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ABSTRACT 

Water and wastewater treatment is a critical service provided for protecting 

human health and the environment. Over the past decade, increasing attention has been 

placed on energy consumption in water and wastewater systems for the following 

reasons: (1) Water and energy are two interrelated resources. The nexus between water 

and energy can intensify the crises of fresh water and fossil fuel shortages; (2) The 

demand of water/wastewater treatment services is expected to continue to increase with 

increasing population, economic development and land use change in the foreseeable 

future; and (3) There is a great potential to mitigate energy use in water and wastewater 

systems by recovering resources in wastewater treatment systems. As a result, the goal of 

this dissertation study is to assess the life cycle energy use of both water supply systems 

and wastewater treatment systems, explore the potential of integrated resource recovery 

to reduce energy consumption in wastewater systems, and understand the major factors 

impacting the life cycle energy use of water systems. 

To achieve the goal, an input-output-based hybrid embodied energy model was 

developed for calculating life cycle energy in water and wastewater systems in the US. 

This approach is more comprehensive and less labor intensive than the traditional life 

cycle assessment. Additionally, this model is flexible in terms of data availability. It can 

give a rough estimation of embodied energy in water systems with limited data input. 

Given more site specific data, the model can modify the embodied energy of different 

energy paths involved in water related sectors.  
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Using the input-output-based hybrid embodied energy model, the life cycle 

energy of a groundwater supply system (Kalamazoo, Michigan) and a surface water 

supply system (Tampa, Florida) was compared. The two systems evaluated have 

comparable total energy embodiments based on unit water production. However, the 

onsite energy use of the groundwater supply system is approximately 27% greater than 

the surface water supply system. This was primarily due to more extensive pumping 

requirements. On the other hand, the groundwater system uses approximately 31% less 

indirect energy than the surface water system, mainly because of fewer chemicals used 

for treatment. The results from this and other studies were also compiled to provide a 

relative comparison of embodied energy for major water supply options. The comparison 

shows that desalination is the most energy intensive option among all the water sources. 

The embodied energy and benefits of reclaimed water depend on local situations and 

additional treatment needed to ensure treated wastewater suitable for the desired 

application.  

A review was conducted on the current resource recovery technologies in 

wastewater treatment systems. It reveals that there are very limited life cycle studies on 

the resource recovery technologies applied in the municipal wastewater treatment 

systems and their integrations. Hence, a life cycle study was carried out to investigate the 

carbon neutrality in a state-of-art wastewater treatment plant in Tampa, FL. Three 

resource recovery methods were specifically investigated: onsite energy generation 

through combined heat and power systems, nutrient recycling through biosolids land 

application, and water reuse for residential irrigation. The embodied energy and the 

associated carbon footprint were estimated using the input-output-based hybrid embodied 
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energy model and carbon emission factors. It was shown that the integrated resource 

(energy, nutrient and water) recovery has the potential to offset all the direct operational 

energy; however, it is not able to offset the total embodied energy of the treatment plant 

to achieve carbon neutrality. Among the three resource recovery methods, water reuse 

has the highest potential of offsetting carbon footprint, while nutrient recycling has the 

lowest. 

A final application of the model was to study on the correlation between 

embodied energy in regional water supply systems and demographic and environmental 

characteristics. It shows that energy embodied in water supply systems in a region is 

related to and can be estimated by population, land use patterns, especially percentage of 

urban land and water source, and water sources. This model provides an alternative way 

to quickly estimate embodied energy of water supply in a region. The estimated 

embodied energy of water supply can further be used as a supporting tool for decision 

making and planning. 

 



1 

CHAPTER 1: INTRODUCTION 

 

1.1 Background Significance 

Water and wastewater treatment is a critical service provided for protecting 

human health and the environment. Currently, developed countries have around 99% 

coverage of this service, while developing countries have an average of around 50% 

coverage (WHO/UNICEF, 2006). In addition to their important service functions, water 

and wastewater systems play a significant role in energy use nationally and globally, 

demanding not only large amounts of energy onsite, such as electricity used for pumping 

and aeration, but also a considerable amount of energy offsite for producing and 

transporting constructional materials and treatment chemicals. It has been estimated that 

around 4% of the US electricity demand is for the movement and treatment of water and 

wastewater, both publicly and privately (Goldstein et al., 2002). This percentage can be 

much higher considering energy used offsite for providing materials and administrative 

services.  

Over the past decade, increasing attention has been placed on energy consumption 

in water and wastewater systems for the following reasons: 

(1) Water and energy are two interrelated resources. The nexus between 

water and energy can intensify the fresh water and fossil fuel shortages; 

(2) The demand of water/wastewater treatment services is expected to 

increase with growing population, economic development and land use 
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change in the foreseeable future; and, 

(3) There is a great potential to mitigate energy use in water and 

wastewater systems by recovering resources in wastewater treatment 

systems.  

The following sections provide further discussions on the three reasons affecting the 

importance of energy consumption in water and wastewater systems.  

 

1.1.1 Water-Energy Nexus 

Studies have shown a noticeable relationship between water and energy (DOE, 

2006; Gleick, 1994). Providing and treating water has an impact on energy resources, 

while energy production also has a profound impact on water resources. More 

specifically, providing water and wastewater service consumes a large amount of energy 

in water conveyance, treatment and distribution and wastewater collection, treatment and 

discharge. It has been estimated that around 123,450 GWh of electricity was used for 

water supply and wastewater treatment both publicly and privately in 2000, and this 

number will increase by 100% in 2050 (Goldstein et al., 2002). On the other hand, 

providing energy, especially electricity, requires a large amount of water for system 

cooling, fuel extraction and mining. The total amount of freshwater withdrawal at the US 

thermoelectric power plants in 1995 was 132,000 MGD, of which 3,310 MGD was 

evaporated (DOE, 2006; Torcellini et al., 2003; USGS, 2009). Additionally, reservoirs 

used for hydroelectric power production evaporate an average of 9,063 MGD of water in 

the US (Torcellini et al., 2003). 

 As a result of the nexus between water and energy, the consumption of water and 

energy forms a reinforcing feedback loop. It means when water use increases, energy use 
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associated with water and wastewater services will also increase, which will further 

increase water consumed in energy production. Hence, the water and energy nexus 

speeds up the consumption of both water and energy resources. Figure 1.1 illustrates this 

positive reinforcement between water and energy using a causal loop diagram. The 

systems with reinforcing loops without balancing feedbacks are very unstable. They are 

usually associated with exponential increases and/or decreases.  With population growth, 

economic development, and limited freshwater and fossil energy resources, the water-

energy reinforcing feedback could eventually lead to the collapse of both water and 

energy systems. To slow down the depletion and find out sustainable solutions for both 

resources, it is important to reduce energy use associated with water and wastewater 

systems and water use in energy production in addition to innovations in renewable 

energy technologies, resource recovery and alternative water sources. 

 

Figure 1.1 Causal loop diagram of the reinforcing relationship between water and energy 
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1.1.2 Water-Population-Economy-Land Use Interactions 

With the rapid development of society and economy, human impacts on water 

quantity and quality have become a major global concern. The depleting and 

deteriorating water resources require more energy and chemicals for providing water and 

wastewater treatment services. As the causal factors driving water depletion and quality 

degradation have been widely studied, there is an urgent need to quantify the 

relationships between these factors with energy consumption in providing water and 

wastewater services and minimize their impacts.   

 

1.1.2.1 Global and US Water Situations 

Water stress and scarcity occurs when the demand for water exceeds the available 

amount or when poor quality restricts its use (UNEP, 2004). Quantitatively, countries 

with a freshwater availability between 1,000 and 1,700 m3 per year per person are 

undergoing water stress. Countries with a fresh water availability of less than 1,000 m3 

per year per person are undergoing water scarcity (UNEP, 2004).  

Currently, a substantial amount of areas around the world are suffering from 

water scarcity, especially those with limited fresh water resources, such as the vast 

majority of Middle East, North Africa, the west coast of South America, and the 

southwest part of North America. It has been estimated that nearly 1.4 billion people, 

amounting to a quarter of the world’s population, or one-third of the population in 

developing countries will live in regions with severe water scarcity by 2025 (Arnell, 2004; 

Seckler et al., 1999). Water scarcity is not only caused by the severe geographical 

conditions, but also other factors such as demand increase, quality deterioration and so on. 
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Nevertheless, the global water withdrawals are still growing very rapidly, and are 

expected to continue to grow inevitably in the foreseeable future (Konikow and Kendy, 

2005; Shah et al., 2003; USGS, 2012).  

In addition to water shortage and scarcity, extensive water withdrawals have also 

led to environmental problems, such as groundwater depletion, land subsidence, seawater 

intrusion, and surface water quality deterioration, which have consequently impacted  

water availability in many regions (Barlow, 2003; Bartolino et al., 2003; Konikow and 

Kendy, 2005; Taylor and Alley, 2001). These local environmental problems can also lead 

to larger-scale ecological problems, such as changes in surface vegetation and 

biodiversity of the hydrological system (Danielopol et al., 2003).  

In the US, the demand on fresh water supplies is also continuously growing in 

spite of limited surface water storage and depleting groundwater source in the nation. A 

survey in the US showed that most of the US states will experience local, regional or 

statewide water shortage over the next decade (Hill, 2006). It includes some states with 

known abundance of fresh water resources.  

 Water quality degradation refers to the deterioration in the chemical, physical and 

biological characteristics of water. It has become a serious worldwide problem. It has 

been estimated that about 5 million people die each year from poor quality of drinking 

water and lack of sanitation (Prüss-Üstün et al., 2008). Water quality degradation has 

been and will be much more significant in developing countries than in developed 

countries (Zimmerman et al., 2008). It is caused by less emphasis and capability on 

pollution control while undergoing rapid economic development at the same time in the 

developing countries. In spite of the different development levels, the growing industries, 
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expanding urban lands, improving living standards and increasing population makes the 

deterioration of water quality inevitable both in developed and developing countries.  

In the US, particularly, the widespread increases in nitrate, chloride, arsenic and 

cadmium concentrations in the nation’s rivers have been noticed long ago (Smith et al., 

1987). In a study of contaminant source for groundwater aquifers in 26 states, volatile 

organic compounds, petroleum compounds, metals, pesticides and nitrate are identified as 

the most frequently detected contaminants (EPA, 2000).  

Above all, water quantity and water quality are not isolated, but interrelated. 

Water shortage is not only caused by the overwhelming water withdrawal for supporting 

socioeconomic development, but also because of the increasing pollutant loadings in the 

water body (Postel, 1997; Zimmerman et al., 2008). These pollutant loadings have made 

water quality degrade to certain levels which are not appropriate for potable water supply 

in some areas. On the other side, the large withdrawal and consumption of water also 

result in further water quality deterioration. This is because not only exterior substances 

are commonly added into the water body after its use, but also the characteristics of water 

are changed when it returns to its source after the use. Large water withdrawal and 

consumption also diminish the self-cleaning abilities of the water body. Hence, it is 

important to consider the water quantity and quality problems from a system view, and 

understand the drivers of these problems. 
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1.1.2.2 Global and US Water Stressors 

The driving forces behind the decreasing water quantity and deteriorating water 

quality are mainly anthropogenic factors including population growth, 

economic/industrial development, and land use changes. 

 Population growth is one of the major stressors of water quantity and quality. 

Population is growing rapidly worldwide during the past two or three hundred years. In 

2011, world population is growing at a rate of 1.2%, and the population in the largest 

cities is growing at a rate of 16% (World Bank, 2012). Population is also growing 

steadily at a rate of around 1% in the US during the past decade (World Bank, 2012). 

Such population growth drives water demands for residential, industrial and agricultural 

uses. Population growth also significantly reduces return flows to the water body (Ehrlich 

and Holdren, 1971), which can eventually exhaust the available water resource or destroy 

the environmental balance.  

 Economic development is another important water stressor. While modern 

economic development provides short-term benefits for the relatively poor population, it 

also induces uneven resource distribution and overconsumption in the well developed 

countries. Economic development is partly associated with population growth. Industrial 

and agricultural production has to increase in order to satisfy the growing needs due to 

population growth, which consequently increases water consumption. On the other hand, 

economic development also changes people’s life style and consumption behavior that 

result in the increased water use. For example, many industrial products invented in the 

past century are water and pollution intensive at the use phase, such as dishwashers, 

laundry machines and so on (Gerbens-Leenes et al., 2009).  
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 Land use change can also affect water quantity and quality. For instance, urban 

development increases the amount of impervious surfaces in the area, which can cause 

flash flooding, impact groundwater system recharge, and increase pollutants and 

biological contaminants in the water body through runoff. Furthermore, urbanization also 

brings large amounts of people to urban areas, and causes uneven population distribution. 

The overloaded population can greatly stress the local water, energy and other resources. 

Another common example of land use change is the conversion of natural lands into 

farmlands. The use of fertilizers and insecticides in farmlands can increase the amounts 

of nutrients and hazardous organic chemicals in the water body, which may lead to 

further problems such as eutrophication. 

In the US, loss of natural lands and farmlands to urban development is a serious 

threat to local ecosystems. It increased the amounts of pollutants and suspended solids in 

the water bodies because of the increasing pollution associated with urbanization and the 

increase of urban impervious lands. It has been projected that the US developed area will 

increase by 79% from 1997 to 2025 (Alig et al., 2004).  

 The changing rates of the water stressors discussed above are accelerating. It has 

been reported that population, total real gross domestic product (GDP), amount of 

domesticated land, and nitrogen flux to coastal zone are increasing exponentially over the 

past 250 years (Zimmerman et al., 2008). These rapid changing stressors will further 

speed up water depletion and quality degradation. There is an urgent need to study and 

mitigate the impacts of these stressors on the water environment.  
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1.1.2.3 Impacts of Changing Water Stressors on Energy 

The rapid changing water stressors affect the quantity and quality of fresh water 

sources, which further impact the amount of energy needed for providing water and 

wastewater treatment services. For instance, when local groundwater and/or surface water 

sources are depleted, communities have to seek for alternative water supply options such 

as desalination or water importation, which are more energy intensive than traditional 

water supply. When the raw freshwater and/or wastewater quality is poor, more energy 

intensive treatment technologies, more complex treatment process chains and more 

treatment chemicals have to be applied to treat water to meet the regulations. Overall, 

Figure 1.2 illustrates the impacts of water stressors on water quantity and quality and 

consequently on the amount of energy used in water and wastewater systems.  

Clearly, energy associated with water supply and wastewater treatment will 

increase due to the decreasing water quantity, degrading water quality and more stringent 

regulations. In the US, although renewable energy has been widely studied and strongly 

recommended, around 84% of the total energy consumption still depends on traditional 

fossil fuels (EIA, 2008). The problems associated with the overuse of fossil fuels include: 

(1) depletion of nonrenewable energy resources which may severely interrupt social and 

economic systems if a transition to a more diverse energy supply does not occur, and (2) 

various environmental problems caused by emissions (hazardous air pollutants and 

greenhouse gases) from burning fossil fuels. Therefore, it is critical to understand and 

evaluate energy consumption associated with water and wastewater systems under 

various water stressors so the appropriate strategies can be developed to mitigate the 

impacts of changing stressors. 
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Figure 1.2 The correlations between water stressors, water quantity and quality and 
energy associated with water systems 
 

1.1.3 Resource Recovery in Wastewater Treatment Systems 

The intensive energy and material input in the anthropogenic water use cycle also 

makes water a potential source for resource recovery, especially the wastewater. 

Currently, there are over 15,000 municipal wastewater treatment plants (WWTPs) 
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providing wastewater collection and treatment services to around 78% of the US 

population. They are considered as large resource consumers in the US, but they also 

have great potential of recovering resources contained in wastewater. Various research 

has been done to recover resources in wastewater for secondary uses (Hospido et al., 

2005; Houillon and Jolliet, 2005; Meneses et al., 2010; Muñoz et al., 2010; Nouri et al., 

2006; Ortiz et al., 2007; Pasqualino et al., 2009; Peters and Lundie, 2001; Suh and 

Rousseaux, 2002; Wett et al., 2007). There are three common ways to recover resources 

from wastewater systems: (1) onsite energy generation, (2) biosolids land application, 

and (3) water reuse. Onsite energy generation makes use of the organic loads of 

wastewater or other unique characteristics of the WWTPs (water flow, residue heat, large 

space) to produce energy, mainly in the form of electricity. Nutrient recycling recovers 

nutrients from wastewater as fertilizers to offset the environmental loads associated with 

producing the equivalent amount of fertilizers from fossil fuels. Moreover, treated 

wastewater can be reused for various purposes to provide ecological benefits, reduce the 

demand of potable water and augment water supplies.  

Although there are applications of each resource recovery method, the existing 

applications are rarely justified by life cycle assessment. There are limited life cycle 

studies that can serve as the guidance for the future application of the resource recovery 

technologies. Additionally, there is a lack of studies thoroughly reviewing the current 

status and sustainability of these individual methods as well as their integrations under 

different scales. Therefore, there is a need to review the pros and cons of the existing 

onsite energy generation, nutrient recycling and water reuse methods, their application 

status, and life cycle studies for each resource recovery approach as well as the 
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integration of these approaches under different scales. There is also a need to explore the 

potential of resource recovery for mitigating energy consumption and associated carbon 

emissions in municipal wastewater treatment systems. 

 

1.2 Embodied Energy of Water Systems 

In order to fully understand and evaluate the energy associated with water supply 

and wastewater treatment, the life cycle thinking is applied in this study. In addition to 

the energy consumed directly onsite of water/wastewater systems, there is also energy 

consumed indirectly in the supply chains for constructing and operating water/wastewater 

systems and during the end-of-life phase of the constructional and operational materials. 

A thorough analysis shall include energy used both directly and indirectly for the water 

supply and wastewater treatment systems. The terms that are frequently used in this study 

for energy are defined as follows.  

(1) Direct energy: Energy used directly and onsite during different life 

stages of water/wastewater systems. Common types of direct energy 

include, but are not limited to electricity used for pumping water, aeration, 

fuel used for any onsite motor equipment, and natural gas or electricity 

used for system heating. 

(2) Indirect energy: Energy used indirectly and offsite during different life 

stages of water/wastewater systems. Common types of indirect energy 

include, but are not limited to energy used for producing treatment 

chemicals, energy used for extracting, producing and delivering 

constructional materials, and energy used for providing administrative 



13 

supplies.  

(3) Total embodied energy: The total amount of energy used during the 

life cycle of a water system. Total embodied energy is the sum of direct 

energy and indirect energy. It is considered as a very important 

sustainability indicator of water systems (Lundin and Morrison, 2002; 

Mels et al., 1999). 

 

1.3 Statement of Needs and Goal of the Study 

According to Sections 1.1 and 1.2, current water and energy problems and the 

research needs can be summarized as follows:  

(1) Water and energy are interrelated and there is a reinforcing 

relationship between them. The reinforcing relationship speeds up the 

depletion of both fresh water sources and fossil fuels. It is important to 

understand the total embodied energy of water supply and wastewater 

systems to find the leverage points for system sustainability. 

(2) Global and national water stressors are changing rapidly and have 

dramatic impacts on water quantity and quality. The depleting water 

quantity and deteriorating water quality further increases the demand of 

energy for water supply and wastewater treatment. It is critical to 

understand and evaluate energy consumption associated with water and 

wastewater systems under various water stressors. 

(3) Although there is great resource recovery potential in wastewater 

treatment systems to mitigate the energy burden of water and wastewater 
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systems, there are very limited studies on the life cycle benefits and 

impacts of the resource recovery methods. There is a need to thoroughly 

review the current status and sustainability of existing individual methods 

as well as their integrations under different scales and evaluate the energy 

and carbon offset potential of commonly used resource recovery methods.  

Therefore, the overall goal of this study is to assess the embodied energy of both water 

supply systems and wastewater treatment systems, explore the potential of integrated 

resource recovery to reduce embodied energy of wastewater systems, and understand the 

major factors impacting the embodied energy of water systems. Figure 1.3 shows phases 

in the urban water cycle that were included in this study. 

 

Figure 1.3 Structure of an urban water cycle and the phases included in this study 
(Dashed box represents the phase in the water cycle that was not examined in this study) 
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1.4 Hypotheses 

Based on the statement of the research needs and the goal of this study, the 

following hypotheses are proposed. 

(1) Hypothesis 1: Indirect energy accounts for a significant proportion of 

the total embodied energy of water systems, including water supply 

systems and wastewater treatment systems.  

(2) Hypothesis 2: Different water sources have different direct, indirect 

and embodied energy intensities. 

(3) Hypothesis 3: Large scale advanced wastewater treatment systems can 

achieve carbon neutrality under integrated resource recovery of onsite 

energy generation through combined heat and power systems, nutrient 

recycling through biosolids land application and water reclamation for 

residential irrigation. 

(4) Hypothesis 4: Energy embodied in water supply systems is related 

with land use, water source, and population of the area. 

 

1.5 Research Tasks 

To achieve the goal of this study and test the hypotheses, four tasks were 

performed as highlighted in orange box in Figure 1.4.   

(1) Develop an embodied energy model which is capable of analyzing 

both direct and indirect energy consumption associated with providing 

water and wastewater services. 
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(2) Examine embodied energy intensities of different water supply 

systems (e.g., different raw water sources and different economic context).  

(3) Investigate the resource recovery methods in municipal wastewater 

treatment plants and evaluate the potential of offsetting embodied energy 

and carbon footprint of the municipal wastewater treatment plant. 

(4) Identify the relationship between total embodied energy in water 

systems and water stressors, such as population and land use, and establish 

the statistical correlation between these stressors and the embodied energy 

of water supply systems in a region. 

 

Figure 1.4 The overall flowchart of the four tasks conducted in the dissertation study and 
associated research questions (LC: life cycle; WWTP: wastewater treatment plant; Boxes 
in dark blue: different applications of the embodied energy model; Boxes in light blue: research 
questions; Boxes in red: research tasks.)  
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CHPATER 2: INPUT-OUTPUT-BASED HYBRID EMBODIED ENERGY 

MODEL 

 

2.1 Previous Studies on Energy Use in Water Systems 

Previous research on energy use in water systems primarily aimed at reducing the 

energy cost of drinking water and wastewater treatment systems. As a result, the direct 

energy consumption in water systems, especially the direct electricity consumption, has 

been widely studied (Elliott et al., 2003; Goldstein et al., 2002; Scott et al., 2007; 

Wilkinson, 2000). For example, Wilkinson (2000) estimated the electricity use in the 

water systems of California, including water acquisition, wastewater treatment, and water 

reuse. While the study was relatively complete in terms of the urban water use cycle, 

energy associated with material and service supplies was ignored. Although direct energy 

in the water systems is a significant component of the total embodied energy, this 

simplification may lead to underestimation and inaccuracies when supporting design, 

operation, and policy associated with drinking water and wastewater treatment systems. 

Overall, these studies play an important role in local grid planning and financial planning, 

but they do not provide sufficient information on the sustainability of water systems and 

cannot be used as guidance for future regional and national planning of water systems. 

 

 

 

This Chapter is adapted with permission from “Mo, W., Nasiri, F., Eckelman, M.J., Zhang, Q., 
Zimmerman, J.B., 2010. Measuring the embodied energy in drinking water supply systems: a case study 
in The Great Lakes region, Environmental Science and Technology 44, 9516-9521”, Copyright (2010) 
American Chemical Society, and “Mo, W., Zhang, Q., Mihelcic, J.R., Hokanson, D.R., 2011. Embodied 
energy comparison of surface water and groundwater supply options, Water Research 45, 5577-5586”, 
Copyright (2011) Elsevier.  
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 Embodied energy in water systems, on the other hand, has been studied by several 

researchers in the past using life cycle assessment (LCA). LCA is an accounting 

framework for quantifying environmental impacts across the entire life cycle of a product 

or process. There are three main methods used by previous researchers: process LCA, 

input-output LCA and process-based hybrid LCA.  

 

2.1.1 Process LCA 

Process LCA, in which individual flows of material and energy are tracked at the 

process engineering level (Lenzen and Treloar, 2002; Scheuer et al., 2003), has been 

utilized to analyze the environmental impacts associated with various water treatment 

options in England (Dennison et al., 1999), South Africa (Friedrich, 2002), Australia 

(Peters and Rouse, 2005), Spain (Raluy et al., 2005a), and the United States (Lyons et al., 

2009), while analyses of the impacts of entire municipal drinking water and wastewater 

systems have been undertaken on the basis of a single unit of water (Lassaux et al., 2007) 

and in total (Lundie et al., 2004). Options for water reuse and recycling have also been 

considered (Crettaz et al., 1999). Table 2.1 summarizes the main LCA studies on the 

embodied energy of water systems.  

Although material consumption were considered, almost all the process LCA 

studies reviewed in Table 2.1 did not provide a particular number of the total embodied 

energy of water systems; however, they all show that electricity generation has been the 

largest contributor to the greenhouse emissions and operation stage has the highest 

environmental impact. In conventional treatment, material use is always the second  
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Table 2.1 Process life cycle assessment studies on the embodied energy of water systems 
System considered Life cycle stages Energy use calculation Key findings Source  

Conventional water 
treatment; Membrane 
filtration treatment 

Construction; 
Operation; 
Decommissioning 

Material use was estimated, but 
was not converted into indirect 
energy consumption; 
Environmental impacts based 
on both material and energy 
use was analyzed.  

Operation stage is the dominant stage 
in water production while the 
decommissioning stage is the least 
important one; Electricity generation 
causes the most environmental 
burdens for both treatment methods.  

(Friedrich, 
2002) 

From the bulk water 
supplies, to water 
filtration plants, water 
system areas, 
customer areas, 
wastewater system 
areas and sewage 
treatment plants of 
Sydney Water System 

Construction; 
Operation 
Maintenance  

Material use was estimated, but 
was not converted into indirect 
energy consumption; Direct 
energy used during the 
construction process was 
excluded; Total climate change 
potential based both material 
and energy use was analyzed.  

Electricity consumption and material 
use were the largest contributors to 
total energy, climate change 
indicators and other environmental 
impact indicators. 

(Lundie et 
al., 2004) 

Brackish water reverse 
osmosis, seawater 
reverse osmosis and 
water transfer from a 
distant river; All three 
scenarios are 
considered from raw 
water intake and 
conveyance, water 
treatment and water 
distribution  

Construction; 
Operation; 
Disposal of 
wastes and 
emissions 

Material use was estimated, but 
was not converted into indirect 
energy consumption; Total 
climate change potential based 
on both material and energy 
use was analyzed.  

The electricity consumption in 
pumping and water treatment had 
significant environmental burdens; 
Pipeline construction was another 
important environmental burden 
contributor; The recurrent material 
demands of the desalination 
scenarios were two or three times 
greater than those for the building 
materials. 

(Peters and 
Rouse, 
2005) 
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Table 2.1 (continued) 

Commercial 
desalination 
technologies: MSF, 
MED and RO 

Assembly; 
Operation; Final 
disposal 

Material use was estimated, but 
was not converted  into indirect 
energy consumption; Different 
integrations with renewable 
energies were studied 

The integration with hydro-power 
resulted in the highest reduction in 
airborne emissions, and the solar 
energy the lowest; The production 
capacity of wind plant has positive 
effects in all desalination 
technologies, solar plant as well. 

(Raluy et 
al., 2005c) 

The supply of potable 
water to an industrial 
zone in South Africa, 
including water 
purification and 
pumping, boosting 
system, reservoir 
storage and 
gravitational system 

Operation; 
Disposal 

Material use was estimated, but 
was not converted into indirect 
energy consumption; 
Environmental impacts based 
on both material and energy use 
were analyzed. 

The extraction of water from the 
ambient environment has the highest 
impacts; The impacts of the required 
chemicals of the water supply system 
are of low importance. 

(Landu and 
Brent, 2007) 

Commercial 
desalination 
technologies: MSF, 
MED and RO 

Assembly; 
Operation; Final 
disposal 

Both material and energy use 
were considered for giving 
scores, but no specific data was 
given. 

The main contributor to the global 
environmental impacts is the 
operation, while construction and 
disposal are almost negligible; The 
environmental loads change a lot 
depending on the technology used 
for providing the energy used in the 
desalination process. 

(Raluy et 
al., 2005a) 
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Table 2.1 (continued) 
Reverse osmosis 
desalination and river 
transfer; Both 
scenarios are 
considered from raw 
water intake, 
conveyance, treatment 
and distribution 

Extraction and 
processing raw 
materials; 
Manufacturing; 
Transportation and 
distribution; 
Operation; Final 
waste disposal 

Energy embodied in material 
use was considered, but no 
specific data were given. 

For reverse osmosis, operation stage 
has a large environmental impact, 
while for river transfer, the 
contribution of the operation stage is 
also important, but the construction 
phase has an important contribution 
too. 

(Raluy et 
al., 2005b) 

Water catchment, 
distribution, water and 
wastewater treatment, 
waste disposal and 
direct discharge in 
Walloon region in 
Belgium 

Construction 
(putting pipes into 
the ground are not 
considered); 
Operation; 
Disposal of wastes 
and emissions 

Material use was estimated, 
but was not converted into 
indirect energy consumption; 
Total environmental loads 
based on both material and 
energy use was analyzed.  

Increased level of wastewater 
treatment can lower the 
environmental burdens 

(Lassaux et 
al., 2007) 

Three different system 
scales were studied: 
water treatment 
process only; in plant 
water intake, treatment 
and delivery; water 
intake, water 
treatment, water 
distribution to 
customers 

Construction; 
Operation 

Material use was estimated, 
but was not converted into 
indirect energy consumption; 
Total greenhouse gases 
emission based on both 
material and energy use was 
estimated.  

At the scale of the water treatment 
process, energy consumption is 
shown to carry the highest 
environmental burden of potable 
water production, chemical 
production represents the second 
major contribution to impacts; At the 
scale of the potable water production 
plant, energy consumption due to 
intake pumping and water 
distribution is the major contributors 
to the environmental impacts of the 
plant.  

(Vince et 
al., 2008) 
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Table 2.1 (continued) 

Water importation, 
reclamation and 
seawater desalination; 
For all three scenarios, 
water conveyance and 
treatment were studied 

Infrastructure; 
Operation & 
Maintenance 

Material use was estimated, 
but was not converted into 
indirect energy consumption; 
The impacts of energy use and 
material use were compared. 

Seawater desalination has the highest 
impact whereas reclamation shows a 
relatively lower impact; The impacts 
of facility operations are significantly 
higher than the construction phase; 
In the water importation option, 
conveyance consumed more energy 
than the treatment process, while the 
contrary was found for the other two 
options. 

(Lyons et 
al., 2009) 

No-reuse scenario, 
Brine dilution 
scenario, potable 
water replacement 
scenario, desalinated 
water replacement 
scenario; For all four 
scenarios, from 
wastewater collection 
to final disposal or 
reuse was studied, but 
the first two scenarios 
do not include tertiary 
treatment.  

Include all phases 
except the 
construction and 
dismantling of the 
wastewater 
treatment plant 

Cumulative energy demand 
was estimated and compared 
for different treatment units. 

No reuse, brine dilution and potable 
water replacement have similar 
environmental profiles and that 
replacement of desalinated water has 
the greatest environmental benefits. 

(Pasqualino 
et al., 2011) 
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Table 2.1 (continued) 
For disinfection: 
chlorination plus UV, 
ozonation, ozonation 
plus hydrogen 
peroxide were studied; 
For water reuse: 
reclaimed water for 
agricultural irrigation, 
reclaimed water for 
urban applications, 
potable water 
(conventional), and 
desalinated water were 
compared. 

Only the operation 
stage of the tertiary 
treatment of the 
plant was included 
within the system 
boundaries 

Cumulative energy demand 
was estimated and compared 
for the four water reuse 
scenarios. 

Non-potable uses (both agricultural 
and urban uses) of reclaimed water 
have environmental and economic 
advantages. Reuse of treated 
wastewater is particularly beneficial 
when it can replace desalinated 
water. Consequently, reclaimed 
water should be promoted for non-
potable uses.  

(Meneses et 
al., 2010)  

Conventional 
activated sludge 
system, conventional 
activated sludge 
system with filtration 
treatment, immersed 
membrane biological 
reactor, and external 
membrane biological 
reactor was studied. 

Include 
construction, 
operation and 
maintenance, and 
dismantle and final 
disposal (without 
any recycling) of 
the plant 

Material use was estimated, 
but was not converted into 
indirect energy consumption; 
air emissions and total 
environmental impacts of the 
four scenarios were estimated 
and compared. 

The results show that tertiary 
treatment does not increase 
significantly the environmental loads 
but provide new uses for that purified 
water, thus justifying the intensive 
use of reclaimed water in water scare 
areas. 

(Ortiz et al., 
2007) 
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Table 2.1 (continued) 
ERWT: based on a 
single interbasin 
transfer; AGUA: 
excludes new transfers 
and focuses instead on 
different types of 
resources, including 
seawater/brackish 
water desalination, 
wastewater reuse and 
so on. 

Include the whole 
anthropic cycle of 
water, from water 
abstraction to 
wastewater 
treatment, 
construction, 
operation, 
dismantling 

Global warming potential was 
estimated, but embodied 
energy consumption was not 
reported. 

The AGUA programme performs 
slightly better than the ERWT in 
most categories with the exception of 
ozone depletion potential. The 
AGUA has 49% lower Freshwater 
Ecosystem Impact than the ERWT.  

(Muñoz et 
al., 2010) 
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largest environmental impact contributor, but in seawater desalination, the material use is 

negligible because of the high energy demand of the desalination process. 

 In the LCA studies listed in Table 2.1, some concluded that the construction phase 

is negligible (Lyons et al., 2009; Raluy et al., 2005a), while some showed it to be 

important (Peters and Rouse, 2005). These contradictory results may due to the different 

selection of system boundaries. In process analysis, it is very difficult to set system 

boundaries, making sure the additional upstream production stages have little effect on 

the whole system. Hence, the traditional life cycle assessment tends to underestimate the 

energy embodiments because of limited data sources and truncated system boundaries 

(Crawford, 2008). Although results from process analysis might be accurate and specific 

with sufficient data, the large amount of data needed may not be easy to obtain. The data 

collecting process can be very labor and time intensive.  

 

2.1.2 Input-Output LCA 

To avoid the problems associated with process analysis, input-output LCA (e.g., 

Economic Input-Output Life Cycle Assessment) was used by some researchers for 

estimating energy consumption. Input-output analysis is a top-down economic technique, 

which uses sectoral monetary transaction matrices describing complex interdependencies 

of industries in order to trace resource requirements throughout the economy (Lenzen, 

2002). The basis of EIO-LCA is the Leontief inverse matrix, which shows the economic 

structure of a certain state or country (Hendrickson et al., 2006).  

 Troy et al. (2003) estimated the embodied energy consumption of city 

construction in six selected study areas in Australia. In their research, embodied energy 
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coefficients derived from input-output analysis were applied to calculate the energy 

embodied in the various materials used for the city construction, including water supply 

and sewage systems. Due to data limitation, the total energy embodied in the water 

supply network was estimated by multiplying the estimated embodied energy supply per 

housing area with the total housing area. The study suggests that embodied energy 

consumption in city may be more significant than previously thought. 

 Similarly, Filion et al. (2004) incorporated input-output analysis in the study of 

life-cycle energy of a water distribution system to quantify the energy use in production, 

operation, maintenance and disposal life stages of the distribution system. EIO-LCA was 

used for calculating the energy embodied in the production of the pipelines. Energy 

consumption for the use and disposal stage was calculated by extrapolating from the unit 

estimations. The study found that using a 50-year pipe replacement frequency, the total 

energy expenditure could be minimized and a balance between energy expenditures in all 

life stages can be achieved.  

 Racoviceanu et al. (2007) analyzed the total embodied energy and greenhouse gas 

emissions for three phases of the water treatment facilities: chemical production, 

transportation of materials and water treatment plant operation. In their study, the impacts 

of chemical manufacturing were also estimated using the EIO-LCA, and the inventories 

for transportation and operational environmental effects were based on data from the 

GHGenius model and regionally averaged data. The operation stage was estimated to be 

the largest contributor of total energy use, accounted for 94% of total energy use and 90% 

of greenhouse gases emissions. On the other hand, transportation related energy use and 

emissions were calculated to be insignificant. 
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 The system boundary is more complete using the input-output analysis. Plus, 

there is no need to choose a system boundary, because it is determined by the scale of the 

input-output tables, which usually are very complete. Thus, results from input-output 

analysis can be complete and comprehensive and the calculation is much less labor and 

time intensive. However, the total embodied energy intensities calculated from the input-

output analysis are based on national average data, which may contain various errors 

(Alcorn and Baird, 1996). In addition, a circular effect associated with EIO-LCA may 

cause double counting the conversion between different types of energy. 

 

2.1.3 Process-Based Hybrid LCA 

The process based hybrid approach sums the direct energy and the input-output 

results of the energy embodied in each type of materials. It is more complete than the 

traditional life cycle assessment and more accurate than the input-output analysis; 

however, it usually suffers from limited data sources for material use, and thus cannot be 

readily applied to other systems. 

 Stokes et al. (2006) used the process-based hybrid approach to estimate the 

embodied energy of three alternative water supply systems: water desalination, 

importation and reclamation. In this study, the types and amounts of material used in the 

system were collected from individual water systems. EIO-LCA was used to calculate 

energy intensities for different materials. Embodied energy was calculated through 

adding energy embodied in each type of material together. Desalination was found to 

have the largest total embodied energy demand. Operational stage has largest energy 

consumption for all three water sources. For importation, water conveyance is the most 
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energy intensive phase due to the local geographical conditions. For desalination, 

treatment is the dominant one. For reclamation, water distribution to the customer is the 

most energy intensive phase. Later, Stokes et al. (Stokes and Horvath, 2009) applied the 

same methodology in another study which compared the life cycle energy use and air 

emissions for different water supply options. Desalination is able to achieve high energy 

efficiency by incorporating solar thermal technology.  

 

2.1.4 Input-Output-Based Hybrid LCA 

To avoid the disadvantages of both process analysis and input-output analysis, an 

input-output-based hybrid analysis combining both process analysis and input-output 

analysis was developed (Treloar, 1997; Treloar et al., 2001). This approach involves 

substituting available process data into an input-output model in order to minimize the 

errors associated with the traditional LCA and the process-based hybrid analysis 

(Crawford, 2008). One major step of the input-output-based hybrid analysis is the energy 

path pruning procedure. Energy paths with the highest embodied energy will be extracted 

and modified using site specific data. This will substantially reduce the amount of work 

and improve accuracy. This approach has been used by a study in Australia to estimate 

energy embodied in buildings (Treloar, 1997), but it has not been used for water systems.  

Previous studies (Crawford, 2008; Mattila et al., 2010) have shown that the input-

output based hybrid approach is more comprehensive and less labor intensive than the 

traditional life cycle assessment. Additionally, the input-output based hybrid approach 

enables flexibility by first providing a rough estimation, and then allowing detailed 

modifications based on site and system specific data using structural path analysis. One 
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weakness of this approach is that neither differences in water consumption patterns nor 

temporal differences associated with water systems can be reflected in the model results. 

A comparison of the four embodied energy calculation approaches was provided by 

Table 2.2.   

Table 2.2 Advantages and disadvantages of the four approaches for calculating the 
embodied energy of water systems 

Approaches Advantages Disadvantages 

Process LCA  Specific and accurate Truncated system boundary, 
and labor and time intensive 

Input-output LCA Complete and convenient 
Based on national or regional 
data, inaccurate application 

to individual systems 

Process-based Hybrid 
LCA 

More complete than 
traditional LCA, and more 

accurate than the input-output 
analysis 

Still truncated system 
boundary, and labor and time 

intensive  

Input-output-based 
Hybrid LCA 

More complete than 
traditional LCA and process-
based hybrid analysis, more 

accurate than the input-output 
analysis 

Difficult to reflect temporal 
changes of embodied energy 

 

2.2 Introduction into Input-Output-Based Hybrid Analysis 

The input-output-based hybrid analysis combines both process analysis and input-

output analysis. Input-output analysis will first be used to capture the national averaged 

direct and total embodied energy intensities (physical amount of energy per dollar) for 

each life cycle stage of water systems. Initial total embodied energy intensities can be 

adjusted to fit for either drinking water supply systems or wastewater treatment systems. 

Process analysis is then applied to estimate total costs of selected water systems. Initial 

total embodied energy was calculated through multiplying the initial embodied energy 

intensities with the total costs. In order to make the embodied energy value more specific 
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for the selected water systems, the estimated embodied energy was modified through a 

structural path analysis which will be further discussed in Section 2.4. Basic steps 

involved in developing the input-output-based hybrid embodied energy model are 

presented in Figure 2.1.  

 The system boundary in this study includes the construction and operation stages 

of water intake infrastructures (wells/exposed tower), treatment plants (administrative 

buildings included), water storage tanks, pipeline systems, pumping stations and 

wastewater treatment plants. The end-of-life stage was not considered because the 

embodied energy associated with it has been shown to be insignificant in previous studies 

(Friedrich, 2002; Raluy et al., 2005c). 

 This input-output-based hybrid embodied energy model can be used for 

estimating energy embodied in drinking water supply systems, wastewater treatment 

systems, and other industrial systems as long as the user has identified appropriate 

economic target sectors and has access to system specific data. The following sections in 

this chapter introduce the processes of the model development step by step. 

 

2.3 Model Development 

2.3.1 Estimation of Initial Energy Intensities  

The Input-Output matrix used in this study is based on the latest 2002 Use table 

(U) and Make table (M) published by US Bureau of Economic Analysis (BEA, 2011). 

The Make table shows the production of commodities by industries, while the Use table  
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Figure 2.1 Steps involved in establishing the input-output-based hybrid embodied energy 
model 

 

shows the uses of commodities by intermediate and final users (Horowitz and Planting, 

2006). Because neither Make table nor Use table is diagonal, they are not able to be used 

for calculation directly. As a result, the Use table and the Make table were manipulated in 

the MATLAB R2010a software to create a commodity-by-commodity direct coefficient 

table (CC) through the following steps: 
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(2-1) 

where 

CC = Commodity-by-commodity direct coefficient table; 

B = Commodity-by-industry direct coefficient matrix; 
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D = Industry-by-commodity direct coefficient matrix; 

U = Use table; 

M = Make table; 

g = A column vector showing the total $ output of each industry; 

q = A column vector showing the total $ output of each commodity. 

The coefficients in the commodity-by-commodity direct coefficient matrix show the 

monetary amount of different commodities (in columns) directly needed to produce one 

dollar of output of a certain commodity (in rows).  

 There are, in total, 424 commodity sectors in the BEA tables. These sectors were 

classified based on the North American Industry Classification System (NAICS). NAICS 

is based on the assumption that industries should be classified on the basis of their 

production processes (Horowitz and Planting, 2006). Of the 424 commodity sectors, two 

target sectors were selected to represent water systems (r = 1,2):  

(1) The water, sewage and other systems sector (WSOS): It is used to 

represent the operation and maintenance of water systems (both drinking 

water systems and wastewater treatment systems),  

(2) The other nonresidential structures sector (NS): It is used to represent a 

proxy for the construction of water systems (both drinking water systems 

and wastewater treatment systems).  

These sectors clearly include economic activities not directly related to the provision of 

water. The WSOS sector is originally defined as water supply and irrigation systems, 

sewage treatment facilities and steam and air-conditioning supply by NAICS. The NS 

sector includes industrial and commercial building construction, water and sewer line and 
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related structures construction, oil and gas pipeline and related structures construction, 

power and communication line and related structures construction, highway, street and 

bridge construction and so on. Thus, it is necessary to make appropriate adjustments to 

the CC table and the initial embodied energy intensities to fit for water systems. 

Processes of making the adjustments are described in later sections.  These adjustments 

require the use of the direct requirements table used in this study, as opposed to the more 

aggregated total material requirements table used in other I-O formulations (Hendrickson 

et al., 2006). 

 The direct and total (direct + indirect) embodied energy per unit output of the 

adjusted WSOS and NS sectors are calculated by examining the inputs to both target 

sectors from other energy-related sectors. Direct energy for WSOS is the energy used for 

operating and maintaining the water system, such as electricity for pumping; indirect 

energy for WSOS is the energy used to manufacture and deliver non-energy inputs used 

for operation or maintenance, such as treatment chemicals. Direct energy for NS is that 

used for constructing the water system, such as diesel fuel for mixing the concrete, while 

indirect energy for NS is that used to manufacture and deliver the cement to the site, for 

example.  

 Five energy supply sectors are identified from the 424 commodity sectors:  

(1) Oil and gas extraction,  

(2) Coal mining, 

(3) Power generation and supply, 

(4) Natural gas distribution, and  

(5) Petroleum refineries.  
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The distribution of coal and petroleum are not included in these energy supply sectors as 

they represent a small fraction (<0.2%) of the cost of these fuels. Several input 

coefficients in the CC table were modified in order to avoid double counting of the fuel 

used for electricity generation. For example, the upstream use of coal by the power 

utilities was set to be zero because this energy is already accounted for in the output of 

the power generation sector. The upstream use of oil by petroleum refineries was also set 

to be zero to avoid double counting.  

 Further adjustment is needed to account for losses during power generation, 

transmission and distribution for each type of fuel, which was done through using a series 

of primary energy factors (Gowdy and Miller, 1987). An alternate approach that has been 

pursued is to consider only the non-fossil portion of US electricity, that is, 31% of the 

total, by multiplying this factor by the output value of the power generation and supply 

sector which was adopted by the Economic Input-Output Life Cycle Assessment 

Software (EIO-LCA) created by the Carnegie Mellon University. After these adjustments, 

the five energy supply sectors were then combined and the monetary value of each 

energy supply sector translated into consistent physical units using energy tariffs, which 

specify the average monetary cost of each fuel.  The energy tariffs used in this study are 

based on U.S. EIA estimates (EIA, 2003) and are shown, with the primary energy factors, 

in Table 2.3. 
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Table 2.3 National primary energy factors and energy tariffs for each energy supply 
sector 

Energy Supply Sectors Primary Energy 
Factor (α) 

Energy 
Tariff (GJ/$) 

Oil and gas extraction 1.05 0.27 
Coal mining 1.13 0.86 
Power generation and supply 3.44 0.09 
Natural gas distribution 1.05 0.25 
Petroleum refineries 1.42 0.17 

 

 The modifications described above allow the I-O model to calculate the physical 

amounts of primary energy needed to provide a specific dollar quantity of goods and 

services specified by the user. This can be done either through standard Leontief 

inversion (Leontief, 1970) or through a power series approximation method (Ronald and 

Peter, 1985), which is the approach used here because it provides deeper insights into 

structure of energy supply chains. For each stage, or level of the supply chain, the 

embodied energy is calculated from the energy embodied in the previous stage: 

 (2-2) 

where  

k = stage index; 

 = stage k energy intensity of the target sector r (GJ/$ output); 

Nk = number of sectors in stage k; 

DCi = direct coefficient from sector “i” into the target sector r; 

ε(k-1)i = energy intensity of sector i at k-1 stage with respect to sector i 

(GJ/$ output). 
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 Direct energy (as stage 0) needs to be calculated first. This is the fuel input 

directly from energy supply sectors into the adjusted WSOS and NS, such as diesel fuel 

used to operate maintenance equipment. It is calculated by the following equation: 

 (2-3) 

where 

ε0 = direct energy intensity of target sector r (GJ/$ output); 

i = energy supply sector index  

DCi = direct coefficient from energy supply sector i into the target sector r; 

tariffi = energy tariff of the energy supply sector i (GJ/$ energy); 

αi = primary energy factor of energy supply sector i. 

 The total embodied energy intensity of a target water sector can then be calculated 

by adding up the energy intensities of all upstream stages. The basic framework of 

calculating the embodied energy intensity of a sector is expressed in Figure 2.2.  

 

Source: after Treloar et al., 2001 
Figure 2.2 Basic framework of calculating the embodied energy of an economic sector 

 

 It is however impossible to track back all the stages upstream, because the amount 

of the stages can be infinite. Figure 2.3 reflects the energy intensities of different stages 
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of all the commodity sectors. It shows that after a certain number of stages, the energy 

intensities are almost negligible. The highest energy intensities are mostly concentrated in 

stage 0 and stage 1. For more than 72% of the sectors, energy intensities in stage 0-12 

represent more than 98% of the total embodied energy intensities and all the sectors have 

higher than 95% of the total embodied energy intensities in stages 0-12. Thus, to 

minimize unnecessary complexity, no more than 12 stages were considered in this study, 

as the energy contributions of non-energy sectors beyond the 12th stage are negligible 

(<0.01% of the total embodied energy for the WSOS and the NS sectors).  

 

Figure 2.3 Energy intensity distribution at different upstream stages for the commodity 
sectors in the input-output tables 

  

2.3.2 Modifications of Initial Energy Intensities 

There are a number of modifications that can be made to the direct and embodied 

energy results that increase the specificity, both in statistical and contextual terms, of the 

model described here.  As the target sectors considered here (WSOS and NS) include but 
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are not limited to water supply and wastewater treatment activities, the embodied energy 

results from the I-O model are firstly modified to be more representative of only the 

activities associated with water supply systems or only the activities associated with 

wastewater treatment systems. This is done by isolating the water supply portion or 

wastewater treatment portion of the WSOS and NS sectors with detailed commodity 

output and energy use information for the water supply or wastewater treatment portion:  

 (2-4) 

where 

 = Energy intensity of target sector r after modification to the water supply 

system of interest (GJ/$ output) 

 = percentage of water supply system energy use in target sector r; 

 = percentage of water supply system commodity output in target sector r; 

 = Initial energy intensity of target sector r (GJ/$ output). 

 For the WSOS sector, the values of Es% of both water supply systems and 

wastewater treatment systems were calculated based on data provided by an EPRI report 

(Goldstein et al., 2002). The private wastewater systems are not included in the total 

energy consumption because they are not included as part of the WSOS sector by the 

definition of NAICS. Cs% of both water supply systems and wastewater treatment 

systems were obtained from the 2002 economic census provided by the US Census 

Bureau (US Census Bureau, January, 2012). For the NS sector, the values of Es% of both 

water supply systems and wastewater treatment systems were estimated combining the 
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1997 input-output tables. That is because the classifications of the commodities in 1997 

and 2002 are slightly different. There was a sector called the water, sewer and pipeline 

construction in 1997 tables, but this sector is combined with other sectors as the other 

nonresidential structures sector in 2002 tables. It was assumed that the energy intensity 

for constructing water systems is the same in 1997 and 2002 and the energy intensities of 

constructing water supply systems is similar to wastewater systems (United Nations, 

1999). Therefore the 1997 energy intensity is used with the commodity output value of 

water supply systems and wastewater treatment systems adjusted for 2002. Values of 

Cs% of both water supply systems and wastewater treatment systems were sourced from 

2002 detailed item output provided by the Bureau of Economic Analysis.  

 In order to improve spatial specificity, model results can be further adjusted to 

reflect either a surface water-based system or a groundwater-based system, depending on 

the site in question. The energy intensities of the surface- or ground- water-based systems 

may vary significantly based on the different water intake and pumping structures and 

treatment technologies required. A study by EPRI estimated that groundwater systems 

require approximately 30% more electricity per unit of water delivered than surface water 

systems (Goldstein et al., 2002). This value can be combined with the proportion of 

groundwater and surface water for the site in question, relative to the national average 

(approximately 40% groundwater) (EPA, 2002), in order to adjust the national I-O results 

to better reflect individual systems.   

A final possible adjustment concerns the power generation sector.  The 

environmental impacts associated with electricity use depend crucially on the mix of 

local generation sources, electricity trading across regions, and the efficiency of 
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electricity production, for example (Eckelman et al., 2008).  In the context of the present 

study, the embodied energy associated with electricity use can be made location-specific 

by determining an appropriate primary energy factor for power generation, as described 

in Table 2.1. Site-specific factors can be derived at several geographic levels, for example 

using data from eGRID (EPA, 2008).   

 

2.3.3 Expense Estimation 

The WSOS sector represents the operation and maintenance activities in water 

supply systems or wastewater treatment systems. The monetary output of the WSOS 

sector is the annual expenses for operating and maintaining water systems, which can be 

obtained either from the selected water systems or estimated through cost curves or 

equations.  

 The NS sector represents the activities in constructing water supply systems or 

wastewater treatment systems. The monetary output of the NS sector is the capital costs 

of water systems. Because normally it is very difficult to obtain the total capital costs 

directly from the water systems due to expansions and renovations over time, cost 

equations and curves were carefully selected to best estimate the capital costs of the 

existing systems including the capital costs of the treatment processes, equipments, and 

administrative buildings (McGivney and Kawamura, 2008; Traviglia et al., 2008).  

 Table 2.4 provides the cost equations and sources that were used to estimate the 

cost of the selected water systems when necessary. The operational cost of water delivery 

was included as the operation of pipeline instead of pumping stations. Operational costs 

for the storage tanks were neglected. 
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 Costs estimated by the equations and curves from years other than 2002 were 

adjusted to 2002 $USD using the Consumer Price Index (InflationData, June, 2012).  

 

2.3.4 Structural Path Analysis 

In order to modify the initial embodied energy, energy paths (supply chains 

starting from the energy involved in one material or service supply sector, and ending at 

the water-related sector) representing high percentages of the total embodied energy 

intensities were extracted through structural path analysis. The terms of energy paths and 

stages are illustrated in Figure 2.4.  

 

Figure 2.4 Description of energy path, stages and relationship between different stages 
with a sample of a 3-stage energy path (dat represents direct coefficient from sector “a” to 
sector “t”, others are the same; Sector “t” represents the target section (i.e., water-related 
sectors in this study), others represents any commodity sector in the US input-output 
tables.) 
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Table 2.4 Cost estimation equations and sources for both operation and construction of water systems 
Infrastructures Equations for operation    Equations for the construction Sources 

Wells  

ew PyehdmgQO /))(( ××+×=  
Ow = Operational cost of a groundwater well, 
$/year; 
Q = Design flow, MGD; 
d = Depth to water level, m; 
h = Head loss, m; 
e = Unit cost of electricity, $/Kwh; 
y = Days per year, 365 days/year;  
Pe = Pump efficiency. 

ecibaw DfDffC ×+×+=  
Cw = Constructional cost of a 
groundwater well, $1000;  
Di = Diamater of the well, inches; 
De = Depth of the well, ft; 
fa = Factor a, -288; 
fb = Factor b, 145.9; 
fc = Factor c, 0.754. 

2007 
dollars 
McGivney 
et al., 2008 

Surface water 
intake 
infrastructures 

ERQfPeHQfO aeeaadi +××+×××= 32.0/  
Qi = Operational cost of surface water intake, 
$/year; 
fd = Factor d, 1.14×105; 
Qa = Average flow, MGD; 
Ha = Average heat, ft; 
R = Standard labor rate, $30/hr; 
E = Equipment replacement costs, $/year; 
e = Unit cost of electricity, $/Kwh; 
Pe = Pump efficiency. 

935.092.046.0

76.092.046.0

mmhmf

mgmfi

QHfDQf

QfHQfC

××+××+

×+××=
 

Ci = Constructional cost of surface water 
intake structures, $; 
Qm = Maximum flow, MGD;  
H = Exposed tower height, ft; 
D = Depth of wet well at the water intake 
pumping station, 10 ft; 
Hm = Maximal head for water intake 
pumping, ft; 
ff =  Factor f, 1451; 
fg = Factor g, 324; 
fh = Factor h, 386. 

2003 
dollars 
Linaweaver 
et al., 1964 
Traviglia et 
al., 2004 
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Table 2.4 (continued) 

Pipelines  

efkljipi PeSfSffO /)( ××+××=  
Opi = Operational cost of pipeline, $/Kgal/mile; 
fi = Factor a, 0.0166; 
fj = Factor b, 0.75; 
fk = Factor c, 0.667; 
Sl = Average uphill/downhill slope, ft/1000 ft; 
Sf = Friction loss from Hazen-Williams equation, 
ft/1000 ft;  
e = Unit cost of electricity, $/Kwh; 
Pe = Pump efficiency. 

3983.1
ilpi DfC ×=  

Cpi = Constructional cost of pipeline, 
$/mile; 
Di = Diameter of pipe, inches; 
fl = Factor i, 5792.16.  

2003 
dollars 
Linaweaver 
et al., 1964 
Traviglia et 
al., 2004 

Water 
treatment 
plant  

Cost curves selected based on treatment 
technologies 

Cost curves selected based on treatment 
technologies 

2007 
dollars 
McGivney 
et al., 2008 

Pumping 
stations  Included in the pipeline operation part 

nmpu fQfC +×=  
Cpu = Constructional cost of pumping 
stations, $; 
Q = Pumping station capacity, MGD; 
fm = Factor m, 18888; 
fn = Factor n, 140743. 

2007 
dollars 
McGivney 
et al., 2008 

Storage tanks  None 

pos fQfC +×=  
Cs = Constructional cost of storage tanks, 
$; 
Q = Storage tank capacity, MGD; 
fo = Factor, 604450; 
fp = Factor, 215121. 

2007 
dollars 
McGivney 
et al., 2008 
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 To reduce the amount of calculations, up to 5-stage energy paths were checked. 

Threshold values were selected to determine the amount of energy paths to be extracted. 

The structural path analysis process is described by Figure 2.5. The large amount of 

commodity sectors in the US input-output tables leads to an extremely large number of 

energy paths to be extracted. Thus, in order to represent greater than 90% of the initial 

total embodied energy intensities, threshold values were selected to extract paths 

representing 90% of the initial total embodied energy intensities for the two water-related 

sectors in this study. 

 

Source: after Treloar et al., 2001 
Figure 2.5 Detailed process of structural path analysis to extract the top energy paths  

 

2.3.5 Modification of the Total Embodied Energy 

To modify the initial direct energy, system-specific data from the water supply 

systems were substituted in to replace the initial model estimations. Due to data 

limitations, however, this adjustment was only thoroughly performed for the WSOS 

sector. 
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 To modify the initial indirect energy, the method presented by Treloar (Treloar, 

1997) and Lenzen et al. (Lenzen and Crawford, 2009) was used. For a certain 1-stage 

energy paths (from sector s1 to target sector), the energy involved can be calculated as:  

𝐸𝑠1,0 = 𝜀𝑠1𝐶𝑠1 = 𝜀𝑠1𝑑𝑠1,𝑡𝐶𝑡  (2-5) 

where: 

𝐸𝑠1,0 = the initial energy for the energy path from sector “s1” (the sector in stage 

1) to the target sector “t”, TJ; 

𝜀𝑠1 = direct energy intensity of sector “s1”, TJ/$ output of sector “s1”; 

𝐶𝑠1 = direct purchase from sector “s1” by the target sector “t”, $; 

𝑑𝑠1,𝑡 = direct coefficient from sector “s1” to the target sector “t”, $/$ output of the 

target sector “t”; 

Ct = total monetary output of the target sector “t”, $. 

 According to Equation 2-5, the calculation of a 1-stage energy path contains two 

parts, the direct energy intensity of “s1” sector (𝜀𝑠1) and the amount of “s1” commodity 

directly used by the target sector (𝐶𝑠1). Both parts were adjusted based on available data. 

As shown in Equation 2-5, 𝐶𝑠1 was calculated by multiplying the direct coefficient with 

the total monetary output of the water-related sector “t” in the input-output analysis. It 

can be adjusted using detailed expenses associated with different items obtained from the 

selected water supply systems. To adjust 𝜀𝑠1 , energy use for manufacturing sectors in 

2002 was obtained from the Energy Information Administration (EIA, 2007). The 

modified energy can be calculated using Equation 2-6:  
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𝐸𝑠1,∆ = 𝐸𝑠1,0𝑟𝑠1 = 𝐸𝑠1,0 �
𝜀
𝑠1
𝑎𝑑𝑗

𝜀𝑠1
� �

𝐶
𝑠1
𝑎𝑑𝑗

𝐶𝑠1
� (2-6) 

where  

𝑟𝑠1= ratio of the modified energy to the initial energy for the energy path from 

sector “s1” to the target sector “t”;  

𝐸𝑠1,∆ = modified energy for the energy path from sector “s1” to the target sector 

“t”, TJ; 

𝜀𝑠1
𝑎𝑑𝑗 = adjusted direct energy intensity of sector “s1”, TJ/$ output of sector “s1”;  

𝐶𝑠1
𝑎𝑑𝑗 = adjusted direct purchase from sector “s1” by the target sector “t”, $. 

 For energy paths with i stages, the initial energy involved can be determined using 

Equation 2-7: 

𝐸𝑠𝑖,0 = ∏ �𝜀𝑠𝑖𝑑𝑠𝑘,𝑠𝑘−1𝐶𝑡�
𝑖
𝑘=1   (2-7) 

where 

𝐸𝑠𝑖,0 = initial energy for the energy path from the sector in stage i “si” to the target 

sector “t” (target sector is the sector in stage 0, s0), TJ; 

𝜀𝑠𝑖 = direct energy intensity of the sector in stage i “si”, TJ/$ output of sector “si”; 

𝑑𝑠𝑘,𝑠𝑘−1  = direct coefficient from sector “sk” to sector “sk-1”, (s0 represent the 

sector in stage 0 which is the target sector “t”). 

 Similarly, the modified energy for energy path from the sector “si” to the target 

sector “t” can be calculated using Equation 2-8 with 𝑟𝑠𝑖.  

𝐸𝑠𝑖,∆ = 𝐸𝑠𝑖,0𝑟𝑠𝑖 = 𝐸𝑠1,0 �
𝜀
𝑠𝑖
𝑎𝑑𝑗

𝜀𝑠𝑖
� �

𝐶
𝑠1
𝑎𝑑𝑗

𝐶𝑠1
�  (2-8) 
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For the commodity use at stage “i”, an assumption has been made that the change of 

direct commodity use will cause the upstream supply of this commodity to change 

proportionally. Also, the indirect energy was modified by substituting the original energy 

embodied in each energy path with the modified energy.  

 

2.3.6 Indirect Contributing Sectors 

Non-energy sectors of the economy contribute embodied energy to the water 

system through energy-intensive goods and services, such as steel or truck transportation.  

A single sector will contribute embodied energy to water sectors via multiple supply 

chains (as represented by multiple energy paths here), and these contributions can be 

summed to quantify the relative significance of each non-energy sector.  The following 

equation captures the energy contribution of each non-energy sector to target water 

sectors: 

 (2-9)
 

where  

r = target water sector index; 

k = stage index; 

 = energy contribution of sector j in target water sector i (GJ/$ output); 

 = direct energy intensity of sector j at stage k (GJ/$ output); 

 = energy path starting from sector j to target sector i at stage k. 
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CHAPTER 3: NATIONAL AVERAGED EMBODIED ENERGY OF WATER 

AND WASTEWATER SYSTEMS 

 

This chapter provides the initial US national averaged results from the input-

output based hybrid embodied energy model. The national averaged results show the 

embodied energy intensities of the water sectors, drinking water systems and wastewater 

treatment systems. Structural path analysis was carried out, but the specific paths were 

not adjusted for individual systems in this chapter. Thus, results may not be applicable to 

individual drinking water systems or wastewater treatment systems. 

 

3.1 National Averaged Direct Energy Intensities of Water Sectors 

The initial national averaged direct energy intensities of water sectors were 

calculated and presented in Table 3.1. Direct energy intensity was calculated as the 

physical amount of primary energy needed onsite of water systems for $100 of monetary 

transaction. The WSOS sector has higher direct energy intensity than the NS sector, 

which means operation and maintenance is more direct energy intensive than 

construction on economic activity basis. 

 

 

 

 

This Chapter is partly adapted with permission from “Mo, W., Nasiri, F., Eckelman, M.J., Zhang, Q., 
Zimmerman, J.B., 2010. Measuring the embodied energy in drinking water supply systems: a case study in 
The Great Lakes region, Environmental Science and Technology. 44, 9516-9521”, Copyright (2010) 
American Chemical Society, and “Mo, W., Zhang, Q., Mihelcic, J.R., Hokanson, D.R., 2011. Embodied 
energy comparison of surface water and groundwater supply options, Water Research 45, 5577-5586”, 
Copyright (2011) Elsevier.  
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Table 3.1 National averaged direct energy intensities of the target sectors of WSOS (the 
“water, sewage and other systems” sector) and NS (the “other nonresidential structures” 
sector)  

Target Sectors WSOS NS 
Direct energy intensity 

(GJ/100$) 0.90 0.59 

 

Figure 3.1 shows the distribution of direct energy intensities of the non-energy 

commodity sectors of the 2002 input-output tables, as well as the positions of WSOS and 

NS among these sectors. According to Figure 3.1, direct energy intensities of most US 

commodity sectors (almost 250 of the US commodity sectors) are concentrated in the 

interval between 0 and 0.5 GJ/100$. As a result, the direct energy intensities of WSOS 

and NS are both higher than more than half of the US commodity sectors. To be specific, 

the direct energy intensity of the NS sector is higher than 66% of all sectors, while the 

WSOS sector has higher direct energy intensity than 77% of all sectors. 

 
Figure 3.1 Distribution of direct energy intensities of the non-energy commodity sectors 
of the 2002 input-output tables and the positions of WSOS (the “water, sewage and other 
systems” sector) and NS (the “other nonresidential structures” sector) among these 
sectors 
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3.2 National Averaged Total Embodied Energy Intensities of Water Sectors 

The initial national averaged total embodied energy intensities for water sectors 

were calculated and presented in Table 3.2. Total embodied energy intensity was 

calculated as the physical amount of primary energy needed during the whole life cycle 

of water systems for $100 of monetary transaction. The WSOS sector has higher total 

embodied energy intensity than the NS sector, which means operation and maintenance 

phase is still more energy intensive than the construction phase on economic activity 

basis. Indirect energy intensities can be calculated when deducting direct energy 

intensities from the corresponding total embodied energy intensities. Unlike direct energy 

and total embodied energy intensities, indirect energy intensities of the WSOS sector and 

the NS sector are almost comparable, while the indirect energy intensity of the NS sector 

is slightly higher than the WSOS sector.  

Table 3.2 National averaged total embodied energy intensities of the target sectors of 
WSOS (the “water, sewage and other systems” sector) and NS (the “other nonresidential 
structures” sector) 

Target Sectors WSOS NS 

Total embodied energy 
intensity (GJ/100$) 1.42 1.17 

 

Figure 3.2 provides the distribution of total embodied energy intensities of the 

non-energy commodity sectors of the 2002 input-output tables, as well as the positions of 

WSOS and NS among these sectors. According to Figure 3.2, most of the US commodity 

sectors have total embodied energy intensities between 0 and 2.0 GJ/100$ (Around 120 

sectors have intensities between 0 to 1.0 GJ/$100, and around 180 sectors have intensities 

between 1.0 to 2.0 GJ/$100.). Both water sectors have higher total embodied energy 

intensities than 1.0 GJ/$100, and thus can be considered as energy intensive commodity 
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sectors. The total embodied energy intensity of the NS sector is higher than 39% of all 

sectors. The water, sewage and other systems sector has higher total embodied energy 

intensity than 55% of all sectors. 

 
Figure 3.2 Distribution of total embodied energy intensities of the non-energy 
commodity sectors of the 2002 input-output tables and the positions of WSOS (the 
“water, sewage and other systems” sector) and NS (the “other nonresidential structures” 
sector) among these sectors 

 

 Comparing direct energy intensities with indirect energy intensities for both target 

sectors, it is manifest that indirect energy intensity takes a substantial portion of total 

embodied energy intensity for both sectors as shown in Figure 3.3. Since the national 

economic activities for water sectors are certain, percentages of direct and indirect energy 

intensities are the same as percentages of direct and indirect energy for the US water 

sectors. More specifically, for the WSOS sector, indirect energy intensity represents 

37.1% of the total embodied energy intensity, while for the NS sector, indirect energy 

intensity represents almost half of the total embodied energy intensity. The WSOS sector 

has a higher direct energy percentage might be because it is onsite energy intensive, and 
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less materials are associated with system operation and maintenance. On the other hand, 

the indirect energy percentage of the NS sector is relatively higher than the WSOS sector 

because it is more material intensive.  

On national scale, the results support Hypothesis 1 in this study that indirect 

energy is an important part of total embodied energy and it should not be neglected when 

estimating energy use in water systems.  

 
Figure 3.3 Percentages of direct energy and indirect energy intensities of the two target 
sectors. 3.3(a) shows the percentages of direct energy and indirect energy intensities of 
the water, sewage and other systems (WSOS) sector, and 3.3(b) shows the percentages of 
direct energy and indirect energy intensities of the other nonresidential structures (NS) 
sector. 
 

3.3 Adjustment Factors for the Direct Energy 

The original water sectors include both water supply systems, wastewater 

treatment systems and other related systems. Initial adjustment was carried out in order to 

modify the initial direct energy intensities for water supply systems and wastewater 

treatment systems. Indirect energy intensities were not adjusted at this stage due to lack 
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of data availability on national averaged indirect energy use in water systems. The 

adjustment factors for both water sectors were calculated and listed in Table 3.3. 

According to Table 3.3, wastewater treatment systems have higher direct energy 

intensities than water supply systems. It might be because wastewater treatment not only 

involves pumping similar as freshwater treatment but also aeration which requires a large 

amount of energy. 

On the other hand, wastewater treatment systems (separate sewer systems) usually 

treat less water than the water supply systems in the same serving area based on the fact 

that part of the water consumed cannot be collected by the wastewater treatment systems. 

It is because there are great water losses during the water use cycle. For example, water 

may evaporate during end use, and water used for irrigation is impossible to be captured 

by the sewage systems. It implies that even all the treated wastewater is reclaimed; 

energy saved from replacing the original water supply with the reclaimed water would 

always be lower than energy needed for wastewater treatment. It further indicates that 

theoretically, water reuse can only reduce the energy consumption, but it can never offset 

all the energy required in the water use cycle.  

 

3.4 Top Energy Paths for the Target Sectors 

In order to carry out the structural path analysis, the threshold values were 

selected for both water sectors. The numbers of energy paths in each of the five stages 

checked, as well as the final selected threshold values are provided in Table 3.4. Table 

3.5 and Table 3.6 provide further information on the selection details of the threshold 

values, and the amount of top energy paths related with different threshold values. 
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Table 3.3 Adjustment factors for direct energy intensities of target sectors for different 
types of water systems 

Type of 
water 

systems 
Target sectors Es% Cs% Es% / 

Cs% 

Water 
supply 

systems 

WSOS 66.60% 79.94% 0.83 

NS 2.58% 3.94% 0.66 

Wastewater 
treatment 
systems 

WSOS 25.79% 11.30% 2.28 

NS 5.15% 4.39% 1.17 

 

According to Table 3.4, Stage 2 has the most energy paths extracted for the 

WSOS sector; while stage 3 has the most energy paths for the NS sector. Overall, the NS 

has significantly more energy paths than the WSOS sector in the top 90% of the initial 

total embodied energy intensity, and the paths in the NS sector are more evenly 

distributed in different stages than in the WSOS sector. The results show the NS sector 

has contributions from a wider range of other sectors than the WSOS sector. It is 

understandable because system construction usually requires different kinds of 

constructional materials, equipment and professional services. 

Figure 3.4 provides the distribution of the top energy paths of the WSOS sector 

and the NS sector. Most of the top 10 energy paths are 1-stage energy paths. Details of 

the top 10 energy paths for both water sectors were listed in Table 3.7. For the WSOS 

sector, the top 10 energy paths are related with energy consumed in system maintenance 

and repair, material transportation and material production. For the NS sector, the top 

energy paths are mainly related with energy consumed in material manufacturing, and 

transportation.  
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Table 3.4 Threshold value that represents 90% of the initial total embodied energy 
intensity for WSOS (the “water, sewage and other systems” sector) and NS (the “other 
nonresidential structures” sector) 

Sector WSOS NS 
Threshold Value 
(GJ/$) 1.48E-07 2.40E-09 
1-stage energy paths* 179 190 
2-stage energy paths 1031 8889 
3-stage energy paths 240 19356 
4-stage energy paths 8 4819 
5-stage energy paths 0 499 

*Energy path: Supply chains start from the energy involved in one material or service 
supply sector, and end at the water sector. 
 

Table 3.5 Amount of top energy paths associated with different threshold values for the 
“water, sewage and other systems” (WSOS) sector 
Threshold 
Value (GJ/$) 

1.00E-
04 

1.00E-
05 

1.00E-
06 

1.00E-
07 

1.00E-
08 

1.00E-
09 

1.00E-
10 

Percentage 71.18% 81.72% 86.80% 90.58% 92.85% 94.24% 95.89% 

1 stage paths 6 45 125 187 247 297 315 

2 stage paths 0 11 169 1417 5800 13878 24525 

3 stage paths 0 0 12 412 5419 44473 228407 

4 stage paths 0 0 0 17 759 14162 185379 

5 stage paths 0 0 0 0 43 1595 37115 
 

Table 3.6 Amount of top energy paths associated with different threshold values for the 
“other nonresidential structures” (NS) sector 
Threshold 
Value (GJ/$) 

1.00E-
04 

1.00E-
05 

1.00E-
06 

1.00E-
07 

1.00E-
08 

1.00E-
09 

1.00E-
10 

Percentage 59.81% 75.36% 82.17% 86.61% 89.05% 90.45% 91.28% 

1 stage paths 6 53 121 165 185 192 194 

2 stage paths 0 12 184 1440 5123 11448 18035 

3 stage paths 0 0 20 441 5246 39467 185220 

4 stage paths 0 0 0 40 818 13331 152973 

5 stage paths 0 0 0 2 82 1672 28757 
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Most of the top 100 energy paths are 1-stage energy paths, but some of them are 

2-stage energy paths. Similarly as the top 10 energy paths, the top 100 energy paths of the 

WSOS sector are mainly related to maintenance and engineering services, production of 

the treatment and maintenance materials, and transportation. The top 100 energy path of 

the NS sector are mainly involved with the production of the building materials, such as 

asphalt, steel, cement, stone etc., engineering services and transportation.  

 Engineering services have a large impact on the indirect energy use of water 

systems because energy is required to provide such services; for example, energy is 

needed to supply and maintain a service office. Material production is another major 

contributor to the indirect energy because a large amount of energy is consumed during 

each of the production processes. Lastly, transportation plays a significant role in energy 

consumption for both constructing and operating water systems. 

 

3.5 Top Indirect Contributing Sectors 

The top 30 indirect contributing sectors to the energy intensity of the two target 

sectors (WSOS and NS) were calculated and presented in Table 3.8 and 3.9. Similarly as 

the top energy paths, the top indirect contributing sectors of the WSOS sector are also 

mainly related to maintenance and engineering services, production of the treatment and 

maintenance materials, and transportation. The top indirect contributing sectors of the NS 

sector are mainly involved with the production of the building materials, such as metals, 

asphalt, plastic, cement, stone etc., engineering services and transportation. 
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Table 3.7 The top ten energy paths for WSOS (the “water, sewage and other systems” 
sector) and NS (the “other nonresidential structures” sector)  

Rank WSOS NS  

1 “Non-residential maintenance 
and repair” to WSOS   

“Asphalt shingle and coating 
materials manufacturing” to NS 

2 “Pipeline transportation” to 
WSOS 

“Asphalt paving mixture and 
block manufacturing” to NS 

3 “Real estate” to WSOS “Truck transportation” to NS 

4 “Truck transportation” to 
WSOS 

“Iron and steel mills and 
ferroalloy manufacturing” to 
“Plate work and fabricated 

structural product 
manufacturing” to NS 

5 
“Other state and local 

government enterprises” to 
WSOS 

“Architectural, engineering and 
related services” to NS 

6 “Asphalt paving mixture and 
block manufacturing” to WSOS 

“Cement manufacturing” to 
“Ready-mix concrete 
manufacturing” to NS 

7 “Services to building and 
dwellings” to WSOS 

“Petroleum lubricating oil and 
grease manufacturing” to NS 

8 

“Sand, gravel, clay, and 
ceramic and refractory minerals 

mining and quarrying” to 
WSOS 

“Stone mining and quarrying” to 
NS 

9 “Lime and gypsum product 
manufacturing” to WSOS “Cement manufacturing” to NS 

10 “Architectural, engineering, and 
related services” to WSOS “Fertilizer manufacturing” to NS 
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Figure 3.4 The distribution of the top 10 and top 100 of the energy paths for the two water sectors (The intervals on the x-axis 
represent different sector groups. For example, the first line in the Figure 3.4(a) shows that among the top 10 energy paths for the 
“water, sewage and other systems” sector, there is one path from “mining and utilities” sector group to the “water, sewage and other 
systems” sector. (a) Distribution of top 10 energy paths of the “water, sewage and other systems” sector; (b) Distribution of top 10 
energy paths of the “other nonresidential structures” sector; (c) Distribution of top 100 energy paths of the “water, sewage and other 
systems” sector; (d) Distribution of top 100 energy paths of the  “other nonresidential structures” sector.) 
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Interval Sector Groups Interval Sector Groups 

(0,1] Agriculture, Livestock, Forestry, and Fisheries (14,15] 
Computers, Audio-Video, and Communications 
Equipment 

(1,2] Mining and Utilities (15,16] 
Semiconductors, Electronic Equipment, and Media 
Reproduction 

(2,3] Construction (16,17] Lighting, Electrical Components, Batteries 
(3,4] Food, Beverage, and Tobacco (17,18] Vehicles and Other Transportation Equipment 
(4,5] Textiles, Apparel, and Leather (18,19] Furniture, Medical equipment, and Supplies 
(5,6] Wood, Paper, and Printing (19,20] Other Miscellaneous Manufacturing 
(6,7] Petroleum and Basic Chemical (20,21] Trade, Transportation, and Communications Media 

(7,8] 
Resin, Rubber, Artificial Fibers, Agric. Chems, and 
Pharm (21,22] Finance, Insurance, Real Estate, Rental and Leasing 

(8,9] Paint, Adhesives, Cleaning, and Other Chemicals (22,23] Professional and Technical Services 
(9,10] Plastic, Rubber, and Nonmetallic Mineral Products (23,24] Management, Administrative, and Waste Services 
(10,11] Ferrous and Nonferrous Metal Production (24,25] Education and Health Care Services 
(11,12] Cutlery, Handtools, Structural and Metal Containers (25,26] Arts, Entertainment, Hotels and Food Services 
(12,13] Other Metal Hardware and Ordnance manufacturing (26,27] Other Services, Except Public Administration 
(13,14] Machinery and Engines (27,28] Government and Special Services 

 
Figure 3.4 (continued)  
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Table 3.8 Top 30 contributing sectors to the water, sewage and other systems (WSOS) 
sector and their contributions to the embodied energy intensity of WSOS 

Sector Name 
Total contribution 
(GJ/1000$) 

Nonresidential maintenance and repair 0.345 
Real estate 0.323 
Iron and steel mills and ferroalloy manufacturing 0.281 
Pipeline transportation 0.268 
Truck transportation 0.238 
Services to buildings and dwellings 0.196 
Other basic organic chemical manufacturing 0.164 
Asphalt paving mixture and block manufacturing 0.163 
Other State and local government enterprises 0.136 
Sand, gravel, clay, and ceramic and refractory minerals 
mining and quarrying 0.106 
Cement manufacturing 0.104 
Lime and gypsum product manufacturing 0.095 
Plastics material and resin manufacturing 0.093 
Architectural, engineering, and related services 0.088 
Fertilizer manufacturing 0.081 
Stone mining and quarrying 0.079 
Alkalies and chlorine manufacturing 0.077 
Wholesale trade 0.076 
Asphalt shingle and coating materials manufacturing 0.075 
Other plastics product manufacturing 0.069 
Petroleum lubricating oil and grease manufacturing 0.067 
Water, sewage and other systems 0.066 
Alumina refining and primary aluminum production 0.060 
Air transportation 0.059 
Food services and drinking places 0.054 
Couriers and messengers 0.052 
Petrochemical manufacturing 0.052 
Industrial gas manufacturing 0.050 
Waste management and remediation services 0.049 
Management of companies and enterprises 0.042 
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Table 3.9 Top 30 contributing sectors to the other nonresidential structures (NS) sector 
and their contributions to the embodied energy intensity of NS 

Sector Name 
Total contribution 
(GJ/1000$) 

Iron and steel mills and ferroalloy manufacturing 0.524 
Asphalt shingle and coating materials manufacturing 0.415 
Truck transportation 0.300 
Cement manufacturing 0.282 
Asphalt paving mixture and block manufacturing 0.246 
Services to buildings and dwellings 0.155 
Other basic organic chemical manufacturing 0.140 
Stone mining and quarrying 0.130 
Petroleum lubricating oil and grease manufacturing 0.129 
Architectural, engineering, and related services 0.127 
Real estate 0.121 
Plastics material and resin manufacturing 0.115 
Wholesale trade 0.113 
Fertilizer manufacturing 0.110 
Other plastics product manufacturing 0.078 
Retail trade 0.074 
Sawmills and wood preservation 0.074 
Air transportation 0.068 
Paperboard mills 0.067 
Steel product manufacturing from purchased steel 0.067 
Management of companies and enterprises 0.065 
Alumina refining and primary aluminum production 0.065 
Plate work and fabricated structural product manufacturing 0.063 
Ready-mix concrete manufacturing 0.062 
Brick, tile, and other structural clay product manufacturing 0.061 
All other crop farming 0.059 
Lime and gypsum product manufacturing 0.058 
Couriers and messengers 0.056 
Sand, gravel, clay, and ceramic and refractory minerals mining and 
quarrying 0.056 
Petrochemical manufacturing 0.055 
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CHAPTER 4: EMBODIED ENERGY IN WATER SUPPLY SYSTEMS 

 

4.1 Comparison between a Groundwater System and a Surface Water System 

4.1.1 Introduction 

Global water withdrawals have increased rapidly over the past several decades, 

and are expected to continue to grow in the near future (Konikow and Kendy, 2005; Shah 

et al., 2003; USGS, March, 2012). Extensive groundwater and surface water withdrawals 

have led to environmental problems, such as groundwater depletion, land subsidence, 

seawater intrusion, and surface water quality deterioration, which have consequently 

impacted  water availability  in many regions (Barlow, 2003; Bartolino et al., 2003; 

Konikow and Kendy, 2005; Taylor and Alley, 2001).  

 The environmental impacts associated with water supply are further compounded 

by energy requirements during withdrawal, treatment, and distribution. Direct energy 

consumption for constructing, operating, and maintaining water supply systems 

comprises around 33% of a typical city’s government energy budget for public utilities in 

California (CEC, 1992; Means, 2004) and around 2-3% of global energy demand (James 

et al., 2002). On the other hand, previous study has suggested that indirect energy  

 

 

 
This Chapter is adapted with permission from “Mo, W., Zhang, Q., Mihelcic, J.R., Hokanson, D.R., 2011. 
Embodied energy comparison of surface water and groundwater supply options, Water Research 45, 5577-
5586”, Copyright (2011) Elsevier, and “Mo, W., Zhang, Q., Wang, R., 2011. Energy Embodiment of 
Water Supply: A Comparison between the US and China,” Advanced Materials Research, 356-360, 2175-
2181”. 
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associated with water supply systems can be comparable to direct energy (Mo et al., 

2010). The embodied energy (direct energy+indirect energy) associated with water 

provision also increases with growing water demand. For instance, direct energy 

increases with a declining water table and well yield, while indirect energy increases 

when more sophisticated technologies and additional chemicals are used to treat water 

sources of poorer quality.  

 Reduction of energy use and associated carbon emissions from water supply is 

also gaining increased attention. For example, in the US, states like California (under 

Assembly Bill 32) are requiring a reduction in carbon emissions from water supply and 

treatment. In light of global water management issues, consideration of the energy 

embodied in water systems should become more important in the future. Accordingly, 

this part of study examined the energy embodiment in different kinds of water supply 

systems, especially groundwater supply and surface water supply. Other impact 

categories associated with material use were not considered as they are beyond the scope 

of the study.  

 In the last decade, efforts have been made to evaluate the embodied energy of 

water importation, reclamation, and desalination, driven by the specific regional needs 

(Lyons et al., 2009; Peters and Rouse, 2005; Raluy et al., 2005; Stokes and Horvath, 

2006; Tangsubkul et al., 2005). The energy embodied in surface water systems has also 

been studied in countries such as Canada (Racoviceanu et al., 2007) and South Africa 

(Friedrich, 2002). Embodied energy values associated with specific water supply options 

are summarized in Table 4.1. Although environmental impacts such as greenhouse 

effects, acidification, and nutrient enrichment of groundwater and surface water supply 
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have been compared (Godskesen et al., 2010), no direct comparison has been made in 

terms of energy embodiment between surface water and groundwater systems as shown 

in Table 4.1. 

Table 4.1 Life cycle energy associated with water supply systems identified in previous 
studies 

Water 
Sources 

Embodied 
Energy 
(MJ/m3 of 
water)1 

Methodology Comments Source 

Imported 
water 

18 Process based 
hybrid LCA 

Conveyance pipe length: 
575 km 

Stokes et al. 
2009 

5 Process LCA Conveyance pipe length: 
261 km 

Lyons et al., 
2009 

Desalinated 
water 

42 Process based 
hybrid LCA 

Reverse osmosis with 
conventional 
pretreatment 

Stokes et al. 
2009 

41 Process based 
hybrid LCA 

Reverse osmosis with 
membrane pretreatment 

Stokes et al. 
2009 

27 Process based 
hybrid LCA Brackish groundwater Stokes et al. 

2009 

24 Process LCA Reverse osmosis Lyons et al., 
2009 

Recycled 
water 

17 Process based 
hybrid LCA  

Stokes et al. 
2009 

3 Process LCA  
Lyons et al., 
2009 

Surface water 
3 Process based 

hybrid LCA 

Only considers operation 
phase of the treatment 
plant 

Racoviceanu et 
al., 2007 

2 Process LCA  Friedrich, 2002 
1Energy was reported in the primary energy form, which includes the direct use of energy 
found in nature and the use of secondary energy such as electricity in forms of fossil fuels, 
nuclear energy and renewable energy. 
 

 Direct energy use associated with groundwater and surface water supply systems, 

on the other hand, has previously been examined on large scales (e.g., Wilkinson 

(Wilkinson, 2000) performed a study for the state of California; EPRI (2002) performed a 

study for the US). Specifically, the study published by the Electric Power Research 

Institution (Goldstein et al., 2002) concluded that a groundwater supply system requires 
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about 30% more electricity on a unit basis than a surface water supply system. Neither of 

the studies, however, addresses indirect energy consumption.  

 The objective of this part of study was therefore to estimate the “cradle to gate” 

(source to customer) energy embodiment (direct and indirect energy) of one groundwater 

and one surface water supply system and to provide a relative comparison of embodied 

energy for major water supply options through the compilation of results from this and 

previous studies. The novelty of this study lies in the use of an input-output based hybrid 

approach with structural path analysis to provide more comprehensive results with 

insights into the energy flow.  

 

4.1.2 Description of Selected Water Supply Systems 

One groundwater supply system (Kalamazoo Public Water Supply System, 

Michigan) and one surface water supply system (City of Tampa Waterworks, Florida) 

were studied. These two systems were chosen because: (1) both of them are classified as 

“very large” water supply systems by the US Environmental Protection Agency 

according to the population they serve (both systems serve > 100,000 people) (EPA, 

April, 2012); (2) they represent typical groundwater and surface water treatment 

processes; and (3) data for these two systems are readily available to the authors. 

Geographic differences of the two systems were not considered in this study. A detailed 

comparison of the two systems is provided in Table 4.2. 
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Table 4.2 Key information of the Kalamazoo system and the Tampa system 

Water supply 
systems Water source 

Daily 
flow 

(thousand 
m3/day) 

Serving 
population 

Percentage of 
chemical cost 

with total O&M 
cost 

Length of 
the pipelines 

(km) 

The Kalamazoo 
system Groundwater 76.8 121,000 2% 1276 

The Tampa 
system 

Surface 
water 287 657,000 13% 3541 

 

4.1.2.1 Kalamazoo Public Water Supply System  

The Kalamazoo Public Water Supply System (referred to as Kalamazoo system) 

is the largest groundwater based water supply system in the Kalamazoo River watershed, 

serving over 121,000 customers. The Kalamazoo system pumps an average of 76.8 

thousand m3 of water per day and deploys 1276 km of water mains. Raw water is 

withdrawn from 101 local wells with an average well depth of around 58 meters. Limited 

treatment (disinfection) is provided in two of the total 18 pumping stations, after which 

the water is supplied to the end users (Kalamazoo, 2008).   

 The annual O&M expense in the Kalamazoo system is approximately $11.1 

million. Of the $11.1 million annual expense, $1.16 million are used for purchasing 

electricity, and $0.08 million are used for purchasing natural gas (CKWD, 2010). The 

commodity output of the NS sector (construction) was estimated based on the capital cost 

of the Kalamazoo system. Since the Kalamazoo system only has limited treatment within 

the pumping stations, the water treatment infrastructure was not considered separately. 

The well data of the Kalamazoo system were obtained from the “Water Well Viewer” 

(MDEQ, June, 2012a) and “Wellogic” (MDEQ, June, 2012b) managed by the Michigan 

Department of Environmental Quality.  
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4.1.2.2 City of Tampa Waterworks  

The City of Tampa Waterworks (referred to as Tampa system) is one of the 

largest water supply systems in Florida, serving a population of 657,000. The average 

daily flow in the system is approximately 287 thousand m3, about 3.7 times higher than 

the average flow in the Kalamazoo system. However, the impact of such differences on 

direct energy use per unit water produced is negligible at the production scale between 38 

thousand m3 per day (10 MGD) and 380 thousand m3 per day (100 MGD) (Goldstein et 

al., 2002). As a result, it is allowable for us to compare the total embodied energy of the 

two systems.  

 The Tampa system has more than 3541 km of water mains. Raw water is 

withdrawn from the Hillsborough River, and treated with pre-ozonation and GAC filters 

in addition to a conventional process that consists of flash mix, flocculation and 

sedimentation. The raw water has a turbidity of 15-220 NTU with an average of 117 

NTU. The detected dissolved oxygen has a range of 1.9-14.3 mg/L with an average of 4.1 

mg/L. The bromide detected ranges from 31-180 µg/L with an average of 85 µg/L. This 

is greater than the Maximum Daily Level of 0.5 µg/L. Total organic carbon ranges from 

3.3-24.2 mg/L with an average of 15.1 mg/L. 

 The annual O&M expense is $68.3 million. Of the $68.3 million annual expense, 

$3.95 million is used for purchasing electricity. The commodity output of the NS 

(construction) is estimated based on the capital cost of the Tampa system. Key 

information used for estimating capital cost was collected directly from the Tampa 

system.  
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4.1.3 Results and Discussion 

4.1.3.1 Expense Estimation  

The estimated total capital expense in the Kalamazoo system is $118.4 million, 

and the total capital expense in the Tampa system is $416.0 million. The breakdowns of 

the capital costs in both systems are provided in Figure 4.1. Assuming life spans for both 

systems of 100 years (Peters and Rouse, 2005; Stokes and Horvath, 2006), the unit 

capital expense for the Kalamazoo system is around $42 per thousand m3 of water 

produced, and the unit O&M expense is around $394 per thousand m3 of water produced. 

The total cost (construction and O&M) for producing one thousand m3 of water in the 

Kalamazoo system is $436. Similarly, the unit capital expense for the Tampa system is 

around $40 per thousand m3 of water produced, and the unit O&M expense is around 

$653 per thousand m3 of water. The total cost for producing one thousand m3 of water in 

the Tampa system is $692.  

The unit O&M expense of the Tampa system is much larger than the Kalamazoo 

system. This may be because of the much greater use of water treatment chemicals in the 

Tampa system. On the other hand, the unit capital expenses of both systems are similar, 

even though the Tampa system has an additional water treatment plant. The percentage of 

the Kalamazoo system pipeline capital expense within the total capital expense is much 

larger than that of the Tampa system. This may result from the more distributed water 

intake infrastructure in the Kalamazoo system compared with the Tampa system and the 

lower population density in the City of Kalamazoo compared with the City of Tampa 

(USCB, 2010).  For both systems, pipeline construction is the largest capital cost 

contributor. 
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Figure 4.1 Breakdown of capital costs per thousand cubic meter of water produced under 
100 year life-time associated with the groundwater sourced Kalamazoo system and the 
surface water sourced Tampa system in $ 2002 
 

 Overall, the results show that surface water supply systems may be more 

expensive to operate than the groundwater supply systems depending on the raw water 

quality, but may be less expensive to construct than the groundwater supply systems 

depending on the length of pipelines.  

  

4.1.3.2 Modification and Calculation of the Total Embodied Energy  

The system-specific O&M direct energy use was estimated through the annual 

energy expenditures and local average energy prices. The average electricity retail price 

in Michigan is 9.18 cents/kWh, and the average price of natural gas is 6.1 dollars/GJ. 

Thus, the direct energy for operating and maintaining the Kalamazoo system was 

estimated to be 170 TJ. The direct energy for both O&M and construction amounts to 6.3 

MJ per m3 of water produced at the Kalamazoo system. On the other hand, the average 

electricity retail price in Florida is 10.13 cents/kWh. Thus, the direct energy for the O&M 
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of the Tampa system was estimated to be 497 TJ. The direct energy for both O&M and 

construction amounts to 5.0 MJ/m3 of water produced at the Tampa system.  

 For indirect energy, the available system specific data from the Kalamazoo 

system and the Tampa system were substituted to adjust the original embodied energy of 

the two systems. The direct energy intensities of 25 manufacturing sectors were also 

modified (EIA, January, 2007). Under a 100-year life span, the indirect energy used for 

the Kalamazoo system to supply 1 m3 of water is 4.0 MJ, and the indirect energy used for 

the Tampa system to supply 1 m3 of water is 5.8 MJ after modification. 

 After the modification of both direct and indirect energy, the total embodied 

energies for the two water supply systems are provided in Table 4.3. The total embodied 

energy in the Kalamazoo system for supplying 1 m3 of water is 10.3 MJ, and the total 

embodied energy in the Tampa system for supplying 1 m3 of water is 10.8 MJ. The unit 

total embodied energy in the Tampa system is slightly larger than that of the Kalamazoo 

system. Compared with initial total embodied energy, the modified total embodied 

energy of the Kalamazoo system increased by 68%, and the modified total embodied 

energy of the Tampa system increased by 10%. The differences show the necessity of the 

modification step using the system specific data in the analysis. 

 Although direct energy represents important portions in both the Kalamazoo 

system and the Tampa system, indirect energy cannot just be simply neglected. In both 

systems, indirect energy is comparable as the direct energy, and represents around half of 

the total embodied energy. In the Tampa system, indirect energy is even higher than 

direct energy. This indicates that indirect energy is very important in understanding the 
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energy burden of water, and planning and implementing both energy and water 

managements. 

The unit direct energy consumption of the Kalamazoo system is 27% higher than 

the Tampa system, which is consistent with EPRI’s estimation. This result can be 

explained by the large pumping requirement for water delivery in the Kalamazoo system. 

It is also consistent with a previous result that the pipeline system in the Kalamazoo 

system accounts for a more important portion of energy consumption than the Tampa 

system. Groundwater supply systems usually have deep and widely distributed wells for 

water intake, which may increase their pumping energy requirements.  

 Unlike the direct energy consumption, the unit indirect energy consumption at the 

Kalamazoo system is around 31% less than the Tampa system. This is primarily because 

of the greater use of chemicals and engineering services at the Tampa system. 

Groundwater supply systems typically have better raw water quality than surface water 

supply systems. Systems such as the Kalamazoo system require only limited treatment, 

which significantly reduces the amount of required chemicals.  In contrast, the Tampa 

system uses a large quantity of chemicals to treat the lower quality raw water. In addition 

to disinfectants, other chemicals such as ferrous sulfate (for coagulation) and ozone (for 

pre-ozonation) are used. Manufacturing these chemicals is very energy intensive based on 

the data from the input-output tables. Moreover, the surface water supply systems are 

usually more complicated than the groundwater supply systems, thus more engineering 

services are involved, which also contributes to the large indirect energy demand of the 

Tampa system. Breakdown of the major contributors to the total O&M embodied energy 

of the two systems is provided in Table 4.4.   



 

79 

 

 

Table 4.3 Total embodied energy for groundwater sourced Kalamazoo system and the surface water sourced Tampa system 

Water Supply Systems 
Direct Energy (MJ/m3) Indirect Energy (MJ/m3) Total Embodied Energy (MJ/m3) 

O&M Construction Total O&M Construction Total O&M Construction Total 
The Kalamazoo 

system 6.1  0.2  6.3  3.7  0.3  4.0  9.8  0.5  10.3  

The Tampa system 4.8  0.2  5.0  5.5  0.3  5.8  10.3  0.5  10.8  

Differences1 28% 6% 27% -32% 9% -31% -5% 8% -4% 
1 Differences = [(Data from the Kalamazoo System -Data from the Tampa System)/Data from the Tampa System] 
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Table 4.4 Breakdown of the major contributors to the total O&M embodied energy  
Energy use 
categories 

Direct energy 
use Chemicals Maintenance 

Engineering 
service 

Customer 
service 

Kalamazoo 
System 61.9% 5.7% 12.6% 0.7% 0.4% 
Tampa System 46.1% 9.6% 13.9% 3.2% 0.4% 

 

4.1.3.3 Energy Source Separation 

The energy breakdowns among fuel types for direct and total embodied energy 

intensities of the two target sectors for both the Kalamazoo system and the Tampa system 

are presented in Table 4.5 and Table 4.6.  Comparing the direct and embodied energy 

intensities for the water supply components of the WSOS and NS sectors reveals that the 

WSOS sector in both Kalamazoo and Tampa is associated with a relatively high share of 

direct energy use (except for coal, which is rarely utilized directly in this sector).  This is 

not unexpected as WSOS represents the operation and maintenance activities of the water 

system, including electricity for pumping. On the other hand, the NS sector represents 

construction activities associated with water system, and so its largest direct use of 

energy is in the form of petroleum, likely diesel fuel for heavy machinery. As water 

systems include large amounts of steel and concrete, the NS sector is also associated with 

a relatively high share of indirect energy use embodied in these materials. Interestingly, 

petroleum is also the most important indirect energy supply sector for NS, perhaps 

reflecting the upstream fuel use in transporting materials and labor.   
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Table 4.5 Breakdown of direct and embodied energy intensities of the Kalamazoo system 
by energy source 

Target Sectors 
Coal 
(GJ/$100) 

Electricity 
(GJ/$100) 

Natural gas 
(GJ/$100) 

Petroleum 
(GJ/$100) 

WSOS (Direct) 0 1.41 0.12 0 
NS (Direct) 0 0.08 0.02 0.3 
WSOS (Embodied) 0.037 1.77 0.22 0.2 
NS (Embodied) 0.058 0.34 0.12 0.51 

 

Table 4.6 Breakdown of direct and embodied energy intensities of the Tampa system by 
energy source 

Target Sectors 
Coal 
(GJ/$100) 

Electricity 
(GJ/$100) 

Natural gas 
(GJ/$100) 

Petroleum 
(GJ/$100) 

WSOS (Direct) 0 0.73 0 0 
NS (Direct) 0 0.11 0.03 0.45 
WSOS (Embodied) 0.054 1.06 0.14 0.32 
NS (Embodied) 0.048 0.3 0.11 0.63 

 

4.1.3.4 Comparison with Other Studies  

The direct energy of a unit of water in Kalamazoo and in Tampa was estimated 

here to be 6.1 MJ/m3 and 4.8 MJ/m3 respectively. Comparing this result with previous 

work, research by EPRI estimated direct electricity use of approximately 1824 kWh per 

million gallons, or 1.7 MJ/m3 (Goldstein et al., 2002). In primary energy terms, this is 

equivalent to 6.7 MJ/m3, or within 10% and 30% of the direct energy portion of the 

results of the Kalamazoo system and the Tampa system.  

 The results from this study are higher than the embodied energy provided by 

Racoviceanu et al. (2007) and Friedrich (2002) partly due to the different system 

boundaries selected. Unlike this study, Racoviceanu et al. (2007) only considered the 

operation phase of the treatment plant, while Friedrich considered all operation, 

construction, and decommission phases of the treatment plant. In addition to Table 4.1, 
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Figure 4.2 provides visualized results of embodied energy of water supply from different 

studies including this one.  

 Furthermore, the estimated embodied energy varies a lot based on different 

estimation methods used, different raw water qualities and treatment technologies, and 

different geographical locations. For instance, as shown in Table 4.1, even the energy 

embodiments of the similar three water supply options studied by Stokes et al. (2009) and 

Lyons et al. (2009) differ by 2 to 4 fold. Although there is some variance in previous 

results, desalination consistently appears as the most energy intensive water supply 

option. Furthermore, the embodied energy of surface and groundwater supplies is 

comparable with options of water reclamation and importation. Additional studies are 

needed to compare groundwater, surface water, and reclaimed water supply options in a 

similar geographical area, with more details on raw water quality and treatment process 

characteristics, in order to better understand the energy and material use of these options.   

 

4.1.3.5 Uncertainty and Sensitivity Analysis 

Uncertainties in this study are primarily from the input-output tables, varied life 

span of different components, different geographical location of the selected systems, and 

capital expense estimation. Bullard and Sebald (1988) found a standard error of 1% for 

row sums in the US 1967 input-output tables, while Lenzen (2000) assumed an error 

bound of 3% for the Australian input-output tables. Because there is a lack of studies on 

the truncation errors and sensitivity of the recent US input-output tables, uncertainty of 

our results was not quantified. 
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Figure 4.2 Ranges of the total embodied energy (GJ) reported in previous studies and in 
this study per million gallons of provided water for different sources (The “           ” 
represents the results from previous studies, and the “           ” represents the results from 
this study.) 
 

 A sensitivity analysis was carried out to determine how direct energy and 

different inputs used for the estimation would affect the results (Table 4.7). The analysis 

showed that the results are very sensitive to the direct energy consumption because it 

accounts for the largest portion of the total embodied energy. Additionally, the 

Kalamazoo system is more sensitive to direct energy than the Tampa system, which is 

consistent with the previous discussion that the Kalamazoo system has higher unit direct 

energy use. The results are however not very sensitive to the change of the system life 

span.  This is because the construction life stage only comprises a small portion of the 

total embodied energy. In regards to chemical use, the Tampa system is more sensitive to 

it than the Kalamazoo system. This observation is also consistent with the previous 
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discussion that the Tampa system has a larger indirect energy requirement, primarily 

because of the greater use of chemicals.  

Table 4.7 Sensitivity analysis of the Kalamazoo system and the Tampa system 

Selected water supply 
systems 

Direct energy  Infrastructure 
life span Total chemical use 

+50% -50% +50% 

 
Total embodied 

energy 
Total embodied 

energy 
Indirect 
energy 

Total 
embodied 

energy 
The Kalamazoo system +30% +5% +8% +3% 

The Tampa system +22% +4% +9% +5% 
 

4.1.4 Conclusions 

The results from this part of study show that Kalamazoo groundwater supply 

system that only employs disinfection with no additional treatment is more energy 

intensive than Tampa surface water supply system in terms of direct energy. This is 

caused by higher pumping requirements; however, the surface water supply system is 

more energy intensive in terms of indirect energy because of greater requirements for 

material use.  

 The results from this study are also higher than previous life cycle studies 

performed on surface water systems due to different system boundaries selected and 

different estimation methods used. This study shows the flexibility of using the input-

output based hybrid analysis based on data availability. It can be easily used by 

researchers and utilities to evaluate embodied energy of water supply systems. This 

method, however, still has various uncertainties including errors propagated from input-

output tables and uncertainties in the capital cost estimation for the selected water supply 

systems. Additionally, this study did not consider the geographical differences between 
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the two systems, which may also affect the total embodied energy. The sensitivity 

analysis indicated that the results are very sensitive to the direct energy use. However, the 

results are not very sensitive to the system life span. In addition, the embodied energy of 

the Tampa system is more sensitive to the chemical use than that of the Kalamazoo 

system. 

 Although there is no significant difference on the total embodied energy 

consumption for the specific groundwater and surface water supply systems evaluated, 

the results suggest there is a tradeoff between direct and indirect energy for different 

systems. It is thus important for water managers to differentiate direct and indirect energy 

in future life cycle or energy studies for water supply systems. 

 

4.2 Comparison between a Water System in China and a Water System in the US 

4.2.1 Introduction 

The water-energy nexus and the large energy embodiment of water supply 

systems have made it challenging to manage the water supply systems under different 

social and economic systems. China and the US are two of the leading countries in the 

developing and the developed world separately. They have very different social and 

economic structures. In this part of study, the embodied energy of one water supply 

system from China (referred as the China system) and one water supply system from the 

US (referred as the US system) was compared; the differences of the embodied energy 

contributors between the two systems were discussed; different energy use patterns in the 

US and China for water supply were identified, and suggestions to the US and China 

water supply systems were provided. 
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4.2.2 Methodology 

In this part of study, the EIO-LCA is used for the embodied energy evaluation 

based on the following reasons: 

(1) The EIO-LCA software provides the input-output models for both the 

US and China; 

(2) The main focus of this study is a general comparison of water supply 

system in the US and China, thus detailed modification of the input-output 

results is not necessary; 

(3) The EIO-LCA software is an online tool and convenient to use. 

 As discussed in Chapter 1, the EIO-LCA method estimates the materials and 

energy resources required for, and the environmental emissions resulting from, activities 

in an economy. It uses input-output tables representing the interactions among economic 

sectors within the economy of a country and calculates the economic activities across the 

entire economy caused by a change in one economic sector. The EIO-LCA software 

extends such calculation to environmental impacts such as the total embodied energy 

requirement through a matrix representing energy use per sector.  

 The basic steps involved in the estimation includes: (a) using the EIO-LCA 

software to estimate the energy intensities of constructing and operating water supply 

systems, I; (b) collect the total (construction and operation) economic activities for the 

selected water supply systems, C; (c) calculate the total embodied energy, E, using 

Equation 4-1; (d) estimate the direct operational energy using system specific data and 

primary energy factors; (e) replace the original direct operational energy from the EIO-

LCA results with the new estimation. 



 

87 

E = I × C (4-1) 

 Among all the input-output tables provided by the EIO-LCA software, the China 

2002 producer price model was selected for estimating the energy intensities of the China 

system. Especially, the “water production and supply” sector was selected for estimating 

the operational energy intensity of the China system, and the “construction” sector was 

selected for estimating the constructional energy intensity of the China system. The US 

2002 national producer price model was selected for estimating the energy intensities of 

the US system. Especially, the “water, sewage and other systems” sector was selected for 

estimating the operational energy intensity of the US system, and the “other 

nonresidential structures” sector was selected for estimating the constructional energy 

intensity of the US system.  

 The primary energy factors, which were used to convert the direct electricity 

consumptions into primary energy forms, were obtained for the US system and the China 

system separately. The primary energy factor of the US electricity production used in this 

part of study is 3.44. On the other hand, based on Lei (2006), China’s energy production 

efficiency is more than 10% lower than the US. The primary energy factor for China’s 

electricity production was estimated to be 3.78. 

 

4.2.3 Case Study 

The China system is located in Jiaxing, Zhejiang Province, and the US system 

selected in the US is located in Tampa, Florida. These two cities are both medium sized 

cities with an averaged population density of 1500 per square kilometer. Furthermore, the 

two systems have very similar treatment processes both with ozonation and GAC 
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treatment. The detailed treatment processes of the two water supply systems are provided 

in Figure 4.3. Moreover, a comparison of the basic parameters for the two selected water 

supply systems is provided in Table 4.8. The US system has a higher influent turbidity 

(117 NTU on average) than the China system (42 NTU on average), but the Fe and Mn 

contents in the influent of the China system are much higher than those of the US system.   

Table 4.8 Basic parameters of the two typical water supply systems in the US and China 

Water supply 
systems 

Daily 
flow 

(MGD) 
Water source Serving 

population 

Population density of 
the serving area 
(person per sq 

kilometer) 

The China system 58 Surface water 400,000 1438 

The US system  76 Surface water 657,000 1299 

 

4.2.4 Results and Discussion 

4.2.4.1 General Comparison of the US and China’s Water Supply Systems 

Using the EIO-LCA results, the top embodied energy contributing sectors of the 

operation and construction phases of water supply in the US and China were compared. 

Since EIO-LCA results are based on national aggregated input-output data, the embodied 

energy of water supply systems were compared from an average on the national scale.  

The top 10 embodied energy contributing sectors of the operation phase and their 

contributions in percentages are presented in Table 4.9. The “other state and local 

government enterprises” sector in the US table does not have a clear definition, but it can 

be seen from the economic interactions that this sector partly represents the public power 

generation systems and partly represents the public water supply systems. Knowing this, 
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a. Treatment processes in water supply system in China 

  

b. Treatment processes in water supply system in the US 

Figure 4.3 Treatment processes of the two selected water supply systems in the US and China 
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the top energy contribution sectors from China and the US can thus be analyzed. It is 

shown in the table that electricity plays a much more important role in the operation of 

China’s water supply systems than in the US’s systems. Around 83% of the embodied 

energy comes from the power supply sector in China, while more than 39% of the US’s 

comes from the power supply sector. It indicates that China’s water supply is more 

electricity dependent than the US system by using the electricity both onsite and in the 

upstream processes. The US water supply, however, consumes more energy by using 

water within the supply infrastructures than the China water supply. Besides, China 

seems to use more coal while the US uses more oil and petroleum. This is understandable 

because China’s energy production is highly dependent on coal. Additionally, China 

requires more energy through chemical use than the US. This may be caused by the 

generally lower raw water quality in China. The US apparently requires more 

maintenance and repair energy than China, which may be due to the aged infrastructure 

in the US and higher labor involvement in the US water supply systems. On the other 

hand, both China and the US’s water supply involve large amounts of steel processing 

and transportation energy. 

The top 10 embodied energy contributing sectors of the construction phase and 

their contribution in percentages are listed in Table 4.10. According to Table 4.10, China 

has a higher electricity involvement for the construction phase than the US, but the two 

countries have similar inputs from steel-, cement- and petroleum-related sectors. 

Moreover, China mainly uses water transportation, while the US mainly uses truck 

transportation. This may cause a higher energy use in the US because most of the time, 

road transportation is not as efficient as water transportation (Strahan, 2008).   
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Table 4.9 Top 10 total embodied energy contribution sectors of the operation phase of 
water supply in China and the US and their embodied energy contribution percentages 

Top 10 energy contributing 
sectors in China Percentage Top 10 energy contributing 

sectors in the US Percentage 

Electricity and steam 
production and supply 83.0% Power generation and supply 38.6% 

Water production and 
supply 5.2% Other state and local 

government enterprises 21.9% 

Coal mining and processing 1.1% Water, sewage and other 
systems 19.5% 

Crude petroleum products 
and Natural gas products 1.0% Oil and gas extraction 2.2% 

Raw chemical materials 0.8% Petroleum refineries 2.1% 
Telecommunication 0.8% Pipeline transportation 1.8% 

Steel-processing 0.7% Nonresidential maintenance 
and repair 1.5% 

Petroleum refining 0.6% Iron and steel mills 1.1% 
Water freight and 
passengers transport 0.5% Truck transportation 1.1% 

Chemicals for special 
usages 0.5% Cement manufacturing 0.7% 

 

4.2.4.2 Energy Embodiment of the China System 

According to the EIO-LCA software, China water supply systems have an 

averaged operational energy intensity of 5.54 TJ/¥ million (of operational activity), and 

an averaged constructional energy intensity of 2.98 TJ/¥ million (of constructional 

activity). Through personal communication, the annual operational activity involved in 

the China system was obtained to be around ¥49.3 million, and the total capital cost of 

the system is around ¥129 million. As a result, the operational embodied energy of the 

China system was calculated to be 273 TJ, and the constructional embodied energy is 384 

TJ. Kahrl et al. (2008) has estimated the direct energy intensity for system operation to be 

around half of the total embodied energy intensity based on the 2002 China input-output 

table, which means the original direct energy of the China system is around 137 TJ. 
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Table 4.10 Top 10 total embodied energy contribution sectors of the construction phase 
of water supply in China and the US and their embodied energy contribution percentages 

Top 10 energy contribution 
sectors in China Percentage Top 10 energy contribution 

sectors in the US Percentage 

Electricity and steam 
production and supply 47.7% Other nonresidential 

structures 38.3% 

Steel-processing 5.9% Power generation and 
supply 16.3% 

Cement and cement 
asbestos products 5.4% Petroleum refineries 5.9% 

Crude petroleum products 
and Natural gas products 3.4% Iron and steel mills 4.7% 

Other non-metallic mineral 
products 3.4% Cement manufacturing 4.2% 

Construction 2.9% Truck transportation 3.1% 
Petroleum refining 2.4% Oil and gas extraction 2.8% 

Fireproof products 2.0% Other basic organic 
chemical manufacturing 1.4% 

Water freight and 
passengers transport 1.9% Paperboard Mills 1.3% 

Telecommunication 1.9% Pipeline transportation 1.0% 
 

 For a more accurate estimation, the direct operational electricity use was obtained 

from the China system, and used to replace the original direct operational energy 

intensity. Total electricity cost in the China system is around ¥13.1 million, around 27% 

of the operational cost. Based on the averaged unit electricity price in Jiaxing 

(¥0.60/kWh), the annual electricity consumption in the China system is 21.8 kWh/year. 

Considering a primary energy factor of 3.78 for the losses during electricity generation, 

the total operational direct energy in primary energy form is 297 TJ. Obviously, the 

actual operational direct energy consumption is much larger than EIO-LCA estimation. 

After substituting the EIO-LCA estimation with the real system data, we got a new total 

operational embodied energy of 434 TJ.   
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 Under a 100-year life span, the converted annual total embodied energy of the 

China system is 438 TJ. Constructional energy consumption is negligible (around 1% of 

the annual total embodied energy) compared with the operational energy consumption. 

The volumetric energy use in the China system is 21 GJ/MG, or 5.5 MJ/m3, which is 

higher than Kahrl’s estimation, 1.8 MJ/m3 based on national average, and the annual 

water supply energy use per capita is around 1.1 GJ.  

 

4.2.4.3 Energy Embodiment of the US System 

Similarly, the operational energy intensity for the US water supply systems is 18.6 

TJ/$ million (of operational activity), while the constructional energy intensity is 7.84 

TJ/$ million (of constructional activity) according to the EIO-LCA results. An annual 

operational economic activity of $68.3 million and a total constructional economic 

activity of $416.0 million were obtained through personal communication. As a result, 

the operational embodied energy of the US system was calculated to be 1270 TJ, and the 

constructional embodied energy was calculated to be 3261 TJ. Mo et al. (2010) has 

estimated a direct operational energy intensity of 9 TJ/$ million through the 2002 US 

input-output table. Thus, the initial direct energy from the EIO-LCA result was 615 TJ. 

 The direct operational energy of the US system was also modified to be consistent 

with the real system data. The US system uses around $4.0 million for purchasing 

electricity annually, which is around 6% of the total annual operational cost. The 

percentage electricity expense is lower in the US system than the China system which is 

consistent with the general EIO-LCA results that China has a much higher input from the 

power supply sector than the US. Based on the unit electricity price in Tampa 
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($0.10/kWh), the annual electricity consumption in the US system is around 40.1 

kWh/year. Considering a primary energy factor of 3.44 of the US power generation, the 

direct operational energy consumption in primary energy form in the US system is 497 TJ, 

which is lower than the EIO-LCA result. After replacing the EIO-LCA result with the 

actual data, the new total operational embodied energy was estimated to be 1152 TJ.  

 Under a 100-year life span, the converted annual total embodied energy of the US 

system is 1184 TJ. Constructional energy consumption is also negligible (around 3% of 

the annual total embodied energy) compared with the operational energy consumption; 

however, the weight of the construction phase in the US system is slightly higher than in 

the China system. The volumetric energy use in the US system is 43 GJ/MG, or 11 

MJ/m3, and the annual embodied energy for water supply per capita is around 1.8 GJ. 

 

4.2.4.4 Discussion  

For a better comparison of the China system and the US system, the energy 

embodiments in both operation and construction phases in both systems were calculated, 

and converted into volumetric energy use and energy use per capita. Table 4.11 provided 

energy data for the two selected systems, and the percentage difference between the two 

systems.  

 The US system has higher total direct energy use in the operation phase than the 

China system. In terms of volumetric energy use, the US system requires 29% more 

electricity to provide 1 MG of water than the China system, even that China has a 10% 

lower power generation efficiency. It may be caused by higher electricity requirement in 

maintaining the administrative buildings. Besides, the serving population density of the 
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US system is slightly lower than the China system, which may require additional 

pumping energy in the US system. The per capita energy use of the US system is 

comparable with the China system, which means people from both Tampa and Jiaxing 

uses similar amount of energy in terms of water supply. It may be due to the higher 

industrial water use in Jiaxing than in Tampa. 

Considering the energy embodied in the construction phase, the US system 

exceeds the China system by 4 to 7 times. Since the top energy contribution sectors of the 

constructional energy intensities of the US and China are very similar (Table 4.11), one 

explanation for the higher constructional embodied energy in the US might be caused by 

higher constructional cost in the US system. The higher constructional cost in the US 

system may be caused by higher labor rates in the US, more engineering services 

involvement, longer project time frame and lower transportation efficiency.    

 Overall, the US system uses more embodied energy during its life cycle than the 

China system in volumetric, capita and total amount. Energy used indirectly in the 

operation phase is the main reason for the discrepancy. This discrepancy could be 

explained by higher labor rates, more service involvements, lower transportation 

efficiency and more water use in the system itself in the US system.  

 

4.2.5 Conclusions 

Through the calculation and discussion of this part of study, the following 

conclusions have been reached:  
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Table 4.11 Energy use data for the water supply system in China and the water supply system in the US and their percentage 
differences 

Water 
supply 

systems 

Operation Construction Total annual embodied energy 
(100-year life cycle) 

Direct energy Indirect energy 

Total 
(TJ) 

Volumetric 
energy use 
(GJ/MG) 

Energy use 
per capita 

(MJ/capita) 

Total 
(TJ) 

Volumetric 
energy use 
(GJ/MG) 

Energy 
use per 
capita 

(GJ/capita) 
Total 
(TJ) 

Volumetric 
energy use 
(GJ/MG) 

Energy use 
per capita 

(GJ/capita) 

Total 
(TJ) 

Volumetric 
energy use 
(GJ/MG) 

Energy use 
per capita 

(GJ/capita) 

The China 
system 297 14 0.74 137 6.5 0.34 384 0.18 9.6 438 21 1.1 

The US 
system 497 18 0.76 655 24 1.0 3261 1.2 50 1184 43 1.8 

Percentage 
difference1 67% 29% 3% 378% 269% 194% 749% 567% 421% 170% 105% 64% 

1Percentage difference = (Energy use in the US system – Energy use in the China system)/Energy use in the China system 
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(1) The energy embodied in the construction phase is negligible compared 

with that in the operation phase in both US and China systems. However, 

constructional energy has a slightly higher weight in the US system than in 

the China system. 

(2) The weight of the electricity cost in the total operation cost in the 

China system is much higher than in the US system. This similar pattern 

has also been observed on the embodied energy contributors of the two 

countries water-related sectors.   

(3) The US system has a comparable direct operational energy with the 

China system, but it has a much higher indirect operational energy than 

the China system in volumetric, per capita and total amount.  

(4) The US system also has a higher constructional embodied energy than 

the China system in volumetric, per capita and total amount.  

 Overall, the US system uses more embodied energy during its life cycle than the 

China system in volumetric, capita and total amount. Energy used indirectly in the 

operation phase is the main reason for the discrepancy. 

 For future energy efficiency improvement, the US systems may want to focus on 

reducing the indirect energy during the operation phase, such as minimizing material and 

labor consumptions, shortening project timelines etc., while the China systems may want 

to reduce direct energy costs during the operation phase by conducting energy budgets 

and adopting energy saving technologies.   
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CHAPTER 5: A REVIEW OF INTEGRATED RESOURCE RECOVERY IN 

WASTEWATER SYSTEMS 

 

5.1 Background Significance 

Currently, there are over 15,000 municipal wastewater treatment plants (WWTPs) 

providing wastewater collection and treatment services to around 78% of the US 

population. While they are critical to human and environmental health protection, these 

WWTPs are becoming one of the largest resource consumers in the US (CSS, 2009). 

They require approximately 23% of the public energy use of a municipality (Means, 

2004). In addition, they also need a large amount of materials and treatment chemicals 

over their lifetime. The life cycle energy of these material consumptions accounts for 

almost two thirds of the energy directly consumed in the WWTPs (Mo et al., 2009). 

Furthermore, the consumption of resources will continue to increase with population 

growth, economic development, infrastructure aging, and more stringent regulations.  

 As a result of the significance of their essential functions and resource demands, 

evaluation of the sustainability of WWTPs has been conducted in the past 15 years 

(Lundin et al., 2000; Mels et al., 1999). According to Lundin et al. (2000), the goal of 

WWTPs should go beyond wastewater purification. WWTPs may improve their overall 

sustainability by reducing the use of nonrenewable resources, minimizing waste 

generation, and enabling resource recycling. Currently, three major approaches are used 

to improve WWTPs’ sustainability: onsite energy generation, nutrient recycling and 
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water reuse. Onsite energy generation makes use of the organic loads of wastewater or 

other unique characteristics of the WWTPs (water flow, residue heat, large space) to 

produce energy, mainly in the form of electricity. Nutrient recycling recovers nutrients 

from wastewater as fertilizers to offset the environmental loads associated with producing 

the equivalent amount of fertilizers from fossil fuels. Moreover, treated wastewater can 

be reused for various purposes to provide ecological benefits, reduce the demand of 

potable water and augment water supplies.  

 There are different methods for onsite energy generation, nutrient recycling and 

water reuse. Research has been carried out to study and evaluate these methods 

individually, but very limited studies have reviewed the integrated energy-nutrient-water 

recovery in the WWTPs (McCarty et al., 2011; Slater, 2009; Verstraete et al., 2009). 

While individual resource recovery methods have been studied and the potential of 

integrated resource recovery has been discussed, there is a lack of studies thoroughly 

reviewing the current status and sustainability of these individual methods as well as their 

integrations under different scales. In order to fill this knowledge gap, this review 

presents the pros and cons of the existing onsite energy generation, nutrient recycling and 

water reuse methods; along with their application status. Life cycle studies were also 

reviewed for each resource recovery approach as well as for the integration of these 

approaches under different scales. Challenges and gaps in these resource recovery 

approaches were discussed. The rest of the paper mainly consists five sections: (1) Onsite 

energy generation; (2) Nutrient recycling; (3) Water reuse; (4) Integrated resource 

recovery; and (5) Conclusions and future directions.  
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5.2 Onsite Energy Generation 

Onsite energy generation utilizes the available resources from wastewater 

treatment plants to generate energy onsite. The resources that can be used for generating 

energy include influent organic contents and nutrients, motion power from wastewater 

flow, residue heat in treated wastewater, and onsite land and spaces. Since the energy 

generated can be used directly by the wastewater treatment plants and other facilities, this 

is the most commonly recognized approach to reduce environmental loads in wastewater 

treatment plants. Sometimes, onsite energy generation helps to not only reduce energy 

cost, but also remove the hazardous contaminants in the wastewater and improve treated 

water quality.  

   

5.2.1 Technologies and Applications 

5.2.1.1 Combined Heat and Power Systems  

Combined heat and power systems (CHPs) utilize biogas produced from 

anaerobic digestion to generate heat and electricity onsite (EPA, 2007).  The electricity 

produced by the CHPs is reliable and consistent, but the installation requires relatively 

high one-time capital costs (around $2000/kW for internal combustion engine, $7500/kW 

for fuel cell and $4500/kW for microturbine). Furthermore, operating the CHPs requires 

large volume of biogas, which restricted their implementation in small wastewater 

systems. It has been reported that the CHPs are only cost effective for the WWTPs with a 

flow rate above 5 MGD. 

 The CHPs have an electricity generation potential of about 350 kWh per million 

gallon of wastewater treated (Burton, 1996). It has been estimated that a reduction of  
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26% of the state-wide electricity use can be achieved if all the wastewater treatment 

plants adopt CHPs in Texas (Stillwell et al., 2010). Previous studies have also shown that 

the energy generated through CHPs can meet the onsite energy requirement of individual 

WWTPs in Austria (Wett et al., 2007) and Iran (Nouri et al., 2006).  

Of all the WWTPs operating in the US currently, less than 0.6% utilize the biogas 

to generate electricity (EPA, 2007). The low application rate is partly due to the 

dominancy of small wastewater systems in the US. Around 94% of the WWTPs in the 

US have a flow rate lower than 5 MGD (EPA, 2008). Even among the systems proper for 

CHP installation, only 19% have installed the CHPs.  Again, high capital costs prove to 

be a big hurdle for the implementation of this technology.  

 

5.2.1.2 Biosolids Incineration 

Biosolids incineration refers to recovering energy through biosolids combustion 

in fluidized beds or multiple-hearth furnaces. It not only generates energy, but also 

reduces waste volume to the minimal, and thus reduces disposal costs. The cons of 

biosolids incineration include the release of the persistent environmental pollutants, 

quality inconsistency, and the relatively high capital investment ($66/dry Mg) and energy 

cost for dewatering the biosolids (Cartmell et al., 2006; EPA, 2007; Mahmood and 

Elliott, 2006; Wang et al., 2008).  

 Biosolids incineration can be net energy producer only when the water content is 

reduced below 30% (McCarty et al., 2011). It has been estimated that when biosolids 

incineration is applied to all the WWTPs in Texas, around 57% of the total electricity use 

can be reduced in the Texas wastewater sector (Stillwell et al., 2010).  
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 Incineration is more attractive to highly populated municipalities because they are 

commonly lack of readily available disposal space and less tolerant to odor generation 

(Werther and Ogada, 1999). Japan, US, Denmark, France, Belgium and Germany utilize 

around 55%, 25%, 24%, 20%, 15% and 14% of their sludge respectively for incineration 

(Wang et al., 2008; Werther and Ogada, 1999). 

 

5.2.1.3 Effluent Hydropower 

Effluent hydropower is the technology using turbines or other devices installed in 

conduits (pipelines, canals, and aqueducts) to generate electricity from effluent water 

(CEC, 2005). Except for energy generation, the effluent hydropower systems can also 

increase the dissolved oxygen concentration in the treated wastewater (Gaiusobaseki, 

2010; Zakkour et al., 2002). The main constraint of this technology is that it requires the 

effluent to have sufficient forces to be worth the investment. Hence, either the head or the 

flow rate must be significant in order to optimize a hydropower scheme (Gaiusobaseki, 

2010).  

 The potential energy from an effluent driven turbine is proportional to the head, 

flow rate and generation efficiency (Maine DEP, 2002). It has been estimated that the 

potential of hydropower capacity in manmade conduits in California is about 255 MW, 

with an annual production of approximately 1,100 GWh (CEC, 2005). 

 The effluent hydropower systems were first applied in two wastewater treatment 

plants in New England in late 1970s and early 1980s with limited success. Since then, 

this technology has been applied in states such as California, Massachusetts, and Maine. 



106 

California, so far, is the leading state on researching and utilizing effluent hydropower 

systems.  

 

5.2.1.4 Onsite Wind and Solar Power 

Onsite wind and solar power is the production of electricity from the wind and/or 

solar energy by taking advantage of the large land area of the WWTPs. WWTPs are 

usually away from other developments, and thus are good host sites for onsite wind or 

solar power generation. Table 5.1 provides some state-of-art wastewater treatment plants 

integrated onsite wind and/or solar power generation. The major disadvantage of the 

onsite wind or solar technology is that it usually requires large capital investments. 

Additionally, the climate conditions and locations of the WWTPs may also restrict the 

application (Brown, 2009).  

Table 5.1 State-of-art wastewater treatment plants with onsite wind and/or solar power 
generation 

Name State Wind/solar 
integration 

Energy 
generation 
potential 

Use Informatio
n source 

Atlantic County 
Utilities 
Authority 

New 
Jersey 

Wind 7.5 MW 
capacity 

Provide 70% of 
facility needs 

(ACUA, 
2011) 

Solar 500 kW 
capacity 

Provide 660,000 
kWh of energy 
to the facility per 
year 

Browning 
Waste Water 
Treatment Plant 

Montana Wind 40 kW 
capacity 

Displace grid 
electricity used 
at the facility 

(Browning, 
2001) 

Boulder 
Wastewater 
Treatment Plant 

Colorado Solar 1 MW 
capacity 

Provide 15% of 
facility needs 

(Boulder, 
2012) 

Oroville 
Wastewater 
Treatment Plant 

California Solar 520 kW 
capacity 

Provide 80% of 
facility needs 

(SPGSolar, 
2012) 
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The wind and solar potential maps provided by the US Department of Energy on 

its website can be used to assess the economic feasibility of the onsite wind and solar 

technology. Arizona, New Mexico, southern Nevada, southern California have the 

highest solar energy potential (DOE, 2012). On the other hand, states in the mid-US, such 

as Texas, Kansas, Nebraska, South Dakota, North Dakota and Iowa have the highest 

wind energy potential (DOE, 2010). 

The Atlantic County Utilities Authority has the largest wind and solar power 

generation facilities in the US. Although onsite wind and solar power generation has 

great energy generation potential, it has not been widely applied in the US yet. Most of 

the facilities listed in Table 5.1 were installed in recent 1 or 2 years.  

 

5.2.1.5 Heat Pump 

Heat pump uses electricity to recover low temperature heat from the wastewater, 

and to make this heat available at suitable temperatures for both heating and cooling 

purposes. Except for its energy efficiency, heat pump is very reliable and requires low 

operation and maintenance costs (Neave, 2010). The heat recovered from heat pumps, 

however, cannot be delivered over long distances. Thus, heat pumps may only be applied 

onsite or when there are heating or cooling demands at nearby communities. Heat pumps 

best perform in moderate temperature areas.  

Heat pumps typically provide 3 or 4 units of energy in the form of heat in 

consumption of 1 unit of energy in the form of electricity (Slater, 2009). For example, a 

wastewater treatment plant in Stockholm, Sweden with a maximum hydraulic capacity of 

450,000 m3/d produces about 597,000 MWh low-temperature heat energy using 199,000 



108 

MWh electrical energy via heat pumps (ESMAP, 2008). On the other hand, if the 

electricity production is highly dependent on fossil fuels, the heat pump uses nearly as 

much primary energy as heat energy generated (Tillman et al., 1998). 

It has been reported that over 500 wastewater heat pumps are in operation 

worldwide, with thermal capacities ranging from 10 kW to 20 MW (Schmid, 2008). 

Large scale district heating using residual heat from wastewater has been applied in some 

European countries (ESMAP, 2008; Friotherm, ; Turku Energia, 2009).  

 

5.2.1.6 Bioelectrochemical Systems  

Bioelectrochemical systems use biocatalysts for oxidation and/or reduction 

reactions for desired products (Foley et al., 2010; Rabaey et al., 2003). It includes 

microbial fuel cell (MFC) systems and microbial electrolysis cell (MEC) systems. A 

MFC is a device that directly converts microbial metabolic or enzyme catalytic energy 

into electricity by using conventional electrochemical technology (Allen and Bennetto, 

1993; Park and Zeikus, 2000; Roller et al., 1984). Beyond energy generation, the MFCs 

can also reduce the excess sludge to around 20% compared with the conventional 

treatment, which further reduces the sludge disposal costs. MFCs have been widely 

studied over the last 15 years (Foley et al., 2010; Kim, 2009), but they have only been 

applied on pilot scales for wastewater treatment so far. Current problems prohibiting the 

large scale use of the MFCs include energy loss during the electricity generation process, 

low organic utilization rates and high capital costs (around 800 times of an anaerobic 

system) (Liu et al., 2004; McCarty et al., 2011). The MECs are more recently developed. 

Unlike the MFCs, MECs use electricity to produce biochemicals, especially hydrogen 
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and methane gas (Ditzig et al., 2007; Liu et al., 2005; Logan and Rabaey, 2012; Rozendal 

et al., 2007). Gas production from MECs has not been widely studied. Only one pilot 

scale study has been carried out for treating winery wastewater (Cusick et al., 2011; Hays 

et al., 2011) and found the maximal COD removal was around 62% and the hydrogen 

recovery was unsatisfactory with an 86% methane composition.  

Power generated in MFCs varies from less than 1 MW/m2 to 3600 MW/m2, with 

most of them concentrating on 10-100 MW/m2 (Liu and Logan, 2004; Liu et al., 2004). 

Kim (Kim, 2009) calculated that sewage treatment through MFCs in the European Union 

can save 0.95 million tons of fossil fuel per year and over $2.3 billion of the sludge 

disposal cost annually. Gas generation potential of the MECs fed by winery wastewater 

can reach 0.19±0.04 L gas per L wastewater per day under enhanced organic volatile 

fatty acid content and raised wastewater temperature (Cusick et al., 2011).  

  

5.2.1.7 Microalgae 

Microalgae technology recovers energy through cultivating microalgae with 

wastewater, harvesting microalgae and converting them to energy products using 

different technologies onsite or offsite of the WWTPs. During the cultivation stage, 

microalgae uptake the inorganic or organic carbon and nutrients in the wastewater, and 

therefore reduce waste loadings for treatment. Because microalgae can utilize carbon 

dioxide much faster than conventional biofuel crops (Kumar et al., 2010), they also have 

great potential for carbon dioxide reduction and mitigation. Currently, integrating the 

microalgae technology in WWTPs is still in the research stage. The main challenges of 

this integration include: (1) algal cultivation cost reduction; (2) harvesting, dewatering 
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and lipid extraction energy reduction; and (3) microalgae species selection for optimal 

performance (Kumar et al., 2010). 

 Aresta et al. (2005) has reported a net energy generation of 9500 MJ/ton through 

microalgae gasification using effluent water as nutrient source. Moreover, a negative 

greenhouse gas emission of -183 kg CO2e/MJ has been reported for microalgae biodiesel 

(Groom et al., 2008). 

  

5.2.2 Life Cycle Studies 

Although onsite energy generation in WWTPs has been widely recognized, there 

are limited life cycle studies evaluating the environmental impacts of the related 

technologies in the context of the WWTPs. Figure 5.1 provides the number of relevant 

life cycle studies on different onsite energy generation technologies. 

 
Figure 5.1 Number of relevant life cycle studies on each of the onsite energy generation 
methods 
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 Although the CHPs have been evaluated for economic benefits (EPA, 2007) and 

for application to biomass other than biosolids (Guest et al., 2011; Kimming et al., 2011), 

there is only one life cycle study evaluating the “emergy” of utilizing biosolids for 

electricity production in Sweden (Björklund et al., 2001). Contradictory with the 

conventional economic analysis, the “emergy” analysis suggested that production of 

electricity from a CHP system requires two times of the resources needed for producing 

electricity from the local power plant. Hence, it is not economical in terms of resource 

utilization to digest sludge for electricity production. This study, however, did not include 

the use of the residue heat as part of energy recovery. As a result, there is a great need to 

investigate the life cycle impacts of the CHPs in WWTPs, especially for those relatively 

small wastewater treatment plants. 

 Incineration of the municipal solid wastes was widely studied from the life cycle 

perspective (Banar et al., 2009; Cherubini et al., 2009; Cleary, 2009; Khoo, 2009; Riber 

et al., 2008; Zhao et al., 2009); however, only 5 life cycle studies have been carried out 

for biosolids incineration (Hong et al., 2009; Houillon and Jolliet, 2005; Lundin et al., 

2004; Suh and Rousseaux, 2002; Svanström et al., 2005). These studies render very 

controversial results. Some studies preferred incineration over land application, while 

others favored land application over incineration. The main reasons for this discrepancy 

are the specifics of case studies, different system boundaries, scales, and impact 

categories. For those that support land application, air emissions from incineration are 

usually the major concern. For those that support incineration, the benefits of energy 

recovery from incineration usually overweigh the other negative impacts. Current life 

cycle studies on biosolids incineration do not provide consistent results and general 
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guidance on technology selection under given conditions. As a result, there is a need to 

establish consistent assessment frameworks (e.g., same system boundary and impact 

categories) for future life cycle studies.  

 Although large scale hydropower systems have been widely studied on life cycle 

basis (Coltro et al., 2003; Gagnon et al., 2002; Pascale, 2010; Pehnt, 2006; Varun et al., 

2010), these results can hardly be applied to the effluent hydropower systems in WWTPs 

because of the uniqueness of these systems: unlike large scale hydropower, they do not 

interrupt the nutrient flow, reduce aqua species or cause flooding. Thus, it is necessary 

for future studies to evaluate the life cycle impacts of the effluent hydropower systems 

for better application guidance. 

 Wind and solar energy as sources of renewable energy has been widely studied 

(Ardente et al., 2008; Granovskii et al., 2007; Pehnt, 2006; Tripanagnostopoulos et al., 

2005), but none of these studies emphasize their integration with WWTPs, except that 

Foley (2010) assessed the economic feasibility of the onsite wind and solar energy for a 

wastewater system in Singapore. It is suggested to justify installation of solar and wind 

power before implementation because of the high cost of solar panels and wind turbines. 

Previous life cycle studies on general solar and wind power generation may be applied to 

the WWTPs because of the similarity of the life cycle inventories of these systems; 

however, the potentials of solar and wind energy have to be examined carefully for each 

application location.   

 Life cycle studies have been carried out for ground sourced heat pumps (Genchi 

et al., 2002; Nagano et al., 2006; Zhu and Zhou, 2006), air sourced heat pumps (Rey et 

al., 2004; Zhu and Zhou, 2006) and seawater sourced heat pumps (Li and Songtao, 2006), 
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but there is no study specifically for wastewater sourced heat pumps. Although Tillman et 

al. (1998) included heat pump as part of their life cycle assessment (LCA) for the 

municipal wastewater systems, the study did not focus on the heat pump system and the 

heat distribution systems were not included in their study. Other studies such as 

Hellstrom (1997) estimated the heat potential in the wastewater, but did not perform LCA 

for a real heat pump application. Unlike other heat sources, wastewater contains constant 

low temperature heat from water heating and microbial metabolic activities. As a result, 

there is a need to look at the environmental benefits of this particular kind of heat and the 

life cycle benefits of installing wastewater sourced heat pumps for future guidance.  

 Because the MFC/MEC technology is relatively new, there are not many life 

cycle studies related with MFCs/MECs. Foley et al. (2010) compared the life cycle 

impacts of MFC with anaerobic digestion and MEC. The study confirmed the 

environmental benefits of replacing the fossil fuel based electricity with the electricity 

generated via MFC; however, anaerobic digestion and MEC outperformed MFC in 

categories such as global warming potential, resource consumption and carcinogen 

production because the materials required for MFC construction are resource and 

emission intensive. Pant et al. (2011), on the other hand, compiled an inventory of inputs 

and outputs of MFCs to help researchers to evaluate, compare and validate the feasibility 

of this emerging technology.      

 Producing bio-energy with microalgae has been studied since last decade; 

however, it is only the recent two or three years that researchers started to evaluate 

microalgae cultivation using wastewater through life cycle studies. Clarens et al. (2010) 

reported that conventional crops are preferred over microalgae in terms of energy use and 
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water use unless wastewater is used for cultivating microalgae. Especially when source 

separated urine is used as nutrient source, microalgae outperform conventional crops. 

Sander and Murthy (2010) did a life cycle study on algae biodiesel assuming that the 

wastewater after secondary treatment was used for algae growth. It was reported that 

processes utilizing filter press or centrifuge processes had a net energy generation of 278 

MJ or 157 MJ per kg of algal biodiesel produced. Yang et al. (2011) investigated the 

water footprint of algal diesel using different water sources, such as freshwater, seawater 

or wastewater. They found that using wastewater for algae cultivation could reduce water 

requirement by 90%, and eliminate the need of all the nutrients except phosphate. Sturm 

and Lamer (2011) and Soratana and Landis (2011) further confirmed that biofuel 

production is energetically favorable when wastewater is utilized as nutrient source even 

without considering energy credit for nutrient removal. 

   

5.2.3 Challenges 

The onsite energy generation technologies attract much attention because the 

resource recovered can directly offset the energy costs of the WWTPs, but they have 

different limitations and uncertainties, such as large capital costs, lack of reliability and 

specific requirements for climate and local conditions. These limitations have constrained 

certain technologies from wide application. New technologies such as MFCs/MECs and 

microalgae may have the potential to overcome these disadvantages. Yet, more studies 

have to be done in order to advance those technologies to the commercial scale. Given 

that over 90% of WWTPs in the US are small plants, the major challenge is to 



115 

improve/innovate technologies that have low capital costs, are simple and affordable to 

operate, and are easy to integrate into the existing small plants. 

 Energy generation potentials have been reported for most of the onsite energy 

technologies, but these studies focused on direct energy generation. Life cycle energy 

benefits associated with reducing and reusing organic and nutrient loadings from 

wastewater and waste volume for downstream handling are rarely studied. Moreover, 

studies assessing life cycle environmental impacts are lacking for most of the onsite 

energy generation technologies.  

 Another gap is the lack of studies examining the integration and tradeoffs of 

onsite energy generation technologies. For instance, wind and solar technology and 

effluent hydropower technology can be integrated with other technologies without 

compensating the generation potential of those technologies. However, tradeoffs may 

exist between different technologies. For example, energy recovery through biogas 

production may not integrate with biosolids incineration because increasing biogas 

production will reduce the amount of biosolids.  Studies are needed to evaluate the 

maximum amount of energy that can be generated onsite with consideration of such 

integration and tradeoffs.  

 

5.3 Nutrient Recycling 

Nutrient recycling recovers nutrients in the wastewater as soil amendments or 

fertilizers for beneficial uses. Nutrients can be recovered from raw wastewater sources, 

semi-treated wastewater streams, and treatment byproducts, such as biosolids. From a life 

cycle perspective, nutrient recycling not only relieves the depletion of resources such as 
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phosphorus ores but also indirectly conserves energy and water. That is because recycling 

nutrients will reduce the demand for traditional fossil-based fertilizers, consequently save 

energy and water used to produce the traditional fertilizers.   

  

5.3.1 Technologies and Applications 

5.3.1.1 Biosolids Land Application  

Biosolids land application involves spreading biosolids on the soil surface or 

incorporating or injecting biosolids into the soil (EPA, 1999). They are commonly treated 

by at least one of the following processes depending on the end use: (1) digestion, (2) 

alkaline treatment, (3) composting, and (4) heat drying. Biosolids treated by digestion or 

alkaline stabilization can be used as soil amendment or daily landfill cover. Composting 

produces highly organic and soil-like biosolids for horticultural, nursery and landscape 

uses. Heat dried biosolids can be directly used as fertilizer. In addition to soil 

conditioning and fossil fertilizer use reduction, biosolids land application also avoids 

excess nutrients entering the environment because of their low nutrient contents 

compared with fossil fuel based fertilizers. The major concerns of the use of biosolids are 

the health and safety issues, odor and public acceptance. 

 It has been estimated that around 8.2 million tons of biosolids would be produced 

in 2010 and around 70% would be used for land application (EPA, 1999). A dry mass of 

7 to 50 kg per year per inhabitant is a rough estimation of biosolids production potential 

in the WWTPs (Kroiss and Zessner, 2010).  

 Land application of biosolids has been widely practiced in the US and other 

countries. In 2004, 49% of the US wastewater solids were used for land application, 
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while 45% were disposed. Another 6% were stored or their final use was not reported 

(NEBRA, 2007). 

  

5.3.1.2 Urine Separation 

Urine separation involves separation of urine from other wastewater sources for 

recovery of nutrients. It is usually practiced at the user end. By separating urine from the 

main wastewater stream, the nutrient loads of the wastewater treatment plant can be 

reduced significantly (Larsen et al., 2009), and the nutrients in the urine stream can be 

more easily recovered using technologies such as struvite precipitation. Additionally, 

urine separation is very energy efficient compared with many other nutrient recycling 

technologies (Benetto et al., 2009; Flores et al., 2009; Novotny, 2010). The challenges of 

applying urine separation are that it requires intensive support and involvements from 

local communities and large scale new infrastructure installation both at household and 

community level (Verstraete et al., 2009). Another major challenge is to avoid the cross 

contamination with feces, which usually contain large amounts of pathogens.  

 Urine separation is promising in terms of maximizing nutrient recovery from 

wastewater, because around 70-80% of N and 50% of P in domestic wastewater is 

contained in urine (Jönsson, 2001; Larsen and Gujer, 1996). Rossi et al. (2009) estimated 

a urine recovery rate of 70-75% using the urine collecting toilets. 

 Urine separation has been traditionally practiced in many developing countries for 

land application, but has not been widely used in most of the developed countries due to 

the intensive construction requirements and lack of public support. In addition, urine 
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separation technologies, such as the NoMix toilets, still need improvements in a real-life 

setting (Rossi et al., 2009).  

 

5.3.1.3 Controlled Struvite Crystallization  

Controlled struvite (MgNH4PO4 ∙6H2O) crystallization is a way of recycling 

nutrients by extracting struvite from sludge digester liquors because of its high 

concentrations of phosphorus, ammonium and magnesium (Forrest et al., 2008; Martí et 

al., 2010). Struvite crystallization has high nutrient recovery rates, especially for 

recovering precious phosphate resources. It is also economically feasible. It has been 

estimated that a WWTP with an influent flow rate of 20 ml/min has the ability to produce 

struvite worth £8400~£20,000 per year (Jaffer et al., 2002). On the other hand, there are 

also problems associated with the struvite crystallization. Unintentional struvite 

formation can block valves, pipes, centrifuge bowls and pumps (Münch and Barr, 2001), 

and lead to decreased flow capacity and eventual equipment failure. Other problems 

include the high cost of the chemical reagents required for pH adjustment and magnesium 

enhancement (Pastor et al., 2010). 

 The phosphate concentration in sludge digester liquors can be quite high, i.e. 85-

95 gP/m3 (Battistoni et al., 1997; Jaffer et al., 2002; Münch and Barr, 2001). Theoretical 

potential of the struvite crystallization approaches 67,000 tons of P2O5 fertilizer per year 

from the UK alone, as well as 270,000 tons from Western Europe (Gaterell et al., 2000). 

 The controlled struvite crystallization has been operated at full scale at several 

sites in Japan since 1987, with capacity ranging from 100-500 kL/d and producing 100-

500 kg/d of struvite (Münch and Barr, 2001; Ueno and Fujii, 2001). There are three full 
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scale facilities currently in operation in the US utilizing struvite crystallization 

technologies provided by Ostara Nutrient Recovery Technologies Inc. (Ostara, 2012).  

Several more sites are under construction. However, this technology has not been widely 

applied in other countries, and most of the current studies are on pilot scale in Australia, 

Canada and Spain (Britton et al., 2007; Münch and Barr, 2001; Pastor et al., 2010).   

 

5.3.1.4 Recovering Nutrients through Aqua-Species 

Recovering nutrients through aqua-species means using the aqua-species to utilize 

the nutrients in the wastewater, and harvest and use the aqua-species as fertilizers or 

animal feeds (Umble and Ketchum, 1997). The aqua-species can be macroalgae (Wilkie 

and Mulbry, 2002) or microalgae (Umble and Ketchum, 1997; Voltolina et al., 2005), 

duckweed (Alaerts et al., 1996; Cheng et al., 2002; El-Shafai et al., 2007; Oron, 1990), 

wetland plants (Dixon et al., 2003; Fuchs et al., 2011; Machado et al., 2007), crops 

(Boyden and Rababah, 1996) and so on. This method is very attractive because synergy 

exists between water purification and nutrient recycling. They are also cost and energy 

efficient compared with a lot of conventional water treatment technologies. On the other 

hand, seasonal changes of water temperatures and light intensities can largely affect the 

rates of nutrient uptake and metabolisms of the aqua-species. Sometimes it is also 

necessary to control and monitor the treated wastewater quality and pH to maintain the 

organism growth and successive uses (El-Shafai et al., 2004a; El-Shafai et al., 2004b), 

which requires additional energy and chemicals. 

Nutrient removal rates by the aqua-species are very promising. Most studies 

provided an over 60% nitrogen or phosphorus removal rate by aqua-species (Boyden and 
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Rababah, 1996; El-Shafai et al., 2007; Rectenwald and Drenner, 2000; Umble and 

Ketchum, 1997; Voltolina et al., 2005). Culley et al. (1981) found that a mixture of 

duckweed species could take up to 1378 kg of N, 347 kg of P and 441 kg of potassium 

from 1 ha of water area in a year under the climatic conditions of Louisiana, US.  

 Recovering nutrients through aqua-species has not been widely applied. A look 

into the literatures shows that the constructed wetland is more widely applied than the 

other technologies, but most of these constructed wetlands do not recycle the nutrients for 

secondary uses. Nutrient recovery through duckweeds has only been evaluated on pilot 

scale (El-Shafai et al., 2007). Further, there is still lack of awareness and expertise in 

developing the technology on a local basis especially in the developing countries 

(Nichols, 1983).  

 

5.3.2 Life Cycle Studies 

Life cycle studies have been carried out for the four nutrient recycling 

technologies discussed above and the amount of relevant life cycle studies for each 

technology varies. Most of life cycle studies evaluated the biosolids land application, 

while only one study examined the controlled struvite crystallization technology. Figure 

5.2 provides the number of relevant life cycle studies on different nutrient recycling 

technologies. 

Most of the life cycle studies on biosolids land application were carried out in 

Europe and Australia. Those studies compared various biosolids management scenarios. 

Some were focused on the production processes such as lime stabilization, composting, 
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Figure 5.2 Number of relevant life cycle studies on each of the nutrient recycling 
technologies 

 

anaerobic digestion, thermal drying; some were focused on the end of life options such as 

landfill, agricultural application, incineration, fuel supplementary; and some were 

focused on the scenarios combining production processes and end of life options. Some 

uncommon production processes were also evaluated such as water oxidation (Houillon 

and Jolliet, 2005; Svanström et al., 2005), pyrolysis (Hospido et al., 2005; Houillon and 

Jolliet, 2005), dewatered sludge melting (Hong et al., 2009) and incinerated ash melting 

(Hong et al., 2009). The system boundaries and scales of these life cycle studies were 

different: some only included operation phase (Brown et al., 2010; Hospido et al., 2005; 

Houillon and Jolliet, 2005; Lundin et al., 2004; Sablayrolles et al., 2010; Suh and 

Rousseaux, 2002), some included both construction and operation phases (Hong et al., 

2009; Peters and Lundie, 2001; Peters and Rowley, 2009), and some included the 

operation and the dismantling phases (Svanström et al., 2005). The impact categories 
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assessed by these studies were also very different: some focused on energy (Houillon and 

Jolliet, 2005); some included broader impact categories, such as human toxicity, 

ecotoxicity, water use, air/water emissions. The energy offset through fertilizer 

application was only considered in some of the studies (Brown et al., 2010; Lundin and 

Morrison, 2002; Peters and Rowley, 2009). Even those who considered such offsets 

estimated the energy benefits in different ways.  

As a result of these differences, these studies rendered very different results. For 

instance, nutrient recycling through land application was preferred in studies of Suh and 

Rousseaux (2001), Houillon and Jolliet (2005), and Brown et al. (2010), but not favored 

in studies of Lundin et al. (2003), Svanstrom et al. (2005) and Peters and Rowley (2009). 

Of those studies that did not prefer land application, incineration was usually the best 

alternative. The integration of residue heat from power plant for drying the biosolids was 

also recommended in some studies (Peters and Lundie, 2001). 

There are very limited life cycle studies conducted to compare the overall 

environmental impacts of the urine separation systems and the conventional wastewater 

treatment systems. The available life cycle studies were carried out in Europe around a 

decade ago (Hellstrom, 1997; Lundin et al., 2000; Maurer et al., 2003; Tillman et al., 

1998) and they all recommended urine separation over the conventional water systems.  

 For controlled struvite precipitation from anaerobic digesters, most of the current 

assessments were carried out for economic benefits (Etter et al., 2011; Türker and Çelen, 

2007; Çelen and Türker, 2001). By far, only one study was carried out to evaluate the 

mitigation of greenhouse gas emissions through the controlled struvite precipitation 

(Britton et al., 2007). The study showed that a full scale WWTP with struvite recovery 
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can offset approximately 12,000 tonnes of carbon dioxide equivalent per year relative to 

conventional fertilizer manufacturing. 

 Most of life cycle studies on recovering nutrients through aqua-species are 

focused on nutrient removal through constructed wetlands (Dixon et al., 2003; Fuchs et 

al., 2011; Machado et al., 2007; Memon et al., 2007; Roux et al., 2010; Siracusa and La 

Rosa, 2006; Zhou et al., 2009). All these studies reported positive results towards wetland 

treatment over the conventional treatment, based on global warming potential, aquatic 

toxicity, eutrophication potential and resource consumption, but most studies did not 

include the end use of the aqua-species as nutrients. Hence, it is necessary to evaluate the 

life cycle benefits of constructed wetlands under a closed nutrient loop. Additionally, 

there is a lack of life cycle studies on nutrient recovery through macroalgae, microalgae, 

duckweed and crops.  

 

5.3.3 Challenges 

Beyond biosolids land application, most of the nutrient recycling technologies 

have not been widely applied. The challenges of nutrient recycling are more complicated 

than the onsite energy generation technologies, including land and financial resource 

constraints, integration into existing infrastructure, safety and technology imperfections. 

For example, application of urine separation needs cooperation from local communities 

and governments. Besides, changing the existing infrastructure incurs high constructional 

costs which may hinder the application. As a result, further studies are needed for 

improving customer confidence and integration to existing infrastructure.  
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 Life cycle studies for the nutrient recycling technologies are still limited, 

especially for urine separation, controlled struvite precipitation and nutrient recovery 

through aqua-species. Moreover, the life cycle studies on biosolids land application have 

their own problems. Most of these studies were carried out in different regions, evaluated 

by different impact categories and based on different cases. Each study compared 

different biosolids management methods. The avoidance of fossil-based fertilizers using 

biosolids for land application was not consistently considered in the studies, which 

caused various uncertainties in the comparison. Thus, the results can be hardly 

generalized, and used by the public. Hence, a consistent framework needs to be 

developed for comparing the processes and end use of biosolids. Furthermore, other 

nutrient recycling technologies also need more generalized life cycle studies to justify 

their applications and guide future development.   

 Another challenge of the future studies on nutrient recycling from WWTPs is the 

integration of these recycling technologies. Currently, integration of these nutrient 

recycling technologies is neglected, even though combining these technologies may 

maximize the potential of nutrient recovery from the wastewater. For example, upstream 

urine separation could be integrated with downstream constructed wetlands since urine 

separation does not remove all the nutrients in the wastewater. There are also tradeoffs 

when these technologies are integrated because they could potentially interfere with each 

other and each technology has its limits for the amount of nutrients that can be recovered. 

Hence, it is important to understand the tradeoffs between different technologies and the 

appropriate scale to implement the technologies (community level or municipal level). 
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Studies are also needed to investigate the maximal recovery potential under integrated 

nutrient recycling. 

 

5.4 Water Reuse  

Water reuse is the method of recycling treated wastewater for beneficial purposes, 

such as agricultural and landscape irrigation, industrial processes, toilet flushing, and 

groundwater replenishing (EPA, 2004). The level of wastewater treatment required, 

associated technologies and effluent application are shown in Figure 5.3. Currently, 

around 1.7 billion gallons per day of wastewater is reused in the US, and this reuse rate is 

growing by 15% every year. Florida and California are the leading states in water reuse in 

the country. Through water reuse, energy can be indirectly conserved because it saves 

energy associated with providing the same amount of potable water. Moreover, the 

amount of water that can be reused is proportional to water demand. It reduces the need 

for exploring more energy intensive water sources, such as the desalinated water to meet 

the increasing water demand.  

    

5.4.1 Technologies and Applications 

5.4.1.1 Agricultural Irrigation 

Reusing water for agricultural irrigation has been practiced in Egypt and China a 

long time ago (Van der Bruggen, 2010). Currently, irrigation represents around 58% of 

the US total freshwater withdrawal, and 31% of the total water withdrawal (USGS, 2009). 

Using the reclaimed water to replace part of the agriculture demand can alleviate local 

water stress. Furthermore, nutrients contained in the wastewater can also reduce the 
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fertilization application. Effluent from secondary treatment was recommended for 

irrigating non-food crops, orchards and vineyards, while effluent from tertiary treatment 

was recommended for food crop irrigation (Figure 5.3). Despite the benefits of 

agricultural water reuse, there are still concerns over the wastewater sources and quality, 

which may cause potential soil pollution and crop contamination. Another concern is the 

high cost to construct and operate the reclaimed water pipeline systems due to the 

normally long distance between the municipal reclaimed water supplies and the major 

agricultural demand areas (Leverenz et al., 2011). Furthermore, seasonal change of the 

agricultural water demand may require winter reclaimed water storage facilities, which 

may be technologically and economically prohibitive (Leverenz et al., 2011).  

To date, California and Florida are the leading states for agricultural water reuse 

in the US, reusing 48% and 19% of the total volume of reclaimed water respectively 

(EPA, 2004). There are various projects in Florida, California, and Virginia on reusing 

water for agricultural purposes (Asano, 2007). 

  

5.4.1.2 Industrial Reuse 

Thermoelectric represents around 50% of the total water withdrawal in the US in 

2005 (USGS, 2009). Other industries such as petroleum refineries, chemical 

manufacturers also require substantial amounts of water. These industries, however, do 

not require water quality as high as for potable supply, thus are suitable for using 

reclaimed water. Reusing water also helps the industries to reduce cost and improve 

sustainability. Current industrial reuse mainly includes cooling water, boiler make-up 

water and industrial process water (EPA, 2004). The US EPA (2004) recommends 
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secondary treatment for industrial cooling processes; however, the requirements of 

treatment technologies for other industrial purposes are process specific (Figure 3). On 

the other hand, reclaimed water may cause problems such as corrosion, biological growth, 

and scaling compared with freshwater (Li et al., 2011).  

Industrial reuse has increased substantially since the early 1990s because of water 

shortages and increased population (EPA, 2004). California, Arizona, Texas, Florida, and 

Nevada have major industrial facilities using reclaimed water for cooling and 

process/boiler-feed requirements (EPA, 2004). On the other hand, although a number of 

power plants have blended reclaimed water with freshwater as cooling system makeup, 

only a few of them use the reclaimed water as dominant makeup water (Li et al., 2011). 

 

5.4.1.3 Urban Reuse 

Urban reuse includes urban irrigation, commercial uses such as car washing, fire 

protection, toilet flushing, dust control and concrete production. Residential irrigation is 

the major urban reuse application, which comprises around half of the total residential 

water consumption. Replacing the freshwater with reclaimed water for urban irrigation 

can greatly reduce cost and water stress, especially during the peak seasons. The US EPA 

(2004) recommended secondary treatment for restricted landscape impoundments, and 

tertiary treatment for unrestricted recreational impoundments, landscape and golf course 

irrigation, toilet flushing, as well as vehicle washing (Figure 5.3). The human exposure of 

urban reuse is higher than agricultural irrigation and industrial reuse. Thus, special care 

should be taken to avoid potential health problems. Moreover, urban reuse requires dual 
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systems for the reclaimed water delivery, which may bring high costs for certain 

communities. 

 Water reuse for urban reuse has been widely applied in the United States. Florida 

is the leading state in urban reuse, reusing 44% of the total reclaimed water for landscape 

irrigation; while California reuses 21% of the reclaimed water for this purpose.  

 

5.4.1.4 Indirect Potable Reuse 

Indirect potable reuse includes planned indirect potable reuse, such as 

groundwater recharge and unplanned indirect potable reuse, such as discharge of treated 

wastewater to surface or groundwater which is subsequently used for municipal water 

supply (Leverenz et al., 2011). This section mainly discusses groundwater recharge. 

Groundwater recharge can alleviate land subsidence and seawater intrusion in coastal 

areas. It also provides water storage and further treatment for subsequent retrieval and 

reuse of the reclaimed water. Furthermore, groundwater recharge eliminates the need for 

surface storage facilities and the attendant problems associated with uncovered surface 

reservoirs, such as evaporation losses, algae blooms resulting in deterioration of water 

quality, and creation of odors. The US EPA (2004) recommends nutrients and residual 

solids removal for groundwater recharge. The challenges of groundwater recharge 

include extensive land areas for spreading basins, high costs for treatment, water quality 

monitoring, and injection/infiltration facility operations. Moreover, recharge under 

treated wastewater may increase the danger of aquifer contamination while recharge of 

over purified water may expose the water to the exterior contaminants. Not all recharged 
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water can be recoverable due to movement beyond the capture zone of the extraction well, 

or mixing with poor quality groundwater. 

 Major planned indirect potable reuse projects have been carried out in places such 

as Orange County Water District in California and the Occoquan Reservoir in northern 

Virginia (Asano, 2007) in the US and in Singapore as “Newater” (PUB, 2011). Plus, 

aquifer storage and recovery systems are being used in a number of states to overcome 

seasonal imbalances in both potable and reclaimed water projects (EPA, 2004). The two 

leading states, Florida and California use 16% and 15% of the reclaimed water for 

groundwater recharge respectively. 

 

5.4.1.5 Direct Potable Reuse 

Direct potable reuse refers to introducing treated wastewater directly into a water 

distribution system without intervening storage (pipe to pipe) (Cronk and Fennessy, 

2001). Using the reclaimed water to augment potable supply can improve overall water 

supply reliability, especially in coastal or drought areas (Leverenz et al., 2011). Unlike 

non-potable reuses, dual systems for water delivery can be avoided. Plus the direct 

potable reuse systems do not need water spreading or injection systems as the 

groundwater recharge systems. Potential contamination by environmental buffers will not 

be a concern anymore if directly reused for potable purposes. However, the direct potable 

reuse has high requirements for water treatment, which may increase the operational cost. 

Public acceptance is another major barrier for implementing the direct potable reuse 

(EPA, 2004).  
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Planned potable recycling has taken place at Windhoek in Namibia since 1968 

(Anderson, 1996). Additionally, Cloudcroft in New Mexico and Big Springs in Texas in 

the US have recently started reusing water for direct potable use (Tchobanoglous et al., 

2011). In the US, the most extensive research focusing on direct potable reuse has been 

conducted in Denver, Colorado; Tampa, Florida; and San Diego, California. 

 
Figure 5.3 Level of wastewater treatment, associated technologies and effluent 
application. (Each type of line shows a combination of treatment technologies and the 
associated effluent application. For instance, “          ” shows that for a treatment train of 
preliminary treatment, primary treatment, secondary treatment and disinfection, uses such 
as non-food crop irrigation, groundwater recharge of non-potable aquifer, stream 
augmentation and so on were recommended for the treated water.) 
 

5.4.2 Life Cycle Studies 

Although reclaimed water, as an alternative water source, has been recommended 

in many studies, there are not many studies comparing water reuse with other water 

supply options through the life cycle perspective. Spain is the leading country on life 



131 

cycle studies of water reuse (Meneses et al., 2010; Muñoz et al., 2010; Ortiz et al., 2007; 

Pasqualino et al., 2009; Pasqualino et al., 2011). This is partly contributed by the unique 

climate and geographical conditions of the Mediterranean coast and the freshwater 

shortage. When the treated wastewater is discharged into the sea, it cannot be reused 

either directly or indirectly (Ortiz et al., 2007). As a result, water reuse becomes a very 

promising source, which would not be affected by the change of demands. For similar 

reasons, there are also life cycle studies carried out in California (Stokes and Horvath, 

2006) and Arizona (Lyons et al., 2009) in the US.  

 In those life cycle studies, the most commonly assessed environmental impact 

categories include acidification potential, global warming potential, ozone depletion 

potential, eutrophication potential and air emissions. Several studies have included 

embodied energy (Meneses et al., 2010; Muñoz et al., 2010; Pasqualino et al., 2011; 

Stokes and Horvath, 2006) and cumulative freshwater use (Meneses et al., 2010; Muñoz 

et al., 2010; Pasqualino et al., 2011). The calculation method of the embodied energy, 

however, is quite different between the US and the Spanish studies. The US study 

integrated the national economic input-output tables for energy evaluation, while the 

Spanish studies followed traditional process analysis method as presented in Frischknecht 

et al. (2007).  

 The water reuse scenarios, both potable and non-potable, were frequently 

compared to water desalination, conventional potable water production and water 

importation scenarios. Although different system boundaries (Construction phase was 

included in Stokes and Horvath (2006), Lyons et al. (2009), Munoz and Fernandes-Alba 

(2010), but not in Pasqualino et al. (2010), Meneses et al., (2010)), and different system 
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scales were studied (serving population from 5700 to 200,000), all these studies 

recommended reusing treated wastewater against desalination for its lower environmental 

impacts and energy consumption. Ortiz et al. (2007) found the tertiary treatments such as 

ultrafiltration membranes do not increase the environmental loads significantly when 

compared with conventional activated sludge system.  

 Given the potential of water reuse in reducing environmental impacts and water 

scarcity, it is important to evaluate the possibilities and benefits of reusing water through 

LCA considering various technologies, different applications, and different geographical 

and climate conditions. 

 

5.4.3 Challenges  

 One challenge of current water reuse studies is that few studies have linked the 

treatment technology with the desired water quality associated with certain applications. 

Most of time, researchers and industries strive for better treated water quality, but 

neglected the fact that over treated wastewater brings no additional benefits, but higher 

energy consumption and costs. The current major concern of the tertiary treatment is the 

associated cost and energy consumption, and the variability of the effluent quality. Health 

and safety concerns are still the major barriers for broader application of water 

reclamation.     

 Current studies on water reuse are mainly focused on technology improvements, 

reclaimed water applications, reclaimed water quality assessment, environmental and 

health effects of water quality, outcome comparison, ongoing projects introduction, water 

reuse practice in different regions and countries, technical and economic feasibility, water 
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management issues and so on; however, there are not many studies justifying water 

reclamation through life cycle assessments. Although there are various existing and 

ongoing water reuse projects, few had life cycle studies before their implementations.  

 Of the current life cycle studies, the water reuse technologies assessed are 

different, and system scales are also very different. Moreover, the system boundaries 

included in these studies are varied. One study included the wastewater treatment plant as 

part of the water reuse scenario (Lyons et al., 2010), while the others do not. The delivery 

of the reclaimed water needs additional water distribution infrastructure; however, such 

infrastructures were not considered in all these studies. Hence, standard protocol needs to 

be developed for water reuse life cycle studies. Moreover, all these life cycle studies are 

based on certain cases, which can hardly be generalized to other cases based on the 

climate and geographical differences over different regions. There is also a lack of studies 

looking at the contribution of each unit process involved in water reclamation and the 

impact of scale on environmental loads of water use. Most importantly, these studies do 

not link the technologies with the quality and applications of the reclaimed water. As a 

result, these life cycle studies cannot be used as general guidance for the future 

application of water reclamation, which however, is urgently needed in the area.     

 

5.5 Integrated Resource Recovery 

Onsite energy generation, nutrient recycling and water reuse can be integrated in 

wastewater treatment plants to achieve maximal resource recovery as shown in Figure 5.4. 

Although there is integrated resource recovery in practice currently, the related studies 

are rare. In Florida, a state-of-art municipal wastewater treatment plant combines onsite 
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energy generation, nutrient recycling and water reuse. Sludge is first dewatered and 

digested in the anaerobic digester. CHP is then used to generate electricity from the 

digested gases. Biosolids from the digestion is heat dried using residual heat from a 

nearby power plant and sold for land application. Part of the treated water is used for 

agricultural and landscape irrigation. The integrated resource recovery reduces both 

material uses in the wastewater treatment plants, and the energy consumption. As a result, 

the sustainability of the wastewater treatment plants is greatly improved.  

 At this individual utility scale, there are tradeoffs among resource recovery 

methods. For instance, when more biogas is generated from the anaerobic digestion, the 

amount of nutrients that can be recovered through land application is reduced. However, 

there are no studies optimizing the resource recovery via multiple approaches. 

On a community scale, more resource recovery technologies can be applied, but 

the alternatives must be carefully evaluated in order to achieve maximal recovery. For 

instance, it would be beneficial to install heat pump systems when the demand is located 

close to the wastewater treatment plant, but not when the demand is far away. The onsite 

wind energy generation systems might be better located away from the local residents. 

Besides, urine separation systems can only be installed on community scale for nutrient 

recycling. Reclaimed water has to be delivered to the community for toilet flushing, or 

landscape irrigation. Thus, distances between WWTPs and end users have to be 

considered. The up-concentration technique is another example of combining onsite 

energy generation, nutrient recycling and water reclamation on community scales. In this 

technique, wastewater is first up-concentrated through dynamic sand filtration, dissolved 
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Figure 5.4 Integrated energy, nutrients and water recovery from wastewater treatment 
plants. (The red solid arrows show the systems, processes or resources needed for or can 
be generated through a certain product or process. The blue dashed arrows show that 
energy can be saved from fossil chemicals based fertilizer production through nutrient 
recycling and from potable water production through water reuse.) 

 

air flotation, membrane filtration, biological sorption or a combination thereof. Then the 

water is treated with reverse osmosis or ultra-filtration for reuse. On the other hand, the 

concentrated liquid can be digested for energy recovery as well as nutrient recovery 

(Verstraete et al., 2009). Through the above examples, integral design combining onsite 

energy generation, nutrient recycling, and water reuse needs to be carefully evaluated in 

terms of economic and environmental aspects (e.g., carbon footprint) before 

implementation.  

 On a national scale, research and practices on integrated resource recovery in 

WWTPs need to be encouraged through funding, policy instruments, and regulations. 
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5.6 Conclusions 

This paper reviewed the three approaches of resource recovery in wastewater 

treatment plants: onsite energy generation, nutrient recycling and water reuse.  The 

available technologies and applications, life cycle studies, and challenges of each one 

were closely examined.  

 Onsite energy generation has been widely recognized and studied. It provides 

electricity or other forms of energy for convenient onsite use. Some onsite energy 

generation technologies have side benefits such as reducing the organic and inorganic 

loads of wastewater. The major challenges of onsite energy generation technologies are 

large capital costs, lack of reliability and specific requirements for climate conditions and 

locations. Most studies recommending onsite energy generation evaluated the economic 

benefit of the technologies. There is a lack of studies assessing each technology through 

environmental perspective. Future studies on onsite energy generation may seek for low 

cost technologies, easy integration to existing small plants, and integration of different 

energy generation technologies. Moreover, careful feasibility and life cycle studies have 

to be carried out before the implementation of each technology.  

 Nutrient recycling are not widely applied except land application. The most 

common problems for nutrient recycling lie on safety and the technology imperfection. 

Biosolids land application is by far the most widely studied nutrient recycling method. 

However, due to the lack of standard protocols of conducting life cycle studies on 

biosolids management, these studies render very different results. For the other nutrient 

recycling technologies, there is a lack of life cycle studies. Future studies on nutrient 

recycling should focus on public acceptance, the tradeoffs between different technologies 
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over different scales, technology integration for maximal nutrient recovery, as well as 

consistent LCA framework for technology comparison.   

 Water reuse has attracted academic and industrial attentions for a long time. Few 

studies, however, have linked the treatment technology with the desired water quality 

associated with certain applications. Other challenges of water reuse technologies include 

the high cost and energy consumption associated with tertiary treatment, and the 

variability of the effluent quality. Furthermore, there are not many life cycle studies even 

water reuse has been widely implemented. Although the current life cycle studies are 

uniformly in support of water reuse, these studies have very different scales, boundaries, 

and evaluation categories. Future studies on water reuse may pair technologies with water 

quality and applications. Standard requirements on system boundaries, functional unit 

and impact categories have to be established for conducting life cycle assessments on 

water reuse.  
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CHAPTER 6: CARBON NEUTRALITY IN MUNICIPAL WASTEWATER 

TREATMENT SYSTEMS 

 

6.1 Introduction 

Currently, there are around 15,000 wastewater treatment plants (WWTPs) 

operating in the US (EPA, 2008a). These systems use around 3% of the US electricity for 

their operation and maintenance (EPA, 2006). Meanwhile, large amounts of chemicals 

are consumed by these systems to treat the wastewater to the required standards. It has 

been estimated that energy used in the WWTPs comprises around one fifth of a 

municipality’s total energy use by public utilities, and it will continue to rise by 20% in 

the next 15 years with the increasing water consumption and more stringent regulations 

(Means, 2004). Similarly, more materials and chemicals are expected to be consumed in 

the future for WWTPs construction and operation. Because of the large resource 

consumptions in the WWTPs, it is very important to manage the WWTPs in a way that 

can reduce the consumption of finite resources and minimize the environmental loads 

(Lundin and Morrison, 2002).  

 To achieve the new management goals, environmental impacts of the WWTPs 

have to be quantified. Traditionally, researchers evaluate the performance of the WWTPs 

based on treated water quality and costs (Hellström et al., 2000). While such information  

 This Chapter is adapted with permission from “Mo, W., Zhang, Q., 2012. Can municipal wastewater 
treatment systems be carbon neutral? Journal of Environmental Management 112, 360-367”, Copyright 
(2012) Elsevier.  
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satisfies the basic health and economic evaluation needs, it provides insufficient 

information on the environmental impacts associated with constructing and operating the 

WWTPs over their life time. As a result, life cycle assessment, which enables a more 

thorough evaluation of the life cycle environmental impacts, has been adopted during the 

past 15 years for evaluating wastewater infrastructures (Foley et al., 2010; Herz and 

Lipkow, 2002; Lassaux et al., 2007; Lyons et al., 2009; Roeleveld et al., 1997; Stokes and 

Horvath, 2006). Among all the life cycle impact indicators, the embodied energy and the 

associated carbon footprint have been frequently used and shown to be important by 

previous studies (Lundin and Morrison, 2002; Mels et al., 1999). The embodied energy 

indicates the life cycle energy consumption in the WWTPs. It includes the energy used 

onsite of the WWTPs (direct energy), and the energy used indirectly to provide the 

materials, chemicals and services to the WWTPs (indirect energy). The carbon footprint 

includes all the greenhouse gas (GHG) emissions associated with energy and material 

consumptions during the life time of a WWTP.  

 In order to improve sustainability of WWTPs, various researches have been done 

to recover resources in wastewater for secondary uses (Hospido et al., 2005; Houillon and 

Jolliet, 2005; Meneses et al., 2010; Muñoz et al., 2010; Nouri et al., 2006; Ortiz et al., 

2007; Pasqualino et al., 2009; Peters and Lundie, 2001; Suh and Rousseaux, 2002; Wett 

et al., 2007). There are three common ways to recover resources from wastewater: (1) 

onsite energy generation through Combined Heat and Power systems (CHPs), (2) land 

application of the digested sludge, and (3) water reuse for residential irrigation. Studies 

have been carried out to evaluate the environmental benefits of the three methods 

separately. Nouri et al. (2006) and Wett et al. (2007) studied the onsite energy generation 
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of the WWTPs in Iran and Austria. They suggested that the CHPs alone can offset all the 

direct energy use in the WWTPs. Land application of the digested sludge is another way 

of offsetting embodied energy through recovering the wastewater nutrients because it 

reduces the energy needed for producing fossil fuel-based fertilizers (Hospido et al., 2005; 

Houillon and Jolliet, 2005; Peters and Lundie, 2001; Suh and Rousseaux, 2002). WWTPs 

can also offset embodied energy through water reuse because reusing water can save the 

electricity and chemicals needed for supplying water from the raw water sources 

(Meneses et al., 2010; Muñoz et al., 2010; Ortiz et al., 2007; Pasqualino et al., 2009). 

However, the previous studies did not integrate the three methods together to explore the 

potential of integrated resource recovery to offset embodied energy and achieve carbon 

neutrality in the WWTPs from the life cycle perspective. The carbon neutrality hereby 

refers to achieving net zero GHG emissions over the life time of a WWTP. 

 Questions remain to be answered: What is the potential of offsetting embodied 

energy through integrated resource recovery? Can municipal WWTPs be carbon neutral? 

These questions define the goal of this study, which is to evaluate the potential of 

embodied energy offset and the possibility of carbon neutrality in WWTPs through the 

integrated resource (energy, nutrient and water) recovery.  

 

6.2 Methodology 

This section introduces the methods for calculating the embodied energy, the 

carbon footprint associated with the embodied energy, and the offset of embodied energy 

and carbon footprint through different resource recovery options.  
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6.2.1 Embodied Energy  

In this study, embodied energy was calculated for: (1) a whole WWTP; (2) 

resource recovery systems, including CHPs for onsite energy generation, heat drying 

systems for biosolids land application, and water delivery systems for reclaimed water; 

and (3) the resources recovered, including the equivalent value of energy generated from 

CHPs, and equivalent amount of energy saved through biosolids land application and 

water reuse. The operation and the construction phases of all infrastructures were 

considered in the embodied energy calculation. In general, the embodied energy is 

calculated using Equation 6-1. 

CE ε=  (6-1) 

where 

E = embodied energy of the system evaluated, TJ; 

ε = embodied energy intensity of the system evaluated, TJ/$ million or TJ/MG;  

C = expense of the system evaluated, $ million; or output of the system evaluated, 

MG.  

 Table 6.1 provides the equations used for calculating the embodied energy 

associated with operating or constructing each resource recovery system as well as the 

embodied energy that can be saved through resources recovered from these systems. The 

embodied energy was reported in primary energy forms, which includes all the losses 

during the energy production and transmission. The primary energy factors were 

specifically adjusted for Florida following the method provided by the U.S. Energy 

Information Administration (EIA, 1995), and are provided in Table 6.2. The embodied 

energy intensities for the construction and operation of the whole WWTP, the 
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construction of CHP systems (ε1), heat drying systems (ε4), and reclaimed water pipeline 

systems (ε7) and for recovered nutrient (ε6) were calculated using Equations 6-2 and 6-3 

based on a hybrid input-output method (Mo et al., 2010; Mo et al., 2011). A commodity-

by-commodity input-output table containing 424 sectors derived from the 2002 make 

table and use table provided by the Bureau of Economic Analysis (BEA, 2011) was used 

in this study. 

( )∑ ∑∞

= = −−⋅=
1 1 11k

N

j,i ij,i kkkdr εε  (6-2) 

∑ ××=
n nni,ni atariffd 00ε  (6-3) 

In Equations 6-2 and 6-3,  

ε  = total embodied energy intensity of the target sector “t” as indicated in Table 

6.1, TJ/$ output of sector “t”; 

r = adjustment factor for the total embodied energy intensity of the target sector 

“t” based on site specific data (Mo et al., 2011); 

k = stage index; 

N = number of sectors in stage k; 

kk j,id 1−  = direct coefficient from sector “i” at stage k-1 to sector “j” at stage k from 

the commodity-by-commodity input-output table; 

1−kiε  = energy intensity of sector “i” at k-1 stage, TJ/$ output of sector “i”; 

0iε  = direct energy intensity of sector “i” at stage 0, TJ/$ output of sector “i”; 

n = energy supply sector index;  

0i,nd  = direct coefficient from energy supply sector n into sector “i”; 

ntariff  = energy tariff of the energy supply sector n as listed in Table 6.2, TJ/$ 
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energy;  

na  = primary energy factor of energy supply sector n as listed in Table 6.2. 

 
Table 6.1 Methods and equations used for the embodied energy calculation of different 
resource recovery methods 

  
Onsite energy generation Nutrient recycling Water reuse 

Construction 

1ε××××= fCQPE cc
      

(6-4) 
Where 
Ec = Embodied energy in 
constructional phase, TJ; 
P = Power generation potential 
of CHPs, 22.2 kW/MGD (EPA, 
2007); 
Q = Wastewater flow capacity, 
MGD; 
Cc = Unit constructional cost, 
$2039/kW (EPA, 2007); 
f = Conversion factor, 10-6; 
ε1 = Embodied energy intensity 
of the “other engine equipment 
manufacturing” sector, 13.3 
TJ/$ million. 

( ) 421 ε×××××= ffSQKE m
c

 

                                                   (6-7) 
Where 
K = Economy of scales factor, 
$14738.5 (Hendrickson, 2008); 
Q = Wastewater flow capacity, MGD; 
S = Wastewater solid content, kg/MG; 
f1 = Conversion factor, 0.092; 
f2 = Conversion factor, 10-6; 
m = Economy of scales factor, 0.81;  
ε4 = Embodied energy intensity of the 
“other nonresidential construction” 
sector adapted for wastewater systems, 
12.7 TJ/$ million. 

7ε××= cc CQE       (6-10) 

Where 
Q = Reclaimed water flow 
capacity, MGD; 
Cc = Unit constructional cost 
of pipeline obtained from City 
of Tampa Water Department, 
$3.85 million/MGD;  
ε7 = Embodied energy 
intensity of the “other 
nonresidential construction” 
sector adapted for water 
supply systems, 10.9 TJ/$ 
million. 

Operation 

2ε××××= faTQEo
      

(6-5) 
Where 
Eo = Embodied energy in 
operational phase, TJ/year; 
Q = Wastewater flow capacity, 
MGD; 
T = Operating days per year, 
days; 
α = Primary energy factor for 
electricity; 
f = Conversion factor, 10-3; 
ε2 = Energy intensity for 
operating and maintaining 
digesters, 0.76 GJ/MG for 
mesophilic digesters, 1.4 GJ/MG 
for thermophilic digesters (EPA, 
2007). 

5ε×××××= fCTSQE oo
     

(6-8) 
Where 
Q = Wastewater flow capacity, MGD; 
S = Wastewater solid content, kg/MG; 
T = Operating days per year, days; 
Co = Unit operational cost, $96/ton 
(EPA, 2012); 
f = Conversion factor, 10-6; 
ε5 = Energy intensity for operating the 
heat drying system adapted from 
Florida natural gas heat value, 0.12 
GJ/$. 

8ε×××= fTQEo
      

(6-11) 
Where 
Q = Reclaimed water flow 
capacity, MGD; 
T = Operating days per year, 
days; 
f = Conversion factor, 10-3; 
ε8 = The operational embodied 
energy intensity for supplying 
reclaimed water, adapted from 
Mo et al. (2011), 16.1 GJ/MG. 

Saving 

3ε××××= faTQEa
     

(6-6) 
Where 
Ea = Embodied energy saved, 
TJ/year; 
Q = Wastewater flow capacity, 
MGD; 
T = Operating days per year, 
days; 
α = Primary energy factor for 
electricity; 
f = Conversion factor, 10-3; 
ε3 = Energy intensity of energy 
generation, 3.0 GJ/MG (EPA, 
2007). 

6ε×××××= fYTSQEa
     

(6-9) 
Where 
Q = Wastewater flow capacity, MGD; 
S = Wastewater solid content, kg/MG; 
T = Operating days per year, days; 
Y = Current price of biosolids, $50/dry 
ton (EPA, 2012); 
f = Conversion factor, 10-9; 
ε6 = Embodied energy intensity of the 
“fertilizer manufacturing” sector, 76.2 
TJ/$ million. 

9ε×××= fTQEa
      

(6-12) 
Where 
Q = Reclaimed water flow 
capacity, MGD; 
T = Operating days per year, 
days; 
f = Conversion factor, 10-3; 
ε9 = The embodied energy 
intensity for supplying 
freshwater from local sources, 
adapted from Mo et al. (2011), 
40.6 GJ/MG. 
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The energy intensities for operating the CHP systems (ε2), the heat drying systems (ε5) 

and the reclaimed water systems (ε8) as well as for energy generated from the CHP 

systems (ε3) include direct energy only. ε2 and ε3 were obtained from the US 

Environmental Protection Agency (EPA, 2007), ε5 was adapted from the Florida natural 

gas heat value (EIA, 2012) and ε8 were adapted from Mo et al. (2011). The embodied 

energy intensity for reclaimed water, ε9, was also obtained from Mo et al. (2011). It 

considers the embodied energy required for supplying one million gallons of water from 

a surface water source.  

 

6.2.2 Carbon Footprint 

 There are three types of GHG emissions associated with WWTPs: (1) direct GHG 

emissions from all the processes in the plant, such as carbon dioxide emission from the 

activated sludge process; (2) indirect GHG emissions associated with the direct energy 

consumption of the WWTPs; and (3) indirect GHG emissions associated with the indirect 

energy consumption of the WWTPs (Ranganathan et al., 2004). Most of the GHG 

emission protocols do not include the direct GHG emissions because this part of 

greenhouse gases would have been emitted to the atmosphere through the natural process 

of decay anyway (Crawford et al., 2011). Hence, this study only considers indirect GHG 

emissions for the carbon footprint calculation. Four types of energy were considered: coal, 

natural gas, petroleum and electricity. The amount of each type of energy was calculated 

using Equations 6-1, 6-2 and 6-3 for each energy supply sector and adjusted by site 

specific data when available. The carbon emission factor for electricity was calculated 

based on 2005 Florida eGRID data (EPA, 2008b), which includes emissions of carbon 



158 

dioxide, methane and nitrous oxide. 100-year global warming potentials were used for 

methane and nitrous oxide, which are 25 and 298 separately (Forster et al., 2007). The 

carbon emission factors for coal, natural gas and petroleum were calculated based on 

national average values (EPA, 2004). Since the embodied energy calculated was in 

primary energy forms, the carbon emission factors were also adapted to represent the 

GHG emissions per unit of primary energy. Table 6.2 provides the carbon emission 

factors of the four types of energy. Carbon footprint can be calculated using Equation 6-

13. 

∑=
×=

4

1i i,Ci fECF  (6-13) 

where 

Ei = The embodied energy amount of energy type i in primary energy form, TJ; 

fC,i = The carbon emission factor of energy type i, kg CO2e/GJ of primary energy;  

CF = Total carbon footprint, Mg. 

Table 6.2 Primary energy factors and carbon emission factors for four energy types in 
Florida 

Energy 
types 

Primary energy 
factor 

Energy tariff 
(10-3 TJ/$) 

Carbon emission factor (Kg 
CO2e/GJ of primary energy) 

coal  1.13 0.86 78.1 
power 3.45 0.09 48.4 
gas 1.05 0.25 47.7 
petroleum 1.42 0.17 48.6 

 

6.2.3 Embodied Energy and Carbon Footprint Offset 

The embodied energy offset is the net embodied energy saving after extracting the 

amount of embodied energy used for constructing and operating a system from the 

amount of energy that can be produced or saved. In order to combine the constructional 

energy with the operational energy and the saved energy, the life span of each system was 
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incorporated. The life span of the WWTP was assumed to be 100 years (Dixon et al., 

2003; Machado et al., 2007); the life span of the CHP system was assumed to be 5 years 

according to the manufacture quote; the life span of the heat drying system was assumed 

to be 30 years (Gebhart, 1995); and the life span of the reclaimed water pipeline was 

assumed to be 100 years (Mo et al., 2011; Stokes and Horvath, 2006). Similarly, the 

carbon footprint offset is the net GHG emission reduction through the implementation of 

resource recovery systems. The embodied energy and carbon footprint offset were 

calculated using Equation 6-14. 

ocab IT/III −−=   (6-14) 

where  

Ib = Embodied energy or carbon footprint offset, TJ/year for embodied energy or 

Gg/year for carbon footprint;  

Ia = Energy or carbon footprint saved by resource recovery, TJ/year for embodied 

energy or Gg/year for carbon footprint; 

Ic = Embodied energy or carbon footprint of system construction, TJ for embodied 

energy or Gg for carbon footprint; 

T = lifetime of the system, years;  

Io = Embodied energy or carbon footprint of system operation, TJ/year for 

embodied energy or Gg/year for carbon footprint. 

The maximal embodied energy or carbon footprint offset is the net embodied 

energy or carbon footprint saving when the largest potential of onsite energy generation, 

nutrient recycling or water reuse is achieved. The maximal energy produced or saved 

(Ia,max) was estimated using Equation 15. Under maximal recovery condition, Ic and Io in 
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terms of embodied energy were estimated based on the ratio between Ia and Ia,max for each 

recovery method and the associated carbon footprints were estimated using Equation 6-

15. 

( )
( )








×
×

×××
=

reuse  waterfor   w/wI
recycling nutrient for   n/nI

generationenergy  onsite for    FQe
I

cmwa

cmna

m

max,a

γ
  (6-15) 

where 

em = The energy content in primary energy form, 14.67 KJ/g of COD (Shizas, 

2004); 

γ = The COD reduction in the selected wastewater treatment plant, g of COD/L of 

wastewater;  

Q = Wastewater flow in the selected wastewater treatment plant, MGD; 

F = Conversion factor, 1.39 (L·days·TJ)/(MG·year·KJ) 

Ina = The embodied energy saved by replacing fossil fuel-based fertilizers under 

current condition, TJ/year; 

nm = The typical solid content of digested sludge, 100 kg/103 m3 (Asano, 2007); 

nc = The solid content used for nutrient recycling currently in the selected 

wastewater treatment plant, kg/103 m3; 

Iwa = The embodied energy saved by water reuse under current condition, TJ/year; 

wm = the total amount of water treated in the selected wastewater treatment plant, 

MGD;  

wc = The amount of water reclaimed currently in the selected wastewater 

treatment plant, MGD. 
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6.3 Howard Curren Wastewater Treatment Plant 

The Howard F. Curren Advanced Wastewater Treatment System (HCWTP) is a 

state-of-art facility located in the city of Tampa, Florida. It has a design capacity of 96 

million gallons per day (MGD). The average daily flow in the system is 54.2 MGD. 

Figure 6.1 provides the treatment processes included in the system. After the treatment, 

the effluent is suitable not only for discharging directly, but also for public-access reuse. 

The HCWTP involves three recovery processes as shown in Figure 6.2. Electricity is 

generated onsite by burning biogas from anaerobic digester in five 500 kW engine 

generators. After digestion, part of the sludge is heat dried to produce a fertilizer product, 

which then goes to distribution and marketing. The HCWTP has a sludge drying capacity 

of 59 dry tons per day. The biosolids that are not heat dried are applied to agriculture land 

as a soil amendment, but this part of biosolids was not counted for energy offset in this 

study because of the negligible amount and the generation inconsistency. Additionally, 

part of the effluent is reused within the plant and provided to outside customers for 

irrigation or industrial purposes. Current operational and constructional details of the 

HCWTP are provided in Table 6.3. 

 

Figure 6.1 Treatment processes in the Howard Curren Wastewater Treatment Plant 
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Figure 6.2 Embodied energy recovery methods in municipal sewage systems 

 
 

Table 6.3 Current operational and constructional details in the Howard F. Curren 
Advanced Wastewater Treatment Plant 

Parameter Value 
Annual total O&M cost $33.4 million 
Annual electricity cost $5.3 million 
Annual natural gas cost $0.07 million 
Total constructional cost $1.0 billion 

Unit natural gas price (EIA, 2012) $8.7/GJ 
Unit electricity price 10.1 cents/kWh 

COD reduction 275.3 mg/L 
Energy generation from anaerobic 

digestion 36,025 kWh/day 
Dried sludge production rate 2989 tons/year 

Water reuse rate 12.1 MGD 
 

6.4 Results and Discussion 

6.4.1 Embodied Energy of the Current Howard Curren Wastewater Treatment 

Plant 

The embodied energy was calculated for two phases: the operation (maintenance 

included) phase and the construction phase. The annual operational embodied energy of 

the HCWTP was calculated to be 1079 TJ. The percentages of direct energy and indirect 

energy for the operation phase are 61% and 39% respectively. The annual carbon 
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footprint of the operation phase is 53.0 Gg CO2e. The annual constructional energy 

embodiment was calculated to be 114.0 TJ/year. The percentages of direct energy and 

indirect energy for the construction phase are 52% and 48% respectively. The annual 

carbon footprint of the construction phase is 5.7 Gg CO2e. Combining the operation 

phase and the construction phase, the annual total embodied energy of the HCWTP is 

1193 TJ, and the total carbon footprint of the HCWTP is 58.7 Gg CO2e per year.  

 For both embodied energy and carbon footprint, the contribution from the 

operation phase (90%) is significantly higher than the construction phase (10%) from a 

life cycle perspective. Figure 6.3 provides the energy split for the operational and 

constructional embodied energy as well as the associated carbon footprint of each type of 

energy for the HCWTP. Electricity (power) and petroleum represent the largest portion of 

direct energy in the operation phase and construction phase separately. Power and 

petroleum have comparable contribution to indirect energy in both the operation phase 

and the construction phase.  

 

6.4.2 Onsite Energy Generation 

The constructional and operational embodied energy of onsite energy generation 

as well as its annual energy recovery and offset were calculated and provided in Table 6.4. 

Combining the operation phase and the construction phase, a total embodied energy of 

58.4 TJ/year is required to run the CHP system in the HCWTP (91% direct energy and 

9% indirect energy) which is relatively low compared with the amount of energy 

generated by the CHP system. The embodied energy offset through onsite energy 
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Figure 6.3 The energy and carbon emission splits for the operational and constructional 
phases of the Howard F. Curren Advanced Wastewater Treatment Plant 
 

generation is around 22% of the current electricity use during the O&M phase in the 

HCWTP, which is consistent with the percentage provided by the HCWTP. This offset 

accounts for approximately 12% of the total embodied energy of the current HCWTP. 

The carbon footprint offset through onsite energy generation accounts for 8% of the total 

carbon footprint of the HCWTP. Therefore, onsite energy generation is not able to 

completely offset the total embodied energy and the carbon footprint of the HCWTP 

under the current condition.    
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Table 6.4 Embodied energy and associated carbon emission for constructing and 
operating the resource recovery systems, recovery/saving from the recovery systems and 
offsets 

Resource 
recovery 
methods 

Onsite energy 
generation 

Nutrient  
recycling 

Water  
reuse 

Embodied 
energy 

(TJ) 

Carbon 
emission 
(Gg of 
CO2e) 

Embodied 
energy 

(TJ) 

Carbon 
emission 
(Gg of 
CO2e) 

Embodied 
energy 

(TJ) 

Carbon 
emission 
(Gg of 
CO2e) 

Construction 
total 32.6 1.7 183 9 509.2 25.3 
Construction 
annual 6.5 0.34 6.1 0.3 5.1 0.25 
Operation 
annual 51.9 2.51 0 0 71.1 3.44 
Recovery/saving 
annual -204.8 -9.91 -11.4 -0.55 -179.3 -8.86 
Offset annual -146.3 -7.06 -5.3 -0.25 -103.1 -5.16 

 

 According to Equation 6-15, the maximal recoverable energy was estimated to be 

302.2 TJ/year, and the associated carbon footprint saving is around 14.6 Gg of 

CO2e/year. Extracting the constructional and operational energy requirements from the 

recoverable energy, the maximal embodied energy offset per year is around 219.1 TJ, 

with an associated carbon footprint offset of 10.6 Gg of CO2e. Under the maximal onsite 

energy generation scenario, the embodied energy offset is around 33% of the direct 

energy use in the operational phase, and 18% of the total embodied energy. The carbon 

footprint offset is around 12% of the total carbon footprint of the HCWTP. Unlike as 

estimated by Nouri et al. (2006) and Wett et al. (2007), the maximal onsite energy 

generation, however, is not able to offset the direct operational energy of the HCWTP. 

The influent organic loads, flow rate and treatment technologies affect the offset 

potentials of onsite energy generation. Under current flow rate and treatment technology, 
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it would require at least 3 times of the current organic load in order to completely offset 

the direct operational energy of the HCWTP. 

 The potentials to offset embodied energy and carbon footprint through onsite 

energy generation under different wastewater flow capacities were calculated and shown 

in Figure 6.4. Since the embodied energy needed for constructing and operating the CHPs 

is lower than the amount of energy that can be recovered when the flow capacity is above 

5 MGD according to the EPA (2004), it will always be beneficial to implement CHPs for 

embodied energy and carbon footprint offsets. The larger the wastewater flow capacity, 

the higher embodied energy offset can be achieved, but the increase of the offset 

potentials with the increase of water flow capacities are not significant. Generally, for 

WWTPs with similar treatment technology and organic removal rate as the HCWTP, the 

CHPs have the potential to offset around 18% of the total embodied energy and 12% of 

the total carbon footprint.    

 Overall, onsite energy generation provides the most direct way for energy 

recovery under current condition; however, the embodied energy and carbon footprint 

offsets that can be achieved are limited. It is not able to completely offset the direct 

energy use in the HCWTP, not saying the total embodied energy and the associated 

carbon footprint.  

 

6.4.3 Nutrient Recycling 

The constructional and operational embodied energy of the nutrient recycling as 

well as its annual energy saving and offset were calculated and provided in Table 6.4. 
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Figure 6.4 The percentages of embodied energy and carbon footprint offsets of onsite 
energy generation under different wastewater flow capacities 
 

One thing to be noted, according to Equation 6-8, the HCWTP needs an annual 

operational energy of around 33.0 TJ to fire the heat drying system and the associated 

carbon footprint is around 1.57 Gg of CO2e. The operation of the heat drying system has 

a higher embodied energy compared with the construction. Running a heat drying system 

yields an annual total embodied energy requirement of 39.1 TJ (92% direct energy and 

8% indirect energy), and an annual carbon footprint of 1.87 Gg of CO2e, which would be 

greater than the energy that can be saved from land application of the dried sludge. In 

reality, however, the HCWTP utilizes exhaust heat from a power generation plant for 

heat drying the digested sludge. As a result, the operational energy of the heat drying 

system and the associated carbon footprint render zero. Under such condition, nutrient 

recycling has the potential to offset embodied energy and carbon footprint; however, such 

offsets are not onsite. Hence, the benefit of nutrient recycling is on a broader scale and is 

less realized by the WWTPs especially without proper policy and strategies to encourage 
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such practices. The embodied energy offset through nutrient recycling is around 0.4% of 

the total embodied energy of the HCWTP, which is much lower than onsite energy 

generation. The carbon footprint offset through nutrient recycling is also around 0.4% of 

the total carbon footprint of the HCWTP.    

 According to Equation 6-15, the maximal amount of energy that can be saved 

from nutrient recycling was calculated to be 28.5 TJ/year, with an associated carbon 

footprint saving of 1.38 Gg of CO2e. Considering the constructional embodied energy 

under this scenario, the embodied energy offset is around 22.4 TJ/year, which is 2% of 

the total embodied energy of the current HCWTP. The carbon footprint offset could be 

1.08 Gg of CO2, which is also around 2% of the carbon footprint of the current HCWTP. 

Under the maximal recycling condition and using exhaust heat for the heat drying, the 

offset potential of nutrient recycling is still very low.  

 The potentials to offset embodied energy and carbon footprint through nutrient 

recycling under different wastewater flow capacities were calculated. Without residue 

heat available, the embodied energy that can be saved from replacing fossil fuel-based 

fertilizers is not able to offset the total embodied energy under all flow capacities. Even 

when residue heat is available, the embodied energy and carbon footprint offset potentials 

are very low as shown in Figure 6.5. The variance of the offset potentials under different 

flow capacities is very small. 

 Overall, nutrient recycling through heat dried sludge has very limited benefits and 

very low potential to offset the total embodied energy and the associated carbon footprint. 
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Figure 6.5 The percentages of embodied energy and carbon footprint offsets of nutrient 
recycling under different wastewater flow capacities 
 

6.4.4 Water Reuse 
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 According to Equation 6-15, the maximal amount of energy that can be saved 

from water reuse was calculated to be 803.2 TJ/year, and the associated carbon footprint 
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condition, the embodied energy offset accounts for 70% of the HCWTP’s direct 

operational energy, and 39% of the total embodied energy. The maximal embodied 

energy and carbon footprint offsets of water reuse are higher than that of onsite energy 

generation and nutrient recycling. However, it is still not able to offset even half of the 

total embodied energy of the HCWTP. 

 The potentials to offset embodied energy and carbon footprint through water 

reuse under different wastewater flow capacities were calculated and shown in Figure 6.6. 

The embodied energy associated with purple pipeline system construction per year is 

relatively low when compared with the embodied energy associated with the system 

operation. The energy needed for operating the water reuse systems is around 40% of the 

energy that can be saved from reusing water. The offset potential of water reuse increases 

with the water reuse capacity, but water reuse alone can never offset either direct 

operational energy or total embodied energy regardless of the flow capacities. Generally, 

for WWTPs with similar reuse applications as the HCWTP, water reuse has the potential 

to offset around 37~41% of the total embodied energy and 36~40% of the total carbon 

footprint.    

 Overall, water reuse has the highest offset potential, but it is not able to 

completely offset the total embodied energy and associated carbon footprint under 

different flow capacities.  

  

6.4.5 Integrated Resource Recovery  

In sum, the HCWTP currently has a total embodied energy of 1193 TJ/year, and 

an annual carbon footprint of 58.7 Gg of CO2e.  If the HCWTP does not have any of the 
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Figure 6.6 The percentages of embodied energy and carbon footprint offsets of water 
reuse under different wastewater flow capacities 
 

current recovery practices, it will have an annual embodied energy of 1319 TJ, with an 

associated carbon footprint of 64.8 Gg of CO2e.  

 Under the maximal energy recovery/saving condition, the total embodied energy 

offset is 729.8 TJ/year, which is around 110% of the direct operational energy and 61% 
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(combining all three resource recovery methods) is able to offset all the direct operational 

energy, but not able to offset the total embodied energy of the current HCWTP. The total 

carbon footprint offsets would be 35.1 Gg of CO2e, which can offset all the GHG 

emissions associated with the direct energy use in the operational phase, and 57% of the 
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energy recovery methods studied in this paper if the GHG emissions associated with 

materials and chemicals are also included.   

    

6.5 Conclusions 

From the case of the HCWTP in this study, the energy produced onsite through 

the CHPs alone is not able to supply all the direct operational energy even under the 

maximal energy generation. On the other hand, if nutrient recycling and water reuse are 

both integrated, the combined benefits of the three resource recovery methods have the 

potential to offset the direct operational energy and the associated carbon footprint. The 

total embodied energy and the associated carbon footprint, however, still cannot be offset 

by combining these three methods even under maximal recovery condition.  

 Onsite energy generation has the highest offset for the HCWTP currently, 

followed by water reuse and nutrient recycling. Under the maximal recovery scenario, 

however, water reuse has the highest potential to offset the embodied energy and the 

associated carbon footprint, while onsite energy generation comes to the second and 

nutrient recycling as the last.  

 Generally, nutrient recycling through heat dried sludge does not have embodied 

energy and carbon offsets because of the large operational energy consumption. If residue 

heat is available for heat drying, nutrient recycling through sludge land application might 

be beneficial. Thus, complete and comprehensive studies have to be carried out before 

using heat drying for nutrient recycling.   

 The amount of energy that can be generated onsite is highly dependent on the 

organic load of the wastewater, the embodied energy that can be saved through nutrient 
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recycling is highly dependent on the nutrient loads of the wastewater and the embodied 

energy that can be saved through water reuse is highly dependent on the reclaimed water 

flow. The current organic, nutrients loads and the reclaimed water flow in the HCWTP 

are not high enough to offset the total carbon footprint through integrating onsite energy 

generation, nutrient recycling and water reuse. However, it is still possible to achieve 

carbon neutrality in wastewater systems through other supplementary strategies, such as 

reducing energy and material uses onsite, implementing other technologies such as onsite 

wind and solar power generation. 
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CHPATER 7: REGIONAL EMBODIED ENERGY IN WATER SUPPLY: THE 

IMPACTS OF WATER SOURCE, LAND USE AND POPULATION 

 

7.1 Introduction  

Water and energy are two interrelated resources. Providing water and wastewater 

treatment services consumes a large amount of energy (4% of the US electricity directly 

used for pumping and treating water), and providing energy requires a large amount of 

water for cooling (39% of the US freshwater withdrawal) and processing. Because of the 

reinforcing relationship between water and energy, water stressors do not only impact 

water resources but also energy resources.  

Not only the amount of water withdrawn but also the quality of water will affect 

energy use in water supply. When water demand increases, more energy is needed to 

pump and treat the larger quantity of water to meet the demand. Capacity expansion 

might be necessary or new systems have to be constructed. On the other hand, when 

water quality decreases, more energy is needed for treating the lower quality water. 

Sometimes, a water source shift is necessary when the available freshwater quantity or 

quality is improper for potable water supply. A previous study has shown that energy 

requirement generally differs for different water sources (Mo et al., 2011). Desalination is 

the most energy intensive water supply option, while surface water supply and 

groundwater supply are comparatively less energy intensive (Mo et al., 2011).  
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Water quantity and quality are further affected by water stressors, such as 

population, economic development, land use change and climate change. Many studies 

have projected the correlations between the water stressors and water quantity and quality. 

Population growth, especially in the urban areas, is shown to have a significant impact on 

water demand and intensify local water stress (Arnell, 2004; Meigh et al., 1999; Sun et al., 

2008; Vörösmarty et al., 2000). Population growth also impacts water quality by 

diminishing the return flow to the water body and impairing the self-cleaning abilities of 

the water bodies (Ehrlich and Holdren, 1971). Population distribution, on the other hand, 

affects the distribution of water pipeline networks. When population is more distributed, 

pipeline intensity for supplying the same amount of water would be higher and vice versa.  

Economic development introduces new technologies and products, which could 

potentially change the physical and chemical characteristics of water. For example, water 

discharge from the power plants changes the temperature of local water body. Disposal of 

pharmaceuticals and pesticides changes the chemical composition of water bodies. 

Economic development also induces uneven resource distribution and overconsumption 

in the well-developed regions, which also increases the stress on water quantity. 

Climate change is shown to have impact on both water quantity (Arnell, 2004; 

Meigh et al., 1999; Sun et al., 2008; Vörösmarty et al., 2000) and quality (Whitehead et 

al., 2009). It affects water resources mainly through changes of precipitation, evaporation, 

flows, runoff, temperature and ability of watersheds to assimilate pollutants (Gleick, 

2000). Arnell (2004) and Vorosmarty et al. (2000) stated minor impact of climate change 

on water quantity and quality globally compared with population growth. On the other 
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hand, Sun et al. (2008) reported that climate change has the major impact on regional 

water demand and supply in the southeastern US.  

Studies have also shown a significant relationship between land use and water 

quality (Johnes and Heathwaite, 1997; Lenat and Crawford, 1994; Sliva and Dudley 

Williams, 2001; Tong and Chen, 2002) and quantity (Claessens et al., 2006; Foley et al., 

2005). Theoretically, land use would affect water quantity and quality because runoffs 

from the agricultural land use would have higher nutrient contents while runoffs from the 

urban land use normally have higher organic and inorganic contents. It has been proven 

that agricultural and impervious urban lands produce a much higher level of nitrogen and 

phosphorus than other land surfaces (Lenat and Crawford, 1994; Tong and Chen, 2002). 

On the other hand, one study has shown that impacts of land use are less significant than 

population and climate change (Sun et al., 2008).  

Although the relationships between the water stressors and water quantity and 

quality have been widely studied, there have been very limited studies linking the water 

stressors to the water-related energy consumption. Studies have mentioned the increase in 

energy use of water supply due to population growth and climate change (Dinar, 1994; 

Vieira and Ramos, 2009), but no researches have been carried out to quantify the 

relationship between the water stressors and energy use in water supply. While these 

water stressors have changed at an accelerating rate over the past 100-150 years and will 

continue to change rapidly in future (Zimmerman et al., 2008), it is important to 

understand water-related energy consumption on regional scales in order to provide 

guidance for future planning.  
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Hence, this study aims at quantifying the relationship between the water stressors 

and the energy use in water supply. The concept of “embodied energy” or “life cycle 

energy” has been used to indicate energy used both directly for pumping and treatment 

processes, and indirectly for providing the materials over the life time of a water 

infrastructure. 

 

7.2 Methodology 

7.2.1 Indicator Selection 

In this study, the correlations between water stressors and energy use in water 

supply were studied on county level for a selected state in the US. Among the major 

water stressors, population and land use were selected for this study. Water source was 

also selected as an indicator because it impacts the amount of energy needed for water 

treatment and delivery. Climate change and economic development were not considered 

in this study because these two stressors do not vary significantly in the selected state. 

For each selected water stressor, specific indicators were chosen for quantitative analysis. 

Table 7.1 provides the indicators selected for each water stressor as well as their data 

sources for the selected state.  

Total population (P) and population density (Pd) were used to indicate population 

growth and population distribution respectively. Percentages of both urban land (Lu) and 

agricultural land (La) were selected to represent the land use situation of each county. 

Land cover in the selected state was classified into 19 categories (NCCGIA, 1997a). 

Among the 19 categories, the “high intensity developed land” and the “low intensity 

developed land” were included as urban land, while the “cultivated land” and the 
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“managed herbaceous cover” were included as agricultural land. To indicate the 

differences of water source among each county, only the percentage of surface water 

supply (ws) was used as an indicator in this study because the selected state only has two 

main water sources: groundwater and surface water.  

Table 7.1 Indicators and sources for population, land use and water source 
Category Population Land use Water source 

Indicators 

Total 
population (P) 
(Number) 

Percentage of urban 
land (Lu) (%) 

Percentage of groundwater 
supply (wg) (%) 

 

Population 
density (Pd) 
(Number·acre-

1) 

Percentage of 
agricultural land (La) 
(%) 

Percentage of surface water 
supply (ws) (%) 

   

Percentage of desalinated 
water supply (wd) (%) 

   

Percentage of reclaimed 
water supply (wr) (%) 

Data source US Census 
(USCB, 2012) 

NC Land Cover Data 
(NCCGIA, 1997b) 

NC GIS Database 
(NCREDC, 2000) 

 

7.2.2 Application of Geographical Information System 

The Geographical Information System (GIS) was used in this study to show the 

distribution of water stressors, provide land use and water infrastructure information, and 

assist embodied energy calculation. GIS is a computer system capable of storing and 

providing data describing the earth’s surface (Juahir et al., 2010). It provides spatial 

information describing location and shape of structures and landscapes. It also stores 

other descriptive information relating each feature and each object on the map. Studies 

have revealed that for a large geographic area, a GIS might be the only tool that has the 

ability to handle the different subsystems and their physical traits (Bakhshi and 

deMonsabert, 2009).  
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 In this study, the land use and water infrastructure information were originally 

obtained for the whole state. In order to extract data and calculate indicator values for 

each county, a layer of county boundary was obtained from the US census TIGER 

database (USCB, 2012) and the function of “split” was used in the ArcMap 10. After the 

land use indicators and embodied energy were calculated for each county, they were 

added to the attribute table of the county boundary layer along with the population and 

water source indicators. As a result, all information can be visually displayed in GIS for 

comparison and further calculation.  

 

7.2.3 Embodied Energy Calculation 

Embodied energy in this study was calculated as the product of embodied energy 

intensity (TJ of embodied energy in primary energy form/$ million) and the associated 

cost as shown in Equation 7-1. This study incorporated the embodied energy intensities 

estimated in Chapter 4 instead of the national averaged energy intensities for the 

economic sectors. Chapter 4 provided the embodied energy intensities of a groundwater 

supply systems and a surface water supply system through an input-output based hybrid 

analysis approach. Most of the North Carolina groundwater supply systems apply simple 

disinfection for treatment, which is the same as the groundwater supply system studied in 

Chapter 4. Moreover, most of the North Carolina surface water supply systems use 

conventional treatment process, including coagulation, sedimentation, filtration and 

disinfection, which is also very similar as the surface water supply system studied in 

Chapter 4. Hence, although these two systems were located in different geographical 

places, embodied energy intensities calculated in Chapter 4 were considered more 
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accurate than national averaged energy intensities because they better represents the 

differences between the two types of water systems. Table 7.2 provides values of the 

energy intensities used in this study. Embodied energy of the operation phase and the 

construction phase was calculated separately. A life span of 100 years was applied 

regarding the construction phase. 

∑ ×= ii eCE  (7-1) 

where 

E = The total embodied energy of the water supply systems of a selected county 

per year, TJ/year; 

Ci = The cost of the construction phase or the operation phase on year basis; 

$ million/year;  

ei = The embodied energy intensity of the construction phase or the operation 

phase in primary energy forms; TJ/$ million. 

Table 7.2 The energy intensities for operating and constructing the groundwater and 
surface water supply systems 

Water source 
Operation and 
Maintenance 
(TJ/$ million) 

Construction 
(TJ/$ million) 

Groundwater supply 24.8 11.1 
Surface water supply 15.8 10.9 

 

 Constructional and operational costs were calculated for different types of water 

supply infrastructures, including water intake infrastructures (wells for groundwater 

supply and exposed tower for surface water supply), pumping stations, pipelines, water 

treatment plants and storage tanks. Cost equations and their sources were provided in 

Table 2.4 in Chapter 2. The operational cost for water delivery was included as the 
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operation of pipeline instead of pumping stations. Operational costs for the storage tanks 

were neglected.  

 

7.2.4 Correlation Analysis 

A correlation analysis was performed to determine if and to what degree the 

indicators are linearly related with each other. This study utilizes Pearson correlation 

coefficients to indicate the strength and direction of the correlations between the 

indicators. Unlike other correlation coefficients, the Pearson correlation coefficient is 

sensitive only to the linear relationship between two variables; even they are non-linearly 

related with each other (Aitken, 1957; Croxton and Cowden, 1939; Dietrich, 1991). The 

Pearson coefficients range from -1 to 1. Values closer to 1 indicate stronger positive 

correlation, while values closer to -1 indicate stronger negative correlation. Values closer 

to 0 indicate weaker correlation. The Pearson correlation coefficients were calculated 

using the open sourced R software through Equation (7-2).  

∑ ∑∑ ∑∑ ∑ ∑ −−−= )/)()(/)((/))/(( 2222 nvvnvvnvvvvr jjiijiji  
(7-2) 

where 

vi,vj = Any two indicators of the five selected indicators: P, Pd, Lu, La and ws; 

n = Number of total datasets;  

r = the calculated Pearson correlation coefficient.  

 As there are no hard rules to determine the strength of the Pearson correlation, 

this study adopts the following guidelines (Shortell, 2001): 45.00 ≤≤ r  weak correlation; 

75.045.0 ≤< r  fair correlation; and 175.0 ≤< r  strong correlation. 
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7.2.5 Regression Analysis 

In order to establish a regression model between the indicators and the embodied 

energy of water supply, the R software was used. Initial values of the variables (the 

indicator values) were normalized in order to avoid bias associated with the scale 

differences among the datasets. Equation 7-3 was used for the normalization.  

sXxxf /)()( −=  (7-3) 

where, 

  x = Original data; 

 f(x) = Transformed data after normalization; 

X = Average of the original dataset; 

  s = Standard deviation of the original dataset. 

 The first attempt was to establish a linear regression model. If the linear 

regression did not work, then non-linear regression would be applied. In order to 

establish a linear regression model, the variables have to be selected based on their 

significance. There are two kinds of stepwise selection, forward selection and backward 

selection. In forward selection, one variable is included at each step; but it has drawbacks. 

One important drawback of this approach is that in the process, one or more of already 

included variables may become non-significant (Myers, 1990). Hence, backward 

selection was used in this study. The backward selection started with fitting a model with 

all the variables. Then the least significant variable is dropped if it does not meet the 

chosen critical level (smallest Akaike Information Criterion (AIC) value of all variables). 

The same rule was applied until all remaining variables are statistically significant. AIC 

is generally used as a measure of the relative goodness of fit of a regression model 



186 

(Akaike, 1974). It can be interpreted using Equation 7-4. In this study, the stepwise 

selection stops when AIC value is equal to Mallow’s Cp. Mallow’s Cp is commonly 

served as the stopping rule for the stepwise regression. Equation 7-5 explains the 

calculation of Mallow’s Cp (Mallows, 1973). 

)ln(22 LpAIC −=  (7-4) 

where 

AIC = Akaike Information Criterion value; 

p = Number of free variables in the regression model;  

L = The maximized value of the likelihood function for the regression model. 

)1(2/ ++−= pnMSSSCp resres  (7-5) 

where 

Cp = Value of Mallow’s Cp; 

SSres = The residual sum of squares for the model with p variables;  

MSres = The residual mean square when using all available variables. 

 After the regression model was established, a leave-one-out cross validation was 

carried out to test the model’s capability of embodied energy prediction. The leave-one-

out cross validation was also performed in the R software. Leave-one-out cross validation 

is usually used for validating small datasets (Cawley and Talbot, 2003). It involves using 

one observation as the validation data and the rest as the training data each time. This 

process was repeated for all the observations. The leave-one-out cross validation uses 

data most efficiently, but it can be computationally expensive for large datasets. Sum 

square, mean square, F value and Pr value were given to interpret the variance and 

significance of each variable. Pr values especially show the probability that an effect at 



187 

least as extreme as the current observation has occurred by chance (Hennekens et al., 

1987). Pr values smaller than 0.05 were considered as significant in this study. 

Additionally, a figure was drawn with predicted embodied energy value as x-axis and 

actual embodied energy value as y-axis for all the observations. The fitness of all 

observation points to the line of y=x (actual embodied energy values = predicted 

embodied energy values) was examined. The R squared value was calculated and used to 

show the regression model’s capability of prediction. The R squared value above 0.7 was 

considered to indicate a strong prediction capability of the regression model.  

 

7.3 Case Study 

The state of North Carolina was selected for this study because it has the most 

sufficient water supply infrastructure data which are required for the embodied energy 

estimation. North Carolina belongs to the southeast climate region (Karl et al., 1984). 

Climate of this region is uniquely warm and wet, with mild winters and high humidity, 

compared with the rest of the continental United States (Karl and Melillo, 2009). 

Geographical Information System (GIS) data on water supply infrastructures were 

complete for 77 counties out of 100 counties in North Carolina. Some counties in mid-

North Carolina and east North Carolina, such as Rockingham, Guilford, Alamance, 

Person, Orange, Wake, Pamlico do not have (complete) data. Figure 7.1 shows the 

distributions of water infrastructure among the counties in North Carolina, as well as the 

counties lack of or without infrastructure data.  
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Figure 7.1 The distribution of water infrastructure among the counties in North Carolina 
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Figure 7.2 provides the total population and population density distributions in 

North Carolina. Distributions of population and population density are slightly different, 

especially in the southeast part of the state. Overall, population is more concentrated in 

the counties at the middle of the state than the east or west part of the state.  

 
(a) 

 
(b) 

 
Figure 7.2 The total population and population density distribution in North Carolina. (a) 
distribution of population among the counties in North Carolina, and (b) distribution of 
population among the counties in North Carolina in unit of acre-1 
 

 Figure 7.3 provides the distributions of percentages of urban land and percentages 

of agricultural land among the counties in North Carolina. Counties in the middle of the 
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state have more urban land, and counties surrounding these highly urbanized counties 

have more agricultural land.  

 
(a) 

 
(b) 

 
Figure 7.3 The percentage of urban land and the percentage of agricultural land of the 
North Carolina. (a) distribution of urban land percentage among the counties of North 
Carolina, and (b) distribution of agricultural land percentage among the counties of North 
Carolina 
 

 Figure 7.4 provides the distribution of surface water percentages in North 

Carolina. The figure shows that west of the state is dominated by surface water sources, 

while southeast of the state is dominated by groundwater sources. This is consistent with 

Figure 7.1, which shows the surface water intake structures are mostly concentrated in 
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west North Carolina while the groundwater wells are more concentrated in east North 

Carolina. 

 
Figure 7.4 The distribution of surface water percentages in North Carolina. 

 

7.4 Results and Discussion 

7.4.1 Embodied Energy of Different Water Supply Infrastructures  

Embodied energy for each type of water supply infrastructure was calculated for 

each county and provided in Figure 7.5. Figure 7.5(a) provides the distribution of 

embodied energy in well construction and operation. Embodied energy in operating and 

constructing wells is concentrated in the east North Carolina, which is consistent with the 

water source distribution. Counties with high embodied energy in operating and 

constructing wells include Robeson, Craven, Moore, Pitt, Lenoir, Duplin, Onslow, 

Carteret and Dare. 

Figure 7.5(b) provides the distribution of embodied energy in surface water intake 

infrastructure construction and operation. Unlike the distribution of embodied energy in 

well construction and operation, embodied energy in surface water intake infrastructure 

construction and operation is mainly concentrated in the west North Carolina. This is also 

consistent with water source distributions as shown in Figure 7.4. Counties with high 
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embodied energy in surface water intake infrastructure construction and operation include 

Surry, Forsyth, Davie, Chatham, Haywood, Rutherford, Cleveland and Harnett.  

 Figure 7.5(c) provides the distribution of embodied energy in operating and 

constructing pumping stations, pipes and water storage tanks. Embodied energy is more 

evenly distributed among the counties compared with wells and surface water intake 

infrastructures. It shows that water demand is more evenly distributed among the counties 

in North Carolina. Moreover, the result is also consistent with the population and land use 

patterns in North Carolina. Counties with high embodied energy in constructing and 

operating pumping station, pipes and water storage tanks include Burke, Forsyth, 

Robeson and Brunswick. 

 Figure 7.5(d) provides the distribution of embodied energy in treatment plant 

construction and operation. The distribution of embodied energy in treatment plant 

construction and operation is also very evenly distributed among the counties in North 

Carolina, but the distribution pattern is different from the distribution of embodied energy 

in pumping stations, pipes and water storage tanks. Counties with high embodied energy 

in treatment plant construction and operation include Forsyth, Mitchell and Stokes.   

 According to the ranges of embodied energy in different water infrastructure 

types, water distribution has the highest embodied energy followed by water treatment. 

Water intake infrastructures have the lowest embodied energy. Surface water intake 

infrastructures have a wider range of embodied energy consumption than wells in North 

Carolina, because they are more concentrated in certain counties, and the capacity of 

surface water intake infrastructures is much higher compared with wells.   
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(a) 
 

 

(b) 
Figure 7.5 Distribution of annual embodied energy in operating and constructing wells, 
surface water intake infrastructures, pumping stations, pipes, water storage tanks and 
water treatment systems. (a) distribution of embodied energy in operating and 
constructing wells among the counties in North Carolina in unit of TJ/year; (b) 
distribution of embodied energy in operating and constructing surface water intake 
infrastructures among the counties in North Carolina in unit of TJ/year; (c) distribution of 
embodied energy in operating and constructing pumping stations, pipes and water storage 
tanks among the counties in North Carolina in unit of TJ/year; and (d) distribution of 
embodied energy in operating and constructing water treatment plants among the 
counties in North Carolina in unit of TJ/year.   
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(c) 
 

 

(d) 
 

Figure 7.5 (continued).   
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 At last, embodied energy in different types of water infrastructures as listed in 

Figure 7.5 was combined. Figure 7.6 provides the distribution of total embodied energy 

of water supply in North Carolina. According to Figure 7.6, counties with the highest 

total embodied energy are Forsyth and Burke, while Buncombe, Johnston, Pitt, Craven, 

Brunswick and Robeson come to the next. The infrastructures contributed to high total 

embodied energy in water supply in Forsyth are water treatment plants and water 

distribution networks. This is consistent with the high total population, population density 

and urban land percentage in Forsyth. On the other hand, Burke has a high embodied 

energy mainly because of pipeline operation and construction. Total population, 

population density, and percentage of urban land in Burke are not very high. Hence, the 

extremely large pipeline operation and construction might be caused by its specific 

geographical conditions. Burke has large elevation variances within the county because it 

is on the edge of the Appalachian Mountains (Geology, 2012). Hence, this extreme case 

is eliminated in correlation analysis and regression analysis.  

 
Figure 7.6 Distribution of embodied energy in North Carolina 
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7.4.2 Correlation Analysis   

Table 7.3 provides the Pearson correlation coefficients between the five indicators. 

According to Table 7.3, coefficients between total population, population density and 

percentage of urban land are larger than 0.75. Thus, they have strong positive correlations 

between each other. Both percentage of agricultural land and percentage of surface water 

supply, on the other hand, show weak correlations with other indicators. The correlation 

analysis shows that not all the selected indicators are independent. Hence, a further 

selection process is needed when doing the regression analysis. 

Table 7.3 Pearson correlations between the indicators of total population, population 
density, percentage of urban land, percentage of agricultural land and percentage of 
surface water supply 

Pearson 
correlation 
coefficient 

P Pd Lu La ws 

P 1.000 0.892 0.805 0.229 0.265 

Pd 0.892 1.000 0.896 0.249 0.375 

Lu 0.805 0.896 1.000 0.179 0.324 

La 0.229 0.249 0.179 1.000 -0.178 

ws 0.265 0.375 0.324 -0.178 1.000 

Indicators with strong correlations are highlighted in green. 

 

7.4.3 Regression Analysis 

Table 7.4 provides the mean and standard deviation values for all the indicators 

and the embodied energy of water supply datasets. Total population has the highest 

standard deviation, and embodied energy comes to the next. It indicates that total 
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population and embodied energy datasets have large variances from the means. On the 

other hand, population density, percentage of urban land, percentage of agricultural land 

and percentage of surface water only have small variances from the means.  

Table 7.4 Mean and standard deviation of all the indicator datasets and the embodied 
energy of water supply dataset 

Variables P Pd Lu La ws ee 

Mean 60602.9 
1.9E-

01 
1.2E-

02 
2.5E-

01 5.3E-01 404.8 

Stdev 58481.4 
1.8E-

01 
1.3E-

02 
1.3E-

01 4.7E-01 564.7 
 

 Means and standard deviations listed in Table 7.4 were used to normalize the 

datasets using Equation 7-3. After all datasets were normalized, a backward selection was 

applied. After the backward selection, population density and percentage of agricultural 

land were eliminated from the linear regression model. The elimination of population 

density can be explained by the correlation analysis that it is highly correlated with total 

population and percentage of urban land. On the other hand, percentage of agricultural 

land is eliminated because it is not strongly correlated with embodied energy. Agriculture 

irrigation mainly relies on freshwater withdrawal; hence, it does not directly impact the 

embodied energy of water supply. The water quality deterioration resulted from fertilizer 

and pesticides use may not impact the water treatment to an extent to change the 

treatment technologies. The function of natural environmental buffer might have also 

reduced the impacts of agriculture on water quality. According to Table 7.3, percentage 

of surface water supply also has a weak correlation with the embodied energy; however, 

theoretically water source is correlated with the embodied energy of water supply 

because it determines the treatment technologies. This theoretical correlation was proven 

to be true in the regression model, although the impact of the water source is small 
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compared with total population and percentage of urban land. Part of the reason is that 

embodied energy intensities in supplying groundwater and surface water do not vary a lot 

on volumetric basis.  

After the backward selection, a linear regression model was established, and it is 

provided in Equation 7-6.  

dwfcLfbPfaeef su +⋅+⋅+⋅= )()()()(   (7-6) 

where, 

f(ee) = Normalized embodied energy of water supply data; 

f(P) = Normalized total population data; 

f(Lu) = Normalized percentage of urban land data; 

f(ws) = Normalized percentage of surface water supply data; 

a = Linear regression factor a, 4.18×10-1; 

b = Linear regression factor b, 5.36×10-1; 

c = Linear regression factor c, -1.48×10-1;  

d = Linear regression factor d, -1.65×10-5. 

 

7.5 Model Validation 

After the regression model was established, leave-one-out cross validation was 

carried out in the R software. Table 7.5 provides the sum square, mean square, F value 

and Pr value for all the selected indicators and residuals during the leave-one-out cross 

validation. Total population has the largest variance, while percentage of surface water 

supply has the smallest variance according the sum square and mean square values. The 

Pr values of all the selected indicators are smaller than 0.05, which shows all the selected 
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indicators are statistically significant. Figure 7.7 further provides the comparison between 

actual embodied energy and predicted embodied energy for all the observations. All the 

data points falling on the line as shown in Figure 7.7 are with equal x-axis and y-axis 

values, which mean the predicted embodied energy values equal the actual embodied 

energy values. The R squared value was calculated to be 0.76. It shows that the 

regression model has a good prediction capability.  

Table 7.5 Sum square, mean square, F value and Pr value for all the selected indicators 
and residuals during the leave-one-out cross validation 

Variables Sum 
Square 

Mean 
Square F value Pr(>F) 

P 49.1 49.1 195.59 < 2e-16 
Lu 6.3 6.3 25.2 3.60E-06 
ws 1.5 1.5 5.84 0.018 
residuals             18.1 0.3     

 

 
Figure 7.7 Comparison between actual embodied energy and predicted embodied energy 
for all the observations 
 

7.6 Conclusions 

This study examined the correlations between population, land use and water 

source indicators and the embodied energy of water supply in North Carolina. Embodied 
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energy of well construction and operation is concentrated in east North Carolina, while 

embodied energy of surface water intake infrastructure construction and operation is 

concentrated in west North Carolina. This is consistent with water source distribution. 

Other types of water infrastructure are more evenly distributed. Overall, water 

distribution consumes the highest amount of embodied energy, while water treatment 

plant comes to the next. Water intake infrastructures consume least embodied energy, 

while surface water intake infrastructures consume more energy than wells. Counties 

with the highest total embodied energy are Forsyth and Burke, while Buncombe, 

Johnston, Pitt, Craven, Brunswick and Robeson come to the next.  

In the correlation analysis, it was found that total population, population density 

and percentage of urban land have strong correlations between each other, but percentage 

of agricultural land and percentage of surface water supply do not have strong 

correlations with the rest of the indicators.   

 In the regression analysis, total population, percentage of urban land and 

percentage of surface water supply were selected through a backward selection process as 

statistically significant. A linear regression model was established after the backward 

selection. The cross validation of the model shows that the model has a good prediction 

capability.  

 This study is a preliminary attempt to describe the embodied energy of water 

supply by indicators of population, percentage of urban land, and percentage of surface 

water supply. This study might have not exhaust all the possible impact factors of 

embodied energy, but the regression model gives a good embodied energy prediction 

capability based on selected indicators. Often, data for these three indicators are easy to 
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obtain, while estimating embodied energy for a region would be very time consuming 

and data intensive. Hence, this model provides an alternative way to quickly estimate 

embodied energy of water supply in a region and can be used as a supporting tool for 

decision making and urban planning.  

Future studies may focus on including more impact factors, such climate change 

on temporal scale for model perfection. Moreover, this model need to be further adjusted 

for application in other areas other than North Carolina.  
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CHAPTER 8: CONCLUSIONS AND FUTURE STUDY 

 

8.1 Conclusions 

In this dissertation study, an input-output-based hybrid embodied energy model 

was developed. This model was used in three different applications for analyzing the 

energy burden on the existed water infrastructures. The correlation between embodied 

energy in regional water supply systems and demographic and environmental 

characteristics were also investigated. The following are the major research contributions 

of this dissertation.  

 An input-output-based hybrid embodied energy model under the US context 

which improved the previous life cycle embodied energy model and process-based hybrid 

embodied energy model, was developed in this study (Chapter 2). This model is flexible 

in terms of data availability. It can give a rough estimation of embodied energy in water 

systems with limited data input such as system capacity or capital and O&M cost of the 

system. Given more site specific data, the model can modify the embodied energy of 

different energy paths involved in water related sectors. The results can be more accurate 

and specific for the system evaluated. Overall, the model is easy to be applied for 

estimating either individual or regional embodied energy of water systems, and can be 

used to assist local and regional water and energy management. Furthermore, the 

methodology behind this model can also be used to assess embodied energy of other 

economic sectors in the US. 
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 The importance of indirect energy was demonstrated by this study. Through 

applying the input-output-based hybrid embodied energy model on both water supply 

systems and wastewater treatment systems (Chapters 3, 4 and 6), it was shown that 

indirect energy accounts for a significant proportion (around 50% for both system 

construction and operation phases) of the total embodied energy of water systems. Hence, 

the indirect energy should not be simply neglected when estimating the energy burden of 

water systems, especially when optimizing existed and planned water infrastructures. 

 A comparison of estimated embodied energy among different water sources was 

conducted, with a focus on embodied energy of surface water supply and groundwater 

supply (Chapter 4). The comparison shows that different water sources have different 

embodied energy intensities. Desalination is the most energy intensive option among all 

the water sources. Surface and groundwater supply have comparable volumetric 

embodied energy intensities, but surface water supply has higher indirect energy intensity, 

while the groundwater supply has higher direct energy intensity. The embodied energy 

and benefits of reclaimed water depend on local situations and additional treatment 

needed to ensure treated wastewater suitable for the desired application.  

 A comparison of estimated embodied energy of similar water supply systems in 

the US and China reveals differences in direct and indirect energy compositions under 

different economic context (Chapter 4). It also points out the different aspects that each 

system can focus on in order to improve embodied energy efficiency. The China system 

can focus on improving its direct energy efficiency by conducting energy budgets and 

adopting energy saving technologies, while the US system can focus on improving its 
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indirect energy efficiency by minimizing material and labor consumptions and shortening 

project timelines.  

 A review on the current resource recovery technologies in wastewater treatment 

systems reveals that there are very limited life cycle studies on the resource recovery 

technologies applied in the municipal wastewater treatment systems (Chapter 5). 

Furthermore, there has not been any life cycle studies or embodied energy analysis for 

the integrated resource recovery in wastewater treatment systems while some 

technologies apparently have trade-offs between the resource investments and resource 

recovery benefits. This review shows that there is a need for the integrated resource 

recovery analysis in order to evaluate the sustainability and resource recovery potential of 

municipal wastewater treatment systems. 

 An integrated resource recovery study was carried out for a large scale advanced 

municipal wastewater treatment system to determine the potential of this system to 

achieve carbon neutrality (Chapter 6). This study evaluated the resource recovery 

potentials of onsite energy generation through combined heat and power systems, nutrient 

recycling through heat dried biosolids land application and water reuse for residential 

irrigation. This study also revealed that the integration of the above three resource 

recovery methods has the potential to offset the direct operational energy and the 

associated carbon footprint of the selected wastewater treatment system, but it cannot 

offset the total embodied energy to achieve carbon neutrality even under maximal 

recovery conditions. This study provides insights into the current resource recovery 

practices in wastewater treatment systems beyond traditional financial analysis. It also 
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shows other resource recovery strategies have to be incorporated to improve the 

sustainability of large scale wastewater treatment systems 

 A study on the correlation between embodied energy in regional water supply 

systems and demographic and environmental characteristics shows that energy embodied 

in water supply systems in a region is related to population growth, land use patterns, 

especially percentage of urban land, and water sources (Chapter 7). This part of study is a 

preliminary attempt to describe the embodied energy of water supply by demographic 

and environmental indicators. This study does not exhaust all the possible impact factors 

of embodied energy, while the regression model developed gives a good prediction 

capability. Hence, this model provides an alternative way to quickly estimate embodied 

energy of water supply in a region and can be used as a supporting tool for decision 

making and planning. 

 

8.2 Future Study 

8.2.1 Improve Model Applicability with User Interface 

The model was developed using Matlab and difficult to be accessed by general 

public users. To improve the applicability of the model, a user interface can be developed 

so that general public or utilities without detailed knowledge of the model can easily 

apply it. The model should include user friendly input interface and visual output 

interface. The input interface should be flexible by defining mandatory and optional user 

inputs and providing default values and estimation equations so the users can apply the 

model with limited data availability. Accordingly, the embodied energy estimation can 
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have different degrees of accuracy depending on methods used to determine the input 

parameters.  

For the water-energy model, the mandatory user inputs shall include, but are not 

limited to source of water, total operational and constructional cost either directly 

obtained from utilities or estimated with system parameters. The optional user inputs 

include operational and constructional direct energy consumptions (e.g., electricity for 

pumping, natural gas for heating), costs of different types of materials, costs of 

administrative and labor services and so on. Outputs from the model, including direct, 

indirect and total embodied energy of systems, top sectors and energy paths contributing 

to the embodied energy of the system, can be presented in tabular or graphical format. 

Furthermore, the model shall be able to provide information such as which process or 

part of the water/wastewater treatment system is the most embodied energy intensive, 

how is the energy intensity of an individual system compared with the US or world 

average values, and how can a system reduce its embodied energy. Hence, this interactive 

embodied energy model would serve as a useful management tool for water systems 

planning and administration.  

 

8.2.2 Link Water Quality with Embodied Energy of Water Supply through Unit 

Treatment Processes 

This dissertation study compared the embodied energy of water supply with 

different raw water sources, but it did not link to water quality. Future study should 

explore the relationship between water quality and embodied energy in water supply.  
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In order to achieve this goal, the following research tasks have to be carried out: 

(a) Select indicators that can be best used to represent water quality; (b) Compile most 

commonly used treatment trains for different water quality through literature review and 

expert consultation; (c) Investigate the relationship between water indicators and energy 

and material consumption of each unit process in different treatment trains; (d) Analyze 

the embodied energy of each unit process based on energy and material consumption; (e) 

Establish the relationship between raw water quality and the estimated embodied energy 

of unit processes. This information will be useful for water utilities in evaluating existing 

treatment trains and planning for system expansion or new system adoption.     

 

8.2.3 Further Explore Resource Recovery in Wastewater Treatment Systems 

This dissertation study mainly examined the resource recovery potential of onsite 

energy generation through CHPs, nutrient recycling through biosolids land application, 

and water reuse for residential irrigation through a case study in Florida. Further studies 

can be carried out to (a) include other resource recovery technologies, such as onsite 

wind and solar energy and effluent hydropower, or substitute the existing resource 

recovery methods with other methods in the Howard Curren wastewater treatment plant 

to examine the potential of resource recovery in the plant; (b) expand the study to 

systems with capacities and treatment technologies different from the Howard Curren 

wastewater treatment plant, and examine the benefits and limitations of resource recovery 

technologies under different capacities and technologies; (c) study the tradeoffs between 

different resource recovery methods, and between different technologies.  
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8.2.4 Embodied Energy of Water/Wastewater Systems under Climate Change 

This dissertation study explored the embodied energy of water supply systems 

with different water sources and under different economic context, but the geographical 

and climate differences among these water systems were not considered. On spatial scale, 

climate differs considerably both globally and nationally. In the US, specifically, the west 

part of the country is drier while the east part of the country is more humid. On temporal 

scale, the impacts of climate change on the environment and society have been observed 

and attracted much attention.  

Climate impacts water/wastewater treatment systems mainly through changes of 

precipitation and temperature. For example, water conveyance systems would be very 

energy intensive under desert climate. Energy consumption on water conveyance in 

South California is 8.28 J/m3 of raw water, much higher than other regions in the US 

(Olsson, 2011). Increased precipitation may cause flooding and increase the urban runoff, 

which further impact water quality. While studies in this dissertation have addressed 

problems such as energy burden of different water sources and economic structures, it 

can be very important and also interesting to incorporate climate change as a stressor for 

further studies.  

When incorporating climate changes, the study should be able to answer the 

following questions: (a) How significant can climate change impact on energy burdens of 

water supply systems and wastewater systems? (b) How will spatial and temporal climate 

changes impact the resource recovery strategies in wastewater treatment systems, 

especially the water reuse strategies?  
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The first question can be addressed by analyzing similar water/wastewater 

systems under different climate conditions to establish an empirical correlation between 

climate change and embodied energy of water systems. The second question can be 

achieved by analyzing the impact of climate conditions on resource recovery 

technologies and the climate-related limitations of each technology. This study will 

provide basis for further study on policy and management implications of resource 

recovery under different climate conditions.    

 

8.2.5 Further Explore the Correlation between Embodied Energy of Water Systems 

and Water Stressors 

The last chapter of the dissertation was a preliminary attempt to describe the 

embodied energy of water supply by demographic and environmental indicators. A linear 

regression model was developed to describe the embodied energy of water supply as a 

function of population, land use and water source. Although the linear regression model 

has a capability of roughly predicting the embodied energy based on these indicators, 

water stressors and associated indicators considered by this study are very limited, and 

thus, the accuracy of the model can be further improved. Moreover, the regression model 

was only developed for North Carolina based on county scale; however, the applicability 

of the model to other geographical areas and/or other scales was not evaluated.  

Future studies may focus on: (a) a more thorough search of impact factors, such 

as climate change, economic development, water quality and so on; (b) model calibration 

for different scales and geographical locations; (c) model expansion to further include 

energy associated water-related end use and wastewater systems.  
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To carry on the above proposed studies, extensive data are needed. Possible data 

sources include state or county GIS databases, US Bureau of Census, Department of 

Energy, state or county government agencies. A similar statistical analysis as described in 

Chapter 7 can be carried out, and the regression model can be calibrated for other scales 

and geographical locations with the required data.  
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Appendix A Additional Tables 

Table A.1 Direct, indirect and total embodied energy intensities of the non-energy 
commodity sectors in the US input-output tables 

NAICS 
IO code Name of the Commodity Sector Direct Energy 

Intensity (GJ/$) 

Indirect 
Energy 

Intensity 
(GJ/$) 

Total 
Embodied 

Energy 
Intensity 

(GJ/$) 
1111A0 Oilseed farming 1.16E-02 8.43E-03 2.00E-02 
1111B0 Grain farming 1.63E-02 1.31E-02 2.94E-02 
111200 Vegetable and melon farming 1.43E-02 7.01E-03 2.13E-02 
1113A0 Fruit farming 1.38E-02 6.56E-03 2.04E-02 
111335 Tree nut farming 1.47E-02 6.22E-03 2.09E-02 

111400 Greenhouse, nursery, and floriculture 
production 1.68E-02 5.26E-03 2.21E-02 

111910 Tobacco farming 2.35E-02 1.17E-02 3.52E-02 
111920 Cotton farming 2.11E-02 1.79E-02 3.90E-02 

1119A0 Sugarcane and sugar beet farming 2.01E-02 8.43E-03 2.86E-02 

1119B0 All other crop farming 2.63E-02 9.73E-03 3.61E-02 

1121A0 Cattle ranching and farming 9.64E-03 1.95E-02 2.92E-02 

112120 Dairy cattle and milk production 1.32E-02 1.22E-02 2.54E-02 

112A00 Animal production, except cattle and 
poultry and eggs 1.04E-02 8.97E-03 1.94E-02 

112300 Poultry and egg production 1.51E-02 1.84E-02 3.36E-02 

113A00 Forest nurseries, forest products, and 
timber tracts 7.85E-03 8.02E-03 1.59E-02 

113300 Logging 1.63E-03 7.75E-03 9.38E-03 
114100 Fishing 2.10E-02 4.90E-03 2.59E-02 

114200 Hunting and trapping 7.58E-03 5.84E-03 1.34E-02 

115000 Support activities for agriculture and 
forestry 4.14E-03 1.16E-02 1.57E-02 

212210 Iron ore mining 5.41E-02 9.76E-03 6.39E-02 
2122A0 Gold, silver, and other metal ore mining 2.83E-02 7.29E-03 3.56E-02 
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Appendix A (continued) 

Table A.1 (continued) 
212230 Copper, nickel, lead, and zinc mining 3.48E-02 4.58E-03 3.94E-02 

212310 Stone mining and quarrying 1.95E-02 5.52E-03 2.50E-02 

212320 Sand, gravel, clay, and ceramic and 
refractory minerals mining and quarrying 2.51E-02 5.54E-03 3.06E-02 

212390 Other nonmetallic mineral mining and 
quarrying 3.29E-02 5.63E-03 3.85E-02 

213111 Drilling oil and gas wells 5.40E-03 1.07E-02 1.61E-02 

213112 Support activities for oil and gas 
operations 5.76E-03 6.78E-03 1.25E-02 

21311A Support activities for other mining 1.04E-02 9.04E-03 1.94E-02 

221300 Water, sewage and other systems 8.96E-03 5.28E-03 1.42E-02 

230101 Nonresidential commercial and health 
care structures 3.68E-03 5.62E-03 9.29E-03 

230102 Nonresidential manufacturing structures 3.42E-03 4.39E-03 7.81E-03 

230103 Other nonresidential structures 5.87E-03 5.85E-03 1.17E-02 

230201 Residential permanent site single- and 
multi-family structures 3.56E-03 8.13E-03 1.17E-02 

230202 Other residential structures 3.42E-03 7.71E-03 1.11E-02 

230301 Nonresidential maintenance and repair 4.94E-03 5.97E-03 1.09E-02 

230302 Residential maintenance and repair 2.31E-03 8.42E-03 1.07E-02 

311111 Dog and cat food manufacturing 5.90E-03 1.35E-02 1.94E-02 

311119 Other animal food manufacturing 6.54E-03 1.76E-02 2.42E-02 

311210 Flour milling and malt manufacturing 1.20E-02 1.49E-02 2.68E-02 
311221 Wet corn milling 3.26E-02 1.60E-02 4.86E-02 
31122A Soybean and other oilseed processing 8.59E-03 1.78E-02 2.64E-02 

311225 Fats and oils refining and blending 7.76E-03 1.85E-02 2.62E-02 

311230 Breakfast cereal manufacturing 5.58E-03 9.73E-03 1.53E-02 

31131A Sugar cane mills and refining 1.23E-02 2.08E-02 3.32E-02 
311313 Beet sugar manufacturing 1.95E-02 1.77E-02 3.71E-02 
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Table A.1 (continued) 

311320 Chocolate and confectionery 
manufacturing from cacao beans 4.64E-03 1.57E-02 2.04E-02 

311330 Confectionery manufacturing from 
purchased chocolate 4.59E-03 1.29E-02 1.75E-02 

311340 Nonchocolate confectionery 
manufacturing 5.06E-03 1.42E-02 1.93E-02 

311410 Frozen food manufacturing 7.87E-03 1.30E-02 2.09E-02 

311420 Fruit and vegetable canning, pickling, 
and drying 6.87E-03 1.22E-02 1.90E-02 

31151A Fluid milk and butter manufacturing 5.82E-03 1.66E-02 2.24E-02 

311513 Cheese manufacturing 5.12E-03 1.86E-02 2.37E-02 

311514 Dry, condensed, and evaporated dairy 
product manufacturing 6.22E-03 1.67E-02 2.30E-02 

311520 Ice cream and frozen dessert 
manufacturing 5.06E-03 1.39E-02 1.89E-02 

31161A Animal (except poultry) slaughtering, 
rendering, and processing 4.82E-03 1.91E-02 2.40E-02 

311615 Poultry processing 5.25E-03 1.86E-02 2.39E-02 

311700 Seafood product preparation and 
packaging 7.93E-03 1.50E-02 2.29E-02 

311810 Bread and bakery product 
manufacturing 6.88E-03 9.33E-03 1.62E-02 

311820 Cookie, cracker and pasta 
manufacturing 5.15E-03 1.22E-02 1.74E-02 

311830 Tortilla manufacturing 1.05E-02 1.02E-02 2.06E-02 
311910 Snack food manufacturing 5.15E-03 1.31E-02 1.82E-02 
311920 Coffee and tea manufacturing 3.97E-03 1.35E-02 1.75E-02 

311930 Flavoring syrup and concentrate 
manufacturing 1.79E-03 6.08E-03 7.86E-03 

311940 Seasoning and dressing manufacturing 3.70E-03 1.46E-02 1.83E-02 

311990 All other food manufacturing 7.27E-03 1.19E-02 1.92E-02 
312110 Soft drink and ice manufacturing 3.77E-03 1.53E-02 1.90E-02 
312120 Breweries 4.79E-03 1.21E-02 1.69E-02 
312130 Wineries 3.51E-03 9.99E-03 1.35E-02 
312140 Distilleries 2.62E-03 4.89E-03 7.50E-03 
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Table A.1 (continued) 
3122A0 Tobacco product manufacturing 1.87E-03 4.23E-03 6.10E-03 
313100 Fiber, yarn, and thread mills 1.15E-02 2.16E-02 3.31E-02 
313210 Broadwoven fabric mills 1.10E-02 1.51E-02 2.62E-02 

313220 Narrow fabric mills and schiffli 
machine embroidery 6.65E-03 1.32E-02 1.98E-02 

313230 Nonwoven fabric mills 9.75E-03 1.57E-02 2.55E-02 
313240 Knit fabric mills 9.52E-03 1.59E-02 2.54E-02 
313310 Textile and fabric finishing mills 9.78E-03 1.41E-02 2.39E-02 
313320 Fabric coating mills 7.27E-03 1.57E-02 2.30E-02 
314110 Carpet and rug mills 4.50E-03 1.99E-02 2.44E-02 
314120 Curtain and linen mills 3.82E-03 1.30E-02 1.68E-02 
314910 Textile bag and canvas mills 1.97E-03 1.04E-02 1.23E-02 
314990 All other textile product mills 5.89E-03 1.39E-02 1.97E-02 
315100 Apparel knitting mills 5.65E-03 1.08E-02 1.64E-02 
315210 Cut and sew apparel contractors 5.37E-03 5.16E-03 1.05E-02 

315220 Men's and boys' cut and sew apparel 
manufacturing 2.53E-03 8.97E-03 1.15E-02 

315230 Women's and girls' cut and sew apparel 
manufacturing 3.25E-03 1.04E-02 1.36E-02 

315290 Other cut and sew apparel 
manufacturing 2.66E-03 8.95E-03 1.16E-02 

315900 Apparel accessories and other apparel 
manufacturing 1.08E-02 9.25E-03 2.00E-02 

316100 Leather and hide tanning and finishing 3.72E-03 1.68E-02 2.05E-02 

316200 Footwear manufacturing 3.33E-03 1.04E-02 1.37E-02 

316900 Other leather and allied product 
manufacturing 3.26E-03 8.54E-03 1.18E-02 

321100 Sawmills and wood preservation 6.04E-03 8.72E-03 1.48E-02 

32121A Veneer and plywood manufacturing 8.09E-03 8.71E-03 1.68E-02 

32121B Engineered wood member and truss 
manufacturing 2.67E-03 8.53E-03 1.12E-02 

321219 Reconstituted wood product 
manufacturing 2.19E-02 1.08E-02 3.27E-02 

321910 Wood windows and doors and millwork 3.54E-03 9.62E-03 1.32E-02 

321920 Wood container and pallet 
manufacturing 5.94E-03 8.64E-03 1.46E-02 
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Table A.1 (continued) 

321991 Manufactured home (mobile home) 
manufacturing 1.27E-03 1.16E-02 1.29E-02 

321992 Prefabricated wood building 
manufacturing 1.46E-03 9.38E-03 1.08E-02 

321999 All other miscellaneous wood product 
manufacturing 5.67E-03 8.34E-03 1.40E-02 

322110 Pulp mills 2.41E-02 9.89E-03 3.40E-02 
322120 Paper mills 2.00E-02 9.90E-03 2.98E-02 
322130 Paperboard mills 3.10E-02 8.50E-03 3.95E-02 

322210 Paperboard container manufacturing 5.21E-03 1.75E-02 2.27E-02 

32222A Coated and laminated paper, packaging 
paper and plastics film manufacturing 5.31E-03 1.47E-02 2.00E-02 

32222B All other paper bag and coated and 
treated paper manufacturing 4.34E-03 1.68E-02 2.11E-02 

322230 Stationery product manufacturing 3.33E-03 1.47E-02 1.80E-02 

322291 Sanitary paper product manufacturing 1.04E-02 9.77E-03 2.01E-02 

322299 All other converted paper product 
manufacturing 6.24E-03 1.33E-02 1.95E-02 

323110 Printing 4.46E-03 8.73E-03 1.32E-02 
323120 Support activities for printing 3.20E-03 5.47E-03 8.67E-03 

324121 Asphalt paving mixture and block 
manufacturing 7.85E-02 6.73E-03 8.52E-02 

324122 Asphalt shingle and coating materials 
manufacturing 4.58E-02 8.61E-03 5.44E-02 

324191 Petroleum lubricating oil and grease 
manufacturing 7.94E-02 6.93E-03 8.64E-02 

324199 All other petroleum and coal products 
manufacturing 7.12E-02 4.76E-03 7.59E-02 

325110 Petrochemical manufacturing 2.88E-02 1.58E-02 4.46E-02 
325120 Industrial gas manufacturing 5.28E-02 7.64E-03 6.04E-02 

325130 Synthetic dye and pigment 
manufacturing 3.12E-02 1.34E-02 4.46E-02 

325181 Alkalies and chlorine manufacturing 5.97E-02 1.01E-02 6.99E-02 

325182 Carbon black manufacturing 1.11E-01 2.76E-03 1.14E-01 

325188 All other basic inorganic chemical 
manufacturing 3.23E-02 1.17E-02 4.40E-02 
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Table A.1 (continued) 

325190 Other basic organic chemical 
manufacturing 3.11E-02 2.05E-02 5.17E-02 

325211 Plastics material and resin 
manufacturing 2.20E-02 2.43E-02 4.64E-02 

325212 Synthetic rubber manufacturing 1.76E-02 1.99E-02 3.75E-02 

325220 Artificial and synthetic fibers and 
filaments manufacturing 1.71E-02 2.09E-02 3.80E-02 

325310 Fertilizer manufacturing 5.61E-02 2.01E-02 7.63E-02 

325320 Pesticide and other agricultural 
chemical manufacturing 6.40E-03 1.40E-02 2.04E-02 

325411 Medicinal and botanical manufacturing 5.28E-03 5.23E-03 1.05E-02 

325412 Pharmaceutical preparation 
manufacturing 2.03E-03 5.25E-03 7.29E-03 

325413 In-vitro diagnostic substance 
manufacturing 3.06E-03 5.23E-03 8.29E-03 

325414 Biological product (except diagnostic) 
manufacturing 2.84E-03 4.28E-03 7.12E-03 

325510 Paint and coating manufacturing 3.73E-03 1.87E-02 2.24E-02 
325520 Adhesive manufacturing 2.34E-02 1.45E-02 3.80E-02 

325610 Soap and cleaning compound 
manufacturing 7.35E-03 1.04E-02 1.77E-02 

325620 Toilet preparation manufacturing 6.22E-03 7.68E-03 1.39E-02 
325910 Printing ink manufacturing 2.29E-02 1.81E-02 4.11E-02 

3259A0 All other chemical product and 
preparation manufacturing 1.08E-02 1.49E-02 2.58E-02 

326110 
Plastics packaging materials and 
unlaminated film and sheet 
manufacturing 

8.25E-03 1.89E-02 2.72E-02 

326121 Unlaminated plastics profile shape 
manufacturing 7.67E-03 1.55E-02 2.32E-02 

326122 Plastic pipe and pipe fitting 
manufacturing 7.24E-03 2.22E-02 2.94E-02 

326130 Laminated plastics plate, sheet (except 
packaging), and shape manufacturing 7.68E-03 1.51E-02 2.28E-02 

326140 Polystyrene foam product 
manufacturing 9.74E-03 1.67E-02 2.65E-02 
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Table A.1 (continued) 

326150 Urethane and other foam product 
(except polystyrene) manufacturing 5.81E-03 1.79E-02 2.37E-02 

326160 Plastics bottle manufacturing 1.20E-02 1.92E-02 3.12E-02 

32619A Other plastics product manufacturing 7.23E-03 1.30E-02 2.03E-02 

326210 Tire manufacturing 6.82E-03 1.62E-02 2.30E-02 

326220 Rubber and plastics hoses and belting 
manufacturing 5.53E-03 1.40E-02 1.95E-02 

326290 Other rubber product manufacturing 6.42E-03 1.38E-02 2.02E-02 

32711A Pottery, ceramics, and plumbing fixture 
manufacturing 1.34E-02 7.66E-03 2.11E-02 

32712A Brick, tile, and other structural clay 
product manufacturing 3.29E-02 4.48E-03 3.74E-02 

32712B Clay and nonclay refractory 
manufacturing 1.45E-02 1.02E-02 2.47E-02 

327211 Flat glass manufacturing 3.86E-02 8.18E-03 4.68E-02 

327212 Other pressed and blown glass and 
glassware manufacturing 1.55E-02 1.01E-02 2.56E-02 

327213 Glass container manufacturing 3.14E-02 7.72E-03 3.92E-02 

327215 Glass product manufacturing made of 
purchased glass 1.01E-02 1.12E-02 2.13E-02 

327310 Cement manufacturing 4.78E-02 7.10E-03 5.49E-02 

327320 Ready-mix concrete manufacturing 4.29E-03 1.86E-02 2.28E-02 

327330 Concrete pipe, brick and block 
manufacturing 4.84E-03 1.28E-02 1.77E-02 

327390 Other concrete product manufacturing 4.09E-03 1.02E-02 1.43E-02 

3274A0 Lime and gypsum product 
manufacturing 3.84E-02 1.14E-02 4.98E-02 

327910 Abrasive product manufacturing 7.87E-03 7.10E-03 1.50E-02 

327991 Cut stone and stone product 
manufacturing 5.21E-03 7.60E-03 1.28E-02 

327992 Ground or treated mineral and earth 
manufacturing 1.95E-02 7.51E-03 2.70E-02 

327993 Mineral wool manufacturing 2.22E-02 9.22E-03 3.14E-02 

327999 Miscellaneous nonmetallic mineral 
products 8.71E-03 1.38E-02 2.25E-02 
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331110 Iron and steel mills and ferroalloy 
manufacturing 3.81E-02 1.73E-02 5.54E-02 

331200 Steel product manufacturing from 
purchased steel 1.76E-02 1.54E-02 3.30E-02 

33131A Alumina refining and primary 
aluminum production 4.07E-02 1.79E-02 5.86E-02 

331314 Secondary smelting and alloying of 
aluminum 4.31E-02 1.77E-02 6.08E-02 

33131B Aluminum product manufacturing from 
purchased aluminum 9.01E-03 2.24E-02 3.14E-02 

331411 Primary smelting and refining of copper 8.93E-03 1.75E-02 2.65E-02 

331419 
Primary smelting and refining of 
nonferrous metal (except copper and 
aluminum) 

1.46E-02 1.47E-02 2.92E-02 

331420 Copper rolling, drawing, extruding and 
alloying 6.33E-03 1.39E-02 2.03E-02 

331490 
Nonferrous metal (except copper and 
aluminum) rolling, drawing, extruding 
and alloying 

8.13E-03 1.23E-02 2.04E-02 

331510 Ferrous metal foundries 1.53E-02 8.30E-03 2.36E-02 
331520 Nonferrous metal foundries 1.06E-02 1.32E-02 2.38E-02 

33211A All other forging, stamping, and 
sintering 1.29E-02 1.58E-02 2.86E-02 

332114 Custom roll forming 3.84E-03 2.20E-02 2.58E-02 

33211B Crown and closure manufacturing and 
metal stamping 4.46E-03 1.47E-02 1.91E-02 

33221A Cutlery, utensil, pot, and pan 
manufacturing 3.61E-03 1.04E-02 1.40E-02 

33221B Handtool manufacturing 4.24E-03 1.11E-02 1.53E-02 

332310 Plate work and fabricated structural 
product manufacturing 2.81E-03 1.44E-02 1.72E-02 

332320 Ornamental and architectural metal 
products manufacturing 2.68E-03 1.38E-02 1.64E-02 

332410 Power boiler and heat exchanger 
manufacturing 3.97E-03 1.15E-02 1.55E-02 

332420 Metal tank (heavy gauge) 
manufacturing 3.72E-03 1.36E-02 1.73E-02 
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332430 Metal can, box, and other metal 
container (light gauge) manufacturing 5.24E-03 1.87E-02 2.40E-02 

33299A Ammunition manufacturing 6.40E-03 6.51E-03 1.29E-02 

33299B Arms, ordnance, and accessories 
manufacturing 3.35E-03 6.52E-03 9.87E-03 

332500 Hardware manufacturing 2.79E-03 9.94E-03 1.27E-02 

332600 Spring and wire product manufacturing 4.57E-03 1.30E-02 1.76E-02 

332710 Machine shops 4.25E-03 7.39E-03 1.16E-02 

332720 Turned product and screw, nut, and bolt 
manufacturing 4.63E-03 9.69E-03 1.43E-02 

332800 Coating, engraving, heat treating and 
allied activities 1.27E-02 1.22E-02 2.49E-02 

33291A Valve and fittings other than plumbing 3.37E-03 9.02E-03 1.24E-02 

332913 Plumbing fixture fitting and trim 
manufacturing 3.31E-03 9.33E-03 1.26E-02 

332991 Ball and roller bearing manufacturing 6.06E-03 9.20E-03 1.53E-02 

332996 Fabricated pipe and pipe fitting 
manufacturing 3.52E-03 1.35E-02 1.71E-02 

33299C Other fabricated metal manufacturing 5.74E-03 1.17E-02 1.74E-02 

333111 Farm machinery and equipment 
manufacturing 2.07E-03 1.08E-02 1.29E-02 

333112 Lawn and garden equipment 
manufacturing 1.66E-03 1.08E-02 1.25E-02 

333120 Construction machinery manufacturing 4.35E-03 1.05E-02 1.49E-02 

333130 Mining and oil and gas field machinery 
manufacturing 3.13E-03 1.16E-02 1.48E-02 

33329A Other industrial machinery 
manufacturing 3.20E-03 9.68E-03 1.29E-02 

333220 Plastics and rubber industry machinery 
manufacturing 2.65E-03 9.38E-03 1.20E-02 

333295 Semiconductor machinery 
manufacturing 2.68E-03 7.80E-03 1.05E-02 

33331A Vending, commercial, industrial, and 
office machinery manufacturing 2.74E-03 9.86E-03 1.26E-02 
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333314 Optical instrument and lens 
manufacturing 2.95E-03 7.38E-03 1.03E-02 

333315 Photographic and photocopying 
equipment manufacturing 4.27E-03 9.72E-03 1.40E-02 

333319 Other commercial and service industry 
machinery manufacturing 4.09E-03 8.61E-03 1.27E-02 

33341A Air purification and ventilation 
equipment manufacturing 2.71E-03 1.04E-02 1.31E-02 

333414 Heating equipment, except warm air 
furnaces 3.05E-03 1.04E-02 1.34E-02 

333415 
Air conditioning, refrigeration, and 
warm air heating equipment 
manufacturing 

1.99E-03 9.76E-03 1.17E-02 

333511 Industrial mold manufacturing 5.06E-03 8.93E-03 1.40E-02 

33351A Metal cutting and forming machine tool 
manufacturing 3.05E-03 8.37E-03 1.14E-02 

333514 Special tool, die, jig, and fixture 
manufacturing 3.59E-03 9.14E-03 1.27E-02 

333515 Cutting tool and machine tool accessory 
manufacturing 4.58E-03 7.84E-03 1.24E-02 

33351B Rolling mill and other metalworking 
machinery manufacturing 2.74E-03 7.78E-03 1.05E-02 

333611 Turbine and turbine generator set units 
manufacturing 1.13E-03 6.99E-03 8.13E-03 

333612 Speed changer, industrial high-speed 
drive, and gear manufacturing 4.53E-03 7.66E-03 1.22E-02 

333613 Mechanical power transmission 
equipment manufacturing 4.74E-03 9.47E-03 1.42E-02 

333618 Other engine equipment manufacturing 2.60E-03 1.07E-02 1.33E-02 

333911 Pump and pumping equipment 
manufacturing 2.78E-03 9.30E-03 1.21E-02 

333912 Air and gas compressor manufacturing 2.65E-03 9.43E-03 1.21E-02 

333920 Material handling equipment 
manufacturing 2.37E-03 1.20E-02 1.44E-02 

333991 Power-driven handtool manufacturing 2.02E-03 1.00E-02 1.20E-02 
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33399A Other general purpose machinery 
manufacturing 3.04E-03 9.45E-03 1.25E-02 

333993 Packaging machinery manufacturing 1.94E-03 7.83E-03 9.78E-03 

333994 Industrial process furnace and oven 
manufacturing 3.19E-03 7.52E-03 1.07E-02 

33399B Fluid power process machinery 3.47E-03 9.74E-03 1.32E-02 

334111 Electronic computer manufacturing 5.66E-04 5.84E-03 6.41E-03 

334112 Computer storage device manufacturing 2.66E-03 6.24E-03 8.89E-03 

33411A Computer terminals and other computer 
peripheral equipment manufacturing 1.65E-03 6.61E-03 8.26E-03 

334210 Telephone apparatus manufacturing 1.19E-03 5.93E-03 7.12E-03 

334220 Broadcast and wireless communications 
equipment 1.15E-03 6.15E-03 7.30E-03 

334290 Other communications equipment 
manufacturing 2.08E-03 5.91E-03 7.99E-03 

334300 Audio and video equipment 
manufacturing 1.80E-03 9.96E-03 1.18E-02 

334411 Electron tube manufacturing 4.95E-03 1.14E-02 1.63E-02 

334412 Bare printed circuit board 
manufacturing 5.84E-03 7.84E-03 1.37E-02 

334413 Semiconductor and related device 
manufacturing 4.50E-03 6.94E-03 1.14E-02 

33441A 
Electronic capacitor, resistor, coil, 
transformer, and other inductor 
manufacturing 

5.09E-03 8.33E-03 1.34E-02 

334417 Electronic connector manufacturing 3.90E-03 8.89E-03 1.28E-02 

334418 Printed circuit assembly (electronic 
assembly) manufacturing 1.81E-03 7.12E-03 8.93E-03 

334419 Other electronic component 
manufacturing 3.23E-03 7.23E-03 1.05E-02 

334510 Electromedical and electrotherapeutic 
apparatus manufacturing 1.13E-03 6.82E-03 7.95E-03 
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334511 Search, detection, and navigation 
instruments manufacturing 2.58E-03 4.92E-03 7.49E-03 

334512 Automatic environmental control 
manufacturing 2.28E-03 7.58E-03 9.87E-03 

334513 Industrial process variable instruments 
manufacturing 2.12E-03 7.53E-03 9.65E-03 

334514 Totalizing fluid meters and counting 
devices manufacturing 1.63E-03 8.39E-03 1.00E-02 

334515 Electricity and signal testing 
instruments manufacturing 1.89E-03 4.93E-03 6.82E-03 

334516 Analytical laboratory instrument 
manufacturing 1.52E-03 6.21E-03 7.72E-03 

334517 Irradiation apparatus manufacturing 1.39E-03 7.05E-03 8.44E-03 

33451A Other Measuring and Controlling 
Device Manufacturing 1.98E-03 6.37E-03 8.36E-03 

33461A Software, audio, and video media 
reproducing 4.20E-03 9.11E-03 1.33E-02 

334613 Magnetic and optical recording media 
manufacturing 3.67E-03 8.71E-03 1.24E-02 

335110 Electric lamp bulb and part 
manufacturing 4.61E-03 6.76E-03 1.14E-02 

335120 Lighting fixture manufacturing 2.38E-03 9.42E-03 1.18E-02 

335210 Small electrical appliance 
manufacturing 2.07E-03 9.83E-03 1.19E-02 

335221 Household cooking appliance 
manufacturing 2.12E-03 1.33E-02 1.54E-02 

335222 Household refrigerator and home 
freezer manufacturing 1.91E-03 1.33E-02 1.52E-02 

335224 Household laundry equipment 
manufacturing 1.83E-03 1.16E-02 1.35E-02 

335228 Other major household appliance 
manufacturing 2.13E-03 1.08E-02 1.29E-02 

335311 Power, distribution, and specialty 
transformer manufacturing 2.73E-03 1.34E-02 1.61E-02 

335312 Motor and generator manufacturing 2.84E-03 1.02E-02 1.31E-02 

335313 Switchgear and switchboard apparatus 
manufacturing 1.85E-03 6.97E-03 8.81E-03 
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335314 Relay and industrial control 
manufacturing 1.51E-03 5.81E-03 7.32E-03 

335911 Storage battery manufacturing 7.81E-03 1.19E-02 1.97E-02 
335912 Primary battery manufacturing 2.29E-03 9.01E-03 1.13E-02 

335920 Communication and energy wire and 
cable manufacturing 3.76E-03 1.28E-02 1.66E-02 

335930 Wiring device manufacturing 3.68E-03 1.01E-02 1.38E-02 

335991 Carbon and graphite product 
manufacturing 1.41E-02 1.37E-02 2.78E-02 

335999 
All other miscellaneous electrical 
equipment and component 
manufacturing 

2.18E-03 6.36E-03 8.54E-03 

336111 Automobile Manufacturing 1.00E-03 1.04E-02 1.14E-02 

336112 Light truck and utility vehicle 
manufacturing 1.01E-03 1.12E-02 1.22E-02 

336120 Heavy duty truck manufacturing 3.16E-03 1.12E-02 1.43E-02 

336211 Motor vehicle body manufacturing 1.67E-03 9.88E-03 1.16E-02 

336212 Truck trailer manufacturing 2.12E-03 1.31E-02 1.53E-02 
336213 Motor home manufacturing 8.35E-04 1.10E-02 1.18E-02 

336214 Travel trailer and camper 
manufacturing 1.54E-03 1.32E-02 1.48E-02 

336300 Motor vehicle parts manufacturing 2.74E-03 1.23E-02 1.50E-02 

336411 Aircraft manufacturing 1.22E-03 6.82E-03 8.04E-03 

336412 Aircraft engine and engine parts 
manufacturing 2.40E-03 5.72E-03 8.12E-03 

336413 Other aircraft parts and auxiliary 
equipment manufacturing 4.12E-03 7.28E-03 1.14E-02 

336414 Guided missile and space vehicle 
manufacturing 1.69E-03 5.23E-03 6.92E-03 

33641A Propulsion units and parts for space 
vehicles and guided missiles 3.29E-03 4.92E-03 8.20E-03 

336500 Railroad rolling stock manufacturing 1.75E-03 8.48E-03 1.02E-02 

336611 Ship building and repairing 2.43E-03 6.79E-03 9.22E-03 
336612 Boat building 1.76E-03 9.53E-03 1.13E-02 

336991 Motorcycle, bicycle, and parts 
manufacturing 1.74E-03 1.27E-02 1.45E-02 
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336992 Military armored vehicle, tank, and tank 
component manufacturing 2.53E-03 8.58E-03 1.11E-02 

336999 All other transportation equipment 
manufacturing 1.26E-03 1.16E-02 1.28E-02 

337110 Wood kitchen cabinet and countertop 
manufacturing 2.79E-03 8.73E-03 1.15E-02 

337121 Upholstered household furniture 
manufacturing 1.78E-03 1.05E-02 1.23E-02 

337122 Nonupholstered wood household 
furniture manufacturing 3.86E-03 7.83E-03 1.17E-02 

33712A Metal and other household furniture 
(except wood) manufacturing 3.67E-03 1.30E-02 1.67E-02 

337127 Institutional furniture manufacturing 3.28E-03 1.00E-02 1.33E-02 

33721A Wood television, radio, and sewing 
machine cabinet manufacturing 2.83E-03 8.31E-03 1.11E-02 

337212 
Office furniture and custom 
architectural woodwork and millwork 
manufacturing 

2.68E-03 8.89E-03 1.16E-02 

337215 Showcase, partition, shelving, and 
locker manufacturing 4.16E-03 1.34E-02 1.76E-02 

337910 Mattress manufacturing 1.34E-03 9.96E-03 1.13E-02 
337920 Blind and shade manufacturing 2.29E-03 1.27E-02 1.50E-02 

339111 Laboratory apparatus and furniture 
manufacturing 1.74E-03 7.30E-03 9.04E-03 

339112 Surgical and medical instrument 
manufacturing 1.71E-03 5.35E-03 7.06E-03 

339113 Surgical appliance and supplies 
manufacturing 1.78E-03 6.49E-03 8.26E-03 

339114 Dental equipment and supplies 
manufacturing 1.61E-03 8.61E-03 1.02E-02 

339115 Ophthalmic goods manufacturing 2.64E-03 5.05E-03 7.69E-03 
339116 Dental laboratories 1.53E-03 3.78E-03 5.31E-03 

339910 Jewelry and silverware manufacturing 1.13E-03 1.05E-02 1.17E-02 
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339920 Sporting and athletic goods 
manufacturing 2.35E-03 1.02E-02 1.25E-02 

339930 Doll, toy, and game manufacturing 2.40E-03 1.02E-02 1.26E-02 

339940 Office supplies (except paper) 
manufacturing 2.79E-03 9.06E-03 1.18E-02 

339950 Sign manufacturing 2.58E-03 9.64E-03 1.22E-02 

339991 Gasket, packing, and sealing device 
manufacturing 5.08E-03 1.01E-02 1.51E-02 

339992 Musical instrument manufacturing 2.79E-03 4.50E-03 7.29E-03 

33999A All other miscellaneous manufacturing 2.75E-03 1.00E-02 1.28E-02 

339994 Broom, brush, and mop manufacturing 2.67E-03 8.87E-03 1.15E-02 

420000 Wholesale trade 2.44E-03 2.31E-03 4.75E-03 
4A0000 Retail trade 4.58E-03 2.45E-03 7.03E-03 
481000 Air transportation 2.58E-02 3.03E-03 2.89E-02 
482000 Rail transportation 8.43E-03 4.09E-03 1.25E-02 
483000 Water transportation 2.52E-03 5.58E-03 8.10E-03 
484000 Truck transportation 1.49E-02 5.31E-03 2.03E-02 

485000 Transit and ground passenger 
transportation 3.59E-02 5.63E-03 4.15E-02 

486000 Pipeline transportation 5.31E-02 4.32E-03 5.74E-02 

48A000 Scenic and sightseeing transportation 
and support activities for transportation 5.91E-03 4.80E-03 1.07E-02 

492000 Couriers and messengers 1.90E-02 3.07E-03 2.20E-02 
493000 Warehousing and storage 9.56E-03 3.45E-03 1.30E-02 
511110 Newspaper publishers 2.14E-03 5.18E-03 7.32E-03 
511120 Periodical publishers 9.15E-04 5.49E-03 6.41E-03 
511130 Book publishers 8.69E-04 4.10E-03 4.97E-03 

5111A0 Directory, mailing list, and other 
publishers 9.13E-04 4.76E-03 5.67E-03 

511200 Software publishers 1.27E-04 2.32E-03 2.45E-03 

512100 Motion picture and video industries 1.69E-03 2.12E-03 3.81E-03 

512200 Sound recording industries 1.30E-03 4.49E-03 5.80E-03 
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515100 Radio and television broadcasting 1.29E-03 2.97E-03 4.26E-03 

515200 Cable and other subscription 
programming 1.07E-03 3.23E-03 4.30E-03 

516110 Internet publishing and broadcasting 5.40E-04 5.00E-03 5.54E-03 

517000 Telecommunications 2.24E-03 2.79E-03 5.03E-03 

518100 Internet service providers and web 
search portals 1.23E-03 2.81E-03 4.05E-03 

518200 Data processing, hosting, and related 
services 5.33E-04 3.03E-03 3.56E-03 

519100 Other information services 3.15E-03 2.41E-03 5.55E-03 

52A000 Monetary authorities and depository 
credit intermediation 1.98E-04 1.53E-03 1.73E-03 

522A00 Nondepository credit intermediation 
and related activities 9.01E-04 1.85E-03 2.75E-03 

523000 Securities, commodity contracts, 
investments, and related activities 6.88E-04 1.83E-03 2.51E-03 

524100 Insurance carriers 5.49E-05 1.62E-03 1.67E-03 

524200 Insurance agencies, brokerages, and 
related activities 9.28E-04 2.12E-03 3.05E-03 

525000 Funds, trusts, and other financial 
vehicles 2.77E-04 2.23E-03 2.51E-03 

531000 Real estate 5.77E-03 1.61E-03 7.38E-03 
S00800 Owner-occupied dwellings 1.13E-06 1.82E-03 1.82E-03 

532100 Automotive equipment rental and 
leasing 9.64E-04 2.40E-03 3.36E-03 

532A00 General and consumer goods rental 
except video tapes and discs 3.16E-03 2.66E-03 5.82E-03 

532230 Video tape and disc rental 8.25E-03 3.81E-03 1.21E-02 

532400 Commercial and industrial machinery 
and equipment rental and leasing 1.57E-03 3.01E-03 4.57E-03 

533000 Lessors of nonfinancial intangible 
assets 4.02E-03 9.95E-04 5.01E-03 

541100 Legal services 7.32E-04 1.72E-03 2.45E-03 
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541200 Accounting, tax preparation, 
bookkeeping, and payroll services 1.08E-03 1.77E-03 2.85E-03 

541300 Architectural, engineering, and related 
services 1.50E-03 2.63E-03 4.14E-03 

541400 Specialized design services 1.12E-03 2.70E-03 3.82E-03 

541511 Custom computer programming 
services 3.67E-03 1.65E-03 5.33E-03 

541512 Computer systems design services 1.07E-03 3.00E-03 4.07E-03 

54151A Other computer related services, 
including facilities management 8.68E-04 2.31E-03 3.18E-03 

541610 Management, scientific, and technical 
consulting services 5.13E-04 2.37E-03 2.88E-03 

5416A0 Environmental and other technical 
consulting services 8.89E-04 2.20E-03 3.09E-03 

541700 Scientific research and development 
services 3.37E-03 3.74E-03 7.11E-03 

541800 Advertising and related services 1.68E-03 4.04E-03 5.72E-03 

5419A0 All other miscellaneous professional, 
scientific, and technical services 1.22E-03 1.74E-03 2.96E-03 

541920 Photographic services 2.36E-03 3.49E-03 5.85E-03 
541940 Veterinary services 1.44E-03 4.72E-03 6.16E-03 

550000 Management of companies and 
enterprises 2.33E-03 2.10E-03 4.43E-03 

561300 Employment services 9.56E-04 1.26E-03 2.21E-03 

561500 Travel arrangement and reservation 
services 2.81E-03 2.90E-03 5.71E-03 

561100 Office administrative services 1.37E-03 2.52E-03 3.89E-03 
561200 Facilities support services 2.12E-03 2.86E-03 4.98E-03 
561400 Business support services 1.64E-03 2.91E-03 4.55E-03 

561600 Investigation and security services 1.42E-03 2.32E-03 3.75E-03 

561700 Services to buildings and dwellings 2.43E-02 2.91E-03 2.72E-02 

561900 Other support services 2.96E-03 3.06E-03 6.02E-03 

562000 Waste management and remediation 
services 3.76E-03 3.86E-03 7.62E-03 
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611100 Elementary and secondary schools 5.22E-03 3.79E-03 9.00E-03 

611A00 Junior colleges, colleges, universities, 
and professional schools 1.40E-02 3.90E-03 1.79E-02 

611B00 Other educational services 1.51E-03 2.98E-03 4.50E-03 

621A00 Offices of physicians, dentists, and 
other health practitioners 1.18E-03 2.53E-03 3.70E-03 

621B00 
Medical and diagnostic labs and 
outpatient and other ambulatory care 
services 

2.22E-03 3.33E-03 5.56E-03 

621600 Home health care services 2.55E-03 2.56E-03 5.12E-03 
622000 Hospitals 4.40E-03 3.74E-03 8.14E-03 

623000 Nursing and residential care facilities 5.45E-03 2.92E-03 8.37E-03 

624A00 Individual and family services 1.96E-03 3.40E-03 5.36E-03 

624200 
Community food, housing, and other 
relief services, including rehabilitation 
services 

3.64E-03 4.03E-03 7.66E-03 

624400 Child day care services 3.49E-03 3.49E-03 6.98E-03 
711100 Performing arts companies 1.39E-03 2.64E-03 4.03E-03 
711200 Spectator sports 2.54E-03 2.91E-03 5.45E-03 

711A00 Promoters of performing arts and sports 
and agents for public figures 2.45E-03 4.39E-03 6.84E-03 

711500 Independent artists, writers, and 
performers 3.89E-04 1.88E-03 2.27E-03 

712000 Museums, historical sites, zoos, and 
parks 9.88E-03 3.24E-03 1.31E-02 

713A00 Amusement parks, arcades, and 
gambling industries 6.10E-03 2.86E-03 8.96E-03 

713B00 Other amusement and recreation 
industries 8.60E-03 4.29E-03 1.29E-02 

713940 Fitness and recreational sports centers 1.16E-02 3.57E-03 1.52E-02 

713950 Bowling centers 1.83E-02 3.69E-03 2.20E-02 

7211A0 Hotels and motels, including casino 
hotels 1.17E-02 3.28E-03 1.50E-02 

721A00 Other accommodations 1.17E-02 3.18E-03 1.48E-02 
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722000 Food services and drinking places 6.97E-03 5.30E-03 1.23E-02 

8111A0 Automotive repair and maintenance, 
except car washes 2.85E-03 4.87E-03 7.72E-03 

811192 Car washes 1.11E-02 3.17E-03 1.43E-02 

811200 Electronic and precision equipment 
repair and maintenance 1.75E-03 2.86E-03 4.61E-03 

811300 Commercial and industrial machinery 
and equipment repair and maintenance 2.57E-03 3.52E-03 6.08E-03 

811400 Personal and household goods repair 
and maintenance 2.90E-03 4.08E-03 6.98E-03 

812100 Personal care services 4.85E-03 2.74E-03 7.58E-03 
812200 Death care services 5.00E-03 5.22E-03 1.02E-02 

812300 Dry-cleaning and laundry services 6.52E-03 2.00E-03 8.51E-03 

812900 Other personal services 2.39E-03 3.05E-03 5.44E-03 
813100 Religious organizations 8.30E-04 3.26E-03 4.09E-03 

813A00 Grantmaking, giving, and social 
advocacy organizations 1.35E-03 4.29E-03 5.64E-03 

813B00 Civic, social, professional, and similar 
organizations 5.61E-03 4.08E-03 9.69E-03 

814000 Private households 0.00E+00 0.00E+00 0.00E+00 
491000 Postal service 3.58E-03 1.99E-03 5.56E-03 

S00102 Other Federal Government enterprises 4.91E-03 1.65E-03 6.56E-03 

S00203 Other State and local government 
enterprises 1.05E-02 5.95E-03 1.64E-02 

S00500 General Federal defense government 
services 3.46E-03 2.91E-03 6.37E-03 

S00600 General Federal nondefense 
government services 3.27E-03 3.28E-03 6.56E-03 

S00700 General state and local government 
services 7.20E-03 3.69E-03 1.09E-02 

S00401 Scrap 7.05E-03 8.29E-03 1.53E-02 
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Table A.2 Original and modified direct energy intensities for the 25 sectors with 
available data 

Sector 
Total energy 
use (GJ) 

Industry 
output from 
Input-Output 
tables 
(Million $) 

Direct 
energy 
intensity 
from 
process 
analysis 
(DEI1) 
(GJ/100$) 

Direct 
energy 
intensity 
from 
input-
output 
analysis 
(DEI2)(GJ
/100$) 

Change 
rate 
(DEI1/DE
I2) 

Wet Corn Milling 228947119 8231.1 2.78 4.86 0.57 
Sugar  118166255 4211.6 2.81 3.32 0.85 
Tobacco  21101117 47464.7 0.04 0.61 0.07 
Pulp Mills 236332510 3509 6.74 3.40 1.98 
Paper Mills 1156341212 45350.2 2.55 2.98 0.85 
Paperboard Mills 957990712 21101.3 4.54 3.95 1.15 
Petrochemicals 937944651 18693.8 5.02 4.46 1.12 
Industrial Gases 215231393 5856.8 3.67 6.04 0.61 
Alkalies and Chlorine 201515667 2751.9 7.32 6.99 1.05 
Carbon Black  92844915 1032 9.00 11.37 0.79 
Other Basic Inorganic 
Chemicals 230002175 15680.3 1.47 4.40 0.33 
Other Basic Organic 
Chemicals 2101671253 54946.8 3.82 5.17 0.74 
Plastics Materials and 
Resins 1921256703 46537.1 4.13 4.64 0.89 
Synthetic Rubber 60138183 5341.9 1.13 3.75 0.30 
Fertilizers 564454880 9911.9 5.69 7.63 0.75 
Pharmaceutical 
Preparation 88624691 108636.9 0.08 0.73 0.11 
Flat Glass 66468519 2648.6 2.51 4.68 0.54 
Glass Containers 69633686 4364 1.60 3.92 0.41 
Cements 431517843 7310.7 5.90 5.49 1.07 
Lime 111835920 4885.9 2.29 4.98 0.46 
Mineral Wool 54862904 4812.1 1.14 3.14 0.36 
Iron and Steel Mills 1408499560 46570 3.02 5.54 0.55 
Steel Products from 
Purchased Steel 47477513 14826.4 0.32 3.30 0.10 
Semiconductors and 
Related Devices 70688742 60832.7 0.12 1.14 0.10 
Light Trucks and 
Utility Vehicles 60138183 134261.3 0.04 1.22 0.04 
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Table A.3 Detailed annual expenses in the Kalamazoo Public Water Supply System 

Phase Items Annual Expense 
(Million Dollars) 

Related Original 
Total Energy (TJ) 

Total Energy 
Modified (TJ) 

Operation 

Real Estate 0.88 2.94 7.50 

Water and Sewer 0.04 0.85 0.67 

Disinfectants 0.20 0.78 15.56 

Organic Chemicals 0.00 0.86 0.00 
Maintenance  1.90 6.10 35.37 
Telecommunication 0.10 0.08 0.62 

Postal Services 0.09 0.02 0.51 

Training and 
Education 0.01 0.02 0.12 

Engineering 
Services 0.24 1.50 1.85 

Construction Asphalt 0.30 53.02 18.21 
 
 

Table A.4 Detailed annual expenses in the City of Tampa Waterworks 

Phase Items 

Annual 
Expense 
(Million 
Dollars) 

Related Original 
Total Energy 
(TJ) 

Total Energy 
Modified (TJ) 

Operation 

Inorganic Chemicals 8.06 0.35 45.54 

Disinfectants 0.75 4.81 58.04 

Organic Chemicals 0.00 5.26 0.00 

Water  5.48 5.25 97.97 

Telecommunication 0.34 0.52 2.11 

Postal service 0.34 0.12 1.87 

Maintenance 8.22 37.55 153.09 

Engineering Service 4.48 9.23 34.51 

Construction Asphalt 0.00 186.32 0.00 
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Table A.5 Direct and total coal intensities of the non-energy sectors in the US input-
output tables 

NAICS IO 
code Name of the Commodity Sector Direct Coal 

Intensity(GJ/$) 
Total Coal 
Intensity(GJ/$) 

1111A0 Oilseed farming 0.00E+00 1.76E-04 
1111B0 Grain farming 0.00E+00 2.75E-04 

111200 Vegetable and melon farming 0.00E+00 1.62E-04 
1113A0 Fruit farming 0.00E+00 1.64E-04 

111335 Tree nut farming 0.00E+00 1.44E-04 

111400 Greenhouse, nursery, and floriculture 
production 0.00E+00 9.39E-05 

111910 Tobacco farming 0.00E+00 2.64E-04 
111920 Cotton farming 0.00E+00 4.05E-04 

1119A0 Sugarcane and sugar beet farming 
0.00E+00 2.06E-04 

1119B0 All other crop farming 0.00E+00 2.42E-04 
1121A0 Cattle ranching and farming 0.00E+00 2.17E-04 

112120 Dairy cattle and milk production 0.00E+00 3.31E-04 

112A00 Animal production, except cattle and 
poultry and eggs 5.21E-07 1.89E-04 

112300 Poultry and egg production 5.42E-03 6.88E-03 

113A00 Forest nurseries, forest products, and 
timber tracts 2.57E-06 2.75E-04 

113300 Logging 1.54E-05 1.47E-04 
114100 Fishing 0.00E+00 1.44E-04 
114200 Hunting and trapping 2.87E-06 4.11E-04 

115000 Support activities for agriculture and 
forestry 2.74E-05 2.71E-04 

212210 Iron ore mining 5.95E-03 7.71E-03 

2122A0 Gold, silver, and other metal ore 
mining 3.66E-03 4.68E-03 

212230 Copper, nickel, lead, and zinc mining 
3.56E-03 4.16E-03 

212310 Stone mining and quarrying 2.94E-03 3.55E-03 

212320 
Sand, gravel, clay, and ceramic and 
refractory minerals mining and 
quarrying 3.84E-03 4.60E-03 

212390 Other nonmetallic mineral mining 
and quarrying 4.93E-03 5.66E-03 
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213111 Drilling oil and gas wells 1.23E-03 2.66E-03 

213112 Support activities for oil and gas 
operations 1.56E-03 2.41E-03 

21311A Support activities for other mining 
2.06E-03 4.19E-03 

221300 Water, sewage and other systems 
1.18E-06 3.37E-04 

230101 Nonresidential commercial and health 
care structures 0.00E+00 6.57E-04 

230102 Nonresidential manufacturing 
structures 0.00E+00 5.13E-04 

230103 Other nonresidential structures 0.00E+00 5.56E-04 

230201 Residential permanent site single- and 
multi-family structures 0.00E+00 6.73E-04 

230202 Other residential structures 0.00E+00 6.32E-04 

230301 Nonresidential maintenance and repair 
0.00E+00 5.01E-04 

230302 Residential maintenance and repair 
0.00E+00 6.21E-04 

311111 Dog and cat food manufacturing 5.83E-04 1.29E-03 
311119 Other animal food manufacturing 5.44E-04 1.10E-03 

311210 Flour milling and malt manufacturing 
6.94E-04 9.21E-04 

311221 Wet corn milling 3.83E-03 4.11E-03 

31122A Soybean and other oilseed processing 
1.05E-03 1.42E-03 

311225 Fats and oils refining and blending 
9.21E-04 1.72E-03 

311230 Breakfast cereal manufacturing 5.06E-04 1.05E-03 
31131A Sugar cane mills and refining 1.72E-03 2.94E-03 

311313 Beet sugar manufacturing 3.13E-03 3.46E-03 

311320 Chocolate and confectionery 
manufacturing from cacao beans 2.83E-04 1.05E-03 

311330 Confectionery manufacturing from 
purchased chocolate 2.86E-04 9.81E-04 

311340 Nonchocolate confectionery 
manufacturing 4.00E-04 1.24E-03 

311410 Frozen food manufacturing 6.12E-04 1.22E-03 

311420 Fruit and vegetable canning, pickling, 
and drying 7.79E-04 1.67E-03 
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31151A Fluid milk and butter manufacturing 
4.18E-04 8.69E-04 

311513 Cheese manufacturing 4.64E-04 9.78E-04 

311514 Dry, condensed, and evaporated dairy 
product manufacturing 6.42E-04 1.25E-03 

311520 Ice cream and frozen dessert 
manufacturing 1.71E-04 9.18E-04 

31161A Animal (except poultry) slaughtering, 
rendering, and processing 

4.14E-04 7.74E-04 
311615 Poultry processing 3.46E-04 3.31E-03 

311700 Seafood product preparation and 
packaging 7.52E-04 9.99E-04 

311810 Bread and bakery product 
manufacturing 5.57E-04 1.07E-03 

311820 Cookie, cracker and pasta 
manufacturing 3.98E-04 1.10E-03 

311830 Tortilla manufacturing 9.49E-04 1.31E-03 
311910 Snack food manufacturing 5.83E-04 1.06E-03 
311920 Coffee and tea manufacturing 3.45E-04 9.72E-04 

311930 Flavoring syrup and concentrate 
manufacturing 1.54E-04 4.81E-04 

311940 Seasoning and dressing manufacturing 
2.68E-04 1.05E-03 

311990 All other food manufacturing 5.45E-04 1.14E-03 
312110 Soft drink and ice manufacturing 2.52E-04 1.39E-03 
312120 Breweries 5.03E-04 2.00E-03 
312130 Wineries 1.67E-04 9.60E-04 
312140 Distilleries 1.85E-04 5.40E-04 

3122A0 Tobacco product manufacturing 1.18E-04 3.40E-04 
313100 Fiber, yarn, and thread mills 2.34E-04 7.24E-04 
313210 Broadwoven fabric mills 4.56E-04 9.71E-04 

313220 Narrow fabric mills and schiffli 
machine embroidery 4.11E-04 7.49E-04 

313230 Nonwoven fabric mills 5.51E-04 1.08E-03 
313240 Knit fabric mills 7.28E-04 1.17E-03 
313310 Textile and fabric finishing mills 8.74E-04 1.37E-03 
313320 Fabric coating mills 4.92E-04 1.10E-03 
314110 Carpet and rug mills 1.55E-04 6.89E-04 
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314120 Curtain and linen mills 1.29E-04 6.29E-04 
314910 Textile bag and canvas mills 4.27E-05 5.19E-04 
314990 All other textile product mills 1.68E-04 8.55E-04 
315100 Apparel knitting mills 8.18E-05 4.57E-04 
315210 Cut and sew apparel contractors 6.79E-05 2.28E-04 

315220 Men's and boys' cut and sew apparel 
manufacturing 5.14E-05 4.35E-04 

315230 Women's and girls' cut and sew 
apparel manufacturing 3.32E-05 4.70E-04 

315290 Other cut and sew apparel 
manufacturing 4.05E-06 3.33E-04 

315900 Apparel accessories and other apparel 
manufacturing 3.91E-05 3.63E-04 

316100 Leather and hide tanning and finishing 
0.00E+00 5.05E-04 

316200 Footwear manufacturing 8.39E-07 3.45E-04 

316900 Other leather and allied product 
manufacturing 2.10E-09 3.61E-04 

321100 Sawmills and wood preservation 3.14E-05 2.15E-04 

32121A Veneer and plywood manufacturing 
9.04E-05 2.49E-04 

32121B Engineered wood member and truss 
manufacturing 1.57E-05 3.12E-04 

321219 Reconstituted wood product 
manufacturing 1.76E-04 4.23E-04 

321910 Wood windows and doors and 
millwork 2.30E-05 4.91E-04 

321920 Wood container and pallet 
manufacturing 2.06E-05 5.12E-04 

321991 Manufactured home (mobile home) 
manufacturing 0.00E+00 1.11E-03 

321992 Prefabricated wood building 
manufacturing 1.49E-06 5.89E-04 

321999 All other miscellaneous wood product 
manufacturing 8.67E-05 4.03E-04 

322110 Pulp mills 3.94E-03 4.40E-03 
322120 Paper mills 2.58E-03 3.24E-03 
322130 Paperboard mills 4.69E-03 5.12E-03 

322210 Paperboard container manufacturing 
3.85E-04 2.20E-03 
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32222A 
Coated and laminated paper, 
packaging paper and plastics film 
manufacturing 5.49E-04 1.63E-03 

32222B All other paper bag and coated and 
treated paper manufacturing 3.05E-04 1.55E-03 

322230 Stationery product manufacturing 1.12E-04 1.53E-03 

322291 Sanitary paper product manufacturing 1.20E-03 1.94E-03 

322299 All other converted paper product 
manufacturing 5.98E-04 1.89E-03 

323110 Printing 4.59E-06 6.07E-04 
323120 Support activities for printing 7.59E-07 3.92E-04 

324121 Asphalt paving mixture and block 
manufacturing 8.16E-04 1.31E-03 

324122 Asphalt shingle and coating materials 
manufacturing 2.26E-04 1.02E-03 

324191 Petroleum lubricating oil and grease 
manufacturing 2.13E-04 4.49E-04 

324199 All other petroleum and coal products 
manufacturing 5.53E-04 7.15E-04 

325110 Petrochemical manufacturing 6.86E-04 1.10E-03 
325120 Industrial gas manufacturing 5.17E-04 8.32E-04 

325130 Synthetic dye and pigment 
manufacturing 3.73E-04 1.28E-03 

325181 Alkalies and chlorine manufacturing 1.84E-03 2.35E-03 
325182 Carbon black manufacturing 2.82E-04 3.78E-04 

325188 All other basic inorganic chemical 
manufacturing 6.17E-04 1.43E-03 

325190 Other basic organic chemical 
manufacturing 7.43E-04 1.34E-03 

325211 Plastics material and resin 
manufacturing 4.62E-04 1.14E-03 

325212 Synthetic rubber manufacturing 3.95E-04 9.44E-04 

325220 Artificial and synthetic fibers and 
filaments manufacturing 3.05E-04 8.76E-04 

325310 Fertilizer manufacturing 5.84E-04 1.30E-03 

325320 Pesticide and other agricultural 
chemical manufacturing 8.82E-05 5.07E-04 

325411 Medicinal and botanical manufacturing 9.58E-05 2.52E-04 
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325412 Pharmaceutical preparation 
manufacturing 3.12E-05 1.90E-04 

325413 In-vitro diagnostic substance 
manufacturing 1.95E-05 1.96E-04 

325414 Biological product (except diagnostic) 
manufacturing 4.52E-05 1.81E-04 

325510 Paint and coating manufacturing 3.34E-05 8.08E-04 
325520 Adhesive manufacturing 8.87E-05 6.36E-04 

325610 Soap and cleaning compound 
manufacturing 1.10E-04 4.82E-04 

325620 Toilet preparation manufacturing 1.31E-04 4.95E-04 
325910 Printing ink manufacturing 2.52E-05 5.40E-04 

3259A0 All other chemical product and 
preparation manufacturing 1.13E-04 6.54E-04 

326110 
Plastics packaging materials and 
unlaminated film and sheet 
manufacturing 1.98E-04 7.93E-04 

326121 Unlaminated plastics profile shape 
manufacturing 1.54E-04 6.67E-04 

326122 Plastic pipe and pipe fitting 
manufacturing 5.45E-05 7.15E-04 

326130 Laminated plastics plate, sheet (except 
packaging), and shape manufacturing 

3.62E-04 1.10E-03 

326140 Polystyrene foam product 
manufacturing 3.98E-04 1.01E-03 

326150 Urethane and other foam product 
(except polystyrene) manufacturing 

1.34E-04 7.94E-04 
326160 Plastics bottle manufacturing 6.91E-05 6.60E-04 

32619A Other plastics product manufacturing 1.05E-04 6.75E-04 
326210 Tire manufacturing 2.79E-04 8.67E-04 

326220 Rubber and plastics hoses and belting 
manufacturing 1.93E-04 9.76E-04 

326290 Other rubber product manufacturing 1.87E-04 1.03E-03 

32711A Pottery, ceramics, and plumbing 
fixture manufacturing 3.02E-03 3.86E-03 

32712A Brick, tile, and other structural clay 
product manufacturing 8.70E-03 8.96E-03 
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32712B Clay and nonclay refractory 
manufacturing 3.03E-03 4.17E-03 

327211 Flat glass manufacturing 9.80E-03 1.03E-02 

327212 Other pressed and blown glass and 
glassware manufacturing 2.78E-03 3.89E-03 

327213 Glass container manufacturing 6.76E-03 7.36E-03 

327215 Glass product manufacturing made of 
purchased glass 1.64E-03 3.11E-03 

327310 Cement manufacturing 8.90E-03 9.78E-03 

327320 Ready-mix concrete manufacturing 
9.02E-04 3.32E-03 

327330 Concrete pipe, brick and block 
manufacturing 7.96E-04 2.79E-03 

327390 Other concrete product manufacturing 
7.02E-04 2.50E-03 

3274A0 Lime and gypsum product 
manufacturing 9.76E-03 1.09E-02 

327910 Abrasive product manufacturing 9.05E-04 1.40E-03 

327991 Cut stone and stone product 
manufacturing 5.86E-04 1.17E-03 

327992 Ground or treated mineral and earth 
manufacturing 4.00E-03 5.09E-03 

327993 Mineral wool manufacturing 4.20E-03 4.96E-03 

327999 Miscellaneous nonmetallic mineral 
products 1.33E-03 3.06E-03 

331110 Iron and steel mills and ferroalloy 
manufacturing 2.06E-02 2.56E-02 

331200 Steel product manufacturing from 
purchased steel 8.04E-03 1.27E-02 

33131A Alumina refining and primary 
aluminum production 3.62E-03 5.24E-03 

331314 Secondary smelting and alloying of 
aluminum 3.76E-03 5.35E-03 

33131B Aluminum product manufacturing 
from purchased aluminum 

1.66E-03 3.83E-03 

331411 Primary smelting and refining of 
copper 1.50E-03 3.63E-03 

331419 
Primary smelting and refining of 
nonferrous metal (except copper and 
aluminum) 2.07E-03 4.17E-03 
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331420 Copper rolling, drawing, extruding and 
alloying 6.59E-04 2.17E-03 

331490 
Nonferrous metal (except copper and 
aluminum) rolling, drawing, extruding 
and alloying 1.09E-03 3.13E-03 

331510 Ferrous metal foundries 1.73E-03 3.72E-03 
331520 Nonferrous metal foundries 1.61E-03 2.89E-03 

33211A All other forging, stamping, and 
sintering 1.19E-03 6.20E-03 

332114 Custom roll forming 1.24E-06 7.94E-03 

33211B Crown and closure manufacturing and 
metal stamping 

3.00E-05 4.30E-03 

33221A Cutlery, utensil, pot, and pan 
manufacturing 1.40E-05 1.91E-03 

33221B Handtool manufacturing 1.48E-05 2.98E-03 

332310 Plate work and fabricated structural 
product manufacturing 9.37E-06 4.80E-03 

332320 Ornamental and architectural metal 
products manufacturing 1.77E-05 3.65E-03 

332410 Power boiler and heat exchanger 
manufacturing 2.62E-05 3.06E-03 

332420 Metal tank (heavy gauge) 
manufacturing 2.03E-05 4.48E-03 

332430 Metal can, box, and other metal 
container (light gauge) manufacturing 

1.20E-05 4.15E-03 
33299A Ammunition manufacturing 3.24E-06 7.61E-04 

33299B Arms, ordnance, and accessories 
manufacturing 2.31E-06 9.85E-04 

332500 Hardware manufacturing 1.04E-05 2.22E-03 

332600 Spring and wire product 
manufacturing 4.10E-05 3.95E-03 

332710 Machine shops 2.22E-05 1.34E-03 

332720 Turned product and screw, nut, and 
bolt manufacturing 1.57E-05 2.66E-03 

332800 Coating, engraving, heat treating and 
allied activities 4.14E-05 2.92E-03 
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33291A Valve and fittings other than plumbing 
1.45E-05 1.65E-03 

332913 Plumbing fixture fitting and trim 
manufacturing 2.85E-06 1.08E-03 

332991 Ball and roller bearing manufacturing 
1.72E-05 2.36E-03 

332996 Fabricated pipe and pipe fitting 
manufacturing 2.50E-05 4.44E-03 

33299C Other fabricated metal manufacturing 7.13E-05 2.56E-03 

333111 Farm machinery and equipment 
manufacturing 1.49E-05 2.19E-03 

333112 Lawn and garden equipment 
manufacturing 1.54E-05 1.81E-03 

333120 Construction machinery 
manufacturing 5.81E-06 1.93E-03 

333130 Mining and oil and gas field 
machinery manufacturing 2.63E-05 2.64E-03 

33329A Other industrial machinery 
manufacturing 3.51E-05 2.08E-03 

333220 Plastics and rubber industry machinery 
manufacturing 3.67E-05 2.11E-03 

333295 Semiconductor machinery 
manufacturing 1.74E-05 7.09E-04 

33331A Vending, commercial, industrial, and 
office machinery manufacturing 

7.67E-07 1.49E-03 

333314 Optical instrument and lens 
manufacturing 3.11E-05 6.62E-04 

333315 Photographic and photocopying 
equipment manufacturing 1.54E-05 6.84E-04 

333319 Other commercial and service industry 
machinery manufacturing 

1.36E-05 1.26E-03 

33341A Air purification and ventilation 
equipment manufacturing 4.74E-05 2.01E-03 

333414 Heating equipment, except warm air 
furnaces 3.49E-05 2.13E-03 

333415 
Air conditioning, refrigeration, and 
warm air heating equipment 
manufacturing 4.61E-06 1.90E-03 
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333511 Industrial mold manufacturing 7.64E-05 1.95E-03 

33351A Metal cutting and forming machine 
tool manufacturing 4.60E-05 1.81E-03 

333514 Special tool, die, jig, and fixture 
manufacturing 1.47E-05 2.40E-03 

333515 Cutting tool and machine tool 
accessory manufacturing 3.03E-05 1.74E-03 

33351B Rolling mill and other metalworking 
machinery manufacturing 1.19E-06 1.53E-03 

333611 Turbine and turbine generator set units 
manufacturing 1.65E-05 1.35E-03 

333612 Speed changer, industrial high-speed 
drive, and gear manufacturing 3.82E-06 1.61E-03 

333613 Mechanical power transmission 
equipment manufacturing 3.13E-05 2.28E-03 

333618 Other engine equipment 
manufacturing 1.62E-05 1.52E-03 

333911 Pump and pumping equipment 
manufacturing 1.29E-05 1.54E-03 

333912 Air and gas compressor manufacturing 
2.33E-05 1.47E-03 

333920 Material handling equipment 
manufacturing 2.00E-05 2.93E-03 

333991 Power-driven handtool manufacturing 
2.18E-06 1.56E-03 

33399A Other general purpose machinery 
manufacturing 9.52E-05 1.71E-03 

333993 Packaging machinery manufacturing 
2.42E-05 1.13E-03 

333994 Industrial process furnace and oven 
manufacturing 5.92E-05 1.45E-03 

33399B Fluid power process machinery 1.72E-05 2.19E-03 

334111 Electronic computer manufacturing 0.00E+00 3.17E-04 

334112 Computer storage device 
manufacturing 5.67E-08 4.82E-04 

33411A 
Computer terminals and other 
computer peripheral equipment 
manufacturing 2.90E-07 5.10E-04 
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334210 Telephone apparatus manufacturing 
6.01E-09 3.52E-04 

334220 Broadcast and wireless 
communications equipment 2.23E-06 3.73E-04 

334290 Other communications equipment 
manufacturing 5.66E-07 4.85E-04 

334300 Audio and video equipment 
manufacturing 7.24E-06 1.19E-03 

334411 Electron tube manufacturing 6.53E-07 1.31E-03 

334412 Bare printed circuit board 
manufacturing 0.00E+00 5.87E-04 

334413 Semiconductor and related device 
manufacturing 9.02E-08 4.46E-04 

33441A 
Electronic capacitor, resistor, coil, 
transformer, and other inductor 
manufacturing 4.29E-06 1.26E-03 

334417 Electronic connector manufacturing 
8.28E-06 8.54E-04 

334418 Printed circuit assembly (electronic 
assembly) manufacturing 

8.70E-07 4.08E-04 

334419 Other electronic component 
manufacturing 6.87E-07 6.73E-04 

334510 Electromedical and electrotherapeutic 
apparatus manufacturing 

6.37E-07 5.66E-04 

334511 Search, detection, and navigation 
instruments manufacturing 5.94E-07 3.41E-04 

334512 Automatic environmental control 
manufacturing 8.95E-06 9.02E-04 

334513 Industrial process variable instruments 
manufacturing 2.56E-06 9.61E-04 

334514 Totalizing fluid meters and counting 
devices manufacturing 2.70E-05 8.42E-04 

334515 Electricity and signal testing 
instruments manufacturing 6.90E-07 3.54E-04 

334516 Analytical laboratory instrument 
manufacturing 1.33E-06 4.93E-04 
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334517 Irradiation apparatus manufacturing 
4.61E-06 8.39E-04 

33451A Other Measuring and Controlling 
Device Manufacturing 4.33E-07 6.89E-04 

33461A Software, audio, and video media 
reproducing 1.02E-07 4.86E-04 

334613 Magnetic and optical recording media 
manufacturing 3.85E-06 6.20E-04 

335110 Electric lamp bulb and part 
manufacturing 5.88E-05 7.71E-04 

335120 Lighting fixture manufacturing 2.50E-05 1.45E-03 

335210 Small electrical appliance 
manufacturing 2.32E-05 1.02E-03 

335221 Household cooking appliance 
manufacturing 2.28E-05 2.56E-03 

335222 Household refrigerator and home 
freezer manufacturing 1.72E-05 2.27E-03 

335224 Household laundry equipment 
manufacturing 2.60E-05 2.45E-03 

335228 Other major household appliance 
manufacturing 2.76E-05 1.84E-03 

335311 Power, distribution, and specialty 
transformer manufacturing 2.32E-05 3.38E-03 

335312 Motor and generator manufacturing 1.12E-05 2.23E-03 

335313 Switchgear and switchboard apparatus 
manufacturing 1.27E-05 1.11E-03 

335314 Relay and industrial control 
manufacturing 2.27E-05 7.48E-04 

335911 Storage battery manufacturing 2.70E-05 1.32E-03 
335912 Primary battery manufacturing 3.10E-06 1.47E-03 

335920 Communication and energy wire and 
cable manufacturing 2.45E-05 1.15E-03 

335930 Wiring device manufacturing 4.35E-05 1.80E-03 

335991 Carbon and graphite product 
manufacturing 5.75E-05 5.62E-04 

335999 
All other miscellaneous electrical 
equipment and component 
manufacturing 1.70E-05 6.99E-04 

336111 Automobile Manufacturing 1.10E-05 1.36E-03 

336112 Light truck and utility vehicle 
manufacturing 1.06E-05 1.48E-03 
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336120 Heavy duty truck manufacturing 7.21E-05 1.55E-03 

336211 Motor vehicle body manufacturing 
1.69E-05 1.71E-03 

336212 Truck trailer manufacturing 2.39E-05 2.37E-03 
336213 Motor home manufacturing 1.73E-05 1.13E-03 

336214 Travel trailer and camper 
manufacturing 1.44E-05 1.86E-03 

336300 Motor vehicle parts manufacturing 2.09E-05 2.33E-03 
336411 Aircraft manufacturing 8.46E-06 8.13E-04 

336412 Aircraft engine and engine parts 
manufacturing 2.20E-05 6.11E-04 

336413 Other aircraft parts and auxiliary 
equipment manufacturing 2.64E-05 8.16E-04 

336414 Guided missile and space vehicle 
manufacturing 6.19E-06 3.84E-04 

33641A Propulsion units and parts for space 
vehicles and guided missiles 2.68E-05 4.12E-04 

336500 Railroad rolling stock manufacturing 1.41E-05 1.61E-03 
336611 Ship building and repairing 1.50E-05 1.08E-03 
336612 Boat building 1.25E-05 8.95E-04 

336991 Motorcycle, bicycle, and parts 
manufacturing 2.15E-05 2.86E-03 

336992 Military armored vehicle, tank, and 
tank component manufacturing 3.28E-05 1.51E-03 

336999 All other transportation equipment 
manufacturing 1.40E-05 1.87E-03 

337110 Wood kitchen cabinet and countertop 
manufacturing 2.26E-05 3.58E-04 

337121 Upholstered household furniture 
manufacturing 1.04E-05 7.42E-04 

337122 Nonupholstered wood household 
furniture manufacturing 2.73E-05 3.72E-04 

33712A Metal and other household furniture 
(except wood) manufacturing 

6.99E-05 1.67E-03 

337127 Institutional furniture manufacturing 
6.41E-05 1.75E-03 
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33721A Wood television, radio, and sewing 
machine cabinet manufacturing 1.26E-06 2.08E-04 

337212 
Office furniture and custom 
architectural woodwork and millwork 
manufacturing 2.70E-05 1.27E-03 

337215 Showcase, partition, shelving, and 
locker manufacturing 3.42E-05 3.07E-03 

337910 Mattress manufacturing 2.03E-05 7.82E-04 
337920 Blind and shade manufacturing 6.85E-05 1.19E-03 

339111 Laboratory apparatus and furniture 
manufacturing 2.88E-07 6.26E-04 

339112 Surgical and medical instrument 
manufacturing 1.07E-07 3.29E-04 

339113 Surgical appliance and supplies 
manufacturing 9.57E-06 5.90E-04 

339114 Dental equipment and supplies 
manufacturing 1.68E-06 1.02E-03 

339115 Ophthalmic goods manufacturing 0.00E+00 2.17E-04 
339116 Dental laboratories 4.94E-07 3.12E-04 
339910 Jewelry and silverware manufacturing 8.81E-09 1.22E-03 

339920 Sporting and athletic goods 
manufacturing 2.38E-06 1.24E-03 

339930 Doll, toy, and game manufacturing 
1.40E-06 5.80E-04 

339940 Office supplies (except paper) 
manufacturing 2.79E-06 5.06E-04 

339950 Sign manufacturing 3.38E-07 9.55E-04 

339991 Gasket, packing, and sealing device 
manufacturing 9.22E-06 1.13E-03 

339992 Musical instrument manufacturing 
0.00E+00 1.85E-04 

33999A All other miscellaneous manufacturing 
1.06E-05 1.27E-03 

339994 Broom, brush, and mop manufacturing 
2.11E-05 4.94E-04 

420000 Wholesale trade 4.55E-06 7.58E-05 
4A0000 Retail trade 7.03E-06 8.27E-05 
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481000 Air transportation 2.74E-07 7.89E-05 
482000 Rail transportation 3.00E-07 2.66E-04 
483000 Water transportation 3.24E-04 7.23E-04 
484000 Truck transportation 3.03E-07 1.44E-04 

485000 Transit and ground passenger 
transportation 7.89E-09 3.71E-04 

486000 Pipeline transportation 0.00E+00 3.45E-04 

48A000 
Scenic and sightseeing transportation 
and support activities for 
transportation 6.78E-06 1.47E-04 

492000 Couriers and messengers 0.00E+00 6.72E-05 
493000 Warehousing and storage 5.89E-05 1.70E-04 
511110 Newspaper publishers 2.07E-06 3.46E-04 
511120 Periodical publishers 0.00E+00 1.86E-04 
511130 Book publishers 3.50E-06 1.74E-04 

5111A0 Directory, mailing list, and other 
publishers 2.00E-07 1.86E-04 

511200 Software publishers 0.00E+00 5.63E-05 

512100 Motion picture and video industries 1.42E-06 5.53E-05 
512200 Sound recording industries 2.65E-09 1.39E-04 
515100 Radio and television broadcasting 5.07E-06 1.00E-04 

515200 Cable and other subscription 
programming 3.77E-06 1.57E-04 

516110 Internet publishing and broadcasting 
3.94E-08 2.54E-04 

517000 Telecommunications 1.05E-05 1.16E-04 

518100 Internet service providers and web 
search portals 5.08E-06 1.07E-04 

518200 Data processing, hosting, and related 
services 0.00E+00 1.01E-04 

519100 Other information services 4.12E-06 8.39E-05 

52A000 Monetary authorities and depository 
credit intermediation 8.99E-07 3.32E-05 

522A00 Nondepository credit intermediation 
and related activities 

4.71E-08 3.80E-05 

523000 Securities, commodity contracts, 
investments, and related activities 

7.02E-07 3.64E-05 
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524100 Insurance carriers 2.25E-12 3.19E-05 

524200 Insurance agencies, brokerages, and 
related activities 2.35E-06 4.01E-05 

525000 Funds, trusts, and other financial 
vehicles 0.00E+00 3.43E-05 

531000 Real estate 5.44E-05 9.44E-05 
S00800 Owner-occupied dwellings 0.00E+00 6.50E-05 

532100 Automotive equipment rental and 
leasing 1.10E-06 7.13E-05 

532A00 General and consumer goods rental 
except video tapes and discs 7.47E-08 1.24E-04 

532230 Video tape and disc rental 1.21E-05 2.33E-04 

532400 Commercial and industrial machinery 
and equipment rental and leasing 5.78E-06 1.20E-04 

533000 Lessors of nonfinancial intangible 
assets 0.00E+00 2.96E-05 

541100 Legal services 1.41E-06 3.96E-05 

541200 Accounting, tax preparation, 
bookkeeping, and payroll services 2.81E-06 5.71E-05 

541300 Architectural, engineering, and related 
services 3.76E-05 1.53E-04 

541400 Specialized design services 1.50E-06 9.07E-05 

541511 Custom computer programming 
services 6.08E-07 3.25E-05 

541512 Computer systems design services 
4.85E-07 1.00E-04 

54151A Other computer related services, 
including facilities management 6.69E-08 6.09E-05 

541610 Management, scientific, and technical 
consulting services 2.79E-06 5.64E-05 

5416A0 Environmental and other technical 
consulting services 4.92E-07 9.71E-05 

541700 Scientific research and development 
services 3.76E-04 5.35E-04 

541800 Advertising and related services 2.55E-06 1.91E-04 

5419A0 All other miscellaneous professional, 
scientific, and technical services 

3.90E-06 5.64E-05 
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541920 Photographic services 1.04E-05 9.47E-05 
541940 Veterinary services 6.55E-06 1.40E-04 

550000 Management of companies and 
enterprises 6.36E-06 7.06E-05 

561300 Employment services 2.10E-06 2.73E-05 

561500 Travel arrangement and reservation 
services 2.07E-05 9.34E-05 

561100 Office administrative services 2.66E-06 6.07E-05 
561200 Facilities support services 6.87E-06 1.93E-04 
561400 Business support services 2.17E-06 7.93E-05 
561600 Investigation and security services 1.55E-06 1.08E-04 

561700 Services to buildings and dwellings 
3.88E-06 1.06E-04 

561900 Other support services 4.95E-06 9.90E-05 

562000 Waste management and remediation 
services 1.35E-05 2.06E-04 

611100 Elementary and secondary schools 
5.41E-06 1.25E-04 

611A00 Junior colleges, colleges, universities, 
and professional schools 1.72E-05 1.55E-04 

611B00 Other educational services 3.38E-06 1.36E-04 

621A00 Offices of physicians, dentists, and 
other health practitioners 2.02E-06 8.01E-05 

621B00 
Medical and diagnostic labs and 
outpatient and other ambulatory care 
services 6.61E-06 1.19E-04 

621600 Home health care services 1.06E-05 9.82E-05 
622000 Hospitals 9.53E-06 1.31E-04 

623000 Nursing and residential care facilities 
1.40E-05 1.25E-04 

624A00 Individual and family services 1.19E-05 1.44E-04 

624200 
Community food, housing, and other 
relief services, including rehabilitation 
services 4.65E-06 2.31E-04 

624400 Child day care services 8.18E-06 1.40E-04 
711100 Performing arts companies 0.00E+00 5.02E-05 
711200 Spectator sports 4.30E-06 9.12E-05 
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711A00 Promoters of performing arts and 
sports and agents for public figures 

7.51E-07 7.97E-05 

711500 Independent artists, writers, and 
performers 0.00E+00 5.41E-05 

712000 Museums, historical sites, zoos, and 
parks 1.93E-05 9.63E-05 

713A00 Amusement parks, arcades, and 
gambling industries 1.62E-06 1.40E-04 

713B00 Other amusement and recreation 
industries 2.99E-05 2.46E-04 

713940 Fitness and recreational sports centers 2.62E-05 1.95E-04 
713950 Bowling centers 4.19E-05 2.02E-04 

7211A0 Hotels and motels, including casino 
hotels 2.26E-05 1.36E-04 

721A00 Other accommodations 3.34E-05 1.38E-04 
722000 Food services and drinking places 3.45E-05 3.18E-04 

8111A0 Automotive repair and maintenance, 
except car washes 3.45E-06 4.19E-04 

811192 Car washes 2.36E-05 2.24E-04 

811200 Electronic and precision equipment 
repair and maintenance 6.04E-06 1.45E-04 

811300 Commercial and industrial machinery 
and equipment repair and maintenance 2.83E-06 3.10E-04 

811400 Personal and household goods repair 
and maintenance 3.32E-06 3.42E-04 

812100 Personal care services 2.49E-06 9.04E-05 
812200 Death care services 1.39E-05 3.92E-04 

812300 Dry-cleaning and laundry services 
1.23E-05 8.59E-05 

812900 Other personal services 3.72E-06 1.13E-04 
813100 Religious organizations 0.00E+00 6.79E-05 

813A00 Grantmaking, giving, and social 
advocacy organizations 3.50E-06 1.20E-04 

813B00 Civic, social, professional, and similar 
organizations 1.68E-05 1.50E-04 

814000 Private households 0.00E+00 0.00E+00 
491000 Postal service 0.00E+00 9.51E-05 
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S00102 Other Federal Government enterprises 
0.00E+00 6.52E-05 

S00203 Other State and local government 
enterprises 7.26E-07 3.94E-04 

S00500 General Federal defense government 
services 0.00E+00 1.50E-04 

S00600 General Federal nondefense 
government services 3.11E-04 4.41E-04 

S00700 General state and local government 
services 3.95E-05 1.70E-04 

S00401 Scrap 6.58E-04 1.77E-03 
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Table A.6 Direct and total electricity intensities of the non-energy sectors in the US 
input-output tables 

NAICS IO 
code Name of the Commodity Sector 

Direct 
Electricity 
Intensity (GJ/$) 

Total Electricity 
Intensity (GJ/$) 

1111A0 Oilseed farming 4.33E-03 7.65E-03 
1111B0 Grain farming 3.62E-03 7.98E-03 

111200 Vegetable and melon farming 8.40E-03 1.10E-02 
1113A0 Fruit farming 8.88E-03 1.11E-02 

111335 Tree nut farming 9.38E-03 1.15E-02 

111400 Greenhouse, nursery, and floriculture 
production 3.55E-03 5.16E-03 

111910 Tobacco farming 8.13E-03 1.27E-02 
111920 Cotton farming 7.45E-03 1.29E-02 

1119A0 Sugarcane and sugar beet farming 
9.13E-03 1.23E-02 

1119B0 All other crop farming 1.13E-02 1.46E-02 
1121A0 Cattle ranching and farming 3.44E-03 1.09E-02 

112120 Dairy cattle and milk production 7.55E-03 1.23E-02 

112A00 Animal production, except cattle and 
poultry and eggs 5.26E-03 8.86E-03 

112300 Poultry and egg production 4.84E-03 1.13E-02 

113A00 Forest nurseries, forest products, and 
timber tracts 2.98E-03 5.79E-03 

113300 Logging 1.15E-04 2.75E-03 
114100 Fishing 0.00E+00 1.81E-03 
114200 Hunting and trapping 6.29E-04 2.93E-03 

115000 Support activities for agriculture and 
forestry 1.82E-03 4.80E-03 

212210 Iron ore mining 3.62E-02 3.99E-02 

2122A0 Gold, silver, and other metal ore 
mining 1.78E-02 2.10E-02 

212230 Copper, nickel, lead, and zinc mining 
2.48E-02 2.72E-02 

212310 Stone mining and quarrying 9.97E-03 1.21E-02 

212320 
Sand, gravel, clay, and ceramic and 
refractory minerals mining and 
quarrying 1.22E-02 1.43E-02 

212390 Other nonmetallic mineral mining and 
quarrying 1.76E-02 1.97E-02 

213111 Drilling oil and gas wells 1.23E-03 4.80E-03 



255 

Appendix A (continued) 

Table A.6 (continued) 

213112 Support activities for oil and gas 
operations 9.87E-04 3.49E-03 

21311A Support activities for other mining 
1.74E-03 5.12E-03 

221300 Water, sewage and other systems 
2.19E-03 4.25E-03 

230101 Nonresidential commercial and health 
care structures 1.13E-03 3.48E-03 

230102 Nonresidential manufacturing 
structures 9.17E-04 2.93E-03 

230103 Other nonresidential structures 1.08E-03 3.34E-03 

230201 Residential permanent site single- and 
multi-family structures 9.70E-04 4.39E-03 

230202 Other residential structures 9.82E-04 4.12E-03 

230301 Nonresidential maintenance and repair 9.11E-04 3.20E-03 
230302 Residential maintenance and repair 5.12E-04 3.95E-03 
311111 Dog and cat food manufacturing 2.94E-03 8.03E-03 
311119 Other animal food manufacturing 3.38E-03 9.52E-03 

311210 Flour milling and malt manufacturing 8.45E-03 1.29E-02 
311221 Wet corn milling 1.13E-02 1.60E-02 

31122A Soybean and other oilseed processing 3.08E-03 9.60E-03 

311225 Fats and oils refining and blending 
3.11E-03 9.96E-03 

311230 Breakfast cereal manufacturing 3.06E-03 6.72E-03 
31131A Sugar cane mills and refining 3.81E-03 1.14E-02 

311313 Beet sugar manufacturing 3.83E-03 1.10E-02 

311320 Chocolate and confectionery 
manufacturing from cacao beans 3.21E-03 9.68E-03 

311330 Confectionery manufacturing from 
purchased chocolate 3.11E-03 8.47E-03 

311340 Nonchocolate confectionery 
manufacturing 2.99E-03 8.31E-03 

311410 Frozen food manufacturing 4.82E-03 1.03E-02 

311420 Fruit and vegetable canning, pickling, 
and drying 2.98E-03 8.31E-03 

31151A Fluid milk and butter manufacturing 3.76E-03 1.14E-02 
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311513 Cheese manufacturing 2.79E-03 1.14E-02 

311514 Dry, condensed, and evaporated dairy 
product manufacturing 3.04E-03 1.06E-02 

311520 Ice cream and frozen dessert 
manufacturing 4.25E-03 1.03E-02 

31161A Animal (except poultry) slaughtering, 
rendering, and processing 

2.74E-03 1.03E-02 
311615 Poultry processing 3.49E-03 1.03E-02 

311700 Seafood product preparation and 
packaging 4.19E-03 7.14E-03 

311810 Bread and bakery product 
manufacturing 3.89E-03 7.83E-03 

311820 Cookie, cracker and pasta 
manufacturing 3.18E-03 8.18E-03 

311830 Tortilla manufacturing 5.67E-03 1.00E-02 
311910 Snack food manufacturing 2.23E-03 7.79E-03 
311920 Coffee and tea manufacturing 2.16E-03 8.51E-03 

311930 Flavoring syrup and concentrate 
manufacturing 1.07E-03 3.58E-03 

311940 Seasoning and dressing manufacturing 
2.21E-03 8.35E-03 

311990 All other food manufacturing 4.50E-03 9.63E-03 
312110 Soft drink and ice manufacturing 2.63E-03 1.00E-02 
312120 Breweries 2.51E-03 7.69E-03 
312130 Wineries 2.77E-03 7.61E-03 
312140 Distilleries 7.90E-04 2.62E-03 

3122A0 Tobacco product manufacturing 7.53E-04 2.48E-03 
313100 Fiber, yarn, and thread mills 1.02E-02 1.86E-02 
313210 Broadwoven fabric mills 8.57E-03 1.49E-02 

313220 Narrow fabric mills and schiffli 
machine embroidery 4.61E-03 1.07E-02 

313230 Nonwoven fabric mills 6.79E-03 1.25E-02 
313240 Knit fabric mills 5.36E-03 1.31E-02 
313310 Textile and fabric finishing mills 4.93E-03 1.13E-02 
313320 Fabric coating mills 3.49E-03 9.51E-03 
314110 Carpet and rug mills 2.26E-03 1.10E-02 
314120 Curtain and linen mills 2.68E-03 9.05E-03 
314910 Textile bag and canvas mills 1.29E-03 6.15E-03 
314990 All other textile product mills 4.16E-03 9.94E-03 
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315100 Apparel knitting mills 3.67E-03 9.18E-03 
315210 Cut and sew apparel contractors 2.76E-03 5.41E-03 

315220 Men's and boys' cut and sew apparel 
manufacturing 1.51E-03 5.87E-03 

315230 Women's and girls' cut and sew apparel 
manufacturing 1.20E-03 6.38E-03 

315290 Other cut and sew apparel 
manufacturing 1.87E-03 6.31E-03 

315900 Apparel accessories and other apparel 
manufacturing 1.99E-03 6.36E-03 

316100 Leather and hide tanning and finishing 2.28E-03 9.12E-03 
316200 Footwear manufacturing 2.22E-03 6.85E-03 

316900 Other leather and allied product 
manufacturing 1.59E-03 5.38E-03 

321100 Sawmills and wood preservation 4.60E-03 7.87E-03 

32121A Veneer and plywood manufacturing 5.86E-03 9.34E-03 

32121B Engineered wood member and truss 
manufacturing 1.97E-03 6.09E-03 

321219 Reconstituted wood product 
manufacturing 1.23E-02 1.63E-02 

321910 Wood windows and doors and 
millwork 2.81E-03 7.18E-03 

321920 Wood container and pallet 
manufacturing 2.88E-03 6.85E-03 

321991 Manufactured home (mobile home) 
manufacturing 9.46E-04 6.09E-03 

321992 Prefabricated wood building 
manufacturing 1.02E-03 5.43E-03 

321999 All other miscellaneous wood product 
manufacturing 4.03E-03 7.74E-03 

322110 Pulp mills 7.99E-03 1.19E-02 
322120 Paper mills 8.73E-03 1.25E-02 
322130 Paperboard mills 1.20E-02 1.53E-02 
322210 Paperboard container manufacturing 2.95E-03 9.86E-03 

32222A Coated and laminated paper, packaging 
paper and plastics film manufacturing 3.02E-03 8.42E-03 

32222B All other paper bag and coated and 
treated paper manufacturing 2.98E-03 9.43E-03 
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322230 Stationery product manufacturing 2.79E-03 8.68E-03 

322291 Sanitary paper product manufacturing 5.13E-03 8.86E-03 

322299 All other converted paper product 
manufacturing 3.86E-03 9.09E-03 

323110 Printing 3.02E-03 6.52E-03 
323120 Support activities for printing 2.49E-03 4.89E-03 

324121 Asphalt paving mixture and block 
manufacturing 3.97E-03 6.47E-03 

324122 Asphalt shingle and coating materials 
manufacturing 2.24E-03 5.40E-03 

324191 Petroleum lubricating oil and grease 
manufacturing 1.60E-03 3.98E-03 

324199 All other petroleum and coal products 
manufacturing 3.79E-03 5.22E-03 

325110 Petrochemical manufacturing 3.62E-03 7.38E-03 
325120 Industrial gas manufacturing 3.66E-02 4.00E-02 

325130 Synthetic dye and pigment 
manufacturing 6.63E-03 1.17E-02 

325181 Alkalies and chlorine manufacturing 
2.97E-02 3.32E-02 

325182 Carbon black manufacturing 9.04E-03 1.01E-02 

325188 All other basic inorganic chemical 
manufacturing 2.03E-02 2.54E-02 

325190 Other basic organic chemical 
manufacturing 6.30E-03 1.20E-02 

325211 Plastics material and resin 
manufacturing 5.78E-03 1.20E-02 

325212 Synthetic rubber manufacturing 5.25E-03 1.03E-02 

325220 Artificial and synthetic fibers and 
filaments manufacturing 7.82E-03 1.46E-02 

325310 Fertilizer manufacturing 7.13E-03 1.21E-02 

325320 Pesticide and other agricultural 
chemical manufacturing 2.11E-03 6.50E-03 

325411 Medicinal and botanical 
manufacturing 2.05E-03 4.20E-03 

325412 Pharmaceutical preparation 
manufacturing 1.13E-03 3.17E-03 

325413 In-vitro diagnostic substance 
manufacturing 2.33E-03 4.77E-03 
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325414 Biological product (except diagnostic) 
manufacturing 1.99E-03 4.05E-03 

325510 Paint and coating manufacturing 1.66E-03 7.46E-03 
325520 Adhesive manufacturing 2.47E-03 7.82E-03 

325610 Soap and cleaning compound 
manufacturing 1.89E-03 5.88E-03 

325620 Toilet preparation manufacturing 8.56E-04 3.94E-03 
325910 Printing ink manufacturing 1.51E-03 6.53E-03 

3259A0 All other chemical product and 
preparation manufacturing 2.89E-03 8.48E-03 

326110 
Plastics packaging materials and 
unlaminated film and sheet 
manufacturing 5.91E-03 1.16E-02 

326121 Unlaminated plastics profile shape 
manufacturing 6.36E-03 1.13E-02 

326122 Plastic pipe and pipe fitting 
manufacturing 6.74E-03 1.29E-02 

326130 Laminated plastics plate, sheet (except 
packaging), and shape manufacturing 4.57E-03 1.02E-02 

326140 Polystyrene foam product 
manufacturing 5.77E-03 1.10E-02 

326150 Urethane and other foam product 
(except polystyrene) manufacturing 2.77E-03 8.76E-03 

326160 Plastics bottle manufacturing 1.14E-02 1.68E-02 

32619A Other plastics product manufacturing 
5.08E-03 9.62E-03 

326210 Tire manufacturing 4.33E-03 8.86E-03 

326220 Rubber and plastics hoses and belting 
manufacturing 3.74E-03 8.56E-03 

326290 Other rubber product manufacturing 4.68E-03 9.15E-03 

32711A Pottery, ceramics, and plumbing 
fixture manufacturing 5.71E-03 8.99E-03 

32712A Brick, tile, and other structural clay 
product manufacturing 8.20E-03 1.00E-02 

32712B Clay and nonclay refractory 
manufacturing 6.03E-03 1.02E-02 

327211 Flat glass manufacturing 1.08E-02 1.42E-02 
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327212 Other pressed and blown glass and 
glassware manufacturing 7.57E-03 1.17E-02 

327213 Glass container manufacturing 1.23E-02 1.55E-02 

327215 Glass product manufacturing made of 
purchased glass 5.15E-03 9.71E-03 

327310 Cement manufacturing 2.26E-02 2.56E-02 

327320 Ready-mix concrete manufacturing 
1.53E-03 9.28E-03 

327330 Concrete pipe, brick and block 
manufacturing 2.62E-03 8.10E-03 

327390 Other concrete product manufacturing 2.13E-03 6.48E-03 

3274A0 Lime and gypsum product 
manufacturing 1.03E-02 1.46E-02 

327910 Abrasive product manufacturing 5.07E-03 8.22E-03 

327991 Cut stone and stone product 
manufacturing 3.40E-03 6.57E-03 

327992 Ground or treated mineral and earth 
manufacturing 8.23E-03 1.11E-02 

327993 Mineral wool manufacturing 1.03E-02 1.39E-02 

327999 Miscellaneous nonmetallic mineral 
products 3.33E-03 9.05E-03 

331110 Iron and steel mills and ferroalloy 
manufacturing 1.02E-02 1.68E-02 

331200 Steel product manufacturing from 
purchased steel 6.07E-03 1.19E-02 

33131A Alumina refining and primary 
aluminum production 3.06E-02 4.14E-02 

331314 Secondary smelting and alloying of 
aluminum 3.27E-02 4.33E-02 

33131B Aluminum product manufacturing 
from purchased aluminum 4.38E-03 1.85E-02 

331411 Primary smelting and refining of 
copper 4.79E-03 1.46E-02 

331419 
Primary smelting and refining of 
nonferrous metal (except copper and 
aluminum) 9.41E-03 1.72E-02 

331420 Copper rolling, drawing, extruding and 
alloying 4.43E-03 1.16E-02 

331490 
Nonferrous metal (except copper and 
aluminum) rolling, drawing, extruding 
and alloying 5.07E-03 1.11E-02 
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331510 Ferrous metal foundries 1.05E-02 1.39E-02 
331520 Nonferrous metal foundries 6.09E-03 1.41E-02 

33211A All other forging, stamping, and 
sintering 7.12E-03 1.32E-02 

332114 Custom roll forming 2.26E-03 1.03E-02 

33211B Crown and closure manufacturing and 
metal stamping 

3.19E-03 8.84E-03 

33221A Cutlery, utensil, pot, and pan 
manufacturing 2.09E-03 6.95E-03 

33221B Handtool manufacturing 3.21E-03 7.65E-03 

332310 Plate work and fabricated structural 
product manufacturing 1.98E-03 7.23E-03 

332320 Ornamental and architectural metal 
products manufacturing 1.90E-03 7.43E-03 

332410 Power boiler and heat exchanger 
manufacturing 2.64E-03 7.36E-03 

332420 Metal tank (heavy gauge) 
manufacturing 2.53E-03 7.54E-03 

332430 Metal can, box, and other metal 
container (light gauge) manufacturing 

3.74E-03 1.26E-02 
33299A Ammunition manufacturing 4.43E-03 7.38E-03 

33299B Arms, ordnance, and accessories 
manufacturing 2.56E-03 5.78E-03 

332500 Hardware manufacturing 2.04E-03 6.27E-03 

332600 Spring and wire product 
manufacturing 3.12E-03 8.04E-03 

332710 Machine shops 3.19E-03 6.66E-03 

332720 Turned product and screw, nut, and 
bolt manufacturing 3.69E-03 7.71E-03 

332800 Coating, engraving, heat treating and 
allied activities 6.21E-03 1.08E-02 

33291A Valve and fittings other than plumbing 
2.74E-03 7.08E-03 

332913 Plumbing fixture fitting and trim 
manufacturing 2.29E-03 6.85E-03 

332991 Ball and roller bearing manufacturing 
4.73E-03 8.63E-03 
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332996 Fabricated pipe and pipe fitting 

manufacturing 2.61E-03 7.74E-03 

33299C Other fabricated metal manufacturing 3.39E-03 8.40E-03 

333111 Farm machinery and equipment 
manufacturing 1.26E-03 5.99E-03 

333112 Lawn and garden equipment 
manufacturing 1.20E-03 6.19E-03 

333120 Construction machinery manufacturing 1.33E-03 6.12E-03 

333130 Mining and oil and gas field machinery 
manufacturing 2.41E-03 7.45E-03 

33329A Other industrial machinery 
manufacturing 2.44E-03 6.82E-03 

333220 Plastics and rubber industry machinery 
manufacturing 2.08E-03 6.38E-03 

333295 Semiconductor machinery 
manufacturing 2.22E-03 6.12E-03 

33331A Vending, commercial, industrial, and 
office machinery manufacturing 1.05E-03 5.49E-03 

333314 Optical instrument and lens 
manufacturing 2.67E-03 6.18E-03 

333315 Photographic and photocopying 
equipment manufacturing 2.72E-03 6.81E-03 

333319 Other commercial and service industry 
machinery manufacturing 1.26E-03 5.18E-03 

33341A Air purification and ventilation 
equipment manufacturing 1.98E-03 6.79E-03 

333414 Heating equipment, except warm air 
furnaces 2.09E-03 6.42E-03 

333415 
Air conditioning, refrigeration, and 
warm air heating equipment 
manufacturing 1.56E-03 5.91E-03 

333511 Industrial mold manufacturing 4.13E-03 7.96E-03 

33351A Metal cutting and forming machine 
tool manufacturing 2.45E-03 6.21E-03 

333514 Special tool, die, jig, and fixture 
manufacturing 2.96E-03 6.79E-03 

333515 Cutting tool and machine tool 
accessory manufacturing 3.99E-03 7.36E-03 

33351B Rolling mill and other metalworking 
machinery manufacturing 2.01E-03 5.65E-03 
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333611 Turbine and turbine generator set units 
manufacturing 8.51E-04 4.17E-03 

333612 Speed changer, industrial high-speed 
drive, and gear manufacturing 

3.18E-03 6.73E-03 

333613 Mechanical power transmission 
equipment manufacturing 3.64E-03 7.79E-03 

333618 Other engine equipment manufacturing 
1.71E-03 6.85E-03 

333911 Pump and pumping equipment 
manufacturing 2.26E-03 6.77E-03 

333912 Air and gas compressor manufacturing 
2.03E-03 6.60E-03 

333920 Material handling equipment 
manufacturing 1.44E-03 6.67E-03 

333991 Power-driven handtool manufacturing 
1.64E-03 6.42E-03 

33399A Other general purpose machinery 
manufacturing 2.27E-03 6.63E-03 

333993 Packaging machinery manufacturing 
1.56E-03 5.49E-03 

333994 Industrial process furnace and oven 
manufacturing 2.42E-03 5.96E-03 

33399B Fluid power process machinery 2.90E-03 7.18E-03 

334111 Electronic computer manufacturing 
3.35E-04 3.69E-03 

334112 Computer storage device 
manufacturing 2.42E-03 5.77E-03 

33411A 
Computer terminals and other 
computer peripheral equipment 
manufacturing 7.93E-04 4.32E-03 

334210 Telephone apparatus manufacturing 
5.01E-04 3.81E-03 

334220 Broadcast and wireless 
communications equipment 9.84E-04 4.49E-03 

334290 Other communications equipment 
manufacturing 1.54E-03 4.66E-03 

334300 Audio and video equipment 
manufacturing 1.45E-03 6.43E-03 

334411 Electron tube manufacturing 3.68E-03 9.15E-03 
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334412 Bare printed circuit board 
manufacturing 4.79E-03 8.95E-03 

334413 Semiconductor and related device 
manufacturing 3.74E-03 7.53E-03 

33441A 
Electronic capacitor, resistor, coil, 
transformer, and other inductor 
manufacturing 4.39E-03 8.36E-03 

334417 Electronic connector manufacturing 
3.33E-03 7.86E-03 

334418 Printed circuit assembly (electronic 
assembly) manufacturing 

1.59E-03 5.71E-03 

334419 Other electronic component 
manufacturing 2.77E-03 6.57E-03 

334510 Electromedical and electrotherapeutic 
apparatus manufacturing 

9.31E-04 4.15E-03 

334511 Search, detection, and navigation 
instruments manufacturing 2.08E-03 4.76E-03 

334512 Automatic environmental control 
manufacturing 1.78E-03 5.49E-03 

334513 Industrial process variable instruments 
manufacturing 1.73E-03 5.51E-03 

334514 Totalizing fluid meters and counting 
devices manufacturing 1.22E-03 5.53E-03 

334515 Electricity and signal testing 
instruments manufacturing 1.61E-03 4.32E-03 

334516 Analytical laboratory instrument 
manufacturing 1.19E-03 4.32E-03 

334517 Irradiation apparatus manufacturing 
9.12E-04 4.40E-03 

33451A Other Measuring and Controlling 
Device Manufacturing 1.68E-03 4.91E-03 

33461A Software, audio, and video media 
reproducing 3.63E-03 7.64E-03 

334613 Magnetic and optical recording media 
manufacturing 2.70E-03 6.68E-03 

335110 Electric lamp bulb and part 
manufacturing 3.49E-03 6.61E-03 

335120 Lighting fixture manufacturing 1.69E-03 5.81E-03 

335210 Small electrical appliance 
manufacturing 1.64E-03 5.71E-03 
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335221 Household cooking appliance 
manufacturing 1.31E-03 7.15E-03 

335222 Household refrigerator and home 
freezer manufacturing 1.50E-03 6.90E-03 

335224 Household laundry equipment 
manufacturing 1.19E-03 6.10E-03 

335228 Other major household appliance 
manufacturing 1.41E-03 5.85E-03 

335311 Power, distribution, and specialty 
transformer manufacturing 2.04E-03 6.91E-03 

335312 Motor and generator manufacturing 2.02E-03 6.57E-03 

335313 Switchgear and switchboard apparatus 
manufacturing 1.47E-03 4.74E-03 

335314 Relay and industrial control 
manufacturing 1.24E-03 4.15E-03 

335911 Storage battery manufacturing 6.31E-03 1.24E-02 
335912 Primary battery manufacturing 1.86E-03 5.70E-03 

335920 Communication and energy wire and 
cable manufacturing 3.00E-03 9.00E-03 

335930 Wiring device manufacturing 3.07E-03 7.31E-03 

335991 Carbon and graphite product 
manufacturing 8.99E-03 1.19E-02 

335999 
All other miscellaneous electrical 
equipment and component 
manufacturing 1.73E-03 5.12E-03 

336111 Automobile Manufacturing 6.22E-04 5.77E-03 

336112 Light truck and utility vehicle 
manufacturing 6.27E-04 6.10E-03 

336120 Heavy duty truck manufacturing 6.95E-04 6.15E-03 
336211 Motor vehicle body manufacturing 1.02E-03 5.57E-03 
336212 Truck trailer manufacturing 1.56E-03 7.66E-03 
336213 Motor home manufacturing 5.69E-04 5.72E-03 

336214 Travel trailer and camper 
manufacturing 9.89E-04 7.37E-03 

336300 Motor vehicle parts manufacturing 2.08E-03 7.61E-03 
336411 Aircraft manufacturing 9.58E-04 4.51E-03 

336412 Aircraft engine and engine parts 
manufacturing 1.68E-03 4.73E-03 

336413 Other aircraft parts and auxiliary 
equipment manufacturing 3.01E-03 6.55E-03 
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336414 Guided missile and space vehicle 
manufacturing 1.38E-03 4.22E-03 

33641A Propulsion units and parts for space 
vehicles and guided missiles 2.63E-03 5.20E-03 

336500 Railroad rolling stock manufacturing 1.09E-03 4.94E-03 
336611 Ship building and repairing 2.02E-03 5.15E-03 
336612 Boat building 1.22E-03 5.79E-03 

336991 Motorcycle, bicycle, and parts 
manufacturing 1.16E-03 6.95E-03 

336992 Military armored vehicle, tank, and 
tank component manufacturing 1.98E-03 6.01E-03 

336999 All other transportation equipment 
manufacturing 7.93E-04 6.07E-03 

337110 Wood kitchen cabinet and countertop 
manufacturing 2.02E-03 6.04E-03 

337121 Upholstered household furniture 
manufacturing 1.46E-03 6.34E-03 

337122 Nonupholstered wood household 
furniture manufacturing 3.19E-03 6.80E-03 

33712A Metal and other household furniture 
(except wood) manufacturing 2.60E-03 7.87E-03 

337127 Institutional furniture manufacturing 2.32E-03 6.63E-03 

33721A Wood television, radio, and sewing 
machine cabinet manufacturing 2.48E-03 6.53E-03 

337212 
Office furniture and custom 
architectural woodwork and millwork 
manufacturing 1.92E-03 5.80E-03 

337215 Showcase, partition, shelving, and 
locker manufacturing 2.91E-03 8.11E-03 

337910 Mattress manufacturing 1.00E-03 5.43E-03 
337920 Blind and shade manufacturing 1.78E-03 7.93E-03 

339111 Laboratory apparatus and furniture 
manufacturing 1.23E-03 4.65E-03 

339112 Surgical and medical instrument 
manufacturing 1.49E-03 3.85E-03 
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339113 Surgical appliance and supplies 

manufacturing 1.39E-03 4.13E-03 

339114 Dental equipment and supplies 
manufacturing 1.37E-03 5.31E-03 

339115 Ophthalmic goods manufacturing 2.45E-03 4.66E-03 
339116 Dental laboratories 1.29E-03 3.21E-03 

339910 Jewelry and silverware manufacturing 8.06E-04 6.42E-03 

339920 Sporting and athletic goods 
manufacturing 1.68E-03 5.84E-03 

339930 Doll, toy, and game manufacturing 1.82E-03 5.76E-03 

339940 Office supplies (except paper) 
manufacturing 2.21E-03 5.71E-03 

339950 Sign manufacturing 1.87E-03 5.99E-03 

339991 Gasket, packing, and sealing device 
manufacturing 3.89E-03 7.74E-03 

339992 Musical instrument manufacturing 2.13E-03 4.41E-03 

33999A All other miscellaneous manufacturing 2.04E-03 6.18E-03 

339994 Broom, brush, and mop manufacturing 1.95E-03 5.10E-03 
420000 Wholesale trade 1.35E-03 2.39E-03 

4A0000 Retail trade 3.97E-03 5.20E-03 
481000 Air transportation 2.98E-04 1.59E-03 
482000 Rail transportation 2.10E-04 1.82E-03 
483000 Water transportation 1.54E-03 3.64E-03 
484000 Truck transportation 7.76E-04 2.30E-03 

485000 Transit and ground passenger 
transportation 4.57E-03 6.89E-03 

486000 Pipeline transportation 3.37E-03 5.19E-03 

48A000 
Scenic and sightseeing transportation 
and support activities for 
transportation 1.60E-03 3.16E-03 

492000 Couriers and messengers 1.39E-03 2.48E-03 
493000 Warehousing and storage 7.80E-03 9.56E-03 
511110 Newspaper publishers 1.91E-03 4.13E-03 
511120 Periodical publishers 7.28E-04 3.15E-03 
511130 Book publishers 6.88E-04 2.57E-03 

5111A0 Directory, mailing list, and other 
publishers 7.81E-04 3.00E-03 
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511200 Software publishers 3.38E-05 1.21E-03 

512100 Motion picture and video industries 
1.52E-03 2.68E-03 

512200 Sound recording industries 1.17E-03 3.49E-03 
515100 Radio and television broadcasting 5.70E-04 2.25E-03 

515200 Cable and other subscription 
programming 4.63E-04 2.20E-03 

516110 Internet publishing and broadcasting 3.51E-04 2.45E-03 
517000 Telecommunications 9.98E-04 2.35E-03 

518100 Internet service providers and web 
search portals 5.80E-04 1.96E-03 

518200 Data processing, hosting, and related 
services 3.82E-04 1.77E-03 

519100 Other information services 2.25E-03 3.41E-03 

52A000 Monetary authorities and depository 
credit intermediation 5.73E-05 7.70E-04 

522A00 Nondepository credit intermediation 
and related activities 6.59E-04 1.64E-03 

523000 Securities, commodity contracts, 
investments, and related activities 5.63E-04 1.53E-03 

524100 Insurance carriers 4.85E-05 9.40E-04 

524200 Insurance agencies, brokerages, and 
related activities 6.71E-04 1.76E-03 

525000 Funds, trusts, and other financial 
vehicles 2.64E-04 1.57E-03 

531000 Real estate 5.31E-03 6.07E-03 
S00800 Owner-occupied dwellings 0.00E+00 8.48E-04 

532100 Automotive equipment rental and 
leasing 7.45E-04 1.93E-03 

532A00 General and consumer goods rental 
except video tapes and discs 

2.34E-03 3.70E-03 
532230 Video tape and disc rental 7.62E-03 9.72E-03 

532400 Commercial and industrial machinery 
and equipment rental and leasing 8.74E-04 2.30E-03 

533000 Lessors of nonfinancial intangible 
assets 3.35E-03 3.87E-03 
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541100 Legal services 5.57E-04 1.50E-03 

541200 Accounting, tax preparation, 
bookkeeping, and payroll services 

8.46E-04 1.72E-03 

541300 Architectural, engineering, and related 
services 5.87E-04 1.86E-03 

541400 Specialized design services 9.29E-04 2.19E-03 

541511 Custom computer programming 
services 3.60E-03 4.54E-03 

541512 Computer systems design services 8.10E-04 2.31E-03 

54151A Other computer related services, 
including facilities management 6.99E-04 1.85E-03 

541610 Management, scientific, and technical 
consulting services 3.53E-04 1.42E-03 

5416A0 Environmental and other technical 
consulting services 5.59E-04 1.61E-03 

541700 Scientific research and development 
services 1.81E-03 3.32E-03 

541800 Advertising and related services 1.22E-03 3.09E-03 

5419A0 All other miscellaneous professional, 
scientific, and technical services 9.11E-04 1.78E-03 

541920 Photographic services 1.94E-03 3.60E-03 
541940 Veterinary services 5.73E-04 2.75E-03 

550000 Management of companies and 
enterprises 1.80E-03 2.93E-03 

561300 Employment services 7.06E-04 1.31E-03 

561500 Travel arrangement and reservation 
services 6.67E-04 2.11E-03 

561100 Office administrative services 1.00E-03 2.20E-03 
561200 Facilities support services 1.74E-03 3.03E-03 
561400 Business support services 1.25E-03 2.51E-03 

561600 Investigation and security services 
9.39E-04 2.06E-03 

561700 Services to buildings and dwellings 6.22E-04 1.91E-03 
561900 Other support services 2.34E-03 3.77E-03 

562000 Waste management and remediation 
services 1.14E-03 2.77E-03 

611100 Elementary and secondary schools 
2.34E-03 4.22E-03 
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611A00 Junior colleges, colleges, universities, 
and professional schools 7.39E-03 9.20E-03 

611B00 Other educational services 6.23E-04 2.04E-03 

621A00 Offices of physicians, dentists, and 
other health practitioners 9.85E-04 2.23E-03 

621B00 
Medical and diagnostic labs and 
outpatient and other ambulatory care 
services 1.48E-03 3.08E-03 

621600 Home health care services 9.96E-04 2.15E-03 
622000 Hospitals 3.07E-03 4.98E-03 

623000 Nursing and residential care facilities 4.13E-03 5.58E-03 
624A00 Individual and family services 9.09E-04 2.58E-03 

624200 
Community food, housing, and other 
relief services, including rehabilitation 
services 2.90E-03 4.93E-03 

624400 Child day care services 2.82E-03 4.50E-03 
711100 Performing arts companies 1.17E-03 2.43E-03 
711200 Spectator sports 2.11E-03 3.67E-03 

711A00 Promoters of performing arts and 
sports and agents for public figures 2.03E-03 3.85E-03 

711500 Independent artists, writers, and 
performers 3.01E-04 1.32E-03 

712000 Museums, historical sites, zoos, and 
parks 7.56E-03 9.22E-03 

713A00 Amusement parks, arcades, and 
gambling industries 3.64E-03 4.85E-03 

713B00 Other amusement and recreation 
industries 6.17E-03 8.09E-03 

713940 Fitness and recreational sports centers 
9.32E-03 1.11E-02 

713950 Bowling centers 1.66E-02 1.82E-02 

7211A0 Hotels and motels, including casino 
hotels 9.43E-03 1.09E-02 

721A00 Other accommodations 9.01E-03 1.04E-02 

722000 Food services and drinking places 5.66E-03 8.08E-03 

8111A0 Automotive repair and maintenance, 
except car washes 2.36E-03 4.70E-03 

811192 Car washes 7.57E-03 9.06E-03 

811200 Electronic and precision equipment 
repair and maintenance 

1.43E-03 2.92E-03 
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811300 Commercial and industrial machinery 
and equipment repair and maintenance 

2.06E-03 3.70E-03 

811400 Personal and household goods repair 
and maintenance 2.38E-03 4.30E-03 

812100 Personal care services 4.47E-03 5.92E-03 
812200 Death care services 3.42E-03 5.75E-03 

812300 Dry-cleaning and laundry services 
5.23E-03 6.14E-03 

812900 Other personal services 1.67E-03 3.10E-03 
813100 Religious organizations 4.66E-04 2.06E-03 

813A00 Grantmaking, giving, and social 
advocacy organizations 9.03E-04 2.93E-03 

813B00 Civic, social, professional, and similar 
organizations 4.04E-03 6.00E-03 

814000 Private households 0.00E+00 0.00E+00 
491000 Postal service 9.10E-04 1.65E-03 

S00102 Other Federal Government enterprises 
2.48E-03 3.21E-03 

S00203 Other State and local government 
enterprises 2.55E-03 4.89E-03 

S00500 General Federal defense government 
services 1.22E-03 2.56E-03 

S00600 General Federal nondefense 
government services 9.40E-04 2.45E-03 

S00700 General state and local government 
services 1.77E-03 3.22E-03 

S00401 Scrap 2.74E-03 6.37E-03 
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Table A.7 Direct and total petroleum intensities of the non-energy sectors in the US 
input-output tables 

NAICS IO 
code Name of the Commodity Sector 

Direct 
Petroleum 
Intensity (GJ/$) 

Total Petroluem 
Intensity (GJ/$) 

1111A0 Oilseed farming 6.96E-03 9.76E-03 
1111B0 Grain farming 1.02E-02 1.42E-02 

111200 Vegetable and melon farming 5.60E-03 7.85E-03 
1113A0 Fruit farming 4.28E-03 6.42E-03 

111335 Tree nut farming 4.59E-03 6.63E-03 

111400 Greenhouse, nursery, and floriculture 
production 9.71E-03 1.19E-02 

111910 Tobacco farming 1.44E-02 1.84E-02 
111920 Cotton farming 1.14E-02 1.80E-02 

1119A0 Sugarcane and sugar beet farming 
1.01E-02 1.30E-02 

1119B0 All other crop farming 1.39E-02 1.72E-02 
1121A0 Cattle ranching and farming 5.07E-03 1.42E-02 

112120 Dairy cattle and milk production 5.46E-03 1.02E-02 

112A00 Animal production, except cattle and 
poultry and eggs 4.66E-03 8.38E-03 

112300 Poultry and egg production 3.29E-03 9.80E-03 

113A00 Forest nurseries, forest products, and 
timber tracts 4.46E-03 7.14E-03 

113300 Logging 1.49E-03 5.29E-03 
114100 Fishing 2.10E-02 2.29E-02 
114200 Hunting and trapping 5.99E-03 8.19E-03 

115000 Support activities for agriculture and 
forestry 2.02E-03 5.30E-03 

212210 Iron ore mining 2.04E-03 4.60E-03 

2122A0 Gold, silver, and other metal ore 
mining 8.71E-04 2.35E-03 

212230 Copper, nickel, lead, and zinc mining 
5.19E-04 1.23E-03 

212310 Stone mining and quarrying 1.55E-03 3.34E-03 

212320 
Sand, gravel, clay, and ceramic and 
refractory minerals mining and 
quarrying 2.22E-03 3.86E-03 

212390 Other nonmetallic mineral mining and 
quarrying 1.75E-03 3.63E-03 

213111 Drilling oil and gas wells 5.83E-04 4.41E-03 
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213112 Support activities for oil and gas 
operations 4.28E-04 2.74E-03 

21311A Support activities for other mining 3.46E-03 5.42E-03 

221300 Water, sewage and other systems 3.03E-03 4.96E-03 

230101 Nonresidential commercial and health 
care structures 2.35E-03 3.85E-03 

230102 Nonresidential manufacturing 
structures 2.31E-03 3.33E-03 

230103 Other nonresidential structures 4.53E-03 6.51E-03 

230201 Residential permanent site single- and 
multi-family structures 2.39E-03 4.89E-03 

230202 Other residential structures 2.25E-03 4.81E-03 
230301 Nonresidential maintenance and repair 3.76E-03 5.94E-03 
230302 Residential maintenance and repair 1.68E-03 4.49E-03 
311111 Dog and cat food manufacturing 1.41E-04 4.83E-03 
311119 Other animal food manufacturing 3.36E-04 7.36E-03 

311210 Flour milling and malt manufacturing 
1.82E-04 7.39E-03 

311221 Wet corn milling 2.17E-03 9.81E-03 

31122A Soybean and other oilseed processing 
3.94E-04 8.59E-03 

311225 Fats and oils refining and blending 
2.26E-04 7.02E-03 

311230 Breakfast cereal manufacturing 1.49E-04 3.35E-03 
31131A Sugar cane mills and refining 4.55E-04 7.14E-03 

311313 Beet sugar manufacturing 7.30E-04 8.64E-03 

311320 Chocolate and confectionery 
manufacturing from cacao beans 7.04E-05 5.08E-03 

311330 Confectionery manufacturing from 
purchased chocolate 8.70E-05 3.97E-03 

311340 Nonchocolate confectionery 
manufacturing 1.45E-04 4.56E-03 

311410 Frozen food manufacturing 1.46E-04 4.70E-03 

311420 Fruit and vegetable canning, pickling, 
and drying 1.96E-04 3.73E-03 

31151A Fluid milk and butter manufacturing 
1.11E-04 6.37E-03 
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311513 Cheese manufacturing 1.16E-04 6.99E-03 

311514 Dry, condensed, and evaporated dairy 
product manufacturing 1.58E-04 6.03E-03 

311520 Ice cream and frozen dessert 
manufacturing 4.40E-05 4.53E-03 

31161A Animal (except poultry) slaughtering, 
rendering, and processing 

1.17E-04 8.68E-03 
311615 Poultry processing 9.59E-05 5.84E-03 

311700 Seafood product preparation and 
packaging 2.03E-04 1.08E-02 

311810 Bread and bakery product 
manufacturing 1.77E-04 2.86E-03 

311820 Cookie, cracker and pasta 
manufacturing 1.10E-04 3.86E-03 

311830 Tortilla manufacturing 3.20E-04 3.81E-03 
311910 Snack food manufacturing 1.43E-04 4.82E-03 
311920 Coffee and tea manufacturing 1.06E-04 4.37E-03 

311930 Flavoring syrup and concentrate 
manufacturing 3.87E-05 1.88E-03 

311940 Seasoning and dressing manufacturing 
1.91E-04 4.96E-03 

311990 All other food manufacturing 1.99E-04 4.08E-03 
312110 Soft drink and ice manufacturing 8.08E-05 3.39E-03 
312120 Breweries 1.53E-04 2.70E-03 
312130 Wineries 5.51E-05 2.49E-03 
312140 Distilleries 6.94E-04 2.21E-03 

3122A0 Tobacco product manufacturing 6.16E-04 2.17E-03 
313100 Fiber, yarn, and thread mills 1.07E-04 8.46E-03 
313210 Broadwoven fabric mills 1.68E-04 5.32E-03 

313220 Narrow fabric mills and schiffli 
machine embroidery 1.62E-04 4.48E-03 

313230 Nonwoven fabric mills 2.59E-04 6.25E-03 
313240 Knit fabric mills 3.03E-04 5.13E-03 
313310 Textile and fabric finishing mills 3.32E-04 4.80E-03 
313320 Fabric coating mills 1.25E-03 6.84E-03 
314110 Carpet and rug mills 3.26E-04 7.05E-03 
314120 Curtain and linen mills 1.30E-04 3.73E-03 
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314910 Textile bag and canvas mills 9.82E-05 3.01E-03 
314990 All other textile product mills 2.60E-04 4.80E-03 
315100 Apparel knitting mills 1.27E-04 3.06E-03 
315210 Cut and sew apparel contractors 1.76E-04 1.50E-03 

315220 Men's and boys' cut and sew apparel 
manufacturing 6.77E-05 2.21E-03 

315230 Women's and girls' cut and sew apparel 
manufacturing 1.45E-04 2.62E-03 

315290 Other cut and sew apparel 
manufacturing 5.80E-05 2.20E-03 

315900 Apparel accessories and other apparel 
manufacturing 5.85E-04 2.96E-03 

316100 Leather and hide tanning and finishing 0.00E+00 6.32E-03 
316200 Footwear manufacturing 1.64E-05 3.24E-03 

316900 Other leather and allied product 
manufacturing 4.09E-05 2.71E-03 

321100 Sawmills and wood preservation 3.09E-04 4.32E-03 
32121A Veneer and plywood manufacturing 4.49E-04 4.20E-03 

32121B Engineered wood member and truss 
manufacturing 1.85E-04 2.97E-03 

321219 Reconstituted wood product 
manufacturing 4.39E-03 8.83E-03 

321910 Wood windows and doors and 
millwork 1.81E-04 3.26E-03 

321920 Wood container and pallet 
manufacturing 2.21E-03 4.86E-03 

321991 Manufactured home (mobile home) 
manufacturing 1.23E-04 3.04E-03 

321992 Prefabricated wood building 
manufacturing 1.18E-04 2.79E-03 

321999 All other miscellaneous wood product 
manufacturing 4.69E-04 3.47E-03 

322110 Pulp mills 1.98E-03 5.42E-03 
322120 Paper mills 1.93E-03 5.03E-03 
322130 Paperboard mills 2.11E-03 5.19E-03 
322210 Paperboard container manufacturing 8.84E-04 4.57E-03 

32222A Coated and laminated paper, packaging 
paper and plastics film manufacturing 

2.94E-04 4.82E-03 
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32222B All other paper bag and coated and 

treated paper manufacturing 1.93E-04 5.09E-03 
322230 Stationery product manufacturing 9.75E-05 3.39E-03 

322291 Sanitary paper product manufacturing 8.98E-04 3.67E-03 

322299 All other converted paper product 
manufacturing 2.97E-04 3.31E-03 

323110 Printing 6.47E-04 3.33E-03 
323120 Support activities for printing 1.74E-04 1.75E-03 

324121 Asphalt paving mixture and block 
manufacturing 6.68E-02 6.92E-02 

324122 Asphalt shingle and coating materials 
manufacturing 4.12E-02 4.41E-02 

324191 Petroleum lubricating oil and grease 
manufacturing 6.85E-02 7.12E-02 

324199 All other petroleum and coal products 
manufacturing 5.35E-02 5.55E-02 

325110 Petrochemical manufacturing 1.49E-02 2.19E-02 
325120 Industrial gas manufacturing 1.02E-02 1.26E-02 

325130 Synthetic dye and pigment 
manufacturing 1.93E-02 2.38E-02 

325181 Alkalies and chlorine manufacturing 1.46E-02 1.83E-02 
325182 Carbon black manufacturing 8.18E-02 8.29E-02 

325188 All other basic inorganic chemical 
manufacturing 5.20E-03 8.40E-03 

325190 Other basic organic chemical 
manufacturing 1.36E-02 2.23E-02 

325211 Plastics material and resin 
manufacturing 9.58E-03 2.00E-02 

325212 Synthetic rubber manufacturing 7.09E-03 1.59E-02 

325220 Artificial and synthetic fibers and 
filaments manufacturing 6.01E-03 1.45E-02 

325310 Fertilizer manufacturing 9.67E-03 1.51E-02 

325320 Pesticide and other agricultural 
chemical manufacturing 3.16E-03 8.61E-03 

325411 Medicinal and botanical manufacturing 2.12E-03 3.99E-03 

325412 Pharmaceutical preparation 
manufacturing 5.68E-04 2.48E-03 

325413 In-vitro diagnostic substance 
manufacturing 4.98E-04 2.14E-03 

325414 Biological product (except diagnostic) 
manufacturing 3.82E-04 1.72E-03 
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325510 Paint and coating manufacturing 1.71E-03 9.42E-03 
325520 Adhesive manufacturing 2.00E-02 2.53E-02 

325610 Soap and cleaning compound 
manufacturing 4.06E-03 7.82E-03 

325620 Toilet preparation manufacturing 3.85E-03 6.41E-03 
325910 Printing ink manufacturing 2.12E-02 3.02E-02 

3259A0 All other chemical product and 
preparation manufacturing 6.64E-03 1.20E-02 

326110 
Plastics packaging materials and 
unlaminated film and sheet 
manufacturing 7.37E-04 8.52E-03 

326121 Unlaminated plastics profile shape 
manufacturing 1.79E-04 6.34E-03 

326122 Plastic pipe and pipe fitting 
manufacturing 6.61E-05 9.44E-03 

326130 Laminated plastics plate, sheet (except 
packaging), and shape manufacturing 3.06E-04 5.30E-03 

326140 Polystyrene foam product 
manufacturing 8.16E-04 7.40E-03 

326150 Urethane and other foam product 
(except polystyrene) manufacturing 2.00E-03 8.71E-03 

326160 Plastics bottle manufacturing 1.13E-04 8.12E-03 

32619A Other plastics product manufacturing 1.33E-03 6.15E-03 
326210 Tire manufacturing 2.28E-04 7.86E-03 

326220 Rubber and plastics hoses and belting 
manufacturing 2.79E-04 5.41E-03 

326290 Other rubber product manufacturing 2.69E-04 5.67E-03 

32711A Pottery, ceramics, and plumbing fixture 
manufacturing 4.66E-04 2.42E-03 

32712A Brick, tile, and other structural clay 
product manufacturing 1.51E-03 3.01E-03 

32712B Clay and nonclay refractory 
manufacturing 5.24E-04 2.95E-03 

327211 Flat glass manufacturing 1.66E-03 4.13E-03 

327212 Other pressed and blown glass and 
glassware manufacturing 4.89E-04 2.87E-03 

327213 Glass container manufacturing 1.13E-03 3.40E-03 
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327215 Glass product manufacturing made of 
purchased glass 5.44E-04 2.77E-03 

327310 Cement manufacturing 1.49E-03 3.08E-03 
327320 Ready-mix concrete manufacturing 3.36E-04 4.14E-03 

327330 Concrete pipe, brick and block 
manufacturing 1.39E-04 2.42E-03 

327390 Other concrete product manufacturing 1.30E-04 2.04E-03 

3274A0 Lime and gypsum product 
manufacturing 1.91E-03 5.02E-03 

327910 Abrasive product manufacturing 3.69E-04 2.43E-03 

327991 Cut stone and stone product 
manufacturing 2.11E-04 2.70E-03 

327992 Ground or treated mineral and earth 
manufacturing 7.14E-04 2.93E-03 

327993 Mineral wool manufacturing 7.37E-04 3.65E-03 

327999 Miscellaneous nonmetallic mineral 
products 1.74E-03 4.70E-03 

331110 Iron and steel mills and ferroalloy 
manufacturing 1.56E-03 4.50E-03 

331200 Steel product manufacturing from 
purchased steel 5.18E-04 2.92E-03 

33131A Alumina refining and primary 
aluminum production 3.66E-04 2.88E-03 

331314 Secondary smelting and alloying of 
aluminum 3.60E-04 2.87E-03 

33131B Aluminum product manufacturing from 
purchased aluminum 

1.61E-04 2.46E-03 

331411 Primary smelting and refining of copper 
1.51E-04 2.15E-03 

331419 
Primary smelting and refining of 
nonferrous metal (except copper and 
aluminum) 1.79E-04 2.18E-03 

331420 Copper rolling, drawing, extruding and 
alloying 8.18E-05 2.51E-03 

331490 
Nonferrous metal (except copper and 
aluminum) rolling, drawing, extruding 
and alloying 1.14E-04 2.11E-03 

331510 Ferrous metal foundries 1.65E-04 1.76E-03 
331520 Nonferrous metal foundries 1.70E-04 1.96E-03 
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33211A All other forging, stamping, and 

sintering 2.91E-04 2.46E-03 
332114 Custom roll forming 1.42E-04 2.75E-03 

33211B Crown and closure manufacturing and 
metal stamping 1.11E-04 2.43E-03 

33221A Cutlery, utensil, pot, and pan 
manufacturing 2.38E-04 1.97E-03 

33221B Handtool manufacturing 1.38E-04 1.94E-03 

332310 Plate work and fabricated structural 
product manufacturing 7.84E-05 2.14E-03 

332320 Ornamental and architectural metal 
products manufacturing 7.10E-05 2.29E-03 

332410 Power boiler and heat exchanger 
manufacturing 8.04E-05 1.85E-03 

332420 Metal tank (heavy gauge) 
manufacturing 9.33E-05 2.04E-03 

332430 Metal can, box, and other metal 
container (light gauge) manufacturing 9.74E-05 2.56E-03 

33299A Ammunition manufacturing 2.34E-04 1.81E-03 

33299B Arms, ordnance, and accessories 
manufacturing 4.34E-05 1.23E-03 

332500 Hardware manufacturing 6.62E-05 1.83E-03 

332600 Spring and wire product manufacturing 1.43E-04 2.16E-03 
332710 Machine shops 4.15E-04 1.80E-03 

332720 Turned product and screw, nut, and 
bolt manufacturing 8.55E-05 1.53E-03 

332800 Coating, engraving, heat treating and 
allied activities 2.18E-03 4.84E-03 

33291A Valve and fittings other than plumbing 4.56E-05 1.51E-03 

332913 Plumbing fixture fitting and trim 
manufacturing 1.10E-04 1.99E-03 

332991 Ball and roller bearing manufacturing 7.81E-05 1.49E-03 

332996 Fabricated pipe and pipe fitting 
manufacturing 6.82E-05 1.84E-03 

33299C Other fabricated metal manufacturing 6.32E-04 2.69E-03 

333111 Farm machinery and equipment 
manufacturing 1.07E-04 2.13E-03 

333112 Lawn and garden equipment 
manufacturing 5.04E-05 2.13E-03 

333120 Construction machinery manufacturing 2.30E-03 4.25E-03 
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333130 Mining and oil and gas field machinery 

manufacturing 1.63E-04 2.15E-03 

33329A Other industrial machinery 
manufacturing 1.60E-04 1.76E-03 

333220 Plastics and rubber industry machinery 
manufacturing 5.37E-05 1.52E-03 

333295 Semiconductor machinery 
manufacturing 1.91E-04 2.02E-03 

33331A Vending, commercial, industrial, and 
office machinery manufacturing 1.42E-03 3.58E-03 

333314 Optical instrument and lens 
manufacturing 6.60E-05 1.87E-03 

333315 Photographic and photocopying 
equipment manufacturing 1.01E-03 3.88E-03 

333319 Other commercial and service industry 
machinery manufacturing 2.45E-03 4.32E-03 

33341A Air purification and ventilation 
equipment manufacturing 5.62E-05 1.91E-03 

333414 Heating equipment, except warm air 
furnaces 1.57E-04 2.29E-03 

333415 
Air conditioning, refrigeration, and 
warm air heating equipment 
manufacturing 4.27E-05 1.84E-03 

333511 Industrial mold manufacturing 1.57E-04 1.88E-03 

33351A Metal cutting and forming machine 
tool manufacturing 5.25E-05 1.52E-03 

333514 Special tool, die, jig, and fixture 
manufacturing 6.75E-05 1.53E-03 

333515 Cutting tool and machine tool 
accessory manufacturing 5.39E-05 1.54E-03 

33351B Rolling mill and other metalworking 
machinery manufacturing 1.04E-04 1.43E-03 

333611 Turbine and turbine generator set units 
manufacturing 2.56E-05 1.07E-03 

333612 Speed changer, industrial high-speed 
drive, and gear manufacturing 9.89E-05 1.27E-03 

333613 Mechanical power transmission 
equipment manufacturing 9.63E-05 1.58E-03 

333618 Other engine equipment manufacturing 3.26E-04 2.38E-03 

333911 Pump and pumping equipment 
manufacturing 7.18E-05 1.70E-03 
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333912 Air and gas compressor manufacturing 6.43E-05 1.84E-03 

333920 Material handling equipment 
manufacturing 1.03E-04 1.95E-03 

333991 Power-driven handtool manufacturing 8.44E-05 1.92E-03 

33399A Other general purpose machinery 
manufacturing 8.84E-05 1.90E-03 

333993 Packaging machinery manufacturing 5.52E-05 1.53E-03 

333994 Industrial process furnace and oven 
manufacturing 1.03E-04 1.43E-03 

33399B Fluid power process machinery 6.23E-05 1.71E-03 

334111 Electronic computer manufacturing 9.25E-05 1.38E-03 

334112 Computer storage device 
manufacturing 6.24E-05 1.47E-03 

33411A 
Computer terminals and other 
computer peripheral equipment 
manufacturing 5.60E-04 2.02E-03 

334210 Telephone apparatus manufacturing 3.54E-05 1.37E-03 

334220 Broadcast and wireless 
communications equipment 1.68E-05 1.37E-03 

334290 Other communications equipment 
manufacturing 6.26E-05 1.42E-03 

334300 Audio and video equipment 
manufacturing 3.17E-05 2.03E-03 

334411 Electron tube manufacturing 7.59E-05 2.14E-03 

334412 Bare printed circuit board 
manufacturing 1.14E-04 1.86E-03 

334413 Semiconductor and related device 
manufacturing 3.08E-04 1.81E-03 

33441A 
Electronic capacitor, resistor, coil, 
transformer, and other inductor 
manufacturing 2.81E-05 1.70E-03 

334417 Electronic connector manufacturing 2.85E-05 1.95E-03 

334418 Printed circuit assembly (electronic 
assembly) manufacturing 2.28E-05 1.54E-03 

334419 Other electronic component 
manufacturing 5.95E-05 1.61E-03 

334510 Electromedical and electrotherapeutic 
apparatus manufacturing 2.11E-05 1.85E-03 

334511 Search, detection, and navigation 
instruments manufacturing 4.68E-05 1.16E-03 
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334512 Automatic environmental control 
manufacturing 9.43E-05 1.72E-03 

334513 Industrial process variable instruments 
manufacturing 7.43E-05 1.63E-03 

334514 Totalizing fluid meters and counting 
devices manufacturing 3.69E-05 1.86E-03 

334515 Electricity and signal testing 
instruments manufacturing 1.17E-04 1.24E-03 

334516 Analytical laboratory instrument 
manufacturing 6.91E-05 1.63E-03 

334517 Irradiation apparatus manufacturing 3.11E-04 1.74E-03 

33451A Other Measuring and Controlling 
Device Manufacturing 4.20E-05 1.46E-03 

33461A Software, audio, and video media 
reproducing 3.07E-05 2.58E-03 

334613 Magnetic and optical recording media 
manufacturing 5.63E-05 2.51E-03 

335110 Electric lamp bulb and part 
manufacturing 5.21E-05 1.42E-03 

335120 Lighting fixture manufacturing 1.50E-04 2.27E-03 

335210 Small electrical appliance 
manufacturing 4.60E-05 2.78E-03 

335221 Household cooking appliance 
manufacturing 3.56E-05 2.47E-03 

335222 Household refrigerator and home 
freezer manufacturing 1.93E-05 3.05E-03 

335224 Household laundry equipment 
manufacturing 2.78E-05 2.19E-03 

335228 Other major household appliance 
manufacturing 3.57E-05 2.54E-03 

335311 Power, distribution, and specialty 
transformer manufacturing 4.65E-05 3.00E-03 

335312 Motor and generator manufacturing 4.00E-05 1.73E-03 

335313 Switchgear and switchboard apparatus 
manufacturing 1.62E-05 1.33E-03 

335314 Relay and industrial control 
manufacturing 6.28E-06 1.19E-03 

335911 Storage battery manufacturing 8.31E-05 2.40E-03 
335912 Primary battery manufacturing 1.69E-04 2.15E-03 
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335920 Communication and energy wire and 
cable manufacturing 4.27E-05 2.97E-03 

335930 Wiring device manufacturing 6.50E-05 2.26E-03 

335991 Carbon and graphite product 
manufacturing 2.34E-04 7.71E-03 

335999 
All other miscellaneous electrical 
equipment and component 
manufacturing 1.72E-04 1.40E-03 

336111 Automobile Manufacturing 2.42E-05 2.03E-03 

336112 Light truck and utility vehicle 
manufacturing 3.66E-05 2.24E-03 

336120 Heavy duty truck manufacturing 1.57E-04 2.32E-03 

336211 Motor vehicle body manufacturing 
7.50E-05 1.84E-03 

336212 Truck trailer manufacturing 3.52E-05 2.35E-03 
336213 Motor home manufacturing 1.47E-05 2.43E-03 

336214 Travel trailer and camper 
manufacturing 4.68E-05 2.58E-03 

336300 Motor vehicle parts manufacturing 
6.12E-05 2.29E-03 

336411 Aircraft manufacturing 4.06E-05 1.35E-03 

336412 Aircraft engine and engine parts 
manufacturing 1.27E-04 1.20E-03 

336413 Other aircraft parts and auxiliary 
equipment manufacturing 2.59E-04 1.94E-03 

336414 Guided missile and space vehicle 
manufacturing 3.07E-05 1.18E-03 

33641A Propulsion units and parts for space 
vehicles and guided missiles 

4.70E-05 1.16E-03 

336500 Railroad rolling stock manufacturing 
4.86E-05 1.56E-03 

336611 Ship building and repairing 5.72E-05 1.50E-03 
336612 Boat building 4.85E-05 2.26E-03 

336991 Motorcycle, bicycle, and parts 
manufacturing 4.99E-05 1.81E-03 

336992 Military armored vehicle, tank, and 
tank component manufacturing 

4.81E-05 1.60E-03 

336999 All other transportation equipment 
manufacturing 3.44E-05 2.31E-03 

337110 Wood kitchen cabinet and countertop 
manufacturing 1.54E-04 3.08E-03 
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337121 Upholstered household furniture 
manufacturing 2.60E-05 2.88E-03 

337122 Nonupholstered wood household 
furniture manufacturing 6.66E-05 2.51E-03 

33712A Metal and other household furniture 
(except wood) manufacturing 1.03E-04 3.58E-03 

337127 Institutional furniture manufacturing 1.22E-04 2.42E-03 

33721A Wood television, radio, and sewing 
machine cabinet manufacturing 3.20E-06 2.46E-03 

337212 
Office furniture and custom 
architectural woodwork and millwork 
manufacturing 7.26E-05 2.25E-03 

337215 Showcase, partition, shelving, and 
locker manufacturing 1.56E-04 2.98E-03 

337910 Mattress manufacturing 4.59E-05 2.91E-03 
337920 Blind and shade manufacturing 5.85E-05 2.98E-03 

339111 Laboratory apparatus and furniture 
manufacturing 1.70E-04 2.18E-03 

339112 Surgical and medical instrument 
manufacturing 2.62E-05 1.68E-03 

339113 Surgical appliance and supplies 
manufacturing 5.73E-05 1.90E-03 

339114 Dental equipment and supplies 
manufacturing 7.19E-05 1.81E-03 

339115 Ophthalmic goods manufacturing 1.12E-05 1.67E-03 
339116 Dental laboratories 4.08E-05 9.52E-04 

339910 Jewelry and silverware manufacturing 3.76E-05 1.84E-03 

339920 Sporting and athletic goods 
manufacturing 8.79E-05 2.85E-03 

339930 Doll, toy, and game manufacturing 4.83E-05 3.29E-03 

339940 Office supplies (except paper) 
manufacturing 7.30E-05 3.26E-03 

339950 Sign manufacturing 9.03E-05 2.82E-03 

339991 Gasket, packing, and sealing device 
manufacturing 2.55E-04 3.22E-03 

339992 Musical instrument manufacturing 5.51E-05 1.39E-03 

33999A All other miscellaneous manufacturing 6.81E-05 2.72E-03 
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339994 Broom, brush, and mop manufacturing 1.70E-04 3.98E-03 
420000 Wholesale trade 7.93E-04 1.69E-03 

4A0000 Retail trade 3.35E-04 1.16E-03 
481000 Air transportation 2.55E-02 2.66E-02 
482000 Rail transportation 8.15E-03 9.77E-03 
483000 Water transportation 9.65E-05 2.32E-03 
484000 Truck transportation 1.39E-02 1.71E-02 

485000 Transit and ground passenger 
transportation 3.08E-02 3.29E-02 

486000 Pipeline transportation 3.33E-02 3.48E-02 

48A000 Scenic and sightseeing transportation 
and support activities for transportation 2.38E-03 4.90E-03 

492000 Couriers and messengers 1.76E-02 1.91E-02 
493000 Warehousing and storage 1.10E-03 2.30E-03 
511110 Newspaper publishers 8.51E-05 1.60E-03 
511120 Periodical publishers 1.53E-04 2.20E-03 
511130 Book publishers 7.48E-05 1.47E-03 

5111A0 Directory, mailing list, and other 
publishers 8.10E-05 1.67E-03 

511200 Software publishers 7.67E-05 8.80E-04 

512100 Motion picture and video industries 5.77E-05 6.98E-04 
512200 Sound recording industries 1.07E-04 1.57E-03 
515100 Radio and television broadcasting 2.43E-04 1.01E-03 

515200 Cable and other subscription 
programming 2.06E-04 1.04E-03 

516110 Internet publishing and broadcasting 1.52E-04 2.08E-03 
517000 Telecommunications 3.98E-04 1.23E-03 

518100 Internet service providers and web 
search portals 2.38E-04 1.13E-03 

518200 Data processing, hosting, and related 
services 1.04E-04 1.26E-03 

519100 Other information services 5.16E-04 1.36E-03 

52A000 Monetary authorities and depository 
credit intermediation 9.10E-05 7.05E-04 

522A00 Nondepository credit intermediation 
and related activities 1.42E-04 7.37E-04 
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523000 Securities, commodity contracts, 
investments, and related activities 9.35E-05 6.97E-04 

524100 Insurance carriers 2.88E-06 4.77E-04 

524200 Insurance agencies, brokerages, and 
related activities 1.20E-04 8.80E-04 

525000 Funds, trusts, and other financial 
vehicles 1.28E-05 6.83E-04 

531000 Real estate 9.97E-05 7.37E-04 
S00800 Owner-occupied dwellings 1.10E-06 6.78E-04 

532100 Automotive equipment rental and 
leasing 1.22E-04 9.46E-04 

532A00 General and consumer goods rental 
except video tapes and discs 3.22E-04 1.15E-03 

532230 Video tape and disc rental 2.15E-04 1.20E-03 

532400 Commercial and industrial machinery 
and equipment rental and leasing 3.00E-04 1.37E-03 

533000 Lessors of nonfinancial intangible 
assets 1.30E-04 4.49E-04 

541100 Legal services 1.01E-04 6.27E-04 

541200 Accounting, tax preparation, 
bookkeeping, and payroll services 1.23E-04 7.57E-04 

541300 Architectural, engineering, and related 
services 6.00E-04 1.49E-03 

541400 Specialized design services 1.11E-04 1.07E-03 

541511 Custom computer programming 
services 5.06E-05 5.30E-04 

541512 Computer systems design services 2.17E-04 1.24E-03 

54151A Other computer related services, 
including facilities management 1.42E-04 9.57E-04 

541610 Management, scientific, and technical 
consulting services 1.12E-04 1.08E-03 

5416A0 Environmental and other technical 
consulting services 1.87E-04 9.07E-04 

541700 Scientific research and development 
services 6.92E-04 2.26E-03 

541800 Advertising and related services 1.96E-04 1.46E-03 

5419A0 All other miscellaneous professional, 
scientific, and technical services 1.27E-04 7.03E-04 
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541920 Photographic services 2.07E-04 1.46E-03 
541940 Veterinary services 3.63E-04 2.01E-03 

550000 Management of companies and 
enterprises 1.80E-04 7.89E-04 

561300 Employment services 1.71E-04 6.60E-04 

561500 Travel arrangement and reservation 
services 8.25E-04 1.82E-03 

561100 Office administrative services 1.79E-04 1.11E-03 
561200 Facilities support services 1.57E-04 1.09E-03 
561400 Business support services 2.30E-04 1.43E-03 

561600 Investigation and security services 3.18E-04 1.10E-03 

561700 Services to buildings and dwellings 2.34E-02 2.45E-02 
561900 Other support services 2.89E-04 1.37E-03 

562000 Waste management and remediation 
services 1.94E-03 3.38E-03 

611100 Elementary and secondary schools 5.15E-04 1.83E-03 

611A00 Junior colleges, colleges, universities, 
and professional schools 1.52E-03 2.86E-03 

611B00 Other educational services 3.90E-04 1.43E-03 

621A00 Offices of physicians, dentists, and 
other health practitioners 8.29E-05 9.13E-04 

621B00 
Medical and diagnostic labs and 
outpatient and other ambulatory care 
services 4.42E-04 1.55E-03 

621600 Home health care services 1.04E-03 1.97E-03 
622000 Hospitals 9.17E-04 2.06E-03 

623000 Nursing and residential care facilities 4.61E-04 1.39E-03 
624A00 Individual and family services 4.32E-04 1.50E-03 

624200 
Community food, housing, and other 
relief services, including rehabilitation 
services 2.84E-04 1.51E-03 

624400 Child day care services 2.51E-04 1.37E-03 
711100 Performing arts companies 8.58E-05 1.12E-03 
711200 Spectator sports 1.99E-04 1.05E-03 

711A00 Promoters of performing arts and sports 
and agents for public figures 1.96E-04 2.27E-03 
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711500 Independent artists, writers, and 
performers 4.29E-05 6.37E-04 

712000 Museums, historical sites, zoos, and 
parks 1.14E-03 2.26E-03 

713A00 Amusement parks, arcades, and 
gambling industries 9.60E-04 1.99E-03 

713B00 Other amusement and recreation 
industries 1.30E-03 2.75E-03 

713940 Fitness and recreational sports centers 
9.49E-04 2.08E-03 

713950 Bowling centers 5.96E-04 1.88E-03 

7211A0 Hotels and motels, including casino 
hotels 8.12E-04 2.06E-03 

721A00 Other accommodations 8.76E-04 2.17E-03 

722000 Food services and drinking places 
4.96E-04 2.14E-03 

8111A0 Automotive repair and maintenance, 
except car washes 1.81E-04 1.53E-03 

811192 Car washes 1.39E-03 2.37E-03 

811200 Electronic and precision equipment 
repair and maintenance 

1.23E-04 9.50E-04 

811300 Commercial and industrial machinery 
and equipment repair and maintenance 

2.51E-04 1.22E-03 

811400 Personal and household goods repair 
and maintenance 2.24E-04 1.34E-03 

812100 Personal care services 1.38E-04 9.55E-04 
812200 Death care services 6.15E-04 2.23E-03 

812300 Dry-cleaning and laundry services 
4.47E-04 1.13E-03 

812900 Other personal services 2.85E-04 1.39E-03 
813100 Religious organizations 9.39E-05 1.36E-03 

813A00 Grantmaking, giving, and social 
advocacy organizations 2.95E-04 1.93E-03 

813B00 Civic, social, professional, and similar 
organizations 6.09E-04 2.03E-03 

814000 Private households 0.00E+00 0.00E+00 
491000 Postal service 1.78E-03 2.67E-03 

S00102 Other Federal Government enterprises 4.18E-05 6.31E-04 

S00203 Other State and local government 
enterprises 3.56E-03 5.68E-03 
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S00500 General Federal defense government 
services 1.96E-03 2.96E-03 

S00600 General Federal nondefense 
government services 1.48E-03 2.57E-03 

S00700 General state and local government 
services 3.71E-03 5.20E-03 

S00401 Scrap 2.12E-03 4.12E-03 
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Table A.8 Direct and total oil&gas intensities of the non-energy sectors in the US input-
output tables 

NAICS IO 
code Name of the Commodity Sector Direct Oil&Gas 

Intensity (GJ/$) 
Total Oil&Gas 
Intensity (GJ/$) 

1111A0 Oilseed farming 3.24E-04 2.45E-03 
1111B0 Grain farming 2.52E-03 6.94E-03 

111200 Vegetable and melon farming 2.65E-04 2.25E-03 
1113A0 Fruit farming 6.87E-04 2.70E-03 

111335 Tree nut farming 7.13E-04 2.63E-03 

111400 Greenhouse, nursery, and floriculture 
production 3.57E-03 4.99E-03 

111910 Tobacco farming 1.00E-03 3.83E-03 
111920 Cotton farming 2.29E-03 7.75E-03 

1119A0 Sugarcane and sugar beet farming 
8.75E-04 3.07E-03 

1119B0 All other crop farming 1.09E-03 3.95E-03 
1121A0 Cattle ranching and farming 1.13E-03 3.77E-03 

112120 Dairy cattle and milk production 2.26E-04 2.54E-03 

112A00 Animal production, except cattle and 
poultry and eggs 4.75E-04 1.94E-03 

112300 Poultry and egg production 1.61E-03 5.60E-03 

113A00 Forest nurseries, forest products, and 
timber tracts 4.05E-04 2.65E-03 

113300 Logging 6.38E-06 1.19E-03 
114100 Fishing 0.00E+00 1.04E-03 
114200 Hunting and trapping 9.50E-04 1.89E-03 

115000 Support activities for agriculture and 
forestry 2.73E-04 5.32E-03 

212210 Iron ore mining 9.99E-03 1.17E-02 

2122A0 Gold, silver, and other metal ore 
mining 6.01E-03 7.54E-03 

212230 Copper, nickel, lead, and zinc mining 
5.97E-03 6.81E-03 

212310 Stone mining and quarrying 5.03E-03 6.01E-03 

212320 
Sand, gravel, clay, and ceramic and 
refractory minerals mining and 
quarrying 6.82E-03 7.85E-03 

212390 Other nonmetallic mineral mining and 
quarrying 8.56E-03 9.51E-03 

213111 Drilling oil and gas wells 2.36E-03 4.27E-03 
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213112 Support activities for oil and gas 
operations 2.79E-03 3.91E-03 

21311A Support activities for other mining 
3.12E-03 4.69E-03 

221300 Water, sewage and other systems 
3.74E-03 4.70E-03 

230101 Nonresidential commercial and health 
care structures 1.96E-04 1.31E-03 

230102 Nonresidential manufacturing 
structures 1.95E-04 1.04E-03 

230103 Other nonresidential structures 2.65E-04 1.31E-03 

230201 Residential permanent site single- and 
multi-family structures 1.92E-04 1.72E-03 

230202 Other residential structures 1.88E-04 1.57E-03 

230301 Nonresidential maintenance and repair 
2.68E-04 1.27E-03 

230302 Residential maintenance and repair 
1.13E-04 1.66E-03 

311111 Dog and cat food manufacturing 2.23E-03 5.21E-03 
311119 Other animal food manufacturing 2.28E-03 6.21E-03 

311210 Flour milling and malt manufacturing 
2.63E-03 5.62E-03 

311221 Wet corn milling 1.53E-02 1.88E-02 

31122A Soybean and other oilseed processing 
4.07E-03 6.78E-03 

311225 Fats and oils refining and blending 
3.51E-03 7.54E-03 

311230 Breakfast cereal manufacturing 1.87E-03 4.20E-03 
31131A Sugar cane mills and refining 6.34E-03 1.17E-02 

311313 Beet sugar manufacturing 1.18E-02 1.40E-02 

311320 Chocolate and confectionery 
manufacturing from cacao beans 1.08E-03 4.55E-03 

311330 Confectionery manufacturing from 
purchased chocolate 1.10E-03 4.04E-03 

311340 Nonchocolate confectionery 
manufacturing 1.53E-03 5.16E-03 

311410 Frozen food manufacturing 2.30E-03 4.66E-03 

311420 Fruit and vegetable canning, pickling, 
and drying 2.92E-03 5.35E-03 

31151A Fluid milk and butter manufacturing 
1.53E-03 3.83E-03 
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311513 Cheese manufacturing 1.74E-03 4.34E-03 

311514 Dry, condensed, and evaporated dairy 
product manufacturing 2.38E-03 5.05E-03 

311520 Ice cream and frozen dessert 
manufacturing 6.02E-04 3.24E-03 

31161A Animal (except poultry) slaughtering, 
rendering, and processing 1.55E-03 4.17E-03 

311615 Poultry processing 1.32E-03 4.43E-03 

311700 Seafood product preparation and 
packaging 2.79E-03 3.97E-03 

311810 Bread and bakery product 
manufacturing 2.26E-03 4.44E-03 

311820 Cookie, cracker and pasta 
manufacturing 1.46E-03 4.22E-03 

311830 Tortilla manufacturing 3.52E-03 5.52E-03 
311910 Snack food manufacturing 2.19E-03 4.56E-03 
311920 Coffee and tea manufacturing 1.36E-03 3.62E-03 

311930 Flavoring syrup and concentrate 
manufacturing 5.27E-04 1.93E-03 

311940 Seasoning and dressing manufacturing 1.04E-03 3.91E-03 
311990 All other food manufacturing 2.02E-03 4.31E-03 
312110 Soft drink and ice manufacturing 8.09E-04 4.22E-03 
312120 Breweries 1.63E-03 4.51E-03 
312130 Wineries 5.17E-04 2.44E-03 
312140 Distilleries 9.48E-04 2.13E-03 

3122A0 Tobacco product manufacturing 3.83E-04 1.11E-03 
313100 Fiber, yarn, and thread mills 1.01E-03 5.33E-03 
313210 Broadwoven fabric mills 1.84E-03 4.95E-03 

313220 Narrow fabric mills and schiffli 
machine embroidery 1.47E-03 3.87E-03 

313230 Nonwoven fabric mills 2.15E-03 5.64E-03 
313240 Knit fabric mills 3.13E-03 6.02E-03 
313310 Textile and fabric finishing mills 3.64E-03 6.39E-03 
313320 Fabric coating mills 2.03E-03 5.55E-03 
314110 Carpet and rug mills 1.76E-03 5.61E-03 
314120 Curtain and linen mills 8.77E-04 3.43E-03 
314910 Textile bag and canvas mills 5.46E-04 2.66E-03 
314990 All other textile product mills 1.30E-03 4.14E-03 
315100 Apparel knitting mills 1.77E-03 3.72E-03 
315210 Cut and sew apparel contractors 2.37E-03 3.40E-03 

315220 Men's and boys' cut and sew apparel 
manufacturing 9.01E-04 2.98E-03 
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315230 Women's and girls' cut and sew apparel 

manufacturing 1.87E-03 4.17E-03 

315290 Other cut and sew apparel 
manufacturing 7.29E-04 2.76E-03 

315900 Apparel accessories and other apparel 
manufacturing 8.15E-03 1.03E-02 

316100 Leather and hide tanning and finishing 1.44E-03 4.57E-03 
316200 Footwear manufacturing 1.09E-03 3.27E-03 

316900 Other leather and allied product 
manufacturing 1.63E-03 3.36E-03 

321100 Sawmills and wood preservation 1.10E-03 2.36E-03 

32121A Veneer and plywood manufacturing 1.69E-03 3.02E-03 

32121B Engineered wood member and truss 
manufacturing 4.95E-04 1.83E-03 

321219 Reconstituted wood product 
manufacturing 4.95E-03 7.11E-03 

321910 Wood windows and doors and millwork 5.24E-04 2.23E-03 

321920 Wood container and pallet 
manufacturing 8.33E-04 2.36E-03 

321991 Manufactured home (mobile home) 
manufacturing 1.99E-04 2.60E-03 

321992 Prefabricated wood building 
manufacturing 3.17E-04 2.03E-03 

321999 All other miscellaneous wood product 
manufacturing 1.08E-03 2.40E-03 

322110 Pulp mills 1.02E-02 1.22E-02 
322120 Paper mills 6.71E-03 9.09E-03 
322130 Paperboard mills 1.22E-02 1.39E-02 

322210 Paperboard container manufacturing 9.97E-04 6.07E-03 

32222A Coated and laminated paper, packaging 
paper and plastics film manufacturing 1.45E-03 5.15E-03 

32222B All other paper bag and coated and 
treated paper manufacturing 8.60E-04 5.07E-03 

322230 Stationery product manufacturing 3.22E-04 4.39E-03 

322291 Sanitary paper product manufacturing 3.14E-03 5.66E-03 

322299 All other converted paper product 
manufacturing 1.49E-03 5.22E-03 

323110 Printing 7.92E-04 2.73E-03 
323120 Support activities for printing 5.33E-04 1.63E-03 
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324121 Asphalt paving mixture and block 
manufacturing 6.95E-03 8.23E-03 

324122 Asphalt shingle and coating materials 
manufacturing 2.10E-03 3.85E-03 

324191 Petroleum lubricating oil and grease 
manufacturing 9.10E-03 1.07E-02 

324199 All other petroleum and coal products 
manufacturing 1.34E-02 1.45E-02 

325110 Petrochemical manufacturing 9.64E-03 1.42E-02 
325120 Industrial gas manufacturing 5.40E-03 7.01E-03 

325130 Synthetic dye and pigment 
manufacturing 4.88E-03 7.90E-03 

325181 Alkalies and chlorine manufacturing 
1.37E-02 1.60E-02 

325182 Carbon black manufacturing 1.98E-02 2.03E-02 

325188 All other basic inorganic chemical 
manufacturing 6.22E-03 8.78E-03 

325190 Other basic organic chemical 
manufacturing 1.05E-02 1.61E-02 

325211 Plastics material and resin 
manufacturing 6.22E-03 1.33E-02 

325212 Synthetic rubber manufacturing 4.85E-03 1.03E-02 

325220 Artificial and synthetic fibers and 
filaments manufacturing 2.96E-03 8.11E-03 

325310 Fertilizer manufacturing 3.88E-02 4.78E-02 

325320 Pesticide and other agricultural 
chemical manufacturing 1.04E-03 4.76E-03 

325411 Medicinal and botanical manufacturing 
1.01E-03 2.06E-03 

325412 Pharmaceutical preparation 
manufacturing 3.09E-04 1.45E-03 

325413 In-vitro diagnostic substance 
manufacturing 2.12E-04 1.19E-03 

325414 Biological product (except diagnostic) 
manufacturing 4.24E-04 1.17E-03 

325510 Paint and coating manufacturing 3.35E-04 4.74E-03 
325520 Adhesive manufacturing 8.62E-04 4.24E-03 

325610 Soap and cleaning compound 
manufacturing 1.29E-03 3.56E-03 

325620 Toilet preparation manufacturing 1.38E-03 3.05E-03 
325910 Printing ink manufacturing 2.57E-04 3.82E-03 

3259A0 All other chemical product and 
preparation manufacturing 1.19E-03 4.69E-03 
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326110 
Plastics packaging materials and 
unlaminated film and sheet 
manufacturing 1.40E-03 6.27E-03 

326121 Unlaminated plastics profile shape 
manufacturing 9.70E-04 4.92E-03 

326122 Plastic pipe and pipe fitting 
manufacturing 3.80E-04 6.33E-03 

326130 Laminated plastics plate, sheet (except 
packaging), and shape manufacturing 2.45E-03 6.17E-03 

326140 Polystyrene foam product 
manufacturing 2.75E-03 7.06E-03 

326150 Urethane and other foam product 
(except polystyrene) manufacturing 9.16E-04 5.46E-03 

326160 Plastics bottle manufacturing 4.61E-04 5.60E-03 
32619A Other plastics product manufacturing 7.05E-04 3.82E-03 

326210 Tire manufacturing 1.99E-03 5.40E-03 

326220 Rubber and plastics hoses and belting 
manufacturing 1.31E-03 4.57E-03 

326290 Other rubber product manufacturing 1.29E-03 4.40E-03 

32711A Pottery, ceramics, and plumbing fixture 
manufacturing 4.20E-03 5.80E-03 

32712A Brick, tile, and other structural clay 
product manufacturing 1.45E-02 1.54E-02 

32712B Clay and nonclay refractory 
manufacturing 4.92E-03 7.29E-03 

327211 Flat glass manufacturing 1.63E-02 1.80E-02 

327212 Other pressed and blown glass and 
glassware manufacturing 4.65E-03 7.17E-03 

327213 Glass container manufacturing 1.12E-02 1.29E-02 

327215 Glass product manufacturing made of 
purchased glass 2.79E-03 5.73E-03 

327310 Cement manufacturing 1.48E-02 1.65E-02 

327320 Ready-mix concrete manufacturing 
1.52E-03 6.11E-03 

327330 Concrete pipe, brick and block 
manufacturing 1.29E-03 4.35E-03 

327390 Other concrete product manufacturing 1.13E-03 3.32E-03 

3274A0 Lime and gypsum product 
manufacturing 1.64E-02 1.92E-02 
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327910 Abrasive product manufacturing 1.53E-03 2.93E-03 

327991 Cut stone and stone product 
manufacturing 1.02E-03 2.38E-03 

327992 Ground or treated mineral and earth 
manufacturing 6.57E-03 7.94E-03 

327993 Mineral wool manufacturing 6.99E-03 8.93E-03 

327999 Miscellaneous nonmetallic mineral 
products 2.32E-03 5.69E-03 

331110 Iron and steel mills and ferroalloy 
manufacturing 5.74E-03 8.56E-03 

331200 Steel product manufacturing from 
purchased steel 3.00E-03 5.50E-03 

33131A Alumina refining and primary 
aluminum production 6.13E-03 9.08E-03 

331314 Secondary smelting and alloying of 
aluminum 6.35E-03 9.26E-03 

33131B Aluminum product manufacturing 
from purchased aluminum 2.81E-03 6.59E-03 

331411 Primary smelting and refining of 
copper 2.49E-03 6.08E-03 

331419 
Primary smelting and refining of 
nonferrous metal (except copper and 
aluminum) 2.92E-03 5.67E-03 

331420 Copper rolling, drawing, extruding and 
alloying 1.16E-03 4.00E-03 

331490 
Nonferrous metal (except copper and 
aluminum) rolling, drawing, extruding 
and alloying 1.85E-03 4.06E-03 

331510 Ferrous metal foundries 2.91E-03 4.29E-03 
331520 Nonferrous metal foundries 2.70E-03 4.84E-03 

33211A All other forging, stamping, and 
sintering 4.26E-03 6.82E-03 

332114 Custom roll forming 1.44E-03 4.89E-03 

33211B Crown and closure manufacturing and 
metal stamping 1.12E-03 3.56E-03 

33221A Cutlery, utensil, pot, and pan 
manufacturing 1.26E-03 3.14E-03 

33221B Handtool manufacturing 8.81E-04 2.75E-03 

332310 Plate work and fabricated structural 
product manufacturing 7.50E-04 3.04E-03 
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332320 Ornamental and architectural metal 
products manufacturing 6.95E-04 3.07E-03 

332410 Power boiler and heat exchanger 
manufacturing 1.22E-03 3.18E-03 

332420 Metal tank (heavy gauge) 
manufacturing 1.09E-03 3.27E-03 

332430 Metal can, box, and other metal 
container (light gauge) manufacturing 1.39E-03 4.66E-03 

33299A Ammunition manufacturing 1.74E-03 2.96E-03 

33299B Arms, ordnance, and accessories 
manufacturing 7.48E-04 1.87E-03 

332500 Hardware manufacturing 6.74E-04 2.40E-03 

332600 Spring and wire product manufacturing 1.26E-03 3.41E-03 
332710 Machine shops 6.18E-04 1.84E-03 

332720 Turned product and screw, nut, and bolt 
manufacturing 8.38E-04 2.41E-03 

332800 Coating, engraving, heat treating and 
allied activities 4.26E-03 6.34E-03 

33291A Valve and fittings other than plumbing 5.64E-04 2.14E-03 

332913 Plumbing fixture fitting and trim 
manufacturing 9.11E-04 2.72E-03 

332991 Ball and roller bearing manufacturing 
1.23E-03 2.78E-03 

332996 Fabricated pipe and pipe fitting 
manufacturing 8.16E-04 3.03E-03 

33299C Other fabricated metal manufacturing 
1.65E-03 3.79E-03 

333111 Farm machinery and equipment 
manufacturing 6.88E-04 2.57E-03 

333112 Lawn and garden equipment 
manufacturing 3.96E-04 2.33E-03 

333120 Construction machinery manufacturing 7.14E-04 2.56E-03 

333130 Mining and oil and gas field machinery 
manufacturing 5.32E-04 2.51E-03 

33329A Other industrial machinery 
manufacturing 5.67E-04 2.22E-03 

333220 Plastics and rubber industry machinery 
manufacturing 4.71E-04 2.02E-03 
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333295 Semiconductor machinery 
manufacturing 2.44E-04 1.62E-03 

33331A Vending, commercial, industrial, and 
office machinery manufacturing 2.72E-04 2.04E-03 

333314 Optical instrument and lens 
manufacturing 1.82E-04 1.61E-03 

333315 Photographic and photocopying 
equipment manufacturing 5.22E-04 2.61E-03 

333319 Other commercial and service industry 
machinery manufacturing 3.68E-04 1.94E-03 

33341A Air purification and ventilation 
equipment manufacturing 6.32E-04 2.44E-03 

333414 Heating equipment, except warm air 
furnaces 7.73E-04 2.59E-03 

333415 
Air conditioning, refrigeration, and 
warm air heating equipment 
manufacturing 3.81E-04 2.09E-03 

333511 Industrial mold manufacturing 6.96E-04 2.20E-03 

33351A Metal cutting and forming machine tool 
manufacturing 5.01E-04 1.88E-03 

333514 Special tool, die, jig, and fixture 
manufacturing 5.43E-04 2.00E-03 

333515 Cutting tool and machine tool 
accessory manufacturing 4.97E-04 1.78E-03 

33351B Rolling mill and other metalworking 
machinery manufacturing 6.17E-04 1.90E-03 

333611 Turbine and turbine generator set units 
manufacturing 2.41E-04 1.53E-03 

333612 Speed changer, industrial high-speed 
drive, and gear manufacturing 1.25E-03 2.57E-03 

333613 Mechanical power transmission 
equipment manufacturing 9.74E-04 2.57E-03 

333618 Other engine equipment manufacturing 5.46E-04 2.53E-03 

333911 Pump and pumping equipment 
manufacturing 4.38E-04 2.07E-03 
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333912 Air and gas compressor manufacturing 5.35E-04 2.18E-03 

333920 Material handling equipment 
manufacturing 8.07E-04 2.83E-03 

333991 Power-driven handtool manufacturing 2.91E-04 2.13E-03 

33399A Other general purpose machinery 
manufacturing 5.87E-04 2.25E-03 

333993 Packaging machinery manufacturing 3.01E-04 1.63E-03 

333994 Industrial process furnace and oven 
manufacturing 6.10E-04 1.87E-03 

33399B Fluid power process machinery 4.93E-04 2.13E-03 

334111 Electronic computer manufacturing 1.39E-04 1.02E-03 

334112 Computer storage device 
manufacturing 1.73E-04 1.17E-03 

33411A Computer terminals and other computer 
peripheral equipment manufacturing 2.98E-04 1.41E-03 

334210 Telephone apparatus manufacturing 6.49E-04 1.58E-03 

334220 Broadcast and wireless 
communications equipment 1.49E-04 1.07E-03 

334290 Other communications equipment 
manufacturing 4.80E-04 1.43E-03 

334300 Audio and video equipment 
manufacturing 3.17E-04 2.11E-03 

334411 Electron tube manufacturing 1.19E-03 3.73E-03 

334412 Bare printed circuit board 
manufacturing 9.40E-04 2.29E-03 

334413 Semiconductor and related device 
manufacturing 4.55E-04 1.66E-03 

33441A 
Electronic capacitor, resistor, coil, 
transformer, and other inductor 
manufacturing 6.65E-04 2.10E-03 

334417 Electronic connector manufacturing 5.35E-04 2.12E-03 

334418 Printed circuit assembly (electronic 
assembly) manufacturing 1.91E-04 1.28E-03 

 
 
 
 
 



300 

Appendix A (continued) 

Table A.8 (continued) 

334419 Other electronic component 
manufacturing 3.94E-04 1.61E-03 

334510 Electromedical and electrotherapeutic 
apparatus manufacturing 

1.74E-04 1.39E-03 

334511 Search, detection, and navigation 
instruments manufacturing 4.53E-04 1.23E-03 

334512 Automatic environmental control 
manufacturing 3.96E-04 1.75E-03 

334513 Industrial process variable instruments 
manufacturing 3.13E-04 1.55E-03 

334514 Totalizing fluid meters and counting 
devices manufacturing 3.52E-04 1.79E-03 

334515 Electricity and signal testing 
instruments manufacturing 1.64E-04 9.10E-04 

334516 Analytical laboratory instrument 
manufacturing 2.53E-04 1.28E-03 

334517 Irradiation apparatus manufacturing 
1.62E-04 1.46E-03 

33451A Other Measuring and Controlling 
Device Manufacturing 2.62E-04 1.29E-03 

33461A Software, audio, and video media 
reproducing 5.35E-04 2.60E-03 

334613 Magnetic and optical recording media 
manufacturing 9.06E-04 2.56E-03 

335110 Electric lamp bulb and part 
manufacturing 1.01E-03 2.58E-03 

335120 Lighting fixture manufacturing 5.15E-04 2.28E-03 

335210 Small electrical appliance 
manufacturing 3.64E-04 2.39E-03 

335221 Household cooking appliance 
manufacturing 7.49E-04 3.20E-03 

335222 Household refrigerator and home 
freezer manufacturing 3.79E-04 2.96E-03 

335224 Household laundry equipment 
manufacturing 5.93E-04 2.71E-03 

335228 Other major household appliance 
manufacturing 6.56E-04 2.71E-03 

335311 Power, distribution, and specialty 
transformer manufacturing 6.28E-04 2.84E-03 

335312 Motor and generator manufacturing 
7.67E-04 2.57E-03 
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335313 Switchgear and switchboard apparatus 
manufacturing 3.55E-04 1.64E-03 

335314 Relay and industrial control 
manufacturing 2.42E-04 1.24E-03 

335911 Storage battery manufacturing 1.39E-03 3.58E-03 
335912 Primary battery manufacturing 2.60E-04 1.97E-03 

335920 Communication and energy wire and 
cable manufacturing 6.94E-04 3.45E-03 

335930 Wiring device manufacturing 5.06E-04 2.46E-03 

335991 Carbon and graphite product 
manufacturing 4.80E-03 7.61E-03 

335999 
All other miscellaneous electrical 
equipment and component 
manufacturing 2.70E-04 1.32E-03 

336111 Automobile Manufacturing 3.45E-04 2.28E-03 

336112 Light truck and utility vehicle 
manufacturing 3.41E-04 2.41E-03 

336120 Heavy duty truck manufacturing 2.24E-03 4.32E-03 

336211 Motor vehicle body manufacturing 
5.59E-04 2.44E-03 

336212 Truck trailer manufacturing 5.04E-04 2.88E-03 
336213 Motor home manufacturing 2.35E-04 2.56E-03 

336214 Travel trailer and camper 
manufacturing 4.91E-04 2.94E-03 

336300 Motor vehicle parts manufacturing 
5.82E-04 2.77E-03 

336411 Aircraft manufacturing 2.16E-04 1.37E-03 

336412 Aircraft engine and engine parts 
manufacturing 5.69E-04 1.58E-03 

336413 Other aircraft parts and auxiliary 
equipment manufacturing 8.27E-04 2.09E-03 

336414 Guided missile and space vehicle 
manufacturing 2.72E-04 1.13E-03 

33641A Propulsion units and parts for space 
vehicles and guided missiles 

5.88E-04 1.42E-03 

336500 Railroad rolling stock manufacturing 
5.96E-04 2.12E-03 

336611 Ship building and repairing 3.34E-04 1.50E-03 
336612 Boat building 4.80E-04 2.35E-03 

336991 Motorcycle, bicycle, and parts 
manufacturing 5.12E-04 2.85E-03 



302 

Appendix A (continued) 

Table A.8 (continued) 

336992 Military armored vehicle, tank, and 
tank component manufacturing 

4.70E-04 1.99E-03 

336999 All other transportation equipment 
manufacturing 4.15E-04 2.57E-03 

337110 Wood kitchen cabinet and countertop 
manufacturing 5.88E-04 2.05E-03 

337121 Upholstered household furniture 
manufacturing 2.81E-04 2.29E-03 

337122 Nonupholstered wood household 
furniture manufacturing 5.76E-04 2.01E-03 

33712A Metal and other household furniture 
(except wood) manufacturing 8.97E-04 3.55E-03 

337127 Institutional furniture manufacturing 7.77E-04 2.51E-03 

33721A Wood television, radio, and sewing 
machine cabinet manufacturing 

3.48E-04 1.94E-03 

337212 
Office furniture and custom 
architectural woodwork and millwork 
manufacturing 6.54E-04 2.24E-03 

337215 Showcase, partition, shelving, and 
locker manufacturing 1.07E-03 3.44E-03 

337910 Mattress manufacturing 2.73E-04 2.19E-03 
337920 Blind and shade manufacturing 3.78E-04 2.90E-03 

339111 Laboratory apparatus and furniture 
manufacturing 3.35E-04 1.58E-03 

339112 Surgical and medical instrument 
manufacturing 1.88E-04 1.21E-03 

339113 Surgical appliance and supplies 
manufacturing 3.20E-04 1.65E-03 

339114 Dental equipment and supplies 
manufacturing 1.71E-04 2.08E-03 

339115 Ophthalmic goods manufacturing 1.77E-04 1.15E-03 
339116 Dental laboratories 2.06E-04 8.33E-04 

339910 Jewelry and silverware manufacturing 2.89E-04 2.18E-03 

339920 Sporting and athletic goods 
manufacturing 5.75E-04 2.62E-03 

339930 Doll, toy, and game manufacturing 5.32E-04 2.95E-03 

339940 Office supplies (except paper) 
manufacturing 4.98E-04 2.37E-03 
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Appendix A (continued) 

Table A.8 (continued) 
339950 Sign manufacturing 6.25E-04 2.46E-03 

339991 Gasket, packing, and sealing device 
manufacturing 9.22E-04 3.05E-03 

339992 Musical instrument manufacturing 
5.99E-04 1.31E-03 

33999A All other miscellaneous manufacturing 
6.32E-04 2.60E-03 

339994 Broom, brush, and mop manufacturing 
5.28E-04 1.97E-03 

420000 Wholesale trade 2.91E-04 5.98E-04 
4A0000 Retail trade 2.65E-04 5.81E-04 

481000 Air transportation 6.87E-05 6.38E-04 
482000 Rail transportation 7.61E-05 6.59E-04 
483000 Water transportation 5.58E-04 1.41E-03 
484000 Truck transportation 2.42E-04 7.68E-04 

485000 Transit and ground passenger 
transportation 4.81E-04 1.36E-03 

486000 Pipeline transportation 1.64E-02 1.71E-02 

48A000 Scenic and sightseeing transportation 
and support activities for transportation 

1.93E-03 2.50E-03 
492000 Couriers and messengers 3.55E-07 3.65E-04 
493000 Warehousing and storage 6.02E-04 9.81E-04 
511110 Newspaper publishers 1.35E-04 1.23E-03 
511120 Periodical publishers 3.35E-05 8.79E-04 
511130 Book publishers 1.03E-04 7.47E-04 

5111A0 Directory, mailing list, and other 
publishers 5.05E-05 8.15E-04 

511200 Software publishers 1.61E-05 2.99E-04 

512100 Motion picture and video industries 
1.04E-04 3.67E-04 

512200 Sound recording industries 2.84E-05 5.99E-04 
515100 Radio and television broadcasting 4.70E-04 8.97E-04 

515200 Cable and other subscription 
programming 3.96E-04 8.97E-04 

516110 Internet publishing and broadcasting 
3.68E-05 7.62E-04 

517000 Telecommunications 8.34E-04 1.33E-03 

518100 Internet service providers and web 
search portals 4.12E-04 8.55E-04 

518200 Data processing, hosting, and related 
services 4.67E-05 4.32E-04 
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Table A.8 (continued) 
519100 Other information services 3.72E-04 7.04E-04 

52A000 Monetary authorities and depository 
credit intermediation 4.91E-05 2.21E-04 

522A00 Nondepository credit intermediation 
and related activities 1.01E-04 3.36E-04 

523000 Securities, commodity contracts, 
investments, and related activities 3.13E-05 2.51E-04 

524100 Insurance carriers 3.62E-06 2.23E-04 

524200 Insurance agencies, brokerages, and 
related activities 1.35E-04 3.68E-04 

525000 Funds, trusts, and other financial 
vehicles 0.00E+00 2.21E-04 

531000 Real estate 3.05E-04 4.77E-04 
S00800 Owner-occupied dwellings 2.79E-08 2.30E-04 

532100 Automotive equipment rental and 
leasing 9.60E-05 4.13E-04 

532A00 General and consumer goods rental 
except video tapes and discs 4.93E-04 8.43E-04 

532230 Video tape and disc rental 4.05E-04 9.10E-04 

532400 Commercial and industrial machinery 
and equipment rental and leasing 3.88E-04 7.87E-04 

533000 Lessors of nonfinancial intangible 
assets 5.33E-04 6.62E-04 

541100 Legal services 7.30E-05 2.77E-04 

541200 Accounting, tax preparation, 
bookkeeping, and payroll services 1.09E-04 3.16E-04 

541300 Architectural, engineering, and related 
services 2.78E-04 6.36E-04 

541400 Specialized design services 8.05E-05 4.70E-04 

541511 Custom computer programming 
services 2.65E-05 2.24E-04 

541512 Computer systems design services 3.91E-05 4.26E-04 

54151A Other computer related services, 
including facilities management 2.71E-05 3.06E-04 

541610 Management, scientific, and technical 
consulting services 4.58E-05 3.30E-04 
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Table A.8 (continued) 
5416A0 Environmental and other technical 

consulting services 1.42E-04 4.77E-04 

541700 Scientific research and development 
services 4.92E-04 9.91E-04 

541800 Advertising and related services 2.66E-04 9.74E-04 

5419A0 All other miscellaneous professional, 
scientific, and technical services 1.81E-04 4.18E-04 

541920 Photographic services 2.09E-04 6.93E-04 
541940 Veterinary services 5.01E-04 1.26E-03 

550000 Management of companies and 
enterprises 3.37E-04 6.39E-04 

561300 Employment services 7.67E-05 2.20E-04 

561500 Travel arrangement and reservation 
services 1.30E-03 1.69E-03 

561100 Office administrative services 1.90E-04 5.15E-04 
561200 Facilities support services 2.16E-04 6.73E-04 
561400 Business support services 1.58E-04 5.30E-04 

561600 Investigation and security services 1.63E-04 4.87E-04 

561700 Services to buildings and dwellings 2.09E-04 6.73E-04 
561900 Other support services 3.23E-04 7.79E-04 

562000 Waste management and remediation 
services 6.56E-04 1.26E-03 

611100 Elementary and secondary schools 2.36E-03 2.82E-03 

611A00 Junior colleges, colleges, universities, 
and professional schools 5.05E-03 5.67E-03 

611B00 Other educational services 4.97E-04 8.94E-04 

621A00 Offices of physicians, dentists, and 
other health practitioners 1.08E-04 4.78E-04 

621B00 
Medical and diagnostic labs and 
outpatient and other ambulatory care 
services 2.91E-04 8.09E-04 

621600 Home health care services 5.06E-04 9.03E-04 
622000 Hospitals 4.06E-04 9.71E-04 

623000 Nursing and residential care facilities 8.44E-04 1.28E-03 
624A00 Individual and family services 6.07E-04 1.12E-03 

624200 
Community food, housing, and other 
relief services, including rehabilitation 
services 4.50E-04 9.89E-04 
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Table A.8 (continued) 
624400 Child day care services 4.12E-04 9.73E-04 
711100 Performing arts companies 1.37E-04 4.21E-04 
711200 Spectator sports 2.24E-04 6.37E-04 

711A00 Promoters of performing arts and sports 
and agents for public figures 

2.24E-04 6.36E-04 

711500 Independent artists, writers, and 
performers 4.55E-05 2.62E-04 

712000 Museums, historical sites, zoos, and 
parks 1.15E-03 1.55E-03 

713A00 Amusement parks, arcades, and 
gambling industries 1.50E-03 1.98E-03 

713B00 Other amusement and recreation 
industries 1.11E-03 1.81E-03 

713940 Fitness and recreational sports centers 1.31E-03 1.75E-03 
713950 Bowling centers 1.14E-03 1.74E-03 

7211A0 Hotels and motels, including casino 
hotels 1.43E-03 1.92E-03 

721A00 Other accommodations 1.74E-03 2.18E-03 

722000 Food services and drinking places 7.84E-04 1.73E-03 

8111A0 Automotive repair and maintenance, 
except car washes 3.11E-04 1.08E-03 

811192 Car washes 2.10E-03 2.61E-03 

811200 Electronic and precision equipment 
repair and maintenance 

1.96E-04 5.95E-04 

811300 Commercial and industrial machinery 
and equipment repair and maintenance 

2.57E-04 8.59E-04 

811400 Personal and household goods repair 
and maintenance 2.94E-04 9.98E-04 

812100 Personal care services 2.36E-04 6.22E-04 
812200 Death care services 9.49E-04 1.85E-03 

812300 Dry-cleaning and laundry services 8.27E-04 1.16E-03 
812900 Other personal services 4.27E-04 8.35E-04 
813100 Religious organizations 2.70E-04 6.01E-04 
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Table A.8 (continued) 

813A00 Grantmaking, giving, and social 
advocacy organizations 1.44E-04 6.60E-04 

813B00 Civic, social, professional, and similar 
organizations 9.40E-04 1.51E-03 

814000 Private households 0.00E+00 0.00E+00 
491000 Postal service 8.81E-04 1.14E-03 

S00102 Other Federal Government enterprises 
2.39E-03 2.65E-03 

S00203 Other State and local government 
enterprises 4.38E-03 5.48E-03 

S00500 General Federal defense government 
services 2.83E-04 7.02E-04 

S00600 General Federal nondefense 
government services 5.38E-04 1.10E-03 

S00700 General state and local government 
services 1.68E-03 2.30E-03 

S00401 Scrap 1.54E-03 3.08E-03 
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Appendix B Additional Figures 
 
 

 
(a) 

 
(b) 

 
Figure B.1 Distribution of embodied energy in well construction and operation. (a) 
distribution of embodied energy in well construction among the counties in North 
Carolina in unit of TJ/year, and (b) distribution of embodied energy in well operation 
among the counties in North Carolina in unit of TJ/year 
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(a) 

 
(b) 

 
Figure B.2 Distribution of embodied energy in surface water intake infrastructure 
construction and operation. (a) distribution of embodied energy in surface water intake 
infrastructure construction among the counties in North Carolina in unit of TJ/year, and 
(b) distribution of embodied energy in surface water intake infrastructure operation 
among the counties in North Carolina in unit of TJ/year 
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Figure B.3 Distribution of embodied energy in pumping station construction 
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Appendix B (continued) 

 

 
(a) 

 
(b) 

 
Figure B.4 Distribution of embodied energy in pipeline construction and operation. (a) 
distribution of embodied energy in pipeline system construction among the counties in 
North Carolina in unit of TJ/year, and (b) distribution of embodied energy in water 
pumping among the counties in North Carolina in unit of TJ/year 
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(a) 

 
 (b) 

 
Figure B.5 Distribution of embodied energy in water treatment plant construction and 
operation. (a) distribution of embodied energy in water treatment plant construction 
among the counties in North Carolina in unit of TJ/year, and (b) distribution of embodied 
energy in water treatment plant operation among the counties in North Carolina in unit of 
TJ/year 
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Figure B.6 Distribution of embodied energy in water storage tank construction 
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Appendix B (continued) 

 

 

Figure B.7 Results of backward selection for the linear regression model using the R 
software 
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Appendix C Data Acquisition Questionnaire for Water Supply Systems 
 
Questionnaire provided to utilities to obtain data for surface water sourced systems 
1. Types of water intake structure: submerged crib or exposed tower?  
2. If submerged crib, please provide the maximum flow (MGD) here.  
3. If exposed tower, provide maximum flow (MGD) and tower height (ft) here. Besides, 

provide the height of the cofferdam (ft) here.  
4. For raw water pumping, please indicate the number of pumping stations and provide 

the capacity for each pumping station (MGD). 
5. Provide the diameter (inches) and length (mile) of water mains in the whole system. 
6. For water treatment, indicate annual average daily water flow (MGD) in the system. 
7. What kind of the following treatment technologies are used in your facility 

• Flash Mix + Gravel Bed Filtration + Granular Bed Filtration + Clearwell 
• Flash Mix + Flocculation + Granular Bed Filtration + Clearwell 
• Flash Mix + Flocculation + Sedimentation + Granular Bed Filtration + Clearwell  
• Flash Mix + Flocculation + Dissolved air floatation + Filtration + Clearwell 
• Flash Mix + Solids contact clarifier (lime, soda ash, ferrous sulfate) + CO2 

contact tank + Clarifier + Filtration + Clearwell 
• Aeration + Contact Tank + Filtration + Clearwell 
• Micro Screen + Micro Filter + Clearwell 
• Pre-ozonation + Flash Mix + Flocculation + BAF with GAC Bed + Clearwell 
• Pre-ozonation + Flash Mix + Flocculation + Clarifier + Pre-filter ozonation + 

BAF with GAC bed + Clearwell 
8. If your facility is of other combination of technologies, what is it? List the unit 

processes below please and indicate the volume of each structure. 
9. For finished water pumping, indicate the number of pumping stations, and provide 

the capacity of each pumping stations (MGD). 
10. Types of water storage: underground reservoir or uplifted water storage tank 
11. If underground reservoir, provide the number of reservoirs and the capacity of each 

reservoir (cubic meter). 
12. If uplifted water storage tank, provide the number of water storage tanks and the 

capacity of each tank (cubic meter). 
13. Please provide the total annual operation and maintenance costs in the system. Add 

up the following parts: 
Annual labor cost (payroll, administration, supervision) 
Annual maintenance and repair cost (replacement, repair, technology innovation 
and so on) 
Annual energy (electricity, natural gas) bill 
Annual chemical cost             
 



316 

Appendix C (continued) 

14. Please indicate the annual energy bill here 
Electricity 
Natural gas 

15. Indicate the amount of asphalt used in the system 
16. If available, please provide the total construction cost of the system, and indicate 

which year’s dollar value is it. 
17. Please provide the unit electricity price and natural gas price in your area 
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Appendix C (continued) 

Questionnaire provided to utilities to obtain data for ground water sourced systems  
1. Well data 

Design flow of each well 
Diameter of each well 
Depth of each well 
Well head (depth to the water level + head loss) 
Pump efficiency if available 

2. Water main data 
Length of water mains 
Diameter of pipes  
Average uphill/downhill slope (ft/1000ft) 
Friction loss (ft/1000ft)  

3. Storage capacity of each water storage facilities, indicate above ground or 
underground   

4. Pumping station data 
Capacity of each pumping station 
Total number of the pumping stations 

5. How many gallons of water are actually treated per day (MGD)? 
6. What is the maximum and average design flow of each of the treatment facility? 
7. Please indicate the annual energy bill here 

Electricity 
Natural gas 

8. Annual maintenance and repair cost 
9. Annual total operation and maintenance cost 
10. Amount of asphalt used in the system for construction 
11. Total construction cost  
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Appendix D Permissions 

D.1 Permission to Use Paper Contents in Chapter 2 and 3
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Appendix D (continued) 

D.2 Permission to Use Paper Contents in Chapter 2, 3 and 4
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D.3 Permission to Use Paper Contents in Chapter 6 
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