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ABSTRACT 

In the last two decades, Computational Fluid Dynamics (CFD) has shown great potential 

as a powerful and cost-efficient tool to troubleshoot existing disinfection contactors and improve 

future designs for the water and wastewater treatment utilities.  

In the first part of this dissertation two CFD simulation methodologies or strategies for 

computing turbulent flow are evaluated in terms of the predicted hydraulic performance of 

contactors. In the LES (large eddy simulation) methodology, the more energetic, larger scales of 

the turbulence are explicitly computed or resolved by the grid. In the less computationally 

intensive RANS (Reynolds-averaged Navier-Stokes) methodology, only the mean component of 

the flow is resolved and the effect of the unresolved turbulent scales is accounted for through a 

turbulence model. For baffled contactors, RANS performs on par with the LES in predicting 

hydraulic performance indices. In this type of contactors, hydraulic performance is primarily 

determined by quasi-steady recirculating (dead) zones within the contactor chambers which are 

well-resolved in both RANS and LES. Testing of the RANS methodology is also performed for a 

wastewater stabilization pond leading to prediction of hydraulic performance indices in good 

agreement with field measurements. However, for column contactors, LES performs better than 

RANS due to the ability of the LES to resolve unsteady or unstable flow structure associated 

with spatial transition to turbulence which is important in the determination of the hydraulic 

performance of the contactor.  



xiii 

In the second part of this dissertation the RANS methodology is adapted in order to 

develop a novel modeling framework for ozone disinfection of drinking water. This framework 

is unique as it combines CFD with kinetics-based reaction modeling to predict disinfection 

performance and bromate formation for the first time. Bromate, a human health hazard, is an 

undesired by-product of the disinfection of drinking water via ozonation. The modeling 

framework is validated via application to a full-scale ozone contactor. Predictions of ozone and 

bromate concentrations are consistent with data from physical experiments.  



1 

 

 

 

 

 

CHAPTER 1: INTRODUCTION 

1.1 Background and Motivations 

Disinfection process is an essential technology for human health, providing a degree of 

protection for potable water and wastewater from contact with pathogens by inactivating them. 

The primary methods used for the disinfection of water and wastewater are chlorine, ozone, and 

ultraviolet irradiation (UV). The use of ozone is becoming increasingly common in disinfection 

process for water and wastewater treatment, in part because of its stronger disinfecting properties 

and in part because it controls taste and odor compounds (Crittenden et al. 2005). Globally, more 

than 3,000 ozone contactors are being used for water disinfection (Wols et al. 2010a). A common 

approach to ozone disinfection is to pass the water through an ozone contactor tank consisting of 

a series of chambers as depicted in Figure 1.1. Ozone gas is released into the chambers from the 

bottom of one or multiple chambers via bubble diffusers pictured in Figure 1.1. Upon release the 

ozone dissolves in the water and begins the disinfection process.  

A primary task for ozone contactor designers is to increase the disinfection efficiency 

thereby reducing the operating cost of the ozone contactor. Information for designing an ozone 

contactor is usually obtained from experimental data. However, due to equipment limits and high 

expense of physical experiments, an accurate computational or mathematical model may be the 

better solution. Early research towards this end focused on developing ideal hydraulic models for 

reactors, i.e. Completely Mixed Flow Reactor (CMFR) or Plug Flow reactor (PFR) (Froment and 

Bischoff 1979). However, ideal models simplify the ozonation process in reactors assuming ideal 
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hydraulic and mixing conditions. An overly simplistic model may result in an over-dosage of 

ozone leading to an increase in undesired disinfection by-products such as bromate requiring 

additional treatment. Such negative outcomes also increase design capital costs and continuous 

operation costs.  

The next generation of models included non-ideal models developed through the 

combination of ideal models. For example, the Tank in Series (TIS) model was developed by 

assuming a reactor consists of a series of CMFRs. However, all non-ideal models rely on tracer 

studies to understand the flow behavior. Such tracer studies require physical experiments. 

Computational fluid dynamics (CFD), which had been successfully applied to aerospace 

engineering, automotive engineering, architecture designs and other industrial engineering 

applications for years, has been proven recently to be a successful alternative for modeling the 

ozone disinfection process. The first applications of CFD to the ozonation process were made in 

the 1990s (Cockx et al. 1999; Huang et al. 2002). The cost of CFD is much cheaper than that of a 

physical experiment and keeps consistently dropping due to rapid development in computer 

technology.  Furthermore, CFD allows for more detailed flow analysis of full-scale ozone 

contactors before its construction. CFD has also been shown to be a useful tool for comparing 

the performances of different design options. CFD is able to provide a more accurate 

representation/description of the ozonation process because it solves mass, momentum and 

energy equations directly without requiring assumptions made by the earlier models. Several 

studies have reported on the applicability and reliability of CFD for ozonation process simulation 

(Zhang 2006; Bolaños et al. 2008). Continued advances in computational power have enabled 

highly resolved CFD analysis of the hydrodynamics in ozone reactors leading to a detailed 

description of the flow behavior. For example, CFD solutions are able to identify localized flow 
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phenomena such as short-circuiting and dead zones, shown in Figure 1.2, which reduce hinder 

disinfection efficiency.  

However, the question of how to apply CFD properly to simulation of ozone disinfection 

process is still under exploration. Generally, the simulation of ozone disinfection process is 

divided into two components, hydraulics modeling and reaction process modeling. Most of the 

previous studies have focused on hydraulics modeling (Henry and Freeman 1995; Murrer et al. 

1995; Peltier et al. 2001; and Huang et al. 2002). Several problems and issues discovered in these 

studies motivate further research. For example, the difference in residence time distributions may 

be small even when the flow fields are totally different. This indicates that differences in 

prescribed inflow conditions may have a small effect on an integrated property like the residence 

time distribution (Wols et al. 2010a). A second issue is related to the fact that flow simulations 

often require an estimate of the turbulence intensity at the inflow boundary and predictions of 

tracer residence time distribution (RTD) density can be strongly dependent on this prescribed 

inlet turbulence intensity. As shown by Huang et al. (2004), an extremely high (unphysical) inlet 

turbulence intensity was needed to obtain good agreement with RTD physical experimental data. 

More research is needed to understand the dependence of simulation results on inlet turbulence 

intensity. The current dissertation addresses other important issues associated with hydraulic 

modeling. These will be described in section 1.2. 

Attempts have been made at modeling ozonation processes under simplifications, such as 

steady flow assumption. However, there are still more developments needed for CFD models to 

reach the point of fully simulating the complicated interrelationships between physical, chemical 

and biological process in the disinfection process. For example, it is still unclear how turbulence 

affects the effective rates of chemical reactions. Several factors may be involved, such as (1) 
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whether reactants are premixed or non-premixed (2) the rate of chemical reactions relative to the 

rate of scalar mixing by the turbulence and (3) the turbulence length scales relative to the size of 

a reaction region. Adding to the modeling complexity is that chemical reactions may also affect 

turbulence by modifying the fluid properties locally (Ranade 2002).  

1.2 Objectives and Organization of the Dissertation 

The overarching objective of this dissertation is to develop and validate a modeling 

framework for the ozone disinfection process by combining CFD with kinetics-based reaction 

modeling for the first time for the prediction of disinfection performance and bromate formation. 

In order to achieve this goal, the sub-processes or components of ozone disinfection, such as 

flow, tracer transport, reactions, and inactivation, need to be investigated. Along the way several 

applications of the framework to water and wastewater treatment processes will be presented. 

The rest of this dissertation is organized as follows: 

 Chapter 2 presents a literature review on developments in CFD-based modeling for 

disinfection technologies over the last two decades. How the developments 

proposed/implemented in this dissertation fit within prior developments made by 

others is discussed. 

 Chapter 3 presents the modeling framework developed in this dissertation, in 

particular the computational approaches taken for each of the ozone disinfection sub-

processes mentioned above. This framework is unique as it combines CFD with 

kinetics-based reaction modeling for the first time for bromate prediction. 

 In Chapter 4 turbulent flow computational approaches, Reynolds-averaged Navier-

Stokes Simulation and Large Eddy Simulation, are evaluated in terms of prediction of 

hydraulic performance of contactors. 
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 In Chapter 5 the modeling framework developed in Chapter 3 is validated via 

application to a full-scale ozone contactor. The predictions in terms of ozone and 

bromate concentrations are consistent with physical measurements.  

 Chapter 6 presents extended applications of the modeling framework developed in 

this dissertation, such as an investigation of the hydraulic efficiency and its impact on 

energy consumption of ozone contactors, and a study of the hydraulics of a water 

stabilization pond. 

 Finally, Chapter 7 presents the conclusions reached by the current research together 

with recommendations for future work. 

 

Figure 1.1: Illustration of ozone disinfection in a typical ozone contactor tank. 

 

Figure 1.2: Short-circuiting and dead zones in a typical ozone contactor.  
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CHAPTER 2: DEVELOPMENTS IN COMPUTATIONAL FLUID DYNAMICS-BASED 

MODELING FOR DISINFECTION 

2.1 Introduction 

The disinfection process is a critical safety step in drinking water treatment that 

inactivates bacteria, viruses, and other pathogens. The most common disinfection approaches for 

water treatment include chlorine disinfection (including chlorination, chlorine dioxide, and 

chloramines), ozone disinfection, and ultraviolet (UV) light disinfection. The history of chlorine 

disinfection can be traced back to the late 1800s (U.S. EPA 1986) and is still one of the most 

widely used technologies in the U.S. (Solomon et al. 1998). Ozone disinfection is becoming 

increasingly important because of its effective disinfection and odor control (Crittenden et al. 

2005). Both chlorine disinfection and ozone disinfection inactivate pathogens primarily by 

oxidation. In UV disinfection, UV radiation penetrates the genetic material of pathogens and 

retards their ability to reproduce. Thus, it is a physical process rather than a chemical process, 

eliminating chemical residual issues associated with other disinfection approaches. 

The goal of optimizing contactor configuration to improve disinfection efficiency has 

driven engineers towards disinfection modeling in addition to physical experiments. The early 

models for disinfection, such as plug flow reactor (PFR) and completely mixed flow reactor 

(CMFR) were developed based on ideal flow conditions. Further details on the early models can 

be found in introductory textbooks on chemical reaction engineering (e.g., Hill 1977; Levenspiel 

1998; Fogler 1999). Successes have been reported on modeling ozone disinfection in column 



7 

contactors using the axial dispersion reactor (ADR) model combined with reaction and 

inactivation kinetics (Kim et al. 2002, 2007; Chen 1998).  However, due to the lack of 

consideration of the effects of turbulence and complex flow conditions, such as dead zones and 

short-circuiting, it is impossible to apply this kind of model to a contactor with complex 

geometry.  

With rapid advances in computing technology, CFD has been used by rising numbers of 

water and wastewater treatment researchers for troubleshooting or optimizing reactor design and 

operation. Early work has proven the applicability of CFD to disinfection processes (Do-Quang 

et al. 1997; Janex et al. 1998). It has been applied in not only evaluating the hydraulic efficiency 

(excluding reaction and inactivation) of existing reactors (including contactors for disinfection), 

but also in optimizing future reactor designs (Kim et al. 2010a; Amini et al. 2011; Wols et al. 

2008b; Evans 2003; Melissa 2010; Cockx et al. 1999; Stamou 2008). However, it is still a great 

challenge to conduct a complete CFD simulation of disinfection processes involving flow, 

reaction, and inactivation.  

The primary goal of this chapter is to identify the challenges in disinfection process 

simulation. In this chapter, the steps of a complete disinfection process simulation are first 

introduced. Then, the state of current research is reviewed by categorizing it into three groups: 

development of simulation method or framework for disinfection process, the impact of 

operation, configuration, and modeling parameters on disinfection efficiency, and optimization 

of the configuration of contactors. Then, the challenges in a CFD simulation of flow, tracer 

transport, reaction and inactivation are examined. Potential solutions to overcome these 

challenges are discussed. 
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2.2 Stages of CFD Applied to Disinfection Process 

CFD technology has been used to model the flow in water treatment since the late 1990s 

(Do-Quang et al. 1997; Janex et al. 1998), including water intake infrastructures, flocculation 

tanks, sedimentation basins, and disinfection reactors (Craig et al. 2002). The early success of 

CFD in water treatment flow simulation led to an increased interest in applying CFD to 

disinfection processes as shown by the increase in related publications in Figure 2.1. 

The increasing interest in CFD applied to disinfection process is partly due to the rapid 

advancement of computer technology making intensive computing affordable; and partly due to 

the demand for modeling of the disinfection process. The primary goals in the modeling of 

disinfection processes are to increase disinfection efficiency and reduce cost, or to optimize 

reactor design to comply with regulations or both.  

Modeling of disinfection process can be divided into four stages: flow simulation, tracer 

transport simulation, reaction process simulation, and inactivation simulation. The latter three 

stages are heavily dependent on the first one, flow simulation. Thus, the accuracy of flow 

simulation is the most important one among the four. Note that, inactivation simulation also 

needs important input from the reaction process simulation.  

2.2.1 Flow Simulation 

The most basic governing equations of incompressible fluid flow are the continuity 

equation and momentum equations (or Navier-Stokes equations). The continuity equation is   

 
   
   

   (2.1) 

where    and    are velocity and position in  -th direction. 

The momentum equations are derived from Newton’s second law. A general form of the 

momentum equations is 
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where   is time,   is fluid density,   is pressure,   is the kinematic viscosity, and    represents a 

body force (the force per unit of mass) in the  th direction. 

An important issue in flow simulation is how to treat the turbulence. Turbulent flows 

contain a large range of spatial scales, from the smallest turbulent eddies on the order of 

millimeters, to bulk flow features comparable with the size of the geometry. The range of 

motions in a turbulent flow grows with the Reynolds number (Re) generally defined as Re = 

LU/ν where U and L are a characteristic velocity and length scale of the flow.  

Three primary strategies for the treatment of turbulence are well known (Pope 2000): 

Reynolds-Averaged Navier-Stokes equations (RANS) simulation, Large Eddy Simulation (LES), 

and Direct Numerical Simulation (DNS).  

DNS resolves the governing Navier-Stokes equations numerically over the entire range of 

turbulent scales. However, the requirements on mesh resolution and time-step put high demands 

on computational resources, rendering it unsuitable for most engineering applications. More 

specifically, the grid for DNS should contain approximately Re
9/4

 points. Typical Reynolds 

numbers are O(1x10
6
) giving rise to the need for large numbers of grid points that make DNS 

computationally prohibitive.  

RANS is a statistical approach for the simulation of turbulent flow. RANS involves the 

application of Reynolds averaging to decompose Navier-Stokes equation solution variables into 

their means and the turbulent fluctuations around these means. The primary advantage of RANS 

is the relative low requirement on computer resource. Therefore, RANS has been successfully 

applied to simulation of high Reynolds number flows, such as flow simulation around a full-

scale airplane. However, RANS has two main drawbacks: 1) it only resolves the mean flow and 
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all of the unresolved turbulent scales must be modeled through an added stress term to the 

momentum equation, thus rendering the turbulence model crucial for the accurate representation 

of the mean flow; 2) no universal RANS turbulence model exists, thus a specific model may be 

needed for the particular flow problem. 

LES also aims to reduce the requirements on mesh resolution imposed by DNS. The idea 

of LES is to use a spatial filter to separate the turbulent flow field into two components. The 

larger scale, more energetic structures that can be resolved by the numerical method on a given 

mesh are referred to as the resolved scales. The smaller structures that cannot be captured by the 

mesh are called sub-grid scales. The influence of sub-grid scales on resolved scales must be 

modeled through an added stress term to the momentum equation. The principle of LES lies on 

the fact that the small (unresolved) scales of the turbulence are homogeneous and isotropic and 

therefore easier to model relative to the larger scales. Furthermore, these small (unresolved) 

scales are universal and thus the sub-grid scale (SGS) model can be applicable to different flow 

problems. Results of LES would be closer to those of DNS under mesh refinement as the size of 

scales that require modeling become smaller and less energetic. LES is in between DNS and 

RANS in terms of accuracy and computational cost. Due to the physics of turbulence in the 

vicinity of an impermeable no-slip wall boundary being considerably different from the other 

parts of flow, typical SGS models such as the Smagorinsky model (Smagorinsky 1963) are not 

suitable for representing near-wall sub-grid scales. A common solution is to refine the mesh near 

the wall to the resolution of DNS. Thus, LES still has a high computational cost that cannot be 

afforded for engineering applications. LES is sometimes performed in conjunction with a near-

wall model in order to avoid DNS-like resolution of the near-wall region (Pope, 2000). 
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2.2.2 Tracer Transport Simulation 

Non-reactive tracer transport is often incorporated into a flow simulation in order to 

investigate hydraulic efficiency of the water treatment system, for example, in terms of mean 

residence time and other quantities of interest derived from residence time distributions. The 

tracer is a conservative element, typically a dye or salt. In CFD simulation, the tracer is usually 

treated as a passive scalar which has no impact on hydraulic characteristics. The basic technique 

used to conduct a tracer study is to introduce the tracer at the reactor inlet and measure the 

response at the outlet in order to obtain residence time statistics. 

Two main approaches for the simulation of tracer transport are based on Lagrangian 

particle motion modeling (particle tracking) and solving a transport equation for tracer 

concentration, respectively. Particle tracking modeling has been applied successfully (Stropky et 

al. 2007; Thyn et al. 1998; Wols et al. 2008a). However, the Lagrangian-based approach is less 

popular than solving a transport equation for tracer concentration because common CFD codes 

are based on an Eulerian system.  

For simulation of the tracer transport in fluid flow, an advection-diffusion equation is 

used: 

 
  

  
   

  

   
 
 

   
( 

  

   
)    (2.3) 

where    is the flow velocity,   is the tracer concentration, and   is the molecular diffusivity for 

the scalar.  

To solve the above advection-diffusion equation needs the input of the flow velocity field. 

There are two strategies to input the velocity field, namely frozen flow and dynamical flow:  

1. Frozen flow: Based on the assumptions of 1) steady mean flow and 2) that tracer 

transport does not affect the flow hydraulics, the mean flow is solved first. The 
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advection-diffusion equation for scalar concentration in eqn. (2.3) is then solved 

using the frozen velocity field.  

2. Dynamical flow: This strategy consists of solving the flow equations and the 

advection-diffusion equation for tracer concentration simultaneously at each time step. 

The first strategy fits within the RANS methodology described earlier and has been 

commonly used due to its relatively low computational cost (Kim et al. 2010a; Hofman et al. 

2007a; Huang et al. 2004). Note that LES is only compatible with the second strategy of tracer 

transport simulation because LES resolves smaller scales of the flow which are inherently 

unsteady. 

2.2.3 Reaction Process Simulation 

The main goal of reaction process simulation is to predict disinfectant dose distribution, 

requiring solutions of a series of chemical reactions. For example, in ozone disinfection, 

commonly considered chemical reactions include: reaction between ozone and natural organic 

matter (NOM) or total organic carbon (TOC); self-decomposition of dissolved ozone; and 

formation of by-products, such as bromate (Crittenden et al. 2005). Similar reactions and by-

products occur in chlorine disinfection.  

To model the transport of chemical species in a fluid flow, a general advection-diffusion 

equation similar to equation (2.3) is used: 

 
   
  
   

   
   

 
 

   
(  

   
   
)     (2.4) 

where    is the flow velocity,    is the species concentration,    is the molecular diffusivity for 

the chemical species, and    is the external volumetric source term including generation, 

consumption and transfer to another phase. Typical species are listed in Table 2.1. 
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The external volumetric source term,   , on the right side of equation (2.4), makes the 

simulation of a reaction process much more complicated than tracer transport in equation (2.3). 

For example, the commonly used source terms existing in the ozone disinfection are listed in 

Table 2.1. In this table,     is the ozone decay constant,    is the concentration of dissolved 

ozone,      is the reaction rate constant for the reaction between dissolved ozone and    , 

[   ]  is the concentration of    , and    is the bromate formation rate constant. For 

dissolved ozone, the source term usually consists of the rate of dissolved ozone decay and the 

consumption rates by bromate formation,    , and pathogens. In the equation for    , a 

second-order model is  commonly used. Note that the popular source term in the equation for 

bromate listed in Table 2.1 is empirical and not kinetics-based due to the complexity of the 

bromate formation sub-processes. A kinetics-based source term for bromate will be introduced in 

Chapter 3 of this dissertation. Finally, note that the source term for the tracer is null. The reason 

why the simulation of reaction processes is challenging and possible solutions to overcome these 

challenges will be discussed in Section 2.4.  

In UV disinfection, the disinfectant is not a chemical but rather the energy of UV incident 

radiation. Thus the primary goal of this stage of UV disinfection is to predict the incident 

radiation over space. Furthermore, the radiation modeling in UV disinfection is independent 

from the flow. More details about radiation modeling are described in section 2.3.1.  

2.2.4 Inactivation Simulation 

Additional reactions between microorganisms and disinfectant are included in the 

inactivation stage. Wols et al. (2010a) has summarized and compared the existing approaches to 

estimate micro-organisms survival ratio. An overview of inactivation or disinfection calculation 

methods is shown in Table 2.2. According to the study of Wols et al. (2010a), inactivation should 
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be modeled via a particle tracking method or an Eulerian approach (that solves the scalar 

transport equation for the number of microorganisms directly) and either method should 

incorporate flow characteristics such as dead zones and short-circuiting, in order to  predict 

disinfection more accurately. However, particle tracking methods are relatively difficult to be 

implemented in traditional CFD codes because the latter are usually written in an Eulerian 

system. Thus, only Eulerian inactivation will be described in this review.  

In Eulerian inactivation, a transport equation for the concentration of microorganism is 

commonly considered to be the governing equation of the inactivation of microorganisms 

(Greene et al. 2006; Huang et al. 2004; Wols et al. 2010a): 
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)      (2.5) 

where    is the concentration of microorganism   and     is the external volumetric source 

term for microorganism  .  

Various models have been developed for the source term of microorganisms. Details of 

these models are provided in section 2.3.1.  

Using the frozen flow simulation strategy (i.e. RANS), solution of the inactivation 

equations based on RANS is typically performed after the first three components or stages 

outlined earlier (flow solution, passive tracer solution and reaction process solution) have been 

successfully computed. An overview of the four stages of disinfection process modeling by CFD 

is listed in Table 2.3. Note that in the RANS simulation strategy, computation of these stages is 

performed sequentially. In LES, all stages would be computed simultaneously. All components 

or stages comprising the outlined framework remain under active research. For example, up to 

date including this dissertation, LES has only been applied to stages 1 and 2. Challenges in 

application of LES to stages 3 and 4 will be described in upcoming sections. Overall, 
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improvement of this framework involving LES and RANS and related technologies, such as 

computer power and solution algorithms should improve the applicability and reliability of 

disinfection process simulations.  

2.3 State of Current Research in Disinfection Simulation Using CFD    

The primary interests of reported studies on modeling of disinfection process can be 

categorized into the following three groups: 

 Development of simulation method or framework for disinfection process. 

 The impacts of parameters (to be described below) on disinfection efficiency. 

 Optimization of the configuration of contactors. 

2.3.1 Development of Simulation Methods for Disinfection Process 

Framework and simulation methodology development have always been at the frontier of 

disinfection simulation research. Before CFD technology was applied to the area of disinfection 

process, early research developed several simplified models for the flow in disinfection 

contactors, such as the axis dispersion reactor (ADR) model (Chen 1998; Kim et al. 2002; Kim et 

al. 2007) and the back flow cell model (BFCM) (Nguyen-Tien et al. 1985). However, these 

models cannot meet the demand of industry any longer due to limited applicability (usually the 

simplified models are only for contactors with simple geometries) and insufficient accuracy.  

At the end of 1990s, researchers recognized the potential of CFD technology for 

improving disinfection modeling. Cockx et al. (1999) conducted simulations of the flow in two 

ozone disinfection towers using a two-phase flow CFD code. In their model (Cockx et al. 1999), 

a source term which represents mass transfer was introduced to achieve the dissolved gas 

concentration held in the reactor. Greene et al. (2002) developed a CFD-based framework to 

predict flow structure, mass transport and chlorine decay in a continuous flow pilot scale reactor. 
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This framework was verified by a test case comparison with physical experimental 

measurements. Greene et al. (2004) developed a CFD-based framework that incorporates 

experimentally derived terms for chlorine decomposition and microbial inactivation based on the 

work of Haas et al (1995). The results from this model (Greene et al. 2004) showed good 

agreement with the physical experimental data set over a wide range of microbial inactivation 

rates. 

In order to reduce the high computational cost of CFD, researchers have developed a 

compartmental hybrid model of the completely mixed flow reactor (CMFR) and the plug flow 

reactor (PFR) (Gresch et al. 2009; Mandel et al. 2012) models. Although this kind of model is 

computationally-effective and easy to use, it has a relative low spatial resolution of the flow, 

which may cause serious accuracy problems. Additionally, compartmental models are unable to 

respond to varying flow conditions, thereby rendering them not practical for prediction. For 

example, a change in flow rate could potentially affect the size of dead zone regions or strength 

of short-circuiting. However, the compartmental model would not be able to detect this. Thus, 

the compartmental model is helpful for rapid analysis but not practical for prediction. 

Bolaños et al. (2008) discussed the applicability of CFD to simulate ozonation processes 

in ozone disinfection. This research proposed the set of Navier-Stokes equations with effective 

density and effective viscosity applied to two-phase flows if the dispersed phase elements are 

small. Their simulation predicted ozone decay but did not represent bromate formation. Results 

from the study of Bolaños et al. (2008) demonstrated that CFD is an efficient tool to study 

mixing flow characteristics and inactivation processes in existing water treatment plants and for 

predicting process performance of new designs. 
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Besides simulations of flow in lab-scale contactors, attempts at applying CFD to full-

scale contactors in water treatment plants have been conducted (Huang et al. 2004; Hofman et al. 

2007a; Zhang et al. 2007; Talvy et al. 2011). Hofman et al. (2007a) applied CFD to the Leiduin 

water treatment plant, in the Netherlands. The disinfection performance of the ozone treatment at 

the plant was predicted and compared with experimental data. Talvy et al. (2011) used CFD to 

assess the ozone disinfection in the Tailfer plant in Brussels, Belgium. Zhang et al. (2007) 

developed a multiphase CFD framework to address all the major components of ozone 

disinfection processes at the Charles DesBaillets Water Treatment Plant in Montréal, Canada. 

The previously described simulations have predicted ozone decay but most of them have not 

predicted bromate formation. Zhang et al. (2007) used an empirical based model, rather than a 

kinetic-based model, to predict bromate formation. This will be described in more detail further 

below.  

Kim et al. (2009) was the first to apply LES for analysis of flow in reactors as prior 

studies had been based on RANS. Kim et al. (2010a) concluded that the inability of RANS to 

capture turbulent flow structures in a baffled ozone contactor may lead to a poor prediction of 

tracer transport statistics such as t10 (i.e. the time it takes for 10 percent of the tracer injected at 

the inflow to reach the outflow). These statistics are often used for evaluating hydraulic 

efficiency. LES was proposed as a more accurate alternative to RANS due to its improved 

prediction of tracer transport statistics. The current dissertation work described in Chapter 4 

revisited the numerical and experimental studies of Kim et al. (2010b) and found that the poor 

performance of RANS compared to LES observed by Kim et al. (2009) may have been due to 

inappropriate use of the turbulence model. It was found that for the near-wall resolving grid used 

by Kim et al. (2009), RANS with a low-Reynolds number turbulence model such as the Lauder-
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Sharma k-ε model (Wilcox, 1994) leads to more accurate tracer transport statistics than RANS 

with the standard k-ε model (Wilcox, 1994). Application of the standard k-ε turbulence model on 

coarser grids led to better results. The reason for this is that the standard k-ε turbulence model is 

designed for coarse meshes that do not resolve viscous, near-wall dynamics. These results have 

been recently published in Zhang et al. (2013a). 

Equations governing flow and tracer transport solutions (excluding the turbulence model) 

are general to disinfection simulation frameworks. Differences appear when modeling the 

reactions. For modeling chlorine disinfection, the commonly used reaction system consists of 

chlorine decay only (Greene 2002; Greene et al. 2006). For modeling ozone disinfection, the 

commonly considered reactions include ozone decomposition, reaction between ozone and 

instantaneous ozone demand (IOD) or natural organic matter (NOM) or total organic carbon 

(TOC), and bromate formation. A summary of the reaction systems used in CFD simulations of 

ozone disinfection is given in Table 2.4.  

In the studies that considered bromate formation, an empirical model under the 

assumption that bromate concentration changes linearly with ozone exposure was used to 

represent the process (Zhang 2006; Bartrand 2006; Zhang et al. 2007). Although Zhang (2006) 

and Zhang et al. (2007) have a bromate formation module in their framework, these authors 

deemed not practical to predict bromate formation due to the sensitivity of the process of 

bromate formation to water quality. Bartrand (2006) showed prediction of bromate formation in 

the Alameda County Water District ozone contactor in Fremont, CA. However, the predictions 

were not compared with physical experimental data. Instead of empirical modeling, Mandel et al. 

(2012) used a quasi-mechanistic chemical model or kinetics-based model to represent the process 

of bromate formation. However, a systematic network was used by Mandel et al. (2012) to 
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represent the flow (rather than CFD), thereby reducing the accuracy of the flow solution and 

consequently reducing the fidelity of ozone and bromate concentration predictions.  

This dissertation develops a novel CFD-based framework comprised of a kinetics-based 

model for ozonation process in ozone contactors. This modeling framework has been validated 

via application to a full-scale ozone contactor operated by the City of Tampa Water Department. 

Predictions of ozone and bromate concentrations from the model have shown good agreements 

with physical measured data. The contribution of this dissertation relative to previous studies is 

highlighted in Figure 2.2.  

For modeling of UV disinfection, the primary focus in this stage is the radiation modeling. 

In turn, the radiation model appears as part of the source term in the advection-diffusion 

transport equations for inactivation of microorganisms. A summary of the radiation models used 

in the modeling of UV disinfection process up to date is listed in Table 2.5.  

Although various inactivation models have been developed for the source terms of 

advection-diffusion equations governing the concentration of microorganisms (Gyurek and Finch 

1998), only the Hom-Haas model and the Chick-Watson model have been put to practice in CFD 

codes. The Hom-Haas model can represent the inactivation kinetics more accurately than the 

Chick-Watson model (Haas and Karra 1984a, b; Zhang 2006). The source term expression given 

by the Hom-Haas model is 
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where    is the initial concentration of the microorganism m,      is the inactivation rate 

constant for the microorganism m,    the disinfectant (i.e. ozone or chlorine) concentration, and x 

and y are constants. Table 2.6 lists literature-reported constants for various pathogens. 
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Inactivation rate constants depend on the target species and temperature. For the case when x = y 

=1 the Hom-Haas model reduces to the Chick-Watson model: 

     
   
  

           (2.7) 

Although the Chick-Watson model does not consider the effect of initial microorganism 

concentration and has a limited applicability, it has been more popular in practical modeling than 

the Hom-Haas model due to its simplicity (Wols et al. 2010a; Bolaños et al. 2008; Bartrand 

2006; Huang et al. 2004). However, as affordable computational power is becoming available, 

more accurate and complicated kinetics models have been employed, such as the Hom-Haas 

model (Zhang et al. 2007; Zhang 2006) or other application-specific models (Talvy et al. 2011). 

The inactivation models used in UV disinfection are similar to those used in ozone and 

chlorine disinfections except that the disinfectant concentration in equations (2.6) and (2.7) needs 

to be replaced with incident radiation, G. (Models for G were summarized in Table 2.5.) For 

example, in the Chick-Watson model, which has been widely used in modeling of UV 

disinfection (Chiu et al. 1999; Ducoste et al. 2005; Lyn et al. 1999), the source term can be 

written as  

               (2.8) 

where       (unit: m
2
/(Ws)) is the intrinsic rate constant of the microorganism m. 

2.3.2 Parameter Studies of Modeling Disinfection Process 

Several parameters related to disinfection efficiency have been studied via CFD. These 

parameters can be divided into the following three categories: 

 Operation parameters 

 Configuration parameters 
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 Parameters in modeling 

The operation parameters studied by CFD include: pH (Kim 2005), temperature (Kim 

2005; Talvy et al. 2011), bubble size variation (Talvy et al. 2011), ozone-consuming substances 

(OCS) variation (Huang et al. 2004), dead zone volume percentage (Lee et al. 2011) and kinetics 

and mixing state among others. The studied configuration parameters include: inlet 

configurations (Greene 2002; Greene et al. 2002), the direction and magnitude of the inlet flow 

(Ta and Hague 2004), the method of tracer injection (Zhang et al. 2008), sampling locations 

(Zhang et al. 2008), the ratio of length of flow to width of flow (Peplinski et al. 2004) and wall 

reflection of light (Chen et al. 2011). The parameters in modeling are the parameters involved in 

development of the CFD analysis, such as the effect of turbulence model, time step (Peplinski et 

al. 2004), turbulent intensity of inflow conditions (Huang et al. 2002), turbulent Schmidt number 

(Kim et al. 2013) and so on. The impacts of studied parameters on disinfection efficiency or 

predicting disinfection efficiency are summarized in Table 2.7. 

A better understanding of the relationships between disinfection efficiency and operation 

parameters is helpful for troubleshooting existing facilities in water treatment plants. For 

example, the CFD simulation of the flow in the Tailfer plant, in Belgium (Talvy et al. 2011), 

helped to identify problematic issues caused by the low operating temperature. Another example 

is that sampling location has been observed to have a significant influence on tracer RTD 

prediction (Zhang et al. 2008), suggesting that multiple sampling points should be employed 

during physical measurements. 

2.3.3 Optimization of the Configuration of Contactors 

Contactor configuration optimization which aims to obtain the maximum disinfection 

efficiency is an important research direction in water and wastewater treatment industry. Note 
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that here hydraulic efficiency is considered an index of disinfection efficiency in accordance 

with the majority of the literature.  

It is well-known that reduction of dead zones and short-circuiting leads to improved 

disinfection efficiency (Wols et al. 2008a; Bolaños et al. 2008; Kim et al. 2010a; Amini et al. 

2011; Zhang et al. 2013b). Increasing the number of baffles is a commonly used approach to 

reduce dead zones and diminish short-circuiting. Several studies have concluded that an increase 

of the number of baffles usually leads the fluid flow to approach plug-flow conditions 

characteristic of a plug-flow reactor (Kim et al. 2010a; Amini et al. 2011; Wols et al. 2008a). 

Essential for achieving plug-flow conditions is the use of spatial separation of the flow to limit 

diffusion between chambers. However, a minor side effect caused by the increment of baffles is 

that more energy needs to be spent on driving the flow through the contactor as will be seen in 

Chapter 6 of this document as well as in a recently published article (Zhang et al. 2013b).  

Instead of increasing the number of baffles, proper rearrangement of chambers may have 

the same effect of reducing dead zones and diminishing short-circuiting. In the study of Amini et 

al. (2011), it is shown that the hydraulic efficiency of a six-baffle wall contactor with a proper 

rearrangement can be higher than that of a contactor with nine baffle walls.  

Proper adjustment of the locations of inlet, outlet and diffusers may also improve 

hydraulic conditions. The hydraulic efficiencies of nine configurations of a disinfection tank with 

different inlet and outlet locations were compared by Stamou (2008). The one with the best 

hydraulic efficiency was proposed for construction. Cockx et al. (1999) conducted two-phase 

flow simulations of an initial disinfection tank and a refurbished disinfection tank with an 

adjustment of the locations of ozone diffusers. Their numerical results found that the refurbished 

disinfection tank could achieve a higher inactivation level for Cryptosporidium at the same 
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operation costs. Modifying the shape of the baffle (such as adding a turning vane at the baffle 

end) to make the flow turn smoothly, is another way to reduce dead zones (Wols et al. 2010a). 

Tafilaku et al. (2010) conducted a numerical study on three designs of a disinfection clearwell 

with concentric baffles, conventional serpentine baffles and modified serpentine baffles. Results 

showed the configuration with conventional serpentine baffles had the highest hydraulic 

efficiency among these three configurations.  

Minor modifications of existing contactors to improve disinfection efficiency have been 

made based on troubleshooting existing contactors via CFD. Such modifications include adding 

chambers, increasing end gap and so on (Phares et al. 2009). Attempts at optimizing the 

configuration of contactors with the aid of CFD simulations are summarized in Table 2.8. 

2.4 Challenges in Disinfection Process Simulation 

Most reported studies have focused on flow and tracer transport simulation, and few 

studies have involved the simulation of chemical reaction process as well (Cockx et al. 1999; 

Greene 2002; Huang et al. 2004; Zhang 2006; Bartrand 2006; Zhang et al. 2007; Bolaños et al. 

2008; Wols et al. 2010a; Talvy et al. 2011). Studies that have incorporated inactivation kinetics 

modeling into CFD are even fewer (Huang et al. 2004; Zhang 2006; Zhang et al. 2007; Bolaños 

et al. 2008; Wols et al. 2010a; Talvy et al. 2011). The present review study found that the 

challenges existing in the disinfection process simulation include: 1) unsteady flow effects, 2) 

multiphase flow effect, 3) complexity of reaction system, 4) uncertainty of inactivation kinetics, 

and 5) closure problem for chemical source terms.   

2.4.1 Unsteady Flow Structure Effect  

As mentioned earlier, the accuracy of flow simulation is critical to disinfection process 

modeling. The majority of studies have successfully employed RANS for flow and tracer 



24 

transport simulation. As will be seen in the upcoming chapter 4, the primary reason why RANS 

has been successful for baffled contactors is because steady or quasi-steady short-circuiting 

exists in most baffled contactors and the unsteady (intermittent) small-scale eddies have 

negligible impact on tracer transport (Zhang et al. 2013a). However, since RANS resolves the 

mean flow only, a significant error may appear once energetic unsteady flow structures develop 

in the flow. Recent reports as well as the study in Chapter 4 have pointed out that under such 

conditions LES is a more suitable approach than RANS due to its capability of capturing 

unsteady flow features (Wols et al. 2010c; Kim et al. 2010a).  

In a UV disinfection application, Wols et al. (2010c) found that RANS wrongly predicts 

local flow features around a UV lamp. This phenomenon was mainly caused by Kármán Vortex 

Street which is a typical unsteady flow structure in a flow around a blunt body. LES was 

employed and matched the experimentally measured velocity profile better than RANS. The 

author in this dissertation (see Chapter 4) investigated a baffled contactor and a column contactor 

which are typically used for ozone and chlorine disinfection. Results showed that LES is a more 

reliable strategy than RANS in simulating tracer transport in column contactors due to its ability 

to better predict the spatial transition to turbulence characterizing the flow. However, in baffled 

contactors where such transition does not occur and the flow is characterized by a quasi-steady 

short circuiting jet and dead zones, RANS performs on par with LES.  

Besides the significant impact on tracer transport, unsteady flow structures are expected 

to have considerable impact on reaction and inactivation processes. Further exploration of this 

issue using higher resolution approaches such as LES, detached LES (Spalart et al. 1997; Strelets 

2001) or even DNS should be explored in the future as computational power becomes more 

affordable. Detached LES or DES is a hybrid between LES and RANS. In regions where 
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unsteady features are important the DES behaves as LES and in regions where the mean 

component is the primary feature DES behaves as RANS. 

2.4.2 Multi-phase Flow Effect 

For ozone disinfection process simulation, a multi-phase flow simulation should be more 

accurate than a single-phase flow simulation since it is closer to reality. However, the majority of 

previous studies tended to neglect the effect of gas phase in the disinfection process for two 

reasons: 1) unknown parameters, such as bubble size distribution, mass transfer coefficients, 

models for closure of the two-phases, etc.; 2) a single-phase flow simulation is algorithmically 

simpler and less computationally expensive.  Only a small portion of studies have conducted 

multi-phase flow simulations (Cockx et al. 1999; Bartrand et al. 2009; Ta and Hague 2004; 

Bolaños et al. 2008; Talvy et al. 2011).   

Bartrand et al. (2009) found that for water flow down a vertical column contactor with a 

counter (upward) gas flow, an increment of gas flow rate would promote stronger short-

circuiting in both physical experiments and numerical simulations. Based on the simulation 

results, the explanation for this was that the upward flow of the liquid phase within the bubble 

plume and reduction of the effective column cross sectional area through which downward-

flowing liquid passes result in stronger short-circuiting. However, for a baffled contactor, 

especially a full-scale baffled contactor, the impact of gas flow on water flow may be less 

significant due to a lower ratio of gas flow rate to liquid flow rate. For example, the ratio of gas 

flow rate to liquid flow rate for a typical full-scale baffled contactor in a water treatment plant is 

1.6%~3.3% (Talvy et al. 2011) while that for a column contactor the ratio is 7.6%~45% 

(Bartrand et al. 2009; Bolaños et al. 2008). Furthermore, in a column contactor, the gas flows in 

opposite direction to the bulk water flow and thus can significantly affect the overall flow, 
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whereas in a baffled contactor, the gas flow can potentially influence the water flow only in the 

chambers where the gas diffusers are located, thereby making the effect of the gas flow on the 

overall flow less significant. In order to better understand the role of gas flow in the disinfection 

processes for both column and baffled contactors, further exploration via simulations and 

physical experiments is required. 

2.4.3 Complexity of Reaction System  

The overall complexity of the reaction system is mainly caused by the variety of species 

present in the system and the complexity of kinetics for each elementary reaction. Usually, the 

reaction system in a disinfection process consists of an excessively high number of elementary 

reactions to be covered by modeling. Thus, it is necessary to develop a truncated or reduced 

reaction mechanism. The reduced reaction mechanism should contain a minimum number of 

species while preserving the characteristics of the reaction system.    

An approach to simplify a reaction system is time-scale analysis (Okino and 

Mavrovouniotis 1999). The basic steps behind time-scale analysis are 

 Identify regions exhibiting different time scale behavior; 

 Identify species having a fast reaction rate or fast time scale within each region and 

lump them into a smaller set of pseudo species; 

 Simulate the dynamics of the reaction system by a smaller set of variables 

characteristic of each region.   

Another approach is to consider only the global reaction of the species of interest. This is 

commonly used in chlorine and ozone disinfection process simulation.  

Besides the number of reactions, the complexity of reaction kinetics serves to increase the 

difficulty of modeling as well. Typically, first-order reaction kinetics is sufficient to describe the 
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reaction system. However, in reality, the reaction rate could be higher or lower than first order, 

or in other complicated forms. For example, the kinetics of ozone decomposition used in 

reported studies is of first-order reaction rate (Cockx et al. 1999; Huang et al. 2004; Zhang 2006; 

Bartrand 2006; Zhang et al. 2007; Bolaños et al. 2008; Wols et al. 2010a, b; Talvy et al. 2011); 

however, as reported by Gurol and Singer (1982), ozone decomposes by a second-order reaction. 

The uncertainty of the reaction rate constants also has a significant impact on the accuracy of 

predictions as will be seen in Chapter 5. Since reaction rate constants depend on environmental 

parameters, such as pH and temperature, it is critical to use appropriate reaction rate constants in 

modeling.  

In this dissertation, the reaction system in ozone disinfection process has been simplified 

as a 6-species-6-reaction system. The kinetics of bromate formation is represented by a series of 

reactions which have not been employed in previous CFD studies. Details of this reaction system 

are provided in Chapter 3.  

2.4.4 Uncertainty of Inactivation Kinetics  

For chemical disinfection (e.g. ozone disinfection, chlorine disinfection), the specific 

mechanisms of microorganism inactivation are not well understood (Crittenden et al. 2005). 

Inactivation kinetics could be of either first-order reaction or second-order reaction or even 

higher-order. And the inactivation rate depends on the properties of each microorganism, the 

disinfectant and the environmental parameter, such as temperature and pH. Furthermore, the 

inactivation rate can vary by as much as six orders of magnitude from one organism to another, 

even for the same disinfectant (Crittenden et al. 2005). How to overcome the uncertainties in 

inactivation kinetics and rate constants remains a challenge in the modeling of disinfection 

process, especially with various pathogens.  
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Several inactivation kinetic models have been developed. Gyurek and Finch (1998) have 

written a summary of the inactivation kinetic models. In experiments of ozone disinfection for 

HPC bacteria (Gyurek and Finch 1998), the Incomplete gamma Hom (I.g.H.) model showed the 

best performance in describing the HPC bacteria survival curve. However, the most commonly 

employed inactivation kinetic model in CFD has been the Chick-Watson model which has the 

simplest formula, as described earlier. 

Although inactivation kinetics models have been developed, there is still important 

information missing for conducting a CFD simulation involving inactivation. For instance, up to 

date, the appropriate amounts of ozone needed to inactivate Cryptosporidium oocysts in water at 

various temperatures and pHs have not been clearly defined (Juranek 1995). As a result, previous 

disinfection modeling studies (Zhang 2006; Zhang et al. 2007; Wols et al. 2010a, b; Bolaños et al. 

2008; Talvy et al. 2011; Huang et al. 2004) have not considered the consumption of disinfectant 

by pathogens. Note that the existing inactivation models such as the Hom-Haas model and the 

Chick-Watson model are only for calculating the pathogen decay rate without considering the 

corresponding consumption of disinfectant. Fortunately, in practice the consumption by 

microorganisms is usually low. Thus it is acceptable to neglect the consumption by 

microorganisms in modeling.   

2.4.5 Turbulence-chemistry Interaction   

Closure for chemical source terms is important in the modeling of finite rate reactions. 

Usually the reactions in disinfection process can be categorized into finite-rate chemistry or slow 

chemistry. For slow chemistry (as is the case for the ozonation process reactions considered in 

the present study) the turbulence-chemistry interaction is simple since mixing by turbulence is 

fast enough that the mixing is complete before the reaction occurs. A first-order moment closure 
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method has been commonly used to treat the turbulence-chemistry interaction in slow chemistry. 

However, it is much more challenging to treat the turbulence-chemistry interaction in finite rate 

chemistry. Ranade (2002) and Fox (2003) have explained the closure problem encountered in the 

modeling of reactive flow with finite rate chemistry. In this section, a brief introduction of this 

closure problem and potential solutions are discussed. 

2.4.5.1 Turbulence-chemistry Interaction in Disinfection Process Modeling  

Closure of chemical source terms is required for RANS or LES, but not for DNS. In 

RANS, the governing equation of species transport phenomena is Reynolds-averaged. In the case 

of Eqn. (2.4), Reynolds-averaging leads to:  

 
 〈  〉

  
 〈  〉

 〈  〉
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 〉

   
 
 

   
(  

 〈  〉

   
)  〈   〉 (2.9) 

where 〈 〉  denotes the Reynolds-averaging operation. The Reynolds average of a quantity 

corresponds to the mean of that quantity. The primes in Eqn. (2.9) correspond to turbulent 

fluctuations about their corresponding means. In a RANS simulation these fluctuations are not 

accessible (computed), thus the term 〈  
   
 〉 in Eqn. 2.9 (arising from Reynolds-averaging) needs 

to be closed or modeled. This closure problem is similar to the classical Reynolds stress closure 

problem in the momentum (Navier-Stokes) equations requiring the use of a turbulence model 

such as the well-known k-ε turbulence model (Wilcox 1994). Note that LES is characterized by a 

similar closure problem arising due to the spatial filtering of the equations (in similar fashion to 

the Reynolds-averaging operation in RANS). These closure problems in RANS and LES will be 

described in more detail in the upcoming chapter.  The most difficult term to close or model in 

Eqn. (2.9) is the Reynolds-averaged chemical source term 〈   〉. The nonlinearity of the chemical 

source term gives rise to the need for a closure. Take natural organic matter in ozone disinfection 
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(NOM) for example. Recall the source term for NOM in Table 2.1; thus, the Reynolds-averaged 

source term for concentration of NOM would be  

 〈 [   ]〉       {〈[   ]〉〈  〉  〈[   ]
   
 〉} (2.10) 

where      is a second-order rate constant; 〈  〉  and   
  are mean and fluctuation of the 

concentration of dissolved ozone respectively; 〈[   ]〉 and [   ]  are mean and fluctuation of 

the concentration of fast reacting NOM  respectively. 

The covariance term in Eqn. (2.10), i.e. 〈[   ]   
 〉, must be closed or modeled since 

[   ]  and   
  are fluctuations that are not accessible in RANS.  

If the reaction rate is much slower or much faster than the turbulent mixing rate, the 

source term in (2.10) can be modeled by a first-order closure method (i.e. 〈[   ]   
 〉    in 

Eqn. (2.10)) (Fox 2003). This will be the closure adapted in this dissertation. If the reaction rate 

is comparable to the mixing rate, the covariance term in (2.10) cannot be neglected. The 

covariance term could be a complicated function of the reaction rates and flow condition making 

it difficult to find a general method for obtaining a closure model over a wide range of chemical 

time scales.  

2.4.5.2 Potential Models for Finite-Rate Reaction in Disinfection Process  

The physical significance of covariance terms such as 〈[   ]   
 〉  is the interaction 

between reaction and turbulence mixing or turbulence chemistry interaction. To model the 

turbulence-chemistry interaction could be even more challenging than to develop a pure 

turbulence model (i.e. a Reynolds stress model) due to the complexity of the interactions and the 

number of species in a reaction system (Georgiadis et al. 2009).  

The existing models for finite-rate chemistry can be categorized into two groups: PDF 

(probability distribution function) models and non-PDF models.  
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The PDF models, especially the transport PDF models (Ranade 2002), can provide a 

complete description of the reaction process. However, to solve the PDF model is a challenge for 

CFD codes which are based on Eulerian system. Usually, the PDF models are suitable for 

Lagrangian CFD approaches such as Monte-Carlo methods. These models are computational-

intensive and difficult to be implemented into Eulerian CFD codes. A solution to this drawback 

is to use a presumed or pre-determined PDF model rather than solving for it. But, the presumed 

PDF model can be unreliable and inaccurate if the statistical data of the underlying physical 

experiment is not available as is the common situation. Thus currently, PDF models are usually 

not practical for modeling chemical disinfection processes. 

Early attempts at using non-PDF models were simple, focusing on simulating the 

interaction of micro-mixing and chemical reactions. Examples include the engulfment model 

(Baldyga and Bourne 1989) and the Interaction by Exchange with the Mean (IEM) model (David 

and Villermaux 1975). However, the effects of large scale (or macro) flow structures, such as 

short-circuiting and dead zones occurring in disinfection contactors, were not considered in these 

models (Ranade 2002). However, the simplicity of the IEM model makes it useful for verifying 

sensitivity to micro-mixing effects (Fox and Villermaux 1990; Fox 1991; Fox et al. 1994). The 

IEM model is a simple age-based model. The more complicated age-based models are based on 

residence time distribution (RTD) obtained from tracer tests. Since RTD is usually generated by 

the data measured at the exit of a reactor, the aged-based models cannot be used to predict the 

concentration distribution inside a reactor. Note that the age-based models are based on a 

Lagrangian system.  

The linear eddy model (Kerstein 1988, 1990, 1992) is another kind of model which aims 

to model the turbulent mixing and reaction of a scalar quantity (e.g. a chemical species). The 
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basic idea of the linear eddy model is to treat convection and diffusion separately as two different 

mechanisms acting on the evolution of chemical species. This provides a useful and insightful 

way to look into the turbulent mixing of the reacting species. Monte-Carlo simulation is required 

for the time evolution of chemical species thus making the linear eddy model generally 

inaccessible to the more popular Eulerian-based CFD codes. 

Next the discussion turns focus on models which are more suitable to be implemented 

into Eulerian-based CFD codes. These models are moment closures, including both first-order 

and higher-order moment closures, and multi-environment models with and without presumed 

PDF models. 

In the situation that the chemical time scales are all large compared with the mixing time 

scale, i.e. the slow-chemistry limit, a simple first-order moment closure can be adequate. The 

‘default’ closure in most commercial CFD codes is to assume that all scalar co-variances are zero 

(Fox 2003), which is the simplest first-order moment closure. This will also be the case in this 

work. However, if any chemical reaction is faster than the turbulent mixing, this approximation 

would result in a poor prediction. Thus, first-order moment closures should be used cautiously 

when applied to reactive flow with finite chemistry.  

Several attempts have made at developing higher-order moment closures (Dutta and 

Taebell 1989; Heeb and Brodkey 1990; Shenoy and Toor 1990). The simplest closure approach 

is to relate the covariances of reactive scalars to the variance of mixture fraction which can be 

computed by solving inert-scalar-variance transport equations along with the transport equation 

for the mean mixture fraction (Fox 2003). Although this approach has the ability to be applied to 

one-step chemistry, the extension of this approach to multi-step chemistry has proven to be 

unreliable (Fox 2003). A more general higher-order moment closure strategy consists of solving 
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the transport equations for the scalar covariances directly. However, as shown by Fox (2003), 

this strategy would generate higher order moments (e.g. triple correlations) that need extra 

models which have not been developed yet. 

Multi-environment models are another category of Lagrangian models. In these models, 

the well macro-mixed reactor is broken up into sub-grid-scale environments with uniform 

concentrations. For example, in a four-environment model (Villermaux and Falk 1994), 

environment 1 contains fluid entering the system through the first feed stream; environments 2 

and 3 contain partially mixed fluid; and environment 4 contains fluid entering the system through 

the second feed stream. Chemical reactions can only occur in environments 2 and 3. Such a 

model has been used to represent mixing in semi-batch reactors of different sizes studied by a 

novel parallel-competing test reaction and mixing of a stream of initiator in a recycle tubular 

reactor packed with static mixers for the polymerization of styrene (Villermaux and Falk 1994).  

Multi-environment models have provided a flexible yet simple framework for modeling 

turbulent reactive flow. And it has been demonstrated that multi-environment models have the 

ability to simulate not only slow and fast reactions (Ranade and Bourne 1991), but also finite-

rate reactions (Ranade 2002). However, since the relative volume of each environment and 

exchange rates between environments must be specified, it is a challenge to fit the parameters in 

the model when applied to general problems, especially problems with complex geometries. 

As demonstrated by Fox (1998; 2003), it is possible to reformulate multi-environment 

models in terms of a multi-peak presumed joint PDF leading to a closed form of the chemical 

source term. Fox (1998) successfully applied a four-environment presumed PDF model to fully-

developed turbulent flow with a two-step reaction in a one-dimensional tubular reactor. 

Comparing to a full PDF model, the primary advantage of multi-environment presumed PDF 
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models is the fact that it is not necessary to integrate with respect to the joint composition PDF in 

order to evaluate the chemical source term since the latter has been closed. However, it requires 

particular attention to the definition of the micro-mixing terms when the model is extended to 

inhomogeneous flow (Fox 1998), or to homogeneous flows with uniform mean scalar gradients 

(Fox 2003).  

There are a few other non-PDF models for simulation of reactive flow, for example, 

laminar diffusion flamelets (Peters 1984, 2000) and the conditional-moment closures (Tsai and 

Fox 1995). These models are not discussed here as they have been primarily designed for 

combustion. A summary of the closures for the potential chemical source term in disinfection 

process simulation is shown in Table 2.9.  

The above models have been mainly developed for RANS simulation. In LES, a similar 

closure problem exists requiring modeling of the covariance of spatially filtered chemical source 

terms, which are to take into account the sub-grid turbulence-chemistry interaction. Closures 

based on LES have been developed for combustion (Fureby 2008; Pitsch et al. 2008). However, 

to the authors’ knowledge, no LES-based closure has been developed for water flows with finite-

rate chemistry which are commonly seen in water and wastewater treatment plants. Nevertheless, 

semi-empirical methods, such as the Partially Stirred Reactor (Correa 1993), the Eddy 

Dissipation Concept (EDC) (Berglund et al. 2008; Fureby 2007) and Thickened Flame Model 

(TFM) (Colin et al. 2000) developed for LES simulation of combustion are valuable references 

for developing a closure method suitable for disinfection process simulation. With the growing 

popularity of LES due to the advancement of computational power, attempts have been made to 

develop closures for LES in the last decade. For example, an attempt to model the covariance of 

filtered chemical source terms in LES was made by Fox (2003). According to Fox (2003), in 
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theory the multi-environment presumed PDF models initially developed for RANS can be 

extended to LES. And all the procedures in the RANS-based multi-environment presumed PDF 

models can be re-used in developing an LES-based multi-environment presumed PDF model 

with a few minor modifications.   

2.5 Chapter Summary 

CFD applied to disinfection studies has become more prominent due to advancement of 

computing power. Studies reviewed here concentrated on the development of a simulation 

method or framework for the disinfection process, the impacts of parameters on modeling 

disinfection, and optimization of the configuration of disinfection contactors. Relationships 

between parameters, such as operation parameters (e.g. pH and temperature), configuration 

parameters (e.g. flow length to width ratios), modeling parameters, and disinfection efficiency 

were summarized. Ways that can increase disinfection efficiency by optimizing contactor 

configuration were summarized as well. Challenges in simulation of disinfection process were 

identified and discussed. For example, challenges in resolving unsteady flow features may be 

overcome by advanced turbulence resolving approaches such as LES. This is one of the major 

topics of this dissertation and will be explored further in the next chapter. Turbulence-chemistry 

interaction is the most challenging issue. Although several closures were discussed for 

turbulence-chemistry interaction in this review, it is difficult to assess the accuracy of such 

closure models for turbulence-chemistry interaction unless the errors caused by poorly resolved 

or unresolved unsteady flow features, multi-phase flow, and uncertainty of reaction system have 

been sufficiently reduced. Thus, this dissertation focuses on the following two topics: 1) 

evaluation of computational methodologies for turbulent flow in ozone contactors with emphasis 

on hydraulic performance; 2) the development of a reaction modeling framework with a kinetics-
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based sub-model for bromate formation. Prior models of bromate formation in CFD simulations 

have been empirically based. In these previous models, tuning of the reaction rate constant based 

on physical experimental data from the disinfection system being modeled is required. Thus the 

kinetics-based model developed and tested here represents a move towards reaction modeling 

independent of disinfection system-specific experimental data.  

 

 

Figure 2.1: Statistics of publications on CFD applied to disinfection (searched with Engineering 

Village and Web of Knowledge). 

 

 

Figure 2.2: Modeling frameworks of previous full-scale contactor tank studies (adapted from 

Mandel et al. 2012). 
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Table 2.1: Commonly used source terms of transport equations for modeling ozone disinfection 

process. 

Species 
Source terms for transport 

equations 
References 

Dissolved 

ozone,    
          

Sotelo et al. (1987); Beltrán 

(1995); Muroyama et al. (1999); 

Huang et al. (2004) 

NOM   [   ]       [   ]   
Lev and Regli (1992); Chen (1998); Kim 

et al. (2002) 

Bromate,             
von Gunten (1994); Tang et al. (2005); 

Kim (2002) 

Tracer       Zhang (2006); Zhang et al. (2007) 

 

Table 2.2: An overview of disinfection calculation methods (adapted from Wols et al. (2010a)). 

Method Required information 

CT10-method  RTD (residence time distribution) 

CSTR-method  Number of compartments 

Segregated Flow Analysis  RTD 

Micro-mixing analysis  RTD 

Eulerian mean CT (concentration-contact 

time) value  

CFD (flow velocities, turbulent diffusivities, 

disinfectant concentrations, etc.) 

Eulerian direct inactivation  
CFD (flow velocities, turbulent diffusivities, 

disinfectant concentrations, etc.) 

Particle tracking 
particle trajectory, CFD (disinfectant 

concentrations) 
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Table 2.3: An overview of the four stages of disinfection process modeling by CFD (adapted 

from Wols et al. (2010b)). Note that the flow simulation stage underlies the entire framework. 

Stages Methodologies and models Physical quantities 

Stage 1: Flow 

Simulation 

RANS or LES based on Navier-

Stokes Equations; 

Turbulence modeling for RANS or 

SGS modeling for LES. 

Flow fields (e.g. velocity, 

pressure); 

Turbulent properties 

 

Stage 2: Tracer 

Transport 

Simulation 

Advection-diffusion equation for 

passive scalar 

Tracer concentrations; 

Residence time distribution 

Stage 3: Reaction 

Process Simulation 

Species transport equations; 

Modeling for chemical source terms 

Chemical concentrations (e.g. 

dissolved ozone); Incident 

radiation for  UV disinfection; 

disinfection contact times 

 

Stage 4: 

Inactivation 

Simulation 

Species transport equations; 

Inactivation kinetic modeling 

Concentrations of 

microorganisms; 

Microorganisms survival ratio 

 

Table 2.4: A summary of the reaction systems used in CFD simulation of ozone disinfection. 

Studies Ozone decay 

Reaction between 

ozone and IOD or 

NOM or TOC 

Bromate 

formation 

Cockx et al. (1999) √ √  

Huang et al. (2004) √ √  

Zhang (2006) √ √ √ 

Bartrand (2006) √ √ √ 

Zhang et al. (2007) √ √ √ 

Bolaños et al. (2008) √   

Wols et al. (2010a)  √   

Talvy et al. (2011) √   

This dissertation √ √ √ 
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Table 2.5: A summary of the radiation models used in the modeling of UV disinfection process. 

Radiation models Expressions Sources 

Non-attenuate 

model 

Algebraic equation for incident radiation G is 

        (
  
 
) 

where    is the radial distance from the lamp,      and    
are the light intensity and radius at lamp surface. 

Wright and 

Hargreaves 

(2001) 

Modified P-1 

radiation model  

 

 

Transport equation for the incident radiation G is 

  (   )       

  
 

  
 

where   is the absorption coefficient 
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    is UV radiation transmission. Alternatively, 

  
 

 (    )      
 

where   is the absorption coefficient,    is the scattering 

coefficient, and    is the linear-anisotropic phase function 

coefficient 

(1) Chen et al. 

(2011); Yu et 

al. (2008) 

 

(2) Li et al. 

(2011); 

FLUENT 6.3 

User’s Guide. 

Finite Line Source 

or Multiple Point 

Source Summation 

(MPSS) Model 

 (   )  ∑

 
 
    

    [   (    )
  
 
]

 

   

 

where z [cm] represents the axial distance and    is the 

distance from the current location [cm] to the point 

source number    out of a total of   sources. Results were 

found to be independent of the number of sources with   

> 100. 

Sozzi and 

Taghipour 

(2006); 

Hofman et al. 

(2007b); 

Bolton (2000); 

Lyn et al. 

(1999); 

Younis and 

Yang (2010) 

Multiple segment 

source summation 

(MSSS) 

Available in Liu et al. (2004) 

Liu et al. 

(2004); 

Wols et al. 

(2012); 

Wols et al. 

(2010b, c); 

Liu et al. 

(2007) 

Modified line 

source integration 

(LSI) model  

Available in Liu et al. (2004) 

Zhao et al. 

(2009); 

Liu et al. 

(2004) 
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Table 2.5 (Continued). 

Radiation models Expressions Sources 

Infinite-line source 

model or radical 

model 

 ( )  
   

 (    )

   
 

where r is the radial distance from the lamp,    is the UV 

lamp output (energy rate per unit length), T is the UV 

transmittance of the fluid,    is the radius of the UV lamp 

sleeve, and   is the extinction coefficient multiplied by 

the concentration of the absorbing species. For this 

model, the radiation fluence rate and irradiance become 

identical. 

Taghipour and 

Sozzi (2005); 

Sozzi and 

Taghipour 

(2006) 

 

Presumed dose 

distribution  

or exponential 

probability density 

function (PDF)  

 (   )        (  (        )) 

where     represents the UV dose,      is the shift in 

dose distribution and   is a distribution factor. 

Wols et al. 

(2011) 

 

Table 2.6: Reported constants in the Hom-Haas model for ozone inactivation (adapted from 

Zhang (2006)).  

Microorganism      x y Source 

Cryptosporidium 

Parvum oocysts 
              0.71 0.73 

Gyurek et al. (1999) 

Li and Gyurek (2001) 

Giardia                1 1 Carlson et al. (2001) 

Viruses              1 1 Carlson et al. (2001) 

Note that, the   used in the expressions of calculating      means water temperature (°C) 
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Table 2.7: The impacts of studied parameters on disinfection efficiency or predicting disinfection 

efficiency. 

Category Item Relationship Source 

Operation 

parameters 

pH 
pH is favorable for achieving high 

inactivation efficiency. 
Kim (2005) 

temperature 
As temperature decreases, predicted 

inactivation efficiency decreases. 

Kim 

(2005); 

Talvy et al. 

(2011) 

bubble size 

variation 

Bubble size variation causes lower ozone gas-

liquid transfer rate and consequently causes 

lower concentration of dissolved ozone and 

lower pathogen removal efficiency. 

Talvy et al. 

(2011) 

ozone-

consuming 

substances 

(OCS) variation 

The increase in OCS loading significantly 

increases C. parvum survival ratios. 

Huang et al. 

(2004) 

method of tracer 

injection 

Method of tracer injection slightly affects 

tracer RTD results. 

Zhang et al. 

(2008) 

kinetics and 

mixing state 

Disinfection efficiency is affected by both 

mixing and kinetics (and their interaction). 

Greene 

(2002); 

Greene et 

al. (2006) 

dead zone 

volume 

percentage 

Higher dead zone volume percentage leads to 

lower disinfection efficiency. 

Lee et al. 

(2011) 

Configuration 

parameter 

inlet 

configuration 

Inlet configurations, such as inlet baffle and 

inlet pipe, can significantly impact reactor 

hydrodynamics. 

Greene 

(2002); 

Greene et 

al. (2002) 

Greene et 

al. (2006) 

the direction and 

magnitude of 

the inlet flow 

For a single-column contactor with side entry, 

the flow pattern was found to be crucially 

dependent on both the direction and 

magnitude of the entry velocity from the inlet 

pipe. 

Ta and 

Hague 

(2004) 
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Table 2.7 (Continued) 

Configuration 

parameter 

sampling 

locations 

Sampling location has a significant influence 

on tracer RTD prediction or measurement. 

Zhang et al. 

(2008) 

flow length to 

flow width ratio 

High flow length-to-width ratio results in a 

high level of disinfection credit (per EPA 

standards) for a given concentration of 

disinfectant. 

Peplinski et 

al. (2004) 

wall reflection 

of light 

At higher inactivation levels, the effect of 

wall reflection is more influential. 

Chen et al. 

(2011) 

Parameters in 

modeling 

time step 

interval 

Larger time step serves to erroneously 

increase the amount of tracer dispersion. 

Peplinski et 

al. (2004) 

turbulent 

intensity of 

inflow 

Tracer RTD prediction can be strongly 

dependent on turbulent intensity of inflow 

boundary condition. 

Huang et al. 

(2002) 

turbulent 

Schmidt number 

Turbulent Schmidt number requires 

calibration since it is found to depend on 

geometry of disinfection tank. 

Kim et al. 

(2013a) 

 

Table 2.8: The methods of optimizing the configuration of contactors. 

Optimizing modifications  Objective Examples 

Increasing the number of baffles 

Separate flow 

spatially to hinder 

diffusion in order to 

approach plug flow 

Kim et al. (2010a); Amini et al. 

(2011); Zhang et al. (2013b); Wols 

et al. (2008b); Evans (2003)  

Rearrangement of chambers 
To diminish dead 

zone regions 
Melissa (2010); Amini et al. (2011)  

Proper adjustment of the 

locations of inlet, outlet and 

diffusers 

To diminish dead 

zone regions 

Stamou (2008) ; Wright and 

Hargreaves (2001); Cockx et al. 

(1999) 

Modifying the shape of baffle 
To diminish dead 

zone regions 
Wols et al. (2010a) 

Troubleshooting with minor 

modification: adding chamfers, 

increase end gap 

Weaken short-

circuiting 
Phares et al. (2009)  
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Table 2.9: Summary of the closures for the chemical source term in disinfection process 

simulation 

Closure approach Strengths Limitations Sources 

Moment 

closures 

First-order 

moment 

closures 

Simple 
Only suitable for 

slow chemistry 
Fox (2003) 

Higher-order 

moment 

closures using 

the covariance 

of mixture 

fraction 

Have the ability to 

model one-step 

chemistry 

Poor prediction for 

multi-step 

chemistry 

Fox (2003) 

Lagrangian 

models 

The IEM 

model 

Simple and can be 

applied to check 

for sensitivity to 

micro-mixing 

effects 

Does not consider  

flow effect 

David and 

Villermaux (1975); 

Fox and Villermaux 

(1990); Fox (1991); 

Fox et al. (1994) 

Age-based 

model 

Simple and can 

predict 

concentration at 

exit (outflow) of a 

reactor 

Cannot be used to 

predict the 

concentration 

distribution inside a 

reactor 

Fox (2003) 

Multi-

environmental 

models 

Have the ability to 

model slow, fast 

and finite-rate 

reaction 

Empirical 

parameters existing 

in the model need 

to be fitted 

Ritchie and Togby 

(1979); Mehta ad 

Tarbell (1983); 

Ranade and Bourne 

(1991); Ranade 

(1993); Kolhapure 

and Fox (1999) 

Multi-

environment 

presumed PDF 

models 

Have the ability to 

model slow, fast 

and finite-rate 

reaction 

The presumed PDF 

needs to be well 

selected for each 

situation 

Fox (1998); Fox 

(2003) 

Linear eddy model 

Have been applied 

to a wide variety of 

applications 

Computationally-

intensive 

Kerstein (1988, 1990 

and 1992); Cremer 

and McMurtry 

(1998) 
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CHAPTER 3: COMPUTATIONAL FRAMEWORK  

This chapter presents the governing momentum and scalar advection diffusion equations 

comprising the computational framework developed for ozone disinfection of water. These 

equations are presented within the context of the methodology for computing the turbulent flows 

of interest (either RANS or LES). 

Firstly, RANS and LES methodologies for computing turbulent flows are introduced. In 

RANS, only the mean component of the flow is computed explicitly (or resolved) while the 

effect of the unresolved turbulent scales on the mean component is modeled via a turbulent stress 

or turbulent flux appearing in the governing equations for the mean component. In LES the 

largest, more energetic scales of the turbulence are explicitly computed (resolved). 

In addition to the governing flow equations, this chapter introduces the governing 

transport equation for a passive, non-reactive dye tracer as well as the residence time statistics 

evaluated from solutions of this transport equation. These statistics are useful for determining the 

hydraulic performance of a water disinfection system.  

The governing transport equations for the ozonation process are introduced in the latter 

part of this chapter. Reaction kinetics and turbulence-chemistry interaction are important aspects 

of these equations. Thus, models or closures for reaction kinetics and turbulence-chemistry 

interaction are discussed as well. Inactivation of microorganisms is an important part of the 

disinfection process and two strategies for its simulation are described. 
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In the simulation of ozone disinfection process, the most commonly considered reactions 

are ozone decomposition and reaction between ozone and instantaneous ozone demand (IOD) or 

natural organic matter (NOM). Only a few CFD studies have incorporated bromate formation 

(Zhang 2006; Bartrand 2006; Zhang et al. 2007). In these studies, an empirical model under the 

assumption that bromate concentration changes linearly with ozone exposure was used to 

represent the process (Zhang 2006; Bartrand 2006; Zhang et al. 2007). Although Zhang (2006) 

and Zhang et al. (2007) have a bromate formation module in their framework, those authors 

deemed not practical to predict bromate formation due to the sensitivity of the process of 

bromate formation to water quality. Bartrand (2006) showed prediction of bromate formation in 

the Alameda County Water District ozone contactor in Fremont, CA. However, the predictions 

were not compared with physical experimental data. 

The present study is the first one to extend beyond empirical modeling and introduce 

kinetics-based modeling for the formation of bromate within CFD analysis and the first one to 

compare predicted bromate formation with physical experimental data, the latter comparison to 

be given in Chapter 5. 

The chapter concludes with a description of the numerical method and computer code use 

to solve the time-dependent, nonlinear partial differential equations of the framework. 

3.1 Flow Simulation 

The most basic governing equations of incompressible fluid flow are the continuity 

(conservation of mass) equation and momentum equations. The continuity equation is   

 
   
   

   (3.1) 

where    and    are velocity and position in  -th direction. 
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The momentum equations are derived from Newton’s second law as 

 
   
  
   

   
   

  
 

 

  

   
  

    
      

    (3.2) 

where   is time,   is fluid density,   is pressure,   is the kinematic viscosity, and    represents a 

body force (force per unit of mass) in the  -th direction. 

A primary issue of flow simulation is how to treat the turbulent scales of the flow. 

Turbulent flows contain a large range of spatial scales, from the smallest turbulent eddies (i.e. the 

Kolmogorov micro-scales (Pope, 2000)) where mechanical energy is dissipated into heat, to bulk 

flow features comparable with the size of the geometry. Three primary strategies or 

methodologies for dealing with turbulent flows are well-known: Reynolds-averaged Navier-

Stokes equations (RANS) simulation, Large Eddy Simulation (LES), and Direct Numerical 

Simulation (DNS).  

3.1.1 Direct Numerical Simulation (DNS) 

DNS (Pope 2000) resolves the governing Navier-Stokes equations numerically over the 

range of all turbulent scales. The range of motions in a turbulent flow grows with the Reynolds 

number (Re). DNS is the most natural approach to simulate turbulent flow. However, the 

requirements on mesh resolution and time-step put high demands on computational resources, 

rendering DNS unsuitable for engineering applications. More specifically, the grid for DNS 

should contain approximately Re
9/4

 points. Such large numbers of grid points make DNS 

computationally prohibitive.  As a result, in this dissertation, DNS is only employed to simulate 

turbulent channel flow at a modest Reynolds number in order to validate the reliability and 

accuracy of the numerical method used via comparison with existing DNS results available in the 

literature obtained with different numerical methods (see appendix B).  
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3.1.2 Large Eddy Simulation (LES) 

LES aims to reduce the requirements on mesh resolution imposed by DNS. The idea of 

LES is to use a low-pass spatial filter to separate the turbulent flow into resolved (large) scales 

and unresolved (small) scales. The large flow structures or scales that can be resolved by the 

numerical method on a given mesh are called resolved scales. The small structures that cannot be 

captured by the mesh are called sub-grid scales. The influence of sub-grid scales (SGS) on 

resolved scales is modeled via a SGS stress term included in the momentum equation. The 

principle of LES lies on the fact that the small unresolved (SGS) scales of the turbulence away 

from no-slip boundaries are universally homogeneous and isotropic and therefore can be 

modeled with the same SGS stress for all turbulent flows. Due to the physics of turbulence in the 

vicinity of an impermeable no-slip wall boundary being considerably different from the other 

parts of flow, typical SGS models such as the Smagorinsky model (Smagorinsky 1963) are not 

suitable for representing near-wall sub-grid scales. A common solution is to refine the mesh near 

no-slip walls to the resolution of DNS. Thus, LES still has a high computational cost that cannot 

be afforded for engineering applications. LES is sometimes performed with a near-wall model in 

order to avoid DNS-like resolution of the near-wall region (Pope 2000). 

In LES, variable fields (e.g. velocity field   (    )) are filtered by a low pass filtering 

operation in order to be adequately resolved on a relatively coarse grid. The filtering operation 

(Leonard 1974) is generally defined as  

  ̅ (    )  ∫  (    )  (      )  
 

 (3.3) 

where   is the entire flow domain, and  (    ) is a filter function of compact support (i.e.   is 

non-zero only in a small neighborhood around the point   ) which satisfies the normalization 

condition 
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 ∫  (    )  
 

   (3.4) 

The filtering operation in (3.3) conducted with a filter function of small compact support 

is essentially a local averaging of the original variable. 

Defining the sub-grid or residual field   
  (    ) as  

   
  (    )    (    )   ̅ (    ) (3.5) 

The original velocity field can be decomposed into resolved and unresolved (SGS) 

components: 

   (    )   ̅ (    )    
  (    ) (3.6) 

Application of the spatial filtering operation in (3.3) to the governing flow equations in 

(3.1) and (3.2) leads to the filtered continuity equation and Navier-Stokes equations, expressed as 

 
  ̅ 
   

   (3.7) 

 
  ̅  

  
  ̅ 

  ̅  

   
  

 

 

  ̅

   
   

   ̅   

   
 
 

 

      

   
 (3.8) 

governing the larger (more energetic), resolved components of the flow. In these equations an 

overline denotes LES spatial filtering, vector   ̅   is the filtered velocity, vector    is position,   is 

time,  ̅ is the filtered pressure, ρ is density, and   is kinematic viscosity.   ̅  is the filtered strain-

rate tensor calculated as  

   ̅  
 

 
(
  ̅  

   
 
  ̅  

   
) (3.9) 

The subgrid-scale (SGS) stress in (3.8) is defined as        ̅̅̅̅̅   ̅  ̅  and represents the 

effect of the unresolved subgrid-scales on the resolved scales. In LES, the unfiltered velocity    

is not accessible (or computed) and thus the SGS stress is closed via what is commonly referred 
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to as an SGS stress model. In this study, the dynamic Smagorinsky SGS model (Smagorinsky 

1963; Germano et al. 1991) is employed. Here the SGS stress is decomposed into deviatoric and 

isotropic components with the latter component being absorbed into the pressure and the former 

component modeled as 

    
        ̅  (3.10) 

    (   )
 | ̅| (3.11) 

   (      )    (3.12) 

 | ̅|  (   ̅   ̅ )
   

 (3.13) 

where    is the SGS eddy viscosity and              are the local mesh spacings in the   ,    

and    directions, respectively. Smagorinsky coefficient    is computed dynamically thus 

varying in space and time (Lilly, 1991). Note that in the LES methodology described here, 

application of the filtering operation in (3.3) is implicit as the filter function G does not appear 

explicitly in the filtered equations in (3.7) and (3.8). In practice, the computational grid and the 

numerical method used for solving the equations implicitly act as the filter. 

3.1.3 Reynolds-averaged Navier-Stokes Equations (RANS) Simulation  

RANS involves the application of Reynolds averaging technique to decompose variables 

into their means and the fluctuations around these means. Reynolds averaging is an operation 

that averages a variable or an equation in time. Taking velocity field   (    )  for example, 

Reynolds averaging decomposes the velocity field   (    )  into a mean (time-averaged) 

component 〈  〉 and a fluctuating or turbulent component   
  in the following way  

 〈  〉  
 

 
∫     
 

 (3.14) 
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     〈  〉 (3.15) 

where, for the statistically steady flows considered here,   is a long enough time to ensure 

satisfaction of the condition 

 〈  
 〉    (3.16) 

By applying the Reynolds decomposition, governing equations (3.1) and (3.2) become 

the Reynolds-averaged continuity equation and Navier-Stokes equations, respectively: 

 
 〈  〉

   
   (3.17) 

 
 〈  〉 

  
 〈  〉

 〈  〉 

   
  

 

 

 〈 〉

   
  

  〈  〉

   
  

 

 

 〈  
   
 〉  

   
 (3.18) 

where a bracket denotes Reynolds-averaging, vector  〈  〉  is the Reynolds-averaged or mean 

velocity, vector    is position,   is time, 〈 〉 is Reynolds-averaged or mean pressure, ρ is density, 

and   is kinematic viscosity.  Note that these equations govern the dynamics of the mean 

component of the flow. 

The Reynolds stress tensor    〈  
   
 〉   in Eqn. (3.18) (defined in terms of velocity 

fluctuation   
 ) denotes the effect of the unresolved turbulent scales on the resolved mean 

component. Given that velocity fluctuations are not accessible in RANS (i.e. are not computed 

explicitly), the Reynolds stress is modeled or closed using an eddy viscosity model as 

  〈  
   
 〉     

 〈  〉 

   
 (3.19) 

In this study the eddy viscosity is taken as 

      
  

 
 (3.20) 
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where k is the turbulent kinetic energy and ε is the turbulent kinetic energy dissipation rate. 

Transport equations for k and ε are specified via the classical k-ε model equipped with standard 

wall functions (Wilcox 1994). 

The primary advantage of RANS is the relative low requirement on computer resources 

relative to DNS and LES given that RANS resolves the mean component of the flow only. 

Therefore, RANS has been successfully applied to simulation of high Reynolds number flow, 

such as flow around a full-scale airplane. However, RANS has two fatal drawbacks: 1) it only 

resolves the mean flow and thus results can be highly dependent on the turbulence (Reynolds 

stress) model; 2) no universal RANS turbulence model exists and thus a specific model may be 

needed for the particular flow problem. 

3.2 Passive Tracer Transport  

The basic technique used to conduct a tracer study is to introduce the tracer at the reactor 

inlet and measure the response at the outlet in terms of tracer concentration. A tracer is a 

conservative element, typically a dye or salt. The tracer is treated as a passive scalar which has 

no impact on hydraulic characteristics. 

Two main approaches for the simulation of tracer transport are Lagrangian-based 

approach and Eulerian-based approach. The Lagrangian-based approach involving particle 

tracking has had successful applications (Stropky et al. 2007; Thyn et al. 1998; Wols et al. 

2008a). However, it is less popular than the Eulerian-based approach of solving transport 

equation since common CFD codes are mainly based on Eulerian system. The Eulerian-based 

approach is used in the present dissertation.  
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3.2.1 Governing Equation for Passive Tracer Transport 

For simulation of tracer transport in fluid flow, an advection-diffusion equation is used: 

 
  

  
   

  

   
 
 

   
(  

  

   
)    (3.21) 

where    is the flow velocity,   is the tracer concentration, and    is the molecular diffusivity for 

the scalar. 

Note that, solving the above advection-diffusion equation needs input of a known 

velocity field. There are two strategies to input the velocity field, namely frozen flow and 

dynamical flow:  

 Frozen flow: Based on the assumptions of 1) steady flow and that 2) the tracer does 

not affect hydraulics, the flow is solved first; then the steady or ‘frozen’ flow is used 

to solve the advection-diffusion equation for tracer concentration. 

 Dynamical flow: In this approach the flow equations and the advection-diffusion 

equation for scalar concentration are solved simultaneously at each time step of the 

discretization.   

As noted in Chapter 2, the first strategy fits within the RANS methodology as RANS can 

solve for the mean (steady state) component of the flow field (Kim et al. 2010a; Hofman et al. 

2007a; Huang et al. 2004). LES is only compatible with the second strategy because it resolves 

(solves for) the more energetic, larger turbulent scales in the flow which are all inherently 

unsteady. 

3.2.2 RANS Methodology for Passive Tracer Transport 

In the frozen flow strategy, the first step is to obtain a steady-state flow solution from the 

RANS Eqns. in (3.17) and (3.18); the next step is to use this flow solution to advect the passive 



53 

scalar (tracer) following the Reynolds-averaged advection-diffusion equation for tracer 

concentration:  

 
 〈 〉

  
 〈  〉

 〈 〉 

   
  

 〈  
   〉 

   
 (3.22) 

where 〈 〉  is the Reynolds-averaged or mean tracer concentration,    denotes concentration 

fluctuation and turbulent scalar flux  〈  
   〉  is modeled as 

   〈  
   〉    

 〈 〉 

   
 (3.23) 

Note that 〈 〉 is time-dependent due to its transient boundary conditions described further 

below. The eddy (turbulent) diffusivity is taken as           where eddy viscosity    is 

computed via the k-ε model and the turbulent Schmidt number, Sct, is taken as 0.7 (Launder, 

1978). In equation (3.22), molecular diffusion has been neglected as it is much less than 

turbulent diffusion throughout the flow domain. 

3.2.3 LES Methodology for Passive Tracer Transport 

The LES requires simultaneous solutions of the momentum and continuity equations for 

the flow and the advection-diffusion equation for tracer concentration at each time step, thereby 

capturing the impact of transient flow phenomenon on tracer transport, unlike in the previously 

described RANS.  

In LES, transport of the tracer is simulated by solving the following advection-diffusion 

equation for the filtered tracer concentration,  ̅ 

  
  ̅

  
  ̅ 

  ̅ 

   
 
 

   
(  

 
  ̅ 

    
) (3.24) 

where   
  is the SGS diffusivity, calculated as the ratio of SGS eddy viscosity (obtained from the 

dynamic Smagorinsky model in Eqn. (3.11)) to the LES turbulent Schmidt number. The LES 
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turbulent Schmidt number is set to 1,000 to keep the same ratio of molecular viscosity of water 

to the molecular diffusivity of the tracer used in the experiments by Kim et al. (2010a). The 

molecular diffusivity in Eqn. (3.24) has been neglected with respect to the SGS diffusivity   
 . 

3.2.4 Tracer Statistics 

Tracer simulations (LES or RANS) are conducted by initially releasing a tracer pulse at 

the contactor inlet over roughly the first 2.5 second of the simulations. Tracer concentration at 

the contactor outlet is recorded in order to determine various diagnostics of the hydraulic 

efficiency (performance) of the contactor. 

To characterize the results from numerical tracer transport simulations, the following 

quantities are defined. 

1. Theoretical mean residence time  : 

    
                  

         
 (3.25) 

2. Normalized time  : 

        (3.26) 

3. Normalized tracer concentration or residence time distribution (RTD) function: 

   ( )  
 

             
 

 (3.27) 

      where          is the total time over which the tracer is released and   is theoretical 

mean residence time and C is the simulated tracer concentration at the contactor 

outlet. 

4. Cumulative residence time distribution function 
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   ( )  ∫  ( )
 

 

   (3.28) 

5. The Morrill dispersion index (MDI) (Crittenden et al. 2005): 

              (3.29) 

      where, for example,     denotes the time it takes for 10% of the tracer to exit the 

contact. The MDI reflects the level of mixing in the contactors as well as the relative 

spread between     and    . In the case of ideal plug flow, the MDI has a value of 1.0.  

6. A short-circuiting index (Persson, 2010) quantifying the intensity of short-circuiting is 

defined as  

          (3.30) 

      where     is the time it takes for 16% of the tracer to exit the contact. Note that the 

larger the  -value, the less intensive the short-circuiting. When   is 1.0, no short-

circuiting exists and conditions correspond to an ideal plug flow reactor (PFR).  

3.3 RANS Methodology for Ozonation Process 

The simulation strategy for ozonation process (this section) and inactivation process (next 

section) considered in this work is based on RANS only and not LES.  The reason for this is that 

the ozonation process considered here corresponds to the full-scale ozone contactor managed by 

the City of Tampa Water Department for which LES is not possible given the computational 

demands of LES. 

3.3.1 Governing Equations for Ozonation Process  

The governing equations for the chemical species transport and reaction in ozonation are 

the Reynolds-averaged species transport equations 
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 〈  〉

  
 〈  〉

 〈  〉

   
 
 

   
(  

 〈  〉

   
)  〈   〉 (3.31) 

where 〈  〉 is the Reynolds-averaged (mean) concentration of chemical species i. 〈   〉 is the 

Reynolds-averaged chemical reaction source term for chemical species i. Here chemical 

reactions are taken to be second order where in general the nonlinearity of the reaction increases 

the difficulty of evaluating the chemical reaction source term. For example, take the following 

elementary reaction between species A and B yielding species D: 

     
 
→  (3.32) 

The Reynolds-averaged chemical reaction source term for chemical species D would be 

(Fox, 2003) 

  〈   〉    {〈 〉〈 〉  〈 
   〉} (3.33) 

where   is a second-order rate constant; 〈 〉 and    are mean and fluctuation of the concentration 

of chemical species   respectively.  

The term 〈    〉 in Eq. (3.33) must be modeled or closed since    and    are fluctuations 

that are not accessible in RANS. The approach for modeling the term 〈    〉 will be described in 

section 3.3.3. 

To model the reactions in the City of Tampa Water Department ozone contactor (Chapter 

5), a reduced reaction system is firstly selected to determine the reaction source terms of the 

form (3.33) for the species transport equations. Then, chemical time scales of this reaction 

system are analyzed so that the closure method for terms of the form 〈    〉 in Eqn. (3.33) can be 

selected. The reduced reaction system is described next followed by the chemical time scales. 



57 

3.3.2 Modeling of Chemical Reactions 

3.3.2.1 Components of the Reaction System and Individual Reaction Kinetics 

Bromate formation, a by-product of the ozonation process, may involve numerous 

reactions. However, some reactions are not likely to occur due to relative low kinetics or weak 

possibility of reactant formation. A commonly used simplified reaction system for bromate 

formation (Mandel et al. 2012; Mandel 2010) includes two pathways: the molecular and radical 

pathways, outlined in Figure 3.1. As seen in Figure 3.1, only the molecular pathway is 

considered here for reasons stated next. Alkalinity, pH and natural organic matter (NOM) or total 

organic carbon (TOC) are the main factors that affect bromate formation in the present study. It 

has been reported that when pH is lower than 7, as it is in the current case (pH = 6.4), the 

dissolved ozone does not react with water and exists in molecular ozone form only (Zhang 2006). 

And decreasing pH would decrease the rate of hydroxyl radical formation and consequently 

depress the radical pathway of bromate formation (von Gunten and Pinkernll 2000). Alkalinity 

species, such as carbonate and bicarbonate ions present in the current system can scavenge 

hydroxyl radicals and consequently inhibit the radical pathway of bromate formation (Fabian 

1995). Natural organic matter or NOM which is also present in the current system is another 

scavenger of hydroxyl radicals. The presence of NOM inhibits bromate formation especially 

during the initial period of ozonation (Song 1996). 

Thus, in this dissertation, the reaction system includes ozone self-decomposition, the 

reaction between ozone and total organic carbon or TOC, and bromate formation. The bromate 

formation pathway used in this study is the molecular pathway, shown in Figure 3.1. The 

reaction system employed in the present study based on this molecular pathway includes 6 

species and 6 reactions. The 6 species are dissolved ozone (  ),    , bromide (  
 ), 
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hypobromite (   
 ), bromite (    

 ), and bromate (    
 ). The 6 reactions are listed in Table 

3.1 (Note that, ‘[ ]’ means concentration of species). Based on this table, the source terms for 

each chemical species can be written as 

 

〈   〉     〈[  ]〉   [   ]〈[   ][  ]〉    〈[  
 ][  ]〉    〈[   

 ][  ]〉

   〈[   
 ][  ]〉    〈[    

 ][  ]〉 

〈 [   ]〉    [   ]〈[   ][  ]〉 

〈    〉     〈[  
 ][  ]〉    〈[   

 ][  ]〉 

〈     〉    〈[  
 ][  ]〉    〈[   

 ][  ]〉    〈[   
 ][  ]〉 

〈      〉    〈[   
 ][  ]〉    〈[    

 ][  ]〉 

〈      〉    〈[    
 ][  ]〉 

(3.34) 

The reaction rate constants are obtained from the literature and are listed in Table 3.2.  

Note that this is the first time a reaction model as in (3.34) (involving kinetics-based 

modeling for bromate formation) has been used in CFD and validated using physical 

experimental data. 

3.3.2.2 Effective Reaction Rate Constants 

As found by Haag and Holgne (1983), the observed rate of   
  loss in its reaction with    

(see Table 3.2) is 1.5 to 3 times lower than that given by    〈[  
 ][  ]〉 in Eq. (3.34). The 

explanation given for this is that the transfer of    from gas phase to aqueous phase is the 

limiting step in bromate formation (Haag and Holgne 1983). To incorporate the limiting of the 

inter-phase transfer of    into the present framework, effective reaction rate constants are 

employed. A general expression for effective reaction rate constants,   
   

, is 
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    {

   

〈[  ]〉
                 〈[  ]〉     

                        〈[  ]〉     

                  (3.35) 

where     is the overall mass transfer constant.  

The value of     used in the present study is 3.92×10
-4

 s
-1

 (Talvy et al. 2011; Bartrand 

2006). Although hypobromous acid (    ) formation was not considered in the reaction model 

since it is not a concern of the present study, it is necessary to consider the competition between 

     and bromate (    
 )  for available hypobromite (   

 ) . Thus the amount of    
  

available for     
  formation is uncertain. In the present study, due to lack of data, the 

equilibrium concentration of    
  in a      solution at pH 6.5 (Haag and Holgne 1983) was 

used to estimate the percentage of    
  for bromate formation,      , as 14%. 

By applying the effective reaction rate constants and the    
  percentage assumption, 

the source terms can be re-written as: 

  

〈   〉     〈[  ]〉   [   ]
   〈[   ][  ]〉    

   〈[  
 ][  ]〉    

   〈[   
 ][  ]〉

   
   〈[   

 ][  ]〉    
   〈[    

 ][  ]〉 

〈 [   ]〉    [   ]
   〈[   ][  ]〉 

〈    〉     
   〈[  

 ][  ]〉    
   〈[   

 ][  ]〉 

〈     〉    
   〈[  

 ][  ]〉    
   〈[   

 ][  ]〉    
   〈(     [   

 ])[  ]〉 

〈      〉    
   〈(     [   

 ])[  ]〉    
   〈[    

 ][  ]〉 

〈      〉    
   〈[    

 ][  ]〉 

(3.36) 
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3.3.3 Chemical Time Scale Analysis and Closure for Source Terms 

According to Fox (2003), the chemical time scales are defined in terms of the eigenvalues 

of the Jacobian matrix of the chemical source terms. In the present study, the Jacobian matrix of 

the chemical source terms is  

  
 〈  〉

 〈  〉
 

 

[
 
 
 
 
 
 
     [   ]〈[   ]〉    〈[  
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(3.37) 

The chemical time scales,   , are defined as  

     
 

|  |
 (3.38) 

where    are the eigenvalues of the Jacobian matrix. A fast reaction corresponds to large 

eigenvalues and small chemical time scales while slow reaction corresponds to small eigenvalues 

and large chemical time scales. In a complex reaction system, the chemical time scales can range 

over multiple orders of magnitude.  

The micro-mixing time scale determines the category of reaction system. According to 

Baldyga and Pohorecki (1995) micro-mixing “consists of the viscous-convective deformation of 

fluid elements, followed by molecular diffusion.” Thus in this dissertation, the Kolmogorov time 

scale is employed to represent the micro-mixing time scale. As noted in Chapter 3, the 

Kolmogorov micro-scales (Pope, 2000) correspond to the smallest scales of the turbulence 

spectrum and is where mechanical energy is dissipated into heat. The Kolmogorov time scale    

(Pope, 2000) is calculated as  

     (
 

 
)
   

 (3.39) 
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where   is kinematic viscosity and   is the rate of dissipation of turbulent energy. Based on the 

ratio of micro-mixing time scale to chemical time scale, a reaction system can be categorized 

into three groups: slow chemistry (for which chemical time scales are larger than the micro-

mixing time scale), fast chemistry (for which chemical time scales are smaller than the micro-

mixing time scale), and finite-rate chemistry (see Figure 3.2). A closure method for the co-

variance in equation (3.33) term, 〈    〉  or turbulence-chemistry interaction needs to be properly 

based on the category of the reaction system. The reaction system studied in this dissertation will 

be taken to be slow chemistry, as will be discussed in section 5.3. Thus, the mixing is considered 

fast enough that the composition of variables, 〈  〉, can be approximated by their mean values 

〈 〉〈 〉 , and thus 〈    〉    in (3.33). In other words, the means of products between 

concentration species in Eq. (3.36) may be replaced with products between mean concentrations.  

3.4 Governing Equations for Inactivation Process 

The governing equations for inactivation are described here within the context of RANS, 

for the same reason explained earlier in the case of the ozonation process. 

3.4.1 Kinetics-based Inactivation  

In kinetics-based inactivation, the governing equation for the inactivation of 

microorganisms   is a transport equation for the concentration of microorganisms,   , 

expressed as 

  
   
  

   
   
   

 
 

   
(  

   
   

)      (3.40) 

where    is the concentration of microorganism   and     is an external volumetric source 

term for microorganism  . The Hom-Haas model and Chick-Watson model which have been 

introduced in section 2.2.4 can be used to estimate this source term. However, kinetics-based 

inactivation is not possible in the present study due to lack of experimental physical data needed, 
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for example, to set initial conditions for Eqn. (3.40). Thus, kinetics-based inactivation is not used 

in the present study.  

3.4.2 CT-based Inactivation  

The concentration-contact time (CT) concept has been commonly employed to evaluate 

disinfection effectiveness (U.S. EPA 2003; Zhang 2006; Wols et al. 2010a).  

The CT concept is expressed as a product of the average concentration of disinfectant (i.e. 

ozone) multiplied by the time over which an organism is exposed to the disinfectant (U.S. EPA 

2003). This product is referred to as CT and typically has the unit min-mg/liter. A large CT value 

means the possibility of an organism being inactivated or the portion of organisms being 

inactivated is high. The mean CT can be obtained by solving the following Reynolds-averaged 

transport equation (Zhang, 2006):  

  
 〈  〉

  
 〈  〉

 〈  〉 

   
   

  

   
(
 〈  〉 

   
)  〈   〉 (3.41) 

The source term for CT is defined as 

  〈   〉  〈  〉 (3.42) 

where 〈  〉 is the Reynolds-averaged concentration of dissolved ozone. 

3.5 Numerical Tool 

The computational tool used to solve the framework nonlinear partial differential 

equations is the open source numerical library OpenFOAM (2010), an acronym for Open source 

Field Operations and Manipulations. OpenFOAM is a collection of C++ libraries, designed for 

solving continuum mechanics problems. 

OpenFOAM uses the finite volume method to discretize the governing flow and scalar 

transport equations. Pressure-velocity coupling is accomplished using the well-known SIMPLE 
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(Semi-Implicit Method for Pressure Linked Equations) method for RANS equations and the 

well-known PISO (Pressure Implicit with Splitting of Operators) method for LES equations. The 

non-linear advection terms are discretized with a second order accurate upwind scheme and 

diffusion terms are discretized with a central finite difference scheme. Time integration for the 

tracer concentration consists of the first order accurate Euler method.  

3.6 Chapter Summary 

In this chapter, strategies and models for each sub-process (or stage) of ozone 

disinfection are presented. A modeling framework for ozone disinfection combining CFD with a 

kinetics-based reaction model for bromate formation has been developed for the first time. This 

modeling framework will be validated in Chapter 5 via application to a full-scale ozone contactor. 

The framework components used in the following chapters vary depending on the 

objectives. A summary of the framework components used in each chapter is given in Table 3.3. 

In Chapter 4, both RANS and LES are used for flow and tracer transport simulations of 

laboratory-scale baffled and column contactors. In Chapter 5, flow, tracer transport, reaction, and 

inactivation RANS simulations are conducted for the full-scale ozone contactor operated by the 

City of Tampa Water Department. In Chapter 6, flow and tracer transport simulations are 

conducted using RANS for additional applications. In appendix B, LES and DNS and are 

conducted of a popular channel flow problem for the purpose of validating the numerical 

methods in OpenFOAM. 
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Figure 3.1: The pathways of bromate formation (the molecular pathway in black color was used 

in the present study). 

 

 

Figure 3.2: Categorization of a reaction system based on the ratio of chemical time scales to flow 

time scales (adapted from Fox (2003)). Note that,    is Kolmogorov time scale,    is micro-

mixing time scale, and      is theoretical residence time scale. 

 

Table 3.1: The reactions considered in the present modeling framework. 

Reaction Reaction expression 
Reaction rate 

expression 
Reference 

Ozone self-

decomposition 
   

  
→      [  ]     [  ] 

Wols (2010); Zhang 

(2006, 2007) 

TOC       
 [   ]
→     

         
 [   ]    [   ][   ][  ] Kim et al. (2007) 

Bromide   
    

  
→   

      [   ]     [  
 ][  ] 

Haag and Hoigne 

(1983) 

Hypobromite    
    

  
→  

       [    ]     [   
 ][  ] 

Haag and Hoigne 

(1983) 
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Table 3.1 (Continued) 

Reaction Reaction expression 
Reaction rate 

expression 
Reference 

Bromite    
    

  
→    

      [    ]     [   
 ][  ] 

Haag and Hoigne 

(1983) 

Bromate     
    

  
→    

      [     ]     [    
 ][  ] 

Haag and Hoigne 

(1983) 

 

Table 3.2: Reaction rate constants for the reaction system of ozone disinfection. 

Reaction rate constant Value (20 °C) Source 

   2.5×10
-3

 s
-1

 
Wols et al. (2010a); Zhang (2006, 

2007) 

   1.6×10
2
 (Mole/L)

-1
s

-1
 Haag and Hoigne (1983) 

   3.3×10
2
 (Mole/L)

--1
s

-1
 Haag and Hoigne (1983) 

   1.0×10
2
 (Mole/L)

--1
s

-1
 Haag and Hoigne (1983) 

   4.6×10
4
 (Mole/L)

--1
s

-1
 Mandel et al. (2012) 

 [   ] 3.8×10
4
 (Mole/L)

--1
s

-1
 Kim et al. (2007) 

 

Table 3.3: Methodologies used in the present study. 

 
Flow simulation 

Tracer 

transport 

simulation 

Reaction 

simulation 

Inactivation  

based on CT 

concept 

RANS LES DNS RANS LES RANS LES RANS LES 

Chapter 4 √ √  √ √     

Chapter 5 √   √  √  √  

Chapter 6 √   √      

Appendix B  √ √       
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CHAPTER 4: EVALUATION OF COMPUATIONAL FRAMEWORK FOR 

DETERMINING HYDRAULIC PERFORMANCE OF CONTACTORS
1
 

4.1 Introduction  

As described in detail Section 3.1, how to treat turbulence is a primary challenge for CFD. 

DNS is the most straight forward approach for representing turbulent flow since it resolves all 

scales of the turbulence. However, DNS is often prohibitively cost-intensive in applications to 

realistic problems. RANS simulation resolves only the mean flow while modeling all of the 

scales of turbulence. Despite its low resolution, its cost-effectiveness makes it the most popular 

approach for industrial applications. LES is intermediate between DNS and RANS in terms of 

spatial resolution and thus computational cost. It resolves the more energetic turbulent scales 

while modeling the unresolved, less energetic smaller scales (Pope, 2000). Although it is cost-

intensive, LES has been gaining popularity for realistic applications in aerospace engineering, 

ocean engineering, and mechanical engineering and so on, due to rapid development of 

computing power (Sagaut and Deck 2009; Georgiadis et al. 2009). 

CFD for water treatment applications was not introduced until the late 1990s. As 

described in Section 2.3, applications of CFD have succeeded in trouble-shooting existing water 

treatment facilities and reducing the cost of process designs. CFD was firstly employed to study 

the flow in a disinfection reactor or contactor (Wang and Falconer 1998a, b). Then, it was used 

to simulate tracer transport in a reactor (Huang et al. 2004; Hofman et al. 2007a; Zhang et al. 

                                                 
1
 Part of Chapter 4 is reprinted from Journal of Environmental Engineering, 139(3), Jie Zhang, Andrés E. Tejada-

Martínez, Qiong Zhang, RANS Simulation of the Flow and Tracer Transport in a Multi-chambered Ozone 

Contactor, 450-454, Copyright (2013), with permission from ASCE. Permission is included in Appendix D. 
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2013a, b; Amini et al. 2011; Kim et al. 2010a; Wols et al. 2008a). Note that, tracer transport is 

commonly used to evaluate the hydraulic performance of a chemical reactor or disinfection 

contactor. Researchers have also incorporated reaction processes into flow simulations in order 

to predict the removal of chemical or pathogens directly (Cockx et al. 1999; Huang et al. 2004; 

Zhang 2006; Bartrand 2006; Zhang et al. 2007; Bolaños et al. 2008; Wols et al. 2010a; Talvy et 

al. 2011). In Chapter 3 a CFD-based framework including a kinetics-based model for bromate 

formation in RANS simulation of the ozonation process in ozone contactors was developed.  The 

flow and passive tracer simulation components of the framework are validated in this chapter via 

application to baffled and column contactors.  

RANS has been the popular approach in CFD applications related to the water treatment 

industry since its very first application. However, recently, Kim et al. (2010b) presented results 

showing that RANS may perform poorly in predicting  important design indices in tracer 

transport simulations, such as the t10 index (defined as the time it takes for ten percent of an 

inflowing tracer to exit the disinfection system). LES was shown to perform much better. In 

section 4.2, steady state RANS of the ozone contactor flow of Kim et al. (2010a) with flow 

domain and computational grid similar to those used in their study in which wall and baffle 

viscous sub-layers were well-resolved is revisited. Additional RANS simulations are made on 

significantly coarser grids in order to analyze the impact of grid resolution on the flow structure 

and tracer residence time. Such analysis is lacking in the literature and its merit lies in the fact 

that RANS has previously been applied to full-scale ozone contactors in which wall and baffle 

viscous sub-layers are not resolved (e.g. see Do-Quang et al. 1999; Cockx et al. 1999; Huang et 

al. 2004; Zhang et al. 2007). Thus, understanding how RANS flow and tracer solutions behave 

when these molecular sub-layers are poorly resolved or not resolved at all is important. 
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Furthermore, there is a need to re-visit the RANS of Kim et al. (2010a) in light of the 

discrepancies between their computations and laboratory experiments in terms of cumulative 

RTD and the more favorable comparisons reported by other researchers (e.g. Do-Quang et al. 

1999; Cockx et al. 1999; Zhang et al. 2007).  

The tracer or chemical species transport in water treatment facilities is a turbulent process 

which in principle should be better predicted by LES rather than by RANS since LES has the 

capability of resolving important turbulent scales not captured (and instead modeled) in RANS. 

Thus, studies are also conducted in order to identify in which flow configurations and for which 

desirable predicted quantities LES is a better choice than RANS. 

4.2 The Impact of RANS Turbulence Model and Grid on Hydraulic Performance 

Prediction for a Baffled Ozone Contactor 

In order to assess the impact of RANS turbulence model and grid resolution on flow and 

tracer transport, RANS simulations of a laboratory-scale baffled contactor were performed. 

Results are compared with those from LES in terms of flow and residence time statistics.  

4.2.1 Flow Domain and Boundary Conditions 

The RANS and LES methodologies used in this study have been introduced in Sections 

3.1 and 3.2. The flow configuration consists of the laboratory-scale, baffled ozone contactor 

section in Figure 4.1. The laboratory-scale contactor of Kim et al. (2010b) consisted of 12 

chambers. A truncated version consisting of 4 chambers was considered in the computations of 

Kim et al. (2010a) and is also considered for the present studies. The section formed by the 4 

chambers (chamber width is 0.113m) is 0.48m long in the inflow (x1) direction and 0.23m wide 

in the span-wise (x3) direction. The rest of the dimensions of the contactor including the 

dimensions of the baffles are given in Figure 4.1. The water extends a distance of 0.21m above 
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the bottom and does not fill the entire contactor. Thus, a zero-shear stress with zero normal flow 

boundary condition is imposed at the surface. No-slip conditions are imposed at the bottom and 

baffle walls and the inlet and outlet are periodic for velocity and pressure. The Reynolds number 

based on hydraulic diameter (   √     , where    is the cross-section area at the periodic 

inlet) and bulk inlet velocity,      , is 2740. This corresponds to the same Reynolds number as 

in the computations and laboratory experiment of Kim et al. (2010a, b). This Reynolds number 

value was achieved by dynamically adjusting the streamwise body force in the momentum 

equation (see Eqn. B.1 for example) in both RANS and LES via Eqn. B.2. 

RANS flow simulations were started from rest. Once the steady state RANS solution of 

the flow was obtained, the scalar advection-diffusion transport equation for the passive tracer 

was solved using the steady state RANS velocity. The tracer study was conducted by initially 

releasing a tracer pulse of Reynolds-averaged concentration 〈 〉    at the inlet over the first 2.5 

seconds of the tracer simulation. The normal gradient of 〈 〉 was set to zero at the outlet and at 

the walls, indicative of zero diffusive flux across these boundaries. 

LES simulations for the flow were also started from rest and continued until a statistically 

steady state had been reached (i.e. until time-averaged velocity fields became independent of 

averaging window size).  Once a statistically steady state was reached, simultaneous solution of 

the LES tracer transport equation was initiated by releasing a tracer pulse of resolved tracer 

concentration  ̅    at the inlet over the first 2.5 seconds of the tracer solution. Zero diffusive 

flux was also set at the boundaries. 

RANS simulations were performed on several structured grids in order to determine the 

grid dependence of results. Figures 4.2a, b show two of the grids used. The finest grid consists of 

1,455,073 total grid points (208×101×83 in x1-x2-x3 (x-y-z) directions, respectively) (grid A) and 



70 

the coarsest grid consists of 1864 total grid points (28×10×8) (grid D). Grids B and C consist of 

(108×41×35) and (52×21×17) points, respectively. LES was performed on the (208×101×83) 

grid (grid A). The grids are refined at bottom and at baffle walls in order to resolve steep velocity 

gradients. Note that the grid region close to the water surface is coarser than near wall 

boundaries due to smaller gradients there. For the finest grids (grids A and B), at the bottom and 

baffle walls, the grid is refined such that the distance between the first grid point and the bottom 

or baffle wall in plus units (  
 ) is less than 11, thereby resolving the buffer zones and viscous 

sub-layers adjacent to these boundaries (see (Pope 2000) for more details about these sublayers 

characteristic of classical wall-bounded turbulent boundary layers). Distance   
  is defined as  

  
  (  ⁄ )√   ⁄                where     is the wall shear stress, d is the distance of the 

first grid point off the wall and V1 is the time averaged flow speed at the first grid point off the 

wall. In grids A (the finest grid), B, C and D (the coarsest grid) the maximum value of   
  is 

approximately 2, 7, 15 and 23 for the baffle and bottom walls, respectively.  

As mentioned above, in all RANS simulations the flow was started from rest and 

integrated (or iterated) until a steady state solution was reached. Solutions were deemed steady 

state once the momentum and continuity equation residuals reached certain threshold values and 

velocity profiles did not show significant changes (less than 1 percent) from iteration to iteration.  

At the end of iterations on all grids, the cumulative continuity equation residual was on the order 

of 1e-19. At the end of iterations on grids A-C, momentum equation residuals were all of order 

1e-5 or less. On grid D, momentum equation residuals were all of order 1e-4 or less. Error 

residuals are defined by Jasak (1996).  
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4.2.2 Results and Discussions 

Figure 4.3 shows absolute velocity (i.e. speed) superimposed with streamlines from 

RANS and LES performed with grid A. Absolute velocity and streamlines are shown for the 

streamwise-vertical  (x1-x2) plane at mid span (at x3 = L/2 where L is the spanwise length of the 

domain). Both RANS and LES solutions are characterized by an undulating, high-speed core jet 

extending from chamber to chamber and a secondary, slower-speed re-circulation zone within 

each chamber. The key difference between the two simulations is that RANS is not able to 

capture smaller scales eddies present near the entrance of each chamber, as revealed by the LES.     

In Figure 4.4, profiles of the RANS x2- or y-component of velocity versus chamber width 

along x1 (x) are plotted at different depths. Figure 4.4 also shows corresponding profiles from the 

LES for which LES velocity fields have been time-averaged. In all of the RANS simulations 

with the different grids, the y-velocity vector changes direction from negative y to positive y 

along the chamber width, in accordance with the presence of the re-circulation zone occupying a 

large part of the chamber, seen in Figure 4.3. The LES profile exhibits a similar but more 

complicated behavior in which the y-component of velocity also changes sign near the walls at 

the chamber entrance (Figure 4.4a). This is due to small scale eddies resolved in LES and 

unresolved in RANS, seen in Figure 4.3.  

For all RANS simulations on the different grids, locations of elevated tracer 

concentrations were found at the baffle walls and near the surface (not shown), in agreement 

with the LES and experiments of Kim et al. (2010a, 2010b). Furthermore, all simulations 

exhibited the effect of short-circuiting evidenced by tracer detection at the outlet at a time much 

shorter than expected (from a plug flow condition).  



72 

Figure 4.5 shows tracer RTD versus time for RANS solutions on various grids. Note that 

time, t, is normalized by the theoretical mean residence time,         s. Theoretical mean 

residence time assumes a perfectly mixed reactor and thus is computed as  = V/Q where V is the 

volume of the contactor and Q is the volumetric flow rate. Tracer RTDs computed are 

characterized by primary and secondary peaks, indicating strong internal circulation. The 

intensity of peaks and troughs is affected by a combination of dispersion and short-circuiting. 

Furthermore, the peaks and troughs in the RTDs obtained using grids B, C and D (i.e. the coarser 

grids) are shifted to the left with respect to the RTD obtained with grid A (i.e. the finest grid). 

The shift of the peaks to the left means that short-circuiting in the simulations with the coarser 

grids is stronger than the short-circuiting in the simulation with the finest grid (grid A).  Figure 

4.5 also includes RTD curves obtained in the RANS of Kim et al. (2010a) and in the laboratory 

experiment of Kim et al. (2010b). Notice that the primary peak in the experimental RTD is 

significantly lower than the primary peak in the computations. Differences in statistics such as 

mean residence time (discussed further below) and cumulative RTD (in Fig. 4.6) are less 

pronounced due to the time integration required to compute these quantities. Finally, note that 

the RTD curve from the RANS of Kim et al. (2010a) is characterized by several peaks, 

inconsistent with the bimodal behavior exhibited by the RTD from the laboratory experiment and 

the present RANS.     

Mean residence time obtained from RANS with different grids is as follows: grid A: 

110.33 s, grid B: 109.90 s, grid C: 107.20 s, grid D: 112.99 s.  Mean residence times were 

obtained via integration of RTD curves from t=0 through t=327.6 s = 3θ, where  is time 

normalized by theoretical mean residence time ( = 109.2 s).  The mean residence times are 
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within 3% of each other, except for the difference between mean residence times on grid C and 

grid D which is 5.4%. 

Figure 4.6 compares the cumulative RTD obtained in the present RANS on different 

grids with the cumulative RTD obtained in the experiments of Kim et al. (2010b) and in the 

RANS of Kim et al. (2010a). Cumulative RTDs predicted by the present RANS simulations on 

grids of varying resolution are all in much better agreement with the cumulative RTD in the 

experiment of Kim et al. (2010b) than the cumulative RTD in the RANS of Kim et al. (2010b).  

The LES of Kim et al. (2010a) led to excellent agreement with the experimental data, however, a 

RANS using the same grid as the LES did not perform as well (see the Kim et al. RANS data 

included in our Figure 4.6).  

When the tracer is released into the contactor, the portion of the tracer initially within the 

high-speed core jet flow (see Figure 4.3) exits rapidly. The rest of the tracer remains in the 

contactor for longer times as it becomes trapped within large-scale eddies serving as dead zones 

or retention zones in each chamber. As time progresses, the tracer within these retention zones 

diffuses or spreads out and is ultimately carried out of the contactor by the core jet. Grid density 

impacts cumulative RTD as can be seen for example by comparing curves obtained with grids C 

and D in Figure 4.6.  Grid D under-predicts the cumulative RTD due to the fact that this grid 

leads to lower speeds within the core jet of the flow (see Figure 4.4). These lower speeds also 

lead to smaller wall-normal velocity gradients and thus smaller eddy viscosity values, ultimately 

leading to a slower turbulent diffusion rate. Both of these factors are responsible for the under-

prediction of cumulative RTD in RANS on grid D compared to grid C. 

The t10 index (associated with the cumulative RTD (as marked in Figure 4.6) and more 

specifically serving to denote the time for 10% of the tracer to exit the contactor) is primarily 
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controlled by the speed of the flow in the core jet. The effect of grid density on t10 can be seen by 

comparing results with grids D and C in Table 4.1 and Figure 4.4. RANS on grid D (the coarsest 

of the grids) under-predicts the velocity in the core jet relative to RANS on grid C (e.g. see core 

jet velocities at x/W ~ 0.1 and x/W ~ 0.9 in Fig. 4), thereby leading to an over-prediction of t10 

characterized by a 13.5% error with respect to the experimental value of Kim et al. (2010b). The 

greater resolution of grid C leads to a more accurate prediction of t10 with a 3.6% error. 

Note that RANS on grids A and B lead to higher errors in t10 than the RANS on grid C. 

The reason for this is that grids A and B resolve down to the buffer zone and viscous sublayer 

close to the walls, however the k-ε turbulence model with standard wall functions used (see 

description in sub-section 3.1.3) is not equipped to give physically meaningful predictions of the 

eddy viscosity within these layers. The k-ε model with standard wall functions model calculates a 

non-zero eddy viscosity down to the log-layer and sets the eddy viscosity to zero at grid points 

within the buffer zone and viscous sublayer. This leads to a k-ε model with drastic different 

behaviors on grids A and B compared to grids C and D. To verify this we have also performed 

RANS on grids A and B with the Launder and Sharma k-ε model (Launder and Sharma, 1974; 

Patel et al. 1985), which is equipped to integrate the k-ε model equations down to the walls. Thus, 

this model provides physically meaningful eddy viscosity values within the buffer zone and the 

viscous sublayer leading to highly accurate predictions of t10 characterized by 0.6% and 1.8% 

relative errors on grids A and B, respectively. The model of Launder and Sharma is readily 

available in OpenFOAM. 

4.2.3 Conclusions 

LES predicts the existence of smaller scale eddies near the entrance of each chamber. 

These eddies are not present in any of the RANS simulations, even when the finest grid used in 
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RANS is identical to the grid used in the LES. Tracer RTD was found to have some dependence 

on grid resolution due to varying predictions of short-circuiting and dispersion on the different 

grids. RANS on all grids employed led to cumulative RTD in excellent agreement with the 

experimental data of Kim et al. (2010b). Similar agreement between computations and physical 

experiments had been found by other researchers (e.g. Do-Quang et al. 1999; Cockx et al. 1999; 

Zhang et al. 2007).  

Furthermore, the agreement with experimental cumulative RTD was shown to be much 

better than what had been previously reported by Kim et al. (2010a).   

Predicted t10 index depends on grid density and RANS turbulence model. For fine grids 

that resolve the viscous sub-layer, such as grids A and B, the k-ε turbulence model equipped with 

standard wall functions (Wilcox 2004) leads to greater errors in predicted t10 compared with the 

prediction from LES of Kim et al. (2010b). The k-ε model of Launder and Sharma which is 

equipped to integrate the model equations down to the wall and thus properly handling the 

viscous sub-layer significantly improves the accuracy of predicted t10 as expected. This results in 

smaller errors compared with the LES prediction from Kim et al. (2010b). Predicted t10 index on 

all grids with proper turbulence model are within 13% error with respect to the experimental data. 

It is concluded that RANS is able to predict t10 on par or better than the LES reported by 

Kim et al. (2010a). The reason why the RANS approach performs on par with the LES approach 

in predicting the cumulative RTD and associated indexes such as t10 may be attributed to the fact 

that RANS is able to resolve the large-scale eddies or retention zones within each chamber. In 

addition to these large-scale retention zones, the LES is also able to resolve smaller scale eddies 

not resolved by the RANS. These smaller eddies can retain parts of the tracer, however, parts of 

the tracer that are not captured by these eddies are simply left to be captured by the larger eddies 
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as is the case in RANS. Thus, as long as the large-scale eddies are resolved and the turbulent 

smaller eddies are accounted for through a turbulence model, resolution of the smaller scale 

eddies is not crucial for predicting the cumulative RTD to some level of accuracy, as evidenced 

by our RANS results. Note that all of the grids used are able to resolve the largest retention zones 

in each chamber (not shown). An important function of the smaller-scale eddies resolved by the 

LES is to provide turbulent diffusion. In RANS, turbulent diffusion provided by these unresolved 

smaller scale eddies is accounted for through the turbulence model, which in our case is taken as 

the k-ε model. 

Overall, results reported here are encouraging, especially those obtained on the coarser 

grids, indicating that fine-scale simulation methodologies such as LES are not always needed for 

numerical RTD studies. The next sub-section will highlight flow cases for which RANS does not 

perform as well as LES. 

4.3 What Can Be Gained from LES over RANS? 

4.3.1 Flow Domains and Boundary Conditions 

Results from RANS and LES simulations of flow and tracer transport in a column 

contactor and a baffled contactor are compared. The focus here is on the identification of 

unsteady flow features which play an important role in determining the hydraulic performance of 

contactors. Due to their unsteady nature, such features require LES over RANS for their accurate 

representation and ultimately for the accurate determination of the hydraulic performance. 

The present numerical studies of flow and tracer transport in a column contactor are 

based on the physical pilot-scale experiments of Chen (1998). The pilot-scale ozone contactor is 

a 6.081 meter long glass column in the flow direction (  ) with an internal diameter of 152 mm 

and an inlet/outlet diameter of 25.4 mm, shown in Figure 4.7. Two scenarios with different water 
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flow rates were considered. Scenario AI was with flow rate of 13.0 gpm or 8.2×10
-4 

m
3
/s and 

scenario AII was with a flow rate of 2.6 gpm or 1.64×10
-4 

m
3
/s. The corresponding Reynolds 

numbers (        ⁄   where   is mean flow rate,   is diameter of the column contactor,    is 

the cross section area, and   is viscosity of water) are 6,900 and 1,380 for scenarios AI and AII 

respectively. Physical experimental data from Chen (1998) is available for Re = 6,900. 

The computational grid used in RANS consists of 32,890 (14×24×111) points while the 

grid used in LES consists of 235,200 (29×41×211) points, shown in Figure 4.7.  Note that these 

grids are structured. A finer grid is used in the LES in order to resolve near-wall regions. Inlet 

velocity and outlet pressure are prescribed boundary conditions. No-slip velocity is prescribed at 

the walls.  

Both RANS and LES tracer simulations were conducted by initially releasing a tracer 

pulse with concentration         at the inlet over a 2.0 and 10.0-second period for scenarios AI 

and AII, respectively. Note that different release time periods were needed to ensure that the 

same amount of mass of tracer was released into the reactor in all simulations. At the outlet and 

at the walls, the normal gradients of tracer concentration were set to zero indicating zero 

diffusive flux across these boundaries.  

The configuration and boundary conditions of the baffled contactor studied in this section 

are the same as these in section 4.2. Two scenarios with different Reynolds numbers (2740 and 

5480) were studied. Recall that the Reynolds number is based on the hydraulic diameter (   

√     , where    is the cross section area at the inlet) and target bulk inlet velocity      . The 

Reynolds number in scenario BI (2740) corresponds to the Reynolds number in the laboratory 

experiment of Kim et al. (2010a) and in the computations of Kim et al. (2010b). As noted earlier, 

a dynamically adjusted body force in the x1 direction was included in the momentum equation in 



78 

order to drive the flows and attain these Reynolds numbers. Details of this body force can be 

found in Appendix B.   

The grid employed in RANS simulation has 18,564 (52 × 21 × 17) points which was one 

of the coarsest grids studied in section 4.2 and for which the standard k-ε turbulence model 

worked well. The grid employed in the LES simulation has 1,743,664 (208 × 101 × 83) points, 

shown in Figure 4.8(b). A much finer grid is used in LES simulation in order to resolve near-wall 

regions.  

The numerical tracer transport simulation was conducted by initially releasing a tracer 

pulse with concentration         at the inlet over a 2.5 and 1.25-second period for scenarios BI 

and BII considered, respectively. At the outlet and at the walls, the normal gradients of tracer 

concentration were set to zero indicating zero diffusive flux across these boundaries. 

A summary of the configurations for column and baffled contactors studied is given in 

Table 4.2. 

4.3.2 Results and Discussion 

Figure 4.9 shows normalized tracer concentration at contactor outlet versus normalized 

time (i.e. RTD) for the column contactor flow at Re = 6900 (scenario AI). The RTD predicted by 

RANS for the column contactor greatly differs from the physical experimental data (Figure 4.9). 

The concentration peak predicted by RANS is delayed and has a higher value than the 

experimental data. The prediction by LES agrees better with the experimental data especially in 

terms of concentration peak location. To further explore this difference between RANS and LES 

predictions, characteristic residence times from the present numerical simulations and physical 

experiments of Chen (1998) are estimated from the RTD curves and listed in Table 4.3. In this 

table, T1 denotes the time it takes for the amount of tracer at the outlet to reach 1% of the amount 
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of tracer injected at the inlet. Tpeak denotes the time at which the peak RTD occurs in Figure 4.9. 

T1 and Tpeak predicted by LES are much closer to the experimental data than those predicted by 

RANS. Note that, a minor discrepancy still exists between the peak values of tracer 

concentration from LES and physical experiment. This is potentially caused by the fact that a 

counter gas-phase flow occurred in the physical experiment while this was not the case in the 

simulation.  

Next, flow fields are examined in order to understand the discrepancy in RTD curves 

between LES and RANS.  Based on Figure 4.10, it is seen that relative to LES, RANS is not able 

to accurately represent the spatial transition to turbulence induced by the inlet jet. RANS predicts 

a transition to fully developed turbulence within approximately 0.5 meters from the inlet. 

Meanwhile, in LES this transition occurs over a much greater distance of approximately 2 meters. 

Note that the LES is able to resolve the spatial instability of the inlet jet leading to its break-

down and subsequent transition to fully developed turbulence. Such breakdown of the jet and 

transition to turbulence is not captured in RANS. The spatial breakdown is seen in Figure 4.10a 

as well as in Figure 4.11. In Figure 4.11, the breakdown of the jet in the LES gives rise to 

instantaneous, localized spikes in the downstream velocity in regions away from the centerline of 

the contactor. 

Due to the shorter distance for transition to fully developed turbulence predicted by 

RANS, this methodology over-predicts turbulent mixing of momentum over the length of the 

contactor compared to LES (see time-averaged LES velocity profiles compared to RANS 

velocity profiles in Figure 4.11). For example, at 5m from the inlet, the RANS mean velocity is 

flatter bringing fluid with greater speed closer to the wall relative to the LES prediction. This 

leads the RTD peak to occur at a later time in the RANS, as seen in earlier in Figure 4.9.   
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Figure 4.12 shows RTD curves for flows under scenarios AI and AII (Re = 6900 and Re 

= 1380, respectively). A similar difference between LES and RANS-predicted RTD is observed 

at Re = 1380 as was observed at Re = 6900. The difference can be once again traced to LES 

resolution of the breakdown of the inlet jet and spatial transition to fully developed turbulence 

which is absent in RANS (see Figure 4.13). 

Figure 4.14 shows cumulative RTD curves computed from the RTD curves in Figures 4.9 

and 4.12. Cumulative RTD is useful for measuring characteristic residence times such as    . 

The Morrill dispersion index or MDI (defined as        , see sub-section 3.2.4, Eqn. 3.29) is also 

calculated from the characteristic residence time indices. Recall that the MDI is equal to 1 for an 

ideal flow reactor. Due to over-prediction of turbulent mixing and consequently under-prediction 

of the intensity of short-circuiting, RANS consistently under-predicts the MDI with respect to 

LES, as can be seen from Table 4.4. In other words, the RANS yields a flow closer to plug flow 

due to excessive unphysical mixing. 

Next, results from LES and RANS of flow and tracer transport in the baffled contactor 

are presented. Figure 4.15 shows a comparison between the present LES and RANS, the LES of 

Kim et al. (2012a) and the physical laboratory experiments of Kim et al. (2012b) in terms of 

cumulative RTD. As observed from this figure, the cumulative RTD curves predicted by RANS 

and LES are in excellent agreement with the physical experimental data. Characteristic residence 

times,    ,    , and     (scaled by theoretical residence time  ) of the tracer were estimated from 

the cumulative RTD curves (Figure 4.15) and are listed in Table 4.5. The characteristic 

dimensionless residence times from both present RANS and LES are in good agreement with 

each other. 
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Figure 4.16 presents speed contours and streamlines from LES and RANS. In the case of 

LES, speed contours and streamlines are presented in terms of instantaneous fields and time-

averaged fields. Note that Figure 4.16 is the same as Figure 4.3. The latter figure has been 

repeated here for ease of discussion. As described earlier, both RANS and LES solutions are 

characterized by a high-speed core jet (i.e. short-circuiting) extending from chamber to chamber 

and a secondary, slower-speed re-circulation zone (i.e. a dead zone) within each chamber. Note 

that these large-scale structures are baffle-induced, persistent and quasi-steady. Smaller scale 

eddies resolved by the LES and present near the entrance of each chamber are less stable. The 

main difference between the two simulations strategies here is that RANS is not able to capture 

these smaller scale eddies. 

The main factors affecting tracer transport and associated RTD are the large scale short-

circuiting and dead zones. Short-circuiting dominates the initial tracer passage through the 

contactor and thus     while dead zones dominate the tail shape of the RTD curve. Given that 

RANS and LES tracer residence time indices are similar and that RANS does not resolve the 

smaller scale eddies resolved by the LES, it is concluded that these small scale structures have 

negligible impact on the contactor’s hydraulic efficiency. 

The strength of baffle-induced short-circuiting changes temporally and spatially, but the 

end-to-end (inlet-to-outlet) extent of the short-circuiting is never interrupted. Since the short-

circuiting is global and quasi-steady, RANS is well-suited to capture this flow structure (Figure 

4.16a), unlike the highly unsteady spatial breakdown of the inlet jet in the column contactor 

analyzed earlier.  

Figures 4.17 and 4.18 show RTD and cumulative RTD curves from RANS and LES 

simulations at different Reynolds numbers (Re = 2,740 and 5,480). No significant differences are 
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seen in terms of these quantities nor associated normalized characteristic residence times (listed 

in Table 4.6), further confirming that RANS performs on par with the LES for flow and tracer 

transport in baffled contactors.   

4.3.3 Conclusions  

Flow and passive tracer transport in a column contactor and a baffled contactor under 

different Reynolds numbers using RANS and LES methodologies were studied. Two main 

conclusions are described next. 

LES is a reliable methodology for evaluating the hydraulic efficiency of water treatment 

contactors as it was shown to be able to capture flow features playing key roles in determining 

characteristic tracer residence times in the systems. Furthermore, the results from LES can be 

used to verify the accuracy of other less expensive simulation approaches, such as RANS. The 

drawback of LES is that it can become computational cost-intensive, especially for full-scale 

water treatment systems. However, current advancing computer technologies can lessen this 

drawback.  

It was shown that RANS is reliable for conducting simulations of flow and tracer 

transport in contactors as long as there are no unsteady or unstable flow structures dictating the 

characteristic residence times of the systems. In the case of the column contactor studied here, 

mixing and consequently hydraulic performance of the contactor are strongly influenced by the 

spatial breakdown of the inlet jet and downstream transition to fully developed turbulence. 

RANS was not able to resolve this flow structure and thus did not provide an accurate evaluation 

of the hydraulic performance of the contactor. However, in the case of the baffled contactor, a 

quasi-steady, short-circuiting jet and associated dead zones that are important in determining the 
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hydraulic efficiency of the contactor, were resolved by RANS thus leading to accurate evaluation 

of contactor hydraulic performance.   

Future research should focus on testing methodologies less computationally expensive 

than LES such as, for example, unsteady RANS (URANS, Johansson et al. 1993) or detached 

LES (DES, Spalart et al. 1997) for evaluating hydraulic performance of systems characterized by 

unsteady and unstable flow structures. 

4.4 Chapter Summary 

In this chapter RANS simulations of a baffled ozone contactor were conducted following 

a physical laboratory experiment detailed in the literature. Simulations performed on different 

grids lead to varying degrees of short-circuiting and dispersion which ultimately lead to 

differences in the residence time distribution (RTD) of the tracer (released at the inflow as a 

pulse). Predicted t10 index depends on grid density and RANS turbulence model. For fine grids 

that resolve the viscous sub-layer adjacent to no-slip boundaries, a turbulent model such as the k-

ε model of Launder and Sharma (which is equipped to integrate the model equations down to the 

wall) has to be applied for accurate prediction of t10 index. The standard k-ε model was shown to 

yield good results on coarser meshes that do not resolve the viscous and buffer sub-layers. 

Overall, simulations on all considered grids with proper turbulence model yielded cumulative 

RTD and associated t10 index in good agreement with physical experimental data despite the 

under-resolution of the flow by the RANS methodology relative to a large-eddy simulation (LES) 

of the same flow. This result is encouraging in light of the significant discrepancy between 

computational (RANS) and experimental cumulative RTD recently obtained by other researchers 

for the same flow studied here (Kim et al. 2010b).  
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This chapter also conducted a careful assessment of RANS and LES in order to 

understand under which flow conditions LES should be recommended instead of the less 

computationally intensive RANS for predicting hydraulic performance of a disinfection system. 

Results from RANS and LES simulations of flow and tracer transport in a laboratory scale 

column contactor and a laboratory scale baffled contactor were presented; and flow fields, 

residence time distributions and characteristic residence times were analyzed. LES was shown to 

be a more reliable strategy than RANS in simulating tracer transport in column contactors due to 

its ability to better predict the spatial transition to turbulence characterizing the flow. However, 

in baffled contactors where such transition does not occur and the flow is characterized by a 

quasi-steady short circuiting jet and dead zones, RANS performs on par with LES.  
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Figure 4.1: Flow domain dimensions. 

 

 

Figure 4.2: Finest (left) and coarsest (right) grids employed in RANS grid dependence study. 
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(a) 

 

 
(b) 

 

 
(c) 

Figure 4.3: (a) x-y distribution of absolute velocity superimposed with corresponding streamlines 

(in last two chambers) in RANS on grid A; (b) Instantaneous and (c) time-averaged x-y 

distribution of absolute velocity superimposed with corresponding streamlines (in last two 

chambers) in LES. All cases are plotted on the x-y plane at mid span (z = L/2). 
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(a) 

 
(b) 

 
(c) 

Figure 4.4: Y-velocity profiles across the chamber width (W) at different depths: (a) y/H = 0.27; 

(b) y/H = 0.50; (c) y/H = 0.72, where H is contactor height. For LES, profiles shown have been 

time-averaged. 
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Figure 4.5: Comparison of tracer residence time distributions. 

 

Figure 4.6: Comparison of cumulative residence time distributions. 
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Figure 4.7: Layout and computational grid of column contactor following physical experiments 

of Chen (1998). 

 

 

Figure 4.8: Layout (a) and grid (b) of baffled ozone contactor (Kim et al. 2010a). 
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Figure 4.9: Comparison of normalized tracer concentration (i.e. RTD) measured at the outlet 

versus normalized time from the present numerical simulations (RANS and LES) and the 

physical experiment of Chen (1998) of the column contactor Re = 6900 (scenario AI).  

 

 

Figure 4.10: (a) Instantaneous stream-wise velocity contours from LES and (b) stream-wise 

velocity contours from RANS in the column contactor at Re = 6900 (scenario AI). Note that for 

ease of presentation, the column contactor has been split into 6 stream-wise segments. For 

example, segment 1 extends from the inlet cross-section up through 1 meter away from the inlet. 

Segment 2 extends from 1 meter away from the inlet through 2 meters away from the inlet and so 

on. 
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.    

Figure 4.11: Variation of stream-wise velocity over various cross-sections of the column 

contactor for scenario AI. 

 

 

Figure 4.12: Normalized tracer concentration (i.e. RTD) versus normalized time for different 

scenarios in the column contactor.  
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Figure 4.13: (a) Instantaneous stream-wise velocity contours from LES and (b) stream-wise 

velocity contours from RANS in the column contactor at Re = 1380 (scenario AII). See caption 

of Figure 4.9 for explanation of the different segments. 

 

 

Figure 4.14: Cumulative normalized tracer concentration versus normalized time for different 

scenarios in the column contactor. 
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Figure 4.15: Comparison of cumulative residence time distributions from the present RANS and 

LES, the LES of Kim et al. (2010b) and physical experiment of Kim et al. (2010a) of the baffled 

contactor at Re = 2740 (scenario BI). 

 
(a) 

 

 
(b) 

Figure 4.16: Speed contours and streamlines in the baffled contactor at Re = 2740 (scenario BI) 

from (a) RANS, (b) LES instantaneous result and (c) LES time-averaged result. 
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(c) 

Figure 4.16 (Continued) 

 

 

Figure 4.17: Normalized tracer concentration versus normalized time predicted by present LES 

and RANS of the baffled ozone contactor (the figure on the right is the same as the figure on the 

left but with different range in x axis). 



95 

 

Figure 4.18: Cumulative normalized tracer concentration versus normalized time predicted by 

present LES and RANS of flow in the baffled contactor. 

 

Table 4.1: Values of t10 scaled by theoretical mean residence time ( = 109.2 s) and relative error 

with respect to experimental result of Kim et al. (2010b).  All RANS were performed using the 

standard k-ε model except for those on grid A* and grid B*. RANS on grids A* and B* were 

performed on grids A and B, but with the Launder Sharma model (Launder and Sharma, 1974; 

Patel et al. 1985) instead of the standard k-ε model. 

Case t10/ Relative error (%) 

Present RANS on grid D 0.379 13.5 

Present RANS on grid C 0.322 3.6 

Present RANS on grid B 0.375 12.3 

Present RANS on grid B* 0.34 1.8 

Present RANS on grid A 0.421 26 

Present RANS on grid A* 0.336 0.6 

Kim et al.’s RANS on grid A 0.22 34.1 

Kim et al.’s LES on grid A 0.30 10.2 

Kim et al.’s experiment 0.334 NA 
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Table 4.2: A summary of the present numerical studies on disinfection contactors. 

Contactor type Scenario Re 
Flow rate /

 

m
3
/s 

Theoretical Residence 

time / sec 

Tracer 

release time 

Column contactor 

(Chen 1998) 

AI 6900 8.26×10
-4

 134 2.0 

AII 1380 1.652×10
-4

 671 10.0 

Baffled contactor 

(Kim et al. 2010a) 

BI 2740 2.0×10
-4

 112 2.5 

BII 5480 4.0×10
-4

 56 1.25 

 

Table 4.3: Comparison of characteristic residence times from the present numerical simulations 

and experiment of Chen (1998) of the column contactor at Re = 6900 (scenario AI). 

              
Peak value of normalized 

concentration 

Experiment (Chen 1998) ~0.65 ~0.82 ~1.91 

Present LES (scenario AI) 0.66 0.77 2.58 

Present RANS (scenario AI) 0.81 0.96 3.67 

 

Table 4.4: Characteristic residence times normalized by mean residence time τ for scenarios with 

different Reynolds number in the column contactor. 

Scenario Model t10/τ t50/τ t90/τ MDI 

AI (Re = 1380) 

LES 0.6672 0.8800 1.4474 2.17 

RANS 0.8245 0.9814 1.2041 1.46 

AII (Re = 6900) 

LES 0.7057 0.8832 1.3411 1.90 

RANS 0.8573 0.9890 1.1664 1.36 
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Table 4.5: Comparison of characteristic dimensionless residence times from present simulation, 

LES (Kim et al. 2010a) and experiment (Kim et al. 2010b) of the baffled contactor at Re = 2740 

(scenario BI). 

 t10/τ 
Relative 

error 
t50/τ 

Relative 

error 
t90/τ 

Relative 

error 

EXP (Kim et al. 

2010b) 
0.334 0% 0.875 0% 1.762 0% 

LES (Kim et al. 

2010a) 
0.325 -2.7% 0.857 -2.1% 1.902 7.9% 

Present LES 0.316 -5.4% 0.879 0.5% 2.057 16.7% 

Present RANS 0.322 -3.6% 0.860 -1.7% 1.949 10.6% 

 

Table 4.6: Characteristic residence times for scenarios with different Reynolds number predicted 

by present LES and RANS of flow in baffled contactor. 

Scenario Model t10/τ t50/τ t90/τ MDI 

BI (Re = 2740) 

LES 0.3288 0.8501 1.8852 5.73 

RANS 0.3063 0.8214 1.8864 6.16 

BII (Re = 5480) 

LES 0.3176 0.8272 1.9026 5.99 

RANS 0.3086 0.8259 1.8654 6.04 
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CHAPTER 5: NUMERICAL STUDY ON A FULL-SCALE OZONE CONTACTOR IN 

CITY OF TAMPA WATER DEPARTMENT
2
 

5.1 Introduction 

The primary concerns in the second part of the CFD framework presented in Chapter 3 

are (1) the degree of detail in the reaction system and (2) the models representing the reactions. 

Usually, a reaction system in ozone disinfection process consists of a large number of reactions. 

Thus it is necessary to develop a reduced reaction mechanism as was done in Chapter 3. The 

reduced reaction mechanism should contain key chemical species and reactions. In the 

simulation of ozone disinfection process, the most commonly considered reactions are ozone 

decomposition and reaction between ozone and instantaneous ozone demand (IOD) or natural 

organic matter (NOM). Only a few studies have incorporated bromate formation (Zhang 2006; 

Bartrand 2006; Zhang et al. 2007) as was done for the CFD framework developed in Chapter 3. 

A summary of the reaction systems used in prior CFD-based simulations of ozone disinfection 

was given in Table 2.4 and Figure 2.2 in Chapter 2. In the prior studies that have considered 

bromate formation, an empirical model under the assumption that bromate concentration changes 

linearly with ozone exposure was used to represent the process (Zhang 2006; Bartrand 2006; 

Zhang et al. 2007). Although Zhang (2006) and Zhang et al. (2007) have a bromate formation 

module in their framework, those author(s) deemed not practical to predict bromate formation 

                                                 
2
  Part of Chapter 5 is reprinted from Water Research, 52, Jie Zhang, Andrés E. Tejada-Martínez, Qiong Zhang, 

Hongxia Lei, Evaluating hydraulic and disinfection efficiencies of a full-scale ozone contactor using a RANS-based 

modeling framework, 155-167, Copyright (2014), with permission from Elsevier. Permission is included in 

Appendix D. 



99 

due to the sensitivity of the process of bromate formation to water quality. Bartrand (2006) 

showed prediction of bromate formation in the Alameda County Water District ozone contactor 

in Fremont, CA. However, the predictions were not compared with physical experimental data. 

Instead of empirical modeling, Mandel et al. (2012) used a quasi-mechanistic chemical model or 

kinetics-based model to represent the process of bromate formation. However, a systematic 

network was used by Mandel et al. (2012) to represent the flow, thereby reducing the accuracy of 

the flow solution and consequently reducing the fidelity of ozone and bromate concentration 

predictions.  

In Chapter 3, a CFD-based framework including a kinetics-based reactions model in 

RANS species transport equations was developed for the ozonation process in ozone contactors. 

This framework should be suitable for the ozonation process in baffled contactors given the 

success of RANS in predicting the hydraulic performance of these contactors (Chapter 4). The 

reaction system for ozonation process in the current framework includes ozone self-

decomposition, reaction between ozone and natural organic matter, and bromate formation 

(Chapter 3). In particular, bromate formation is modeled using kinetics-based modeling, unlike 

the previous CFD studies summarized above. In the present chapter, the computational 

framework prediction of ozone consumption and bromate formation are validated via 

comparisons with measured physical data from the full-scale ozone contactor at the City of 

Tampa Water Department. Note that, the results discussed in the present chapter have been 

included in a published manuscript (Zhang et al. 2014). 

5.2 The Ozone Contactor Operated by City of Tampa Water Department 

The City of Tampa Water Department treats and delivers daily drinking water to a service 

population of about 600,000 people in the Tampa Bay area (Kim et al. 2009). In 2000, a project 
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was carried out for improving the water quality at the David L. Tippin Water Treatment Facility 

managed by the City of Tampa Water Department. This project added an extra treatment process 

of ozonation/biological activated carbon (BAC) for improving water quality. The schematic 

diagram of treatment processes after the completion of the Water Quality 2000 Project is shown 

in Figure 5.1. The extra treatment process of ozonation is performed by two trains of ozone 

contactors. Each train has eight cells and an overall hydraulic residence time of 34 minutes at the 

designed flow rate of 85 million gallons per day (Kim et al. 2009). A sketch of one of the ozone 

contactor trains is shown in Figure 5.2.  

The source water for the David L. Tippin Water Treatment Facility is the Hillsborough 

River. The ozone contactors (ozone dosing) run continuously. Concentrations of dissolved ozone 

are measured once per day at cell #2, cell #5 and at the contactor exit (Figure 5.2). These 

sampling locations are denoted as A, B, and C and marked in red dots in Figure 5.2. 

Concentrations of bromide and bromate are measured once per week at the entrance and exit of 

the contactor (see Figure 5.2, yellow dots). Thus, the conversion of bromide to bromate is 

calculated every week. Bromide and bromate concentrations are measured twice per week during 

times when bromide levels become relatively high. Note that bromate is a by-product of ozone 

disinfection. A long-term exposure to large amounts of bromate may cause human health issues. 

(U.S. EPA 2001)  

Data collected from March 8 to July 21, 2011 is used in this dissertation. The data and the 

dimensions of the contactor have been provided by Dr. Hongxia Lei from the City of Tampa 

Water Department.  
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5.3 Numerical Set-up  

To further validate the computational framework developed for this dissertation, 

simulations of the previously described full-scale ozone disinfection contactor were conducted. 

In order to compare with the data measured on site, the computational domain in the present 

study includes the middle eight chambers of the ozone contactor. The size of this computational 

domain is Length × Width × Height = 51.7m × 12.2m × 7.32m. The rest of the dimensions of the 

contactor including the dimensions of the baffles are given in Figure 5.3(a). The mesh used for 

all simulations has 881,050 structured cells, shown in Figure 5.3(b). In this mesh the   
  distance 

of the first grid point away from the bottom or baffle walls is similar to that in grid C studied in 

section 4.2 (Chapter 4), that is       
 < 50. Thus the standard k-ε turbulence model is used.  

The water extends to a height H = 7.32m above the bottom and does not fill the entire contactor. 

The free-surface is treated as a no-penetration, zero-shear, rigid lid allowing full slip. Thus, the 

corresponding surface boundary conditions are  〈  〉    ⁄   〈  〉    ⁄  〈  〉    where    is 

the surface-normal direction and 〈  〉 , 〈  〉 and 〈  〉  are the streamwise, surface-normal and 

spanwise velocities respectively.  Velocity inlet boundary condition with a fixed flow rate is 

applied to the inlet. Pressure is imposed at the outlet. No-slip conditions are imposed at the 

bottom and other walls. The viscous wall regions are not resolved, however, everywhere the first 

grid point away from a no-slip boundary is less than 85 plus units thereby permitting the use of 

the standard k-ε turbulence model (Wilcox, 1994).  

The strategy of simulation is based on the “frozen” flow approach described earlier. In 

this approach, the flow is solved first using RANS and then this “frozen” flow field is used to 

conduct separate simulations for concentrations of non-reactive tracer and reactive chemical 

species. 
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Five scenarios (scenarios I-V) with weekly averaged data measured on site from April to 

July 2011 were selected to set up the chemical reaction simulations and to compare with physical 

measurements. The flow rates in the ozone contactor were kept constant during each scenario, 

but vary from 45 to 55 MGD (million gallons per day) from scenario to scenario, as listed in 

Table 5.1. Different flow rates from those of Table 5.1 were used to conduct numerical tracer 

transport simulations in order to cover a wider range of flow rates. In the tracer simulations, the 

flow rates used are 33.8, 46.0 and 63.8 MGD, corresponding to the minimum flow rate in 2011, 

the averaged flow rate in April 2011, and the maximum flow rate in 2011. 

In the numerical tracer simulations, a tracer pulse was released at the inlet within the first 

2% of the theoretical residence time period. Note that the theoretical residence time varies from 

2,180 s to 1,848 s. Other necessary inputs for the chemical reaction simulations, such as ozone 

dose or ozone concentration at diffuser, TOC concentration at inlet, TOC concentration removed 

by the ozone contactor, and bromide concentration at inlet are listed in Table 5.1. At the outlet 

and at the walls, the normal gradients of the tracer and chemical species are set to zero indicating 

zero diffusive flux across these boundaries. 

Chemical time scale analysis is conducted to determine the closure method for the 

turbulence-chemistry interaction term described in section 3.3, Eqn. (3.33). Note that the values 

in the Jacobian matrix (Eqn. 3.37) depend on initial chemical conditions. In order to determine 

the chemical time scales in the most reaction-intensive situation, scenario II, in which the initial 

concentrations of the chemical species are higher than those in other scenarios, was selected. 

Inserting the initial conditions in scenario II (shown in Table 5.1) and the reaction rate constants 

in Table 3.2 (Chapter 3) into the Jacobian matrix, the chemical time scales in scenario II are ∞, 

0.225, 0.210, 1.31, 339, and 17.1 seconds. The chemical time scales in the other scenarios are 



103 

higher than these in scenario II. Thus, all the chemical time scales in the present simulations are 

greater than the micro-mixing time scale which is estimated to be approximately 0.1 second 

following the Kolmogorov timescale defined in Eqn. (3.39). Thus, following the classification of 

Fox (2003), the chemical reaction system used in the present study can be classified as a slow 

chemistry system. Note that, the smallest chemical time scale (0.210 sec) is on the same order as 

the micro-mixing time scale (0.1 sec). This indicates that some of the reactions may possibly   be 

categorized as finite-rate chemistry. In order to avoid increasing complexity of the modeling 

framework, the slow-chemistry limit is applied to all reactions.  

Since the present chemical reaction system is in the slow-chemistry limit, the mixing is 

fast enough that the composition of variables, e.g. 〈  〉, can be approximated by their mean 

values 〈 〉〈 〉, and thus 〈    〉    in Eqn. (3.33).  

5.4 Results and Discussion 

In this section visualizations of the flow pattern in the full scale ozone contactor are 

firstly presented. Results from the tracer test are then analyzed to evaluate the hydraulic 

performance of the ozone contactor. Then, the simulation framework is validated by comparing 

predicted ozone concentrations with on-site measured data at sample points in the contactor tank. 

Based on predicted ozone concentration distribution, CT was calculated to evaluate the 

disinfection performance of the ozone contactor.   

5.4.1 Flow Simulations  

Figures 5.4(a) and 5.4(b) show absolute velocity (i.e. speed) and streamlines on the 

streamwise-vertical (  -  ) plane at mid-span (   = L/2 where L is the spanwise length of the 

contactor) respectively. The flow pattern is characterized by an undulating, high-speed core jet 

extending from chamber to chamber and a secondary, slower-speed re-circulation zone, or dead 
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zone, within each chamber. This core jet is similar to the core jet observed earlier in LES and 

RANS of a laboratory-scale ozone contactor. The core jet facilitates the passage of a portion of 

water through the whole length of the contactor over much shorter times than the mean residence 

time, resulting in short-circuiting and thus a reduction in hydraulic efficiency. Furthermore, 

regions of high speed flow can be found near the left side of each chamber. Note that, the high-

speed core jet in the first chamber (the chamber on the right side) is more intense than that in 

other chambers because the inlet cross-sectional area of the first chamber is smaller than that of 

the other chambers. As observed from Figure 5.4(b), the size of dead zones varies in the different 

chambers. However, all of the dead zones occupy most of each chamber. More characteristics of 

the high-speed core jet and dead zones will be discussed in the following tracer simulation 

section. 

5.4.2 Tracer Transport Simulation 

Recall that tracer transport simulations were conducted for flow rates of 33.8, 46.0 and 

63.8 MGD, corresponding to the minimum flow rate in 2011, the averaged flow rate in April 

2011, and the maximum flow rate in 2011.  These flow rates are different from the flow rates 

used in the chemical reaction simulations (listed in Table 5.2) in order to cover a wider range of 

flow rates. 

Figure 5.5 shows instantaneous snapshots of tracer concentration at various points at 

different times for the tracer transport simulation with flow rate of 46.0 MGD. Recall that the 

tracer is released at the inlet during the first 2% of the theoretical residence time period of the 

simulation. Higher tracer concentrations are found close to baffle walls and near the surface. The 

effect of short-circuiting can be seen in the snapshots at times t = 1,600 s and t = 2,100 s showing 

non-negligible tracer concentration levels at the inlet and first chamber occurring simultaneously 
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as a large portion of the tracer in the last two chambers is close to exiting the contactor. Such 

behavior is due to entrapment of tracer within re-circulation (dead) zones. This shows that 

remnants of the tracer persist throughout the entire contactor for long times after its initial release. 

Further analysis of tracer evolution was carried out by analyzing residence time 

distribution (RTD) and cumulative residence time distribution (CRTD), shown in Figure 5.6. 

Several peaks can be observed in the RTD curve in Figure 5.6. The first peak of the RTD is 

solely caused by short-circuiting. The following peaks result from the combined effect of re-

circulation (dead) zones and short-circuiting. Note that, usually in laboratory-scale contactors the 

first peak has the highest value while the value of the following peaks decreases. However, in 

full-scale contactors, the theoretical residence time is much longer (2,180 s in this case) than in 

laboratory-scale contactors, and thus diffusion serves to attenuate the intensity of the first peak of 

the RTD curve. Finally, note that RTDs and CRTDs for the cases with different flow rates are 

quite similar.  

Characteristic dimensionless residence time indices,          ,          , and 

         , (scaled by theoretical residence time  ) of the tracer are estimated from the CRTDs 

in Figure 5.6; the time indices are listed in Table 5.2. In the present study, the calculated     is 

approximately 0.43 for all flow rates simulated (33.8 MGD, 46.0 MGD and 66.8 MGD). But in 

the physical tracer tests conducted by the Tampa Water Department,     was measured to be 

approximately 0.54 for flow rates ranging from 38 to 75 MGD. This difference in     may be 

attributed to the fact that the predicted     in the present study is for a truncated domain of the 

ozone contactor which excludes the inlet chamber before chamber #1 and the exit chamber after 

chamber #8 (see Figures 5.2 and 5.3a).  Tracer concentration versus time was collected in the 

simulations at the exits of chambers 2 through 8. Based on these collected data, CRTD curves 
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were generated to estimate the    s corresponding to truncated domains with two to seven 

chambers (Figures 5.7 and 5.8). As observed from Figure 5.8, the value of     increases from 

0.19 to 0.43 as the number of domain chambers increases from 2 to 8. This indicates that the 

value of     would be higher than 0.43, which is closer to the measured value, if  the chambers 

before chamber #1 and after chamber #8 were to be included in the simulations.  

Furthermore, a simulation was conducted for the scenario with flow rate 46 MGD with 

expanded domain including the inlet and exit chambers in addition to the interior chambers. The 

    value obtained in the simulation was 0.492 in better agreement with the physical data (0.54) 

than the     value obtained with the truncated domain domain. Overall this exercise shows the 

dependence that residence time indices can have on truncated domains. Throughout the 

remainder of this chapter, simulation results reported are based on the truncated (8-chamber) 

contactor shown in Figure 5.3b unless specified otherwise.  

The Morrill dispersion index (MDI) is also calculated from the characteristic 

dimensionless residence time indices. The MDIs obtained from the scenarios with different flow 

rates are slightly different, but all of them are close to 4.0.  

Note that even as the flow rate increases by 88.7% from 33.8 MGD to 63.8 MGD, the 

corresponding changes in     and MDI are negligible (less than 2.5%). This indicates the     

and MDI of a full scale ozone contactor are nearly independent of flow rate. However, the mean 

residence time decreases as flow rate increases. As shown in Table 5.2, doubling the flow rate 

serves to decrease the mean residence time by a factor of two, ultimately leading to a decrease in 

disinfection efficiency. More discussion on this will be given further below in terms of contact 

time or CT.  
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5.4.3 Chemical Reaction Simulations 

Figure 5.9 (a-e) shows the distribution of ozone concentration on the streamwise-vertical 

(  -  ) plane at mid-span of the ozone contactor for scenarios I through V, respectively. For all 

scenarios of Table 5.1, the following phenomena are similar: a high ozone concentration region 

can be observed at the bottom of chambers 1 and 2 since it is where the ozone diffuser is located. 

In the first chamber, dissolved ozone accumulates within the dead zone while the ozone 

concentration in the high-speed core jet is relatively low. However, in the second chamber, the 

ozone concentration in the high-speed core jet is much higher than that in the dead zone. This is 

because the ozone diffuser in the first chamber is mostly located within the region of the dead 

zone while the ozone diffuser in the second chamber is located within the region of the high-

speed core jet. In the following six chambers, the ozone concentration in the high-speed jet 

region is higher than that in the dead zones, as there are no ozone sources within these chambers. 

Note that transfer of ozone between dead zones and high-speed jet is by diffusion.  

Comparing all panels in Figure 5.10, the overall ozone concentration in scenario II is 

higher than the others, due to its high ozone dose at the diffuser. Note that concentration of 

ozone in scenario I is lower than that in scenario III in spite of the ozone dose at the diffuser in 

scenario I being higher than that in scenario III. The reason is that the influent TOC 

concentration in scenario I is much higher than that in scenario III. Such influent consumes more 

ozone and consequently results in the lower ozone concentration in the first chamber in scenario 

I. 

In Figure 5.10, the predicted ozone concentrations are compared with physical measured 

data for all scenarios at the sample points marked in Figure 5.2. In Fig. 5.10, it can be observed 

that all the data points are close to the bisector with an R-square equal to 0.93. This indicates that 
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the predictions of ozone concentrations have good agreement with the physical experimental data, 

serving to validate the chemical reaction simulations conducted as well as the overall 

computational framework. Furthermore, now that the predicted ozone concentration distribution 

has been shown to be reliable it may be used for the prediction of contact time or CT distribution, 

as will described in the next section.  

Table 5.3 shows a comparison between predicted and measured bromate concentration at 

the outlet. The simulations tend to underestimate the bromate concentrations at the outlet of the 

domain. The predictions are approximately within 40% to 87% of the corresponding physical 

experimental data. The underestimation of outlet bromate concentrations could be caused by the 

following reasons:  

1. The neglect of hydroxyl radical pathway of bromate formation: Although in the 

present study the hydroxyl radical pathway was deemed less important than the 

molecular pathway, as described in Chapter 3, it may still play a significant role in the 

process of bromate formation.  

2. The underestimation of turbulence-chemistry interaction: Although the micro-mixing 

time scale was found to be less than all of the chemical timescales, the former was 

found to be on the order of the smallest chemical time scales. This indicates that some 

of the reactions could be considered as finite-rate chemistry.  However for simplicity 

the entire system was assumed to be slow chemistry and thus all the covariance terms 

of chemical concentration fluctuations were set to zero. However, some of the 

covariances may be significant enough to impact the mean concentrations, especially 

the mean concentration with small values such as the bromate concentrations. 
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3. Uncertainty of the equilibrium assumption: The percentage of    
  for bromate 

formation,  
   

 , was estimated as 14% (recall Chapter 3) based on the equilibrium 

assumption at pH = 6.5. Note that p depends on pH to some extent and that  
   

  

tends to increase as pH decreases (Haag and Holgne 1983). A sensitivity study of the 

predicted bromate concentration at the outlet with respect to  
   

  was conducted for 

scenario III and the results are shown in Figure 5.11. It can be observed from this 

figure that a slight increase in  
   

  (which is possible because the pH in this scenario 

is 6.43 which is lower than 6.5), can lead to a better prediction by the simulation. 

Figure 5.11 shows that a value of  
   

  ~ 40% would lead to excellent results in 

terms of the prediction of bromate concentration. Unfortunately it is not possible to 

determine the corresponding value of pH for  
   

  = 40% because Haag and Holgne 

(1983) only studied three cases with pH=6.1, 6.5 and 7.2, respectively. 

4. Underestimation of baffling factor: Recall that in the scenarios explored here with an 

8-chamber truncated domain, the baffling factor (   ) was ~0.43, lower than the 0.54 

measured physically. This under-prediction of the baffling factor could potentially 

lead to under-prediction of bromate concentration at the outlet of the domain. In order 

to test this, a simulation with the entire contactor domain (i.e. the 8 chambers plus the 

inlet and exit chambers (see Fig. 5.2)) was conducted for scenario 3. The predicted 

value of the baffling factor was found to be 0.492 in better agreement with the 

physical measurements (0.54) than the original simulations with truncated domain. 

However, the predicted bromate concentration at the outlet with the expanded 

computational domain was 0.00282mg/L, under-predicting the physically measured 

value with a predicted-to-measured ratio of 39.7%. Comparing this ratio to the ratios 
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reported in Table 5.3 for the truncated domain, it is concluded that expansion of the 

computational domain to accommodate the full length of the contactor does not lead 

to significant change in predicted bromate concentration. Furthermore, under-

estimation of the baffling factor obtained with the truncated computational domain 

may be discarded as a potentially major reason for the under-prediction of bromate 

concentration at the outlet of the domain. 

Finally, note that since the bromate concentration at the contactor outlet has a much 

smaller value than the other chemical species, it is challenging to predict it accurately. Overall, 

the predictions from the present simulations are acceptable because they are on the same order as 

the measured experimental physical data.  

5.4.4 CT Prediction 

Based on the predicted ozone distribution in the contactor, CT distributions were 

obtained by solving the transport equation for CT (see equation (3.38)). CT distributions are 

shown in Figure 5.12. For all the scenarios, a CT gradient exists across the dead zones and the 

high-speed core jet in the first two chambers. For subsequent chambers, this CT gradient 

gradually disappears as CT distribution tends to be uniform within each chamber.  

Table 5.4 lists the values of average CT at contactor outlet and theoretical residence time 

for all scenarios. The average CT value varies depending on the overall ozone concentration 

distribution and the mean residence time. The average CT in scenario II (22.06 mg∙min/L) is the 

highest among the five scenarios. This is mainly because scenario II has the highest ozone 

distribution, as can be seen in Figure 5.9. Although scenario I has a relative low ozone 

distribution, it still has the second highest CT value at 14.04 mg∙min/L. The reason is that 

scenario I has the longest mean residence time which is approximately 22% higher than the 
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shortest mean residence time in the five scenarios, based on Table 5.4 assuming mean residence 

time is approximately equal to theoretical residence time for the cases studied here. (Note that 

based on the tracer simulations performed, the mean residence time tends to be very close to the 

theoretical residence time (see Table 5.2), therefore, it is reasonable to use the theoretical 

residence time to represent the mean residence time here.)  In conclusion, besides ozone dose, 

the mean residence time, which is related to seasonal flow rate change, is also a critical factor for 

determining the disinfection efficiency measured in terms of CT. 

A summary of reported ozonation CT requirements for 99 percent inactivation of selected 

pathogens which are regulated by U.S. EPA under safe drinking water act is shown in Table 5.5. 

The predicted average CT values at the outlet for all the scenarios are higher than the ozonation 

requirements for 99 percent inactivation of pathogens. Thus, it can be concluded that the ozone 

contactor operated by the City of Tampa Water Department is able to meet disinfection 

regulations. 

5.5 Summary and Future Work  

In this chapter, a CFD-based (RANS-based) computational framework for the ozonation 

process in a full-scale ozone contactor was validated. This framework was validated via 

comparison with physical experimental data from the ozone contactor of the City of Tampa 

Water Department. The computed predictions of ozone concentrations at sample points agree 

well with the physical experimental data. Although the computed predictions of bromate 

concentration at the contactor outlet were underestimated with respect to the physical 

experimental data, they were on the same order as the physical data. Based on the predicted 

ozone concentration distribution, CT at the outlet was calculated for different scenarios. Average 

CT values at the outlet demonstrated that the ozone contactor studied is able to meet disinfection 
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regulations. Numerical tracer studies conducted indicate that seasonal flow rate changes do not 

impact dimensionless time indices of a full-scale ozone contactor, such as     and MDI. 

However, flow rate increment can reduce the mean residence time and consequently lower 

disinfection efficiency. Thus, water/wastewater treatment plant managers should carefully 

monitor potential changes in disinfection efficiency caused by seasonal flow rate changes.  

Results of this initial attempt to combine CFD with a kinetics-based reaction model are 

encouraging. The new CFD framework with a kinetics-based reaction model for bromate has 

eliminated the drawback of previous frameworks with empirical models for bromate in which the 

empirical reaction rate constant needs to be calibrated for the specific disinfection system being 

modeled.   

The reaction system in a contactor varies for different situations. Therefore, a good 

representation of the reaction system, including accurate reaction rate constants for kinetics-

based modeling, should be obtained before applying a framework such as the one proposed in 

this dissertation. Note that these reaction rate constants are specific to basic reaction kinetics and 

do not have to be calibrated for the specific water disinfection system being modeled (as are the 

empirical reaction rate constants discussed earlier). As observed in the present study in terms of 

predicted bromate concentration and uncertainty of the percentage of    
  for bromate 

formation (p), uncertainties of reaction kinetics and reaction rate constants can become 

significant error sources. Only with more accurate reaction kinetics and reaction rate constants, it 

would be feasible to conduct further studies of more complex flows involving important 

unsteady flow features and turbulence-chemistry interactions. Such studies would have to be 

performed with LES in order properly capture unsteady flow features that could be important for 

accurately determining hydraulic (disinfection) efficiency and flow-chemistry interaction. 
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Figure 5.1: Schematic diagram of treatment processes in the David L. Tippin Water Treatment 

Facility (City of Tampa Water Department) after the completion of the Water Quality 2000 

Project (Kim et al. 2009). 

 

 

Figure 5.2: Layout showing chamber numbers and ozone and bromate sampling points in one of 

the ozone contactor trains in the David L. Tippin Water Treatment Facility (City of Tampa Water 

Department). Note that the flow goes from right to left and thus chambers are counted from right 

to left. 
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(a) 

 
(b) 

Figure 5.3: (a) Layout showing chamber number, (b) dimensions (unit: inch) and (c) 

computational grid of ozone contactor in the David L. Tippin Water Treatment Facility (City of 

Tampa Water Department). Note that the flow goes from right to left and thus chambers are 

counted from right to left. 

 

 
(a) 

 
(b) 

Figure 5.4: (a) Speed contours and (b) streamlines on the streamwise-vertical (  -  ) plane at 

mid-span of the simulated full-scale ozone contactor for scenario I. Note that, the flow direction 

is from right to left. 
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Figure 5.5: Instantaneous snapshots of tracer concentration on the streamwise-vertical (  -  ) 
plane at mid-span of the ozone contactor at various times: (a) t=100s; (b) t=400s; (c) t=800s; (d) 

t=1200s; (e) t=1600s; and (f) t=2100s. The flow rate is 46.0 MGD. The flow direction is from 

right to left. 

 

 

Figure 5.6: Normalized residence time distribution (RTD) (left axis) and cumulative residence 

time distribution (CRTD) (right axis) for different flow rates. 
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Figure 5.7: Cumulative residence time distribution curves for contactor domains with different 

number of chambers. Flow rate used was 46.0 MGD in all cases. 

 

 

Figure 5.8: The change of      with increment of number of chambers. The flow rate used was 

46.0 MGD. 
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Figure 5.9: Ozone concentration contour on streamwise-vertical plane at mid-span  of the ozone 

contactor for scenarios (a) I, (b) II, (c) III, (d) IV, and (e) V. Note that the flow direction is from 

right to left (i.e. from chamber #1 through #8). 

 

 

Figure 5.10: Comparison of predicted and measured ozone concentration at the sample points A, 

B, and C for different scenarios 
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Figure 5.11: Predicted bromate concentration as a function of      , the percentage of    
  for 

bromate formation. Simulations were conducted under scenario III. 

 

 

Figure 5.12: CT distribution on the streamwise-vertical (  -  ) plane at mid-span of the 

contactor for scenarios I-V (a-e, respectively).  Note that, the flow direction is from right to left 

(i.e. from chamber #1 through #8). 
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Table 5.1: Operation parameters in the ozone contactor of the City of Tampa Water Department 

used for chemical reaction simulations. 

 
Scenario I Scenario II Scenario III Scenario IV Scenario V 

Duration Apr 4-12 
Apr 27-

May 2 
May 19-25 

Jun 4-Jun 

16 

Jun 30-Jul 

11 

Flow rate / MGD 45.40 50.65 54.53 55.39 45.82 

pH 6.500 6.550 6.430 6.310 6.280 

Ozone conc. at diffuser / 

mg/L 
2.982 4.975 2.744 1.903 1.770 

TOC conc. at inlet  / 

mg/L 
3.200 4.900 3.200 1.800 1.350 

TOC conc. removed by 

the ozone contactor / 

mg/L 

0.400 0.400 0.200 0.000 0.000 

Bromide conc. at inlet  / 

mg/L 
0.036 0.053 0.150 0.242 0.137 

 

Table 5.2: Time indices for scenarios with different flow rates. 

Time Index 

Flow rate (MGD) 

33.8 46.0 66.8 

          0.4301 0.4249 0.4287 

          0.9129 0.9131 0.9131 

          1.7175 1.7400 1.7133 

            3.9930 4.0950 3.9960 

Theoretical residence time / s 2981.8 2181.5 1579.7 

Mean residence time / s 2972.3 2143.8 1573.9 
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Table 5.3: Comparison of predicted and measured bromate concentration at outlet (unit: mg/L). 

Scenario Measured Prediction Prediction / Measured 

I 0.00070 0.00061 87.1% 

II 0.00140 0.00078 55.5% 

III 0.00710 0.00276 38.8% 

IV 0.00640 0.00313 49.1% 

V 0.00740 0.00281 38.2% 

 

Table 5.4: Comparison of average CTs at outlet for different scenarios at 20 °C. 

Scenario Theoretical residence time (sec) Average CT at outlet (mg∙min/L) 

I 2220.0 14.04 

II 1989.9 22.06 

III 1848.3 13.19 

IV 1819.7 9.560 

V 2199.4 9.970 

 

Table 5.5: Summary of reported ozonation CT requirements for 99 percent inactivation of 

selected pathogens. 

Species pH 
Temperature 

(C) 

CT 

(mg∙min/L) 
Reference 

Cryptosporidium 

muris oocysts 
8.40 23.6 7.8 Owens et al. 1994 

Cryptosporidium 

parvum oocysts 
8.24  24.5 5.5 Owens et al. 1994 

Giardia muris cysts 7.57 25.2 0.28 – 1.04 Owens et al. 1994 

Viruses  N/A 25.0 0.15 

Canada Ministry of 

Health and Long-

Term Care 2008 

Escherichia coli 6 – 7 5.0 0.02 Hoff 1986 
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CHAPTER 6: EXTENDED APPLICATIONS
3
 

This chapter presents extended applications of the modeling framework developed in this 

dissertation. First, an investigation of the hydraulic efficiency and its impact on energy 

consumption of baffled ozone contactors is presented. The energy consumption here refers to 

energy required for ozone generation in addition to hydraulic energy loss. A second application 

involves the study of the hydraulic efficiency of a water stabilization pond and comparison with 

tracer field measurements.  

6.1 Hydraulic Efficiency and Energy Consumption of Ozone Disinfection 

6.1.1 Introduction 

Continued advances in computational power have enabled CFD analysis of the flow in 

ozone reactors leading to a detailed description of the flow behavior. As seen in previous 

chapters, CFD solutions are able to identify localized flow phenomena such as short-circuiting 

and dead zones which hinder disinfection efficiency. Increasing the number of baffles is a 

commonly used approach to reduce dead zones and diminish short-circuiting. Several studies 

have concluded that an increase of the number of baffles usually leads the fluid flow to approach 

plug-flow conditions characteristic of a plug-flow reactor (Kim et al. 2010a; Amini et al. 2011; 

Wols et al. 2008a). However, hydraulic energy loss due to friction may also increase when the 

number of baffles increases. On the other hand, an increase in hydraulic efficiency by an increase 

in the number of baffles would lead to lower doses of ozone applied, which would lead to lower 

                                                 
3
 Section 6.1 is reprinted from Journal of Hydraulic Engineering, 139(11), Jie Zhang, Andrés E. Tejada-Martínez, 

Qiong Zhang, Hydraulic Efficiency in RANS of the Flow in Multi-Chambered Ozone Contactors, 1150-1157, 

Copyright (2013), with permission from ASCE. Permission is included in Appendix D. 
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energy demand for ozone generation. These issues/relationships have not been investigated in 

previous studies.  

In this section, RANS of the two ozone contactors of Kim et al. (2010b) and a third 

contactor, which is hypothetical, are performed in order to compare the differences in 

performance caused by narrowing chamber width. Baffling performances of the three ozone 

contactors are compared based on hydraulic efficiency measured from passive tracer 

concentration distributions. Additional comparison between the three contactors is made through 

estimates of energy loss due to friction. A trade-off between baffling performance and energy 

loss is identified for the first time, as previous works have focused on baffling performance 

(hydraulic efficiency) only. Ultimately, it is seen that the energy saving due to a lower demand 

for ozone generation afforded by improving hydraulic efficiency is able to offset the friction 

energy loss incurred by the addition of baffles required to enhance baffling performance. 

Furthermore, energy loss due to friction in flow through a contactor is identified as an important 

component to consider when determining ozone disinfection and overall water treatment plant 

operation costs. 

6.1.2 Flow Domain and Boundary Conditions 

The flow configurations consist of the baffled ozone contactor studied in the physical 

experiments of Kim et al. (2010a) and the LES and RANS of Kim et al. (2010b), as noted earlier. 

The laboratory scale contactor of Kim et al. (2010a) consisted of 12 chambers. A truncated 

version consisting of 4 chambers was considered in the computations of Kim et al. (2010b) and 

was also considered for the present computations. This was the domain studied earlier in Chapter 

4, but described here again for completeness. The section formed by the 4 chambers (chamber 

width is 0.113m) is 0.48 m long in the streamwise (  ) direction and 0.23 m wide in the 
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spanwise (  ) direction. The rest of the dimensions of the contactor including the dimensions of 

the baffles are given in Figure 6.1a. The other two contactors studied in the present computations 

have the same dimensions except with twice and thrice the number of chambers, respectively, 

corresponding to approximately half (0.053m) and quarter (0.033m) chamber widths of the 

original contactor. The geometries of the three contactors are shown in Figures 6.1a-c. 

Henceforth, the original contactor is denoted as NW (for normal chamber width), the second 

contactor is denoted as HW (for half chamber width) and the third contactor as QW (for quarter 

chamber width). The structured grids employed in RANS of flows through NW, HW and QW 

models have 1,394,000 cells, 1,738,400 cells, and 1,974,960 cells respectively, shown in Figure 

6.2. Note that the increase of grid points is caused by the increase of wall boundaries (baffles). 

Based on wall-resolution considerations, the Launder-Sharma model (Launder and Sharma, 

1974; Patel et al. 1985) studied earlier was employed. The water extends to a height H = 0.21 m 

above the bottom and does not fill the entire contactor. The free-surface is treated as a no-

penetration, zero-shear, rigid lid allowing full slip. Thus, the corresponding surface boundary 

conditions are  〈  〉    ⁄   〈  〉    ⁄  〈  〉    where    is the surface-normal direction 

and 〈  〉, 〈  〉 and 〈  〉 are the streamwise, surface-normal and spanwise velocities respectively.  

No-slip conditions are imposed at the bottom and baffle walls and the inlet and outlet are 

periodic for velocity and pressure. The streamwise body force    appearing in the    momentum 

equation in (2) is prescribed such that the Reynolds number is 2740 based on hydraulic diameter 

(   √     , where    is the cross section area at the inlet/outlet) and target bulk velocity 

      at the periodic inlet/outlet. This corresponds to the Reynolds number in the laboratory 

experiment of Kim et al. (2010a) and in the computations of Kim et al. (2010b). This approach 

leads to the same flow rate Q passing through all contactor models considered (NW, HW and 
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QW). Using this flow rate, an alternate Reynolds number may be defined based on chamber 

dimensions:      (   ⁄ )    where ν is kinematic viscosity and   is the perimeter of the 

cross-sectional chamber area normal to   . For the NW, HW and QW models considered, the 

values of       are 1143, 1413 and 1521, respectively. 

Once the steady state RANS solution of the flow is computed (Eqns. 3.17-3.20), the 

scalar advection-diffusion transport equation for the passive tracer in (3.22-3.23) is solved using 

the steady flow velocity. The numerical tracer study is conducted by initially releasing a tracer 

pulse with concentration 〈 〉    at the inlet over a 2.5 second period. At the outlet and at the 

walls, the normal gradients of 〈 〉 are set to zero indicating zero diffusive flux across these 

boundaries.  

6.1.3 Results and Discussion 

Figures 6.3a-c show absolute velocity (i.e. speed) superimposed with streamlines in the 

RANS performed with the grids depicted in Figures 6.2a-c respectively. Absolute velocity and 

streamlines are shown for the streamwise-vertical (  -  ) plane at mid-span (   = L/2 where L is 

the spanwise length of the contactor). The flow patterns in both models are similarly 

characterized by an undulating, high-speed core jet extending from chamber to chamber and a 

secondary, slower-speed re-circulation zone, or dead zone, within each chamber. The core jet 

facilitates the passage of a portion of water through the whole length of the contactor over much 

shorter times than the mean residence time, resulting in short-circuiting and thus a reduction in 

hydraulic (disinfection) efficiency. Furthermore, regions of high speed flow can be found near 

the right side of each chamber and at the exits of each chamber where the speed can reach up to 

twice the inlet/outlet bulk velocity due to the presence of baffles. As the number of baffles 

increases or chamber width narrows, the length of short-circuiting increases due to a more 
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bended flow path caused by the baffles. Comparing Figures 6.3a-c, the slower-speed re-

circulation zones, or dead zones, decrease significantly as the number of baffle increases. In the 

NW model, dead zones stretch out over most of the vertical length of the baffles and occupy 

approximately two thirds of each chamber width. Meanwhile the dead zones in the HW model 

are much smaller, stretching out over no more than half the length of a baffle and extending over 

approximately half a chamber width. Furthermore, the dead zones in the QW model are the 

smallest, stretching out over approximately one sixth of the length of the baffle and one third of a 

chamber width. These characteristics indicate that the QW model gives rise to a flow closest to a 

plug flow, which is ideal for disinfection efficiency. This will be further demonstrated by the 

study of the passive tracer advected through the contactors presented further below.  

In Figure 6.4, profiles of the y-component (  -component) of velocity versus chamber 

width along x (  ) are plotted for each flow at different depths. In the RANS with the NW model, 

the y-velocity vector changes direction from negative y to positive y along the chamber width at 

all three depths shown, in accordance with the presence of the re-circulation zone or dead-zone 

occupying a large part of the chamber, seen in Figure 6.3a. Note that the y-velocity magnitude is 

greater along the right side of the chamber coinciding with the high-speed core jet. In the RANS 

with the HW model, the y-velocity vector has obvious direction change only at depth y/H = 0.27 

(     = 0.27), in accordance with the presence of the re-circulation zone occupying a small part 

of the chamber, seen in Figure 6.3b. Note that H is the height of the water in the contactor. In the 

RANS of the QW model, the direction change of the y-velocity vector is small even at depth y/H 

= 0.27. Furthermore, in the RANS of the QW model, the velocity profile at depth y/H = 0.72 

shows a trend towards the velocity profile in an ideal plug flow reactor (PFR) which is not 

observed in the RANS of the other two models. Such behavior further indicates that the QW 



126 

model is closer to a PFR than the other two models. Overall, the flow structures in Figure 6.3 and 

velocity profiles in Figure 6.4 agree with those in the LES of Kim et al. (2010b).  

Figure 6.5 shows instantaneous snapshots of tracer concentration at various points in time 

for the RANS of flow through the NW model. Recall that the tracer is released at the inlet during 

the first 2.5 seconds of the simulation. Higher tracer concentrations are found close to baffle 

walls and near the surface, in agreement with the LES and experiments of Kim et al. (2010a, b, 

respectively). The effect of short-circuiting can be seen in the snapshots at times t = 90 s and t = 

112.5 s showing non-negligible tracer concentration levels at the inlet occurring simultaneously 

as a large portion of the tracer in the third and fourth chambers is close to exiting the contactor. 

Such behavior is due to entrapment of tracer within re-circulation (dead) zones. This shows that 

remnants of the tracer persist throughout the entire contactor for long times after its initial release. 

A similar trend is observed in the RANS of the HW model (Figure 6.6). However, 

comparing the concentration snapshots between RANS with the NW model and the HW model 

at corresponding times, e.g. t = 90.0 s or t = 112.5 s (110.0 s), the behavior caused by entrapment 

of tracer within re-circulation zones is less apparent in the HW model due to the diminishing of 

the dead zone regions. Overall, Figures 6.5 and 6.6 show that in the RANS with the HW model, 

the tracer is less diffuse and thus more concentrated as it travels through the contactor in 

comparison with the tracer distribution in the RANS with the NW model. Note that the same 

color-bars denoting tracer concentrations are used at each corresponding time in Figures 6.5, 6.6 

and 6.7.  

In the RANS with the QW model (Figure 6.7), at time t = 110 s, non-negligible tracer 

concentrations are only observed in the second to last and last chambers, unlike in models NW 

and HW (Figures 6.5 and 6.6). This indicates that the entrapment of tracer within dead zone 
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regions is the weakest in the QW model out of the three cases. This is consistent with the dead 

zone regions observed in Figure 6.3. 

Comparing Figures 6.6 and 6.7, high concentration regions of tracer at t =20 s for both 

HW and QW models are limited to approximately one chamber. At t = 40 s and 60 s, high 

concentration regions have spread to approximately two and three chambers, respectively, in 

both HW and QW models due to the universality of diffusion. However, the actual occupied 

region of high tracer concentration in the QW model is limited within a smaller space as the 

chambers in this model are narrower. This is consistent with the assumption used for PFR that 

diffusion occurs only within a small segment. Overall, results described here show that adding 

more chambers to a reactor with fixed volume can lead the reactor to behave closer to an ideal 

PFR model.  

Further analysis of tracer evolution is carried out by comparing cumulative residence 

time distribution (CRTD) with results from previous physical laboratory experiments and 

computations (Kim et al. 2010a, b), shown in Figure 6.8. Characteristic dimensionless residence 

times,      ,      , and      , (scaled by theoretical residence time  ) of the tracer in models 

NW and HW are estimated from the CRTD curves, and are listed in Tables 6.1 and 6.2, 

respectively.  

Figure 6.8 compares CRTD curves from the present RANS with CRTD curves from prior 

physical laboratory experiments of Kim et al. (2010a) and prior LES and RANS of Kim et al. 

(2010b). Present RANS with the NW model yields a CRTD curve and characteristic residence 

times in excellent agreement with the CRTD curves recorded in the physical experiment and 

LES of Kim et al. (2010a, b). Furthermore the present RANS results of the flow through the NW 

model are in closer agreement with the LES and experiments of Kim et al. (2010a, b) than the 
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RANS results of Kim et al. (2010b). Similar trends are also observed for the HW model, 

although comparison here is with respect to the LES of Kim et al. (2010b) only, as no physical 

experiments were conducted for this model. Finally, the CRTD curve obtained in the RANS with 

the QW model is closest to the CRTD curve for PFR (plug flow reactor) compared to the CRTD 

curves obtained with the other models, as expected based on earlier analysis. 

Ideally, the flow in a contactor should resemble that of a plug flow reactor. In a plug flow 

reactor the flow entering spreads across the width and remains in the reactor for exactly one 

hydraulic residence time τ = V/Q where V is the volume of the reactor and Q is the volumetric 

flow rate going through it. This helps to achieve the desired disinfection efficiency while 

minimizing undesired disinfection by-products such as bromate (Roustan et al. 1993). 

In the following discussion,     will be highlighted because it has been traditionally used 

for classification of contactors by U.S. EPA (2003). Table 6.3 lists     for all models considered. 

Note that the     value listed for the NW model is taken from the experiments of Kim et al. 

(2010a); the     listed for the HW model is taken from the LES result of Kim et al. (2010b); and 

the     listed for the QW model is taken from the present RANS. According to a reactor 

classification of U.S. EPA, the NW model is classified as a reactor of poor baffling condition 

because its     of 0.3 is relatively far from 1 which corresponds to the     value of an ideal plug 

flow reactor. The HW and QW models are classified as reactors of superior baffling conditions 

because their     values reach 0.700 and 0.780 respectively. 

As previously discussed, an increase in the number of chambers increases the baffling 

performance of a reactor. Next, energy consumption associated with the increase in the number 

of chambers is investigated. Based on Eqn. (B.3), the values of energy loss for the NW, HW and 

QW models are 1.2×10
-3

 kWh/m
3
, 2.0×10

-3
 kWh/m

3
 and 3.5×10

-3
 kWh/m

3
,
 
respectively, with a 
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ratio of 1:1.7:2.9. Friction energy losses in the flows through the HW and QW models are 

respectively 66.7% and 191.7% higher than that in the NW model. This indicates a trade-off 

between baffling performance and energy consumption. Figure 6.9 shows a clear trend in the 

relationship between energy loss and baffling factor. An increase in the number of chambers and 

thus an increase in baffling factor (   ) towards the ideal value of 1.0 is accompanied by a 

disproportionate energy loss. For example, an increase in the baffling factor from 0.700 to 0.780 

(i.e. an increase of approximately 10%) between the HW and QW models, respectively, is 

accompanied by a 71% increase in energy consumption. Thus, it is important to consider energy 

consumption as a key variable to optimize the design of ozone contactors in terms of both reactor 

performance and environmental sustainability. 

A typical value of total energy consumption rate for a water treatment plant without 

considering ozone disinfection is 1.4kWh/1000 gallons or 0.37kWh/m
3
. The ozone disinfection 

process increases energy consumption by about 0.12 to 0.55 kWh/1000 gallons corresponding to 

0.032 and 0.145 kWh/m
3
 (Elliott et al. 2003). Typically, 90% of the energy consumption in the 

ozone disinfection process is attributed to ozone generation while the remaining 10% is 

attributed to distribution and cooling. Based on the above information, we can compare the 

energy required for driving the flow (equivalent to the energy loss due to friction calculated in 

our simulations through equation 9) to the energy required for ozone generation for the three 

models studied (NW, HW and QW). This comparison is made in Table 6.4 below. This table also 

compares the energy required to drive the flow plus energy required for ozone generation to the 

total energy consumption for a plant (0.37 kWh/m
3
). 

Table 6.4 explores two scenarios. In scenario I, it is assumed that the energy consumed in 

the ozone disinfection process in the NW model is 0.032 kWh/m
3
, with 90% of this energy (or 
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0.0288 kWh/m
3
) consumed by ozone generation. In scenario II, it is assumed that the energy 

consumed in the ozone disinfection process in the NW model is 0.145 kWh/m
3
, with 90% of this 

energy (or 0.1305 kWh/m
3
) consumed by ozone generation. Furthermore, as can be seen by 

analyzing columns 3, 4 and 5 of Table 6.4, hydraulic efficiency (or baffling performance) is 

taken inversely proportional to energy required for ozone generation; the interested reader is 

directed to EPA guidance manuals (1991, 2003), Lee et al. (2011) and Phares et al. (2009) for 

more information about this. For example a 47.7% percent increase in hydraulic efficiency in 

model HW (0.700) with respect to model NW (0.334), translates to a 47.7% drop in energy 

required for ozone generation (i.e. under scenario I, the energy requirement for ozone generation 

in the HW model goes down to 0.0137 kWh/m
3
 from 0.0288 kWh/m

3
  in the NW model). 

Three important conclusions can be obtained from analysis of Table 6.4. First, comparing 

columns 2, 4 and 5, it can be seen that the significance of energy consumption for driving the 

flow relative to the energy required for ozone generation becomes greater as more baffles are 

added to the contactor (viz. in going from the NW model to the QW model) in order to increase 

baffling performance. The second key conclusion can be obtained by analyzing columns 3, 4, 5, 

8 and 9. It is seen that the energy saving afforded by increasing the hydraulic efficiency (thus 

requiring less ozone generation) offsets the energy increase required for driving the flow through 

a more hydraulically efficient contactor (characterized by more baffles). For the hydraulically 

efficient QW contactor model studied here, the energy required for driving the flow plus the 

energy required for ozone generation serves to increase total energy consumption by as much as 

16%. In contrast, for the NW contactor characterized by poor hydraulic efficiency, the energy 

required for driving the flow plus the energy required for ozone generation serves to increase 

total energy consumption by a greater amount (as much as 36%), thereby demonstrating the 
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benefit of the QW contactor despite its greater friction energy loss. Overall, it is seen that energy 

considerations associated with contactor hydraulic efficiency (i.e. energy loss due to friction and 

energy required for ozone generation) are important for determining the operational costs of a 

plant.   

6.1.4 Summary and Conclusions 

RANS-predicted cumulative residence time distribution (RTD) of a passive tracer 

(released at the inlet as a pulse) in baffled ozone contactors was shown to be in excellent 

agreement with experimental data and large eddy simulation (LES), despite the under-resolution 

of the RANS methodology compared with better resolved methodologies such as LES. The 

RANS performance was shown to be much better than previously reported by Kim et al. (2010b). 

A comparison of the baffling performance and energy loss of three ozone contactor 

configurations was made based on RANS results. A trade-off between baffling performance and 

energy loss due to friction was identified for the first time, as previous works have focused on 

baffling performance only. Specifically, it was found that increasing the number of baffles or 

chambers would increase baffling performance but also energy loss due to friction. Furthermore, 

a detailed comparison was made between the energy required for driving the flow (equivalent to 

the energy loss due to friction calculated in our simulations) and the energy required for ozone 

generation (inversely proportional to baffling performance) for the three models studied (NW, 

HW and QW). Several important conclusions were reached from this analysis. First, it seen that 

the significance of energy consumption for driving the flow relative to the energy required for 

ozone generation becomes greater as more baffles are added to the contactor. Second, it is seen 

that the overall energy saving afforded by increasing the hydraulic efficiency (thus requiring less 

ozone generation) offsets the energy increase required for driving the flow through a more 
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hydraulically efficient contactor (characterized by more baffles). Overall, it is seen that energy 

considerations associated with contactor hydraulic efficiency (i.e. energy loss due to friction and 

energy required for ozone generation) should be considered when determining the operational 

costs of a water treatment plant.   

6.2 Hydraulics Study of a Waste Stabilization Pond in Bolivia  

6.2.1 Introduction 

Wastewater stabilization ponds (WSPs) are a low cost and maintenance wastewater 

treatment system commonly used in areas where land is available and affordable, especially in 

developing countries (Mara 2004). Hydraulic performance of WSP is closely related to the level 

of pathogens removal, suspended solids removal, BOD (biochemical oxygen demand) removal 

and overall water quality performance through the WSP. Thus, improving the hydraulic 

performance of WSP is a primary goal of pond engineers and designers. CFD models have been 

successfully applied to system analysis and optimization of the hydraulics of WSPs (Wood et al. 

1995; Wood et al. 1998; Peterson et al. 2000; Salter et al. 2000; Shilton 2000; Vega et al. 2003; 

Karteris et al. 2005; Sweeney et al. 2005; Verbyla et al. 2013). However, the predictions of CFD 

models on full-scale pond systems may be inaccurate due to lack of consideration of the physical 

conditions in the field, such as the sludge layer, transient flow rate changes, wind velocities, and 

temperature (Shilton et al. 2008). Sludge layer has been considered in recent studies based on 

CFD analysis of WSPs (Murphy 2012; Alvarado et al. 2012). Murphy (2012) investigated the 

impacts of sludge volume and distribution on hydraulic performance of a WSP in Australia using 

a 2-dimensional CFD model. Alvarado et al. (2012) studied the relationship between the flow 

pattern over time and the sludge accumulation in a large WSP in Ecuador using a 3-dimensional 

CFD model. The studies conducted by Murphy (2012) and Alvarado et al. (2012) imply that the 
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way the sludge layer affects hydraulic performance of a WSP depends on how sludge 

accumulates and distributes over time. For example, the way that sludge affects hydraulic 

performance in a WSP where sludge is mostly deposited near the edges (e.g. Murphy 2012) 

would be different from that in a WSP where sludge accumulates mainly near the inlet of the 

WSP (e.g. Alvarado et al. 2012). Thus, in order to further understand the relationship between 

sludge accumulation and distribution over time and hydraulic performance of a WSP, more 

studies should be conducted on WSPs with various sludge accumulation patterns. The WSP 

studied in this chapter has a unique sludge accumulation pattern that differs from the two WSPs 

mentioned earlier (Murphy 2012; Alvarado et al. 2012). In the current WSP, sludge deposits and 

forms a hill not far from the inlet.  

In the present study, flow and tracer transport simulations are conducted on a WSP in 

Bolivia using a three-dimensional RANS model. This RANS model is validated via comparison 

with the experimental field data (Lizima 2012). This study also uses RANS simulation to predict 

the hydraulic performance of the WSP under a future sludge volume, which is estimated using a 

sludge accumulation prediction method. Numerical tracer studies on the pond with measured and 

future sludge layer geometries are conducted to analyze the impact of sludge changes over time 

on the hydraulic performance of the WSP. 

6.2.2 Sludge Accumulation Prediction Method 

An empirical method (Oakley 2005) is utilized to predict the accumulated sludge volume. 

This method utilizes the average flow into the WSP and the suspended solids concentration of 

the influent water to predict the volume of sludge via 

                    (6.1) 
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where    is the volume of sludge produced each year, m
3
/year,     is average flow, m

3
/day,    

is suspended solids in the influent, mg/L. 

To account for the future suspended solids concentration in the influent, an increased 

population calculated by the Malthus exponential model was utilized (Brauer and Castillo-

Châavez 2011). The population growth rate used in the model was calculated based on the 

previous data. The pond influent water parameter (i.e. suspended solids mass loading per person) 

was kept at the average value of data collected from 2006 to 2012. 

The predictions from the sludge volume prediction method (Oakley 2005) agree well 

with the measured data in 2012, shown in Table 6.5. The sludge volume for 2016 is predicted via 

this method. Using the predicted sludge volume for 2016, two different sludge layer geometries 

are generated based on different assumptions: 1) the first assumption is that the increment of 

sludge volume from 2012 to 2016 will mostly accumulate on top of the existing sludge. The 

height of sludge in this scenario is assumed to increase uniformly by the same percentage 

everywhere; 2) the second assumption is that the incoming sludge would deposit primarily in the 

flat area of the pond. The sludge increment is assumed to accumulate evenly everywhere 

throughout the pond except in the area where existing sludge measured in 2012 accumulated. 

The sludge profiles for 2016 based on the two assumptions are illustrated in Figure 6.10. Note 

that the assumed sludge layer geometries represent two extreme situations, where the actual 

sludge layer geometry should be an intermediate between these two distribution conditions. In 

addition to the two previously described sludge volume models, two other representations were 

considered: the sludge geometry measured by Lizima (2012) and a no-sludge case where the 

bottom of the WSP is flat. The scenarios considered are listed in Table 6.6.  
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6.2.3 Mesh and Numerical Tool 

The sludge layer profile measured by Lizima (2012) is shown in Figure 6.11a. Based on 

the sludge layer profile, the computational domain or layout for scenario #2 is determined as 

shown in Figure 6.11b. The computational mesh shown in Figure 6.11b is refined near the walls 

and inlet/outlet. The total number of cells for the mesh is 620496. The meshes for the other 

scenarios summarized in Table 6.6 contained a similar number of cells. 

Fixed flow rate boundary condition is used for the inflow at the inlet. That is, the 

volumetric flow rate at inlet is fixed as 66 m
3
/day, which is an average flow rate during the 

period when physical tracer measurements of Lizima (2012) were conducted. This flow rate 

corresponds to a theoretical residence time of 27.65 days. Zero pressure boundary condition is 

imposed at the outlet. No-slip conditions are imposed at walls and sludge surface. Water surface 

is treated as a no-penetration, zero-shear, rigid lid allowing full slip. Thus, the corresponding 

surface boundary conditions are  〈  〉    ⁄   〈  〉    ⁄  〈  〉    where    ( )  is the 

surface-normal direction and 〈  〉 , 〈  〉  and 〈  〉  are the streamwise, surface-normal and 

spanwise velocities respectively (see coordinate system in Figure 6.11).  

Once the steady state RANS solution of the flow is computed, the scalar advection-

diffusion transport equation for the passive tracer in (3.22) is solved using the steady flow 

velocity. The numerical tracer study is conducted by initially releasing tracer with concentration 

〈 〉    at the inlet over a 1020-second or 17-min period which is around 0.04% of the 

theoretical residence time. At the outlet and at the walls, the normal gradients of 〈 〉 are set to 

zero indicating zero diffusive flux across these boundaries.  
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6.2.4 Results and Discussion 

The CFD model under scenario #2 is validated via comparison with tracer concentration 

versus time from field measurements of Lizima (2012).  As observed in Figure 6.12, the RTD 

curve predicted by CFD matches well with experimental data in terms of the location of primary 

peak and the following decaying tail. The primary peak of tracer concentration measured in the 

physical test occurs at around 1.09 days after the initial tracer release while that in the CFD 

simulation is 1.21 days. The relative error is approximately 11%. Furthermore the portion of the 

tail of the curve predicted by CFD is in excellent agreement with the physical measurement 

between the 6
th

 and 12
th

 day.  

In WSPs, hydraulic performance is determined by the mean residence time (MRT). For 

the type of WSP considered here, the longer the MRT is, the better the hydraulic performance is. 

There are two primary factors that affect MRT: short-circuiting and theoretical residence time 

(Peterson 2000). The following discussion will analyze the impact of sludge layer geometries on 

hydraulic performance of WSP in terms of short-circuiting and theoretical residence time.  

In this section, results from flow and tracer transport simulations are presented for the 

four scenarios listed in Table 6.6. Recall that scenario #1 corresponds to the WSP in 2006 when 

no sludge existed in the WSP. Scenario #2 corresponds to the WSP in 2012 for which the 

geometry of the sludge layer was represented following the field measurements of Lizima (2012). 

Scenarios #3 and #4 correspond to the projected sludge layer profiles in the WSP in 2016.  

Figure 6.13 shows water flow speed contours on x-y (horizontal) planes at depths of 

0.69m and 0.10 m from the water surface. Note that the 0.69 m depth corresponds to the depth of 

the inlet and outlet for the four scenarios. At 0.69 m depth (Figures 6.13a-d), a high speed jet 

flow can be found emanating from the inlet in all four scenarios, as expected. However, the 
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sludge in scenarios #2, 3, and 4 blocks the jet flow and forces it to change path. Although the jet 

flows in these scenarios are impeded, the jet flows can still travel for a certain distance at a 

relative high speed compared to the jet flow in scenario #1 for which no sludge layer is present. 

The high speed jet flow in all scenarios establishes a highway from inlet to outlet giving rise to 

short-circuiting. This short-circuiting flow can transport particles, such as dye tracer and 

pathogens, much faster than the flow in other parts of the pond. 

Similar high speed jet flows can be found in all four scenarios at 0.1 m depth (Figures 

6.13e-h). Comparing Figure 6.13e and f, it can be observed that the jet flow in scenario #2 

(Figure 6.13f) is more intense than that in scenario #1 (Figure 6.13e). At 0.10 m depth, the 

accumulated sludge in scenario #2 serves to enhance the jet relative to the no-sludge case 

(scenario #1). This occurs because the sludge in scenario #2 is not tall enough to force the flow 

to go around it; instead, the flow goes over the sludge where the cross-sectional area is 

approximately 30% of that of the origin cross-section without sludge. Thus, the flow is 

accelerated when it passes over the sludge consistent with Bernoulli's principle. Figure 6.13g 

shows that in scenario #3, the flow is not able to go over the sludge and has to go around the 

sludge. The reason for this is that the sludge in scenario #3 reaches over 90% of the total depth of 

the pond at its peak location. In this case, the sludge blocks the flow similar to a baffle. 

Differences in the impact of the sludge in scenarios #2 and #3 can be clearly seen in the 

comparison of streamlines (Figure 6.14b and c).  

Figures 6.13h, f show that the jet path in scenario #4 is similar to that in scenario #2. 

Recall that the sludge layer in scenario #4 has the same sludge mountain as that in scenario #2 

but an increased sludge height for the rest area. The difference between Figures 6.13f and h is 

that in the latter, the jet is more damped after passing the sludge. This indicates that the flow 
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short-circuiting in scenario #4 is weaker than that in scenario #2. As seen from the streamlines in 

Figures 6.14b and d, the flow in scenario #2 forms a large recirculation zone past the sludge 

unlike in scenario #4. In scenario #4, as the jet moves past the sludge, it spreads out over a wide 

region and consequently its speed is reduced dramatically. This gives rise to weaker short-

circuiting in scenario #4 compared to scenario #2. Overall analysis of Figures 6.13 and 6.14 

indicates that short-circuiting is most intense in scenario #2.  

Figure 6.15 shows snapshots of tracer concentration on the x-y (horizontal) plane at 

0.69m depth at 0.5, 2.0, and 4.0 days after initial tracer release. Recall that the tracer is initially 

released with concentration 〈 〉    at the inlet for a 17-min period. At 0.5 day after initial 

release, the concentrated tracer patch is broken up by the sludge obstruction. At 2.0 days after 

initial release, the tracer in scenario #2 has already reached the outlet, unlike in the other 

scenarios. This is consistent with Figures 6.13 and 6.14 showing stronger short-circuiting in 

scenario #2 compared to the other scenarios. Finally note that the highly concentrated tracer 

patches observed 0.5 day after initial tracer release become diluted over time due to diffusion. 

Figure 6.16a compares RTDs predicted by the simulations of the different scenarios. A 

primary peak can be found in all four curves. The time at which the primary peak occurs is 

mainly determined by the intensity of short-circuiting. Scenario #2 possesses the strongest short-

circuiting as concluded earlier, followed by scenarios #1, 4 and 3, respectively. To further 

investigate the hydraulic performance of the WSP, cumulative residence time distributions 

(shown in Figure 6.16b) are generated based on the data in Figure 6.16a.  

The short-circuiting indices ( ) for the four scenarios are estimated from Figure 6.16b 

and are listed in Table 6.7. The short-circuiting index S was defined in Chapter 3 (see Eqn. 3.30) 

and is inversely proportional to the strength of short circuiting. As expected from previous 
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analysis, the value of S is smallest for scenario #2. Values of S for scenarios #3 and #4 are 0.384 

and 0.209 respectively. Recall that scenarios #3 and #4 are two assumed extreme projections of 

sludge accumulation for 2016. Thus, the actual short-circuiting index for 2016 should be 

somewhere between 0.209 and 0.384 depending on the actual sludge distribution. Furthermore, 

the value of S is higher in scenarios 3 and 4 than in scenarios 1 and 2. The reason for this is that 

as the sludge builds up in the pond, the sludge begins to induce a baffling effect thereby reducing 

the strength of short-circuiting (as observed earlier in terms of fluid speed contours and 

streamlines) ultimately serving to improve the hydraulic performance of the pond.  Although an 

increase in sludge may seem beneficial, such an increase eventually reduces the water volume of 

the pond sufficiently to decrease the theoretical residence time, as shown in Table 6.7. For 

example, although the short-circuiting index in scenario #4 is higher than that in scenario #1 

(suggesting that the former has better hydraulic performance) the theoretical residence time is 

lower in scenario #4 than that in scenario #1 due to the decrease in water volume. A lower 

theoretical residence time in scenario #4 suggests that suspended solids in the WSP would have 

less time to settle to the floor before being carried out of the pond by the flow. 

Overall, these findings have confirmed that sludge distribution and volume have a 

significant impact on hydraulic performance as noted in a previous study (Murphy 2012).  

6.2.5 Conclusions 

RTD predicted by the present CFD model matches well with the data measured in field 

by Lizima (2012), demonstrating that CFD can be a useful and efficient tool for the evaluation of 

the hydraulic performance of a WSP. 

CFD studies based on future predictions of sludge accumulation revealed that an increase 

of sludge volume can initially decrease the hydraulic performance of a WSP. As the sludge 
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accumulates further, it can actually begin to serve as a baffle thereby improving hydraulic 

performance. However, eventually the sludge accumulation reduces the volume of the pond 

serving to lower mean residence time which is undesirable.  

This study has found that sludge distribution is critical for determining hydraulic 

performance of a WSP. However, sludge distribution change over time is still not well 

understood. Better understanding of sludge accumulation could be obtained using a more 

advanced CFD model, such as a liquid-solid two phase flow model. An alternative approach 

would be the continued used of single-phase CFD as was the case here aided by physical 

measurements of sludge distribution in ponds with typical (standard) configurations. It is 

recommended that pond builders measure sludge accumulation over time in standard pond 

configurations. Based on these measured sludge distributions, CFD can be used to evaluate the 

hydraulic performances of these typical ponds over time. This information could be tabulated 

and provided to pond managers to better determine the current and future hydraulic performance 

of the pond they are running or would like to build.  

6.3 Chapter Summary 

In this chapter, the computational framework developed in this dissertation has been 

successfully applied to studies of the baffling performance and energy loss of three baffled ozone 

contactor configurations and the hydraulic performance of a wastewater stabilization pond.  

Summaries of the main conclusions derived from these applications were provided in sub-

sections 6.1.4 and 6.2.5. These successful applications serve as examples of how the present 

framework can be used to provide important and novel analysis of water and wastewater 

treatment systems.  
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Figure 6.1: Layout of the three model ozone contactors investigated in this study with (a) normal 

chamber width (NW) (b) half chamber width (HW) (c) quarter chamber width (QW). 
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Figure 6.2: Grids employed in RANS of contactors with (a) normal chamber width (NW) (b) half 

chamber width (HW) (c) quarter chamber width (QW). 
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Figure 6.3: Absolute velocity superimposed with corresponding streamlines (in last two 

chambers) in RANS for (a) NW model, (b) HW model and (c) QW model. Velocity and 

streamlines are shown on the x-y plane at mid span (z = L/2). 

 

 

Figure 6.4: y-velocity profiles across the chamber width (W) along x at different depths: (a) y/H = 

0.27; (b) y/H = 0.50; (c) y/H = 0.72. 
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Figure 6.5: Normalized tracer concentration (tracer concentration/initial tracer concentration) 

snapshots at t = 10.0, 22.5, 42.5, 67.5, 90.0 and 112.5 s in RANS of NW model. Concentration is 

shown on the x-y plane at mid span (z = L/2). 
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Figure 6.6: Tracer concentration snapshots at t = 10.0, 20.0, 40.0, 70.0, 90.0 and 110.0 s in 

RANS of HW model. Concentration is shown on the x-y plane at mid span (z = L/2). 
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Figure 6.7: Tracer concentration snapshots at t = 10.0, 20.0, 40.0, 70.0, 90.0 and 110.0 s in 

RANS of QW model. Concentration is shown on the x-y plane at mid span (z = L/2). 
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Figure 6.8: Comparison of cumulative residence time distributions. 

 

 

Figure 6.9: Relationship between relative energy loss due to friction and baffling factor. 
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Figure 6.10: Two-dimensional perspective of the sludge profiles studied. 

 

 
(a) 

 
(b) 

Figure 6.11: (a) Sludge layer profile in 2012, (b) layout, and (c) computational mesh of the pond 

in Bolivia. 
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(c) 

Figure 6.11 (Continued) 

 

 

Figure 6.12: Comparison of tracer concentration versus time from experiment and CFD 

simulation. 
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Figure 6.13: Water flow speed contours on x-y (horizontal) planes at depth = 0.69m 

(corresponding to the depth of the inlet) and depth = 0.10m from water surface. In (a)-(d), the 

sludge is color-coded white.  

 



151 

 

Figure 6.14: Streamlines for different scenarios (a) scenario #1; (b) scenario #2; (c) scenario #3; 

(d) scenario #4. 

 

Figure 6.15: Snapshots of normalized tracer transport on the x-y (horizontal) plane at 0.69m 

depth at different times (t = 0.5, 2.0, and 4.0 days). 
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(a) 

 
 (b) 

Figure 6.16: Comparison of (a) RTDs and (b) cumulative RTDs predicted by simulations. 
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Table 6.1: Relative error with respect to experimental results (Kim et al. 2010a) for NW model. 

       Error       Error       Error 

EXP (Kim et al. 2010a) 0.334 - 0.875 - 1.74 - 

LES (Kim et al. 2010b) 0.300 10.2% 0.856 2.2% 1.900 9.2% 

RANS (Kim et al. 2010b) 0.220 34.1% 0.317 63.8% 1.505 13.5% 

Present RANS 0.421 26.0% 0.880 0.6% 1.930 10.9% 

 

Table 6.2: Relative error with respect to LES results (Kim et al. 2010b) for HW model. 

       Error       Error       Error 

LES (Kim et al. 2010b) 0.700 - 1.010 - 1.468 - 

RANS (Kim et al. 2010b) 0.580 17.1% 0.725 28.2% 1.660 13.1% 

Present RANS 0.720 2.9% 0.934 7.5% 1.255 14.5% 

 

Table 6.3: Baffle classification and energy loss estimation. 

 Baffling Factor or     
Classification 

(U.S. EPA based on    ) 
Relative Energy Loss 

NW 0.334 Poor 1.0 

HW 0.700 Superior 1.7 

QW 0.780 Superior 2.9 
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Table 6.4: Comparison of energy consumption by driving flow and ozone generation. Total 

energy consumption for a plant is taken as 1.4kWh/1000 gallons or 0.37kWh/m
3
. 

Model 

 

Energy 

for 

driving 

flow / 

kWh/m3 

Hydraulic 

efficiency 

Energy for ozone 

generation / kWh/m3 

Sum of energy for driving flow and ozone generation / 

kWh/m3 

Scenario I 
Scenario 

II 
Scenario I 

Percentage of 

total energy 

consumption 

rate 

Scenario 

II 

Percentage of 

total energy 

consumption 

rate 

NW 1.20E-03 0.334 0.0288 0.1305 3.00E-02 8.1% 1.32E-01 35.6% 

HW 2.00E-03 0.700 0.0137 0.0623 1.57E-02 4.3% 6.43E-02 17.4% 

QW 3.50E-03 0.780 0.0123 0.0559 1.58E-02 4.3% 5.94E-02 16.0% 

 

Table 6.5: Comparison of predicted sludge volume and measured data in 2012. 

Year Measured data (units: m
3
) 

The Oakley (2005) sludge volume prediction method 

(units: m
3
) 

2012 154 164 

2016 N/A 326 

 

Table 6.6: Summary of scenarios considered in this study. 

Scenario Corresponding year Sludge volume / m
3
 Sludge geometry 

#1 2006 0 N/A 

#2 2012 154 Measured 

#3 2016 326 Based on assumption 1 

#4 2016 326 Based on assumption 2 
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Table 6.7: Comparison of short-circuiting indices. 

Scenario S Theoretical residence time   
Mean residence time (based on 

integrating over     ) 

#1 0.129 29.98 22.93 

#2 0.074 27.65 21.89 

#3 0.384 25.04 24.86 

#4 0.209 25.04 20.36 
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CHAPTER 7: CONCLUSIONS AND FUTURE WORKS 

Modeling approaches have been employed to predict pathogen removal in disinfection 

tanks for decades. The capability of predicting hydraulic and disinfection efficiencies of ozone 

disinfection contactors is essential for evaluating existing contactors and improving future 

designs. The U.S. EPA regulations of disinfection by-products (e.g. 10µg.L
−1 

for bromate since 

2001) have made modeling even more important for the management of ozone disinfection 

process. 

Early models have been based on mass balance while ignoring flow behavior, such as the 

axial dispersion reactor (ADR) model (Chen 1998; Kim et al. 2002; Kim et al. 2007) and the 

back flow cell model (BFCM) (Nguyen-Tien et al. 1985). These models have been successfully 

applied to contactors with a simple geometry but have usually failed for contactors with complex 

geometries. In addition, these models usually have empirical inputs, which would increase the 

uncertainty of predictions.  

Compartmental models or systematic networks have been developed to provide a flow 

solution for the simulation of tracer transport or reaction process (Gresch et al. 2009; Mandel et 

al. 2012). These models are essentially a combination of the completely mixed flow reactor 

(CMFR) and the plug flow reactor (PFR). However, compartmental models have relative low 

spatial resolution of the flow, thus potentially leading to lower accuracy. Additionally, 

compartmental models are unable to respond to varying flow conditions, thereby rendering them 

not practical for prediction. For example, a change in flow rate could potentially affect the size of 
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dead zone regions or strength of short-circuiting. However, the compartmental model would not 

be able to detect this. 

At the end of the 1990s, researchers started to develop computational frameworks based 

on CFD (Cockx et al. 1999; Falconer and Ismail 1997; Hannoun et al. 1998; Wang and Falconer 

1998). A CFD-based framework for ozonation process is divided into two parts: (1) flow 

simulation and (2) reaction process modeling. In the first part, one main question is whether the 

flow in the ozone contactor should be modeled in a single phase or in multiple phases. In reality, 

gas phase exists in the water flow, thus, a multi-phase flow simulation would be more accurate 

than a single-phase flow, but this would come with higher computational cost. If the gas phase in 

the disinfection process can be neglected, the simulation could be simpler and consequently the 

computational cost could be reduced. Bolaños et al. (2008) pointed out that the single-phase 

Navier-Stokes equations could be applied to simulate ozonation processes if the gas phase 

portion is small. As is the case here, a majority of the studies have treated the flow in ozone 

contactors as a single-phase flow (Huang et al. 2004; Hofman et al. 2007a; Wols et al. 2008a; 

Kim et al. 2010a; Amini et al. 2011; Zhang et al. 2013a, b) with only a few using multi-phase 

flow (Cockx et al. 1999; Ta and Hague 2004; Bartrand et al. 2009; Talvy et al. 2011). Another 

question in the flow simulation is: which solution methodology is suitable to simulate the flow? 

RANS simulation has been the more popular methodology since the onset of CFD-based 

framework for ozonation. Recently, Kim et al. (2010a) pointed out that RANS may yield poor 

performance in terms of tracer transport predictions, such as t10. As a result, LES was proposed 

as a more accurate alternative to RANS. However, this dissertation has revisited the numerical 

and experimental studies by Kim et al. (2010b) and found that the poor performance of RANS 

may be due to the inappropriate use of the turbulence model (see Chapter 4). For a fine grid 
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resolving wall viscous boundary layers, RANS with a low-Reynolds number turbulence model 

such as the Lauder-Sharma k-ε model was demonstrated to be more accurate than RANS with the 

standard k-ε model (Zhang et al. 2013a and Chapter 4) for predicting hydraulic performance. On 

coarse grids, the standard k-ε model was shown to lead to accurate prediction of hydraulic 

performance. The difference between the Lauder-Sharma k-ε model and the standard k-ε model is 

that the former integrates the turbulence model equations all the way to the wall, which is 

required if resolving wall viscous boundary layers. The standard k-ε model is not equipped to do 

this and thus leads to poor results when used with wall-resolving grids. Overall, RANS performs 

on par with LES in simulating flow and tracer transport in baffled contactors because the eddies 

responsible for determining hydraulic performance are quasi-steady thus well-represented by 

RANS. In flows disinfection systems such as a column contactor, flow features such as spatial 

transition to turbulence are not well-represented by RANS and thus RANS is not able to perform 

on par with LES in predicting hydraulic performance.  

Based on the previously described encouraging results, a modeling framework for the 

ozonation process was developed by combining RANS with kinetics-based reaction modeling for 

the first time. This computational framework was applied to the full-scale ozone contactor 

operated by the City of Tampa Water Department (Zhang et al. 2014 and Chapter 5). Flow fields, 

residence time distribution, ozone concentration distribution, and contact time (CT) distribution 

within the contactor were predicted via the newly developed computational framework. The 

predictions of ozone concentrations at sample points were shown to agree well with physical 

experimental data measured in the contactor. Although bromate concentrations at sample points 

were underestimated, they are on the same order as the physical data. Potential reasons for this 

were the neglect of radical pathway for bromate formation and the assumption that the 
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turbulence-chemistry interaction is characterized by slow chemistry rather than finite-rate 

chemistry. Another potential reason for underestimation of bromate formation was the lack of 

information about the competition between hypobromous acid (    ) and bromate (    
 ) for 

available hypobromite (   
 ) . Thus the amount of    

  available for     
  formation is 

uncertain. Finally, the predicted CT values at the contactor outlet demonstrated that the 

disinfection performance of the ozone contactor is sufficient to meet regulation requirements. 

Furthermore, the impact of seasonal flow rate change on disinfection performance was found to 

be significant and deserves attention during the management and operation of a water treatment 

plant. 

As noted above, a limitation of the current framework is that the turbulence-chemistry 

interaction is modeled as slow chemistry, excluding the possibility of finite-rate chemistry. 

Future research should be performed in order to develop models allowing for finite-rate reactions 

in water disinfection systems.   

The modeling framework developed in this dissertation was successfully applied to study 

the hydraulic efficiency and energy loss in baffled ozone contactor configurations and the 

hydraulic performance of a wastewater stabilization pond with sludge. In the case of baffled 

contactors it was shown for the first time that increasing baffling efficiency by increasing the 

number of baffles leads to significant energy loss due to friction. However, this energy loss is 

off-set by energy savings resulting from the increased baffling efficiency and associated lower 

ozone demand.  

In the case of the wastewater stabilization pond, CFD showed that both sludge volume 

and sludge distribution can impact the pond’s hydraulic performance. Sludge can either 

deteriorate or improve hydraulic performance of wastewater stabilization ponds depending on 
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the distribution pattern of the sludge. Thus it is recommended that pond builders/designers 

should study sludge accumulation in their ponds in order to accurately predict future hydraulic 

performance of the ponds via CFD and thus provide a better guide for pond managers.  This 

approach could be made practical if studies are made for standardized pond configurations. CFD 

may be extended to study a number of issues of importance to water and wastewater disinfection.  

In future research, the following topics are recommended: 

 Increase disinfectant utilization efficiency by changing reactor configurations and 

rearranging diffusers. Estimate the operational cost for different scenarios and find 

the minimum cost.   

 Studies on the energy costs/savings incurred by disinfection approaches. Disinfection 

is an energy-consuming technology. For example, ultraviolet (UV) disinfection has a 

high consumption of electricity for UV lighting; ozone disinfection has a high level of 

electricity use for ozone generation.   

 Applications to emerging disinfection technologies: disinfection by pulsed arc 

electrohydraulic discharge (Ching et al. 2001), ultrasound disinfection (Hoyer 2002) 

and combined oxidants disinfection, such as UV and chlorine (Lotierzo et al. 2003) 

and ultrasound and chlorine (Plummer et al. 2002).     
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Appendix A: List of Symbols 

    Velocity in  -th direction 

    Position in  -th direction 

    Time 

   Fluid density 

  Pressure 

  The kinematic viscosity 

   Body force (the force per unit of mass) in the  th direction 

Re The Reynolds number 

U  Characteristic velocity of the flow 

L   Characteristic length scale of the flow 

  The tracer concentration 

  The molecular diffusivity for the scalar 

   The species concentration 

   The molecular diffusivity for the scalar 

   The external volumetric source term 

   The ozone decay constant 

   The concentration of dissolved ozone 

    Natural Organic Carbon 

      The reaction rate constant for the reaction between dissolved ozone and NOM 

[   ]  The concentration of NOM 

    The bromate formation rate constant 

   The concentration of bromate 
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    The external volumetric source term for dissolved ozone 

 [   ] The external volumetric source term for NOM 

    The external volumetric source term for bromate 

    The external volumetric source term for passive tracer 

CT  Concentration-contact time 

   The concentration of microorganism    

    The external volumetric source term for microorganism   

G  Incident radiation 

   The radial distance from the lamp 

      The light intensity 

    Radius at lamp surface 

  The absorption coefficient 

    Ultraviolet radiation transmission 

    The scattering coefficient 

   The linear-anisotropic phase function coefficient 

z The axial distance 

   The distance from the current location to the point source number    

   The UV lamp output (energy rate per unit length) 

    Represents the UV dose 

      The shift in dose distribution 

   Distribution factor 

   The initial concentration of the microorganism m 

      The inactivation rate constant for the microorganism m 
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       The intrinsic rate constant of the microorganism m 

   Temperature 

〈 〉  The Reynolds-averaging operation 

〈   〉 The Reynolds-averaged chemical source term 

〈  〉  Mean of the concentration of dissolved ozone 

  
  Fluctuation of the concentration of dissolved ozone 

〈[   ]〉  Mean of the concentration of fast reacting NOM 

[   ]   Fluctuation of the concentration of fast reacting NOM 

   The entire flow domain 

 (    )  A filter function 

  
  (    )  The sub-grid or residual velocity 

 ̅    The filtered velocity 

 ̅  The filtered pressure 

  ̅   The filtered strain-rate tensor 

     Sub-grid-scale (SGS) stress 

    The SGS eddy viscosity 

   The local mesh spacings in the    direction 

   The local mesh spacings in the    direction 

    The local mesh spacings in the    direction 

   Smagorinsky coefficient 

〈  〉 Mean component of velocity 

  
   Fluctuating or turbulent component of velocity 

〈 〉  Reynolds-averaged or mean pressure 
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 〈  
   
 〉 Reynolds stress tensor 

k  The turbulent kinetic energy 

ε  The turbulent kinetic energy dissipation rate 

〈 〉 The Reynolds-averaged or mean tracer concentration 

    Concentration fluctuation 

    The turbulent Schmidt number 

 ̅ Filtered tracer concentration 

  
   The SGS diffusivity 

  Theoretical mean residence time 

  Volume of contactor 

  Flow rate 

  Normalized time 

 ( ) Normalized tracer concentration or residence time distribution (RTD) function 

      Initial tracer concentration 

          The total time over which the tracer is released 

 ( )  Cumulative residence time distribution function 

MDI The Morrill dispersion index 

     The time it takes for 10% of the tracer to exit the contactor 

     The time it takes for 16% of the tracer to exit the contactor 

     The time it takes for 50% of the tracer to exit the contactor 

     The time it takes for 90% of the tracer to exit the contactor 

  Short-circuiting index 

   Second-order rate constant 
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[ ]  Means concentration of species 

   Rate constant for reaction between bromide and ozone 

   Rate constant for reaction between bromide and ozone 

   Rate constant for reaction between hypobromite and ozone 

   Rate constant for bromite formation 

 [   ] Rate constant for bromate formation 

  
   

 Effective reaction rate constant for chemical species i 

     Overall mass transfer constant 

      The percentage of    
  for bromate formation 

  The Jacobian matrix 

   Chemical time scale 

    The eigenvalue of the Jacobian matrix 

   Kolmogorov time scale 

    Hydraulic diameter 

   The cross-section area at inlet 

  
  The distance between the first grid point and the bottom or baffle wall in plus 

units 

   The wall shear stress  

d The distance of the first grid point off the wall 

V1   The time averaged flow speed at the first grid point off the wall 

Tpeak  The time at which the peak RTD occurs 

T1  The time it takes for the amount of tracer at the outlet to reach 1% of the amount 

of tracer injected at the inlet 
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H Water surface height  

    Normalized     (equal to      ) 

    Normalized     (equal to      ) 

    Normalized     (equal to      ) 

    Volume of sludge produced each year 

    Average flow 

   Suspended solids in the influent 

   
    The LES subgrid-scale stress 

  The channel half-width  

   The wall shear velocity 

   
   The viscous stress 

         Non-dimensional viscosity  

    Wall shear Reynolds number 

   The dimensionless velocity 

  
   The force at time step n 

       The target bulk velocity at the inlet/outlet 

     
   The computed bulk velocity at the inlet/outlet at time step n 

α Relaxation parameter 

   The pressure drop across the entire streamwise (  ) length of the contactor  

ΔL  The entire streamwise length (  ) of the contactor 

      Energy loss per unit volume 
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Appendix B: Verification and Validation of OpenFOAM 

Turbulent channel flow is a canonical problem which has been studied extensively to 

understand the mechanics of wall-bounded turbulent flows. This flow is a common choice to test 

and validate OpenFOAM for incompressible flow.  

A typical channel flow problem has the geometry shown in Figure B.1. The channel is 

bounded by no-slip walls normal to the y-axis. Periodic boundary conditions are set in the 

streamwise (x) and spanwise (z) representative of a channel of infinite lengths in those directions.  

B.1 Governing Equations 

The following N-S equations in non-dimensional form are solved in LES and DNS. In 

DNS, the LES subgrid-scale stress,    
   , introduced earlier is set to zero.  

  
   
  
 
     

   
 
 

  

    
 

   
 
    

   

   
    (B.1) 

here all variables are non-dimensionalized by the channel half-width  , and the wall shear 

velocity   , 

     √
  
 
  (B.2) 

where    is shear stress at wall,   is fluid density,    is velocity in  -th direction,   is time,    
  is 

the viscous stress,    is body force in  -th direction.    is the Reynolds number, defined as: 

     
  

 
 (B.3) 

where   is kinematic viscosity,   is bulk velocity, and     in this case.  

For further use, define wall shear Reynolds number as: 

      
   

 
 (B.4) 
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Define non-dimensional viscosity as: 

           
 

  
 (B.5) 

Averaging in time and over x1 and x2, and letting ui=<ui>+ui’ leads to  

     
 

   
〈  
   
 〉  

 

  

 〈   
 〉

   
 
 〈   

   〉

   
    (B.6) 

as the x1 -momentum equation. 

From equation (B.6), the following relationship between 
 〈  〉

   
 and     can be derived: 

  (
 〈  〉

   
)|
     

 
   

 

  
 (B.7) 

And the relationship between   ,    , and    can be derived: 

     
   

 

   
 (B.8) 

Furthermore, the sum of Reynolds stress and shear stress can be probed to be a linear 

function of   : 

   〈  
   
 〉  

 

  
〈
 〈  〉

   
〉        (B.9) 

where Reynolds stress 〈  
   
 〉 define as: 

  〈  
   
 〉  〈    〉  〈  〉〈  〉 (B.10) 

Equation (B.7) and (B.9) will be used as validation criteria.  

B.2 Problem Description 

A DNS simulation was conducted for turbulent channel flow. For DNS of turbulent flow, 

the mesh is refined near wall because of the need of solving the small scales of turbulence flow 
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near wall. A near wall refined mesh is also used for LES, while the mesh for bulk flow could be 

coarser due to the use of SGS model. Dynamic Smagorinsky model is used for LES in this case. 

In this case, Reynolds number and wall stress Reynolds number are:         , 

        . Then the following properties can be calculated: 

      
   

 

   
            

         
 

  
 

 

    
           

The size of the domain is:      
 

 
  (      or         ). The meshes for 

DNS and LES consist 893,952 grid points (96×96×97 in x-y-z directions) and 66,560 grid points 

(32×32×65 in x-y-z directions) respectively, shown in Figure B.2.  

B.3 Results and Discussion  

The profile of the mean velocity non-dimensionalized by the wall shear velocity for DNS 

is shown in Figure B.3. The dashed line represents the law of the wall and the log law. Within 

the sub-layer,     , the computational results agree the linear law of the wall well: 

        (B.11) 

where    is dimensionless wall distance, calculated as 

     
   

 
 (B.12) 

    is the dimensionless velocity, calculated as 

     
 

  
 (B.13) 

And for the Logarithmic region, the computational results also follow the log law well:  

     
 

   
          (B.14) 
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Turbulence intensities normalized by the wall-shear velocity for DNS and LES are shown 

in Figure B.4 and Figure B.5. The symmetry of the profiles about the channel centerline indicates 

the adequacy of the sample taken for the average. 

The total stress,  〈  
   
 〉  

 

  
〈
 〈  〉

   
〉, and the Reynolds stress,  〈  

   
 〉, along y axis are 

shown in Figure B.6. For total stress, both DNS and LES result have an excellent agreement with 

the theoretical solution, which is a straight line. And, both DNS and LES results agree well with 

Kim’s DNS in the Reynolds stress,  〈  
   
 〉.  

B.4 Conclusion 

In this section, two approaches, DNS and LES, in OpenFOAM are applied to simulation 

of laminar and turbulent channel flow. The results agree well with theoretical results, 

demonstrating OpenFOAM is a reliable tool for simulating incompressible flow.  

 

  

Figure B.1: Sketch of channel flow. 

 

 

Figure B.2: Meshes for DNS (left) and LES (right). 
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Figure B.3: Mean velocity profile. 

 
(a) 

 
(b) 

Figure B.4: Root-mean-square velocity fluctuations normalized by the wall velocity (a) in global 

coordinates; (b) in wall coordinates. 
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Figure B.5: Sum of Time-spatial averaged viscous stress and Reynolds stress distribution along z 

axis. 
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Appendix C: Inlet Turbulence Intensity 

Fluid flow simulations often require an estimate of the turbulence intensity at the inflow 

boundary. For highly turbulent conditions, the turbulence intensity at the inlet is typically in the 

range 5 to 10% of the Reynolds-averaged velocity (see Fluent User’s Guide 2006). As shown by 

Huang et al. (2004), RANS predictions of tracer residence time distribution (RTD) density in 

baffled contactors may be strongly dependent on the prescribed turbulence intensity at the 

contactor inlet. In their computations, a 10% inlet turbulence intensity led to an over prediction 

of the peak of the RTD density function while an extremely high 50% inlet turbulence intensity 

was needed to obtain good agreement with experimental data.  

A way to avoid dependence of results on the inlet turbulence intensity is to prescribe the 

inlet and outlet of the contactor as periodic. In this case a streamwise pressure gradient in the 

form of a body force is added to the Navier-Stokes equations in order to ensure a targeted bulk 

velocity at the periodic inlet/outlet:  

  
 〈  〉 

  
 〈  〉

 〈  〉 

   
  

 

 

 〈 〉

   
  

  〈  〉

   
  

 

 

 〈  
   
 〉  

   
    (C.1) 

where, for example, components of vector    may be taken as (  , 0, 0) denoting a body force or 

pressure gradient driving the flow say in the    (streamwise) direction. Component    is adjusted 

dynamically to keep the bulk velocity at the periodic inlet/outlet constant. Note that this 

approach may also be applied for LES.  Because of the periodic boundary condition, pressure at 

the inlet is equal to the pressure at the outlet. Thus, it is not possible to impose say a driving 

streamwise pressure gradient through boundary conditions. Instead, the streamwise pressure 

gradient may be imposed through the body force component    appearing in the right hand side 

of the    momentum equation in (3.20) and which is felt by the entire domain. This body force is 

adjusted dynamically as 
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      (           
          

 ) (C.2) 

where   
  is the force at time step n,       is the target bulk velocity at the inlet/outlet and      

  

is the computed bulk velocity at the inlet/outlet at time step n. Relaxation parameter α is taken to 

be 0.5 in this study. Note that when      
  reaches its target value,    becomes constant. This 

approach of setting streamwise periodic boundary conditions and letting the streamwise pressure 

gradient be represented through a body force has been used in the past for channel flows (e.g. 

Whiting (1999) and Tejada-Martinez and Jansen et al. (2005)) and flows in baffled contactors 

(Kim et al. 2010a).  

Streamwise body force     drives the flow in that direction and thus, in a control volume 

setting in the mean, counteracts the wall drag shear stresses due to friction. This force is defined 

as      (⁄    ) where     is the pressure drop across the entire streamwise (  ) length of the 

contactor and ΔL is the entire streamwise length (  ) of the contactor. Note that this definition 

has the same dimensional form as (  ⁄ )(     ⁄ ), which is the streamwise pressure gradient 

divided by density appearing in the streamwise momentum equation. Based on energy balance, it 

can be shown that for the present flow configuration, energy loss per unit volume,       , is equal 

to pressure drop across the contactor (  ). This energy loss is due to friction associated with 

molecular viscosity and turbulent (eddy) viscosity. Given that          and using the 

definition       (   ) given earlier leads to  

              (C.3) 

This equation is useful as it gives the energy loss across the contactor in the simulations 

performed in section 6.2. 

  



193 

Appendix D: Copyright Permissions  

Part of this dissertation is reprinted from the Author’s previous publications listed below. 

The permissions for reusing these publications are shown in the following pages: 

1. Zhang J., Tejada-Martinez, A. E., Zhang, Q., and Lei, H. (2014). Evaluating 

Hydraulic and Disinfection Efficiencies of a Full-Scale Ozone Contactor using a 

RANS-based Modeling Framework. Water Research, 52, 155-167. 

2. Zhang J., Tejada-Martinez, A. E., and Zhang, Q. (2013). Hydraulic Efficiency in 

RANS of the Flow in Multi-Chambered Ozone Contactors. Journal of Hydraulic 

Engineering, 139(11), 1150-1157.  

3. Zhang J., Tejada-Martinez, A. E., and Zhang, Q. (2013). RANS Simulation of the 

Flow and Tracer Transport in a Multi-chambered Ozone Contactor. Journal of 

Environmental Engineering, 139(3), 450-454.  

  



194 

 



195 

 



196 

 



197 



198 



199 



200 



201 

 


	University of South Florida
	Scholar Commons
	May 2014

	Numerical Simulation of Flow in Ozonation Process
	Jie Zhang
	Scholar Commons Citation


	tmp.1400521685.pdf.a2lSs

