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ABSTRACT 

Algae are a diverse group of simple organisms that lack roots, stems or leaves and are able to use 

sunlight, carbon dioxide, and nutrients to produce complex compounds, such as carbohydrates, 

proteins and lipids.  These compounds, especially lipids, are highly sought-after by agricultural, 

nutraceutical and energy interests. Although there is great potential for algae derived biofuels, 

there are technical and economic challenges associated with their cultivation. Relevant to this 

dissertation, the environmental impacts associated with algae cultivation can be reduced by using 

municipal and agricultural wastewaters as a water and nutrient source.  This research was 

divided into three sections to address current challenges in the algal industry and science, 

technology, engineering and math (STEM) education. The sections were: 1) examination of the 

growth of indigenous algae on wastewater (centrate) produced from dewatering anaerobically 

digested municipal sludge, 2) examination of the effect of non-axenic conditions on the growth 

of three different algal cultures using wastewater from a recirculating aquaculture system (RAS), 

and 3) using wastewater treatment and algae to increase scientific inquiry in authentic science 

research with high school students. In the first section, indigenous algae were cultivated on 

centrate under natural light conditions in a semi-continuous photobioreactor. A non- linear bio-

optical model was developed considering Michaelis-Menten photosynthesis-irradiance response. 

The bio-optical model was applied to fit the cumulative biomass data and had an R-squared 

value of 0.96. The second section examined the growth and accumulation of storage product. 

Higher calorific values were observed for all algae cultures when grown under non-axenic 

conditions, most likely due to significantly higher lipid contents. Significantly higher algal lipid 



ix 

contents under non-axenic conditions may be attributed to the stress of the presence of RAS 

microorganisms. Finally, having a university-based algal project with involvement of University 

of South Florida (USF) researchers, teachers and high school (HS) students facilitated increased 

scientific understanding and skills among HS students. Outcomes included graduate students 

gaining greater in-depth practical understanding as these students had to learn skills, such as 

designing a photobioreactor and then immediately had to teach HS students how to construct 

photobioreactors, design and conduct experiments, and gather scientific data. HS students gained 

a greater understanding of biological and chemical processes, such as photosynthesis. In 

addition, they learned important skills, such as calculating means and standard deviations using 

Excel, orally communicating scientific concepts and preparation of a PowerPoint presentation. 
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CHAPTER 1: INTRODUCTION 

1.1 Background 

Algal biofuels can help to meet ever-increasing United States energy demands [2,3]. In 2010, the 

United States was the largest energy consumer in the world, using approximately 98 quadrillion 

British Thermal Units (BTU) [4,5]. At present, petroleum accounts for 37% of total energy use. 

Most (94%) of this petroleum is used for transportation [6]. Renewable forms of energy currently 

account for only 8% of total energy consumption [6,4]. Biomass only accounts for half of the 

energy derived in the United States from renewable forms [6]. It is estimated that by 2035, there 

will only be a 1.7% increase in the use of renewable forms of energy [7]. The two main reasons 

why renewable forms do not account for a higher percentage in the United States are: (1) they 

are highly politicized and (2) there needs to be more research and development to make new 

innovations commercially viable.   

The use of algal biofuel production systems is a promising technology for meeting future energy 

needs [8,9]. Microalgae have the ability to fix carbon dioxide through multifarious 

photosynthetic activities. Algae are capable of utilizing sunlight, carbon dioxide, nutrients and 

water from wastewater streams as the building blocks to produce complex compounds, such as 

carbohydrates and lipids. These valuable compounds, especially lipids, are highly sought-after by 

large energy and nutraceutical entities [10,2]. Of all the advanced biomass feedstocks, such as 

switchgrass and organic waste, algae-based biofuel are very promising [10], as algal productivity 

can be between 20 and 100 times higher than terrestrial energy crops and they can be produced 

in a manner that does not compete with arable land. However, some researchers do not anticipate 
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algae biofuel becoming an economically feasible option in the immediate future due to the many 

technical challenges [11,12].  

The use of wastewater as a growth medium can reduce water and fertilizer needs for algae 

production, making the process more practical and economical [12]. Using wastewater as an 

algal growth medium may present mutually beneficial effects, especially when considering 

nutrient removal from the wastewater [13-15]. However, high strength wastewater streams may 

contain compounds, such as ammonia, that are toxic to algae at high concentrations (i.e. total 

ammonia nitrogen [TAN] > 100 mg/L as nitrogen). This problem may be overcome by bio-

prospecting indigenous algal species that are already adapted to or possess the ability to become 

adapted to wastewater environments. However, in some cases genetic transformation or bio-

engineering may be required to increase productivity of desired end-products, usually lipids, with 

comparable characteristics to petroleum-derived products. 

Prior research on algal biofuels has focused on very unnatural monoculture systems, with 

significant investments required to keep cultures axenic (free of non-target microbial agents), or 

at least preventing contamination, particularly predation [16,13,17]. Previous studies suggest that 

species and niche diversity are crucial in creating resilient (able to produce valuable products 

despite stressors) natural and engineered systems; however, little is known about how algal-

microbial diversity influences energy product outputs and nutrient removal [18,19]. The 

contribution of each of these sections is summarized below in Figure 1.1.The overall goal of this 

research was to contribute to greater understanding of how indigenous microbial-algal 

interactions influence biomass and end-product generation. Algal Wastewater Reactor Sytems 

(AWRS).  
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Figure 1.1: Algal biofuel research. This study’s algal biofuel research contributed to the areas of: 

1) wastewater treatment, 2) feedstock production, and 3) broader impacts. The 2nd tier represents 

the main accomplishments in these areas, while the 3rd tier highlights the future anticipated 

outcomes of this research.  

 

1.2 Research Goals 

The specific goals of this research included: 

1. Examine biomass and lipid production of an indigenous algae consortium when 

municipal centrate and aquaculture wastewaters were used as growth substrates.  

2. Determine the effect of natural irradiance variability on biomass production in pilot-scale 

photobioreactor systems. 

3. Investigate the effects of indigenous microbes on algal system performance as defined by: 

1) productivity of a desirable end-product (biomass, chlorophyll, starch and lipids), and 2) 

removal of nutrients and organics from aquaculture wastewater.  

4.  Facilitate greater understanding of scientific principles and interest in science among high 

school students through authentic scientific research on algal biofuel production.  
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The following research questions and objectives guided this research: 

Research question I: Can high growth and nutrient removal rates can be achieved in wastewater 

centrate using a consortium of indigenous algae?  

Objectives:   

1. Acclimate an algal consortium capable of growing on high ammonia strength wastewater 

from dewatering anaerobically digested municipal sludge centrate with total nitrogen as 

ammonia (TAN) greater than 100 mg/L.  

2. Design, construct and operate a semi-continuous photobioreactor with indigenous algae 

using sludge centrate as the growth medium. 

3. Determine biomass and lipid production and nutrient removal rates for the indigenous 

algal consortium in the photobioreactor under natural irradiance.  

4. Develop and apply an irradiance-based model to understand the effect of light availability 

on biomass production. 

Research question II: Does algal species diversity and presence of wastewater microbes 

increases system performance in AWRS?  

Objectives:   

1. Investigate the characteristics of aquaculture wastewater as a growth medium for algae 

production. 

2. Grow an indigenous consortium, Chlorella and Scenedesmus cultures on aquaculture 

wastewater. 

3. Investigate the effect of indigenous microbes on biomass, chlorophyll, starch and lipid 

production and nutrient removal efficiencies in aquaculture wastewater. 
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4. Investigate the effect of algal diversity on biomass and end-product generation and 

nutrient removal efficiencies in aquaculture wastewater. 

Research question III: Does authentic science research experiences for high school students 

increase participation, STEM interests, scientific knowledge and skills among HS and graduate 

students? 

Objectives:   

1. Collaborate with a faculty member and graduate student in the USF College of Education 

to design, implement and evaluate an authentic science research experience for high 

school students. 

2. Construct a photobioreactor using easily assessable equipment.  

3. Work with local high school teachers and students to investigate algal growth in 

photobioreactors under varying conditions. 

4. Assess the attitudes and perceptions of HS and graduate students of this authentic science 

experience.  

5. Determine the contribution of the high school students in generating useful data for this 

project.  

 1.3 Dissertation Organization 

A significant amount of the initial research was based on foundational work and data collected 

during experiments conducted with the indigenous algal consortium. Subsequent steps were 

taken to determine how indigenous microbes and algal diversity influence performance (biomass 

and valuable end-product production). Figure 1.2 shows the interconnectedness of the different 

phases. The dissertation chapters address the following topics: 
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1. Chapter 1: Introduction, research objectives, hypotheses and organization 

2. Chapter 2: A literature review discussing algae use and wastewater treatment 

3. Chapter 3: Algal biomass production using municipal sludge centrate as a growth 

medium and development of an irradiance-based model  

4. Chapter 4: Production of algal biomass, chlorophyll, starch and lipids using aquaculture 

wastewater under axenic (algal monocultures without other microorganisms) and non-

axenic conditions 

5. Chapter 5: Authentic science research among high school students  

6. Chapter 6: Conclusions and recommendations 

 

 

 

Figure 1.2: Interconnected phases of this study in chronological order. The overall scientific and 

community contributions are dependent on the synergy between the phases   

•Pilot scale 
experments  using 
an indigenous 
algal consortium. 

•Algal biomass 
production and 
nutrient removal 
determined. 

•Irradiance based 
model developed

Phase I: Pilot scale 
experiments

•High school 
students were 
taught key conepts.

•Effect of 
wastewater strength 
and nitrogen form 
on biomass 
production was 
determined

PhaseII: High school 
student experiments 

•Experiments 
determined if there 
are significant 
differences in 
biomass and end-
prodect 
development 
between axenic 
and non-axenic 
conditions.

Phase III: Bench scale 
experiments

•Quantify effects of 
algal cultivation 
on:1)feedstock 
production and 2) 
wastewater 
treatment. 

•Assess the effect 
of authentic 
science 
experiences. 

Overall scientific 
contribution and 
broader impact
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CHAPTER 2: ALGAE AND WASTEWATER TREATMENT 

2.1 Introduction to Algae 

Algae are a large and diverse group of simple organisms that lack roots, stems or leaves. Most 

algae are eukaryotic and are able to utilize inorganic carbon sources to support their 

photosynthetic metabolism. There are both unicellular and multicellular forms of algae. The 

largest and most complex forms are marine seaweeds; some kelp species are able to grow to a 

total length of 65 meters [20]. They are ubiquitous and have many varying forms and functions 

that allow them to adapt to different environments, such as freshwater, saltwater, soil, streams, 

slow pools and lakes. Some algae can also thrive in extreme environments, such as hot springs 

and brine lakes.  

Algae can be harmful in the environment, as algal blooms in marine and freshwater ecosystems 

occur in response to nitrogen and phosphorus inputs. A summary of common algae at different 

levels of nutrient enrichment is shown in Table 2.1. An algae bloom in Lake Erie that was 

approximately 1,920 square miles and crippled fishing and tourism industries in 2011 is shown 

in Figure 2.1. In these eutrophic environments, algae blanket the water; light penetration 

becomes very limited and submerged plants’ photosynthesis and subsequent oxygen production 

becomes severely constrained. In addition, when nutrients are depleted in eutrophic systems and 

the algal population dies-off, opportunistic aerobic bacterial communities utilize the organic 

matter. When dissolved oxygen levels reach critically low levels (<4mg/L), many aquatic 

organisms, such as fish, will die. In addition, algae can cause taste and odor problems in drinking 

water and can produce toxins, which cause gastroenteritis outbreaks [21]. 
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Table 2.1: Common algae and their relation to nutrient levels 

Lake Trophy Nutrient 

characteristics  

Common species  

Oligotrophic Low  Straurastrum, Cryptophytes, 

many oligotrophic diatoms, 

Melosira, Dinobryon 

Mesotrophic Intermittent periods 

of high nutrients 

Dinoflagellates, Ceratium spp., 

Glenodinium  

Eutrophic High Rhodomonas minuta, major 

contributor to blue-green algae 

blooms 

Adapted from Crittenden et al [21], pp 206 

 

Figure 2.1: Satellite photo of Lake Erie on October 5th, 2011. Photo source: National Aeronautics 

and Space Administration (NASA) 

 

Although algae cause the human and environmental problems described above, algae also have 

many beneficial uses including treating wastewater, and providing food products for both animal 

and human consumption. Treatment lagoons, which are also called stabilization ponds or 

oxidation ponds, have been used to treat domestic and animal wastewater [22]. The algae in 

treatment lagoons provide oxygen for the biodegradation of organic matter [23], uptake nutrients 
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[24-27], and remove other pollutants, such as heavy metals [28-31] and endocrine disrupting 

compounds [32-34]. The more recent research, including this study, focuses on optimizing algae 

production and treatment of various wastewater feeds (Section 2.3) and the production of high 

value intracellular products within the biomass feedstock (Chapter 4). Section 2.3.1 and 2.3.2 

examine municipal centrate and aquaculture wastewater sources in greater detail as these two 

waste streams were considered as culture media in experiments. 

2.2 Requirements for Algal Growth 

A number of factors affect growth rates of algae, including light irradiance, carbon source 

(inorganic carbon for photoautotrophs, organic carbon for heterotrophs and mixotrophs), 

inorganic macronutrients (nitrogen and phosphorus), and trace nutrients, such as vitamins and 

metals (Table 2.2). Irradiance is one of the necessary ingredients in supporting the metabolism of 

photoautotrophs: algae and plants. Most (45%) of the visible light spectrum between 400-700nm 

is available for algal growth [35-37].  Approximately 8.5 MJ are required to produce one mole of 

glucose [14]. Chapter 3 further examines the effect of fluctuating solar insolation on algal 

biomass generation.  

Carbon metabolism is dependent on the species and the strain of algae. Some species 

demonstrate autotrophic metabolism, and only utilize inorganic carbon compounds [38].  

Chlorella is a mixotroph algal species, which is capable of utilizing inorganic carbon for its 

metabolism [39,40]. Although Chlorella grows well under autotrophic conditions, lipid 

productivity tends to be highest under mixotrophic conditions [39,41]. Lipid yields per dry 

weight of algae as high as 48.7% can be achieved under these conditions [13]. Chemical oxygen 

demand (COD) levels of at least 3.75 mg/L have been shown to be required to support 
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mixotrophic algae species, such as Chlorella [42]. Optimal cell growth and lipid productivity 

were attained using glucose at 1% (w/v), whereas higher concentrations were inhibitory [39,41]. 

Nitrogen and phosphorus are the macronutrients required in the largest amount to support algal 

growth (Table 2.2). The ratio and quantities of nitrogen and phosphorus in individual waste 

streams vary widely within any given wastewater treatment plant [43]. Equations 2.1 and 2.2 

show that a theoretical mass ratio of 7.2 grams of nitrogen per gram of phosphorus is required for 

algae production via biosysnthesis [38]. The actual optimal growth N/P mass ratio has been 

shown to vary between 6.8 and 10. Algae prefer to utilize nitrogen species in the following order: 

NH4
+ > NO3

- > simple organic-N compounds such as urea and simple amino acids [44]. 

However, NH4
+ and high pH pose problems as the unionized form of ammonia (NH3) is more 

toxic than the ionized form (NH4
+). Section 2.3 discusses the problems associated with ammonia 

in high strength wastewaters, such as centrate, in greater detail.  

16NH4
+ + 92CO2+ 92H2O +  14HCO3

−
+ HPO4

2−         ℎ𝜐      →      C106H263O110N16P + 106O2 (Eq. 2.1) 

16NO3
−

 + 124CO2+ 140H2O +  HPO4
2−        ℎ𝜐        →      C106H263O110N16P + 138O2 + 18HCO3

−
 (Eq. 

2.2) 

2.3 Wastewater as a Growth Substrate  

Synthetic media tend to be more expensive and less sustainable than using wastewater as a 

growth media to support algal production [45]. Use of wastewater offers the additional benefit of 

nutrient removal, prior to effluent discharge. A number of different wastewater types can be used 

as a substrate to support algal growth (Table 2.3). Most of these wastewater streams have high 

concentrations of ammonia, as most organic nitrogen, including urea decomposes to form 

ammonia. High ammonia strength wastewaters that have been used as a nutrient source for 
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indigenous algae, including livestock wastewater [46,47], synthetic anaerobic digestate [48], 

dairy wastewater [49,50] and centrate from dewatering municipal wastewater sludges [51-53]. 

This study focuses on two wastewater streams: 1) centrate from dewatering sludges and 

aquaculture wastewater. 

Table 2.2: Summary of growth requirements for green microalgae (adapted from Zeng et al., 

2011). 

Nutrient /  

growth 

requirement 

Main forms Function Appropriate 

range 

Carbon CO2, HCO3
-, CO3

2- Backbone for most cellular 

structures 

1-10g/L 

Nitrogen NO3
-, NH4

+ Required for amino acid 

production 

10-2000mg/L 

Phosphorus Hydrophosphate, 

phosphate 

Needed for photosynthetic 

processes 

1-200mg/L 

Inorganic salts  K, Ca, Na, Mg, etc. Increases photosynthetic 

activities  

0.1-100mg/L 

Sulfur Sulfate Needed for amino acids and 

enzymes production 

0.1-100mg/L 

Trace elements Fe, Zn, Mn, Cd Needed for co-enzyme 

production 

0.01-10mg/L 

Vitamins VB, VC, VE, etc.  Aids cell division 0.01-1000µg/L 

 

Some algal species have a reasonable toxicity tolerance for ammonia and tolerate ammonia 

concentrations up to 34 mg/L. Prior exposure to high concentrations of ammonia, allowed for 

greater tolerance and acclimation [44]. Algae were able to grow in wastewater lagoon oxidation 

ponds, municipal wastewater and oxidation ponds, where high ammonia concentrations are 

typical. Scenedesmus, a dominant species in most oxidation ponds, was inhibited by ammonia 

concentrations greater than 34 mg/L and a pH greater than 8.0 [61]. Indigenous benthic algae, 

with Microspora willeana spp. being dominant, grew well on anaerobically digested dairy 

wastewater [50]. The mean growth rate over a nine-week period varied between 5.3 and 5.5 
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g/m2/day. A high productivity was achieved with indigenous algae (0.5g/L/day) on municipal 

wastewater centrate [52].  

Table 2.3: Studies that utilized algae to treat different industrial wastestreams. 

Industrial 

wastestream 

BOD 

concentra

tion 

(mg/L) 

Major contributions or comments References 

Meat and 

poultry 

NP 200 hen operation.  Pond system. [54] 

Pulp, paper, 

starch 

>10,000 Microcystis sp. removed 70% of color. 

Adsorption is the main removal 

mechanism.  

[54,55] 

Aquaculture NP 50-60% TN removal efficiencies 

when Scenedesmus is used. 

[56] 

NP The maximum values removal rates 

for nitrogen was 10.5mg N/L/ day 

when Chlorella was used. 

[57] 

Municipal 7620 Aeration used. Pond system. [54,58] 

Metal 

finishing 

NP Scendesmus absorbed >90% 

Cu2+within 1 min of exposure. Metals 

removed by absorption or adsorption. 

[59] 

Pharmaceutic

al 

2000- 

5000 

No aeration required. Pond system. [54] 

Food and 

dairy 

2000- 

5000 

61% reduction in COD. Optimal 

strength was75%. Mean nitrogen 

removal was 70%. 

[54,60] 

NP- Not provided 

High NH4
+ and high pH poses a toxicity concern, as free (unionized) ammonia (NH3) dissipates 

transmembrane proton gradients in algae [61,46,62].  The equilibrium shift between these two 

forms (Equation 2.3) is highly influenced by pH. Concentrations of free ammonia increase with 

increasing pH (pH > 9.25). Strategies that have been used to overcome this problem include: 1) 

using indigenous algal species that can utilize wastewaters with high ammonia concentrations, 2) 

or operating algae culturing systems in continuous or semi-continuous mode, so that ammonia 

concentrations in the reactors are maintained at a relatively low level through dilution.  
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𝑁𝐻3 + 𝐻2𝑂 ⇋ 𝑁𝐻4+ + 𝑂𝐻
− (Eq. 2.3) 

An additional concern with using wastewater as a growth substrate for algae production is the 

presence of other toxicants that might inhibit algae growth or bioaccumulate in algal products 

(e.g. neutraceuticals).  In particular, algae of have been shown to bioacumulate metals, as shown 

in Table 2.4. The main mechanism is adsoption and is attributed to the carboxyl groups. The 

aquatic chemistry, temperature and metabolic stage all influence the soption process. Although 

this topic is outside the scope of this research, Chapter 4 investigates the presence of metals in 

aquaculture wastewater.  

Table 2.4:  Summary of studies of effects of metals on algae growth 

Metals 

investigated 

Species Key findings  Reference 

Cr, Pb, Cu Cd, 

Zn and Al 

Laminaria 

japonica 

94.1, 348, 100, 136, 56.9, 

and 75.3 mg/g was the 

soption capacity at pH 4.5.  

Lee [63] 

Ag, Cu, Cd, Zn Chlorella vulgaris, 

Scenedesmus 

quadricauda 

General binding 

efficiencies decrease in 

the order: Ag > Cu > Cd > 

Zn. Soption rates were 

rapid. 90% Cu sorbed in 

less than 15 mins. >92.6% 

Cu and Ag removal were 

achieved for both species. 

Harris and 

Ramelow [64] 

Zn, Cd, Pb, Cu, 

Hg, Ag and Au. 

Chlamydomonas  Heavy metals: Pb, Cd, Hg 

and Cu, bind to 

metallothionein 

Rajamani et al. 

[65] 

Pb (II) rhizoclonium The adsorption process 

was spontaneous, 

endothermic and favored 

at higher temperature. 

Velan and 

Kayalvizhi 

[66] 
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2.3.1 Centrate as a Nutrient Feed 

A key challenge with using raw or treated municipal wastewater for algae cultivation is that 

wastewater nutrient concentrations are relatively low (total nitrogen [TN] concentrations < 40 

mg/ L, total phosphorous [TP] concentrations < 10 mg/L). The low nutrient concentrations 

support low algal biomass densities, resulting in high downstream costs for thickening and 

dewatering [67,68]. Using centrate, or the liquid waste derived from sludge dewatering, to 

support algal growth has been proposed to overcome this challenge [69]. The TN and TP 

concentrations present in centrate are the highest found in wastewater treatment plants [70,52].  

Centrate is normally recycled to the head of the wastewater treatment plant, resulting in high 

irregular nutrient loads that can upset mainstream treatment processes, increase energy and 

chemical costs, and reduce efficiency by retreating pollutants.  Therefore, the treatment of 

centrate using algae is particularly advantageous. Although using centrate for algae cultivation 

offers high growth potentials compared to other wastewater streams, approximately 60% of the 

TN in centrate is present as ammonia, with the other major fraction being organic nitrogen [71].  

This introduces the problem of ammonia toxicity described above.   

2.3.2 Aquaculture Wastewater a Nutrient Feed 

The aquaculture industry has grown to meet increasing worldwide fish and protein demands [72]. 

The aquaculture industry in Florida alone has more than 900 aquaculturists, and annual sales in 

excess of $80 million [73]. As the scale and intensity of production increase, the volume and 

concentration of wastewater from aquaculture systems also increases [74]. Lekang [1] classified 

the main compounds in aquaculture wastewater: phosphorus, nitrogen, biochemical oxygen 

demand (BOD), suspended solids, pathogen, and chemicals, such as hormones and stabilizers. 

Although, aquaculture RAS wastewater tends to generally have lower concentrations of nutrients 
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but higher water flow rates than industrial and municipal wastestreams.[74], overall nutrient 

loadings may be high due to higher mass flow rates and larger scale.  

Nutrient enrichment is the most notable environmental problem associated with aquaculture [75]. 

The primary contributor of most of these nutrients stems from feed application. Most of the 

nutrients are not fully assimilated by the fish [76]. It is estimated that only 30% of total nitrogen 

and phosphorus from feed inputs are assimilated. Estimates suggests that one metric ton of fish 

produces approximately 0.8 kg nitrogen/day and 0.1 kg phosphorus/day [77,78]. Nitrogenous 

compounds (ammonia, nitrite, and nitrate) are considered major contaminants in aquaculture 

wastewater. Although, ammonia is the principal nitrogenous waste produced by aquatic animals, 

nitrate is the main form when a recirculating system is utilized [77,76], as organic and ammonia 

are converted to nitrate through ammonification and nitrification processes [77].  

There is an increasing emphasis on the need for aquaculture facilities to meet effluent standards 

for wastewater contaminants such as solids, nutrients (nitrogen and phosphorus) and organics. 

Aquaculture wastewater treatment systems can be classified into physical, chemical and 

biological, as shown in Table 2.5. Most of these wastewater treatment processes have high 

capital, energy and chemical costs and do not recover nutrients to produce useful or 

commercially viable end-products. Using an integrated, biological approach that facilitates 

energy and cost savings and produces useful end-products, such as algal biomass, should be 

favored [79,80].  

Aquaculture wastewater has been used previously to support symbiotic photoautotrophic growth 

for using various co-cultivation approaches, such as aquaponics [81,82,80,83]. Algal co-

cultivation may be more advantageous than aquaponics because it provides the potential to 
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improve water quality and increase dissolved oxygen concentrations, which improves the target 

species’ health, while producing a feedstock for onsite energy production and/or feed 

supplementation [80,82,81,84,85]. Drapcho and Brune [81] used algae in a partitioned 

aquaculture system to reduce ammonia concentrations and increase dissolved oxygen 

concentrations required for fish health. Haglund and Pedersén [84] used macrospecies algae,  

Gracilaria tenuistipitata, for wastewater treatment and epiphyte control in a rainbow trout 

system.  

Several prior studies produced algae for use as an onsite feed supplement and found that algae 

grown on aquaculture wastewater had higher growth rates and protein contents and were more 

nutritious (containing a more complete amino acid profile) than non-leguminous plants such as 

oat, barley and rye [86,87,85,80]. Bio-flocs technology (BFT) is an example of co-cultivation 

that takes advantage of the synergy between aquaculture, algae and microorganisms [83]. 

Bioflocs formed are an aggregate combination of heterotrophic bacteria, algae, colloidal particles 

and polymeric substances that can be used to supplement fish feed.  In addition, this process also 

facilitates nitrogen immobilization and recovery [88]. Chapter 4 further examines algal biomass 

and intercellular product production using aquaculture wastewater.  

Table 2.5: Summary of physical, chemical and biological methods to treat aquaculture 

wastewater (Adapted from information derived from Lekang [1]) 

Physical and chemical Biological  

Reverse osmosis  Trickling filters 

Ion exchange Fluidized bed reactors  

Carbon adsorption  Rotating biological reactors  

Electrodialysis Bioflocs 

 Wetland retention systems 

 Electrochemical 

 Algae reactors 
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2.3.3 Algal Wastewater Reactor (AWRS) Interactions 

Wastewater is nutrient rich; however, it facilitates the growth of both the target algal species and 

other microorganisms and non-target algae. These organisms may influence production of the 

target algal species, as well as intracellular product generation, positively or negatively, as shown 

in Table 2.6 [17,89].  Beneficial relationships exist when the presence of one species facilitates 

greater health of another.  One species may provide nutrients or other resources for another. 

Typically when the relationship is competitive in nature, the species occupy similar ecological 

niches and strive to maintain dominance using the same resources, such as nutrients.[90]. 

Contamination with native, invasive microbial species is one of many major challenges in 

ensuring algal biofuel commercial viability [13]. Chapter 4 discusses this issue in greater detail 

in the context of algal biomass and intercellular product generation using aquaculture wastewater 

as a feed source. 

 



18 

Table 2.6: Summary table of interaction mechanisms between algae and bacteria 

Mechanism Nature of 

Relationship 

Description Ref. 

Phtyohormone 

production 

Positive to algae. No 

effect on bacteria 

Indole- 3- Acetic Acid (IAA) and cytokinins promote cell division in 

Chlorella. 

[91-

93] 

Morphogenesis 

of algae 

associated with 

bacterial 

products 

Positive results most 

times but the change 

could be negative. 

Bacteria are not 

affected.  

Morphogenesis refers to the structural and functional changes. Changes 

could occur at an enzymatic level of effect the immunochemistry. There 

may be differences in the spatial orientation of enzymes in the cell wall.  

[94] 

Provision of 

primary 

metabolites 

Positive for bacteria. 

Effect on algae is 

dependent on whether 

the bacteria are acting 

as host or scavengers.  

Bacteria benefits from production of primary metabolites such as 

carbohydrates, amino acids, peptides and proteins. Microorganisms 

entering the algal membrane may be detrimental if they penetrate the 

tissue.  

[95] 

Microniche 

and habitat 

provision 

Positive for bacteria. 

Mostly negative for 

algae  

Algae surfaces present a favorable microniche for opportunistic bacteria, 

as there is large surface area and a lot of food resources, reproduction and 

subsequent reproduction. In addition, algal cell walls contain 

polysaccharides, complex and inviting for a number of bacteria. May be 

negative for algae as it may cause floc formations and reduction in 

photosynthetic surface area. 

[95] 

Mineralization 

and provision 

of growth 

factors 

Positive for algae. No 

effect on bacteria.  

Bacterial respiration provides carbon dioxide and other metabolites, such 

as vitamins, chelators and other growth factors, which support algal 

growth.  

[95] 

Production of 

bioactive 

metabolites 

from bacteria 

Positive for bacteria. 

Negative for algae if no 

defense response is 

elicited.  

Bacteria produce secondary metabolites, which are bioactive. These are 

produced in an effort of gain a competitive advantage. Algae produce 

antimicrobial secondary metabolites in an effort to reduce microbial 

attack.  

[95] 

Lysis Positive for bacteria but 

negative for algae.  

Gram-negative myxobacteria attack and cause lysis of algal cells.  [20] 
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CHAPTER 3: AN IRRADIANCE-BASED MODEL FOR PREDICTING ALGAL 

BIOMASS PRODUCTION USING MUNICIPAL SLUDGE CENTRATE AS A GROWTH 

MEDIUM1 

3.1 Background 

Algal biofuel production is recognized as a promising future source of renewable energy [9,12]. 

Although the potential for algae derived biofuels is high, there are many technical and economic 

challenges associated with algal biomass production, harvesting and processing that must still be 

overcome [9]. In particular, a number of recent life cycle assessment (LCA) studies have shown 

that a large portion of the energy and environmental impacts associated with algal biofuel 

production are due to the provision of water, nutrients and carbon dioxide needed for algae 

growth [12].  These impacts can be greatly reduced by using wastewater as the water and 

nutrient source for algae cultivation [53]. A major advantage of this approach is that the 

eutrophication potential of wastewater is reduced, as the macro-nutrients (nitrogen [N] and 

phosphorous [P]) present in wastewater support the growth of algae within the confines of a 

photobioreactor. In addition, organic matter present in wastewater favors mixotrophic 

metabolism (i.e. utilization of sunlight as an energy source and organic carbon for biosynthesis), 

which has been shown to increase biomass and lipid productivity [41]. Wastewater also contains 

micro-nutrients that support algal growth [43]. 

A key challenge with using raw or treated municipal wastewater for algae cultivation is that 

wastewater nutrient concentrations are relatively low (total nitrogen [TN] concentrations < 0.04 

                                                 

1 Material in this chapter has been submitted to Bioenergy Research. Reference: Halfhide et al [96].  
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g L-1,  total phosphorous [TP] concentrations < 0.01g L-1). The low nutrient concentrations 

support low algal biomass densities, resulting in high downstream costs for thickening and 

dewatering [67,68]. The use of centrate (a waste stream with a high ammonia concentration 

produced from dewatering wastewater sludge) to support algal growth has been proposed to 

overcome this challenge [69]. The TN and TP concentrations present in centrate are the highest 

found in wastewater treatment plants [53,70,52]. Centrate is normally recycled to the head of the 

wastewater treatment plant, resulting in high irregular nutrient loads that can upset mainstream 

treatment processes, increase energy and chemical costs, and reduce efficiency by retreating 

pollutants. Therefore, the treatment of centrate using algae is particularly advantageous.  

Although using centrate for algae cultivation offers high growth potentials compared to other 

wastewater streams, approximately 60% of the TN in centrate is present as ammonia (NH4
+), 

with the other major fraction being organic nitrogen [71]. The high NH4
+concentration is a 

toxicity concern, as free (unionized) ammonia (NH3) dissipates transmembrane proton gradients 

in algae [61,62]. Prior studies have addressed this problem by using different measures, which 

are discussed later [47,14,97]. 

In this paper, the cultivation of an indigenous algal consortium using centrate derived from 

anaerobically digested municipal sludge was demonstrated in semi-continuous column 

photobioreactors under natural sunlight conditions. Biomass production was modeled using a 

simplified irradiance-based model developed according to Michaelis-Menten photosynthesis-

irradiance kinetics. Treatment of the centrate was evaluated by measuring influent and effluent 

concentrations of nutrients and organics. 
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3.2 Materials and Methods 

3.2.1 Indigenous Algae Collection and Reactor Start-up 

A filamentous, indigenous algal mat was harvested from a secondary clarifier at the Howard F. 

Curren Advanced Wastewater Treatment Facility (HFCAWTF) in Tampa, Florida. The algal mat 

was gently swirled in filtered centrate (described below) to suspend the microalgae. The mixture 

was allowed to grow in 0.4 L of 0.2 µm-filtered centrate in a 1-L flask. A 2% CO2 - air mixture 

was bubbled through the flask at a flow rate of 0.5 L min-1. The flask was maintained at room 

temperature (~22 °C) with a 16-hr light/dark cycle under artificial light conditions of 20.1 mol m-

2day-1. A 10 day growth period was initially allowed before transferring the suspended 

microalgae into a 1-L bottle containing 600 mL of filtered centrate. Serial transfers were carried 

out by incubating the suspension until the total suspended solids (TSS) concentration reached 2.0 

g-DW L-1 and then transferring 0.05 L of the suspended indigenous algal consortium into 0.6 L 

of fresh filtered centrate. The resulting algal culture was used to inoculate the pilot-scale 

photobioreactors.   

3.2.2 Scale-up, Photobioreactor Setup and Maintenance 

Vertically hanging tubular plastic bag photobioreactors were obtained from the Faculty of Plant 

and Environmental Sciences at the Norwegian Life Sciences University (UMB), Ås, Norway. 

Each photobioreactor column had a height of 2.73 m, a diameter of 0.12 m and a total volume of 

10 L. Centrate was added until a total operating volume of 7.0 L was achieved. The algal culture 

described above was added to achieve an initial TSS concentration of 0.6 g-DW L-1.  The 

photobioreactor was operated as a batch system for two weeks to increase the initial biomass 

density. Subsequently, the system was operated as a semi-continuous batch photobioreactor at a 
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mean cell residence time of 7-days by removing 14% (1 L) of the contents of each cell on a daily 

basis and replacing it with new centrate (Table 3.1). 

Table 3.1: Mean nutrient values for influent and effluent 

Parameter Influent Effluent 

Mean TN concentration 

(mg/L) 

220.0 76.2 

Mean NH4
+- N concentration 

(mg/L) 

218.8 50.0 

Mean TP concentration 

(mg/L) 

34.7 12.5 

Mean COD concentration 

(mg/L) 

130.5 119.0 

 

Algal growth experiments were conducted under natural illumination (discussed in detail in the 

results section) in a temperature controlled (25-32oC) greenhouse at the University of South 

Florida Botanical Gardens in Tampa, Florida between November 1st and December 19th 2011. A 

2% CO2/air mixture was bubbled into the culture from the bottom of each photobioreactor 

column using compressed gas sources. The gas flow rate was maintained at 0.5 L min-1 in each 

column using rotameters supplied with needle valves (Cole Parmer Inc., Vernon Hills, IL) and 

coarse bubble diffusers.   

HFCAWTF digests a mixture of primary and waste activated sludge (WAS) in a mesophilic 

(35oC) single-stage anaerobic digester with a 21-day SRT. Biosolids are dewatered using a 

gravity belt thickener, with polymer addition. The belts are periodically washed with treated 

wastewater effluent that may significantly dilute the centrate. Centrate was collected weekly 

from HFCAWTF and filtered using a filter cloth to remove large biosolids, increase light 

transmission and reduce solids degradation in the feed. Total nitrogen (TN) and total 

phosphorous (TP) concentrations in the centrate were measured on the day of collection and 
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adjusted to between 0.20-0.25 g L -1 TN and 2.510-2 and 7.6310-2 g L-1 TP, by dilution with 

local groundwater or addition of (NH4)2SO4 and/or KH2PO4 .  

3.2.3 Sampling and Analytical Methods 

Photobioreactor samples were analyzed daily for TSS, dissolved oxygen (DO), dissolved CO2, 

optical density at 670 nm and pH. Influent and effluent concentrations of TN, TP, chemical 

oxygen demand (COD), nitrate (NO3
--N) and NH4

+-N were measured weekly. Changes in TSS 

were used as an indication of areal biomass productivity, which is reported here as g dry weight 

(DW) m-2 day-1. An Onset® HOBO U12 data-logger was used to record irradiance, ambient 

temperature, culture temperature and relative humidity every 15 minutes.  The logged data was 

in units of lux (1 lux = 1.8510-2 µmol-photon m-2 sec-1).  

Analyses were conducted according to Standard Methods for TS (2540G), TSS (2540B), DO 

(4500-O C), NO3
--N (4500-NO3 B), TN (4500-N), TP (4500-P C), COD (5220 D) [20].  NH4

+- N 

concentration was determined by the salicylate method using Hach test vials (Loveland, CO).  

The estimated method detection limit (MDL) for TN, TP and NH4
+-N were (g L-1): 7.010-3, 

0.0610-3 and 0.610-3, respectively. Culture pH was measured using a calibrated pH meter and 

probe (Metrohm, Riverview FL or Teledyne Isco, Lincoln, NE). Lipid content was determined 

gravimetrically at the end of the experiment (day 47) using the method of Bligh and Dyer [98]. 

Chlorophyll content for the consortium was determined using a methanol extraction method 

described by Franco et al.[99]. Total chlorophyll was calculated using Liechtenthaler equations 

[100]. For more detailed method protocols adopted for chlorophyll and lipids, refer to Appendix 

A.1.  
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3.2.4 Algal Species Identification and Enumeration  

Samples were collected at the end of the experiment (day 47) and shipped to the Environmental 

Biotechnology Laboratory in the Department of Soil & Water Science at the University of 

Florida for species identification and enumeration. Algae were microscopically observed using a 

Nikon Labophot (Nikon Corporation Tokyo, Japan) after brief (10 sec) centrifugation at 15,000 

rpm (Eppendorf 5414, Hamburg, Germany).  Each resultant cell paste was observed and keyed to 

genus level following Wehr and Sheath [101]. Algal cells were counted on a Bright-Line 

hemacytometer with improved Neubauer ruling (American Optical Co., Buffalo, New York).  

Triplicate counts were made from two grab samples and the average counts were taken. Cell 

numbers per mL were calculated [102]. Genera were counted separately and compiled for a total 

cell count and relative species composition. Taxonomic composition was recorded as percent 

relative abundance of the total population. 

3.2.5 Algal Growth Modeling2  

 It was assumed that the photobioreactor system is a completely mixed semi-batch reactor. An 

overall mass balance for the photobioreactor system yields the following:  

where 𝐵  is the biomass concentration (g-DW m-3) , V is the working volume of the 

photobioreactor (m3) and 𝑄 is the flow rate (m3 s-1). The average mean cell residence time can be 

calculated as V/Q, which was maintained at 7 days.  

                                                 

2 Modeling work shown in this section was mainly carried out by Omayoto K. Dalrymple and Qiong Zhang and is 

included here for completeness. 

𝑑𝐵

𝑑𝑡
= 𝑟 −

𝑄

𝑉
𝐵 

(Eq 3.1) 



25 

The modeled biomass prior to the time of harvest (Btp) was calculated from: 

where r is the growth rate (g-DW m-3 s-1) and Δt is the elapsed time since the last harvest (s). The 

biomass concentration after harvest (Bta) was calculated as: 

where VH was the harvest volume (m3), or the volume of the reactor contents removed each day.  

The model was programmed to match the semi-continuous operation of the photobioreactor, 

such that the predicted biomass concentration at 15:00 hours (once a day) was adjusted to match 

the feed and harvest flow, and algal growth rate. The algal growth rate depends on both nutrient 

availability and irradiance. However, in this study, irradiance was considered the limiting factor 

for microalgae growth as nutrients were assumed to be in excess (Table 3.1). Since growth rate is 

directly related to carbon fixation rate, a simple irradiance-based model was applied in this work 

according to the Michaelis-Menten formulation [103], which relates light to carbon fixation: 

where P(z) is the gross carbon photosynthetic rate (mol-C m-2 s-1), 𝑃𝑚 is the maximum 

photosynthetic rate (mol-C m-2 s-1), 𝐼(𝑧) is the irradiance (µmol-photon m-2 s-1) at depth 𝑧 (m) 

and Ek is the light half saturation constant (µmol-photon m-2 s-1), that is, the irradiance value at 

which the photosynthetic rate is half of the maximum value. The propagation of light through the 

culture can be defined according to a modified Beer-Lambert relationship as [103]: 

𝐼(𝑧) = 𝐼0𝑒𝑥𝑝 (−
𝑎𝐵𝑧

𝑏 + 𝐵
) 

(Eq. 3.5) 

𝐵𝑡𝑝 = 𝐵𝑡−∆𝑡 + 𝑟(∆𝑡) (Eq. 3.2) 

𝐵𝑡𝑎 = 𝐵𝑡𝑝 (1 −
𝑉𝐻
𝑉
) 

(Eq. 3.3) 

𝑃(𝑧) = 𝑃𝑚
𝐼(𝑧)

𝐸𝑘 + 𝐼(𝑧)
 

(Eq. 3.4) 
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where I0 is incident irradiance (mol-photon m-2 s-1), a (m-1) and b (g m-3) are attenuation 

constants and z (m) is the cross-sectional light path [103]. In this study, values for a and b were 

obtained from Yun and Park [103], and are shown in Table 3.2.  By integrating through the 

effective light path, deff, (m), the net photosynthetic rate per unit surface area, Pnet (mol-C m-2 s-

1), is given by: 

𝑃𝑛𝑒𝑡 = 𝑃𝑚 (
𝑏 + 𝐵

𝑎𝐵
) ln( 

𝐼0 + 𝐸𝑘

𝐸𝑘 + 𝐼0exp (−
𝑎𝐵𝑑𝑒𝑓𝑓
𝑏 + 𝐵

)

) − 𝑅𝐵 

(Eq. 3.6) 

where 𝑅𝐵 is the biomass dependent respiration rate (mol-C m-2 s-1) and was obtained by:  

𝑅𝐵 =
𝑅0𝐵𝑉

𝐴
 

(Eq. 3.7) 

where 𝐴 is the illuminated surface area (m2) and the specific biomass respiration rate, 𝑅0 (µmol-

C g-DW-1 s-1), was obtained by fitting the data. 

 

The algae growth rate, r, needed for Equation 3.1 was calculated from Pnet (Eq. 3.6) from:  

𝑟 =
24(10)−6

𝑑𝑒𝑓𝑓
𝑃𝑛𝑒𝑡 

(Eq. 3.8) 

The effective path length of the photobioreactor (deff) was calculated as the working volume 

divided by the illuminated surface area (deff = V/A).  In Equation 3.8, the numerator was 

obtained by assuming that the dry weight of algae consists of 50% carbon (numerator = 12 g-C 

mol-1 x 2 g-DW biomass g C-1 x 10-6 µmol mol-1).   
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3.3 Results and Discussion 

3.3.1 Microscopic Identification and Enumeration of Algae 

Identifying and enumerating the indigenous species in the algal consortium is important to 

determine their relative contribution to biomass and lipid content and provide greater 

understanding of ecological relationships. The primary genera identified within the 

photobioreactor samples were Chlorella, Chlamydomonas, and Stichococcus, which comprised 

95.2, 3.1, and 1.1% of the total cell population respectively (Figure 3.1).  Several other species of 

algae were rarely observed and included: Scenedesmus, Trachelomonas and unidentified 

diatoms.  These genera, along with unidentified algae, comprised ~0.6% of the total algae 

population.  Rotifers were also observed, but were not identified or counted.  An image taken of 

a view under the light microscope of the algal community is shown in Figure 3.2. Most of the 

cells were spherical, which is typical for Chlorella.  

 

Figure 3.1: Composition of indigenous algal consortium 
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Figure 3.2: Light microscope image under X1250 magnification 

3.3 2 Lighting Conditions 

Light is one of the necessary ingredients supporting the metabolism of photoautotrophs. Most (45%) 

of the visible light spectrum between 400 and 700 nm is available for algal growth [35].  

Approximately 8.5 MJ are required to produce one mole of glucose [14]. The amount of 

instantaneous photosythetically active radiance (PAR) and total daily insolation varied over the 

cultivation period from November through December 2011. Incident irradiance was on average 

low given the time of the year. The maximum instantaneous PAR was 566 µmol-photon m-2 sec-1 

(Figure 3.3). The mean insolation over the period was 6.1  1.5 mol-photons m-2 day-1. The 

maximum and minimum insolation was 9.4 and 2.3 mol-photons m-2 day-1, respectively (Figure 

3.4). Cultivation in the greenhouse reduced outdoor PAR by 60-70%. However, since the 

photosynthetic rate saturates at high irradiance, significant biomass productivity was still 

observed (Figures 3.5 and 3.6). It appears that through semi-continuous dilution a continuous 

production process can be achieved that effectively utilizes the available PAR. 
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Figure 3.3: Instantaneous PAR (µmol m-2 sec-1) over the experiment 

 

Figure 3.4: Integrated daily insolation (mols m-2 day-1) 

3.3.3 Algal Biomass Growth 

The indigenous algal consortium was able to grow and survive on the wastewater centrate under 

semi-continuous photobioreactor conditions. The standing biomass (g-DW m-2) refers to the total 

mass of algae in the photobioreactor normalized by the illuminated surface area.  Harvested 
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biomass (g- DW m-2) refers to the normalized biomass collected daily from the photobioreactor.  

The sum of the standing and harvested biomass was used to calculate the cumulative or total 

biomass over time (g-DW m-2). The maximum standing biomass achieved was 84 g-DW m-2 

(Figure 3.5). Final cumulative biomass at the end of the growth period was 299 g-DW m-2 

(Figure 3.6). Although there was significant variability in the observed standing biomass, a 

pseudo-steady state was observed, where the measured standing biomass ranged between 30 and 

90 g-DW m-2.  It is suspected that the variability could be attributed to periodic settling of 

biomass as a result of cell flocculation. Flocculation could be associated with growth of bacteria 

in the system and daily variations in medium pH [104,105]. 

3.3.4 Biomass Production Modeling 

Comparisons of the measured and predicted standing and cumulative biomass are shown in 

Figures 3.5 and 3.6, respectively. The model captures the increase in standing biomass over the 

first two weeks of cultivation (Figure 3.5). Thereafter, the model predicts a pseudo-steady state 

in the standing biomass. However, as previously discussed, the measurement of biomass varies 

significantly between 30-90 g-DW m-2, likely due to periodic settling and re-suspension of cells. 

An excellent fit of the model to the cumulative biomass data was achieved (R2 = 0.96). 

Values of Ek and Pm were obtained using a non-linear least square fitting procedure and are 

shown in Table 3.2. The observed Ek and Pm values are similar to those reported by other authors 

for Chlorella [103]. The results demonstrate that the simple irradiance-based model applied here 

was sufficient to describe the photobioreactor system, indicating that biomass productivity was 

mainly light limited. The simplicity of the approach lends itself to ease of application for 

industrial prediction of biomass under similar conditions or a determination of how irradiance 

will influence biomass productivity.  
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 Table 3.2. Model parameters. 

 

 

 

3.3.5 Lipid Production  

Lipid analyses conducted at the end of the experiment showed that lipids accounted for 10% of 

the total dry biomass. The lipid productivity may have increased if the mean cell residence time 

was increased, which would result in decreased photobioreactor nutrient concentrations [47]. 

Prior studies have shown an inverse relationship between lipid production and TN concentration 

[41]. Therefore, it is not surprising that lipid content was low for algae grown on high TN 

strength wastewater. Lipid content greater than 30% is generally required for biodiesel 

production to be economically viable [12]. However, alternative forms of fuel production can 

include methane production via anaerobic digestion [69] or hydrothermal liquefaction of algal 

biomass for fuel production [106]. 

3.3.6 Nutrient and COD Removal  

Mean removal efficiencies for NH4
+, TN and TP were 74.2, 65.0, and 72.6%, respectively, as 

shown in Figure 3.7.  The TN removal efficiency (91.4%) and maximum TN removal rate (0.03 

g L-1day-1) were high, especially considering that the mean cell residence time was half that of 

similar studies (Table 3.2).  The main nitrogen removal mechanism was most likely cell 

synthesis, as very little nitrogen removal could be attributed to NH3 stripping or denitrification.  

The maximum photobioreactor pH was 7.32, and free NH3 would have accounted for only 1% of 

a 1,041 m-1 Yun and Park [91] 

b 1.03 g-DW m-3 Yun and Park [91] 

deff 0.12 m measured 

Ek 73.1 µmol photon m-2 s-1 calibrated 

Pm 5.53 µmol-C m-2 s-1 calibrated  

Ro 0.15 µmol-C g DW-1 s-1 calibrated 
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the total ammonia nitrogen at this pH [107]. Denitrification was an unlikely mechanism since the 

system was fully aerobic. 

Nitrogen and phosphorous are the macronutrients required in the largest amount to support algal 

growth. The ratio, quantities and forms of N and P vary widely in different types of waste 

streams and at different points within wastewater treatment plants [43]. The N/P ratio required 

for optimal algal growth is between 6.8 and 10 g/g [70]. Although an N/P ratio of 7.2 g/g can be 

calculated from an assumed algal biomass molecular formula of C106H263O110N16P, the actual 

N/P ratio required is dependent on the form of the nutrients supplied (e.g. NH4
+, NO3

-, organic 

N) and their bioavailability[38]. In this study, the average N/P ratio in the municipal centrate was 

maintained at 6.3, which is slightly below the optimal N/P ratio, indicating that nitrogen limited 

growth.  

 

Figure 3.5: Standing biomass over the duration of the experiment 
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Figure 3.6: Cumulative biomass over the duration of the experiment 

The COD removal efficiency observed in this study was relatively low (8%).  Chlorella sp. are 

capable of mixotrophic metabolism; however, in this study they mainly utilized inorganic carbon 

from the carbon dioxide provided. This was most likely due to the low bioavailability of organic 

carbon in centrate from anaerobic digesters, as most of the easily degradable organics are 

converted to biogas (a mixture of methane and carbon dioxide) during the anaerobic digestion 

process [69]. 

 

Figure 3.7: Removal efficiency of nutrients and COD 
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3.3.7 Comparison with Other Studies 

A summary of recent studies that investigated the growth of algae on centrate is shown in Table 

3.3. The mean algal productivity achieved in this study (5.2 g DW m-2 day-1) was higher than 

many of these studies. As discussed previously, the high concentrations of NH4
+ typical of 

anaerobically digested sludge centrate poses a potential toxicity problem for algae cultivation, as 

concentrations greater than 0.2 g NH4
+- N L-1 have been shown to significantly inhibit algal 

productivity [46]. Operational measures that can be used to reduce ammonia inhibition include: 

1) combining different waste streams to reduce ammonia concentrations, 2) using indigenous 

algae species and/or 3) using a semi-continuous or continuous mode to dilute ammonia 

concentrations. Cabanelas et al. [70] and Travieso et al. [47] combined waste streams. Cabanelas 

et al. [70] compared algal growth on 13 different waste streams, including centrates with 5 

different N/P ratios (0.7- 15.0) and determined that algal productivity was higher with centrate 

with a N/P ratio of 2.0, than with all other waste stream sources [70]. Travieso et al. [47] used 

Chlorlla vulgaris to treat a combination of settled swine waste (with NH4
+- N concentrations of 

0.34 g L-1) and raw municipal wastewater in a 1:60 volume ratio. 

Using adapted indigenous algae may be particularly advantageous to overcome the ammonia 

toxicity problem, while achieving a high level of wastewater treatment for nutrients and 

organics. High algal growth and nutrient removal rates have been achieved with indigenous algae 

acclimated to high NH4
+ concentrations, such as landfill leachate [108], livestock waste [47,46], 

dairy waste [43,109] and centrate from municipal wastewater [52,53]. Growth rates of fourteen 

strains of indigenous microalgae on centrate were examined by Li et al. [53].  Chlorella kessleri 

and Chlorella protothecoides, which were capable of mixotrophic metabolism, had the highest 

net growth rates.   



35 

The photobioreactor system used in this study was operated in semi-continuous mode by 

removing 14% of the total reactor volume each day and replacing it with fresh centrate. This 

allowed NH4
+-N concentrations in the photobioreactors to be maintained at a relatively low level 

through dilution, while providing enough residence time in the photobioreactor for algal growth 

and nutrient metabolism. This dilution approach has been used in prior studies to reduce the 

exposure of algae to toxic levels of NH4
+-N found in sludge centrate [47,110,97,109]. 

3.4 Conclusions  

A photobioreactor operated under semi-continuous conditions with an indigenous algae 

consortium was successful at production of algal biomass, while reducing high nutrient levels in 

wastewater centrate.  The consortium, which was harvested from the wastewater clarifier, 

consisted of more than 95% Chlorella sp.  The application of a simple irradiance-based model 

was sufficient to describe biomass development in the photobioreactor, including cumulative and 

standing biomass. While maximum TN removal rates were high compared with prior studies, 

low COD utilization may have been due to the low bioavailability of COD in the centrate.   The 

consortium had low lipid content, indicating that it should be used as feedstock for anaerobic 

digestion. 
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Table 3.3: Summary comparing results obtained in this and previous studies 

NP- Not Provided, *I=insufficient information provided to calculate aerial productivity, **- Mean, *** FAME lipid %. This may be 

slightly less than total lipid content.  

Feed used Reactor operating 

conditions 

Algae species used Mean TN feed 

concentration  

(g L-1) 

Light period (hr) 

& 

Insolation 

( mol m-2 day-1) 

Max. 

productiv

ity 

(g m -

2day -1) 

Max. 

TN 

Removal 

(%) 

Lipid 

content   

(%) 

Reference 

Centrate from the 

activated sludge process 

Batch for 7 days, 

then continuous 

for 7 days 

(Total=14 days) 

Chlorella 0.15 14/10 

13.0  

I* 89.1 NP Cabanelas et 

al. 

[10] 

Raw and autoclaved 

centrate from the 

activated sludge process 

Batch, 14 days Chlorella 0.12-0.13 24/0 

4.3  

13.0 89.0 11.0*** Li et al. 

[11] 

 

Anaerobically digested 

municipal centrate 

Batch, 12 days Chlorella 0.2- 0.4 12/12 

5.2 

6.8 91.0 NP Yuan et al. 

[12] 

Mixture of settled swine 

waste and sewage 

Continuous with 

4- 14 day HRT 

Chlorella vulgaris 0.02 Natural lighting 

46.8-61.6  

38.2 26.1 NP Travieso et 

al. 

[15] 

Anaerobically digested 

swine centrate 

Semi-continuous Scenedesmus 1.22 12/12 

8.6  

I* 89.0 

 

NP Park et al. 

[16] 

Anaerobically digested 

municipal centrate 

Semi- 

continuous, 12 

days 

Chlorella 0.62 Natural lighting, 

NP 

13.0 98.9 NP Rusten and 

Sahu 

[17] 

Anaerobically digested 

dairy centrate 

Semi- 

continuous, 7 day 

HRT 

Microspora 

willeana 

0.33 16/8 

3.5 – 12.1 

5.5 39 NP Wilkie and 

Mulbry [31] 

Centrate from the 

activated sludge process  

Batch, 12 days Auxenochlorella 

protothecoides 

0.17±0.038 24/0 

5.2 

I* 73.6 20.8 Hu et al. 

[32] 

Anaerobically digested 

municipal centrate 

Semi-continuous,  

7 day HRT 

Mixed consortia 

(Chlorella is 

dominant) 

0.20- 0.25 Natural lighting 

2.3- 9.4 

5.2** 

 

91.4 10.0 This study 
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CHAPTER 4: PRODUCTION OF ALGAL BIOMASS, STARCH AND LIPIDS USING 

AQUACULTURE WASTEWATER UNDER AXENIC AND NON-AXENIC 

CONDITIONS3 

4.1 Background 

The aquaculture industry has grown to meet increasing worldwide fish and protein demands [72]. 

As the scale and intensity of production increase, the volume and concentration of pollutants in 

the wastewater from aquaculture systems also increase. In addition, there is increasing emphasis 

on the need for aquaculture facilities to meet effluent standards for wastewater contaminants, 

such as solids organics, nitrogen (N) and phosphorus (P). However, wastewater treatment 

processes have high capital, energy and chemicals costs and do not recover nutrients to produce 

useful or commercially viable end-products. Therefore using an integrated, biological approach 

that facilitates energy and cost savings and produces useful end-products, such as algal biomass, 

and intracellular products should be favored [79,80].  

Aquaculture wastewater has been used previously to support symbiotic photoautotrophic growth 

using various co-cultivation approaches, such as aquaponics [81,82,80,83]. A potential 

alternative for integration of algae cultivation with aquaculture is shown in Figure 4.1.  Algal co-

cultivation may be more advantageous than aquaponics because it has the potential to improve 

water quality, and increase dissolved oxygen concentrations, which improves the target species’ 

health, while producing a feedstock for onsite energy production and/or feed supplementation 

[80,82,81,84,85]. Drapcho and Brune [81] used algae in a partitioned aquaculture system to 

                                                 

3 Material in this chapter has been submitted to Algal Research. Reference: Halfhide et al. [111] 
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reduce ammonia concentrations and increase dissolved oxygen concentrations required for fish 

health. Haglund and Pedersén [84] used macrospecies algae,  Gracilaria tenuistipitata, for 

wastewater treatment and epiphyte control in a rainbow trout system. Several prior studies 

produced algae for use as an onsite aquaculture feed supplement and found that algae grown on 

aquaculture wastewater had higher growth rates and protein contents and were more nutritious 

(containing a more complete amino acid profile) than non-leguminous plants such as oats, barley 

and rye [86,87,85,80].  Bio-flocs technology (BFT) is an example of co-cultivation that takes 

advantage of the synergy between aquaculture, algae and microorganisms [83]. Bioflocs formed 

are an aggregate combination of heterotrophic bacteria, algae, colloidal particles and polymeric 

substances that can be used to supplement fish feed.  The process also facilitates N 

immobilization and recovery [88].   

The use of aquaculture wastewater as a nutrient feed for algae production increases the chances 

of contamination by microorganisms and non-target algal species. Many prior studies of algae 

photobioreactor systems have used axenic conditions (i.e. algal monocultures without other 

microorganisms) [112-115].  However, it would not be practical or economically viable to 

maintain axenic conditions in large-scale open pond systems [113,114]. Non-target algae, 

bacteria or protozoans may compete with the target algal species for nutrients and light or may 

be toxic or predatory in nature [116,115,113,117]. However, some prior studies have shown that 

the presence of bacteria can improve algae production by making the system more resilient 

[7,17,18] (i.e. able to maintain its function in the face of external stress and disturbances [118]).  

This increased resilience may be due to the ability of indigenous microorganisms to: 1) 

mineralize organic substrates to inorganic forms that are more bioavailable to algae [119,120], 2) 

produce growth factors and micronutrients that support algal growth and/or 3) convert toxic 
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ammonia to nitrite and nitrate through nitrification [104,121,122].  In addition, the use of algae-

bacteria consortia has the potential to reduce downstream processing costs. When cultures 

contain a mixture of algae and bacteria, algal cells have been shown to produce a matrix of 

carrageenan or alginate, which facilitates autoflocculation [67].   

This study examined the effect of non-axenic conditions on algal biomass development using 

aquaculture wastewater as a growth medium. Three algal cultures were studied: a mixed 

indigenous consortium and pure cultures of Chlorella and Scenedesmus. The effects of axenic 

and non-axenic conditions on the ability of the system to maintain function and resilience was 

also assessed. Two success criteria were used to examine system resilience: productivity of a 

desirable end-products (biomass, chlorophyll, starch and lipids) and removal of nitrate and 

organic matter from the wastewater.  

 

4.2 Materials and Methods 

4.2.1 Intoduction 

Experiments were conducted at the Norwegian University of Life Sciences (UMB), Ås, Norway. 

Biomass production for energy feedstock was investigated using recirculating aquaculture 

system (RAS) wastewater. The first consideration is made for the feed and its ability to support 

algal biomass (Section 4.2.2). Secondly, algal system performance was compared under axenic 

and non-axenic conditions for an indigenous algae consortium and two pure algae cultures 

(Chlorella and Scenedemus). A control (treatment with no algae and only aquaculture 

wastewater) was compare nitrogen and organic removal system performance.   



40 

 

Figure 4.1: Proposed integration of algae co-cultivation with aquaculture 

 



41 

4.2.2 Aquaculture Wastewater Feed 

Approximately 10 L of wastewater was collected from a UMB campus tilapia RAS, which has a 

total volume of 4,200 L.  The flow rate in the RAS was approximately 150 L/min, with 98-99% 

recirculation. The RAS included a drum filter with a screen mesh size 40 micron (Hydrotech 

HDF 501) and a moving bed bioreactor (MBBR) containing extruded plastic media for 

nitrification.  The mean annual tilapia biomass produced was 300 kg/ year. Tilapia are fed Aller 

37/10 (Appendix H) daily, which has a protein content of 37%. For the axenic treatments, 

aquaculture wastewater was filter sterilized using a 0.2 µm glass fiber filter (AP 1504700).  In 

order to maintain N rather than P limited conditions (discussed below), 15 mg/L of phosphorous 

was added to the feed in the form of K2HPO4. 

4.2.3 Algae Cultures  

Three different algae cultures were used in this study were an indigenous mixed species 

consortium [123], Chlorella sp (NIVA CHL-137) and Scenedesmus quadricauda (NIVA-CHL 

7). The indigenous algae were harvested from the surface of a secondary clarifier at the Howard 

F. Curren Advanced Wastewater Treatment Facility in Tampa, Florida.  The consortium was 

identified and enumerated by the Environmental Biotechnology Laboratory in the Department of 

Soil & Water Science at the University of Florida. The primary genera within the consortium 

identified included: Chlorella (95.2%), Chlamydomonas (3.1%), and Stichococcus (1.1%). Pure 

cultures of Chlorella and Scenedesmus were acquired from the Norwegian Institute for Water 

research (NIVA) culture collection. All three algae cultures were initially grown using an 

aseptically prepared synthetic medium, a light irradiance of 153.3 ± 18.8 µmol/m2/sec and a 

temperature of 25oC (controlled using a water bath).  The medium consisted of 1,000 mg of a 

balanced agricultural fertilizer (Superex gronnsak) in tap water, resulting in the following 
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approximate composition (mg/L): NO3
--N (90), Ca (30), P (50), K (310), Mg (20), S (30), Mn 

(0.90), B (0.30), Zn (0.25), Cu (0.12), Mo (0.05), Co (0.01).  The algae were grown under aseptic 

conditions in a 300 mL photobioreactor (described below) for 4 days.  A 10.0 mL aliquot of the 

algae stock culture was centrifuged using an Eppendof Model # 5810 (Horsholm, Denmark) 

centrifuge. The supernatant was decanted and 5.0 mL of phosphate buffered dilution water was 

added to the centrifuge tubes to gently resuspend the algae.  This process of washing to remove 

residual nutrients from the growth medium was repeated.  Phosphate buffered dilution water was 

prepared by adding the following to 1.0 L of deionized water (mg/L): KH2PO4 (3,500), KHPO4 

(4,300) and NaCl (8,500).  The pH of the dilution water was measured and adjusted to 7.2 ± 0.5 

using 1N sodium hydroxide, if needed, and autoclaved at a pressure and temperature of 103.4 

kPa and 115 oC.  

4.2.4 Reactor Setup and Operation  

Photobioreactors consisted of cylindrical glass tubes with tapered bottoms, a diameter of 4.12 

cm, a height of 31.2 cm and an overall volume of 300 mL.  A 280.0 mL aliquot of wastewater, 

filtered or unfiltered, was added to each photobioreactor.  Washed algae (described above) were 

added to the respective photobioreactor.  Unfiltered RAS wastewater without added algae was 

used as an uninoculated control.  Experiments were performed in triplicate, for a total of 21 

reactors.  Algal growth conditions for all treatments included: light irradiance of 153.3 ± 18.8 

µmol/m2/sec (using daylight fluorescent tubes), a temperature of 25oC (controlled using a water 

bath) and a filtered 1% CO2- air mixture (provided using gas diffusers). A 10.0 mL sample was 

collected from each photobioreactor every 6-8 hours for the duration of the experiment and tests 

were conducted as described below to determine biomass, end-product productivity, and nutrient 

and organic compound removal.  
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4.2.5 Analytical Methods 

The optical transmissivity of the RAS wastewater was determined at 256 nm.  Samples were 

analyzed in accordance with Standard Methods [124] for the following parameters: pH (4500H+- 

B), total suspended solids (TSS) (2540B), total nitrogen (TN) (4500-N), nitrate (NO3
- -N) (4500-

NO3 B), Chemical Oxygen Demand (COD) (5220 D), phosphate (PO4
3-) (4500-KMnO4), and 

heterotrophic plate counts (HPC) (9215).  The starch content of the algae biomass was measured 

using a Megazyme total starch (AA/AMG) kit (catalog # K-TSTA), which follows Association 

of Official Agricultural Chemists (AOAC) Method 996.11. The method was modified to allow 

for smaller sample volumes. The final lipid content (%) was determined using the method of 

Bligh and Dyer [122].  Total chlorophyll was determined using the method described by Franco 

et al. [99].  Total chlorophyll was calculated using Liechtenthaler equations [100].  Particle 

counts > 2 µm were measured using a Multisizer 4 Coulter Counter (Brea, CA).  Elemental 

analyses of algal biomass and aqueous samples was carried out using a Perkin Elmer (Waltham, 

Massachusetts) Inductively Coupled Plasma Optical Emission Spectrometer (ICP-OES; Optima 

5300 DV) for: total phosphorous (TP), K, Ca, Na, S, Mg, Fe, Zn, Cu, Mn and Al. Samples were 

decomposed by adding HNO3 at 10 % (v/v ) before oxidation with peroxidisulfate during 

autoclaving at 250 °C for 1.5 hr.  A light microscope (Leica DM 5000B) equipped with a camera 

(Leica DFC 425) was used to periodically monitor algae growth and physiological changes. 

Different filters and magnifications (10, 40,100 X) were used to obtain the best visual analysis. 

4.2.6 Statistical Analyses 

One-way analysis of variance was used to determine whether differences in means for different 

algal cultures were significant. T-tests were used to determine whether the differences between 



44 

axenic and non-axenic conditions within a given algal species were significant. These tests were 

done in Microsoft Excel.  A p- value of < 0.05 was considered statistically significant.   

4.3 Results and Discussion 

4.3.1 Aquaculture Wastewater as a Feed 

A summary of the initial aquaculture wastewater feed characteristics for both axenic and non-

axenic treatments is shown in Table 4.1. The observed TN values (17.9 and 18.5 mg/L) were 

slightly lower than values reported by other authors (between 20 to 40 mg/L) for a RAS with a 

denitrification process [1]. The observed TN concentrations should be able to support an algal 

biomass concentration of approximately 285 mg/L in a batch reactor, assuming algal biomass has 

a chemical formula of C106H263O110N16P [38]. In this study, experiments were conducted under 

batch conditions to maintain axenic algal treatments; however, higher biomass densities are 

possible if cultures are grown using the proposed process (Figure 4.1), where nitrified effluent 

from the MBBR and recovered nutrients from anaerobic digestion are continuously circulated 

through the photobioreactor, which replaces the denitrification process.  Most (>97%) of the 

initial TN was in the form of NO3
- (Table 4.1). Although algae utilize ammonia in preference to 

NO3
- as a growth substrate [34],  high ammonia concentrations (> 34 mg/L), such as those found 

in many municipal and agricultural waste streams are a toxicity concern, as free (unionized) 

ammonia dissipates transmembrane proton gradients in algae [61,46,62,126]. Therefore utilizing 

RAS wastewater with NO3
- concentrations such as those observed in this study is favorable as a 

feed.  

The observed TP concentrations (2.0 and 2.5 mg/L prior to supplementation) were lower than 

typical values seen in RAS, which have been shown to range between 6.2 and 37 mg/L [127].  

The observed N/P ratio of approximately 9 was within the range (7 to 10 gN/gP) that has been 
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shown to be optimal for algal growth [70]. Additional P was provided (15 mg/L added); 

however, to ensure that the algal system in this study was N rather than P limited to favor lipid 

accumulation [128,114,129-131]  

Light transmissivity at 256 nm was 99.0% and 97.8%, for filtered and unfiltered samples, 

respectively (Table 4.1), indicating that the presence of particles in the unfiltered wastewater 

would not hinder light transmission to an algae culturing system. This is a very high light 

transmissivity, when compared to some other waste streams, such as municipal sludge centrate, 

which has a low light transmittance (ranging from 0.1% to 21%) with no pretreatment [97].  

Using aquaculture wastewater as a growth media is therefore less challenging when considering 

this characteristic. 

pH values were similar under both axenic and non-axenic conditions. This was probably 

attributed to the RAS system being well buffered.  A pH between 6.5 and 7.5 is considered 

optimal for most green algae species [112].  The mean COD concentration was slightly higher 

under non-axenic conditions, most likely due to the presence of particulate COD.  COD in 

aquaculture wastewater is attributed to the undigested feed and fish fecal inputs [132].  The 

presence of COD in the wastewater can provide a source of organic carbon and result in 

increased growth in mixotrophic algae such as Chlorella [133,134].  As expected, HPCs were 

below detection limits in the filter sterilized feed.  

Concentrations of elements (K, Ca, Na, S, Mg, Fe, Zn, Cu, Mn, Al) determined by ICP-OES are 

also shown in Table 4.1.  Most of concentrations were within the range observed by Martins et 

al. [135] for RAS wastewaters. Cu concentrations were within the optimal growth range for 

Scenedesmus; however, Zn concentrations were much higher than the optimal range reported in 
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Knauer et al. [136]. Sulfur concentrations were at optimal levels for the growth of Chlorella 

vulgaris based on the Liang et al. [41] and also should not present concerns based on American 

Society for Testing and Materials biodiesel standards [137].   

Table 4.1: Aquaculture wastewater feed characteristics 

Mean concentrations  Axenic Non-axenic 

TN (mg/L) 17.9 18.5 

NO3
- (mg/L) 17.6 18.1 

COD (mg/L) 238 253 

TP* (mg/L) 17.0 17.5 

PO4
3--P* (mg/L) 16.9 17.1 

pH 6.94 6.97 

Transmissivity (%) 99.0 97.8 

HPC (CFU/100 mL) 0 183 

Potassium (K) (mg/L) 66 65 

Calcium (Ca) (mg/L) 62 64 

Sodium (Na) (mg/L) 21 21 

Sulfur (S) (mg/L) 15 16 

Magnesium (Mg) (mg/L) 10 11 

Iron (Fe) (mg/L) 0.016 0.069 

Zinc (Zn) (mg/L) 0.011 0.022 

Copper (Cu) (mg/L) 0.006 0.007 

Manganese (Mn) (mg/L) 0.002 0.003 

Aluminum (Al) (mg/L) < MDL 0.006 

*TP and PO4
3--P concentrations given after supplementation with 15 mg/L of TP; MDL= method 

detection limit 

4.3.2 Biomass Production and Intercellular Products 

The range of heterotrophic counts during different experimental phases is shown in Table 4.2.  

As expected, HPCs were below detection limits throughout the experiment for the axenic 

treatments (data not shown).  Under non-axenic conditions, the HPCs increased to more than 103 

CFU/100 mL within 14 to 38 hours in treatments containing algae. After 38 hours, HPCs 

declined in all algae treatments, and were below the detection limit (30 CFU/100 mL) in the 

indigenous algal culture. Although the control photobioreactor that was not inoculated with algae 
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maintained HPCs above 30 CFU/100 mL throughout the experiment, there were higher counts 

within the first 49 hours, after which the counts declined.   

Table 4.2: Heterotroph bacterial population viability under non-axenic conditions (HPCs were < 

30 CFU/100 mL for all samples under axenic conditions). 

Time (Hours) Viability under non-axenic conditions 

Indigenous Chlorella Scenedesmus No algae 

0 + + + ++ 

14 ++ ++ ++ ++ 

25 ++ ++ ++ ++ 

38 ++ ++ ++ ++ 

49 - + + ++ 

72 - - - + 

- HPC < 30 CFU/100 mL; +HPC > 30 CFU/100 mL; ++HPC > 103 CFU/100 mL.  

Growth curves for Scenedesmus under both axenic and non-axenic conditions are shown in 

Figure 4.2.  A maximum mean biomass concentration of 384 mg/L was achieved for 

Scenedesmus after 72 hours, with no significant differences between the two treatments.  This 

exceeds the amount predicted by the TN concentrations (Section 4.3.1), possibly due to initial 

inoculum addition or the algae having a different elemental composition than suggested by the 

general formula. Similar growth curves were obtained for the indigenous consortium and 

Chlorella (data not shown).  Particle counts were slightly higher for Scenedesmus under axenic 

conditions (Figure 4.2b), possibly because the presence of microorganisms facilitated auto-

flocculation.  Microscopic photographs of Scenedesmus (Figure 4.3) show dispersed cell growth 

under axenic conditions and the presence of well-defined aggregates under non-axenic 

conditions.  The presence of indigenous aquaculture microorganisms may have increased 

Scenedesmus autoflocculation by facilitating extracellular polymeric substance (EPS) 

production. Although no EPS measurements were made in this study, Guo et al. and Manheim 

[138,139] noted the influence of EPS on algae flocculation. Cell aggregates were not observed 
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with the other cultures; however, which had similar particle counts under axenic and non-axenic 

conditions (data not shown).  

 

Figure 4.2: Biomass (a) and particle counts (b) for Scenedesmus. 

Figure 4.3: Microscopic observations (100 x magnification) for Scenedesmus, under axenic (a) 

and non-axenic (b) conditions.  

 

Maximum mean algal biomass productivity ranged from 4.9 to 11.6 mg/L/hr, with no significant 

differences in productivity between axenic and non-axenic conditions within a single culture, as 

shown in Figure 4.2.  Scenedesmus had the lowest mean maximum biomass productivity (5.3 

mg/L/hr average of both axenic and non-axenic cultures), while the indigenous algal consortium 
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had moderate productivity (5.9 mg/L/hr) and Chlorella had the highest productivity (9.2 

mg/L/hr).  Rodolfi et al. obtained similar productivities for both Scenedesmus and Chlorella 

cultures of 7.9 mg/L/hr and 7.1 mg/L/hr, respectively [140], most likely due to similar 

temperature (25oC) and continuous illumination (100 µmol/m2/sec).  

No negative effects were observed when operating algal systems under non-axenic conditions 

using aquaculture wastewater, possibly due to the short experimental duration and the small scale 

at which experiments were conducted.  Other researchers have observed negative consequences 

associated with microbial contamination. Theegala et al. [141] noted that outdoor cultures 

usually last for only short periods of time and continuous systems rarely exceed a few weeks.  

Mitchell and Richmond [142] showed that the rotifers depleted Monoraphidium minutum 

populations, but only became a problem after four days. Smith and Crews [17] noted that algal 

species richness increased with water surface area, especially where algal systems were grown 

under natural, open conditions.  Algal ponds were susceptible to contamination and the number 

of invading species was positively correlated with the physical size of the cultivation system. 

No significant differences were observed in chlorophyll contents (mg/g) between axenic and 

non-axenic conditions within a single culture.  Scenedesmus produced a slightly higher total 

chlorophyll content under non-axenic than axenic conditions, as shown in Figure 4.4.  For the 

indigenous and Chlorella cultures, the maximum total chlorophyll content was slightly higher 

under axenic conditions. The chlorophyll content (mg/g) for all algal cultures was between 12 

and 48 mg/g, as shown in Table 4.3.  In treatments without any inoculated algae, chlorophyll 

contents ranged from 0.1 to 2.6 mg/g, indicating that some indigenous algae may have been 

present in the aquaculture wastewater.   
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Figure 4.4: Total chlorophyll content over a 72 hour period for Scenedesmus under axenic and 

non-axenic conditions. 

 

Comparisons of starch and lipid content values for all three algal cultures under axenic and non-

axenic conditions are shown in Table 4.3.  Chlorella produced the highest overall starch content 

compared with the other two cultures under both axenic (16.8%) and non-axenic (10.7%) 

conditions. Final lipid contents for indigenous and Chlorella cultures were significantly higher 

under non-axenic conditions. Microscope images and fluorospectrocopy in Appendix D 

confirmed that the lipid content increased with dramatically with nitrogen deprivation. Although 

Scenedesmus had a significantly higher overall lipid content than the other two cultures, 

differences observed between axenic and non-axenic conditions were not significant.   

NO3
--N and starch concentrations over time are shown in Figure 4.5. NO3

--N concentrations 

were reduced to less than 10 mg/L within the first 24 hours.  N limited (< 10 mg/L) and N 

starvation (< 1 mg/L) conditions have been shown to result in higher lipid contents as final 

storage products [128,114,129-131], with most of the total lipids as TAG (triacylglycerides) 

produced under N deprived conditions [143].  The results obtained in this study were generally 

consistent with other studies.  In many cases, starch is formed as an intermediate storage 
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compound [144], and hence the timing of harvesting is important if the process is to be 

optimized for lipid production.  Wang et al. [145] showed that the lipid bodies in a wild type 

Chlamydomonas reinhardtii increased 15 fold after a 48 hour period of N starvation.  In this 

study, starch analyses were performed for each sampling point and used to determine the timing 

of starch storage depletion and the beginning of lipid accumulation [143,86].  Due to sample size 

requirements, only final lipid content was measured.  For Scenedesmus under axenic conditions, 

the peak starch content (7.5%) was observed at 25 hours (Figure 4.5a).  Under non-axenic 

conditions; however, the maximum starch content (14.1%) was observed at time zero and 

steadily decreased over 38 hours, after which it remained constant (Figure 4.5b). The initial high 

starch content for Scenedesmus under non-axenic conditions can be attributed to the presence of 

microorganisms and EPS production. When Scenedesmus started to grow exponentially between 

25 and 38 hours, most of the carbon was probably used for growth and not EPS storage [146].  

Figure 4.5: Starch content and NO3
--N concentrations over time for Scenedesmus under axenic 

(a), and non-axenic (b) conditions. 

 

Gross calorific values varied from 20.2 to 26.5 MJ/Kg, as shown in Table 4.3. The indigenous 

algal consortium had the lowest calorific value (20.2 MJ/kg), whereas Scenedesmus under non-

axenic conditions had the highest calorific value (26.5 MJ/kg). Although the calorific values 
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were slightly higher for all cultures under non-axenic conditions, these differences were not 

significant.  There is a strong correlation between algal lipid content and calorific value [128]. 

Lipids are largely comprised of long-chain TAGs, which have an energy value 2.25 times greater 

than starch on a weight basis [143].  The presence of other microorganisms may have increased 

algal physiological stress, under already nutrient limited and starvation conditions, and resulted 

in a shift in algal storage compounds from starch to lipids between 25 to 48 hours. Most 

researchers focus on lipid and TAG production, as more valuable biofuel derivatives can be 

produced from this fraction [147].  

 

Table 4.3: Summary of gross calorific content, mean biomass, chlorophyll, starch and lipid 

production 

N.B.- Biomass productivity (calculated as: Δ X/ Δt, where X was the TSS concentration) for all 

algal cultures under axenic and non-axenic conditions.  

 

 
Conditions 

Culture 

Indigenous Chlorella Scenedesmus 

Mean biomass 

productivity 

(mg/L/hr) 

Axenic 5.80 ± 0.30 11.6 ±3.80 5.70 ± 0.20 

Non-axenic 5.90 ± 0.20 6.70 ± 0.30 4.90 ± 0.20 

Max. chlorophyll 

(mg/g of biomass) 

Axenic 6.20 ± 0.03 7.12 ±0.03 7.57 ± 0.40 

Non-axenic 4.10± 0.07 4.59 ±0.05 10.85 ± 0.19 

Maximum starch 

content (%) 

Axenic 9.30 ± 7.50 16.8 ± 2.80 7.50 ± 5.10 

Non-axenic 9.10 ± 3.60 10.7 ± 3.60 6.85 ± 4.70 

Final lipid content 

(%) 

Axenic 5.70  ± 2.40 12.5 ± 5.6 58.6  ± 10.7 

Non-axenic 23.4  ± 3.40 50.4  ± 7.6 85.4 ± 0.40 

Calorific content 

(MJ/KG) 

Axenic 20.2  ± 0.60 22.0  ± 1.0 24.3  ± 0.70 

Non-axenic 22.1 ± 0.6 23.6  ± 26.5 ± 4.60 
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Timing of harvesting algae should correspond with the maximum production of the targeted end-

product. If pigments are the desired end product, harvest time should correspond with the peak 

chlorophyll content.  Some processes, such as pyrolysis, are optimized using algae with higher 

carbohydrate or starch contents, which were observed during the middle of the growth period. 

Since the primary activity of most algal cells is photosynthesis, there was little accumulation of 

starch and lipids in the young cells [148], indicating that harvesting should be delayed if lipids 

are the desired end product.  

4.3.3 Nitrogen and Organic Matter Removal  

Since 97% of the initial TN was in the form of NO3
-, (Table 4.1) only NO3

- was measured during 

the algal growth experiments.  For all treatments with algae, NO3
- concentrations were reduced 

to less than 10 mg/L within the first 14 hours (N depletion) and to less than 1.0 mg/ L within 24 

hours (N starvation). Overall NO3
- removal efficiencies ranged from 96.4 to 99.4% for all 

systems inoculated with algae, as shown in Table 4.4, with no significant differences between 

algal cultures or treatments.  The removal efficiency for the treatment that was not inoculated 

with algae had a NO3
- removal efficiency of only 17.6%, indicating that the presence of algae 

was needed for N removal in aquaculture wastewater under these conditions.  The TN removal 

rate was moderate (129 mg TN/m2/ day) when compared to other studies using different 

technologies, including membrane, integrated plant, wetland and algal treatment systems. 

Denitification membrane systems tend to be more compact, and have higher removal 

efficiencies, but there are no useful end-products derived from the process [77]. Wetland and 

aquaponic systems had very similar TN removal rates of approximately 520 -560 mg TN/m2/day 

[149,150]. 



54 

Removal of COD over time for Scenedesmus under both axenic and non-axenic conditions are 

shown in Figure 4.6a.  Overall COD removal efficiencies are shown in Figure 4.6b.  Under 

axenic conditions, approximately 25 % COD removal was observed in algal treatments, most 

likely due to mixtrophic growth of algae. Prior studies have shown that lipid production is 

increased for green algae under mixotrophic and heterotrophic conditions [137,40,151]; 

however, due to the use of real RAS wastewater no comparisons could be made on lipid 

production with or without COD in this study.  COD removal (74.4 to 99.7%) was significantly 

higher under non-axenic conditions for all cultures (Figure 4.6b), indicating that the 

microorganisms present in the aquaculture wastewater were needed to achieve high COD 

removal efficiencies required for wastewater treatment.   

 Table 4.4: Summary of NO3
—N removal efficiency (%) for the different treatments 

 

 

Figure 4.6: a) COD removal for Scenedesmus under axenic and non-axenic conditions. b) COD 

removal efficiency for all algal cultures under axenic and non-axenic conditions as well as RAS 

wastewater with no inoculated algae. 

 
Conditions 

Culture  

Indigenous Chlorella Scenedesmus No algae 

NO3
- N 

removal 

efficiency 

(%) 

Axenic 99.4 ± 0.8 98.1± 0.3 98.7 ± 0.5 NA 

Non-axenic 96.4 ± 0.1 96.3 ± 0.3 99.0 ± 2.0 
17.6 ± 0.8 
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4.4 Conclusions 

Algae and fish co-cultivation has the potential to improve water quality and fish health, while 

producing a feedstock for onsite energy production and/or feed supplementation.  However, 

maintaining large-scale algal cultivation systems under axenic conditions is impractical.  Results 

from this study showed that biomass and lipid productivity are improved under non-axenic 

conditions.  Final lipid content for all cultures was significantly higher under non-axenic 

conditions, most likely due to competition for N by indigenous microorganisms.  In addition, the 

presence of both indigenous RAS microorganisms and algae produced a treated wastewater 

effluent with low N and COD concentrations. Algae alone removed N, while microorganisms 

alone removed COD. Negative consequences of contamination of algal cultures with RAS 

microorganisms were not observed.  This may have been due to the short growth period (72 

hours) in the batch system.  
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CHAPTER 5: AUTHENTIC SCIENCE RESEARCH AMONG HIGH SCHOOL 

STUDENTS 

5.1 Background and Rationale  

Authentic science experiences have been described in the K-12 science education literature as 

activities that are as similar as possible to the daily activities of scientists and engineers [152]. 

Scientific learning and inquiry are quite complex, and traditional classroom environments and 

didactic instruction does not lend itself to higher-level scientific inquiry [153,154]. In contrast, 

students participating as authentic contributors to a research project experience real-world 

representations of the scientific enterprise.     

 The Next Generation Science Standards (NGSS) were developed on the Framework for K-12 

Science Education developed by the National Research Council (NRC). These standards were 

developed to favor the inquiry based approach to learning science and argues that these 

experiences increase scientific understanding and knowledge. Scientific inquiry refers to the 

Science, Technology, Engineering and Math (STEM) engagement and understanding of the 

nature of science [155]. With early adoption by 26 states in the US and integration within some 

school districts despite statewide non-adoption, curriculum is being developed and piloted for the 

NGSS. Agencies such as the National Science Foundation fund research and education programs 

to broaden participation in STEM and sites such as teachengineering.org are repositories and 

resources for STEM curriculum that interfaces with research areas at the university level.   

Energy research is viewed as important by policy makers, stakeholders in the energy sector and 

the broader scientific community.  However, there is a misconceived notion that HS students in 
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low-income urban communities4, such as East Tampa, are not interested in STEM. One reason 

given for this is that they believe it does not connect to their everyday experiences or interests. 

Chapman [157] stated that:  

“Most students from low-income urban families envision scientists as white men, 

such as Einstein, wearing lab coats and safety goggles.” 

An individual’s life experiences are important in yielding useful, powerful and transferable 

knowledge. The inadequacies HS students display in science should not be seen as the sole 

reason for their disengagement in science, since knowledge construction is a socially, politically 

and culturally defined process [158]. As researchers, we should be advocates and vehicles for 

social and educational reform. 

Multiple pedagogical strategies need to be employed to maintain the interest of all students and 

engage women and men of color and thereby create a multicultural, diverse scientific community 

that mimics the demographics of society [159,160]. Sadler et al. [161] noted that research 

programs that emphasize hands-on authentic science experiences, such as the one described in 

this study, can increase retention of undergraduates in science majors, particularly African-

American students. In addition, Scholz et al. [162] showed that a 15 week internship not only 

improved environmental science high-school students’ credentials, but there was a notable 

enhancement in students’ analytical thinking, report writing, and presentation skills. The 

University of South Florida (USF) is a scientific center and research platform for the local 

community. University researchers have the potential to facilitate scientific inquiry with HS 

                                                 

4Approximately 79%  or eight out of ten children had ‘reduced or free lunches’ in this HS, while the mean for the 

Hillsborough District was approximately 59% or six out of ten [156]. 
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students serving as novice researchers while contributing to authentic research. This algal 

research-based project was executed at a magnet HS in East Tampa during spring and fall 2012 

semesters in agricultural biotechnology and marine science classes. Although, this was a magnet 

science and engineering HS, the FCAT scores suggested that many students were disengaged 

from the STEM field. In the 2009 academic year, the mean pass rate among the Hillsborough 

County School District (SDHC) for Florida Comprehensive Assessment Tests (FCAT) was 68% 

for mathematics. However, the statistics for students who passed mathematics at this HS were 

lower (53%) than the district’s average.  

5.2 Methods  

Formal and informal methods were used throughout my doctoral tenure to communicate 

scientific concepts related to algal feedstock generation and wastewater treatment. Informal 

methods used included an open mic poetry recital (Appendix F) and Earth Expo Events. This 

chapter highlights the formal methods used in an East Tampa HS. Section 5.2.1 highlights the 

preparation done prior to the HS experimentation by university researchers. Section 5.2.2 

highlights the research design of the HS experiments and protocols developed. Section 5.2.3 

highlights the methods used in gauging success of the authentic science experience. Most of the 

assessment was qualitative. 

5.2.1 Preparation of Inoculum by University Researchers 

Indigenous algae were harvested from the surface of a secondary clarifier at the Howard F. 

Curren Advanced Wastewater Treatment Facility in Tampa, Florida.  The consortium was 

identified and enumerated by the Environmental Biotechnology Laboratory in the Department of 

Soil and Water Science at the University of Florida. The primary genera within the indigenous 

consortium identified included: Chlorella (95.2%), Chlamydomonas (3.1%), and Stichococcus 



59 

(1.1%). The culture was initially grown using an aseptically prepared standard algal growth 

medium (Bold medium [163]), a light irradiance of 67.5 µmol/m2/sec and a temperature of 25oC 

in a temperature controlled room. This algae was then used to inoculate the reactors used in the 

HS experiments.  

5.2.2 Experimental Design 

HS students were given an initial lecture by the professor (Dr Ergas) on the background and 

goals of the research. The reasons why we wanted them to conduct experiments to determine 

how feed composition, mimicking municipal high- strength and aquaculture wastewater feeds 

influenced algae growth rates, was also explained. Each group constructed three 

photobioreactors using commonly available materials including 3.0 L clear soda bottles, 

aquarium pumps and tubing (Figure 5.1). All students also learned to conduct basic laboratory 

measurements including total solids, pH and light intensity. Researchers also stressed proper 

recording of data in lab notebooks and Excel spreadsheets.     

Two rounds of experiments were conducted.  In the first round, students were given two different 

synthetic wastewater feeds (swine and aquaculture). These feeds mimicked actual compositions 

of wastewater observed by the Ergas research group. It was assumed that most of the nitrogen in 

nitrified aquaculture wastewater was in the form of nitrate (NO3
-) and most of the nitrogen in 

swine wastewater is in the ammonium (NH4
+) form. HS students conducted these experiments in 

groups. Each group was responsible for conducting algal growth experiment using one feed 

mixture in triplicate (Table 5.1). Data from all of the teams was pooled to draw conclusions on 

the effect of wastewater type on algal growth rates.   
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Prior to starting the second set of experiments, students discussed their results and ideas for 

another round of experiments. Brainstorming, creating mental maps and input from the 

engineering researchers on novel research questions were used to design the course of action for 

the second round of experiments. An example of a mental map is shown in Appendix I. In the 

second experiment, all but one group examined at the effect of different variables. One group 

was asked to repeat on of the initial experiments without any changes (a control group). The 

following variables were examined by the other groups: 1) addition of an artificial light source, 

2) addition of baking soda (an inorganic carbon source), and 3) use of a higher gas flow rate. The 

effect of each treatment on biomass productivity was compared to the control.   

 

 

Figure 5.1: Initial setup and productivity achieved. a) One of four groups set up their 

photobioreactors. Photo credit: Angela Chapman b) One of the graphs produced and presented 

by a student group in a final presentation to show results from the 1st experiment, examining the 

effect of nitrogen form on biomass productivity. 
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5.2.3 Determining the Success of the Authentic Science Experience 

The success of this authentic science experience was assessed in several ways: 

1. Personal observations and journaling. A journal was maintained by the graduate student 

researchers to record the events and progress during the experience.  

2. Skills gained by graduate and HS students. Both groups of students were expected to be 

able to design experiments, analyze data, present their results, participate in discussions 

and answer open ended questions posed by the researchers.  

3. Pre and post evaluation assessment carried out by a College of Education graduate 

student [157].  

 

Table 5.1: Feed composition of swine and aquaculture waste treatments 

Chemical 

formula 

Concentration (mg/L) 

Group 1 

100% NH4
+- N 

(mg/L) 

Group 2 

50% NH4
+ -N 

and  

50% NO3
--N 

(mg/L) 

Group 3 

75% NH4
+ -N 

and  

25% NO3
- - N 

(mg/L) 

Group 4 

100% 

NO3
- N 

(mg/L) 

NH4HCO3 400 208 312 0 

NaNO3 0 224 112 448 

KHCO3 100 100 100 100 

NaHCO3 400 400 400 400 

CaCl2 2H2O 25 25 25 25 

MgSO4 7H2O 64 64 64 64 

K2HPO4 24 24 24 24 

K2SO4 4 4 4 4 

NaCl 25 25 25 25 

Trace metal* - - - - 

Vitamin B12* - - - - 

*Trace metal and Vitamin B12 is provided based on Bold medium[163].  
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5.3 Results and Discussion 

5.3.1 Personal Observations and Journal Notes 

Over the course of the project, HS students became increasingly engaged and proactive in class 

discussions and execution of research tasks. Their engagement probably increased due to 

increased familiarity with the project, methods and the graduate students. One of the students 

told me: 

“For the first time I feel like a scientist.” 

To me, it was important to demonstrate to HS student groups that high algal productivity could 

be achieved using soda bottle reactors and aquarium supplies. This was important in 

demonstrating that science experiments can be conducted using easily accessible materials. This 

experience was also important to me and other novice graduate students in designing 

protobioreactors and algae experiments. We learned hands-on skills in how to connect the air 

tubing, adjust air flow rate, and manipulate growth variables.  

Although the students were able to understand key concepts of algal growth, I felt that students 

were not able to fully understand how this algae grown on wastewater can be used to make 

biofuel. They saw that the contents of the reactor was green, but did not gather enough 

knowledge of downstream processing to understand how algae can be made into fuel.    

5.3.2 Experimental Design and Discussion 

HS student groups’ results showed that nitrogen form influenced algal growth. The feed using 

100% NO3
- showed the highest initial productivity, approximately 890 mg/L on day 5 

(September 25th) (Figure 5.1b). However, the highest overall productivity, of approximately 795 
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mg/L, was achieved and sustained using 50% NH4
+- N and 50% NO3

-. HS students were then 

able to understand the idea of optimal growth and ammonia toxicity.  

The university-based algae research group was able to obtain some useful preliminary data for 

the indigenous algae’s productivity under different feed conditions. The second round of 

experiments conducted by the groups demonstrated scientific problems that scientists face and 

how different factors influence biomass production. For example, one group investigated the 

effect of supplemental lighting by adding artificial lighting (Figure 5.2). Their results showed 

that treatments without additional lighting had higher productivity than cultures with additional 

lighting. Based on the discussion, it was clear that the HS students understood that this may have 

been due to photo-inhibition in cultures with additional lighting.  A high light intensity is toxic to 

algae. 

 

Figure 5.2: HS student produced graph showing treatments with no additional lighting (control) 

and treatments with additional lighting (light).  

 

5.3.3 Skills Gained by Graduate and HS Students 

HS students collected samples for total solids (TS) analyses, recorded data, and analyzed the data 

for their triplicates and determined the mean and standard deviations. Each group was asked to 
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set up their respective treatments in triplicate and learned that replicates were important in 

ensuring quality assurance and control (Figure 5.1 a). They were able to input data into Excel 

spreadsheets and calculated mean and standard deviations using the data they obtained. In 

addition, HS students communicated their scientific findings from their experiments using a 

PowerPoint presentation in front of university professors, the district science supervisor and HS 

teachers (Figure 5.1 b).   

5.3.4 Pre and Post Evaluation Assessment 

 Chapman [157] conducted a pre and post test to determine HS understanding and appreciation 

of the research experience. HS students had a greater understanding of scientific theories related 

to algae derived biofuel and photosynthesis. When students were asked the open ended question:  

“What are the benefits obtained from growing algae?” 

There was a 35% decrease in the number of HS students that said, “I don’t know.” or answered 

incorrectly. In addition, there was an increase in the understanding of photosynthesis and that 

algae can be used as provide an alternative energy source. 

5.4 Conclusions 

Having a university-based algal project with involvement of University of South Florida (USF) 

researchers, teachers and high school (HS) students increased scientific understanding and skills 

among HS students. Graduate students gained greater in-depth practical understanding as these 

students had to learn skills, such as designing a photobioreactor, while simultaneously teaching 

HS students how to construct photobioreactors, design and conduct experiments, and gather 

scientific data. HS students gained a greater understanding of key biological and chemical 

processes, such as photosynthesis. In addition, they learned important skills, such as calculating 
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mean and standard deviation, using Excel, orally communicating scientific concepts and 

preparation of a PowerPoint presentation. From personal observations, HS students engagement 

increased over the course duration as they had an increased familiarity of the project, theory and 

methods.   
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CHAPTER 6: CONCLUSIONS AND RECOMMENDATIONS 

Algal research is the central theme of this dissertation (Figure 6.1). This research examined: 1) 

the biomass and lipid production, and removal efficiencies on municipal centrate and 

aquacultures wastewaters, 2) the effect of irradiance on biomass production, 3) the effect of 

indigenous microbes on algal resilience, and 4) the facilitation of greater understanding of 

scientific principles and interest in science among HS students through authentic science 

research on biofuel production. The major findings of this research were:  

1. Bioenergy feedstock production  

In this study, an indigenous algae consortium was cultivated on municipal sludge 

centrate, a high-strength wastewater. Mean biomass productivity if 5.2 g m-2
 day-1, which 

was relatively high compared with other studies carried out with high ammonia strength 

wastewaters. This study was one of the first to co-cultivate algae with aquaculture 

products to facilitate energy and cost savings, while producing useful biomass feedstocks 

and end-products.  

Non-axenic conditions had no effect on overall starch and chlorophyll production; 

however, significantly higher lipid contents were achieved under non-axenic conditions. 

The higher algal lipid content under non-axenic conditions may have been due to 

competition with bacteria for nutrients and nitrogen limited conditions. 

A simple irradiance-based model was developed from the fundamental Michaelis-Menten 

photosynthesis-irradiance (PI) response for photosynthetic organisms. A good fit to the 
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experimental data was obtained with the irradiance-based model (R2=0.96), indicating 

that the system was light limited.  

Appendix B [123] is a preliminary study that considers co-location of wastewater 

treatment plants, including HFC AWTP and algal production facilities, and scenarios 

considering biofuel for vehicle use and biogas for residential use. Further research could 

explore and integrate biorefineries into wastewater treatment and aquaculture facilities. 

2. Wastewater treatment 

More than 65% total nitrogen (TN) and 72.6% total phosphorus (TP) was removed from 

both waste streams investigated in this research. COD removal was only 8% when 

centrate was treated, most likely because most of the biodegradable COD has already 

been removed during anaerobic digestion. Investigations examining the effects of axenic 

conditions on wastewater treatment showed the presence of bacteria in aquaculture 

wastewater was required for effective removal of organics, while effective nitrogen 

removal was observed in all systems containing algae.  

3. Educational outreach 

A collaboration was formed with a faculty member and graduate student in the USF 

College of Education to design, implement and evaluate an authentic science research 

experience of HS students. A background on algal research and two experiments were 

conducted with local HS students and teachers to investigate algal growth in 

photobioreactors under varying conditions. Using authentic science experiences increased 

the understanding of core chemistry and biology concepts identified by the Next 

Generation Science Standards and practices, and at the same time stimulate STEM 

(Science Technology, Engineering and Mathematics) interests and generate useful data 
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for the university based researches, as graduate students gained hands-on experience in 

experimental design.  

 

 

Figure 6.1: The research completed during my doctoral tenure focused on: wastewater treatment, 

feedstock production and educational outreach  
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APPENDIX A: EXPERIMENTAL DESIGN AND PROTOCOLS DEVELOPED  

A.1 Chlorophyll Analyses 

2.0 mL of the original sample was pipetted into a 2.0 mL centrifugation tube. The sample was 

then centrifuged using Eppendorf centrifuge 5415R (serial # 0011120) at 5,000 rpm for 10 

minutes and 20oC. The supernatant was then disposed of and the algae pellet was then stored at -

20oC.  

A formal thawing was not required as samples stored at -20oC quickly thawed at room 

temperature. Equal portions of cell disruption beads 0.5 mm (Scientific Industries S1-BG 05) and 

0.1mm (Scientific Industries S1-BG 01) were added until a total volume of 0.5mL was achieved. 

1.5mL of methanol was then added. The samples were then shaken using a cell disrupter for a 

duration of 10minutes at 30,000rpm. The tubes were then centrifuged for 10 minutes at 20oC and 

13,000rpm. 0.75ml of the supernatant was then pipetted into a 1.5mL disposable polystyrene 

cuvettes and then measured at 665, 652 and 470nm wavelengths. Total chlorophyll was 

determined using the method described by Franco et al. [99].  Total chlorophyll was calculated 

using Liechtenthaler equations [100].   

A.2 Starch Analyses  

Similar initial sample preparation steps were taken for chlorophyll and starch analyses. 2.0 mL of 

the original sample was pipetted into a 2.0mL micro- centrifugation tube. The sample was then 

centrifuged at 5,000 rpm for 10 minutes and 20oC. The supernatant was then disposed of and the 

algae pellet was then stored at -20oC. Equal portions of cell disruption beads 0.5mm and 0.1mm 
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were added until a total volume of 0.5mL was achieved. 1.5mL of methanol was then added. The 

samples were then shaken using a cell disrupter for a duration of 10minutes at 30,000 rpm. The 

tubes were then centrifuged for 10 minutes at 20oC and 13,000rpm. The supernatent was then 

poured into a hazardous container. Any excess methanol was allowed to evaporate under the 

fume hood. 

Megazyme total starch (AA/AMG) kit (catalog # K-TSTA), which follows Association of 

Official Agricultural Chemists (AOAC) Method 996.11 Standard Method was used and modified 

to allow for smaller sample volumes. 0.2µL of 80% ethanol was added to the micro- 

centrifugation tube. 200µL of DMSO solution was then added and the mixture was vortexed well 

for 2minutes and then put on a hot plate at 100oC for 5mins and shaked at 650rpm. 0.3mL of 

amylase- sodium acetate solution buffered at pH 5 (Solution 1) was added at again heated at 

100oC for 6 mins. 04mL sodium acetate, 10 µL amyloglucosylase solution buffered at pH 9.5 

was added and then voretexed lightly and then heated at 50oC for 30minutes. 70µL deionized 

water was then added. The mixture was then vortexed at 14,000rpm for 10minutes at 20oC.  In 

new micro-centrifuge tubes, 33.4µL of the supernatent was then added to 1.0mL of GOPOD 

solution. Duplicates for each sample was prepared. To ensure quality assurance, 2 blanks and 2 

check standards were used. For the blank, 33.4µLdeionized water was added to 1.0mL of 

GOPOD solution. For the check standard, 33.4µL of the check standard was added 1.0mL of 

GOPOD solution. All samples, including blanks containing the deionized water was then 

transferred to 1.5 mL disposable polystyrene cuvettes and then measured at 510 nm. Total starch 

(%) was then calculated. 
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A.3 Final Lipid Analyses 

The algal lipid content (%) was determined using the by Bligh and Dryer method. A sample of 

algae suspension was centrifuged at 3,800 rpm for 10 minutes to obtain a concentrated algae 

paste. Algae pellets stored at -20oC and in 50mL tubes with known wet weights were defrosted 

and then vortexed to homogenize. The dry weight (wd) of the pellet was determined 

gravimetrically after drying it at 60°C. 3.0mL of a 2:1 methanol/chloroform solution was added 

to a 15mL tube. The suspension then vortexed for 2 minutes and left for 24 hours. Thereafter, 1.0 

mL of chloroform was added and mixture and vortexed for 2 mins. 2.0 mL of water was then 

added and the mixture was again agitated for 2 min. The layers were separated by centrifugation 

at 2,000 rpm for 10 min. The lower layer was extracted with a glass syringe and filtered through 

a Whatman no. 1 filter into a previously weighed glass vessel (w1). The solvent was dried in a 

water bath at 98°C and the vessel was weighed again (w2) to obtain the lipid content of the 

sample as; 

𝑙𝑖𝑝𝑖𝑑 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 =
𝑤2 − 𝑤1
𝑤𝑑

× 100% 
(Eq. A.1) 
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APPENDIX C: HIGH SCHOOL (HS) EXPERIMENTAL DETAILS 

Table C.1: Feed composition used HS students in experiments 

Inoculation 

date 

Experiment Treatment 

# 

NO3
- -N 

(mg/L) 

NH4
+- N 

(mg/L) 

N form and 

contribution 

09.21.12 1 1 750 0 100%NO3
—N, 

0%NH4
+-N 

2 565 183 75% NO3
—N, 

25%NH4
+-N 

3 375 375 50% NO3
—N, 

50%NH4
+-N 

4 0 750 0%NO3
—N, 

100%NH4
+-N 

09.25.12 2 5 343 0 100%NO3
—N, 

0%NH4
+-N 

6 438 146 75% NO3
—N, 

25%NH4
+-N 

7 299 299 50% NO3
—N, 

50%NH4
+-N 

8 0 890 0%NO3
—N, 

100%NH4
+-N 

09.27.12 3 9 517 0 100%NO3
—N, 

0%NH4
+-N 

10 450 150 75% NO3
—N, 

25%NH4
+-N 

11 395 395 50% NO3
—N, 

50%NH4
+-N 

12 0 557 0%NO3
—N, 

100%NH4
+-N 

10.01.12 4 13 420 0 100%NO3
—N, 

0%NH4
+-N 

14 188 62 75% NO3
—N, 

25%NH4
+-N 

15 395 395 50% NO3
—N, 

50%NH4
+-N 

16 0 650 0%NO3
—N, 

100%NH4
+-N 
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APPENDIX D: PRELIMINARY CULTIVATIONS AND FLUOROSPECTROSCOPY 

EXPERIMENTS CONDUCTED AT UNIVERSITY OF FLORIDA (UF) 

D.1 Aim 

To grow the indigenous algae on municipal centrate and monitor fluorescence at 490 and 680nm 

The initial set-up and growth considerations for the indigenous algae are described in Section 

3.2.1 before the culture was shipped to University of Florida, BEST Algae Lab. BEST Algae Lab 

received samples on July 3rd, 2012. Below shows a summary of the methods and preliminary 

results. 

D.2 Methods 

The methods were divided into three sections: 1) cultivation conditions, 2) observation of algae 

growth and lipid production by fluorospectrocopy and microscopy. 

D.2.1 Cultivation Conditions 

Algae (USF-2012.7) were cultivated in a 250ml Erlenmeyer flask using autoclaved centrate 

(from USF) as the growth medium at an inoculation of 10% (v/v).  Sparging with 0.45μm-

filtered air provided mixing.  Algae were illuminated by 300μmol photons/m2/s provided by full 

spectrum fluorescent lights (T5 Plantmax™) on a 20: 4 (light: dark cycle).  Initial pH of the 

culture was 9.15. 

D.2.2 Observation of Algae Growth and Lipid Production by Fluorospectrocopy 

Algae growth was monitored by in-vivo chlorophyll fluorescence at 490/680nm 

(excitation/emission) on a Nanodrop fluorospectrometer (ND 3300, Thermo Scientific).  Staining 
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algae aliquots with 2% (v/v) Nile Red (9-diethylamino-5H-benzo[α]phenoxazine-5-one, MP 

Biomedicals, LLC., Solon, OH) dissolved in acetone (250μg/ml) was used to qualitatively 

monitor lipid production over time.  Fluorescence values of stained algae were measured on a 

Nanodrop fluorospectrometer at 490/585nm (ex/em).  

D.2.3 Microscopy and Photography 

Photographs of cells were taken at initiation of experiment (T0) and on the last day of the 

experiment (T168).  Cells were stained with Nile Red for lipid observation as described 

previously.  Samples were centrifuged to a cell paste at 15,000rpm for 10sec (Eppendorf 5414 

Hamburg, Germany). The resultant cell paste was mounted on a glass microscope slide and 

viewed under a Nikon Labophot (Nikon Corporation Tokyo, Japan) equipped with epi-

fluorescent illumination, 50w mercury halide illuminator and a 490nm excitation and 520nm 

long pass emission filter. Images were taken with a Spot Insight color mosaic digital camera 

(Diagnostic Instruments Inc., Sterling Heights, MI).  Nile Red fluoresces yellow under 

hydrophobic conditions (within oil droplets), red auto-fluorescence of chlorophyll was observed. 

 

D.3 Preliminary Results 

Growth of algae culture USF-2012.7 peaked at 48 hours with chlorophyll auto-fluorescence 

measured at 61,300 RFU 680nm.  The culture slowly declined in chlorophyll auto-fluorescence 

from 48 to 144 hours and then began a rapid decline at 168 hours.  Lipids followed an inversed 

time course when compared to chlorophyll auto-fluorescence, initially low (258 RFU 585nm) 

but began to rise at 48h, plateaued from 96 to 144 hours and then increased dramatically at 168 

hours.  Initial (Figure D.2) and final (Figures D.3 and D.4) photographs show the dramatic 
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change in the culture state from chlorophyll auto-fluorescence (red) to Nile Red-stained lipid 

fluorescence (yellow), dominated by Chlorella. 

 

Figure D.1:  Time course of algal growth (USF-2012.7) showing chlorophyll auto-fluorescence 

(680nm) and lipid content after staining with Nile Red (585nm). 

 

 

Figure D.2: Algae at T-0hour, a): brightfield illumination and b): epi-fluorescent illumination 

stained with Nile Red, arrows indicate lipid droplets (yellow), red is chlorophyll 

autofluorescence. 
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Figure D.3: Algae at T-168hour, a): brightfield illumination and b): epi-fluorescent illumination 

stained with Nile Red, lipid droplets throughout (yellow), red is chlorophyll autofluorescence. 

 

 

 

Figure D.4: Algae at T-168hour under higher magnification (1250x), a): brightfield illumination 

and b): epi-fluorescent illumination stained with Nile Red, lipid droplets throughout (yellow), red 

is chlorophyll autofluorescence. 
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APPENDIX E: SUMMARY OF THE OPERATING CONDITIONS FOR THE THREE PHASES 

Table E.1: Operating conditions for all three phases 

Operating Condition 

Phase 

I 

Pilot scale experiments 

II 

High school 

experiments 

III 

Bench-scale experiments 

Reactor design 

Tubular reactors. Each reactor was 237.23cm in height and had a 

diameter of 12.32cm.  

3-L cylindrical 

plastic soda 

bottles. The 

diameter was 

12.7cm. 

1-L pyrex glass cylinders with a 

outer diameter of 4.12cm  and an 

operational height of 32.0cm. 

Inoculum 

indigenous consortium Indigenous 

consortium 

Chlorella and Scenedesmus 

monocultures and indigenous 

algae consortium     

Feed description 

Two reactors with different feeds were used. One received 100% 

centrate, whereas the second reactor received an aquaculture-

centrate mixture (ACM) of 50% TN adjusted centrate and 50% 

synthetic aquaculture wastewater.  The TN concentration in the 

centrate was adjusted to 200-300 mg/L, as needed, by addition of 

(NH4)2SO4. The synthetic aquaculture wastewater contained 200 

mg/L NO3-N (KNO3) and 25 mg/L TP (KH2PO4).   

Reactors 

received 

varying 

concentrations 

of aquaculture 

and swine waste 

mixtures 

RAS wastewater from a Tilapia 

unit. 

Operating conditions Semi-continuous continuously mixed flow reactors (CMFRs). Batch reactor. Batch reactor.  

Mean cell residence time 

(MCRT) or growth period 

 7 days 11 days 3 days 

Gas flow rate and partial 

pressure  

All reactors had a flow rate of 500mL/ min. One reactor had Both 

2% with centrate feed and ACM received a 2% mix of CO2 and 

air. The other received 5% CO2. 

500mL/ min 

and ambient air. 

1% CO2. 

Temperature The temperature ranged from 25-32oC in the greenhouse.  Unknown. 25oC temperature control room. 

Light intensity  and duration 

conditions 

Natural lighting (Figures 4-5). Natural 

lighting. 

130µmol/m2/ sec light intensity. 
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APPENDIX F: POEM PERFORMED AT AN OPEN MIC RECITAL IN OSLO, 

NORWAY 

 

This video can also be viewed on youtube: 

 https://www.youtube.com/watch?v=nPuWXZu8CSw. 

 

I am married or so it says on facebook. 

Apparently that makes it official. 

My husband may be invisible to most, 

But I see him daily. 

You ask, “Trina, who is Chlorella vulgaris? Who really has a name like that?” 

Chlorella vulgaris is my amazing superhero. 

He is very microscopic but like Mighty Mouse can achieve great things. 

He is an algae species. He tends to be very introverted but if you listen closely he would tell you, 

“ I am trying to save the world by providing a source of clean, renewable fuel. I could save the 

world for your kids. All I need is sunlight, nutrients from wastewater, carbon dioxide and my 

wife to talk to me sometimes.” 

While other wives go home and worry about cooking dinner, my husband loves the left overs 

and waste. 

He even grows exponentially using toilet water. 

He is amazing and is able to clean the most toxic industrial gases. 

And is the only one who can produce petroleum-based substitutes. 

https://www.youtube.com/watch?v=nPuWXZu8CSw
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You may see an environmentalist or a hippie; 

But I see a person who believes that environmental degradation is self-destructive and an 

injustice to all mankind. 

Many think that climate change is a hoax or natural phenomenon, but I say, “There is no wisdom 

in acting like there is no tomorrow.” 

What if climate change is catapulted by human activities and we are ensuring that our children 

will not have enough food, clean water or are homeless, 

Will we laugh? 

Or cry? 

The bees are pivotal for the sustenance of life. They are dying, yet we pay no mind. 

Will we have food to feed the 7 billion? 

Will Pakistan be the next Waterworld? I don’t think Kevin Costner lives there. 

Is there relief? Is there hope? 

We either remediate or adapt. 

 Remediating or reducing greenhouse gas emissions requires us to change lifestyles. Are we 

willing to compromise? 

Do we understand the interconnectedness of human behavior and the web of life. 

Gaia!  
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APPENDIX G: EXPERIMENTS EXAMINING THE EFFECT OF ALGAL DIVERSITY 

The experimental procedure and protocols for these experiment was the same as described in 

Chapter 4. These experiments considered the effects of polycultures (more than one species of 

algae present in a culture). The experimental design consideration and results are shown below. 

Table G.1: Experimental design showing inoculation (# of cells) 

Treatment 

description 

Starting cell # 

of 

Scenedesmus 

Starting cell # 

of Chlorella 

Starting cell # 

of indigenous 

culture 

Total cell 

count (#/ mL) 

High cell density 

of Scenedesmus 

and Chlorella 

1.22*106 1.20E*106 - 2.42*106 

High cell density 

of Chlorella and 

indigenous 

cultures 

- 4.30*106 5.44E*106 9.74*106 

High density 

Scenedesmus and 

indigenous 

cultures 

1.49*106 - 1.44*106 2.93E*106 

Low density 

Chlorella and 

indigenous 

cultures 

- 1.20*106 1.15*106 2.35*106 

Low density 

Scenedesmus and 

indigenous 

cultures 

1.22*106 - 1.15*106 2.37*106 
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Figure G.1: a) Nitrate removal (mg/L) and b) biomass production of polycultures (mg/L) 

 

 

Figure G.2: a) Chlorophyll (mg/g) and b) Starch content (%) 
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Table G.2: Treatment and the final lipid content (%) after 72 hours 

Treatment description Lipid content (%) 

High cell density of Scenedesmus and Chlorella 44.0 

High cell density of Chlorella and indigenous cultures 64.2±  10.6 

High density Scenedesmus and indigenous cultures 81.5± 4.9 

Low density Chlorella and Wild type 61.2± 0.6 

Low density Scenedesmus and Wild type 42.6 

 

 

 

Figure G.3: Microscope images (100 x magnification) of polycultures with high and low initial 

cell density. 
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Table G.3: Summary of irradiance parameters and determination of photoefficiency 

Daily light (mols/m
2

/day) 11.23 

# of days 3 

Surface area (m
2

) 0.086 

Total light dose for reactor (mol/day) 2.90 

Biomass concentration (mg/L) 0.69 

Photoefficiency 0.24 
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APPENDIX H: TILAPIA FEED USED AT UMB ON-CAMPUS FACILITY  

Table H.1: Composition of major constituents in feed (Aller 37/10 FLOAT) 

 2mm 3mm 4.5mm 6mm 

Crude protein (%) 37 37 37 37 

Crude fat (%) 10 10 10 10 

NFE (%) 36.7 36.7 36.7 36.7 

Ash (%) 6.9 6.9 6.9 6.9 

Fibre (%) 4.4 4.4 4.4 4.4 

Phosphorus (%) 1.2 1.2 1.2 1.2 

Digestible energy (MJ) 17.4 17.4 17.4 17.3 

 

Table H.2: Vitamins in the feed per kg 

Vitamin A (IU) 10.0 

Vitamin D3 (IU) 1.0 

Vitamin E (mg) 200 
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APPENDIX I: MENTAL MAP OF IDEAS AND CONCEPTS 

 

Figure I.1: Mental map 
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APPENDIX J: LIST OF NOTATIONS   

Table J.1: List of notations 

Terms Description Units 

A Reactor surface area m2 

a Light attenuation constant (modified Beer-

Lambert equation) 

m-1 

b Light attenuation constant (modified Beer-

Lambert equation) 

g-DW m-3 

B Biomass concentration g-DWm-3 

𝐵𝑡𝑝 Biomass prior to the time of harvest  g-DWm-3 

Bta Biomass concentration after harvest g-DWm-3 

deff Effective path length of the photobioreactor m 

Ek Light saturation constant µmol-photon m-2 s-1 

I Irradiance at a given depth mol-photon m-2 s-1 

Io Incident irradiance mol-photon m-2 s-1 

Pnet Net photosynthetic carbon fixation rate  µmol-C m-2 s-1 

Pm Maximum photosynthetic carbon fixation rate µmol-C m-2 s-1 

Pz Gross carbon photosynthetic rate mol-C m-2 s-1 

r Algae growth rate g-DW m-3 s-1 

RB Biomass dependent respiration rate  mol-C m-2 s-1 

Ro Specific biomass respiration rate µmol-C g-DW-1 s-1 

V Reactor working volume m3 

VH  Harvest volume m3 

𝑧 Depth m 
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APPENDIX K: LIST OF ACRONYMS AND ABBREVIATIONS 

Table K.1: List of acronyms and abbreviations 

Acronym Term 

AWRS Algal Wastewater Reactor Systems 

COD Chemical oxygen demand 

HS High school 

TN Total nitrogen 

TP Total phosphorus  

TSS Total suspended solids  
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