirements to Address (RQ4)
Design Trades and Analysis

4.1 Model and vary packet content and measurements

4.2 Integration with Monte Carlo tools

4.3 Capability to perform optimization on packet properties

4.4 Modular interface to external design tools

Table 10: Requirements to Address (RQ5)
Use Case Definition

5.1 Support a range of analysis scenarios

5.2 Modular input to allow for saving and loading of use cases

5.3 Robust framework to variety of studies

usage scenarios. The software tool must have the capabilities to analyze a wide range of

user-defined scenarios to capture a range of performance. The requirements are identified in

Table 10. These include verification cases as well as specific design cases that focus on spe-

cific functionality and integration of packets and measurement types. Thus the framework

implementation requires a well-defined set of interfaces that allow the designer to select

and build use cases, with an analysis backend to support a range of missions and analysis

scenarios.

3.3 Current Methods of Navigation System Analysis

There are several approaches to the development of simulation software to address deep

space navigation design. Each has a unique implementation approach and typically focuses

on one aspect of the design. This section characterizes a range of currently available ap-

proaches. Each will be characterized in terms of the identified functional requirements to

enable analysis of a packet-based navigation architecture.

Analysis of the underlying physics and geometry of navigation form the basis of any

simulation architecture capturing the performance of a navigation system. These methods

focus on the general physical principals involved in communication link analysis and ob-

servation methods to derive performance equations. Identification and modeling of noise

parameters allows for predicting measurement accuracy. By capturing the distance and ori-

entation between assets, it is possible to model and analyze individual observations between

63

assets.

This method of analysis also includes modeling and prediction of the forces acting on the

spacecraft, including gravitational and other stochastic effects. By capturing the applied

forces on a body and the use of numerical integration techniques, it is possible to simulate the

trajectory of a spacecraft. In addition to modeling the dynamics of the vehicle and the actual

measurements, it is also important to develop an implementation of the state estimation

algorithms under analysis. The combination of these assets allows for the development of an

integrated toolset to capture both the true dynamics of the spacecraft as well as the onboard

estimate of the vehicle’s state parameters through integration of modeled measurements

and use of implemented state estimation filters. Through direct analysis of the nonlinear

dynamics and filtering process, it is possible to capture the performance of the algorithm.

Additionally, the calculation of state update parameters allows for direct assessment of the

navigator’s performance. Due to the random nature of the measurement errors, a Monte

Carlo Analysis is typically used to capture mean performance over a series of observations.

An additional approach to navigation system performance is the use of linear covariance

(or LINCOV) modeling [49] [115] [20] [72]. This method involves the use of a linearized

parameter estimation model to estimate the errors in the estimated state. It does not

directly model the navigation updates, but rather focuses on capturing the predicted error

over the course of the trajectory. This is performed by linearizing the errors about the

design trajectory. This allows for analysis of the estimated capability of the approach. By

using the linearized models, it is possible to capture the performance of the estimators and

measurement with only one analysis case.

The analysis methods mentioned are all computational-driven, requiring implementation

in an analysis tool. Several additional approaches to simulation design are described by [109]

[133] [134]. These references present methods to approach the analysis, though typically in

the scope of a particular analysis scenario.

64

3.4 Generic Framework Approaches

Due to the continued increases in computational processing capability, both in terms of

computational capacity and available memory, computer-based experiments have become

a staple of engineering systems design and analysis. The increases in processing capabil-

ity enables both increased fidelity of the analytical models developed and reductions in

processing time. This allows for either faster analysis turnaround or improved capture of

stochastic effects through the use of Monte Carlo simulation, increasing the number of anal-

ysis performed. The use of these modeling tools also allows for a great deal in flexibility

and application to a wide range of scenarios. As these computer-based modeling and simu-

lation methods continue to gain traction in engineering conceptual design and architecture

analysis, there is a growing push to address this development using a formal approach.

This is particularly true in terms of software systems to enable design and code re-use[95].

This is needed to enable understanding and provide development paths for large intricate

simulation architectures.

From roots in software engineering and development, the concept of a framework has

emerged. A thorough definition of framework is given by Riehle[95]:

They (frameworks) represent the domain as an abstract design, consisting of

abstract classes (or interfaces). The abstract design is more than a set of classes,

because it defines how instances of the classes are allowed to collaborate with

each other at runtime. Effectively, it acts as a skeleton, or a scaffolding, that

determines how framework objects relate to each other.

This notion is used to capture the system under analysis to provide a foundation for analysis

and design, providing definitions, prototypes, and interface definitions for objects within

a system. This has been applied to design of simulation of a variety of systems such

as missiles[76], satellites[83], or tactical simulations[1][22]. This is then used to feed into

system or software design. By developing a validated generic framework, the design is able

to use it as a foundation for further analysis studies and design of similar systems within

the specific domain An example of this is using a spacecraft design framework’s elements

65

across a variety of mission scenarios. The investment in understanding and documenting

the system provides a common definition of the system and the analysis functions required.

This need has developed into research and development of generic analysis frameworks,

such as described in [88] which applies interface design and system decomposition to allow

the generation of integratable software blocks. These architectures generalize the analysis

needs and functionality in order to provide a computational capability independent of the

specific scenario. Formal building blocks of analysis needs are defined at a low level and

are combined to form the analysis environment. Functional blocks, specific to a defined

analysis case, are then built upon these foundations to form an architecture or scenario under

study. The development of a generic conceptual framework allows the decoupling of specific

performance or operational modeling from the underlying operation of the simulation. This

provides for a standard conceptual framework that supports a wide variety of missions

and scenarios. These can be analyzed by defining operations, behaviors, calculations, and

implemented models. By utilizing a common simulation framework, it is possible to focus

effort on the system performance and analysis models.

Primary research in the field of framework design deals with capturing increasingly com-

plex systems. This complexity of the framework and the objects required to build it up are

one of the disadvantages of framework design as described by [95]. Riehle approached the

framework design by defining roles to each aspect of the architecture and using that to drive

high level analysis and modeling. It is also difficult to capture the independent behavior of

complex objects in the architecture while still maintaining their collaborative nature. This

has been addressed by Siegfried[107] in the development of a standard architectures for

defining behavior in complex modeling systems. The main complexity with framework de-

velopment remains with the definition of the system and the usage of modeling approaches

to capture these complex relationships. One such modern integrated approach is the in-

tegration of SysML and Model-Based Systems Engineering, which use formal graphical

modeling to capture complex system behavior, requirements, and structure. This approach

is described later in this chapter, after an overview of the current relevant space navigation

disciplinary tools available.

66

3.5 Current Tools and Implementations

There are several tools available for the analysis and design of space missions. Each has a

primary focus and objective, and is particularly geared towards a specific analysis problem.

The current field of deep space navigation and communication design was surveyed to

provide an overview of some of the primary tools that could be applied to the proposed

navigation architecture. These are from a variety of institutions, government to academic

to commercial, and together provide analysis towards many assets of mission planning and

analysis.

3.5.1 Orbit Determination Toolbox (ODTBX)

The Orbit Determination Toolbox1 is a project based out of the Goddard Space Flight

Center. The product consists of an analysis package for the MATLAB programming en-

vironment to allow for orbit determination analysis and design. A range of measurement

models and several state estimation methods, such as sequential state estimation, batch

filtering, and linear least squares, are included. This tool models, in detail, a range of

spacecraft navigation observations.

The analysis package has a strong focus on low earth orbit analysis cases, including

detailed gravity models of the earth by default, and providing ready-made dynamics models

for these types of missions. The tool is driven by input dynamics models both for true and

modeled trajectories, and does not support the loading of external data to drive a true

trajectory. The modeling environment does support a wide range of measurement and

analysis capability.

3.5.2 STK

AGI’s Satellite ToolKit2 is a top-of-the-line package for orbit propagation and mission anal-

ysis. It includes extensive packages for designing missions and supports highly detailed

visualization capabilities to aid in analysis and documentation. This tool has wide usage

for determining link design, coverage, and mission planning.

1http://sourceforge.net/projects/odtbx/
2http://www.agi.com

67

There is not much capability though in terms of navigation design. While the software

can model the communication links required for a GPS-like navigation constellation and

can propagate a vehicle’s trajectory, the underlying navigation filters are not implemented.

The primary interface to navigation studies occurs through the use of external software that

can link with the primary STK executable.

3.5.3 Open-SESSAME

Open-SESSAME is the Open Source Extensible Spacecraft Simulation and Modeling En-

vironment Framework [123]3. This is a software package developed in C++ at the Space

Systems Simulation Laboratory at Virginia Polytechnic Institute and State University and

released in 2003. The intent of this development library is to develop a standard functional

basis for simulation analysis for a range of spacecraft with a focus on individual vehicle con-

trol analysis and design and wide intended applicability. The software itself provides the

functional backend of a simulation. Though the library has a wide range of functionality,

its last developed release was in 2003, and has not seen much recent activity.

3.5.4 Space Network Protocol Emulators

To model the communication networks, protocol emulators similar to the Interplanetary

Overlay Network simulation4 or other network emulators [31] are typically used. This tool

provides very detailed modeling of the communication processes and data transfer rates,

focusing on the implementation and capabilities of the protocol. This allows for a range

of studies of network distribution and infrastructure. The models are not linked with

spacecraft estimation routines or autonomy models, focusing on the communication aspects

of the mission analysis.

3.6 Gaps of Current Tools to Required Functionality

Each of the available tools has it own strength and unique approach to modeling spacecraft

capabilities. All of the packages follow a simulation-based dynamic modeling approach

3http://spacecraft.sourceforge.net/
4https://ion.ocp.ohiou.edu/

68

to the analysis. ODTBX additionally includes the capability for linear covariance-based

analysis for state estimation performance evaluation. These tools individually allow for a

very thorough examination of state propagation routines, orbit determination for low earth

orbit, and communication protocol modeling.

In order to capture the capability of the emerging navigation systems a framework is

required that includes all of these aspects of analysis. All of these must be included due

to the highly integrated nature of communication, navigation, and timing in modern deep

space navigation systems. Research into new autonomous navigation system design is done

individually for each mission, with specialized software and analysis tools typically tied to a

specific mission or technology. A framework is required that allows capture of all aspects of

the navigation problem, allowing for an integrated simulation capability, from requirements

analysis and conceptual to model implementation.

The above-mentioned tools each address a particular function within the needed frame-

work’s requirements. A summary of each tool’s capabilities are given in Table 11. But

the integration and availability of the tools is a problem. STK is a very capable toolset

in terms of mission planning and trajectory design, but does not have much capability in

terms of deep space navigation. ODTBX is also very powerful, but is tied to the MATLAB

computational environment, which is closed source. ION and Open-SESSAME are both

open source packages and allow for analysis across a range of platforms. The only down

side is their limited capability in space navigation, and need for large integration efforts.

While ION is currently under active development, Open-SESSAME’s last release was in

2003, and has limited documentation and user base available. This is in contrast to the

other packages which are all in active use.

3.7 Framework for Navigation System Simulation and Analysis

As described above, there are gaps in the capability and approach of current tools to enable

the analysis of a packet-based navigation system, such as NNAV. Several tools are available

that do a strong job of spacecraft state propagation. There also exists a very capable set of

tools that have been developed to perform ground-based orbit determination with accurate

69

Table 11: Software Package Capabilities

Analysis Requirement O
D

T
B

X

S
T

K

O
p

en
-S

E
S

S
A

M
E

IO
N

1.1 Initialize body to input data
√ √ √

1.2 Compare estimated to reference/truth data
√ √ √

1.3 Calculate non-inertial forces on body
√ √ √

1.4 Capture inertial forces on body
√ √ √

1.5 Integrate body’s onboard state
√ √ √

1.6 Modular measurement interface
√ √

1.7 Modular state estimation interface
√

1.8 Calculate State Errors as a function of time
√

2.1 Perform Deep Space Link Analysis
√ √

2.2 Autonomous Packet Generation

2.3 Capture Transmission Delays
√ √

2.4 Autonomous Reception and Processing of Packet

2.5 Integration of Packet with State Estimator

2.6 Onboard estimation of other SC states
√

3.1 Interface to external measurement models

3.2 Model Autonomous or Scheduled Measurements
√

3.3 Process measurement into state estimator
√

4.1 Model and vary packet content and measurements

4.2 Integration with Monte Carlo tools
√ √

4.3 Capability to perform packet optimization

4.4 Modular interface to external design tools
√ √ √ √

5.1 Support a range of analysis scenarios
√ √ √ √

5.2 Modular input and interface to use cases
√ √ √ √

5.3 Robust framework to variety of studies
√ √ √ √

70

capture of a wide range of error sources. For in-flight navigation, in-house algorithms and

processes are slightly tweaked and adapted to new problems. This allows for a large flight

legacy as well as the continual improvement of the navigation functionality. But for entirely

new navigation systems or measurement approaches [105] [74], typically the analyst must

develop an analytical tool from the ground up to capture the underlying physics of the

problem. These developed tools usually become in-house mission-focused efforts.

In order to speed analysis of advanced navigation systems and to be able to quickly

trade competing measurement approaches and sensors, a standard library is needed to

both aid in initial design and to allow for architecture development. A standard package

of analysis tools also allows for the user to increase the functionality of the environment

over time by including advanced force models, timing models, measurement techniques,

and advanced state estimation approaches. These sub-models are then integrated into one

standard simulation and modeling environment which is linked to systems analysis tools,

such as optimizers to maximize state estimation parameters.

As mentioned above, ODTBX takes initial steps in this direction for developing a stan-

dard space navigation package, though it is more focused on orbit determination than

autonomous state estimation. It provides a capable analysis environment for navigation

systems analysis. The tool does not however include the capability for multiple spacecraft

propagating at the same time or for onboard estimation of other spacecraft, which is re-

quired in NNAV. Additionally, the arrangement of the tool with its layers of functionality

can provide a steep learning curve to additional functional implementation, both for state

estimators and measurement models. The tool is also limited to computers with MAT-

LAB(R) functionality.

To enable a range of navigation experimentation and analysis, a new architecture can

be shown to both ease software development while still allowing for a complex system

to be modeled. This proposal recommends a framework which integrates well-developed

Model-Based Systems Engineering techniques and tools to capture the functionality of the

simulation modules to provide verification of the development of the environment. These

models will additionally serve as a knowledge repository for future module design and

71

Packet
Received

Measure
Time of

Reception

Parse Time of
Transmission

State in
Packet

?

Update
Estimated

State

Parse
Transmission

State

Estimate
Transmission

State

Calculate
Estimated

Travel Time

Measure
Signal Travel

Time

Yes

No

Figure 14: Typical Algorithm Flow Diagram

implementation, providing strong documentation of the interfaces and analysis approach to

aid in future development efforts. This framework can also be used to capture and define

potential behaviors to be implemented in the simulation environment.

The other factor in allowing the simulation of a complex network of interacting inde-

pendent spacecraft is formulated from Agent-Based Modeling approaches. This method of

analysis focuses on the development and study of complex behaviors of systems of assets. It

is specifically focused on analyzing independent agents, which have some level of autonomy

and decision-making. These techniques will inform the development of the environment in

order to allow for advanced studies and further analysis of spacecraft behavior, enabling re-

search into areas of adaptive navigation. These two driving approaches are briefly described

below.

3.7.1 Model-Based Systems Engineering and SysML

With the advancement of computer modeling tools and standardization of computational

languages to capture system relationships, the method of Model-Based Systems Engineering

(MBSE) has emerged. This approach to systems engineering provides an alternate approach

to the current complex requirements traceability methods currently in use. The main driver

for a model-based approach is the deficiencies in traditional document-based approaches.

Some main issues with this process are that the specifications are often defined after the

fact, purely as a documentation measure, the written words tended to be ambiguous, and

the requirements generated are seen as nothing more than a paper effort[37].

72

Current applications of requirements tracking and functional decomposition are devel-

oped using tools intended to be used as presentation aids (such as PowerPoint), diagramming

tools (such as VISIO), and spreadsheet utilities (such as Excel). An example of this type of

diagram is the generation of algorithm flows diagrams in PowerPoint such as that shown in

Figure 14. This model is static and created within a presentation tool, which limits the rep-

resentation richness and the capability for computer-aided processing and integration. The

current methods capture requirements and system definition in complex diagrams, that are

typically tailored to a specific group or user and have limited re-usability. These approaches

serve mainly to present information to a human, with limited uses beyond documentation.

As detailed requirements tracking techniques are applied to increasingly complex engineer-

ing applications, the tools becomes increasingly problematic to generate and read. This is

due to the size of the data and the complex internal relationships.

The disconnect between requirements and design engineers increases the risk of miscom-

munication. Issues such as un-addressed requirements and differences between the system as

designed and implemented, become increasingly probable as an effect of using non-standard

disconnected design and analysis tools. As demonstrated above, the current models of the

system are typically static, and once created can be difficult to change or update. As these

systems analyses become more complex and are linked to the analysis and implementation,

there is a growing need for an executable, dynamic architecture that can easily change over

time, be easily editable, and be tied directly to the actual implementation and physical

properties of the system under study.

As opposed to these traditional documentation techniques, MBSE is the formal appli-

cation of models to support systems engineering throughout the project lifecycle[63]. This

is similar to the application of 3D feature-based CAD models to support mechanical de-

sign in comparison to traditional 2D drafting approaches. These 3D CAD models provide

greater insight into the system as a whole, and are directly geared towards implementing

clear traceability from systems requirements to the systems operational modes to its de-

signed structure and specific implementations. These methods link the standard systems

engineering practices through these formal model constructs to both capture knowledge and

73

develop a system under analysis[46]. This combination allows the designer to easily track

the assumptions and functional and structural decomposition of the system for traceability

and for knowledge transfer. Additionally, this can act as a bridge between the systems en-

gineer and designer, allowing for allocation of requirements to specific systems[46]. There is

a wide range of implementations of MBSE techniques[32]. These techniques have been used

to develop and optimize in applications from spacecraft control[70] to subsystem design[71]

to communications systems[120].

One current embodiment of these techniques is an adaptation of the Object Manage-

ment Group’s (OMG) Unified Modeling Language (UML)5, which is widespread in support-

ing software engineering. This new approach is named the Systems Modeling Language,

SysML[46]6. SysML pulls in standard systems engineering model views and nomenclature

into a formal standard, building on a subset of UML functionality[127][46]. The formal

definition of SysML[86] is given as:

The OMG Systems Modeling Language (OMG SysML) is a general-purpose

graphical modeling language for specifying, analyzing, designing, and verifying

complex systems that may include hardware, software, information, personnel,

procedures, and facilities. In particular, the language provides graphical repre-

sentations with a semantic foundation for modeling system requirements, behav-

ior, structure, and parametrics, which is used to integrate with other engineering

analysis models.

SysML has four self-defined pillars that capture multiple views of a system. These are:

Structure, Behavior, Requirements, and Parametrics[86]. These four pillars allow compre-

hensive definition of a system, from initial design to implementation. SysML has broad

capability to support system engineering in architecting new systems via these pillars. It is

a broad standard supported by groups such as the OMG and the International Council on

Systems Engineering (INCOSE) [86] [127].

These methods have been implemented to address a variety of systems engineering

5http://www.uml.org/
6SysML is a trademark of Object Management Group, Inc. in the United States and/or other countries.

74

problems. For example, the INCOSE MBSE Space Systems Challenge Team[26] is cur-

rently researching and documenting the application of MBSE through SysML to a series of

spacecraft systems design problems[112] to both expand current methods and demonstrate

capability to foster increased usage. Recent progress in this work[111] documents the in-

tegration of modeling tools and the morphing of SysML into an executable architecture.

This was achieved by using software interfaces, such as ParaMagic7, to develop embedded

executable functions within the SysML views as well as links to external software analysis

tools such as STK and Matlab. The team was able to demonstrate the analytical function-

ality within the SysML environment to allow for calculation of communication parameters

and simulate time-dependent mission parameters. The implementation was limited by the

difficulties in integrating the broad array of external software environments into one model-

ing and simulation environment. This was noted to cause difficulty in software integration

and debugging and demonstrates the difficulties in integrating complex simulation software

with the SysML framework.

In addition to space systems, MBSE and SysML have been applied to a large variety

of systems engineering problems. In order to provide for documentation of the developed

SysML models and requirements tracing and automated change tracking, Delp et al. have

developed an extension of the framework to allow for automated document generation and

extraction of key model information[16]. Bajaj et al. have integrated the SysML archi-

tecture with a discrete event simulation, Orchestra, for the design of embedded electronic

systems[4]. This implementation focused on defining the structure of the simulation within

SysML and using domain specific language to allow for a direct simulation of the elements.

Additional work by Bajaj focuses on the development of a full-scale System Lifecycle Man-

agement (SLIM) software platform that links a wide variety of analytical capabilities to

allow for comprehensive system design and analysis built around a central SysML system

definition[5]. This work also documents the application of these principles to satellite de-

sign, military operations, and financial planning[6]. Vanderperren applied the requirements

analysis aspects of SysML to capture system-on-a-chip design[126], demonstrating how this

7http://www.intercax.com/products/paramagic/

75

application of SysML allowed for improve stakeholder communication. This has also been

applied to submarine weapon systems[90] and space telescope design[69].

These applications show the wide usage and growth of MBSE and SysML. A focus of

current research in this field is the integration of complex simulation tools with the modeling

environment. Although the current tools offer software packages to integrate the systems

modeling with detailed analysis, these are very tool-, vendor-, and application-specific,

due to the complexities of software integration. With continued usage and development

of the SysML standard, these integration libraries will become increasingly important to

demonstrate a centralized executable environment that allows for system design, modeling,

and evaluation.

3.7.2 Agent-Based Dynamic Simulation

Agent-Based Modeling (ABM)[128] [82] [21] is an approach to dynamic systems simulation

that focuses on the analysis of systems which are highly interactive and often stochastic in

nature. This field of simulation focuses on observing high level systems trends, which are

a result of the bulk behavior of the interacting agents. ABM builds on the development

of Discrete Event Simulation, which focuses on analyzing a sequence of operations and

their interactions, but expands the approach to a continuous systems allowing for changing

operations. The analysis focuses on the identification and emergence of complex behaviors

of the group of systems. The systems under analysis are geared towards capturing the

dynamics trends in the population. There are many simulation approaches for implementing

this analysis, but most involve independently operating agents that can interact and act on

their own.

For the analysis of a deep space navigation and communication network, each spacecraft

can be considered an independent agent, with onboard measurement processes and unique

errors. The incorporation of these simulation methods allows for the capture of a wide

range of spacecraft behaviors, including spacecraft pointing, inter-spacecraft link scheduling,

and data transmission. More importantly, this type of modeling allows for capture of the

performance of individual spacecraft assets as well as the performance of the entire network.

76

These methods provide a robust approach to implementation and simulation design to allow

for a variety of studies allowing in-depth analysis of a system of spacecraft and their intrinsic

individual and group behavioral trends.

3.7.3 Integrated Approach to Navigation System Development

This proposal develops an integrated approach to deep space navigation simulation and

analysis. This methodology builds on the capabilities of both techniques described to take

advantage of their unique capabilities. Model-Based Systems Engineering techniques will be

used to identify the functionality of the tool, from the high-level requirements to the func-

tional allocation of specific implemented software modules. The use of these tool is similar

to other applications of MBSE techniques to capture deep space communication networks

[9]. These methods are used to enable a thorough understanding and knowledge capture

model of deep space navigation. The application of these techniques at multiple levels of

composition allows for both analysis of spacecraft subsystems interactions, and captures the

implementation of specific measurement models. The robust capability of MBSE allows it to

capture a wide array of data. It can be used to capture spacecraft composition, interactions

with both internal and external agents, specific activities and behaviors, and instantiations

of the modeling agents. These developed models also act as class definition and provide

pseudocode for the implementation of the simulation environment and the specific agents.

These models will then be captured using simulation methods inspired by ABM. Unique

agents types are defined by the use case and defined capabilities. To support analysis

development, each agent’s behaviors and attributes are described and developed via MBSE-

approaches within the conceptual framework. This allows the designer to capture specific

spacecraft behavior relative to specific use cases that capture the desired operation of the

navigation system. Similarly, utilizing an Agent-Based approach to the system analysis

allows for capturing a range of independently acting agents, and supports the framework

capability for advanced spacecraft autonomous algorithm development, implementation,

and analysis. This provides a very strong analogue to the actual system under study.

Utilization of this analysis approach allows for capture of individual vehicle navigation

77

performance and capability trends at the entire network level. By simultaneously modeling

all aspects of the network, it is possible to capture the global capability of the entire network.

This allows for identification of performance and navigation capabilities to be observed as

a function of growing network size and identification of individual spacecraft behaviors. By

allowing the spacecraft to have variable behavior, trends in terms of navigation update rates

and capability can be observed.

The proposed method presents a model-based approach to Agent-Based systems design

and implementation. The systems engineering techniques are used to capture the system

and interactions between objects in the simulation. Block Definition Diagrams are used to

show the interactions between defined objects as well as identify attributes and define a

common definition structure. Activity Diagrams and State Machine Diagrams are used to

capture the behavior of the various simulation subsystems (both spacecraft and simulator).

This serves as the pseudocode and algorithm definition of the integrated analysis framework

implementation. This level of systems modeling is then used to re-inform the definition

and define common functionality of subsystems and objects. The Systems Engineering

models are used to thus define the architecture of the simulation as well as inform the

analytical implementation. This technique allows for full definition, documentation, and

exploration of the analytical requirements of the modeling and simulation environment

within the conceptual framework and leads to an object-oriented approach, preparing the

system for the use of additional libraries and future analyses.

The Block Definition Diagrams can also be exported to machine-readable formats and

used as stereotypes to define templates for the data input/output structure for the imple-

mentation of the framework. This allows the user to define the navigation system at a

conceptual level and links these models to the physical code. This provides traceability to

the analysis and centralized object definition and documentation. The Activity and State

Machine Diagrams form the basis of the implemented simulation coordinator task, as well

as declarations of subsystem functionality and properties.

The analysis approach can be summarized as a sequence of high-level activities that

allow for the complete simulation and analysis of deep space navigation systems. The

78

approach contains three main steps: System Requirements Analysis, Analysis Framework

Design and Implementation, and Simulation Verification. These steps flow into each other

with each step feeding products into the next. The analysis flows from the top-level capture

of the navigation concept under design down to the individual software modules that ana-

lyze functionality and back up through the validated framework implementation to provide

analytical results of the overall navigation architecture. Together these all form an inte-

grated research approach which can be summarized by the acronym CRAIVE (Concept of

Operations, Requirements, Analysis of Framework, Implementation of Analysis, Verification

of Models, Evaluation of Concept) and mirrors the overall structure of this thesis.

The first part of the analysis method focuses on the high level generic deep space naviga-

tion system. To begin the analysis, a Concept of Operations must be developed to capture

the high level functionality and use of the navigation system. This represents system char-

acterization and serves to visually collect the systems and its operations to feed into the

analysis. This conceptual analysis for NNAV is given in the previous chapter.

The second step is to analyze the Requirements of the navigation system. This is

performed at the highest level, capturing the functional needs and how it must interact

with external assets and the uses it must perform. With this understanding, the systems

designer can continue with the Analysis of the conceptual navigation framework. This is

performed by further developing the requirements and use cases using Model-Based Systems

Engineering tools. The goal of this modeling is to capture in detail the navigation system’s

interactions and functional interfaces among its subsystems and external assets. This step

includes the development of diagrams capturing the sequential operations, providing a high

level view of its dynamic functionality. The modeling concludes with the decomposition of

the navigation into logical blocks with defined attributes and operations that work together

to fulfill the defined requirements.

With the conceptual system information captured, the next phase begins by focusing

on the Implementation of the framework. The inputs to this stage are the logical design of

the navigation design and its sequence of operations. The requirements of the conceptual

framework are developed to capture the functional needs required to analyze the navigation

79

system’s performance. This is done by mirroring the system design at the software level,

with the framework design closely following the algorithms and functional breakdowns laid

out previously. Upon completion, these models form the definition and outline of the

software implementation. Using the developed models and blocks as a reference design, the

objects are implemented in simulation. Similarly the system’s operations are also modeled

within the framework.

Once the simulation implementation is complete, the functional blocks require Verification

to ensure proper operation. This step compares the results of the implemented analytical

models for specific use cases to compare with results from standard software packages. This

step is necessary to validate the results of the analysis and to provide comparison of the

implemented framework capability to other packages.

With these steps concluded, the now-verified simulation environment can be used to

Evaluate the performance of the navigation system under consideration, specifically NNAV

for this thesis. At this point, the implemented analysis tools are applied to the original

scenarios of interest to determine high level performance and capability measures. With

this step, the method’s loop closes, with the verified developed environment feeding back into

the analysis and design of the high level navigation system and providing design iteration.

3.8 Proposed Capabilities of Navigation Framework

With this process forming the basis of the development of a space navigation framework,

several higher level hypotheses can be formed that describe the expected benefits. These

are derived from the implementation of the framework and capture its expected benefits

and improvements to existing methods.

(H4)Integration of MBSE and ABM analysis approaches into a unified navi-

gation framework will capture analysis of multiple independent measurements,

packets, and spacecraft.

This relates directly to the capability of the framework to enable the modeling of a

range of state estimators and measurement sources. Utilizing a modular architecture and

robust interface design, it is expected to enable the evaluation of a wide range of navigation

80

problems, without making any assumptions of the type of data being receive. The only

constraint will be on the interface definition.

(H5)The navigation analysis framework will require implementation in an object-

oriented simulation environment, to allow for expansions and inclusion of a range

of external measurement, state estimation, and analysis libraries.

The Model-Based Systems Engineering approach, in addition to allowing for multiple

measurements, enables the inclusion of external libraries to capture any functionality of

the analysis. This is also enabled by the clearly defined interfaces and simulation linkages

defined through the application of model-based engineering methods.

(H6) Navigation framework modeling will enable definition of input and output

interfaces, to provide a common data definition for the implemented simulation

environment.

An additional benefit of the model-centric approach is the direct application of the sys-

tem definition models to the implementation of the interfaces defined within the framework.

Block Definition Diagrams, used in defining the composition of the navigation system and

simulation package enable this capability. The modular approach to input variable defini-

tion leads to a robust interface that can integrate with other specific implementation needs

to form a well-defined data definition format for the definition and storage of analysis cases

and system parameters.

Through the use of modern flexible programming languages, the implementation of the

framework will be allow for user input and definition to the model. This can be achieved

both by architectural definitions in the Model Diagrams as well as directly into the files

loaded by the simulation environment. This allows for a robust interface layer between the

user and the software to allow for several levels of simulation definition.

The models also capture the internal behaviors of the spacecraft navigation system.

These models are used to give insight into the processes that must occur both onboard

on the spacecraft and within the framework implementation to allow for state estimation

81

procedures and navigation analysis. With these tools, additional understanding of the

processes involved is made clearer to the systems designer and allows for a strong tie-in

between implementation and definition of spacecraft behaviors.

(H7) The execution of navigation framework implementation will captures the

performance of various measurement types, enabling design space exploration

and analysis.

With the use of Agent-Based simulation design, the simulation backend will be able to

analyze the dynamic behavior and linkages between multiple spacecraft assets. Additionally,

this acts as a verifiable analog to the actual system under study, allowing for evaluation

of performance and capturing of system attributes. A modular object-oriented front-end,

coupled with a user interface allows a range of design space explorations, and trade studies

to be performed.

(H8) The incorporation of ABM techniques in the simulation implementation

will enable optimization of state estimation processes and algorithms through

variation of onboard spacecraft behaviors.

With the capability of the framework implementation to analyze a variety of usage

cases and scenarios, the analytical modules can be utilized in additional ways. Another

primary usage of the integrated software package will be to optimize the various aspects of

the navigation system under study. In order to address the highly stochastic nature of the

problem, which is due to the modeled random noise in measurements and communications

and the estimation process, an off-the-shelf genetic algorithm will be used to perform this

optimization. The modular implementation and robust interface will allow for the integra-

tion of external optimization tools in order to ascertain the best possible performance of

the navigation architecture and gain additional insight into the optimal system design.

82

3.9 Research Focus

In order to address the hypotheses discussed above, the design approach will be executed

and the resulting simulation architecture tested in order to verify these statements. Sev-

eral research questions to address the capability of the framework are described in detail.

These will serve as the foundations of the implementation and method development for the

framework used in order to be able to address the required functionality.

(RQ6) How can MBSE methods be used to capture multiple measurements,

spacecraft, and state estimators algorithms for a navigation system?

To show the capability of the framework to capture various spacecraft, measurements,

and estimators, the model based approaches will be utilized. This research question ad-

dresses specifically how the framework will be used to capture the requirements, behaviors,

and properties of a series of agents and their unique characteristics.

(RQ7) How do the MBSE outputs capture the navigation system architecture,

inform the simulation interfaces, and how can these be implemented in software

to enable a versatile modular interface?

This research focus captures the ability of the system to operate with independent mod-

ules. To answer this question, the framework implementation must exhibit a robust interface

between different modules and its implementation be able to draw upon multiple potential

libraries and functionality cores. Additionally, it must address how the solution can be

implemented in software to allow for these capabilities, and can drive the programming

language specification.

(RQ8) How can the specific conceptual models be integrated into a common

conceptual framework and used to define the data and input/ouput software

implementation interfaces?

In order to provide insight and define the system interfaces, the framework implemen-

tation needs a defined interface to data capture. Additionally, the research must address

83

how the defined models transfer to input decks that can be used by the simulation interface

in analysis. This capability will provide a link between the modeling tools and the software

implementation to give insight into the data definitions and input parameter properties.

(RQ9) What methods can be used to capture the internal behaviors and al-

gorithms that form the analytical core of the framework and how do these be

integrated with the simulation implementation?

This part of the research addresses how the proposed methodology can be used to

describe and model the internal behaviors of the simulation elements and their relation to

the higher level system activities. This analysis must determine what analysis tools can be

used to capture these models. Additionally, this research must address how these models

can be used as a baseline and documentation of the implemented algorithms, linking the

simulation implementation to the modeling framework.

(RQ10) How is the simulation framework executed in order to capture verifi-

able performance of a navigation system of interest and provide design space

exploration capabilities?

This focus addresses two main aspects of the implemented simulation package. First,

the system itself must be verifiable to provide confidence in its analytical result as well

as tie the individual modules to external analysis packages. This can also be performed

by demonstrating the physics-based implementation of the performance and simulation

modules. The second part of this research question focuses on how the model is used to

capture system performance of a given scenario. In order to provide data on the design

space to flow into trade studies, the simulation package must be able to perform sensitivity

analysis and use data simulation techniques to generate system performance data to enable

design space explorations and trades.

(RQ11) What data analysis techniques and optimization tools can be linked

with the framework to allow for design analysis and parameter optimization?

84

Another key capability of the framework implementation is the integration and use of

optimization packages. These are needed in order to provide for additional trade studies

and analysis to feed into parameter estimation methods and to provide for determining

optimal measurement frequencies and structures to minimize the need for state updates.

The framework and its implementation must be robust with well-defined interfaces to allow

for integration of these tools. This is also needed in order to provide for analysis of multiple

observation types with optimal update frequencies.

These research questions, which are derived from the hypotheses given above, establish

the requirements and capabilities of the navigation analysis framework. The results of the

derived analysis mentioned above will provide for verification of the functionality of the

implementation. The development of this framework is described in detail in Chapter 5

after an introduction to standard analytical methods in orbit propagation, timing analysis,

and state estimation in the next chapter.

85

CHAPTER IV

SPACE NAVIGATION ANALYTICAL BACKGROUND

Accurate representation of the dynamics of the spacecraft allows for realistic analysis and

simulation of the spacecraft along its trajectory. Additionally, this serves as the basis upon

which a navigation technique’s performance can be observed. For many cases, improve-

ments in an estimator’s implemented equations of motion will cause an increase in accuracy

of the propagated parameters, allowing for improved tracking of error values and a reduced

requirement on state updates. Several key systems anchor the framework’s algorithms and

tie in the problem’s underlying physics to navigation system. These areas are presented to

provide the reader with an understanding of the analytical assumptions and provide doc-

umentation of the standard underlying physical models. The standard literature in orbit

determination and propagation, and state estimation serves as the primary references of this

material. Unique to this work is the development of navigation packet-specific measurement

models which are presented in Section 4.7. The following sections will discuss the standard

state propagation methods, state estimation approach, measurement methods, communi-

cation link design, and packet processing algorithms utilized in space mission design with

references to the standard references.

4.1 Analysis Frame

In order to develop a physics-driven framework to simulate the motion of multiple spacecraft,

one must first define the primary coordinate frame for the navigation system of interest. For

the design, the frame is assumed to be J2000 with the sun acting as the central body, due

to the large focus on performance during interplanetary flight cruise segments. To match

the formatting used by the available data sets, the base time is set to be the Barycentric

Dynamical Time (TDB) relative to the J2000 epoch, 12:00:00 GMT on January 1, 2000.

This timescale includes relativistic effects, and captures what a highly accurate clock at the

Sun’s center would measure. The units of time is thus seconds past this epoch. The reference

86

coordinate frame is defined by the orientation of Earth’s mean equator and equinox at the

specified epoch [79] [114]. The combination of these two form the basis of the analytical

frame of reference.

4.2 State Propagation

In order to predict the future position of a vehicle in space, state propagation methods are

used to integrate the equations of motion. These integrate the applied forces on the body

to capture the body’s dynamics. The primary inertial force on the spacecraft is due to the

gravitational effect of the considered planetary bodies. An analytic model is required to

accurately capture the dynamics of the trajectory. This is used both in onboard propagation

and in the state estimation to form a description of the equations of motion. The basic

form of the gravity equation is given in Equation 7. The dynamic models developed in the

application follow standard orbital dynamics perturbation techniques such as found in [124]

and [7].

The total modeled gravitational force on the spacecraft is the sum of the central body’s

effect plus that of additional third bodies. In the derived models, the mass of the spacecraft

is assumed to be negligible (compared to the other gravitational body) allowing for the use

of the predefined gravitational constant, µ, of each external body. The integrated equation

for total gravitational force, F, is given in Equation 8. CB represents the properties of the

central body and the summation term iterates over i third bodies.

Fbody = −
µbodyrbody→sat
r3body→sat

(7)

Ftotal = −µCBrCB→sat
r3CB→sat

+

N∑
i=1

µi{
rsat→i
r3sat→i

− rCB→i
r3CB→i

} (8)

Additional terms that will play an important part of the analysis are captured by the

Jacobian, which is the derivative of the forces with respect to the individual states. These

definitions form the basis of the State Transition Matrix, which is used to propagate errors

from one time to the next. These are derived from the dynamic equations of motion. These

terms are primarily used in the state estimation techniques to propagate the covariance

87

matrix. The two main terms considered are the derivative of the acceleration with respect

to the current position, and the derivative of the acceleration with respect to the vehicle’s

velocity. These are given in Equations 9 and 10.

∂r̈sat
∂rsat

= { −µCB
r3CB→sat

−
k∑
i=1

µi
1

r3sat→i
}I + 3{

µCBrCB→satr
T
CB→sat

rTCB→sat
+

k∑
i=1

µi
rsat→ir

T
sat→i

r5sat→i
} (9)

∂ṙsat
∂rsat

= 0 (10)

4.3 Dynamic Clock Modeling

Due to the time-based observation process, capturing the dynamic behavior of the onboard

oscillator over the course of a simulation is required to fully characterize the navigation

performance. The noise in a clock, S is given by Equation 11, which models the spectral

density of a clock’s frequency fluctuation [17]. In this model, f is the reference frequency

and the h represents (in decreasing subscript) white phase noise (h2), flicker phase noise

(h1), white frequency noise (h0), flicker frequency noise(h−1), and random walk frequency

noise (h−2).

S(f) = h2f
2 + h1f + h0 + h−1f

−1 + h−2f
−2 (11)

The primary measure of a clock’s dynamic performance is given by the Allan Variance

[3], σ2y , given in Equation 12. This performance measure captures the fractional frequency

performance, y, which is the normalized difference between the observed and the reference

signal. This is also referred to as a two-factor variance. This captures a measure of the

frequency stability averaged over two subsequent time periods (n and n+1) of the same

time interval, τ . The term τ represents the length of the time over which the fractional

frequency is averaged. This term is used to capture the usage of the clock at a desired

operational interval. For example, an oscillator will have different noise characteristics on

very small time intervals when compared with averaging over longer periods of time.

88

σ2y(τ) =
1

2
〈(ȳn+1 − ȳn)2〉 (12)

The oscillator noise is captured as a series of terms modeling the power spectrum of

the noise in the frequency domain. Several parameters are used in characterizing timing

sources. The two primary terms used are the white phase noise and the random walk

frequency noise, which represent the random shift in the oscillation value and random

white noise in the phase of an oscillator. These can be combined in the form given in [125]

[87] [13] to develop a dynamic model of the clock error. The dynamic model of the clock

states captured in terms of the bias (b), and drift (d), is given in Equation 13. This model

shows the considered error terms as applied by normally distributed random variables. The

dt term represents the time between subsequent propagations. Additionally, for integration

into state estimation algorithms, a model is needed to capture the process noise of the state

propagation, Q. The developed form for this is given in Equation 14 [87]. This will be

used in augmenting the state estimation routine to allow for clock corrections based on the

prediction noise.

b
d

k+1

=

1 dt

0 1

b
d

k

+

N(0, 1) ∗
√

h08π
dt

N(0, 1) ∗
√

h−22
dt

 (13)

Qclock =

8πh−2dt+ 2h0dt3

3 h0dt
2

h0dt
2 2h0dt

 (14)

4.4 State Estimation

There are a variety of estimation techniques that exist for determining a vehicle’s state,

given external measurements and accounting for the noise in the observation. Least squares

estimation is a common example of this technique. This method selects the variables that

minimizes the sum of the squares of the errors between the predicted and measured values

for a series of measurements. This method typically requires a linear problem definition,

but can be applied to nonlinear systems by using iteration.

89

When there is knowledge of the errors involved in the measurements and how the errors

propagate over time, additional variance-based techniques can be used. The most prolific

method for this is the Kalman Filter [48] [23] [50] [108]. This technique utilizes statistical

inference of the noise in the measurement with the covariance of the estimated state to

compute an optimal state update given the state uncertainty. This is obtained by modeling

how the measurement changes with respect to the estimated states, as well as the use of a

dynamic model to measure the estimator’s error state.

Several variations of this algorithm exist. The particular method of interest for this

analysis is the Extended Kalman Filter. The dynamic model is given by Equation 15 This

implementation is intended for use in nonlinear systems, where the measurement matrix

(the sensitivity of the measurement with respect to the measured states) and the dynamics

require nonlinear models for accurate propagation and estimate. For the Extended Kalman

Filter, the dynamic model for the state x is given by a nonlinear function f which calculates

the derivative of the state at an instant in time given knowledge of the state and any

external forces. w is the random noise in the dynamics and is assumed to be Gaussian with

a covariance defined by matrix Q, which captures the process noise.

ẋ = f(x(t),u(t), t) + G(t)w(t) (15)

In addition to modeling the dynamics of the vehicle, it is also required to build a model

for the individual measurements, y, which will be processed by the estimator. The function

h captures the true measurement in terms of the spacecraft’s states and observation error.

This noise is captured by v which is assumed to be a Gaussian distribution with covariance

matrix R. The model given represents the system state in the discrete time domain at the

k-ith measurement.

ỹk = h(xk) + vk (16)

These models form the basis of the analysis and are used to build up the estimator. Upon

initialization, the initial state estimate and initial covariance, P, are set. These capture the

90

initial state and errors in the current state estimate. The formulas for these are given in

Equations 17 and 18.

x̂(t0) = x̂0 (17)

P0 = E{x̄(t0)x̄
T (t0)} (18)

Between measurements, the system states and covariances are propagated forward in

time. This allows tracking of the estimated location over time and provides an initial

estimate upon reception of a measurement. The vehicle state is propagated using the user’s

choice of algorithm to determine the state at the current time. The dynamic model is also

used in the propagation of the covariance state. The dynamics of the error is given in

Equations 19 and 20, where F represents the derivative of the equations of motion with

respect to the states and Q is the process noise.

Ṗ(t) = F(t)P(t) + P(t)FT (t) + G(t)Q(t)GT (t) (19)

F(t) =
∂f

∂x
|x̂(t),u(t) (20)

These models are used to capture the state estimate prior to an update, and is denoted

as x̂−k and P−k . The Kalman gain K is the core of the state estimation algorithm. This

utilizes the estimated covariance, noise, and the measurement model derivatives, H, to

calculate the weighting to apply to the state update. The formula for the measurement

model derivatives and the Kalman gain are given in Equations 21 and 22.

Hk(x̂
−
k) ≡ ∂h

∂x
|x̂−

k
(21)

Kk = P−k HT
k (x̂−k){Hk(x̂

−
k (P−k HT

k (x̂−k) + Rk}−1 (22)

x̂+
k = x̂−k + Kk{ȳk − h(x̂−k)} (23)

91

P+
k = {I−KkHk(x̂

−
k)}P−k (24)

The state estimator uses the measurement model to calculate the expected value of

the observation given the current state estimate. This is performed using the defined h

function. The state update is thus calculated by applying the Kalman Gain (K) to the

difference between the observed and predicted measurement. This update gain is also used

to update the estimator’s tracked covariance states. The formula for this sequence is given

in Equations 23 and 24. This functional sequence works to provide a very capable nonlinear

state estimation approach that has been implemented for a wide variety of scenarios. This

algorithm will form the basis of the navigation performance analysis.

4.5 Measurement Models

Observation-based state measurements form the basis of any navigation technique. Any

method used to update the estimated state can be derived down to be one of a few key

measurement methods. The standard base observations are state, position, and range. Each

of these will be described to capture the models used in the simulation and state estimators.

The state measurement is a direct observation of the current position and velocity of

the spacecraft. This would typically be obtained by processing a state update provided

by the ground, and would serve as a reset or update to the state estimation procedures.

The measurement vector in terms of the current true state, including r and v, is given by

Equation 25. This is shown as measured from the input state estimate. It also includes

the effect of measurement error, which is captured as a random variable, N(x,y), from a

Normal distribution of mean zero and given standard deviation. When using this equation

to generate the onboard estimate of a measurement state, this noise is set to zero. The

matrix H which captures the derivative of the measurement with respect to the observed

states is given in Equation 26. The R matrix from Equation 27 captures the noise of the

observation captured in σr and σv. The state matrix includes position, velocity, and clock

bias and drift for eight total states.

92

yStateMeasurement =

rx

ry

rz

vx

vy

vz

+

N(0, σr)

N(0, σr)

N(0, σr)

N(0, σv)

N(0, σv)

N(0, σv)

(25)

HStateMeasurement =

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

(26)

RStateMeasurement =

σ2r 0 0 0 0 0

0 σ2r 0 0 0 0

0 0 σ2r 0 0 0

0 0 0 σ2v 0 0

0 0 0 0 σ2v 0

0 0 0 0 0 σ2v

(27)

The equations for a measurement of position are very similar, relative to current or

broadcast current position of the spacecraft. Again the models capture the effect of mea-

surement error individually in each state, assuming normally distributed error with zero

mean and given standard deviation. The measurement equation is given in Equation 28

with the applicable H and R given in Equations 29 and 30. The equations shown also allow

for the position measurement to another body.

yPositionMeasurement =

rx

ry

rz

Spacecraft

−

rx

ry

rz

RelativeBody

+

N(0, σr)

N(0, σr)

N(0, σr)

 (28)

93

HPositionMeasurement =

1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

 (29)

RPositionMeasurement =

σ2r 0 0

0 σ2r 0

0 0 σ2r

 (30)

Multiple observations methods can produce a range measurement. Some examples in-

clude measurement of apparent diameter of a planetary body and phase based ranging

techniques such as those used in global satellite system navigation. These allow for esti-

mation of a scalar range between two assets. The measurement model for range between

the spacecraft (sc) and a relative body (Rel. Body) is given in Equation 31. Due to range

being a bulk property of all measurements, it can affect multiple estimated states as seen in

the H matrix in Equation 32. The noise matrix R, Equation 33, is simple due to its single

dimensional nature.

yRangeMeasurement =√
(rsc,x − rRel.Body,x)2 + (rsc,y − rRel.Body,y)2 + (rsc,z − rRel.Body,z)2

+N(0, σRange) (31)

HT
RangeMeasurement =

(rsc,x−rRel.Body,x)√
(rsc,x−rRel.Body,x)2+(rsc,y−rRel.Body,y)2+(rsc,z−rRel.Body,z)2

(rsc,y−rRel.Body,y)√
(rsc,x−rRel.Body,x)2+(rsc,y−rRel.Body,y)2+(rsc,z−rRel.Body,z)2

(rsc,z−rRel.Body,z)√
(rsc,x−rRel.Body,x)2+(rsc,y−rRel.Body,y)2+(rsc,z−rRel.Body,z)2

0

0

0

0

0

(32)

94

RRangeMeasurement =

(
σ2Range

)
(33)

4.6 Link Analysis

In order to capture the schedule and capability of when two spacecraft can be in communi-

cation, a link analysis is performed. This type of analysis considers the amount of energy

radiated, as well as the directionality of the transmission and any hardware losses to deter-

mine the amount of power at the receiving body. The greatest signal loss is due to the vast

distances the transmission travels between assets. The standard equation for these space

losses, Lspace, is given by Equation 34 [73] [74] where λ is the wavelength of the signal, and

s is the transmission distance.

LSpace = 10 log10{(
λ

4πs
)2} (34)

With the defined space loss and including other terms, a formula for the received power,

PReceived, can be determined. This equation traces the efficiency of the signal through the

transmission and reception hardware. The integrated form is given in Equation 35 with Lr

and Lt representing a line loss, Gr and Gt standing for gains, and Pt the transmitted power.

Other losses are typically due to the inefficiency in the signal lines and signal conversion.

The units of the final formula are in dBm, with the 30 providing the conversion from dB. t

represents transmission parameters while r references reception properties.

PReceived(dBm) = 10 log10(Pt +Gt +Gr + Lt + Lr + LS + 30) (35)

With an estimate of the received power at the spacecraft’s communication interface,

additional characteristics of the signal environment can be estimated. These focus on cap-

turing the capability of the spacecraft to decode the received signal. This is largely driven

by comparing the received level to the noise floor. This is a factor of the spacecraft’s re-

ceiver hardware. For a given design, this value is captured in the form of Tn referred to

as the noise temperature. It relates the underlying system noise to the radiation spectrum

produced by a black body with a given temperature. Multiplying by this value, as shown

95

in Equation 36 by kBoltzman, one is able to estimate the noise levels N. Combined with

the received power levels, the Signal-to-Noise, SNR, ratio can be calculated by means of

Equation 37 which gives a comparison of the two measures. The capability of a commu-

nication system to decode a given transmission into operable data relies upon this value.

This value limits the capability of the receiver and drives selection of data rates and coding

and modulation schemes to enable data transfer at an expected relative signal level.

N = 10 log10(kBoltzmanTN) (36)

SNR = Pr −N (37)

4.7 Packet Analysis Models

In order for the spacecraft to be able to process the received packets, the algorithms must

be developed and presented for the onboard approaches to data processing and generation

of state updates from the navigation data packets. For this analysis, the packets consist of

two main types of information, transmission time of the packet and transmission location.

Two scenarios are presented, one with only time of transmission and one with transmission

time and location.

In order to develop communication schedules and to aid in navigation, the spacecraft

maintains an estimate of the state of the other known bodies in the network. This allows

the agents to predict when it could receive information from other sources and enables

development of advanced algorithms for autonomous communication. The range between

agents can be measured by the time difference between transmission and reception at the

spacecraft. The actual measured signal travel time is used as the observed measurement.

Upon reception of a packet with only a transmission time, the agent must further estimate

the location of the other spacecraft at the defined time using onboard propagation methods.

This information is used in the calculation of the modeled transmission time. Using this

location and onboard estimate of the receiving agent’s location, the light travel time is

calculated, which is the quotient of the speed of light c and the distance between the two

96

agents. The measurement matrix H is thus defined by Equation 38. For cases where

the spacecraft state is included in the packet, the transmitted state is used instead of the

propagated state, and the onboard estimated state of the other spacecraft is updated to

match the new value. This allows for improved estimation of the other body’s state by

allowing for updates of its state from the spacecraft which has a more accurate estimate.

HT
RangeMeasurement,Packet =

1
c

(rsc,x−rRel.Body,x)√
(rsc,x−rRel.Body,x)2+(rsc,y−rRel.Body,y)2+(rsc,z−rRel.Body,z)2

1
c

(rsc,y−rRel.Body,y)√
(rsc,x−rRel.Body,x)2+(rsc,y−rRel.Body,y)2+(rsc,z−rRel.Body,z)2

1
c

(rsc,z−rRel.Body,z)√
(rsc,x−rRel.Body,x)2+(rsc,y−rRel.Body,y)2+(rsc,z−rRel.Body,z)2

0

0

0

0

0

(38)

The range measurement can be observed from the packet processing. With the receipt

of multiple observations, it is possible to additionally form a range-rate state update. The

definition of range-rate is given in Equation 39. The derivative of this formula can be taken

with respect to each individual variable to determine the H matrix for use in the state

estimation procedures. The individual formulas for each term are given in Equations 40

through 45 in terms of r and v.

ṙ =
(vsc − vRel.Body) · (rsc − rRel.Body)√

(rsc,x − rRel.Body,x)2 + (rsc,y − rRel.Body,y)2 + (rsc,z − rRel.Body,z)2
(39)

97

∂ṙ

∂rx
=
vsc,x − vRel.Body,x

r
−
rsc,x − rRel.Body,x

r3
∗

{(vsc,x − vRel.Body,x) ∗ (rsc,x − rRel.Body,x)

+ (vsc,y − vRel.Body,y) ∗ (rsc,y − rRel.Body,y)

+ (vsc,z − vRel.Body,z) ∗ (rsc,z − rRel.Body,z)} (40)

∂ṙ

∂ry
=
vsc,y − vRel.Body,y

r
−
rsc,y − rRel.Body,y

r3
∗

{(vsc,x − vRel.Body,x) ∗ (rsc,x − rRel.Body,x)

+ (vsc,y − vRel.Body,y) ∗ (rsc,y − rRel.Body,y)

+ (vsc,z − vRel.Body,z) ∗ (rsc,z − rRel.Body,z)} (41)

∂ṙ

∂rz
=
vsc,z − vRel.Body,z

r
−
rsc,z − rRel.Body,z

r3
∗

{(vsc,x − vRel.Body,x) ∗ (rsc,x − rRel.Body,x)

+ (vsc,y − vRel.Body,y) ∗ (rsc,y − rRel.Body,y)

+ (vsc,z − vRel.Body,z) ∗ (rsc,z − rRel.Body,z)} (42)

∂ṙ

∂vx
=

rsc,x − rRel.Body,x√
(rsc,x − rRel.Body,x)2 + (rsc,y − rRel.Body,y)2 + (rsc,z − rRel.Body,z)2

(43)

∂ṙ

∂vy
=

rsc,y − rRel.Body,y√
(rsc,x − rRel.Body,x)2 + (rsc,y − rRel.Body,y)2 + (rsc,z − rRel.Body,z)2

(44)

∂ṙ

∂vz
=

rsc,z − rRel.Body,z√
(rsc,x − rRel.Body,x)2 + (rsc,y − rRel.Body,y)2 + (rsc,z − rRel.Body,z)2

(45)

98

These values form the basis of the H vector, allowing for processing of the packet

observations within the state estimators. Additionally, after the initial packet is received,

the range and range-rate measurements are concatenated together and sent as an integrated

measure to the state estimation routine for improved state updates.

99

CHAPTER V

SPACE NAVIGATION ANALYSIS AND PERFORMANCE

EVALUATION FRAMEWORK (SNAPE) CONCEPTS AND

IMPLEMENTATION

This chapter focuses on the development and implementation of the Space Navigation Anal-

ysis and Performance Evaluation (SNAPE) framework to address the research questions

presented in Chapter 3. The goal of this framework is to capture the navigation architec-

ture under study (with an integrated communication capability) and provide an approach

to simulation and analysis. First, the models capturing a generic navigation system are

presented. Following this, the development of the models for the SNAPE framework are

described. Lastly, a software implementation of the framework will be presented in detail,

focusing on its operation as well as giving an overview of its functionality. Additionally,

the derivation of the implementation from the architecture and framework models will be

presented.

5.1 Usage of Model-Based Systems Engineering and SysML

The first set of steps in the analysis approach focus on the development of Model-Based

Systems Engineering(MBSE) models. These are constructed to capture knowledge about

the navigation system under study as well as to provide a high level analysis of navigation

requirements, uses, and structure. The models are used to drive further development and

support software implementation.

The initial step when approaching any new system of interest which is not currently

implemented is to capture an understanding of the operations of that system. This is done

to both inform the proceeding development steps, but to also provide an in-depth review of

the system of interest. In this thesis, the two main systems of interest are: space navigation

systems, and the conceptual framework used to design and analyze them. Several steps are

involved in capturing this knowledge. The method utilized in this chapter is based upon

100

Model-Based Systems Engineering(MBSE) techniques, as introduced in Section 3.7.1.

In order to take advantage of burgeoning standards in this field, the SysML modeling

language will be used. This approach allows for the use of interacting, complex, detailed

systems models into a standardized format, or series of views, that are used to provide insight

into the system. This study takes advantage of this modeling language to capture knowledge

about a conceptual navigation architecture, which will form the basis of the packet-based

navigation implementation. Another key driver in using SysML is the array of software

packages that allow for the efficient and effective definition, storage, and visualization of

these models. In particular, this study utilizes Sparx Systems Enterprise Architect1 to

capture the views of the system. This package will be used to capture system requirements,

use cases, interactions, and the system definition to provide high level information views

into navigation system design and architecture. The selection of SysML also provides future

capability in the form of an executable model, in which it can directly interact and drive

the simulation interface. Integrating the system models with the analysis software creates

a complete set of tools to capture the system under study and tie the performance directly

back to the requirements and definitions.

The SysML specification[86] defines multiple modeling language elements that can be

used to capture the properties and development of the system of interest. These elements

are computer-readable with defined semantics. They are typically stored in a database

format and managed by a SysML tool (such as Enterprise Architect mentioned previously)

that can both edit and create entries in this database. These can also be exchanged between

editors in a standardized XML clear text format known as XMI[85]. SysML defines how

these elements can be presented graphically using nine different types of standard diagrams.

The main ones used in this work will be briefly described here, and more detail given for

each presented model in the following sections.

The Requirements Diagram captures the requirements of the system, graphically de-

scribing their hierarchy and structure. Additionally, links can be defined that show the

1http://www.sparxsystems.com

101

relationship between various inputs, allowing for capture of derived, composed, and asso-

ciated requirements. This diagram can also be used to link specific use cases, test cases,

and system components to identify their ability to satisfy requirements. Therefore this dia-

gram can used to both define and validate the requirements, providing traceability in their

definition and linkage to system components and structure.

Use Cases are defined by SysML to capture the actors and high level relationships be-

tween external agents and internal structure. This allows for understanding and description

of how the system would be used and work with external assets. This works to capture a

generic concept of operations of the system and helps to identify stakeholders and external

interfaces.

The development of Sequence Diagrams define these relationships between the system

of interest and external agents in more detail. These are driven by the use cases and aim to

provide further insight into the actual sequences of actions between various elements over

the course of system operation. This defines in detail each interaction between the defined

elements. Each is placed into a separate swimlane, or vertical structure, and arrows between

lanes identify functional interfaces. The interactions are ordered in sequence from top to

bottom, providing an overview of the sequence of events between individual elements that

define a certain action. This allows for a ABM-based approach to capturing and defining

specific agent behaviors and capabilities.

By integrating several Sequence Diagrams, it is possible to identify the states of a com-

ponent system in terms of its interaction with external commands. This is captured through

the use of State Machine Diagrams. These capture the various states of a subsystem. Ex-

ternal functions interacting with the system initialized various state transitions based on

the specific action and the current state. This allows for tracking of a system’s various

ABM-driven roles and operational modes. This is increasingly important when defining

complex behavior, as external or internal actions on the system can change its behavior and

functional mode.

With the operations and functionality of the system identified, Block Definition Dia-

grams can be used to capture the components of the system. This allows for allocation of

102

the functional requirements and interfaces to specific subsystems, or blocks. The identified

blocks form the components. Within this diagram it is possible to define part composition,

aggregation, multiplicity, and generalization, allowing to define the overall structure of the

system’s components. Additionally, each block can have defined parameters and operations.

These directly tie into the properties of the component, and reference back to the functions

identified. Additionally, when developing a software model of the system, this directly

defines the object structure to be implemented to allow for simulation of the system.

Internal Block Diagrams are defined to capture the interactions and connections among

components within a system. By defining the interfaces and ports of the various blocks,

this model captures their linkages and flow of information between the individual elements.

Additionally, this model captures the input and output of the entire system and allows for

identification of the interactions among system components. This diagram also serves to

capture the interfaces between components, providing further documentation and insight

into the simulation process as well as the internal structure of system of interest being

designed.

With the system defined, and the functionality allocated to specific blocks or interfaces,

it is possible to revisit the system requirements. The Requirements Diagram can again be

used to capture the relationships between the system structure and its high level needs. In

this model, the individual requirements are linked to the component that meets, addresses,

or satisfies that need. This allows for further identification of the purpose of each system

component and additionally ensures that all system needs are met. Building upon this

general description of the various SysML models being used in this research, the application

of each to deep space navigation and framework development will be discussed.

5.2 Modeling of Generic Space Navigation Systems

The first step in the analysis process is to define the requirements of a generic deep space

navigation system that integrates both communication and traditional measurements. This

is to ensure the capability to capture the NNAV concept of operations. The general high

103

level requirements are given in Figure 152. Each block’s stereotype, included within the

angle brackets � and � defines the type of that requirement. The model identifies three

high level nested requirements within the overall navigation system requirement package,

where each nesting is identified by the cross-hair (
⊕

) symbol. This captures a requirements

view of the system. It can be seen that the main functions of the system are to estimate

the spacecraft’s state, propagate the state, and process any incoming measurements or

packets. The performance of the system to meet these requirements determines how well

the performance requirements are met, in regards to the allowed estimator error levels.

NavigationDSystemDRequirements

«performanceRequirement»
EstimateDStateDWithinDErrorDBounds

«requirementkPerformance»
EstimateDPo sitio n Dwith in DDefin ed D

Bounds

«requirementkPerformance»
EstimateDVelo cityDwith in DDefin ed D

Bounds

«requirementkPerformance»
EstimateDTimeDCo rrectio n Dwith in D

Bounds

«requirementkFunctional»
Pro cessDStateDUp d atesDfro mD

GroundDSystems

«functionalRequireme...
P ro cessDStateDUp d ateD

Measu rem en ts

«requirementkFunctio...
P ro cessDSen so rD
Measu rem en ts

«requirementkFunctional»
Pro cessDStateDMesau remen tsD

fro m DOth erDSp acecraft

«performanceRequirem...
P ro p ag ateDEstimated DState

«requirementkFunctio...
In teg rateDEstimated DState

«requirementkFunctio...
Estim ateDIn ertialDFo rces

«requirementkFunctional»
EstimateDNo n in ertialDFo rces

«requirementkFunctional»
EstimateDClo ckDPerfo rman ce

Figure 15: Navigation Systems Requirements (SysML Requirements Diagram)

2To meet the defined standard[86], SysML diagrams typically contain a diagram frame and title in the
top left. These have been removed from the presented models to improve readability. The type of model is
instead included within each diagram’s associated caption to address the SysML requirements.

104

Each nested requirement can be broken down and considered to be the aggregation of

several lower level needs. These links are identified by the dashed arrows that define a

derived requirement. These capture how the requirement Propagate the Estimated State is

the culmination of being able to estimate noninertial and inertial forces, estimating clock

performance, and integrating the estimated state. This describes the structure and hierar-

chy of the system’s need and allows for breaking high level performance requirements into

the functional requirements that are required to enable those system capabilities. This ad-

ditionally allows traceability and identification of the low level requirements at a functional

and component level, aiding in system definition and structure.

The next step is to define how the system will be used and its interaction with external

bodies, such as other spacecraft, ground operators, or even other onboard systems. These

are all included as actors in the use case analysis, represented graphically by a stick figure

as seen in Figure 16. This model is used to capture the various uses of a system to support

functional allocation and external interface identification. The onboard Command and

Data Handling (C&DH) Module and Fault Management Module are identified as external

users of the navigation system. These are defined as being the interface layers between

onboard fault detection and isolation routines as well as providing the software connection

from the navigation module to sensor and communication subsystems. The main Use Cases

considered in this analysis are the processing of external commands, sensor measurements,

and communication packets. The uses are identified in the Navigation System block by

labeled ovals.

Figure 16 describes the high level interaction of the navigation system with external

modules, focused on the commanding aspect. The main users of this functionality of the

navigation system are Ground Control, C&DH, and Fault Management. The specific ac-

tivities captured in this diagram include the initialization and update of the spacecraft’s

estimated state as propagated from the ground. Additionally, it captures the capability of

the fault detection system or the external commanding to trigger a filter reset condition,

causing a re-initialization of the navigation state. The interfaces and triggering of actions

is captured through the lines denoting association between users and uses and between

105

users. An example of this is the identified interface of Ground Control to C&DH, where

commands are transmitted from the ground to the spacecraft which then interacts with

the Navigation System to either set the state, propagate the state forward, or reset the

state. Comparatively, the Fault Management Module operates independently of C&DH

and Ground Control, with the capability to reset the onboard state to a pre-programmed

value in case of system fault detection. This provides a high level view of the uses of the

navigation system, with a focus on its state update functionality and external interfaces to

other systems.

Navigation System

Command and Data
Handling Module

Ground Control

Reset State

Propagate State

Fau lt Man ag ement
Mo d u le

Set State

Figure 16: Navigation Measurement Processing Use Cases (SysML Use Case Diagram)

The second set of use cases, depicted in Figure 17, captures the operation of the nav-

igation system in regards to processing various navigation update information. For this

analysis, the users are identified as the Navigation Sensor directly to the Navigation Sys-

tem, and Other Spacecraft and Ground Control interfacing through the C&DH Module.

This shows the scenarios of a sensor providing a state update to be processed by the navi-

gation system. Additionally, it captures the reception and processing of navigation packets

and state updates. These state updates are envisioned to be generated by either other

spacecraft in the navigation network (such as the relays mentioned previously) or ground

106

assets (such as a DSN-based state update or transmitted packet). The identified uses of the

navigation system capture packet and measurement processing. These use cases provide a

high level view of the activities of the system and their interfaces with external agents in

a graphical manner. This allows identification of associations and functional flow between

individual elements and description of the operational concept of the navigation system in

terms of external users and high level functional needs.

NavigationGSystem

Pro cessGNavig atio n G
Packet

P ro cessGNavig atio n G
Measu remen t

Navig atio n GSen so r

CommandGandGDataG
HandlingGModule

ProcessGStateGUpdate

OtherGSpacecraft

DSN/GroundG
Control

Figure 17: Navigation Packet Processing Use Cases (SysML Use Case Diagram)

Upon identification of the use cases of the system, the next step is to describe these

in more detail and define in greater detail the functional interfaces between the various

subsystems. This helps to identify the functional requirements of the system and lays

out the initial groundwork for the interface design. This data is captured in the form of

interaction diagrams. These capture each agent in a unique ’swimlane’ (vertical structure)

and defines a sequence of actions that occur as part of a use case. Due to the analytical focus

on the navigation performance and filtering, the state update and propagation use cases are

107

captured via description of measurement and packet processing interaction diagrams.

The first use case, given in Figure 18, describes the sequence of activities that are used

to perform the processing of the navigation packets and captures the interfaces between a

Navigation Data Source, C&DH, and the Navigation System. This model captures all of

the steps in the correct sequence required for successful state update from received data.

The blocks at the top of the diagram each represent an individual users or system. Dashed

lines represent the actions assigned to each element. The rectangles capture the active

systems, and the arrows represent functional calls that point towards the element on which

the function operates.

First, the packet is generated by the source agent. For this diagram the Navigation

Data source can be a ground station or satellite. The packet is shown to be generated after

link analysis is performed to check if the two objects are in communication range. Next, the

navigation header is generated, and the data transmitted. After the light travel time delay,

the packet is received by the C&DH software, which confirms receipt, and transfers the data

to be processed by the navigation system. The navigation module then proceeds to process

the measurement (decomposing and identifying the information contained in the header,

such as source location and transmission and reception times. Following this, the navigation

system propagates its estimated state to the time of packet arrival, calculates the modeled

measurement (what the navigation expects the measurement to be based upon its current

state estimate), and then generates the state update. The onboard state is then updated and

this resulting state is returned to C&DH to confirm analysis is complete. This formulation

assumes a sequential filter implementation that process each measurement individually and

calculates a state update. For batch filtering methods (such as a least squares analysis),

the process of generated a state update would require more detail.

The use of this interaction diagrams captures the order of actions in an operational

scenario and identifies the specific functional roles of each system. Additionally, this model

is used to capture the needed functions and begin to track their arguments to feed into

interface design. As opposed to a psuedocode textual description or a simple list of activities,

this model captures all of the interacting agents, their functions, and data interfaces in an

108

intuitive design allowing for complete description of the activities required to perform this

function, specifically packet generations. This serves to capture in detail the system’s

concept of operations.

NavigationcSensor NavigationcSystemCommandcand
DatacHandling

RequestcSensorcMesaurement()

TakecExternalcMeasurement()

ProcesscMeasurement()

PassMeasurement(measurement,
timecofcmeasurement)

RequestcS tatecUpdate(Measurement,ctimecofcmeasurement)

P ropagatecS tatectocTimecofcMeasurement()

CalculatecModeledcMeasurement()

CalculatecS tatecUpdate()

UpdatecState()

ConfrmcUpdatedcState(NewcState)

Figure 18: Navigation System External Packet Processing (SysML Sequence Diagram)

The other use case, presented in Figure 19, describes the processing of a state mea-

surement from an onboard sensor. For this case, the C&DH module acts as the initiator,

requesting the latest reading from a sensor at a specified interval or time. The sensor

then takes an observation, and applies any known correction and calibration terms, and

returns the value to the data handler. The data is then sent to the navigation module

which propagates the onboard state to the measurement timestamp, calculates the modeled

measurement at the observation time, calculates a state change, and updates the estimated

state parameters. The navigation system concludes by confirming processing of the mea-

surement back to C&DH. These models allow for capturing specific behaviors that form the

foundation of ABM.

109

As mentioned above, this focuses on a sequential filter, and makes no assumptions

about the time between measurements or the number of measurements. These conceptual

models can be used to capture the behavior of a range of filters operating at a range of time

scales. Regardless of the implemented state estimator, these same processes will be followed.

This allows for a generalized view of the system’s functionality and operation, providing a

stereotype for developing modeling and simulation tools to capture this sequence of events.

This model is very similar to the use case presented above for external packet processing,

and allows the designer to identify common as well as unique functionality of each system.

NavigationpData
Source

NavigationpSystemCommandpand
DatapHandling

CheckpifpSatellitepinpRange()

FormpNavigationpHeader()

TransmitpDatapPacket()

ConfirmpPacketpReceipt()

RequestpS tatepUpdates(NavigationpHeader)

ProcesspNavigationpData()

P ropagatepS tateptopPacketpTimestamp()

CalculatepModeledpMeasurment()

CalculatepS tatepUpdate()

UpdatepNavigationpState()

ConfirmpUpdatedpS tate(NavigationpState)

Figure 19: Navigation Measurement Processing (SysML Sequence Diagram)

The modeling of the system’s interactions and functional interfaces with external agents

forms the basis of understanding of the system’s operational states. These are captured in

more detail through the use of a State Machine Diagram. This model captures the flow

of the navigation system behavior and modes of operation. The implemented model is

110

shown in Figure 20. The various modes are given in the diagram, along with identification

of transition events and their state. Each mode of operation is identified by a defined

blocks. The arrows identify state transitions from the source to resulting state. Each state

transition is linked to a specific function or action being performed on or within the system,

each identified within square braces. The initial state is identified by the solid circle with the

initial action of [Power On] transitioning the system to an initialization mode. Additionally

upon the [Power Off] action, the navigation systems transitions to the final exit state.

This captures the system behavior from power up to power down, with included fault

analysis events included. Upon power up, the estimator variables are initialized. Once these

values are loaded from memory, the state initialized to its last known estimated location

(or built in zero-point). Upon completion, the system proceeds to an idle state awaiting for

further events.

The state machine model captures a range of events which drive the system’s operation.

Upon detection of a failure event, the estimator is re-initialized. At a certain interval,

the C&DH may generate an interrupt, requesting a state propagation to calculate a new

estimated state at some specific state. Upon reception of a packet from C&DH, the estimator

proceeds to process the packet and if it is determined to be valid, adhering to the format

standards, a state update is calculated. Measurement updates operate in a like fashion,

checking the measurement for validity, and proceeding to calculate and apply a state update

upon a successful observation. All of these events tie back to the navigator’s IDLE state,

upon which it is waiting for further events. This model helps to capture the event-driven

behavior of the navigation estimator, processing packets and measurements as available,

and propagating the internal estimate at some externally controlled interval. These define

the operational states of the navigation filter, and builds a framework of the behaviors of

the model, defining specific operations to perform upon certain events.

111

In itial

Final

In itializin g CNavig atio n C
Variab lesCan d CSettin g s

In itializin g CState

IDLE

PropagatingCState

ProcessingC
Measu remen t

UpdatingCState

Pro cessin g CPacket

Packet
Validated

Packet
Invalidated

S tateCUpdated
Measurement
Validated

Measurement
Invalidated

S tateCInitialized

S tateCInitializationCCommanded

DTCPropagation
Completed PowerCOff

FaultCDetected

PacketCReceived
MeasurementCReceived

DT
Propagation
C ommanded

PowerCOn

Figure 20: Navigation System Operational Modes (SysML State Machine)

With the behaviors of the system captured and the interactions described, a detailed

view of the system under study and its operational modes and requirements has been cap-

tured. The next modeling step is to break the navigation system down into individual

components and begin to assign functionality to each. This breakdown allows for an un-

derstanding of the subsystems that must interact and interface to build up the complete

navigation system. This has two main parts, the Block Definition Diagram and the Internal

Block Diagram. The first diagram is used to define the breakdown of the system, including

descriptions of the parameters and operations associated with each component. This model

is shown in Figure 21.

112

PacketIn

MeasurrementIn

S tateOut

T imeOut

dtIn

InitS tate«block»
Navig atio n :System

PacketIn

MeasurrementIn

S tateOut

T imeOut

dtIn

InitS tate

«block»
Fo rce:Mo d el

x: Force:Identifier: :char

x: Calculate_ForcepFloatV:RealA: :float

InitialS tate

PropagatedState

dt

«block»
Propagation:Module

x: AbsoluteErrorTolerance: :float
x: MaximumIterations: :float
x: MaximumTimeStep: :float
x: MinimumTimeStep: :float
x: RelativeErrorTolerance: :float

x: P ropagateS tatepS tateVectorV:RealV:StringA: :StateVector

InitialS tate

PropagatedState

dt

Measurement
ModeledMeasurement Validity

CurrentState UpdatedStateCurrentTime

dt

UpdatedTime «block»
State:Update:Estimator

x: CalculateS tateUpdatepRealV:RealV:StateVectorV:RealA: :StateVector

Measurement
ModeledMeasurement Validity

CurrentState UpdatedStateCurrentTime

dt

UpdatedTime

PacketIn
Validity

ProcessedMeasurement Modeled:Measurement

CurrState

«block»
PacketP ro cessin g Mo d u le

x: CheckValiditypS tateVectorV:RealV:PacketA: :boolean
x: P rocessPacketpStateVectorV:RealV:PacketA: :float

PacketIn
Validity

ProcessedMeasurement Modeled:Measurement

CurrState

Measurement

MeasurementType

ModeledMeasurement

ProcessedMeasurement

S tate

T ime

Validity

«block»
Measu rem en t:Pro cessin g :Mo d u le

x: CalculateModeledMeasurementpS tringV:RealV:StateVectorV:RealA: :float
x: CheckValiditypRealA: :booleanMeasurement

MeasurementType

ModeledMeasurement

ProcessedMeasurement

S tate

T ime

Validity

1 11E

Figure 21: Navigation System Structure (SysML Block Definition Diagram)

This model represents the Block Definition Diagram of the system. The specific com-

ponents are each captured by the individual blocks. Each block allows for identification

of its parameters and operations, as well as their types and interfaces within the object.

Flowports can also be defined for each block, allowing for definition and capture of the data

flow into and out of each object. These can be identified as hollow boxes attached to a

block. This model provides for insight into the structure of the system under study. The

lines with � represent a composition relationship of a black with the symbol attached to

the higher level object. This captures how the combination of individual elements build to

form an integrated system. Additionally, it is possible to identify the elements that form

113

the aggregates parts of a object. This is identified by lines ending with ♦ attached to the

host block. The multiplicity of the item can be captured as well, identifying how multiple

part of one type are integrated into the block.

The navigation system is broken down into its primary components, described as the

Propagation Module, State Update Estimator, and the Packet and Measurement Processing

Modules. Each of these objects perform specific roles as defined in the interaction diagrams

given, performing such functions as measurement validation, propagating the estimated

state forward (or backward) in time, and calculating a state estimate. Each of these oper-

ations is allocated to specific blocks and identifiable in this model. Additionally, through

the use of the aggregation relationship, the model captures the inclusion of multiple Force

Models within the Propagation Module. The attached label ’1..N’ captures this multiplic-

ity, stating that the overarching module includes between 1 and N individual Force Models.

This diagram serves to visualize the composition of the navigation system and the proper-

ties and functions of its components. The displayed interfaces on each block also allow for

the visualization of inputs and outputs of each element.

The Internal Block Diagram builds upon the Block Definition and models the internal

structure of the defined systems. The defined blocks and internal structure directly feed

into this model by forming the base structure. A central purpose of this diagram is to

capture the linkages and interfaces between elements that compose a system. As such, the

individual components of a system are placed within a large central block that represents

the higher level object. Ports on this outer block capture the inputs and outputs of the

system. Similarly, the ports of each individual element are displayed. Associations between

elements can be visualized by arrows connecting ports. Capturing these relationships allows

the user to identify the flow of data within the system, from inputs through internal blocks

and to outputs. This gives an internal view to the data processing sequence and allocation

of data and functionality within the system.

The internal structure of the navigation is captured in Figure 223. This allows for

3The SysML Specification defines that the flow of data into or out of a port is defined by an arrow on
the port itself. To improve readability, the flow of information is instead shown as arrowheads.

114

further refinement and definition of the navigation system composition. The model enables

visualization of the flow of data between elements in the system of interest. This information

is important in the next level of development by capturing specific functional blocks to be

implemented, as well as input and output contents of each’s operations. By visualizing the

flow of information between elements, it is also possible to capture the sequence of internal

operations and build algorithmic blocks to form a basis for implementation and further

analysis.

MeasurrementIn

PacketIn

S tateOut

T imeOut

dtIn

ibd«[Block]«Navigation«System«[TheSystem]

MeasurrementIn

PacketIn

S tateOut

T imeOut

dtIn

Measurement

ModeledMeasurement

ProcessedMeasurement

S tate

T ime

Validity

«block»
B locks::Measu remen t«Processing«

Modu le

Measurement

ModeledMeasurement

ProcessedMeasurement

S tate

T ime

Validity

CurrState

Modeled«Measurement

PacketIn

ProcessedMeasurement

Validity

«block»
B locks::PacketProcessingModu le

CurrState

Modeled«Measurement

PacketIn

ProcessedMeasurement

Validity

dt

InitialS tate
PropagatedState

«block»
Blocks::Propagation«Module

dt

InitialS tate
PropagatedState

CurrentState

Measurement

ModeledMeasurement

UpdatedState

Validity

UpdatedTime

dt

«block»
Blocks::State«Update«Estimator

CurrentState

Measurement

ModeledMeasurement

UpdatedState

Validity

UpdatedTime

dt

Figure 22: Navigation System Internal Structure (SysML Internal Block Diagram)

With the system defined and the internal structure developed, it is important to tie

115

these models back to the high level requirements. This can be done through another use

of a Requirements Diagram. Mapping the system requirements to the base blocks is shown

by the model given in Figure 23. This diagram includes the system’s defined blocks and

captures how each element relates to the system requirements. This is used to ensure that all

of the required aspects of the system are implemented and aids in requirements verification

and analysis. The associations in the figure represent the ability of a block to satisfy a

specific requirement. Ensuring all requirements are being addressed by an element of the

system allows for traceability and reduces the potential for needs left unaddressed by the

system.

116

Estimate Clock Performance

(from Specifications)

Estimate Inertial Forces

(from Specifications)

Estimate Noninertial Forces

(from Specifications)

Estimate Position within
Defined Bounds

(from Specifications)

Estimate Time Correction
within Bounds

(from Specifications)

Estimate Velocity within
Defined Bounds

(from Specifications)

Integrate Estimated State

(from Specifications)

Process Sensor
Measurements

(from Specifications)

Process State Mesaurements
from Other Spacecraft

(from Specifications)

Process State Updates from
Ground Systems

(from Specifications)

Navigation System Requirements

(from Specifications)

Estimate S tate Within Error
Bounds

(from Specifications)

Propagate Estimated State

(from Specifications)

Process State Update
Measurements

(from Specifications)

«block»
Force Model

«block»
Measurement

Processing Module

«block»
PacketProcessingModule

«block»
Propagation Module

«block»
State Update Estimator

«block»
Navigation System

«satisfy»

«satisfy»

«satisfy»

«satisfy»

«satisfy»

«satisfy»

«satisfy»

«satisfy»

«satisfy»

1 ..*

«satisfy»

Figure 23: Navigation System Requirement Satisfaction (SysML Requirements Diagram)

With these models implemented, the designer is able to get a detailed understanding

of the system under study. The requirements diagrams show the needed capabilities of

117

the system, and how these track to the individual vehicle subsystems. The use cases and

interactions diagrams capture the operation of the system and the interfaces to external

elements. Lastly, the block definition diagram and the internal block diagram show the

composition of the navigation system, and the linkages between structural elements. These

models all work together to give a total view of the system under study and form the basis

of approach for the analysis of the system.

5.3 SNAPE Architecture Design

To capture the analytical framework used to evaluate the performance of deep space navi-

gation systems, the designer must first define the requirements of the simulation tool and

the experiments it must perform. These are derived from the models of the conceptual

navigation system. The framework is implemented to mirror the real system and provide a

simulation analogue for experimentation and analysis. As such, its goal is to duplicate in

software the functional purposes of each block as well as the defined interfaces, providing an

implementation for each operation. The use cases and the appropriate interaction diagrams

serve as algorithmic outlines of the operation of the simulation.

The primary requirements are derived from the research questions which the framework

must address. These in turn have a basis in the system’s overall requirements. The sim-

ulation environment’s requirement diagram is given in Figure 24. As shown in Figure 25,

these all act as analogues to subsystems within the navigation system. This model allows

for understanding and documenting the linkages between the requirements at the system

and framework levels. This provides insight into the design and needs of the framework, by

identification of the requirements flow between the two.

118

An alysis.Framewo rk.Sp ecificatio n s

«functionalRequirement»
Mo d el.Navig atio n .Packets

«functionalRequireme...
Mo d el.Navig atio n .

Measu rem en ts

«functionalRequireme...
Pro cess.User.In p u t.Decks

«functionalRequirement»
Save.SImu latio n .Data.Ou tp ut

«functionalRequireme...
Plo t.Simu latio n .Resu lts

«functionalRequireme...
Mo d el.State.Estimatio n .

Techniques

«functionalRequirement»
Run.User.Dedfined.Scenario

«functionalRequireme...
Cap tu re.Perfo rman ce.o f.

Navig atio n .Packet.Up d ates

«functionalRequirement»
Cap tu re.Perfo rman ce.o f.

Navig atio n .Measu remen ts

«functionalRequireme...
Su p p o rt.Mo d u lar.Estimator.

Mo d els

«functionalRequirement»
Calcu late.Estimated .State.Erro r

«functionalRequireme...
Track.Truth.State

«functionalRequireme...
Track.Estimated .State

«functionalRequireme...
Mo d el.Measu remen t.

Frequency

«functionalRequireme...
Mo d el.Measu remen t.

Accuracy

«functionalRequireme...
Mo d el.Measu remen t.

Dynamics

«functionalRequirement»
Mo d el.Packet.

Gen eratio n /Pro cessin g /Tran smissio n

«functionalRequireme...
Mo d el.Packet.Accu racy

«functionalRequireme...
Model.Packet.Content

«derive»

«derive»

«derive»

«derive»

«trace»
«derive»

«derive»

«derive»

«derive»

«derive»
«derive»

«derive»

Figure 24: SNAPE Framework Requirements (SysML Requirements Diagram)

Taking the same approach as for the overall navigation system, the Navigation Frame-

work Requirements are decomposed into lower level functional needs. The modeled rela-

tionships capture the linkages between requirements at multiple levels. In order to capture

the performance of the state estimator, the framework must be able to model all aspects of

state propagation, measurement estimation (both true and modeled), and estimation.

Additionally, unique requirements are placed on the system to allow for the design anal-

ysis to take place. For example, the software interface must allow for user-defined input,

output of performance and state data to file, graphical depiction of simulation results, and

119

analysis of a wide range of measurements and state estimation algorithms. The capability

for the system to operate with external optimization and design space analysis packages

is inherent within the need to analyze any navigation packets and provided optimal per-

formance. The integration of these requirements from both the operational and analytical

points of view allows for complete modeling of the requirements of the framework.

Navigation.System.Requirements

Ifrom.SpecificationsD

«performanceRequirement»
Estimate.State.Within.Error.Bounds

Ifrom.SpecificationsD

«functionalRequireme...
P ro cess.State.Up d ate.

Measu rem en ts

Ifrom.SpecificationsD

«performanceRequirem...
P ro p ag ate.Estimated .State

Ifrom.SpecificationsD

An alysis.Framewo rk.Sp ecificatio n s

Ifrom.Requirements.ModelD

«functionalRequirement»
Save.SImu latio n .Data.Ou tp ut

Ifrom.Analysis.Framework.
SpecificationsD

«functionalRequireme...
Plo t.Simu latio n .Resu lts

Ifrom.Analysis.Framework.
SpecificationsD

«functionalRequireme...
Mo d el.State.Estimatio n .

Techniques

Ifrom.Analysis.Framework.
SpecificationsD

«functionalRequirement»
Run.User.Dedfined.Scenario

Ifrom.Analysis.Framework.
SpecificationsD

«functionalRequireme...
Capture.Performance.of.

Navig atio n .Packet.Up d ates

Ifrom.Analysis.Framework.
SpecificationsD

«functionalRequirement»
Capture.Performance.of.

Navig atio n .Measu remen ts

Ifrom.Analysis.Framework.
SpecificationsD

«functionalRequirement»
Calcu late.Estimated .State.Erro r

Ifrom.Analysis.Framework.
SpecificationsD

«deriveReqt»

«deriveReqt»

«deriveReqt»

«deriveReqt»

«deriveReqt»

«deriveReqt»

«deriveReqt»

«deriveReqt»

«deriveReqt»

«deriveReqt»

Figure 25: Relationship Between Navigation System and SNAPE Framework Requirements

(SysML Requirements Diagram)

120

Navigation Framework

Run Analysis Case

Run Design SpaceI
Exploration/Monte Carlo

Analysis

User Inpu t File

GUI

User

Run Optimization

Post Process
Simulation Data

Data Sto rage

Define Input Deck

Figure 26: SNAPE Framework Use Cases (SysML Use Case Diagram)

With the simulation’s requirements defined, the next step in the analysis methodology

is the capture of the framework’s use cases. These are similar to those defined above

for the navigation system. Instead of operating with interfaces to external measurements

and communication sources, these functions are modeled within the framework and the

external interfaces are to the user via a graphical interface, and data storage hardware.

The uses cases directly relate to enable the research questions laid out previously that

define the capabilities of the framework and the ways in which it will be used. The main

internal functions are: define and load an input deck, run a single analysis case, perform a

design space exploration, optimize variable to maximize performance, and post process the

simulation results for data analysis and visualization. Utilization of this model supports

identification of the external users of the framework and its modes of operation. This aids in

defining the required interfaces and ensures consideration of these needs when implementing

121

the analysis framework.

User GUI Coordinator 1 EEkTruth<Body 1 EEkAgent<Body

loop<Run<Simulation

[while<t<<<tf]

Input<DataVz

Process<DataVz

V isualize<DataVz

Run<AnalysisVz

RunAnalysisVInput<Deckz

Initialize<S imulationVz

Initialize<Truth<BodyVz

Initialize<Agent<BodyVz

[t<=<t,]:Initialize<S imulation<TimeVz

TickVz

P ropagateVdTz<:State

PropagateVdTz<:State

Calculate<State<ErrorsVz

CheckforOutgoingPacketsVz

Transmit<Packet<CheckVz

Return<PacketVPacket0<destinationz

Check<Outgoing<PacketsVz<:Agent<Data<Packets Transmit<Packet<CheckVz

Return<PacketVPacket0<Destinationz

Figure 27: SNAPE Run Analysis Algorithm (SysML Sequence Diagram)

After defining the primary use cases, it is important to derive the sequence of functions

and events that correspond to the analysis of the system. As described, this model captures

the events that must be performed across an analysis. Part of this model is presented in

Figures 27. to capture this core functionality. The ability to interact with external design

analysis tools and perform design space exploration and optimization build upon this base

122

sequence by iterating over this sequence of functions. This model is based on that given

in Figure 20, but goes into greater detail into the individual processing of each individual

measurement and packet. The loop structure ’Run Simulation’ captures the ability of the

simulation to iterate over a period of time at a specified time tick. The other loops ’Process

Packets’ and ’Measurement Processing’ demonstrate the need to iterate over a sequence of

potential state updates occurring over the course of the simulation.

The individual swimlanes and the associated functional links also begin to describe the

differentiation between truth agents and spacecraft agents. This distinction demonstrates

a need for two similar objects which share many of the same properties, such as state, but

are used in very different ways and serve different purposes. This also represents how the

simulation framework must propagate the true state of each simulation agent as well as the

agent’s own estimated state. As before, these linkages between blocks form the basis of

inter-object data and functional interfaces as well as serving as a high level outline of the

simulation algorithms.

123

«block»
Simulation Coordinator

+ Collect Data() :void
+ Initialize Agents() :void
+ InitS im(Vector) :void
+ Process Measurements() :void
+ Process Packets() :void
+ P ropagate Agents() :void

«block»
Data Collector

- data_location :char
- data_type :char

+ add_data(S tring, S tring, Vector) :void
+ get_data(S tring, S tring) :Matrix
+ get_datatype() :Vector
+ Initialize(Vector) :void

«block»
Navigation Simulation

Framework

«block»
Simulation Agents

SimBody

«block»
Agent Body

- TruthRef :S tring = MSL

+ CalculateForces() :void
+ ProcessMeasurement(Mesaurement) :void
+ ProcessPacket(Packet) :void

SimBody

«block»
Truth Body

::SimBody
- CentralBody :string
- CurrentS tate :Vector
- Frame :string
+ id :char

::SimBody
+ getS tate(double) :char
+ Init(Vector) :void
+ InitClock(float) :void
+ Integrate(float) :void

«block»
Measurement

- dt :int
- dt_batch :int
- dt_meas :int
- E rror :Vector
- HCalcFunc :function
- l ib :alll_int
- MeasFunc :function
- n :int
- n_batch :int
- src :string

+ CaculateMeasurement(Vector) :void

«block»
Packet

- dest :string
- dt :int
- dt_batch :int
- dt_meas :float
- E rror :Vector
- n :int
- n_batch :int
- src :string

+ CalculatePacketContent(Vector) :void

«block»
SimulationSettings

+ defaultDt :float = 86400 s
+ EndTime :float
+ startTime :float = 379605666.18423 (ET)

«block»
CommSystem

- Gr :float
- Gt :float
- ID :S tring
- Lr :float
- Lt :float
- P req :float
- P t :float
- SNRreq :float
- Tn :float

«block»
ClockModel

- CorrectedTime :float
- h_2 :float = 1E-20
- h0 :float = 1E-19
- TrueTime :float

+ P ropagateClockErrors(Float) :void
+ P ropagateClockState(Float) :void

«block»
ForceModel

- ID :S tring
- library :string

+ CalculateForce(Vector, Vector, Vector) :Vector

SimBody

«block»
Estimated Body

+ CalculateForce() :void
+ P ropagateS tate(Float) :void
+ UpdateEstimate(Vector) :void

«block»
StatePropagator

- Current Time :float
- CurrentS tate :Vector
- Dynamic Forces :ForceModel
- Integration Tolerances :Vector
- Phi :Matrix
- S tochastic Forces :ForceModel

+ Initialize(ForceModel, ForModel, Vector, float) :void
+ P ropagateS tate(Float) :void

«block»
State Estimator

- P :Matrix
- Q :Matrix

+ CalculateS tateUpdate() :void

1 ..*

1 ..*

1 ..*

1 ..*

1 ..*

1 ..*

1 ..* 1 ..*

1 ..*

Figure 28: SNAPE Framework Design Model (SysML Block Definition Diagram)

124

With the individual functions defined and the primary objects identified, the framework

system can be decomposed into its representative objects. This is done using a Block

Definition Diagram. The model for the navigation framework is given in Figure 28. This

model describes the composition of the simulation, and individual blocks forming the overall

system. Additionally, each block object includes representation of its key attributes and

operations, allowing for further decomposition and declaration of characteristics. This also

allows for the assignment of the functional interfaces to specific model objects. This aids

in the simulation implementation by providing a high level definition of the minimal set of

capabilities required for implementation.

The objects within the framework are developed using ABM techniques, with distinction

driven on capturing independent blocks or behaviors. The primary objects presented in

the model are the simulation bodies, broken down into truth objects, agent objects, and

estimated objects, individual packets and measurements, the simulation coordinator, and

the collector. Additionally, the estimated agent body is composed of several other objects,

such as its propagator, clock model, communication system, and state estimation algorithm.

These analysis components serve as functional blocks within the agent body, allowing for

implementation using a vast variety of algorithms. This decomposition also forms a basis

for the data structures to be used in file input/output and object instantiation.

With the framework decomposed into its representative elements, the last step of the

implementation is to add in the details for a specific analysis. For this example, the compar-

ison of multiple measurement types is described in Figure 29. This represents an instance4

of the framework to analyze a particular problem. The truth and spacecraft bodies have

been defined as Earth, Mars, MRO, and MSL truth bodies (for simulation tracking) and

the MSL Agent Body as the primary agent of interest. This object is further composed of

a specific 8-state Extended Kalman Filter, and a Runge-Kutta 4(5) state propagator. Ad-

ditionally, the specific simulation parameters are included that bound the analysis. These

implementation diagrams can be implemented for each analysis case under study to provide

4This is not a standard SysML model, and does not meet the specifications. The purpose of this diagram
is to provide an overview of the SNAPE implementation for the NNAV analysis scenario and to demonstrate
how these types of models can be used to define input decks for test cases.

125

a basis for data input and data storage in a very visual manner (in comparison to machine

readable text files). Additionally, this serves as a framework to collect analysis cases and

their assumptions in one common platform within the Systems Engineering toolsets.

MROANEstimatedABody

NNSimBody
3A CentralBodyA Nstring
3A CommSysA NCommSystem
3A CurrentS tateA NVector
3A FrameA Nstring
6A idA Nchar
3A LocalClockA NClockModel

MSLANAgentABody

NNAgentABody
3A TruthRefA NS tringA=AMSL

NNSimBody
3A CentralBodyA Nstring
3A CommSysA NCommSystem
3A CurrentS tateA NVector
3A FrameA Nstring
6A idA Nchar
3A LocalClockA NClockModel

MSL Clo ckANClo ckMo d el

NNClockModel
3A CorrectedTimeA Nfloat
3A h_)A NfloatA=A(E3).
3A h.A NfloatA=A(E3(v
3A TrueTimeA Nfloat

EarthANTruthABody

MarsANTruthABody

MROANTruthABody

MSLANTruthABody

LocalDataCollectorANDataACollector

MeasurementAAnalysisANSimulationSettings

NNS imulationSettings
6A defaultDtA NfloatA=AGKb..As
6A EndTimeA Nfloat
6A startTimeA NfloatA=APpvK.HKKK7(Gb)PA9ETD

Po sitio n AMeasu remen tAN
Measu remen t

NNMeasurement
3A dtA Nint
3A dt_batchA Nint
3A dt_measA Nint
3A E rrorA NVector
3A HCalcFuncA Nfunction
3A l ib A Nalll_int
3A MeasFuncA Nfunction
3A nA Nint
3A n_batchA Nint
3A srcA Nstring

Ran g eAMeasu remen tAN
Measu remen t

NNMeasurement
3A dtA Nint
3A dt_batchA Nint
3A dt_measA Nint
3A E rrorA NVector
3A HCalcFuncA Nfunction
3A l ib A Nalll_int
3A MeasFuncA Nfunction
3A nA Nint
3A n_batchA Nint
3A srcA Nstring

S tateAMeasu remen tAN
Measu remen t

NNMeasurement
3A dtA Nint
3A dt_batchA Nint
3A dt_measA Nint
3A E rrorA NVector
3A HCalcFuncA Nfunction
3A l ib A Nalll_int
3A MeasFuncA Nfunction
3A nA Nint
3A n_batchA Nint
3A srcA Nstring

EFKGANStateA
Estimato r

RKbHAN
StatePropagator

GravityASu n AN
ForceModel

GravityAEarth AN
ForceModel

GravityAMarsAN
ForceModel

Measu remen tAAn alysisAN
Navig atio n ASimu latio n A

Fram ewo rk

Figure 29: SNAPE Analysis Scenario (Instances shown on SysML Block Definition Diagram

The integration of these individual models serves to provide a complete view of the

navigation system under study. From the top level navigation system requirements to

the low level specific implemented state estimation algorithm, several layers of detail are

126

captured across the models. This serves to capture the designer’s assumptions about the

system, and the underlying logic of the navigation system. It also provides a framework

to enable quick identification of common objects across analysis cases and can be used to

build up a series of operational scenarios or use cases. Most importantly though, these

detailed models of both functional interfaces and object decomposition feed directly into

the simulation implementation to serve as a backend and definition of the tool’s functional

requirements.

5.4 SNAPE Implementation

The previous sections in this chapter have developed the SNAPE conceptual framework,

capturing the structure, behaviors, and requirements of the navigation analysis process.

One product is a collection of prototypes to capture conceptual software objects, attributes,

functionality, and algorithms. A key aspect of this framework is that its development is

independent of the implementation. The remainder of this chapter focuses on one imple-

mentation of the SNAPE framework into an executable simulation environment to perform

analysis in support of verification and validation.

In order to allow for a modular and easily expandable development language for the

framework software components, several options were compared and contrasted. The func-

tionality of the tool posed several unique requirements on programming capability. In order

to process the published trajectory data in the simulation as the truth reference, it is nec-

essary to include access to the SPICE library of tools [2]. This is the standard package

used for deep space mission planning and data analysis5. It includes several packages which

support timing analysis, geometry analysis, science planning through its standard interface

to spacecraft geometry model, trajectory input decks, and planetary ephemeris models such

as DE421 [39]. The SPICE file format is also the standard for deep space trajectory data

analysis and distribution. As such, it is necessary to have a software linkage to this soft-

ware package. Currently the SPICE library is implemented in C/C++, JAVA, MATLAB,

and IDL. Libraries additionally exist that wrap the software package in Python6. These

5http://naif.jpl.nasa.gov
6https://github.com/rca/PySPICE

127

languages therefore form the basis for the down-selection.

Important factors for selection are access to standard libraries for mathematics support,

graphics output, data input/output, and modular user interface. Another important facet is

the ease of functional development and debugging. Ideally this would also be implemented

in a widely supported open language to aid in future expandability and development. Also

important is the development and use of standard functional libraries to aid in tool capa-

bility. A stable interface is needed to ensure maximum software lifetime.

From these factors, the Python programming language was chosen for implementation.

This selection was made for several reasons. Version 2.7 is a mature release of the software

and is widely supported, with a wide code base from other developers. There also exists

a wide range of utilities for this version of the language. The primary libraries in use

are the NumPy [84] and SciPy [66] numerical analysis packages, which provide links to

standard software toolsets. Additionally the recent release of a SPICE Python interface

allows for integration with a wide range of ephemeris data and functionality. This language

also provides libraries for quickly developing a user interface using WXPython [94] with

MatPlotLib for generating data visualizations [61] and integration with a range of other

developed libraries through C code integration and linking.

The other languages also offer similar support, but have not been chosen due to several

factors. MATLAB, though powerful with a wide range of functionality, is a closed interface

and the implementation can change year to year. Additionally, the programs can tend to be

memory intensive, which caused problems during initial implementation testing. C/C++

was not chosen due to its platform specific nature, and requirement of local compilers

to develop executable code. User interface development is also limited and has similar

limitations. These characteristics led the work to be developed in Python, due to its open

nature, wide range of analytical packages, fast development, and high level of execution

performance, as well as prior experience.

The software implementation of SNAPE is broken down into four main packages: the

graphical user interface, the linking libraries to connect external functions with the frame-

work, the simulation backend, and the data collection object. The separation of these

128

DatabStorage

AnalysisbToolsS imulationbToolsUserbInterface

AnalysisbCase

OptimizationbCase

AnalysisbScenariobOut

ScenariobtobLoad DatabIn

DatabRequest

«block»
Grap h icalbUserbIn terface

AnalysisbCase

OptimizationbCase

AnalysisbScenariobOut

ScenariobtobLoad DatabIn

DatabRequest

CasebIn

ProcessedbCase

«block»
S imL in k

CasebIn

ProcessedbCase

SettingsbIn
Indiv idualbCase

«block»
DEAPLink

SettingsbIn
Indiv idualbCase

DatabtobStore

SaveToFile

DatabRequestbIn

DatabOut

«block»
DatabCollector

DatabtobStore

SaveToFile

DatabRequestbIn

DatabOut

DatabTobSave

ReadbData

«block»
FileSystem

DatabTobSave

ReadbData

DatabInput

DatabOutput

«block»
An alysisbL ib raries

DatabInput

DatabOutput

Figure 30: SNAPE Software Design - Flows between Subsystems (SysML Internal Block
Diagram)

elements and their interfaces are given in Figure 30. These sub-modules are developed in

response to both the requirements definition and the identified functional requirements of

the simulation. Visualization of these relationships is given in Figure 31. As can be seen in

the diagram, each module ties directly into the higher level requirements and implements

a particular set of functions. This shows the continued flow of needs and prototypes from

the initial analysis. Each of these modules and their implementation will be discussed in

the following sections.

5.4.1 Overview of Simulator Execution

With the system defined and the blocks identified, the software was implemented using the

Python programming language using object-oriented techniques to develop a modular ro-

bust simulation framework. The next series of subsections focuses on the analytical backend

of the computational environment. Other functionality of the simulation is enabled by the

proper design and implementation of these software modules. These algorithms and the

modeling approach are captured to both serve as documentation and to provide a rational

129

«block»
An alysisRL ib raries

«block»
DEAPLink

«block»
DataRCollector

«block»
Grap h icalRUserR

In terface

«block»
S imL in k

«functionalRequirement»
SaveRSImu latio n RDataROu tp ut

.fromRAnalysisRFrameworkR
SpecificationsM

«functionalRequireme...
Plo tRSimu latio n RResu lts

.fromRAnalysisRFrameworkR
SpecificationsM

«functionalRequireme...
Mo d elRStateREstimatio n R

Techniques

.fromRAnalysisRFrameworkR
SpecificationsM

«functionalRequi...
RunRUserRDedfinedR

Scen ario

.fromRAnalysisRFrameworkR
SpecificationsM

«functionalRequirement»
CaptureRPerformanceRofR

Navig atio n RPacketRUp d ates

.fromRAnalysisRFrameworkR
SpecificationsM

«functionalRequirement»
CaptureRPerformanceRofR

Navig atio n RMeasu remen ts

.fromRAnalysisRFrameworkR
SpecificationsM

«functionalRequirement»
Calcu lateREstimated RStateRErro r

.fromRAnalysisRFrameworkR
SpecificationsM

«satisfy»«satisfy»«satisfy»
«satisfy»

«satisfy»

«satisfy»

«satisfy»
«satisfy»

«satisfy»

Figure 31: SNAPE Software Requirements Satisfaction (SysML Requirements Diagram)

basis for the method of analysis.

5.4.2 Simulation Coordinator

In order to integrate all of the individual software blocks and perform general simulation

housekeeping functions, a simulation coordinator is implemented as a Python class. The

functional requirements of this system are given in Figure 32. The coordinator integrates

the individual analysis modules and runs the analysis. Its sequence diagram is based on

that developed for the framework, as given in Figure 27. The inputs are defined as an input

deck, consisting of the defined truth bodies, estimated bodies, measurements, packets, and

simulation parameters, and a link to any data handlers to store any required performance

or status data. The coordinator is built upon ABM simulation approaches, allowing for

definition and operation of independent simulation agents.

The initialization function of the class builds up the simulation model, initializing the

individual agents in the simulation, and preparing the analysis variables. The run sim

function performs the analysis of a given defined scenario and operates in the sequence laid

130

«requirement»
CooridinatorGRequirements

«requirement»
In itializeGAg en ts

«requirement»
ParseGIn p u tGDeck «requirement»

InitializeGTruthGAgents

«requirement»
In itializeGSCGAg en ts

«requirement»
In itializeGEstimated G

Agents

«requirement»
GenerateGAgents

«requirement»
GenerateGTruthGAgents

«requirement»
GenerateGSCGAgents

«requirement»
Gen erateGPacketG

Ob jects

«requirement»
Gen erateGMeasu remen tG

Ob jects

«requirement»
In itializeGDeclared GDataGto G

Save

«requirement»
RunGSimulation

«requirement»
PropagateGTruthGAgents

«requirement»
PropagateGSCGAgents

«requirement»
Gen eateG

Measu rem en ts

«requirement»
Gen erateGPackets

«requirement»
Track/Pro cessGPacketsGin G

Transit

«requirement»
SaveGSelected GData

Figure 32: Simulation Coordinator Functional Requirements (SysML Requirements Dia-
gram)

131

out in Figure 27. In order to collect data, the coordinator parses the data output definitions

and sets flags in each class to identify individual variables that are to be sent to data storage.

Following this, the coordinator parses each truth and agent body, initializing the state of

each, depending on its definition (and reference to other objects).

Each agent body also has the capability to predict and estimate the location of other

spacecraft. This is performed through the use of an Estimated Agent object. This object is

contained within the agent body, and is initialized to match the initial estimate a spacecraft

would have of the other bodies, at its launch. It also includes functionality to allow for

updates of the estimated state and definitions of force models to use in propagating the

object’s state. The coordinator performs this initialization for each estimated agent within

each spacecraft agent in order to link the known truth states with the onboard values.

Once all of the objects are prepared, the coordinator proceeds to iterate through time

to capture the performance of the navigation system. Using a default input time step, it

first updates the state of each truth body, bringing the truth dynamics up to time. Next,

it proceeds to command each spacecraft agent to propagate to the current simulation time,

as well as commanding each of its internal estimated agents to propagate forward as well.

Following this, it iterates through the measurement objects and checks internal timestamps

to determine if a time for one to be dispatched has been reached. If the measurement is due

to be released, the truth measurement is calculated and passed to agent body, which uses

its onboard state to model the measurement and then process it through its onboard filter.

If the measurement is not due yet, the remaining time is estimated. This is compared to the

default timestep to enable direct iteration to the event or the next propagation, whichever

is first.

Once all of the measurements have been tested for generation, the coordinator performs

a link analysis between each defined communication for the truth bodies following the

algorithms described in the previous chapter. This is done as a diagnostic measure to track

reception power levels and link capability. The software then proceeds to iterate through

the list of predefined packets and check if any have reached time for transmission. If so, the

link is analyzed to determine if the packet can be received by the other spacecraft using the

132

truth states of the objects. If the data can be received, the packet data is built, and the

time of arrival is calculated. At this point, the packet is placed into a queue awaiting the

correct simulation time to be released to the receiving agent for processing. The coordinator

then iterates over the active packets, and checks for any ready to be received. If a reception

time has been reached, the individual packet is removed from the queue and transferred to

the spacecraft agent for processing. Similar to the measurement checking, the coordinator

also checks for the next reception event and compares this time interval to the default time

step. If the calculated timestep is smaller, it is used in the next propagation event of the

simulation.

The simulation coordinator also includes a large amount of data housekeeping capability.

By defining a debugging level within the simulation parameters, varying amounts of detail

can be output to the user describing the current state of the simulation. Additionally, at

multiple points in the analysis, the simulator performs a check for flagged output variables

at the system level. These include state propagation errors, state estimation errors, and

other error terms. This allows for capture and post-processing of these values to determine

the performance of the system and feeds into data visualization.

5.4.3 Truth Body

The truth body class is an implementation of a navigation agent within the simulation

framework. These objects are specifically used to track the true position and state of an

object over the course of the simulation, serving as a truth reference. The initialization

parameters include declarations of a truth reference, any available communication systems,

and clock parameters. This allows for tracking of the truth onboard clock’s state as well

as its state. The class definition allows for the capability of integrating any truth source,

though its integration function. Currently, this is implemented as a SPICE state lockup

for the given time, frame, and central body, but can be expanded into future iterations to

include loading ephemeris from file, or propagation given an initial state.

133

5.4.4 Estimated Body

The estimated body class implements a limited set of these features. It is intended to

be used with an agent body to capture the estimated state of an external body. This

allows for analysis of the spacecraft’s propagator and the effects of errors in the state of

other sources, which is a key driver for processing a navigation packet (determining the

transmission location). This object includes a fully implemented propagator, allowing for

definition of other bodies to include in gravitational analysis and other forces. The types of

bodies are also defined and used to determine their estimated location and parameters, such

as gravity models. Currently these models are also implemented as SPICE lookups, using

the capture planetary properties data and ephemeris in the DE421 ephemeris library. This

is used to represent the spacecraft launching with an up-to-date model for planetary bodies.

The propagation function calculates the total acceleration on the vehicle as a function of the

current time and passes this, along with its estimated state to utilize SciPY’s integration

library. The specific integration scheme and parameters are defined via the input deck to

determine the propagation method and acceptable error levels. This estimated state is used

to inform the parent agent of its estimated position.

5.4.5 Agent Body

The agent body expands the functionality of the estimated body, including the capability

to define force models to include in its propagation as well as the specific integrator to use.

The software is currently set up to pass in an integration class of the form implemented

in the SciPY Ordinary Differential Equation integration library. As such, it is compatible

with all of those potential options as well as external libraries that match the predefined

class structure.

In addition to providing state propagation functionality, this agent also includes the

capability to process measurements and packets. By the identification of modeling functions

for the measurement type, the agent is able to estimate its expected value of the observation.

Additionally, it can calculate the table of partial derivatives linking the observed state to

the state variables. These are typically used in state estimation procedures. The modeled

134

values as well as the measured are then passed to the onboard state estimation object, which

calculates a state update. The agent’s estimated state is thus corrected.

The object also includes similar functionality to process and interpret any received pack-

ets. In order to process the received data into a format usable by the state estimator, the

agent includes processing to analyze the contents of the packet, and process it accordingly.

This analysis process includes both estimating the observed value calculated from the packet

contents, and constructing an observation using this information. Typically, this involves

propagating an estimated agent’s state backwards in time to the known time of transmis-

sion. The partial derivatives must also be calculated for the navigation filter iteration.

Through this processing, the state of any estimated bodies comes into play and is used in

the observation which the filter uses to calculate a state update. The individual components

of the agent body are discussed below, going into detail on the propagator, measurement

processing, packet processing, and state estimation implementations.

5.4.6 Propagator

The agent deck allows for specification of the specific propagator and force models to use

in the onboard agent propagation. This is applicable to both agent and estimated bodies.

The standard interface to the integration libraries is by means of a gradient function which

calculates the derivative of each state. These can be calculated by nonlinear equations.

The functions to calculate the forces are specified by the inputs variables containing other

gravitational bodies and other forces. These are specified in terms of an id and a function

linking to the force model. For state propagation a link is passed in agent initialization to

the SciPy.Integrate library’s dopri5 function [56]. Additional integration terms passed into

the object include absolute tolerance, relative tolerance, and max number of steps to use

in the integration. The force models also link to their respective functional identifiers. For

the implemented models, the affect of gravity of external bodies is calculated based on the

spacecraft’s estimated, onboard ephemeris libraries, and SPICE planetary parameters. In

addition to the dynamic states, the model also propagates the state transition matrix, which

is used in the state estimator. The dynamics of these systems are defined as presented in

135

the previous chapter. With this functional interface, initial state definition, and final time

the propagator is able to integrate the spacecraft’s estimated state forward or backward in

time.

5.4.7 Measurement Processing

The processing of navigation observations is also handled by the Agent Body class. The

true measurement is calculated by the coordinator in reference to the true dynamic state.

Most of this data captures observations of external bodies. As such, the first step in the

processing is to calculate the observed body’s state at the time of observation. This step

is currently performed by the onboard ephemeris libraries. Once calculated, the reference

measurement function is called using the best estimated state parameters. This input is a

direct reference to an external function that follows the defined input prototype (including

the state estimate, central body location, time, and predefined errors), allowing for a mod-

ular interface to a variety of output functions. This has been implemented and testing with

independent functions for time, range and position (both absolute and relative), and state

measurements. Additionally the gradient matrix is calculated for the measurement type

using the onboard state estimates. This information is transferred to the state estimation

algorithm for update calculation. Upon reception of a state update, this is then applied to

the spacecraft’s estimated position along with a reset of the state estimation matrix (due

to the observation and assumption of the new state being corrected to true).

5.4.8 Packet Processing

The navigation packets are generated in the simulation coordinator’s run loop. The data in

these packets are embedded with the estimated state at the time of transmission. For this

analysis, it is assumed that the sources of packets, MRO and DSN, have highly accurate,

frequently updated ephemeris and timing information, providing essentially true observa-

tions of state. Upon reception of a packet, the agent first checks to see if it is tuned in to

the corresponding transmitter. This behavior is captured in a state machine diagram given

in Figure 33. This attempts to capture the communication search pattern of the spacecraft

and begins to define the autonomous behavior. For example, the spacecraft does not assume

136

Start

IDLEf(SignalfScan)

TrackingfAsset P ro cessin g fPacket

Final

PacketfProcessed

NofPacketsfReceivedfinfTrackingfTime

A llfPacketsfinfBatchfReceived

PacketfReceivedffromfTrackedfHost

PowerfDown

PacketfReceived/Detected

Figure 33: Packet Processing Modes (SysML State Machine Diagram)

any a priori scheduled passes, but operates in an idle listening mode. After initial reception,

the agent focuses on the transmitting host until either the batch is complete or no signal has

been received in a predefined time period, triggering a timeout event. This also represents

the ability of the spacecraft to only communicate with one spacecraft at once. Due to its

modular nature, this behavior can be modified and updated for a specialized agent model

which could include more advanced communication, scheduling, and analysis capabilities.

Once an agent is tuned in to a specific navigation host, it then proceeds to analyze

the received data and form a navigation measurement. There are two primary classes of

measurement packets currently captured in the analysis: time of transmission and time of

transmission with known transmitting agent state. Additional data packets can be analyzed

by including additional measurement and processing modules. The architecture itself is

robust to a variety of potential transmitted state information between agents. The agent

calculates an observation, typically a range and timing observation from the packet reception

values. If the transmitted state is not included, the onboard estimate is used. With the

known time of transmission, and current estimated state, the range observation and its

gradient are calculated. This information is then processed by the state estimator and the

state corrected.

137

Additionally, the agent packet processing is capable of forming additional indirect state

measurements. Specifically, the spacecraft estimates the range-rate of the distance between

it and the transmitting host. This allows for a velocity observation (similar to a Doppler

measurement of radial velocity) but is computed using the newly corrected state, and allows

for further refinement and improvement of the velocity by its indirect observation. The

implemented algorithms mirror those developed in the previous chapter.

5.4.9 State Estimation

The state estimator is implemented as a class inheriting the prototype NavFilter class

definition. This object contains the estimation algorithms used in the state estimation and

correction processes. Six and eight state (includes clock bias and drift terms) Extended

Kalman Filters are currently implemented in the framework. This class captures all of the

attributes and operations which the filter will perform during the simulation. In addition

to calculating a state update, this object is also responsible for tracking and propagating

the states covariance matrix, which describes the current noise in the state estimate. This

matrix is included in the filter due to its dependence on the state estimation algorithm in

use.

The primary interface to this object is through the state update function. The inputs to

this include the modeled measurement, the observation, and the estimated gradient. The

filter proceeds to propagate the covariance forward in time using the state transition matrix

(which is continually tracked from the time of the last measurement update). With this

updated value, the filter is able to calculate the Kalman gain and generate a state update,

which is returned to the requesting agent. With this modular and agent-independent im-

plementation, it is possible to test and analyze a wide range of analysis cases by following

the class prototypes.

5.4.10 Data Warehouse

Storage and retention of data is the goal of the data warehouse. Prior to running an

analysis case, the defined data is declared in the input deck. Individual data variables are

defined by the object id, object type, and specific data array. As defined events occur in

138

the simulation, such as propagation or processing a state update, the coordinator checks

if that data is flagged to be stored. If so, the data identifiers and the relative data are

forwarded to the data warehouse. The modular interface allows for the warehouse to be

implemented across a wide range of storage medium. For the initial implementation, this

module simply stores the data locally within the simulation to a variable internal to the

Sim DataCenter class. This allows for the fastest storage and retrieval of data within the

analysis framework.

For long term storage and later analysis, these data files are outputted using the Python

Pickle module7. This built-in Python module allows the writing of internal data objects

and classes directly to the file system in a way that allows for later direct operation of the

individual variables once reloaded into Python. These pickled data files form the basis of

the data storage warehouse. Additional interfaces could be implemented to save the data

directly to file or to an internal database in real-time. These could be developed by following

the data center functional prototype.

In addition to the storage of data, this object also includes functions for data export to

a user. This enables any Python script that can load a pickled file to have direct access

to the data warehouse and all of its functional interfaces. For the current implementation,

each data element is appended to a master list. To return a specific piece of data, an id

and object type are specified. The data warehouse then parses through its data elements

and returns any data that meet the requested inputs. A final function of the module is to

return a data summary, providing all ids accounted for and any data types available. This

simplifies later analysis into an unknown database, by providing an overview of its data

contents. External functions of the user interface and other analysis tools interact with

these data objects to retrieve information for post-processing or visualization.

5.5 Simulation Integration and Operation of SNAPE

The previous sections described the internal behaviors of the analysis libraries of the simu-

lation framework. The individual modules presented define the minimum capability needed

7http://docs.python.org/2/library/pickle.html

139

Figure 34: Data Input Interface

to analyze a specific navigation scenario. There are several key requirements of SNAPE that

exist independently of the analysis backend, supporting users of these modules. These in-

clude the graphical user interface, the data definition modules, the parser between these and

the simulation environment, the integration of optimization libraries, and the visualization

interface. All of these aspects are part of the SNAPE framework’s implementation.

5.5.1 Modeling Interface and Data Input/Output Definition

In order to provide the user a graphical method of interacting and defining an analysis

case, a graphical interface was developed. This user interface allows for an interface with

the simulation backend to define, load, save, or modify an input deck, run analysis cases,

and visually explore the results. The initial data input screen gives a view of the overall

user interface layout. This initial view is presented in Figure 34. This window allows

for the definition and tracking of the software libraries and data files in use within the

simulation. Future iterations of the interface plan for these file input windows to integrate

with the analytical backend and probably library access for agent definition and linkage to

predefined variable inputs.

140

Figure 35: Agent Definition Interface

The next tab allows for the user to define the agents that are included as part of the

simulation. This view can be seen in Figure 35. This interface utilizes a tree structure to

organize the individually defined simulation objects. These are grouped by truth bodies,

spacecraft bodies, measurements, and packets. Through this interface the user has access

to all simulation parameters, and is able to define a wide range of scenarios. By double-

clicking on a specific object, the user is able to pull up the properties of an individual

object. Through this interface, the user can also identify parameter of interest to act as a

design variable. This allows for inherent collection of the variables values during runtime

and enables the variable in Monte Carlo and optimization analyses. After input, these can

be updated, and saved back into the input deck for analysis.

Another aspect that needs to be defined prior to running the simulation is to capture the

data variables of interest. Each type of object has a default potential set of measurements

that can be collected (for example an objects state, position error, velocity error, etc).

These are specialized to each specific kind of agent and are programmed into the simulation

framework. In order to tailor the data collection needs to only those required by the user,

each data source of interest must be added to this data collection list. This list is passed

141

Figure 36: Data Collection Interface

to the analysis backend which then saves these data sets to the data collector. Through

this interface, the user can also define a series of plots to be generated post analysis. The

options allow for plotting of each analysis case for dynamic measurements as well as scatter

plots of defined variables. This data input interface is shown in Figure 36.

The user can also define input ranges for any variables identified as design variables

on the next tab. This interface can be seen in Figure 37. The view captures all of the

characteristics of these variables, including the associated object and specific variable. Most

importantly, this allows the user to define a range of options for each design variable.

Uniform, normal, integer, and logarithmic integer distributions are currently implemented.

The input parameters change definition for each analysis case. For the normal distribution,

the inputs are the mean and standard deviation of the variable. For the other options, the

inputs are the maximum and minimum values for the variable. The log-integer case utilizes

a sample from a distribution of integers. The selected value is then interpreted as a power

of ten for use in the analysis engine. This allows for uniform studies over a wide range of

orders of magnitude. This is particularly useful when looking at navigation performance

across orders of magnitude error values as well as allows efficient input of variables such

142

Figure 37: Design Variable Interface

as clock noise which are defined as powers of ten. Also, this enables initial studies into

numerical optimization of filter parameters, such as the process noise, in which the order of

magnitude is key.

5.5.2 Simulation External Interface Definition

Before proceeding onto how the user defines and performs an analysis or a design trade

study, the link between the front end and the analytical backend must be described. As

shown above, the SimLink library provides the interface between these two tools. This is

due to the changes in data format between them. One key difference is due to the way

the analytical framework loads and interprets external libraries. From the user interface,

the designer is able to specify external functions through their library using text strings,

identifying both the source file and the specific function handle. The simulation initialization

functions are designed to take in a link to the actual function. As such, a link must exist

between the two to make this transition. As such, the SimLink library instantiates the

objects and functions that are passed to the simulation.

Another function captured by this interface is the generation of the random numbers

143

for the design variables of interest. By parsing the options set to a variable, this link

makes the actual random draw, providing an independent selection external to the backend

analysis. This functional separation also allows for a more user friendly input definition in

the front end, by allowing everything to be defined by string inputs. This also improves

the readability of the user input decks written to a file. The SimLink library is therefore

shown to act as a wrapper around the simulation framework allowing for a robust input

deck format to be used and providing an interface to a wide array of input cases.

5.5.3 Design Space Exploration Capability

With the link between the graphical interface and the simulation backend defined, it is now

possible to resume the discussion of the user functions. The simplest form of study is to

run a single simulation case for an input deck. Inputs such as the simulation start time,

default timestep, ending time, and output file are some of the key options that the user can

set. Additionally, the user can select the debug level to be used for printing status data to

the console. This interface is given in Figure 38, which gives an overview of this interface.

In order to perform a Monte Carlo Analysis of the design space with the user-defined

input variables, the number of cases can be specified. In addition, the simulation end time of

each individual case is provided. This is due to the highly stochastic nature of the analysis

of the problem, and the same scenario with different specific initial error states can produce

a range of results. This is due to the scalar definition of input initial position and velocity

errors. In the initialization functions, these are used as standard deviations and applied to

the initial true state. With the previously described tabs, the user can very quickly define

an input scenario and perform a statistical analysis of the trade space.

5.5.4 Sensitivity Analysis Approach

Another important study used to capture the properties of the design space is to perform

a sensitivity analysis on the defined design variables to the selected output parameters.

There are multiple methods of analysis that can be used. One method is to calculate system

sensitivities through the decomposition of the system variance [100] [101] [102]. Analysis

methods exists for utilizing a directed Monte Carlo simulation to estimate the first order

144

Figure 38: Simulation Interface

145

effects (Si) and total variable effects (STi). The algorithm implemented is that presented by

Sobol [110]. For this analysis, a specific sequence of design points is selected that allow for

a uniform sampling of the space that maximizes the amount of design information available

for a given number of cases by equally partitioning the space.

The Python library Sobol Lib written by Corrado Chisari8 was used as the sequence

generator for this analysis. These defined cases were run through the analysis backend and

processed using the Sobol and Saltelli identified algorithms to calculate the total effect. For

this analysis, the number of runs is specified by this front end. It is important to note that

the actual number of runs performed by the algorithm is N(2+d), where N is the specified

number of runs and d is the number of input variables. The variance estimators [100] are

used to generated the main effects and total effects of each design variable for each specified

output variable. These values are then written to a file for further analysis.

5.5.5 Optimization Library Integration

The next level of analysis that can be performed with the simulation framework is to

perform an optimization on the defined design variables. Due to the highly stochastic

nature of the problem and state estimation, a genetic optimization algorithm was chosen

for integration to the framework. This is additionally useful due to the combination of

discrete and continuous variables in the design space (such as the number of packets in a

batch for example). Another benefit of using Python is the large selection of compatible

libraries available. Several exist for the implementation of the optimization libraries from

nonlinear optimizers (such as NLOPT9 and SciPY Optimization libraries) to generational

algorithms, such as the Distributed Evolutionary Algorithms in Python library (DEAP)

[43]10 and inspyred11. For this implementation the DEAP is utilized. This library was

chosen due to its wide support and implementation of functions used in genetic algorithm

optimization routines. It provides developed building blocks for each optimizer function

and allows the user to design a specialized algorithm. The optimizer supports a range of

8http://people.sc.fsu.edu/̃jburkardt/py src/sobol/sobol.html
9http://abinitio.mit.edu/wiki/index.php/NLopt

10https://code.google.com/p/deap/
11http://inspyred.github.com/

146

Figure 39: Optimizer Interface

optimization functions, including multi-objective genetic algorithm performance functions.

This broad range of optimizer capabilities provides a robust basis for a large amount of

design cases.

The interface, shown in Figure 39, allows for description of the input variable, specifying

their range and type of variable (discrete or continuous). There is also the option to include

each design variable in a series of histograms that capture the design space at a particular

generation. The interface additionally allows for the specification of output parameters to

use in the integrated evaluation function. Each variable can either be ignored, maximized,

or minimized. The algorithm is set up by default to maximize all variables. In order to

provide for a minimization, the weight is changed to negative. The user can also define

147

individual weightings for each design variable. Lastly, there are inputs for the population

size, number of generations, and generations to include output for. By default, the optimizer

stores to a file the user-identified parameter for each population member of each generation.

This allows for further analysis of the optimizer’s performance and tracking of the system

performance.

An additional software link exists between the user interface and the SimLink library

described above. This is referred to as the DEAPLink. This piece of software integrates the

chosen genetic algorithm functions and generates the populations to be processed through

the analytical framework. This tool manages the analysis process, tracking each case, saving

the data to files, and performing the member selection, crossover, and mutation functions

using the provided DEAP functionality. The current framework provides a straightforward

optimization capability. With the integration of the DEAP library, there is a vast potential

for additional optimizer development and studies of their performance for the navigation

system. The current DEAP implementation can also act as a template for future optimizer

developments.

5.5.6 Data Visualization

After completing the analysis, it is important to be able to visualize the results of the

simulation. This is enabled through the use of the data visualization tab as shown in

Figure 40. Upon selection of a data collector output file, the interface presents the user

with a selection of the available data that can be displayed. The five drop down boxes across

the top allow for selection of the primary id, secondary id, object type, data identifier, and

specific variable. These selections are auto-generated as part of loading the data collector

objects from file. An example of a primary and secondary id are generation and member

numbers. The user can then select the data to be plotted on the given x-axis, y-axis, z-axis,

or added to a list of variables to generate a multivariate plot. Additionally, the tool has

the capability to read in the selected variables values and export these in csv format to be

integrated into a wide range of data analysis packages.

The plotting interface can also serve as a diagnostic of an optimizer’s performance. For

148

Figure 40: Data Processing Interface

149

an optimizer, each iteration is saved to a file. This data can then be processed to track

a variable across the individual iterations. This is useful for tracking the performance

of the genetic algorithm, such that the designer can easily identify trends in the optimized

variables. This is observed by plotting the mean of a variable (either input or output) across

a population across generations. Additionally, vertical error bars can be used to capture the

standard deviation of the design variable. Also, the tool can be used to generate histograms

of a parameter both across an individual population and across multiple generations.

Due to the high multi-dimensionality of the problem, it is also important to generate

visual aids that can support identification of multivariable integrations. This is done through

the main use of two types of plots, multivariates and contours. The graphical interface has

the capability to plot a series of variables against each other in order to identify trends in the

design space. Also, given a large number of analysis runs that span a design space of multiple

variables, a contour plot can be generated that shows the interaction of two variables with

a performance parameter. This is enabled by using the SciPy 3D interpolation function

griddata. The resulting interpolated grid allows for the generation of a contour plot that

can be used in comparing the effect of two interacting variables across the design space.

5.6 Discussion of Implementation

As demonstrated in the previous sections, the Systems Engineering models within SNAPE

provide a thorough overview of the architecture and implementation of the navigation sys-

tem of interest. These tools helped to define the underlying algorithms and provided a

basis for data formatting and transfer. These were then implemented in software using the

Python programming language. A robust analytical framework was developed to enable a

wide range of navigation analyses, and a front-end was implemented to enable ease of user

access and data definition, analysis, and visualization.

5.6.1 Implementation Challenges

Over the course of the implementation, several challenges arose that required additional

development. The navigation algorithms were initially prototyped in MATLAB. Although

this provided very good computational performance, it required a large memory burden,

150

and was unable to perform a large Monte Carlo Analysis. The design and implementation of

the framework in Python alleviated this problem initially. Due to the large number of cases

being run as part of the Monte Carlo Analyses and optimizations, small memory leaks within

the NumPy mathematical library (due to the integration of underlying C implementations)

caused early exiting of the analysis processes.

To remedy this issue and to allow for improved computational efficiency, the SimLink

interface was tweaked to allow for threaded operation. This evolved into the use of the

Python multiprocessing library. This allowed for the execution of each individual analysis

case in its own processing thread. This provided for an increase in computational speed (due

to the newly implemented parallelism of the analysis) as well as a decrease in memory usage.

This improved efficiency is due to the capability to free up memory after each individual

analysis case is performed, limiting total memory in use at any time. This implementation

approach was also applied to the DEAPLink interface to allow for increased computational

capability. This helps to alleviate the long run times encountered by the simulation software

in performing long analysis runs.

5.6.2 Demonstration of Modularity

In order to develop a framework that can be used for a wide variety of analysis cases, it is

important to develop the interfaces and software to allow for modular component use and

integration. This is needed to provide for a singular definition of the simulation case and

allow a variety of analysis to be performed. This is particularly important in terms of the

various measurement models, and estimation algorithms. Developing a modular interface

enables the quick analysis of a variety of analysis and supports simplified integration of new

assets and modeling functions.

The clearest example of modularity can be seen in the base mission scenario template

that is used to build up a specific analysis case. This example will focus on the definition of

a spacecraft and its embedded properties. As seen in the vehicle definition example defined

below, a Python dictionary structure is used to capture the range of variables defining an

agent. These keys are defined to match with agent class definition and are used in object

151

generation and initialization. Each specific variable has a range of properties. As seen, each

defined variable can be a function, list, object, or specified value. If the variable is a function

or a class (used for passing filter implementations), an additional input called ’lib’ specifies

the specific library file the class will be loaded from. By utilizing this Python-specific

structure, the functions, classes, and variables that form each variables are defined.

Listing 5.1: Input Deck Definition

temp odict = o d i c t ()

temp odict [’ id ’]= o d i c t (name=’ id ’ , type=’ s t a t i c ’ , va lue=’MSL ’ , dscr=”

Spacec ra f t I d e n t i f i e r ” , dv=0)

temp odict [’ s c type ’]= o d i c t (name=’S/C Type ’ , type=’ c l a s s ’ , va lue=’

Agent Body ’ , l i b=’ a l l l i n t n ’ , dscr=” Spacec ra f t Model” , dv=0)

temp odict [’ t r u t h r e f ’]= o d i c t (name=’ Truth Reference ’ , type=’

truth body ’ , va lue=’MSL ’ , dscr=”Truth Data Reference ” , dv=0)

temp odict [’ s t a t e ’]= o d i c t (name=’ State Def ’ , type=’ s t a t i c ’ , va lue=’

posve l ’ , dsc r=” State I d e n t i f i e r ” , dv=0)

temp odict [’ c l o ck h0 ’]= o d i c t (name=’ Clock h 0 ’ , type=’ s t a t i c ’ , va lue

=1.0e−19, dscr=” Spacec ra f t Clock h0” , dv=0)

temp odict [’ c l o c k h 2 ’]= od i c t (name=’ Clock h 2 ’ , type=’ s t a t i c ’ ,

va lue =1.0e−20, dscr=” Spacec ra f t Clock h 2 ” , dv=0)

temp odict [’ frame ’]= o d i c t (name=’ frame ’ , type=’ s t a t i c ’ , va lue=frame ,

dscr=”Data Source Frame” , dv=0)

temp odict [’ c en t ra l body ’]= o d i c t (name=’ cent ra l body ’ , type=’ s t a t i c

’ , va lue=centra l body , dscr=”Truth Data Centra l Body” , dv=0)

temp odict [’ g r a v f o r c e s ’]= od i c t (name=’ Grav i t a t i ona l Forces ’ , type=

’ s e l l i s t ’ , va lue=(’SUN ’ , ’EARTH’ , ’MARS’) , dscr=”Grav . Forces

OnBoard” , dv=0)

152

temp odict [’ grav models ’]= o d i c t (name=’ Grav i t a t i ona l Models ’ , type=

’ s e l l i s t ’ , va lue=(’SPICE ’ , ’SPICE ’ , ’SPICE ’) , dscr=”Grav .

Modeling Source ” , dv=0)

temp odict [’ i n i t e r r o r p o s ’]= o d i c t (name=’ I n i t Pos Error ’ , type=’

s t a t i c ’ , va lue =1.0 , dscr=” I n i t i a l Po s i t i on Error ” , dv=0)

temp odict [’ i n i t e r r o r v e l ’]= o d i c t (name=’ I n i t Vel Error ’ , type=’

s t a t i c ’ , va lue =0.1 , dscr=” I n i t i a l Ve loc i ty Error ” , dv=0)

temp odict [’ i n t e g r a t o r ’]= o d i c t (name=’ I n t e g r a t o r ’ , type=’ i n t e g r a t o r

’ , va lue=’ dopr i5 ’ , dscr=”Onboard I n t e g r a t o r ” , dv=0)

temp odict [’ r e l t o l ’]= o d i c t (name=’ Rel . Tol . ’ , type=’ s t a t i c ’ , va lue

=1.0e−6, dscr=” I n t e g r a t o r Rel Tol” , dv=0)

temp odict [’ a b s t o l ’]= o d i c t (name=’Abs . Tol . ’ , type=’ s t a t i c ’ , va lue

=1.0e−6, dscr=” I n t e g r a t o r Abs Tol” , dv=0)

temp odict [’ maxstep ’]= o d i c t (name=’Max. # Steps ’ , type=’ s t a t i c ’ ,

va lue =10000 , dscr=” I n t e g r a t o r Steps Max” , dv=0)

temp odict [’n ’]= o d i c t (name=’n ’ , type=’ s t a t i c ’ , va lue =0, dscr=”n” , dv

=0)

temp odict [’ f i l t e r ’]= o d i c t (name=’ F i l t e r Type ’ , type=’ c l a s s ’ , l i b=’

a l l l i n t n ’ , va lue=’ EKF 8State ’ , dscr=’ Onboard F i l t e r Type ’ , dv=0)

Upon parsing of the user defined scenario by the SimLink library to be passed to the

simulation, this input deck is parsed and formatted to match an executable format. For

example, Python has the capability to take as a function argument a class instance or a

function. When parsing filter objects, the SimLink library generates a filter of the specified

library and class, with the defined input variables. This object is then passed to the agent

body definition and its functions called throughout the simulation operation. Using common

interfaces and predefined class stereotype supports this modularity between components.

Similarly, for modeling measurements, function references are passed to capture the objects

that calculate the observed value and H matrix for a measurement type.

153

These implemented capabilities of SNAPE are further demonstrated throughout this

document through the generation and definition of specific analysis through the graphical

user interface, which builds on this modular data definition format. The ability to accept

input deck containing links to functions capturing a range of measurements and packet

definitions are clear demonstrations of this capability. This enables the integration of a

variety of analysis functionality and provides an interface to allow for future simulation

framework expansion and development.

5.7 Summary of Implemented SNAPE Capabilities

In order to capture the performance in an integrated environment capturing both navigation

and communication models, the functional requirements of the software were implemented.

This chapter presents one particular implementation of the SNAPE conceptual framework.

These implemented functions form the basis of the capabilities that allow for validation

and performance analysis of the navigation system. These inputs and test case definition

variables are editable by the user through the implemented graphical user interface.

To provide an overall view and summary of each module’s required functionality, Ta-

ble 12 provides a listing of the major components of the simulation framework as defined

in Figure 28. This table links each defined and software block to its purpose and function.

The first set of elements are related to the actual running of the simulation and provide

the analysis backend. The Simulation Coordinator acts as the high-level structure of the

framework, initializing and containing all of the individual simulation agents. Additionally,

it serves as the interface between each of the individual elements, tracking their individual

states, transferring data between them, calculating the state errors of each, and processing

the measurements and packets between and to individual elements. The Data Collector

serves as the Data Warehouse, and collects and stores all of the defined data within the

simulation.

The next three elements capture the three levels of agent behavior in the simulation.

This behavior is inspired by and allows for an ABM simulation approach. The Truth Bodies

act as the truth references for each agent, capturing the state of each over the course of

154

Table 12: Implementation of SNAPE Prototypes
SNAPE Implementation
Element

Primary Function

Simulation Coordinator Initializes elements in simulation, processes
packets and measurements, integrates individ-
ual simulation components, runs simulation

Data Collector captures variables of interest, repository for
data collected from analysis

Truth Body tracks true position of agent during simulation

Agent Body operational agent within simulation with in-
ternal processes, estimation algorithms

Estimated Body tracks Agent Body’s onboard estimate of an-
other asset’s state

Measurement defines measurements of vehicle state, assets
involved, errors, frequency

Packets defines contents of packet, source and receiver,
errors, frequency

CommSystem captures communication capability of asset

ClockModel statistical noise model of clock, propagates
clock errors over simulation

ForceModel calculation of force on Agent, and references
for calculation

StatePropagator propagates state of assets over time, consider-
ing force models

StateEstimator processes measurements and packets, calcu-
lates state update, captures dynamics of state
uncertainty

User Interface user definition, generation, running of analy-
sis, processing of simulation results

SimLink provides interface between graphical user in-
terface and simulation framework

DEAPLink provides interface between DEAP optimiza-
tion library and simulation framework

155

the simulation, typically using external data sources. The Agent Bodies are the primary

objects of interest in the simulation. Each has a defined state of behaviors and capabilities

captures by its embedded state estimation filter, state propagation routines, and onboard

uncertainties, such as timing. An Agent Body can also contain a sub-agent, called an

Estimated Body. This captures the capability of the agent to use onboard data to predict

and propagate the state of an external body.

Associated with the agent bodies are the Measurement and Packet structures. These

contain all of the individual state update information present in the simulation. They

define the capabilities of the measurement and packet systems in terms of data content,

accuracy, reference, source, and destination, and frequency. The Simulation Coordinator

uses this information to generate an agent body’s received information, based on its true

state and perturbed by the measurement errors. Similarly, the Simulation Coordinator uses

the Packet structure to captures the communications possible within the analysis. The

Coordinator calculates the true time of arrival of individual packets and maintains a queue

throughout the simulation of packets in waiting, releasing them to individual Agents at the

true time of arrival.

Each Agent also contains several components that form the base of the analysis and

capability of the asset. These are captured in the State Estimation and State Propagation

blocks. The state estimator captures a specific algorithm and number of states carried,

such as a 6- or 8-state Extended Kalman Filter or Least Squares Estimator. It includes

the underlying logic pertaining to the processing of the received measurement, the onboard

estimated measurements (based on the vehicle’s estimate of truth), and timing. The end

result of this is to generate a state update term. At each iteration of the simulation,

the spacecraft must also propagate its estimated state. This is performed using the State

Propagation block. This block is linked to specific gravity models, and onboard position

information to calculate the forces on the asset. The onboard state propagation algorithm

(such as the dopri5 used in the current iteration of the framework) captures the numerical

precision, accuracy, and intensity of the onboard procedures.

With these elements, it is possible to define an analysis case and simulate a specific

156

mission scenario. The remaining blocks serve as the interface to the user and linkage routines

between individual blocks of the framework and external tools. The graphical user interfaces

serves as a model of the analysis approach, allowing for definition of agents, defining data

for collection, running simulation cases or optimization, and processing of the output data

graphically. The SimLink block provides this interface between the user’s definition of

the scenario and that required by the underlying simulation framework. The DEAPLink

expands this functionality but provides an interface to the DEAP library, allowing for system

optimization by utilization of the designated Design Variables and Performance Measures.

Each of these defined elements addresses the framework functionality requirements as

defined in Section 3.2. Table 13 references the linkage between each requirement and the

blocks that enable and support each. Each block has a unique purpose in the simulation

and either individually, or linked together, address the high level capabilities required of the

analysis framework. A majority of these functions are built-in capabilities of the Simulation

Coordinator. This is due to its role as both a central process and interface between the var-

ious simulation elements. The Agent, Truth, and Estimated Bodies form the population of

assets within the framework, and allow for the separation of true state from vehicle onboard

estimates. The State Propagation and State Estimation contain the bulk of the complex

analysis, allowing for predicting the asset’s future state as well as processing measurements

and packets into state updates. The modularity of these functions allows the analysis and

integration of a range of state estimation and propagation algorithms and approaches. These

elements all work together to allow for the integrate simulation capability.

The external software elements are used to provide an interface to other tools and anal-

yses. For example, the DEAPLink acts as translator and reference to the DEAP library

allowing for optimization of the defined vehicle parameters. Similarly the SimLink library

provides the lowest level direct access to the simulation routines by acting as an interpreter

between user defined and framework-specified input decks. The SNAPE front-end exten-

sively utilizes the SimLink interface and serves as the user’s interface to the simulation

framework. This developed tool enables the definition, editing, saving, and loading of a

157

Table 13: Implementation of Framework Requirements

Framework Requirement Implementing Element(s)

1.1 Initialize body to input data Simulation Coordinator

1.2 Compare estimated to reference/truth data Simulation Coordinator, Data Col-
lector

1.3 Calculate non-inertial forces on body Force Model

1.4 Capture inertial forces on body Force Model

1.5 Integrate body’s onboard state State Propagator

1.6 Modular measurement interface SimLink, Coordinator, Measure-
ments

1.7 Modular state estimation interface SimLink, Coordinator, State Esti-
mator

1.8 Calculate State Errors as a function of time Simulation Coordinator, Data Col-
lector

2.1 Perform Deep Space Link Analysis Simulation Coordinator, Comm Sys-
tem, Agent Body, Truth Body

2.2 Autonomous Packet Generation Agent Body, Packets, Coordinator

2.3 Capture Transmission Delays Coordinator

2.4 Autonomous Reception and Processing of Packet Agent Body, Coordinator

2.5 Integration of Packet with State Estimator Agent Body, State Estimator

2.6 Onboard estimation of other SC states Agent Body, Estimated Body

3.1 Interface to external measurement models SimLink, Simulation Coordinator,
Agent Body

3.2 Model Autonomous or Scheduled Measurements Coordinator, Agent Body

3.3 Process measurement into state estimator Agent Body, State Estimator, Simu-
lation Coordinator

4.1 Model and vary packet content and measurements SimLink, DEAPLink

4.2 Integration with Monte Carlo tools SimLink, DEAPLink, Simulation
Coordinator

4.3 Capability to perform packet optimization DEAPLink

4.4 Modular interface to external design tools DEAPLink, SimLink, Simulation
Coordinator

5.1 Support a range of analysis scenarios All Elements

5.2 Modular input and interface to test cases User Interface, SimLink, Simulation
Coordinator

5.3 Robust framework to variety of studies All Elements

158

specific scenario, capturing all assets of analysis from agent generation to truth source defi-

nition to data collection and simulation parameters. Additionally, the front-end implements

interfaces to the DEAPlink library and graphical plotting routines to allow for design space

exploration and visualization.

Table 14 compares these capabilities of the implemented SNAPE framework to the

currently available tools and their capabilities. Focusing implementation on these identified

requirements ensures that the simulation tool will be able to meet the analysis needs and

address the identified research questions. Additionally, this serves to provide a summary of

the implemented functionality.

The table displays how the developed tool fills the analysis gaps of the other available

packages. SNAPE provides a unified simulation architecture that allows for definition and

analysis of a range of analysis missions, and deep space navigation and communication

concepts. This allows for detailed simulation of deep space navigation filters, both at con-

ceptual and computational level, a variety of measurement and observations types, and

onboard computational capabilities. These capabilities are enabled through the use and

integration of MBSE (to capture and define the system) and ABM (to capture and simu-

late individual object behaviors) approaches to navigation system design. This approach

results in the development of a unified framework, SNAPE, that can capture the overall

navigation system of interest, how it operates, and its implementation, providing linkages

from operational system requirements to detailed functional simulation.

159

Table 14: Comparison to Framework Implementation

Framework Requirement O
D

T
B

X

S
T

K

O
p

en
-S

E
S

S
A

M
E

IO
N

S
N

A
P

E

1.1 Initialize body to input data
√ √ √ √

1.2 Compare estimated to reference/truth data
√ √ √ √

1.3 Calculate non-inertial forces on body
√ √ √ √

1.4 Capture inertial forces on body
√ √ √ √

1.5 Integrate body’s onboard state
√ √ √ √

1.6 Modular measurement interface
√ √ √

1.7 Modular state estimation interface
√ √

1.8 Calculate State Errors as a function of time
√ √

2.1 Perform Deep Space Link Analysis
√ √ √

2.2 Autonomous Packet Generation
√

2.3 Capture Transmission Delays
√ √ √

2.4 Autonomous Reception and Processing of Packet
√

2.5 Integration of Packet with State Estimator
√

2.6 Onboard estimation of other SC states
√ √

3.1 Interface to external measurement models
√

3.2 Model Autonomous or Scheduled Measurements
√ √

3.3 Process measurement into state estimator
√ √

4.1 Model and vary packet content and measurements
√

4.2 Integration with Monte Carlo tools
√ √ √

4.3 Capability to perform packet optimization
√

4.4 Modular interface to external design tools
√ √ √ √ √

5.1 Support a range of analysis scenarios
√ √ √ √ √

5.2 Modular input and interface to test cases
√ √ √ √ √

5.3 Robust framework to variety of studies
√ √ √ √ √

160

CHAPTER VI

VERIFICATION OF SNAPE IMPLEMENTATION

This chapter utilizes the implementation of the SNAPE framework in order to demonstrate

both the processes and analytical capability of its application to an example problem. The

analysis case here serves as a simplification of the NNAV architecture in order to provide

insight into the underlying physical processes. Additionally these example analyses can be

used to compare the simulation’s performance with other tools in order verify its proper

operation. These verification cases will provide increased confidence in the computational

results. This formulation will allow for design studies and optimization of the parameter

space that will produce logically expected results.

The specific operational concept focuses on the navigation capability for a spacecraft on

a transfer orbit from Earth to Mars. The example trajectory used is the publicly available

as-flown trajectory of the Mars Science Laboratory Curiosity1. This is used to provide a

relevant baseline for error calculation and mission analysis. This implementation will serve

as an example to demonstrate the described methodology for a simple verifiable analysis

case. This test case only captures the effect of state measurements, and seeks to capture the

frequency and type of state observations that can provide optimal performance, by means

of reduced number of measurements and minimized long-term navigation error. This will

demonstrate the main functionality of the framework.

6.1 Overview of Test Cases

In order to provide an analysis case similar to and applicable to the design problem, this

example implementation focuses on measurement updates of a vehicle during interplanetary

cruise. Navigation updates will take the form of regularly scheduled state updates from

Earth with defined error characteristics. As mentioned above, the published MSL trajectory

1http://naif.jpl.nasa.gov/pub/naif/MSL/kernels/

161

is used as the truth reference for the agent. Initial errors to the position and velocity state

are defined in terms of the standard deviation and applied to the truth state to initialize

the agent’s internal state knowledge. This was done to utilize a relatively stable design case

that can be modeled by a wide range of tools to allow for experiments, demonstration of

the framework implementation, and comparison to the results of other tools.

The example spacecraft serves as a representation of a Mars-bound vehicle. Power re-

quirements are neglected in this analysis, focusing instead on the performance of various

measurement methods and the relationship between various aspects of the navigation sys-

tem. The estimator is implemented as an Extended Kalman Filter, with multiple state

options available. The implemented state estimator utilizes eight vehicle states, capturing

the three position, three velocity, clock bias, and clock drift of the spacecraft. For the

example cases, the planetary bodies included in the onboard state estimator are the Sun,

Earth, and Mars. The gravitational data is obtained from the SPICE libraries, and consists

of first order terms. This data also provides for gradient calculations which are included

in the state transition matrix for error and covariance propagation. For propagation, the

framework utilizes the SciPy built-in ODE integration class with the explicit Runge-Kutta

4(5) integration algorithm [56]. The measurements being traded in this analysis include

measurements of full state, position, and range. Additionally, it is possible to study the

capability of clock measurements and time updates as well.

6.2 General Assumptions and Analysis Approach

For this analysis, the truth data for the planetary bodies is loaded from the DE421 ephemeris

library. The vehicle truth data reference is the published MSL trajectory, specifically the

mission planning and operational flight kernel. Over the course of each simulation, the

truth information is set to the results of a query on the loaded ephemeris libraries for each

truth body. For the spacecraft agents, the position and velocity errors are the difference

between each onboard state estimation solution and the reference trajectory (as defined by

the loaded data). The states of the spacecraft agents are initialized to be equal to the truth

at the simulation start time with stochastic errors applied. These initial errors are defined

162

in the simulation input deck. The timing errors are defined by the difference between the

onboard agent internal clock estimate and the true simulation time.

When calculating a measurement update, such as position or state, the vehicle’s truth

reference data is used as the source of information. The measurement is calculated based

on this information with a stochastic term assuming a normal distribution of error, with

zero mean and an input standard deviation. These stochastic parameters are applied to

each dimension of the measurement to form the actual processed measurement. It is as-

sumed that this data can be generated in terms of batches at set intervals, where the time

between batches, number of measurements in a batch, and time between individual mea-

surements in a batch are defined in the input deck. The results focus on the performance

of the implemented state estimation filter to various types of information and robustness to

measurement errors and content. This performance is captured in terms of normalized state

position errors in terms of true spacecraft state vs. the that estimated onboard through the

use of the embedded filters.

Over the course of a simulation, the measurements and packets are generated and trans-

mitted to the specific agents at the predefined intervals with the errors applied. Upon recep-

tion of a measurement, a spacecraft agent uses its internal ephemeris models (for example,

an onboard DE421 library) and onboard dynamics models to propagate its state and co-

variance to the time of observation. The specific forces used are defined in the input deck.

For these simulation cases, the SPICE planetary physical parameters are used to capture

gravitational parameters. The agents each perform a Runge-Kutta 4(5) integration with

absolute and relative tolerances of 1e-6 assuming gravitational effects from the Sun, Earth,

and Mars. Though most onboard estimation routines utilize fixed step algorithms of lower

order, the integration algorithm is chosen to provide increased efficiency and decreased run-

time over long simulation time scales. Specific measurement parameters are given in the

following sections for each analysis case.

One assumption of the analysis process is that the state measurements are the result

of an external orbit determination measurement process. For the Mars transfer case, it

is assumed that these are the result of a DSN navigation pass. The ground observations

163

are used in orbit determination routines to determine the spacecraft’s position and velocity

state. Ground sources are then able to predict the vehicle’s state to high accuracy and

transmit this information in packet form to the vehicle. Errors are applied to match that

achievable by DSN processes, on the order of one kilometer and one tenth kilometers per

seconds [121]. Upon reception, this information is parsed by the state estimation algorithm

as a measurement of position and velocity [74]. This method of analysis allows for capture

of the overall accuracy of the ground-based observations without requiring detailed repro-

duction of the orbit determination routines and observations. These assumptions capture

how the update would be transmitted operationally to a vehicle with an onboard naviga-

tion filter. Additionally, this allows for capturing the autonomous aspects of the navigation

filter, in that it operates independent of Earth-based orbit determination. Although the

state measurements are generated by external sources and transmitted to the vehicle, this

chapter focuses on the autonomous nature of the navigation filter. This is due to the on-

board implementation of the filter, and independence of the state-to-state propagation and

measurement application and processing independent of ground-based orbit determination.

6.3 Framework Functional Verification

In order to verify the functional performance of the implemented models, baseline analyses2

are prepared for comparison to standard results. There are two main aspects of the simu-

lation which require functional verification: the state propagator and the state estimation

filter. These two functions form the basis of the navigation analysis simulation and their

verification will provide additional confidence in their resulting capabilities. These runs are

also considered to be calibrations of the software to ensure proper operation for further

analysis cases, which do not have any reference data available for comparison.

6.3.1 Orbit Propagation Analysis

A key component of the analytical framework is the orbital dynamics propagation model.

The equations of motion are implemented as described in the previous chapters, and utilize

2Test cases to support functional verification are identified by F1, F2...

164

a Runge-Kutta 4(5) integration algorithm. To confirm the analytical capability of the

implementation it is compared against a variety of other state propagators. The software

validation package used is AGI’s STK. A large variety of propagators are built into this

industry standard package and as such it is well suited to this verification testing. Several

specific propagators are selected for comparison against the representative truth state, which

is being represented by the published MSL trajectory.

0

500000

1000000

1500000

2000000

2500000

0
.0
0

0
.4
9

0
.9
8

1
.4
8

1
.9
7

2
.4
6

2
.9
5

3
.4
4

3
.9
3

4
.4
3

4
.9
2

5
.4
1

5
.9
0

6
.3
9

6
.8
8

7
.3
8

7
.8
7

8
.3
6

8
.8
5

9
.3
4

9
.8
3

1
0
.3
3

1
0
.8
2

1
1
.3
1

1
1
.8
0

1
2
.2
9

1
2
.7
8

1
3
.2
8

1
3
.7
7

1
4
.2
6

1
4
.7
5

1
5
.2
4

1
5
.7
3

1
6
.2
3

1
6
.7
2

1
7
.2
1

1
7
.7
0

1
8
.1
9

1
8
.6
8

P
o

si
ti

o
n

 E
rr

o
r

(k
m

)

Time (days)

HPOP_RK78_noSRP

2Body

HPOP_RK4

Figure 41: STK Propagator Performance

To study the propagation capability all analysis cases were initialized to the same initial

value, the Sun-centered J2000 Cartesian position and velocity at ET 379605666.18423 or

January 12, 2012, 2:00:00 UTC. The source of this initial data is the published MSL opera-

tional trajectory. The onboard states were propagated forward for 20 days and the results

165

compared against the truth state. The specific integrators chosen capture a variety of capa-

bilities. A two body propagator was chosen as a worst case propagation scenario including

only the gravity effects of the Sun (F1). Several implementations of the built-in HPOP

propagator were considered for analysis. All of these cases also included the gravitational

effects of Earth and Mars. These are identified as follows: using a Runge-Kutta 4-order

algorithm (HPOP RK4) with solar radiation pressure (F2) and using a Runge-Kutta 7(8)-

order algorithm without solar radiation pressure (F3). Initially an RK78 with this stochastic

force was included for analysis, but was shown to provide similar errors to the RK4 case.

The main difference between the two is in the required number of iterations to maintain a

chosen error level. The comparison of these integrations is given in Figure 41. As seen in

the diagram the third body gravitational effects play a large part in improving the onboard

estimator. Additionally, there is not any clear benefit to including solar radiation effects

with this level of state propagation capability. This may be due to errors in the pressure

model and incorrect sizing to the MSL mission. Another result may be that the operational

scenario does not include solar radiation effects, or the observed effects were minimal for this

mission. Further analysis can remedy this and further improve the propagation capability.

166

3.795 3.800 3.805 3.810 3.815 3.820 3.825
t (s) 1e8

0

50

100

150

200

250

300

350

400

P
o
si

ti
o
n
 E

rr
o
r

(k
m

)

Figure 42: Framework Propagator Performance

The performance of the framework’s built-in integrator (F4) is plotted in Figure 42.

The simulation was performed with the same initial conditions. The difference in displayed

timescales is due to the simulator’s operation in ET time. This displays the capability

of SciPy’s built-in dopri5 algorithm. Additionally, the performance compares well with

the STK analysis cases. This comparison provides a quick verification of the framework’s

propagation capabilities.

6.3.2 Estimator Performance

In order to validate the performance of the navigation algorithms, a similar analysis was

performed using ODTBX. A simple simulation case was designed that could be compared

across each software package utilizing a similar estimation algorithm. For this study, the

base example case for the sequential estimator was ported to the navigation framework.

167

This analysis case consisted of a predefined equatorial orbit, and captured range and range-

rate measurements at ten-second intervals over a five-minute ground station pass. The

initial errors were synchronized between the packages. The truth data used for both the

framework and ODTBX is generated utilized restricted two body dynamics of the Earth

and the spacecraft. Given the initial position and velocity, the orbit was propagated 300

seconds and used as the truth reference. This data was then exported and converted into

SPICE SPK format to allow for integration with the simulation framework. The initial

uncertainty in each position dimension was set to 1E-4 km and for each velocity dimension

to 1E-5 km/s.

Additionally, the initial filtering parameters from ODTBX were slightly modified to

allow for exact comparison to the navigation framework input. An example of this is

to assume equal initial covariance in each of the position axes. The measurements were

modeled with the same error standard deviations and process noise filter parameters of

1E-3 km in range and 1E-6 km/s in range rate.

Figure 43: Position Estimation Errors for ODTBX

168

Figure 44: Velocity Estimation Errors for ODTBX

169

50 100 150 200 250 300 350 400
t (s) +3.943764e8

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

0.0035

0.0040

0.0045

N
o
rm

a
liz

e
d
 P

o
si

ti
o
n
 E

rr
o
r

(k
m

)

50 100 150 200 250 300 350 400
t (s) +3.943764e8

0.000000

0.000005

0.000010

0.000015

0.000020

0.000025

0.000030

N
o
rm

a
liz

e
d
 V

e
lo

ci
ty

 E
rr

o
r

(k
m

/s
)

Figure 45: Position and Velocity Normalized Estimation Errors for Framework

The results of the ODTBX analysis (F5) are shown in Figures 43 and 44. The cor-

responding errors from the framework’s estimator (F6)is captured in Figure 45. The two

170

different estimators provide similar order of magnitude errors for the estimated state for this

simple analysis case. It was attempted to use ODTBX to validate MSL error estimation.

To enable the integration of SPICE trajectory as a truth reference to be used requires mod-

ifications and additions to the software package. For this reason, this analysis provided here

serves as a simple validation of the capability of the filter. Additionally, the performance

of the filter will be directly captured through the simulation framework by comparison to

the truth state for a variety of measurement updates.

6.4 Framework Implementation Validation

With the individual functions verified against other analysis packages, it is now possible to

do further studies to gain more insight into the deep space navigation process. This case

study allows for a survey of the capabilities of the implemented state estimator to a range

of input scenarios. These test cases3 have been chosen to build intuitive understanding of

the navigation process and the impact of measurement frequency, content, and error. These

analysis cases also further reinforce the capabilities of the navigation system and simulation

framework. While the above scenarios provide a verification of the analysis functionality,

the test cases serve to demonstrate the capability of the simulation framework, and act as

verification of the development. As such, they show that the tool can be used to answer the

research questions needed in order to test the previously stated system-level hypotheses.

6.4.1 Effect of Initial Error

The first analysis (V1) focuses on the effect of the initial error of the onboard state. For

an implemented scenario, the spacecraft will not have perfect knowledge of its state for

there are always higher order forces which have been neglected in state propagation as

well as simple numerical roundoff errors that limit exact knowledge. It is assumed that

the transferring spacecraft will spend a set amount of time in local Earth orbit to perform

checkout operations prior to injection into a Martian transfer orbit. During this time, the

spacecraft will also be required to determine its initial state. This will typically be done via

3Each test case supporting validation is identified as V1, V2...

171

Table 15: Initial State Error Analysis Space
Variable Min Max Units Distribution

Initial Position Estimate Error 1E-2 1E4 km Log Uniform

Initial Velocity Estimate Error 1E-4 1E0 km/s Log Uniform

Time Between State Measurements 86400(1) 1209600(14) s(day) Uniform

ground-based assets, such as radar tracking and initial DSN observation. GPS observations

could also be possible in local Earth orbit, although these receivers are not typically installed

on deep space craft due to their limited usage and vehicle size and volume constraints.

It is not possible to directly calculate this relationship due to the stochastic nature of

the problem, particularly the state estimation process. Therefore a Monte Carlo Simulation

of the design space is performed to allow for analysis of a wide range of input values to

capture a wide swath of potential error states. This case focuses on the effect of initial

error with a fixed set of state updates. These state updates are assumed to be standard

DSN position and velocity measurements with a fixed error. The parameters under study

include the statistics of the initial position and velocity error as well as the time between

ground-based state updates. This will allow for analysis of the robustness of the filter to

initial input noise and verify its performance for a fixed input case. The ranges of input

variables are given in Table 15. In the table, the notion Logarithmic Uniform is used to

identify a range of values that are distribute linearly across the given orders of ten.

The results of this analysis focused on the capture of integrated position and velocity

as a function of the input parameters. To analyze the space, a Monte Carlo run of 500

cases was performed. The results are plotted below in Figures 46 and 47. The first figure

shows the lack of a correlation between the initial state and the computed velocity error.

A similar effect was observed for position error as well. This demonstrates the robustness

of the filter to starting error and shows that the filter’s convergence is not dependent on

the initial state. This is an expected behavior as the filter is designed to enable the update

of state for a range of initial conditions. Comparatively in Figure 47, the time between

measurements has a very strong effect on the integrated position and velocity terms. This

is also expected, as the increasing time between measurements provides a longer amount of

172

time for the estimated state to be propagated forward, along with its errors, which increase

over time.

173

10-4 10-3 10-2 10-1

Init ial Velocity Error (km /s)

In
te

g
ra

te
d

 P
o

si
ti

o
n

 E
rr

o
r

(k
m

 s
)

1e12

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

10-4 10-3 10-2 10-1

Init ial8Velocity8Error8(km /s)

In
te

g
ra

te
d

8V
e

lo
ci

ty
8E

rr
o

r8
(k

m
/s

8s
)

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

Figure 46: Effect of Initial Velocity Estimate Errors on Integrated Error
174

0 200000 400000 600000 800000 1000000 1200000
Tim e3Between3Measurem ents3(s)

In
te

g
ra

te
d

3P
o

si
ti

o
n

3E
rr

o
r3

(k
m

3s
)

1e12

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

200000 400000 600000 800000 1000000 1200000 1400000
Tim ekBetweenkMeasurem entsk(s)

In
te

g
ra

te
d

kV
e

lo
ci

ty
kE

rr
o

rk
(k

m
/s

ks
)

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

Figure 47: Effect of Time Between Measurements on Integrated Error175

Table 16: Position Measurement Error Analysis Space
Variable Min Max Units Distribution

Position Measurement Error 1E-2 1E3 km Log Uniform

6.4.2 Effect of Measurement Error

The second analysis case (V2) investigates the robustness of the state estimation design to

errors in state measurements. The same example trajectory and spacecraft implementation

as given above is again used as the basis of this study. The measurement in this analysis

case focuses on a position update. Neglecting a velocity state update allows for a more

straightforward analysis of the capability of the filter to process input measurement noise.

The design parameters in this case focus on the accuracy of the state updates with a variable

update frequency. For this study, it is assumed that the filter has been tuned to expect a

certain level of noise in its processed data. The specific variables and their ranges are given

in Table 16.

The results for the study are summarized in Figures 48, 49, and 50. The first set of plots

demonstrates the effect of the error of the position measurement on the integrated error over

the course of the simulation. This plot shows the measurement noise and the integrated

state estimation error on logarithmic scales. The main conclusion from this visualization

is that the estimator’s performance is not directly tied to the error of the measurements,

reinforcing behavior already described. This is further supported by Figure 49, showing a

strong correlation between the time between measurements and the estimation error. This

also matches with theory, as the increased times allow for a longer integration of state errors

between measurement updates. This observed behavior is also shown to logarithmically

increase for small dt’s, reaching a stable upper value driven by early estimation errors. This

behavior can be observed in Figure 50, where the position errors as a function of time are

displayed. For the top plot, the time between measurements is fixed, and thus the position

measurement term drives the stable value of the estimation error. This is demonstrated

by the time-based plots stacking at various of ten. The bottom chart allows for a varied

time between measurements, and the effect on integrated error is due in large part to the

176

propagation of the initial error to the first measurement update. Also the time between

measurements can be seen to have a strong effect on the dynamic noise characteristics.

177

10-2 10-1 100 101 102

Position Measurement Error (km)

107

108

109

1010

In
te

g
ra

te
d
 P

o
si

ti
o
n
 E

rr
o
r

(k
m

 s
)

10-2 10-1 100 101 102

Position Measurement Error (km)

104

105

In
te

g
ra

te
d
 V

e
lo

ci
ty

 E
rr

o
r

(k
m

/s
 s

)

Figure 48: Effect of Position Measurement Error on Integrated Error178

0 100000 200000 300000 400000 500000 600000
Time Between Measurements (s)

107

108

109

1010
In

te
g
ra

te
d
 P

o
si

ti
o
n
 E

rr
o
r

(k
m

 s
)

0 100000 200000 300000 400000 500000 600000
Time Between Measurements (s)

104

105

In
te

g
ra

te
d
 V

e
lo

ci
ty

 E
rr

o
r

(k
m

/s
 s

)

Figure 49: Effect of Time Between Measurements on Integrated Error179

0 5 10 15 20 25
t (days)

P
o

si
ti

o
n

 E
rr

o
r

(k
m

)

10-2

10-1

100

101

102

103

104

3.795 3.800 3.805 3.810 3.815 3.820
t (s) 1e8

10-2

10-1

100

101

102

103

104

105

P
o
si

ti
o
n
 E

rr
o
r

(k
m

)

Figure 50: Comparison of Estimation Error for Fixed Dt (top) and Variable Dt (bottom)180

Table 17: Timing Behavior Input Variables
Variable Value

h0 1E-19

h2 1E-20

Time Between State Measurements 608400 s

Time Between Position Measurements 86400 s

Time Between Clock Measurements 86400 s

6.4.3 Timing Behavior Analysis

Another important factor in the proposed timing-based measurement approach is to analyze

the capability of the onboard estimator to both track and correct for stochastic oscillations

in the spacecraft’s clock. The timing stability is captured using the timing errors outlined

previously. For this case, two estimators are compared: a six state version which only

contains position and velocity factors (V3) and the eight state filter with estimation of

clock bias (V4). The performance of these two will be compared to capture the effect of

timing stability on state estimation errors for a fixed measurement set of weekly state and

daily position updates. This test case represents processing of weekly DSN updates with

daily state measurements during communication windows.

181

0 10 20 30 40 50
t (days)

C
lo

ck
 E

rr
o

r
(s

)

0.000025

0.000020

0.000015

0.000010

0.000005

0.000000

0.000005

0.000010

0.000015

0.000020

Figure 51: Dynamic Clock Behavior without Measurements

0 10 20 30 40 50
t (days)

C
lo

ck
 E

rr
o

r
(s

)

10-7

10-6

10-5

10-4

10-3

10-2

Figure 52: Dynamic Clock Error with Measurements

182

Table 18: Timing Measurement Analysis Space
Variable Min Max Units Distribution

h0 1E-24 1E-15 n/a Log Uniform

h−2 1E-24 1E-15 n/a Log Uniform

Time Between Measurements 86400(1) 604800(7) s(day) Uniform

The stochastic nature of the clock’s behavior over time is shown in Figure 51. For this

measurements case, the simulation parameters are set as given in Table 17, except that

the state updates are disabled. This seeks to capture the dynamics of the clock state. As

seen, due to the lack of measurements to be processed, the two filters exhibit very similar

behavior. Figure 51 thus verifies that both have similar dynamic clock properties.

In comparison, Figure 52 includes the effect of state measurement updates. Both filters

utilize state updates. Additionally, the eight state filter is capable of processing timing

measurements to process through the filter. The benefit of this is clearly seen in the resulting

plots of clock error over time. Due to the lack of filter tracking, the errors of the non-updated

state can be seen as continuing to grow over time. It is also shown that with measurement

updates, particularly of clock state, the filter is able to maintain a stable clock error over

time. This shows the benefits of including the clock parameters in tracked spacecraft state.

An additional factor under analysis is to capture the need for Earth-based timing mea-

surements (V5). Pure timing state measurements allow for greater stability and enhances

position and state estimation by improving the accuracy of state estimation procedures as

well as onboard estimates of other vehicle state. This capability is analyzed by varying the

accuracy and frequency of clock bias measurements. This factor is calculated by comparing

the transmitted expected time of arrival and the receiving spacecraft’s clock at the time of

reception. Variables and their input ranges are described in Table 18.

The results of the Monte Carlo Analysis are given in Figures 53, 54, 55, and 56. The

first two scatter plots visualize the interaction between the clock stability terms and the

integrated position and velocity estimate errors. These visualize the robustness of the state

estimation routine to the clock’s stability, captured by its ability to model, predict, and

correct the clock’s estimated bias and drift parameters. The larger factor in the clock

183

correction performance is due to the time between clock measurements. Figure 55 clearly

demonstrates the effect of more frequent clock updates, reducing both integrated clock and

position error. The last figure visualizes the dynamic capability of the estimator to correct

the estimated clock value in reference to true time. In Figure 56, the clock error is plotted

on a logarithmic scale to show the stability of the state estimation algorithm. With clock

measurements, the filter is able to maintain a high level of accuracy in the corrected onboard

timing prediction.

184

10-25 10-24 10-23 10-22 10-21 10-20 10-19 10-18 10-17 10-16 10-15

clock h0

0

In
te

g
ra

te
d

 C
lo

ck
 E

rr
o

r
(s

 s
)

20000

40000

60000

80000

100000

10-25 10-24 10-23 10-22 10-21 10-20 10-19 10-18 10-17 10-16 10-15

Clock h-2

0

In
te

g
ra

te
d

 C
lo

ck
 E

rr
o

r
(s

 s
)

20000

40000

60000

80000

100000

Figure 53: Comparison of Integrated Clock Error for Variable h0 (top) and h−2 (bottom)185

10-25 10-24 10-23 10-22 10-21 10-20 10-19 10-18 10-17 10-16 10-15

Clockmh0

In
te

g
ra

te
d

mP
o

si
ti

o
n

mE
rr

o
rm

(k
m

ms
)

1e10

7.9

8.0

8.1

8.2

8.3

8.4

8.5

8.6

10-25 10-24 10-23 10-22 10-21 10-20 10-19 10-18 10-17 10-16 10-15

SC1sMSLsclock_h_2

In
te

g
ra

te
d

sP
o

si
ti

o
n

sE
rr

o
rs

(k
m

ss
)

1e10

7.9

8.0

8.1

8.2

8.3

8.4

8.5

8.6

Figure 54: Comparison of Integrated Position Error for Variable h0 (top) and h−2 (bottom)
186

100000 200000 300000 400000 500000 600000
Tim e.Between.Measurem ents

In
te

g
ra

te
d

.P
o

si
ti

o
n

.E
rr

o
r.

(k
m

.s
)

1e10

7.9

8.0

8.1

8.2

8.3

8.4

8.5

8.6

100000 200000 300000 400000 500000 600000
Tim eEBetweenEMeasurem entsE(s)

In
te

g
ra

te
d

EC
lo

ck
EE

rr
o

rE
(s

Es
)

0

20000

40000

60000

80000

100000

Figure 55: Effect of Time Between Clock Measurements on Integrated Position (top) and

Velocity Errors (bottom)

187

0 5 10 15 20 25
t (days)

C
lo

ck
 E

rr
o

r
(s

)

10-7

10-6

10-5

10-4

10-3

10-2

10-1

Figure 56: Dynamic Clock Error

6.4.4 Integrated Sensitivity of Measurements and Timing Uncertainty

In addition to timing measurements, it is important to understand the effect of the rate

of state measurements on the estimation process (V6). The initial studies presented the

effects of error of a fixed-time state update as well as the effect of measurement noise.

This analysis relaxes that constraint, opening up the design space to determine the overall

effect of measurement frequency on the estimation errors in terms of position, velocity,

and clock accuracy. This analysis case is presented for a range of position measurement

accuracies to additionally capture the capability of the estimator for a swath of frequencies

and measurement properties. The analysis case is again given for the Martian cruise phase.

The input variables and their ranges are identified in Table 19.

188

Table 19: Position Measurement Analysis Space
Variable Min Max Units Distribution

Position Measurement Error 1E-2 1E3 km Log Uniform

Time Between Measurements 3600(1/24) 604800(14) s(day) Uniform

The results of this analysis follow similar trends to those already observed and reinforce

the qualities of the filter, and the main performance drivers. Similar to previous cases,

the filter is shown to achieve relatively stable state estimation error values independent of

measurement error, as seen in Figure 57. This is largely due to the filter predicting the

expected noise in the measurement. Also, like other analyses, the time between measure-

ments is shown to be a key driver for the expected performance. This relationship is plotted

in Figure 58. The visualization of the data clearly displays the strong correlation between

integrated position and velocity error with time between measurements.

This behavior can be explained by two key factors. First, an increase in the amount of

time between measurements increases the effect of propagation of initial errors, thus driving

up the integrated error terms. The second factor is that as the time between measurements

is decreased, the filter is also able to process more data, allowing for a better statistical

exploration of the space, helping to reduce errors in the estimated state by the increased

number of processed values.

The long term error levels, however, are strongly driven by these measurement errors.

This is clearly showed in Figure 60, which displays the relationship between the final state

errors with the position measurement error. Although the integrated error may be inde-

pendent of these terms, the final error level is strongly driven by the error of the processed

state updates. From this, it can be observed that with one single measurement (absolute

position), the filter can only estimate its state on the order of the observed data. The

state estimator is able to achieve and maintain high levels of velocity accuracy in order to

maintain the position state estimates.

189

10-3 10-2 10-1 100 101 102 103

Posit ion Measurem ent Error (km)

1010

In
te

g
ra

te
d

 P
o

si
ti

o
n

 E
rr

o
r

(k
m

 s
)

107

108

109

10-3 10-2 10-1 100 101 102 103

Posit ion5Measurem ent 5Error5(km)

In
te

g
ra

te
d

5V
e

lo
ci

ty
5E

rr
o

r5
(k

m
/s

5s
)

103

104

105

Figure 57: Comparison of Integrated Errors Versus Position Measurement Error190

100000 200000 300000 400000 500000 600000
Tim e8Between8Measurem ents8(s)

In
te

g
ra

te
d

8P
o

si
ti

o
n

8E
rr

o
r8

(k
m

8s
)

107

108

109

1010

0 100000 200000 300000 400000 500000 600000 700000
Tim eyBetweenyMeasurem entsy(s)

In
te

g
ra

te
d

yV
e

lo
ci

ty
yE

rr
o

ry
(k

m
/s

ys
)

103

104

105

Figure 58: Comparison of Integrated Errors Versus Time Between Measurements
191

0 5 10 15 20
t (days)

P
o

si
ti

o
n

 E
rr

o
r

(k
m

)

10-2

10-1

100

101

102

103

104

105

Figure 59: Position Error

192

10-1 100 101 102

Position Measurement Error (km)

10-1

100

101

102

Fi
n
a
l
P
o
si

ti
o
n
 E

rr
o
r

(k
m

)

10-1 100 101 102

Position Measurement Error (km)

10-5

10-4

10-3

Fi
n
a
l
V

e
lo

ci
ty

 E
rr

o
r

(k
m

/s
)

Figure 60: Comparison of Final Errors Versus Measurement Error193

Table 20: Measurement Content Analysis Inputs
Variable Value

Position Error 100 km

State Position Error 1 km

State Velocity Error .1 km/s

Range to Earth Error 100 km

6.4.5 Measurement Content Comparison

The above studies have looked in particular at state updates. Another relevant comparison

is the comparison of measurement content, focusing on the comparison of state versus

position versus range. This study directly captures the flexibility and robustness of the

filter to input variables. For this study, the frequency and the error of each measurement

type are varied to capture the performance for comparison. This allows for a demonstration

of the capability of the state estimator to the amount of content in a measurement update.

The inputs for each trade are described in Table 20. For these cases, several analysis were

performed. For position (V7) and range measurements (V8), it was assumed that the

observation batches consisted of 10 packets separated by 60 seconds. A design trajectory

was run for measurement intervals of one day and one week. The performance of state

measurements (V9) was only run at one week intervals to capture current standards.

Plots of the estimated position error are given in Figures 61 and 62. The first plot

shows a comparison of the predicted position errors for the various measurement contents

and frequencies. From this analysis, the benefit of the state update is clearly beneficial,

though the long-term performance of position measurements is within 100 kilometers, with

similar errors post-update. The range observations alone do not show strong performance

in correcting the vehicle’s estimated state. Though with daily updates, it is shown that the

error does begin to decrease.

194

Position 7 Days
Range 1 Day
Range 7 Days
State 7 Days

Po
sit

io
n

Er
ro

r (
km

)

1

10

100

1000

104

105

106

Time (days)
0 10 20 30 40 50

Figure 61: Position Error as Function of Measurement Content

Figure 62 gives a detailed view comparing state and position updates. From this analysis,

it is shown that the daily position measurements does bound error better than weekly

updates. This follows previous trends described above. The per-measurement value also

shows a clear reduction in measurement error over the course of the process. Also of note

is that even though the measurement noise is 100 kilometers, the estimator is still able to

predict performance to half of that level due to its data processing algorithms. Lastly, the

state update shows its strong performance, enabling very high accuracy state updates. This

195

is due to the complete state observation and the expected reduced noise capability.

Position 1 Day
Position 7 Days
State 7 Days

Po
sit

io
n

Er
ro

r (
km

)

10

100

Time (days)
19.975 20 20.025 20.05 20.075 20.1 20.125 20.15

Figure 62: Detailed Comparison of State versus Position Updates

6.4.6 Overall Sensitivity Analysis

Even though the above trades provide insight into the navigation architecture as a whole,

they do not allow for the integrated analysis of these variables and their interactions. There-

fore, a final overall design case (V10) is proposed to demonstrate the capability of the inte-

grated framework to capture complex variable interactions. For this study, a larger subset

of variables will be relaxed to identify key drivers of performance for integrated position,

196

Table 21: Position Measurement Delay Analysis Space
Variable Min Max Units Distribution

Time to State Update 86400(1) 604800(7) s(day) Uniform

Time Between State Updates 86400(1) 604800(7) s(day) Uniform

Position Measurement Error 1E-3 1E4 km Logarithmic

Time to Position Update 86400(1) 604800(7) s(day) Uniform

Time Between Position Updates 86400(1) 604800(7) s(day) Uniform

Time to Clock Update 86400(1) 604800(7) s(day) Uniform

Time Between Clock Updates 86400(1) 604800(7) s(day) Uniform

velocity, and timing error measures. The performance will be captured by running a Monte

Carlo Analysis over all of these variables, a sufficiently large number of cases will be used

to enable capture of general trends. Additionally, statistical tools will be used to identify

correlations between variables. This calculation of covariance will be used to identify key

performance drivers and verify general design trends. The full list of design variables is

shown in Table 21.

Statistical tools can be used to calculate the correlations between the various variables

considered in the analysis. For this analysis, the MATLAB software package was used to

perform the calculations. The correlation coefficient, or normalized covariance, was used to

identify relationships between pairs of variables.

For the input and output variables the inputs and outputs are collected in addition to

the p values. These values represent the statistical likelihood that a statistical property can

be calculated randomly. For example, low values of p correspond to statistically significant

relationships. For this analysis, a p value of .05 (or a five percent chance of the relationship

being random) was used to identify the variables. The calculated covariance and p-values

are given in Figures 63 and 64.

197

Figure 63: Correlation Coefficient Values

Figure 64: Probability Coefficient Values

From these numerical values, it is straightforward to identify correlated variables and

identify key relationships. For the final position error, the main terms are from the state

measurement parameters, particularly the time to the first measurement and time between

measurements. Additionally the error of the position update has a strong effect. This

relationship can be explained by the state estimate being a complete position and velocity

measurement providing the maximum information to the state estimator. Additionally, the

errors in the position measurement can induce errors into the estimated state.

The velocity errors, though, show correlation with the parameters of the state and

position measurement, except for the time delta value. This behavior can be explained by

the high dependency on the errors of the velocity measurement in the state update, which

198

provides the only direct observation of velocity. The correlation with the time to the first

position measurement and error is due to the loss of accuracy of position compared to state

updates. As such, an early position measurement may induce error in the velocity state

due to the high initial value of the state’s covariance. These early measurements can affect

the state estimator’s settling time to its stable error state.

The integrated errors, both of velocity and position are strongly dependent on the time

to the first measurement. This correlation is observed due to the effect of increasing the

initial state errors over a longer period of time. As the time to first measurement increases,

the integrated state error likewise increases, especially due to the large amount of integrated

error built up early in the mission.

The main factors affecting the integrated clock error are the time between and the time

to first measurements. This is demonstrative of the estimators algorithms, in that the

clock states are only directly being measured through this update. The other updates to

the estimated timing values are due to the propagated covariance and predictions of the

oscillator instability. As described above, the majority of integrated error is shown to also

occur early in the timeline here, seen by the large dependence on time to first measurement.

6.5 Measurement Optimization

The above results demonstrate the functionality of the design space analysis tools built

into the implemented simulation framework. The experiments performed provide insight

into the design space and allow for enhanced understanding of the navigation capabilities

in terms of specific measurement functionality. In addition to these test cases, the ability

to perform system optimization with integrated tools must be demonstrated. This is being

done to complete the validation of the implemented framework. Two separate analysis cases

will be exercised, to demonstrate a basic confirmation of the optimizer’s functionality and

to provide an optimal measurement operational concept.

6.5.1 Optimization of Position Measurement

The first optimization case (V11) provides a straightforward analysis of the design space to

insure the proper operation of the implemented tool. In this case, the optimizer is allowed to

199

Table 22: Position Measurement Optimizer Inputs
Variable Min Max Units Distribution

Position Measurement Error 10 10000 km Uniform

Time Between Measurement Batches 86400(1) 604800(7) s(day) Uniform

Time Between Individual Measurements 1 3600 s Uniform

Measurements in a Batch 5 100 Uniform

Table 23: Position Measurement Optimizer Outputs
Variable Units

Final Position Error km

Final Velocity Error km/s

Final Clock Error s

Integrated Position Error km s

Integrated Velocity Error km/s s

Integrated Clock Error s s

vary measurement noise and frequency in order to meet the performance goals of minimized

state estimation error. For this scenario, it is assumed that the spacecraft receives fixed

state updates at weekly intervals. To perform this analysis the tool utilizes its interface to

the genetic algorithm library. The input ranges of the variables, and output performance

variables are given in Table 22 and 23. The results of this analysis should also be derivable

from the previous design analysis cases.

The optimizer was run twice (V11 and V12) with equally weighted goals of minimizing

each design variable. Each utilized ten generations of forty individuals. The values of the

inputs are plotted in Figures 65, 66, 67, and 68. These show the average value of each

set over the course of the optimization. The errors bars on the charts track one standard

deviation of the input for all members of that generation. Distribution of a population’s

values is observable from the error bars. For an optimization run that is converging to an

optimal solution, these bars should be minimized, indicating that an optimal configuration

has been obtained. For this solution, all design variables show this convergent behavior.

The two runs also allow observation of the repeatability of the simulation.

For the input values capturing the batch properties, time between and number of mea-

surements in a batch, these are seen to find a common solution minimizing the time between

200

measurements and maximizing the number of measurements. Additionally, both cases seek

to minimize the error in the position measurement, which would be expected in order to

minimize the final navigation state errors. The only discrepancy between the two opti-

mizations is in regards to the time between measurements. The results show two distinct

solution approaches.

Due to the frequency of the measurements, the second optimization down-selected to

a timing situation where the measurements were linked such that the state updated very

near the end time of the simulation. This allows for low position and velocity errors,

though at the cost of the integrated error terms. This also shows the potential trouble with

optimizing for final state error when more interested in bulk performance of the navigation

state estimation. Additional constraints on the analysis case or different weightings can

reduce the likelihood of this scenario occurring.

The first example provides a more expected result. This optimization case converged to

a solution with the minimum time between measurements. Combined with the minimum

time between measurements in a batch and the maximum number of observations in each

batch, this solution provides for frequent large batches of error measurements. This large

number of near-simultaneous observations allow for improved statistics in regards to getting

an average update, and reducing the effect of measurement noise.

0 2 4 6 8 10
Generation

0

100

200

300

400

500

600

700

800

P
o
si

ti
o
n
 M

e
a
su

re
m

e
n
t

E
rr

o
r

(k
m

)

0 2 4 6 8 10
Generation

100

0

100

200

300

400

500

600

700

800

P
o
si

ti
o
n
 M

e
a
su

re
m

e
n
t

E
rr

o
r

(k
m

)

Figure 65: Measurement Position Error over Optimization

201

0 2 4 6 8 10
Generation

100000

200000

300000

400000

500000

600000

700000

T
im

e
 B

e
tw

e
e
n
 M

e
a
su

re
m

e
n
ts

 (
s)

0 2 4 6 8 10
Generation

100000

0

100000

200000

300000

400000

500000

T
im

e
 B

e
tw

e
e
n
 M

e
a
su

re
m

e
n
ts

 (
s)

Figure 66: Time between Measurements over Optimization

0 2 4 6 8 10
Generation

500

0

500

1000

1500

2000

2500

3000

T
im

e
 B

e
tw

e
e
n
 B

a
tc

h
e
s

(s
)

0 2 4 6 8 10
Generation

500

0

500

1000

1500

2000

2500

3000

T
im

e
 B

e
tw

e
e
n
 B

a
tc

h
e
s

(s
)

Figure 67: Time between Batches over Optimization

0 2 4 6 8 10
Generation

30

40

50

60

70

80

90

100

110

120

M
e
a
su

re
m

e
n
ts

 i
n
 a

 B
a
tc

h

0 2 4 6 8 10
Generation

20

30

40

50

60

70

80

90

100

N
u
m

b
e
r

o
f

M
e
a
su

re
m

e
n
ts

 i
n
 B

a
tc

h

Figure 68: Number in a Batch over Optimization

202

Figures 69, 70, and 71 show the dynamics of the state estimation errors for the final

generation in the optimizer. For ideal operation of the optimization process, each member of

the population should exhibit very similar error dynamics over the course of the simulation.

As seen in the plots, there is not much deviation between the state estimation performance

of the two final populations. Both cases perform equally well in terms of position and

velocity errors. Figure 71 shows an interesting result, that is expected from the previous

analysis. Without any clock updates, the clock error continues to increase over time. This

shows the importance of the timing update.

3.795 3.800 3.805 3.810 3.815 3.820
t (s) 1e8

100

101

102

103

104

105

P
o
si

ti
o
n
 E

rr
o
r

(k
m

)

3.795 3.800 3.805 3.810 3.815 3.820
t (s) 1e8

10-1

100

101

102

103

104

P
o
si

ti
o
n
 E

rr
o
r

(k
m

)

Figure 69: Position Error in Last Generation

3.795 3.800 3.805 3.810 3.815 3.820
t (s) 1e8

10-5

10-4

10-3

10-2

10-1

V
e
lo

ci
ty

 E
rr

o
r

(k
m

/s
)

3.795 3.800 3.805 3.810 3.815 3.820
t (s) 1e8

10-6

10-5

10-4

10-3

10-2

10-1

V
e
lo

ci
ty

 E
rr

o
r

(k
m

/s
)

Figure 70: Velocity Error in Last Generation

203

Table 24: Optimizer Results Comparison

Variable Opt. 1 Opt. 2 With Time Measurement

Position Measurement Error(km) 125 15 10

Time Between Measurement Batches (s) 520000 90000 150000

Time Between Individual Measurements (s) 20 1 1

Measurements in a Batch 100 70 80

3.795 3.800 3.805 3.810 3.815 3.820
t (s) 1e8

0.008

0.006

0.004

0.002

0.000

0.002

0.004

0.006

0.008

C
lo

ck
 E

rr
o
r

(s
)

3.795 3.800 3.805 3.810 3.815 3.820
t (s) 1e8

0.015

0.010

0.005

0.000

0.005

0.010

0.015

0.020

C
lo

ck
 E

rr
o
r

(s
)

Figure 71: Clock Error in Last Generation

6.5.2 Effect of Timing Measurements on Optimal Parameters

From the large observed effect of timing measurements on the clock estimation error, an

additional optimization run was performed (V13). The inputs and outputs are the same as

listed in Tables 22 and 23. The substantial difference for this analysis case is the inclusion

of weekly timing updates to occur with the same frequency as the state updates (at weekly

intervals). The optimization was re-run for this analysis with the resulting values given in

comparison to the initial two runs given in Table 24.

For this analysis case, the optimizer minimized the time between measurements and

measurement error while increasing the number of measurements in a batch. The main dif-

ference is the time frequency of updates. For this case, with the added time measurements,

the state estimator is able to obtain an improved estimate and therefore able to propagate

its state for a longer interval between batches. This shows the strong benefit of including a

204

timing measurement into the navigation architecture. The resulting dynamics of the error

states is given in Figure 72 and 73.

205

3.795 3.800 3.805 3.810 3.815 3.820
t (s) 1e8

10-1

100

101

102

103

104

P
o
si

ti
o
n
 E

rr
o
r

(k
m

)

3.795 3.800 3.805 3.810 3.815 3.820
t (s) 1e8

10-6

10-5

10-4

10-3

10-2

10-1

V
e
lo

ci
ty

 E
rr

o
r

(k
m

/s
)

Figure 72: Dynamics of Error State with Clock Measurement206

3.795 3.800 3.805 3.810 3.815 3.820
t (s) 1e8

0.003

0.002

0.001

0.000

0.001

0.002

0.003

0.004

C
lo

ck
 E

rr
o
r

(s
)

Figure 73: Dynamics of Clock Error State with Time Measurement

6.6 Summary of Verification and Validation

This chapter has presented a series of test cases to both verify and validate the SNAPE

framework and its software implementation. In order to verify the modeling and simulation

environment, the primary functional blocks that drive the navigation performance, state

propagation and estimation, are compared to industry standard tools. Due to the lack of a

pre-existing end-to-end navigation analysis framework, the verification was performed at a

functional level. From a review of the currently available analysis tools, the state estimator

was compared to STK and the state estimation filter was compared to ODTBX. These

analysis cases are summarized in Table 25.

After verifying SNAPE’s functional performance, the framework’s analytical capability

was validated through a series of test cases. These demonstrate typical navigation system

207

Table 25: SNAPE Implementation Functional Verification Cases
Section

Case FN Fh Fv Fk F. FV

Mission)Reference

SimulationODuration

PrimaryOAgent

OnboardOfilter

EKFO(OVO

State

ODTBXO(O

SequentialO

EKF

StateOPropagator

STKO(OhO

Body

STKO(O

HPOPO

RKk

STKO(O

HPOPO

RKLXjqO

w)OSRP

SNAPEO(O

dopri.

SNAPEO(O

dopri.

ODTBXOh(

bodyO

dynamics

OtherOAgents

NavOPacketOSource

NavOPacketOFrequency

AnalysisOApproach

PacketOContent

Measurements

V8v8NOPropagatorOVerification

MSLOMarsOCruiseOTrajectory

Earth(DSNORange7O

Range(RateOeveryONwO

seconds

V8v8hOStateOEstimatorO

LEOOTrajectory

EarthO(ODSN

N)A

vwwOseconds

NotionalOVehicle

N)A

MonteOCarloO(OVaryO

InitialOError

N)A

none

MSL

N)A

hwOdays

analysis and performance evaluation. The validation demonstrates the capability of the

integrated framework to perform a wide variety of analysis, from system analysis to opti-

mization. A series of experiments was performed in order to provide additional knowledge

and build a database of the capabilities of the filter for deep space navigation, looking

particularly at direct state measurements. A summary of these cases is given in Table 26.

The results of these test cases showed a strong correlation to time between measurements

affecting the integrated error states, and the strong effect of the inclusion of a clock update.

These demonstrate the capability of the framework to perform the analysis directives de-

scribed previously and required to evaluate the capability of a deep space navigation system.

This provides capabilities that will now be applied in a more complex problem, focusing on

the analysis of performance for the NNAV architecture.

208

T
a
b

le
2
6
:

S
N

A
P

E
F

ra
m

ew
or

k
V

al
id

at
io

n
C

as
es

Se
ct

io
n

UN
BN

qC
Ef

fe
ct

Co
fCI

ni
tia

lC

Er
ro

r

UN
BN

-C
Ef

fe
ct

Co
fC

M
ea

su
re

m
en

tC

Er
ro

r

UN
BN

BC
Ti

m
in

gC

Se
ns

iti
vit

y

UN
BN

wC
In

te
gr

at
ed

C

Pe
rfo

rm
an

ce

UN
BN

WC
Pa

ra
m

et
er

C

Se
ns

iti
vit

y

Ca
se

Vq
V-

V,
VB

Vw
VU

VW
VG

Vz
Vq

F
Vq

q
Vq

-
Vq

,

M
iss

io
nk

Re
fe

re
nc

e

Sim
ul

at
io

nC
Du

ra
tio

n
wF

Cd
ay

s

Pr
im

ar
yCA

ge
nt

On
bo

ar
dC

fil
te

r

St
at

eC
Pr

op
ag

at
or

Ot
he

rCA
ge

nt
s

Na
vCP

ac
ke

tCS
ou

rc
e

Na
vCP

ac
ke

tCF
re

qu
en

cy

An
aly

sis
CA

pp
ro

ac
h

M
on

te
CC

ar
lo

ChC
Va

ry
C

In
iti

alC
Er

ro
rpC

Ti
m

eC

Be
tw

ee
nC

St
at

eC

Up
da

te
s

M
on

te
CC

ar
lo

ChC

Va
ry

CP
os

iti
on

C

Er
ro

rpC

Fr
eq

ue
nc

y

M
on

te
CC

ar
lo

ChC
Cl

oc
kC

St
ab

ilit
ypC

Ti
m

eC

Be
tw

ee
nC

St
at

eC

Up
da

te
s

M
on

te
CC

ar
lo

ChC

Po
sit

io
nC

M
ea

su
re

m
en

tC

Ac
cu

ra
cy

Can
dC

Fr
eq

ue
nc

y

M
on

te
CC

ar
lo

ChC

Ti
m

eC
be

tw
ee

nC

M
ea

su
re

m
en

ts
pC

an
dC

Ti
m

eC
to

CFi
rs

t

Pa
ck

et
CC

on
te

nt

M
ea

su
re

m
en

ts
St

at
eC

hCD
SN

Po
sit

io
nC

hCD
SN

W
ee

kly
CSt

at
ep

C

Da
ily

CP
os

iti
on

ChC

DS
N

W
ee

kly
CSt

at
ep

C

Da
ily

CP
os

iti
on

pC

W
ee

kly
CT

im
eC

hC

DS
N

W
ee

kly
CSt

at
ep

C

Va
ria

bl
eC

Ti
m

in
gC

hC

DS
N

W
ee

kly
CSt

at
ep

C

W
ee

kly
CT

im
in

gp
C

Va
ria

bl
eC

Po
sit

io
nC

hC

DS
N

W
ee

kly
C

or
CD

ail
yC

Po
sit

io
nC

hC

DS
N

W
ee

kly
C

or
CD

ail
yC

Ra
ng

eC
hC

DS
N

W
ee

kly
C

or
CD

ail
yC

St
at

eC
hC

DS
N

Va
ria

bl
eC

St
at

ep
C

Po
sit

io
np

CT
im

eC
hC

DS
N

W
ee

kly
CT

im
ep

C

W
ee

kly
CSt

at
ep

C

Va
ria

bl
eC

Po
sit

io
nC

hCD
SN

W
ee

kly
CSt

at
ep

C

Va
ria

bl
eC

Po
sit

io
nC

hC

DS
N

Ge
ne

tic
CA

lgo
rit

hm
CO

pt
im

iza
tio

nC
of

C

Po
sit

io
nC

M
ea

sNC
Er

ro
rCa

nd
C

Fr
eq

ue
nc

y

Nk
A

M
SL

CM
ar

sCC
ru

ise
CT

ra
je

ct
or

y

M
on

te
CC

ar
lo

ChC
In

iti
alC

Er
ro

r
M

on
te

CC
ar

lo
ChC

In
iti

alC
Er

ro
r

EK
FCh

CU
CSt

at
e

UN
wC

M
ea

su
re

m
en

tCO
pt

im
iza

tio
n

Do
pr

iCw

Ea
rth

hD
SN

Nk
A

EK
FCh

CG
CSt

at
e

M
SL

-w
Cd

ay
s

-w
Cd

ay
s

UN
BN

UC
M

ea
su

re
m

en
tCC

on
te

nt
UN

BN
,C

Ti
m

in
gCB

eh
av

io
r

209

CHAPTER VII

EVALUATION OF NETWORK-BASED NAVIGATION (NNAV)

To evaluate the capability of Network-Based Navigation (NNAV), a set of systems analysis

tools is needed. Due to the unavailability of flight data, which would typically be used to

inform design analysis, experiments must be performed in order to capture the expected

performance of a navigation system. Due to the large costs and extended schedule required

for an actual in-flight experiment, a software-based simulation has been developed to allow

for investigation into the navigation architecture and in order to perform design trades and

analysis on the given concept.

The previous chapters focused on the potential paths of development for such a frame-

work. As shown by the research, no available tool exists for the analysis of communication-

based navigation packets in a modular environment that allows for the rapid comparison of

multiple measurement sources and varying navigation packet content. In order to capture

the requirements and behaviors of the system under study, Model-Based Systems Engineer-

ing techniques are utilized to capture the system and design space. In addition to defining

the analysis scope, these models further provide the basis for the software implementation

by both capturing algorithm development and interface design. The test cases from the

previous chapter were used to compare the tool against other analysis software’s capabili-

ties and to verify performance. With the framework verified and in place, it is now possible

to return to the original problem and capture the performance of NNAV.

7.1 Analysis Scenario Description

The proposed method of communication-centric navigation has applicability to a wide range

of mission scenarios and concepts. These can vary from a local transfer between Earth and

the Moon to an outer planets exploration mission. The case study under analysis depends

on two primary factors: the underlying communication infrastructure and the trajectory

under study. The two must coincide to provide for an analysis case that allows for the

210

design and trade-off of the navigation update processes. Additionally, the initial analysis

should focus on a near term concept that could be used for a potential flight experiment

to verify in-space performance. In terms of trajectory designs, it is important to select an

analysis case with a large degree of relevance to current mission designs and infrastructure

implementations.

In order to capture the nearest term implementation of NNAV, this concept evaluation

will focus on mission test cases defined within the scope of Earth-Mars transfers1. Several

aspects of this mission provide a strong area for analysis of the proposed methodology. Al-

though NNAV can be performed using Earth-Based assets, a greater capability is envisioned

with a larger growing telecommunications deep space network.

This infrastructure has already begun to be implemented in the local Martian environ-

ment. MRO currently operates as a data relay for several Mars ground assets, such as the

MER Opportunity and the Mars Science Laboratory Curiosity. The orbiting spacecraft has

performed this role incredibly well, greatly enhancing the amount of data transferred from

Mars to Earth, by utilizing its increased power and data transmission capability.

To enable the analysis of multiple navigation packet sources, the trajectory under study

has been chosen to allow for communication with both Earth and Martian assets. The design

mission focuses on an Earth to Mars transfer orbit. For this analysis case, the mission focuses

on a first step implementation of NNAV, allowing for the integration of Earth-Based state

updates (through DSN observation) which are augmented with the embedded navigation

packets. This is chosen to enable demonstration of the capability of the navigation packets

and to provide comparison to currently used methods. The unique dynamics of this analysis

case are applicable to a large number of missions, as robotic missions continue to be sent

to Mars at regularly intervals and the need for advanced navigation to support pinpoint

landing increases to maximize science return. Additionally, these missions allow for analysis

of a growing network, including study of Earth-only, and Earth+Mars relay studies. This

will provide insight as to the effects of a growing network.

1Each test case included as part of the navigation evaluation is identified as N1, N2...

211

Selection of this analysis scenario also supports demonstration of the autonomous ca-

pabilities of the proposed navigation system. The vehicle’s autonomy is captured in its

ability to process state updates, and measurements independent of Earth-Based orbit de-

termination. The embedding of navigation headers into the packets requires no a priori

analysis, simply insertion of the variables of interest, such as transmission location and

time. As such, the inclusion of this information forms an automated, integrated part of

the transmission protocol and data packaging. Additionally, as the packet protocols are

embedded into spacecraft among a growing network, the navigation process onboard each

spacecraft is increasingly autonomous of Earth. For these initial studies, the analysis does

include the generation and modeling of DSN state estimates, resulting from ground-based

orbit determination. These states are still processed autonomously onboard by means of

a loosely coupled filtering system, similar to that used in GPS receivers. As opposed to

overwriting the onboard estimate with the DSN state update and resetting the filter, the

packet is treated as a measurement with a given estimated uncertainty, allowing for optimal

integration with the onboard estimate.

In order to maximize the relevance to possible missions, the Martian transfer trajectory

of Curiosity is again chosen as the spacecraft under analysis. The published availability of

the as-flown trajectory of MSL2 and MRO3 provides a truth reference for the navigation

system and provides for a comparison case to capture state estimation performance of the

packets and measurements under study. The specific measurements under consideration are

the difference between the onboard estimated state and the true state (from the reference

trajectory data). The trajectory chosen also simplifies the analysis case, reducing the num-

ber of potential bodies interfering with communications due to the orbital dynamics at the

time of transfer. The trajectory under study is given in Figure 74, which shows the orbital

path of Earth, Mars, and MSL.

Per measurement state estimation accuracy is captured by storing the error between true

and predicted position, velocity, and time of the spacecraft’s estimator and the reference

2http://naif.jpl.nasa.gov/pub/naif/MSL/kernels/
3http://naif.jpl.nasa.gov/pub/naif/MRO/kernels/

212

Figure 74: MSL Cruise Design Trajectory

213

Figure 75: MSL Cruise Configuration (NASA/JPL)

trajectory. This data is captured over the entire analysis case to provide for a time-based

history and trending analysis of the estimation errors. Additionally, the initial error state

is captured to inform stochastic analysis of the design space, enabling linkage of the per-

formance parameters to initial random state. Capturing the error state at the end of the

simulation provides for a measure of capability at the end of the mission, which is very

important for local orbit insertion and atmospheric entry. Another measure of performance

is needed to capture the overall performance of the navigation system. To capture this

capability, the integrated error terms are used. These give a direct capture of the total

error incurred over the course of the mission and also capture well the errors in propagation

between state estimation updates.

7.2 Implementation and Vehicle Definitions

The as-flown description of the MSL cruise stage and MRO final configuration are used as

the vehicles of interest are given in Figure 75 and Figure 76. For the simulation, the main

parameters of interest relate to the communications systems on the cruise stage [75]. During

cruise, the spacecraft flies with a constant roll rate and its solar panels pointed towards the

sun.

The main antenna to communicate with earth is the onboard Small Deep Space Transpon-

der, which connects to the Medium Gain Antenna (MGA) which feeds through the solar

214

Figure 76: MRO Vehicle Model (NASA/JPL)

panel structure via a traveling wave tube amplifiers (TWTA) to receive signals from earth.

This is the antenna typically used for Earth-communication during its cruise phase. Addi-

tionally, several lower power antennas are on the other side of the spacecraft, such as the

Parachute Low Gain Antenna (PLGA), which are used during the descent portion of flight.

This antenna would primarily point towards Mars during cruise.

This study does not address the attitude of the spacecraft during cruise, but does make

the assumption that upon reception of a signal from MRO, it has the capability to perform

a flip maneuver and point towards Mars (or alternatively have a similar antenna pointing

out of the vehicle’s nose for Mars-based communications). Both scenarios will be analyzed

to capture the capability of communication with MRO’s High Gain Antenna (HGA) and

Medium Gain Antennas (MGA). Block diagrams of the two spacecraft’s telecommunications

systems are provided in [75] and [119].

An additional assumption of the analysis is that the simulation begins post vehicle

checkout, with the spacecraft operating with a fairly accurate state estimate from initial

orbit determination during vehicle check out procedures. To capture this assumption, the

initial position and velocity of the onboard state estimation are set to truth and the accuracy

of DSN state determination (one kilometer and one tenth kilometers per second). This

uncertainty is applied as a random normal with given standard deviation to the reference

trajectory state. Over the course of the simulation, the truth state is continually referenced

215

to the loaded trajectory data. Between packet receptions, the spacecraft propagates its own

state by means of a Runge-Kutta 4(5) integration algorithm. At each time step, the vehicle

estimates the forces being applied by using the onboard ephemeris, DE421, and its current

state estimates of position, velocity, and time. As such, uncertainties in the onboard state

directly affect the autonomous state propagation and integration of the vehicle.

In addition to the usage of space-based assets, the study also captures the performance

of the navigation packets to enhance and reduce the reliance on traditional Earth-Based

navigation state updates. As such, Earth-Based antennas must also be modeled for com-

pleteness. Due to the global spread of the DSN assets, the individual assets are not modeled.

Rather, the communication infrastructure is captured by representative dishes at the three

main ground stations (Spain, California, and Australia), the 34m and 70m dishes. Due to

the global coverage and location of these dishes, the spacecraft can always be in potential

contact with one of the sites. The main parameters of interest to the packet design are

the operating frequency, line losses, receiver and transmitter gain, and transmission power.

This data was obtained from that published in the open literature [119] [75].

7.3 Packet and Measurement Content

The navigation packet content and the measurements defined in the simulation have been

chosen to match the above described mission scenario. The first step in the analysis is to

capture the effect on state estimation of DSN-based state updates. This measurement data

includes both position and velocity measured to a high level of accuracy during extended

navigation passes. Over the course of a navigation pass, range and range-rate are measured

to the spacecraft by the ground stations via two-way ranging and Doppler observations. By

using advanced orbit determination software and observation data over long passes, ground

analysts are able to determine the vehicle’s state to a high degree of precision. This mod-

eling environment captures the overall performance of these state estimation techniques as

opposed to directly simulating the ground-based orbit determination process. The analysis

assumes a DSN accuracy of one kilometer in position with one-tenth of a kilometer per

second in velocity. These values are average values for distances over this trajectory [121].

216

This accuracy ultimately reduces with increasing range [74], but this value is reasonable for

the early parts of Martian transfer on which the analysis focuses.

The state update is modeled as a packet containing the spacecraft’s state at the ex-

pected time of reception with applied random error to account for uncertainties in the orbit

determination and propagation process. The actual value is taken in terms of the true

trajectory position from the loaded SPICE data with standard normal error applied to each

measurement. It is assumed that the ground can accurately propagate the vehicle state for-

ward such that the state in the packet is the vehicle’s position and velocity at the expected

time of reception. The bulk error uncertainty includes effects of ground timing uncertainty

and atmospheric transmission effects. Upon reception, this state update packet is processed

onboard as an instantaneous measurement of position and velocity. The capability exists to

additionally model range, range-rate, and timing state updates, all of which are determined

from the vehicle’s reference truth data source.

Several data types are included in the packet analysis approach. For this analysis, the

packet content is limited to the use of ranging packets. Two sets of data can be included

that are processed at run-time to simulate real-time measurement. The minimum packet

content required is the time of transmission of the packet. As described previously, in order

to process the data header, the spacecraft must have some estimate of the transmitting

body’s state. In an operational scenario the current best known state of each body in

the network is uploaded to the spacecraft. This information, in addition to the onboard

planetary ephemeris models such as DE421 [39], is used to allow the vehicle to process

received packets into state measurements that can be utilized via the state estimation

subsystem.

The main trade in packet content is to analyze the required accuracy of this estimated

data. For other bodies in the network, state propagation using incomplete gravity and

dynamics models will cause error growth in estimated state over time. To address this

declining accuracy of external asset information over time, the packets can also allow for

the updating of the ephemeris data to the current best known state. As such, the other main

data to be included in the navigation packet is the current position of the transmitting asset

217

at the time of transmission. This can be used to update the spacecraft’s onboard estimated

state to aid in both measurement processing as well as future pass planning. Additionally,

this data represents the spacecraft’s best known state and links back to the capability of the

network to auto-correct and transmit updated state information throughout the network

by consistently updating each node’s onboard estimates.

7.4 Simulation Variables of Interest

To answer the research questions outlined above, several trade studies are required. These

trades capture the performance of the navigation packets. Additionally, the simulation

should provide demonstration of the integration of standard state measurements with the

navigation packets. The framework must also be capable of comparing the performance

of the new navigation architecture to traditional measurements. To support these trades,

several design variables are identified to explore the design space. These settings allow

variation of several parameters, focusing on the generation and frequency of both state

measurement updates and packet generation. The main parameter for the ground-based

position and velocity measurement is the time between successive measurements. The error

in measurement is assumed constant and based upon literature descriptions [74][121].

To capture the effects of the navigation packets, several additional parameters must be

included. Each navigation contact between two agents is modeled as a transfer of a batch

of packets containing information. The underlying data transmission protocol defines the

exact structure and error correction of the transfer. Each group of navigation packets is

modeled as a batch of arriving information. The main parameters identified in the state

analysis are the time between measurement batches (to capture the idle time required

between transmissions), the time between individual measurements (during a transmission

exchange, how often are the navigation packets included), the number of measurements in

a batch, and the data content of the packet. These identified parameters allow for analysis

of the packet structure and analysis behavior.

218

7.5 Sensitivity to Packet Content

With the analysis framework implemented and the design cases set, it is now possible to

utilize the framework to analyze the performance of NNAV. For this analysis, it is assumed

that there is an Earth-Based state update once a week, and the communication between

Earth and MSL occurs once a day, allowing for a batch of measurements per day. This set of

data cases focuses on the importance of the measurement states and the direct information

content of the individual packets. In this design case, it is again assumed to have once-daily

received navigation packet batches from Earth with weekly state updates. The number of

measurements in a batch and the time between each is fixed.

3.795 3.800 3.805 3.810 3.815 3.820 3.825
t (s) 1e8

100

101

102

103

104

105

P
o
si

ti
o
n
 E

rr
o
r

(k
m

)

Figure 77: (N1)Position Error for Packet with Full Content

219

3.795 3.800 3.805 3.810 3.815 3.820 3.825
t (s) 1e8

100

101

102

103

104

105

106

107

P
o
si

ti
o
n
 E

rr
o
r

(k
m

)

Figure 78: (N2)Position Error for Packet with only Timing

As seen in Figure 77 and 78, the importance of the data in the packet is clear. With

only a time update, the spacecraft must rely on its internal propagation techniques to

process the measurement. Over time, if not updated, this will cause increasing errors.

Corrections to this include the capability to have improved dynamic models or include the

other vehicle’s state in the main vehicles total estimated state. With the transmission time

and the transmitting spacecraft’s best estimate of its location, the performance is much

improved.

7.6 Packet Measurement Performance

To capture the capability of the packet measurements, it is possible to analyze the navigation

system specifically looking at the onboard state estimation capability in terms of range and

range-rate observations. Utilizing measurements allows for reduction in onboard error effects

220

by decoupling the measurement from other onboard error sources. This allows for analysis

of the capability of these types of measurements and studies focused on the geometry of

the space assets involved. These also allow for comparison to other currently implemented

navigation approaches, such as one-way ranging integrated with Doppler observations, that

allow for onboard measurement of range and range-rate (such as Electra).

For this analysis, it is assumed that the vehicle can measure its range and range-rate

relative to a satellite in Martian orbit (MRO). The reference trajectory used is pulled from

the published MSL data, and serves as the truth for calculation of the state estimation

position and velocity errors. It is assumed that the vehicle has a daily scheduled pass

with the other satellite allowing for a batch of 30 measurements, with a time interval of 10

seconds. For this test case, N3, the range and range-rate error were varied to capture the

overall performance possible using this type of observation.

3.798 3.800 3.802 3.804 3.806 3.808 3.810 3.812
t (secs) 1e8

0

500

1000

1500

2000

2500

N
o
rm

a
liz

e
d
 P

o
si

ti
o
n
 E

rr
o
r

(k
m

)

3.798 3.800 3.802 3.804 3.806 3.808 3.810 3.812
t (secs) 1e8

0.0000

0.0005

0.0010

0.0015

0.0020

V
e
lo

ci
ty

 E
rr

o
r

(k
m

/s
)

Figure 79: Dispersed Simulation Errors

221

10-4 10-3 10-2 10-1 100

Range Error (km)

500

0

500

1000

1500

2000

2500

Fi
n
a
l
P
o
si

ti
o
n
 E

rr
o
r

(k
m

)

10-5 10-4 10-3 10-2 10-1 100

Range Rate Error (km/s)

500

0

500

1000

1500

2000

2500

Fi
n
a
l
P
o
si

ti
o
n
 E

rr
o
r

(k
m

)

Figure 80: Effect of Measurement Errors on Final Position Error

Figure 79 captures the simulated position and velocity errors over the course of each

simulation with the varying range and range-rate measurement uncertainties. This displays

the dynamics of each scenario case, and shows that at this level of initial accuracy and

onboard dynamics, a range of position error is achievable. In order to analyze the effect of

the individual measurement errors, the final position error is plotted against the range and

range-rate error settings. This is shown in Figure 80. These two plots demonstrate that

the final error is not a strong function of the measurement errors. The lack of a clear rela-

tionship is due to the accurate state dynamics models and assumed onboard measurement

uncertainty used in the state estimation filter.

To provide further analysis of this data, the collected data for the simulation runs was

integrated with the final state errors and integrated state errors to generate a series of

surface plots. These are given in Figure 81 and Figure 82 which capture the final position

and velocity errors and the integrated position and velocity errors. The x- and y-axes

of this plot represent the base ten logarithm of the defined range and range-rate errors

terms. The individual circles capture the analysis points. Due to use of the Monte Carlo

Analysis, there may be multiple observations for one combination of range and range-rate

error. A two-dimensional interpolator using a Delaunay triangulation was used to determine

the individual points of the plotted surface. As observed, the data do not show any clear

trends in terms of the combined effects of the two input error terms in terms of either final

222

or integrated error. These plots demonstrate that the main driver to the state estimation

performance is due to the stochastic nature of the simulation. This is a factor of the specific

errors of each measurement, and the onboard estimation process, which is driven by the

defined process noise and dynamics models. As such, it is likely that the filter can be

tweaked in terms of its operational parameters to improve performance.

−6

−4

−2

0

−6

−4

−2

0
0

500

1000

1500

2000

Log
10

(Range Error (km))Log
10

(Range Rate Error (km/s))

F
in

al
 P

os
iti

on
 E

rr
or

 (
km

)

−6

−4

−2

0

−6

−4

−2

0
0

0.5

1

1.5

2

x 10
−3

Log
10

(Range Error (km))Log
10

(Range Rate Error (km/s))

F
in

al
 V

el
oc

ity
 E

rr
or

 (
km

/s
)

Figure 81: Final State Errors vs. Measurement Errors

−6

−4

−2

0

−6

−4

−2

0
0

0.5

1

1.5

2

x 10
9

Log
10

(Range Error (km))Log
10

(Range Rate Error (km/s))

In
te

gr
at

ed
 P

os
iti

on
 E

rr
or

 (
km

 s
)

−6

−4

−2

0

−6

−4

−2

0
0

0.5

1

1.5

2

2.5

3

3.5

x 10
4

Log
10

(Range Error (km))Log
10

(Range Rate Error (km/s))

In
te

gr
at

ed
 V

el
oc

ity
 E

rr
or

 (
km

/s
 s

)

Figure 82: Integrated State Errors vs. Measurement Errors

7.7 Packet Timing Optimization

With an overall view of the navigation system performance, it is important to also optimize

the packet frequency in order to minimize the error states. This test case is identified

as N4. This utilizes the Genetic Algorithm interface to search the design space for an

223

optimal solution. The evaluation consisted of equally minimizing the final state errors

as well as the integrated error terms. To match with the developed concept, the time

between measurement batches was fixed to one day. The time between measurements in a

batch was allowed to vary between one and two minutes, and the number of measurements

had an allowable range between five and one hundred. Additionally, the time to the first

measurement could be between an immediate update and a one day delay.

0 2 4 6 8 10
Generation

10

20

30

40

50

60

70

80

N
u
m

b
e
r

o
f

M
e
a
su

re
m

e
n
ts

 i
n
 a

 B
a
tc

h

0 2 4 6 8 10
Generation

70

80

90

100

110

120

130

T
im

e
 B

e
tw

e
e
n
 M

e
a
su

re
m

e
n
ts

 (
s)

Figure 83: Input Variables over Optimization

0 2 4 6 8 10
Generation

10

15

20

25

30

35

40

Fi
n
a
l
P
o
si

ti
o
n
 E

rr
o
r

(k
m

)

0 2 4 6 8 10
Generation

0.00005

0.00006

0.00007

0.00008

0.00009

0.00010

0.00011

0.00012

Fi
n
a
l
V

e
lo

ci
ty

 E
rr

o
r

(k
m

/s
)

Figure 84: Final Errors over Optimization

224

0 2 4 6 8 10
Generation

1.0

1.5

2.0

2.5

3.0

3.5

In
te

g
ra

te
d
 P

o
si

ti
o
n
 E

rr
o
r

(k
m

 s
)

1e10

0 2 4 6 8 10
Generation

40000

50000

60000

70000

80000

90000

100000

110000

120000

130000

In
te

g
ra

te
d
 V

e
lo

ci
ty

 E
rr

o
r

(k
m

/s
 s

)

Figure 85: Integrated Errors over Optimization

As seen in the summary graphics of Figures 83, 84, and 85, the existence of the packet

helps to maintain a very low error state. It also shows that for this analysis case, the

onboard dynamic models and weekly updates integrated with these packets allow for very

low dynamic noise levels. It is expected that as the change in time between state updates

increases or using less accurate dynamic models with more noise, the packets will have

improved performance.

7.8 Comparison to Current Methods

With the general functionality and performance of the packets captured, these results can

be used to feed into capability analysis. This allows for optimal analysis (in terms of

packet content and frequency) of the state estimation performance of the approach and

comparison of multiple navigation techniques. The following sections specifically address

the current baseline capability, focusing on state updates, an analysis scenario collecting

the performance of only using navigation packets, and an integrated case with the packets

augmenting traditional state measurements. The published MSL trajectory data is used

for the truth trajectory for all analysis cases, and includes allowance for internal state

estimation errors and uncertainty.

This trajectory also serves as the reference for all error calculations. The normalized

errors are captured as the square root of the sum of the individual error in each axis. For

225

these the onboard estimated state is compared to the true trajectory data. The integrated

error terms are simply the integration of the position, velocity, or time errors at each

simulation time. These are calculated numerically to form an integrated error to serve as

an overall performance metric of the entire trajectory.

7.8.1 Baseline Analysis

In order to understand the effect of integrating navigation packets with traditional mea-

surement techniques, it is first necessary to capture the performance of a mission scenario

utilizing these methods. This analysis (N5) focuses on the case of a navigation system

utilizing state updates at a weekly time interval to its onboard state estimation filter. The

generation of these state updates is assumed to be performed by ground-based orbit deter-

mination systems. These process two-way or three-way ranging and Doppler observations

captured over extended navigation passes (on the order of eight hours in length).

Integration of this data with high fidelity dynamics models, error estimation models,

and orbit determination routines allows for accurate prediction of the spacecraft’s position

and velocity. It is assumed that this information is combined with the planned time of

transmission to determine the spacecraft’s state when it receives the state update. Upon

receiving this packet, the onboard state estimation routine processes this as a measurement

of its position and velocity also utilizing the expected uncertainty of the observation.

The bulk error properties in terms of normalized position and velocity error capture

the performance of the ground estimation routines, as opposed to detailed modeling and

simulation of those processes. This allows the analysis presented to focus on the capability

of the onboard filter to autonomously process these state updates. For this simulation,

which focuses on the early section of the MSL transfer trajectory, assumes a ground orbit

determination error of one kilometer in position and one-tenth kilometers per seconds in

velocity. In order to generate these measurements, the true values are obtained from the

published MSL SPICE trajectory. The identified errors terms are applied as the standard

deviation of a random normal distribution to the true state.

In order to capture the stochastic effects of the measurements and errors, a Monte

226

Carlo Analysis was performed on the design space. The central parameter being varied is

the initial state errors, with an assumed mean of one kilometer and one-tenth kilometers

per second. This initial error is applied as the standard deviation of a random normal

distribution to the true state at the simulation start time. The simulation was propagated

forward for twenty days from the start of the transfer trajectory. The analysis scenario

was repeated for 20 iterations, capturing a range of initial conditions and state estimation

errors. The results are given in Figure 86 and Figure 87, capturing the difference between

the onboard estimated position and velocity and that of the truth trajectory reference.

3.798 3.800 3.802 3.804 3.806 3.808 3.810 3.812
t (secs) 1e8

0

20

40

60

80

100

120

N
o
rm

a
liz

e
d
 P

o
si

ti
o
n
 E

rr
o
r

(k
m

)

Figure 86: Position Error with Weekly State Updates

227

3.798 3.800 3.802 3.804 3.806 3.808 3.810 3.812
t (secs) 1e8

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030

V
e
lo

ci
ty

 E
rr

o
r

(k
m

/s
)

Figure 87: Velocity Error with Weekly State Updates

As can be seen in the presented data, the state updates serve to provide a very accu-

rate estimate of the spacecraft position and velocity. This demonstrates the capability of

such accurate measurements that contain information specific to each axis, allowing for six

degrees of freedom. This performance can be observed through analysis of the propagated

error between state updates. As seen, with these state updates, the onboard estimation

routine is able to maintain position errors below eighty kilometers between state updates

and velocity error below a meter per second. This additionally demonstrates the capability

of the onboard propagator to integrate the vehicle’s state.

7.8.2 Packet Autonomous Operation

In contrast to this state-of-the-art analysis case, it is also important to analyze the capability

of just using the navigation packets. For this test case, N6, it assumed that the vehicle

is initialized by means of a high accuracy state update to reduce its initial errors and

uncertainty. This is implemented the same way as the previous analysis, but applied only

once, 1 day into the 20 day simulation window. After this one measurement, the updates

are limited to navigation packet updates.

228

The two navigation sources considered are an Earth-Based asset (assuming no delays due

to atmospheric effects, in order to focus on capturing the effect of the scenario’s geometry

on onboard state estimation) and MRO. For the truth data of each, the published SPICE

ephemeris was used. It was assumed that each has a very accurately maintained clock,

as would be expected for nodes in a high bandwidth relay satellite, and known position.

The navigation packets are defined to include the host’s position and time at transmission.

The time of reception is measured based on the truth position of the assets and calculated

one-way light travel time, calculated via SPICE.

In order to account for timing errors, a stochastic model is utilized for the MSL timing

measurement system. It is assumed that the onboard oscillator has specified h0 and h−2

of 1E-19 and 1E-20 to match the capability of a standard onboard crystal oscillator [13].

Thus, it is possible to capture the stochastic bias and drift of the onboard clock, which

directly drives the uncertainty.

At the time of true reception based on the truth dynamics, the packet is considered

to be received by MSL. Upon reception, the vehicle notes its onboard time as the time

of reception. This time includes the stochastic errors and effect of timing bias and drift.

Upon reception of the first packet, the vehicle is able to process the information as a range

measurement. After receiving an additional packet, it can use the combine the information

about the last two received packets to additionally estimate a range rate. The range is

measured in terms of the time difference between transmission and reception, and modeled

onboard based on the received position data and onboard estimate. The range rate is

measured as the ratio of the time between transmissions to the time between receptions

of sequential packets. This value is modeled in the state estimation procedure using the

current state estimate with the received transmission host state.

Similar to the previous section, the simulation was propagated for twenty days. It

is assumed that the packets from Earth and MRO occur at daily intervals separated by

twelve hours, such that the spacecraft receives measurements from each host once per day.

The two packet exchanges are offset by twelve hours in order to minimize time between

measurements. The results are given in Figure 88 and Figure 89.

229

3.798 3.800 3.802 3.804 3.806 3.808 3.810 3.812
t (secs) 1e8

0

50

100

150

200

250

N
o
rm

a
liz

e
d
 P

o
si

ti
o
n
 E

rr
o
r

(k
m

)

Figure 88: Position Error with Packet Updates

3.798 3.800 3.802 3.804 3.806 3.808 3.810 3.812
t (secs) 1e8

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

V
e
lo

ci
ty

 E
rr

o
r

(k
m

/s
)

Figure 89: Velocity Error with Packet Updates

As presented in the two figures, using navigation packets from only two sources does

not maintain the same performance accuracy as repeated state updates. This is expected

230

due to the reduced dimensionality of range and range-rate observations. Additionally, the

stochastic onboard clock error limits the overall accuracy of the timing measurements. The

packets though do limit the growth of estimation error over time and do serve to maintain the

error within two hundred kilometers after twenty days of propagation and similar order of

velocity error as the state updates presented above. This analysis demonstrates the potential

for linking the state updates with the packet observations and the benefits of integrating the

two systems, utilizing ranging packets to maintain high accuracy state estimates between

state updates.

7.8.3 Packet Augmentation

From the analysis, it is clear that the state update coupled with a strong dynamics model,

provides a very good state estimate over the course of the simulation. The packets do work

to bound the error, but the effect is reduced by the frequency of the state updates. In order

to capture this effect, an additional analysis was performed looking specifically at this.

For this analysis, two cases were analyzed, one without packets, N7, and one with, N8. A

Monte Carlo Analysis was performed on the time between state updates. This approach was

taken in order to capture the stochastic nature of the applied errors. The two scenarios were

each run 100 times for a simulation duration of 60 days, the primary parameter of interest

is the time between state updates, which was varied between 1 and 20 days. Following the

analysis, the data for the final position error and the clock error terms were collected and

analyzed. The resulting scatterplots are given in Figures 90, 91, and 92.

231

0

100

200

300

400

500

600

700

800

900

0 5 10 15 20 25

Fi
n

al
 P

o
si

ti
o

n
 E

rr
o

t
at

 6
0

 d
ay

s
(k

m
)

Time Between State Updates (days)

With Packets

W/O Packets

Figure 90: Position Estimation Performance after 60 days with and without Navigation

Packets

0.00E+00

5.00E+10

1.00E+11

1.50E+11

2.00E+11

2.50E+11

3.00E+11

3.50E+11

4.00E+11

4.50E+11

0 5 10 15 20 25

In
te

gr
at

e
d

 P
o

si
ti

o
n

 E
rr

o
r

(k
m

 s
)

Time Between State Updates (days)

With Navigation Packets

Without Navigation Packets

Figure 91: Integrated Position Error after 60 days with and without Navigation Packets

232

-3.00E-03

-2.00E-03

-1.00E-03

0.00E+00

1.00E-03

2.00E-03

3.00E-03

0 5 10 15 20 25

C
lo

ck
 E

rr
o

r
(s

)

Time Between State Updates (days)

With Packets

No Packets

Figure 92: Clock Estimation Performance after 60 days with and without Navigation Pack-

ets

With these observations, the benefits of the packet based navigation are apparent. For

frequent state updates, the position estimation performance is very similar. As the time

between updates increases, the packets show a slight improvement to the navigation system

performance. Similar results are exhibited in the velocity and integrated errors terms. An

even stronger advantage is shown when analyzing the clock error. As can be seen in the

Figure 92, the packets allow for a fairly standard control of clock independent of the time

between state updates, whereas the state measurements alone do not track the error as well.

This is primarily due to the packet processing algorithms directly including the effect of the

clock bias in its models and allowing for capturing the clock uncertainty.

These test cases demonstrate a reduced reliance on DSN full state updates over the

course of the trajectory. This both reduces the need for these expensive, ground analysis-

intensive updates well also providing onboard autonomous navigation capability. The re-

duction in number of ground navigation updates reduces mission operations costs. The

spacecraft is thus able to update and correct its onboard state estimate as soon as any com-

munication packet with navigation header is received. This both reduces the latency of state

233

updates (as opposed to long ground passes, coupled with ground analysis, verification, and

up-link) and allows the spacecraft to better plan its operations with the increased knowl-

edge. Additionally, this reduced reliance on ground-generated state updates reduces the

risk of ground failures affecting spacecraft mission performance. This is further expanded

through the expansion of the navigation network to an increased number of space-based

assets.

7.9 NNAV Limitations

As shown in the analysis, there are some limitations to the NNAV concept as demon-

strated. Though the architecture does demonstrate a clear benefit in terms of reducing long

term navigation error by augmenting traditional navigation methods, the navigation perfor-

mance is still dependent on the periodic ground-based state updates. This is primarily due

to the limited information inherent in the range and range-rate measurements to only two

hosts. As the network grows, this accuracy will increase, and the reliance on ground orbit

determination-based state update will continue to decrease. This is due to the simplified

onboard dynamic models in addition to the limited Extended Kalman Filter implementa-

tion. As more measurements to a distributed network of spacecraft are observed, increased

information is available, allowing for further improvement in the NNAV-based state update.

As additional stochastic forces are included in the truth trajectory, the capability of the

navigation packet will continue to increase. This is due to their allowing more frequent state

updates, and bounding of the state errors under increasingly uncertain dynamics. More

complex filtering routines, as well as incorporation of onboard batch processing similar to

AutoNav [96], will additionally improve the state estimation performance under increased

uncertainty. The main drawbacks to this improvement is the increasing computational

performance required for their operation.

7.10 Summary of Demonstrated Performance

This chapter has presented a range of analysis scenarios that utilize the SNAPE framework

to analyze adn demonstrate the state estimation capability of the NNAV framework. A

summary of the specific test cases from the NNAV evaluation outlined is given in Table 27.

234

This table references the cases analyzed and provides a summary of the variables of interest,

agents involved, and analysis method (whether statistical design space exploration or opti-

mization). A range of operational scenarios were analyzed to capture system performance,

packet data content sensitivities, and to demonstrate the capability of NNAV.

As can be seen in this chapter, there is a tangible benefit to using packet-based nav-

igation. This benefit is due to the reduced need for Earth-based state updates, and the

increase in onboard autonomy by moving navigation routines to the spacecraft. But with

the current state estimation implementation, it may not be able to independently reduce

the state errors to low levels to match frequent DSN measurements. The architecture shows

increasingly benefit in scenarios where state updates from the ground may be less frequent

or where it is desired to reduce reliance on ground systems. This analysis captures the ini-

tial performance estimate of this method, and with additional development and improved

filtering and data processing techniques, there is the potential for further improvements in

navigation performance.

235

T
a
b

le
2
7
:

N
N

A
V

E
va

lu
at

io
n

C
as

es

Se
cti

on

jFU
8M

ea
sur

em
en

t8

Se
nsi

tiv
ity

jFj
8Pa

cke
t8O

pti
mi

zat
ion

Ca
se

NG
NI

NT
NL

NW
NU

Nj
NB

Mi
ssi

on
qR

efe
ren

ce

Sim
ula

tio
n8D

ura
tio

n

Pri
ma

ry8
Ag

en
t

On
bo

ard
8fil

ter

Ot
he

r8A
ge

nts
MR

OE8
Ea

rth
-D

SN
MR

OE8
Ea

rth
-D

SN
Ea

rth
-D

SN
MR

OE8
Ea

rth
-D

SN
MR

OE8
Ea

rth
-D

SN
MR

OE8
Ea

rth
-D

SN

Na
v8P

ack
et8

So
urc

e
MR

O
Ea

rth
-D

SN
No

ne
Ea

rth
-D

SN
E8M

RO
No

ne
Ea

rth
-D

SN

Na
v8P

ack
et8

Fre
qu

en
cy

Da
ily

Op
tim

iza
tio

n8V
ari

ab
le

Nq
A

Da
ily

Nq
A

Da
ily

An
aly

sis
8Ap

pro
ach

Mo
nte

8Ca
rlo

8-8

Me
asu

rem
en

t8E
rro

r
Ge

ne
tic

8Al
go

rit
hm

Mo
nte

8Ca
rlo

8-8I
nit

ial
8

Err
or

Mo
nte

8Ca
rlo

8-8I
nit

ial
8

Err
or

Pa
cke

t8C
on

ten
t

Tra
nsm

iss
ion

8

Tim
e

Tra
nsF

8Ti
me

8

an
d8L

oc
ati

on
Tra

nsF
8Ti

me
8an

d8L
oc

ati
on

Tra
nsF

8Ti
me

8an
d8L

oc
ati

on
Nq

A

Tra
nsF

8Ti
me

8an
d8

Lo
cat

ion
Nq

A
Tra

nsF
8Ti

me
8an

d8L
oc

ati
on

Me
asu

rem
en

ts
No

ne
We

ek
ly8S

tat
e-8

DS
N

We
ek

ly8S
tat

e-8
DS

N
No

ne
Sta

te8
Up

da
te8

-8D
SN

Sta
te8

Up
da

te8
-8D

SN

MS
L8M

ars
8Cr

uis
e8P

ub
lish

ed
8Tr

aje
cto

ry

We
ek

ly8S
tat

e8-
8DS

N

jFW
8Pa

cke
t8C

on
ten

t8S
tud

y

Mo
nte

8Ca
rlo

8-8T
im

e8B
etw

ee
n8S

tat
e8U

pa
tes

jFB
8Co

mp
ari

son
8to

8Cu
rre

nt8
Me

tho
ds

MS
L

EK
F-B

8St
ate

IV
8da

ys

Ea
rth

-D
SN

Ea
rth

-D
SN

Da
ily

Mo
nte

8Ca
rlo

8-8I
nit

ial
8Er

ror

236

CHAPTER VIII

CONCLUSIONS

This thesis develops the Network-Based Navigation (NNAV) approach to deep space au-

tonomous navigation. In order to characterize this navigation system and provide perfor-

mance estimates of its capabilities, this research developed the Space Navigation Analysis

and Performance Evaluation (SNAPE) framework. The CRAIVE approach utilized in this

research is given in Figure 93. The arrows in this diagram capture the prerequisites of each

individual step. This demonstrates the flow of the research from the initial definition of the

navigation concept through analysis, implementation, and eventually to its evaluation. The

analytical results can then feed back into the overall concept, providing for iteration and

evolution of the navigation architecture. Each of these steps will be summarized below.

«block»
Conceptgofg
Operations

«block»
Requirementsg

Develo p men tgofg
Fram ewo rk

«block»
Analysisgandg
Mo d elin g gofg
Fram ewo rk

«block»
Implementationgofg

Fram ewo rk

«block»
Verificatio n go fg

Fram ewo rk

«block»
Evalu atio n go fg

Concept

Figure 93: CRAIVE Research Approach and Structure

237

8.1 NNAV Concept of Operations

The first step in this research was to develop the operational Concept of the NNAV nav-

igation architecture. This served to capture the high level functions, capabilities, and

interfaces in a way that provides insight into the analysis process. This concept formed

the basis of the implementation and use of simulation tools. NNAV operates independently

of ground analysis by taking advantage of an expanding space communication and navi-

gation infrastructure. This integration is achieved by embedding navigation headers into

the communication packets being sent between assets in the network. The concept of op-

erations is given in Figure 94. This figure depicts a representative implementation of the

proposed NNAV architecture and visualizes the transmission of integrated communication

and navigation measurements.

Figure 94: NNAV Concept of Operations

From this operational concept, a series of hypotheses were developed to characterize

the predicted performance of this navigation architecture. For each of these hypothesis, a

series of research questions were derived to capture the approach and specific goals to be

238

addressed. These requirements and their associated traceability are given in Figures 95 and

96.

HypothesisBreakdown

(from Requirements Model)

«requirement»
H1: NNAV, which utilizes embedded navigation packets to enable state

updates simultaneously with communication, is a viable method of deep
space autonomous navigation.

«requirement»
H2: Augmenting traditional navigation state update

techniques with NNAV will provide improved onboard
state estimation capability for deep space missions,

especially with a limited network implementation.

«requirement»
H3: NNAV will reduce the reliance on ground-based state

updates and limits the growth of navigation errors between
updates.

«requirement»
Navigation Method

Hypothesis

«testCase»
RQ1:How can the NNAV

architecture be analyzed to
capture its navigation

capability?

«testCase»
RQ2: How do the NNAV onboard

algorithms analyze the embedded
navigation packets into a

measurement that can be processed
by onboard state estimation filters?

«testCase»
RQ3:How are NNAV

packets and traditional
measurements

integrated into a
common framework,

both operationally and
algorithmically?

«testCase»
RQ4: What is the senstivity of

onboard state estimation
performance to NNAV navigation

packet information content?

«testCase»
RQ5: What mission analysis

scenario can be used ot
demonstrate reduced reliance on

ground-based updates?

«requirement»
1.1 Initialize Body to

input data

«requirement»
1.2 Compare state

estimate to truth data

«requirement»
1.3 Calculate forces on

body

«requirement»
1.4 Propagate s/c's

onboard state

«requirement»
1.5 Model State
Measuerments

«requirement»
1.6 Model State

Estimation Algorithm

«requirement»
1.7 Calculate State
Estimation Errors

«requirement»
2.1 Perform Deep

Space Link Analysis

«requirement»
2.2 Generate packets

autonomously

«requirement»
2.3 Calculate

Transmssion Delays

«requirement»
2.4 Model autonoous
packet reception and

procssing

«requirement»
2.5 Integrate packet
measurments with

state esitmator

«requirement»
2.6 Model onboard

state propagation of
other spacecraft

«requirement»
3.1 Develop Interface to
external measurement

models

«requirement»
3.2 Model Autonomous

and Scheduled
Measurements

«requirement»
3.3 Process

mesaurements with
state estimator

«requirement»
4.1 Model and vary
packet data conent
and measurements

«requirement»
4.2 Integrate with

Monte Carlo
Analysis Tools

«requirement»
4.3 Perform

optimization on
packet properties

«requirement»
5.1 Support range of
analysis scenarios

«requirement»
5.2 Modular Data

input/output interface

«requirement»
5.3 Robust framework design

«trace»

«trace» «trace»

«trace»

«trace»

«trace»

«trace»

«trace»

«trace»

«trace»

«trace»

«trace»

«trace»

«trace»

«trace»«trace»

«trace» «trace»

«trace»

«trace»

«trace»

«trace»

«trace»

«trace»

«trace»

«trace»

«trace»

Figure 95: NNAV Capability Hypotheses (SysML Requirements Diagram)

239

HypothesisBreakdown

,fromFRequirementsFModel.

«requirement»
Navig atio n FFramewo rkF

Requirements

«requirement»
HQ0FTheFintegrationFofFMBSEFandFABMFanalysisF

ap p ro ach esFin to FaFu n ified Fn avig atio n Fframewo rkFwillF
captureFanalysisFofFmultipleFindependentF
m easu remen tsjFp acketsjFan d Fsp acecraftx

«requirement»
H?0FTh eFn avig atio n Fan alysisFframewo rkFwillFreq u ireF

imp lemen tatio n Fin Fan Fo b ject-o rien ted Fsimu latio n F
en viro n men tjFto Fallo wFfo rFexp an sio n sFan d Fin clu sio n Fo fFaF

ran g eFo fFextern alFmeasu remen tjFstateFestimatio n jFan d F
an alysisFl ib rariesx

«requirement»
H90FNavig atio n Fframewo rkFmo d elin g FwillFen ab leFd efin itio n Fo fFin p u tF
andFoutputFinterfacesjFtoFprovideFaFcommonFdataFdefinitionFforFtheF

im p lemen ted Fsimu latio n Fen viro n men tx

«requirement»
HW0FTh eFexecu tio n Fo fFn avig atio n Fframewo rkF

im p lemen tatio n FwillFcap tu reFth eFp erfo rman ceFo fF
vario u sFmeasu remen tFtyp esjFen ab lin g Fd esig n Fsp aceF

explorationFandFanalysisx

«requirement»
H/0FTheFincorporationFofFABMFtechniquesFinFtheF

s im u latio n Fimp lemen tatio n FwillFen ab leFo p timizatio n Fo fF
stateFestimatio n Fp ro cessesFan d Falg o rith msFth ro u g h F

variatio n Fo fFo n b o ard Fsp acecraftFb eh avio rsx

«testCase»
RQ90FHo wFcan FMBSEFmeth o d sFb eFu sedFtoFcaptureF

m u ltip leFm easu remen tsjFsp acecraftjFan d FstateF
estim ato rsFalg o rith msFfo rFaFn avig atio n Fsystem?

«testCase»
RQWxFHowFdoFtheFMBSEFoutputsFcaptureFtheF
n avig atio n FsystemFarch itectu rejFin fo rmFth eF

simu latio n Fin terfacesjFan d Fh o wFcan Fth eseFb eF
im p lem en ted Fin Fso ftwareFto Fen ab leFaFversatileF

m o d u larFin terface?

«testCase»
RQ1xFWhatFmethodsFcanFbeFusedFtoFcaptureFtheF
in tern alFb eh avio rsFan d Falg o rith msFth atFfo rmFth eF

an alyticalFco reFo fFth eFframewo rkFan d Fh o wFd o F
th eseFb eFin teg rated Fwith Fth eFs imu latio n F

implementation?

«testCase»
RQ/xFHo wFcan Fth eFsp ecific Fco n cep tu alFmo d elsFb eF
in teg rated Fin to FaFco mmo n Fco n cep tu alFframewo rkF

andFusedFtoFdefineFtheFdataFandFinput6ouputF
so ftw areFimp lemen tatio n Fin terfaces? F

«testCase»
RQ87xHo wFisFth eFs imu latio n Fframewo rkF
execu ted Fin Fo rd erFto Fcap tu reFverifiab leF
p erfo rman ceFo fFaFn avig atio n FsystemFo fF

in terestFan d Fp ro vid eFd esig n Fsp aceF
exp lo ratio n Fcap ab ilities?

«testCase»
RQ88xFWhatFdataFanalysisFtechniquesF
an d Fo p timizatio n Fto o lsFcan Fb eFlin kedF

w ith Fth eFframewo rkFto Fallo wFfo rFd esig n F
analysisFandFparameterFoptimization?

«trace»

«trace»

«trace»

«trace»

«trace»

«trace»

Figure 96: SNAPE Framework Hypotheses (SysML Requirements Diagram)

8.2 Requirements Development of NNAV

With NNAV described at a conceptual level, the next step was to analyze the Requirements

of the navigation system architecture. This part of the process captured the organization

and structure of NNAV as a conceptual navigation system. Model-Based Systems Engineer-

ing (MBSE) and Agent-Based Modeling (ABM)-architecture methods drove this part of the

analysis through the development and use of SysML requirements diagrams to capture the

240

high level requirements within the conceptual framework of SNAPE. The continued appli-

cation of model-based design allowed for the capture of the interactions between individual

modules of the navigation system. This step supported identification and documentation

of the navigation method being developed as well as the functionality to be implemented

in order to perform the underlying simulation and performance evaluation.

With the initial requirements captured, the design of NNAV and the SNAPE frame-

work was modeled using SysML tools. This allowed for description and analysis of the

system composition, interactions, functions, sequence of events, and the conceptual frame-

work structure. The implementation of the requirement, use case, state machine, and block

diagrams are shown to successfully describe the navigation system under analysis. The

use of these models provided a way to capture the behavior and structure of the various

measurement methods and estimation algorithms being compared. This implementation

additionally allowed the analysis of any deep space navigation system that can be consid-

ered to generate measurements of a vehicle’s state, focusing on the capturing of high level

requirements and interfaces. The developed models demonstrate how the system can be

captured, which addresses (RQ6) and (RQ7), providing the proof of (H4).

8.3 Analysis and Modeling of SNAPE Framework

With the desired functions developed and analyzed, the next step was the detailed Analysis

and modeling of the SNAPE framework. The work performed in identifying the internal

structure and operation of NNAV through the implemented models provided a baseline

for the framework. The requirements, use cases, and operations of the analysis package

were derived by starting with a generic navigation system. This linked the needs of the

framework directly to the higher-level generic navigation system functions and provided

traceability for the requirements at multiple levels of analysis. From these requirements,

the operations, algorithms and structure were defined through the continued use of standard

SysML modeling techniques. The developed models form the response to (H4) and were

demonstrated through the analysis performed.

In addition to the high level functional requirements, these models were used to capture

241

the algorithms to address (RQ1), (RQ2), and (RQ4). The first step in answering these

questions is contained in the analysis and modeling of SNAPE, capturing both how the

individual functions are performed as well as defining the interfaces between individual

framework elements. Additionally these models served to capture the analytical algorithms

through the description of the functional backend and physics-based models that drove

the simulation and spacecraft operation. The defined interfaces to capture both data and

functionality address (RQ8), demonstrating the hypothesized capability of SNAPE from

(H6). The development of these models led directly into identification of the required

system and object functionality and attributes.

8.4 Implementation of SNAPE Simulation Environment

The developed design and interface models of the SNAPE framework served as conceptual

prototypes for the analytical simulation. This step of the research translated the devel-

oped sequence models and block diagrams into executable software. The models drove the

implementation process, serving as a reference for the functional needs and the simulation

architecture, linking to the high level navigation system requirements. This thesis presented

one particular implementation of the SNAPE framework in order to support verification and

validation. Additionally, this discussion demonstrates how the MBSE and SysML models

feed into simulation and analysis.

The selection of Python as the programming language for implementation addresses

(RQ9) and (H5). SNAPE’s design and implementation demonstrate the capability to

load and use a series of external models into the simulation environment and integrate

them with the defined analysis scenario. Additionally, the implementation of multiple mea-

surement and packet models addresses (H8) and provides for performance evaluation and

comparison of various navigation methods. The actual methods used to address these re-

quired capabilities are defined in the presented analytical models and systems of equations

are described in detail in Chapters 4 and 5.

The development of the SimLink software interface directly allows for integration be-

tween multiple design and analysis tools. This interface transfers data to and from the

242

simulation framework. Through the use of this linkage, tools such as the DEAP evolution-

ary algorithm package and multiprocessing capabilities are integrated. With the built-in

capabilities for design space exploration and visualization, these software modules capture

the execution of the model and its integration with external tools, addressing (RQ11)

which is derived from (H8). The use of these modules additionally captures the design

analysis functionality enabled by the tool, addressing (RQ12), supporting (H9).

(H4). The integration of MBSE and ABM analysis approaches into a unified naviga-

tion framework will capture analysis of multiple independent measurements, packets, and

spacecraft. By following the analysis approach outlined above, the implemented models

in Sections 5.3 and 5.5.1 demonstrate how these are captured in terms of the modeling

framework and input specification. By developing a modular, expandable simulation with

a well-defined interface, the SNAPE framework was developed to allow for a wide range

of analysis scenarios. Chapter 6 captures these, particularly in its comparison of multiple

measurement types from range to position to full state. Additionally, Chapter 7 demon-

strates how the SNAPE implementation can be used to analyze various packet contents

and operating frequencies. In the analysis of NNAV in Section 7.8.3, multiple spacecraft

are included in the simulation. These analysis scenarios were all defined using the graphical

user interface and all operate within the same simulation back-end. This capability for a

wide range of scenarios and navigation sources is enabled by the model-driven simulation

environment.

(H5). The navigation analysis framework will require implementation in an object-

oriented simulation environment, to allow for expansions and inclusion of a range of external

measurement, state estimation, and analysis libraries. This hypotheses further reinforces

the needs for a modular interface and framework in order to develop a widely-applicable

navigation simulation. The use of Model-Based Systems Engineering tools, specifically the

use of SysML Block Definition Diagrams and specific Instance Diagrams, feeds directly into

an object-oriented architecture. The capability to load software from multiple sources for

use within the simulation is best supported through examination of the input deck definition

given in Section 5.5.1. The input specification is built to allow for various library sources,

243

and the SimLink software interface as described in Section 5.5.2 has an embedded capability

to load functions and software objects from multiple source files and analysis libraries. This

is further supported by the implementation of the framework using the Python programming

language. The development of the DEAPLink library, as described in Section 5.5.5, also

demonstrates the capability of the object-oriented framework to perform external analysis,

such as navigation packet optimization, due to its object-oriented nature, allowing for ease

of integration and expansion.

(H6). Navigation framework modeling will enable definition of input and output inter-

faces, to provide a common data definition for the implemented simulation environment. In

addition to the above hypotheses, this also addresses the use of Model-Based Systems Engi-

neering processes to capture the interface between various systems, functions, and objects.

This is particularly important in enabling efficient conversion of the framework from SysML

models to executable simulation. By capturing these interfaces in the models, additional

information is captured about individual object inputs, outputs, and scope. This provides

the prototypes for the software development. Specifically for this analysis, the Internal

Block Diagrams, such as Figure 22 in Section 5.3, captured the inputs of each block and

providing a starting point for the software implementation, which is executed throughout

Chapters 6 and 7. This data definition is extensively used through the interfaces developed

in Sections 5.5.1 and 5.5.2.

(H7). The execution of navigation framework implementation will captures the per-

formance of various measurement types, enabling design space exploration and analysis.

Similar in scope to the above hypotheses, this focuses on the capability of the framework to

model individual measurement and packet scenarios and then be able to perform optimiza-

tion to ascertain the ideal transmission frequencies, data content, or delays. An overview

of potential measurement and packet options is given in Section 4.5 and 4.7. The ability to

provide navigation analysis for a wide range of scenarios and integration with Monte Carlo

as well optimization tools allows for a wide range of functionality and applicability. Multiple

measurement types are traded in Section 6.4, providing a basis for additional work. The

244

analyses demonstrated were performed using Monte Carlo analysis to capture the uncer-

tainty in the design space, which is due to the stochastic nature of the measurement and

state estimation process. The utilization of these external design tools enables a wide range

of analysis capabilities, providing a thorough evaluation of navigation architectures.

(H8). The incorporation of ABM techniques in the simulation implementation will en-

able optimization of state estimation processes and algorithms through variation of onboard

spacecraft behaviors. As Section 3.7.2 and 5.4 described, the framework modeling and im-

plementation takes an ABM approach to the simulation design. This was chosen to address

the needs described in Chapter 3, particularly in the capture of autonomous behavior of

the spacecraft assets. In order to provide a flexible environment that can be expanded

into hardware-in-the-loop simulation as well as distributed computing, the behaviors of the

individual spacecraft must be captured independently.

The main aspects of vehicle operation under consideration include the processing of mea-

surements into the state estimation algorithms. These are enabled and implemented by the

AgentBody class as described in Section 5.4.5. Utilizing this development, it was possible

to optimize both spacecraft behavior and state estimation parameters. The DEAP genetic

algorithm library was implemented to support such analysis, as described in Section 5.5.5.

The modular interfaces were utilized to allow for a straightforward integration of this ex-

ternal tool interface, and enabled robust selection of optimization variables, ranges, and

generation of a the performance evaluation criteria. The use of ABM algorithms enabled

this optimization through its capture of spacecraft behavior and capability.

From this discussion, the SNAPE framework is demonstrated to capture the analysis

requirements of the navigation system. In order to apply the develop simulation envi-

ronment to NNAV, the analysis requirements and needs described in Tables 6 - 10 were

evaluated against the implemented capabilities. The summary of these requirements and

references describing their implementation are reiterated in Table 28. This analysis func-

tionality enabled and drove the navigation performance studies described in Chapters 6

and 7, specifically Section 6.5 and 7.7. Each of the defined software elements addresses the

SNAPE framework functionality requirements as defined in Section 3.2. Each block has a

245

unique purpose in the simulation and either individually, or linked together, address the

high level capabilities required of the analysis.

These functions of the SNAPE implementation address the research questions speci-

fied in Section 3.2. Development of the simulation environment addressed three primary

research questions: (RQ1). How can the NNAV architecture be analyzed to capture its nav-

igation capability?, (RQ2). How do the NNAV onboard algorithms analyze the embedded

navigation packets into a measurement that can be processed by onboard state estimation fil-

ters?, and (RQ3). How are NNAV packets and traditional measurements integrated into a

common framework, both operationally and algorithmically? In order to analyze navigation

performance, the error-based performance metrics are described in Section 3.2, capturing

the accuracy and error of the onboard state estimation algorithms. These measurements

capture the performance due to the measurement accuracy and the state estimation algo-

rithms. The analysis algorithms are described in the SysML models, such as Figure 27,

and the operations of the simulation coordinator, defined in Section 5.4.2. By utilizing

the Monte Carlo interface, with the input mission deck, SNAPE was used to capture the

performance of deep space navigation systems.

8.5 Verification of SNAPE Implementation

In order to provide confidence in the SNAPE implementation and verify module function-

ality, specific analysis cases were executed in order to compare the generated outputs with

other standard tools. To answer (RQ10), several standard analysis packages were selected

to verify SNAPE’s functional performance. Comparison with STK results provided verifi-

cation of the state propagation capability. ODTBX was used to capture state estimation

performance of a sequential estimation algorithm. The documented results of both veri-

fication analyses provide evidence to support the capability and valid implementation of

the analytical backend. These results support (H8) and (H9) by providing verification

capability.

Chapter 6 presented verification and validation of the capability and functionality of the

SNAPE framework. These validation test cases are summarized below in Table 29. The

246

Table 28: Implementation of SNAPE Framework Analysis Requirements
Framework Requirement SNAPE Implementing Element(s)

1.1 Initialize body to input data Simulation Coordinator

1.2 Compare estimated to reference/truth
data

Simulation Coordinator, Data Col-
lector

1.3 Calculate non-inertial forces on body Force Model

1.4 Capture inertial forces on body Force Model

1.5 Integrate body’s onboard state State Propagator

1.6 Modular measurement interface SimLink, Coordinator, Measure-
ments

1.7 Modular state estimation interface SimLink, Coordinator, State Esti-
mator

1.8 Calculate State Errors as a function of
time

Simulation Coordinator, Data Col-
lector

2.1 Perform Deep Space Link Analysis Simulation Coordinator, Comm Sys-
tem, Agent Body, Truth Body

2.2 Autonomous Packet Generation Agent Body, Packets, Coordinator

2.3 Capture Transmission Delays Coordinator

2.4 Autonomous Reception and Processing of
Packet

Agent Body, Coordinator

2.5 Integration of Packet with State Estimator Agent Body, State Estimator

2.6 Onboard estimation of other SC states Agent Body, Estimated Body

3.1 Interface to external measurement models SimLink, Simulation Coordinator,
Agent Body

3.2 Model Autonomous or Scheduled Mea-
surements

Coordinator, Agent Body

3.3 Process measurement into state estimator Agent Body, State Estimator, Simu-
lation Coordinator

4.1 Model and vary packet content and mea-
surements

SimLink, DEAPLink

4.2 Integration with Monte Carlo tools SimLink, DEAPLink, Simulation
Coordinator

4.3 Capability to perform packet optimization DEAPLink

4.4 Modular interface to external design tools DEAPLink, SimLink, Simulation
Coordinator

5.1 Support a range of analysis scenarios All Elements

5.2 Modular input and interface to test cases User Interface, SimLink, Simulation
Coordinator

5.3 Robust framework to variety of studies All Elements

247

verification runs can be found in Table 25 in Chapter 6. Each analysis focused on a particular

aspect of the analysis, and was used to demonstrate SNAPE’s capability and integration

with external design tools. These cases support the framework-specific hypotheses outlined

above to demonstrate the functionality and capability of the implementation.

8.6 Evaluation of NNAV

A primary aspect of NNAV focuses on the algorithms that determine how the received

time-tagged packets and navigation measurements are processed and integrated with the

state estimation filter. This was performed using the modular definitions and interfaces

of the measurement software prototypes. The integration of these measurements with the

developed Extended Kalman Filter, from Section 4.4, is described in Sections 4.7, 5.4.7,

5.4.8, and 5.4.9. The input functions for each measurement are defined to capture the

observed value (based on the truth state and defined sensor errors), the estimated value,

as well as the derivative of the measured value with respect to the vehicle’s state. Using

this definition and these functional interfaces, this data is formatted to allow for integration

into a wide variety of state estimation algorithms.

As mentioned, the capability of NNAV is based on the accuracy and stability of the

onboard clock. It is also driven by the specific message content, as called out in (RQ3).

This research question was addressed in Section 7.5, analyzing various data included within

the navigation header. Specifically, this analysis focused on the inclusion of a transmitter’s

best-known current state at the time of transmission. This data heavily influences the

accuracy of the modeled measurements. By increasing the accuracy of the spacecraft’s

knowledge of the transmitting asset’s state, external errors in the measurement predictions

can be reduced. As shown in the results of this study, the inclusion of accurate data

allowed for greater accuracy state estimation and highlighted the effect of the measurement

prediction models and required data. Additional research captured the effect of packet

update parameters and optimized the measurement timing statistics to determine the best

frequency of updates.

With the SNAPE framework verified and demonstrated, it was shown to meet the

248

T
a
b

le
2
9
:

S
u

m
m

ar
y

of
S
N

A
P

E
V

al
id

at
io

n
C

as
es

Se
ct

io
n

UN
BN

qC
Ef

fe
ct

Co
fCI

ni
tia

lC

Er
ro

r

UN
BN

-C
Ef

fe
ct

Co
fC

M
ea

su
re

m
en

tC

Er
ro

r

UN
BN

BC
Ti

m
in

gC

Se
ns

iti
vit

y

UN
BN

wC
In

te
gr

at
ed

C

Pe
rfo

rm
an

ce

UN
BN

WC
Pa

ra
m

et
er

C

Se
ns

iti
vit

y

Ca
se

Vq
V-

V,
VB

Vw
VU

VW
VG

Vz
Vq

F
Vq

q
Vq

-
Vq

,

M
iss

io
nk

Re
fe

re
nc

e

Sim
ul

at
io

nC
Du

ra
tio

n
wF

Cd
ay

s

Pr
im

ar
yCA

ge
nt

On
bo

ar
dC

fil
te

r

St
at

eC
Pr

op
ag

at
or

Ot
he

rCA
ge

nt
s

Na
vCP

ac
ke

tCS
ou

rc
e

Na
vCP

ac
ke

tCF
re

qu
en

cy

An
aly

sis
CA

pp
ro

ac
h

M
on

te
CC

ar
lo

ChC
Va

ry
C

In
iti

alC
Er

ro
rpC

Ti
m

eC

Be
tw

ee
nC

St
at

eC

Up
da

te
s

M
on

te
CC

ar
lo

ChC

Va
ry

CP
os

iti
on

C

Er
ro

rpC

Fr
eq

ue
nc

y

M
on

te
CC

ar
lo

ChC
Cl

oc
kC

St
ab

ilit
ypC

Ti
m

eC

Be
tw

ee
nC

St
at

eC

Up
da

te
s

M
on

te
CC

ar
lo

ChC

Po
sit

io
nC

M
ea

su
re

m
en

tC

Ac
cu

ra
cy

Can
dC

Fr
eq

ue
nc

y

M
on

te
CC

ar
lo

ChC

Ti
m

eC
be

tw
ee

nC

M
ea

su
re

m
en

ts
pC

an
dC

Ti
m

eC
to

CFi
rs

t

Pa
ck

et
CC

on
te

nt

M
ea

su
re

m
en

ts
St

at
eC

hCD
SN

Po
sit

io
nC

hCD
SN

W
ee

kly
CSt

at
ep

C

Da
ily

CP
os

iti
on

ChC

DS
N

W
ee

kly
CSt

at
ep

C

Da
ily

CP
os

iti
on

pC

W
ee

kly
CT

im
eC

hC

DS
N

W
ee

kly
CSt

at
ep

C

Va
ria

bl
eC

Ti
m

in
gC

hC

DS
N

W
ee

kly
CSt

at
ep

C

W
ee

kly
CT

im
in

gp
C

Va
ria

bl
eC

Po
sit

io
nC

hC

DS
N

W
ee

kly
C

or
CD

ail
yC

Po
sit

io
nC

hC

DS
N

W
ee

kly
C

or
CD

ail
yC

Ra
ng

eC
hC

DS
N

W
ee

kly
C

or
CD

ail
yC

St
at

eC
hC

DS
N

Va
ria

bl
eC

St
at

ep
C

Po
sit

io
np

CT
im

eC
hC

DS
N

W
ee

kly
CT

im
ep

C

W
ee

kly
CSt

at
ep

C

Va
ria

bl
eC

Po
sit

io
nC

hCD
SN

W
ee

kly
CSt

at
ep

C

Va
ria

bl
eC

Po
sit

io
nC

hC

DS
N

Ge
ne

tic
CA

lgo
rit

hm
CO

pt
im

iza
tio

nC
of

C

Po
sit

io
nC

M
ea

sNC
Er

ro
rCa

nd
C

Fr
eq

ue
nc

y

Nk
A

M
SL

CM
ar

sCC
ru

ise
CT

ra
je

ct
or

y

M
on

te
CC

ar
lo

ChC
In

iti
alC

Er
ro

r
M

on
te

CC
ar

lo
ChC

In
iti

alC
Er

ro
r

EK
FCh

CU
CSt

at
e

UN
wC

M
ea

su
re

m
en

tCO
pt

im
iza

tio
n

Do
pr

iCw

Ea
rth

hD
SN

Nk
A

EK
FCh

CG
CSt

at
e

M
SL

-w
Cd

ay
s

-w
Cd

ay
s

UN
BN

UC
M

ea
su

re
m

en
tCC

on
te

nt
UN

BN
,C

Ti
m

in
gCB

eh
av

io
r

249

requirements for the navigation analysis functionality needed. SNAPE was then used to

evaluate NNAV. This allows for addressing (H1)-(H3), relating to the performance of the

navigation architecture. Each of these will be discussed in terms of how they are addressed

as well as their significance. The specific NNAV evaluation uses cases are given in Table 30.

(H1). NNAV, which utilizes embedded navigation packets to enable state updates si-

multaneously with communication, is a viable method of deep space autonomous navigation.

As described in this thesis, the need for a modular, expandable, and robust navigation

analysis tool drove the development the simulation framework and implementation. Chap-

ter 7 captures the analysis scenario and input parameters utilized to analyze this concept.

The feasibility of the approach is demonstrated in Section 31. Through the utilization of a

packet include transmission state and time, the packet-derived measurements of range and

range-rate can be used to navigation and track the state of the vehicle.

(H2). Augmenting traditional navigation state update techniques with NNAV will pro-

vide improved onboard state estimation capability for deep space missions, especially with a

limited network implementation. In addition to providing navigation state updates on their

own, this architecture can also be utilized with current deep space navigation system to

provide for increased accuracy and frequency of state updates. This scenario is captured

by looking at the integration of traditional DSN state updates with daily communications

containing navigation packets. This test case is described and presented in Sections 7.1 and

7.8.3. From the analysis results, the inclusion of a high accuracy ground-based estimate

helps to further reduce the onboard navigation capability, reducing errors and increasing

the capability of the navigation packets to bound state estimation errors.

(H3). NNAV will reduce the reliance on ground-based state updates and limits the growth

of navigation errors between updates. Through the utilization of NNAV, the spacecraft nav-

igation system is able to operate with increased accuracy over times between ground-based

updates. This test case is captured in Section 7.8.3. For this analysis, the time between

ground-based updates was dispersed to capture the relationship between state update la-

tency and state estimation errors. The analysis compared two approaches to navigation,

250

T
a
b

le
3
0
:

S
u

m
m

ar
y

of
N

N
A

V
E

va
lu

at
io

n
C

as
es

Se
cti

on

jFU
8M

ea
sur

em
en

t8

Se
nsi

tiv
ity

jFj
8Pa

cke
t8O

pti
mi

zat
ion

Ca
se

NG
NI

NT
NL

NW
NU

Nj
NB

Mi
ssi

on
qR

efe
ren

ce

Sim
ula

tio
n8D

ura
tio

n

Pri
ma

ry8
Ag

en
t

On
bo

ard
8fil

ter

Ot
he

r8A
ge

nts
MR

OE8
Ea

rth
-D

SN
MR

OE8
Ea

rth
-D

SN
Ea

rth
-D

SN
MR

OE8
Ea

rth
-D

SN
MR

OE8
Ea

rth
-D

SN
MR

OE8
Ea

rth
-D

SN

Na
v8P

ack
et8

So
urc

e
MR

O
Ea

rth
-D

SN
No

ne
Ea

rth
-D

SN
E8M

RO
No

ne
Ea

rth
-D

SN

Na
v8P

ack
et8

Fre
qu

en
cy

Da
ily

Op
tim

iza
tio

n8V
ari

ab
le

Nq
A

Da
ily

Nq
A

Da
ily

An
aly

sis
8Ap

pro
ach

Mo
nte

8Ca
rlo

8-8

Me
asu

rem
en

t8E
rro

r
Ge

ne
tic

8Al
go

rit
hm

Mo
nte

8Ca
rlo

8-8I
nit

ial
8

Err
or

Mo
nte

8Ca
rlo

8-8I
nit

ial
8

Err
or

Pa
cke

t8C
on

ten
t

Tra
nsm

iss
ion

8

Tim
e

Tra
nsF

8Ti
me

8

an
d8L

oc
ati

on
Tra

nsF
8Ti

me
8an

d8L
oc

ati
on

Tra
nsF

8Ti
me

8an
d8L

oc
ati

on
Nq

A

Tra
nsF

8Ti
me

8an
d8

Lo
cat

ion
Nq

A
Tra

nsF
8Ti

me
8an

d8L
oc

ati
on

Me
asu

rem
en

ts
No

ne
We

ek
ly8S

tat
e-8

DS
N

We
ek

ly8S
tat

e-8
DS

N
No

ne
Sta

te8
Up

da
te8

-8D
SN

Sta
te8

Up
da

te8
-8D

SN

MS
L8M

ars
8Cr

uis
e8P

ub
lish

ed
8Tr

aje
cto

ry

We
ek

ly8S
tat

e8-
8DS

N

jFW
8Pa

cke
t8C

on
ten

t8S
tud

y

Mo
nte

8Ca
rlo

8-8T
im

e8B
etw

ee
n8S

tat
e8U

pa
tes

jFB
8Co

mp
ari

son
8to

8Cu
rre

nt8
Me

tho
ds

MS
L

EK
F-B

8St
ate

IV
8da

ys

Ea
rth

-D
SN

Ea
rth

-D
SN

Da
ily

Mo
nte

8Ca
rlo

8-8I
nit

ial
8Er

ror

251

with and without the navigation packets. From the results displayed in Figures 90, 91, and

92, the benefit of utilizing navigation-based packets is clearly demonstrated through the

reduction of navigation error due to inclusion of navigation packets.

For frequent ground-based state updates, the two options produce similar navigation

results. This is due to the limited time of error propagation between state updates between

the high accuracy ground-based measurements. As the time between these measurements

increases, the improved capability of NNAV is increasingly apparent. This provides a direct

demonstration of the reduction in reliance on Earth-based navigation support, though the

architecture does have a large dependence on initial errors, which can be minimized through

ground-based orbit determination over the mission. And while the navigation packets do

provide improved accuracy over long delays between Earth updates, the error will still grow

over time without the updates from Earth for this limited network of simply DSN and MRO.

This is a limitation of the modeled navigation network. As the number of participating

spacecraft increases and the algorithms improve to allow for simultaneous application of

observations from multiple sources the navigation capability of the navigation system will

also improve.

8.7 Hypotheses Overview

The preceding sections summarize how the analysis process was implemented in order to

develop and implement SNAPE and its application to the NNAV architecture, specifically

addressing the high-level hypotheses. Each hypothesis, with references to the sections of

this work that address each is given in Table 31.

The steps of the analysis approach and their relationship to the declared hypotheses

are summarized in Figure 97. This demonstrates the application of the analysis steps and

their status in verifying the high level navigation requirements. The linkages between the

functional analysis steps and the navigation framework demonstrate the capabilities of the

approach and its relationship to the core performance requirements. These allowed for an

analysis and modeling approach with a foundation in the required capture of the navigation

252

Table 31: Addressing of Hypotheses within Research
Hypothesis Focused Sections

1. NNAV, which utilizes embedded navigation packets
to enable state updates simultaneously with communi-
cation, is a viable method of deep space autonomous
navigation.

7.1, 7.6,

2. Augmenting traditional navigation state update
techniques with NNAV will provide improved onboard
state estimation capability for deep space missions, es-
pecially with a limited network implementation.

7.1, 31, 7.8.3

3. NNAV will reduce the reliance on ground-based state
updates and limits the growth of navigation errors be-
tween updates.

7.1, 7.8.3

4. The integration of MBSE and ABM analysis ap-
proaches into a unified navigation framework will cap-
ture analysis of multiple independent measurements,
packets, and spacecraft.

5.3, 5.5.1, 6, 7, 7.8.3

5. The navigation analysis framework will require im-
plementation in an object-oriented simulation environ-
ment, to allow for expansions and inclusion of a range
of external measurement, state estimation, and analy-
sis libraries.

5.5.1, 5.5.2, 5.5.5

6. Navigation framework modeling will enable defini-
tion of input and output interfaces, to provide a com-
mon data definition for the implemented simulation en-
vironment.

5.5.1, 5.5.2, 5.3, 6, 7

7. The execution of navigation framework implemen-
tation will captures the performance of various mea-
surement types, enabling design space exploration and
analysis.

4.5, 4.7, 6.4

8. The incorporation of ABM techniques in the simu-
lation implementation will enable optimization of state
estimation processes and algorithms through variation
of onboard spacecraft behaviors.

3.7.2, 5.4, 5.4.5, 5.5.5

253

system under study (NNAV), by continually linking the developed tools to the identified

needs.

HypothesisBreakdown

.fromARequirementsAModel2

«requirement»
H5IANNAVFAwh ich Au tilizesAemb ed d ed An avig atio n Ap acketsAto Aen ab leA

stateAu p d atesAs imu ltan eo u slyAwith Aco mmu n icatio n FAis AaAv iab leA
methodAofAdeepAspaceAautonomousAnavigationT

«requirement»
HjIAAugmentingAtraditionalAnavigationAstateAupdateAtechniquesAwithA
NNAVAwillAp ro vid eAimp ro ved Ao n b o ard AstateAestimatio n Acap ab ility Afo rA

d eep Asp aceAm issio n sFAesp eciallyAwith AaAlimited An etwo rkA
implementationT

«requirement»
HxIANNAVAwillAred u ceAth eArelian ceAo n Ag ro u n d 4b ased AstateAu p d atesA

an d AlimitsAth eAg ro wth Ao fAn avig atio n Aerro rsAb etween Au p d atesT

«requirement»
Navig atio n AMeth o dA

Hypothesis

«requirement»
Navig atio n AFramewo rkA

Requirements

«requirement»
H6IATheAintegrationAofAMBSEAandAABMAanalysisAapproachesAintoAaA

u n ified An avig atio n Aframewo rkAwillAcap tu reAan alysisAo fAmu ltip leA
in d ep en d en tAmeasu remen tsFAp acketsFAan d Asp acecraftT

«requirement»
H7IATh eAn avig atio n Aan alysisAframewo rkAwillAreq u ireAimp lemen tatio n Ain Aan A

o b ject4o rien ted Asimu latio n Aen viro n men tFAto Aallo wAfo rAexp an sio n sAan d A
in clu sio n Ao fAaAran g eAo fAextern alAmeasu remen tFAstateAestimatio n FAan d A

an alysisAl ib rariesT

«requirement»
H8IANavig atio n Aframewo rkAmo d elin g AwillAen ab leAd efin itio n Ao fAin p u tAan d A

o u tp u tAin terfacesFAto Ap ro vid eAaAco mmo n Ad ataAd efin itio n Afo rAtheA
im p lemen ted Asimu latio n Aen viro n men tT

«requirement»
HCIATh eAexecu tio n Ao fAn avig atio n Aframewo rkAimp lemen tatio n AwillA

cap tu resAth eAp erfo rman ceAo fAvario u sAmeasu remen tAtyp esFAen ab lin g A
d esig n Asp aceAexp lo ratio n Aan d Aan alysisT

«requirement»
HOIATheAincorporationAofAABMAtechniquesAinAtheAsimulationA
im p lem en tatio n AwillAen ab leAo p timizatio n Ao fAstateAestimatio n A

p ro cessesAan d Aalg o rith msAth ro u g h Avariatio n Ao fAo n b o ard Asp acecraftA
b eh avio rsT

«block»
ConceptAofA
Operations

«block»
RequirementsA

Develo p men tAofA
Fram ewo rk

«block»
AnalysisAandA
Mo d elin g AofA
Fram ewo rk

«block»
ImplementationAofA

Fram ewo rk

«block»
Verificatio n Ao fA

Fram ewo rk

«block»
Evalu atio n Ao fA

Concept

«satisfy»

«satisfy»

«satisfy»

«satisfy»

«satisfy»

«satisfy»

«satisfy»

«satisfy»«satisfy»

«satisfy»

«satisfy»

«satisfy»

Figure 97: Linking Analysis Process to NNAV Hypotheses (SysML Requirements Diagram)

254

8.8 Summary of Contributions

The overarching contributions of this dissertation are the development of the SNAPE frame-

work and the NNAV architecture. Each is described in detail below, both to summarize

the contribution and the significance of each. The future application of each will also be

discussed.

8.8.1 The SNAPE Framework

Validation of NNAV is enabled by the SNAPE framework development and simulation im-

plementation. This provides a method for integrating formal modeling techniques with the

implementation of a modular simulation environment to allow for the analysis of a wide

range of space navigation system, both at a conceptual and analytical level. Although the

current development is focused on analysis of a packet-based architecture with a Martian

transfer use-case, SNAPE can be applied to a wide range of scenarios. Due to the mod-

ularity of the simulation architecture and generalized nature of the implemented analysis

functions, developing an alternate test case can be done by loading additional trajectory

data, and building spacecraft agents to reference the additional data. The current mea-

surement models and packet simulation tools were developed to operate independent of the

analysis case, allowing applicability to a range of mission scenarios.

The modeling approach captures the requirements of a generic navigation system through

the integration of Model-Based Systems Engineering and Agent-Based Modeling techniques.

This is achieved through the use of SysML in description, analysis, and implementation

models. This provided a formal framework for the capture of the navigation system re-

quirements, operations, and structure. SNAPE provided a direct linkage of the needs of

spacecraft navigation to the needs of the simulation environment. Figure 98 demonstrates

the connections between the navigation system design and the framework design. This

traceability allowed for efficient capture of the navigation system, aiding in simulation im-

plementation. The use of these tools facilitated efficient software development and provided

forward development of psuedo-code, object definitions, and overall simulation architecture.

255

Navigation.System.Requirements

Ifrom.SpecificationsD

«performanceRequirement»
Estimate.State.Within.Error.Bounds

Ifrom.SpecificationsD

«functionalRequireme...
P ro cess.State.Up d ate.

Measu rem en ts

Ifrom.SpecificationsD

«performanceRequirem...
P ro p ag ate.Estimated .State

Ifrom.SpecificationsD

An alysis.Framewo rk.Sp ecificatio n s

Ifrom.Requirements.ModelD

«functionalRequirement»
Save.SImu latio n .Data.Ou tp ut

Ifrom.Analysis.Framework.
SpecificationsD

«functionalRequireme...
Plo t.Simu latio n .Resu lts

Ifrom.Analysis.Framework.
SpecificationsD

«functionalRequireme...
Mo d el.State.Estimatio n .

Techniques

Ifrom.Analysis.Framework.
SpecificationsD

«functionalRequirement»
Run.User.Dedfined.Scenario

Ifrom.Analysis.Framework.
SpecificationsD

«functionalRequireme...
Capture.Performance.of.

Navig atio n .Packet.Up d ates

Ifrom.Analysis.Framework.
SpecificationsD

«functionalRequirement»
Capture.Performance.of.

Navig atio n .Measu remen ts

Ifrom.Analysis.Framework.
SpecificationsD

«functionalRequirement»
Calcu late.Estimated .State.Erro r

Ifrom.Analysis.Framework.
SpecificationsD

«deriveReqt»

«deriveReqt»

«deriveReqt»

«deriveReqt»

«deriveReqt»

«deriveReqt»

«deriveReqt»

«deriveReqt»

«deriveReqt»

«deriveReqt»

Figure 98: Navigation System Linkage to Framework Requirements (SysML Requirements

Diagram)

This approach is in stark contrast to traditional navigation design and analysis, in which

the focus is purely on the underlying physics and capturing the capability of a specific state

estimation algorithm, measurement technique, and trajectory. Typical analyses focus on the

problem at hand and take advantage of organization or mission internal tools. This limits

collaboration and the development of a standard deep space navigation toolset to be used in

mission navigation design. By following a formal approach to deep space navigation design,

this thesis demonstrates a widely applicable navigation framework by means of a library

256

of standard models that capture both the navigation architecture and simulation design.

These models help to share assumptions and the underlying design of the navigation system.

Their use allows for increased sharing of knowledge, collaboration, and understanding of

the analysis. Using SNAPE, it is simple to load a new trajectory or mission and compare

and contrast the performance of multiple navigation systems. By providing libraries of deep

space navigation filters and measurements models, it is possible to perform requirements

analysis studies to capture the navigation needs of a particular mission. The results can be

used to drive vehicle and mission design early in conceptual analysis.

An example test case of this is described in the development of a deep space mission to

Jupiter. By performing trajectory design and optimization, a design ephemeris can input

to the SNAPE implementation. Various navigation architectures can then be analyzed by

selecting vehicle navigation capability and measurement sources. The user may then begin

to identify the capabilities of a navigation filter and its estimation performance in terms of

capturing the true dynamic state of the vehicle (inertial position and velocity for example)

to a range of inputs. Additional studies may then be performed to trade navigation mea-

surements during specific legs of the mission comparing state versus range and range-rate

observations for example. Furthermore, it is possible to include optical navigation models

and be able to capture the state estimation capability over the trajectory. These studies

may also push the spacecraft towards having increased computational capability to handle

advanced filtering techniques. This allows for modeling and analysis of the navigation per-

formance over the course of the entire mission and provides insight into the various options

available. This feeds directly into the mission architecture and development, allowing for

detailed trades of navigation capability early in the design process.

8.8.2 Network-Based Navigation (NNAV)

From inspirations in radiometric ranging and range-rate measurements, combined with the

continued growth and development of deep space communication networks, NNAV provides

an integrated approach to deep space navigation. The integration of navigation packets

within the communication protocol provides a new way to enable deep space navigation.

257

This allows for autonomous navigation onboard the spacecraft, in that it does not require

ground assets to provide a computed navigation state. Incorporating these packets into the

space communication architecture allows for increasing performance due to the additional

navigation hosts. This development also allows for increased navigation accuracy out into

the solar system to counteract the decreased accuracy of Earth-based measurements at large

distances from Earth.

This thesis demonstrates the capability of NNAV, specifically analyzing the capability

of using the navigation packets to augment traditional spacecraft state updates. This test

case also captures the implementation path of these protocols. Initial missions would use

these in addition to current Earth-based orbit determination methods. As the algorithms

are proven and advanced, the navigation performance will be demonstrated by reducing

updates from Earth-based assets and analyzing the spacecraft’s navigation errors. It can

also be used as a proof of concept of the capability to implement these protocols by means of

a software update. This analysis case therefore directly maps to an initial implementation

and flight testing of NNAV.

The analysis results demonstrate the feasibility of the packet-based navigation architec-

ture and provide a basis for continued studies of design sensitivities to both advanced state

estimation techniques and additional stochastic dynamic modeling effects. The performance

of this navigation architecture improves with increases in the number and distribution of

assets and spacecraft in the network. As the in-space communication infrastructure con-

tinues to grow with the development of multi-purpose relay satellites, such as MRO, the

frequency of inter-spacecraft communication also increases. This growing network allows

for more frequent, broader navigation measurements, improving performance, capability,

and range.

Though the initial evaluation is limited to small number of assets, the research can be

expanded to include a growing number of assets and spacecraft. As the number of elements

participating in the network increases, individuals will have more both more opportunities

for state measurement and increased accuracy due to the dispersion and number of external

navigation packet sources. Additionally, NNAV is robust to hardware implementation,

258

independent of transmission medium. As long as the communication architecture allows for

measurements of time of flight and the embedding of navigation packets within the digital

data, NNAV can continue to be used. This provides a robust and expandable navigation

architecture to both support and eventually supplant traditional navigation sources.

8.9 Future Work

This research has developed SNAPE for the design and analysis of deep space navigation

systems. It provides implementations of the functionality required to propagate trajecto-

ries, calculate state measurements, and model the transmission of packets between assets.

Additionally, the framework has been implemented with modular well-defined interfaces to

allow for the integration of additional force models, telemetry data, measurement models

for specific sensors, and most importantly navigation estimation algorithms. The imple-

mentation of these interfaces allows for the integration and analysis for a wide range of

analysis case.

By implementing additional physics-based observation and measurement models, such

as optical or X-Ray navigation, this framework can increase in capability and be used to op-

timize measurement types for a given mission. Improvements in the dynamics models, such

as implementing higher order gravity models and relativistic effects, will further improve

the capability to utilize this framework on trajectories under design. With the inclusion of

these models, additional optimization methods may be integrated to allow for integrated

mission analysis and design of the navigation algorithms.

To provide additional capability of the navigation system under a stochastic measure-

ment environment, improvements can additionally be made to the analysis process to cap-

ture the variability of the performance, using one of two main methods. One approach is to

adapt the LINCOV[49] analysis approach to this communication-centric navigation design,

and compare its estimates to simulation results. Another method of analysis is to integrate

Markov Chain Monte Carlo techniques into the framework. This allows for capture of the

estimated performance at each step of the simulation.

259

With the demonstrated capability of NNAV for state estimation augmentation, the re-

search effort shifts to focus on the actual implementation of the method. This involves

developing interfaces to the actual communication modules, to directly capture and model

delays between packet arrival and time detection. This will allow for increased fidelity

analysis of the navigation capability. With this added capability, the analysis can begin to

move towards a hardware-in-the-loop simulation technique with the replacement of internal

software agents with external hardware agents. This allows for direct analogy to an actual

space implementation and allows for continued development of integration algorithms and

communications modeling. Improved modeling begins to integrate functionality of the ac-

tual protocols, whether CCSDS or LTP, similar to that of the space protocol emulators.

Additionally, these experiments can begin to use space-like oscillators and timing sources

to continue to increase the fidelity of the communications and clock modeling.

With the continued increases of the simulation environment’s fidelity and functionality,

similar improvements are required in the onboard spacecraft’s estimated dynamics. This in-

cludes higher fidelity dynamic and gravity models, such as general relativistic corrections[78]

and improved state propagation techniques such as the Runge-Kutta-Fehlberg method[36].

Additional improvements in the onboard state estimation filter can be achieved by imple-

menting advanced Particle Filtering [23] or information filters[50] [108].

An additional factor not considered by SNAPE is consideration of the costs involved,

both in terms of technology development and implementation. It is envisioned that NNAV

involves minimal cost in comparison to the other identified methods, due to its basis as a

software component of the communication. The primary costs involved are in development

of flight algorithms, the software update procedure, and certification of the library for use

on orbit. Additional work must be done as to the onboard processing capability required

for these state estimation algorithms to ensure their potential implementation on legacy

spacecraft. Further research into cost estimation techniques and their specific application

to navigation systems development supports complete analysis and trade-offs between cost

and performance. Integration of these elements allows the systems architect to trade per-

formance, development, and implementation costs in one unified framework. This enables

260

identification and estimation of these costs at an early stage of the lifecycle, providing addi-

tional insight into the navigation system of interest. Capturing the total investment required

in order to develop and implement a navigation solution is very important to minimize costs

and is an increasingly important parameter in mission selection and implementation.

These represent many potential paths forward for the development of NNAV and SNAPE,

and demonstrate that work across a variety of disciplines could be incorporated to improve

their capability and functionality. The improvements in both hardware and software sim-

ulation and analysis can be directly applied to continue development. NNAV can also be

applied to a variety of mission scenarios, with the nearest term application to Lunar and

Martian missions. These scenarios provide an early showcase for demonstration missions

due to existing communication infrastructure (Mars) and close locale (Moon). Its imple-

mentation across multiple spacecraft can provide an augmentation capability to traditional

navigation methods. This can additionally be important for missions requiring low latency

state updates for approaches to asteroids, or planetary entry, providing for a one-way similar

ranging capability through the use of advanced onboard navigation filters.

The SNAPE framework implementation serves as an initial validation of the concept.

As advanced modeling and simulation functionality is implemented, improving the fidelity

of the analysis, NNAV can continually be analyzed to capture its performance and sensitiv-

ity to those improved aspects. These advanced dynamic models can also be used to drive

hardware-in-the-loop simulations that begin by implementing hardware to capture specific

instruments, such as space qualified timing sources and oscillators, to further improve the

fidelity of the measurement system. With the shift to hardware-based testing, it is also

possible to take advantage of space protocol emulators and communication processing soft-

ware to begin to develop the actual implementation of the navigation packet into current

standard CCSDS protocols. Upon verification of this method at a hardware level, it will

be ready for flight testing. Dual avenues exist for demonstration of this concept. The first

is to use current space-based software defined radios such as the SCAN payload on the

International Space Station 1 to act as the autonomous vehicle, and compare the onboard

1http://spaceflightsystems.grc.nasa.gov/SOPO/SCO/SCaNTestbed/

261

estimated state to that calculated by GPS or other methods. This will additionally re-

quire a ground station to act as the navigation host, as well as the inclusion of accurate

atmospheric models to capture ground-centric transmission delays. Alternate implementa-

tion routes involve integration with an alternate mission as a science payload. This will

provide a better estimate of true flight performance due to the deep space trajectory, and

allow direct comparison to current methods. With the correct software links, this NNAV

hardware implementation can demonstrate the capability for navigation augmentation and

reduce spacecraft ground operations support costs by augmenting and reducing the need

for frequent ground-based orbit determination analysis.

8.10 Closing Comments

In conclusion, this dissertation presents the SNAPE framework for the analysis of deep

space navigation architectures. Through the combination of MBSE and ABM principles,

the SNAPE framework was designed, modeled, and implemented. This was developed to

enable analysis of a range of deep space navigation mission scenarios, measurements sources,

and state estimation algorithms. An example optimization toolset was also integrated into

the framework to supplement built-in Monte Carlo analysis capability to allow for a range

of design exploration and trade studies. The interfaces to these tools were integrated into

a graphical front-end whose design followed the steps of the analysis method to allow for

scenario definition, data collection, simulation control, and data processing. The SNAPE

implementation in Python was verified against standard tools and validated using generic

measurement models to capture the performance of the implemented estimator to variable

state observations and uncertainty.

This dissertation also develops and presents the Network-Based Navigation (NNAV)

concept. NNAV is evaluated against current navigation methods through the SNAPE frame-

work. The development demonstrated the capability of SNAPE to feed requirements from

coneptual navigation system design and structure to implementation. Additionally, the

evaluation of NNAV using SNAPE demonstrates its functional and analytical capability.

Through this framework, the NNAV packet structure and operations were optimized and

262

compared to traditional state measurements to show the performance gains in state esti-

mation achieved. This was shown in the ability to maintain state estimation accuracy with

a reduction in ground navigation support for a limited network. This analysis provides a

strong foundation for further navigation studies and detailed hardware-in-the-loop simula-

tion. With its modular design, the SNAPE framework is capable of analyzing a wide range

of NNAV mission scenarios, which will continue to demonstrate NNAV’s increasing capa-

bility and performance across an expanding interplanetary communication infrastructure.

263

REFERENCES

[1] “Umbra modeling and simulation framework.” http://umbra.sandia.gov/pdfs/umbra.pdf.

[2] Acton, C., “Ancillary data services of nasa’s navigation and ancillary information
facility,” Planetary and Space Science, vol. 44, no. 1, pp. 65–70, 1996.

[3] Allan, D., “Time and frequency (time-domain) characterization, estimation, and
prediction of precision clocks and oscillators,” Ultrasonics, Ferroelectrics and Fre-
quency Control, IEEE Transactions on, vol. 34, pp. 647 –654, Nov. 1987.

[4] Bajaj, M., Scott, A., Deming, D., Wickstrom, G., DeSpain, M., Zwemer,
D., and Peak, R., “Maestro a model-based systems engineering environment for
complex electronic systems.,” in 22nd Annual INCOSE International Symposium,
(Rome, Italy), INCOSE, July 2012.

[5] Bajaj, M., Zwemer, D., Peak, R., Phung, A., Scott, A., and Miyako, W.,
“Satellites to supply chains, energy to finance slim for model-based systems engineer-
ing, part 1: Motivation and concept of slim.,” in 21st Annual INCOSE International
Symposium, (Denver, CO), INCOSE, June 2011.

[6] Bajaj, M., Zwemer, D., Peak, R., Phung, A., Scott, A., and Miyako, W.,
“Satellites to supply chains, energy to finance slim for model-based systems engineer-
ing, part 2: Applications of slim.,” in 21st Annual INCOSE International Symposium,
(Denver, CO), INCOSE, June 2011.

[7] Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics.
Dover Publications, 1971.

[8] Bechtold, K. E., Bucior, S. E., Sepan, R. L., and Matsumoto, S., “Operations
challenges for missions with significant round-trip light times,” in SpaceOps 2010
Conference, (Huntsville, AL), April 2010.

[9] Bhasin, K. B., Barritt, B., Matthews, S., and Eddy, W., “Integrated approach
to architecting, modeling, and simulation of complex space communication networks,”
in SpaceOps 2010 Conference, (Huntsville, Al), April 2010.

[10] Bhaskaran, S., Riedel, J., Kennedy, B., and Wang, T., “Navigation of the deep
space 1 spacecraft at borrelly,” in AIAA AAS Astrodynamics Specialist Conference
and Exhibit, (Monterey, CA), AAS/AIAA, August 2002.

[11] Bhaskaran, S., Riedel, J., Synnott, S., and Wang, T., “The deep space 1
autonomous navigation system: A post-flight analysis,” in Astrodynamics Specialist
Conference, AIAA. AIAA-2000-3935.

[12] Biswas, A. and Piazzolla, S., “Ipn progress report 42-154: Deep-space optical com-
munications downlink budget from mars: System parameters,” tech. rep., NASA/Jet
Propulsion Laboratory, August 2003.

264

[13] Brown, R. and P.Y.C., H., Introduction to Random Signals and Applied Kalman
Filtering. New York: Wiley, 2nd ed., 1992.

[14] Burleigh, S., Cerf, V., Durst, R., Fall, K., Hooke, A., Scott, K., and
Weiss, H., “The interplanetary internet: A communications infrastructure for mars
exploration,” in 53rd International Astronautical Congress, (Houston, TX), Interna-
tional Astronautical Federation, October 2002.

[15] Burleigh, S., Cerf, V., Durst, R., Fall, K., Hooke, A., Scott,
K., Torgerson, L., and Weiss, H., “Interplanetary internet.” presentation,
www.ipnsig.org/reports/IPN-04Mar03-IPNSIG.pdf, March 2003.

[16] C., D., E., F., Lam, D., and Lee, C., “Model based document and report generation
for systems engineering,” in 2013 IEEE Aerospace Conference, March 2013.

[17] Carpenter, R. and Lee, T., “A stable clock error model using coupled first and
second order gauss-markov processes,” in 2008 AAS/AIAA Space Flight Mechanics
Meeting, 2008.

[18] Cerf, V., Burleigh, S., Hooke, A., Torgerson, L., Durst, R., Scott, K.,
Fall, K., and Weiss, H., “Delay-tolerant network architecture: The evolving in-
terplanetary internet,” tech. rep., Interplanetary Network Research Group, Internet
Research Task Force, August 2002.

[19] Chory, M. A., Hoffman, D. P., Major, C. S., and Spector, V. A., “Au-
tonomous navigation-where we are in 1984,” AIAA, 1984.

[20] Christian, J. A. and Lightsey, E. G., “Review of options for autonomous cislunar
navigation,” Journal of Spacecraft and Rockets, vol. 46, September-October 2009.

[21] Collier, N., “Repast: An extensible framework for agent simulation,” The Univer-
sity of Chicagos Social Science Research, vol. 36, 2003.

[22] Corporation, T., “Flames framework architecture.”
http://www.ternion.com/framework-architecture/, 2013.

[23] Crassidis, J. and Junkins, J., Optimal Estimation of Dynamic Systems. Chapman
& Hall/Crc Applied Mathematics and Nonlinear Science Series, Taylor & Francis
Group, 2011.

[24] Curkendall, D. W., “Navigation system design for the mariner jupiter/saturn
mission,” in AIAA Guidance and Control Conference, (Key Biscayne, FL), AIAA,
August 1973.

[25] DeBolt, R., Duven, D., and Haskins, C., “A regenerative psuedonoise range
tracking system for the new horizons spacecraft,” in Institute of Navigation 61st An-
nual Conference, (Cambridge, MA), pp. 487–497, June 2005.

[26] DeKoning, H. P., “Incose model based systems engineering grand challenge. pro-
posed contribution of the space systems working group,” May 2007.

[27] Dieter, G., Engineering Design: A Materials and Processing Approach. McGraw-
Hill Series in Mechanical Engineering, McGraw-Hill, 2000.

265

[28] Dunham, J., Long, A., and Sielski, H., “Onboard orbit estimation with tracking
and data relay satellite system data,” Journal of Guidance, vol. 6, pp. 292–301, July-
August 1983.

[29] Dunham, J. and Teles, J., “One-way return-link doppler navigation with the track-
ing and data relay satellite system (tdrss): The ultra-stable oscillato (uso) experiment
on the cosmic background explorer,” AIAA, 1990.

[30] Emadzadeh, A. A. and Speyer, J., Navigation in Space by X-ray Pulsars. Springer,
2011.

[31] Endres, S., Griffith, M., and Behnam, M., “Space based internet network emu-
lation for deep space mission applications,” AIAA, 20XX.

[32] Estefan, J., “Survey of model-based systems engineering methodologies.” INCOSE
MBSE Focus Group Document, May 2007.

[33] Estefan, J. A., Pollmeier, V. M., and Thurman, S. W., “Precision x-band
doppler and ranging navigation for current and future mars exploration missions,”
Advances in the Astronautical Sciences, 1993.

[34] Fang, B., “Satellite-to-satellite tracking orbit determination,” in AIAA, Aerospace
Sciences Meeting, vol. 1, 1978.

[35] Farrel, S. and Cahill, V., Delay- and Disruption-Tolerant Networking. Artech
House, 2006.

[36] Fehlberg, E., “Classical fifth-, sixth-, seventh-, and eighth-order runge-kutta for-
mulas with stepsize control,” tech. rep., NASA TR-287, 1968.

[37] Fisher, J., “Model-based systems engineering: A new paradigm,” INCOSE Insight,
vol. 1, no. 3, 1998.

[38] Flanders, J. H., Fraser, D. C., and Lawson, J. R., “Technology for guidance
and navigation of unmanned deep space missions in the 1970’s,” in AIAA Annual
Meeting and Technical Display, (Philadelphia, PA), AIAA, October 1968.

[39] Folkner, W. M., Williams, J. G., and Boggs, D. H., “The planetary and lunar
ephemeris de 421,” tech. rep., Jet Propulsion Laboratory, 2008. JPL Memorandum
IOM 343R-08-003 31.

[40] for Space Data Systems, C. C., “Ccsds report concerning the proximity-1 space
link protocol,” August 2007.

[41] for Space Data Systems, C. C., “Ccsds report: Overview of space communication
protocols,” December 2007.

[42] for Space Data Systems, C. C., “Ccsds recommendation for space packet proto-
col,” September 2012.

[43] Fortin, F.-A., Rainville, F.-M. D., Gardner, M.-A., Parizeau, M., and
Gagné, C., “DEAP: Evolutionary algorithms made easy,” Journal of Machine Learn-
ing Research, vol. 13, pp. 2171–2175, jul 2012.

266

[44] Franklin, S. F., John P. Slonski, J., Kerridge, S., Noreen, G., Riedel,
J. E., Komarek, T., Stosic, D., Racho, C., Edwards, B., and Boroson, D.,
“The 2009 mars telecom orbiter mission,” IEEE AC, October 2004.

[45] Frauenholz, R. B., Bhat, R. S., Chesley, S. R., Mastrodemos, N., Jr., W.
M. O., and Ryne, M. S., “Deep impact navigation system performance,” Journal of
Spacecraft and Rockets, vol. 45, January-February 2008.

[46] Friedenthal, S., Moore, A., and Steiner, R., A Practical Guide to SysML: The
Systems Modeling Language. The MK/OMG Press, Elsevier Science, 2011.

[47] Garcia, H. A. and Owen, W. J., “Design and analysis of a space sextant for high
altitude navigation,” Journal of Spacecraft, vol. 13, December 1976.

[48] Gelb, A., Applied Optimal Estimation. Mit Press, 1974.

[49] Geller, D. K., “Linear covariance techniques for orbital rendezvous analysis and au-
tonomous onboard mission planning,” Journal of Guidance, Control, and Dynamics,
vol. 29, no. 6, pp. 1404–1414, 2006.

[50] Gibbs, B., Advanced Kalman Filtering, Least-Squares and Modeling: A Practical
Handbook. Wiley, 2011.

[51] Gifford, K. K., Jenkins, A., and Kuzminksy, S., “Dtn experiments and activities
onboard the international space station.” CCSDS Spring Meetings presentation, May
2010.

[52] Gramling, C., Hornstein, R., Long, A., and Samii, M., “Tdrss onboard navi-
gation systems(tons) experiment for the explorer platform(ep),” AIAA, 1990.

[53] Grammier, R. S., “A look inside the juno mission to jupiter,” IEEE, 2009.

[54] Graven, P., Collins, J., Sheikh, S., Hanson, J., Ray, P., and Wood, K., “Xnav
for deep space navigation,” in 31st Annual AAS Guidance and Control Conference,
American Astronautical Society, February 2008.

[55] Groves, P. D., Principles of GNSS, Inertial, and Multisensor Integrated Navigation
Systems. Artech House, 2008.

[56] Hairer, E., Norsett, S., and Wanner, G., Solving Ordinary Differential Equa-
tions i. Nonstiff Problems. Springer Series in Computational Mathematics, Springer-
Verlag, 2nd ed., 1993.

[57] Hanson, J. E., Principles of X-ray Navigation. PhD thesis, Stanford University,
March 1996.

[58] Hemmati, H., ed., Deep Space Optical Communications (JPL Deep-Space Commu-
nications and Navigation Series. Wiley-Interscience, 2006.

[59] Hirt, C., Claessens, S., Kuhn, M., and Featherstone,
W., “Kilometer-resolution gravity field of mars:mgm2011.”
http://geodesy.curtin.edu.au/research/models/mgm2011/, 2011.

267

[60] Hoffman-Wellenhof, B., Legat, K., Wieser, M., and Lichtenegger, H.,
Navigation: Principles of Positioning and Guidance. Springer, October 2003.

[61] Hunter, J. D., “Matplotlib: A 2d graphics environment,” Computing In Science &
Engineering, vol. 9, no. 3, pp. 90–95, 2007.

[62] Im, E., Thomson, M., Pearson, J. C., and Lin, J., “Prospects of large deployable
reflector antennas for a new generation of geostationary doppler weather radio satel-
lites,” in AIAA Space 2007 Conference and Exposition, (Long Beach, CA), AIAA,
September 2007.

[63] INCOSE, “Systems engineering vision 2020,” tech. rep., INCOSE, September 2007.
TP-2004-004-02.

[64] Ivancic, W., “Experience with delay-tolerant networking from orbit,” in Advanced
Satellite Mobile Systems Conference, 2008.

[65] Jones, D., “Spacecraft navigation with large arrays of small antennas,” in American
Astronomical Society Meeting Abstracts #208, vol. 38 of Bulletin of the American
Astronomical Society, p. 137, June 2006.

[66] Jones, E., Oliphant, T., Peterson, P., and others, “Scipy: Open source scien-
tific tools for python.”

[67] Jones, R. M., “Deep space networking experiments on the epoxi spacecraft,” in
Infotech@Aerospace 2011, March 2011.

[68] Kapurch, S., ed., NASA Systems Engineering Handbook. National Aeronautics and
Space Administration, 2007.

[69] Karban, R., Zamparelli, M., Bauvir, B., Koehler, B., Noethe, L., and
Balestra, A., “Exploring model based engineering for large telescopes- getting
started with descriptive models,” 2008.

[70] Kordon, M. and Wall, S., “Model-based engineering design pilots at jpl,” in 2007
IEEE Aerospace Conference, March 2007.

[71] Kordon, M. and Wood, E., “Multi-mission space vehicle subsystem analysis tools,”
in IEEE Aerospace Conference Proceedings, March 2003.

[72] Kremer, A. S., “Linear covariance analysis trade study of autonomous navigation
schemes for cislunar missions,” Master’s thesis, Massachusetts Institute of Technology,
June 2007.

[73] Larson, W. J. and Wertz, J. R., eds., Space Mission Analysis and Design. Mi-
crocosm, 3 ed., October 1999.

[74] Lightsey, E. G., Mogensen, A. E., Burkhart, P. D., Ely, T. A., and Duncan,
C., “Real-time navigation for mars missions using the mars network,” Journal of
Spacecraft and Rockets, vol. 45, May-June 2008.

268

[75] Makovsky, A., Ilott, P., and Taylor, J., Mars Science Laboratory Telecommuni-
cations System Design. Deep Space Communications and Navigation Systems Center
of Excellence Design and Performance Summary Series, Jet Propulsion Laboratory,
California Institute of Technology, November 2009.

[76] McCarthy, T., Campbell, T., and Moseley, P., “A generic common simulation
framework based starting point for missile 6dof simulations,” in Proc. AIAA Modeling
and Simulation Technologies Conference and Exhibit, 2005.

[77] Miller, J., Stanbridge, D., and Williams, B., “New horizons pluto approach
navigation,” Advances in the Astronautical Sciences, vol. 119, no. 1, 2004.

[78] Moyer, T. E., Formulation for Observed and Computed Values of Deep Space Net-
work Data Types for Navigation. Jet Propulsion Laboratory, California Institute of
Technology, October 2000.

[79] NAIF, N. J., “Time routines in cspice.” User’s Guide,
http://naif.jpl.nasa.gov/pub/naif/toolkit docs/C/req/time.html, April 2009.

[80] Nelson, R. A., Key Issues for Navigation and Time Dissemination in NASA’s Space
Exploration Program. NASA, 2006.

[81] Nichols, K., Holbrook, M., Pitts, R. L., Gifford, K. K., Jenkins, A., and
Kuzminsky, S., “Dtn implementation and utilization options on the international
space station,” in SpaceOps 2010 Conference, April 2010.

[82] North, M. J. and Macal, C. M., Managing Business Complexity : Discovering
Strategic Solutions with Agent-Based Modeling and Simulation: Discovering Strategic
Solutions with Agent-Based Modeling and Simulation. Oxford University Press, USA,
2007.

[83] O’Connor, C., Mehiel, E., and Butler, B., “Horizon 2.1: A space system sim-
ulation framework,” in AIAA Modeling and Simulation Technologies Conference and
Exhibit, 2008.

[84] Oliphant, T. E., “Guide to numpy.” http://www.tramy.us/numpybook.pdf, Dec.
2006.

[85] OMG, “Omg mof 2 xmi mapping specification,” Tech. Rep. formal/2011-08-09, Ob-
ject Management Group, August 2011. http://www.omg.org/spec/XMI/Current/.

[86] OMG, “Omg systems modeling language version 1.3,” Tech. Rep. formal/2012-06-01,
Object Management Group, June 2012. http://www.omg.org/spec/SysML/Current/.

[87] Parkinson, B. and Spiker, J., The Global Positioning System: Theory and Appli-
cation. No. v. 1 in Progress in Astronautics and Aeronautics Series, Amer Inst of
Aeronautics &, 1996.

[88] Parsons, D., Rashid, A., Speck, A., and Telea, A., “A framework for object ori-
ented frameworks design,” in Technology of Object-Oriented Languages and Systems,
1999. Proceedings of, pp. 141–151, 1999.

269

[89] Pavlis, N., Holmes, S., Kenyon, S., and Factor, J., “An earth gravitational
model to degree 2160: Egm2008,” in 2008 General Assembly of the European Geo-
sciences Union, (Vienna, Austria), April 2008.

[90] Pearce, P. and Hause, M., “Iso-15288, oosem and model-based submarine design,”
in Proceedings from the SESA, ITEA and INCOSE Region VI Systems Engineering
Test and Evaluation Conference, in conjunction with the 6th Asia Pacific Conference
on Systems Engineering, May 2012.

[91] Pirondini, F. and Fernandez, A. J., “A new approach to the design of navigation
constellations around mars: The marco polo evolutionary system,” in International
Astronautical Congress 2006, (Valencia, Spain), International Astronautical Federa-
tion, October 2006.

[92] Prestage, J. D., “Next generation space atomic clock,” tech. rep., Stanford 2011
PNT Challenges and Opportunities, 2011. Nov.

[93] Psiaki, M. L., “Absolute orbit and gravity determination using relative position
measurements between two satellites,” Journal of Guidance, Control and Dynamics,
vol. 34, no. 5, pp. 1285–1297, 2011.

[94] Rappin, N. and Dunn, R., WxPython in Action. Manning Pubs Co Series, Manning
Publications, 2006.

[95] Riechle, D., Framework Design: A Role Modeling Approach. PhD thesis, ETH
Zurich, 2000.

[96] Riedel, J., Bhaskaran, S., Eldred, D. B., Gaskell, R. A., Grasso, C. A.,
Kennedy, B., Kubitscheck, D., Mastrodemos, N., Synnott, S. P., Vaughan,
A., and Werner, R. A., “Autonav mark3: Engineering the next generation of
autonomous onboard navigation and guidance,” 2006.

[97] Riedel, J. E., “Autonomous optical navigation (autonav) ds1 technology validation
report,” tech. rep., Jet Propulsion Laboratory, California Institute of TEchnology,
2001.

[98] Riedel, J. E., Wang, T.-C., and Werner, R., “Configuring the deep impact
autonav system for lunar, comet and mars landing,” in AIAA AAS Astrodynamics
Specialist Conference and Exhibit, (Honolulu, HI), August 2008.

[99] Rush, J., Isreal, D., and Ramos, C., DRAFT Communication and Navigation Sys-
tems Roadmap, Technology Area 05. National Aeronautics and Space Administration,
November 2010.

[100] Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., and Taran-
tola, S., “Variance based sensitivity analysis of model output. design and estimator
for the total sensitivity index,” Computer Physics Communications, vol. 181, no. 2,
pp. 259 – 270, 2010.

[101] Saltelli, A., Annoni, P., Azzini, I., Campolongo, F., Ratto, M., and Taran-
tola, S., “Variance-based sensitivity analysis of model output. design and estimator
for the total sensitivity index,” Computer Physics Communications, vol. 181, no. 2,
pp. 259–270, 2010.

270

[102] Saltelli, A., Tarantola, S., and Chan, K.-S., “A quantitative model-
independent method for global sensitivity analysis of model output,” Technometrics,
vol. 41, no. 1, pp. 39–56, 1999.

[103] Schier, J. S., Rush, J. J., Williams, W. D., and Vrotsos, P., “Space com-
munication architecture supporting exploration and science: Plans and studies for
2010-2030,” in 1st Space Exploration Conference, (Orlando, FL), January 2005.

[104] Schoolcraft, J. B., “The deep impact network experiment - concept, motivation,
and results,” in SpaceOps 2010 Conference, (Huntsville, AL), April 2010.

[105] Sheikh, S. I., Pines, D. J., Ray, P. S., Wood, K. S., Lovellette, M. N., and
Wolff, M. T., “Spacecraft navigation using x-ray pulsars,” Journal of Guidance,
Control, and Dynamics, vol. 29, January-February 2006.

[106] Sheikh, S. I., The Use of Variable Celestial X-Ray Sources for Spacecraft Navigation.
PhD thesis, University of Maryland, 2005.

[107] Siegfried, R., Lehmann, A., El Abdouni Khayari, R., and Kiesling, T., “A
reference model for agent-based modeling and simulation,” in Proceedings of the 2009
Spring Simulation Multiconference, SpringSim ’09, (San Diego, CA, USA), pp. 23:1–
23:8, Society for Computer Simulation International, 2009.

[108] Simon, D., Optimal State Estimation: Kalman, H Infinity, and Nonlinear Ap-
proaches. Wiley, 2006.

[109] Sinha, R., Paredis, C., Liang, V.-C., and Khosla, P. K., “Modeling and simu-
lation methods for design of engineering systems.,” Journal of Computing and Infor-
mation Science in Engineering(Transactions of the ASME), vol. 123, no. 1, pp. 84–91,
2001.

[110] Sobol, I., “On the distribution of points in a cube and the approximate evaluation
of integrals,” USSR Computational Mathematics and Mathematical Physics, vol. 7,
no. 4, pp. 86 – 112, 1967.

[111] Spangelo, S. and Team, I. S. S. C., “Model based systems engineering (mbse)
applied to radio aurora explorer (rax) cubesat mission operational scenarios,” in 2013
IEEE Aerospace Conference, (Big Sky, Montana), March 2013.

[112] Spangelo, S., Kaslow, D., Delp, C., Cole, B., Anderson, L., Fosse, E.,
Gilbert, B., Hartman, L., Kahn, T., and Cutler, J., “Applying model based
systems engineering (mbse) to a standard cubesat,” in 2012 IEEE Aerospace Confer-
ence, (Big Sky, Montana), March 2012.

[113] Stadter, P., Chacos, A., Heins, R., Moore, G., Olsen, E., and Asher, M.,
“Confluence of navigation, communication, and control in distributed spacecraft sys-
tems,” in Aerospace Conference, 2001, IEEE Proceedings., vol. 2, pp. 2/563–2/578
vol.2.

[114] Standish, E. M., “Time scales in the JPL and CfA ephemerides,” Astronomy and
Astroyphysics, vol. 336, pp. 381–384, Aug. 1998.

271

[115] Stastny, N. B. and Geller, D. K., “Autonomous optical navigation at jupiter: A
linear covariance analysis,” Journal of Spacecraft and Rockets, vol. 45, no. 2, pp. 290–
298, 2008.

[116] Steitz, D. E., “Communications, navigation and in-space
propulsion technologies selected for nasa flight demonstration.”
http://www.nasa.gov/home/hqnews/2011/aug/HQ 11–272 TDM Selections.html,
August 2011.

[117] Tapley, B. D., Bettadpur, S., Watkins, M., and Reigber, C., “The gravity
recovery and climate experiment: Mission overview and early results,” Geophys. Res.
Lett, vol. 31, no. 9, p. L09607, 2004.

[118] Taylor, J., Butman, S., Edwards, C., Ilott, P., Kornfeld, R., Lee, D.,
Shaffer, S., and Signori, G., Phoenix Telecommunications. Deep Space Com-
munications and Navigation Systems Center of Excellence Design and Performance
Summary Series, Jet Propulsion Laboratory, California Institute of Technology, Au-
gust 2010.

[119] Taylor, J., Lee, D. K., and Shambayati, S., Mars Reconnaissance Orbiter
Telecommunications. Deep Space Communications and Navigation Systems Center
of Excellence Design and Performance Summary Series, Jet Propulsion Laboratory,
California Institute of Technology, September 2006.

[120] Terrile, R., “Automated design of spacecraft telecommunications using evolution-
ary computational techniques,” in IEEE Aerospace Conference Proceedings, March
2007.

[121] Thornton, C. L. and Border, J. S., “Radiometric tracking techniques for deep
space navigation,” tech. rep., Jet Propulsion Laboratory, California Institute of Tech-
nology, October 2000.

[122] Training, A. L., Apollo Training: Guidance and Control Systems, Block II S/C
101. NASA, Septermber 1967.

[123] Turner, A., “An open-source, extensible, spacecraft simulation and modeling envi-
ronment framework,” Master’s thesis, Virginia Polytechnic Institute and State Uni-
versity, 2003.

[124] Vallado, D., Fundamentals of Astrodynamics and Applications. Springer, 3 ed.,
May 2007.

[125] Van Dierendonck, A. and McGraw, J., “Relationship between allan variances
and kalman filter parameters,” in Proceedigns of the 16th Annual Precise Time and
Time Interval Systems and Applications, pp. 273–293, NASA Goddard Space Flight
Center, November 1984.

[126] Vanderperren, Y. and Dehaene, W., “Sysml and systems engineering applied to
uml-based soc design,” 2005.

[127] Weilkiens, T., Systems Engineering with SysML/UML: Modeling, Analysis, Design.
San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2008.

272

[128] Weiß, G., Mutiagent Systems: A Modern Approach to Distributed Artificial Intelli-
gence. Intelligent Robotics and Autonomous Agents Series, Mit Press, 1999.

[129] Wertz, J. R., “Autonomous navigation and autonomous orbit control in planetary
orbits as a means of reducing operations cost,” in 5th International Symposium on
Reducing the Cost of Spacecraft Ground Systems and Operations, (Pasadena, CA),
July 8-11,2003.

[130] William M. Owen, J. and Bhaskaran, S., “Interplanetary optical navigation
101.” Presentation, http://hdl.handle.net/2014/38410, July 2003.

[131] Winternitz, L., Moreau, M., and Jr., G. J. B., “Navigator gps receiver for fast
acquisition and weak signal space applications,” in ION GNSS Meeting, (Long Beach,
CA), September 2004.

[132] Yunck, T. P. and Wu, S.-C., “Tracking geosynchronous satellites by very-long-
baseline interferometry,” Journal of Guidance, vol. 6, pp. 382–386, Sept.-Oct. 1983.

[133] Zeigler, B. and Sarjoughian, H., Guide to Modeling and Simulation of Systems
of Systems. Springer, 2012.

[134] ZEIGLER, B., Prahofer, H., and Kim, T., Theory of Modeling and Simulation:
Integrating Discrete Event and Continuous Complex Dynamic Systems. Acad. Press,
2000.

273

	Titlepage
	Signatures
	Dedication
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	List of Symbols or Abbreviations
	Summary
	Chapter 1 — Introduction
	Overview
	Need for Navigation in Space-Based Applications
	Complexity in Space Navigation
	State of the Art Space Navigation Systems
	Current Research
	Comparison of Current Methods
	Summary of Current Methods

	Chapter 2 — Network-Based Navigation (NNAV)
	Confluence of Navigation and Communication
	Communication Architecture Research
	Possible Paths Forward
	Proposed Navigation Approach
	Integration with Current Protocols
	Benefits of NNAV
	Expected Navigation Capabilities
	Research Question Development
	Summary of Navigation Concept

	Chapter 3 — Navigation Analysis Approach
	Need for Navigation Analysis
	Required Functionality of Framework Implementation
	Current Methods of Navigation System Analysis
	Generic Framework Approaches
	Current Tools and Implementations
	Gaps of Current Tools to Required Functionality
	Framework for Navigation System Simulation and Analysis
	Proposed Capabilities of Navigation Framework
	Research Focus

	Chapter 4 — Space Navigation Analytical Background
	Analysis Frame
	State Propagation
	Dynamic Clock Modeling
	State Estimation
	Measurement Models
	Link Analysis
	Packet Analysis Models

	Chapter 5 — Space Navigation Analysis and Performance Evaluation Framework (SNAPE) Concepts and Implementation
	Usage of Model-Based Systems Engineering and SysML
	Modeling of Generic Space Navigation Systems
	SNAPE Architecture Design
	SNAPE Implementation
	Simulation Integration and Operation of SNAPE
	Discussion of Implementation
	Summary of Implemented SNAPE Capabilities

	Chapter 6 — Verification of SNAPE Implementation
	Overview of Test Cases
	General Assumptions and Analysis Approach
	Framework Functional Verification
	Framework Implementation Validation
	Measurement Optimization
	Summary of Verification and Validation

	Chapter 7 — Evaluation of Network-Based Navigation (NNAV)
	Analysis Scenario Description
	Implementation and Vehicle Definitions
	Packet and Measurement Content
	Simulation Variables of Interest
	Sensitivity to Packet Content
	Packet Measurement Performance
	Packet Timing Optimization
	Comparison to Current Methods
	NNAV Limitations
	Summary of Demonstrated Performance

	Chapter 8 — Conclusions
	NNAV Concept of Operations
	Requirements Development of NNAV
	Analysis and Modeling of SNAPE Framework
	Implementation of SNAPE Simulation Environment
	Verification of SNAPE Implementation
	Evaluation of NNAV
	Hypotheses Overview
	Summary of Contributions
	Future Work
	Closing Comments

	References

