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One of the most important results in social choice theory is Kenneth Arrow’s 

impossibility theorem (1951/1963), according to which there cannot exist any rational 

procedure of aggregating individual preferences into a social preference. In this 

dissertation, I argue that the analogue of Arrow’s theorem threatens David Lewis’s 

Best System Account (BSA) of laws of nature, as the BSA invokes the procedure of 

aggregating different system-choice criteria into a resultant choice of the best system. 

First, I examine the formal conditions of Arrow’s impossibility theorem and its 

theory-choice variant. In the domain of theory choice, statistical model selection 

methods make different theory-choice standards commensurable. This inter-standard 

comparability may open up an escape route from the Arrovian impossibility for 

theory choice. Conducting a rigorous examination of those statistical methods, in 

particular, Akaike Information Criterion (AIC) and Bayesian Information Criterion 

(BIC), I show that these methods assume the existence of true status of nature, and 



  

that their inter-standard comparability serves as an epistemic constraint. I then argue 

that there is a formal analogy between social choice and system choice for the BSA 

and the Arrovian impossibility threatens the BSA. After rejecting various possible 

attempts to escape from the Arrovian impossibility for the BSA, I propose the 

variants of the BSA implemented with AIC and BIC as an attempt to make a case for 

inter-criterial comparability in system choice. I argue that, however, the proposed 

variants will inevitably fail to pick the best system. The failure is explained by the 

results in my investigation of the statistical methods. Finally, I suggest different ways 

in which the BSA might be able to escape from the Arrovian impossibility: a non-

harmful dictatorship, a threshold-prior criterion, and the statistical method called 

Minimum Description Length Principle. I close the dissertation by suggesting that the 

BSA might have to give up the notion of ‘balancing’ in its analysis of laws of nature 

in order to avoid the Arrovian result in a way that is consistent with the Humean 

perspective on laws of nature. 
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Chapter 1. Introduction 

Introduction 

This chapter serves as an introduction to the main questions I will investigate 

throughout this dissertation. In §1.2, I will give a general introduction to aggregation 

problem in various domains of collective choice. In particular, I will introduce 

Arrow’s impossibility theorem in social choice and its analogues in scientific theory 

choice and in system choice for Lewis’s Best System Analysis of laws of nature. In 

§1.3, I will give an overview of some development in social choice theory, in 

particular Sen’s information-enriched framework which allows further investigation 

of a wide range of measurability and comparability of individual utilities. In this 

framework, a number of possible escape routes from the Arrovian impossibility can 

open up. I will also discuss a possible escape in the domain of theory choice. This 

will lead us to §1.4, where I give a sketch of an escape route in theory choice, 

namely, inter-criterial comparability found in the literature on statistical model 

selection. In §1.5, I will lay out the outline of this dissertation. 

1.1 Aggregation Problem in Social Choice, Theory Choice, 
and System Choice 

There are aggregation problems in the domain of social choice. Social choice theory 

is a formal study of procedures of collective decision making, e.g., aggregating 

individual preferences, votes, or welfare into one overall social preference, vote, or 

welfare. One of the most important results in social choice theory is Kenneth Arrow’s 

impossibility theorem (1951/1963). One might investigate particular social choice 

procedures case by case. For example, one might study various winner-choosing 

rules, e.g., majority rule, ranked voting rule, tournament rule, etc., and investigate 
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when they do and do not work case by case. Arrow took a fundamentally different 

approach. He pioneered the axiomatic approach in which he can analyze all social 

choice procedures by imposing a set of reasonable axioms and mathematically 

deducing a theorem from them. The startling result of his theorem was that there 

cannot exist any reasonable procedure of aggregating individual preferences into a 

social preference, hence the name Arrow’s impossibility theorem.  

One notable feature of such an axiomatic approach of Arrow is that an analogue of 

his theorem obtains in other domains of aggregation problem, as long as it can be 

shown that the conditions for the theorem apply to the domain in question. It is at this 

point we can observe an interesting kind of aggregation problem in scientific theory 

choice. It is commonly supposed that the procedure for choosing a better theory is a 

multi-dimensional procedure in that there are multiple merits that good theories 

should display, such as accuracy, simplicity, fruitfulness, consistency, and so on. For 

example, Karl Popper (1959, 1963) argued that one theory can be better than another 

by being closer to the truth. Larry Laudan (1977), in contrast, argued that theories 

equipped with better problem-solving capacities are better. Thomas Kuhn (1977a) 

says that there are five standard criteria for evaluating the adequacy of a theory: 

accuracy, consistency, scope, simplicity, and fruitfulness. Carl Hempel (1983) speaks 

of the similar desiderata for a good hypothesis: accuracy of prediction, consistency 

with neighboring fields, broad scope, simplicity, and fruitfulness. Apparently, a good 

theory would be the one that maximize different theoretical merits. 

If the above picture of theory choice is correct, then the analogy between social 

choice and theory choice seems to hold. In voting, all the different individual 
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preferences of the candidates in consideration is to be aggregated into a resultant 

collective choice of a candidate. Analogously, then, all the different theoretical merits 

of the theories in consideration is to be aggregated into an overall choice of a theory. 

For example, consider we are comparing three rival theories X, Y, and Z, and we 

evaluate these theories in terms of three theoretical merits, namely, simplicity, 

fruitfulness, and accuracy. Suppose we evaluate them as follows, where the higher in 

a column the better:  

  Simplicity Fruitfulness  Accuracy  
             ============================= 
        X              Z          Y  
      Y              X            Z 
       Z              Y            X 
 

Which theory should we choose? X is better than Y in terms of two merits (simplicity 

and fruitfulness); Y is better than Z in terms of two merits (simplicity and accuracy.) 

So, assuming transitivity of ‘… is better than…’ relation, X is better than Z. Does this 

mean X should be our choice? Unfortunately the answer is no. Z is better than X with 

respect to two merits (fruitfulness and accuracy). As a result, we have a cyclic 

relation of ‘betterness’ – X is better  than Z and Z is better than X. The similar can be 

said about the other pairwise competitions of the pair of Y and Z and that of X and Y. 

Cyclic ranking patterns like this is called the paradox of voting, or Condorcet 

paradox. This is a particular case where we have a clearly problematic case. But if it 

can be shown that theory choice is sufficiently analogous to social choice, then we 

may draw more general conclusions by applying Arrow’s axiomatic analysis of social 

choice procedures to theory choice procedures.  
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Now let us make a brief jump to a popular philosophical view about laws of nature, 

the Best System Analysis (BSA) of laws of nature (Lewis 1973, 1983, 1994). Broadly 

speaking, there are three philosophical positions about laws of nature.  One might 

take an eliminativist position, according to which laws of nature are simply non-

existent, therefore they are to be eliminated from the philosophical discourse. Or, one 

might take a primitivist position that laws are fundamental, non-reducible, primitive 

element of the reality, i.e., they are weaved into the fabric of the reality. Philosophers 

who hold this position support the governing-laws conception of laws of nature. Or, 

one might take a reductionist position that there exist laws but they can be reduced to 

other things, without remainder; laws are just regularities; not some ‘mysterious’, 

metaphysically fundamental entities. Philosophers holding this position support the 

non-governing conception of laws of nature. The BSA belongs to the third category. 

It is a modified regularity theory. It says that regularities are laws if and only if they 

appear as theorems or axioms in an appropriately axiomatized collection of true 

propositions about the world – where ‘appropriately’ means that they are as simple, 

strong, and accurate as possible. That is, laws are what the best systemization of facts 

says they are.  

What does this account of lawhood have to do with the aggregation problems in 

social choice and theory choice? Let me quote Davie Lewis:  

…I take a suitable system to be one that has the virtues we aspire to 

in our own theory building, and that has them to the greatest extent 

possible given the way the world is. (Lewis 1983; 367) 

More specifically, the best system is defined as follows:  
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The virtues of simplicity, strength, and fit trade off. The best system 

is the system that gets the best balance of all three. The best system 

is the system that gets the best balance of all three. As before, the 

laws are those regularities that are theorems of the best system. 

(Lewis 1994; 480) 

The BSA regards the best system as ideal scientific theory. Lewis says: “Suppose 

there is an ideal theory of everything ... [o]n the best system account, it follows that 

the rules of this ideal best theory are the true laws of nature.” (Lewis 1994: 231f). 

What he thinks of is something not too different from present-day physics, just a 

“presumably somewhat improved” (Lewis 1983; 364) version of physics. We may 

even think of his ‘ideal theory of everything’ as what fundamental physics is aiming 

for, for example, Weinberg (1992)’s “Final Theory” or Penrose (2004)’s devoted 

“Theory of Everything”. The successes of physics to date provide reason to think that 

our world is susceptible to very good systematizations in fundamental terms, so it 

seems like a reasonable hope that laws can be find in the systemization of facts which 

is systemized in the same way as our fundamental science is theorized.  This 

motivates the BSA to take standards from our practice of scientific theory choice and 

use them as system choice standards in its analysis of laws, as we can see in the above 

quote.  Laws are what the ideal theory says they are.  

So, the system choice procedure for the BSA can be viewed as a procedure of 

aggregating system choice standards (which are imported from scientific theory 

choice) into an overall choice of the ‘best’ system. Suppose the theory-choice 

analogue of Arrow’s impossibility theorem obtains. Then we may naturally suspect 

that the BSA too will be susceptible to the analogue of the impossibility theorem, to 

the extent it has scientific theory-choice procedure as integral to the analysis of 

lawhood. Whether there is a sufficient formal analogy between social choice and 
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system choice, and, if there is one, whether one or more conditions of the analogue 

can be relaxed, are the main questions I will investigate in this dissertation. 

1.2 Cardinality, Sen’s “St. George the Dragon Slayer”, and 
Comparability 

A number of solutions have been suggested to the Arrovian impossibility in the 

literature of social choice theory. Probably one of the most commonly discussed 

solutions is to adopt Sen (1970)’s ‘information enriched’ approach by implementing 

different measurement scales for individual preference. As we will see in Chapter 2, 

Arrow's original characterization of social choice is informationally impoverished - it 

only allows information about ordinal rankings of alternatives. Sen extended Arrow’s 

framework so that cardinal information about individual preferences can be used in 

social choice. Following Sen, one may suggest that we should view theory choice in 

such a informationally rich framework.  

One might respond to the Arrovian impossibility that we should utilize cardinal 

measures of preferences. Here is a possible line of response: In the theory choice 

example above, very limited information was used. The only information admitted to 

use in the aggregation procedure was the orderings of the theories by theoretical 

merits, that is, the ordinal rankings of the alternatives. But can we not use richer 

information about individual preferences? For instance, couldn’t it be the case that the 

difference in the degrees of simplicity of X and Y is far greater than the difference of 

accuracy between Y to X? If it is the case that, for whatever reason, simplicity is more 

important than accuracy, then we may justifiably give a more weighting to the 

simplicity rankings of theories than the accuracy rankings. Furthermore, each 

theoretical merit might be represented with some numerical values. For example, 
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simplicity of a theory might be measured by the number of theoretical entities it 

presupposes, the number of parameters, or the number of axioms. Each of these 

measure can generate a numeric representation of simplicity. Likewise, one might 

continue, accuracy may be measured on a cardinal scale where the degree of accuracy 

is represented numerically. Provided that such measures of theoretical merits are 

available, then, it might seem to be a perfectly reasonable procedure in which the 

winner is the theory that has the greatest sum of merit-scores across individuals. This 

might serve as an escape route from the Arrovian impossibility, one might think.  

In social choice, the same idea has been long voiced. The above line of thought is 

formally analogous to the following:  

 

This is the same form as the so-called classical utilitarianism, where ui are utilities 

that individuals get from the alternative in question and λi are weightings to 

individuals. If we are to give equal weight to everyone, then λi = 1 for every i, we get 

‘Benthamite’ utilitarianism. If we are to give unequal weights to individuals, then it 

means λi will get different values for different individuals (‘weighted’ utilitarianism).  

One important thing to note is that both specifications of utilitarianism presented 

above presuppose something more than just numeric representation of utilities. 

Individual values λi are assumed to be individually measurable and comparable across 

individuals. However, in order to have a metric for individual values λi, we need 

interpersonal comparability of utilities. For example, the claim that person A’s utility 

is comparable to person B’s utility implies that we can assign certain weights to 
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individual utilities. In the context of cardinal utilities, we have to be able to say 

something like “A certain loss of utility in person A can be compensated (i.e., can be 

traded for) by an equal gain in utility by person B.” This statement expresses 

comparisons of utility intervals in different alternatives between individuals. In short, 

we cardinal comparability, not just cardinality, if we were to escape from the 

Arrovian impossibility. We will have further discussion on interpersonal 

comparability in Chapter 2, but for now let us bring our attention to Sen’s 

characterization of the issues surrounding interpersonal comparability. The following 

is a snapshot of what will be discussed in that chapter.    

Sen (1970) generalized Arrow's model to incorporate information richer than just 

orderings of alternatives. In Sen’s framework, the preferences of individuals are 

presented not simply as orderings (‘rankings’, so to say) but as utility functions that 

map the alternatives onto real numbers. In terms of utility information, it is usual to 

view utilities as being ordinal or cardinal. So, if preferences are to be measured as 

ordinal utility, the delivered information is essentially same as the ordinal ranking of 

the alternatives. But if they are measured as cardinal utility, then the measurement 

delivers more information than just the ordering of alternatives, say, ‘intensity’ of 

preference.  

One important finding in social choice was that having cardinal utilities is not by 

itself enough to avoid an impossibility result. In addition, utilities have to be 

interpersonally comparable (Sen 1970; Ch8). Sen (1970) and Kalai and Schmeidler 

(1977) show that if no interpersonal comparisons of preference are permitted, then the 

impossibility conclusion of Arrow’s theorem remains true, even if Arrow’s ordinal 
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interpretation of individual utility is replaced by a cardinal interpretation. Cardinality 

alone cannot open up an escape route, as Sen says about St. George the dragon slayer:  

Given non-comparability, the relative preference intensities of 

individuals over any pair can be varied in any way we like except 

for reversing the sign, i.e., without reversing the ordering, so that 

cardinality is not much of an advance over individual orderings 

when combined with non-comparability. To give some bite to 

cardinality we have to relax one of the other conditions … 

Cardinality alone seems to kill no dragons, and our little St. 

George must be sought elsewhere. (Sen 1970; 124 -5) 

What is needed in addition to cardinality is interpersonal comparability of utilities or 

preferences. In the context of cardinal utilities, in order to avoid the Arrovian 

impossibility, we have to be able to say something like “A certain loss of utility in 

person A can be compensated (i.e., can be traded for) by an equal gain in utility by 

person B.” This statement expresses comparisons of utility intervals in different 

alternatives between individuals. For example, classical utilitarianism as we saw 

earlier requires an interpersonal comparison in which the individual cardinal 

preferences are summed into an overall social preference. In the context of ordinal 

utilities, the relevant comparability would be the utility level comparability across 

individuals. For example, Rawlsian utilitarianism requires comparison of utility levels 

of the worst-off individual in each alternative state.   

Now let us turn to the matter of theory choice. Assuming that social choice and theory 

choice are formally analogous, it is natural to seek the same type of escape route for 

theory choice as social choice. Theories are ranked by each dimension of scientific 

merits just as alternatives are ranked by each individual in the society. Just as we 

ultimately need interpersonal comparability of cardinal preferences in social choice, 
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we likewise need inter-dimensional comparability of scientific virtues in order to save 

theory choice from the Arrovian impossibility. 

What would it be like to have such inter-criterion cardinal comparability in theory 

choice? That there is cardinal inter-criterion comparability implies that theories are 

measured on a cardinal scale for each criterion and that there is an exchange rate 

between criteria. Cardinal comparability in this context would mean then that we can 

justifiably make judgments like “This amount of loss in simplicity can be 

compensated for with that amount of gain in accuracy.” To put it different way, this 

would mean something like “The metric for trade-off, i.e., the exchange ratio, 

between simplicity and accuracy is such-and-such.” With this kind of ‘recipe’ for the 

trade-off between standards, theories may be compared in a consistent way.  

Turning to system choice now, as we will see in Chapter 4, the BSA imports our 

actual scientific theory-choice procedure for system-choice procedure. Assuming 

there is formal analogy between theory choice and system choice (and there should 

be, given that the BSA takes the scientific theory choice standards and elevates them 

to the constituents of laws of nature; see Chapter 4 and Chapter 5 for further 

discussion), if we were to search for the same kind of escape routes for system choice 

as in theory choice, we need to identify: (a) measurability of each system-choice 

criterion, (b) inter-criterion comparability of each system’s ‘score’ with respect to 

system-choice criteria, and (c) the form of a function which will specify an overall 

system ranking given measurability and comparability assumed. The second half of 

this dissertation will be devoted to these tasks. 
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1.3 Comparability in Statistical Model Selection Methods 

There has been growing interest among philosophers of science in statistical model 

selection methods. Some think that statistical model selection methods can provide 

the comparability required to escape from the Arrovian impossibility (for example, 

Okasha 2011, Morreau 2015).  

Let us briefly discuss what statistical model selection is about and how they relate to 

some important philosophical questions. One of the most important questions in 

model selection is how to minimize the risk of overfitting. 

 

Fig 1. Curves with varying complexity (from Grünwald 2005) 

Suppose the values of variables X and Y have been observed and the result is plotted 

in the figure above, where the dots representing the observed data points. We would 

like to learn the relationship between X and Y. We may fit various curves to the data 

points as shown above. The straight line is simple, but maybe it’s ‘too’ simple. It 

seems to fail to capture the apparent pattern or trend in the data. If we want to choose 

a curve that perfectly fits the data, then we will choose a curve like the one in the 

second picture. This curve seems ‘too’ complex. It seems to ‘overfit’ the noise part of 

the data, i.e., the random fluctuations in the data rather than the true pattern 

underlying it. Probably a reasonable choice would be to choose the curve shown in 

the rightmost picture, which seems to capture regularity in the data without fitting too 

much the noise in the data. So we need a principled method which allows us to 
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choose a right curve among all the curves that are logically compatible with the 

observed data. Even in a simple example like this, we may agree that the desirable 

model selection methods are probably the ones that give us principled ways to make 

trade-offs between goodness-of-fit and simplicity. But exactly how to make the trade-

off in real situations is not so obvious. Suppose model A fits the data a little better 

than model B, but has one more parameter. How does one trade off goodness-of-fit 

against number of parameters? 

As we will investigate further in Chapter 3 and Chapter 6, a great deal of statistical 

model selection methods attempt to provide such specific trade-off ‘recipes’. For 

example, Akaike Information Criterion (Akaike 1974) and Bayesian Information 

Criterion (Schwarz 1978) provide the following rules and model indices:  

AIC score of model M = [MLE of M] - [the number of parameters of M].  

AIC rule: Choose the model that maximizes AIC score.  

BIC score of model M = [MLE of M] - [log n × the number of parameters of 

M].  

BIC rule: Choose the model that maximizes BIC score. 

In statistics, the term [MLE: Maximum Likelihood Estimate] is one of the most 

widely used measure of goodness-of-fit. The number of parameters seems to give us a 

natural measure of simplicity of models.1 We will conduct a careful examination of 

these methods in Chapter 3, but for now we can notice that they express specific 

trade-off forms between simplicity and fit.  

                                                 
1 Of course, this is one specific sense of simplicity, among many. We will have further discussion 

on this in Chapter 3 and Chapter 5.  
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Different model selectin criteria use different definitions of simplicity and fit. For 

example, the model selection principle called Minimum Description Length Principle 

(MDL) (Rissanen, 1978; Grünwald et al., 2005) take a fundamentally different 

approach to model selection problems. In MDL, the goal of statistical inference is to 

find regularity in the data, and regularity is identified with “ability to compress.” The 

underlying idea is that there are different ways to ‘summarize’ the observed 

regularities in the data sets, and the shorter the summary is, the better. For a toy 

example, suppose we have a sequence 01010101010101010101010101. We could 

summarize this sequence as “0 appears 13 times, 1 appears 13 times, 0 appears first, 

then 1 appears, then alternate”, or more efficiently, “‘01’ is repeated 13 times”.2  

MDL says the latter is the better theory to explain the given sequence. More formally,  

MDL principle (Rissanen 1978): the best theory to explain given data x is the 

one that minimizes the sum of:  

(1) The length of the description of the theory itself, plus 

(2) The length of the description of the data x when the data is described with 

the help of the theory.3  

The first term can be understood as complexity of the theory, and the second term as 

goodness-of-fit. Intuitively speaking, the second term tells us goodness-of-fit of the 

theory because, the better it fits the data, the fewer bits we would need to describe the 

data given the theory. For example, in order to ‘describe the data’ as in (2), we would 

need to describe the discrepancies between the values predicted by the theory and the 

                                                 
2 Formally, in MDL sequences are described and summarized in a universal program languages. 

We will have further discussion on this in Chapter 6.  
3 The lengths are measured in bits. See Chapter 6.  
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actually observed value; but we would not describe what the theory predicts about the 

data, which is the job of (1) (Grünwald 2005). We can see that simplicity and fit in 

MDL are very different from those in AIC or BIC. Each of these statistical model 

selectin methods provides a certain form of trade-off in their own.  

Philosophers of science who attempt to deal with the Arrovian impossibility in theory 

choice have been paying attention to various kinds of statistical model selection 

methods like above because they appear to give specific trade-off recipe, i.e., inter-

criterial comparability required to escape the impossibility. For example, Okasha 

(2011) thinks that AIC and BIC do provide the right kind of comparability to avoid 

the impossibility in theory choice. We now have a question whether it provides the 

same kind of escape from the Arrovian impossibility in system choice for the BSA. 

We will have further discussion on this in Chapter 5 and Chapter 6.  

1.4 Thesis outline  

This dissertation will proceed as follows. In Chapter 2, I will examine aggregation 

problems in the domain of social choice and theory choice. First, in §2.1, as a 

grounding work, I will review some common understanding of rational scientific 

progress and skepticism of rational theory choice. In §2.2., I will discuss Arrow’s 

impossibility theorem (1951/1963) which says there cannot exist any reasonable 

procedure of aggregating individual preferences into a social preference. I will 

carefully examine formal statements of the theorem and its conditions. In §2.3, 

following Okasha (2011)’s lead, I will examine if the theory-choice analogues of 

Arrow’s condition are motivated. I will explore if the analogue of Arrow’s 

impossibility theorem obtain in the domain of theory choice. The tentative conclusion 
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will be that the analogue seems to obtain in theory choice, with a caveat that 

condition U does not apply to theory choice but probably its weaker counterpart R 

does. In §2.4, I will discuss possible escape routes from the impossibility in theory 

choice. Weakening U to R does not necessarily open up an escape route from the 

Arrovian impossibility, if condition I can be strengthened to SN. It will be noted that 

it is unclear if SN applies to theory choice but we saw some motivation for thinking it 

does. We will also have some discussion on the single-profile variants of Arrow’s 

impossibility theorem. It will turn out that probably the clearest and most promising 

escape route from the Arrovian impossibility for theory choice would be to make a 

case for inter-criterial comparability, in Sen (1970)’s extended framework. In 

particular, we will be interested in some form of inter-criterial comparability 

expressed in some statistical model selection methods, for example Akaike 

Information Criterion (AIC) or Bayesian Information Criterion (BIC). I will ask 

where the comparability in these methods comes from. This question will lead us to 

Chapter 3.  

In Chapter 3, I will conduct a rigorous examination of the statistical model selection 

methods AIC and BIC, and their background assumptions. In §3.1, I will introduce 

statistical model selection problem and its philosophical implications. I will compare 

two quite different frameworks: the Best-Case strategy and Akaikean framework. It 

will be shown that the former framework will run a high risk of overfitting. In §3.2, I 

will rigorously examine the key concepts underpinning AIC: Kullbak-Leibler 

divergence, predictive accuracy, and estimated predictive accuracy. In §3.3, the proof 

for AIC will be sketched. In §3.4, I will examine BIC and its underlying assumptions. 
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The conclusion of the chapter will be that the examined statistical model selection 

methods express specific exchange ratios for the trade-off between fit and simplicity, 

if we understand likelihood as fit and the number of parameters as simplicity, while 

different methods give different weight to simplicity (in the specific sense above). 

This may be understood as the comparability required in order for theory choice to 

escape the Arrovian impossibility. 

In Chapter 4, our focus will be on David Lewis’s Best System Account of laws of 

nature. In §4.1, I will first survey three philosophical views of laws of nature: 

eliminativism, primitivism, and reductionism. In §4.2, I introduce Lewis’s Best 

System Account (BSA). We will discuss the motivations for the account, the Humean 

Supervenience (HS) thesis about laws, and some typical objections to HS about laws. 

In §4.3, I will assume the task of precisifying the Best System Account of laws. We 

will see that the best system in the BSA should be understood as an extended, 

idealized version of our actual science (in particular, fundamental physics). In the 

process of precisifying the account, it will be revealed that the HS thesis has a 

specific range, and that the BSA relies heavily on what I call the Hope thesis. It will 

be suspected that the BSA’s reliance on the concept of ‘balance’ among the system-

choice criteria makes the account vulnerable to the Arrovian impossibility.   

In Chapter 5, I explore if the analogue of the Arrovian impossibility in the domain of 

system choice holds for the BSA. In §5.2, we will see that the condition U (Universal 

Domain) does not apply to system choice but the condition R (Rich Domain) 

probably does. But we will also note that, even if U is weakened to R, a variant of 

Arrow’s impossibility theorem obtains provided the strong neutrality condition (SN), 
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a stronger version of I, is met. In §5.3, I will discuss SN in connection with the 

Humean Supervenience (HS) thesis. I will argue that SN applies to system choice. 

While the HS thesis seems to reject the multi-profile framework for system choice, 

assuming R is met in system choice, since SN applies to system choice, the single-

profile variant of the Arrovian impossibility seems to obtain in system choice. In §5.4 

I will suggest that IIU is a desirable property of system choice procedure. In §5.5, I 

will discuss a number of possible attempts to make a case for the cardinal 

measurability of fit, strength, and simplicity, the three criteria invoked by the BSA. I 

will conclude that most of the attempts are unsatisfactory, at least as they stand. It 

will be also noted that, even if they are cardinally measurable, without inter-criterial 

comparability one cannot escape from the Arrovian impossibility. In §5.6, I propose a 

variant of the BSA as an attempt to make a case for inter-criterial comparability 

between fit and simplicity. I will conclude that its prospect does not look good due to 

the context gap between epistemological and metaphysical justification of 

implementing inductive method to the analysis of lawhood. In doing so, I will provide 

a counterexample where the BSA fails to pick the best system. The BSA will still 

have the last resort: the Hope thesis. But this will also raise the concern that the BSA 

relies too much, in ad-hoc manner, on the Hope thesis every time it faces a problem.  

In Chapter 6, I will suggest different ways in which the BSA might be able to avoid 

the Arrovian impossibility: the concept of ‘non-harmful dictator’, and the statistical 

model selection called Minimum Description Length Principle (MDL). These ideas 

are not fully matured hence in need of more extensive research, but it will be 

suggested that probably they are the best possible escape routes available to the BSA, 
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if it can be shown that they work. I close the dissertation by suggesting that the BSA 

might have to give up the notion of ‘balancing’ in its analysis of laws of nature; this 

would allow the BSA to avoid the Arrovian result in a way that is consistent with the 

Humean perspective on laws of nature. 
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Chapter 2: Maximizing Rationality in Society and in 
Science 

Introduction 

In this chapter, I will examine some aggregation problems in the domain of social 

choice and theory choice. Social choice theory is a formal study of procedures of 

collective decision making, e.g., aggregating individual preferences, votes, or welfare 

into one overall social preference, vote, or welfare. One of the most important results 

in social choice theory is Kenneth Arrow’s impossibility theorem (1951/1963). 

Rather than investigating particular social choice procedures case by case, Arrow 

pioneered the axiomatic approach in social choice theory by imposing set of 

reasonable axioms and mathematically deducing a theorem from them. The startling 

result of the theorem was that there cannot exist any reasonable procedure of 

aggregating individual preferences into a social preference, hence the name Arrow’s 

impossibility theorem.  

There has been growing interest among philosophers in the findings in social choice 

theory, in particular Arrow’s theorem. Okasha (2011) observed an analogy between 

social choice and theory choice and explored whether the analogue of Arrow’s 

theorem obtains in theory choice and, if it does, whether there are escapes form the 

impossibility. Following his lead, in this chapter, I will examine Arrow’s 

impossibility theorem, its theory-choice analogue, and possible escape routes from it. 

First, in §2.1, I will examine Kuhn’s view on scientific theory choice. According to 

him, since there are inevitably subjective elements in theory-choice standards that 

scientists legitimately employ, there is no neutral theory-choice algorithm. Okasha 

interprets this as the claim that there are too many legitimate theory-choice 
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procedures and later makes dramatic contrast with Arrow’s impossibility theorem. 

Following this lead, in §2.2, I will introduce Arrow’s theorem and examine formal 

statements of the theorem and its conditions. This task is required for our later 

examination of plausibility of the theory-choice analogue of the Arrovian 

impossibility in §2.3. The result of the examination will be that the analogue seems to 

obtain in theory choice, with a caveat that it is not perfectly clear if conditions about 

the domain of theory choice procedure are met. In §2.4, we will explore possible 

escape routes, focusing on a different types of measurability and comparability in Sen 

(1970)’s extended framework. In particular, we will focus on cardinally measurable 

inter-criterial comparability expressed in the literature of statistical model selection 

methods. I will conclude that searching for comparability in statistical model 

selection is probably the clearest and most promising escape route from the Arrovian 

impossibility in theory choice. This will lead us to the next chapter. 

2.1 Theory Choice and Kuhn: Maximizing Overall Theoretical 
Merit 

Science does not simply develop or change, but rather progresses. Making scientific 

progress comes down to choosing better theories. It is commonly supposed that the 

procedure for choosing a better theory is a multi-dimensional process in that there are 

multiple merits that good theories should display, for instance: accuracy, simplicity, 

fruitfulness, and so on. Choosing a better theory, then, seems to mean maximizing the 

overall theoretical merit. Throughout this chapter, we will examine some difficulties 

associated with this familiar conception of scientific progress. In this section, I will 

first discuss Kuhn’s view that there is no neutral theory-choice algorithm due to its 
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subjective factors, and Okasha’s interpretation that there are too many legitimate 

theory choice procedures. 

2.1.1 Scientific Virtues and Their Aggregation 

Making scientific progress amounts to choosing better theories. The nature of theory 

choice, however, is a topic of controversy in the philosophy of science. For one thing, 

‘better’ is a multi-criteria normative term, in that there are more than one criteria 

against which competing scientific theories can be evaluated. Philosophers have 

recognized several ways in which one theory can be better than another. Just to name 

a few examples: Kuhn offers a list of scientific standards, or virtues, that he believes 

can provide a common basis for theory choice: accuracy, consistency, scope, 

simplicity, and fruitfulness (Kuhn 1977). Popper (1959, 1963) argues that one theory 

can be better than another by being closer to the truth. Laudan (1977) argues that 

theories equipped with better problem-solving capacities are better. Carl Hempel 

(1983) speaks of the similar desiderata for a good hypothesis: accuracy of prediction, 

consistency with neighboring fields, breadth of scope, simplicity, and fruitfulness. 

Sober (1994) says that simplicity and predictive accuracy are important virtues of 

scientific theories, especially in statistical analysis of the observed data. Miller (2006) 

takes logical strength to be a virtue of scientific theories. Evidently, there are multiple 

virtues or dimensions, with respect to which one theory can be better than another. 

Choosing a better theory would then amount to choosing the one that maximizes 

these virtues. In other words, the procedure of theory choice may be seen as that of 

aggregating these individual virtues into a theory's overall scientific virtue. The 

difficulty with this kind of concept of scientific progress is that there seems to be no 
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objective and rational aggregation procedure. This is because some standards seem to 

invoke subjective judgments and also because the standards in question often conflict 

with each other. Probably the best example that serves a clear illustration of the 

associated difficulties would be Kuhn’s skeptical argument about rational theory 

choice. 

2.1.2 Kuhn’s Skepticism about Rational Theory Choice 

As Kuhn (1977) sees it, it is possible that the standard of simplicity might lead us to 

choose one theory while the standard of accuracy might dictate that we choose 

another theory. Kun gives an example of comparing Ptolemaic system and the 

Copernican system. Ptolemaic system augmented with many epicycles describes the 

apparent planetary movements more accurately than the early form of Copernican 

system does. But the latter seems to be simpler than the former in our ordinary 

meaning of simplicity. Here we seem to have a conflict between the virtue of 

simplicity and that of accuracy. Additionally, an individual scientist or a group of 

scientists might envisage differently which standards are important and how to weight 

their relative importance. For instance, one scientist might judge that explanatory 

power is the most important virtue, while another might believe that the most 

important virtue of a theory is that it be maximally consistent with other pre-existing 

theories. This interpersonal discrepancy is possible even when the scientists in 

question are in complete agreement regarding what should be contained in the 

glossary of scientific virtues; they can nonetheless disagree about how much weight 

should be given to each virtue.   
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For this reason, Kuhn argues that there is no determinate procedure of theory choice 

within a paradigm, not to mention theory choice across different paradigms (Kuhn 

1970/1977). To quote:  

There is no neutral algorithm for theory-choice, no systematic 

decision procedure which, properly applied, must lead each 

individual in the group to the same decision. (Kuhn 1970; 200)  

Let us examine in detail how Kuhn was led to such a skeptical conclusion. Kuhn’s 

famous five scientific criteria, so called the ‘big five,’ for theory choice are: accuracy, 

consistency (with itself and other accepted theories on relevant aspects of nature), 

breadth of scope, simplicity, and fruitfulness (Kuhn 1977; 322). These provide the 

shared, objective basis for theory choice. But Kuhn sees two sorts of difficulties with 

the use of these criteria for theory choice. First, each individual criterion is very 

imprecise. Kuhn’s own examples will be helpful at this point. Consider accuracy, for 

example. The oxygen theory accurately account for the observed weight relation in 

chemical reactions, while the phlogiston theory accounts for the metals being much 

more alike than the ores from which they were formed. To choose on the basis of 

accuracy a scientist would need to decide the area in which accuracy was more 

significant. Secondly, the criteria jointly often conflict one with each other. Kuhn's 

well-known example (1977; 323) for this point is the comparison between Ptolemy’s 

system and Copernicus’s system. Ptolemy’s system and Copernicus’s system were 

equally internally consistent. But Ptolemy’s was more consistent than Copernicus’s 

with the existing scientific theories at that time. On the other hand, Copernicus’s was 

simpler than Ptolemy's in that the former requires less mathematical equations to 

explain the observed planetary movements. Hence the criterion of consistency and 
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simplicity are in conflict. Generalizing this point, Kuhn argues, in applying those 

criteria to theory choice, different scientists may give different weights to them - due 

to individual differences in their experience in and outside science, in their personal 

traits, and such. In this way, the procedure of theory choice contains some subjective 

elements. So, for Kuhn, scientific theory choice is a mixture of subjective and 

objective factors.  

Kuhn's important observation here is that scientific theory choice admits of such 

subjectivity because the theory choice criteria are not rules but values. If they were 

rules, they would simply dictate theory choice – Kuhn thought this was hardly the 

case. Scientists deploy values as reasons for or against certain choices of theories. So 

scientists’ theory choices are essentially value judgments, and reasons have to be 

given for their judgments, as for any type of value judgment. Recognized as values, 

then, the criteria like accuracy, simplicity, scope, and such specify a great deal as to 

how theory choice procedure should proceed, given that list. It would specify what a 

scientist must consider in reaching a decision, what he may and may not consider 

relevant, and what he can legitimately be required to report as the basis for the choice 

he has made (ibid., 331). At the same time, however, values admit of individual 

variations in their applications. Since they are values, different scientist can 

legitimately assign different weights to the criteria; scientists can reasonably disagree 

with each other in their application of values. Then, the five criteria as values 

underdetermine theory choice, and the underdetermined are to be determined by 

fleshing out the criteria in ways that vary from one scientists to another. For these 
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reasons, scientists who are “committed to the same list of criteria for choice may 

nevertheless reach different conclusions” (ibid., 324). 

The upshot is that there may be shared criteria, but not a uniquely shared algorithm, 

for scientific theory choice. Since the criteria are values, there are multiple ways of 

fleshing out each criterion and of giving weightings to criteria jointly in action. 

Accordingly, there are multiple possible choices and there are always some “good 

reasons for each possible choice” (ibid., 328). The unique algorithm, which 

presupposes a fixed interpretation of individual criteria and a fixed weight function 

between them, therefore, is just an unattainable ideal.  

In the light of the above, what Kuhn means when he says there is no neutral algorithm 

may be that there are too many sufficiently good algorithm.4 In short, Kuhn’s 

skepticism about theory choice may be formulized as: Different scientists may 

employ very different but perfectly legitimate theory choice procedures and reach 

very different conclusions.  

That there are too many legitimate theory choice algorithm is at one extreme. At the 

opposite extreme is located a nihilistic claim there is no legitimate theory choice 

algorithm. Recent literature in philosophy of science has paid attention to this 

nihilistic claim, drawing on some famous results from social choice –Arrow's 

                                                 
4 This is how Okasha (2011) understands Kuhn. Recently Morreau (2015) argues that Kuhn may 

not have meant such ‘too many good algorithms’ thesis; what Kuhn seems to have meant is that, 

since the theory choice criteria are not rules but values (see the earlier quotes from Kuhn), and, 

for something to be called an ‘algorithm’ it should be a sufficiently specific and prescriptive to 

dictate choices like a rule, scientists do not operate under such thing as ‘algorithm’ in the first 

place (Kuhn 1977; 329-31). It is not the aim of this dissertation to settle the proper way to 

interpret Kuhn. But as my discussion of the Best System Account will involve the issue of 

subjective and relative aspects of the system choice procedures invoked by the account, for the 

sake of the dialectic of this dissertation, I will adopt the interpretation of Kuhn as saying ‘there 

are too many good algorithms’.  
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theorem, in particular– and their implication to theory choice. In the next section, let 

us examine Arrow’s theorem in social choice. Then we will discuss connection 

between the theorem and theory choice in Chapter 3. 

2.2 Democratic Social Choice and Arrow’s Theorem: Getting 
at Society’s ‘Will’ 

The meaning of democracy is “rule by the people”. The people, however, can 

disagree. So the following question naturally arises: How are we to extract the will of 

society as a whole from individual wills? Social choice theory is the formal study of 

that question. Its main subject of study are the collective choice procedures by which 

individual preferences are rationally aggregated into a social preference. Arguably, 

the most important breakthrough in social choice theory is Kenneth Arrow’s 

impossibility theorem (Arrow, 1951/1963). Arrow's theorem states that there cannot 

exist any rational aggregation procedure that satisfies certain reasonable conditions. 

This theorem has shaped the contemporary form of social choice theory.5 It has also 

had a significant influence on economics, political science, and philosophy. In this 

section, I will introduce social choice theory, and one of its most important finding, 

Arrow’s impossibility theorem, and formal statement of the theorem and its 

conditions. 

2.2.1 Individual Preferences and the Difficulty with the Preference 
Aggregation 

One of the most important questions about democracy is the question of how to 

aggregate individual preferences over alternatives into an overall social ordering of 

the alternatives. A variety of voting methods serve as examples of procedures that 

                                                 
5 Suzumura 2002 gives a nice historical overview of the impact of Arrow’s theorem on social 

choice theory.  
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map individual preferences over candidates into an overall ranking of the candidates 

in question. A serious difficulty with such a preference aggregation procedure arises 

when individual preferences are in conflict. A particularly interesting example of such 

a difficulty is the so-called paradox of voting.  

Suppose Alf, Betty, and Charlie are trying to decide where to eat dinner from among 

three restaurants: x, y, and z. However, Alf, Betty, and Charlie disagree with each 

other on where to go. Alf prefers restaurant x to restaurant y and restaurant y to 

restaurant z; Betty’s preference is z to x and x to y; and Charlie’s preference is y to z 

and z to x. This information is represented below in Table 1. Now, what should be the 

overall choice in this case? To begin with, y wins over z in the y vis-à-vis z pairwise 

comparison, because y is preferred to z by two individuals (Alf and Charlie). Next, x 

wins over y in the x–y pairwise comparison because x is preferred to y by two 

individuals (Alf and Betty). In sum, x wins over y and y wins over z. Assuming 

preferences are transitive, the resulting social preference should be x to z. Does this 

settle the case of the restaurant problem for Alf, Betty, and Charlie? No. This is 

because z is also preferred to x by two individuals (Betty and Charlie), and so the 

social preference should be z to x. The resulting contradiction is that the social 

preference should be x to z (by transitivity) and also z to x (by majority). We have a 

preference cycle which deems their collective choice incoherent. This generates a 

case called the paradox of voting, also known as the Condorcet paradox.  

Note that this paradox concerns a particular pattern of individual preferences. This is 

why it created a huge reaction to it when Kenneth Arrow (1951) showed that this 

paradox is generalized into a theorem concerning all possible patterns of individual 
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preferences with three or more alternatives. This theorem is now referred to as 

Arrow's impossibility theorem. This impossibility theorem, and its applications, are 

the main topic of what follows.    

Alf  Betty   Charles 

======================= 

    x    z     y  

  y    x     z 

  z    y     x 

    Table 1: the Condorcet Paradox 

2.2.2 Impossibility of Rational Social Choice 

Arrow’s impossibility theorem states that there cannot exist any rational aggregation 

procedure that maps individual preferences into a single social preference ranking, 

while at the same time satisfying certain reasonable conditions. Here, a ‘rational’ 

procedure is defined as one that satisfies a certain set of seemingly plausible 

conditions imposed by Arrow himself. Given its conditions’ plausibility, the 

impossibility theorem is sometimes interpreted as a destructive blow to the possibility 

of democratic voting systems, since the theorem seems to imply that rational social 

choice is unavoidably impossible.6 

Arrow’s impossibility theorem is of particular interest to us because of its 

implications. As a formal theorem with a few assumptions, Arrow’s theorem seems to 

obtain a wide applicability. The pessimistic conclusion of this theorem may be seen 

as being extended to any collective choice procedure so long as it satisfies Arrow’s 

                                                 
6 Some argue against interpreting Arrow’s theorem in this way. For example, Riker (1982) takes 

Arrow’s theorem as an illustrating example for unattainability of populism, which views voting as 

the procedure of translating the people’s will into the actions of the elected officials.  
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conditions. This seems to imply that many of the collective choice problems 

philosophers grant as rational might be bound to be irrational. Given this, Arrow’s 

theorem appears to have the capacity to make real trouble for many philosophical 

enterprises. For example, David Lewis’s counterpart theory has been widely accepted 

by non-essentialists as one the most effective tools for analyzing counterfactuals. 

Morreau (2010) argues that the multi-dimensional notion of comparative similarity – 

which underlies standard counterpart theory and some part of Lewis's philosophy 

such as his analysis of counterfactuals – faces a variant of Arrow's impossibility 

theorem. As another example, see how Stegenga (2013) applies Arrow’s negative 

result to the case of evidence amalgamation in epistemology. Zwart and Franssen 

(2007) connect Arrow’s impossibility theorem with Popper’s concept of 

verisimilitude. Okasha (2011) suggests that scientific theory choice is formally 

identical to social choice and is therefore subject to the Arrovian impossibility. I will 

revisit Okasha’s work on the theory choice analogue of Arrow’s theorem in §2.3. For 

now let us examine in detail the theorem, its conditions, and some variants of the 

theorem.    

2.2.3 Arrow’s Impossibility Theorem and Its Conditions 

Arrow (1951/1963) first presents a set of conditions that he believes any rational 

social choice procedure must satisfy. They are: Unrestricted domain (U), weak 

Pareto (P), Independence of irrelevant alternatives (I), and Non-dictatorship (D). As 

a simple illustration, let us see first what these conditions amount to in the restaurant 

choice example earlier. It doesn’t seem unreasonable to stipulate that Alf, Betty, and 

Charlie's group choice procedure has to meet the following requirements. First, each 
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of them should be free to rank the alternatives in any order they like and each 

person’s rankings are independent. That is, there should be no constraints on the order 

of their preferred restaurants (an analogue to U). Also, if everyone strictly puts one 

restaurant above another in their restaurant rankings, then the ranking as a whole 

group should put the first restaurant above the second (P). It also seems like a 

reasonable requirement that there should be no individual whose preference dictates 

the group ordering regardless of what the others prefer (D). And the group choice 

between x and y should depend only on the individual preferences over x and y and 

should not be affected by the presence or absence of an irrelevant alternative such as 

z. That is, the competition between x and y should be determined by Alf, Betty, and 

Charlie’s rankings over x and y, but not z (I). All these requirements seem quite 

reasonable. Arrow rigorously proved that there cannot be any collective choice 

procedure that satisfies all of these reasonable-seeming requirements, and thus that 

there will always be a violation of some conditions. That is, it is impossible for a 

social choice procedure to satisfy all of these conditions; hence, Arrow’s impossibility 

theorem.  

Now it is time for some formality. I largely follow Roberts (2005), Gaertner (2009) 

and Morreau (2014b)’s denotation. First, let me introduce some preliminary notions.  

The weak preference binary relation R. We first need to define a weak preference 

binary relation R. R is defined as a subset of ordered pairs in the Cartesian product of 

X × X, in such a way that xRy can be interpreted as ‘x is at least as good as y’. Let me 

explain. The Cartesian pair of any two sets is the set of all ordered pairs generated by 

taking the first element from one set and the second from the other. For example, Z × 
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W = {(z, w)| z ∈ Z and w ∈ W}. So the Cartesian product of X with itself is a set of 

the all ordered pairs on X × X = {(x, x)| x ∈ X}. A binary relation is a set of ordered 

pair. That R is a binary relation on X, then, means that R is a subset of ordered pairs 

on X × X. For example, if X = {x, y, z}, then the Cartesian product of X with itself is 

X × X = {(x, x), (x, y), (x, z), (y, x), (y, y), (y, z), (z, x), (z, y), (z, z)}. Take a subset of 

this in such a way that it can be used as a representation of weak preference relation; 

in the current example, such subset would be R = {(x, y), (y, z), (z, x), (x, x), (y, y), (z, 

z)}.7  

We will use xRy to mean that (x, y) is an element of R. R is assumed to have certain 

characteristic features as follows. R is reflexive, meaning that for all x ∈ X, (x, x) is an 

element of R. This follows from the fact that R represents a weak preference 

including 'as good as'. R is complete, meaning that for any two elements x, y ∈ X, 

either xRy or yRx or both. That is, all elements of X are connected with each other as 

ordered pairs in R. R is transitive, meaning that if xRy and yRz then xRz. We can call 

R a preference ordering on X in that it is reflexive, complete, and transitive.  

Using R as a starting point for analysis, we can define the strict preference relation P 

such that xPy if and only if xRy and not-yRx. The indifference relation I can be 

defined such that xIy if and only if xRy and yRx. Defined in this way, xPy can be 

interpreted as 'x is strictly better than y,' and xIy as 'there is indifference between x and 

y. 

                                                 
7 As we will see shortly, R here displays the desired characteristics to be a weak preference 

relation. 
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Preference in social choice. In the context of social choice, R (without subscript) 

refers to society's preference relation; Ri represents to individual i's preference 

relation. Following convention, the alternatives will be represented using lower case 

letters from the end of the alphabet as x, y, z, …; the set of all these alternatives 

is denoted by X. Individual voters, assume to be finitely many, will be represented as 

numbers 1, …, n. 

Social welfare function. Let X be the set of alternatives. Let N be the society of 

individual voters and each voter is represented as a number: N = {1, 2, ..., n} 

Let ℛ be the set of all possible weak preference relations on X. Each voter's 

preference Ri is drawn from ℛ, so Ri ∈ ℛ for all i in N. A preference profile is a list of 

individual preference relations for all voters: 〈R1, R2, ... , Rn〉  = 〈Ri〉 i∈N. We will use 

a shortened expression 〈Ri〉  to denote such a profile when there is no risk of 

confusion. To denote other profiles, we will use 〈R’i〉 , 〈R’’i〉 , and so on. Then a 

profile 〈Ri〉  is an element of ℛn, when ℛn is the n-times Cartesian product of ℛ : ℛn = 

ℛ×ℛ× ... ×ℛ.    

Arrow's social welfare function (SWF) may be thought of as a procedure of 

aggregating individual preferences into an overall social preference. More formally, a 

SWF f is an aggregation procedure which generates a social ordering as a function of 

individual orderings: R=f(〈Ri〉) on X. As mentioned earlier, the convention is to use R 

and P for social preference, weak and strict, respectively. For example, ‘xRy’ means 

‘society weakly prefer x to y’, ‘zPw’ means ‘society strictly prefers z to w’. Now 

these social preferences can be viewed as being derived from 〈Ri〉 , through the 

functional relation between individual and social preferences, as clearly seen in the 
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notation R=f(〈Ri〉). The social preference derived from 〈R’i〉 will be denoted as 

R’=f(〈R’i〉) 

Arrow's theorem. Arrow's impossibility theorem states that there exists no SWF that 

satisfies the following four conditions:  

Unrestricted Domain (U). The domain of f includes all logically possible profiles 

〈Ri〉 . In words, a SWF should be able to handle all logically possible lists of 

individual rankings of the alternatives.  

Weak Pareto (P). If xPiy for all i in N, then xPy. In words, if every individual strictly 

prefers x to y, then the society must prefer x to y. In words, when everyone 

unanimously strictly prefers one alternative to another, the social ordering generated 

by f should agree.    

The logically stronger counterpart of the weak Pareto condition is the strong Pareto 

principle: For all x and y, if xRiy for all i in N and xPky for some k in N, then xPy. In 

words, the weak Pareto condition requires that if every individual unanimously 

prefers x to y, so does the society. The strong Pareto condition requires that if every 

individual unanimously regards x as at least good as y and at least one individual 

strictly prefers x to y, then society must strictly prefer x to y. The strong Pareto is 

‘strong’ in that it excludes more alternatives from being chosen than the weak Pareto. 

For example, suppose everyone in society initially indifferent between x and y. Under 

the weak Pareto, x will be socially preferred if everyone changes their mind from 

indifference to strict preference of x to y. But under the strong Pareto, only one 

person’s changing mind from indifference to strict preference of x will have the effect 

of dropping y from the socially chosen set. 
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Independence of Irrelevant Alternatives (I). For any two preference profiles 〈Ri〉  

and 〈R’i〉 , for any two alternatives x, y and for all i, if 〈Ri〉  and 〈R’i〉  coincide over 

the pair x and y, then R=f(〈Ri〉)  and R’=f(〈R’i〉) should coincide over the pair x and y.  

In words, if every individual has exactly same preference concerning x and y in the 

two profiles 〈Ri〉  and 〈R’i〉 , then the social preference over x and y must exactly 

same for the two profiles. In other words, if two individual preference profiles agree 

with each other on the subset {x, y} of X, then the society must have the same 

preference on that subset.   

Non-Dictatorship (D). There is no individual i such that for all profiles in the domain 

of f and for all pairs of alternatives x and y in X, if xPiy, then xPy. In words, there 

should be no individual who always gets his or her way regardless what the other 

individuals prefer.  

Arrow summarizes his justification for these conditions as: “they express the 

doctrines of citizens’ sovereignty and rationality in a very general form, with the 

citizens being allowed to have a wide range of values” (Arrow 1963; 31). Now we are 

stating Arrow’s Impossibility Theorem.  

Arrow’s Impossibility Theorem (1951/1963): For a finite number of individuals and 

at least three distinct social alternatives, there is no SWF f satisfying conditions U, P, 

I, and D. The theorem is often described as stating that for any SWF f satisfying U, P, 

and I, there is a dictator.  

Some discussion will help understand these conditions imposed by Arrow. Condition 

D seems indispensable for a democratic society; dictatorship appears to contradict the 

spirit of democracy. Condition U also seems to capture an essence of democracy in 
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that it requires the social choice procedure to be able to take into consideration all 

individual preference orderings no matter how ‘odd’ they are; no one is to be 

disenfranchised just because his or her preferences do not sit well with other people's 

preferences. Condition P seems reasonable –a society that doesn’t prefer the 

unanimously strictly preferred alternative can hardly be called a society governed by 

the citizens.8  

Condition I is more complicated than the other conditions. It requires the SWF to be 

“informationally parsimonious.”9 When it comes to x vis-à-vis y comparison, for 

instance, the social preference should take into consideration only the individual 

preference orderings of x and y. Sen (1970, ch7) describes Arrow’s I condition as 

having two aspects: the “irrelevant” aspect and the “ordering” aspect. Firstly, the 

social preference between two alternatives should be only determined by the 

individuals’ preferences between them; for example, individuals' preferences 

concerning ‘irrelevant’ alternative z should not enter the social preference between x 

and y. Secondly, only the alternatives’ rankings matter, that is, only the information 

about which alternative comes first in their ordering is admissible. Construed this 

way, this condition is not as straightforward as the other conditions. As a matter of 

fact, there are many SWFs that are in violation of condition I, one of them being a 

social choice method called Borda method. In Borda’s method: for m alternatives, 

each individual voter assigns numeric point m to her most favorite alternative and 1 to 

                                                 
8 But it doesn’t come without a problem. Sen (1970b) offered a critique of P in his famous Lady 

Chatterley’s Lover example, showing the weak Pareto principle can conflict with an individual’s 

right. In short, the example involves a cases where x is socially preferred to y by one person’s 

right, y is socially preferred to z by another person’s right, but by weak Pareto z is socially 

preferred to x, resulting in a social preference cycle.  
9 Gaertner 2006; 18. 
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her least favorite one. Each alternative’s points are added up and the one with the 

most points wins. Consider a very simple society consisting of two individuals and 

three alternatives. Suppose the society is concerned with the two following profile 

〈Ri〉 = 〈R1, R2〉  and 〈R’i〉 = 〈R’1, R’2〉 :  

  Profile 〈Ri〉  Profile 〈R’i〉  

 1       2      1       2 
           ========      ========= 
 a       b    a       b  
 c       a      b       c 

 b       c    c       a  
 

Concerning the preference over a and b, each individual has the same preference 

ranking of a and b in the both profiles 〈Ri〉 and 〈R’i〉 ; the first individual prefers a to 

b and the second prefers b to a in both of the profiles. Then condition I requires the 

social preference between a and b to be same for the both profile. However, the 

society using the Borda method would have the following result: 

 For profile 〈Ri〉: the Borda count of a = 5 > the Borda count of b = 4, so aPb.  

 For profile 〈R’i〉: the Borda count of a = 4 < the Borda count of b = 5, so bP’a.  

So we can see that the Borda method violates condition I. What happens is that the 

Borda method take into consideration some information about how far the relative 

distances are between the positions of alternatives in the profiles, while condition I 

strictly prohibits the use of such information. Also, in the Borda method, something 

about interpersonally comparability is assumed. Each voter gets equal weight in the 

Borda method in that the most favored alternative gets the count of m for any voter. 

So the Borda rule is a way of making interpersonal comparisons (Sen 1970, Roberts 

2005). The “ordering” aspect and the “irrelevant” aspect of I jointly have the effect of 
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excluding the irrelevant alternatives and the interpersonal comparison of ordinal 

preferences of individuals together. 

Sen (1970) proposes the incorporation of richer information than individual 

preferences into Arrow’s original framework. In this ‘information enriched’ approach 

to social choice, individual preferences are represented not as orderings but as utility 

functions that denote utility of individuals in alternative states by numerical 

representation. Instead of a SWF, we have a social welfare functional (SWFL) f 

mapping utility representations into a social ordering. In this framework, Arrow’s I is 

equivalent to the conjunction of the two conditions: Independence of Irrelevant 

Utilities (IIU) and Ordinal Non-Comparability (ONC).10 They can be seen as formal 

statements of what are excluded by the two aspects of I, as we saw in the Borda count 

example. We will have more discussion on Sen’s information enriched framework 

and various forms of measurability and comparability in §2.4. 

The proof for Arrow’s theorem has been extensively explored in social choice 

literature and there are a number of different proofs. Arrow’s original proof is in 

Arrow (1963). Geanakoplos (2005) provides three elegant and easily accessible 

proofs for the theorem. A diagrammatic proof for Arrow’s theorem can be found in 

Blackorby, Donaldson, and Weymark (1984). Also Gaertner (2009) contains a readily 

accessible exposition of a number of different versions of the proof for the theorem.  

Arrow’s theorem is often considered as having dramatically shown the difficulty – an 

‘impossibility’ – with aggregation procedures. Appreciating the gravity of its 

implication, many have been led to apply the theorem to another areas that call for 

                                                 
10 See, for example, Hammond and Fleurbaey (2004).  
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aggregation procedures. One of such attempt is made to the problem of theory choice 

by Okasha (2011)’s recent work in philosophy of science. Let us turn to the question 

whether the Arrovian result obtain for theory choice. 

2.3 Skepticism about Theory Choice  

Recently Okasha (2011) explored the possibility of applying Arrow’s theorem to 

theory choice. He argues that there is a formal analogy between social choice and 

theory choice, and hence that the Arrovian impossibility result in social choice also 

applies to theory choice. In this section, we will examine whether theory choice is 

sufficiently analogous to social choice and whether the theory choice analogues of 

Arrow’s conditions are motivated. 

2.3.1 Analogy between Social Choice and Theory Choice 

There seems an analogy between social choice and theory choice. The analogy is that 

candidate theories in theory choice are like the alternatives in social choice; and that 

the theory choice criteria in theory choice are like the individuals in social choice. We 

may see that theories are ranked by each criterion just like candidates are ranked by 

individual voters. Just as there is a problem of aggregating individual preferences into 

an overall social preference of the alternatives in social choice, there seems to be a 

problem of aggregating theory rankings by each criterion into an overall ranking of 

the theories in theory choice.  

As we saw in §2.1, Kuhn recognized challenges to theory choice, especially when 

there are multiple criteria against which competing theories are to be compared. The 

primary source of these difficulties was the fact that the theory choice standards in 

question often conflict with one another. One theory can be better than another in one 



 

 39 
 

dimension, (for instance, simplicity), but worse in another dimension, (for instance, 

fit).11 Assuming that this can happen with regard to any standard, we can readily 

construct a case of the Condorcet paradox for theory choice, as shown in Table 2 

below. Then, assuming that Arrow’s conditions are met in the case of theory choice, 

we may extrapolate the Arrovian impossibility into theory choice, and are thus 

justified in concluding that there is no reasonable (in Arrow’s sense) procedure for 

maximizing the different standards of scientific merits. The upshot would be that if 

there is no way of getting around Arrow’s impossibility, then there seems to be no 

rational algorithm for theory choice. If this is true, then, as Okasha points out, theory 

choice will have to face much more serious problems than Kuhn worried about in 

theory choice. Let us examine whether it is indeed the case that an analogue of 

Arrow’s theorem holds in theory choice.    

  Simplicity Fruitfulness  Accuracy  

  =============================== 

        X           Z          Y  

      Y           X          Z 

       Z           Y          X 

 Table 2: a Condorcet Paradox analogue for theory choice 

2.3.2 Applying Arrow’s Theorem to Theory Choice 

Okasha (2011) argues that the conditions imposed by Arrow on social choice are well 

motivated, or at least not unreasonable, impositions in the domain of theory choice.  

Non-dictatorship  

                                                 
11 Baumann (2005), for example, observes this ‘non-linearity’ of multiple dimensions. Although he 

does not explicitly mention the results from social choice theory but his concept of non-linearity 

reflects what is called ‘double-peaked’ of preference profile in social choice. 
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Let us first consider the non-dictatorship condition (D). The analogue of D for theory 

choice would be that there should be no ‘dictatorial’ criterion. Violation of this 

condition would mean that there is a particular dictatorial criterion of theory choice 

such that if a theory comes out to be better than another with respect to that criterion, 

then that theory is just to be chosen as the overall winner regardless how it fares with 

respect to the other criteria. Suppose simplicity is such a dictator criterion. This 

would imply that a ridiculously simple theory saying “Everything true is true” is the 

best theory because it is the simplest, regardless of the fact that it has no merit in 

terms of informativeness. Clearly, this result is undesirable. Theory choice algorithms 

presumably must factor in all dimensions of evaluation.  

At this point, however, one might wonder - for example a 'hardcore' empiricist - why 

accuracy (fit-to-the-data) shouldn't be a dictatorial criterion in a strong sense. She 

might argue that if a theory fits the observed facts perfectly then it is a decisive reason 

to choose that theory regardless of how well it fares with other standard. Or, a more 

moderate empiricist might argue that accuracy should be at least a lexicographic 

dictator - i.e., choose a theory that has maximum accuracy and, when theories are in 

tie with respect to accuracy, then move on to the other criteria to use them as tie-

breakers. In either case, one who is rooted in empiricism would conclude that 

accuracy assumes a special status in theory choice - something like a 'benevolent 

dictator' - hence condition D is not motivated in theory choice.  

Okasha provided a plausible response to this kind of question. The answer lies in the 

phenomenon called overfitting. Overfitting is a phenomenon that occurs when one 

fails to distinguish between noise and genuine information in the observed data. In 
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most of the cases the observed data is noisy, so the theories that fit the data ‘too well’ 

have likely failed to distinguish the true information from the noise; this is likely to 

result in poor performance in predicting future data.12 Then it is reasonable not to take 

accuracy as a dictator criterion, even on the grounds that are compatible with 

empiricism. The attempt to relax condition D on the basis of empiricism like above is, 

then, unmotivated.    

Unrestricted Domain 

The analogue of the unrestricted domain condition (U) for theory choice would be 

that a theory choice algorithm should handle all logically possible profiles of theory 

rankings with respect to the theory choice criteria. Okasha takes this condition to be 

well-motivated in theory choice. He argues that it would be absurd for a theory choice 

procedure to favor or disregard particular patterns of theory rankings.  

In his recent paper, Morreau (2015) argues that U does not apply to theory choice, 

while noting that the rich domain condition (R), a weaker condition than U, may 

apply to theory choice. Shortly we will have discussion on R. For now let us focus on 

U condition.  

At first blush, U might appear to apply to theory choice. As Okasha (2011) suggests, 

it might seem like a reasonable imposition that there should be no a priori restrictions 

on what profiles are admissible and what not to theory choice rule.13 Morreau (2015) 

argues this is not the case. Once we fix the sense of simplicity to use to rank theories, 

simplicity ranking of two theories is invariant regardless of data. Consider the context 

of statistical model selection, for example. Suppose model LIN claims that the true 

                                                 
12 See Forster and Sober 1994. We will have further discussion on this point in Chapter 3.  
13 In response to Morreau (2015), Okasha (2015) concedes that U does not apply to theory choice.  
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relation between random variables x and y can be represented in the form of 

“y=ax+b”, and model PAR claims that the true relation can be represented in the form 

of “y=ax2+bx+c”. In this case, once the relevant sense of simplicity is fixed as the 

number of parameters, then LIN is simpler than PAR no matter what.14 The simplicity 

ranking between LIN and PAR could not be reversed in any possible situation; the 

simplicity ranking is rigid. The strength ranking of theories also seems rigid in some 

cases. If strength of a theory is defined as the set of its logical consequences, in case 

where the set of one theory’s logical consequences is a proper subset of the set of 

another theory’s logical consequences, the second theory will come out be stronger 

than the former no matter what.15 Hence, Morreau argues, the admissible profiles for 

system choice are fairly restricted, so U is not applicable to theory choice.   

Rich Domain 

It is now agreed that Unrestricted domain is not required for the Arrovian 

impossibility; something strong enough is required, that is, the domain should be 

diverse enough (Kelly 1978; ch7, Pollak 1979; 76-7, Campbell and Kelly 2002; 64-5, 

for example). For example, the so-called Pollak diversity condition requires that, for 

any logically possible profile over three ‘hypothetical’ alternatives (x, y, z), then there 

exist three alternatives (a, b, c) such that the profile restricted to that triple coincide with 

the profile over the hypothetical triple. Morreau (2014a, 2015) elegantly subsume 

Pollak’s pioneer work and similar studies on diverse domain conditions under Rich 

domain (R) condition. Morreau defines a pattern as a list of weak orderings of some 

                                                 
14 We also need to assume that the coordinate system for the two models is fixed. See Priest 1976 

for an argument that curve-fitting is susceptible to language dependence problem.  
15 However, there are problems with measuring strength in this way. I will discuss it in §4.3 and 

§5.5. 
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set of logical variables (not actual alternatives). A profile is said to realize a pattern if 

there is a matching between a set of variables in the pattern and a set of alternatives in 

the profile. Morreau’s Rich domain condition is: A domain is rich if for every 

suitable pattern P of three variables, there is some profile in this domain that realizes 

P. In words, a domain is rich if orderings of three alternatives are showing patterns 

which coincide in one way or another with all possible orderings of three 

hypothetical, not actual, variables. According to R, what should be unrestricted in 

theory choice is the patterns of variables. This rich domain, along with the other 

suitably modified analogue16 of Arrow’s condition, is enough to give a rise to a 

variant of the Arrovian impossibility.  

As we saw, U does not apply to theory choice. Rich domain (R) may or may not 

apply to theory choice.17 But literature in social choice and theory choice (Parks 

1976, Pollak 1979, Hammond 1976, Kemp and Ng 1976, Roberts 1980, Rubinstein 

1984, Feldman and Serrano 2008; Morreau 2014a, 2015) shows that even if U is 

replaced by R (or some similar conditions in early literature), a variant of Arrow’s 

impossibility theorem obtains provided the strong neutrality condition (SN), a 

stronger version of I, is met. That is, simply weakening U to R in theory choice does 

not open up an escape route from the Arrovian result. Shortly we will have discussion 

on SN and possible escape routes from the Arrovian impossibility. For now, let us 

continue to examine the theory choice analogues of the conditions for Arrow’s 

theorem.   

                                                 
16 It is Strong neutrality condition (SN). Shortly we will have discussion on it.  
17 Morreau (2014a) provides an illustrating example for R in theory choice. See §5.2 for further 

discussion.  
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Weak Pareto 

The theory choice analogue of the weak Pareto condition (P) would be that if a theory 

fares better than another under every criterion, then that theory is the winner. This 

seems a well-motivated analogue. As briefly noted, there has been inquiries about the 

adequacy of P in social choice concerning a potential conflict between individual 

rights and P (Sen 1970b, for example). In the domain of theory choice, no such 

concerns seem to arise because the theory choice standards are not like agents with 

power to exercise their rights as in Sen’s critical discussion on P. It seems plausible 

that theory choice procedures have to respect unanimity among the theory choice 

criteria.  

Independence of Irrelevant Alternative 

The theory choice analogue of Independence of irrelevant alternatives condition (I) 

would be that if two theory merits (standards) profiles agree with each other on the 

pair of two theories, then the theory choice procedure must have the same preference 

on that pair. For example, if two profiles agree on the orderings of T1 and T2 with 

respect to the theory choice criteria, than the resultant overall ordering of theories 

should not depend on the presence or absence of a third, irrelevant alternative theory 

T3. Suppose T1 comes out better regarding accuracy and informativeness and worse 

regarding simplicity and fruitfulness than T2, and a theory choice algorithm ranks T1 

above T2 in their overall theoretical merit ranking. Then I in this example would 

mean that the algorithm should produce the same overall ranking whenever any two 

competing theories exhibit the same ranking patterns as above. This condition seems 

reasonable because presumably it would not make sense to allow the overall ranking 
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of T1 and T2 to be affected by something other than their own rankings with respect to 

the theory choice standards.    

At first blush, the theory choice analogues of the four social choice conditions seem 

reasonable. From this, Okasha suggests, we can infer that the Arrovian impossibility 

result will arise for theory choice as well. 

2.3.3 The Nihilistic Result Regarding Rational Theory Choice 

If the Arrovian impossibility obtains for theory choice, how serious problem would it 

be for theory choice? If an analogue of Arrow's impossibility results holds in theory 

choice, it would mean that theory choice cannot be rational, at least in its ideal sense. 

Assuming that the conditions imposed by Arrow are all reasonable, and that the 

theory choice analogues of them are motivated in theory choice, one would face a 

gloomy conclusion that there is no coherent theory choice algorithm.  

It is at this point that Okasha makes an important observation about Kuhn’s ‘no 

unique algorithm’ thesis about theory choice and the implication of Arrow’s theorem 

regarding theory choice. As we saw in §2.1.2, Kuhn says that there is no determinate 

and unique theory choice algorithm. Even if the scientists in question share the same 

criteria for theory choice, they may very well give different weights to different 

criteria. Each of them is justified in using their own weight metric. So, in a sense, 

there are ‘too many’ legitimate algorithms, and we have no objective and 

'transcendent' ground to determine which algorithm is more appropriate. Upon 

applying Arrow’s theorem, we now have the result that there is ‘no’ consistent 

algorithm at all. As Okasha describes, Kuhn makes theory choice very difficult, and 

Arrow makes it impossible.   
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When Okasha’s observation is coupled with Arrow’s theorem, an even more radical 

irrationalism about theory choice can be drawn than Kuhn’s view about science. 

Kuhn at least admitted the possibility of consistent theory choice relative to a given 

paradigm during the “normal science” phase.18 The Arrovian result for theory choice, 

however, implies that even during the normal science phase within a paradigm, there 

is no rational and consistent procedure for theory choice. This appears to deal an even 

more devastating blow to the rationality of science than that of Kuhn. 

2.4 An ‘Escape Route’: Cardinalism with Comparability  

Solutions have been suggested to the Arrovian impossibility in the literature of social 

choice theory. Probably one of the most commonly discussed solutions is to adopt 

Sen (1970)’s ‘information enriched’ approach by implementing different 

measurement scales for individual preference. Recall that Arrow's original 

characterization of social choice is informationally impoverished - it only allows 

information about ordinal rankings of alternatives. Okasha (2011) proposes, with 

some caveats, that this notion of information broadening can be an escape route from 

the Arroviam impossibility in the context of theory choice - it could potentially 

salvage the rationality of science. Following his lead, I will examine if the said route 

is indeed open to theory choice as Okasha proposes in this section. First, I will 

introduce Sen’s extended framework in which we can utilize more information than 

Arrow’s framework. Then I will have a brief discussion on the possibility of relaxing 

Universal domain condition of Arrow and the Arrovian impossibility in the single-

profile framework. The rest of the chapter will focus on the possibility of cardinally 

                                                 
18 Kuhn (1970)  
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measurable comparability between theory choice criteria, drawing on the literature in 

statistical model selection. This will lead us to Chapter 3. 

2.4.1 Sen’s Information Enriched Framework: Measurability and 
Comparability 

An immediate response to the threat of the Arrovian impossibility would involve the 

use of the cardinal measure of preferences. Here is a possible line of response: In the 

restaurant example in §2.2, very limited information was used. The only information 

admitted to use in the aggregation procedure was the orderings of the restaurants by 

individuals, that is, the ordinal rankings of the alternatives. But can we not use richer 

information about individual preferences? For instance, couldn’t it be the case that the 

intensity of Alf’s preference of x to y is far greater than Charlie’s preference of y to x? 

If it is the case that Alf is a very sensitive gourmet whereas Charlie cares little about 

what he eats as long as he gets fed, then we may justifiably give more weighting to 

Alf’s preference than Charlie’s. Furthermore, the intensity of their preferences may be 

represented with some numerical values. Provided that such a measure of individual 

preferences is available, then, it might seem to be a perfectly reasonable procedure in 

which the winner is the alternative that has the greatest sum of utilities across 

individuals. This might serve as an escape route from the Arrovian impossibility, one 

might think. 

This line of thought is on the right track but is still missing a very important element: 

interpersonal comparability. Let me illustrate the point with a simple example. The 

procedure of getting the sum of individuals’ cardinal utilities may be represented as 

follows:  
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where ui are utilities that individuals get from the alternative in question and λi are 

weightings to individuals. If we are to give equal weight to everyone, then λi = 1 for 

every i (‘Benthamite’ utilitarianism). If we are to give unequal weights to individuals, 

as in the example of one person being a very sensitive gourmet and another being a 

dull person, then of course λi will get different values for different individuals 

(weighted utilitarianism). Note that both specifications of utilitarianism presuppose 

that individual values λi are individually measurable and comparable across 

individuals.19  

At this point, it would be convenient to introduce a framework in which we can 

utilize the formal characterizations of various types of utility measures and 

comparability. Sen’s ‘information enriched’ framework provides such a framework. 

Sen (1970) generalized Arrow's model to incorporate information richer than just 

orderings of alternatives. Morreau (2014b) and List (2013) provide a thorough 

overview of the framework and recent developments. The following presentation is 

largely taken from them.    

In Sen’s framework, the preferences of individuals are presented not simply as 

orderings Ri but as utility functions Ui that map the alternatives onto real 

numbers: Ui(x) is the utility that i obtains from x. A utility function Ui contains at 

least as much information as an individual preference ordering because we can reduce 

it to an ordering by putting xRiy if Ui(x)≥Ui(y). Given different utility functions can 

                                                 
19 Gaertner (2009) gives a readily accessible overview of the topic.  
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be reduced to the same ordering, using utility functions generally delivers more 

information than orderings. In Sen’s framework, a preference profile is a list of utility 

functions: 〈Ui, … , Un〉 . Instead of a SWF, now we have a social welfare functional 

(SWFL) f mapping each profile onto a social weak ordering of the alternatives.  

In terms of utility information, it is usual to view utilities as being ordinal or 

cardinal. In the literature of social choice, the idea of the invariance transformation 

(Roberts 1980, 2005) is generally used to represent various types of utility measures 

formally. An invariance transformation ϕi has the property that ϕi(Ui) is 

informationally equivalent to Ui. As we saw above, ordinal utility means that utility 

information defines an ordering of alternatives - the levels of utility can be ordered - 

but no more, in a way that the ordering is given a numerical utility representation by 

assigning higher utility to more preferred alternative. So, if preferences are to be 

measured as ordinal utility, invariance transformation ϕi would be strictly monotonic 

transformation. Cardinal utility delivers more information than just the ordering of 

alternatives, say, ‘intensity’ of preference. More specifically, if preferences are 

measured on a cardinal scale, then the relevant invariance transformation would be 

positive affine transformation: ϕi(Ui) = αiUi + βi, where αi >0.20  

One important finding in social choice was that having cardinal utilities is not by 

itself enough to avoid an impossibility result. In addition, utilities have to be 

interpersonally comparable. (Sen 1970; ch8). Sen (1970) and Kalai and Schmeidler 

                                                 
20 In social science, an interval scale is the frequently used type of cardinal scale. A nice analogy is 

the concept of temperature. Suppose the difference in temperature between a and b is two times 

as much as the difference between c and d. This information remains same independently of 

whether we measure their temperature in Celsius or Fahrenheit. This is because moving from 

Celsious to Fahrenheit is simply applying a positive affine transformation to the Celsius values. 
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(1977) show that if no interpersonal comparisons of preference are permitted, then the 

impossibility conclusion of Arrow’s theorem remains true, even if Arrow’s ordinal 

interpretation of individual utility is replaced by a cardinal interpretation.   

The claim that Alf’s utility is comparable to Betty’s utility implies that we can assign 

certain weights to individual utilities. In the context of cardinal utilities, we have to be 

able to say something like “A certain loss of utility in Alf can be compensated (i.e., 

can be traded for) by an equal gain in utility by Betty.” This statement expresses 

comparisons of utility intervals in different alternatives between individuals. For 

example, only under circumstances such as these can classical utilitarianism be 

achieved through an interpersonal comparison in which the individual cardinal 

preferences are summed into an overall social preference. In the context of ordinal 

utilities, the relevant comparability would be the utility level comparability across 

individuals. For example, Rawlsian utilitarianism requires comparison of utility levels 

of the worst-off individual in each alternative state. The upshot is that the Arrovian 

impossibility still obtains if there is no interpersonal comparability (Sen 1970, 1986, 

Hammond 1976, Roberts 1980, d’Aspremont and Gevers 1987). Formally,21   

Ordinal measurability with no interpersonal comparability (ONC):  

Two profiles 〈U1, U2, …,Un〉  and 〈U’1, U’2, …, U’n〉  contain the same information 

whenever, for each i ∈N, U*i = φi(Ui), where φi is some positive monotonic 

transformation, different for different individuals. 

Cardinal measurability with no interpersonal comparability (CNC):  

                                                 
21 See Roberts 1980 for a clear exposition of different types of measurability and comparability. In 

this dissertation I follow List (2013)’s characterization. There is essentially no difference between 

minor differences in notations.  
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Two profiles 〈U1, U2, …,Un〉  and 〈U’1, U’2, …, U’n〉  contain the same information 

whenever, for each i ∈N, U*i = aiUi + bi, where the ais and bis are real numbers 

(with ai > 0), different for different individuals. 

The finding in social choice theory is that, even under CNC (and ONC as well), 

if there are three or more alternatives in X, there exists no SWFL satisfying U, P, I, 

and D. So, cardinality alone cannot open up an escape route from the Arrovian 

impossibility.  

As mentioned earlier, Arrow’s I condition is equivalent to the conjunction of ONC 

and IIU (Hammond and Fleurbaey 2004). Here is a statement of IIU:22  

Independence of irrelevant utilities (IIU): For all alternatives x and y in X, and all 

utility profiles 〈Ui〉  and 〈U’i〉 , if 〈Ui〉  and 〈U’i〉  coincide restricted to the pair x and 

y, then f〈Ui〉  and f〈U’i〉  should coincide restricted to that pair.    

In words, if IIU requires social preferences over a subset of a pair of social 

alternatives to depend only on utility levels on this subset, and not at all on utilities at 

any other alternatives of X. So this captures the “irrelevant” aspect of I in Sen’s 

framework.   

One cannot simply claim that there exists interpersonal comparability. She needs a 

theoretical justification and/or empirical demonstration of existence of such 

comparability. Does such a justification or demonstration exist? This is the question 

we will investigate in this chapter and also in chapter 4 in the domain of system 

choice. For now, let us briefly examine differences in Arrow’s and Sen’s perspectives 

                                                 
22 From Hammond & Fleurbaey 2004, with some changes on notations to fit the notation in this 

dissertation. 
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on measurability and comparability. This examination will shed a light on what we 

should seek for if we were to escape from the Arrovian impossibility.   

Arrow himself was a firm believer in ordinalism, the idea that the only meaningful 

form of preference is ordinal preference because cardinal utilities are not observable. 

In the same vein, he was also a denier of interpersonal comparability. What he says 

about cardinal interpersonal comparability is worth noting:  

The oldest critique of social choice theory ... is that it disregards 

intensity of preference. Even with two alternatives, it would be 

argued that a majority with weak preferences should not 

necessarily prevail against a minority with strong feelings. The 

problem in accepting this criticism is that of making it operational. 
Theoretically, is there any meaning to the interpersonal comparison of 

preference intensities? Practically, is there any way of measuring them, 

that is, is there any form of individual behavior from which the 

interpersonal comparisons can be inferred? (Arrow 1984; 172, my 

emphasis)  

The emphasized part is of the most importance. Arrow himself is aware that allowing 

interpersonal comparison provides an escape route from his impossibility theorem; 

the problem is, for him, there is no theoretical or practical ground for the 

interpersonal comparison for it to be used in aggregating personal preferences. So we 

are left with the question of what the interpersonal comparison amounts to.  

According to Sen, there is at least some form of interpersonal comparability we can 

make sense out of. For example, it is sensible to say that Emperor Nero's gain from 

burning Rome was outweighed by the loss on the part of all the other Romans, and 

that the grounds for saying something like this result from an (somewhat loose form 

of) interpersonal comparability of utilities. An ethical observer would say the state 

where Nero fiddles is socially less preferable in comparison to the state where Nero 
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does not.23 We cannot precisely pinpoint how these comparisons are to be made, Sen 

argues, but it is at least meaningful to state that the latter is better than former.24  

This Sen–Arrow debate on interpersonal comparability deserves a separate 

discussion, but for the purposes of this dissertation it is sufficient to note that it is 

very important for us to ask what this comparability consists in and where it comes 

from, if we are to avoid Arrovian impossibility. More importantly, if we want to 

escape from the Arrovian impossibility in the domain of theory choice, it is 

imperative for us to seek out and justify a similar type of comparability between 

theory choice standards. This is what Okasha (2011) explored. Inter-criterial 

comparability in theory choice is probably the most interesting and promising escape 

route, but there seem other possible routes from the Arrovian impossibility too. So, let 

us explore some of them first, and then move onto the question of comparability. 

2.4.2 A Possible Response: Relaxing Condition U? 

As mentioned in §2.3.2, Morreau (2015) observes that U is not motivated in theory 

choice. The simplicity and strength rankings of theories, at least in some cases, are 

rigid; their rankings could not be different than they actually are. So, one might hope, 

dropping U in theory choice might open up an escape route. But this is not necessarily 

the case. Let us see why.  

                                                 
23 Sen (1999) 
24 This example expresses partial comparability. Roberts (2005) suggests an aggregation procedure 

in the case of partial interpersonal comparability. If social ranking were to be made by just sum of 

utilities, then the case of partial comparability will generate an incomplete ordering. Alternatively, 

if the expected sum of utility differences between alternatives is used, based on a probability 

distribution over utility functions capturing degrees of belief of individuals, then complete social 

ranking of alternatives can be made (requiring some conjectures, of course, about degree of 

beliefs).   
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Rich domain (R) may or may not apply to theory choice (Morreau 2014a gives a toy 

example that R applies; but it remains to see whether R applies to the realistic context 

of science). But the literature in social choice (Parks 1976, Pollak 1979, Hammond 

1976, Kemp and Ng 1976, Roberts 1980, Rubinstein 1984, Feldman and Serrano 

2008) show that even if U is replaced by R, a variant of Arrow’s impossibility 

theorem obtains provided the strong neutrality condition (SN), a stronger version of I, 

is met. That is, simply weakening U to R in theory choice does not open up an escape 

route from the Arrovian result. Here is a statement of Strong neutrality condition25:  

Strong Neutrality (SN): For all w, x, y, z in the set of alternative X, and for all profiles 

〈Ri〉  and 〈R’i〉 ,  

If, for every i in N, [xRiy iff zR’iw] and [yRix iff wR’iz], then [xRy iff zR’w] and [yRx 

iff wR’z].  

As we can see, SN is more stringent than I. I requires consistency for each pair of 

alternatives separately. Figuratively speaking, I means that when the social welfare 

function aggregates individual orderings, it should take each pair of alternatives 

separately, paying no attention to preferences for alternatives other than the pair in 

question.26 I requires consistency between two profiles over a pair each time; it leaves 

possibility that different pairs might be treated differently. For example, when 〈Ri〉  

and 〈R’i〉  coincide on x and y, and the individuals exhibit the exactly same pattern of 

                                                 
25 See, for example, d’Aspremont and Gevers (2002; 493–494). They provide the formal definitions 

of Intraprofile Neutrality (IAN) and Strong Neutrality (SN), which clearly indicate that the 

latter is the stronger condition than the former. This is, roughly put, because SN requires social 

choice rule to be consistent over different pairs across different profiles and IAN requires 

consistency over different pairs within a profile. Given IAN is a special case of SN (when two 

profiles are equated), SN is the stronger imposition on a social choice rule than IAN.  
26 See Morreau (2014b)’s illustrative examples on this point.  
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preference orderings on z and w as they do on x and y, what I requires is that the 

social preference ordering of two profiles should agree on the pair of x and y, and 

agree on the pair of z and w, separately. But I does not require that the social ordering 

of two profiles are same across the pair of x and y and the pair of z and w. As it should 

be clear now, it is SN that precisely requires such consistency across different pairs.  

In theory choice, is the analogue of SN motivated? SN is a fairly strong condition, 

and in social choice, it has the effect of forbidding social choice procedure from using 

non-utility information.27 In theory choice, the analogue of SN would require that 

theory choice procedure should only use information about how well theories fare 

with respect to the theory choice criteria; for example, the identity of theories should 

not enter the procedure. It seems unclear whether SN applies to theory choice. On the 

one hand, we can think of some examples where other kinds of information seem to 

be allowed in theory choice procedure. If two theories, for example a descent of 

Darwinianism and a descent of Creationism, are in competition, scientists may take 

into consideration information about the theoretical lineage of the two theories. Or, 

scientists working in different branches of science may judge theories in different 

contexts of interest. On the other hand, it seems to desirable that theory choice 

procedure is as ‘neutral’ and consistent as possible, for theory choice to be rational in 

the most common and intuitive sense of the term. So, we don’t seem to have 

theoretical or empirical ground for outright rejection or acceptance of SN in theory 

choice. Noting the matter of SN in theory choice remains to be seen, let us continue to 

explore another possible escape route from the Arrovian impossibility. 

                                                 
27 The view that individual utilities should be the only basis for deriving social preferences is 

called welfarism. Sen, among many others, offered critique of the view in Sen 1979.     
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2.4.3 A Possible Response: the Single-Profile Framework? 

As we saw in §2.2, Arrow's impossibility theorem is concerned with how social 

choice rule is to generate a social ordering over a set of alternatives for every 

logically possible profile of individual preferences over the alternatives.28 However, 

in actual situations, there is only one profile: the actual profile of how individuals 

actually prefer the alternatives. So, it may seem that, in a given actual situation, social 

choice rule only needs to generate a social ordering for one fixed, actual profile. 

Based on this consideration, some claimed that Arrow's nihilistic conclusion should 

be rejected (Little (1952), Samuelson (1967)) because the conditions imposed by 

Arrow are defined in the multi-profile framework. According to these objectors of 

Arrow, individual preferences are given and social choice procedure only need to 

determine the best alternative given those individual preferences; and if individual 

preferences change then we just have “a new world and a new order” (Little 1952; 

423-424). Requiring social choice rule to be sensitive to all logically possible profiles 

like Arrow did is just “an infant discipline of mathematical politics” rather than that 

of appropriate welfare economics, hence we should “export Arrow from economics to 

politics” (Samuelson 1967; 42). 

In response to objections like above, literature in social choice theory in the late 

1970’s and early 1980’s showed the single-profile variants of Arrow’s theorem 

obtains for a fixed preference profile if the profile is diverse enough and the intra-

profile counterparts of Arrow’s inter-profile conditions are met (Fishburn 1973, Parks 

1976, Hammond 1976, Kemp and Ng 1976, Pollak 1979, Roberts 1980, and 

                                                 
28 See, for example, Geneakalpolos (2005)’s the extensive use of I condition in his proof for the 

theorem, which requires social choice procedure to be consistent across the many non-actual 

profiles. See also Gaertner (2009) on the same point, for another example 
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Rubinstein 1984; See Suzumura 2002 and Feldman and Serrano 2008 for historical 

overview). It is now agreed that there are single profile analogues of all the results 

given in the multi-profile framework, provided suitably constructed single-profile 

conditions are met (Pollak 1979; 86, Sen 1977; 1564, Rubinstein 1984; 726).  

Precisely the conjunction of SN and R, with other conditions being met, is what is 

needed to derive the single-profile analogue of Arrow’s impossibility. A statement of 

the single-profile variant of SN, sometimes called Intra-profile neutrality (IAN) is 

obtained by, in the original statement of SN: 

Strong Neutrality (SN): For all w, x, y, z in the set of alternative X, and for all profiles 

〈Ri〉  and 〈R’i〉 : If, for every i in N, [xRiy iff zR’iw] and [yRix iff wR’iz], then [xRy iff 

zR’w] and [yRx iff wR’z]  

equating the two profiles 〈Ri〉  = 〈R’i〉 :  

Intra-profile Neutrality (IAN): For all w, x, y, z in the set of alternative X, and for any 

profile 〈Ri〉 : If, for every i in N, [xRiy iff zRiw] and [yRix iff wRiz], then [xRy iff zRw] 

and [yRx iff wRz]. 

The following single-profile impossibility theorem has been proven in the literature 

of social choice:  

If there are more than two alternatives, there is no SWFL f that satisfies R, P, IAN, 

and D. 

In Chapter 5, we will revisit the concept of the multi-profile framework. In that 

chapter, it will be shown that some possible solution to the aggregation problem I 

raise for the domain of system choice does not work because the solution fails to 
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recognize that there is the single-profile variant of Arrow’s impossibility. Now let us 

move on to the more important possible escape route: inter-criterial comparability. 

2.4.4 A Possible Escape Route in Theory Choice: Inter-Criterial 
Comparability 

One possible escape route from Arrovian impossibility in social choice discussed 

earlier involves the use of a cardinal function together with well-justified 

interpersonal comparability. Assuming that social choice and theory choice are 

formally analogous, it is natural to seek the same type of escape route in theory 

choice. Theories are ranked by each dimension of scientific virtues just as alternatives 

are ranked by each individual in the society. Just as we ultimately need interpersonal 

comparability of cardinal preferences in social choice, we likewise need inter-

dimensional comparability of scientific virtues in order to save theory choice from 

Arrovian impossibility. Given this, it is important to inquire as to what it is that 

makes different scientific virtues comparable or commensurable, if they are. 

What would it be like to have such inter-criterion comparability in theory choice? 

That there is cardinal inter-criterion comparability implies that theories are measured 

on a cardinal scale for each criterion and that there is an exchange rate between 

criteria. Again, for example, one theory can come out to be better than another with 

respect to accuracy but worse with respect to simplicity; informativeness of a theory 

can be increased by sacrificing simplicity; and so on. Cardinal comparability in this 

context would mean then that we can justifiably make judgments like “This amount 

of loss in simplicity can be compensated for with that amount of gain in accuracy.” 

To put it different way, this would mean something like “The metric for trade-off, 

i.e., the exchange ratio, between simplicity and accuracy is such-and-such.” With this 
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kind of “recipe” for the trade-off between standards, theories can be compared in a 

consistent way. Inter-theory comparison requires that we can compare theories using 

certain weights assigned to each standard. This is the same kind of comparability we 

discussed in the case of interpersonal comparability in social choice. In what follows 

we will inquire about (cardinal) inter-criterion comparability.  

A Case for Comparability between Simplicity and Accuracy 

It may seem reasonable to assume that theories can be measured on a cardinal scale 

for at least some of the criteria. Simplicity of a theory could be measured by how 

many axioms it has, how many ontological basic kinds it assumes, or the number of 

freely adjustable parameters if they are defined on parameter space, etc. Accuracy is 

often measured in terms of statistical fit. Informativeness of a theory could be 

measured by the range of its scope in the context of quantified study. This seems to 

suggest that the cardinal measurability of the criteria is, at least in some cases, 

plausible. We will have further discussion on this in Chapter 4, but for now let us 

assume that it is a plausible idea.  

But this idea is less straightforward than it seems, especially when it comes to the 

matter of rates of exchange between the criteria. Take simplicity and fit, for instance. 

It is difficult to see how to make sense of the inter-criterion trade-off between them. 

First of all, there seems to be no single determinate use of each criterion, as Kuhn told 

us. Also, different criteria are implemented for different reasons. Simplicity has been 

considered to be a theoretical virtue, for a variety of reasons. Simplicity is often 

valued for epistemic reasons, e.g., cognitive costs, computational limitations, and so 

on. Occam’s razor is commonly mentioned as a justification for using simplicity as a 
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theory choice criterion. Accuracy is often required by a spirit of empiricism – given 

that the most important source of our knowledge is experience, a good theory must fit 

the data well. Now, the trade-off between simplicity and accuracy presupposes the 

exchange rate, which in turn requires a common scale on which each of them can be 

measured. How can there be such a common scale for such vastly different criteria in 

its nature and justifications? 

Okasha (2011) explores a case for inter-criterial comparability in the statistical model 

selection literature. For example, consider we are comparing different models making 

different claims about the relationship between two random variables x and y. 

Suppose some models fit the data better than others; some models are simpler than 

others, and so on. We would need a principled method to select the best model among 

them. The literature on statistical model selection provides a wide variety of model 

selection methods, some of which express some form of comparability between 

different criteria, namely accuracy and simplicity. One typical example of such 

methods is Akaike Information Criteria (AIC). AIC tells us to choose the model that 

has maximum AIC score:  

AIC score of model M = LogLikelihood of model M – the number of parameters in 

M.  

The first term may be understood as accuracy and the second simplicity (or 

complexity). Then, assuming log-likelihood and the number of parameters can be 

measured on a cardinal scale, this may be viewed as a case for cardinal measurability 

with unit comparability between simplicity and fit. Drawing on this, Okasha suggests 
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that at least in the domain of statistical model selection like above we have a case for 

cardinal comparability.    

At first blush, Okasha seems right. But we need careful analysis of the said 

measurability and comparability. We need to deal with the important questions like: 

What can ground a rate of exchange for trade-off between criteria expressed in some 

statistical model selection methods? What exactly do different terms mean in the 

methods? What underlies the exchange ratio displayed by them? These are the 

questions I will discuss in the next chapter. 

Conclusion 

In this chapter, we have examined aggregation problems in the domain of social 

choice and theory choice. First we discussed Arrow’s impossibility theorem 

(1951/1963) which says there cannot exist any reasonable procedure of aggregating 

individual preferences into a social preference. Following Okasha (2011)’s lead, we 

explored if the analogue of Arrow’s impossibility theorem obtain in the domain of 

theory choice. For this, we have carefully examined formal statements of the theorem 

and its conditions. Then we examined if the theory-choice analogues of Arrow’s 

condition are motivated. The result was that the analogues seem to obtain in theory 

choice, with a caveat that condition U does not apply to theory choice but probably its 

weaker counterpart R does. Weakening U to R does not necessarily open up an 

escape route from the Arrovian impossibility, if condition I can be strengthened to 

SN. It is not perfectly clear if SN applies to theory choice but we saw some 

motivation for thinking it does. Also, we saw that there are single-profile variants of 

Arrow’s impossibility theorem. It seems that probably the clearest and most 
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promising escape route from the Arrovian impossibility for theory choice would be to 

make a case for inter-criterial comparability, in Sen (1970)’s extended framework. In 

particular, we discussed some form of inter-criterial comparability expressed in some 

statistical model selection methods, for example Akaike Information Criterion. We 

asked where the comparability in AIC comes from. We will answer this question in 

the next chapter, by examining technical details and assumptions of AIC. 
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Chapter 3: An Answer to the Question about the 
Trade-Off 

Introduction 

As we saw in the previous chapter, the Arrovian impossibility in social choice theory 

appears to pose a threat to a common notion of scientific progress. The problem at 

hand is that we want the procedure of theory choice to be that of maximizing overall 

theoretical virtues. The required procedure of aggregating theoretical virtues, 

however, appears to be subject to the Arrovian impossibility. Just as cardinal 

interpersonal comparability provides a solution to Arrow’s impossibility in social 

choice, it was suggested that inter-criterion comparability can serve as an escape 

route from the Arrovian impossibility in theory choice. The question now before us is 

how to make the different theoretical virtues commensurable. To provide a solution to 

this problem, we must answer the following questions: What is the exchange ratio for 

inter-criterial trade-off, and where does it come from? For example, is there a way to 

measure the amount of simplicity that would need to be increased in a theory to 

compensate for a certain amount of decrease in accuracy? Can these two virtues be 

measured by the same metric so that trade-offs are possible between them?  

In this chapter, I will discuss an exemplar answer to these questions, appealing to the 

model selection problem in statistics as Okasha did. I will provide explication of 

statistical model selection problem and its implications. There is an abundance of 

literature about statistical model selection that covers a wide range of domains. In this 

thesis, I will focus on a particular case of the model selection problem: the curve-

fitting problem. The curve-fitting problem is a contemporary version of the long-

standing problem of induction. This will serve as an exemplar case for the question at 
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hand because it involves conflicting virtues and attempts to resolve these conflicts by 

making trade-offs between those virtues. By examining how the trade-offs in question 

are derived and used in statistical model selection, we may discover an escape route 

from Arrovian impossibility for theory choice. 

3.1 Statistical Model Selection and Its Philosophical 
Implications 

It is often said that all scientific theories are underdetermined by the evidence because 

the finite amount of observed data (i.e., evidence) is compatible with infinitely many 

logically possible theories.29 This problem of underdetermination has been one of the 

most important questions in philosophy of science because it poses a threat to the 

rationality of science, especially regarding theory choice. Hoping to resolve this 

problem, philosophers have shown significant interest in recent developments in 

statistics, and in particular statistical model selection criteria, by which statisticians 

choose models against the observed data. If we can discover well-founded theoretical 

justifications for statistical model selection criteria, and if these justifications are 

applicable to theory choice, then we would have an appealing solution to the problem 

of finding a case for inter-criterial comparability discussed in the previous chapter. 

Statistical model selection criteria have drawn a number of philosophers’ attention, 

including, but not limited to: Sober and Forster (1994), Forster (2002), Mulaik 

(2001), and Kieseppä (1997, 2001a, 2001b), discussing statistical model selection 

criteria and their philosophical implications. This is where Okasha (2011) spots a 

promising solution to Arrovian impossibility. In this chapter, I will first explain 

                                                 
29 The famous Duhem-Quine thesis. (Duhem [1914] 1954;187, Quine 1951;42-3) 
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model selection problems, making use of examples from the curve-fitting problem. I 

will then discuss theoretical justifications for statistical model selection criteria. In 

particular, I will focus on a particular criterion called the Akaike Information 

Criterion (AIC) and its theoretical justifications. 

3.1.1 Statistical Model Selection Problem 

A statistical model is a family of probabilistic functions or hypotheses with the same 

number of parameters. For example, suppose a biologist studies the size of fish (y) in 

a lake. She considers various hypotheses that purport to explain y: from the very 

simple hypothesis that y is not affected by anything, to the very complex one that y is 

affected by everything in the lake. These infinitely many hypotheses may be grouped 

into families depending on how many factors they claim affect y. Hypotheses that 

claim y is determined by one factor, say, the lake’s average oxygen level (O), may be 

grouped together. Those that claim that y is determined by two factors, the average 

oxygen level and the average water temperature (T), may be also grouped together as 

another family. And so on. Individual hypotheses within a group will agree on which 

factors affect y, though they may disagree on how significantly the assumed factors 

affect y. Let us suppose that the researcher considers the following models, which 

differ based on the number of factors considered by each: Model 1 holds that the size 

of the fish is determined by the lake’s average oxygen level; Model 2 holds that the 

size of the fish is determined by the average oxygen level and the average water 

temperate; and Model 3, in addition to the two factors included in Model 2, holds that 

the average water velocity (V) also affects the size of the fish. In addition to setting up 

models, there is something else that the researcher will have to consider. In almost all 
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cases, the observed data involves some noise, or measurement errors. Assuming that 

these measurement errors are normally distributed, each model needs to introduce the 

presence of random error ε, meaning that each model corresponds to a certain 

probabilistic function. Then each of the above models claims that the true relation 

between y and the factors it involves is in the following form, and that one of its 

members specifies true values for the parameters (βi) of the factors:  

Model 1: y = β1O + ε 

Model 2: y = β1O + β2T + ε 

Model 3: y = β1O + β2T + β3P + ε 
Note that these three models differ with each other in different aspects. First of all, 

their degrees of simplicity differ. There are different ways of measuring simplicity in 

statistics, but one common way is to have simplicity be measured by the number of 

adjustable parameters. This is because it represents how many factors are needed for 

specifying a member in the model.30 In the above example, Model 1 is simpler than 

Model 2 because the former model has fewer free parameters than the latter. Models 

can also differ in their degrees of fit. A model’s fit is generally measured by its 

likelihood, the joint probability of the observed data according to an element of the 

model in question. In general, the best-fitting element within the model is used to 

measure the model’s likelihood.31 

Characterized in this way, model selection process is a two-step process.32  

Step 1: A statistical model M is chosen;  
Step 2: A member of the model M is chosen.  

                                                 
30 See, for example, Kieseppä (2001b) for a clear exposition on this point.  
31 The set of parameter values of the best-fitting element in a model is called Maximum Likelihood 

Estimate (MLE).  

32 The following discussion on model selection problem and curve-fitting problem are largely drawn 

from Sober and Forster (1994), Kieseppä (2001b)’s characterization of them.  
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Step 2 is not so controversial – the rational choice in Step 2 would be, without much 

question, the member of M that ‘fits’ to the observed data best after M has been 

chosen in Step 1. The difficult question is how to choose M in Step 1, especially 

given the possibility that models fare differently when equipped with different 

virtues.33 This is where the model selection criteria come into play. A variety of 

model selection criteria have been suggested. One criterion that has drawn 

philosophical attention is the Akaike Information Criterion (AIC). This criterion will 

be discussed in §3.2. It will be useful to examine model selection methods in a 

sufficiently specific context. The context of curve-fitting problem provides such a 

useful framework. So, let us examine the problem of curve-fitting in detail. 

3.1.2 The Curve-Fitting Problem  

The problem of curve-fitting is a special case of the model selection problem. 

Suppose an experiment on the relationship between X and Y has been conducted34 and 

its result is plotted in the figure below, with the dots representing observed data 

points.   

 
Fig 2. Curves with different complexity (from Grünwald 2005)  
 

                                                 
33 One might wonder, probably in the spirit of empiricism, why not just choose the model displaying 

the maximum model likelihood in Step 1. As discussed in the previous chapter, doing so entails 

accuracy is a dictatorial criterion. As will be discussed shortly, accuracy as a dictator is harmful 

particularly due to the phenomenon of the over-fitting.  
34 In the case of experimental science. In the case of observational science, an observation would have 

been made.  
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What can be said about the relation between X and Y? Here we aim to make 

generalized statements concerning the observed data as well as unobserved data. Such 

generalization may be graphically represented as a curve. In the above figure, we can 

see different curves imposed on the same data. They can be understood as different 

claims about the relationship between the variables in question. We may name a 

linear curve LIN, which can be seen as the claim that all X values have a certain linear 

relationship with all Y values; PAR that all Xs are in a parabolic relation with Y; CUB 

a cubic relation, and POLY-9 a polynomial of the degree of nine; NONE says there is 

no relation whatsoever between them. In this way, a curve can be viewed as a 

generalized statement about X and Y. As a toy example, we might consider a curve as 

a theory.35 

The problem of underdetermination is vividly underscored in the context of a curve-

fitting problem such as this. The observed data alone cannot decisively tell us which 

curve to choose. Most scientists would avoid POLY-9; they would pursue simpler 

theories. At the same time, no scientist of sound mind would pursue NONE, although 

it is the simplest theory in the sense that it has zero adjustable parameters. So here we 

can observe a conflict between the two scientific virtues: simplicity and accuracy. To 

recap, in the context of the curve-fitting problem, a curve can be seen as a specific 

scientific claim about the relation between variables; simplicity plays a particular role 

in the curve-fitting process, so does accuracy, and the observed data alone doesn’t 

appear to determine which curve to choose.  

                                                 
35 Sometimes a pure inductive generalization becomes a significant law or theory (e.g., Chargaff’s 

rules about DNA). Other interesting examples would be the law of definite and multiple proportion and 

the law of Mendel, which were discovered by observation and induction and explained by theories 

(Dalton’s atomic theory, and chromosomal theory, respectively).   
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As in the model selection problem, we can utilize the concept of models in the 

context of the curve-fitting problem. To reiterate, a model is a family of the curves 

that possess the same number of adjustable parameters. In the context of the curve-

fitting problem, for instance, all linear curves have the same number of free 

parameters (in the form of y=ax+b, so that there is one adjustable parameter, a.36) 

Therefore, they can be said to belong to the same family, namely, LIN. Likewise, all 

parabolic curves belong to PAR family (in the form of y = ax2+bx +c), cubic ones to 

CUB, and so on. Characterized this way, as in the model selection problem, the 

curve-fitting problem is a two-step process: one must choose a model, then choose a 

particular member of that model.   

It is worth discussing why models are to be used in the curve-fitting problem. One 

might wonder whether Step 1 is necessary. The answer is that using models provides 

us with a natural measure of simplicity. Note that particular curves with its 

parameters being filled with specific values do not have free parameters because their 

values are already specified (or ‘saturated’). Therefore, without characterizing them 

in terms of models, there is no objective way of ranking the simplicity of different 

curves (for example, “Because this straight line looks simpler to me than that curve 

does” wouldn’t work.).37 Once we use the language of models, then there is a natural 

measure of how much simpler one model is than another. The interval of simplicity 

between LIN and PAR is one unit of simplicity, as PAR has one more adjustable 

parameter than LIN; a member from LIN is two units simpler than that from CUB, 

and so on. 

                                                 
36 Usually the Y-intercept b is not considered as a parameter because b can be readily factored out by 

rescaling. 
37 This point is taken from Sober and Forster (1994).  
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3.1.3 Model Selection Criteria  

Now we need to examine model selection criteria. There is a great variety in 

statistical model selection methods, but here we are going to discuss two broadly-

construed conceptual frameworks. This categorization is drawn from Sober and 

Forster (1994). The first is the Best Case strategy, and the second is the Akaikean 

framework. 

3.1.3.1 Best Case Strategy 

The Best Case strategy operates as follows. First, find the best case in each family 

(LIN, PAR, etc.,) with respect to the observed data. Then compare those best cases 

with each other, in terms of how well they match the observed data. The one which 

fits the data best among them is the best case, and hence the model that contains it is 

the best model.38 

The accuracy of a curve can be measured in different ways: it may be measured by 

the squared sum of the discrepancy between the data and the curve [Sum of Square: 

SOS]; or by the conditional probability of the observed data, given the curve 

[Likelihood], if the curve represents a particular probability density function. Which 

measure we choose to adopt will have little effect on our discussion. Mostly I will use 

likelihood as a measure of accuracy. One thing to be noted is that referring to a case 

as “best” means that it is the best with respect to the observed data. Note that, in most 

cases, bumpier curves fit the observed data better than simpler ones. In the earlier 

example, let’s say H1, H2, H3, and H4 are the best cases of the model LIN, PAR, CUB, 

and POLY-9, respectively. H4 falls exactly on all the observed data points; H1 

                                                 
38In statistics, Maximum Likelihood Estimate method is a typical example of the Best Case strategy 

described here. 
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through H3 do not (and they cannot, precisely because they are not bumpy enough). In 

this case, the Best Case strategy yields the model POLY-9 as the best model. The 

Best Case strategy will almost always pick a very complex model as the best one. The 

Best Case strategy has long history in statistics, and it is useful in certain contexts of 

statistical estimation, but it may not be an appropriate solution to the curve-fitting 

problem. 

3.1.3.2 The Overfitting Problem  

The Best Case strategy runs the risk of overfitting. Overfitting is a phenomenon that 

occurs when we fail to distinguish between noise and genuine information in the 

observed data. Models which are too simple are likely to fit too little of the data. If we 

opt for more complex models, then we have more ‘degrees of freedom’ to fit the 

observed data. So, it is generally a wise move to select more complex models. 

However, as mentioned earlier, the process of collecting data almost always involves 

some noise. It could be due to observation errors, or unobserved latent factors, or the 

stochastic nature of measurement due to indeterministic characteristics of nature, (if 

there are any). It doesn’t matter where errors come from; what matters is that the 

existence of such errors should be taken into consideration in the curve-fitting. 

However, the models that fit the data ‘too well’ have likely failed to distinguish the 

true information from the noise.39 This is the risk of overfitting. The Best Case 

strategy almost always selects the most complex model. However, given that data 

points involve noise or measurement errors, the most complex curves might not be 

the best curves, for the reasons put forward above.  

                                                 
39This tension between ‘fit too little’ and ‘fit too well’ is exactly what underlies the phenomenon 

called bias-variance tradeoff in statistics. See Forster (2001). 
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Overfitting is particularly problematic when it comes to prediction. A curve which is 

extremely bumpy but that exactly matches the data would perform badly in predicting 

the future data from the same population because it is likely to have committed 

overfitting. Assuming that noise is normally distributed, if we repeat the same 

experiment, then it is likely that a slightly different set of data will be observed; the 

result can be somewhat different every time. This means that, when a curve “overfits” 

the present data, it will most likely not fit the future data. Therefore, a bumpy curve 

that exactly matches the data will likely possess poor predictive accuracy. To recap, 

since the Best Case strategy only concerns accuracy as its model selection criteria, it 

will most likely end up with the most complex model among the models under 

consideration. Given this, it runs the risk of overfitting, which results in poor 

predictive accuracy.  

An Analogy. Consider the following analogy. Bruce, a speedster whose sole criterion 

for car choice is average top speed, wants to buy a new car. He has an unlimited 

budget. Doing some market research, he realizes that it is not a good idea to make 

comparisons between every single individual car, since there are simply too many to 

compare. Instead, Bruce considers classes of cars: a class of $10K and below, a class 

of $10K - $20K, a class of $20K - $30K, and so on. Which class would be the best 

choice for Bruce? One might think that Bruce should choose the most expensive class 

and then pick the best car within that class. After all, he has an unlimited budget.  

However, this would probably be a very bad idea. The key to this is the phenomenon 

of overfitting. Suppose that Bruce decides to select the most expensive class of car. 

He drops by a dealer that carries the most expensive cars like luxury sports cars, test 
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drives them on the test track prepared by the shop, and then picks the one that marks 

the best speed record on those test runs. Unfortunately, this car will most likely not 

mark a good top speed on the usual roads, which have pot holes, hills, curves, and so 

on. Bruce’s choice is ‘overfitted’ to those particular test runs. By opting for the most 

expensive class of car, Bruce was given too large a degree of freedom to fit the 

particular test runs and consequently he ended up with a car (say, a Formula One car) 

that runs too well on the particular occasions he observed. Had Bruce chosen a 

somewhat moderate class of car and made a choice within that class, he would have 

had less room to tailor-fit his preferences to the particular test runs, but instead the 

chosen car would likely mark a much better overall top speed than the Formula One 

car. An important lesson for Bruce in this analogy is that, even when Bruce has an 

unlimited budget, the best choice for him may be to restrict himself to a somewhat 

lower class of car. This is fundamentally due to the fact that the only resources 

available to Bruce are particular test runs on a certain track, from which he has to 

make an inference about how well a given car will perform under all possible road 

conditions. In other words, he is with epistemic limitations with respect to how well a 

given car will run on the roads that he has not experienced. 

3.1.3.3 Akaikean Framework and Akaike Information Criterion: an answer to 

the question of the trade-off 

The Akaikean framework is a model selection framework with a predictive point of 

view.40 This framework is based on a consideration of what the purpose of modeling 

is and what models are to be used for. In the Akaikean Framework, (Forster and 

Sober 1994, Kieseppä 1997) the primary purpose of statistical modeling is not to 

                                                 
40 The term ‘Akaikean Framework’ is drawn from Kieseppa 1997, Sober and Forster 1994. 
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accurately describe current data.41 Rather, in the framework, the purpose of statistical 

modeling is to predict future data as accurately as possible. Akaike’s model selection 

criterion, the Akaike Information Criterion (AIC), is designed to maximize such 

predictive accuracy. AIC has drawn philosophers’ attention for its interesting 

features.42 The most important feature of AIC for our present purpose is that it seems 

to provide a specific exchange ratio between the different virtues of models. It tells us 

to choose a statistical model M that has the minimum in the following AIC formula:  

AIC formula: –2[Maximum Log‐Likelihood Estimate of M] + 2[number of 

parameters of M].   

Rephrased to give a simpler reading by reversing the signs, this formula gives us a 

score of the predictive accuracy of the model in question:  

AIC score of model M = [MLE of M] - [the number of parameters of M].  

The AIC rule can be characterized as follows:  

AIC rule: Choose the model that maximizes AIC score.  

What is noteworthy about AIC is that it seems to express a specific exchange ratio for 

the trade-off between fit and simplicity, if we understand likelihood as fit and the 

number of parameters as simplicity. On this understanding, what AIC effectively says 

is “sacrificing one unit of simplicity can be compensated only when doing so will 

                                                 
41 In the Akaikean framework, estimating the “true distribution” is given lower priority. In most of the 

cases, there is no significant difference between the point of view of inferring the true structure and 

that of making a prediction if the size of data is large enough. However, in modeling based on a finite 

quantity of real data, there is a significant gap between these two points of view, because an optimal 

model for prediction purposes may differ from one obtained by estimating the “true model.” See 

Konish & Kitagawa (2007; ch1) for further discussion. 
42 The original formulation of AIC can be found in Akaike 1974. For an accessible, technical 

discussion of AIC, see Anderson and Burnham 2002, and Konish & Kitagawa 2007. Forster 1995; 

353-4, Kieseppä 1997; 23. For philosophical implications of AIC, see Sober and Forster 1994, Forster 

1995, and Kieseppä 1997, 2001a, 2001b. 
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increase fit by one unit or more.” This seems to be the exact kind of comparability 

required in order for theory choice to escape the Arrovian impossibility, as we saw in 

§2.4. In this way, AIC seems to answer the questions we asked at the end of the 

previous chapter: What is the exchange ratio between the virtues? The answer is: it is 

a one-to-one ratio (in AIC’s specific sense of simplicity and fit). We also have a 

partial answer to the second question, regarding where the trade-off comes from, that 

is, what drives such a specific form of trade-off. The phenomenon of overfitting is 

what drives the form of trade-off specified in AIC. Simplicity and fit (in AIC’s 

specific sense) are made commensurable in terms of their degree of contribution to 

the predictive power of a theory, and it is how much they contribute that determines 

the specific ratio expressed by AIC. To discover exactly how much simplicity and fit 

contribute to the predictive power of a theory, we have to look at what justifies the 

exchange ratio displayed in AIC. We will go over the proof for the AIC formula and 

its related assumptions in what follows. 

3.2 Akaike Information Criterion 

Two things must be noted before we proceed. First, in the Akaikean framework, one 

is not concerned with accuracy with respect to the observed data; rather, one is 

concerned with the distance to the true curve from the fitted curve. The true curve is 

the curve that is assumed to have ‘generated’ the observed data.43 Understanding this 

difference is important. Second, the actual estimation process in the Akaikean 

framework involves some correction for the risk of overfitting. For now, it suffices to 

                                                 
43 Statisticians who don’t wish to commit themselves to the existence of such ‘true curve’ often uses 

the term ‘quasi-true curve’ meaning the curve that is speculated to have generated the observed data. In 

§5.6, I will discuss the concept of true curve in the context of the Best System Analysis.  
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note that the Akaikean framework involves the process of such a correction. The 

details of this will come later.  

Let us now examine how the curve-fitting problem is approached in the Akaikean 

frame work step-by-step. The following is drawn from Sober and Forster 1994, and 

Kieseppä 1997.  

The derivation of AIC is largely composed of three parts. The first part is to define 

the distance between two given curves or probability distributions. Of particular 

interest to us will be the distance of a given curve to the true curve. The second part is 

to define a model’s predictive accuracy in terms of the average distance between the 

true curve and the model’s best curves with respect to every possible data set 

generated from the true curve. The third part is to derive a statistical estimation of the 

model’s predictive accuracy. 

3.2.1 Part I: Kullback-Leibler Divergence as Distance Between 
Curves 

In what follows let us adopt a God’s eye view. That is, in the Akaikean frame work, 

models are not evaluated merely with respect to the particular observed data, but 

rather with respect to all possible data along with the curve that generates the 

observed data.  

First of all, we are going to assume that each curve is composed of a deterministic 

part and a random error part. For example, a curve in the form of y = ax + b is to be 

understood as [y = ax + b + Error]. In this case we can say that each curve, including 

the true curve, defines a certain probability distribution function [p.d.f]. Let θ be a 

hypothesized curve and θ0 be the true curve. The p.d.f defined by each of them can be 

represented as: f(·|θ) and f(·|θ0).   
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One natural way of understanding θ and θ0 would be that θ is a working hypothesis 

that we want to test against the observed data, and θ0 is the true curve under which 

that data has been generated. Crudely speaking, θ is a specific theory tested in 

relation to the data, and θ0 is the truth.  

Now we are going to define the distance, or divergence, between a given curve and 

the true curve. A curve defines a certain probability distribution, and the same holds 

for the true curve because it is also a curve. Given this, in order to evaluate how good 

our hypothesis θ is, we will need to measure the divergence of θ’s probability 

distribution from θ0’s probability distribution. There are different ways of measuring 

this, and here we are going to use a distance metric called the Kullback-Leiber 

divergence.     

Kullback-Leibler divergence. In the present example of curve-fitting, we have data 

points. For each data point, we can see how probable the given point is under 

hypothesis θ. Also, and importantly, we from a god’s eye view can see how probable 

the same data point is under the true curve θ0. Note that the true curve is not 

deterministic – i.e., it will generate probabilistically different data every time we 

make an observation.  

Then, for each of the observed data points, we can obtain the ratio of its probability 

under θ and θ0. For example, take one observed data point, y1. Suppose it is observed 

to have a certain value, a1. Now, suppose that θ says the probability of obtaining 

y1=a1 is 0.8; and θ0 says that the probability is 0.9. In this case the ratio of the two 

probabilities is 0.8/0.9 = 8/9. Given this, we may say that θ is quite close to θ0, with 

respect to y1. Now, take another data point, y2, and obtain the ratio of θ and θ0, with 



 

 78 
 

respect to y2. Repeat this procedure over all observed data, and obtain the final 

average. As a result of this procedure, we can obtain the weighted average ratio of the 

probability distributions defined by θ and θ0.44 This ratio can be a natural index of 

how far our hypothesis θ is from the truth θ0, i.e., the distance between θ and θ0. 

(Note again that this distance is defined with respect to a set of data.) This way of 

measuring the divergence between the two probability distribution has been suggested 

by Kullback and Leibler (1951):  

K-L divergence DKL between the probability distribution P andQ:  

DKL(P || Q) =  

Also note that the law of large numbers will apply here. That is, the more data points 

we have, the more information we have about the accurate ratio between θ and θ0.45  

Each of the observed data points contains some reflection of the true curve. However, 

since the true curve is itself probabilistic, the reflection cannot be perfect, that is, 

some level of noise is involved. Our theory θ says how much each data point reflects 

the true curve. Given this, there can be a discrepancy between what θ says and what 

θ0 says. Such a discrepancy can be considered to be the distance between θ and θ0. 

When θ = θ0, the discrepancy will be minimum (i.e., zero).46 In other words, when θ 

= θ0, θ comes to have the maximum reflection (information) of the true curve. If θ is 

not equal to θ0, then there is a loss of information in proportion to the distance from θ 

                                                 
44 Strictly speaking, we don’t just take the average ratio over the observed data points. We take 

logarithm of each ratio and then obtain the average of them, so that the result behaves like distance. 
45 But note that the term “distance” should not be taken literally. The Kullback-Leibler distance is not 

symmetric because it is a measure of the expected value weighted by the presumed probability 

distribution; so, when reversed, we have different weightings by a different distribution. Therefore, DKL(P 

|| Q) ≠ DKL(Q || P). 

46 Konish and Kitagawa (2007). 
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to θ0.47 In this way, we have defined the distance between any given curve and the 

true curve. 

3.2.2 Part II: Predictive Accuracy of a Model 

The curve-fitting problem is a two-step process. The choice of model should be made 

before a particular member of a model is chosen. The basic idea of measuring the 

worth of a model is as follows: First, pick a representative curve of a given model and 

then evaluate how well it represents that model. Use the Best Case strategy for 

picking a representative curve. This means that one should pick the representative 

curve based on the observed data. Let us name the best curve chosen based on the 

observed data Best Casew.r.t. the observed data. Now, measure the distance between Best 

Casew.r.t.the observed data and the true curve with respect to every possible data set, and 

obtain the average of them. That is, obtain the distance averaged over all possible 

data.  

We have selected our representative curve solely based on the observed data. 

However, when we repeat the same experiment again, we will most likely observe 

somewhat different data. This suggests that Best Casew.r.t. the observed data may not fare 

well when it comes to predicting future data, because the future data will be 

somewhat different from the extant data.48 And this was precisely why the Best Case 

strategy runs the risk of overfitting. Now, the degree to which future data will differ 

                                                 
47 This idea of information loss in substituting θ for θ0 is expressed in the exactly same form as 

Shannon Information Entropy, which is one of the most important formulae in information theory. This 

is why Akaike’s method has Information in its name, AIC – Akaike Information Criteria. 
48 One might also give a counterfactual analysis of the situation. That is, the same true curve that has 

generated the observed data could have generated different data. Had it been the case, then we would 

have chosen another curve as Best Case than the one we chose in the actual world. Although this 

reading makes a good sense, this counterfactual reading requires much heavier assumption that the 

normality assumption made by AIC. This point will be discussed in more detail in Chapter 4 on David 

Lewis’s best system account of lawhood.  
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from our current data is of course governed by the probability distribution of θ0 – the 

true curve. This means that when we go through the averaging process over all 

possible data, we need to obtain the weighted average according to the probability 

distribution of θ0. This average – the weighted average distance between Best Casew.r.t 

each data set and θ0 over all possible data sets – is called the predictive accuracy of a 

model, in the sense that it can serve as an index of the average performance of a given 

model in predicting future data independently of which data set happens to be 

observed. That is to say, this average can serve as an index of how good a given 

model is from a predictive point of view. 

3.2.3 Part III: Estimating Predictive Accuracy of a Model 

Our discussion so far has taken place from a god’s eye view. The concepts discussed 

so far, i.e., distance to the true curve and the predictive accuracy of a model, require 

the probability distribution defined by the true curve, θ0. In reality, however, θ0 is 

unknown because the only available resource is the observed data and the best curve 

associated with that data. In light of this, we need a way to acquire a reliable estimate 

of the predictive accuracy of a model from the best curve, with respect to the 

observed data.  

Akaike (1974) proposed a formula for acquiring such an estimate, which is as follows 

(rephrased using the terms I have been using in earlier sections): 

AIC value of the Model M 

= [Log-likelihood of the Best Casewith respect to the observed data of M – the number of 

adjustable parameters in M]. 
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Akaike proved that, based on certain normality assumptions, the predictive accuracy 

of M can be reliably estimated by AIC value of M. (See §3.2.4 for discussion on 

assumptions; see §3.3 for a proof) So, the above AIC value can serve as a good 

estimate of the predictive accuracy of M. Naturally, Akaike's model selection 

criterion would then require us to choose the model that has the highest AIC value.  

The two terms that appear in the above equation needs some explanation. The first 

term amounts to the statistical fit (i.e., accuracy) of the best member within M. This 

reflects the fact that, in statistical model selection, our resources are limited to the 

observed data, (which is a sample of the population). Although it is imperfect, the 

observed data is a reflection of θ0, at least in some aspects.49 Given this, we have no 

better alternative than to use the best available tool relative to the observed data, i.e., 

Best Casew.r.t. the observed data. This explains the appearance of the Best Case in the first 

term of AIC.  

Regarding the second term (= the number of adjustable parameters of M): This term 

serves as a penalty for the complexity of M. We now know that the Best Case strategy 

faces the problem of over-fitting. Given this, overcomplexity is a vice. But, at the 

same time, to oversimplify would also be a vice. This means that we need some 

metric for the trade-off between simplicity and fit. Now, AIC provides us with a 

recipe for making such a trade-off. Increasing complexity will only be allowed if it 

significantly increases goodness-of-fit. More specifically, an increase in complexity is 

                                                 
49 Also note that θ0 is just one aspect of the truth; θ0 is assumed to define a certain type of probability 

distribution. So, at least we are working under assumption that the truth can be somehow manifested in 

a certain type of distribution. Under this assumption, we are replacing truth with θ0. 
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allowed only if choosing a model with one more parameters results in more than one 

unit increase in Log-likelihood of Best Casew.r.t. the observed data.        

In sum, under an Akaikean frame work, models are to be evaluated with regard to the 

truth (by the distance from the true curve averaged over all possible data generated by 

the true curve). However, the true curve is not known. So, in reality, we need to 

evaluate models in regard to the observed data, imposing a penalty on the complexity 

of models. 

3.2.4 Assumptions 

Now let us check the assumptions for AIC. Let θ* denote the vector of the true 

parameter values and θ ̂(k) denote the best estimate of the parameter values in the 

model with k parameters. A key assumption of AIC is that the squared distance |θ* – 

θ̂(k)|2 is chi-square distributed with k degrees of freedom. This in turn relies on the 

assumption that θ̂(k) is normally distributed around θ* on the vector space 

representing parameter values (Akaike 1974; 718, 1977; 31, Forster 1995; 353-4, 

Kieseppä 1997; 23, Konish & Kitagawa 1996; 888). More specifically, suppose the 

model M is true in that in this model there is a particular set of the parameter values 

, which corresponds to the true curve. The above assumption says that, 

if we repeatedly measure y values and each time compute an estimate of the true 

parameter values based on the measurement, the estimate will be centered around the 

true values  of the parameters. This assumption is supported by the so-
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called Central Limit Theorem (CLT) (Forster 1995; 354, Konish & Kitagawa 2007; 

51).50  

In addition to the above, if we assume the error distribution is normal (that is, p(y|θ*) 

follows normal distribution), then AIC is valid in most of the cases (Kieseppä 1997). 

Note that the assumption of normal error distribution (e.g., the assumption that the 

data itself is normal in that the observed y values will form a bell curve centered on 

the true value y*) is from the earlier assumption of normal distribution of parameter 

values.  

In short, the essential assumption of AIC is the CLT. Additional, the assumption of 

normal error distribution is needed for wide applicability of AIC. Let us grant both 

assumptions for now. I will revisit the CLT assumption of AIC in Chapter 5 where I 

discuss the AIC-implemented-BSA. 

3.3 Proof for AIC 

Defining Predictive Accuracy. Let’s suppose we made n number of observations of 

Zs controlling for Xs. We are trying find a mathematical relationship between X and 

Z based on the outcome of the experiment by fitting a curve to the data plotted on the 

X-Z plane. (I’m reserving Y for all possible data).  

Let Z be the set of the observed data = {(x1, z1) … (xn, zn)}.  

Let θk be a specific function (curve) within a family k such that θk specifies values for 

parameters of θk = {θ1… θk}. If I don’t use subscript k, it means I am discussing a 

curve in general. Assuming random errors, each θ tells us the probability of obtaining 

each observation to be z1 … zn, given θ. That is, each θ defines its own probability 

                                                 
50 The conditions for the (classic) CLT is that samples are independent, samples are sufficiently 

large, and sample variance is finite. 
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distribution function f(Z|θ).51 Let θ0 be the true curve, and f(·|θ0) be the true 

probability distribution.  

We are going to use likelihood to measure fit-to-the-observed-data. Likelihood of θ is 

the probability of obtaining the observed value given θ. We have multiple data points, 

so we need to compute the joint probability of obtaining the observed values for each 

of z1…zn, controlling for the control variable X. Then, we can define likelihood as 

follows:  

Likelihood of θ, with respect to Z =  

Take logarithm of it, we’ll get log-likelihood of θ:  

 L(θ) =  

Within a given family k, we may find a curve that has the maximum log-likelihood 

with respect to the observed data Z. Call it . In other words, for all θkin k, there is 

no such θkthat has greater L(θk) then L( ). This maximum member is called 

Maximum Likelihood Estimate [MLE]. Note that MLE is defined in regard to a 

certain family k and the observed data Z. 

There are certain conditions to be noted: The log-likelihood function should be k-

differentiable, single-peaked, and meeting some usual conditions for the task of 

finding maximum value. Then, the log-likelihood of MLE of a family k, with respect 

to the data, is  

 L( ) = .  

                                                 
51 In what follows I sometimes use p(Z) instead of f(Z). They mean the same thing, except that the 

former is used for the discrete cases, the latter for the continuous cases. This doesn’t affect our 

discussion. 
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How to get the distance between MLE and the true curve, with respect to the data, 

in a family k: 

In order to evaluate how good the particular MLE that we have chosen with respect to 

Z is, we need to consider the probability of obtaining the observed data Z with respect 

to the probability distribution of all possible data, i.e., the probability distribution for 

Y. In other words, we need to consider the weighted average of log-likelihood of  

- weighted by the probability distribution of Z, which is defined by θ0.Call such value 

the expected log-likelihood of  and denote it by  And this is obtained by 

the following equation: 

 EY [L( )] = dy. 

The above expected log-likelihood is maximum when θ = θ0. Then,   

 –  

is the distance between  and  

Note that the first term will be a fixed value, and that it is zero when θ = θ0. So the 

resultant value of this equation behaves like a distance metric. So, this can be 

considered as the distance between the MLE and the true curve. 

Predictive accuracy of a given family k, as the distance averaged over all possible 

data. 

Now our task is to choose the family that is expected to, on average, yield the largest 

value for  It can be obtained by averaging over all possible data, 

weighted by the probability distribution of Y, defined by f(Y|θ0). 
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So what we need is ExpectationZ [ ], which can be expressed with the 

following equation  

EZ [ ] = dz1…dzn 

This value is called predictive accuracy of a given family k. 

In Akaikean frame work, the criteria for model section is that we have to choose a 

family k that yields highest value of predictive accuracy as defined above. (Again, 

recall that in the current context of curve-fitting, we don’t just choose a single curve – 

we choose a model, or family.) 

So far we have seen somewhat technical definition for the predictive accuracy of 

family K. A scientist’s goal who is utilizing AIC is to choose a K that has best 

predictive accuracy as defined. Back to Bruce the speedster example, he now knows, 

at least in theory, how to ‘measure’ how much good a chosen class of cars will do 

him. But the measurement is theoretically based on the assumption that he a priori 

knows how often he will face which type of road, of all the possible types. Of course, 

he doesn’t have such knowledge in reality. Then, he would better have some rule-

utilitarian perspective: that is, adopt a systematic rule for class choice that is expected 

to yield maximum utility for him, on average; a class chosen by that rule might or 

might not be the ideal one depending on the case, but it is the highest expected utility.     

Deriving an Estimate for Predictive Accuracy. In most of the cases θ0 is unknown. 

Therefore, we need a way to obtain a reliable estimate of the predictive accuracy of a 

given family. AIC holds that the following equation holds:  

 L( ) – k.  
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What this equation implies is that, if we repeat the same experiment over and over, 

picking L( ) every time, on average, the value [L( ) – k] will tend to be equal to 

the predictive accuracy of the family k. In other words, expectation value of [L( ) 

– k] is equal to the predictive accuracy of the family k.  

The proof for this claim is based on the empirical assumption that the numerical 

difference between  and  [the distance defined in earlier subsection] on the 

parameter space follows a chi-square distribution. Note that this is the ‘empirical’ 

assumption. The behaviors of certain parameters on the parameter space are expected 

to show certain patterns, in this case statistical pattern called chi-square distribution – 

but there is no further a priori justification for why they follow a chi-square 

distribution. And this assumption is, as we have seen in §3.2.4, essentially supported 

by the Central Limit Theorem (CLT). It seems safe to assume that other statistical 

methods at their root have assumptions of this kind. We will come back to this aspect 

of statistical model selection in Chapter 5.  

Before we move onto the next chapter, let me provide a diagrammatical illustration of 

the behavior of the distance between θ and θ0 on the different dimensions of 

parameter space. That is, how the distance behaves in different cases of different 

number of parameters. For simplicity, I am going to illustrate a case where the ‘truth’ 

can be defined as a point on three-dimensional space, θ0 on a second-dimensional 

space, and θ on one-dimensional line. (Recall that θ0 is just one aspect of the truth; it 

is only an aspect that is responsible what has been manifested before our eyes. It 

represents an aspect of the truth that is responsible for the relevant domain of data we 

observe.) 
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Fig 3. Graphical Illustration of AIC (From Kruze 1996)  

T* is truth. Fit(M1) and Fit(M2) are the maximally-fitting-to-the-observed-data 

hypotheses (i.e., MLE) in each family. These will be the hypotheses we choose within 

each family. So the distance between Fit(Mi) and T* is what we are interested in 

minimizing. If we decide to go with M2, for example, then Fit(M2) is the hypothesis 

that we end up with; if M1, then Fit(M1). Best(Mi) is the best hypothesis in the family 

i in that it is the closest to the T* within that family. In general, the distance of 

Best(Mi) to T* will be shorter (hence better) as i increases. This distance is model 

error, in that such distance from T* is unique for and inherent in each particular 

model (family). Choosing higher i will result in lesser model error.  

The problem for us, being agents with epistemic limitations, i.e., the only available 

resource being the observed data, is that we don’t know how to obtain the Best(Mi) in 

a given model. In other words, due to measurement error, the distance between 

Best(Mi) and Fit(Mi) varies and we don’t know how far it is for a given data set. Each 

time a set of data pulled from the truth, the location of Fit (Mi) varies. And here 

comes the normality assumption, saying that Fit(Mi) will be normally distributed 

around Best(Mi). In the above example, every time a set of data pulled from T*, 

Fit(M2) will fall on a certain point on the plane; Fit(M1) on a certain point on the line. 
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That point will be normally distributed around Best(M2) and Best(M1), respectively. 

Then, as we can see, the distance between Best(M1) and Fit(M1) is always equal to or 

shorter than the distance between Best(M2) and Fit(M2), no matter which data set we 

pull.  

In short, there is tension between the task of minimizing model error and that of 

minimizing measurement error, so over-complexity will need to be penalized, and 

that is exactly what AIC tells us to do. 

3.4 Another Model Selection Criterion: Bayesian Information 
Criteria 

Let us examine another model selection criteria, Bayesian Information Criteria 

(Schwarz 1978). This section will be just focusing on what the criteria is and what its 

assumptions are. 

A typical Bayesian approach to model selection problems is that we should choose 

the model which has the largest posterior probability. The posterior probability of a 

model M is the probability after the observation has been made. The posterior 

probability of M is determined by 1) how well the observation fits M and by 2) the 

prior probability of M, i.e., the probability assigned to M before the observation has 

been made. The following discussion is drawn from Kieseppä (2001a, 2003). 

Formally, denote the probability distribution of Y (the observed y values) given X 

(the observed x values) and M by prob(Y given X and M). The Bayes theorem is:  

 P(H|E) = [P(H)×P(E|H)]/P(E)   

So, according to the Bayes theorem,  

probability(M given X and Y) = [prior(M)×prob(Y given X and M)]/prob(Y 

given X).  
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We can ignore the term prob(Y given X) in comparing models, so the useful fact in 

the Bayesian framework is that probability(M given X and Y) is proportional to 

prior(M)×prob(Y given X and M). Therefore, the model that has the largest posterior 

probability of M is the one that has the largest value of prior(M)×prob(Y given X and 

M). Then prior(M) is to be fixed and prob(Y given X and M) is to be computed.  

In words, computing prob(Y given X and M) can be done in the following way. 

Within each model M, there are individual curves (in the context of curve-fitting). 

Each of those curve can be presented a set of specific parameters values. For 

example, PAR is a family of the curves in the form of “ ”, so 

each member of PAR can be presented as a list of particular values for ( ). 

Each of this hypothesis is assumed to have a certain probability given PAR. So, if we 

multiply [probability of the observed data given each hypothesis in PAR] by 

[probability of each hypothesis given PAR], we can obtain prob(Y given X and 

PAR). 

Formally, the prob(Y given X, M, and ) is the probability density of 

individual curves in the model M. On the other, for model selection, we need to 

calculate the quantity prob(Y given X and M). For this we first need to introduce a 

prior probability distribution of the parameter values, for a given model M. Such 

distribution can be denoted by prior(  given M). Then this and the 

probability density of individual curves combined are sufficient to determine the 

value of prob(Y given X and M).  

The real question for this Bayesian approach (like any Bayesian approaches) is what 

priors we should assign for models and for the parameter values within a model. That 
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is, what probability distributions we should use for prior(M) and prior(  

given M). Note that neither of them can be determined by consulting to the observed 

data. These are, after all, priors which we assign before we make observations. The 

question about the model prior prior(M) may be answered by assigning the same 

prior probability to all the models in consideration (recall that the model prior is 

assigned before observation). This is quite a common practice and not an 

unreasonable one. What of prior(  given M)?  

Kieseppä (2001a) suggests that our choice of the prior distribution should be based on 

the use of a quantitative measure of informativeness of the prior distribution. That is, 

use the information from the data to contrast the models and identify the model that 

likely generated the data. That is, we observe some sufficiently large data first, then, 

under certain normality assumption, by computing variance and covariance observed 

in data, we can set the prior parameter distribution according to the observed data. 

Konish and Kitagawa (2007; 212) take the same approach. Then, we obtain BIC 

formula, which bears some similarity to AIC:  

BIC score of model M = [MLE of M] - [log n × the number of parameters of 

M].  

Accordingly, BIC rule can be characterized as follows:  

BIC rule: Choose the model that maximizes BIC score.  

Assumptions. As expected, BIC relies on the assumption that, as we repeatedly 

measure y values given x values and each time get an estimate of parameter values 

based on the measurement, the estimate will be centered around the true values 

 of the parameters, assuming the distribution is a normal distribution 
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(Kieseppa 2001a; S148-50, Konish & Kitagawa 2007; 216) This assumption is 

supported by the CLT, as in the case of AIC. 

Conclusion 

In this chapter we have examined the following statistical model selection methods: 

AIC and BIC. They are:  

AIC score of model M = [MLE of M] - [the number of parameters of M].  

AIC rule: Choose the model that maximizes AIC score.  

BIC score of model M = [MLE of M] - [log n × the number of parameters of 

M].  

BIC rule: Choose the model that maximizes BIC score.  

What was interesting about them is that they seem to express a specific exchange 

ratio for the trade-off between fit and simplicity, if we understand likelihood as fit 

and the number of parameters as simplicity. AIC and BIC give different weight to 

simplicity (in the current sense), and Kieseppä (2001a; s151) shows that various 

information criteria can be generally expressed as: 

   [MLE of M] – [f(n)× the number of parameters of M],  

where f(n) can be understood as a kind of weight-giving function for simplicity. This 

seems to provide a range of comparability required in order for theory choice to 

escape the Arrovian impossibility, as we saw in §2.4. Another important point of this 

chapter was that these information criteria ultimately rely on the normality 

assumption, which is supported by the Central Limit Theorem. We will carefully 

examine their philosophical implications in the context of a new problem I will raise 

for the Best System Analysis in Chapter 5. 
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Chapter 4: The Best System Analysis of Laws of 
Nature 

Introduction 

In Chapter 2, I examined whether Arrow’s impossibility theorem in social choice 

applies to theory choice. In Chapter 3, I explored a possible escape route from the 

Arrovian impossibility in theory choice. In particular, I investigated the inter-criterial 

comparability shown in statistical model selection methods. In this chapter, I will deal 

with a philosophical theory of laws of nature: the Best System Account of laws of 

nature. The account seems to invoke an aggregation procedure of different system 

choice standards and it requires an exchange ratio between the standards being 

aggregated. So, the BSA might be susceptible to the Arrovian impossibility. In order 

to find it out, we first need to make the account precise, which is the main task of the 

current chapter. In §4.1, I will examine three different views about laws of nature: 

eliminativism (§4.1.1), primitivism (§4.1.2), and simple reductionism (§4.1.3). The 

limitations of each view will lead us to a more sophisticated reductionism, the Best 

System Account. In §4.2, I will examine the philosophical motivations for the BSA 

(§4.2.1), David Lewis’s characterization of the BSA (§4.2.2), and the underlying 

principle for the BSA: the Humean Supervenience thesis (§4.2.3). I will examine a 

few typical objections to the Humean view about laws: Earman, Tooley, and Carroll’s 

counterexamples (§4.2.4). Examining the objections and responses will help us 

clarify what conception of laws is underpinning the BSA. Then I will assume the task 

of precisifying the key elements of the BSA in §4.3. First I will investigate why the 

BSA defenders do little work on precisifications (§4.3.1 and §4.3.2). Then, by 

examining the objections about the BSA’s reliance on actual standards of science, I 
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will refine what I call the Hope thesis, which turns out to play a very important role in 

the BSA (§4.3.3). In §4.3.4, I will discuss the questions about the BSA’s reliance on 

epistemic standards; namely, what justifies the use of epistemic standards in 

metaphysics. This task will help us clarify the conception of laws the BSA assumes. I 

will then precisify each system choice standard and the balance between them (§4.3.5 

through §4.3.8). I will conclude this chapter suggesting the Arrovian impossibility 

result may apply to system choice for the BSA. 

4.1 Conceptions of Laws of Nature 

The notion of laws of nature is important to both science and philosophy. They are 

important for scientists. Arguably, science aims at discovering laws of nature and the 

concept of laws plays a central role in science. For example, in statistical mechanics, 

the concept of a law plays a key role in differentiating dynamical and logical 

possibilities with respect to a given state space; in astronomy, distinguishing what are 

laws and what not allows to assess competing hypotheses about the origin of the 

universe.52 It is also an important task for philosophers of science to develop an 

ontology of laws and to explicate the role of these laws in science. The notion of laws 

of nature is also essential to many other philosophical issues. For example, laws of 

nature are invoked in the analysis of modal concepts, counterfactuals, causation, 

explanations, the connection between the mental and the physical, and so on. Clearly, 

we need a plausible philosophical account of what laws of nature are.  

But the current philosophical discourse on laws of nature is very complicated. 

Earman (2004) calls it a ‘scandal’, saying  

                                                 
52 See, for example, Roberts (2008) for more examples like this. 
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It is hard to imagine how there could be more disagreement about 

the fundamentals of the concept of laws of nature—or any other 

concept so basic to the philosophy of science—than currently exists 

in philosophy. A cursory survey of the recent literature reveals the 

following oppositions (among others): there are no laws versus 

there are/must be laws; laws express relations among universals 

versus laws do not express such relations; laws are not/cannot be 

Humean supervenient versus laws are/must be Humean 

supervenient; laws do not/cannot contain ceteris paribus clauses 

versus laws do/must contain ceteris paribus clauses. (Earman 2004; 
1228) 

Taking a position in the philosophical debate about laws of nature is closely 

connected to one’s position about other issues in metaphysics and philosophy of 

science: about the fundamental metaphysical structure of the reality, the relation 

between epistemology and metaphysics, the ontological status of theoretical entities 

in science, and so on. More specifically, these debates include debates over the 

metaphysical and epistemological nature of time, space, causation, explanation, 

chance, and so on. It is not easy to neatly categorize different views about these 

issues, but it is agreed that, broadly speaking, there are three possible positions one 

may take.53 One might take an eliminativist position, according to which the entities 

in question are simply non-existent hence can be eliminated from the philosophical 

discourse. Or, one might take a primitivist position that the entities in question are 

fundamental, non-reducible, primitive element of the reality, i.e., they are weaved 

into the fabric of the reality. Philosophers who hold this position support the 

governing-laws conception of laws of nature. Or, one might take a reductionist 

position that there are the entities in question but they can be reduced to other things, 

without remainder. Philosophers holding this position support the non-governing 

conception of laws of nature. Let us examine each of these positions in turn. 

                                                 
53 See, for example, Mumford (2005) for categorization of the three positions.   
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4.1.1 Eliminativism 

Eliminativism about laws of nature is the view that there are no such things as laws of 

nature; laws are neither reducible to other things and nor are they a distinct category 

in their own right. Some philosophers from this camp argue that laws of science, for 

instance, are at best the approximation of truth and are only instrumentally useful 

fictions for a limited set of scientific inquiries. For example, Cartwright (1983) has 

argued that natural processes are not governed by laws and that propositions of laws 

of nature are not true at all, while they sometimes are instrumentally useful as 

descriptions of causal powers. Explanatory laws in physics fail due to their inability 

to correspond to complexity of reality, so the fundamental laws of physics do not 

describe true facts about reality (Cartwright 1980; 865). Some posit that there is no 

plausible account that can provide coherent truth conditions for statements concerning 

laws and that therefore the whole concept of laws of nature should be abandoned. For 

example, van Fraassen (1980) argues that laws as commonly characterized in 

philosophical discourse do not have place in science and none of the existing 

philosophical theories about laws provides an adequate account. He says that the aim 

of science lies in empirical adequacy, not truth. A scientific theory is empirically 

adequate if it truthfully says about the observable features of the world, that is, if it 

“saves the phenomena” (1980; 12). Therefore, he argues, scientific realists are 

mistaken as they claim that what (successful) scientific theories say about laws of 

nature do reflect the objective reality of nature.  Some hold that we may understand 

certain aspects of nature by abstract models but that these don't deserve to be called 

laws (Giere 1999, for example). Some hold a sort of hybrid form of eliminativism. 

For example, Mumford (2004) claims that in the essence of natural properties are 
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there genuine metaphysical necessity properties and relations and we happened to call 

them ‘laws of nature’. But the concept ‘laws of nature’ should be abandoned as it is 

too much infected by the jurisprudential metaphor from the seventeenth century 

(Mumford 2004; 201-5). Mumford calls views like his as lawless realism, in the sense 

that the view endorses certain nomic entities as fundamental, primitive elements of 

the reality but denies that ‘laws of nature’ genuinely refer to them.  

In general, eliminativists about laws of nature share that the statements of laws of 

nature are not genuine claims about objective features of the world, but are just 

descriptions of certain aspects of mathematical, abstract models; there are no 

objective laws of nature corresponding to law-statements. Therefore, they tend to 

claim, the traditional conceptions of laws of nature do no substantial work either in 

science or in philosophy.  

Considering the significant roles that laws of nature play in much of scientific and 

philosophical projects, the eliminativist view strike many unappealing. At least, it 

seems prudent that we wait until we thoroughly investigate the plausibility of the 

alternative views before we resort to the eliminativist view; it seems too hasty to 

conclude that laws of nature are nothing more than an outdated philosophical illusion. 

Also, the concept of laws of nature sometimes plays indispensable roles in science. 

Roberts (2008) present such an example. Statistical mechanics requires a distinction 

between dynamically possible trajectories (trajectories consistent with the underlying 

laws) and merely logically possible trajectories. This distinction enters the definition 

of the statistical measure: that measure must be such that it is invariant under all of 

the dynamically possible trajectories, but it need not be invariant under all of the 
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logically possible trajectories. While examples like this does not decisively show us 

how we should understand the distinction between laws and no laws, Roberts claims, 

it suggests that it is a bit too hasty to merely claim that the idea of a law of nature is a 

just metaphysical leftover from a traditional theological worldview.54 It is a concept 

that does at least some real work in at least some real science, and the philosophical 

problem of explicating it is a legitimate problem for the philosophy of science 

(Roberts 2008; 16). Now let us turn to the second position about laws of nature: 

primitivism about laws of nature. 

4.1.2 Primitivism 

Primitivism about laws of nature holds that laws are genuine, fundamental, non-

reducible elements of the reality; they are weaved into the fabric of the reality. 

Primitivists generally endorse the Governing-Laws conception. The Governing-Laws 

view posits that there are genuine laws of nature and that these laws do govern the 

universe. The leading figures in this camp were Dretske (1977), Tooley (1977), and 

Armstrong (1983), hence the view is often labeled as the DTA view. Philosophers in 

this camp tend to argue that there must be something that binds or ‘glues’ instances of 

properties; that laws of nature are exactly what do that. The instances of law-like 

regularities in the universe are governed by laws of nature, hence we live in a ‘law-

governed’ universe.  

This position carries the burden of metaphysical and epistemological explanation. 

The conception of law-governing needs to be fleshed out in order for it to be more 

                                                 
54 Cf. See Jane Ruby (1986). She claims that a common perception of the origin of the concept of 

laws is mistaken; the origin of the concept does not lie in the notion of a divine legislator as 

commonly thought, but in the analogy to mathematical and logical laws.  
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than just a metaphor; if laws do govern the universe, exactly in what does the 

governing consist? It seems that any promising answer to the question needs to appeal 

in one way or another to some necessity relationship between universals. It is indeed 

the approach that philosophers in this camp tend to take. For example, Armstrong 

characterizes lawhood as follows:  

It is a law that Fs are Gs if and only if F-ness necessitates G-ness; 

the necessitation relation between the property of being F and that 

of being G is what binds an instance of F to that of G. (Armstrong 

1983, p. 85).   

According to this view, for example, Gallileo’s law of gravity is the necessitation 

relation between two properties: the property of falling freely and the property of 

having an acceleration of 9.8 m/s2. Such a necessitation relation between the two is 

what governs regularities between instances of first and second properties. 

What primarily motivated this governing law conception is that it can readily explain 

the difference between accidental generalizations and law-like generalizations. For 

example, consider the following true generalization statements:  

All gold spheres are less than a mile in diameter. 

All uranium spheres are less than a mile in diameter. 

Both are true. However, the former is merely an accidental generalization, while the 

latter is a statement of a law (according to our current understanding of nature). This 

is because uranium's critical mass is such as to guarantee that sphere of that size will 

never exist.55 Necessarily,56 then, it holds that all uranium spheres are less than a mile 

in diameter. In contrast, the truth of the former statement is not a matter of necessity. 

                                                 

55 This example is from van Fraassen, ibid.  

56 Physical, not logical, necessity.  
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So, according to the necessitarian conception of laws, what makes the latter a law but 

not the former is whether the necessitation relationship holds between the properties 

in question. Primitivists argue that mere universal truths cannot play the role of 

holding the properties in question. It is for this reason that Dretske, for example, 

thinks we have to make ‘ontological ascent’ (Dretske 1977; 263) from talking about 

the objects or events instantiating certain properties to the properties themselves and 

their relations. That is, we need to make ascent from the universal truths like “All Fs 

are Gs” to the property relations like “F-ness � G-ness”; the latter entails the former, 

but not vice versa, so the latter is a law, not the former. In general we are not in 

position of knowing whether a given universal statement expresses accidental 

generalizations or necessary relations. Despite the possibility of such epistemic 

limitations, the necessitarians about laws hold that only the governing conception can 

provide support for counterfactual statements and explain what must, rather than what 

will, happen. (Dretske, 1977; 263) 

Other notable, more recent primitivists include Carroll (1987, 1994). Expressing his 

sympathy to the view he calls ‘nomic platonism’ (1994; 161), he claims that laws are 

‘primitive and irreducible’ (1987, 267). The concept of laws of nature is deeply 

embedded in the commonsensical, scientific, and philosophical discourse and we are 

ontologically committed to laws of nature as the primitive cement of the universe 

(1994; 160). Maudlin (2007) is another notable primitivist. He suggests that we 

should accept laws as fundamental entities in our ontology (2007; 18); the notion of a 

law cannot be reduced to other more primitive notions. He believes that our 
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conceptions of laws serve roles as building blocks in our beliefs in other domains like 

counterfactuals, scientific explanations, physical possibilities, and so on.  

But many think that Drestke’s ascent, nomic Platonism, and other similar approaches, 

have a critical disadvantage: it renders laws unintelligible. Exactly what is the 

necessitation relation? It is not something we can experience. Even if we could 

experience all occurrences of everything throughout time and space, we would still 

not experience any necessitation.57 Lewis illustrates this problem:  

The mystery is somewhat hidden by Armstrong's terminology. He 

uses ‘necessitates’ as a name for the lawmaking universal N; and 

who would be surprised to hear that 

if F ‘necessitates’ G and a has F, then a must have G? But I say 

that N deserves the name of ‘necessitation’ only if, somehow, it 

really can enter into the requisite necessary connections. It can't 

enter into them just by bearing a name, any more than one can have 

mighty biceps just by being called ‘Armstrong’"(Lewis 1983, 366) 

Bas van Fraassen (1989) also made a similar criticism, which he calls the 

identification problem. When observing universal relations in nature, how could 

creatures like us identify if it is a law or not? In a similar spirit, Roberts (2008) makes 

a criticism the governing-law conception allows no epistemic access. If laws are 

things that govern the universe, rather than simply pervasive regularities in the course 

of events, then how can we have any epistemic access to them? We cannot 

empirically detect whether it happened because it was necessitated by a law, or 

whether it happened just as a brute fact. This also creates a semantic problem for the 

primitivists because it remains indeterminate how the terms referring to such 

necessitation relations have determinate extensions (Roberts 2008).    

                                                 

57 For a survey of criticisms in this line see Bird 1998, Lange 2009. 
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In short, a common objection to the primitivism about laws is that laws remains 

metaphysically and epistemologically mysterious; the view has to demystify the 

concept of ‘governing’ by precisifying in what does this 'governing' consist and how 

we could have epistemic access to it.  

Now let us turn to a reductionist view about laws of nature. First we will examine the 

naïve regularity view in the next section. Then we will move on to the more 

sophisticated regularity view in §4.2. 

4.1.3 Simple Reductionism: Naïve Regularity View 

In this section, we will examine a branch of the reductionist view about laws of 

nature: naïve regularity view. According to the naïve regularity account of laws, it is a 

law of nature that P just in case P is a true universal generalization. This account 

might have the virtue of being the simplest possible philosophical account of laws. 

Either naïve or sophisticated, philosophers in the camp of the regularity view of laws 

usually hold the non-governing conception of laws of nature. This conception of laws 

may be seen as an attempt to strike a balance between the two extremes of the No-

Laws and the Governing-Laws. The non-governing view states that there indeed are 

such things as laws of nature, but these laws do not govern the universe, because they 

are just regularities found in the universe. An example (from Bird 1998) will illustrate 

this idea. If it is a law that all free falling bodies accelerate at 9.8 m/s2, then a 

particular object falling and accelerating at 9.8 m/s2 is an instance of this law. This 

law is essentially the collection of all of such instances of free-falling objects 

accelerating at this rate. The relevant law amounts to the universal generalization of 

these instances. In sum, it is a law that Fs are Gs if and only if all instances of F are 
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G. This view is often called the simple (naïve) regularity (SR) theory of lawhood 

because it claims that laws are nothing but true regularities expressed in universally 

generalized statements. 

One apparent advantage of this conception of laws is that it requires no heavy 

metaphysical assumptions like the necessitarian conception of laws. The SR is an 

empiricism-friendly view as it makes laws epistemologically accessible, at least in 

principle. On this view the concept of a law can be explicated by our experiences of 

instances of the target regularities. This idea may be related well to empiricism in that 

our concepts are explicable in terms that relate to our experiences.   

One critical problem for the SR view is that it cannot distinguish accidental 

generalizations from laws. Consider again the gold sphere example. The regularity 

concerning the gold sphere is not a law; it just happens to be the case that there is no 

gold sphere that is greater than a mile in diameter. Suppose that, as a matter of fact, 

all the coins in my pocket are silver. However, we could be hardly warranted in 

saying that the generalized statement that all the coins in my pocket are silver should 

be referred to as a law58. For a similar example, consider laws in Newton’s Principia 

and the movements of the planets. It is true but not a law that all of the planets go 

around the sun in the same direction. According to the SR account, this cannot be: if 

it is true that all planets go around the sun in the same direction according to 

Newton’s theory, then this regularity must be among the laws of that theory.59 Similar 

counterexamples may be readily constructed. The point of these counterexamples is 

that there exist law-like regularities and also regularities that are not laws. However, 

                                                 
58 This example is from Carroll (1994). 
59 Roberts 2008;129. 
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according to the SR, any regularity should be counted as a law. This is troublingly 

counterintuitive. 

The problems with the SR are well known and there are many.60 To name a few: the 

SR cannot relate laws and counterfactuals; it has troubles for no-case laws (vacuous 

generalization); single-case laws (not a generalization); and probabilistic laws. Let me 

give a brief overview of these problems. Obviously, the SR cannot take into 

consideration unrealized physical possibilities. But we usually invoke unrealized but 

lawful physical possibilities in our counterfactual reasoning in science. For example, 

while it happens to be a contingent truth that all gold lumps are of a volume less than 

a cubic mile and all uranium lumps are of a volume less than a cubic mile, we may 

ask whether it would be physically possible to make a lump with a volume greater 

than a mile in gold and in uranium, and answers to questions like this have to invoke 

laws of nature. But this is not possible in the picture of the SR (Armstrong 1983). The 

trouble for the SR with respect to no-case laws is this. As we saw, the SR takes as 

laws true universal statements like “All Fs are Gs”. But, if there are no Fs and the 

universal generalization that all Fs are Gs is contingent and unrestricted, then, 

according to the SR, that generalization is a law (Carroll 1994). According to 

Armstrong, single-case regularities are ubiquitous in the sense that every object is 

different from each other in at least one or more microscopic properties, so every 

object makes true a universal statement in the form of “All Fs are Gs”, where ‘all’ 

only picks out the single object in question. The SR will have to count all of such 

single-case regularities as laws, but it is clearly counterintuitive (Armstrong 1983). 

                                                 
60 Armstrong (1983), Carroll (1994), and Mumford (2004) contain a critical survey of the 

problems with the SR view.  
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The SR cannot account for probabilistic laws. Presumably, many fundamental laws of 

nature are probabilistic laws. For example, there seems to be a law about the 

probability distribution of a uranium atom decay over certain time intervals. But since 

the instances of the decay even does not always obtains (hence probabilistic), they 

cannot be formulated in a universal statement. Therefore the SR will end ep with 

rejecting such probabilistic laws; this is undesirable for a theory of laws of nature. So 

far I have discussed only a subset of the problems with the SR but they seem to be 

sufficient to reject the SR as an adequate theory of laws of nature.  

Each view surveyed so far seems to have its own shortcomings. Of particular interest 

to us is the more refined version of reductionist view about laws, namely the systems 

approach to lawhood, which gains more and more popularity among philosophers of 

science. We will bring our attention to the view in the next section. 

4.2 Best System Account of Laws of Nature 

In this section I discuss the Best System Account (BSA) of laws of nature, which is a 

sophisticated version of the regularity theory about laws and probably is the best 

regularity view up to date. In particular, I will focus on David Lewis’s BSA (Lewis 

1973, 1983, 1994). On Lewis’s account, law-statements are still statements of 

regularity and nothing more. Not all statements of regularities count as law-

statements, however. The law statements are the axioms or theorems in the best 

deductive system in a world. The best deductive system is the one which achieves an 

optimal balance between simplicity and strength (and fit, when systems talk about 

chancy events). This account is sometimes called the web of laws theory (Psillos 

2002; 148-54, cited in Mumford 2004; 40). The phrase ‘web of laws’ brings out one 
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important feature of the BSA: Whether something is a law is not a purely intrinsic 

feature of it. Rather, something is a law when it is part of a systematic account of the 

world. I think this characterization nicely captures the essence of the system approach 

to laws.  

In what follows, I will discuss philosophical motivations for the BSA (§4.2.1) and 

David Lewis’s characterization of the BSA (§4.2.2). Then I will discuss the Humean 

supervenience thesis about laws (§4.2.3). Then I will examine some typical objections 

to the Humean conception of laws (§4.2.4). The examination of them will help clarify 

the range of the Humean supervenience thesis. 

4.2.1 Motivation for the Best System Account 

Facing the problems with the naïve regularity view, those rooted in empiricism may 

have to put some reasonable constraints on what kind of regularity is entitled to be a 

law. One such constraint can be supplied by selectively characterizing propositions 

expressing laws in terms of their relation to other propositions in an idealized 

theoretical system.61 It could be the case that the difference between the propositions 

about the movements of all the planets gold spheres and uranium spheres lies in their 

relation within a system of true physics - say, the former is something that is merely 

derivative or peripheral to the true physics theory, while the latter is some basic law-

like axioms or theorems of it. In light of this, we ought to develop a sophisticated way 

of understanding what an ideal system amounts to and exactly what role law-

expressing propositions have within it. Arguably the most popular attempt in line 

with this aim is the Best System account (BSA).  

                                                 

61 Carroll 1994; 47.  
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The BSA is a modified regularity theory. It says that regularities are laws if and only 

if they appear as theorems or axioms in an appropriately axiomatized collection of 

true propositions about the world – where ‘appropriately’ means that they are as 

simple and strong as possible. This view is often called the Mill-Ramsey-Lewis 

(MRL) theory of lawhood; Mill (1843) hinted at the idea of obtaining the fewest 

general propositions from all the regularities in the universe, while Ramsey (1929) 

characterized laws as axioms of the collection of knowledge of everything, organized 

as simply as possible. David Lewis later fleshed out this idea in full detail.   

In System of Logic (1843), Mill says 

According to one mode of expression, the question, What are the 

laws of nature? may be stated thus: What are the fewest and 

simplest assumptions, which being granted, the whole existing 

order of nature would result? Another mode of stating it would be 

thus: What are the fewest general propositions from which all the 

uniformities which exist in the universe might be deductively 

inferred? 

Mill here is hinting at the idea of systemizing facts in a simple but deductively 

powerful way. Here is an example from Mill (1843). Kepler expressed the regularity 

which exists in the observed motions of the heavenly bodies by the three general 

propositions. They were called laws in that these three simple suppositions which 

would suffice to construct the whole scheme of the heavenly motions. But these three 

“laws” of Kepler’s are not the best deservers of the title of laws, Mill says, because 

there is even simpler and more general law; that is, the phrase ‘laws of nature’ should 

be reserved for the simpler and more general laws, like Newton’s law (ibid.; Book III 

Ch IV sec1). 

In Universals of Law and of Fact (1929), Ramsey says  
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laws are consequences of those [general] propositions which we 

should take as axioms if we knew everything and organized it as 

simply as possible in a deductive system’ (Ramsey 1929; 150) 

According to him, even “if we knew everything, we should still want to systematize 

our knowledge as a deductive system, and the general axioms in that system would be 

the fundamental laws of nature” (1928; 143). Ramsey himself had abandoned this 

idea on the ground that it is impossible that we know everything and systemize it as a 

deductive system (1929; 150-1). But the core idea of laws as axioms or theorems in 

best systemization was revived by contemporary regularity theorists, and the most 

important figure is David Lewis.   

In Counterfactuals, Lewis recasts the definition as “a contingent generalization is a 

law of nature if and only if it appears as a theorem (or axiom) in each of the true 

deductive systems that achieves a best combination of simplicity and strength” (1973; 

73). On this view, laws are not just any regularities as the SR says. Rather, laws are 

some ‘special’ regularities which allow many facts about a world to be derived from 

them. And this can be done when they are the axioms or theorems of the best 

systematization of the world. The ‘best’ here means the right balance between being 

as simple as possible by having fewest possible axioms and being as strong as 

possible by allowing enough of the facts about a world can be derived from them. 

Lewis says the BSA has a number advantages, which in effect are what motivate the 

BSA. They are (Lewis 1973; 74), with rephrasing: 

1) The account explains why lawhood is not just a matter of the generality of a 

single sentence. The generality earns lawhood if it fits with other truths in the 

best system.  
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2) The account explains why lawhood is a contingent matter. In different worlds, 

different generalizations might earn lawhood by being a part of the best system 

at the world.  

3) The account explains how we can know, by exhausting the instances, that a 

generalization is true while not yet know whether it is a law.  

4) The account allows laws of which we have no knowledge. Being a law is not 

the same as being regarded as a law. On the account, there can be laws we don’t 

know of.  

5) The account explains why we have reason to take the theorems of well-

established theories provisionally to be laws. Our actual scientific theorizing is 

an attempt to approximate the true deductive systems which strikes the best 

balance between simplicity and strength. 

6) It explains why lawhood has seemed a rather vague and difficult concept: our 

standards of simplicity and strength, and our standard of the proper balance 

between them, are only roughly fixed standards. 

We can see 1), 3), and 4) are clear advantages over the naïve regularity view. The 

regularity theorists may consider 2) as a great advantage as well, while the 

necessitarians might deny the metaphysical assumption behind 2).62 Overall, these 

motivations for the BSA from 1) through 4) are rooted in Lewis’s orientation in 

empiricism and denial of metaphysical heaviness of the necessitarian view. What 

additionally motivates the system approach is, as we can see in 5), that our science 

has been quite successful in finding laws. These successes have been achieved by 

creatures like us with epistemic limitations. How fruitful would be the ideal version 

of our science, which has the full access to the entire history of a world? The findings 

of such ideal physical theories would surely deserve the title of laws of nature – so the 

hope goes. What seems to motivate the BSA is the hope that the theorems or axioms 

                                                 
62 Mumford 2008. 
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in the best systemizations will at least approximately or largely coincide with 

generalizations we presently regard as laws because the procedure employed is just an 

idealization or extension of the procedure actual scientists employ in discovering laws 

(Woodward 2013).  

For example, on the BSA of chancy laws, the BSA’s motivation like 5) is that 

“chances can be discovered by the methods of science. Again, the best system 

account makes this understandable, since one can reasonably hope that the methods 

of science get us close to the ideal theories whose probabilities are identified with the 

chances” (Schwarz 2014). Lewis himself (1994) gives a typical description of such 

motivation: “Suppose there is an ideal theory of everything ... [o]n the best system 

account, it follows that the rules of this ideal best theory are the true laws of nature.” 

(Lewis 1994: 231f). And Lewis says what he thinks of is something not too different 

from present-day physics, though “presumably somewhat improved” (Lewis 1983; 

364). We may even think of this ‘ideal theory of everything’ as what fundamental 

physics is aiming for, for example, Weinberg (1992)’s “Final Theory” or Penrose 

(2004)’s devoted “Unified Theory of Everything”. The successes of physics to date 

provide reason to think that our world is susceptible to very good systematizations in 

fundamental terms (Loewer 2012), so it seems like a reasonable hope that laws can be 

found by systemizing facts in the same way as our fundamental science is theorized.  

All these remarks and comments point to the main theme of the BSA: laws are what 

the ideal theory says laws are. By extending actual scientific practice to the 

“somewhat improved” case in which all the data is in, we might reach what scientists 

have been ultimately aiming for, given the successes of physics to date.  
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On 6), it might seem strange to say it is an advantage of a theory that its key concepts 

are vague and indeterminate.63 Some believe that the concept of a law is indeed vague 

so in that sense Lewis has point a here (Mumford 2008; Chapter 8). It might seem 

that what 6) does is the burden-shifting from the analysis to the practice of science. 

Two points can be noted on this. First, it seems true that the notion of laws of nature 

is vague and difficult. As we saw in §4.1, the notion is ‘scandalously’ difficult and 

vague (Earman 2004) in philosophy of science. In science, different fields invoke 

vastly different notions of laws. Secondly, it is more difficult problem for primitivists 

that such vagueness and indeterminacy exist in the notion of laws. Given the BSA 

regards the best system as an ‘ideal physics theory’, it can easily explain away the 

vagueness and indeterminacy of the notion.  

We have examined the general motivations for the BSA. It is generally agreed that 

the analysis does a good job overall of meeting the desiderata of a theory of laws. The 

theory does not answer all our concerns but perhaps the theory might be better placed 

than any other theory of laws, at least from the perspective of the regularity view. 

Now let us examine David Lewis’s BSA in detail. 

4.2.2 David Lewis’s Best System Analysis of Laws  

David Lewis's best system analysis of lawhood (Lewis 1973, 1983, 1986, 1994) is an 

empiricist account of laws that invokes the theoretical virtues of simplicity and 

strength, (and statistical fit for an account of probabilistic laws), and seeks to strike a 

balance between these virtues. Lewis’s canonical characterization is as follows:    

                                                 
63 On the concept of overall similarity of worlds, which Lewis appeals to define causation via 

counterfactual dependence (Lewis 1973), he makes a similar remark that the vagueness of the 

concept of similarity is in fact an advantage.  
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Take all deductive systems whose theorems are true. Some are 

simpler, better systematized than others. Some are stronger, more 

informative, than others. These virtues compete: an uninformative 

system can be very simple, an unsystematized compendium of 

miscellaneous information can be very informative. The best system 

is the one that strikes as good a balance as truth will allow between 

simplicity and strength. How good a balance that is will depend on 

how kind nature is. A regularity is a law iff it is a theorem of the 

best system. (1994; 478) 

In essence, this is a modified version of the regularity conception of laws. It is a 

regularity theory in that laws are held to be regularities of particular facts, and not 

some “metaphysically mysterious” necessitation relations among universals as the 

necessitarian view says.64 The BSA is a modified version of the regularity theory in 

that laws are held to be not just any regularities, but rather those regularities that 

systemize facts in a certain desirable way. There can be many different ways of 

systemizing the facts. Some systemizations will be simpler than others, while some 

will be more informative. Of these true systemizations, those that achieve the best 

combination of simplicity and strength are the best systems. Given this, a regularity 

qualifies as a law if and only if it is a theorem or axiom contained in such a best 

systemization of particular facts. This analysis seems to be in line with the 

epistemology behind our acceptance of some generalizations as laws. For example, 

we accepted Newton's first law of motion as a law, because it was an axiom in a 

simple, strong, and (at the time thought to be) true theoretical system: Newtonian 

physics.65  

In some cases, the best system would need to deem some events chancy (e.g., atomic 

decay, coin tossing, dice rolling, etc.) in order to give a simple, informative, and 

                                                 

64 Lewis says the motivation for pursuing an empiricist account of lawhood is “to resist philosophical 

arguments that there are more things in heaven and earth than physics has dreamt of.” (1994; 474) 

65 Example from Carroll (1994; 48). 
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accurate summarization of the “chancemaking” patterns of matters of fact in that 

history. This is because if those chancy events constitute a non-negligible class of 

events in the entire history, some laws derived from the best system will need to 

concern those chance events. If not, it wouldn't be the best system because being 

silent about the non-negligible amount of chance events would cost too much in 

strength (Lewis 1994; 481). The (objective) chance of an event in a world is, then, 

what the best system says its chance is.  

In the case of probabilistic laws like above, the BSA concerning chancy events is an 

extension of the BSA of deterministic laws. This time it involves three virtues –

simplicity, strength, and fit– and striking a balance between them. Lewis characterizes 

the BSA on chance as:  

As before, some systems will be simpler than others. Almost as 

before, some will be stronger than others: some will say either what 

will happen or what the chances will be when situations of a certain 

kind arise, whereas others will fall silent both about the outcomes 

and about the chances. And further, some will fit the actual course 

of history better than others. That is, the chance of that course of 

history will be higher according to some systems than according to 

others. [. . . ] The virtues of simplicity, strength, and fit trade off. 

The best system is the system that gets the best balance of all three. 

The best system is the system that gets the best balance of all three. 

As before, the laws are those regularities that are theorems of the 

best system. But now some of the laws are probabilistic. So now we 

can analyse chance: the chances are what the probabilistic laws of 

the best system say they are.  (1994; 480) 

In this way, the BSA concerning deterministic laws is modified to produce the 

chances and the associated chancy laws in one package deal. Consider deductive 

systems that pertain not only to what happens in history, but also to what the chances 

are of various outcomes in various situations—for instance, the decay probabilities 

for atoms of various isotopes. As before, some systems will be simpler than others. 
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Similarly, some systems will be stronger than others. Some systems will predict either 

what will happen or what the chances will be when situations of a certain kind arise, 

whereas others will provide no information about the outcomes and the chances. 

Further, some systems will fit the actual course of history better than others. In this 

way, the virtues of simplicity, strength and fit trade off. Some laws in the best 

systems are probabilistic; the chances are what these probabilistic laws say they are.  

Let us consider an example. Let w be a coin-tossing world where a coin is tossed one 

thousand times. Let Hw be the full history of the outcomes of these coin flips. There 

will be a best way of capturing these outcomes, which will strike an ideal balance 

between simplicity, fit, and informativeness. Then the chance of the coin landing on 

heads, Ch(Head) is equal to the chance of it coming up heads according to the best 

system. Say, in the history of 1,000 tosses of a coin at w, the actual frequency of its 

landing heads is 498 out of 1,000. The first system S1 simply list the outcome of each 

and every toss; it just contains a long sequence of Hs and Ts. S2 perfectly matches the 

actual frequency, claiming Ch(Head)=0.498 and Ch(Tail)=0.502. The third system S3 

says something slightly different; it rounds off the actual frequency, thereby giving 

one number summary for all of the tosses: Ch(Head)=Ch(Tail)=0.5. In short, they are:  

S1: HTHHHTTHHTHT… (actual sequence of the outcomes at w) 

S2: Ch(Head)=0.498 and Ch(Tail)=0.502 

S3: Ch(Head)=Ch(Tail)=0.5 

S1 is very strong in the sense that it rules out all the possible sequences and only talks 

about the true, actual sequence at w.66 But the system is very complex. S2 is more 

                                                 
66 We will have discussion in detail on the notion of strength in §3.3.5 and §4.5.2.  
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efficient than S1 in that it gives a nice summary of the outcomes, while losing some 

strength compared to S1. Now S3 is simpler than S2 but S2 fits the facts slightly better 

than S3. Assuming that the gain in simplicity outweighs the loss in fit in moving from 

S2 to S3, it may seem that S3 achieves better balance between simplicity and fit than 

S2 does. So S3 is the best system. Let X be the proposition that the coin lands heads. 

Then the probabilistic law about X at w is what is entailed by the best system, which 

in our scenario is: P(X)=0.5. Then, in virtue of being a part of the best system, the 

chance of the coin landing heads is 0.5 at w. This is how Lewis thinks the BSA is 

supposed to work, when Lewis says “suppose the frequency is close to some simple 

value—say, 50-50. Then the system that assigns uniform chances of 50% exactly 

gains in simplicity at not too much cost in fit. The decisive front-runner might 

therefore be a system that rounds off the actual frequency” (Lewis, 1994; 481). 

In short, either deterministic or probabilistic, once the best system at a world w is 

determined, whatever it asserts as laws of nature are the laws of nature at w – these 

laws, in virtue of being asserted by the best system, earn their lawhood at w. 

In sum, the BSA invokes the system choice criteria of simplicity, strength, and fit and 

the balance between them. It holds that the laws of nature in a world are theorems of 

the best system, which represents the simplest, most informative, and most accurate 

way of systematizing the categorical facts in that world. 

4.2.3 The Humean Supervenience Thesis about Laws 

The underlying principle of the BSA is that lawhood supervenes on nothing but the 

spatiotemporal arrangement of local qualities. This idea stems from the thesis which 

Lewis defends through the entirety of his work: the Humean Supervenience (HS) 
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thesis.67 According to the HS thesis, truth supervenes on what there is, and what there 

is is just a vast distribution of local particular matters of categorical facts and the 

spatiotemporal relations among them (Lewis 1986b: ix). This distribution is called the 

Humean mosaic. A property is categorical if its instantiation in a region of space time 

do not metaphysically necessitate anything about property instantiations in wholly 

distinct region.68 At each point of the mosaic lie local qualities.69 These are supposed 

to be supervenience bases. They are called the Humean bases. Promising candidates 

for the Humean bases are charge, mass, size and spin, for example. In this 

dissertation, our discussion will be confined to the HS thesis about laws: laws of 

nature supervene on the Humean mosaic.  

It is worth noting at this point that there are different versions of the HS thesis put 

forth by Lewis. Accordingly, different HS thesis about laws can be formulated. 

According to the HS thesis in Lewis (1986; x), the HS thesis about laws would 

contain modal character of metaphysical necessity: 

For any two worlds which agree with the spatio-temporal distribution of 

fundamental qualities, laws are the same. 

                                                 
67 As generally noted by many commentators on the BSA, the term ‘Humean’ has no direct 

commitment to Hume’s theory of impressions, epistemic skepticism, and so on. The name comes 

from the historical construal of Hume as a denier of necessary connections in nature. See Lewis 

1986, Loewer 2012, for example.  
68 I draw on the definition given by Loewer (2012).  
69 In Lewis (1986; xi), he mentions the worry that quantum entanglement in quantum physics is 

in conflict with his characterization of the HS thesis. Loewer (1996) attempts to modify the HS 

thesis in a way that it won’t necessarily need ‘local, distinct’ qualities being instantiated at points 

of the mosaic. While this issue deserves a separate discussion, it itself won’t affect my later 

discussion about the Arrovian impossibility for the BSA.  
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According to the HS thesis in Lewis (1994; 475),70 a weaker HS thesis about laws 

may be formulated as follows: 

For any two worlds like ours which agree with the spatio-temporal 

distribution of fundamental qualities, laws are the same.  

If the first version is adopted by the Humeans about laws of nature, then the debate 

concerning the Humean view about laws becomes the same form as the general 

philosophical debate on primitivism versus reductionism. Defenders and critics of the 

Humean conception of laws do generally take the first version as the official HS 

thesis about laws. (Hall 2012, Beebee 2000, Roberts 2001, Earman & Roberts 2005; 

Armstrong 2004).  

The conjunction of the BSA and the HS thesis yields an account of lawhood which 

have a number of distinctive characteristic features. The BSA defines lawhood as a 

membership of the best systematization of facts; the HS thesis confines the BSA’s 

operation domain to the Humean facts – the Humean mosaic.71 As a result, the BSA 

account of laws and chances makes no commitment to ontological primitiveness of 

laws, necessities, causations, dispositions, or what Lewis calls “all the primitive 

unHumean whatnots” (Lewis 1994; 484).72  

Let me explain how the above result follows. If we accept the HS thesis, it follows 

that every matter of fact in a world supervenes on the spatiotemporal arrangement of 

                                                 
70 Lewis proposed the weaker version of the HS thesis because he thought the stronger version 

suffers from counterexamples concerning enduring objects. Lewis (1994) explains his worries about 

such counterexamples. Hall (2012) argues that Lewis should not have worried about them. 
71 Loewer (2007) develops a variant of the BSA which makes no commitment to the HS thesis. 
72 Throughout this dissertation, by ‘the BSA’ I will refer to the account resulting from the 

conjunction of the BSA and the HS thesis. I will clarify if I need to specifically talk about a 

variant of the BSA which makes no commitment to the HS thesis. 
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the Humean bases in that world. This entails that no two worlds can differ with 

respect to what is true in them without differing with respect to the arrangement of 

their space-time points, or with respect to the perfectly natural properties that are 

instantiated at those points (Hall 2012). If we accept the regularity conception of laws 

in addition to the HS thesis, it follows that the lawmakers themselves cannot be above 

and beyond local matters of fact. In this way, the BSA can be thought of as 

explicating how lawhood supervenes on the categorical facts – it does so through the 

best combination of simplicity, fit, and informativeness. The most important task for 

the BSA is, then, to make the case that it is matters of fact that make a system the best 

system. 

Let me give an analogy.73 Suppose there is a huge display screen consisting of 

millions of pixels and we run a little experiment. The experiment is to find the best 

way to watch the screen. We take a look at that screen through different pairs of 3-D 

glasses, each of which come in different degrees of scope, angle, focal length, at 

different costs, and so on. So each pair of the 3-D glasses gives us different 3-D 

images. Now suppose we somehow have settled on what the best pair of glasses is –of 

course, it depends on what ‘best’ means but let us assume that we have also settled its 

meaning– maybe the one that achieves the best cost-benefit efficiency. From now on 

we are to look at the screen by the chosen ‘best’ pair of glasses. The images produced 

by the conjunction of the pixels on the screen and our chosen pair of glasses will still 

supervene on the pixels; we cannot get different images without changes in the 

patterns of the pixels on the screen. What the HS claims amounts to the claim that the 

                                                 
73 We will revisit this analogy in §5.6.2 as we discuss the problem of circular explanation of the 

BSA.  
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images themselves are also facts about the screen. It is matters of fact that make the 

images in question the best images. 

4.2.4. Typical Counterexamples to the HS: “Same Humean Base, 
Different Laws” 

Typical counterexamples to the Humean view about laws have used the thought 

experiments about possible worlds which agree with the Humean base but disagree 

with laws. I will examine counterexamples discussed in Earman (1986), Tooley 

(1977), and Carroll (1994).  

“Single-particle Worlds” (Earman 1986; 212, Roberts 2008; 357)  

Suppose there are two possible worlds W1 and W2, in each of which there exists just a 

single particle and nothing else. In W1, the particle eternally travels at a constant 

velocity. In this world the laws of nature are exactly like Newton’s laws. In W2, the 

particle eternally travels at the same constant velocity. However, in this world the 

laws of nature is that every particle travels at the same, fixed, constant velocity.    

“Ten-Fundamental-Particles World” (Tooley 1977; 669)  

Suppose a world that contains only 10 different kinds of fundamental particles. So, 

there are 55 types of two-particle interactions. 54 of these interactions have been 

studied and the laws governing them have been discovered. The 55th kind of 

interaction, which is supposed to be between X-particles and Y-particles, never 

occurs because particles are located in such a way that X-particles and Y-particles 

will never meet. In this world, it could a law that the interaction of X-particles with 

Y-particles will result in the interaction of A-particles with B-particles. But it could 

also be a law that the interaction of them will result in the interaction of C-particles 

with D-particles. 
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The common element in the two examples above is that we seem to have two possible 

worlds which agree on the Humean base but disagree on laws. So they seem to be 

counterexamples to the Humean conception of laws. Now let us examine a more 

sophisticated counterexample presented by Carroll (1994).  

The Mirror Argument (Carroll 1994; 57-68)  

Consider a possible world U1 consisting of exactly five X-particles and five Y-fields, 

and not much else. All the particles travel in a straight line, at a constant velocity, 

forever. Each of the five particles enters a Y-field at different times, exits quickly, and 

never returns. All of the X-particles get spin up when they enter a Y-field. But near the 

path of one of the five particles –particle b– there is a mirror on a swivel. It is fact that 

the mirror is in a position (position c) such that it does not interfere with the flight of 

particle b: the particle just travels by it. But if the mirror had been swiveled round to 

position d (or if it had just always been in position d), it would have interfered with 

the flight of particle b, and the particle would have been deflected away from its Y-

field. Call the generalization L that all X-particles subject to a Y-field get spin up. L is 

a law in U1. Now consider possible world U2. U2 is just the same as U1 except that in 

U2 particle b does not acquire spin up when it enters the Y-field. So L is false, so it is 

not a law at U2.  

Now imagine a world U3. U3 is the same as U1 except that in U3 the mirror is in 

position d, deflecting the particle b away from its Y-field. So the particle b never 

enters the Y-field. Should L be a law in U3? If we base our intuition on U1, then it 

seems that L is a law in U3. But if we base our intuition on U2, L doesn’t seem to be a 

law in U3. The changes in the position of a tiny mirror, intuitively speaking, cannot 
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affect laws about the particles. So, Carroll concludes, this example shows that the 

Humean conception of laws is implausible.   

This is Carroll’s Mirror argument. The main ‘trick’ of this argument is that U3 is 

equally similar to U1 and U2. To see the thrust of the argument clearly, let me 

introduce another world U4. First, U3 is:  

We get U3 by changing the mirror position in U1. So, U3 is a world which is 

exactly same as U1 except that the mirror is in position d. Assuming the 

changes of the mirror position cannot affect laws about the particles, U1 and 

U3 have the same laws: L.  

Now imagine U4:  

We get U4 by changing the mirror position in U2. U4 is a world which is 

exactly same as U2 except that the mirror is in position d. Assuming the 

changes of the mirror position cannot affect laws about the particles, U2 and 

U4 are in agreement on laws about them: L is not a law.   

So, U3 and U4 agree on the entire history about the particles but disagree on laws 

about them. We seem to have a genuine counterexample to the Humean conception of 

laws. The validity of this argument relies on two principles, which Carroll calls (SC*) 

and (SC’):  

(SC*): if P is physically possible and Q is a law, then Q would still be a law if 

P were the case.  

(SC’): if P is physically possible and Q is not a law, then Q would still not be 

a law if P were the case. 



 

 122 
 

On Lewis’s analysis counterfactuals (Lewis 1986; 43-45), which utilizes the concept 

of overall relative similarities among worlds, both (SC*) and (SC’) are false.74 While 

noting this, Carroll argues that there are clearly intuitive reasons we shouldn’t 

abandon (SC*) and (SC’): laws do not counterfactually depend on events like a tiny 

mirror’s position changes (Carroll 1994; 186-87).  

Beebee (2000; 589-91) argues that Carroll’s mirror argument, and the similar 

arguments we have seen earlier, are committing question-begging against the 

Humean view about laws. In particular, Beebee accuses Carroll of using “intuitions” 

which presupposes the governing-conception of laws, the conception the Humeans 

reject in the first place in their metaphysical outset. Loewer (1996; 193-4) and 

Schaffer (2008; 95) make similar accusations. I agree with the question-begging 

accusation. The Humeans have no reasons to accept (SC*) or (SC’). For them, laws 

are some elite regularities and nothing more; therefore, changes in the tiny mirror’s 

position can affect laws about the particles as long as those changes result in changes 

in the pattern of the movements of the particles. In Carroll’s scenario, the mirror 

position change do result in such changes. Also, the intuition Carroll appeals to 

doesn’t seem to be the right kind. In our world, a tiny mirror does seem too miniscule 

to generate changes in laws. But in Carroll’s mirror world, the mirror takes up a huge 

portion of the universe; after all, all there are in that universe are the particles and the 

mirror. Relative to the inhabitants of the mirror world, the right intuition would be 

                                                 
74 Lewis (1986) gives the famous Nixon and the nuclear missile button example. In short: at our 

actual world, it is possible that Nixon had pressed the nuclear button. In a possible world where 

he did press the button, the laws of nature are same as ours up to the point right before he 

pressed the button, but his pressing the button requires some ‘small miracle’, i.e., violation of the 

laws of nature, and then from the point he had pressed the button, the history diverges from our 

actual world’s history. So in that possible worlds, overall, laws of nature are different from ours.   
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that the mirror as one of the main elements in the universe can affect laws of nature at 

their world.   

Roberts (2008; 358-361) offers a new approach, based on what he calls ‘meta-

theoretic conception’ of laws, to the typical counterexamples like Tooley’s. In this 

approach, the truth value of a law-statement is relative not only to the possible world 

at which it is to be evaluated, but also to the context from which it is to be evaluated. 

Let us apply Robert’s approach to Carroll’s mirror argument. When we are asked to 

consider a possible world (U3) obtained by changing the mirror position in U1, we 

evaluate the possible world in question relative to U1 and to the context of the salient 

theory at U1. We may call the salient theory at U1 the L-theory. The statement “L is a 

law at U3” is not evaluated independently; it is evaluated relative to U1 and the 

context of L-theory, and the statement comes out to be true in that context. Similarly, 

the statement “L is not a law at U4” is evaluated in the context of non-L-theory, and it 

is true in that context. As a result, on Roberts’s approach, the troubling result for the 

BSA which was originally drawn by Carroll from the mirror argument:  

U3 and U4 agree with the history about the particles but L is a law in U3 and L 

is not a law in U4. 

This should be rewritten as:  

U3 and U4 agree with the history about the particles and L is a law in U3 

relative to the L-context and L is not a law in U4 relative to the non-L-context.  

It is not my aim in this dissertation to draw a verdict on whose view is more plausible 

on the arguments like the Mirror Argument. But I think we made it clear that the 

Humean, hence the BSA’s conception of laws of nature is the non-governing 
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conception, and that counterarguments implicitly presupposing the governing 

conception of laws are likely committing question-begging. The importance of 

clarifying this point will be clear once we discuss a new problem I raise for the BSA 

in the next chapter. For now, let us first precisify the BSA to see exact nature of the 

system choice standards for the BSA. 

4.3 Making the BSA Precise 

Since the best system is the one that achieves the best balance between simplicity, 

informativeness, and fit, the BSA must explain what the nature of each of these 

standards is, and what counts as the best balance between these virtues. Lewis does 

not precisify them. In this section, I will discuss and assess some possible attempts to 

flesh out the three standards and the balance between them. 

4.3.1 Why the BSA Advocates Do Little Work On Precisification: 
Delegating To Science 

The defenders of the BSA have done relatively little work on precisifying the three 

standards and the balance between them. Here is Woodward (2014)’s diagnosis as to 

why the BSA defenders tend to do little work on precisification. As we saw in §4.2.1, 

the BSA takes or ‘imports’ from the theory choice procedure of actual science as its 

system choice procedure. This import is based upon the reasonable (to the BSA 

advocates, at least) hope that the theorems or axioms in the best system will lead us to 

laws because the procedure employed by the BSA is just an idealization or extension 

of the procedure actual scientists employ in discovering laws – given they have 

discovered many of what we regard as laws by such procedures of systemization. 

Lewis is clear on this aspect of the BSA, in saying:  
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…I take a suitable system to be one that has the virtues we aspire to 

in our own theory-building, and that has them to the greatest extent 

possible given the way the world is. (Lewis 1983; 367) 

The standards of simplicity, of strength, and of balance between 

them are to be those that guide us in assessing the credibility of 

rival hypotheses as to what the laws are. (Lewis 1986; 123)  

The advocates of the BSA tend to think it is in fact an advantage of the analysis that it 

is rooted in methodology of actual science of ours. So defenders of the BSA tend to 

spend little effort on trying to precisely characterize the notions of simplicity, 

strength, and best balance on which they rely – because, if there are vagueness in 

such notions, the blame is not on the BSA but on the actual scientific practice. These 

notions are to be exemplified in scientific practice and the BSA does not have to fill 

in the details of the notions; what we have to do is to check how these notions are 

effectively used in practice of science. The vagueness in the official definitions of the 

system choice standards and the balance are thought of as tolerable because the 

concrete details of what simplicity, strength, fit, and best balance involve are to be 

supplied contextually in particular cases by science itself (Woodward 2014). 

4.3.2 Why the BSA Advocates Do Little Work On Precisification: 
The Hope Thesis  

Another reason that the BSA advocates do little work on precisification lies in what I 

call the Hope thesis (Lewis 1973, 1994). Let me quote Lewis’ canonical expression of 

his hope about nature:  

Maybe some of the exchange rates between aspects of simplicity, 

etc., are a psychological matter, but not just anything goes. If 

nature is kind, the best system will be robustly best-so far ahead of 

its rivals that it will come out first under any standards of simplicity 

and strength and balance. We have no guarantee that nature is kind 

in this way, but no evidence that it isn't. It's a reasonable hope. 

(Lewis 1994; 479, bold mine) 
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…our standards of simplicity and strength, and our standard of the 

proper balance between them, are only roughly fixed standards. 

That may or may not matter. We may hope, or take as an item of 

faith, that our world is one where certain true deductive systems as 

best, and certain generalizations come out as laws, by any remotely 

reasonable standards…(Lewis 1973; 74, emphasis original) 

Many commentators on the BSA more or less agree that this hope thesis is reasonable 

and acceptable, unless there are clear and concrete counterexamples.  

We can imagine, for example, that our world is such that there are 

two or more deductive systems which have little in common and 

which tie for first place on any reasonable account of simplicity… 

In this case the notion of lawhood would be more subjective than 

we like to think. I take David Lewis to be saying that in our current 

state of knowledge we have reason to hope that such cases do not 

in fact arise in the actual world. And I take actual scientific 

practice to be a practical expression of this hope… Failure to 

produce them [concrete counterexamples] would support Lewis' 

hope. (Earman 1993; 418, bold mine) 

In short, the Hope thesis postulates that nature will kindly arrange itself in such a way 

that all legitimate system choice procedures will pick the same best system or systems 

that agree on the laws of our world. I think the Hope thesis is another reason that the 

BSA advocators, while noting the system choice standards are vague, do not work 

much on presicifying them. For example, I take it is for the above reason why 

Schwarz, like many other commentators on the BSA, says “it is not crucial to the best 

system approach how exactly these details are filled in” (Schwarz 2014; 4). Loewer 

seems to be in a similar spirit when he says: “No doubt the practice of physics leaves 

leeway concerning how to evaluate these criteria and how they apply. But it is not 

implausible that our world is so rich and complicated that all reasonable ways of 

precisifying these notions will result in Best Theories of our world that agree on the 

laws.” (Loewer 2007; italic mine) 
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In short, the BSA defenders strategy is to announce that it is harmless to leave 

vagueness in the crucial notions in their analysis like simplicity, fit, strength, and their 

balance, because 1) it is the business of the actual practice of science to fill in the 

details; and 2) the best systems will come out robustly best anyway under any 

reasonable and legitimate precisification of the system choice standards. It is our task 

to assess the adequacy of these responses. In order to carry out the task, we first need 

to refine the system choice standards first to carry out the task, at least to the extent 

they seem reasonably operational. 

4.3.3 Chauvinism Objection, Kuhnian Worry for the BSA, and the 
Refined Hope Thesis 

It is often pointed out that the BSA needs the mind-independent system choice 

standards and the balance metric for inter-standard trade-offs. Otherwise the account 

would entail what Lewis calls “ratbag idealism” that laws of nature are dependent on 

how we think about the standards and the balance metric (Lewis 1994; 479).75 Given 

the way the BSA relies upon actual standards of science, it may seem to be the case 

that:  

 If our standards were different, then laws would be different.  

If this counterfactual is true, then it may follow that laws are subjective. This would 

be a very undesirable consequence for the BSA. Lewis’s first solution (Lewis, ibid.) 

is to rigidify the standards and the balance according to the actual and present practice 

of science; they are fixed standards as such. Lewis’s second solution, which he thinks 

is better than the first solution, is the Hope thesis that under any reasonable 

refinements of the standards the best system will come out to be robustly best. These 

                                                 
75 See Carroll 1994; 49-55, Roberts 2008; 8-10, for example.  
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two solutions have become the BSAers’ two standard responses to the questions 

where the system choice standards come from and how to justify them: First, like we 

saw in §4.3.1, the BSAers delegate the task of precisifying the standards and the 

balance metric to actual and present practice of science. Second, as we just saw in 

§4.3.2, the BSAers hope that the best system will be robustly best under any 

precisification of them – even in case where science does not seem to provide 

determinate precisification of them. 

On the first rigidification solution, the worry about subjectivity goes away. In a 

possible world where our counterparts have standards different than ours, the best 

system is still same as our best system because the standards for the best system are 

rigidified by our standards. While this rigidification resolves the subjectivity problem, 

it creates yet another problem.  

Some criticize that the BSA’s rigid reliance on our actual and present practice of 

science is arbitrary (Armstrong 1983; 67, Carroll 1994; 54). On the rigidification 

solution, it may start to seem that the BSA relies too much on our actual and present 

standards. What makes our present practice so special in the analysis of lawhood? 

Why not, for example, invoke the standards of Martian scientists, or of our ancestors 

or predecessors? It is chauvinistic (Carroll 1990; 201) that only our standards should 

count in the analysis of lawhood. Call this objection the Chauvinism objection to the 

BSA.  

Some BSAers proposed the ‘indexical’ BSA to avoid the Chauvinism objection 

(Roberts 1999). Consider the following typical BSA-style law statement:  
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The laws of nature are the theorems or axioms of the best system according to 

our standards.  

Lewis’s rigidification solution was to fix the referent of “our” as our present 

standards of science. The indexical BSA, in contrast, treats “our” as a kind of 

indexical terms like ‘here’, ‘now’, ‘I’. So, at a world like ours that its inhabitants use 

standards different from ours, the rigidified BSA says their laws are just same as ours, 

and the indexical BSA says that their laws are the members of the best system 

according to their own standards.  

But the indexical BSA seems to entail undesirable consequences. If our world and the 

Martian world agree on the Humean base, then, according to the Humean 

Supervenience thesis we saw in §4.2.3, laws at the Martian world should be same as 

ours. Suppose further that the Martians are bizarre anti-inductionists. They aim at 

finding the least inductively successful regularities; they aim at finding the weak, 

inaccurate, and complex regularities in their theory building. On the indexical BSA, 

such bizarre anti-inductive regularities are laws at that world. Should the BSAers 

consider them as laws? I do not think they should. As we saw in §4.2.1, the important 

motivation for the BSA is that our science has been quite successful in its inductive 

practice of discovering laws of nature; the best system is the idealized version of 

science. For the BSA, not just any regularities count as laws; the regularities which 

play important roles as axioms or theorems in the best systemization count. So in the 

BSA conception of laws are already incorporated such inductive fruitfulness. I think 

an appropriate response on the BSA’s side to the examples like our bizarre Martians 

is simply that, while they might call such bizarre regularities “laws” based on their 
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anti-induction systemization methods, they are not laws in any interesting and 

meaningful sense.   

In any case, while the Chauvinism objection helps clarify important aspects of the 

BSA, it is not a devastating blow to the BSA. This is because Lewis abandons the 

rigidified BSA and instead adopts the Hope thesis. Consider again the following 

counterfactual which allegedly was worrisome for the BSA:  

 If our standards were different, laws would be different.  

This counterfactual is false under the Hope thesis. In a world which is just like ours 

except our counterparts use different standards for theory choice, the best 

systemization at that world is same as the best systemization at our world. This is 

entailed by the Hope thesis that the best system will be robustly best under any 

reasonable standards (§4.3.2). What is in action here is the term ‘reasonable’. The 

term clearly means something like ‘proven to contribute to induction’ as hinted in the 

bizarre Martians example. So, the Hope thesis with its hidden elements specified 

would be something like: 

the Hope thesis refined: The best system will be robustly best under any 

standards as long as they are contributory to inductive inference.    

Refined this way, the Hope thesis addresses the analogue of Kuhnian skepticism 

(§2.1) for system choice for the BSA. The Kuhnian skepticism is:  

Different scientists may employ perfectly reasonable but very different theory 

choice standards and balance metric, resulting in very different conclusions.  

Given that the BSA relies on actual standards of our science, Kuhnian skepticism 

applied to the BSA would mean that there can be very different but equally legitimate 
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best systems. Now the refined Hope thesis can block this worry. Kuhn viewed theory 

choice standards as values, which should admit of individual variance as to how to 

apply them and how much weight to give them (Kuhn 1977a; 321-2 the “big five”). 

But these values are not something intrinsically valuable in themselves. They are 

instrumental values which are considered to have inductive advantages in one way or 

another (ibid.; 334-6).  

The objections and responses we saw in this chapter have helped clarify the important 

role of the Hope thesis for the BSA to block the Kuhnian worry for the BSA and its 

range over inductively contributing standards. 

4.3.4 “What Justifies the Use of Epistemic Standards in 
Metaphysics?” 

There has been raised another problem with the BSA’s reliance on actual theory 

choice standards of science. They are essentially epistemic standards, while the BSA 

purports to be a metaphysical theory of laws. Typically, the use of epistemic 

standards of has end-means justifications. For example, use AIC to achieve predictive 

accuracy, use Bayesian model selection methods to achieve maximum posterior 

probability, and so on. The standard of simplicity in AIC, for example, plays a role as 

a means to achieve certain end. The standard of fit in AIC plays a role again defined 

by the means-ends terms. But since the BSA is a metaphysical theory, such means-

ends justifications do not hold. The epistemic roles played by the standards of science 

have no counterparts in the BSA. So, one might inquire, what justifies the use of 

epistemic standards in metaphysics?76  

                                                 
76 For an argument in the same spirit, see Woodward 2013a. 
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Here is what I think would be a standard response on the BSA’s side to inquisitions 

like above. It comes from the idea that the best system in the BSA is a kind of ‘ideal 

science’ as we saw in §4.2.1. An ‘ideal observer’, call her the BSA Oracle,77 who has 

access to all the facts in the universe, takes standards from our science and use them 

to figure out the best systemization of facts, determine the axioms or theorems in the 

best system, and declare they are laws.  So, the BSA is taking what are considered to 

be epistemic standards and elevating them to the status of standards that are 

‘constitutive of laws of nature’.78 Despite its apparent reliance on epistemic standards, 

the BSA is constructing a metaphysics about laws of nature. This understanding of 

the BSA is in line with what Lewis says: 

Despite appearances and the odd metaphor, this is not 
epistemology! You're welcome to spot an analogy, but I insist that I 
am not talking about how evidence determines what's reasonable to 
believe about laws and chances. Rather, I'm talking about how 

nature -the Humean arrangement of qualities- determines 

what's true about the laws and chances. (Lewis 1994; 482-3, 
emphasis mine) 

In other words, lawhood of P consists in the Humean mosaic’s being arranged in such 

a way that the BSA Oracle will choose a best system that entails P. It is just the 

‘actions behind the curtain’ that her system choice rules are the ones lifted from our 

epistemic practice.  

Depending on what conception of laws one holds, the above line of thought may or 

may not seem appropriate. It may seem unacceptable to primitivists (§4.1.2). For 

them, laws are ontologically primitive entities existing independently of us. So, 

metaphysical theories about laws should try to identify the metaphysical nature of 

                                                 
77 I borrow the name from Hall (forthcoming)’s example.   

78 Hall forthcoming; p.16 
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laws and the way they govern the universe; in contrast, epistemic practice in science 

is only aiming at discovering them. For primitivists, what justifies epistemic 

standards may be that they help us discovering laws , but since metaphysics about 

laws have no business in ‘discovering’ laws, the use of epistemic standards in 

metaphysics of laws is unjustified.    

But the response may seem to make perfect sense to the BSAers and reductionists in 

general who hold that laws are some regularities. For them, what justifies epistemic 

standards may be that they help us discovering regularities that we call laws. On this 

both primitivists and reductionists agree.  Now, for the BSAers and reductionists, 

since laws are just regularities (ones that play certain roles in the best systems), the 

use of epistemic standards in their metaphysics about laws doesn’t need any extra 

justifications. As Hall (Forthcoming) describes, for example, the BSA is officially 

metaphysics but unofficially is a kind of extended science. The BSA Oracle tells us 

what is the best we could ever get if we were to continue to use our standards. And, 

given that the ultimate aim of our practice of using the standards is to discover laws 

of nature, what she tells us are law are the best results we could ever get.  

It is not my aim of this dissertation to make a verdict on whose conception of laws is 

adequate. I have made it clear that simply accusing the BSA of ‘illegally using 

epistemic standards’ might be begging the question against the BSA. So, this does not 

seem to be a serious challenge to the BSA so far.  

However, a more serious challenge seems to arise from a different kind of 

justification problem. It is not unusual that the use of epistemic standards in science 

presupposes certain laws. Statistical mechanics is such an example. Then, what if the 
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epistemic standards invoked by the BSA presuppose some laws? According to the 

BSA, laws are members of the best system, which in turn is to be determined by the 

standards, which are taken from epistemic practice in science. In short, laws are 

supposed to be the result of analysis on the BSA. The challenge is that there seem to 

be cases where the analysis itself has to presuppose laws. Unlike the earlier 

accusation of the BSA’s allegedly unjustified use of epistemic standards, this 

challenge is on the seemingly circular justification or explanation. On the one hand, 

in some cases, scientist’s use of certain epistemic standards is explained by laws 

about how the Humean mosaic behaves. On the other hand, why the Humean mosaic 

behaves in the way it does is to be explained by laws, which on the BSA are to be 

determined by the best systemization based on those epistemic standards. So we seem 

to have circular explanation. Recently, a number of commentators on the BSA have 

discussed this circularity problem, for example, Maudlin (2007), Loewer (2012), 

Lange (2013), Hicks and Elswyk (2015), and Marshall (forthcoming). In §5.6.2, I will 

discuss this circularity problem. I will suggest that the recent solutions to the 

circularity problem are on the right track but those solutions eventually will have to 

hang onto the Hope thesis.  

It serves our purpose of this chapter to make it clear that mere accusation that the 

BSA cannot justify its use of epistemic standards does not seem to work, and that 

however a more serious challenge awaits. Now let us continue to precisify the BSA. 

4.3.5 Precisifying the System Choice Standards of the BSA: 
Strength 

In the following three sections, I will make an attempt to refine the three system 

choice standards invoked by the BSA, to the extent that each of the refine standards 
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allow weak orderings of systems in competition, that is, systems can be ranked with 

respect to each standard. In the current subsection, let us examine strength.  

Lewis is not clear how to measure a system’s strength. One possible precisification of 

strength would be to understand it as logical strength. Given Lewis describes systems 

as true deductive systems (Lewis 1994), it might seem as a good precisification to 

define strength as logical strength. Logical strength of a system is measured by all of 

its deductive consequences. That is, the more consequences can be deduced from it, 

the stronger the system is. On this conception of strength, one might think we can 

compare strength of two systems by counting the number of deductive consequences 

from each system. But this will not work; for example, infinitely many consequences 

can be deduced from a set of propositions. If a proposition P is a consequence of a 

system, so is P v Q, P v R, P v S, or any disjunction with any other propositions. The 

list goes on. The strength of systems cannot be compared.  

There may be some limited cases in which the relative ranking of strength of two 

systems still can be determined. System X is stronger than system Y if the set of 

deductive consequences of Y is a proper subset of the set of deductive consequences 

of X. For a simple example, if X consists of P, Q, and R, and Y consists of P and Q, 

then every deductive consequence of Y is also a deductive consequence of X but not 

vice versa. But this comparison is only possible when there is such a subset relation 

between the set of consequences of systems in competition.  

Another common conception of strength is to measure strength of a system by the 

degree of informativeness. Lewis often indicates that the strength of a system is to be 

measured in terms of its informativeness (Lewis 1983, 1994). Lewis does not 
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precisify what informativeness is, but on his description a system is more informative 

about a world when it says more about the facts in the world –e.g., about what will 

happen or what the chance of a certain kind of event occurring will be (Lewis 1994; 

480). Informativeness is generally understood by many commentators on the BSA as 

a matter of excluding possibilities or possible worlds. In general, a system is said to 

be more informative if it rule out more possible ways (possible worlds) than others 

do. That is, the more possibilities a system excludes, the greater its strength (Earman 

1984, Loewer 2004, 2007, Callender and Cohen 2009, Woodward 2014, Hall 

(Forthcoming)). Some BSAers add more specification on this general notion of 

informativeness. For example, Earman (1984) suggests that strength should be 

measured not by sheer information about the facts per se but by information about the 

facts and regularities which can be explained by dynamic laws in conjunction with 

appropriate boundary conditions. Some suggest that a system should be considered 

stronger if it allows a wider range of initial conditions and a narrower range of 

candidate dynamic laws (Hall (forthcoming) and Woodward (2014), for example).  

But there is a problem with this notion of strength as informativeness. 

Informativeness is a matter of excluding possibilities but the excluded possibilities 

are typically infinite. For example, consider the proposition: 

P10: The number of planets in solar system is less than 10.  

P10 rules out the possible worlds in which there are 10 planets, 11 planets, and so on; 

infinitely many possible worlds are excluded. Then different propositions (or systems, 

for that matter) typically will have the same degree of strength if strength is a matter 

of how many possible worlds are excluded.  
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There might be some limited cases in which relative ranking of strength of two 

propositions (or systems, for that matter) can still be determined. For example, 

consider another proposition: 

P100: The number of planets in solar system is less than 100.  

Then the set of possible worlds excluded by P100 is a proper subset of the set of 

possible worlds excluded by P10. In this case P10 comes out to be stronger than P100. 

But comparisons like this is only possible when there is the subset relation between 

the sets of the excluded possible worlds by systems in competition. 

Lewis and other BSAers seem to take for granted that strength comparisons across 

systems can be made in terms of objective features of those systems. But we just have 

seen that the comparisons don’t come easy. 

4.3.6 Precisifying the System Choice Standards of the BSA: Fit 

Let us precisify the system choice standard of fit in this section. Lewis defines a 

system’s fit as the chance that the system in question assigns to the world’s total 

history (1986; 128).  It is clear that Lewis has in mind the likelihood of a theory, 

which can be defined as the joint probability of the data (or history of events) given 

that theory. Suppose, throughout the history of a world w, a particular coin C1 has 

been tossed hundred times and landed forty nine times on heads and fifty one times 

on tails. Call that history Hw. Suppose further that, of two competing systems S1 and 

S2,   

S1: the chance of C1 landing on heads is 0.49 

S2: the chance of C1 landing on heads is 0.50.  



 

 138 
 

Computing the likelihood for each system, we see that the likelihood of S1 comes out 

higher than that of S2 because,  

Fit of S1=Pr(Hw│S1)=(0.49)49(0.51)51=8.0479 × 10-31 

Fit of S2=Pr(Hw│S2)=(0.50)100=7.8886 × 10-31  

So S1 comes out to fit Hw better than S2 does, and this result conforms to our intuition. 

This notion of fit has a serious problem in the case of infinite history. The problem is 

called the zero-fit problem (Lewis 1980, Elga 2004): in short, when history is infinite, 

all the systems come out to have equally zero fit, rendering fit as a system choice 

standard useless. I will discuss in detail the problem and possible solutions to it in 

§5.5.1. 

4.3.7 Precisifying the System Choice Standards of the BSA: 
Simplicity 

As with the two system choice standards we have seen, Lewis does not precisify what 

he means by simplicity. But he is generally understood as referring to the syntactic 

notion of simplicity; “simple systems are those that come out formally simple” 

(Lewis 1986; 124). His examples are “a linear function is simpler than a quartic or 

step function” and “shorter alteration of prenex quantifiers is simpler than a longer 

one” (Lewis 1994; 479). Let me make a brief note on the syntactic notion of 

simplicity. It is well known the syntactic notion of simplicity suffers from language 

dependence. Formal simplicity of a theory can vary depending on which language is 

used for encoding what the theory says. For example, consider Goodman (1983)’s 

famous example of Grue-Bleen predicate. (Also see Priest (1976) for the language 

dependence problem in the context of curve-fitting.) For example, a theory saying 

“all emeralds are green” seems formally simpler than a theory saying “all emeralds 
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are green until the year 2050; after than they are blue.” But if we encode what is said 

by them using Goodman’s ‘grue’ predicates, then the simplicity ranking of the two 

theory is reversed. Of green and grue predicates, one might say the former is more 

natural in that they capture natural kind of the world.79 In this way, we may fix the 

privileged language and then compare syntactic simplicity of sentences, theories, or 

systems. This is what Lewis does in defining simplicity of systems; we should 

measure simplicity of systems formulated in a certain privileged language. Noting the 

possibility that a wrong choice of language can completely distort the simplicity 

ranking of systems, Lewis says: 

We face an obvious problem. Different ways to express the same 

content, using different vocabulary, will differ in simplicity... In 

fact, the content of any system whatever may be formulated 

very simply indeed. Given system S, let F be a predicate that 

applies to all and only things at worlds where S holds. Take F as 

primitive, and axiomatise S (or an equivalent thereof) by the single 

axiom ∀xFx. If utter simplicity is so easily attained, the ideal theory 

may as well be as strong as possible. Simplicity and strength 

needn't be traded off. Then the ideal theory will include (its simple 

axiom will strictly imply) all truths, and fortiori all regularities. 

Then, after all, every regularity will be a law. That must be wrong. 

(1983, p. 367)  

His remedy to this problem is to fix a language in which systems are to be 

axiomatized: a primitive vocabulary that refers only to perfectly natural kinds (1983; 

367-8), which “carve nature at the joints.”80 Lewis doesn’t offer much more 

                                                 
79 As well known, Goodman (1983)’s choice of green predicate is based on its inductive success 

and projectibility.  
80 Lewis doesn’t specify what determines ‘natural’ kinds; and it deserves an independent 

discussion on what is an adequate way to specify it. See Hall 2010 for an extensive survey of a 

number of possible precisifications of ‘natural’.  
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explication than this, but it is obvious that he thinks simplicity is an objective feature 

of the set of expressions in such a privileged language (Loewer 1996).81  

In addition to the syntactic notion of simplicity, Lewis and other BSA advocates also 

invoke ‘counting’ in their construal of simplicity. Systems with fewer assumptions, 

axioms, theorems, or fewer postulated entities, are considered simpler in the BSA 

(Lewis 1983, 1994). Whichever of these different senses of simplicity is taken, Lewis 

believes that simplicity is not resting on subjective matter; simplicity is an objective 

property of systems, assuming that the natural kinds in question are determined by 

facts of the matter. Let me discuss two problems with the simplicity as above invoked 

by the BSA.  

Subjectivity of Simplicity 

First, as opposed to Lewis’s belief, there may be significantly subjective factors to 

simplicity. Carroll (1994) provides an example in which simplicity seems to be a 

matter of psychology. His idea is to view “... simpler than ...” relation as a triadic 

relation, which subjective factors. A sentence “A is simpler than B” is elliptical for 

“A is simpler than B for C”, with C being an epistemic agent, a task, and the like. 

Consider the two hypotheses:  

                                                 
81 Some BSA theorist adopt a pluralisitic pragmatic approach to the BSA. For instance, Cohen 

and Callender (2009) argue that, since it is impossible to make inter-system comparisons 

independently of the basic predicates employed by the systems in question, the BSA has to allow 

for plural best systems, each of which would be the best relative to the choice of the basic 

predicates. That is, systems can be compared only with respect to a certain system of predicates. 

This relativism is not harmful, they argue, because it is in accordance with scientific practice. 

Two scientists holding different ontological stances about the basic kinds in the world could agree 

with each other about what kind of predicates are to be used to describe the observable data. 

They could then relativize (i.e., reformulate) what they think is the best system of the said 

predicate kind for the observables, and then determine which system is better, i.e., better relative 

to that predicate kind. This approach may be able to handle the problem at hand. 
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y = sin x  

y = x - x3/6 + x5/120.    

Both hypotheses are fitting equally well the following data represented as X in the 

following figure.  

Fig 4. Carroll’s Lefty and Righty; Two Equally Fitting Curves 

Imagine that scientists in two cultures, namely Righty and Lefty, are comparing these 

two hypotheses against the given set of data. In Righty, scientists discovered truths 

about the relation between the angles and lengths of sides of triangles, and 

trigonometry is taught at an early age. For them, trigonometric equations are easier 

than polynomial equations. The opposite is true of scientist in Lefty. They are 

excellent at algebra but weak in geometry. The Lefty seem to have legitimate reason 

to rank simplicity of the trigonometric hypothesis above simplicity of the polynomial 

one (and choose the former as the overall winner given that both fit the data equally 

well) and the Righty seem to have equally legitimate reason to rank their simplicity in 

the reverse way. This example shows, Carroll claims, that there are psychological 

factors to simplicity.  

Counterexamples like this don’t seem to be devastating to the BSA, though. First, if 

“… is simpler than …” is an ellipsis of “… is simpler than … for …” as Carroll 
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claims, then it may just mean that there are more than one system choice standards 

invoked by the BSA, which happen to be under one umbrella term ‘simplicity’. In 

other words, ‘Simplicity-Lefty’ generates a weak ordering of systems in its own and 

‘Simplicity-Righty’ generates a weak ordering of systems in its own as well, rather 

than one weak ordering of systems under ‘Simplicity’. Second, the BSAers still have 

a resort to appeal: the Hope thesis (§4.3.2). The hope would be: Nature will kindly 

arrange itself such that, under any refinement of simplicity like above, there will be a 

clearly winning best system – even when different senses of simplicity generate 

vastly diverging orderings of systems. It is open to question how plausible such hope 

is. But I think the BSAers have some answer: scientists often invoke different kinds 

of simplicity in theory choice but overall they have been successful in finding 

regularities that we consider as laws. So, they may argue, the Hope is not too far-

fetched. A more difficult problem awaits, however. 

Conflicting Standards of Simplicity82  

As we saw above, in standard characterizations of the BSA, simplicity of a system 

concerns not only the simplicity of an axiom or theorem but also the number of 

axioms or theorems in the system. The problem would arise when the two standards 

of simplicity are in conflict. Consider the following case. System S1 says there are 

four elementary forces in our world. Each of these forces may be represented as an 

axiom in the system. Let us say each of such axioms may be defined as a parametric 

model, and the number of parameters in each axiom is just one or two. In contrast, S2 

                                                 
82 I owe this part of discussion to Aidan Lyon.  
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says there is only one elementary force in our world, represented as an axiom, which 

is defined as a very complex parametric model, say, with 10 parameters.  

S1: Force1=ax1+bx2; Force2=cx3; Force3=dx4; Force4=ex5+gx6. 

S2: Force1=ax10+by+cz+dx9+ex8+gx7+my2+ny3+ky4+hy5. 

Additionally suppose S1 and S2 fits history of at a world equally well. The problem is 

that it seems impossible for the BSA to determine simplicity ordering of S1 and S2, 

when S1 has four axioms and each axiom is very simple, and S2 has one axiom which 

is very complex. Determining which system is simpler requires a trade-off ratio 

between simplicity in terms of the number of axioms and simplicity in terms of the 

number of parameters; there seems no reasonable, consistent way of trading them off. 

Furthermore, the Hope thesis cannot block this problem either because both systems 

fit history equally well. Unlike the subjectivity problem of simplicity, the BSA needs 

resources to solve this problem other than the Hope thesis. 

4.3.8 Precisifying the System Choice Standards of the BSA: 
Balance 

As with the other system choice standards, Lewis does not specify how to balance 

different system choice standards. First let us see what kind of balance metric is 

required for the BSA. The BSA needs a principled method for comparing the value of 

a certain gain in one virtue with a certain loss in another. So a good refinement of the 

required balance metric should allow for trade-offs between standards like “This 

much loss of simplicity can be compensated by that much gain of fit”, “adding certain 

initial conditions to one system results in the new system that is only a little less 

simple but vastly more informative” (Loewer 2007; 305, italic mine). 
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As we saw in §4.2, Lewis (1986) thinks such a balance metric can come from the 

actual practice of science. In discussion of the Kuhnian worry and the Arrovian threat 

for theory choice, we saw in §2.4 that statistical model selection methods might 

provide some principled balance metrics. They seem to provide very specific 

exchange ratio between different standards as we saw in §3.2 and §3.4, for example: 

 AIC-rule: Choose the model M which has largest AIC score.  

AIC score (M): Maximum Log likelihood of (M) – number of parameters of 

M 

BIC-rule: Choose the model M which has largest BIC score.  

BIC score (M): Maximum Log likelihood of (M) – (log n)(number of 

parameters of M) 

If the likelihood and the number of parameters of a model can be understood as the 

model’s fit and complexity, respectively, then the above methods seem to provide 

sufficiently specific inter-standard trade-off ratios. Presuming what works for theory 

choice will also work for system choice, the BSAers might expect that the principled 

balance metrics with the sufficient level of specifications required for the BSA may 

come from statistical model selection methods as well. Whether this expectation 

comes true or not is a part of the questions we are going to investing in the next 

chapter. 

Conclusion: Towards the Arrovian Impossibility for System 
Choice  

In this chapter we first surveyed different philosophical accounts of laws of nature. 

We then assumed the task of precisifying the Best System Account of laws. Some 

important items we have examined include: the range of the Humean Supervenience 
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thesis, the role of the Hope thesis to block the Kuhnian worry for the BSA, a standard 

approach to the problem of justifying the use of epistemic standards in metaphysics, 

the best system as an extended, ideal science, and the heavy reliance on the concept 

of ‘balance’ between the system choice standards.   

All these will be connected to the subject of the next chapter: the analogue of the 

Arrovian impossibility in the domain of system choice for the BSA. The BSA invokes 

an aggregation procedure of different system choice standards and especially it 

requires an exchange ratio between the standards being aggregated. So, the BSA 

might be susceptible to the Arrovian impossibility, if the conditions for the Arrovian 

theorem are met. In the next chapter, we will investigate whether the conditions apply 

to system choice for the BSA. 
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Chapter 5: The BSA and the Arrovian Threat 

Introduction 

As we saw in §2.1, Kuhn’s worry83 about theory choice (Kuhn 1977) was that 

different scientists may legitimately employ quite different theory choice procedures 

and reach conflicting conclusions. As we saw in §4.3, the system choice algorithm for 

the BSA is to be determined by the theory-choice practice of scientists.84 Therefore, if 

Kuhn is right about there being different but legitimate theory choice procedures, 

there may be different but legitimate system choice procedures for the BSA. This 

seems to pose “the threat that two very different systems are tied for best” and “in this 

unfortunate case there would be no very good deservers of the name of laws.” (Lewis 

1994; 479) As we saw in §4.3.2, the Hope thesis (Earman 1993, Lewis 1994, Loewer 

1996) is an attempt to block this worry by postulating that nature will kindly arrange 

itself in such a way that all legitimate system choice procedures will pick the same 

best system or systems that agree on the laws of our world.   

In this chapter, I shall discuss a new worry about system choice. In social choice 

theory, as we saw in §2.2, Arrow’s impossibility theorem (Arrow 1951/1963) says 

that there cannot exist any preference aggregation procedure satisfying Arrow’s 

rationality conditions of U, P, I, and D. The result of this theorem is that any 

                                                 
83 What Kuhn had in mind may not be necessarily a ‘worry’, given he says there are number of 

advantages for theory choice procedures to leave some diversity and indeterminacy (Kuhn 1977; 

331-2). If we require there to be theory choice ‘algorithms’, then such diversity and indeterminacy 

might be a worry. On the related point, see §2.1.2. Also see Morreau (2015).      
84 It is an important question whether the BSA is a descriptive or prescriptive theory, i.e., 

whether the BSA should use (prescriptive) or is using (descriptive) the same choice procedure as 

the procedure scientists actually use to make theory choices. This question deserves a separate 

discussion. See Woodward (2014) for a critical discussion of descriptive and prescriptive adequacy 

of the BSA.  
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aggregation procedure satisfying the first three conditions will fail to satisfy D, the 

non-Dictatorship condition. We discussed the possibility of applying Arrow’s 

theorem to theory choice in §2.3. If theory choice procedures are procedures of 

aggregating different theoretical virtues, and if the conditions U, P, and I are 

satisfied, the result of Arrow’s theorem is that theory-choice algorithm will be 

dictatorial. In Chapter 2 and Chapter 3, we explored some possible escapes from the 

Arrovian result in theory choice. The focus of this chapter is on the question whether 

the Arrovian result carries over to system choice for the BSA. The Arrovian result for 

the BSA, if it obtains, will be that there is one criterion whose ranking of systems 

dictates overall system choice regardless how well they do with respect to the other 

criteria.85 This seems like a serious threat to the BSA. In the following section, I will 

provide a detailed plan to assess the threat. 

5.1 Threat Assessment: The Plan 

The Arrovian threat for the BSA is that, if the certain conditions for Arrow’s theorem 

(U, P, and I) apply to system choice, the system choice algorithm will be dictatorial 

(D fails).86 For example, if fit is a dictatorial criterion implied by the Arrovian result, 

it means the most fitting system will always win, regardless how complex or how 

uninformative it is. The system(s) that is picked by such dictatorial criterion can 

hardly be seen as a result of certain ‘balancing’ procedure of multiple criteria as 

prescribed by the BSA. Furthermore, the Arrovian result cannot be blocked by the 

Hope thesis (§4.3). For example, suppose the Humean pixels in our world happen to 

                                                 
85 Notice that the Arrovian result does not imply the existence of a ‘dictatorial system’; what it 

implies is the existence of a ‘dictatorial criterion’. These are completely different claims. 
86 See §2.2.3 for the formal statements of the conditions and the theorem.  
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be ‘kindly’ arranged in such a way that one system is dominantly better than its rival 

systems with respect to all of the system choice criteria. In this case, the Arrovian 

impossibility implies that each criterion is a dictator, by definition. This might seem 

as innocuous dictatorship. But, on the strong Humean Supervenience (§4.2.3), there 

can be other worlds where we should worry about dictatorial system-choice 

algorithms, where, for example, one criterion comes out to be a dictator.87 So, 

dictatorship should be a genuine concern for the BSAers. Thus the Arrovian result 

seems to undermine the BSA to the extent it has a balancing process as integral to the 

analysis of lawhood.  

This seems to raise a serious challenge to the BSA, so in this chapter I will examine 

whether the conditions of Arrow’s theorem apply to system choice. Let me lay out the 

plan for this chapter.  

One might attempt to escape from the Arrovian threat by relaxing one or more 

conditions of Arrow’s theorem in system choice.88 In this chapter, I will explore the 

plausibility of such attempts. First, in §5.2, I will discuss the possibility of relaxing 

the unrestricted domain condition (U) for system choice. As we saw in §2.4.2, U does 

not apply to theory choice but the Rich domain condition (R), a weaker version of U, 

may apply to theory choice. It will be argued that the same applies to system choice. I 

will claim that U does not apply to system choice either but R does. We will also note 

                                                 
87 The strong HS says that any two worlds which agree on history should also agree on laws. On 

the BSA, if the system-choice algorithm is dictatorial, there can be cases where the strong HS 

fails. We will have further discussion on the relation between the weak HS and the Arrovian 

impossibility in §5.3.  
88 This does not necessarily open up a sure-fire escape route. For example, when U is relaxed, 

some other variants of the Arrovian impossibility still obtain, if R, the weaker counter part of U, 

obtains. We will have discussion of it shortly.  
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that relaxing U to R does not block the Arrovian result. As we saw in §2.4.2 and 

§2.4.3, literature in social choice and theory choice (Parks 1976, Hammond 1976, 

Kemp and Ng 1976, Roberts 1980, Rubinstein 1984, Feldman and Serrano 2008; 

Morreau 2015, Okasha 2015) has suggested that, even if U is weakened to R, a 

variant of Arrow’s impossibility theorem obtains provided the strong neutrality 

condition (SN), a stronger version of I, is met. This will lead us to the question 

whether SN applies to system choice.  

In §5.3, I will discuss SN in connection with the Humean Supervenience thesis. As 

we saw in §4.2.3, there are strong and weak versions of the Humean Supervenience 

(HS) thesis, the underlying principle for the BSA. While many BSAers believe the 

strong HS is the appropriate one, Lewis’s original, weak HS is a contingent thesis 

which only applies to the range of worlds like ours. Arrow’s impossibility theorem 

(1951/1963) was originally derived in the multi-profile framework (§2.2). So, the 

BSAers might respond to the Arrovian result for system choice by falling back to the 

weak HS thesis as a way to block such a multi-profile framework for system choice. 

They might hope this would open an escape from the Arrovian result for the BSA. I 

will note that this move is analogous to some early reactions to Arrow’s impossibility 

in social choice literature. However, as we saw in §2.4.3, the conjunction of SN and 

R (along with P and D) yields an analogue of the Arrovian impossibility even in the 

single-profile framework. Assuming R is met in system choice (§5.2), we will be led 

to the question whether SN can be dropped in system choice. I will argue that SN is a 

desirable property of consistency for system choice.   
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In §5.4 and §5.5, I will discuss the possibility of relaxing the condition I. As we saw 

in §2.2.3, condition I is logically equivalent to the conjunction of the two conditions: 

Independence of Irrelevant Utilities (IIU) and Ordinal Non-Comparability (ONC). I 

will discuss each of them in the context of system choice since an escape from the 

Arrovian result will open up if we can abandon either one of IIU and ONC 

(Hammond 1991, 2004). As for inter-criterial comparability in system choice, we will 

first need to examine the cardinal measurability of the system choice criteria invoked 

by the BSA. This is because if they can be measured on cardinal scales, then our 

concern will have to be about Cardinal Non-Comparability (CNC).89   

In §5.4 I will discuss the possibility of abandoning IIU, in comparison to SN. I will 

suggest that IIU is a desirable property of system choice procedure.  

In §5.5, I will investigate the possibility of cardinalizing fit (§5.5.1), strength (§5.5.2), 

and simplicity (§5.5.3), the three criteria invoked by the BSA. I will conclude that 

none of the criteria seems cardinally measurable. Even if they were, as we saw in 

§2.4, cardinality without comparability cannot open up an escape from the Arrovian 

impossibility (Kalai and Schmeidler 1977, Sen 1970) 90. This will lead us to a search 

for a form of inter-criterial comparability.  

In §5.6, I will propose a variant of the BSA as an attempt to make a case for inter-

criterial comparability between fit and simplicity: the A-BSA, an implementation of 

the BSA with Akaike Information Criterion discussed in §3.2. I will examine how 

                                                 
89 This is also because we need to block some common but misguided responses to the Arrovian 

impossibility like “Why not measure them on cardinal scales?”    
90 If ONC is replaced with the logically weaker condition Cardinal Non-Comparability (CNC), 

the other conditions being met, the Arrovian impossibility still obtains for SWFL (Social Welfare 

Functional). See Sen 1970, Hammond 1986, for example. 
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this implementation turns out to be. I will also attempt to implement the BSA with 

Bayesian Information Criterion discussed in §3.4. However, it will be shown that the 

proposed variants face counterexamples, due to i) the context gap between statistical 

model selection and system choice, and ii) the assumption made by those statistical 

methods about the existence of ‘true curve’, which is inconsistent with the BSA of 

laws. I will conclude this chapter by suggesting that the attempts examined in this 

chapter do not have a good outlook. 

I have laid out the plan for assessing the Arrovian threat. Following the plan, let us 

begin with the possibility of relaxing U, unrestricted domain.  

5.2 Possibility of Relaxing the Unrestricted Domain Condition 

In this section, I will discuss the possibility of relaxing the unrestricted domain 

condition, U, in system choice. In social choice, U says that any social choice 

algorithm should be able to handle all logically possible profiles of individual 

rankings. In theory choice, the analogue of U is that any theory-choice algorithm 

should be able to handle all possible profiles of rankings of theories with respect to 

theoretical merits such as simplicity, fit, informativeness, and so on. The analogue of 

U for system choice would be:  

Unrestricted Domain (U): The domain of the system-choice rule is the set of all 

logically possible profiles of orderings of systems with respect to fit, strength, and 

simplicity.  

U might appear to apply to theory choice and system choice. For example, as we saw 

in §2.3, Okasha (2011) suggests that U applies to theory choice as there should be no 

a priori restrictions on what profiles are admissible and what not to theory choice 
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rule.91 Likewise, it might seem for system choice that the analogue of U is appropriate 

because there should be no metaphysically privileged way to impose any restriction 

on what system ranking profiles are to be allowed. But, as we saw in §2.4, U does not 

seem to apply to theory choice. Once we fix the sense of simplicity to use to rank 

theories and the language to describe the theories in question, simplicity ranking of 

two theories is invariant regardless of data (Morreau 2015). If U is inapplicable to 

theory choice like this, then it means the admissible profiles are restricted in theory 

choice.  

What of U for system choice? Is U applicable or inapplicable to system choice? It is 
worth quoting Lewis at this point. Lewis (1994; 479) says:  

The worst problem about the best-system analysis is that when we 

ask where the standards of simplicity and strength and balance 

come from, the answer may seem to be that they come from us… I 

used to think rigidification came to the rescue... But now I think 

that is a cosmetic remedy only. It doesn't make the problem go 

away, it only makes it harder to state. The real answer lies 

elsewhere: if nature is kind to us, the problem needn't arise. I 

suppose our standards of simplicity and strength and balance are 

only partly a matter of psychology. It's not because of how we 

happen to think that a linear function is simpler than a quartic or a 

step function; it's not because of how we happen to think that a 

shorter alternation of prenex quantifiers is simpler than a longer 

one; and so on. Maybe some of the exchange rates between aspects 

of simplicity, etc., are a psychological matter, but not just anything 

goes. If nature is kind, the best system will be robustly best-so far 

ahead of its rivals that it will come out first under any standards of 

simplicity and strength and balance. 

Here Lewis may seem to say that system rankings can come out differently under 

‘different standards of simplicity’ (and of the other criteria as well) but nature will be 

kind in such a way there will be a clearly winning system under ‘any of standards of 

simplicity’ (the Hope thesis; see §4.3). Passages like the above might give an 

                                                 
91 In response to Morreau (2015), Okasha (2015) concedes that U does not apply to theory choice.  
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impression that Lewis himself conceded the possibility of reversible ranking of 

simplicity of systems (and of the other criteria as well). If the simplicity ranking were 

reversible, for example if simplicity could rank X above Y at one time and Y above X 

other times, then it may seem desirable that the domain of system choice admits all of 

such possible profiles of simplicity of systems.  

But this is a false impression. If there are ‘different standards of simplicity’, it simply 

means that different choice criteria are invoked. (We may use labels like Simpliciy-1, 

Simplicity-2, … for each of the ‘different standards’ of simplicity to avoid 

confusion.) It is often claimed that different scientists can legitimately rank simplicity 

of theories in different ways. It is also often claimed that simplicity is a matter 

psychology, like Lewis himself conceded to some extent. Claims like these may have 

contributed to the false impression. As we saw in §4.3, typical examples for the so-

called reversibility of simplicity ranking are misguided (Carroll 1994, for example). If 

different scientists rank simplicity of theories differently, it means that they invoke 

different theory choice criteria, which happen to have the same name ‘simplicity’. 

This is analogous to the case where voters with the same name, say John Doe, rank 

alternatives differently; we would not describe their different orderings of alternatives 

as “John Doe’s ordering of the alternatives is reversed.” If this observation is correct, 

then simplicity ranking of systems is rigid. Given this rigidity of simplicity, the 

domain of system choice is somewhat restricted.92   

The Hope Thesis as Restricting Domain for System Choice  

                                                 
92 Of course it doesn’t follow from this that the Arrovian impossibility is blocked for system 

choice. It still remains to see if this kind of restriction is sufficient to block it. Until then, we still 

have to examine the other conditions for the Arrovian impossibility in system choice.  
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In addition to the rigidity of simplicity ranking of systems, the BSAers might suggest 

that the Hope thesis also serves as a restriction on the range of the admissible profiles 

in system choice. Lewis does not specify the exact range of his Hope thesis, but in the 

above quote he seems to exclude some ‘troubling’ ranking profiles by saying “If 

nature is kind, the best system will be robustly best-so far ahead of its rivals that it 

will come out first under any standards of simplicity and strength and balance.” One 

may consider this Hope thesis as a sort of restriction on what profiles are admissible. 

For example, nature might kindly arrange itself in such a way that profiles like 

Condorcet paradox (§2.2) would not arise. Or, for another example, nature might be 

arranged in such a way that it can block the profiles in which systems are tied in all 

ways; the Humean mosaic will be kindly arranged so that there will emerge tie 

breakers. Or, the Humean mosaic might be very subtly arranged in such a way that 

some decisive information about overall goodness of systems would be revealed 

when system criteria are measured on cardinal scales. So the hope goes.  

Whichever refinement it takes, the Hope thesis as domain restriction like above does 

not guarantee an escape route from the Arrovian impossibility. At best, what can be 

drawn from the Hope thesis is that, among many possible ways that nature can be 

kind to us, one way is that nature might restrict the domain of system-choice rules. 

After all, the Hope thesis is a very general and unarticulated ‘hope’ that the system-

choice algorithm will generate a clear winner; it remains silent about how the system-

choice algorithm should operate. Recall Lewis’s primary aim in proposing the Hope 

thesis is to guarantee there comes a sure winner in a race for the best system (§4.3.2 

and §4.3.3). In contrast, the Arrovian result for system choice, if it obtains, questions 
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the way the algorithm operates; the result would imply that the winner is picked by a 

dictatorial criterion. So the Arrovian threat is on the ‘balancing’ process in its analysis 

of lawhood; the Hope thesis is just aimed at producing a winner in one way or 

another.  

Furthermore, even if mother nature is indeed kind enough to restrict the domain, it 

does not mean that the Arrovian threat can be avoided. As we know from the 

literature on social choice (§2.4.2 and §2.4.3, also see the subsection below), even if 

U is not satisfied, a variant of the Arrovian impossibility obtains if the domain of the 

social-choice algorithm rich enough. In the context of system choice, then, the 

BSAers would have to add to their Hope thesis that mother nature will be extra kind 

so that she would sufficiently restrict the domain of system-choice rules such that the 

domain is very impoverished. Invoking hope after hope in this way seems like an ad-

hoc maneuver. Also, we may have good reasons to believe that the domain of system-

choice rules should be rich. In either case, the Hope thesis as domain restriction does 

not seem to save the BSA.  

The Rich Domain Condition for System Choice 

As for theory choice, Morreau (2015) argues that U does not apply to theory choice, 

while noting that the weaker condition, rich domain (R) may apply to theory choice. 

Roughly put, according to R, what should be unrestricted in theory choice is the 

patterns of unfixed placeholders for theories. U says all logically possible profiles of 

the same specific theories should be admitted. But simplicity, as we have just seen, 

does impose significant constraints on their ranking profiles because once it is set 

which candidate theories or systems are to be considered their simplicity rankings 
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could not be different than the rankings in the actual profile. But the pattern itself 

should not be restricted; that is, it should still remain true that simplicity may rank 

some theory above another theory. This condition is called Rich domain (R) 

condition.  

As we saw in §2.4, in the literature on social choice theory, it is now agreed that U is 

not required for the Arrovian impossibility; something strong enough is required, that 

is, the domain should be diverse enough (Kelly 1978; ch7, Pollak 1979; 76-7, 

Campbell and Kelly 2002; 64-5, for example). For example, the so-called Pollak 

diversity condition requires that, for any logically possible profile over three 

‘hypothetical’ alternatives (x, y, z), then there exist three alternatives (a, b, c) such that 

the profile restricted to that triple coincide with the profile over the hypothetical triple. 

Morreau (2014a, 2015) elegantly subsumes Pollak’s pioneer work and similar studies 

on diverse domain conditions under Rich domain (R) condition. Morreau defines a 

pattern as a list of weak orderings of some set of logical variables (not actual 

alternatives). A profile is said to realize a pattern if there is a matching between a set 

of variables in the pattern and a set of alternatives in the profile. Morreau’s Rich 

domain condition is:  

Rich domain: A domain is rich if for every suitable pattern P of three variables, there 

is some profile in this domain that realizes P.  

In words, a domain is rich if orderings of three alternatives are showing patterns 

which coincide in one way or another with all possible orderings of three 

hypothetical, not actual, variables. According to R, what should be unrestricted in 

theory choice is the patterns of variables. This rich domain, along with the other 
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suitably modified analogue93 of Arrow’s condition, is enough to give a rise to a 

variant of the Arrovian impossibility. The literature on social choice and theory 

choice (Parks 1976, Pollak 1979, Hammond 1976, Kemp and Ng 1976, Roberts 1980, 

Rubinstein 1984, Feldman and Serrano 2008; Morreau 2014a, 2015) agrees that even 

if U is replaced by R (or some similar conditions in early literature), a variant of 

Arrow’s impossibility theorem obtains provided the strong neutrality condition (SN), 

a stronger version of I, is met. That is, simply weakening U to R in theory choice 

does not open up an escape route from the Arrovian result. 

Turning to system choice, we saw that U does not apply to system choice. Does the 

analogue of R apply to system choice, based on the same consideration as above? 

According to official statement of the BSA (Lewis 1983, 1994; see §4.2), some 

systems come out to be simpler than others; some more informative than others; and 

fit of systems may vary as well. This rich pattern, in which systems are ranked in one 

way or another by the three system choice criteria, seems to have to be allowed in 

system choice.  

Morreau (2014a) gives an illustrating example of rich domain in theory choice. Given 

that there are generally less restrictions on choice rules in system choice than in 

theory choice, we do not have reason to doubt that a similar construction could be 

done in the case of system choice as well. Let us consider a simple example. When it 

comes to three hypothetical alternatives, or, say, variables (x, y, z), there are only four 

weak orderings of them: (1) x ≈ y ≈ z, (2) x > y > z, (3) x > y ≈ z, and (4) x ≈ y > z. 

A suitable pattern P would be one of them. Suppose we are dealing with deterministic 

                                                 
93 It is Strong neutrality condition (SN). Shortly we will have discussion on it.  
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laws of nature, i.e., invoking the two system choice criteria of simplicity and 

informativeness. Now, for example, let P = [x > y > z, z > x ≈ y]. What we would 

need is a case where the orderings of the candidate systems (a, b, c) satisfy the two 

component orderings of P with respect to the two system choice criteria. Say a is a 

system like ‘theory of everything’ which talks about all fundamental properties and 

their instantiations on the Humean mosaic, b and c are systemizations of facts only 

about biological entities while b presupposes fewer number of ontological basic kinds 

than c does. If we plug a in z, b in x, and c in y, then we have: a > b ≈ c with respect 

to informativeness; and b > c > a with respect to simplicity. We can see examples for 

other choices of P can be generated in a similar manner. So it seems that R is 

applicable to system choice as well.  

In this section, we have discussed the possibility of relaxing U. It turns out that the 

analogue of U for system choice is inapplicable but the weaker condition R still 

applies to system choice. This weakening alone does not open up an escape from the 

Arrovian impossibility. Following the plan laid out in §5.1, let us turn to the Strong 

Neutrality condition for system choice. 

5.3 Neutrality for System Choice: Multi-Profile versus Single-
Profile Approaches and the Humean Supervenience 

In this section, we will ask if the strong neutrality condition applies to system choice. 

As we saw in §2.4, literature in social choice and theory choice (Parks 1976, 

Hammond 1976, Kemp and Ng 1976, Roberts 1980, Rubinstein 1984, Feldman and 

Serrano 2008; Morreau 2015) has shown that, even if U is replaced by its weaker 

counterpart R, a variant of Arrow’s impossibility theorem obtains provided the strong 
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neutrality condition (SN), a stronger version of I, is met. This leads us to the question 

whether SN applies to system choice.  

Let me discuss this question in connection with the Humean Supervenience (HS) 

thesis we examined in §4.2. It says that truth supervenes on what there is, and what 

there is is just a vast mosaic of local particular matters of categorical facts and the 

spatiotemporal relations among them. That is, all the facts, nomic and non-nomic, 

supervene on the Humean mosaic. It follows from the HS thesis that there cannot be 

difference in laws without difference in local matters of facts.  

As we saw in §4.2, there are weak and strong version of the HS thesis. Lewis (1994; 

475)’s weaker HS thesis about laws says: 

For any two worlds like ours which agree with the spatio-temporal 

distribution of fundamental qualities, laws are the same. 

In contrast, the strong version of the HS states that  

For any two worlds which agree with the spatio-temporal distribution of 

fundamental qualities, laws are the same. 

Both defenders and critics of the Humean conception of laws generally take the 

strong version as the official HS thesis about laws. (Hall 2012, Beebee 2000, Roberts 

2001, Earman and Roberts 2005; Armstrong 2004). 

At this point, let me recapitulate the multi- and single-profile approaches in social 

choice discussed in §2.4.3. Arrow’s impossibility theorem was originally derived in 

the multi-profile framework, which involves possible profiles of preference orderings 

of individual voters that are different from their actual orderings. However, in actual 

situations, there is only one profile: the actual profile of how individuals actually 



 

 160 
 

prefer the alternatives. So, it may seem that, in a given actual situation, social choice 

rule only needs to generate a social ordering for one fixed, actual profile. Based on 

this consideration, some claimed that Arrow's nihilistic conclusion should be rejected 

(Little (1952), Samuelson (1967)) because the conditions imposed by Arrow are 

defined in the multi-profile framework. According to these objectors of Arrow, 

individual preferences are given and social choice procedure only need to determine 

the best alternative given those individual preferences; and if individual preferences 

change then we just have “a new world and a new order” (Little 1952; 423-424). 

Requiring social choice rule to be sensitive to all logically possible profiles like 

Arrow did is just “an infant discipline of mathematical politics” rather than that of 

appropriate welfare economics, hence we should “export Arrow from economics to 

politics” (Samuelson 1967; 42). 

Turning back to system choice, the analogue of the multi-profile framework in system 

choice would mean that non-actual profiles of rankings of systems would be used. It 

seems that, on the weak HS thesis, we only need to care about actual profiles of 

systems because the weak HS only concerns our actual world (and similar worlds). 

(And profiles in similar worlds should be same as actual profile anyway, according to 

the Hope thesis.) That is, on the weak HS thesis, the BSA doesn't need to care what 

happens in counterfactuals; what matters is how things are in actual world. So, the 

defenders of the BSA facing the Arrovian threat might be tempted to fall back to the 

weaker HS thesis. On the weak HS thesis, system choices need to be made given how 

systems ‘actually’ fare with respect to the actual system choice criteria. Then, 

adopting the weak HS, they might claim that the analogue of Arrow’s theorem does 
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not obtain because the theorem relies on multi-profile framework and there is no need 

to worry about the multi-profile framework on the weak HS.  

Unfortunately for these BSAers, however, even under the weak HS there is a variant 

of the Arrovian impossibility: the single-profile one. In social choice, in response to 

the complaints about the multi-profile framework like above, literature in social 

choice theory in the late 1970’s and early 1980’s showed the single-profile variants of 

Arrow’s theorem obtains for a fixed preference profile if the profile is diverse enough 

and the intra-profile counterparts of Arrow’s inter-profile conditions are met 

(Fishburn 1973, Parks 1976, Hammond 1976, Kemp and Ng 1976, Pollak 1979, 

Roberts 1980, and Rubinstein 1984; See Suzumura 2002 and Feldman and Serrano 

2008 for historical overview). It is now agreed that there are single profile analogues 

of all the results given in the multi-profile framework, provided suitably constructed 

single-profile conditions are met (Pollak 1979; 86, Sen 1977; 1564, Rubinstein 1984; 

726).  

So, our imagined BSAers, who argue that the system choice rule for the BSA only 

need to yield the best system based on how competing systems fare with respect to 

actual history, against fit, simplicity, and strength, now face the single-profile variant 

of the Arrovian impossibility. As we saw in §2.4, the conjunction of SN and R (with 

the other conditions being met) leads to the Arrovian impossibility even in the single-

profile framework. We just saw that R is motivated in system choice (§5.2), now we 
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are led to the question whether SN can be dropped in system choice. The analogue of 

SN for system choice would be:94  

Strong Neutrality (SN): For all w, x, y, z in the set of alternative systems X, and for all 

profiles R, R’ in the domain of system choice rule,  

If, for every system choice criterion i, [xRiy iff zR’iw] and [yRix iff wR’iz], then [xRy 

iff zR’w] and [yRx iff wR’z].  

There is no definitive answer to the question whether the analogue of SN holds in 

system choice, but we know what kind of questions we have to ask in order to find it 

out. Suppose the system choice rule, whatever it is, is established for the BSA. That 

is, it is settled which choice criteria to use and how to balance different criteria. 

Suppose the system choice rule ranks S1 over S2. For this particular pair-wise 

competition, S1 comes to be the better system than S2 under the choice rule (whatever 

it is). Now imagine S3 and S4 exhibit the same ranking pattern as S1 and S2. For 

example, S1 is simpler than S2, so is S3 than S4; S2 is more informative than S1, so is 

S4 than S3, and so on. That is, the pair S1 and S2 and the pair S3 and S4 show the same 

criteria-ranking pattern. In this case, should the system choice rule yield the same 

ordering for S3 vs S4 pairwise competition as it did for S1 vs S2? We assumed it ranks 

S1 over S2, so assuming they share the same ranking pattern, should it be the case that 

                                                 
94 Morreau (2015)’s formal definition of SN is identical with the formal definition of Neutrality 

found in some social choice literature. For example, Bossert and Suzumura (2010) give the formal 

definition of Neutrality which is identical with Morreau’s definition of SN. But, see, for example, 

d’Aspremont and Gevers (2002, pp. 493–494) for the formal definitions of Intraprofile Neutrality 

(IAN) and Strong Neutrality (SN), which clearly indicate that the latter is the stronger condition 

than the former. This is, roughly put, because SN requires social choice rule to be consistent over 

different pairs across different profiles and IAN requires consistency over different pairs within a 

profile. Given IAN is a special case of SN (when two profiles are equated), SN is the stronger 

imposition on a social choice rule than IAN.  



 

 163 
 

the rule should also rank S3 over S4, consistently? Is this kind of consistency needed 

for the BSA? Our answers to questions like this will tell us whether SN is applicable 

to system choice for the BSA. The answer seems to be that this kind of consistency is 

a desirable property of the system choice procedures for the BSA.   

The BSAers might think SN can be dropped in system choice. They might suggest 

that we utilize cardinal information about systems. For example, while the pair S1 and 

S2 and the pair S3 and S4 show the same ordinal criteria-ranking pattern, S4 might be 

vastly more informative and only minimally less simple than S3, while S1 is vastly 

simpler and minimally less informative than S2. In that case, even if S1 is ranked 

above S2 under system choice rule, S4 may have to be ranked above S3; SN would not 

apply. But this line of response assumes a certain kind of inter-criterial comparability. 

We will discuss the inter-criterial comparability in §5.6. Unless the inter-criterial 

comparability is established, this answer does not work out.  

Another possible answer may be given in a contextualist perspective. The answer 

would go as follows: In the above example, S1 and S4 might systematize more 

interesting parts of the world than S2 and S3 do, in which case S4 should be ranked 

over S3. The system for Earth biology and the system for Martian biology might be 

equally strong and simple, but Earth biology delivers information about what is more 

interesting to us. So Earth biology is the preferable system.  

This line of response wouldn't work out because systems are supposed to work on all 

the pixels in the Humean base. Contextualist answers like above may make sense in 

the case of theory choice, where the 'context of interest' can be well-implemented. But 

given that the BSA is a metaphysical theory about laws which tries to remove 
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subjective elements in the analysis of lawhood, this answer does not seem 

appropriate. If my diagnosis is right, then SN condition is motivated in system choice.  

We have discussed U and R (§5.2), and SN (§5.3). The upshot so far is that R and SN 

seem to apply to system choice. Let us turn to the condition of Independence of 

Irrelevant Alternative (I). 

5.4 Neutrality and Independence 

As we saw in §2.2, the condition I has the ‘irrelevant’ and ‘ordering’ aspects. 

Formally, I is logically equivalent to the conjunction of the two conditions: 

Independence of Irrelevant Utilities (IIU) and Ordinal Non-Comparability (ONC) 

(Sen 1970). Let us focus on IIU in this section. In social choice, IIU says that  

Independence of Irrelevant Utilities: the social ordering over the set of a pair of 

alternatives depend only on individuals’ utility functions restricted to that set.  

IIU has been widely accepted in social choice theory (Kemp and Ng 1987, Hammond 

and Fleurbaey 2004). My discussion of IIU below will be mostly done in comparison 

to SN. 

Does IIU apply to system choice? Before answering this question, let us review the 

discussion on SN we saw in §2.4.2, the stronger condition than I. SN is more 

stringent than I. I requires consistency for each pair of alternatives separately. 

Figuratively speaking, in social choice, I means that when the social welfare function 

aggregates individual orderings, it should take each pair of alternatives separately, 

paying no attention to preferences for alternatives other than the pair in question. I 

requires consistency between two profiles over a pair each time; it leaves possibility 

that different pairs might be treated differently. For example, when two profiles 〈 Ri〉  
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and 〈 R’i〉  coincide on x and y, and the individuals exhibit the exactly same pattern 

of preference orderings on z and w as they do on x and y, what I requires is that the 

social preference ordering of two profiles should agree on the pair of x and y, and 

agree on the pair of z and w, separately. But I does not require that the social ordering 

of two profiles are same across the pair of x and y and the pair of z and w. As it should 

be clear now, it is SN that precisely requires such consistency across different pairs.  

SN is a fairly strong condition, and in social choice, it has the effect of forbidding 

social choice procedure from using non-utility information. In theory choice, the 

analogue of SN would require that theory choice procedure should only use 

information about how well theories fare with respect to the theory choice criteria; for 

example, the identity of theories should not enter the procedure. It seems unclear 

whether SN applies to theory choice. On the one hand, we can think of some 

examples where other kinds of information seem to be allowed in theory choice 

procedure. If two theories, for example a descent of Darwinianism and a descent of 

Creationism, are in competition, scientists may take into consideration information 

about the theoretical lineage of the two theories. Or, scientists working in different 

branches of science may judge theories in different contexts of interest. On the other 

hand, it seems to desirable that theory choice procedure is as ‘neutral’ and consistent 

as possible, for theory choice to be rational in the most common and intuitive sense of 

the term. So, we don’t seem to have theoretical or empirical ground for outright 

rejection or acceptance of SN in theory choice.  

What of the system-choice analogue of SN? For the BSA, systems are true, deductive 

systemizations of categorical facts. SN seems motivated in system choice. We saw 
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some cases like above where ‘irrelevant’ information might be used in theory choice, 

but there seems no such cases for system choice – systems have no identity; there is 

no context of interest for systems. Now, turning to our question for this section, what 

of the system-choice analogue of I, in particular, the ‘irrelevant’ aspect of I? The 

system-choice analogue of IIU would be that   

IIU for system choice: the ordering over the set of a pair of alternative systems 

depend only on those two systems’ scores with respect simplicity, fit, and 

informativeness, restricted to that pair.   

In words, the ordering of two systems x and y should be only determined by the 

scores of x and y; the score of the irrelevant system z, for example, should not enter. I 

do not have a conclusive argument for IIU.95 But given the above considerations 

which seem to motivate the system-choice analogue of SN, and given that SN is 

much stringent than I, I suggest that the system-choice analogue of IIU is a minimum 

requirement for the system-choice rules for the BSA. Furthermore, there are 

conditions like ONC that have been extensively discussed as a possible candidate to 

relax in order to avoid the Arrovian impossibility. Until we find a clear case against 

IIU, I suggest, we should investigate the possibility of relaxing the other conditions 

first. Following the plan laid out in §5.1, let us turn to the possibility of cardinal 

measure of the system choice criteria invoked by the BSA. 

                                                 
95 Of course, by equating x to z and y to w in the following statement of SN, we obtain I. So, if 

SN is met, its special case I is met. Strong Neutrality (SN): For all w, x, y, z in the set of 

alternative systems X, and for all profiles R, R’ in the domain of system choice rule, If, for every 

system choice criterion i, [xRiy iff zR’iw] and [yRix iff wR’iz], then [xRy iff zR’w] and [yRx iff wR’z].  
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5.5 Exploring Escape Routes from the Arrovian Threat: 
Cardinal Measurability 

As we saw in §2.4, Arrow’s ordinalism (Arrow 1951) is that social choice procedure 

should only deal with information about ordinal preference over alternatives. This 

ordinalism approach is ‘informationally impoverished’ as it allows very little 

information about intensity of preference. Sen (1970, 1986) proposed the 

‘information enrichment’ approach to the possibility of social choice, in which social 

choice procedures are allowed to use more enriched information than ordinal 

information about individual preference, provided intensity of preference can be 

cardinally measured. The cardinal measurability of theory choice criteria was 

discussed in §2.4.4. In this section, I will examine cardinal measurability for each of 

the system choice criteria of the BSA: fit, strength, and simplicity. Let us turn to the 

criterion of fit first. 

5.5.1 Possibility of a Cardinal Measure of Fit 

Let us consider cardinal measurability of fit. As we saw in §4.3.6, on Lewis’s 

definition (Lewis 1994), a system's fit is measured by the probability that it confers to 

the complete history of chance events in a given world. On this definition, fit is 

cardinally measured on the closed interval of real numbers from zero to one, with 

non-arbitrary zero point. However, there are a number of problems for using Lewis’s 

definition as a cardinal measure of fit of systems. In this section, I will discuss the 

zero-fit problem and the typicality solution to the zero-fit problem (§5.5.1.1), and the 

incompleteness problem and some possible solutions to it (§5.5.1.2). I will examine if 

these solutions provide cardinal measures of fit. 
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5.5.1.1 The Zero-Fit Problem and Suggested Solutions 

We should be careful about Lewis’s definition of fit. Systems assign zero probability 

to the history of events when there are infinitely many events or the outcome space of 

the event is infinite. On Lewis’s definition of fit, if history is infinite, all the systems 

come out to have equal fit of zero. This is called the zero-fit problem (Lewis 1980, 

Elga 2004). For example, imagine actual history consists of a sequence of infinitely 

many flips of a coin:  

History: HTHTHTHTHTHTHTHTHTHT…  

Suppose we are comparing different systems which make different claims about what 

the chance of the coin’s landing heads Ch(H) is:  

S1: Ch(H) = 1/2 

S2: Ch(H) = 1/6. 

The problem with Lewis’s definition of fit is that both S1 and S2 will assign zero 

probability to history. This is because there are infinitely many occurrences of the 

outcome H in history and multiplying infinitely a value less than 1 by itself is zero. 

On Lewis’s definition of fit, then, all systems come out to have equal fit of zero in the 

case of infinite history. This is the zero-fit problem. Lewis (1980, 1994) disregarded 

the problem.96 Elga (2004) proposes that fit of a system for a world should be 

measured by how ‘typical’ the system views the world. Call this proposal the 

typicality solution. Let us examine the proposal in detail.  

                                                 
96 Lewis was aware of this problem: “…the fit between the system and a branch would be the 

product of these chances along that branch; and likewise, somehow, for the infinite case. (Never 

mind the details if, as I think, the plan won’t work anyway.)” (Lewis 1980 postscript, p. 128) He 

simply dismissed the problem of infinite case because he was engaged with reductio here. But he 

uses the same definition for his official characterization of the BSA (1994), where he does not 

mention the problem of infinite case. See Bostrom (1999) for critical discussion of it.  
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First let us examine what ‘typicality’ means in the typicality solution. For example, a 

system which claims Ch(H)=1/2 will view sequences like … HTHTHTHT … as 

more typical than sequences like … HHHHTHHHHT…, while another system which 

claims Ch(H)=5/6 will regard the latter sequence more typical. The more typical a 

system views a world, the greater fit the system has to the world. If the fit of systems 

are measured with respect to one proposition true only at a world of infinite history, 

then there arises the zero-fit problem. Instead of one proposition, Elga’s suggestion 

goes, we97 should choose a set of ‘test’ propositions which pick out some important 

features of history and compare the probabilities assigned to those test propositions 

by the systems in comparison. The test propositions should be in simple language. In 

the present example, Hi: the ith toss landed heads is a good candidate. 

Elga’s formal definition of fit is as follows.  

FitTypicality: System X fits better than system Y iff the chances X assigns to the 

test propositions are predominantly greater than the corresponding chances 

that Y assigns. (Perhaps X assigns a higher chance than Y to every test 

proposition. Or perhaps X assigns higher chances than Y overall.) (Elga 2004; 

72) 

As it stands, “X fits better than Y” expresses an ordinal fit-ranking of X and Y. We 

are exploring the possibility of a cardinal measure of fit, in particular, on an interval 

scale.98 As we saw in §2.4.1, measurement on an interval scale carries meaningful 

                                                 
97 To avoid the risk of sounding too anthropomorphic, “we” may be replaced with the “BSA 

Oracle” introduced in §4.3.4.  
98 This doesn’t have to be an interval scale. If it were shown that fit can be measured on a ratio 

scale, it would be even better for the BSAers. A ratio scale with a meaningful zero point, carries 

information that an interval scale carries and also more fine-grained information about ratios of 
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information about the degree of differences between the measured items. If the fit of 

systems were to be measured on an interval scale, it should be possible to make 

meaningful comparisons of intervals between fit of systems, for example:   

Fit(X) – Fit(Y) > Fit(Z) – Fit(W) 

Fit(X) – Fit(Y) < Fit(Z) – Fit(W) 

Fit(X) – Fit(Y) = Fit(Z) – Fit(W) 

Fit(X) – Fit(Y) = 2 × [Fit(Z) – Fit(W)], and so on. 

The operative terms in Elga’s definition, “predominantly” and “overall”, are left 

imprecise. Let us examine a number of possible precisifications of the typicality 

definition as a cardinal measure of fit.99   

Let Hi be the base test proposition from which compound test propositions can be 

constructed, e.g., “H1 or H2”, “H1 and H3”, “H8 and not-H9” and so on. If there is one 

test proposition of finite length to consider, Elga’s typicality solution works well as a 

cardinal measure of fit. For example, with respect to the test proposition T: H1 & H2 

                                                                                                                                           

the measured quantities of items. But the ‘meaningful zero point’ is not tenable for the criterion 

of fit in system choice. This is because, for the BSA, fit is a measure of accuracy of probabilistic 

systems and different probabilistic systems are all compatible with the same history. The only 

way a system can have zero fit is when history is infinite. However, as we will see in this section, 

the case of infinite history cannot be satisfactorily solved for the BSA.  
99 There is rather a general problem associated with the use of the notion of simplicity in Elga’s 

definition. Elga suggests that test propositions should be true and simple and that simple 

sentences in the form “∃∀φ” should be used to describe typicality (Elga 2004; 71). This is a 

syntactic conception of simplicity, and he does not explain on what basis the form counts as 

simple or why it should be used. (Williams 2008; n.27). As we saw in 3.3.4, a syntactic notion of 

simplicity, if it were to be a useful comparison criterion, has to invoke one or another kind of 

‘privileged’ language. It deserves a separate discussion whether there can be principled ways of 

selecting such reference language for the criterion of fit but it is worth mentioning that even in 

the very first step for the task of measuring fit certain choices have to be made and we need some 

criteria for making such choices. 
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& H3 & H4 & not-H5 (meaning the sequence “HHHHT”), suppose we consider the 

following systems:  

S1: Ch(H) = 5/6 

S2: Ch(H) = 1/2 

S3: Ch(H) = 1/6 

S4: Ch(H) = 4/5.  

The fits of these systems come out to be: 

Fit(S1) = Pr(T|S1) = (5/6)4(1/6) = 0.08037 

Fit(S2) = Pr(T|S2) = (1/2)5 = 0.03125 

Fit(S3) = Pr(T|S3) = (1/6)4(5/6) = 0.00064 

Fit(S4) = Pr(T|S4) = (4/5)4(1/5) = 0.08192. 

This result conforms to our intuition about ordinal ranking of the fit of systems with 

respect to the given test proposition. Furthermore, this notion of fit works well as a 

cardinal measure in the finite cases like this example. Intuitively speaking, S4 fits 

slightly better than S1 fits T, S2 fits quite better than S3, and S4 fits greatly better than 

S3, all of which make comparisons of fit intervals between systems, and the above 

result conforms to our intuition about these comparisons. So far it seems to work well 

as a cardinal measure.100    

Elga’s typicality solution involves the use of more than one test propositions. We 

need a way of measuring fit of systems with respect to a set of propositions. An 

                                                 
100 Lewis’s original definition of fit works in the exactly same way, if actual history is finite and 

only one history (i.e., actual) is to be considered. It deserves an independent discussion which 

assumption is more plausible as to whether actual history is finite or infinite, but here I just point 

out that if history is finite Lewis’s original definition works as a cardinal measure of fit. If it is 

infinite, then we need a solution to the zero-fit problem which can also provide a cardinal measure 

of fit, which is the target of the current investigation.  
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analogy would help with the present investigation. In computer science, there are 

three common ways of measuring performance of a given algorithm with respect to 

more than one cases: measure by its best-case, worst-case, or average-case 

performance. Analogously, we may measure fit of a given system with respect to a set 

of test propositions either by the highest probability, or by the lowest probability, or 

by the average probability it assigns to the test propositions.  

Let T be the set of test propositions and Ti be an element of T. Then the fit measure of 

a system based on the best-case, worst-case, and average-case would be:  

FitBest(S) = Pr(Tk|S) : {k | Pr(Tk|S) ≥ Pr (Ti|S) for all Ti  ∈ T}    

FitWorst(S) = Pr(Tk|S) : {k | Pr(Ti|S) ≥ Pr (Tk|S) for all Ti ∈ T}   

FitAverage(S) = ΣPr(Ti|S)/n (n =|T |)         

Each of these notions of fit might seem to work as a cardinal measure of fit. But there 

are number of problems for them to be used as cardinal measures of fit. Since there 

are infinitely many test propositions,101 all systems will have same FitAverage because 

the average of probabilities assigned to infinitely many test propositions is zero. 

There are problems for FitBest and for FitWorst. In the infinite case, all systems will 

come out to have same FitBest of 1. For example, in the infinite case, the system S1: 

Ch(H)=1/2 assigns probability 1 to the test proposition “there are as many H as T in 

                                                 
101 Elga puts no constraint on the number of test propositions in T. The basic idea of the 

typicality solution is to measure fit not by the probability of a particular outcome but by the 

probabilities of some suitable features (‘typical’ patterns, for example) represented by certain 

outcomes. Elga doesn’t specify what counts as suitable features (he gives an example: if the coin is 

fair, the suitable properties we would expect to typically see are ‘there are as many heads as tails, 

in the long run’, ‘the relative frequency of H is ½ in the limit’, ‘the pattern HTH will appear as 

often as THT in the limit’, and so on). Assuming history is infinite, since the boundary between 

what’s typical and not typical is vague, there is no principled way to pinpoint the cutoff point for 

what and how many propositions are to be included in T.   
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the limit” and S2: Ch(H)= 2/3 assigns probability 1 to the test proposition “there are 

twice many H as T in the limit”. Furthermore, in the limit, both systems can assign 

the same probability 1 to the first test proposition (and to the second). There is no 

metaphysically privileged way to allow the first test proposition in T but not the 

second, or vice versa. This is because there is no metaphysically privileged way to 

calculate the limit of sequence.102 So both S1 and S2 come out to have the same FitBest. 

A similar problem arises for FitWorst. In the infinite case, S1 assigns probability 0 to 

the test proposition “all heads”, so does S2. As before there is no principled way to 

exclude that particular test proposition from T. This again is because there is no 

metaphysically privileged way to calculate the limit of sequence. Both S1 and S2 

come out to have the same FitWorst. In short, the FitBest is ‘too good’ and the FitWorst is 

‘too bad’. These problems render the proposed notions of fit useless as cardinal 

measures of fit.  

There may be other possible precisifications that might work. For example, one might 

define fit of S as the sum of the probabilities S assigns to the test propositions in T. 

Or, one might define it as the average probability S assigns to the ‘most’ test 

propositions in T. But their prospects don’t look good. For the first precisification, the 

sum of their probabilities will diverge to infinity since there are infinitely many test 

propositions. For the second precisification, it is indeterminate how to set the cut off 

number or percentage for what counts “most”, since there are infinitely many test 

propositions. The upshot is that, since there is no metaphysically privileged way to 

                                                 
102 See Lyon (ms.) for a number of examples on this point.  
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address the problems associated with the infinite number of test propositions, the 

prospect for cardinal measure of fit doesn’t look good.103  

So far we have examined the zero-fit problem and the typicality solution along with 

its variants. Unfortunately, none of them seems to provide a satisfactory cardinal 

measure of fit. 

5.5.1.2 The Incompleteness Problem and Suggested Solutions 

Suppose we may set aside the zero-fit problem as Lewis (1980) did. There is another 

concern about the possibility of cardinal measurement of fit. In the context of theory 

choice, scientific theories are often incomplete, for example, accounts of crucial parts 

of the theories are missing, basic concepts are vague, and so on. When theories are 

indeterminate and imprecise like this, measuring fit of such theories may be 

impossible because there can be many hypothetical ways of completing and 

precisifying the theories in question. For example, Morreau (2014a) expresses 

skepticism of cardinal measurability of fit as “without resolving such indeterminacy 

… there can be no saying exactly how well a theory fits available data.”  

                                                 
103 Probably the most promising line of thought would be to confine ourselves to finite number of 

test propositions of finite length of sequences. For example, randomly choose a certain number of 

test propositions from T, truncate them to finite length of sequences, and measure the average 

(the best, the worst, or what have you) of the probabilities a system S assigns to the chosen test 

propositions. This suggestion can be viewed as a sort of statistical hypothesis testing; in the 

proposal under consideration, we test different systems in terms of how typical they view a given 

finite set of truths (hence the name ‘test’ proposition), just as we test different hypotheses by how 

likely they view the observed data set. I suspect that this is the best the BSAers can do to 

measure fit cardinally in the case of infinite history. But this suggestion won’t come without 

problems. First, just as there is a risk of overfitting when we choose a hypothesis based only on 

how well it fits a given data (§3.1.3), the current proposal will face an overfitting problem. 

Secondly, it is indeterminate where the truncation in question should take place. Thirdly, related 

to the second problem, two intuitively very differently fitting systems can come out to have the 

same fit if the two systems agree on the remaining portion of history after truncation and vastly 

disagree on the discarded portion of history by truncation. 
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Similarly for system choice, one might worry that the only meaningful information 

about fit of incomplete systems may be just information about ordinal fit-ranking of 

systems. Even if cardinal measure of fit were possible for each hypothetical 

completion of a given system, the worry goes, it is indeterminate exactly how well the 

system in question fits history of a world given there are many hypothetical 

completions of such systems. From this, one might conclude, all admissible cardinal 

information is simply reduced to ordinal information because a system can only be 

meaningfully said to fit better than its rivals when the former possesses higher 

degrees of fit than the latter in all possible hypothetical completions. Call this 

problem the incomplete problem.  

The BSAers may propose some ways to cardinally measure fit of incomplete systems. 

For example, we may make comparison of fit profiles, which contains information 

about the degree of fit with respect to each possible way of completing the 

incompleteness. This may be done in a way similar to our earlier attempt in the 

previous section to use the typicality fit as a cardinal measure. The attempt involved 

measuring fit of systems with respect to multiple cases. Likewise in the current 

context, we may attempt to measure it with respect to multiple ways of completing 

the incomplete. For example, we may measure fit of a given incomplete system with 

respect to its best possible completion; or with respect to its worst possible 

completion; or measure the average fit over all possible ways of completing the 

system in the question. Accordingly, there may be three possible definitions of fit of 

incomplete systems: FitBest-Completion, FitWorst-Completion, and FitAverage-Completion. Let Ci be a 

possible way of completing an incomplete system S; CS be the set of all possible 
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ways of the incomplete system S. Let H be actual history and Pr(H|S; Ci) be the 

probability assigned to H given the system S, competed in the way of Ci. The three 

suggested definitions of fit would be: 

    Fit(S)Best-Completion= Pr(H|S; Ck) : {k | Pr(H|S; Ck) ≥ Pr (H|S; Ci) for all Ci  ∈ CS} 

    Fit(S)Worst-Completion= Pr(H|S; Ck) : {k | Pr(H|S; Ci) ≥ Pr (H|S; Ck) for all Ci  ∈ CS} 

    Fit(S)Average-Completion= ΣiPr(H|S; Ci)Pr(Ci|S)  

There are some problems for these notions of fit. First, FitBest-Completion may be ‘too 

good’. Suppose history consists of some chancy events of a particular kind, say, 

atomic decay of Un346 atoms. Suppose systems S1 and S2 are indeterminate about this 

kind of event. Among many possible ways to complete each system in question, the 

way which yields the best fit is to make the system simply list every instance of this 

kind of events at every time it occurs. Completed that way, both S1 and S2 will come 

out to have the same FitBest-Completion of 1. But notice that this move would have a huge 

cost of simplicity, and most likely such a hugely complex system won’t be a good 

candidate for the best system. So, FitBest-Completion seems to be next to useless as a 

system-choice criterion.  

Secondly, FitWorst-Completion may be ‘too bad’. In the above example, the worst 

completion would be to make the system assign zero chance to the event at time t, 

like S:Cht(Un346)=0, for every time point t. The probability it assigns to history would 

be zero if there is just one instance of the decay event of U346 in history. For example, 

let T mean it decays, F be it doesn’t decay, let the time-series sequence in question be 

FFFTF, then Pr(FFFTF|S) = (1.0)4(0.0)1 = 0. Systems in competition will come out to 

have the same FitWorst-Completion of 0.    
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What of FitAverage-Completion? First, note the term Pr(Ci|S) in the definition. It represents 

the probability of Ci being the ‘true’ completion given system S. The problem is how 

to determine its distribution over all Cis. If S were a theory, and if the current matters 

were in the context of theory choice, Pr(Ci|S) could be determined by some prior 

assumptions about S. It could be determined by some historical background about S. 

Or, observing some portion of data will let us know about the best estimate value of 

Ci and how the estimate values would be distributed.104 While these considerations 

for determining Pr(Ci|S) might be available if this were the business of theory choice, 

no such prior assumptions are available to system choice for the BSA. Secondly, 

given there are infinitely many (or astronomically many) possible ways of completing 

the incomplete systems, FitAverage-Completion of most systems will come out to be 

indiscernibly very low, rendering it next to useless as a discriminating criterion for 

system choice.   

For these reasons, the prospects for the proposed notions of fit don’t look good. There 

may be other possible notions that might work. For example, one might attempt to 

measure fit of S by the sum of the probabilities in each possible completion S assigns 

to history. Or, one might define it as the average probability S assigns to ‘most’ of the 

hypothetical completions of the incomplete. But their prospects don’t look good 

either; we saw in §5.5.1.1 the same kind of attempts have failed. For the first attempt, 

the sum of their probabilities will diverge to infinity since there are infinitely many 

ways of completing the incomplete. For the second attempt, it is indeterminate how to 

set the cut off number or percentage for what counts ‘most’ since there are infinitely 

                                                 
104 Analogous to Maximum Likelihood Estimate in model selection. See §3.1.3.  
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many completions. The upshot is that, since there is no metaphysically privileged way 

to address the problems associated with the infinite number of completing the 

incomplete, the prospect for cardinal measure of fit doesn’t look good. We saw the 

attempts in §5.5.1.1 didn’t work for the same reason.  

So far we have discussed the possibility of cardinal measurement of fit. Lewis’s 

original definition of fit suffers from the zero fit problem and the incompleteness 

problem. In §5.5.1.1 we have investigated whether solutions to the zero fit problem 

can provide a cardinal measure of fit. In §5.5.1.2 we have investigated whether 

solutions to the incomplete problem can provide a cardinal measure of fit. The upshot 

is that their prospects do not look good.   

Now let us move on the other system choice criteria. Following the plan I have laid 

out in §5.1, let us investigate the possibility of cardinally measuring strength of 

systems for the BSA. 

5.5.2 Possibility of a Cardinal Measure of Strength 

The second system choice criterion invoked by the BSA is strength. In this section, let 

us examine the possibility of cardinally measuring strength. As we saw in §4.3.5, 

Lewis (1983, 1994) characterizes strength as informativeness. Lewis does not 

precisify what informativeness is, but on his description a system is more informative 

about a world when it says more about the facts in the world –e.g., about what will 

happen or what the chance of a certain kind of event occurring will be (Lewis 1994; 

480). The question in this section is how to measure ‘how much’ information a 

system carries about a world. Informativeness is described by the commentators on 

the BSA as a matter of excluding possibilities or possible worlds. In general, a system 
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is said to be more informative if it rule out more possible ways (possible worlds) than 

others do. That is, the more possibilities a system excludes, the greater its 

strength (Earman 1984, Loewer 2004, 2007, Callender and Cohen 2009, Woodward 

2014, Hall (Forthcoming)). Some BSAers add more specification on this general 

notion of informativeness. For example, Earman (1984) suggests that strength should 

be measured not by sheer information about the facts per se but by information about 

the facts and regularities which can be explained by dynamic laws in conjunction 

with appropriate boundary conditions. Some suggest that a system should be 

considered stronger if it allows a wider range of initial conditions and a narrower 

range of candidate dynamic laws (Hall (forthcoming) and Woodward 2014, for 

example). What these different conceptions of strength have in common is that it 

involves the business of ‘counting’ possible worlds in measuring strength.105   

One might argue that we can come up with a way of measuring a system's 

informativeness on a cardinal scale. For example, we may define the informativeness 

of a system by how many possible worlds are ruled out by that system (Hall 

(forthcoming); 12)106. The more worlds excluded by a system, the more informative 

that system is. The maximally informative system, for example, would be one that 

perfectly describes each and every pixel of the Humean mosaic of actual world in 

maximum detail, to the extent that all of the propositions describing the pixels are 

                                                 
105 In §4.3.5, we have examined problems for the general notion of strength. Here we are only 

concerned with cardinal measurability of strength.  
106 Hall discusses this notion of strength in reductio; later he proposes an alternative notion of 

strength. But it also involves ‘counting’ in it.    
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true only in the actual world. The (reverse) measure of informativeness, then, might 

be measured on a cardinal scale with a meaningful zero point.  

But there are problems with this conception of strength as a cardinal measure. 

Counting the number of excluded possibilities or possible worlds is impossible 

because there are infinitely many of them. As we saw in §4.3.5, ordinal comparisons 

of fit of systems may be possible when there are set inclusion relations between the 

systems; but no such case is available for cardinal measurability.   

When systems talk about chance of events, measuring strength becomes more 

complicated. First, history of chancy event is compatible with different systems 

claiming different chances about the event in question. (Hall (forthcoming);12, 

Schwarz 2014;.6) How to measure strength in probabilistic case? When S1 says 

Ch(H)=0.5 and S2 says Ch(H)=0.9, which system can be said to be stronger? Further, 

how to measure their ‘degree’ of strength? Which system says more about the facts 

concerning the chance of the event H? (Note that the current investigation is not about 

fit. If the actual frequency of the event H turns out to be roughly 50-50, then of course 

S1 fits better. But this doesn’t necessarily mean that it says ‘more’ about the event of 

the event H.) 

Probably the most promising approach to the case of chancy events and probabilistic 

systems would be to connect strength to entropy. For example, consider the following 

systems each of which, at time t, makes a claim about the chance of the next coin flip 

outcome being H:  

S1: Ch(H) = 0.5  

S2: Ch(H) = 0.501  
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S3: Ch(H) = 0.9 

S4: Ch(H) = 0.9999999 ......  

S5: Ch(H) = 1  

We may say these systems are listed in order of decreasing entropy. S1 is very little 

informative in the sense that it says virtually nothing about the next outcome – S1 

says probabilities of the outcomes are uniformly distributed, so it gives no meaningful 

information about the outcome of the next coin flip. S2 is slightly more informative 

than S1 in that at least S2 gives us more information than just assuming the next 

outcome will be completely random. S3 seems to carry more information about what 

the next coin flip will be. It gives us more certainty than S1 and S2 in the outcome of 

the next coin flip being H. S5 is maximally informative because it removes any 

uncertainty about the next coin flip outcome. S4 is equally informative given it 

converges to 1.  

This approach seems on the right track. But note that this conception of strength as it 

stands only gives us an ordinal scale of strength; it is not clear yet if the strength 

interval between S1 and S3 are twice as the strength interval between S3 and S5. 

Also, although S1 doesn’t carry much information about the next coin toss, it still 

says something about the coin (e.g., the coin is fair). Then, on Lewis’ definition, S1 

possesses some degree of strength. It doesn’t seem that strength as reverse of entropy 

has a meaningful zero point.  

We have examined cardinal measurability of strength. The entropy notion of strength 

seems to be on the right track when it comes to probabilistic systems. When it comes 
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to deterministic systems, as long as the suggested measure of strength invokes 

counting infinity, the prospect doesn’t look good. 

5.5.3 Possibility of Cardinal Measure of Simplicity  

The third system choice criterion invoked by the BSA is simplicity. Whether 

simplicity is cardinally measurable is a difficult case to account for. But we have 

some clues of what the answer might be. Lewis (1994) states that a linear function is 

simpler than a quartic or a step function and a shorter alternation of quantifiers is 

simpler than a longer one.  

One might think this conception of simplicity is cardinally measurable. For example, 

suppose we define simplicity of a system as 1/n, where n is the number of parameters 

in it (for now let us set aside the case of zero number of parameters), provided the 

system in question is a parametric model.107 Then the model LIN is simpler than 

Poly-2, and Poly-3 is simpler than Poly-5. Surely this conception of simplicity can be 

measured an ordinal scale; but it is unclear if we can meaningfully say the simplicity 

interval between Poly-3 and Poly-5 is twice the simplicity interval between LIN and 

Poly-2.  

Whichever is the case, discussing simplicity only in the domain of parametric models 

is next to useless for the BSA. In standard characterizations of the BSA (as we saw 

§4.3.7), simplicity of a system concerns not only the simplicity of a single proposition 

                                                 
107 Defining simplicity in this way faces many problems to begin with, the language dependence 

problem and the subjectivity problem, to name a few. The language dependence problems arise 

for simplicity measure of mathematical curves as well, as simplicity of the curves in question can 

come out differently depending on the choice of coordinate system. In §4.3.7, we discussed the 

problem of language dependence for syntactic conception simplicity (Goodman 1983, Priest 1976); 

and the subjectivity-relativity problem for simplicity (Carroll 1984, Craig and Callender 2009, 

Halpin 2003) Our current focus in this chapter is just on whether simplicity is cardinally 

measurable.  
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or model, but also the number of axioms or theorems in the system, the length of 

axioms or theorems, and so on. For example, consider system S1 says there are four 

elementary forces in our world. Each of these forces may be represented as an axiom 

in the system. Let us say each of such axioms may be defined as a parametric model, 

and the number of parameters in each axiom is just one or two. In contrast, S2 says 

there is only one elementary force in our world, represented as an axiom, which is 

defined as a very complex parametric model, say, with 10 parameters. Suppose S1 and 

S2 explain the facts in our world equally well. S1 has four axioms and each axiom is 

very simple. S2 has one axiom which is rather complex. In the standard statement of 

the BSA, both the number of axiom and the number of parameters are mentioned in 

its characterization of simplicity. So, even if each sense of simplicity were cardinally 

measurable, it seems indeterminate how to cardinally measure simplicity of S1 and S2 

overall, let alone ordinal comparison of simplicity of them. The prospect for cardinal 

measurability of simplicity doesn’t look good.  

  

In this section we have examined a number of attempts to measure system choice 

criteria on cardinal scales. Their prospects do not look good. To begin with, the key 

concepts in the BSA are vague. The BSAers tend to regard this as ‘practical’ problem 

(§4.3.1). They seem to believe that those key concepts will become clearer as science 

improves and that there will be sufficient level of comparability so that a metric for 

balance can be prepared (see, for example, Hall (forthcoming); cf. Woodward 2014). 

Furthermore, even if the system choice criteria were somehow found to be cardinally 

measurable, as we saw in §2.4.4, cardinal measurability alone cannot open up an 
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escape route. Especially regarding the question of inter-criterial comparability, we 

saw that a well-specified trade-off rule between standards is needed. Let us turn to 

that possibility. For theory choice, some statistical model selection criteria (AIC, for 

example) seem like good candidates, at least in a limited domain, for the inter-

criterial comparability between simplicity and fit. Following the plan, let us now turn 

to the question if the same is applicable to system choice for the BSA.  

5.6 Searching for Inter-Criterial Comparability: the A-BSA 

In this section, I will propose a variant of the BSA for which there seems to exist 

some form of inter-criterial comparability. In §5.6.1, I will propose a variant of BSA, 

in particular, implemented with Akaike Information Criterion (AIC), as a possible 

form of inter-criteria comparability in system choice for the BSA. In §5.6.2, I will 

discuss some problems with the implementation, focusing on the plausibility of 

normality assumption in system choice. I will raise a problem with normality 

assumption in system choice: the circularity problem. In §5.6.3, I will diagnose the 

source of the circularity problem as being due to the failure of the BSAers to properly 

recognize the context gap between metaphysics and epistemology. In §5.6.4, I will 

provide a counterexample in which the gap causes the A-BSA to fail to yield the best 

system appropriately. Lastly, in §5.6.5, I will attempt to generalize my 

counterexample to the BSA overall. The conclusion of this section would be that, to 

the extent the BSA import the inter-criterial balance method from statistical methods 

such as AIC or BIC, the inter-criterial comparability in system choice will not obtain.    
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5.6.1 The BSA Implemented with Akaike Information Criteria  

Scientists often avail themselves of certain metrics for trading off standards. For 

example, consider the model selection methods we have examined in Chapter 3 – 

AIC, in particular. We may be able to supplement the BSA with AIC, that is, let the 

BSA Oracle (§4.3.4) trade off simplicity and fit using the exchange ratio as it is 

expressed in AIC (or, if we were to use BIC, have her use that ratio in BIC). Let us 

call this variant of the BSA implemented with AIC the A-BSA.108 The BSAers might 

hope that such a comparability expressed in AIC applies to system choice. If the A-

BSA works, the hope goes, we might make a case for Cardinal Unit Comparability 

(CUC). This, if it works, will surely open up an escape route from the Arrovian threat 

to the BSA.  

There may be some problems with the implementation. AIC as a statistical tool has 

limited applicability, and some of these limitations may be relevant to the project of 

constructing the A-BSA. The assumptions and limitations of AIC were discussed in 

Chapter 3. This section will focus on the problems of implementing AIC to the BSA.  

Before we move on to the next subsection, let me briefly discuss some obvious, rather 

mundane problems with the A-BSA. AIC is a model selection criterion and model 

selection is a component of model-based reasoning. It is an epistemic project aimed at 

acquiring knowledge about the world through learning about models that are designed 

to approximate the target.109 Due to the epistemic limitations inherent in it, model-

based reasoning needs to be constructed upon a series of decisions of, for example, 

the frame of discernment (Giere 1979), model space, design of experiment, and so on. 

                                                 
108 And call the BSA implemented with BIC the B-BSA. Mostly I will discuss the A-BSA, but it 

will be shown that the same conclusion is drawn from both cases. 

109 Friggman and Hartman (2012). 
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But the BSA is a metaphysical analysis of lawhood, whose domain is the entire 

Humean base. So there seems to be a gap.  

Furthermore, systems in the BSA are supposed to be summaries regarding all pixels 

of the Humean mosaic, and are hence not limited to a particular portion of the mosaic 

or a particular kind of pixel. AIC is considerably limited in this respect. First, it is 

well-known that all optimization algorithms will fare equally well if their 

performances are averaged over all problem space. That is, if one method fares better 

in some types of problem sets, then it will likely perform less well in other types. The 

same goes for AIC. Forster (2001) argues that AIC outperforms in one problem set 

and underperforms in another. In some cases, AIC is not applicable at all. For 

example, exponential models or sin-wave models are commonly used in scientific 

practice, but AIC is not suitable for estimating the predictive accuracy of these 

models. Furthermore, AIC cannot deal with the problem of extrapolation. Forster 

(2000) also describes AIC as addressing the problem of interpolation, while it is not 

appropriate as a model selection criterion for extrapolation. All these seem to suggest 

that, while the A-BSA might be appropriate as an analysis of laws in special science, 

it doesn’t seem an adequate analysis of fundamental laws,110 because AIC as an 

epistemic method bears certain limitations.  

But, as we saw in §4.3.4, the accusation of the BSA’s allegedly unjustified use of 

epistemic standards is probably committing the question-begging against the BSA. 

Given the BSA’s main advertisement being that the BSA Oracle is doing idealized 

version of science, to the extent that scientists do somehow choose theories by 

                                                 
110 Some BSAers bite the bullet by taking this move. See Callender and Cohen 2009 for example. 
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balancing conflicting virtues, it might be said a system choice can be made in similar 

way by implementing some practice in science. This itself should be harmless, the 

BSAers would claim. For now let us grant that this is true. A more serious challenge 

awaits the A-BSA, however.    

5.6.2 Normality Assumption and the Circularity Problem 

As we saw in §3.2.4, the derivation of AIC assumes that the distance between the 

point representing the set of true values of parameters and the point representing 

hypothesized parameters on the parameter space will be normally distributed due to 

the central limit theorem (CLT) (Akaike 1973; 273, Akaike 1974; 718, Kieseppä 

1997). However, the use of CLT cannot be made in isolation; it should accompany 

assumptions about the target phenomena it is being used to explain.111 This seems to 

mean that the A-BSA would require similar assumptions. But we have no reasons to 

believe that the Humean pixels (which is the domain of the A-BSA) will be arranged 

in a way that is suitable to the use of CLT. The BSAers cannot make an a priori 

assumption about how the Humean pixels are arranged because an adequate balance 

metric for the BSA is one which is applicable to the categorical facts, without being 

loaded with any a priori metaphysical constraints.  

It might seem empirically true that we often observe phenomena of normal 

distribution in nature.112 Maybe the BSAers want to draw from this empirical 

observation that therefore the entire Humean pixels are normally distributed.113 

                                                 
111See, for example, Lyon (2014).  
112 As a matter of fact, it is not true that we observe normal distribution often. See Lyon (2014) 

for the argument that what often appears as normal distribution is in fact log-normal distribution.   
113 One obvious, rather general problem with this is that, for all we know, what we have observed, 

which probably is a tiny portion of the entire spatio-temporal arrangement of the pixels, may not 
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Maybe they want to point to some underlying cosmic principle, for example the 2nd 

law of thermodynamics,114 as what is responsible for the observed normal 

distributions.  

But this doesn’t seem to be a viable option for the BSAers because such principles or 

laws should come as a result of their analysis, not the other way around. Suppose we 

ran the best system analysis using the A-BSA, and as a result we obtained something 

like the 2nd law. But at the same time the BSA should rely on this law to explain the 

adequacy of the implementation of the AIC. There seems to be a problem of 

circularity here. In fact this kind of the circularity problem has been voiced for a 

while. Let us examine the circularity problem and some proposed solutions in recent 

literature. For the sake of simplicity, we are going to simply suppose the A-BSA is 

the correct analysis of lawhood in the Humean picture; AIC is what scientists actually 

use in general; and the use of AIC has been very successful in our practice of 

inductive inference. Suppose furthermore the Humean mosaic is in fact arranged as 

normality assumption says it is.115 

5.6.2.1 The Circularity Objection 

As we saw in §4.2, according to the Humean conception of laws, laws supervene on 

the totality of the Humean mosaic and there is nothing metaphysically above and 

beyond it. Laws are regularities that appear as axioms or theorems of the best 

systems. So, that P is a law is determined by, hence explained by (almost) all the 

                                                                                                                                           

be a good representative of the unobserved. This is a problem for everyone, including not only 

Humeans but also primitivists and eliminativists about laws. In this dissertation I will focus on 

the problems specific to plausibility of the BSA and its variants like one under discussion.   
114  Johnson 2004 connects CLT and the 2nd law, for example. 
115 If there is a better candidate for the title of the actual and inductively successful method than 

AIC, then we may substitute if for AIC in the following discussion; it won’t affect my argument. 
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pixels of the Humean mosaic. But at the same time laws explain or help explain 

instances of regularities. For example, suppose “F=ma” is a law on the BSA (imagine 

we are in a Newtonian world); that is, the BSA Oracle collected all the instances and 

summarized them under the regularity “F=ma” in her best system. Now, we would 

appeal to that law to explain why a free-falling bowling ball of a mass of m hits the 

ground with a certain amount of force, along with some other facts e.g., absence of 

interferences, measurement methods, sometimes the initial conditions of the universe, 

and so on. Then there appears to be an obvious circularity. The Humean mosaic 

(partly) explains laws and laws (partly) explain the Humean mosaic; hence the mosaic 

(partly) explains itself. This is absurd.  

This objection, the circularity objection, to the BSA has been voiced for a while. 

Maudlin says: 

If the laws are nothing but generic features of the Humean Mosaic, 

then there is a sense in which one cannot appeal to those very laws 

to explain the particular features of the Mosaic itself: the laws are 

what they are in virtue of the Mosaic rather than vice versa. 

(Maudlin 2007; 172) 

Lange also makes the same objection: 

If the Humean mosaic is responsible for making certain facts 

qualify as laws, then the facts about what the laws are cannot be 

responsible for features of the mosaic. (Lange 2013; 256) 

The circularity objection may be formulized as follows116:  

(P1) Laws are generalizations. (HUMEANISM) 

(P2) The truth of generalizations is (partially) explained by their instances. 

(GENERALIZATION) 

                                                 
116 I draw on Hicks and Elswyk (2014)’s formulization with slight modifications. 



 

 190 
 

(P3) Laws explain their instances.     (LAWS) 

(P4) If A (partially) explains B and B (partially) explains C, then A (partially) 

explains C.       (TRANSITIVITY) 

(C1) The natural laws are (partially) explained by their instances. (P1 & P2) 

(C2) The instances of laws explain themselves.  (P3, P4, & C1) 

If the argument is sound, then clearly the Humean laws entails the absurd 

consequences like (C2). Now let us examine Loewer’s solution and Lange’s rejoinder 

on this problem.  

5.6.2.2 Loewer versus Lange: Metaphysical and Scientific Explanation   

Loewer (2012) attempts to defend the BSA from the circularity objection. Loewer 

contends that the objection fails to make a distinction between two different kinds of 

explanation: 

I claim that this objection rests on failing to distinguish 

metaphysical explanation from scientific explanation. On Lewis’ 

account the Humean mosaic metaphysically determines the … laws. 

It metaphysically explains (or is part of the explanation together 

with the characterization of a Best Theory) why specific 

propositions are laws. This metaphysical explanation doesn’t 

preclude … laws playing the usual role of laws in scientific 

explanations. (Loewer 2012; 131) 

Loewer’s solution here is relying on the distinction between two different kinds of 

explanation: In the picture of the BSA, the explanation in (P2) is metaphysical 

explanation, while the explanation in (P3) is scientific explanation. Therefore, on 

Loewer’s solution, the circularity objection argument commits the fallacy of 

equivocation. So the objection fails, Loewer concludes. 

In response, Lange (2013) argues that Loewer’s solution fails to save the BSA from 

the problem. He proposes a refined version of (TRANSITIVITY). Lange argues that 
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his refined principle enables the circularity objection to run even if Loewer’s 

suggested distinction is taken. Let explainM be metaphysical explanation and explainS 

be scientific explanation. Lange’s refined transitivity principle is:  

(TRANSITIVITY*) If A (partially) explainsM B and B (partially) explainsS C, 

then A (partially) explainsS C.  

If (P4) in the above argument is replaced with Lange’s (TRANSITIVITY*), then 

even with Loewer’s distinction between explainM and explainS, the circularity occurs. 

In short, Lange’s claim is that the Humean conception of laws still suffers from the 

circularity problem because scientific explanations are transmitted across 

metaphysical explanations.  

5.6.2.3 The Hope Thesis Again: Too Much onto The Hope  

Recently, Hicks and van Elswyk (2015) argued against Lange that 

(TRANSITIVITY*) is false. Drawing on Bennett (2011)’s notion of ‘building 

relations’, Hicks and van Elswyk argue that there is significant difference between 

scientific and metaphysical explanation: the two have different ‘backing relations’. 

Metaphysical explanations are backed by non-causal relations. Starting with small 

parts and properties, more parts and properties are built upon. Different building 

materials may be used; different relationship might hold between them; in this way, 

the backing relations in metaphysical explanations come in wide variety. In contrast, 

scientific explanations are backed by very limited back relations. Typically, causal or 

nomic relations back up scientific explanations. So, if explainM and explainS invokes 

substantially different backing relations like this, then (TRANSIVITY*) is deemed 

false (Hicks and van Elswyke; 439). In the case of the Humean conception of laws, 

the backing relation for “the Mosaic explainsM laws” is simply a truth-making 
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relation. Suppose P comes out to be a law on the BSA. Then, the fact that the mosaic 

is arranged in the way it is is simply what makes true the statement that P is a law; 

it’s ‘truth-making’. In contrast, the backing relation for “Laws explainsS the Humean 

mosaic” is not a truth-making relation. Laws do not explain the truth that the Mosaic 

is arranged in the way it is; they explain why the Mosaic behaves with regularity and 

uniformity. Therefore, they conclude, the distinction between metaphysical and 

scientific explanation is well-motivated and there is no problem of circularity for the 

Humean laws.  

The BSAers may draw on the distinction between the two kinds of explanation like 

above to answer the questions concerning the required normality assumption for the 

A-BSA. They may argue that the Humean mosaic explainsM the 2nd law’s being a law 

and the 2nd law explainsS why the mosaic behaves as if it is normally distributed; so 

the validity of the A-BSA is saved.  

I think this line of response is on the right track and probably the best option for the 

BSAers, but they seem to need an extra safety guard to ensure the backing relation for 

metaphysical explanation doesn’t go awry. Hicks and van Elswyke said that the 

backing relation for “the Mosaic explainsM laws” is a truth-making relation. But it is 

in fact the Mosaic plus the best systemization of the Mosaic that jointly make the 

statement “P is a law” true. For example, what if we used the BIC-implemented-BSA 

instead of the A-BSA? Could P not be a law if BIC scores and AIC scores of the 

systems in competition diverge too much?  

At this point one might recall the Hope thesis as discussed in §4.3.2 and §4.3.3. The 

BSAers would respond: Even in a possible world where the counterparts of our 
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scientists use BIC in their practice of science, the same system(s) as ours will be 

picked as the best systems. So, P would still be a law. What allows the BSAers to 

make such a response is, once again, the Hope thesis. This is the extra safe guard I 

mentioned above.  

There I think goes a warning sign. It starts to seem that too much is hanging onto the 

hope. The Hope thesis is the BSAers’ last resort – when they hit the dead-end in 

attempting to solve a problem. For example, Elga, in attempting to solve the zero-fit 

problem, says  

On this proposal, it can certainly happen that two systems are 

incomparable with respect to fit. That is no special worry—the 

best-systems analysis already depends on the hope that some 

system will be robustly best, as regards the tradeoff between 

simplicity, strength, and fit. It is no great cost to add an additional 

hope: that this robustly best system possess a fit profile that holds 

its own against the profiles of its competitors on any reasonable 

way of judging when one profile assigns higher chances overall 

than another. (Elga 2004; 72)  

Now the BSAers seems to have to make a similar remark in attempting to resolve the 

circularity problem; the nature will kindly arrange itself such a way that, on any 

reasonable implementation on the BSA, the backing relation of truth-making for 

metaphysical explanation for the BSA will be robust. The upshot of this subsection is 

that the BSAers have some available solution to the circularity problem but there 

seems to be a concern that too much is depending on the Hope thesis. Let us turn to 

another concern about the BSA: the gap between the contexts of the BSA Oracle 

doing metaphysics and scientists doing epistemology.    
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5.6.3 “Mind the Gap” Between the Contexts of Metaphysical and 
Epistemological Analysis of Laws 

As we saw in §3.1, AIC’s exchange ratio between simplicity and fit117 serves as an 

epistemic constraint on creatures like us. The BSA Oracle, however, doesn’t seem to 

need to be constrained in the same way because she has as evidence all of the facts in 

the Humean base in the complete history at the world. Recall that the goal of using 

AIC is to maximize predictive accuracy by penalizing models for complexity, in 

order to manage the risk of overfitting. So, our qualm is that the context in which AIC 

gives such a specific trade-off metric is fundamentally different from the context in 

which the BSA Oracle mindlessly uses it.  

As we saw in §4.3.4, simply accusing the BSA of smuggling epistemology into 

metaphysics misfires; the accusation is probably begging the question against the 

BSA. Carroll, himself a primitivist, seems to beg the question when he says “[I]t may 

very well be true that the right way for us to discover what propositions are laws of 

nature is via balancing the standards of simplicity, informativeness, and fit. These 

standards are epistemologically relevant to lawhood. However, they are not 

metaphysically relevant to lawhood.” (Carroll, 1994; 54). At first blush, criticisms 

like Carroll’s which rely on the distinction between the context of discovery of laws 

and the context metaphysics of laws of might seem to work. But we saw that, at least 

in the picture of the Humean conception of laws, the Humean conception of laws 

itself is just that laws are axioms or theorems of the extended, ideal version of our 

actual science; the Humean conception consists in the ascent of the discovery 

                                                 
117 Simplicity in a specific sense (number of parameters) and fit in a specific sense (log-likelihood).  
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methods to constituents of laws themselves, in ‘the final theory’ or ‘theory of 

everything’ (§4.2.1).  

What I am going to discuss in this section is a different challenge from the above one. 

Simply put, the challenge here is what the BSA Oracle does is not ‘ideal’ if she were 

to use the epistemic standards from the practice of science; it would be less than ideal, 

in fact. Let me explain.  

5.6.3.1 The Context Gap  

Recall our discussion of statistical model selection methods in Chapter 3. Among 

many candidate models ranging from a very simple model (e.g., LIN) to a very 

complex model that perfectly fit the data (e.g., POLY-99), in spite of the temptation 

to select the perfectly fitting model, we ought to restrict our choice to a moderately 

fitting model if we want to minimize the risk of overfitting. This restriction is 

imposed in the context of our epistemic limitations that we need to make an inference 

about the entire population from the observed data. Precisely how much we should 

restrict our choice is given by how much simplicity and fit contribute to predictive 

power. So there is a means-end contextual explanation for the very specific 

mathematical recipe for balancing simplicity and fit expressed in AIC. In contrast, the 

BSA Oracle has availed herself of the entire history of the actual world. In her 

context, there is no risk of overfitting. She doesn’t have any specific end to achieve 

when she determines the best system. In short, the specific trade-off metric of AIC is 

responsive to the specific context in which it was mathematically derived. The BSA 

is, however, in a different context. So, we may expect that the BSA’s use of the 

specific trade-off metric in such a different context might create some problems. 

Consider what a scientist would do when he has access to all the data. A scientist 
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whose goal is the minimization of informational loss would cease to use AIC when all 

of the data is in. This is because, when all of the data is in, there is no more 

information to be lost, so the continued use of AIC would result in unnecessarily 

penalizing the complexity of models. In the next section I will give a concrete 

example as such.   

Woodward (2014; 111-12) makes similar critical remarks about the use of simplicity 

in the BSA. The role assigned to the simplicity in the BSA and the role assigned in 

the curve-fitting problem are different. In curve-fitting, simplicity guides us to choose 

a model that has better predictive accuracy (in the Akaikean framework) or the one 

with greater posterior probability given the observed data (in the Bayesian 

framework)118. In either case, it helps scientists’ inductive tasks. Why bother these for 

the BSA, when all the data is in?  

5.6.3.2 A Response: Closer to the True Model   

A possible defense from the A-BSA’s side may be something like the following. 

Even though the BSA Oracle faces no risk of overfitting, she still has good reason to 

use the AIC's recipe; if she is interested in finding a model closest to the ‘true’ model, 

then she would still be justified in using AIC as the balance metric.  

As we saw in Chapter 3, choosing the model with the best AIC score is equivalent to 

choosing the model which has minimum the K-L distance. So scientists interested in 

                                                 
118 It might be argued that, at least in the Bayesian framework, the BSA Oracle has reason to 

bother simplicity; for example, she may need to assign higher priors to simpler systems because 

simpler theories have done better in science. But this seems unacceptable in the BSA’s own light. 

The systems in the BSA, unlike models or theories, are all equally true (at least according to the 

standard version of the BSA); the difference between systems is just how the fundamental facts 

are summarized in each system. Given this, their prior probabilities are to be same across 

systems. Nothing in the BSA’s metaphysical outset determines the probability distribution for the 

systems’ prior probabilities. 
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making accurate future prediction are well-motivated to use AIC because minimizing 

the K-L distance is a way of maximizing predictive accuracy.119 Then, scientists 

working in the Akaikean framework are instrumentalists about scientific theories.  

Now, in response to the concern about the gap between the contexts of scientists and 

the BSA Oracle, a defender of the A-BSA might argue as follows: It is true that the 

Oracle would be not interested in predicting future events, however, she could still be 

interested in finding a model that is closest to the true model. For example, Sober 

(2008) argues that scientists would be justified to use AIC even when their goal is not 

making accurate prediction but finding the model closest to the true model, for   

...specific curves have different Kullback–Leibler distances to that 

true curve. Models are instruments for finding curves that are close 

to the truth and models are compared with each other to determine 

how well they advance that goal. (Sober 2008, p.98) 

In the footnote for the above quote, he says  

The relation of AIC to Kullback–Leibler distances provides an easy 

answer to the question of why one should care about AIC estimates 

if one has no interest in using fitted models to predict new data. 

One still might care about finding fitted models that are close to the 

truth when K-L distance is used to measure closeness.  

                                                 
119 To recapitulate: Any information criterion (AIC, BIC, DIC, and the like) for statistical model 

selection is based on the idea that one should choose a model that minimizes K-L divergence. And this 

divergence can be treated as a distance as it satisfies the conditions for it being a distance metric (See 

§3.2.1). Suppose the true (or quasi-true) probability distribution function for a random variable X is p(X). 

Suppose the model we fit to the data (i.e., our hypothesis) is some hypothesized probability distribution, 

namely, q(X). Then the K-L distance is the measure of the average (i.e., expected) distance between p(X) 

and q(X). Let xi be the observed values. The K-L distance:  

 
The above is for the case of discrete random variables, but it can be easily generalized to the continuous 

case. The intuitive idea of the K-L distance is that it is a measure of the ‘average distance’ of a model 

from the true model. Using information theoretical terms, from which the notion of the K-L distance 

originated, it is the measure of the inverse of information loss (entropy) when estimating true p.d.f p(X) 

using q(X), with respect to the data xi. 
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That is, one may be motivated to use AIC if she is interested in approximating the 

true model – even if one is not interested in making predictions through models.120 

In a similar vein, then, the defender of the A-BSA might argue that the BSA Oracle is 

well-motivated in supplementing the BSA with AIC because she is interested in 

finding a model closest to the true model.   

5.6.3.3 “No Such Thing as the True Model for the BSA”  

The above line of response requires a more careful assessment. The opponent of the 

BSA might claim that the above response cannot save the BSA. Recall the K-L 

distance is the distance between the true model and a hypothetical model. So, the 

objector might argue, the Akaikean framework assumes that the true model is out 

there, behind the data, generating or governing the observed data. But, the objection 

would continue, the presence of such true model is not consistent with the 

metaphysical outset of the BSA because in the picture of the BSA there is no such 

thing as the law or the true model which guides or governs how the facts are to be 

arranged. So the response relying on the true model fails, it concludes.  

It is true that the above notion of the true model is incompatible with the BSA, hence 

with the A-BSA. But the A-BSAers do not need to be committed to the existence of 

the true curve or true model. After all, the BSAers can take an approach that the 

Humean pixels are arranged as if there were the true model g that would have 

generated for the observed data; but in fact all there is nothing but a summary of the 

certain patterns of the pixels. Let me provide an example. Imagine a simple world in 

which there is only one measurable kind of property. Let Y be a variable representing 

its quantity of the pixel of the mosaic on which it is instantiated. Suppose the BSA 

                                                 

120 Assuming the distance here is defined in terms of the K-L distance.  
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Oracle carries out an extremely tedious task of recording all the occurrences of Y 

values throughout the entire Humean mosaic. The resulting work would be very 

detailed but too complex. A bit smarter move would be to compute and report an 

arithmetic average of all the values – in this case she has one number summary of all 

the data – very simple, but not maximally informative. Even much smarter work 

would be to not only report the mean but also the variance of all the data, in the form 

of N~(mean, variance), if the Y values appear normally distributed throughout the 

mosaic. Among the three above, the last one seems to be an efficient summary of all 

the data. Name this summary of the pattern g. So this g is not the true model or 

anything like that which governs the data; it is just an efficient summary. Now the A-

BSAers seem to have some solution to the problem above. The BSA Oracle using 

AIC is interested in finding a model which is closest to g, a ‘quasi’ true curve, which 

in fact is just an efficient summary of instances. There is no need to assume the 

‘governing’ true curve. In this way, the BSAers might defend the use of AIC and 

resolve the problem of the context gap under discussion.  

This solution comes with a cost. It has an effect of getting rid of chance and chancy 

law from the BSA and moving back to Lewis’s original BSA which only invokes 

strength and simplicity. It is not the aim of this dissertation to discuss the adequacy of 

such a move. For the purpose of this section, it suffices to show that the BSAers seem 

to have a solution to the context gap problem.121   

                                                 
121 There seem other philosophers of science who are seriously considering taking this approach. 

For example, Roberts (ms.) hints at the proposal of what he calls ‘nomic frequentism’, which 

views probabilistic laws as just laws about frequency, which would result in turning back to the 

original version of the BSA.  
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In the next section, however, I will provide a concrete counterexample to the above 

solution. The result would be that the BSA will be in a kind of dilemma: either biting 

the bullet or giving up the refinement under discussion but still maintaining that the 

main idea of the BSA is tenable, however vague it is. I will argue that neither of them 

is satisfactory.  

5.6.4 A Counterexample: the A-BSA Fails To Pick the Best System 

Let me give an example in which the A-BSA fails to pick the best system. This 

failure will be due to the BSA’s failure to mind the context gap discussed in the 

previous section.  

A Counterexample 

Suppose there are only two measurable qualities in a world: x and y. They are 

instantiated at some pixel points of the Humean mosaic.122 For the sake of simplicity, 

let us consider the relation between x and y in the usual curve-fitting context. Let’s 

suppose there is some trend in the relation between x and y which may be represented 

in a form of functions like y=f(x). That is, for each value of x, the corresponding y 

value is f(x), f being a function which can be represented as a mathematical curve on 

the x-y plane. Let us additionally suppose y values usually fall right on the f(x) but 

sometimes they fall above or below it. Some systems may claim there is a certain 

deterministic relationship between x and y: y=f(x) (of course these systems will come 

out to be). Some other systems may claim there is a probabilistic relation between x 

and y: for values of x, the corresponding y values are concentrated around f(x) 

forming certain probabilistic distribution. For example, system S may claim that y has 

                                                 
122 This is Lewis’s characterization of the Humean mosaic (Lewis 1986). For alternative 

characterization, see Loewer 1996 (cf. Maudlin 2007). 
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a normal distribution with variance of σ2 and mean of f(x). That is, for each value of 

x,  

System S: . 

Fit of system S may be defined as follows, n being the number of the pixels on the 

Humean mosaic in each of which x and y are instantiated:  

Fit(S): p(y1, y2, . . . , yn | S, x1, x2, . . . xn). 

Let us also suppose that some systems make different polynomial degrees of f(x). For 

example (for the ease of presentation, we are going to assume that the variance is 

same across different systems), consider the following systems: 

SPOLY-3: , . 

SPOLY-5:  

SPOLY-99: .  

Suppose the Humean mosaic is arranged in such a way that all the y values are 

distributed as if they are distributed exactly by  

g(y): .  

(  refers to the value for each parameter which yields the maximum likelihood with 

respect to the all the relevant pixels in the Humean mosaic.)  

In short, the mosaic is arranged such that the best member123 of SPOLY-99 has the least 

K-L distance from g(y). Note that we are not committed to the existence of true curve 

of any sort. It is just that the mosaic is arranged as if it was generated by some 

probability distribution which is maximally close to g(y).124 This means the best 

                                                 
123 That is, the set of parameter values which yields maximum likelihood in the sense above. 
124 Construed this way, the Humean mosaic under consideration is compatible with distributions 

other than g(x). But, among many of such possible and compatible hypothetical distributions, the 
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member of SPOLY-99 has the minimum information loss125 from g(y), with respect to 

the Humean mosaic. Now suppose the logarithm of fits of the above systems came 

out as:  

logFit(SPOLY-3) = -500 

logFit(SPOLY-5) = -400 

 logFit(SPOLY-99) = -350 

(That is, SPOLY-3 fits least and SPOLY-99 fits best. Also note that on our definition of fit, 

the value will come out very small, which will render logFit as a negative value.) 

Then AIC scores for these systems come out as:  

AIC Score(SPOLY-3) = logFit(SPOLY-3) – 3 = -503 

AIC Score(SPOLY-5) = logFit(SPOLY-5) – 5 = -405 

AIC Score(SPOLY-99) = logFit(SPOLY-99) – 99 = -449 

This means that the A-BSA has to choose SPOLY-5 as the best system, as it marks the 

highest AIC Score. But we assumed that the Humean mosaic is arranged such that 

SPOLY-99 would have the least K-L distance to g(y). In the context of statistical model 

selection, avoiding the perfectly fitting models is a way to achieve better predictive 

accuracy.126 But in the context of system choice, all the data is in, therefore there is 

nothing to predict. So systems seem to be unnecessarily penalized for complexity if 

we were to adopt the A-BSA. 

                                                                                                                                           

one which has the same parameter values as g(y) is the one that has the minimum information 

loss, given the mosaic.  
125 See §3.2.1 for the K-L distance as a measure of information loss.  
126 For example, see Chapter 7 in Burnham and Anderson 2000 
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5.6.5 Generalizing the Problem  

To the problems like the above, I can think of two possible lines of response from the 

BSAer’s side. The first line of response would be that it is simply the fact that it is 

chosen by the A-BSA that (the best member of) SPOLY-5 is a law of nature on x and y; 

the very fact that it is chosen such is what constitutes its lawhood. In short, it is a law 

because the best system says so, whichever way it is determined to be the best. The 

second line of response would be that, while the A-BSA fails in the counterexamples 

like mine, the main idea of the BSA is still on the right track that laws are the elite 

members of the best systemization. Admittedly, the system choice standards are 

vague. But the task of refining them should appeal to the empirical considerations of 

theory choice criteria and there still might be some empirical criteria we haven’t 

considered which will enable us to dodge the counterexamples like mine. I contend 

that neither of these two responses is successful.   

On the first line of response, I think it conflicts with the ultimate motivation of Lewis 

and the other BSAers. As we saw in §4.2, the Best System may be understood as an 

ideal theory. By extending actual scientific practice to the ideal case in which all the 

data is in, we might reach what scientists have been ultimately aiming for, given the 

successes of physics to date (Lewis 1983, 1994, Loewer 2012, Woodward 2013, 

Schwarz 2014). Now, in my counterexample above, what scientists would be 

ultimately looking for is g(x). But the A-BSA fails to pick the corresponding system 

as the best system.127     

                                                 
127 It might be insisted like “SPOLY-5 is what you (scientists) would get if you extended your actual 

scientific practice to the entire Humean mosaic. So here is, in that sense, what you are looking 

for.” I don’t think this is satisfactory given that g(x) is intuitively the ideal goal that scientists 

would want to reach. 
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The second line of response would be that the BSA should continue to refine its 

vague system choice standards from empirical methods of inter-criterial balancing – 

until it finds the successful one. The prospect for this line of response doesn’t look 

good either, because any refinement of the standards will likely to face the same kind 

of problems like my counterexample. Counterexamples to any newly proposed 

refinement can be easily replicated following my earlier recipe. All is needed is to 

find a case where the refinement in question is based on inductive practice in science. 

The system choice criteria, and their trade-off recipe in AIC or other statistical model 

selection methods are set in the way they are for certain inductive purposes: the 

maximum predictive accuracy for AIC, and the maximum posterior probability for 

the Bayesian methods, for example. As long as these model selection methods include 

a correction term for over-fitting or for any potential issues inherit in induction, the 

implementation of them into the BSA will suffer from the counterexamples like mine. 

The lesson from the context gap problem and attempted solutions seems to be the 

following. The BSA, and its main theme about balancing different theoretical virtues, 

might appear to be on the right track because the BSA does not completely sharpen 

up the system choice rule and the standards. Once it sharpens them up in one way or 

another, it will be susceptible to the counterexamples like above as long as the 

sharpening in question comes from inductive method which recognizes and includes a 

correction term for inherent limitations of induction.128  

When vagueness remains as to the system comparison criteria in the BSA, then (as 

we saw in earlier sections) the only meaningful way to say one system is better than 

                                                 
128 This suggests there might be another solution for the BSA, if it appeals to empirical methods 

which do not include specific error correction term.  
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another with respect to such imprecise criterion is to show it is so in all possible ways 

of precifisying it, which is effectively equivalent to saying it is so in its ordinal 

ranking. Then there is the Arrovian threat for the BSA. 

 

Conclusion 

In this chapter, I have examined various possible escape routes from the Arrovian 

threat for the BSA. In §5.2, we saw that U does not apply to system choice either but 

R does. But I also noted that, even if U is weakened to R, a variant of Arrow’s 

impossibility theorem obtains provided the strong neutrality condition (SN), a 

stronger version of I, is met. In §5.3, I discussed SN in connection with the Humean 

Supervenience (HS) thesis. I argued that SN applies to system choice. While the HS 

thesis seems to reject the multi-profile framework for system choice, assuming R is 

met in system choice (§5.2), since SN applies to system choice, the single-profile 

variant of the Arrovian impossibility seems to obtain in system choice. In §5.4 I 

suggested that IIU is an indispensable property of system choice procedure. In §5.5, 

we have discussed a number of possible attempts to make a case for the cardinal 

measurability of fit, strength, and simplicity, the three criteria invoked by the BSA. 

We concluded that most of the attempts failed. In §5.6, I proposed a variant of the 

BSA as an attempt to make a case for inter-criterial comparability between fit and 

simplicity. I concluded that its prospect doesn’t look good mostly due to the gap 

between epistemological and metaphysical justification of implementing inductive 

method to the analysis of lawhood. The Arrovian threat for the BSA seems still real 

and imminent. 
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Chapter 6:  Other Possible Escapes 

Introduction 

This dissertation investigated the analogue of the Arrovian impossibility in system 

choice for Lewis’s Best System Analysis. In this final chapter, we will review the 

contributions of this dissertation and discuss future research directions. First, in §6.2 I 

will discuss the concept of benevolent dictatorship in system choice. In social choice, 

it seems that dictatorship is an undesirable property of social choice procedure. But in 

system choice, there might be a possibility of non-harmful or even beneficial 

dictatorship. In §6.3, I will discuss the statistical model selection method called 

Minimum Length Description Principle (MDL). The method might be in line with the 

BSA, so we will briefly review its outlook for system choice. Finally, in §6.4, I will 

summarize the contributions of my dissertation, draw overall conclusions about the 

Arrovian threat for the BSA. This will close this dissertation. 

6.1 Other Possible Escapes: Non-Harmful Dictatorship, 
Lexicographical Dictatorship, and Threshold Priority in 
System Choice 

One of the results of §5 is that the system-choice analogue of the Arrovian theorem 

seems to obtain; there seems a formal analogy between social and system choice and 

a number of possible escape routes we have explored were unsatisfactory.  

In this section, I will discuss other possible escapes that might have good prospects: 

relaxing Non-Dictatorship condition. The system-choice analogue of Non-

Dictatorship would be:  

Non-Dictatorship: There is no system-choice criterion i such that for all profiles in 

the domain of system-choice function f and for all pairs of alternative systems x and y, 
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if xPiy, then xPy. In words, there should be no criterion such that the system which is 

strictly better another system with respect to that criterion will always win regardless 

how the systems in comparison fare with the other system choice criteria. 

So far we have taken it for granted that dictatorship in theory choice and system 

choice is an undesirable property of choice procedure. Now let me deal with the 

following question: Is there a possibility of non-harmful dictatorship?  

Let me discuss the possibility of the ‘benevolent’ dictatorial criterion in system 

choice. In social choice, Arrow (1963) compares oligarchic political systems where a 

small elite group of individuals make the social choices with full democratic systems 

where every individual has natively an equal portion in the social choice procedures. 

According to those who support the former kind of political system, for example 

Plato, a society in which an ethically ideal observer (or a small group of such 

observers) makes social choices would achieve the higher level of social welfare than 

fully democratic society does. But Arrow views this as an untenable ideal because 

“power always corrupts; and absolute power corrupts absolutely.” (Arrow 1963; 86) 

Indeed, in reality, dictators always label themselves as “benevolent dictators” but 

none of them really deserves the label.   

But when it comes to theory choice (and system choice as well) we might have good 

candidates for the role of a benevolent dictatorial criterion in theory choice, or at least 

a decisive criterion which receives lexicographical priority. For example, van 

Fraassen (1980)’s empirical adequacy might be such a benevolently dictatorial 

theory-choice criterion. Arguing none of the existing philosophical theories about 

laws provides an adequate account, van Fraassen says that the aim of science lies in 
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empirical adequacy, not truth. A scientific theory is empirically adequate if it 

truthfully says about the observable features of the world, that is, if it “saves the 

phenomena” (1980; 12). For him, therefore, the only proper theory-choice standard is 

empirical adequacy, and things that we usually count as theoretical merits are in fact 

good-making features which ultimately contribute to the empirical adequacy.  

Strength might be a good candidate for the lexicographically prior criterion. 

According to Woodward (2014), the BSA is not descriptively adequate because it 

fails to properly capture actual scientific practice of theory choice. The way 

‘Ockham’s razor’ principle operates in science is that increasing complexity is 

permitted only when doing so sufficiently increase strength, but not otherwise; 

sacrificing strength is not permitted even if doing so sufficiently increase simplicity – 

that is not how theory choice is made in actuality, Woodward observes. While the 

BSA emphasizes on the optimal trade-off between simplicity and strength, 

Woodward argues, actual theory choice procedure puts lexicographical priority or 

threshold priority on strength. That is, when a theory comes out strictly better with 

respect to strength, the theory is better in the overall ranking (lexical priority). Or, as 

something close to lexical priority, for a theory to be considered as good it first must 

have a sufficient level – meeting a certain ‘threshold’ level– of strength. If the theory 

in question does not possess sufficient level of strength, it cannot be compensated by 

gain in simplicity, however great it is (threshold priority). If two theories A and B are 

on par with respect to strength, then simplicity may factor in as a tie-breaker. Theory-

choice procedures like this which puts priority on certain theory-choice criteria does 

not satisfy the theory-choice analogue of condition D (in the case of strength with 
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lexical priority, whenever a theory is strictly better than other theories with respect to 

strength, it comes out to be better overall), or condition I (in the case of the ‘strength 

threshold’, two profiles which agree on the rankings of two theories with respect to 

the theory choice criteria might disagree on the overall ranking of the two depending 

on whether the theories are above or below the strength threshold and how strength 

trades off with simplicity). If such a lexical or threshold priority on strength is a 

correct picture of how theory choice procedure works in fundamental physics, and if 

the BSA is to adopt the same procedure as its system choice procedure, then it may 

open up an escape from the Arrovian impossibility. But this is still a seminal idea as 

we still need to investigate how this picture of putting priority on certain choice-

criterion would work out with probabilistic systems on the BSA, and also how 

strength and simplicity trades off in case of threshold-priority of strength. As we saw 

in §5 and §6, measuring strength cardinally or even ordinally is not a straightforward 

matter, let alone their comparability. This idea requires further research. 

6.2 Other Possible Escape: Minimum Length Description 
Principle in System Choice 

Different model selectin criteria use different definitions of simplicity and fit. For 

example, the model selection principle called Minimum Description Length Principle 

(MDL) (Rissanen, 1978; Grünwald et al., 2005) take a fundamentally different 

approach to model selection problems. In MDL, the goal of statistical inference is to 

find regularity in the data, and regularity is identified with “ability to compress.” The 

underlying idea is that there are different ways to ‘summarize’ the observed 

regularities in the data sets, and the shorter the summary is, the better.  
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The following example (from Grünwald 2005) would help understand the underlying 

ideas of MDL. MDL is interested in developing a method for learning the laws and 

regularities in data. Consider the following three sequences. Assume that each 

sequence is 10000 bits long. Just the beginning and the end of each sequence is listed:  

(1) 00010001000100010001 . . . 0001000100010001000100010001  

(2) 01110100110100100110 . . . 1010111010111011000101100010  

(3) 00011000001010100000 . . . 0010001000010000001000110000  

The first sequence (1) looks regular. Apparently ‘0001’ is being repeated. If one were 

to predict what the future data will be like, it would be reasonable to base her 

prediction on such a regularity, pretending there is a law behind this sequence and it 

will govern the future sequence as well. The second sequence (2) seems to have no 

regularity behind it. So, we cannot seem to find any law-like regularity here, nor can 

we make any reasonable prediction other than that the future data will be just 

‘random’. The third sequence (3) shows some regularity in the relative frequencies of 

0s and 1s. There seem to be approximately four times as many 0s as 1s. It looks more 

regular than (2) but less regular than (1). If one were to predict future data in the case 

of (3), one would probably makes a prediction in the form of probabilistic claims 

such as “Chance of ‘1’ is 0.2”. In any case, regularity in the data can be used to make 

predictions; the more regular the data is, the more deterministic predictions one can 

make about the future data.   

In the framework of MDL, regularities in the data means the data can be compressed. 

The descriptions of compressed data are given in terms of some description method; 

the most commonly used example for a description method is a general-purpose 
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computer program language like C or Pascal. A description of the set of data D is 

then any computer program that prints D and then halts. For the three sequences 

above, we may write a program  

i = 1 to 2500; print “0001”; next; halt  

which will print sequence (1). This is far shorter than the original sequence. That is, 

(1) is highly compressible. In contrast, the shortest program that will print (2) would 

be something like this: 

print 

“011101001101000010101010...101011101011101100010110001

0”; halt 

Basically this is just a repetition of the actual sequence. There is nothing to compress 

in (2), because there is no detectable regularity in virtue of which we can compress 

the data. The third sequence (3) lies in between the first two. It cannot be compressed 

as compactly as (1) but surely the shortest program that can print (3) will be shorter 

than the length of the actual sequence (3).129  

This idea of connecting regularity and compressibility130 is the underlying idea of 

MDL. MDL says that we should pick the hypothesis which itself can be described in 

                                                 
129 For mathematical proof for generalization of this kind of result, see Grünwald 2005; 27. 
130 The idea of connecting simplicity and compressibility might seems to be highly language 

dependent. But one does not need to worry too much about the language dependence problem in 

MDL framework. According to the so-called invariance theorem (Kolmogorov 1965, and 

independently Solomonoff 1964), for any two general-purpose programming languages A and B, 

and any data sequence D, the difference in the length of the shortest program for printing D in 

language A and B is always smaller than a constant c. (Grünwald 2005). 
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short length and also can describe the data compactly (i.e., by describing the data 

compactly, one effectively compress the data). More formally,  

MDL principle (Rissanen 1978): the best hypothesis H to explain the set of 

data D is the one that minimizes the sum of:  

(1) L(H): The length of the description of the hypothesis itself, plus 

(2) L(D|H): The length of the description of the data D when the data is 

described with the help of the theory. 

The first term can be understood as complexity of H, and the second term as 

goodness-of-fit of H. Intuitively speaking, the second term tells us goodness-of-fit of 

the theory because, the better it fits the data, the fewer bits we would need to describe 

the data given the theory. For example, in order to ‘describe the data’ as in (2), we 

would need to describe the discrepancies between the values predicted by the theory 

and the actually observed value; but we would not describe what the theory predicts 

about the data, which is the job of (1) (Grünwald 2005). 

Let us examine a simple example. Imagine a polynomial context where the data can 

be plotted on the x-y plane and we have rival polynomial models to explain the data. 

Our familiar curve-fitting problem would be such a context. Suppose we consider the 

following hypotheses:  

Hypothesis A: y = 2x2 +3x + 4 + [error]  

Hypothesis B: y = 3x +1 + [error]   

Assume the error term above is a normally distributed noise term. Construed this 

way, each hypothesis above defines probability distribution for y values given x.131 

                                                 
131 See §3.2.1 for how each curve can be regarded as a probability distribution.  
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Now we need to define the two terms L(D|H) and L(H) in the statement of MDL 

principle; that is, we need to define codes for encoding the two terms. First, L(D|H) in 

this example can be best understood if we define it as –log P(D|H), where P(D|H) 

probability mass or density of D given H (Grünwald 2005; 28). Hence, the better H 

‘fits’ the data, the shorter description length L(D|H). For hypothesis A, the data points 

fall on the curve y = 2x2 +3x + 4 do not need extra description, because they are 

precisely the values expected by A. The data points that do not fall right on that curve 

do need extra description, for example, in terms of Sum of Squares. So, if A fits the 

given data better than B does, then L(D|A) will be shorter than L(D|B). What of L(H)? 

Earlier forms of MDL allowed any form of coding to encode H but soon it was 

realized that allowing any code has the same problem as language-dependence for 

curve-fitting; depending on which code we use, we may get vastly different lengths 

for L(H). A wide variety of codes are suggested for that term to minimize the code-

dependence problem. See Grünwald (2005) for an extensive survey of them.132 They 

deserve further research. In our simple example, a suitable set of codes will be the 

ones what would yield L(A) be longer than L(B). Encoded by such a code, MDL tells 

us to compare the following MDL lengths of the hypotheses and choose the one with 

the smaller MDL score.  

 MDL for A: L(A) + L(D|A) 

 MDL for B: L(B) + L(D|B) 

Note that this MDL expresses a specific trade-off ratio between simplicity and fit, 

defined in particular ways. For the purpose of this section, let us now turn to some 

                                                 
132 A modern, more refined version is based on the concept of universal coding. 
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important features of MDL that have close relevance to the BSA. Grünwald 2005 is 

probably the clearest exposition of the underlying philosophy of MDL, so let me draw 

on him in the following. 

No Need for ‘Underlying Truth’  

Rissanen, the main pioneer of MDL, says:  

We never want to make the false assumption that the observed data 

actually were generated by a distribution of some kind, say 

Gaussian, and then go on to analyze the consequences and make 

further deductions. Our deductions may be entertaining but quite 

irrelevant to the task at hand, namely, to learn useful properties 

from the data. (Rissanen 1989; 15) 

What is important for us is that MDL does not need for ‘underlying truth.’ As we saw 

in §3.2 and §3.4., the common statistical model methods like AIC and BIC crucially 

relies on the ‘true curve’. For example, K-L divergence, the key concept in AIC and 

BIC, is defined as the distance between the true hypothesis and the fitted hypothesis, 

Derivation of AIC and BIC rely on the assumption that the parameter values of fitted 

hypotheses is expected to centered around the ‘true’ parameter values. We saw in 

§5.6.3 that this feature causes troubles when we implement the BSA with those 

statistical methods. In contrast, as we can see in the above quote from Rissanen, the 

main idea of MDL is that we should focus on what we can learn from the data as all 

we have is the data. In the picture of MDL, our inductive inference should only be 

based on the data, not on the assumption of some underlying true state of nature. 

According to Rissanen, the goal of inductive inference should be to ‘squeeze out as 

much regularity as possible’ from the given data.133 So, the main task for statistical 

                                                 
133 Vitány and Li make the same claim (1997; 351) 
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inference is to separate ‘structure’ (i.e., the regularity, the ‘meaningful information’) 

from ‘noise’ (i.e., the ‘accidental information’) in the given data. 

Clearly, the above feature of MDL seems to sit very well with the BSA. As we saw in 

§4.2 and §4.3, the BSA views laws as regularities in the best systematization of the 

facts at a world. It does not assume some metaphysically heavy laws as primitivism 

does. Also, it views laws are just results of extending our best practice inductive 

inference to the ideal case (that is, the case where ‘all the data is in’). So, there is no 

such thing as ‘true curve’ or ‘true status of nature’ on the BSA. If we implement the 

BSA with the trade-off recipe expressed in MDL, we would no longer have the 

problems for the A-BSA or the B-BSA.  

So, MDL seems to have a good outlook as an escape from the Arrovian result because 

it makes different system-choice criteria commensurable, while not falling for the 

problems that AIC or BIC has. But we would still need a further examination of its 

philosophical assumptions. In principle, MDL views the data as messages and we 

need to make a priori assumptions about the nature of the source of code.  In 

particular, MDL assumes that regularities described in shorter length would help us 

better conduct scientific investigation. But, as Adriaans (2008; 164-5) says:  

The extreme regularity of the universe could be a ‘local’ condition 

accidentally observed by us. In terms of modern information 

theory: every infinite random string has an infinite number of 

regions of extreme regularity. If we transpose this idea to the 

analysis of our world we might just accidentally live in such a 

regular region in a purely random universe…  

If we live in such a purely random universe, then MDL would not be motivated 

because we seem to have no reason to favor simplicity. However, if we assume that 

even such a universe will be cooperative to us, in the sense that nature will first show 
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us the data of a kind from which we can squeeze out regularities in short descriptions. 

In that case, the hypothesis favored by MDL would be the right one in that it confers 

high probably on the given data. This is called the cooperative universe hypothesis 

(Adriaans 2008). In the light of the project of implementing the BSA with MDL, the 

cooperative universe hypothesis might be just another guise of the Hope thesis. If this 

is correct, then once again we have to hang onto the hope. 

Conclusion 

In this section, I will first give a somewhat pessimistic outlook on the BSA based on 

the results from the previous chapters. But my conclusion would not be just 

pessimistic; I will also suggests that there might be still a way to save the BSA from 

the problems I raise in this dissertation.  

If my arguments in Chapter 5 are sound, then the BSA is threatened by the Arrovian 

impossibility. The BSAers might attempt various escapes from the impossibility 

result. The might attempt to fall back to the weak version of Humean Supervenience 

(HS) thesis and claim that the multi-profile framework of Arrow’s impossibility 

theorem is blocked on the weak HS thesis. But we saw in §5.3 that there are single-

profile variants of the Arrovian impossibility, provided the domain of the system-

choice rules is rich and the rules satisfy Strong neutrality (SN). The BSAers might 

argue that Rich domain (R) is not motivated in system choice; but the conclusion of 

§5.2 was that we have reason to think that it is motivated. Or, they might attempt to 

drop SN, but as we saw in §5.4, in the context of system choice, SN is well 

motivated. Or, they might attempt to abandon Independence of Irrelevant Alternative 
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(I) condition. But as we saw in §5.4, the ‘irrelevance’ aspect of I is motivated in 

system choice.  

Maybe the BSAers hang their hope onto cardinality and comparability. Careful 

examinations conducted in §5.5, however, suggest that it is doubtful that the system-

choice criteria are cardinally measurable. Being charitable to the BSAers, it might 

even granted that we would be able to find a better refinement of the system-choice 

criteria such that they come out to be cardinally measurable. Unfortunately, this alone 

cannot save the BSA from the Arrovian impossibility result unless the system-choice 

criteria are commensurable. So, the BSAers now might turn to the cases in statistical 

model selection literature where they can find cases for inter-criterial comparability. 

The two common methods, AIC and BIC, however, cannot help them as we saw in 

§5.6. This was because (i) there are the context gap between statistical model 

selection and system choice, and (ii) AIC and BIC in principle rely on the existence 

of the ‘true status of nature’, which is in conflict with the BSA’s conception of laws 

of nature discussed in Chapter 4. MDL has the better prospect as a way to make a 

case of cardinal comparability as we saw in §6.3 because it does not assume the 

existence of the true status of nature. But, it does not come free; the BSA 

implemented with MDL might have to rely on the Hope thesis.  

This leads me to make final comments on the BSA’s reliance on the Hope thesis 

(§4.3). To all the problems above, the BSAers last resort would be the Hope thesis. 

Here is a long list of things the Hope thesis would entail. The nature will kindly 

arrange itself such that: the domain of the system-choice rules will be severely 

restricted; different cardinal measures of the system-choice criteria will agree on the 
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best system;, different ways of trading off the criteria, for example the BSAs 

implemented with AIC, BIC, MDL, or any other statistical model selection methods 

will eventually agree; the zero-fit problem (discussed in §5.5) would be resolved, the 

circularity problem would be avoided (discussed in §5.6), and the list is open-ended. 

As I showed throughout the dissertation, virtually for every single problem the BSA 

faces, eventually their responses have to rely on the Hope thesis. 

I suspect that the best solution for the BSA facing the Arrovian impossibility result 

could be found in the notion of non-harmful dictatorship, which would not require too 

much reliance on the Hope thesis. That is, the BSA might have to give up the notion 

of ‘balancing’ in its analysis of laws of nature. The Humean notion of laws may not 

require such a balancing procedure of different criteria, to being with. Maybe, for 

example, van Fraassen’s ‘saving the phenomena’ might be the one and only criterion 

that the BSA should concern – this would be in line with the Humean perspective on 

laws of nature. 
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