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Abstract  

 
With increasing global change pressures such as urbanization and climate 

change, cities of the future will experience difficulties in efficiently managing 

scarcer and less reliable water resources.  However, projections of future global 

change pressures are plagued with uncertainties. This increases the difficulty in 

developing urban water systems that are adaptable to future uncertainty. 

 

A major component of an urban water system is the distribution system, 

which constitutes approximately 80-85% of the total cost of the water supply 

system (Swamee and Sharma, 2008). Traditionally, water distribution systems 

(WDS) are designed using deterministic assumptions of main model input 

variables such as water availability and water demand. However, these 

deterministic assumptions are no longer valid due to the inherent uncertainties 

associated with them. Hence, a new design approach is required, one that 

recognizes these inherent uncertainties and develops more adaptable and 

flexible systems capable of using their active capacity to act or respond to future 

alterations in a timely, performance-efficient, and cost-effective manner. 

 



xii 
 

This study develops a framework for the design of flexible WDS that are 

adaptable to new, different, or changing requirements. The framework consists of 

two main parts. 

 

The first part consists of several components that are important in the pre 

and post--processing of the least-cost design methodology of a flexible WDS. 

These components include: the description of uncertainties affecting WDS 

design, identification of potential flexibility options for WDS, generation of 

flexibility through optimization, and a method for assessing of flexibility. For 

assessment a suite of performance metrics is developed that reflect the degree 

of flexibility of a distribution system. These metrics focus on the capability of the 

WDS to respond and react to future changes. The uncertainties description 

focuses on the spatial and temporal variation of future demand.  

 

The second part consists of two optimization models for the design of 

centralized and decentralized WDS respectively. The first model generates 

flexible, staged development plans for the incremental growth of a centralized 

WDS. The second model supports the development of clustered/decentralized 

WDS. It is argued that these clustered systems promote flexibility as they provide 

internal degrees of freedom, allowing many different combinations of distribution 

systems to be considered. For both models a unique genetic algorithm based 

flexibility optimization (GAFO) model was developed that maximizes the flexibility 

of a WDS at the least cost.  



xiii 
 

The efficacy of the developed framework and tools are demonstrated 

through two case study applications on real networks in Uganda. The first 

application looks at the design of a centralized WDS in Mbale, a small town in 

Eastern Uganda. Results from this application indicate that the flexibility 

framework is able to generate a more flexible design of the centralized system 

that is 4% – 50% less expensive than a conventionally designed system when 

compared against several future scenarios. In addition, this application highlights 

that the flexible design has a lower regret under different scenarios when 

compared to the conventionally designed system (a difference of 11.2m3/US$). 

The second application analyzes the design of a decentralized network in the 

town of Aura, a small town in Northern Uganda. A comparison of a decentralized 

system to a centralized system is performed, and the results indicate that the 

decentralized system is 24% – 34% less expensive and that these cost savings 

are associated with the ability of the decentralized system to be staged in a way 

that traces the urban growth trajectory more closely. The decentralized clustered 

WDS also has a lower regret (a difference of 17.7m3/US$) associated with the 

potential future conditions in comparison with the conventionally centralized 

system and hence is more flexible. 
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1 Introduction  

1.1 Background 

Increasing global change pressures such as climate change, population 

growth and urbanization, changes in social behavior and socio-economic 

conditions, ageing and deterioration of infrastructure, and emerging contaminants 

and technologies pose a challenge to the design and future operation of water 

distribution systems (WDS) (Khatri and Vairavamoorthy, 2007). As WDS are 

generally designed for horizons that span several decades and the investments 

for WDS constitute approximately 80-85% of the total cost of water supply 

systems, global change pressures result in long-lasting consequences (Savic, 

2005; Swamee and Sharma 2008). Global change pressures, coupled with risks 

inherent in the existing conventional urban water management, will result in the 

challenge that cities in the future will experience difficulties in efficiently 

managing scarcer and less reliable water resources (Tsegaye et al., 2012; 

Segrave, 2007). In particular for WDS the global change pressures may affect 

the temporal and spatial distribution of the water demand and the safe yield of 

available water resources. As the global change pressures are associated with 

huge inherited uncertainties, it is difficult to make reasonable predictions on their 

consequences. There is the danger that the input parameters of WDS will 

change at multiple points during their long operational life spans of several 
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decades. Hence a major challenge faced by designers of WDS is how to 

accommodate major inherited uncertainties associated with future global change 

pressures (Babayan et al., 2007).  

 

Traditional planning of WDS has been based on deterministic 

assumptions. For example, conventional designs are usually based on the 

assumption that all model input variables such as water demand and pipe friction 

characteristics are accurately known at the time of design (Giustolisi et al., 2009; 

Savic, 2005; Babayan et al., 2005). However, due to the inherit uncertainties 

associated with the global change pressures predicted conditions may show 

large deviation from actual conditions. In general the traditional deterministic 

approach to design could lead to WDS that are undersized and badly performing 

and/or oversized and under performing. In addition, the poor performance can 

result in increasing operational costs or huge coping costs of the users. In order 

to adapt these poorly performing WDS to the intended performance, unplanned 

adaptation measures are required, which can result in huge adaptation costs. 

Hence there is a growing consensus among researchers and practitioners that 

the traditional deterministic design approach is no longer suitable as it affects the 

costs and performance of the WDS. 

 

An example for the consequences of the traditional deterministic planning 

approach in the light of future uncertainties is the water supply expansion project 

in the Skane region of Southern Sweden (Erlenkotter et al., 1989). Soon after 
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construction of the water supply expansion scheme had begun, the water 

consumption in the region unexpectedly declined. Some argued that the project 

would no longer be viable and should be reconsidered; others held that the 

decision was irrevocable and argued that the excess capacity of the system will 

permit better environmental management of the present water system. As a 

result the project completion was postponed by nine years, leading to a reduction 

of the planned distribution system expansion (Lund, 1988). The example of the 

Skane region projects highlights that when a deterministic approach is employed 

(when it is clear there are potential uncertainties), this can lead to consequences 

such as unnecessary investment and underperforming systems (Erlenkotter et 

al., 1989). Hence, there is a need for proactive approaches that incorporate an 

understanding of the challenges of global change pressures and the associated 

uncertainties at the design stage (Cunha and Sousa, 2010).  

 

There is a growing consensus, among researchers and practitioners that 

future uncertainties have to be recognized in the design and operation of WDS 

(Hassan and de Neufville, 2006). Recently, a number of studies have contributed 

to this shift from traditional practices (Gomes et al., 2012; Giustolisi et al., 2009; 

Babayan et al., 2007; Babayan et al., 2005). There are many new approaches for 

the design of WDS where future uncertainties are incorporated into the problem 

formulation as a constraint on minimal system robustness or penalty for fitness 

function (Giustolisi et al., 2009; Babayan et al., 2005, Xu and Goulter, 1999). 

Hence the WDS optimization will result in a least cost and robust system that 
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provides predefined level of robustness. Robust WDS, sometimes called “rigid 

systems”, perform well under a changing environment without the need for 

physical changes in the WDS. However there are several drawbacks associated 

with robust designs. For example these systems do not offer the ability to change 

or adapt to changes in the external environment that were not foreseen at the 

time of planning and design (Ramirez, 2002; Saleh et al., 2001). Also a robust 

design tends to be over designed resulting in additional costs. As these designs 

are fixed, they lack the ability to downsize in response to reduced expectations 

(i.e not possible to exploit upside opportunities) (Cunha and Sousa, 2010; de 

Neufville 2004; Scholtes, 2007). Furthermore many robust design approaches 

only capture incremental uncertainties (such as modeling anomalies) and do not 

consider more substantial uncertainties associated with future change pressures. 

Hence the robust design approach, is not appropriate for designing systems that 

need to be staged in order to respond to uncertainties over time (as experienced 

with global change pressures).  

 

Flexibility has been proposed as another approach to this problem, that 

allows  a step wise evolution of the system in cost effective and performance 

efficient manner (Fricke and Schulz, 2005; Olewnik and Lewis, 2006; Saleh et al., 

2001; Scholtes, 2007). In flexible design, the decision making process is not 

focused on one time step, but rather on several successive points in time. 

Flexibility provides the ability to design a system in stages, so that the system 

can follow closely the changing future trajectory. This provides the ability to 
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implement changes after the system has already been implemented. Flexibility, 

as defined by Eckart et al., (2011) is “the ability of urban drainage systems to use 

their active capacity to act, and respond to relevant alterations during operation, 

in a performance-efficient, timely and cost-effective way.” As postulated by Silver 

and de Weck, (2007) and Zhao and Tseng, (2003), increasing a system’s 

flexibility provides a potential solution to deal with uncertainties acting on 

systems which are required to adapt and evolve to future stages. Scholtes, 

(2007) also recognizes flexibility as way to transform risks associated with 

uncertainty into an opportunity. Flexibility claims to consider future uncertainties 

in the design of WDS to achieve the intended performance with minimal costs. 

Flexible design seems to be the most promising design approach for WDS to 

cope with the future uncertainties associated with global change pressures. 

Figure 1.1 shows the relationship between a system’s required objectives and its 

ability to respond to changes in the external environment. 

 

 

Figure 1.1 Flexibility, robustness and deterministic design 
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As shown in Figure 1.1 deterministic design is fixed and optimized to 

perform well for a fixed set of requirements and struggles to perform when there 

are changes in the external environment. A robust design is when design is fixed 

but has excess capacity and hence can cope within reason to variations in the 

external environment. Finally a flexible design is one that is not fixed and can 

adapt and change to changes in the external environment (Saleh et al., 2003).  

 

Although the concept of flexibility has been considered in many areas 

including business, management, (Hocke and Heinzl, 2006), and building design 

(Fricke and Schulz, 2005; Neufville, 2004), it has not been applied to the design 

and management of urban WDS. The discussion of flexibility of WDS is in its 

infancy and still focuses on the question of the general appropriateness of 

flexibility. Tools for the operationalization flexible design for WDS are missing. 

Approaches to describing future uncertainties, metrics for measuring flexibility, 

and methods for the optimal design of flexible WDS, are missing in the technical 

literature. Hence, there is a challenge in operationalizing the concept of flexible 

design for WDS and so there is a need to develop new approaches and 

methodologies for this purpose. In addition to the above, there is a growing 

consensus the decentralization of WDS offers great opportunities to enhance 

their flexibility (PSGS 2010; Bieker et al., 2010). However, there has been little or 

no research on how to operationalize the decentralization approach, in particular 

guidance on how to define the boundaries of each of the clusters that make a 

decentralized system.  
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1.2 Problem Statement 

The concept of flexibility has not been applied to the design and 

management of urban WDS. Such systems are critical for the welfare of society 

and as there performance is very sensitive to external pressures, it is critical that 

we develop methods and strategies to respond to the uncertainties associated 

with these pressures. It is required to operationalize the concept of flexible 

design for WDS. Hence there is a need to develop a framework for the 

development of flexible WDS. To achieve this is it is important to address the 

following issues:  

• What would be the appropriate metrics for evaluating and assessing the 

degree of flexibility of a WDS?  

• What technical/management options enhance the flexibility of WDS?  

• What should be the main steps taken in the design of a flexible WDS and 

how can these steps be incorporated into a comprehensive design 

framework? 

• Can formal optimization methods be employed to optimize the flexibility of 

conventional centralized WDS? 

• How can the flexibility of decentralized clustered WDS be optimized? How 

can concepts of decentralization and modular diversity be utilized to 

maximize flexibility of WDS?  
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1.3 Research Objectives  

The main objective of this research is to develop a design framework that 

can generate optimal WDS that are adaptable and flexible under future global 

change pressures. These flexible systems are characterized by their ability to 

cope with uncertainties and hence have the capability to adapt to new, different, 

or changing requirements. The core of the framework consists of two 

optimization models, one for centralized WDS and the other for clustered WDS.  

 

The specific objectives of the research will include: 

• The development of pre and post-processing steps for the framework, 

including methods to describe the spatial and temporal demand 

uncertainties, performance metrics for the assessment of the degree of 

flexibility of a system, and rules for flexibility based decision making.  

• The development of genetic algorithm based optimization model that 

maximizes the flexibility of centralized WDS at the least cost. This 

optimization model will generate a flexible, staged development plans for 

the incremental growth of the WDS. 

• The development of an optimization model that divides emerging area into 

clusters that allows the provision of flexible, modular decentralized WDS. 

Modular diversity exponentially increases the amount of possible 

configurations that can be achieved for WDS from a given set of inputs 

(complex adaptive systems). 
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The above models will be combined to develop the design framework that 

will provide decision makers the ability to develop flexible WDS. This framework 

allows future urban water strategies to be assessed against a range of 

uncertainties, resulting in adaptable, flexible and sustainable solutions. 

1.4 Structure of the Dissertation 

Chapter 2 of this dissertation is a detailed literature review of the basic 

concepts of flexibility, WDS design, and the uncertainties associated with factors 

that impact water system design. In addition the chapter reviews existing 

reliability-based WDS optimization approaches and discusses their strengths and 

weaknesses.  

 

Chapter 3 presents the detailed components of framework for the least-

cost design of flexible WDS. As part of the development of the framework the 

chapter develops a scenario approach to describe potential future uncertainties, 

identifies different types of flexibility options for WDS, develops new metrics for 

measuring the degree of flexibility and describes the value of the minimax regret 

rule for flexibility-based-decision-making under uncertainty. The developed 

metrics include the capability of the distribution system to respond and react to 

future change. These metrics are combined in to a single metric called the 

‘optimal level of flexibility’ metric.  
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Chapter 4 describes the development of an optimization model for the 

optimal flexible design of centralized WDS. The new tool, GAFO (Genetic 

Algorithm based Flexibility Optimization) sits at the center of the framework 

developed Chapter 3, and allows a wide range of uncertainties to be considered 

when designing the system. GAFO has two distinct features: it maximizes 

flexibility of the system; it enhances the changeability of the system through 

staged design and implementation.  

 

Chapter 5 demonstrates the efficacy of the GAFO method for the flexible 

design of a centralized WDS for Mbale a small town in Eastern Uganda. The 

optimization was performed under conditions of uncertainties in respect to future 

demand. The results of this application indicate that the flexibility framework was 

able to generate a flexible staged design that is less expensive than a 

conventional designed system when compared against several future scenarios.  

 

Chapter 6 describes the development of an optimization model that 

supports the development of clusters for decentralized WDS, which provide a 

huge flexibility. The clustering optimization model is based on two objectives: 

minimization of the distance from source to consumer using a Euclidean distance 

minimization approach and the maximization of the homogeneity within a cluster 

using a K-means approach.  
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Chapter 7 demonstrates the application of the optimization model for the 

identification of flexible clusters for WDS for the town of Aura, a small town in 

Northern Uganda. The results indicate that decentralized/clustered system is 

cheaper than conventional systems and that these cost savings are associated 

with the flexibility of the clustered system to be staged in a way that traces the 

urban growth trajectory more closely. 

 

Chapter 8 describes the main conclusions of the dissertation and 

recommendations.  

  

 

Figure 1.2 Chapters included in the dissertation and their interconnection 
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2 Review on Flexibility and WDS Design- Basic Concepts 

2.1 Introduction 

Traditional methods of designing WDS do not provide the chance to 

develop the system in an efficient and cost-effective way with the ability to cope 

with unexpected changes that threaten its value delivery. Alternatively, these 

issues can be managed through the design of flexible WDS that can follow 

different trajectories based on how the future unfolds. However, effective and 

beneficial implementation of this concept requires a profound investigation into 

the different features of flexibility and WDS design approaches. Hence, this 

chapter presents a brief review of the literature as it defines flexibility in different 

disciplines. It overviews the theoretical background of designing for flexibility and 

describes an approach to designing a WDS in consideration of future 

uncertainties. 

2.2 Definition of Flexibility 

In recent years flexibility has become a key concept in many fields such as 

manufacturing, software engineering, architecture, finance, etc. Though many 

researchers have described the theoretical background and definition of 

flexibility, few have attempted to define the term formally and clearly for urban 
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water systems. For example, in his research on the management of 

manufacturing flexibility, Upton (1994) uses a very general and abstract definition 

of flexibility: “the ability to change or react with little penalty in time, effort, cost, or 

performance.” Allen et al., (2001) defined the word flexibility as the ease of 

changing the system’s requirements with a relatively small increase in complexity 

(and rework). According to Saleh et al. (2001), flexibility of a design is “the 

property of a system that allows it to respond to changes in its initial objectives 

and requirements—both in terms of capabilities and attributes—occurring after 

the system has been fielded, i.e., is in operation, in a timely and cost-effective 

way.” According to Olewnik and Lewis (2006), flexible systems are systems 

designed to maintain a high level of performance when operating conditions or 

requirements change in a predictable or unpredictable way. Schulz et al. (2000) 

and Fricke and Schulz (2005) define flexibility as a “system’s ability to be 

changed easily” in which external change factors “have to be implemented to 

cope with changing environments.” Shah et al. (2008) characterized flexibility as 

“the ability of a system to respond to potential internal or external changes 

affecting its value delivery, in a timely and cost-effective manner.”   

 

Clearly, there is no one concrete definition of the concept. Most of the 

confusion about flexibility comes from the subtle distinctions between system 

features. Some of the definitions place emphasis on the ability to initiate change 

without referring to the change requirements; some emphasize the ability to 

maintain fixed requirements despite the change. According to Upton (1994), 
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constructing a definition of flexibility is not a straightforward matter, since 

definitions are often colored by a particular situation or problem. As such, three 

major gaps and discrepancies within the existing flexibility theories have been 

identified: 

i) The existing definition of flexibility for one system is often incompatible 

with another system. This highlights the need for customizing the existing 

definition of flexibility to UWS. 

ii) There is currently no description for measuring flexibility or ranking 

different designs according to their flexibility. 

iii) There is currently some overlap between the concept of flexibility and 

other properties for handling change such as changeability, adaptability, 

agility, and robustness (Fricke and Schulz, 2005). These properties are 

discussed in detail in section 2.3 below. 

 

A clear definition of flexibility should be field-specific, provide a time 

reference associated with the occurrence of change, a characterization of what is 

changing, and an indication for providing metrics of flexibility (Saleh et al., 2001). 

Recently, a new definition of flexibility for UWS was developed by Eckart et al. 

(2010) based on the existing general definitions, in which flexibility is “the ability 

of urban water systems to use their active capacity to act and to respond on 

relevant alterations in a performance-efficient, timely and cost-effective way.” 

This definition covers the basic characteristics of flexibility (the capability to 

respond, the capability to react, and the characteristics of change processes) and 
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the indicators of flexibility (costs of change, range of change, and system 

performance) that are used in this study. As such, this is the definition of flexibility 

adopted in this work.  

2.3 Flexibility Versus Other Properties to Handling Change 

There has always been confusion between the concept of flexibility and 

other properties of a system related to handling future change and variability. 

These properties include robustness, adaptability, agility, and changeability. In 

order to avoid confusion between these properties and to recognize the distinct 

characteristic differences of flexibility, the definitions of all these features are 

summarized in this section. There are already different approaches to 

differentiate between the different terms of changeability. Fricke and Schulz 

(2005) define flexibility as a sub-aspect of the overall term changeability and 

differentiate it from robustness, adaptability, and agility. In addition, Ross et al. 

(2008) reconcile the terms flexibility, adaptability, scalability, and robustness. 

2.3.1 Robustness 

Robustness is defined as “the property of a system which allows it to 

satisfy a fixed set of requirements, despite changes occurring in the environment 

or within the system itself” (Saleh et al., 2001). It is also defined as the ability to 

remain “constant” in parameters despite internal and external changes to a 

system (Ross et al., 2008). One of the major differences between robustness and 

flexibility is the response to the changing environment. Robust systems perform 
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well under a changing environment without acting or responding to the change. 

These systems are insensitive to variability and sometimes are called “rigid 

systems.” In contrast, flexible systems respond to a changing environment 

through change. In other words, while robust systems remain unchanged during 

their whole design lives in order to maintain their value delivery, flexible systems 

need to be changed several times in their design lives to do the same. 

2.3.2 Adaptability  

Adaptability is defined as a “system’s ability to adapt itself towards 

changing environments” (Fricke and Schulz, 2005). Adaptability is thus similar to 

flexibility. However, the major difference between adaptability and flexibility is 

that of the location of the change agent with respect to the system boundary. 

Adaptation is the property of a system that allows it to cope with change through 

internal change initiators (internal system boundaries), whereas flexibility adapts 

through external change initiators (external system boundaries) (Shah et al., 

2008). Like flexible systems, adaptable systems can change themselves to cope 

with the change requirement. Thus, the location of the change initiator needs to 

be identified in order to avoid confusion between flexibility and adaptability. There 

is also a similarity between adaptability and robustness in that robustness is 

considered an essential property for adaptation because adaptability is an 

evolutionary stage of robustness (Ross et al., 2008) 
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2.3.3 Agility 

Unlike flexibility and adaptability, which describe the location of the 

change initiator in a system, agility describes the nature of the change that 

occurs within the system (Ross et al., 2008). The ability to change in a short 

duration of time is a system’s agility (Fricke and Schulz, 2005). Thus, quickness 

is the measure of agility. A system that allows different types of change in a short 

period of time is more agile than a system that requires a long duration. Agility 

also refers to the ease of change, and according to Fricke and Schulz (2005), it 

requires change to be implemented from an external agent to cope with the 

variability of the environment. 

2.3.4 Changeability 

Changeability is defined as the ability of a system to change easily. 

According to Ross et al. (2008), the changeability of a system is determined by 

the number of acceptable change paths that the system can take. The number of 

acceptable change paths is determined both by the possible number of outcomes 

and the number of mechanisms that allow the change. Changeability often refers 

to the four properties used to handle future changes, which include adaptability, 

flexibility, agility, and robustness (Fricke and Schulz, 2005). All these properties 

incorporate changeability in a system throughout its entire life. The 

interrelationship of these properties as they form a system’s changeability is 

depicted in Figure 2.1 (Fricke and Schulz, 2005). 

. 
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Figure 2.1 Properties to handle change  

2.4 Designing for Flexibility  

Most of the literature that deals with designing for flexibility addresses the 

issues related to uncertainty modelling, identifying options and/or system 

alternatives, generating and valuing flexibility, and decision making (Shah et al., 

2008); (Ramirez, 2002); (Cardin and Neufville, 2008). For example, Shah et al. 

(2008) develop a three `D’ (Dice, Design & Decision, and Discounting) concept in 

response to the common problem of uncertainty that faces system design. The 

first part of the concept, Dice, represents the uncertain future within which the 

engineering solution will deliver a benefit. Design & Decision represents the 

designers’ control over current design choices and, as the design allows, over 

choices in the future in response to the resolution of uncertainty.  Discounting 
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decisions that need to be discounted back to a common point in time so that 

different design options can be compared. Comparable frameworks for the 

designing flexibility are presented by different authors. Nilchiani and Hastings 

(2007) proposed an approach based on system analysis for the development of 

flexible designs. De Neufville (2000) used principles from real option analysis to 

generate a framework for the design of flexible systems entitled 'Dynamic 

Strategic Planning'. In general, designing for flexibility is characterized by the four 

major element frameworks discussed in the following sections. 

2.4.1 Uncertainty Description and Modelling 

The description of unknown future conditions is the most important factor 

in the design of flexible WDS. WDS are facing major challenges throughout their 

life cycles due to the increasing uncertainties that will affect them. These 

uncertainties are usually caused by dynamic global change pressures and 

associated variability. The future conditions will certainly differ from the past 

trends and are difficult to predict. A statistical analysis of recorded trends and a 

stochastic generation of various possible future sequences have been done to 

account for the future variations. Since the statistical characteristics are 

themselves uncertain, there is no assurance that generated sequences are 

representative of the range of sequences that might occur in the future (Beard, 

1982).  
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Flexibility has value precisely because of uncertainty. The capacity of 

uncertainty to be resolved in the future is usually understood as the characteristic 

that allows it to generate value (Ramirez, 2002).  Uncertainty is therefore 

identified as a key element of flexibility. It creates both risks and opportunities in 

a system, and it is with the existence of uncertainty that flexibility becomes 

valuable (Nilchiani, 2005).  

 

Uncertainties can be modeled using a number of different methods, 

including a scenario based approach (Arboleda and Abraham, 2006) in which 

various future states are described as members of families of discrete 

possibilities, as well as sampling type methods such as Monte Carlo Simulation 

(MCS) (Nilchiani and Hastings, 2007) and others. As a general rule, scenario 

based uncertainty modelling methods are relatively simple, but normally work 

only under certain assumptions (e.g., independent, discrete, etc.). The sampling 

type methods tend to be more general, but they are also much more 

computationally demanding. The choice of a particular method depends on the 

information available, though none of the methods give precise results (Nilchiani, 

2005). 

2.4.2 Option Identification 

In finance literature, options are defined as the “right, but not the 

obligation” to take an action. The key feature of an option is the cost of exercising 

the option and of using one’s right to act. It is in this respect that an option has 
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value (de Neufville, 2001). Real options are options that relate to physical assets 

rather than financial instruments. Real options can be categorized as those that 

are either “in” or “on” projects.  In engineering systems, flexibility is also identified 

as both “in” and “on” a system, where flexibility “in” a system is a technical aspect 

of the design that enables the system to adapt to its environment, and flexibility 

“on” a system relates to a management decision that does not alter technical 

components (de Neufville, 2002). For example, the flexibility to defer WDS 

expansion for a specific phase is non-technical and therefore is flexibility “on” a 

system. Most of the sources for flexibility “on” a system are well known. Some 

examples of this for urban water systems include investment deferral, multistage 

deployment, and expansion. 

 

 According to de Neufville and Cardin (2008) flexible design options (FDO) 

is the physical components that enable flexibility “in” a system. The design of 

flexible systems that have the ability to thrive in an ever-changing environment 

often requires identification of the options of flexibility for the system. Most 

flexibility options are not generic for different types of systems, but instead must 

be verified for specific types of system such as WDS. Shah et al. (2008) describe 

this verification of specific flexibility options as the main challenge for the 

application of real option analysis for different types of engineering systems. 

Furthermore, de Neufville and Cardin (2008) confirm that the identification of the 

options of flexibility that are specific to each system is essential. Identification of 

potential flexible options has been discussed often in the literature, and several 
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techniques have been used to identify flexible options. Some of these are change 

propagation analysis, sensitivity design structure matrix, engineering systems 

matrix, interview method, screening method, etc. However, the appropriateness 

of the methods depends on the type of system and the source of uncertainty in 

each case. The first two of these methodologies are discussed below. 

2.4.2.1 Change Propagation Analysis (CPA) 

In a complex system, in which all parts are closely linked, changes to one 

part or system are highly likely to result in changes to another, which in turn can 

propagate further reactions. Change Propagation Analysis (CPA) (Eckert et al., 

2004) is used to analyze how a change in system components will propagate 

through a system. This method identifies the interaction between components by 

exploring the influence of a change in each component on the other components 

in the system. To measure the degree of change propagation for a single 

element, a Change Propagation Index (CPI) is used as a matrix. The CPI for a 

particular element expresses the difference between the amounts of change 

information ∆Ein propagating “in” a component from components connected 

upstream and the amount of change ∆Eout propagating “out” to other downstream 

components (see Equation 2.1). 

 ioutiini EECPI ,, ∆−∆=  2.1 
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The terms ‘multiplier’, ‘carrier’, and ‘absorber’ have been defined by Eckert 

et al. (2004) to classify elements that react to changes. These terminologies are 

related to CPI as listed below. 

i) Multipliers (CPI>0): elements that generate more changes than they 

absorb.  

ii) Carriers (CPI=0): elements that absorb a similar number of changes to 

those that they cause themselves.  

iii) Absorbers (CPI<0): elements that can absorb more change than they 

themselves cause.  

 

Eckert et al. (2004) also define the term ‘constants’ for a system as 

components that are unaffected by change. The CPA method looks at how a 

change in one component propagates through the other components in the 

system. Application of this method for WDS may demand high computational 

effort in order to explore the effect of change in each component on the other 

components of a system. Moreover, analyzing the effect of changing scenarios 

(uncertainties) on each component of WDS could be a better approach for 

identifying flexible options in WDS. 

2.4.2.2 Sensitivity Design Structure Matrix (sDSM) 

Kalligeros (2006) examines how changes in the functional requirements of 

a system propagate through the design variables using sDSM, as proposed by 

Yassine and Falkenburg (1999). Unlike the DSM representation of the system, 
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which is identical for all designs, the sDSM refers to a particular design because 

it represents only the sensitivity between design variables. sDSM is used to 

express the sensitivity of design variables and functional requirements of a 

system to changes in other design variables and functional requirements.  

 

Functional requirements refer to performance levels that depend on the 

design variables of the system. For example, sDSM representation of a particular 

design variant for a particular set of design variables, denoted as X=[X1, X2,… 

Xk], and functional requirements denoted by a vector FR = [FR1, FR2,…FRk], 

where k is the total number of functional requirements for a system is shown in 

Figure 2.2. sDSM can be defined as a square matrix with k rows and columns 

(Kalligeros, 2006).  

 

 

Figure 2.2 sDSM (functional requirements and design variables)  
 

The southwest quadrant of the sDSM is populated by the sensitivities of 

the design variables to exogenous parameters; the main body of the sDSM 
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(south-east quadrant) contains the sensitivity of the design variables to other 

design variables for the particular solution. 

 

Design variables that are insensitive to changes in other design variables 

and functional requirements are potential platform components. Those that are 

most sensitive are potential sources of flexibility. In flexible WDS design, the 

sensitivity of design variables to changing scenarios is much more important than 

the sensitivity of design variables to other design variables for the particular 

solution.  

 

Investment decisions are still a major challenge for urban water 

infrastructures like WDS, which perform in an inevitably dynamic environment. 

Flexibility generation in system design is an investment problem in which a 

premium has to be paid for an option that can be exercised later. The investment 

decision depends on the trade-off between the cost of capturing the options and 

the expected benefit that may arise from future uncertainties. The estimation of 

the value of flexibility has three major elements (de Neufville, 2002). These are: 

i) Estimation of the loss associated with the system without flexibility;  

ii) Calculation of the value of the flexible options;  

iii) Identification of the strategies for exploiting the options to permit the best 

use of the flexibility built into the system. 
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Shah et al. (2008) delineate some of the attempts and challenges of 

decision-making under uncertainty. Designers wish to develop engineering 

solutions that meet their needs both now and in the uncertain future. They 

therefore try to design solutions that will deliver high value to them in a variety of 

different possible futures. They also attempt to create designs that allow them (or 

their agent) to make changes and adjustments to the engineering solution so that 

they can maximize the value once the future is known. Since they must make 

design choices in the present on the promise of future benefits, their decisions 

will be based on their perception of the value of the future benefits as seen at the 

time of decision.  

 

For large design spaces, the decision-making process requires 

optimization approaches aimed at optimizing the value of decision variables 

based on the objective functions, while ensuring the limits described by the 

constraints. In addition, it requires a specific chosen system as a baseline 

(usually a non-flexible system) for determining the whole life economic gain. The 

largest economic gain, when compared to the non-flexible alternative, represents 

the most flexible system alternatives that deliver high flexibility value. 

2.5 Water Distribution Systems and Uncertainties  

2.5.1 Uncertainty in WDS Design 

The modelling of water distribution often relies on deterministic 

approaches to describe the behavior of a system. However, all real-life problems 
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incorporate uncertainty in one way or another. Two general types of uncertainty 

exist; these are reducible and irreducible uncertainty.  

 

Reducible uncertainty generally results from a lack of information about 

some aspect of the problem being analyzed (e.g., the status of some valve in the 

WDS may not be known simply because that information is lacking). However, 

once the inspection is done, uncertainty can be reduced. Irreducible uncertainty 

consists of fluctuations that are essential to the problem being studied. Examples 

of this type are uncertainties associated with pressure and flow measurements.  

The uncertainty puts the modeler in the difficult position of trying to predict the 

future and making decisions based on future developments.  

 

For example, the growth of cities can’t be predicted with any precision; it 

follows that it is also difficult to predict future water demands. Some cities have 

relatively stagnant water demands, but others experience volatile growth that 

challenges the engineers who design the water systems. The questions about 

what the future may look like are difficult to answer—no method exists that can 

answer them with absolute certainty. Demand projections are only as accurate as 

the assumptions made and the methods used to predict them (Walski et al., 

2003), and designs are based on those deterministic projected values. 

 

The contradiction between the deterministic design approach and natural 

uncertainty can seriously affect the reliability of the results of modelling. Thus the 
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design, planning, and management of WDS requires that decisions be made in 

the presence of various sources of uncertainty (Babayan et al., 2007).  

2.5.2 WDS Design Under Uncertainty 

The recognition of future uncertainty in both design requirements and the 

operating environment is the most important issue in WDS planning and 

management, and this recognition represents a significant shift away from 

traditional practices that use known values for uncertain future parameters 

(Hassan and de Neufville, 2006). Some recent studies on WDS under uncertainty 

and their attempts to cope with those uncertainties are reviewed below. 

 

Babayan et al. (2005) considered the uncertainty associated with water 

demand when predicting the behavior of a system. Their research focused on 

designing a water distribution network with minimum cost while meeting the 

pressure requirements in terms of a given robustness level under uncertain 

demand. A stochastic WDS design methodology is used to obtain robust and 

economic solutions for the water distribution network design (robustness of the 

network is defined as its ability to provide adequate supply to customers despite 

fluctuations in some or all of the design parameters). The assumptions made in 

the study are: 

i) Network configuration data (i.e., pipe layout, connectivity, etc.) is known. 

ii) Minimum pressure head constraints at pipe junctions (nodes) are given. 
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iii) Diameters of the new pipes (laid down on their own or in parallel with 

existing pipes) are represented as decision variables. 

iv) Uncertain nodal demands are independent, random variables with given 

probability distribution functions (PDFs). 

 

Babayan et al. (2007) developed a multi-objective optimization approach 

to formulate the problem associated with stochastic (i.e. robust) WDS design 

under uncertain variables (future water consumption and pipe roughness). The 

problem formulation is based on two parameters—the minimization of cost of the 

network design/rehabilitation and the probability of network failure due to 

uncertainty in input parameters. The most uncertain parameters, future water 

consumption and pipe roughness, are considered as independent variables with 

pre-specified probability density functions (PDFs). The problem is solved using 

GAs after converting it to an equivalent, simplified deterministic optimization 

problem. The methodologies are tested and compared on the well-known 

problem of reinforcing New York Tunnels, and they show that neglecting 

uncertainty in the design process may lead to serious under-design of water 

distribution networks. 

 

Recently, Giustolisi et al. (2009) proposed a procedure for robust design 

through a multiobjective (minimization of design cost, maximization of WDS 

robustness) approach that considered nodal demands and pipe roughness as 

uncertain variables. The research followed a two-step design procedure for 
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computational efficiency, including a deterministic design (i.e., constrained least-

cost design procedure) as the first step and using a deterministically derived 

initial population in order to solve the robust design problem multi-objectively, 

implementing the minimization of design costs and the maximization of WDS 

robustness as objective functions. This study is a great achievement in design of 

WDS under uncertainties. The methods are used to design systems that satisfy a 

fixed set of requirements, despite changes occurring in the system’s 

environment. However, the ability to change or react in a timely and cost effective 

manner is required for the system to deliver high value in an ever-changing 

world, and flexibility is proposed as a key feature for designing systems in a 

changing world (Beard, 1982; de Neufville, 2004; Saleh et al., 2001; Schulz et al., 

2000). 

2.6 Reliability Based WDS Optimization  

WDS are often designed to supply adequate amounts of water at each 

node and with sufficient pressure. However, incidents such as pipe breakage and 

variation in nodal demand will cause high energy losses in the system that can 

lead to the failure of delivering the desired flow rate at the required pressure. 

Despite these facts, the design of WDS usually involves optimization of cost by 

reducing the size of components or completely eliminating some of the 

components. These optimization techniques leave the system with insufficient 

capacity to respond to future eventualities such as demand variability, pipe 

breaks (usually due to gradual aging), etc., with the required performance level 
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(Farmani et al., 2005). However, the design of WDS for adequate service with 

reliability and a safety factor to handle future uncertainties has become a major 

goal (Babayan et al., 2007) and, in the most recent decade, optimization of WDS 

has shifted to a design that involves the tradeoff between cost, reliability, and 

robustness of the design.  

 

The major definition of reliability is not seen as a gap in analyzing WDS as 

such; rather, the assessment of reliability in a system has been referred to 

differently by different authors, which has made the term vague due to the vast 

number of interpretations it has been given over many years. Reliability in WDS 

mainly refers to the ability of the system to provide an adequate level of service 

under normal and abnormal conditions (Goulter, 1995). According to Babayan et 

al. (2005), the reliability of WDS centers on providing consumers with the 

required quantity of water as often as possible under potential demand 

uncertainty and pipe failure conditions. It is also defined as the flexibility of the 

system to respond to component failures through alternative flow pathways 

(Halhal et al., 1997). Reliability is also usually associated with the probability of 

the system to operate at an intended performance over a specified period 

(Farmani et al., 2005). According to Raad et al. (2010), reliability refers to a 

measure of system performance expressed as the ability of the system to satisfy 

the demand placed on it and might be quantified as the proportion of time that 

the system functions as intended (its availability). 
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Reliability is also measured in terms of connectivity and reachability. 

Connectivity indicators are used to represent the probability of whether a demand 

node is connected to the source, and a reachability indicator is used to represent 

the probability that all nodes are connected to the source (Wagner et al., 1988).  

Walski et al. (1987) suggested that improving the performance of WDS by 

analyzing reliability should involve how the users are affected by considering the 

number of users without the required service or duration of failure occurrences.  

 

According to Tolson and Maier (2004), network capacity reliability is the 

probability of meeting design constraints (e.g., pressure) under different 

uncertain parameters (e.g., demand and pipe roughness). The reliability of WDS 

is primarily studied by considering two types of failure—mechanical failure and 

hydraulic failure. Details of these types of failures are presented in the following 

subsections. 

2.6.1 Hydraulic Failure 

Hydraulic failure mainly occurs due to the reduction in hydraulic capacity 

of pipes and/or uncertainty of nodal demand. The capacity of pipes largely 

depends on their roughness coefficient. The roughness of water network pipes 

varies over time. The cause of the variation is unknown and depends on many 

factors such as age, environmental condition (temperature, soil type, etc), water 

and flow characteristics, etc. Similarly, the design of WDS is based on the 

estimation of demand for both existing and future populations. However, the 
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predictions are filled with a great deal of uncertainty and could cause hydraulic 

failure.  Design consideration of hydraulic reliability gives the system the ability to 

perform well under the aforementioned uncertainties. The design of flexible WDS 

considers many options embedded in the system to deal with eventualities and 

also equips the system with the ability to change to another alternative system 

(evolving system) to reduce the hydraulic failure associated with future changes. 

2.6.2 Mechanical Failure  

Mechanical failure basically refers to the failure of WDS components. This 

failure scenario usually occurs due to pipe breakage, pump breakage, 

unavailability of WDS components due to maintenance, or even through 

externalities like power failure. Pipe breakage usually occurs due to gradual 

aging; it is a challenge for water engineers to determine the condition of pipes in 

order to determine if the mechanical failure is caused by pipe breakage. In 

addition to the condition of pipes, the size of pipes has a considerable effect on 

the breakage rates. Smaller pipes break more frequently than larger pipes and 

affect the system’s ability to meet its performance goals. 

 

According to Ostfeld (2004), the assessment of the reliability of WDS 

could be grouped into three major categories: (i) analytical (connectivity or 

typological) approach, (ii) simulation (hydraulic) approach, and (iii) heuristic 

(entropy) approach. A summary of the literature discussing these approaches is 

presented in Table 2.1.  
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i) Analytic approach is associated with the probability of the WDS to remain 

connected physically. It is based on the connectivity and reachability of the 

components of WDS without considering the hydraulic reliability of the 

system; it basically depends on the layout configuration of the WDS.  

ii) Simulation approach is based on the hydraulic reliability of the WDS. This 

refers to the conveyance of the required quality and quantity of water at 

the required pressure at the appropriate location during a specified time 

period (Trifunovic, 2012). Simulation reliability analysis method requires 

hydraulic modelling of the WDS. This method is considered the most 

popular method in determining the reliability of WDS. 

iii) Heuristic approach is based on the measure of reliability through entropy 

of WDS. The level of entropy is correlated with the reliability; however it  is 

a challenge for WDS engineers to determine what precisely entropy 

means in terms of reliability (Trifunovic, 2012). 

2.6.3 Water Distribution System Reliability Measures 

Reliability measures are used as an indicator of the ability of the WDS to 

respond to future eventualities and extreme events. Recent works have 

presented different reliability surrogate measures as indicators, including flow 

entropy, resilience index, and network resilience. The indicators are usually used 

to evaluate the critical scenario combining the peak demand, fire flows, 

scenarios, etc. 
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Table 2.1 Methods for reliability measurement of WDS 
  

Authors Approach Reliability Measure Methodology 

Goulter, (1987) 
Analytical 
approach General overview/trends Overview 

Jacobs and 
Goulter, (1988) 

Analytical 
approach 

Account  of all possible 
combinations of working/non-
working system components 

State enumeration, 
filtering & heuristic 
procedures 

Jacobs and 
Goulter (1989) 

Analytical 
approach 

Based on redundancy of WDS 
layout 

Integer programming 
combined with manual 
search 

Wagner et al., 
(1988) 

Analytical 
approach Connectivity and Reachability 

Graph theory 
algorithms  

Su et al., (1987) 
Simulation 
approach 

Probability of meeting nodal 
demands and heads requirements 
for pipe failure condition Minimum cut-set 

Fujiwara and 
Ganesharajah, 
(1993) 

Simulation 
approach 

Based on expected served 
demand (considering insufficient 
heads and flows at the nodes) 

Markov chain 
approach 

Xu and Goulter, 
(1999) 

Simulation 
approach 

Based on the probability of meeting 
nodal demand at least with a  
minimum required pressure 

first-order reliability-
method-based 
algorithm 

Awumah, and 
Goulter, (1992) 

Heuristic 
approach 

Entropy based measures: based 
on 
flow and consumption 

Tailored maximum 
entropy flow algorithm 
for single source 

Tanyimboh, and 
Templeman, 
(2000) 

Heuristic 
approach 

Entropy based measures: flow and 
consumption  

Tailored maximum 
constrained approach 

 

2.6.3.1 Flow Entropy 

The concept of entropy was developed by Shannon (1948) based on the 

statistical approach of information theory to measure the degree of variability in a 

system. It is sometimes called the measure of randomness or uncertainty. The 

Shannon entropy function is written as shown in Equation 2.2. 
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 𝜀 = 𝑓𝑓(𝑝1,𝑝2, … ,𝑝𝑛) = −�𝑝𝑖 ln𝑝𝑖

𝐼

𝑖=1

 2.2 

where ∈  is the entropy; 𝑝𝑖  is the probability associated with the  𝑖𝑡ℎ 

event/outcome; 𝐼  is the number of outcomes; and −ln𝑝𝑖 is self-information of a 

random variable (Shannon, 1948). 

 

The concept of Shannon entropy has been used to measure the reliability 

of WDS (Awumah, 1992). The method aims to obtain the maximum uniformity of 

the flow distribution in a system from all supply points to all nodes, and ultimately 

to minimize the mechanical and hydraulic failures in a WDS. This reliability 

surrogate measure has been applied for reliability-based design of WDS by a 

number of researchers, such as Awumah and Goulter (1992) and Tanyimboh 

and Templeman (1993) and is written as shown in Equation 2.3 and Equation 

2.4. 

 𝜀𝑤 = 𝜀𝑅 + �
𝑄𝑗
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where 𝜀𝑤  is the entropy of the WDS; 𝜀𝑅  is the entropy of the source; 𝜀𝑖  is the 

entropy of the demand node j;  𝑄𝑗 is the total flow at each node; 𝑄 is the total 

demand; 𝑞𝑟 is the flow from the source 𝑟𝑟 ; 𝑅 is the number of source points; 𝑛𝑛 is 

the number of demand nodes; 𝑛𝑛𝑢 is the set of all nodes immediately upstream 
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from and connected to node j; and 𝑞𝑗,𝑢 is the flow in the pipe that joins j with the 

upstream node u. 

 

As shown in Equation 2.4, the network entropy 𝜀𝑤 depends on the values 

of inflow and outflow of the WDS and the flow rate of the pipes. A higher value of 

𝜀𝑤 means a more balanced system that is able to respond to failures in a more 

effective manner. In addition, looped and redundancy pathway systems increase 

the distribution and uniformity of flow and in turn maximize the entropy of the 

system. This reliability measure increases redundancy incidentally, especially if 

pipe failure is considered (Raad et al., 2010) and maximizes the uniformity of 

flows in the network. 

2.6.3.2 Resilience Index 

The resiliency index method was designed to guarantee the availability of 

water by increasing the hydraulic reliability and availability of WDS. The idea of 

resiliency index was introduced by Todini (2000) and is a measure of the excess 

power in the system. It is based on increasing sufficient surplus power in the 

system, which could be used in case of failures. Todini (2000) used the surplus 

potential to handle failures as an indicator of the network reliability of the looped 

WDS. By providing excess power at each node, the system will have the 

capability to absorb much of the internal power dissipation during a failure event. 

The total power in the system is described as shown in Equation 2.5.  

 𝑃𝑡𝑜𝑡𝑎𝑙 = 𝑃𝑖𝑛𝑡 +  𝑃𝑒𝑥𝑡 2.5 
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The total available power in the system depends on the power at the 

supply point and the additional power introduced into the WDS by pumps (see 

Equation 2.6). 

 𝑃𝑡𝑜𝑡 = 𝑃𝑟𝑒𝑠𝑒𝑟𝑣𝑜𝑖𝑟 +  𝑃𝑝𝑢𝑚𝑝 2.6 

 𝑃𝑡𝑜𝑡 = 𝛾�𝑄𝑟𝐻𝑟

𝑁𝑟

𝑟=1

+  �𝑃𝑝

𝑁𝑝

𝑝=1

 2.7 

where 𝑃 is the power; 𝑄𝑟 𝑎𝑛𝑛𝑑 𝐻𝑟 are the flow rate and the pressure head at each 

reservoir and pump, respectively; 𝑁𝑁𝑟 𝑎𝑛𝑛𝑑 𝑁𝑁𝑝  are the number of reservoirs and 

pumps in the WDS; and 𝛾 is the specific weight of the water. 

 

The available power (energy per unit of time) at each demand node (𝑃𝑎𝑣𝑎) 

depends on both the total amount of power supplied to the WDS and the power 

dissipated internally in the pipes (𝑃𝑑𝑖𝑠) and it expressed mathematically as shown 

in Equation 2.8 through Equation 2.11. . 

 𝑃𝑎𝑣𝑎 = 𝑃𝑡𝑜𝑡 −  𝑃𝑑𝑖𝑠 2.8 

 𝑃𝑎𝑣𝑎 = 𝛾�𝑄𝑗𝐻𝑎𝑣𝑎,𝑗

𝑛

𝑗=1

 2.9 

 𝑃𝑑𝑖𝑠 =  𝑃𝑡𝑜𝑡 −  𝑃𝑎𝑣𝑎 2.10 

 𝑃𝑑𝑖𝑠 =  𝑃𝑡𝑜𝑡 −  𝛾�𝑄𝑗𝐻𝑎𝑣𝑎,𝑗

𝑛

𝑗=1

 2.11 

where 𝑄𝑗 𝑎𝑛𝑛𝑑 𝐻𝑎𝑣𝑎,𝑗 are the flow rate and the pressure head at each node and 

𝑛𝑛 is the number of nodes in the WDS. 
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The resilience index (which indicates the power surplus) of the looped 

WDS is defined by the normalized power surplus (𝑃𝑠𝑢𝑟𝑝) as shown in Equation 

2.12 and Equation 2.13. 

 𝐼𝑅 =  
𝑃𝑠𝑢𝑟𝑝

𝑃𝑚𝑎𝑥,𝑠𝑢𝑟𝑝
 2.12 

 𝑃𝑚𝑎𝑥,𝑠𝑢𝑟𝑝 =  𝑃𝑡𝑜𝑡 − 𝑃𝑟𝑒𝑞 =  𝑃𝑡𝑜𝑡 −   𝛾�𝑄𝑗𝐻𝑟𝑒𝑞,𝑗

𝑛

𝑗=1

 2.13 

where 𝑃𝑚𝑎𝑥,𝑠𝑢𝑟𝑝 is the maximum possible surplus power in the WDS while 

satisfying the total demand. Thus the resiliency index can be represented as 

using Equation 2.14 and Equation 2.15. 

 𝐼𝑅 =  
𝑃𝑎𝑣𝑎 −  𝑃𝑟𝑒𝑞
𝑃𝑡𝑜𝑡 −  𝑃𝑟𝑒𝑞

  2.14 

 𝐼𝑅 =  
𝛾 ∑ 𝑄𝑗 �𝐻𝑎𝑣𝑎,𝑗 − 𝐻𝑟𝑒𝑞,𝑗�𝑛

𝑗=1

𝛾 ∑ 𝑄𝑟𝐻𝑟
𝑁𝑟
𝑟=1 +  ∑ 𝑃𝑝

𝑁𝑝
𝑝=1 − 𝛾∑ 𝑄𝑗𝐻𝑟𝑒𝑞,𝑗

𝑛
𝑗=1

  2.15 

 

The provision of surplus power at each node may not be sufficient for the 

reliability of WDS. For example, a branched WDS could have excess power head 

at each node but may not be reliable enough to satisfy the required demand for 

the intended period—that is, its resiliency may not represent the redundancy of 

the pipes at the nodes (the case of branched systems). Thus, surplus power is 

necessary but not sufficient for reliability (Prasad, 2004), suggesting the need for 

network reliability, which considers these issues. 
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2.6.3.3 Network Resilience 

 The concept of network resilience was developed from the resiliency 

index introduced by Prasad (2004). This approach simultaneously considers the 

reliability index (surplus power at demand nodes) and the reliability of loops in 

the network. Network resilience is based on the principle that reliable loop 

networks should have similar pipe sizes (Raad et al., 2010). This method 

penalizes the abrupt change in pipe size within the loop network. Considering 

nodes supplied by a number of pipes, a high reliability system is represented by 

a node that has pipes with the least variation in size. For m pipes joining at node 

j, the similarity of the pipes at node j is defined as shown in Equation 2.16. 

 𝑆𝑆𝑗 =  
∑ 𝐷𝐷𝑗𝑚
𝑗=1

𝑚𝑚 ∗ max [𝐷𝐷1,𝐷𝐷1, … . ,𝐷𝐷𝑁]
 2.16 

 

The robustness of the system could then be guaranteed by increasing the 

network; furthermore, a WDS designed based on network resiliency will be better 

able to cope with pipe failures than a system designed based on the resiliency 

index. The excess (surplus) power (𝑃𝑠𝑢𝑟𝑝,𝑗) at each node may be determined 

using Equation 2.17. 

 𝑃𝑠𝑢𝑟𝑝,𝑗 =  𝛾 𝑄𝑗 �𝐻𝑎𝑣𝑎,𝑗 − 𝐻𝑟𝑒𝑞,𝑗� 2.17 

 

The combined resiliency (both surplus power and pipe uniformity at the 

nodes) is represented by the weighted surplus power (see Equation 2.18).  
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 𝑅 = �𝑆𝑆𝑗  𝑃𝑠𝑢𝑟𝑝,𝑗

𝑛

𝑗=1

= �𝑆𝑆𝑗 ∗  𝑄𝑗 �𝐻𝑎𝑣𝑎,𝑗 − 𝐻𝑟𝑒𝑞,𝑗�
𝑛

𝑗=1

 2.18 

 

The resiliency of the whole network is then represented by the normalized 

combined resiliency (normalized by the maximum) (see Equation 2.19). In 

addition, the energy supplied to the WDS (i.e., the pump energy), which was not 

considered in the network resiliency is then added (Prasad, 2004). 

 𝐼𝑁 =  
∑ 𝑆𝑆𝑗 ∗  𝑄𝑗 �𝐻𝑎𝑣𝑎,𝑗 − 𝐻𝑟𝑒𝑞,𝑗�𝑛
𝑗=1

𝛾 ∑ 𝑄𝑟𝐻𝑟
𝑁𝑟
𝑟=1 +  ∑ 𝑃𝑝

𝑁𝑝
𝑝=1 − 𝛾 ∑ 𝑄𝑗𝐻𝑟𝑒𝑞,𝑗

𝑛
𝑗=1

  2.19 

 

2.6.4 Discussion 

Reliability in a WDS is not sufficient to cope with the future change 

requirements that those systems will face. Most optimization practices in the 

planning of WDS design the systems on the basis of cost. Some consider the 

reliability of the system using reliability surrogate measures such as flow entropy, 

resiliency index, and network resilience. These approaches increase the 

system’s capacity to perform under severe conditions and are more favorable to 

robust systems than to flexible systems, as they maintain the uniformity of flow 

(entropy) or surplus power at the nodes (resiliency index). The entropy method 

increases the uniformity of flow depending on the inflow and outflow of the 

network and pipe flows, and the resiliency index aims to obtain an excess power 

at each node, allowing the system to absorb internal power dissipation during a 

failure. The reliability measures do not consider the different states and periods 
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of future uncertain parameters and do not offer the capability of a system to 

change when there is a change requirement. In addition, they do not provide the 

opportunity to embed different options into the system’s design at different stages 

in order to improve the performance of the system. However, flexible systems are 

an alternative that can provide an adequate amount of water at each node and 

sufficient pressure for different future states and times of design (scenarios). 

Therefore, this study develops a flexible WDS design methodology that 

maximizes the ability of a system to handle a wide range of uncertainties. This 

methodology is presented in the next chapter.   
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3 Framework for Design of Flexible Water Distribution System  

3.1 Introduction 

This chapter addresses the main objective of this research, that is the 

development of a design framework that can generate optimal water distribution 

systems (WDS) that are adaptable and flexible under future global change 

pressures. The framework facilitates the flexible design of WDS, which are able 

to cope with future changes and uncertainties in a cost effective and performance 

efficient manner. The framework is based on optimization techniques and 

explores the flexibility of the WDS under different possible future uncertainties. 

The proposed framework involves four major steps such as uncertainty 

description, identifying suite of flexibility options, flexibility generation, and 

flexibility assessment and decision-making under uncertainty (see Figure 3.1). 

 

This chapter presents the development of the major steps of the 

framework as well as their interactions. The chapter also addresses, as part of 

the development of the framework, the specific research objective to develop 

performance metrics that will allow an assessment of the flexibility of the WDS. 

The chapter concludes by explaining how to interpret the results of the 

framework and how to apply it in decision-making processes. Flexibility 

generation is the major component of the framework that involve GA-based 
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flexibility optimization model for centralized WDS, and clustering tool for 

decentralized WDS. The two components will be explained in detail in Chapter 4 

and Chapter 6 respectively. The application of the framework for real world case 

studies is presented in Chapters 5 and 7.  

 

 

Figure 3.1 The interconnection of Chapter 3 with other chapters 

3.2 Framework for Design of Flexibility Water Distribution System  

WDS design principles should comprehensively address “delivering 

flexibility” in a system (Ramirez, 2002). According to Eckart et al. (2011), 

flexibility is defined as “the ability of water systems, to use their active capacity to 

act, to respond on relevant alterations in a performance-efficient, timely and cost-

effective way.” The planning and design of WDS requires decision criteria for 

flexibility that allows the systems to cope with uncertainty. Designers attempt to 



45 
 

develop solutions that will satisfy both current and future requirements, despite 

the fact that the future is uncertain.  

 

In order to design flexible WDS that have the capability to cope with future 

alterations and to enhance the ability of a system to utilize the positive side of 

uncertainty, the following basic questions should be addressed: flexibility to what 

and when?; what type of flexibility is required and where is it embedded?; and 

how much flexibility is required? (Hocke and Heinzl, 2006); Shah et al., 2008; 

Cardin and Neufville, 2008). These questions thus frame the flexible WDS design 

framework proposed in this work, as shown in Figure 3.2. The proposed design 

framework involves four major steps, outlined below and then described in the 

following section: 

i) Uncertainty description: when is flexibility required and for what? 

ii) Identifying suite of flexibility options: what flexibility is required and where 

is it embedded? 

iii) Flexibility generation: the level of flexibility required? 

iv) Flexibility assessment and decision-making under uncertainty: which 

alternative should be selected? 

 

In order to determine when flexibility is required, the first step is comprised 

of uncertainty description and scenario development. This step defines the range 

of major uncertainties to be treated.  
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Figure 3.2 Flexible WDS design framework 
 

The second step is the identification of flexibility options. This step defines 

the sets of options for WDS, options that are most likely to offer the best lifetime 

flexibility. The third step involves flexibility generation into WDS by embedding 

the ability of the system to change when change is required. This involves two 

different alternatives. One is for centralized WDS and the other is for 

decentralized/clustered WDS. In designing flexible centralized WDS, GA based 

flexibility optimization is performed to embed stepwise expansion/growth of the 

centralized WDS. In designing decentralized WDS, a unique clustering technique 

is applied to allow implementation of flexible clusters. The flexibility generation for 

Generating flexibility in 
clustered WDS 

 

 

 

 

 

  

Uncertainty description 

Bounding a wide range of 
future possibilities 

Generating flexibility in 
centralized WDS 

 

Comparison of set of 
alternative solutions and 

decision making  

Assessing the flexibility of 
optimized WDS under 

different scenarios  

Flexibility options in WDS 

Selection of suite of flexible 
options  

 

Clustering WDS using 
optimization model 

 

Design of optimal 
clustered WDS for range 

of uncertainties 
  

GA based flexibility 
optimization of WDS 
(design of centralized 

optimal WDS for range of 
uncertainties) 

Flexibility assessment and decision making under uncertainty  



47 
 

both centralized and clustered WDS described here offers an opportunity to 

embed suites of flexibility options into WDS so that it adapt to future change. 

Since options don’t guarantee flexibility, this process may require considering 

various options. If an option does not offer lifetime flexibility, a different option 

could be embedded into the system with that lifetime value added with respect to 

the rigid system (usually with robust systems). In addition depending on the 

nature of the problem the appropriate optimization model for centralized or for 

decentralized/clustered WDS has to be selected. The last step is a flexibility 

assessment and decision-making process for determining the best system 

alternative. A post-optimization analysis is performed to assess the flexibility of 

different alternatives and compare their flexibility under a wide range of 

uncertainties. To support the decision about which flexible alternatives should be 

selected, the minimax regret rule is applied. The decision is based on current 

knowledge about the future. However, flexibility affords decision makers with the 

ability to make different decisions at different times when required.  

3.2.1 Uncertainty Description  

3.2.1.1 Uncertainty in Design of WDS 

Water engineers and planners often face challenges in making a decision 

under uncertainty. The design of water distribution models is often developed as 

a simplified version of a real network by considering deterministic and precise 

input parameters. For example, in the case of pipe roughness, the complexity of 

understanding deterioration over time and the associated cost and time involved 
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in estimating the actual value make it difficult to determine the friction 

characteristics of the pipe after a certain age. The uncertainties surrounding 

these systems can clearly be complex.  

 

For simplification, Shibu and Reddy (2011) separated uncertainty into 

three major groups: (i) uncertainties associated with measurement and 

prediction; (ii) uncertainties associated with information gaps/lack of knowledge; 

and (iii) uncertainties associated with simplification of the real problem. According 

to Peng and Zhao (2009), the uncertainties can also be divided into bounded and 

unbounded uncertainties. Details of these categorical typologies are shown in 

Figure 3.3 (Peng and Zhao, 2009). 

 

 

Figure 3.3 Typology of uncertainties  

State of knowledge 

 Bounded uncertainty 
(All outcomes known) 

  Unbounded uncertainty 
(Not all outcomes known) 

  Certainty 
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Statistical method Qualitative method Scenario analysis 
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Various methods have been used to describe uncertain information based 

on their typology. For example, the last section in Figure 3.3 illustrates that 

scenario analysis could be used to describe future outcomes with unknown 

probability. Other methods such as Monte Carlo Simulation (Kuczera and Parent, 

1998), Latin Hypercube (McKay et al., 1979), and First Order Second Moment 

(FOSM) (Dettinger and Wilson, 1981) are used to describe uncertainties. The 

selection of a method for uncertainty description generally relates to the type of 

uncertainty involved. Monte Carlo Simulation is a versatile method, which is 

based on a large number of model simulations (Nilchiani and Hastings, 2007). It 

consists of performing a large number of deterministic analyses for random 

realization of the problem. Latin Hypercube sampling is a particular Monte Carlo 

sampling technique. The difference between Latin Hypercube sampling and 

Monte Carlo sampling is the way in which the uncertain variables are sampled. 

Monte Carlo technique uses random sampling, whereas the Latin Hypercube 

sampling technique generates stochastic variables in a random yet constrained 

way (McKay et al., 1979). The First Order Second Moment method was 

introduced by Dettinger and Wilson (1981) and has been widely used to analyze 

uncertainties. According to Maskey and Guinot (2003), this method uses 

linearization of a function that relates the input parameters to the output variable. 

Scenario planning is a 'what if' approach used to describe possible future 

changes and uncertainties (Eppen, 1989). It describes various future states as 

members of families of discrete possibilities. This particular technique is widely 

used when it is difficult to associate probabilities with uncertain parameters. 
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Again, the choice of a particular method depends on the information available—

none of the methods give precise results (Nilchiani, 2005).  

 

Uncertainty in WDS involves spatial and temporal variations of community 

growth, water demand, pipe breakage, friction characteristics of pipes, public 

perception, climate change, and a number of other factors. The uncertainty 

associated with future water demand is one of the major factors that impact the 

design of WDS. Because of its huge impact on the basic condition of WDS, this 

study considered the future spatial and temporal variation of water demand in the 

design of flexible WDS. One of the most convenient ways of representing 

demand uncertainties in the design of a WDS is through scenario planning 

(Arboleda and Abraham, 2006).  Scenario approach is use for the description of 

the uncertainty associated with spatial and temporal variation of demand 

because of two main reasons. The first reason is that the probability associated 

with the variation of demand is unknown and scenario approach is appropriate 

method for uncertainty parameters with unknown probability. The second reason 

is that scenario approach describe the uncertainties using scenario nodes (where 

each node represent the future state and stage) and hence those scenario nodes 

allow decision making for a stepwise evolution of WDS to adapt to different future 

conditions. As a general rule, scenario-based uncertainty modelling methods are 

relatively simple and can be applied for discrete future states. 
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3.2.1.2 Scenario Development  

The focus of a scenario is not to forecast future change or to characterize 

the uncertainties associated with it, but rather the focus is on bounding the 

uncertainties (Schoemaker, 1991). In the design of WDS, bounds or ranges of 

possible future water demand patterns are considered either by presenting best 

and worst cases, or by using scenarios that may include the base condition 

(based on future projections and previous studies) and the lower and higher 

extreme cases. Figure 3.4 (a) illustrates one-dimensional planning based on the 

assumption that the future conditions are known, and Figure 3.4 (b) illustrates 

scenario planning based on future conditions associated with uncertainties.  

 

Figure 3.4 Planning options: (a) one dimensional (b) scenario planning 
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The one-dimensional planning approach is suitable when the future is well 

defined and the range of uncertainty is limited; scenario planning is suitable if the 

future is coupled with a wide range of uncertainties (Kazi et al., 2009). Figure 3.4 

(a) illustrates that if the future condition is known, a single trajectory can be 

followed. For the known outcomes K1, K2, K3, and K4 an independent 

trajectory/decision path 1, 2, 3, and 4 can be followed respectively. Because the 

future outcomes are coupled with uncertainties, the successive decision paths 

should involve possible combinations of outcomes. Figure 3.4 (b) illustrates 

scenario planning that allows a combination of different possible outcomes and 

involves successive decision steps (paths) to different possible futures. For 

example, the unknown future outcomes K1, K2, and K3 in Figure 3.4 (b) could 

represent possible future water demand in WDS. Thus, from the figure, the 

adaptation to the future demand K1, K2 requires both systems B and C, whereas 

system B only is required to cope with future demand K3. This means that 

system B is common for the future demand K1, K2, and K3. Common elements 

of WDS allow a stepwise change to different possible future demand scenarios. 

Due to its ability to incorporate possible future outcomes, the scenario approach 

offers greater flexibility in responding to a changing environment (Marra and 

Thomure, 2009). The selection of the scenario in WDS is based on the 

experience of the designer or decision maker and their knowledge of the 

particular system being optimized (Arbues et al., 2003). For example, temporal 

and spatial variation of water demand is considered as the only uncertain 

parameter in the design of a WDS. A range of limited possible future states can 
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represent the future distribution of nodal demand in a simple, tractable manner 

using the scenario tree shown in Figure 3.5.  

 

 

Figure 3.5 A scenario tree (future water demand A at different time T) 
 

The nodes in Figure 3.5 represent states of the nature (demand Q) at a 

particular point in time (T). For increasing water demand scenario varying from 

Q1 at time T0, to Q2 at time T1 and Q3 at time T2, the scenario tree is developed. 

This scenario tree involves four paths shown in Figure 3.5. The scenario paths 

describe the possible future states that the design of the WDS needs to consider.  

3.2.2 Flexibility Options in WDS 

Flexibility options in WDS are the sets of options in a system that most 

likely offer better lifetime flexibility in the uncertain environment (de Neufville, 

2001). Identification of the flexible options in WDS is one of the most important 

  A1T0   

A2T1 
 

  

A3T2 
 

T0   T1     
Year 

T2 

A1T1 
 

A1T2 
 

A2T2 
 

Demand 

A1 

A2 

A3 



54 
 

and challenging steps in designing for flexibility. According to de Neufville (2002), 

flexibility options are described as either flexibility “in” or “on” a system. Flexibility 

“in” a system is a technical aspect of the design that enables the system to adapt 

to its environment, while flexibility “on” a system relates to management 

decisions without altering its technical components, such as investment deferral 

(de Neufville, 2002). In conventional design of WDS, the issue of embedding 

flexible options in the system is not well known. However most of the 

management aspect of flexibility (investment deferral, expansion) has been 

considered during the planning stages informally. To identifying what flexibility is 

required and to help the selection of suites of options that are expected to deliver 

better flexibility, the options are categorized into three major groups: system 

design options, system management options, and system element options. In 

order to deliver better flexibility, options from one category could be coupled with 

other category. A more detailed discussion of the options is presented below. 

3.2.2.1 System Design Options 

System design options are technical design options which allow a 

designer to modify a system to adapt to the future change requirement. These 

include platform design, stage design, and cluster design. 

 

A platform design approach is utilized where a base system can 

accommodate a variety of different future alternative solutions. Suh (2005) 

described the concept of platform design as the generation of 'system families,’ 
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where some elements are common to all system alternatives. Platform design in 

WDS involves backbone elements (some pipes, reservoirs) which remain in the 

system for all discrete stages of development. The commonality provides 

flexibility to the system by creating an opportunity to add new components into a 

platform element (de Weck et al., 2005). For main pipes in a WDS, parallel pipes 

could allow stepwise increment/expansion of the platform component. The 

flexibility of a platform system depends on the developer’s ability to choose the 

optimal extent of communality between different possible alternative solutions 

that can be used at the later stages depending on how uncertainty unfolds 

(Kalligeros, K. 2006) and the optimal cost associated with stepwise evolution of 

the system over time.   

 

Staged deployment is one of the options for creating flexible WDS. It 

allows incorporating alternative solutions at different decision points (Huang, 

2012). Since the uncertain parameters are observed through time, a stage 

analysis reduces the range of uncertainty to be treated during each decision 

period, thus reducing the risks associated with decisions. Furthermore, this 

approach represents an economic opportunity in that it minimizes the initial 

deployment costs by deploying an affordable system and pushing the 

expenditures toward the future as much as possible or by investing a premium 

cost at the earliest stages for an option that can be exercised later. 

 



56 
 

One important system design principle is cluster/decentralized system 

design. A generic description of how the principle of system clustering 

contributes to flexibility is offered by Fricke and Schulz (2005). A cluster system 

provides semi-centrality or decentrality where a high degree of an autonomous 

system could be developed to handle future change (Kluge and Libbe, 2006).  A 

semi-centralized or decentralized structure facilitates the allocation of resources 

and attributes them to the locations of the system that are most suitable for 

change (Fricke and Schulz, 2005). To facilitate the gradual development of the 

WDS through time, this option needs to be coupled with staged design options. 

For example, a centralized WDS can be designed in such a way that it can be 

changed into decentralized sub systems with little effort and without affecting the 

performance of the entire system This may consist of strategically locating flow 

and pressure valves, connecting alternative water sources to the system when it 

is required and decoupling from the system when it is not required, etc. The 

gradual stepwise development of semi-central or decentralized cluster systems 

enables the expansion or deferral of WDS development corresponding with 

spatial growth. Hence a cluster approach offers WDS flexibility against the 

uncertainties of spatial growth, whereas centralized WDS are usually large and 

complex system that do not adapt easily to a changing environment. 

3.2.2.2 System Management Option 

System management options are options that increase the ability of 

planners and decision makers to implement different management decisions at 
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different times of an operation. Some of these options in planning WDS include 

investment deferral and multistage deployment. An investment deferral option 

allows decisions to be delayed or rescheduled depending on how the future 

unfolds. The multistage deployment option allows decision makers to make 

flexible decisions along the design horizon. The implementation of these 

management options should be evaluated with respect to the range of 

uncertainties they can handle and the flexibility they can offer.  

3.2.2.3 System Element Options  

System element options are component options comprised of flexible 

elements or a combination of elements within the architecture of WDS that 

deliver better lifetime value under uncertainty. One major challenge for flexibility 

in WDS is the identification of potential flexibility locations for flexible elements in 

the WDS. This is because identification of WDS element options demands a 

rigorous understanding of the components in the system and how they respond 

to different future pressures and variability. Element options are specific to the 

system under consideration, and there are no general principles for the 

development of element options in systems. Nevertheless, several disciplines 

have attempted to identify the technical aspects of flexibility for their respective 

systems, though not in the design of WDS. In WDS development, placing a 

sufficient number of valves in key locations from the beginning despite imposing 

a premium cost could be beneficial (Armand, 2010). This could reduce the effort 

required to insert a new valve into existing WDS in operation (sometimes this is 
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expensive or even impossible). In addition, valves give the option to decouple 

part of the WDS if required (e.g. during maintenance, or in case decentralization 

of some part of the centralized network is required). Similarly, the orientation, 

size, and operation of other WDS components (pipes, pumps, tanks, etc.) and 

their combination could offer flexibility value. Pipes can be placed in the system 

so that they can be changed through time when change is required. For example, 

considering the expansion of WDS as an uncertain parameter, some pipes in the 

system will be more highly affected by the future growth of the network than 

others. Those pipes could be built large enough to absorb future uncertain 

changes (robust approach) or the location of those pipes could be treated 

differently so that the system can trace the future growth by changing them 

through time. This includes embedding smaller pipes in to the system at the 

beginning and expanding the system by adding parallel pipes to trace the future 

urban growth more closely. 

 

In order to deliver better flexibility, options from one category could be 

combined with other categories. Figure 3.6 illustrates an example of a 

combination of different options that could be implemented at different stages of 

the design for a spatially and temporally-growing water demand scenario shown 

in Figure 3.5. The options are (i) a platform design option, involving the ability of 

the system to change to a different system, (ii) a staged design option, which 

offers flexibility to decision-making at different times, and (iii) a clustered design 
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using valves to allow decoupling of part of the components from the system, 

which are considered in the design at different times.  

 

 

Figure 3.6 Different WDS options  

 

Figure 3.6 illustrates that the platform option is a backbone system and 

performs for all stages that allow expansion by laying parallel pipes. The clusters 

are developed by decoupling part of the system (at time T2) using element 

options (such as valves) emended at time T1. In addition, the expansion of the 

system from one system (with five pipes) to two autonomous systems (with 

twelve pipes) involves stage wise decision options that follow the future 

requirements. Selection of options is an iterative process that depends on the 

flexibility that a given option delivers. The generation and analysis of flexibility is 

discussed in the next subsection. 
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3.2.3 Generating Flexibility 

In a system design, generating flexibility is an investment problem for 

which a premium must be paid to secure an option that can be exercised later 

(de Neufville, 2002; Schulz et al., 2000).  According to Schluchtermann (1995), 

the level of flexibility intended for the system is key for the planning of flexibility. 

One of the most important principles in dealing with flexibility is designing the 

system “as rigid as possible and (only) as flexible as necessary'’ (Eversheim and 

Schaeffer, 1980). Flexibility is considered as an optimization task. It can range 

from totally inflexible to fully, or excessively, flexible and is considered an 

optimization problem. On the one hand, excessive flexibility is problematic 

because it generates unnecessary costs for the development of the system (a 

large effort to adapt) and negative consequences such as disturbances in the 

system’s performance. On the other hand, too little flexibility could cause 

problems in adapting to uncertain future drivers because of the specialization 

(rigidity) of the system (Tsegaye et al., 2011). Thus, both extremes have to be 

avoided, and an optimum of flexibility has to be developed (de Neufville, 2000). 

Figure 3.7 illustrates the levels of flexibility ranging from non-flexible (rigid) 

system to systems with excessive flexibility and the associated cost  (Schulz et 

al., 2000).  
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Figure 3.7 Typical relationship between level of flexibility and total cost 

 

Figure 3.7 shows the possible range one can choose in designing WDS. It 

is assumed that an optimum level that reduces the effort to adapt to future 

change lies between excessive flexibility and non-flexible system (de Neufville, 

2000). When we embed more and more flexible options into the WDS, the 

changeability of the system increases; however, enhancing changeability in a 

system is an investment problem for which a premium has to be paid (Schulz et 

al., 2000). Based on the expected future uncertainties, different combinations of 

options could be embedded into WDS to offer various levels of flexibility. 

Excessive flexibility in WDS is achieved by designing a small system capacity 

with high changeability, whereas rigid and insensitive systems can be achieved 

by designing large systems. These two systems require different levels of initial 

investment and adaptation. Figure 3.8 shows the relation between investment 

and adaptation for small changeable and large rigid WDS. 

 

Level of 
flexibility 

Cost 

Total cost 

Cost of 
changeability 

Cost of 
adaptation 



62 
 

 

Figure 3.8 Initial investment and required adaptation  
 

Figure 3.8 (a) illustrates that very small and changeable WDS require 

small initial investments for which huge effort is needed for each additional unit 

capacity improvement of the system. In addition, it requires a large capability to 

change when change is required, thus incurring additional effort associated with 

embedding an option that allows for ease of change in the future. As a result, 

enhancing changeability in a WDS with a large premium cost associated with 

adaptation makes it more difficult for those systems to cope with future change 

(Schulz et al., 2000). As shown in Figure 3.8 (b), unlike systems with excessive 

flexibility, rigid/robust systems require a huge initial cost of investment. These 

systems are insensitive to changing environments and are difficult to change 

when there is a change requirement (de Neufville, 2000). Large investment 

coupled with a large change effort makes these systems more rigid to react to 

future change and uncertainty. 
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The trade-off between the two extremes of excessive and rigid flexibility 

can be explored using an optimization process that considers both investment 

and adaptation to different future conditions. In recent decades, the focus of 

optimization for WDS has shifted from the use of traditional optimization 

methods, such as linear programming (Alperovits and Shamir, 1977; Kessler and 

Shamir, 1989) and nonlinear programming (Watanatada, 1973; Lansey and 

Mays, 1989; Karatzas and Finder, 1996;) to the use of heuristics derived from 

nature (HDN) such as genetic algorithms (GA) (Simpson et al., 1994), simulated 

annealing (SA) (Kirkpatrick, 1983) and more recently, ant colony optimization 

(ACO) (Maier et al., 2003; Simpson et al., 1994; Zecchin, et al., 2007). These 

optimization techniques encourage the implementation of different objectives with 

a range of constraints in planning and design of WDS.  

 

According to Dijk et al. (2008), the hydraulic simulation of a WDS within a 

pressurized, looped pipe network is a complex task, which effectively means 

solving a system of non-linear equations. The discrete nature of the WDS 

optimization problem—and the size of the solution space—also makes the 

optimization process more difficult for conventional optimization techniques to 

find the optimum solution. Because of its ability to deal with nonlinear complex 

optimization, GA has become the preferred WDS optimization technique for 

many researchers and practitioners, including Simpson et al. (1994). According 

to Huang (2012), GA performs better in designing flexible WDS under 

uncertainty. Designing for flexibility requires a number of stages and states of 
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future conditions to be represented by discrete decision nodes (along with a 

scenario tree). GA optimization techniques can handle discrete decision 

variables and is a preferred optimization technique for flexibility.  

 

In this study two approaches to flexible optimization have been 

considered. These are (i) designing centralized system that is sufficiently flexible 

to the future change and uncertainties, and (ii) enhancing flexibility through 

decentralization/clustering WDS that facilitates the gradual development of the 

system through time. The first approach requires the development of optimization 

algorithms that will cover a wide range of uncertainties. This study develops a 

unique GA based flexibility optimization (GAFO) model to embed flexibility into 

centralized WDS (see Chapter 4). The latter requires a clustering techniques and 

optimization tool that allow partitioning the WDS in to clusters and developing 

adaptive system. Chapter 6 presents the development of an optimization based 

clustering tool to allow implementation of flexible decentralized WDS in emerging 

areas. Depending on the nature of the problem the appropriate optimization 

model for centralized or for decentralized/clustered WDS has to be selected. This 

subsection discus briefly the GAFO and cluster optimization models. The GAFO 

model is applied to real case-study in Chapter 5 and the clustering method is 

applied to real case-study in Chapter 7. 
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3.2.3.1 Centralized Flexible WDS  

In optimization of flexible centralized WDS small incremental changes in 

pipes are utilized to increase the capacity of the WDS and to accommodate a 

variety of different future changes. This is done by adding parallel pipes to the 

main component when future growth requires either spatial expansion or a 

capacity increase. This study develops GAFO model to explore the least costly 

centralized WDS alternatives that span across a wide range of uncertainties. The 

model is coded in C++ programming language. This tool differs from previous 

works which have applied GA in two major aspects: (i) GAFO allows flexibility to 

be embedded into a WDS design as the optimization is performed against all 

possible future scenarios. It considers an objective function that involves all 

possible future scenarios and develops a system’s ability to adapt to different 

future condition; (ii) GAFO is based on staged decision-making which allows 

stepwise evolution of the WDS over time. GAFO’s objective function involves 

minimization of the cost related to investment and the adaptation to future 

possible conditions. The optimization embeds flexibility into the system by 

maximizing the ability of the system to follow different trajectories based on future 

conditions. Depending on the number of decision points and alternative options 

embedded in a WDS, a number of subsequent optimal system alternatives—

which could span over a wide range of uncertainties—are generated. 

Considering scenario path illustrated in Figure 3.5 and using parallel pipe for step 

wise growth of the centralized WDS, an example solution space as shown in 
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Figure 3.9 could be generated. This solution space follows the same pattern as 

the scenario paths.  

 

 

Figure 3.9 Centralized WDS spanning over range of uncertainties 

 

The flexibility-based centralized WDS optimization approach develops a 

system designed to span a wide range of future conditions, as shown in Figure 

3.9. The optimal design explores the least cost solution for both the initial 

investment and the change requirements for different alternatives at different 

stages. In addition, different design alternatives could be developed using the 

same approach, and comparison between alternatives is performed with respect 

to their ability to cope with future changes. An assessment method for the 

capability of the WDS alternatives to perform in an uncertain environment is 

presented in the subsection 3.2.4. 
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3.2.3.2 Clustered Flexible WDS 

Recent studies have shown that clustered/decentralized approach to WDS 

design allows gradual development of the systems and provide sufficient 

flexibility to address changing global pressures with time (PSGS 2010; Bieker et 

al., 2010). This research has developed an optimization method that divides an 

urban area into clusters to allow for the provision of flexible, modular 

decentralized urban water systems (see chapter 6).  

 

The optimization involves Euclidean norm minimization and K-mean 

algorithm. The WDS in each homogeneous cluster is optimized using GA 

optimization model for a range of uncertainties. The modular diversity of these 

clusters exponentially increases the amount of possible configurations that can 

be achieved for WDS from a given set of inputs. For example considering a 

scenario path illustrated in Figure 3.5 with three future demand states (A1, A2 

and A3) in three stages (T0, T1 and T2), a set of clustered optimized WDS 

solutions that span a wide range of uncertainties could be developed using 

clustering and optimization technique. Figure 3.10 shows an example clustered 

WDS that grows over time. 

 



68 
 

 

Figure 3.10 Clustered WDS spanning over range of uncertainties 

 

The clustered WDS in Figure 3.10 are designed to span a wide range of 

uncertainties and to respond and react to the future change in cost effective 

manner. Different options could also be embedded at different time (i.e. 

decoupling valves) to enhance flexibility.  

 

Once the flexibility based optimization is performed, the decision-making 

process is followed to assess the flexibility of different alternatives and to choose 

the most flexible one. Since the design of flexible WDS considers ranges of 

possible solutions that perform in unknown future conditions, the choice between 

flexible WDS alternatives is made using the principles of decision-making under 
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uncertainty (Finne, 1998, Khu and Keedwell 2005). The details of the decision-

making process are discussed in the following subsections. 

3.2.4 Flexibility Assessment and Decision Making Under Uncertainty 

In this study, a two-stage decision making process is proposed. The first 

stage is a flexibility assessment of optimized WDS alternative under possible 

scenarios to determine their ability to respond and adapt to the future. The 

second stage is comparison and selection of WDS alternative that perform better 

under wide range of uncertainties. 

3.2.4.1 Flexibility Assessment 

A post optimization analysis is performed to evaluate the flexibility of 

different optimal flexible WDS. In order to analyze different flexible alternatives, 

four key measurements are induced from the definition of flexibility: “the ability of 

water systems, to use their active capacity to act, to respond on relevant 

alterations in a performance-efficient, timely and cost-effective way” (Eckart et 

al., 2010). These measurements are capability to respond, capability to react, 

performance, and duration of change.  

 

Capability to respond (Crs) is the embedded capability of the WDS to 

absorb specific future alterations. This flexibility dimension indicates the intended 

degree of change that embedded options allow for the system to cope with future 

changes. Crs depends on the range of uncertainty that the system is designed to 
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handle and the effort (cost) required to handle the specified range of 

uncertainties. In contrast, capability to react (Cra) is the capability of the WDS to 

react to unknown future alterations. This dimension indicates the nature and 

degree of change (in response to unknown future alterations) that the system is 

able to adapt to, beyond what it was designed for. This capability depends on the 

range of uncertainty to which the system is required to react and the effort (cost) 

required to adapt to those unknown uncertainties. 

 

Performance (Ps) is an indicator used to measure the ability of the WDS to 

perform better under future alterations. In design of WDS the performance 

requirements are design constrains that have to be satisfied. According to Mays 

(2000), the main constraint is supplying the desired water demand with adequate 

pressure head at withdrawal nodes. Thus, in this research the design of WDS is 

based on meeting a certain minimum pressure head and is not used as 

comparison criteria for flexibility of WDS.  

 

The Duration of the change (td) process is the period which is required to 

adapt the WDS to new requirements. Usually future alterations associated with 

WDS occur slowly, and this criterion could be ignored in measuring the flexibility 

of WDS. Thus as part of the development of the framework this chapter develops 

the metrics for measuring the degree of flexibility within a WDS. These metrics 

include: the capability of the WDS to respond and the capability of WDS to react 
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to future change. These metrics are combined in to a single metric called the 

‘optimal level of flexibility’ metric (Fopt). 

 

Crs depends on the range of uncertainty that the system is designed to 

handle (Range of response- Urs) and the effort required to handle the specified 

range of uncertainties (Cost of change- Cc). Urs indicates the pre-specified range 

of uncertain future developments for which a change in the WDS is required. In 

this study, Urs is calculated from the future spatio-temporal water demand to 

which the system must respond. Cc is the measure of the effort/cost associated 

with the initial investment. 

 

In contrast, Cra indicates the nature and degree of change (in response to 

unknown future alterations) that the system is able to adapt to, beyond what it 

was designed for. This capability depends on the range of uncertainty to which 

the system is required to react (Range of reaction- Ura) and the effort required to 

adapt to those unknown uncertainties (Cost of adaptation- Ca). In the design of 

WDS under demands of uncertainty, Ura indicates a range of possible future 

water demand changes for which the WDS needs to change, and Ca indicates 

the effort associated with adapting to those possible uncertainties, including the 

costs for several possible changes in the whole life span of the WDS. Consider 

WDS2 shown in Figure 3.11, which follows scenario [A1T0- A2T1- A2T2] and 

required to adapt to scenario [A1T0- A2T1- A3T2]. Urs represents the total water 

demand that the WDS2 supplies over its lifetime and Cc represents the 
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associated optimal investment cost in NPV term. However, this system is 

required to adapt to demand state [A3] at time t=T2. Thus it must adapt Ura range 

of demand from its state [A1T0- A2T1- A2T2] to [A1T0- A2T1- A3T2] at time t=T2 

and require Ca amount of cost in order to adapt to WDS3 as shown in Figure 

3.11. 

 

 

Figure 3.11 The range of response and adaptation, and associated cost  

 

Different combinations of options, based on expected future uncertainties, 

could be embedded in WDS to offer different levels of flexibility within the range 

between excessively flexible and rigid. The values of Crs and Cra embedded in 

the optimized WDS is a point of critical consideration. Thus the combined value 

of Crs and Cra is explored to determine the level of flexibility (Fopt) of different 
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WDS options. Flexible WDS design framework to determine the level of flexibility 

of WDS, and thereby to assist in decision-making, is presented in the next 

subsection. In addition, the research requires a specific chosen system as a 

baseline (usually a non-flexible system) for determining the economic gain as 

well as the associated regrets.  

3.2.4.1.1 The Capability to Respond (Crs) 

The flexibility based GA optimizer returns the least cost for each 

alternative solution, but cost alone does not reflect the capability to respond to 

future change. Crs is directly related to the range of water demand it can handle 

and inversely related to the effort (money) it requires. The larger the water 

demand that the WDS responds to, the higher its capacity and the higher the 

effort (cost) it requires to lower the capacity. Thus, in this study the Crs is 

represented by the ratio of the range of response and the cost of change, as 

shown in Equation 3.1. 

 𝐶𝑟𝑠 =
𝑈𝑟𝑠
𝐶𝑐

 3.1 

where Crs is the capability to respond to future changes; Urs is the range of 

uncertainties to which the WDS can respond (i.e. the range of water demand the 

system can perform without losing its performance); and 𝐶𝑐 is the Net Present 

Value (NPV) of the designed optimal WDS. 

 

A WDS that has a larger Crs performs better under uncertainty than a 

system with a smaller Crs. Since flexibility requires the ability to react (adapt) to 



74 
 

different unknown future changes, an optimal WDS with a maximum Crs doesn’t 

necessarily guarantee flexibility. There is therefore a need to analyze WDS 

alternatives for different scenarios with respect to their adaptation capacity. 

3.2.4.1.2 The Capability to React (Cra) 

Cra is the capability of a system to react to unknown future alterations.  It 

is directly related to the water demand variation to which it is required to adapt 

and inversely related to the associated adaptation cost. It is represented by the 

ratio of the range of uncertainties to which the WDS needs to adapt (e.g. 

unexpected change in nodal demand) to the effort required (total cost to adapt to 

future change) as shown in Equation 3.2. 

 𝐶𝑟𝑎 =
𝑈𝑟𝑎
𝐶𝑎

 3.2 

where 𝐶𝑟𝑎 is the capability to react to the future alterations; 𝑈𝑟𝑎 is the range of 

uncertainties that the system can react to (range of adaptation); and 𝐶𝑎 is the 

cost of adaptation required to change the system. In cases when either the cost 

of change or range of change is zero, the capability to react is taken as zero. A 

larger range of future uncertainties to which a WDS needs to adapt correlates to 

a higher capability to react to future alterations, while the higher the effort (cost) 

required to change the WDS, the lower the capability to adapt to future changes. 

 

In this study, the parameters Crs and Cra will have unit dimensions in 

demand per unit cost (i.e. required adaptation demand of m3/year per associated 

cost in $). Confusion should be avoided, as this unit is different from the usual 
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unit cost parameters such as the amount of cost required for the unit capacity of 

a system in $/m3/year. 

3.2.4.1.3 Optimal Flexibility (Fopt) 

In WDS design, the choice between WDS alternatives has to be made in 

the present without knowing the future. A system could have a large Crs and yet 

its value delivery could be limited with the flexibility dimension Cra that represents 

the adaptation capability to future conditions. The investment decision on the 

type of alternative to choose depends on the level of flexibility that comprises 

both Crs and Cra.  The level of optimal flexibility that a system can deliver is 

represented by Fopt. Fopt and is the extent to and ease with which a system can 

cope with eventualities, which depends the combined effect of Crs and 

Cra
.   Equation 3.3 is used to determine the value of Fopt in terms of the Crs and 

Cra flexibility measuring criteria. Thus, decision makers might choose different 

weights to give to the Crs and Cra values.  

 𝐹𝑜𝑝𝑡 = 𝜔𝑟𝑠𝐶𝑟𝑠 + 𝜔𝑟𝑎 𝐶𝑟𝑎 3.3 

where Fopt is the level of flexibility of a WDS, 𝜔𝑟𝑠 and 𝜔𝑟𝑎 are weighting factors 

for Crs and Cra respectively, and 𝜔𝑟𝑠 + 𝜔𝑟𝑎 = 1. 

  

For example in Figure 3.9, the four scenarios are [A1T0- A1T1- A1T2], 

[A1T0- A1T1- A2T2], [A1T0- A2T1- A1T2], and [A1T0- A2T1- A3T2], and the optimal 

system-state mapping of the scenario are WDS1, WDS2a, WDS2b, and WDS3. 

When considering the optimized state WDS1, which follows the scenario [A1T0- 
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A1T1- A1T2], Crs is determined using the ratio of lifetime supply capacity of that 

WDS1 (i.e., corresponding water demand in the scenario) to the cost of WDS1 

(capital cost NPV). Cra is determined by the ratio of the range of water demand to 

which WDS1 needs to react to the cost required to adapt to all scenarios. Fopt is 

then determined using the weighted average value of Crs and Cra. The same 

procedure is followed to determine the Fopt values for the systems WDS2a, 

WDS2b, and WDS3. Similar approaches will be followed for different WDS 

alternative solutions for comparison.  

 

Flexibility assessment indicates whether or not the selected option can 

deliver the required flexibility.  Embedding options into a WDS may not guarantee 

flexibility and requires an iterative process where different flexible options are 

embedded and analyzed to determine whether or not they offer better flexibility 

(Fopt). The choice of the level of flexibility is also based on current knowledge and 

is not a one-step decision; instead, decisions can be changed along the course 

of action based on how future uncertainties unfold. 

3.2.4.2 Decision Making Under Uncertainty 

Decision-making involving unforeseen events has been done using 

decision theory, utility theory, and game theory (Parsons and Wooldridge, 2002). 

According to Kahneman and Tversky (1979), decision theory helps decision 

makers choose among a set of WDS alternatives based on their possible 

consequences. In decision-making under uncertainty, the outcomes of choosing 
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different alternative states need to be evaluated. The decision-making process in 

decision theory recognizes the need for an evaluation of results associated with 

different alternative states and thus involves a ranking of the results based on the 

decision criteria. According to Finne (1998), decisions under uncertainty 

(unknown future conditions) are usually based on the following criteria: maximax, 

maximin, laplace, and minimax regret.  

 

The maximax decision criterion is based on a “pure greed” state of mind of 

the decision maker. This criterion specifies that the decision maker should select 

the course of action that maximizes the maximum value of the other course of 

actions. This decision rule is an optimistic approach, in which the decision maker 

should assume the best of all possible solutions and is referred to as the “best 

best” payoff decision rule (Troffaes, 2007).  

 

On the other hand, the maximin decision rule is based on a “pure fear” 

state of mind of the decision maker. It suggests that the decision maker should 

choose the course of action that maximizes the minimum payoff he can get 

(Einhorn and Hogarth, 1986). This pessimistic approach implies that the decision 

maker should expect the worst to happen. Here, the decision maker selects an 

action that, if things turn out for the worst, the maximin criteria provides the 

maximum payoff. This decision rule considers the worst consequence of each 

possible course of action and chooses the least worst one. This is sometimes 

referred to as the “best worst” payoff decision criterion (Lau and Chan, 2004).  
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The Laplace decision rule uses the highest average payoff across all the 

states of nature (outcomes) of all alternatives. It assumes that all the outcomes 

are “equally likely” (Lau and Chan, 2004) and the different actions should be 

evaluated according to their payoffs averaged over all the states of nature.  It is 

referred to as the “best average” payoff decision rule.  

 

The minimax regret rule selects the alternative that will minimize the 

maximum regret (Bell, 1982). According to Lau and Chan (2004), minimax regret 

decisions are based on “fear of guilt” and reduce the chance that the outcome 

will turn disappointing/regretful. This is also referred to as the “best worst” regret 

decision rule. 

 

The choice of a decision rule is based on the type of decision maker, the 

system to be analyzed, and the problem under consideration.  Both maximin and 

maximax approaches focus too narrowly on a single element in what may be a 

large payoff matrix. The Laplace decision rule also assumes that all the 

outcomes are equally likely, which does not exist in reality. However, the 

minimax regret rule offers the benefit of minimizing the future regret associated 

with the present decision, that is, the opportunity cost that will be incurred as a 

result of having made the wrong decision (e.g. profit/cost savings forgone).  

 

A risk-neutral decision maker using minimax regret rule will select the 

option with the lowest regret/opportunity cost based on the assumption that the 
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maximum regret will occur for all the available decision options. It is one of the 

more credible decision-making criterion under uncertainty when the likelihoods of 

the various possible outcomes are not known with sufficient precision (Lipshitz 

and Strauss, 1997), which is the case for WDS. In this study, the minimax regret 

rule is chosen for flexibility-based decision-making in WDS design. The regret is 

represented by the opportunity loss associated with Fopt value. The larger the 

Fopt, the better the flexibility, and the lower the level of regret associated with it. 

Thus, the opportunity loss in terms of Fopt will be the difference between the 

maximum Fopt and the Fopt value of each alternative. The regret equation will 

therefore have the following form shown in Equation 3.4 to 3.6. 

 𝑓𝑓𝑅(𝑠,𝑗) = 𝑚𝑚𝑎𝑥�𝐹𝑜𝑝𝑡(𝑠,𝑗)�𝑗=1
𝑟

− 𝐹𝑜𝑝𝑡(𝑠,𝑗) 3.4 

 𝑓𝑓𝑅,max (𝑗) = 𝑚𝑚𝑎𝑥�𝐹𝑜𝑝𝑡(𝑠,𝑗)�𝑠=1
𝑚

 3.5 

 𝑓𝑓𝑅,𝑚𝑖𝑛 = 𝑚𝑚𝑖𝑛𝑛�𝑓𝑓𝑅𝑚𝑎𝑥�𝑗=1
𝑟

 3.6 

where fR(s,j) is the regret as a function of the capability to change for alternative 

solution j under scenario s; fR,max(j) is the maximum regret of WDS solution j 

under all scenarios s; m represents the maximum number of scenarios 

considered; r is the maximum number of WDS solutions; and fR,min is the minimax 

regret value. 

 

For example, we might consider two WDS designed to perform under two 

scenarios for a period of one year. The Fopt associated with each alternative is 

shown in Table 3.1. In this example, there are two decision options (WS1 and 

WS2) and two conditions (Scenario-1 and Scenario-2). 
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Table 3.1 Fopt value for alternative WDS under two different scenarios 
 

Scenarios 
Fopt (m3/yr/$) 

WS1 WS2 
1 13 11 
2 16 19 

 

If WS2 is chosen and Scenario-1 happens, the decision maker suffers an 

opportunity loss of 2m3/yr/$ (where the opportunity loss associated with WS1 will 

be zero). However if Scenario-2 happens, the opportunity loss associated with 

WS1 will be 3m3/yr/$ while WS2 will have no opportunity loss. The opportunity 

losses for each alternative under each scenario are shown in Figure 3.8. 

 

Table 3.2 Opportunity losses associated with each option 

Scenario Path 

𝐟𝐑 (regret) 

WS1 WS2 
Scenario-1 0 2 
Scenario-2 3 0 

Maximum regret 3 2 
Minimax regret 2 (WS2) 

 

Based on the minimax regret (opportunity loss) principle, the option that 

minimizes the maximum possible regret will be chosen. Thus, between the two 

alternative options, WS2 has the minimum regret, which dictates that it should be 

considered a better option. This decision approach is used to evaluate the 

flexibility measuring criteria of a large number of design options under a wide 

range of scenarios in the design of flexible WDS. The design option with the 
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minimum opportunity loss related to Fopt value is expected to perform better 

under a changing environment. 

 

The decision-making process in developing flexible WDS considers a 

baseline as a benchmark to which different alternatives can be compared. The 

baseline system is a non-flexible/robust WDS designed and operated in a 

traditional way (Nilchiani and Hastings, 2007). Indeed, often a non-flexible/robust 

system is considered as a baseline. The comparison is used to evaluate the 

value added to the system by flexible design. The alternative with the largest 

value added, when compared to the non-flexible baseline, represents the most 

flexible WDS alternative that delivers a high flexibility value.  

 

Chapters 5 and 7 apply this methodology to develop a centralized flexible 

WDS for Mbale town, Uganda and a clustered (decentralized) WDS for Arua 

town, Uganda. Comparisons are also made between a system designed based 

on traditional approaches and a flexible WDS designed using the developed 

methods in this study. 

3.3 Conclusions: Framework for Design of Flexible WDS 

This chapter has developed a framework for designing and optimizing 

flexible WDS that can cope with future change and associated uncertainties in a 

cost effective, performance efficient, and timely manner. The framework is based 

on GA optimization techniques and involves four major steps:   
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i) Uncertainty description: a scenario tree is used to reflect multiple possible 

future states in a simple tractable manner to answer the question.  

ii) Identifying flexibility options: a suite of flexible options is identified which 

are expected to offer better lifetime flexibility to the WDS.  

iii) Generating Flexibility: to generate flexibility in centralized WDS GA based 

flexibility optimization (GAFO) model is developed. In addition an 

optimization model for clustering emerging areas to allow implementation 

of flexible decentralized WDS is developed. The optimization of the each 

clustered WDS is done using GA optimization. 

iv) Decision-making under uncertainty: This involves flexibility assessment 

and comparison that indicates whether or not the selected option can 

deliver better flexibility. To support the decision about which flexible 

alternatives should be selected, the minimax regret rule is applied.  

 

The framework for the design and optimization of a flexible WDS focuses 

on minimizing the cost of the system, and the decision regarding the best 

alternative is based on the performance matrices developed, which are the 

capability to respond and react to change. These performance metrics allow for 

the flexibility of an urban water system to be assessed. Other metrics of flexibility, 

such as the performance or the duration of change, are not considered, as the 

optimization assures the minimum performance requirement (pressure head) for 

all systems and assumes that the duration of change of a system is minimal with 

respect to duration for change in future conditions. The framework is applicable 
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for all urban water systems, where the optimization process is only focused on 

WDS, assuming a comparable performance.  

 

The framework optimizes the flexibility of WDS with a predefined set of 

flexibility options. The decision of which flexibility options should be considered in 

the optimization process is not supported by the framework. A question for future 

research is how to provide guidance on the identification and selection of suitable 

flexibility options.  

 

In Chapter 4, the GA based flexibility optimization (GAFO), a core element 

of the framework, will be presented in detail. The framework will be applied to two 

case studies with different types of WDS. In Chapter 5 the framework will be 

applied for a centralized WDS in order to analyze how much the flexibility is 

improved in comparison to a conventional centralized system and centralized 

system optimized for a range of uncertainty. In Chapter 6 the framework is 

applied for clustered WDS and it is assessed to determine if a clustered system 

provides a higher flexibility than a conventional centralized system.  
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4 Optimization for Flexible Design of Centralized WDS 

4.1 Introduction 

This chapter addresses the specific research objective of developing an 

optimization model that maximizes the flexibility of WDS at the least cost. As a 

result, this optimization model will generate a flexible, staged development plan 

for the incremental growth of the WDS.  

 

In this chapter a new approach for the flexibility-based optimization of 

WDS based on a Genetic Algorithm (GA) optimization technique is proposed, 

and a new modelling tool called Genetic Algorithm based Flexibility Optimization 

(GAFO) is developed. GAFO allows optimizing WDS for a wide range of 

uncertainties with minimal costs and helps to design flexible WDS that are 

adaptable to new, different, or changing requirements. The optimization model is 

part of the framework for the flexible design of WDS presented in Chapter 3, 

where it is presented briefly (see Figure 4.1) 

 

This chapter is divided in two parts. First, the specific optimization problem 

for the flexible design of WDS is developed. Second, the GAFO model is 

developed in order to solve the described optimization problem. At the end of the 

chapter the proposed GAFO model is applied to a hypothetical water distribution 
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network. Applications of the GAFO model to real world case studies are 

presented in Chapter 5 and 6.  

 

 

Figure 4.1 The interconnection of Chapter 4 with other chapters 

4.2 Optimization Problem for Flexible Design of WDS 

4.2.1 Basic Optimization for WDS  

Problem formulation in the design of WDS involves design variables, 

objective functions, and constraints. A design variable in an optimization problem 

refers to any quantity or choice directly under the control of the designer. It 

involves many forms, as WDS are comprised of many components and 

performance criteria. Design variables may include the selection of diameters for 

pipes, pump types, and locations, the sizing and locating of tanks, valve pressure 

settings, and valve locations. A constraint is a condition that must be satisfied in 
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order for the design to be feasible. Constraints can reflect resource limitations, 

user requirements, or bounds on the validity of the analysis models. The general 

constraints in the hydraulic analysis of a WDS are continuity and energy 

equations. Bound constraint conditions in a WDS optimization problem could be 

specified to include minimum and maximum allowable pressures at each demand 

point, minimum and maximum velocity constraint for each of the pipes, and water 

quality requirements. Further constraints may be added for materials as well, 

such as allowing for different rehabilitation alternatives (cleaning, relining, or 

both) (Walski et al., 2003). According to Mays (2000), the main constraint in a 

WDS optimization problem is supplying the desired water demand with adequate 

pressure head at the withdrawal nodes. The optimal design of a WDS is often 

viewed as the least cost optimization problem (Zecchin et al., 2005)—a problem 

in which the value of cost should be minimized. However it has also been applied 

for different objectives in designing and operation of WDS. These include whole 

life cost, network reliability, redundancy, water quality, pump scheduling and 

maintenance/rehabilitation, WDS model calibration, valve location, etc. (Savic, 

2002). Considering capital cost, the overall optimization problem for finding the 

least cost combination of pipe size can be expressed mathematically, as shown 

in Equation 4.1 through 4.5.  

 𝑀𝑖𝑛𝑛𝑖𝑚𝑚𝑖𝑧𝑖𝑛𝑛𝑔             𝑓𝑓𝑐𝑜𝑠𝑡(𝐷𝐷) = �𝐶(𝐷𝐷𝑗 , 𝐿𝐿𝑗)
𝑁

𝑗=1

 4.1 

 𝑆𝑆. 𝑡𝑡,              �𝑄𝑖𝑛 −�𝑄𝑜𝑢𝑡 = 𝑄 4.2 
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       �ℎ𝑓 −�𝐸𝑝 = 0 4.3 

    𝐻𝑚𝑖𝑛 < 𝐻 < 𝐻𝑚𝑎𝑥  4.4 

 𝐷𝐷 ∈  {𝐴} 4.5 

where 𝑓𝑓𝑐𝑜𝑠𝑡(𝐷𝐷)  is the cost of the pipes; 𝑁𝑁 is the number of pipes; D is the design 

variable pipe diameter; 𝐶(𝐷𝐷𝑗 , 𝐿𝐿𝑗) is the cost of component j with diameter D𝑗 and 

length 𝐿𝐿𝑗; 𝑄𝑖𝑛 is flow into a junction; 𝑄𝑜𝑢𝑡 is flow out of a junction; Q is external 

flow or demand at each node; ℎ𝑓 R   is pipe head-loss; 𝐸𝑝  is energy input by a 

pump; 𝐴 is the specified commercially available size; and 𝐻𝑚𝑖𝑛 and 𝐻𝑚𝑎𝑥 are the 

lower and upper limits of the nodal pressure head. 

 

For pipe cost, it is assumed that the capital cost per unit length of pipe 

varies nonlinearly with its diameter and can be expressed by a single expression 

for all diameters 𝐶�𝐷𝐷𝑗 , 𝐿𝐿𝑗� = 𝐾𝐾 𝐿𝐿𝑗  𝐷𝐷𝑗𝑛 where 𝐾𝐾  and 𝑛𝑛  are regression coefficients 

that depend on the local pipe cost function. 

 

The above equations are based on a generic optimization formulation that 

follows a fixed set of system objective requirements over time. In designing 

flexible WDS, the changing system’s requirements that take into account the 

possible scenario paths should be considered. Thus, the next sections focus on 

developing a unique optimization function for flexible design of WDS that have 

the ability to adapt to different future conditions. 
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4.2.2 Unique Objective Function for Flexibility Optimization 

The focus of flexibility based optimization is to maximize the ability of the 

system to adapt to new, different, or changing requirements. The flexibility of a 

system to cope with an ever-changing environment requires the ability to change 

or react in a performance efficient and cost effective manner. Thus, the 

development of an objective function for flexibility focuses on minimization of the 

investment and adaptation cost associated with the changing environment, while 

the minimum required performance is maintained for all possible future 

conditions.  

 

This chapter develops an objective function for flexibility based on two 

unique features: (i) the objective function should consider a wide range of 

uncertainties for which the system needs to cope, and (ii) the objective function 

should involve a staged function such that adaptation from one stage to another 

is possible to cope with future change requirements. These two unique features 

of the objective function will be critical in optimization of flexibility enhanced 

changeability from one state to another. Also, this approach enhances a number 

of possible trajectories which allows the WDS to make a stepwise evolution over 

time. The proposed flexibility based design objective follows the same pattern as 

the scenario tree description of uncertainties. For example, considering demand 

ranging between minimum (Q1) to maximum (Q2), the objective function for 

flexibility minimizes the WDS cost for all possible discrete future scenarios 
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ranging between demand Q1 and Q3. This involves minimizing the cost for each 

scenario state (St) and each time stage (t).  

 

The proposed flexibility based objective function is based on the input 

scenarios that represent future uncertainties (number of stages and states of the 

future condition such as future water demand). Thus it is formulated to minimize 

the Net Present Value (NPV) associated with both investment at each stage and 

adaptation to the future states. The nature of this optimization problem requires a 

nested loop process that involves the following components: 

i) It considers a wide range of possible future states (scenarios), and the 

cost function involves the sum of the cost values of all states at each 

stage as shown in Equation 4.6. This involves future states s= {0,1,2,…,m) 

where m is the maximum number of states at each stage (t). Also Figure 

4.2 illustrates how the first loop function is calculated (at each stage). 

 𝑓𝑓𝑡(𝐷𝐷) = �
1

(1 + 𝑟𝑟)𝑡∆𝑡
��𝐾𝐾 𝐿𝐿𝑗  𝐷𝐷𝑗𝑛

𝑁

𝑗=1

�

𝑠

𝑚

𝑠=1

 4.6 

where 𝑓𝑓𝑡(𝐷𝐷) is the cost of the pipes at each stage; 𝐿𝐿𝑗 is the length of the 

𝑗𝑗𝑡𝑡ℎ pipe; 𝑁𝑁 is the number of pipes; D is the design variable defining the 

dimension of components (i.e pipe diameter); t is the design stage, ∆𝑡𝑡 is 

the period in each stage,  𝑟𝑟   is the discount rate; 𝑚𝑚  is the maximum 

number of future states (𝑠𝑠); and 𝐾𝐾 and 𝑛𝑛 are regression coefficients for 

pipe cost function. 
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ii) The cost function involves the summation of the cost values from step i. 

This means that the sum of the cost values of all stages is summed such 

that the objective function is minimized over the whole range of stages. 

Equation 4.7 is used to determine the cumulative cost values. Figure 4.2 

illustrates how the second loop function is calculated for each stage. 

  𝑓𝑓𝑐𝑜𝑠𝑡(𝐷𝐷) = �𝑓𝑓𝑡

𝑆𝑡

𝑡=0

 4.7 

where 𝑓𝑓𝑐𝑜𝑠𝑡(𝐷𝐷) is the total cost of the initial investment and adaption; t is 

the design stages {0, 1, 2,…,St}; St is the maximum number of staging in 

the design horizon. 

 

 

Figure 4.2 Optimization objective function for all possible future states 
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As shown in Figure 4.2, the objective function is a convoluted process in 

which an evaluation of all future states at each stage is first performed and then 

summed for all stages. For the least cost flexibility optimization problem the 

combined equation can be mathematically expressed as shown in Equation 4.8. 

This equation combines all the cost values for all possible states of all stages to 

which the system needs to adapt.  

 𝑀𝑖𝑛𝑛𝑖𝑚𝑚𝑖𝑧𝑖𝑛𝑛𝑔,   𝑓𝑓𝑐𝑜𝑠𝑡(𝐷𝐷) = ���
1

(1 + 𝑟𝑟)𝑡∆𝑡
��𝐾𝐾 𝐿𝐿𝑗  𝐷𝐷𝑗𝑛

𝑁

𝑗=1

�

𝑠

𝑚

𝑠=1

�
𝑆𝑡

𝑡=0
𝑡

 4.8 

where fcost (D), D, K, L, N, ∆𝑡𝑡, 𝐾𝐾, 𝑟𝑟 and 𝑛𝑛 are as stated above; t is the design 

stages {0, 1, 2,…,St}; St is the maximum number of stages in the design horizon.  

 

Equation 4.8 involves a nested loop process of optimization. For each 

t={0,1, 2,…St} the objective function spans through s={1,2,…m} where m varies 

for each time stage (t). For example, in Figure 4.2 at time stage t=1, the 

maximum number of future states m is 2, whereas at time t=2 the maximum 

number of future states m is 3. This process introduces a new approach in 

designing WDS that advances the process of optimization that takes into account 

future uncertainties and enhances flexibility. This enables the system’s ability to 

adapt to a changing environment and allows for exploring flexibility alternatives 

that offer better value under uncertainty. 
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4.3 Genetic Algorithm Optimization Model for Flexible WDS 

During the last two decades, the design of WDS has shown a drastic 

increase in the development and application of various types of optimization 

tools, one of which is the evolutionary algorithm (EA). Genetic Algorithm (GA), 

which is implemented in this study, is one of the most popular types of EAs 

(Espinoza et al., 2006; Nicklow et al., 2010). Recently, there has been a growing 

interest in the application of GA for the design of WDS. GA has proved to be a 

flexible and powerful tool in solving complex water distribution optimization 

problems (Simpson et al., 1994). GA provides a stochastic optimization 

approach. It is basically described as an artificial adaptive heuristic search 

algorithm based on the genetic process and evolution principle of biological 

organisms, which includes reproduction, natural selection, and diversity of the 

species (Popov, 2005).  

 

According to Lopez-Pujalte et al., (2003), GAs use a randomly generated 

input population called chromosomes. This input population represents possible 

solutions to the problem, and each chromosome therefore represents one 

individual solution. These “individuals” evolve over successive iterations known 

as generations by means of the processes of selection, crossover, and mutation 

(a detailed discussion of this is presented in the following subsections). 

According to Dijk et al. (2008), GAs imitate nature’s optimization techniques of 

evolution, based on the following characteristics: 

i) Survival and reproduction of the fittest members of the population 
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ii) The maintenance of a population with diverse members 

iii) The inheritance of genetic information from parents 

iv) The occasional mutation of genes 

 

GA differs from the traditional approaches of existing optimization 

techniques (Simpson et al., 1994). They are better suited for the optimization of 

WDS problems than traditional optimization techniques such as nonlinear 

programming and linear programming for a number of reasons, which are 

outlined below (Raad et al., 2010; Vairavamoorthy and Ali, 2000). 

i) GA handles discrete design variables like pipe diameter 

ii) GA does not rely on the continuity of derivatives of the objective function 

or the constraint 

iii) GA deals directly with a population of solutions at any one time and is 

much less likely to restrict the search to a local optimum, compared with 

point-to-point movement optimization techniques, which tend to operate in 

that manner. 

 

This research strives to illuminate and exploit the benefits that GA offers to 

the design of flexible WDS. Many researchers have indicated that GAs will give 

nearly optimal solutions with a reasonable number of iterations (such as Babayan 

et al., 2007; Nicklow et al., 2010; Savic, 2005; Vairavamoorthy and Ali, 2000). 

According to Huang (2012), GA performs better in designing flexible WDS under 

uncertainty. Designing for flexibility requires optimizing over a wide range of 
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future uncertainties that involve large design space; likewise the optimization 

objective function formulated in Equation 4.8 requires a number of stages and 

states of future uncertainties to be considered. The time and states of future 

conditions are represented by discrete decision stages (along with a scenario 

tree). These require optimization algorithms that better handle discrete decision 

variables.  

 

This study proposes a GA based flexibility optimization and develops a 

tool called Genetic Algorithm based Flexibility Optimization (GAFO) in order to 

allow for the stepwise evolution of WDS over time by embedding flexibility into 

the design of WDS. The GAFO model code is developed using a C++ 

programming language. The major steps that GAFO includes are the generation 

of an initial population, hydraulic analysis, uncertainty-based fitness evaluation, 

generation of a new population (using selection, cross-over, and mutation genetic 

operators) and termination (see Figure 4.3).  GAFO algorithm shown in Figure 

4.3 differs from those outlined in previous works in the following two major 

aspects:  

i) Optimization in this approach is performed for a range of future conditions. 

This means that a system will be evaluated with respect to its ability to 

cope with future changes. In addition, a modified penalty function is used 

to evaluate the system’s performance over a wide range of future 

uncertainties.  
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ii) Optimization in this approach is also based on staged decision-making, 

which allows for stepwise evolution of the WDS through time. 

 

 

Figure 4.3 GAFO model algorithm (t is the design stages {0, 1, 2,…,St}; St is the 
maximum number of staging in the design horizon, 𝑚𝑚 is the maximum number of 
future states 𝑠𝑠 at each stage t) 
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For example, as shown in Figure 4.3, the initialization of a random 

population in the GAFO model is done for all possible future conditions (all future 

states ‘s’ and time stages ‘t’).  The hydraulic simulation and penalty calculations 

also involve a convoluted loop process that requires a range of uncertain input 

parameters described by future state and design stage (t). Similarly, the fitness 

function that involves the minimization objective function is performed for a whole 

range of future conditions. This allows the GAFO optimizer to explore the fittest 

population that allows a stage wise evolution of the WDS under different future 

conditions. The details of the GAFO optimization process is presented in the next 

subsection. 

4.3.1 Generation of Initial Population 

GAFO generates the initial random population of ‘n’ number of 

chromosomes (possible solutions to the problem) using a random generator. This 

represents a possible initial pipe network solution (string) in the design of a WDN. 

The unique feature of this optimization is that the initialization involves a 

population of possible pipe network solutions (string) for each state (s) at each 

stage of the design (t). This helps the GA optimizer to search for optimal 

solutions which perform over a wide range of uncertainties. The GA’s search for 

possible solutions depends on the size of the population chosen, usually set by 

the user at the beginning of the optimization process. According to Popov (2005), 

a small population provides an insufficient sample size—causing premature 

performance—while a large population size requires more time to converge the 
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population. As such, the process of selection behind the population size is that it 

should be set proportionally to the size and difficulty of the problem. Many users 

end up using the so-called standard setting of 50-100 individuals (Gupta, 1998). 

In contrast, some optimization models employ an adaptive population size 

approach. This was done by Lobo and Lima (2007) and Brest and Maucec 

(2008). However, variable population size optimization process is not the focus of 

this study. For this study, an initial population size is set at the beginning of 

optimization and remains constant throughout the GA run. Based on the 

population size, the GAFO performs a random selection of pipe diameters from a 

pre-specified list of available pipes to develop an initial solution (for all possible 

future states). 

 

The initial population is represented by discrete pipe diameters. For 

example, considering four available pipe diameters, 101.6mm, 152.4mm, 

203.2mm, and 254mm, a vector [101.6, 152.4, 203.2, 254] represents a suite of 

possible pipe diameters. GA pipe solutions (populations) could be represented 

either by binary or integer chromosomes. If the solution network consists of pipe 

diameters [152.4, 203.2, 203.2, 152.4], GA representation of the solution vector 

with binary and integer chromosomes is listed as shown below.  

i) Binary 0 1 0 0 1 1 0 0 0 1 0 1 
 

ii) Integer 1 2 2 1 
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Even though either binary or integers may be used, the binary code 

requires longer chromosomes to represent the solution vector than the integer 

code and requires much more processing time and computer memory. It also 

requires huge effort to convert to discrete pipe diameters when evaluating the 

total cost. In addition, binary coding generates redundant states that do not 

represent any of the design variables, resulting in poor performance of the GA 

(Vairavamoorthy and Ali, 2000). Therefore, in this study the GAFO employs an 

integer coding technique to represent the solution for the flexible design of WDS. 

4.3.2 Hydraulic Analysis for a Range of Uncertainties 

This stage involves the simulation of a hydraulic solver. In this study, the 

hydraulic simulation software EPANET (Rossman, 2000) is used to compute the 

pressure head and supply at each node and discharge in each pipe under the 

specified input parameters. In GAFO, the determination of pressure head and 

supply at each node is analyzed at each state and stage of the future condition 

described by the scenario tree. Thus, the result of the hydraulic analysis for a 

wide range of uncertainties is used to evaluate the performance of each 

population in a generation. A minimum pressure head at each demand node is 

used as a constraint. The actual heads are compared with the minimum required 

heads, and GAFO determines the pressure deficits in order to identify the 

populations that do not perform well.  
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4.3.3 Uncertainty Based Fitness Evaluation 

4.3.3.1 Computation of Penalty Function 

The GA identifies the pipes supplying the node that does not meet the 

minimum required pressure and assigns to them a penalty cost. However, the 

identification of a suitable penalty function is one of the challenges of an 

optimization problem. Dijk et al. (2008) have suggested the use of extensive 

penalties to emphasize the poor result of the pipes supplying negative pressure 

nodes. Siedlecki and Sklansky (1993) and Vairavamoorthy and Ali (2000) 

suggested a variable penalty coefficient based on the degree of violation. The 

variable penalty coefficient is determined heuristically and depends on the level 

of violation, as shown in Equation 4.9. The penalty coefficient is a measure of the 

worth per meter attributed to pressure heads below the allowable minimum 

pressure head (Simpson et al., 1994). 

 𝑃𝑐(𝐷𝐷) = �𝑃𝐾,𝑖 

𝑛

𝑖=1

�
�𝐻𝑖 − 𝐻𝑚𝑖𝑛� ,𝑓𝑓𝑐𝑐𝑟𝑟 𝐻𝑖 < 𝐻𝑚𝑖𝑛

0, 𝑓𝑓𝑐𝑐𝑟𝑟 𝐻𝑖 ≥ 𝐻𝑚𝑖𝑛 
�,  4.9 

where Pc is penalty cost and Pk is the penalty coefficient for the Kth level of 

violation and the ith pressure constraint (Vairavamoorthy and Ali, 2000).  

 

The penalty function is used to measure the performance violation at each 

node under a range of uncertainty. The following three unique features are 

considered in determination of a penalty function for GAFO. 
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i) The GAFO is formulated for a staged design where the performance of 

WDS is checked at different design periods in consideration of the range 

of uncertainties. 

ii) The performance violation of the WDS from the minimum required should 

consider all possible ranges of uncertainty. The range of uncertainties at 

each design stage is defined by the state of nature (i.e. water demand 

values). 

iii) In addition to different future states, the idea of weighted penalty is used, 

which suggests that the pipes that supply more water are more important 

than the ones that supply less water (Dijk et al., 2008). The weighted 

penalty considers the proportion of the distribution of supply pipes’ 

importance, based on their flow rate (Qnode/Qtotal) (Dijk et al., 2008). As 

such, the unique penalty function for flexibility is shown in Equation 4.10 

below. 

 𝑃𝑐(𝐷𝐷) = 𝑃𝑘����
𝑄𝑖,𝑡
𝑄𝑡

∗ �
�𝐻𝑖,𝑡 − 𝐻𝑚𝑖𝑛�,     𝑓𝑓𝑐𝑐𝑟𝑟 𝐻𝑖,𝑡 < 𝐻𝑚𝑖𝑛

   0,                   𝑓𝑓𝑐𝑐𝑟𝑟 𝐻𝑖,𝑡 ≥ 𝐻𝑚𝑖𝑛
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𝑡=0
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  4.10 

where Pc is the penalty cost term; Pk is a penalty coefficient; t is the design stage 

{0, 1, 2,…,St}; r is the discount rate; and m is the maximum number of scenarios 

(s) that represent future uncertainty.  

 

In this chapter, the penalty function is developed for the pressure bound 

constraint function. However, a similar approach could be followed to determine 
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the penalty functions for other constraints in case they exist (one example of this 

is velocity). Once the penalty term is determined for the pipes, which results in 

the nodal pressure deficit, the modified total cost for each string is calculated by 

summing the network cost and penalty costs (Equation 4.11). The modified total 

cost (Tc) is then used to determine the fitness of the solution.  

 𝑇𝑐 = 𝑓𝑓𝑐𝑜𝑠𝑡(𝐷𝐷) + 𝑃𝑐(𝐷𝐷) 4.11 

4.3.3.2 Fitness Evaluation 

The GAFO search uses fitness calculation to identify the best solution to 

the optimization problem. The fitness function is a measure of how close the 

given design solution is to achieving the objective function. The performance of 

each string is measured based on the fitness function. Unlike traditional GA 

optimization, the unique nature of the GAFO search mechanism evaluates fitness 

for the whole range of uncertainties. This means the fittest solution will perform 

better for a wide range of future conditions. The fitness of the string is usually 

taken as some function of the objective function. One form of the fitness function 

(based on the minimum cost objective function) is to use the inverse of the total 

cost (network +penalty cost) (Chan et al., 2002), as shown in Equation 4.12. 

 𝑓𝑓(𝐷𝐷) =
1

 𝑓𝑓𝑐𝑜𝑠𝑡(𝐷𝐷) + 𝑃𝑐(𝐷𝐷)
 4.12 

where  𝑓𝑓𝑖 represent the fitness of 𝑖𝑡ℎ string (solution WDS). 
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Though designers may choose different forms of the fitness function, 

according to Simpson et al. (1994), the function as shown in Equation 4.12 

provides the most effective solutions from the GA search by ensuring the lowest 

cost string to survive. 

4.3.4 Generation of New Population Using Reproduction 

As previously mentioned, the GA mimics nature’s optimization techniques. 

As such, the next step of the GA is to use the current population to create the 

children that make up the next generation. The GA generates a new population 

by performing the necessary steps until the new generation is formed. These 

steps include selection, crossover, mutation, and accepting and are outlined in 

this section. 

 

Selection is the process of choosing parent strings from the population. 

The GA selects parent strings based on their fitness value; the selection of 

individuals is performed by survival of the fittest. The more an individual fits to the 

environment, the higher its chances are to survive and to create a new offspring 

of the new population (Popov, 2005). Different selection schemes may be used, 

such as truncation selection, tournament selection, ranking selection, and 

proportional selection. In the case of truncation selection the individuals are 

arranged based on their fitness value, and some proportion (p) of the best 

individuals will be selected with the same probability 1/p (Crow and Kimura, 

1970).  This method is less sophisticated than other methods and is not often 
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used in designing WDS (Goldberg and Deb, 1991). Tournament selection is 

based on choosing random individuals from the population and selecting the best 

individual as a parent (Blickle, 1995). This is done by running several 

“tournaments” for which the winner of each tournament is selected for crossover. 

The section pressure could be changed by varying the tournament size, where 

larger tournament sizes mean that weaker individuals have a smaller chance to 

be selected (Blickle and Thiele, 1995). According to Goldberg and Deb (1991), 

tournament selection requires a number of searches and is not very useful when 

a large population size is used. Ranking selection involves sorting the individual 

solutions based on the objective function and assigning the fitness to each 

individual depending on its position in the group (rank) (Grefenstette and Baker, 

1989).  Rank one is assigned to the weakest individual and the maximum ranking 

to the fittest individual. It behaves in a more robust manner than other methods 

(Back and Hoffmeister, 1991; Whitley, 1989). Roulette-wheel selection is also 

known as fitness proportionate selection, where the chance of solutions to be 

selected is proportional to its fitness value (Holland, 1975). Individuals with a 

higher value of fitness will have a higher chance of being selected. This is a 

popular approach (Goldberg and Deb, 1991) in which the selection probability is 

determined by the probability of fitness value. This study examines the 

performance of the proposed GAFO for both the ranking and Roulette-wheel 

selection schemes. 
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In the proposed GA, the string with a higher value of modified fitness 

function will have a higher chance of being selected, which is basically 

determined by the probability of fitness value of the strings. Equation 4.13 follows 

the spin of the roulette-wheel process, for which the probability of the selection of 

a particular string for reproduction is given by: 

 𝑃𝑓 =
𝑓𝑓𝑖

∑ 𝑓𝑓𝑖𝑛
𝑖=1

  4.13 

where 𝑓𝑓𝑖 is the fitness of string i in the population; 𝑃𝑓 is the probability of the string 

i being selected using roulette-wheel, and n is the number of individuals in the 

population. 

 

In ranking, the probability of selection is determined from the sum of ranks 

r. Equation 4:14 is used to determine the probability of selection based on 

ranking. 

 𝑃𝑟 =
𝑟𝑟𝑖

∑ 𝑟𝑟𝑛
𝑖=1

  4.14 

where 𝑟𝑟𝑖  is the ranking of string i in the population; 𝑃𝑟  is the probability of the 

string i being selected using the ranking selection scheme, and n is the number 

of individuals in the population. 

 

The individuals that are retained based on their fitness value through the 

selection process are called elite children. Once relatively good strings are 

chosen, a reproduction process is performed by the genetic operators crossover 
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and mutation. Crossover is the process of recombination of parents to produce 

their new offspring (children). This is the point where the genes of strings 

between the parents are transferred. One randomly sampled breaking (cut) point 

along the chromosome is used to swap the partial string from each chromosome.  

 

A typical recombination in the GA requires that two parents and a single 

point crossover is performed, but schemes with more parent areas and multiple 

crossover points are also possible (Popov, 2005). In this study the flexibility 

based GA is examined for both one-point and two-point crossover methods and 

the one that performs better is chosen. One-point crossover is where a random 

single point on chromosome is selected and the string is swapped between 

parents. Two-point crossover is where two crossover points are selected and the 

parent stings swiped between two points. According to Simpson et al., (1994), 

the crossover between parents is performed based on the crossover probability. 

A typical range of crossover probability ranges between 0.6 and 0.9 (Eiben and 

Smith, 2003). For example, considering a crossover probability of 0.75, the GA 

randomly picks two strings and generates a random number in the range of 0 to 

1, and the crossover is performed if the random number is less than 0.75. 

 

Mutation is an occasional flipping of genes that prevents the loss of 

potentially useful genetic information. This process provides a small local change 

of feasible solutions to embed the changeability of the string and to steer away 

from convergence to the local optimum solution. The newly generated population 
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(the network solution developed by selection and crossover) is further subjected 

to a random change of the value of a gene (pipes) from the available pipe size 

based on the mutation rate. The probability of mutation often ranges from 0.01 to 

0.05 (Eiben and Smith, 2003). According to Simpson et al. (1994), 1/n is used as 

a guideline for computing the probability of mutation, where n is the size of the 

population. According to Srinivas and Patnaik (1994), the optimal mutation rate 

depends on the type of problem. Thus, this study will examine the proposed 

GAFO for a wide range of mutation (0.035 to 0.08) with respect to the 

progression rate of the GA.   

 

To avoid the loss of the best population in the generation, the GA passes 

the chromosome with a high fitness value to the other generation without any 

crossover and mutation. This population is then either replaced with another 

better population or remains unchanged if there is not a better population in the 

subsequent generations. Once the selection-crossover-mutation is performed, 

the new offspring is placed into the population. This final step is called 

“accepting” the new child.  

4.3.5 Production of Successive Generation and Termination 

The individuals who pass the selection-crossover-mutation process 

described above form a new generation, and the reproduction cycle goes on until 

an appropriate termination condition is met. GA repeats the above steps to 

generate successive new generations. As the number of generations increases, 
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the individuals in the population get closer and converge to the objective function 

(Eiben and Smith, 2003). For a least cost GA optimization process, the least cost 

strings are stored and updated as a cheaper alternative. This process repeats 

until the termination criteria are satisfied. Most GA optimizations use the following 

termination criteria (Safe et al., 2004): 

i) Maximum Generation: The GA stops when the number of generations 

reaches the value of the initially specified generations. 

ii) Time limit: This criterion is based on getting some result within a period of 

time. It returns solution strings within a specified number of iterations, 

whether it has reached the extreme or not. 

iii) Fitness limit: This criterion is based on an initially specified fitness limit. 

The GA stops when the fitness function for the best string in the 

population is less than or equal to the fitness limit. 

iv) Stall generation: This criterion is based on whether there is improvement 

in the fitness function. The GA terminates if there is no improvement in the 

fitness value of the best individual over stall generations. 

v) Stall time limit: This criterion is also based on the improvement of the 

objective function over an interval of time (stall time limit). The GA stops 

when there is no improvement in the objective function during the stall 

time limit. 

 

The options stall time limit and time limit prevent the algorithm from 

running too long, but may not return an optimum value.  According to Dijk et al. 
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(2008), the simplest stopping criteria use a fixed number of generations or 

alternatively use a stall generation where the reproduction cycle terminates when 

no improvement is observed in the fitness value of the best string in some fixed 

number of generations. In this study both the maximum generation and stall 

generation stopping criteria are used.  

4.3.6 Guideline for the GA Based Flexibility Optimization  

Unlike other traditional GA optimization techniques used by different 

researchers (Simpson et al., 1994; Babayan et al., 2007; Giustolisi et al., 2009; 

Nicklow et al., 2010), GAFO performs the optimization in stages for a wider range 

of possible future states. To guide designers implementing the developed GAFO 

model for the design of flexible WDS, the optimization process has been 

summarized in 10 steps below. 

i) Read network data, cost data, required minimum pressure, probability of 

mutation, population size, maximum number of generation, penalty factor, 

design horizon, design stages, and number of decision points (scenario 

nodes). 

ii) Read scenario data for the uncertain parameters. This is a range of future 

water demand scenarios descried by future state (s) and time stages (t). 

iii) Generate initial population using random generator for all possible future 

state (s) and time stages (t). This represents a possible initial pipe network 

solution in the design of WDN.  

iv) Counter 1. 
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v) For all population perform the following: 

a) Call the WDS design software EPANET and perform a hydraulic 

analysis to determine the flow and nodal pressure values. This is 

performed under all possible scenarios (step ii). 

b) Evaluate the cost of the solution networks. This is the NPV associated 

with the solutions for all scenario states (s) and time stages (t).  

c) If the solution doesn’t meet the minimum required pressure head, 

calculate the penalty cost for all nodes with pressure less than the 

minimum. This is done for all scenario states (s) and time stages (t). 

d) Calculate the total cost as the sum of the network cost and the penalty 

cost for all possible states and stages of design (over the whole range 

of possible scenarios). 

e) Calculate the fitness of all future states. 

vi) Increment counter 1. 

vii) If counter is greater than the maximum generation, or if there is no 

improvement in the fitness function for certain specified generations, then 

the GA will converge. If so, store the detail of the best solution and go to 

step x—otherwise go to step 8. 

viii) Generate a new population 

a) Select a best fit solution using selection scheme. 

b) Perform the crossover for the selected population based on the 

probability of crossover (select two at a time to produce two offspring). 
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Keep the best solution from the previous population without crossover 

(offspring will be a copy of parents). 

c) Mutate the offspring based on different mutation rates. 

d) Store the new population. 

ix) Repeat steps 5 to 7. 

x) Store the details for the best solution WDS which performs under 

uncertainty. 

4.4 Hypothetical Test- GAFO Model  

4.4.1 Input Pipe Data and GA Parameters 

In this section, the GAFO model is applied to a hypothetical water 

distribution network. In this hypothetical test, spatial and temporal variation of 

demand is considered as an uncertain parameter. The hypothetical water 

distribution network layout following the critical spatial growth scenario is shown 

in Figure 4.4 (all other scenarios are tabulated in Table 4.1). A pipe length of 

1000m and roughness of 130 is considered for all commercially available pipe 

diameters tabulated in Table 4.3. A 40-year design horizon with three-stage 

deployment is considered in this case study. The developed GA optimization 

model is applied to determine the least costly WDS solution that satisfies the 

future spatial and temporal growth demand while maintaining adequate pressure 

(H≥20m) to determine the flexible WDS that can cope with the future spatial and 

temporal population growth in a more tractable manner. 
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Figure 4.4 Typology of the hypothetical WDS  
 

GAFO is performed for a population of 50 individuals with 500 

generations. Thus, the test includes a sample of 250,000 individuals (50 

chromosomes in 500 generations). For the above typology, with all 11 pipes and 

14 different commercially available pipe diameters, the solution space contains a 

total of 1411=4.05X1012 different possible solutions at each stage of the design. 

This means a GAFO sample represents around 0.000006% of the solution 

space. A step-by-step application of the developed model to this hypothetical 

case study and the simulation results are presented below. In addition, the model 

is also examined with different values of mutation rate of penalty factor with 

different selection and crossover methods. 

4.4.2 Input Spatial and Temporal Demand Growth 

The optimization is performed for a range of uncertain spatial and 

temporal demands. Uncertainty in nodal demand is examined at three discrete 

design stages (0, 20th, and 40th year). For this specific case, an increasing nodal 

   

Area A1 Area A2 Area A3 

t=0 t=20  t=40 years 
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demand pattern with a range of uncertainty varying between 20L/s and 40L/s 

during the first stage, and 20 L/s to 60L/s during the second stage is used. The 

number of possible decisions and the state of demand at each design stage is 

shown in Table 4.1. 

 

Table 4.1 Design stages and future growth  
 

Simulation 
time step 

(i) 

Design 
period t 
(years) 

Number of 
Decision 

points 
(d) 

Nodal demand 
in L/s 

(Q) 

Spatial 
growth  

(each 1km2) 

Total 
decision 
points 

T0 0 1 [20] A1 
6 T1 20 2 [20, 40] A2 

T2 40 3 [20, 40, 60] A3 
 

The uncertainty representing the specified range of demand and spatial 

extent is modeled using the demand vectors. The scenarios representing the 

future demand growth for each design stage is represented as shown in Table 

4.2. These demand vectors are input parameters of the GAFO model. 

 

Table 4.2 Uncertain demand scenarios 

Scenarios 
Spatial extent 

Year 0-20th-40th 
Nodal demand (L/s) 

Year 0-20th-40th 

1 A1T0-A1T1-A1T2 20-20-20 
2 A1T0-A1T1-A2T2 20-20-40 

3 A1T0-A2T1-A2T2 20-40-40 

4 A1T0-A2T1-A3T2 20-40-60 
 

For the WDS to accommodate the future spatial and temporal demand 

growth shown in Table 4.2, this hypothetical test considers a platform approach 
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that uses parallel piping of the WDS. Parallel pipes will be deployed to the 

platform component when the future growth requires either spatial expansion or a 

capacity increase. In addition to the platform approach, flexibility is generated by 

staging the system deployment such that the WDS could change in response to 

different future change requirements, as shown in Figure 4.5. 

 

 
Figure 4.5 WDS spanning over the range of scenario  

 

Figure 4.5 illustrates a WDS that follows the spatial and temporal growth 

of demand from A1 to A3 over 40 years. The layout is based on centralized 

designs, but a flexible approach where small incremental change in pipes is 

utilized to increase the capacity of the WDS so as to accommodate a variety of 

different future changes. 

A1 

A2 

A3 

Demand/ 
Spatial 
extent 

T0=0 T1=20 T2=40 Year 
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4.4.3 Design Variable and GAFO Objective Function  

Pipe diameter is the only design variable considered in the design 

process.  Fourteen different commercially available diameters are used. The 

pipes range from a minimum pipe diameter of 25.4mm to a maximum pipe 

diameter of 609.6 mm. The list of these pipe diameters and their corresponding 

unit costs are shown in Table 4.3 (Prasad et al., 2004).  

 

Table 4.3 Pipe cost 

Diameter 
(mm) 

Pipe cost 
($/m) 

 

Diameter 
(mm) 

Pipe cost 
($/m) 

25.4 2  304.8 50 
50.8 5  355.6 60 
76.2 8  406.4 90 
101.6 11  457.2 130 
152.4 16  508 170 
203.2 23  558.8 300 
254 32  609.6 550 

 

The GAFO minimizing cost objective function developed in this chapter 

(see Equation 4.8) is applied to optimize the WDS. The total cost is calculated 

using several input parameters such as: pipe length  L =1000m cost function 

K ∗ Dj
n values from Table 4.3; discount rate r= 3%; design stages t={T0, T1, T2} 

where each stage is ∆t=20 years; maximum future number of states at each 

period vary from s={1} to s= {1, 2, 3}. In addition, the number of pipe links N={4, 

6, 8} is also an input parameter, but it follows the spatial growth and is decided 

by the optimizer at each decision stage.  
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4.4.4 GAFO Process and Result Analysis 

For each decision point, the GAFO generates an initial population using a 

random number generator that returns a pseudo-random integral number in the 

range from zero to Rand_max. The integer code representing commercially 

available pipe diameters is shown in Table 4.4 (maximum integer representing 

the pipes is Rand_max=13). 

 

Table 4.4 Integer code representing the commercially available pipes 
 

Diameter 
(mm) Integer 

Diameter 
(mm) Integer 

25.4 0 304.8 7 
50.8 1 355.6 8 
76.2 2 406.4 9 
101.6 3 457.2 10 
152.4 4 508.0 11 
203.2 5 558.8 12 
254.0 6 609.6 13 

 

Hydraulic simulation is performed using WDS simulation software 

EPANET (Rossman, 2000). This software is used to compute the pressure head 

and supply at each node, as well as the discharge in each pipe under the 

specified input parameter. This model is coupled with the GAFO model. Thus, 

GAFO’s randomly generated populations (WDS solution pipes) are used as an 

input for hydraulic simulation. This stage of GAFO computes the violation of 

performance due to changing input parameters (demand). The performance (i.e. 

pressure) of the string is analyzed for all possible demand cases. A constant 

penalty factor of 10,000 for the nodes that do not meet the minimum required 
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pressure (20m) is used. The performance variation in GAFO is computed using 

unique penalty functions developed in this chapter (Equation 4.10). The equation 

considers the performance variation for all 6 decision points formed by the 

different stages of the design t= {0, 1, 2} and future states s={1, 2, 3}. 

 

The sum of the penalty values is used to calculate the fitness of the 

population performing under a wide range of uncertainties. The performance of 

the GAFO is examined for both ranking and roulette wheel selection schemes. 

GAFO keeps a copy of the best parent population to the new offspring without 

crossover or mutation. This avoids the loss of the fittest population due to 

crossover and mutation processes. However, if there is a better population in 

subsequent generations, the GAFO replaces the best fit population from the 

previous generation with the best population from the later generation. One and 

two cut crossover methods with different probability of crossover are applied to 

examine the model. The GAFO simulation is also tested for different mutation 

rates. Successive generations are generated using similar steps. As the number 

of generations increase, the strings get closer together and converge to an 

objective function (least cost). Two termination criteria are used. The GA stops at 

a maximum of 500 generations, or if less than 0.01% improvement in the fitness 

value of the best chromosome is satisfied for 10% of the generation (50 

generations). The progress of GAFO total cost function as a function of the 

number of generations for different selection schemes, crossover operators, and 

mutation probabilities is illustrated in Figure 4.6 to Figure 4.9. 
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Figure 4.6 GAFO progression (roulette-wheel with one-point crossover) 

 
 

 

Figure 4.7 GAFO progression (roulette-wheel with two-point crossover) 
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Figure 4.8 GAFO progression (ranking selection with one-point crossover) 

 
 

 
 

Figure 4.9 GAFO progression (ranking selection with two-point crossover) 
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The results in Figure 4.6 to Figure 4.9 show that the GAFO converges fast 

in the beginning generations and slower when coming close to the optimal 

solution (least cost WDS). This behavior is a general feature of GA optimization 

techniques; however, the convergence nature for different selection schemes 

and different mutation probability is different as shown in Figure 4.6 to Figure 4.9. 

GAFO’s best fitness population costs for each mutation rate are selected and 

tabulated in Table 4.5. The minimum of the best fitness and average values are 

also plotted in Figure 4.10 and Figure 4.11 for comparison.  

 

Table 4.5 Least cost for different selection scheme and crossover operator 

Selection 
scheme Crossover 

Best fitness population for different mutation probability 
(cost in US$) 

0.035 0.04 0.05 0.06 0.07 0.08 

Roulette-
wheel 

One-point  201047 224420 210213 197818 207672 206052 

Two-point 206761 217832 203331 227595 198637 206761 

Ranking 

One-point  219180 275419 224704 334506 334506 261424 

Two-point 264881 245378 251223 243109 257698 278788 

 

 

Figure 4.10 Comparison of the best fitness values  
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Figure 4.11 Comparison of the average fitness values 
 

Comparison of GAFO results is done for both best and average fitness 

values. In both cases, the GAFO results with roulette-wheel selection scheme 

give the least cost value rather than the ranking selection scheme. The 

comparison of different crossover operations also show that GAFO simulation 

results for roulette-wheel selection using one-point crossover operator is better 

than the two-point crossover. The smallest cost for this test study (using roulette-

wheel selection with one-point crossover) involves US $58,000 if the future 

became scenario 1 (A1T0-A1T1-A1T2), US $9,632 for scenario 2 (A1T0-A1T1-

A2T2), US $127,209 if scenario 3 (A1T0-A2T1-A2T2) were to occur, and US 

$197,818 if scenario 4 (A1T0-A2T1-A3T2) comes to fruition. The optimal cost for 

each scenario is illustrated in stages of development following the future 

scenarios (see Figure 4.12). Scenarios 1 to 4 in Figure 4.12 represent the future 

spatial and temporal water demand growth described using the scenarios shown 

in Table 4.2. 
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Figure 4.12 GAFO model results for the flexible WDS  

 

In this optimization process, the GAFO embeds changeability which allows 

the WDS to evolve when there is a change requirement. To evaluate the value 

added by flexible design using the GAFO model, the output (NPV) of GAFO is 

examined with respect to a non-flexible WDS designed in a traditional way as a 

baseline. The traditional WDS design is performed for a critical scenario 

combination. However the design follows the same spatial expansion of the area 

as the flexible WDS. The cost values for the traditional design are shown in Table 

4.6. 

A1 

A2 

A3 

Spatial 
extent 

T0=0 T1=20 T2=40 Year 
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Table 4.6 Least cost for different scenarios 
 

Scenarios Scenario path 
Optimal cost in US$ Total cost 

(US$) T0 T1 T2 

1 A1T0-A1T1-A1T2 205000 0 0 205000 

2 A1T0-A1T1-A2T2 205000 0 4043 209043 

3 A1T0-A2T1-A2T2 205000 22661 0 227661 

4 A1T0-A2T1-A3T2 205000 22661 3088 230749 
 

The comparison of the cost of WDS designed using GAFO (Figure 4.12) and 

using the traditional approach (Table 4.6) is done under different possible 

scenarios and plotted in Figure 4.13. 

 

 

Figure 4.13 Traditional vs GAFO model result  

 

The results in Figure 4.13.show that the improved cost of the flexible design 

ranged from 14% – 72% cheaper (for a range of four scenarios). Thus WDS 

designed using the GAFO model offer huge cost savings under possible future 

scenarios. The GAFO model maximizes the ability of the system to cope with 

uncertainties by enhancing a stepwise evolution of WDS over time. 
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4.5 Conclusions: Optimization for Flexible WDS 

In this chapter a new optimization model for the flexible design of WDS is 

developed. The proposed model is called the Genetic Algorithm based Flexibility 

Optimization (GAFO), and it allows for a stepwise evolution of WDS over time by 

embedding flexibility into the design stage. The GAFO model facilitates the 

development of flexible WDS that evolve with future change pressures and 

associated uncertainties over time and supports water system planners and 

designers to embed flexibility into WDS in a cost effective way. 

 

The major steps of the proposed GAFO model involve: initialization of 

population, hydraulic simulation, uncertainty based fitness evaluation, and 

generation of new populations using reproduction. These four major steps are 

common to any GA optimization technique. Nevertheless, the proposed GAFO 

model has two major distinct features. First, the GAFO model maximizes 

flexibility by optimizing the objective function over a wide range of future 

uncertainties described by a scenario tree. The optimization process follows the 

scenario path and performs dynamic decision-making where the decision at each 

stage influences subsequent decisions. This means the minimization of objective 

function and fitness evaluation is done for the WDS solution to perform for all 

possible scenarios. Second, the GAFO model enhances changeability of the 

WDS. The optimization function maximizes the ability of the system to cope with 

uncertainties by considering the ease of change in terms of cost from one state 
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to another. This enhances a staged design which allows for the stepwise 

evolution of WDS over time. 

 

The GAFO model is applied to a hypothetical case study in order to test 

different selection schemes, crossover operators, and mutation probability. The 

GAFO model performed well in terms of convergence for all cases. However, the 

comparison for the best and average fitness values shows that the GAFO 

performed better for roulette-wheel selection scheme with a one-point operator. 

In addition, the comparison between the GAFO model results and conventional 

non-flexible design shows that GAFO offers a cost savings of 14% to 72% for a 

range of four different scenarios. 

 

In the next two chapters, the GAFO model will be applied to two real world 

case studies covering two basic options for the design of WDS. In Chapter 5, 

GAFO is applied to embed flexibility into a conventional centralized WDS. In 

Chapter 6, GAFO will be applied to a decentralized clustered WDS.  
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5 Flexibility of Centralized WDS: Case Study, Mbale, Uganda 

5.1 Introduction 

This chapter will compare the flexibility aspects of a centralized system 

that has been designed in a traditional approach to a centralized system that 

follows the flexible design approach developed in Chapters 3 and 4. In the first 

case, the design of the WDS is based on a scenario that attempts to meet the 

critical (maximum) temporal and spatial variation of demand. In the latter case, 

different options are considered that view the growth of the WDS as a gradual 

expansion, which involves staging and a parallel piping system. 

  

The framework and optimization tool (GAFO) developed in this study has 

been applied to analyze and compare the flexibility aspects of the distribution 

system in Mbale, Uganda, taking into consideration the uncertainties associated 

with the changes in water consumption patterns and spatial growth in the town 

(see Figure 5.1). The case study will demonstrate the applicability of the 

developed framework and optimization tools for a centralized WDS that is 

planned for the future growth of a town. 
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Figure 5.1 The interconnection of Chapter 5 with other chapters 

5.2 Description of the Case Study Area 

The town of Mbale is located at the foot of Mount Elgon in Eastern 

Uganda, 34° 10' east of the prime meridian and 1° 03' north of the Equator, lying 

190 km northeast of Kampala (see Figure 5.2). The municipality occupies an 

area of approximately 24.35 km2 (Ministry of Water and Environment, 2011). An 

analysis of the past development trends in Mbale reveals that the present level of 

urbanization is primarily attributable to increases in the population. The census 

records show that the population increased by 93% from 1980 to 1991, and by 

an additional 30% from 1991 to 2001. The recent growth has been accompanied 

by an increase in urban migration from the town’s surrounding countryside to the 

town boundaries located in low-lying areas. 
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Figure 5.2 Geographic location of Mbale district  

 

The current population within the municipality is projected to be 94,300 

based on census results performed by the Uganda Bureau of Statistics, and 

Mbale’s population growth rate was estimated at 3.6% annually (UBOS, 2011). 

The current state of the settlement and a categorical characterization of Mbale’s 

water consumption are shown in Figure 5.3. Most of Mbale’s development has 

occurred in an ad-hoc manner with no historical growth pattern. Within the central 

business district, the settlements are concentrated according to a linear pattern, 

while sub-standard settlements located in the peripheral areas lack any structure.  

 

 



128 
 

 

Figure 5.3 Mbale current settlement extent & water consumption category 
 

5.3 Mbale Water Supply Challenges 

According to the National Water and Sewerage Corporation (NWSC, 

2012), the town’s main sources of surface water include the Nabijo River, the 

Nabiyonga River, and the Manafwa River. The NWSC estimates that the 

maximum abstraction rate for the Nabijo and Nabiyonga Rivers is 5000 m3/d, 

while the Manafwa River can support 10,000m3/d. Due to seasonal variations, 

the water supply is becoming increasingly unreliable, resulting in a rationed 

supply during the dry season due to low source flows. Irregular supply is also 

exacerbated by the ageing pipeline infrastructure, which is subject to frequent 

bursts and leaks. When NWSC took over operation of the water supply of Mbale 

in 1973, the WDS contained about 85 km of pipeline. Since then, the amount of 

 

Consumption Category 
Domestic 
Commercial 
Institution/ Govt. 
Public standpipe  



129 
 

the centralized infrastructure has ballooned to its current size of approximately 

270 km. The WDS has grown by extending the existing centralized system to 

incorporate new settlements. This has resulted in some localized pressure 

deficits. Some of the limitations of the operational capacity, as mentioned by 

NWSC, can be attributed to an undersized transmission main and an 

underperforming treatment unit.  

 

The existing challenges are expected to be amplified due to mounting 

population growth and urbanization pressures. Based on a growth rate of 3.6% 

(UBSO, 2011), the population of Mbale is expected to grow to 363,460 (more 

than three times the current population) by the year 2050. A summary of the 

population forecast from the years 2020 to 2050 is presented in Figure 5.4. 

 

 
 

Figure 5.4 Population forecast for Mbale town from 2020 to 2050 
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It is anticipated that the municipality will grow spatially along the main 

roads and corridors that connect it to other major towns (Webster et al., 2012). 

Literature on urban economics suggests that changes in urban land areas 

(generally in the form of urban expansion or sprawl) are based on economic 

factors that include income, population size, agricultural land values, and 

transportation costs (McGrath, 2005). Currently, corridors of new developments 

in the town are found along major roads. In this study the anticipated growth 

along the main roads to the south and north of the municipality is considered. 

Figure 5.5 shows the future spatial extent of the town. 

 

 

Figure 5.5 Spatial growth to the north and south of the town 
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Despite the challenges it poses, urbanization offers huge opportunities to 

implement a new paradigm for urban water systems. This is particularly the case 

in many emerging towns and villages like Mbale. Mbale is an emerging town—

the area does not have mature infrastructure or governance structures, and 

urban planning has not yet happened, therefore providing a chance to implement 

new approaches to the provision of water to the community (Webster et al., 2012; 

Tsegaye et al., 2012). One of the opportunities is to develop a flexible WDS for 

the emerging areas. 

5.4 Development of Flexible Centralized WDS  

In this section, the developed framework and GAFO tool is applied to 

design a flexible centralized WDS for Mbale town. Comparisons are also made 

between a system designed based on traditional approaches (robust design) and 

a flexible WDS designed using the developed method in this chapter. A step-by-

step application of the developed framework and the resulting comparisons are 

presented in the next subsections. 

5.4.1 Uncertainty Description and Scenario Development 

In this case study of Mbale, two major uncertainties are considered in 

terms of the town’s WDS: (i) future water consumption patterns, and (ii) the 

spatial growth of the town. The first uncertainty, water demand in the area, will 

vary depending on variations in population growth, socio-economic conditions, 

and physical water losses. It is therefore very important to take these future 
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variations into consideration. Through the use of scenarios, the possible future 

variations in water demand in Mbale are explored in this section. The second 

uncertainty involved in the future of the water system is the extent of the spatial 

expansion of the town due to unplanned growth. The town may grow in localized 

areas, though it may still follow linear extensions along roads; however, the 

extent of the expansion over time is uncertain. A consideration of these 

uncertainties at the design stage offers opportunities for the future water system 

to adjust to future growth at a reasonable cost, while considering potential 

options that may enable these uncertainties to provide value (Tsegaye and 

Vairavamoorthy, 2011). For the Mbale water system scenario, these two 

uncertainties are organized in a simple and tractable manner in which (i) the 

population grows continuously at a medium rate of 3.6%—which is associated 

with a range of possible spatial expansions—and (ii) per capita water demand 

either remains constant or increases with time. The following conditions are 

considered in determining the growth patterns the town may confront each year 

along the time horizon of 2020 to 2050. 

i) Year 2020: per-capita water consumption is 70 L/d; population density 

within the existing settlement area remains the same; population grows 

from 94,100 (in 2010) to 120,883 (in 2020), but the growth takes place in 

Area-2 (a forest area, which is expected to be a development site). 

ii) Year 2030: per-capita water consumption will either remain at 70 L/d or 

increase to 120 L/d due to increasing wealth; the town may either expand 

along the road to the south of the town center (Area-3) or remain the same 



133 
 

as that of 2020; population size will either remain the same as in 2020, or 

increase to 170,518 based on a growth rate of 3.6%; if there is a 

population increase, one-third of the additional population would settle in 

Areas-1 & 2, and two-thirds of the additional population would settle in 

Area-3 (see Figure 5.5). 

iii) Year 2040: per-capita water consumption will either remain at 120 L/d or 

increase to 140 L/d; the town may either expand along the road to the 

north of the town (Area-4) or remain the same as in 2030; population size 

will either remain the same as in 2030, or increase to 257,664 (based on a 

growth rate of 3.6%); if the population grows, one-third of the additional 

population will settle in Areas 1, 2, & 3 and two-thirds of the additional 

population will settle in Area-4 (see Figure 5.5). 

iv) Year 2050: per-capita water consumption remains at 140 L/d; the town 

may either expand north beyond Area-4 (to Area-5) or remain the same as 

in 2040; population size will either remain the same as in 2040, or will 

increase to 363,460 (based on a growth rate of 3.6%); if the population 

grows, one-third of the additional population will settle in Areas-1, 2, 3, & 

4, and two-third of the additional population will settle in Area-5 (see 

Figure 5.5). 

 

The above categories are used to develop the scenarios for this case 

study. Scenario development considers a 40-year design horizon with four-stage 

deployment. This means all scenarios will have four decision points (year 10th, 
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20th, 30th, and 40th). Based on the general future conditions suggested in each 

year, eight basic scenarios (development paths) can be developed as shown in 

Figure 5.6.  

 

This scenario tree is used for describing the future possible conditions in a 

tractable manner and to create a decision node for flexible design that allows for 

stepwise evolution of the WDS to cope with the scenarios. The eight scenario 

combinations considered are listed in Table 5.1 and a detailed description of all 

scenarios is shown in Table 5.2. 

 

 

Figure 5.6 Scenario tree representing the future demand 
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Table 5.1 List of scenarios considered (for Mbale town) 
 

Scenario No. Scenario 

1 A1T0- A1T1- A1T2- A1T3 
2 A1T0- A1T1- A1T2- A2T3 
3 A1T0- A1T1- A2T2- A2T3 
4 A1T0- A2T1- A2T2- A2T3 
5 A1T0- A1T1- A2T2- A3T3 
6 A1T0- A2T1- A3T2- A3T3 
7 A1T0- A2T1- A3T2- A3T3 
8 A1T0- A2T1- A3T2- A4T3 

 

Table 5.2 Description of the scenarios considered 
 
Scen- 

ario no Category Year 2020 Year 2030 Year 2040 Year 2050 

1 
Population  120883 

No change No change No change 
Demand  70 l/c.d 
Expansion  Area-2 
Population 
density 

Additional pop. 
settle in Area-2 

2 

Population  120883 

No change No change 

170510 
Demand  70 l/c.d 120 l/c.d 
Expansion  Area-2 Area-3 

Population 
density 

Additional pop. 
settle in Area-2 

1/3 of the 
additional pop. 
grow within Area-
1 & 2, and 2/3 
expand to Area-3  

3 

Population  120883 

No change 

170510 

No change 

Demand  70 l/c.d 120 l/c.d 
Expansion  Area-2 Area-3 

Population 
density 

All additional 
pop. settle in 
Area-2 

1/3 additional 
pop. grow 
within Area-1 
&2, and 2/3 
expand to 
Area-3  
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Table 5.2 (continued) 
 

Scen- 
ario no Category Year 2020 Year 2030 Year 2040 Year 2050 

4 

Population  120883 170510 

No change No change 

Demand  70 l/c.d 120 l/c.d 
Expansion  Area-2 Area-3 

Population 
density 

All additional 
pop. settle in 
Area-2 

1/3 of the 
additional pop. 
grow with in 
Area-1 &2, and 
2/3 expand to 
Area-3  

5 

Population  120883 

No change 

170510 257664 
Demand  70 l/c.d 120 l/c.d 140 l/c.d 
Expansion  Area-2 Area-3 Area-4 

Population 
density 

All additional 
pop.  settle in 
Area-2 

1/3 additional 
pop. grow in 
Area-1 &2, and 
2/3 expand to 
Area-3  

1/3 of the 
additional pop. 
grow within Area-
1,2&3,and  2/3 
expand to Area-4  

6 

Population  120883 170510 

No change 

257664 
Demand  70 l/c.d 120 l/c.d 140 l/c.d 
Expansion  Area-2 Area-3 Area-4 

Population 
density 

All additional 
pop. settle in 
Area-2 

1/3 of the 
additional pop. 
grow within Area-
1 &2, and 2/3 
expand to Area-3  

1/3 of the 
additional pop. 
grow within Area-
1,2 & 3, and 2/3 
expand to Area-4  

7 
 

Population  120883 170510 257664 

No change 

Demand  70 l/c.d 120 l/c.d 140 l/c.d 
Expansion  Area-2 Area-3 Area-4 

Population 
density 

All additional 
pop. settle in 
Area-2 

1/3 of the 
additional pop. 
grow within Area-
1 &2, and 2/3 
expand to Area-3  

1/3 of the 
additional pop. 
grow in Area-
1,2 & 3, and 
2/3 expand to 
Area-4  

8 

Population  120883 170510 257664 363460 
Demand  70 l/c.d 120 l/c.d 140 l/c.d 140 l/c.d 
Expansion  Area-2 Area-3 Area-4 Area-5 

Population 
density 

All additional 
pop. settle in 
Area-2 

1/3 of the 
additional pop. 
grow within Area-
1 &2, and 2/3 
expand to Area-3  

1/3 of the 
additional pop. 
grow within 
Area-1,2 & 3, 
and 2/3 
expand to 
Area-4  

1/3 of the 
additional pop. 
grow within Area-
1,2, 3 &4, and 2/3 
expand to Area-5  
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As an example, Figure 5.7 and Figure 5.8 illustrate the expected staged 

spatial growth patterns and the associated water demand of the town for 

scenarios 8 (A1T0- A2T1- A3T2- A4T3). 

 
    Area-5 
   Area-4 Area-4 
  Area-3 Area-3 Area-5 
 Area-2 Area-2 Area-2 Area-2 

Area-1 Area-1 Area-1 Area-1 Area-1 
Base year 

(2011) 
T0 

(2020) 
T1 

(2030) 
T2 

(2040) 
T3 

(2050) 
 

Figure 5.7 Staged spatial growth for scenario A1T0- A2T1- A3T2- A4T3 

 
 

    Q5=9874 

   Q4=8134 Q4=9247 

  Q3=3971 Q3=5422 Q3=6164 

 Q2=2036 Q2=3968 Q2=5417 Q2=6159 

Q1= 6426 Q1= 6426 Q1=12524 Q1=17100 Q1=19440 
Base year 

(2011) 
T0 

(2020) 
T1 

(2030) 
T2 

(2040) 
T3 

(2050) 
 

Figure 5.8 Water demand for scenario A1T0- A2T1- A3T2- A4T3 (in m3/d) 
 

Figure 5.9 shows the future water demand values and the extent of spatial 

growth for all possible scenarios (combinations of A and T). These values 

represent the cumulative of all nodal demands of the area. The hydraulic 

simulation and optimization will be performed for those ranges of demands with 

their corresponding nodal demand values. 
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Figure 5.9 Spatial and temporal variation of water demand (A in m3/d) 

5.4.2 Design Options Considered 

In this case study, a centralized design approach is followed to design 

WDS alternatives. The design of flexible centralized WDS employs the 

methodology and tools developed such that small incremental changes in pipes 

are utilized to increase the capacity of the WDS and to accommodate a variety of 

different future changes. This is done by adding parallel pipes to the main 

component when future growth requires either spatial expansion or a capacity 

increase (Kleiner, 1997). In addition, this approach allows for the implementation 

of WDS to be staged in a way that traces the urban growth trajectory more 

closely. The gradual stepwise development enables the expansion or deferral of 

WDS.  
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5.4.3 Generation of Flexibility  

This chapter will compare the flexibility aspects of a centralized system 

that is designed in a traditional approach (WDS-1) and a centralized system that 

follows a flexible design approach (WDS-2) as developed in Chapters 3 and 4. In 

the first case, design of the WDS has been based on a scenario that attempts to 

meet the critical conditions. In the latter case, different options have been 

presented that consider the growth of the WDS as a gradual expansion, which 

involves staging and a parallel piping system. Thirteen different commercially 

available pipe diameters ranging from a minimum of 50.8mm to a maximum of 

609.6mm are used. A list of the pipe diameters, their associated materials and 

laying costs is shown in Table 5.3 (Prasad et al., 2004; NWSC, 2012).  

 

Table 5.3 Pipe material and laying costs 

Diameter (mm) 
Pipe Material 

(US$/m) 
Pipe laying cost 

(US$/m) 

25.4 2 3 
50.8 5 3 
76.2 8 4 
101.6 11 4 
152.4 16 4 
203.2 23 7 
254 32 7 

304.8 50 10 
355.6 60 20 
406.4 90 20 
457.2 130 25 
508 170 25 

558.8 300 25 
609.6 550 25 
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The hydraulic simulation is performed using EPANET (Rossman, 2000). A 

40-year design horizon with four-stage deployment is considered, and the range 

of uncertainties described by the scenario tree is used as an input for the 

flexibility optimization. The details of the design process for the two options and 

the results of the simulation are presented in the next subsections. 

5.4.3.1 WDS Design Alternative-1 (WDS-1) 

The conventional approach to the design of centralized WDS-1 is based 

on deterministic assumptions about the future. These involve the highest 

population growth and town expansion (a critical future scenario). It considers a 

design philosophy based on a fixed set of requirements, despite the fact that 

variations to the predictions may occur in the system’s environment. In this case, 

the critical scenario-8 is used as an input with a staging design approach (see 

Table 5.2). The staging follows the spatial growth of the town such that Area-1 & 

2 will grow by 2020, Area-3 by 2030, Area-4 by 2040, and Area-5 by 2050. This 

staged design offers the option of investment deferral at different stages of the 

design. Developments of the WDS-1 at various points of the town’s expansion 

are shown in Figure 5.10. In this approach, as the population grows and new 

developments are established, the infrastructure is readily extended to provide 

the required additional capacity.  This approach relies on providing an oversized 

infrastructure that will accommodate the highest flow predicted based on the 

maximum population and spatial growth. Thus, the huge cost incurred for the 

oversized infrastructure requirement and increased capacity may be 
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underutilized if the development path does not follow the expected maximum 

predictions. 

 

                            

 

               

Figure 5.10 Mbale WDS-1 in year (a) 2020, (b) 2030, (c) 2040, (d) 2050 
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The stages of development from Figure 5.10 (a) to (d) represent the 

possible spatial growth of the town from the year 2020 to 2050. However, the 

scenario also describes possible growth patterns of the town. Thus, the 

optimized design is done for all scenarios, and the net present value (NPV) of the 

optimized centralized system that has been designed in a traditional approach for 

each scenario is tabulated in Table 5.4. These costs include the cost of reservoir 

and pipe material and pipe laying costs for the centralized WDS. 

 

Table 5.4 The total cost of WDS-1 under all scenarios 

Scenario 
No. Scenario 

WDS-1 
(NPV in US$) 

1 A1T0- A1T1- A1T2- A1T3 2,827,024 

2 A1T0- A1T1- A1T2- A2T3 3,285,148 

3 A1T0- A1T1- A2T2- A2T3 3,334,676 

4 A1T0- A2T1- A2T2- A2T3 3,401,237 

5 A1T0- A1T1- A2T2- A3T3 3,554,399 

6 A1T0- A2T1- A3T2- A3T3 3,620,959 

7 A1T0- A2T1- A3T2- A3T3 3,696,526 

8 A1T0- A2T1- A3T2- A4T3 3,836,503 
 

5.4.3.2 WDS Design Alternative-2 (WDS-2) 

WDS-2 is designed as a centralized system that expands over time to 

accommodate uncertainty in demand and spatial growth. The design is 

performed using the developed GAFO model that increases the ability of the 

system to deal with a range of uncertainty (represented by the eight scenarios). 
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In this case, a parallel pipe design option is employed to provide the required 

flexibility. A step by step incremental in the capacity of the WDS traces the urban 

growth trajectory more closely without affecting the performance of the existing 

system.  Four staged stages of development are also considered in the design 

process (year 2020, 2030, 2040, and 2050). Figure 5.11 shows WDS-2 in year 

2020 and 2050.  

 

 

                

Figure 5.11 Mbale WDS-2 in year (a) 2020, (b) 2050 
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The WDS in Figure 5.11 (a) and (b) represent the possible spatial extent 

of the town in the year 2020 and 2050; however, there are also many other 

possible growth patterns of the town described by the eight scenarios. The 

optimal design is performed for all scenarios using the GAFO model, and the 

NPV is summarized in Table 5.5. 

 

Table 5.5 The total cost of WDS-2 under all scenarios 

Scenario 
No. Scenario 

WDS-2 
(NPV) 

1 A1T0- A1T1- A1T2- A1T3 1,417,732 

2 A1T0- A1T1- A1T2- A2T3 2,067,335 

3 A1T0- A1T1- A2T2- A2T3 2,418,008 

4 A1T0- A2T1- A2T2- A2T3 2,590,987 

5 A1T0- A1T1- A2T2- A3T3 2,694,005 

6 A1T0- A2T1- A3T2- A3T3 3,014,265 

7 A1T0- A2T1- A3T2- A3T3 3,229,616 

8 A1T0- A2T1- A3T2- A4T3 3,696,553 
 

The results show that the WDS designed using the GAFO model offers 

much larger cost savings, that range from 4% to 50% (for eight different 

scenarios), than the conventional centralized WDS (see Table 5.5 and Table 

5.4). This shows the ability of the WDS-2 to change from one state to another 

state in a cost effective manner. However, cost alone does not guarantee 

flexibility. Thus, a post optimization analysis is performed below to assess the 

performance of the two systems with respect to flexibility. 
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5.4.4 Flexibility Assessment and Decision Making 

The decision of what constitutes the best flexible WDS option is supported 

by a post optimization assessment of the system’s capability to respond (Crs), 

and capability to react (Cra). These flexibility parameters are combined into the 

level of flexibility Fopt measuring parameters that represent the extent/ease with 

which a system can cope with uncertainties. A comparison is made using the 

regret principle based on the Fopt value of each WDS alternative, where the Fopt 

value is the weighted average value of Crs and Cra.  

5.4.4.1 Flexibility Assessment  

5.4.4.1.1 Determination of the Capability to Respond 

Crs is the ratio of the range of responses Urs to the optimized cost of 

change Cc for the WDS options under different scenarios. Figure 5.12 and Figure 

5.13 show the Urs and Cc of the different WDS options, respectively.  

 

Figure 5.12, shows that the centralized conventional WDS-1, which is 

designed based on deterministic assumptions, is over-designed to absorb future 

changes and uncertainties. This means that the range of responses of the WDS-

1 is larger than the range of responses of the WDS-2. However, this larger range 

also incurs greater costs (Cc) than the WDS-2 designed using the developed 

GAFO model (as shown in Figure 5.13).  
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Figure 5.12 Range of response for WDS-1 and WDS-2  

 

 

Figure 5.13 Cost of change for WDS-1 and WDS-2  

 

The range of response Urs values shown in Figure 5.12 and the cost of 

change Cc values shown in Figure 5.13 are used to calculate the capability to 
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respond Crs of each WDS design under different scenarios, where Crs is the ratio 

of Urs and Cc (see Equation 3.1 in Chapter 3). A sample calculation is shown 

below for scenario-1 (A1T0- A1T1- A1T2- A1T3). A similar approach is also 

followed for other scenarios; Crs values are plotted in Figure 5.14. 

𝐶𝑟𝑠(𝑊𝐷𝑆−1) =
𝑈𝑟𝑠
𝐶𝑐

=
22167 ∗ 104

2827024
= 98.4 m3/US$  

𝐶𝑟𝑠(𝑊𝐷𝑆−2) =
12354 ∗ 104

1417732
= 87.1 m3/US$  

 

 

Figure 5.14 Crs value for WDS-1 and WDS-2 

 

The values shown in Figure 5.14 depict that WDS-2, designed based on 

the principles of flexibility, is capable of responding to future scenarios. In 
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effort. This is because the WDS-1 incurs a large cost associated with the excess 

capacity of the system. 

5.4.4.1.2 Determination of the Capability to React 

As discussed in Chapter 3, the Cra value is represented by the ratio of the 

range of uncertainties that the WDS can handle (Ura) to the effort required to 

adapt (Ca). The ranges of adaptation as well as the cost of adaptation values are 

plotted in Figure 5.15 and Figure 5.16. As shown in Figure 5.15, the centralized 

conventional WDS-1 is required to adapt to a small range, as it was over-

designed.  Because the range of reaction of the WDS-1 to the future changes is 

smaller than that of the WDS-2, the cost of adaptation to the smaller range is 

likewise smaller (see Figure 5.16). 

 

 

Figure 5.15 Range of adaptation for each design option 
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Figure 5.16 Cost of adaptation associated with each WDS design option  

 

The values from Figure 5.15 and Figure 5.16 are used to calculate the Cra 

value for each WDS. A sample calculation for scenario-1 (A1T0- A1T1- A1T2- 

A1T3) is shown below. The Cra for all decision paths is calculated in a similar 

manner, and the results are summarized in Figure 5.17. 

𝐶𝑟𝑎(𝑊𝐷𝑆−1) =
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𝐶𝑎

=
 20129 ∗ 104

2044923
= 101.6 m3/US$ 

𝐶𝑟𝑎(𝑊𝐷𝑆−2) =
 29942 ∗ 104

3451123
= 115.3m3/US$ 

 

Even though the total cost of the reaction for WDS-1 is smaller, the results 

shown in Figure 5.17 depict that WDS-2, designed based on the flexibility 

principles, has a higher capability to react (Cra) to uncertain future scenarios.  

This is because the effort required to adapt to a unit range of future change is 

larger for the WDS-1 designed using the conventional approach than the WDS-2 
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designed using the GAFO tool. However, scenario 8 (A1T0- A2T1- A3T2- A4T3) is 

based on the maximum possible future demand, and both WDS-1 and WDS-2 

designed for this scenario are not required to adapt to any scenario. 

 

 

Figure 5.17 Cra values of WDS-1 and WDS-2  

5.4.4.1.3 Determination of the Level Flexibility 

The flexibility of the different WDS options is determined using the Fopt. 

Larger Fopt values equate to a longer WDS lifetime flexibility under the specified 
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Figure 5.18 shows Fopt values based on an equal weighting factor for Cra 

and Crs for each WDS option under different scenarios.  

 

 

Figure 5.18 The optimal flexibility value for each WDS option 
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the next subsection. 
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5.4.4.2 Choosing Between WDS Design Options 

Flexibility-based decision making should follow a general quantitative 

approach to settling on a decision that is suitable for a wide range of future 

conditions. In this case study, a minimax regret approach, which minimizes the 

future regret associated with the present decision, has been implemented to 

choose between design options. The regret is represented by the opportunity 

loss with respect to the Fopt value. A sample calculation of the regret associated 

with the different options under scenario A1T0- A1T1- A1T2- A1T3 is shown below. 

𝑓𝑓𝑅(𝑊𝐷𝑆1) = 𝑚𝑚𝑎𝑥�𝐹opt(i,j)� −  𝐹opt(i,j) = 101.2 − 90.0 = 11.2 

𝑓𝑓𝑅(𝑊𝐷𝑆2) = 101.2 − 101.2 = 0 

 

The regret for each alternative under all other scenarios is calculated 

using the same approach, and the results are summarized in Table 5.6 below.  

 

Table 5.6 Regret associated with the different design options 

Scenario 
no. Scenario 

Regret with respect to Fopt  
(m3/US$) 

WDS-1 WDS-2 
1 A1T0- A1T1- A1T2- A1T3 11.2 0.0 
2 A1T0- A1T1- A1T2- A2T3 8.7 0.0 
3 A1T0- A1T1- A2T2- A2T3 7.9 0.0 
4 A1T0- A2T1- A2T2- A2T3 10.3 0.0 
5 A1T0- A1T1- A2T2- A3T3 10.7 0.0 
6 A1T0- A2T1- A3T2- A3T3 4.3 0.0 
7 A1T0- A2T1- A3T2- A3T3 8.1 0.0 
8 A1T0- A2T1- A3T2- A4T3 2.1 0.0 

Maximum regret 11.2 0.0 
Minimax regret WDS-2 
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Based on the minimax regret analysis shown Table 5.6, the WDS-2 design 

option, which involves step by step incremental in the capacity of the WDS by 

adding parallel pipes has a lower regret under different scenarios when 

compared to the conventionally designed system (a difference of 11.2m3/US$). In 

addition, the results of this application indicate that the flexibility framework was 

able to generate a more flexible WDS-2 that was 4%–50% less expensive than a 

conventionally designed system when compared against several future 

scenarios. Thus, this system offers a longer lifetime flexibility value and is 

therefore considered the superior alternative. The choice of the decision path for 

the preferred option is based on current knowledge and is not a one-step 

decision. It can be changed based on how future uncertainties evolve and unfold. 

In addition, the system allows numerous stage deployments during the course of 

its lifecycle to embed different options that allow the system to evolve through 

time.  

5.5 Conclusions: Flexibility of Centralized WDS 

This chapter has applied the developed flexible GAFO WDS design 

framework and tool to take into account future uncertain conditions in the real 

case study of a WDS in Mbale, Uganda.  

 

In this case study of Mbale, two major uncertainties have been considered 

in terms of the town’s WDS: (i) future water consumption patterns, and (ii) the 

spatial growth of the town. The first, water demand in the area, will vary 
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depending on variations in population growth, socio-economic conditions, and 

physical water losses. The second uncertainty involved in the future of the water 

system is the extent of the spatial expansion of the town due to unplanned 

growth. The town may grow in localized areas, though may still follow linear 

extensions along roads; however, the extent of the expansion over time is 

uncertain.  

 

This chapter organized future uncertainties in Mbale into eight possible 

scenarios using a scenario tree method, and an optimization was performed 

under those developed scenarios. The results of this application showed that the 

flexibility framework was able to generate a flexible staged design that was 

cheaper than a conventionally designed system when compared against several 

future scenarios. The improved costs of the flexible design ranged from 4%–50% 

cheaper for a range of eight scenarios. In addition, the application highlighted 

that the flexible design has a lower regret under different scenarios when 

compared to the conventionally designed system (a difference of 11.2m3/US$). 

 

The flexible WDS offers the ability to cope with new, different, or changing 

requirements and is therefore considered the superior alternative. This chapter 

finally concludes that small incremental in WDS capacity provides an opportunity 

in adapting to future change and uncertainties in a cost effective manner. 
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6 Optimization Model for Clustering WDS in Emerging Area 

6.1 Introduction 

This chapter discusses the development of an optimization model that 

divides future growth of urban area into clusters to allow for the provision of 

flexible, modular decentralized water distribution system (WDS). 

 

Decentralized systems are small sub-systems (clusters) that have large 

degree of autonomy and could be adapted to future changes with low effort and 

without affecting the performance of the entire system (Böhm et al., 2011; Kluge 

and Libbe, 2006). This modular diversity exponentially increases the amount of 

possible configurations that can be achieved for urban water systems from a 

given set of inputs.  

 

Decentralized/clustered WDS can be implemented in an incremental 

fashion, which reduces investment costs and makes the project easier to 

manage (Wang et al., 2008; Weber et al., 2007). In addition, decentralized 

systems allow for WDS to be staged in a way that traces the urban growth 

trajectory more closely. According to Wang et al., (2008) the gradual stepwise 

development of decentralized systems enables the expansion of urban water 

systems that follows the spatial growth, and hence embeds flexibility to WDS.  
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Besides flexibility there are additional reasons that support the shift from 

conventional centralized WDS to decentralized clustered WDS. Considering 

increasing global change pressures, there are increasing concerns about 

whether conventional centralized water systems will be able to manage scarcer 

and less reliable water resources in a cost efficient manner (Valerie, 2008). In 

order to cope with these challenges, future urban water systems are likely to be 

more decentralized than conventional systems because water reuse requires 

reducing the distance between water users and treatment locations. This 

minimizes energy demand and infrastructure costs and maximizes the recovery 

of heat energy if water is used close to where it is generated (Cornel et al., 2011; 

Newman, 2001; Bieker et al., 2010; Chen and Wang, 2009; and Verstraete et al., 

2009). 

 

In addition decentralized systems provide a better capacity to reduce the 

risk associated with WDS contamination through biological or chemical 

ingression as well as malicious attacks such chemical, biological and radiological 

agent. This is because decentralized units are small and independent units 

where the effect associated with water contamination and malicious attacks will 

be contained within a cluster. However in case of centralized WDS any 

contaminant ingression and malicious attack could propagated to the whole 

systems. 
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There are two major challenges for the flexible design of decentralized 

and clustered WDS. First, currently no methods exist which guide planners in 

how to cluster decentralized urban water systems. Second, work is still missing 

that demonstrates that the increased flexibility offered by decentralized/clustered. 

This chapter addresses the first challenge and develops a new clustering 

methodology that allows for better clustering of urban water systems for 

emerging areas into small and adaptable clusters that maximizes the 

performance benefits of the systems (recovery of resources, etc.). 

 

The proposed clustering/decentralization approach is based on two major 

optimization principles: minimization of the distance from source to consumer by 

assigning demand to the closest source center, and maximization of the 

homogeneity within the cluster by reducing the variation in population density, 

land use, socio-economic level, and topography. Compared to conventional 

centralized WDS, modular and clustered WDS provide greater flexibility. This 

clustering approach is part of the framework for the flexible design of WDS 

presented in Chapter 3, where it is presented briefly (see Figure 6.1). Application 

of the clustering optimization model to real world case studies is presented in 

Chapter 7.  
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Figure 6.1 The interconnection of Chapter 6 with other chapters 

6.2 The Proposed Clustering Method for Emerging Areas 

In this study clustering of the water system is proposed for the emerging 

areas. The proposed clustering methodology is based on two major principles: (i) 

minimization of the distance from source to consumer by assigning demand to 

the closest source center, and (ii) maximization of the homogeneity within the 

cluster by reducing the variation in population density, land use, socio-economic 

level, and topography. In order to define an optimal cluster boundary that 

minimizes source-demand distance and maximizes the homogeneity within the 

cluster, this research  considers different parameters such as the location of 

water sources (surface water and ground water), topography (Digital elevation-

DEM), spatial and temporal distribution of population, land use characteristics, 

and the socio-economic status of the area (GAUFF, 2011). These parameters 
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are used to define source-demand distance, intra-cluster demand, and 

topographic homogeneity of the study area (Herrera et al., 2010). 

6.2.1 Source-Demand Distance  

The sources-demand location plays an important role in reducing the 

transport of water and associated investment cost. Assigning demand to the 

nearest source location reduces the effort to collect and distribute water to the 

users. This reduces the cost of the pipe network (due to reduced pipe 

size/length) required to collect and distribute water and the energy needed for 

pumping long distances. Minimizing the transportation distance also increases 

the compactness of pipe and sewer networks, thereby maximizing resource 

conservation and minimizing losses (i.e. leakage). In addition, it improves the 

potential to reuse and recycle wastewater to the proximity within the cluster.  

6.2.2 Intra-cluster Demand and Topographic Homogeneity  

Understanding topography and water consumption is extremely important 

for optimization of investment and operation costs and maximization of resource 

efficiency. Traditionally, analyses were performed for large regions which 

involved a variety of topography, land use, and associated demand. However, 

with the advent of clustering, the study of the behavior of smaller areas has 

become necessary to allow for the creation of uniformity within the clusters. The 

uniformity should consider topography, population distribution, land use, and 

socio-economy within a cluster. The population distribution, land use and socio-
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economic parameters are aggregated into a spatio-temporal demand distribution 

of the area. Intra-cluster demand homogeneity is used as one of the parameters 

to minimize the effort required to move water and wastewater. Intra-cluster 

homogeneity is the measure of the similarities or dissimilarities between parcels 

of the same cluster. 

 

Different demand areas require different infrastructure capacity. Clustering 

of large and small demand areas together involves huge variations in 

consumption which can cause larger pressure fluctuation than areas with similar 

demand distribution. This causes additional efforts to supply and manage water 

and wastewater in the area. For example, areas with urban agriculture have 

different demand patterns than industrial or residential areas. Thus, maximizing 

the similarities by clustering residential and agricultural areas separately will 

improve the required efforts compared to if they were clustered together. The 

clustering of different land uses into different clusters will ensure multiple uses of 

water by cascading it from higher to lower-quality needs and through reclamation 

treatments for a return to the supply side of the other cluster. Water used by 

residential clusters can be re-used by industrial or agricultural clusters. Demand 

based clustering also improves the ability to implement relevant technology (i.e. 

water treatment and wastewater reuse recycling schemes) within a 

homogeneous cluster. This also allows better control of small and homogeneous 

cluster units.  

 



161 
 

Topography is the other major factor which affects the flow of water and 

wastewater. Areas with similar topographic characteristics reduce costs 

associated with infrastructure and pumping of water and wastewater in the area. 

However, large variations in topography increase the effort required to collect 

and supply water, and reuse, recycle, and discharge wastewater. For example, 

WDS in areas with large topographic variations cause large pressure fluctuations 

and require a large amount of energy for pumping, as well as a large system 

capacity to satisfy the required level of service. Thus, partitioning WSS based on 

improved intra-cluster topographic homogeneity will reduce the costs associated 

with water system investment and operation (energy). It allows for improved 

resource efficiency by encouraging reuse and recycling of wastewater within the 

cluster and by minimizing leakage (water loss) through reduced pressure 

variations.  

 

The starting point of this study’s proposal to cluster WSS is to take into 

account all the input parameters of the study areas. This involves the location of 

water sources (surface water, groundwater, and stormwater collection points), 

topography, spatio-temporal population growth, demand pattern, land use 

characteristics, socio-economic status, and the existing water system information 

of the area. Thus, the proposed clustering method minimizes the source-demand 

distance by assigning demand to the source such that the distance to the source 

center is minimized. Euclidean norm minimization approach is used to minimize 

source-demand distance. The method also maximization of the homogeneity 
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within the cluster so that source-demand distance, topography, and demand 

variations are minimized. A K-means algorithm is applied to maximize intra-

cluster homogeneity (Herrera et al., 2010). Centered on the above approaches, 

this section proposes two major steps for clustering WSS in an emerging area. 

These are: minimization of source-demand distance and maximization of intra-

cluster homogeneity. The details of the proposed steps are shown in Figure 6.2 

and discussed in subsections 6.3 and 6.4. 

 

 
 

Figure 6.2 The proposed method for clustering WSS in emerging areas. 
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6.3 Minimization of Source-Demand Distance 

This step involves two sub-steps such as a prior grouping of spatially 

distributed available water sources and assigning parcels such that the distance 

between source and grid parcel (demand cell) is minimized. Grid parcels are 

square cells characterized by attributes of spatial location (X and Y coordinates 

from the source center), elevation, and demand.  The source-demand distance 

for each parcel depends on the specified source center locations. Euclidean 

norm minimization is proposed to optimize the source-demand distance for all 

clusters. The formulation is done as a demand assignment problem where each 

parcel is assigned to the nearest source. Then parcel membership will be 

determined from the minimization process.  

 

The determination of the optimal number of source centers is not the focus 

of this chapter, the number of clusters for the area can be determined from the 

size of a cluster. According to Bieker et al. (2010), the size of a cluster has to be 

guided by the principle “as small as possible, as big as necessary” to achieve the 

ecological, economic, and social interest. BMBF (2006) compared different 

scales for areas which range from 10,000 up to more than 200,000 people and 

propose a recommended size ranging from 50,000 to 100,000 people as a 

suitable scale for an integrated semi-centralized system for fast growing urban 

areas. Bieker et al. (2010) also argued that this scale offers huge opportunity in 

recovering heat from wastewater streams as the transport distance is short. The 

size of a cluster could be used to pre-determine an initial number of clusters or 
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source groups, and could be changed during a connectivity analysis stage of the 

clustering process. Figure 6.3 shows a hypothetical example with 8 water 

sources and 121 demand parcels (each 0.01km2). It also illustrates the steps of 

assignment of demand parcels to the source center. The detailed methodology is 

discussed in the next subsections.  

 

 

Figure 6.3 Assignment of parcels to the source center (X, and Y are location 
parameters, Z is elevation asl, Qd is parcel demand, Qs and Qg are capacity of 
local sources and group source capacity respectively) 
 

6.3.1 Identification of Source Centers: Water Source Clustering 

One of the major challenges in meeting future water and sanitation goals 

is servicing more people with less water. This requires us to consider a portfolio 

of options for water sources such as groundwater, surface water, storm water, 

and treated greywater. In addition, there is a need to critically look into the way 

we use and reuse water. Stormwater and wastewater need to be viewed as 

potential sources, rather than burdens.  
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Balancing the demands for water between the various sectors will need to 

be accompanied by the use of new and alternative resources (security through 

diversity). Thus, the first part of the proposed clustering method involves prior 

grouping of spatially distributed available water sources. This method involves 

grouping water sources and determining their group center such that the effort 

required for collection is minimized.  

 

This stage evaluates the distance between available local sources, and 

groups them such that the distance between them is minimized. Distance 

comparison of one source with all other m sources will create m+1 by m+1 

decision matrix. The number of clusters required could be used as an initial 

number for grouping the sources. Considering the hypothetical example with the 

eight available sources shown in Figure 6.3, a diagonal matrix for grouping them 

into three source groups is shown in Table 6.1. For this example only X and Y 

coordinates are used. Based on the minimum distance sources S1, S2, and S3 

are grouped together and form source center G1; S4 and S5 form source center 

G2; and S6, S7 and S8 form source center G3.  
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Table 6.1 Source distance comparison matrix 

  Capa. 
(LPS) 

Location 
(m) Sources distance (m) 

Group   X Y S1 S2 S3 S4 S5 S6 S7 S8 

So
ur

ce
s 

S1 100 3000 9000 0 2828 3000 7071 9220 6083 4472 6708 

G1 S2 90 1000 7000 2828 0 2236 5385 7000 8062 6000 8062 

S3 120 3000 6000 3000 2236 0 4000 6325 6325 4123 6000 

S4 50 3000 2000 7000 5099 4000 0 2828 8485 6403 7211 G2 
S5 60 1000 0 9220 7071 6325 2828 0 11314 9899 10000 

S6 75 7000 7000 6083 8062 6325 6708 11314 0 2236 2000 

G3 S7 95 9000 8000 6708 8062 6000 7211 10000 2000 0 2236 

S8 80 9000 6000 6708 8062 7000 7211 8485 2000 2236 0 

 

Once the groups of sources are identified, a simple source center 

calculation is carried out to determine the centroid of the sources within the same 

group. Taking a similar approach as in determining mass center, source center is 

calculated using the following equation  

 𝐷𝐷𝑐 =
∑ 𝐷𝐷𝑖 ∗ 𝑄𝑖𝑆
𝑠=1

∑ 𝑄𝑖𝑆
𝑠=1

 6.1 

where Qi and Di are the supply capacity of the source and the location (X and Y) 

from the reference point. 

 

Assuming the capacity of each source, as shown in the second column of 

Table 6.2 for the above example, a sample calculation for source group G1 is 

shown below. Similarly, the source centers for G2 and G3 are calculated and 

tabulated in column 5 and 6 of Table 6.2. 

𝐷𝐷𝑥𝑐 =
3000 ∗ 100 + 1000 ∗ 90 + 3000 ∗ 120

100 + 90 + 120
= 2419𝑚𝑚 
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𝐷𝐷𝑦𝑐 =
9000 ∗ 100 + 7000 ∗ 90 + 6000 ∗ 120

100 + 90 + 120
= 7259𝑚𝑚 

 

Table 6.2 The centroid of the source groups 

Sources Capacity 
Q (LPS) 

Location 
(m) 

Source center 
(m) 

X Y Xc Yc 
S1 100 3000 9000 

2419 7258 S2 90 1000 7000 
S3 120 3000 6000 
S4 50 3000 2000 1909 909 S5 60 1000 0 
S6 75 7000 7000 

8400 7060 S7 95 9000 8000 
S8 80 9000 6000 

 

The result in Table 6.2 shows that the source center for: S1, S2 and S3 is 

located at (2419, 7259), for S4 and S5 is located at (1909, 909), and for S6, S7 

and S8 is located at (8400, 7060). These source centers considered the supply 

capacity of each sources. Figure 6.3 also shows the spatial locations of these 

source centers. 

6.3.2 Assignment of Demand Parcel to the Nearest Source  

The issue of source-demand allocation originated from the availability of 

diverse local water sources and the need for clustering an existing central system 

into small and flexible clustered systems. The assignment of spatially distributed 

demand to the source center is crucial in minimizing the effort associated with the 

movement of water and wastewater. Thus, this section addresses the issue of 



168 
 

source allocation as a demand assignment problem where demand parcels will 

be assigned to the nearest source center.  

 

The proposed method employs a minimization of the sum of Euclidean 

norms within the cluster. Minimizing the sum of Euclidean distance for shortest-

path optimization has been proposed by many authors. The theories and 

algorithms for minimizing Euclidean distance can be applied to many optimization 

problems to yield higher complexity results for various applications. In this study, 

the sum of Euclidean norms is used to determine the membership of parcels 

based on the shortest distance to the source center. The same membership is 

given to the parcels that are assigned to the same source center. This increase 

the compactness (Dopp, 2011) and reduces the cost of pipe networks and the 

energy needed for pumping long distances. Compacted networks with closer 

proximity also increase resource efficiency by reducing leakage that would be 

higher in large centralized systems. 

 

Given a set of parcels (representing the study area) with dimension vector 

P= {P1, P2,…,Pn}, 𝑃 ∈ ℝ𝑁  Euclidean norm defines, ‖𝑃‖ = (𝑃 ∗ 𝑃)
1
2 , 𝑖𝑓𝑓 𝑁𝑁 =

1 𝑡𝑡ℎ𝑒𝑛𝑛 ‖𝑃‖ = |𝑃|, the absolute value of P.  ‖𝑃‖  is the Euclidean norm of P that is 

used to measures the distance between points (Nachbar, 2009). For example, 

suppose 𝑃 = (𝑋,𝑌) ∈ ℝ2  and the source centers are defined by 𝐶 = (𝑋1,𝑌1) ∈

ℝ2. Then the shortest distance from the source to the parcel is determined using 

Equation 6.2. 
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 𝑚𝑚𝑖𝑛𝑛  ‖𝑃‖ = �(𝑋1 − 𝑋)2 + (𝑌1 − 𝑌)2 6.2 

 

Given the Euclidean norm of each parcel (from each source centers), the 

minimization is performed using Equation 6.3. Then each parcel will have 

membership (to the source center) based on the minimization of Euclidean 

norms.  The membership defines grouping of similar parcels which are assigned 

to the same source center. The basic Euclidean norm minimization algorithm is 

shown in Figure 6.4. 

 min  𝑑(𝑃,   𝑃𝑐) = �‖𝑃‖
𝐶

𝐾=1

= ��  ��𝑃𝑗 − 𝑃𝑗𝑐�
2

𝑛

𝑗=1

𝐶

𝑘=1

 6.3 

where 𝑑(𝑃,   𝑃𝑐) is the Euclidean norm from the source centers, 𝑃 is an attribute 

which is described by parameters where the variation needs to be minimized (i.e 

location and elevation parameters). 

 

The movement of water is based on an absolute distance which depends 

on the link (pipe) layout and pressure distribution; this requires hydraulic 

simulation of the whole network. However, to simplify the clustering process, in 

this study the minimization of the Euclidean norm is employed by using the 

relative distance based on the coordinate of demand parcels and supply centers. 

Once the parcels are assigned to the source center by the minimizing Euclidean 

norm principle, the membership values will be used in the maximization of cluster 

homogeneity (see subsection 6.4). 
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Figure 6.4 Basic minimizing Euclidean norm algorithm 

6.4 Maximization Intra-cluster Homogeneity and Connectivity Analysis 

Traditionally, the design of WSS has been performed for large spatial 

extent areas which involve a variety of topography, population distribution, land 

use, socio-economic, and associated demand. However, with the advent of 

decentralization, the study of the behavior of smaller areas has become a 

necessity so as to allow for uniformity within the clusters. Clustering of WSS so 

that the effort required for infrastructure development and operation is minimized 

through increased intra-cluster homogeneity is crucial.  

 

Minimizing Euclidean norm algorithm 

i) For the given C source centers, the Euclidean norm of a parcel is 

determined with respect to their parameter P={P1, P2,…, Pn}, yielding 

the distances d(p, pc). 

ii) Given the set of Euclidean norms {d1, d2,….dc} for each parcel, the 

total cluster Euclidean norm is minimized by assigning a parcel to the 

nearest source center. 

iii) Steps i and ii are repeated until all parcels are assigned to the closest 

source centers (then a membership will be assigned to each parcel 

based on the source center to which they belong). 
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In this section, clustering involving the maximization of intra-cluster 

homogeneity and connectivity analysis is proposed. Intra-cluster homogeneity is 

used to measure the similarity or dissimilarity between parcels of the same 

cluster. Maximization of intra-cluster homogeneity allows clustering the parcels 

so that parcel attributes within a cluster are closely related to one another 

(Herrera et al., 2010). Three major parameters are considered in the clustering 

process. These are membership (determined from Euclidean norm minimization), 

topography (elevation of the parcels), and spatio-temporal demand distribution 

(determined from the population distribution, land use, and socio-economic 

parameters). The clustering process involves the grouping of similar parcels. 

However, a measurement that can determine whether two parcels are similar or 

dissimilar is required. Thus, this section employs K-means optimization technique 

that maximizes intra-cluster homogeneity by minimizing the total cluster variance 

with respect to the mean value. In addition, this step involves a connectivity 

analysis to ensure the linkage of parcels within cluster. A simple neighborhood 

parcel definition is performed to determine the membership of each parcels and 

to check whether a parcel of one cluster is located in another cluster. The details 

of the proposed steps are discussed in the subsections. 

6.4.1 K-means for Clustering WSS 

 “K-means clustering is a method of cluster analysis which aims to 

partition n observations into K clusters in which each observation belongs to the 

cluster with the nearest mean.” It is an evolutionary algorithm that minimizes the 
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proximity to the mean of the cluster (Singh et al., 2011). The name K-means 

comes from its method of operation in which it assigns observation on K clusters 

based on the observation’s proximity to the mean of the cluster. The squared 

Euclidean norm is used as a measure of homogeneity. A K-means algorithm is a 

commonly employed method that converges to a local optimum value for 

clustering. It is very popular because it is computationally fast and memory 

efficient. In this section, a K-means algorithm is used to cluster the WSS in 

emerging areas based on the principle of minimizing the dissimilarity of the three 

parameters: source-demand distance, topography, and demand within the 

cluster. Unlike topography and demand, the distance parameter is dependent on 

the source centers; thus, the membership value (determined in subsection 6.3) of 

the distance is used to identify to which source center each parcel is assigned.  

 

Given a set of parcels p representing the study {X1, X2,…,Xp}, where 

each parcel has n-dimension (i.e topography, elevation),  K-means clustering 

aims to partition the parcels (p) into K clusters (K≤p) with assigned data-set S 

{S1, S2,…,Sk}. For the given cluster assignment A that involve K groups, the 

total cluster variance is minimized through minimization of the sum of the 

squares of Euclidean norm for all clusters using Equation 6.5.  

 𝐴= arg  min    
𝑆𝑆 �   � �𝑋𝑗 − 𝜇𝑖�

2

𝑋𝑗∈𝑆𝑖

𝐾

𝑖=1

 6.4 

 𝜇𝑖 =
1
𝑁𝑁𝑖

� 𝑋𝑗
𝑋𝑗∈𝑆𝑖

 6.5 
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where A(i) cluster assignment, K is the number of clusters, Ni is the number 

data-set assigned to Si, µj is mean of parcels in cluster Si (Al-Saleh et al., 2009). 

 

A K-means algorithm achieves optimal clustering assigning parcels so that 

the difference between parameters of the parcels and their centroids are as small 

as possible. It uses an iteration based evolutionary optimization which involves 

the assignment of parcels to the closest mean and calculating a new mean until 

the assignment no longer changes. Figure 6.5 shows the basic K-means 

algorithm used in clustering WSS. 

 

 

Figure 6.5 Basic K-means algorithm 

 

For the hypothetical example discussed in the above subsections, the 

source-demand distance determined in subsection 6.3.1 and hypothetical 

Basic K-means Algorithm 

i) Initialization of K means {µ1, µ2,…,µk} where each mean is defined by d-

dimension vector (n-parameters) 

ii) Given an initial set of  K means, the algorithm assign parcels to the 

closest mean so that the total variance is minimized with respect to the 

mean 

iii) Calculate a new mean to be the centroid of the cluster 

iv) Repeat steps (i) and (ii) until the assignments do not change  
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elevation and demand values for each parcel are used as an input. Figure 6.6 

shows input parameters used and the resulting cluster using K-means algorithm. 

 

 

Figure 6.6 Showing clustering using K-means algorithm 
 

Figure 6.6 (a) shows the parcels assigned to the nearest source center, 

and Figure 6.6 (b) and (c) are input topographic and demand parameters. Figure 

6.6 (d) shows the resulting clusters using the proposed K-mean algorithm. These 

clusters involve demand parcels assigned to the nearest source and 

maximization of the homogeneity within the cluster is maximized by reducing the 

variation in demand, and topography parameters.  

 

Though the K-means algorithm discussed above explored and maximized 

the similarity of clusters, it has its shortcomings. One of the limitations is that it 

does not consider the geospatial relative location of different neighboring parcels. 

However, the specific problem of clustering water systems requires the ability to 

handle not only the spatial extent, but also the geographic component with 

respect to neighboring parcels (i.e. the need to have the same membership 
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parcels in the same spatial location). To avoid the possibility of detaching parcels 

of the same cluster in different spatial locations, intra-cluster parcel connectivity 

is proposed. In addition, it is helpful to rerun the program using the same as well 

as different K values, to compare the results. 

6.4.2 Intra-cluster Parcels Connectivity 

Intra-cluster parcel connectivity, defined as the linkage of a parcel within a 

cluster, is used to check whether a parcel of one cluster is located in another 

cluster. Given the membership of parcel p defined as P(m,n) and neighborhood 

parcels as P(n±1,m±1), if parcel P(m,n) of one cluster neighbors two or more parcels 

of another cluster, and only one or less neighbors from its own cluster, the 

evaluation of the minimum Euclidean norm of the parcel P(m,n) is performed with 

respect to the neighboring cluster centroid and is re-assigned to the closest one. 

In addition, the periphery parcels which don’t have many neighbors are merged 

to the nearest cluster group in case they belong to other cluster. This connectivity 

analysis alone does not guarantee the existence of cluster members in another 

spatial location. One can use the smallest recommended size of cluster and/or 

the smallest demand that a cluster should supply to decide on merging isolated 

parcels to the neighboring cluster. An isolated parcel group will be kept as an 

independent cluster if the demand it supplies is greater than the required 

minimum size/ demand within the cluster. However, a parcel group that does not 

satisfy the mentioned condition will be merged to the neighbor cluster. The 
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decision of which cluster to combine will be made by evaluating the minimum 

Euclidean norm value with respect to the centroid of neighboring clusters.  

6.5 Conclusions: Optimization for Clustering WDS 

This chapter addressed the objective of developing a new optimization 

model that supports the development of clustered (decentralized) distribution 

systems. 

 

Currently no method exists which guides planners on how to cluster WDS. 

To address this need, a methodology has been developed in this chapter that 

allows for better clustering of WDS for emerging areas into small and adaptable 

systems. The developed clustering methodology is based on two major 

principles: the minimization of the distance from source to consumer by assigning 

demand to the closest source center, and the maximization of the homogeneity 

within the cluster.  

 

Euclidean norm minimization has been used to optimize the source-

demand distance for all parcels to minimize the transportation distance and 

corresponding infrastructure requirements.  Intra-cluster homogeneity was used 

to measure the similarity or dissimilarity between parcels of the same cluster. 

Maximization of intra-cluster homogeneity allows clustering the parcels so that 

parcel attributes within a cluster are closely related to one another (Herrera et al., 

2010). Three major parameters are considered in the clustering process. These 
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are membership (determined from Euclidean norm minimization), topography 

(elevation of the parcels), and spatio-temporal demand distribution (determined 

from the population distribution, land use, and socio-economic parameters). This 

chapter applied K-means optimization technique to maximize intra-cluster 

homogeneity to reduce the costs associated with water system investment and 

operation (energy and leakage) and improve resource efficiency (recycling). The 

efficacy of the developed clustering method will be demonstrated in a real case 

study of Arua, Uganda in chapter 7.  
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7 Flexibility of Clustered WDS: Case Study, Arua, Uganda 

7.1 Introduction 

This chapter addresses the specific research objective of verifying 

whether a decentralized clustered system provides a higher flexibility compared 

to a conventional centralized WDS.  

 

This chapter first hypothesizes that decentralized systems provide greater 

flexibility compared to centralized systems and verifies this hypothesis using a 

case study analysis. The verification of this hypothesis involves two major steps:  

i) This chapter applies the clustering method developed in Chapter 6 to a 

real case study in Arua, Uganda to establish clusters in the emerging area 

of the town based on the objectives of minimizing the source-demand 

distance, and maximizing intra-cluster homogeneity.   

ii) Using the framework for flexibility analysis developed in Chapter 3, this 

chapter develops clustered WDS for Arua, Uganda and analyzes whether 

decentralized clustered WDS provides more flexibility compared to 

conventional centralized WDS (see Figure 7.1).  
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Figure 7.1 The interconnection of Chapter 7 with other chapters 

7.2 General Description of the Area 

Arua town is located in the Northern Region of Uganda and lies between 

latitude 2030' N and 3050' N and longitude 30030' E and 31030' E (see Figure 

7.2). The Aura municipality is one of the fastest growing municipalities in the 

country. The municipality is made up of 2 divisions (sub-counties), namely Arua 

Hill Division and Oli River Division, and covers an area of 1014 ha. It is located 

about 520 km away from Kampala, the capital city of Uganda. According to the 

statistical abstracts of the Uganda Bureau of Statistics (UBOS, 2011), the 

population of the Arua municipality was 59,400 in 2011, with the population 

around the periphery of the municipality reported as 49,893. With an annual 

growth rate of 3.4%, the total population in 2032 is estimated to be 220,887 (see 

Figure 7.3). 
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Figure 7.2 Geographic location of Arua town  

 

 
 

Figure 7.3 Predicted future population in Arua 

 

The prediction of the future population for 2032 suggests that Arua will 

expand to the new development central business district (South and Southwest), 

which follows the road layout in the North and Northwest directions. The extent of 

the spatial growth of Arua in 2032 is shown in Figure 7.4. 
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Figure 7.4 Predicted spatial extent of Arua in year 2032 

 

The town of Arua is experiencing a critical shortage of water as it depends 

on only a small river (Enyau River) for its supplies (COWATER, 2005). The 

current water supply of 2000m3/d is not sufficient to meet the town’s demand. 

With a population growth and increasing wealth it is predicted that the water 

demand will likewise rise to 17,217 m3/d in the year 2032, which would increase 

the water shortage. This predicted future demand takes into consideration the 

different population density and socio-economic status of each of the parish 

areas. Table 7.1 shows socio-economic status and associated demand 

categories for the parish areas. Figure 7.5 shows the predicted future water 

demand for the town. 
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Table 7.1 Socio-economic status and demand categories for parish areas  

Parish's Areas  % Population 

Socio-economic status 
High 

(110LPCD) 
Medium 

(80LPCD) 

Medium-
Low 

(60LPCD) 
Low 

(40LPCD) 

Alivu & Adalafu 5% 30% 40% 25% 

Arivu, Yapi & Tanganyika 5% 35% 35% 25% 

Ariwara 5% 35% 45% 15% 
Oduluba, Ombokora & 
Bunyu 10% 50% 30% 10% 

Bunyu, Nyio & Onzivu 10% 50% 30% 10% 

Forest Area 20% 60% 20% 0% 

Onzivu, Driwala 10% 50% 30% 10% 

Pokea, Komite & Alivu 5% 35% 45% 15% 

Municipal 5% 50% 25% 20% 
 
 

 
Figure 7.5 Future water demand in Arua 
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The current approach to water management in Arua is based on a 

conventional centralized approach where water is collected upstream, used, and 

discharged downstream and does not encourage the use of local sources such 

as groundwater, stormwater harvesting, or wastewater reuse and recycling. It 

has become obvious that the current practices of urban water management are 

not sustainable to meet the challenges in Arua. However, the rapid urban growth 

in emerging areas coupled with the fact that those emerging areas do not have 

mature infrastructure and urban planning for the area has not yet occurred 

means that there are real opportunities to implement clustered urban water 

system management in Arua. This study shows that a clustered approach to 

urban water management will help to set emerging towns on a sustainable path 

by providing the potential to satisfy the water needs of communities at the lowest 

cost while minimizing adverse environmental and social impacts. Thus it is with 

this respect that the clustering technique is applied to Arua town.  

7.3 Application of the Proposed Clustering Method 

One of the major initiatives of the Arua municipality is to de-gazette the 

forest area (called Barifa) in a 5-year time period and incorporate it into the 

central business district. The proposed municipality plan also includes developing 

residential community services such as social centers (e.g. churches and 

mosques, etc.) and a major market center. Since the forest area has a 

predefined boundary, the clustering processes in this study isolate these areas 

and treat them as pre-clustered unit. Additionally, prior to the clustering process, 
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a decoupling of the existing central WSS from the emerging areas is performed 

by identifying the municipality boundary (see Figure 7.6). Then the proposed 

WSS clustering technique which minimizes the source-demand distance and 

maximizes intra-cluster homogeneity is applied. The results are discussed below.   

7.3.1 Source-Demand Distance Minimization 

The first part of the proposed clustering method involves prior grouping of 

spatially distributed available water sources. This involves 10 groundwater 

sources and 4 potential surface water abstraction locations (see Figure 7.6). 

Once the capacity and locations of available sources are identified, the aim is to 

merge the available sources into groups such that the distance between grouped 

sources is minimized. In this case study, the area is discretized into small parcels 

of size, 150m by 150m. The available source clustering is limited to the emerging 

areas (excluding Barifa forest). The available sources of the emerging area are 

grouped into seven groups. For this study, the number of source groups is used 

as an input parameter. The decision to propose a number of groups might 

depend on the size of the area, the size of clusters required, the numbers of 

sources available, etc. Different researchers have highlighted the need for case-

to-case analysis to determine the population number that should be supplied by a 

single cluster to determine the smaller cluster size (BMBF, 2006; Bieker et al., 

2010). However, the determination of the number of groups required is not the 

focus of this study. Thus the minimum size of cluster with population 25,000 
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considered in decentralizing the emerging area by Webster et al. (2012) is used 

to determine the input number of source centers for grouping. 

 

The evaluation of the distance between sources is done using Equation 

6.2 (Chapter 6). The comparison matrix for grouping is developed and shown in 

Appendix 1. The output of source-group identification process is shown in Figure 

7.6 (a) and (b). Once the groups are identified the X, Y coordinate and supply 

capacity Qs are used to calculate source-centers. Table 7.2 summarized the 

source and source-center information’s.  

 

 
Figure 7.6 (a) Available water sources and their groups;  (b) Water-source 
centers (based on minimized Euclidean distance) 
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Table 7.2 Source groups and location of source centers 

Source Group Source no. 
Water source-centers 

X (m) Y (m) 

1 
1 

1992 6772 2 
16 

2 
3 

5461 4650 4 
5 

3 6 6181 3600 
7 

4 9 6150 600 

5 10 3110 510 
13 

6 
11 

2062 3108 12 
14 

7 15 1650 4950 
Forest (8) 8 5400 2850 

Municipality (9)  2400 3150 
 

Once the source center is identified, the discretized square parcels (150m 

by 150m) are assigned to the source centers. Each parcel has a location, 

topography, and demand attribute. This stage uses the location attribute (X, Y) 

coordinate of parcels and the centroid of available sources as an input to 

minimize the source-demand location for each parcel. In this case study, the 

distance minimization is limited to the emerging areas, in which emerging areas 

in Arua include the Barifa forest. This case study treats the forest areas as an 

independent unit cluster where the boundary and inbounded source is pre-

identified prior to the clustering process. Thus, water source number 8 is pre-

assigned to cluster 8 (planned development). In addition to the center 

municipality boundary, this study treats the forest areas as independent unit 

clusters where the boundary is pre-identified prior to the clustering process. 

Equation 6.2 is applied to each parcel of the emerging areas (except Barifa forest 
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and the Arua municipality) to determine the Euclidean norm from the 7 source 

centers in the emerging area.  Given the Euclidean norm of each parcel (from the 

7 source centers), the distance minimization is performed using Equation 6.3. 

Then, each parcel is assigned with a membership value. Figure 7.7 (a) and (b) 

show the parcels assigned to the nearest source and the membership 

respectively. The membership defines groupings of similar parcels which are 

apportioned to the same source center.  

 

 
 
Figure 7.7 (a) Parcel assignment (Minimized Euclidean norm). (b) Parcel 
membership-M based on source-demand distance 

 

The above clustering is purely based on distance and does not include 

demand and topographic parameters. However, demand and topography are 

other parameters which affect the transport of water and wastewater in the area. 

The next stage incorporates demand and topography in addition to membership 

value to cluster the study area.  
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7.3.2 Maximizing Homogeneity: K-means Clustering 

The proposed homogeneity maximization is applied to determine the final 

cluster boundary for the study area. Finding an optimal boundary which 

maximizes homogeneity is performed using the K-means algorithm. The 

distance-based membership value (determined in subsection 6.3), topographic, 

and demand information are used as input parameters. The study area 

topography ranges from 1160m to 1240m asl, and the determination of demand 

is performed using the population, socio-economic status, and land use 

information.  The input elevation and demand information are plotted for the case 

study area and shown in Figure 7.8 (a) and (b). The different colors show 

different elevation/demand values. 

 

 
 

Figure 7.8 (a) elevation in m (asl).  (b) parcel demand in m3/d 
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Given the input parameters, a K-means algorithm is applied to maximize 

intra-cluster homogeneity. In this study, the area was required to be partitioned 

into 7 clusters. The method begins by selecting an initial mean (for each cluster), 

and assigning the parcels to each mean center. Then the means for each cluster 

are modified until there is no change in assignment of parcels. In this study, 

multiple runs of the K-means simulation are performed to avoid the problem 

associated with initialization, and the algorithm showed similar clusters. The final 

output of the clusters is shown in Figure 7.9 (a). The different color code 

represents different memberships of the parcels.  

 

 

Figure 7.9 (a) K-means clusters (b) Cluster after merging isolated parcels 
 

However there are some limitations of the K-means algorithms. One 

problem is that clusters for the same members could be located in different 

spatial locations, as shown in Figure 7.9 (b). To incorporate the spatial 

component of cluster location, the neighborhood identification proposed in 

(a) (b) 
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subsection 6.4.2 is applied. The neighborhood identification involves refining the 

boundary and merging parcels of one cluster which are located in a different 

cluster.  

 

First, simple neighborhood parcel connectivity is done by considering the 

membership of each parcel. If a parcel is surrounded by other three or more 

parcels of a different cluster and has one only one or fewer neighbors from its 

own cluster, it is re-signed to the closest one. In this case study, parcels circled 

red in Figure 7.9 (a) are merged to their neighbors.  

 

Secondly, if there is a parcel group which is located in another cluster, the 

size is used to decide whether to keep the group as a new independent cluster or 

to merge it with the nearest cluster. A group merging is performed if a 

cluster/group is too small. In this study, groups with a size less than 20% of the 

maximum cluster size are distributed to the neighboring cluster to avoid large 

variation in cluster size. However, a recommended size of cluster and/or the 

smallest demand that a cluster should supply could be used for deciding whether 

to merge isolated parcels. Figure 7.10 (a) shows the final cluster boundary after 

isolated neighboring parcels are re-distributed, and the final cluster boundary for 

the case study area is shown in Figure 7.10 (b). 
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Figure 7.10 (a) Cluster after re-distributing small groups (b) Final cluster 
 

The result in Figure 7.10 (b) shows final cluster boundary for the case 

study area. The developed clustering method offers an adequate solution to the 

decentralization paradigm through clusters that allow for improving the 

movement of water and wastewater in the area. It divides emerging urban area 

into clusters to allow for the provision of flexible, modular decentralized WDS. In 

the next subsection, the cluster boundaries are used to develop decentralized 

WDS for Arua, Uganda and a detailed evaluation of clusters with respect to 

flexibility is analyzed to verify whether clustered WDS offer greater flexibility than 

conventional centralized WDS. 

7.4 Flexibility of Clustered WDS: Case Study Arua, Uganda 

Recently, researchers have questioned whether clustered/decentralized 

WDS provide greater flexibility when compared with conventional centralized 
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WDS (Webster et al., 2012; Bieker et al., 2010; PSGS, 2010; Valerie, 2008). 

Clustered WDS can be implemented in an incremental fashion that traces the 

urban growth trajectory more closely. It is assumed that decentralized WDS 

provide a better flexibility against the uncertainties of spatial growth than 

conventional centralized systems. This assumption is supported by general 

considerations from Bieker et al. (2010) and Fricke and Schulz (2005). However, 

the hypothesis that clustered (decentralized) systems provide greater flexibility 

than centralized systems has to be verified. Thus, this subsection analyzes a 

practical application to determine whether decentralized clustered WDS provide 

more flexibility than conventional centralized WDS using the framework and tool 

for flexibility analysis developed in Chapter 3 and 4.  Arua, Uganda is used for 

this case study.  

 

One of the major uncertainties involved in the future of the water system is 

the extent of the spatial expansion of the town due to unplanned growth. In 

addition, the water demand in the area will vary depending on variations in 

population growth and the socio economic variations. It is therefore very 

important to take these future variations into consideration (Bernanke, 1983). In 

order to compare the clustered and centralized WDS in Arua, this study 

considered the predicted temporal and spatial growth of the town the associated 

uncertainties. According to (Webster et al., 2012) the prediction of future growth 

shows that Arua will expand to the new development central business district 

(South and Southwest) directions in the coming 10 years, and will follow the road 
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layout in the North and Northwest direction in 15 years and to the East low-land 

areas in 20 years’ time. Although this prediction is based on some plans of the 

city council and current growth trends of the town, different growth paths could be 

followed due to shifts in economic and infrastructure developments. The 

predicted growth mentioned above is one of the many growth scenarios that may 

range from a no growth option (lower bound) to a critical (maximum) growth 

option (Upper bound). The range between the upper and lower bound of spatial 

growth reflect the uncertainties of the growth path of the town. Accordingly 

eleven basic scenarios were considered that represent staged spatial growth of 

the town (See Figure 7.11 and Table 7.3 for the scenarios). Figure 7.11 shows 

scenario tree that describes the future possible demand in tractable manner. 

 

 
Figure 7.11 Scenario tree representing the future demand 
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Table 7.3 Lists of scenario considered (for Arua town) 
 

 
Scenario No. Scenario 

1 A1T0- A1T1- A1T2- A1T3- A1T4 
2 A1T0- A1T1- A1T2- A1T3-- A2T4 
3 A1T0- A1T1- A1T2- A2T3-- A2T4 
4 A1T0- A1T1- A2T2- A2T3-- A2T4 
5 A1T0- A2T1- A2T2- A2T3-- A2T4 
6 A1T0- A2T1- A2T2- A2T3—A3T4 
7 A1T0- A2T1- A2T2- A3T3—A3T4 
8 A1T0- A2T1- A3T2- A3T3—A3T4 
9 A1T0- A2T1- A3T2- A3T3—A4T4 
10 A1T0- A2T1- A3T2- A4T3—A4T4 
11 A1T0- A2T1- A3T2- A4T3—A5T4 

 

The corresponding water demand for each of the staged growths is shown 

in Figure 7.12 (for cluster names refer to the previous subsection 7.3). In this 

case, four stages of growth (5th, 10th, 15th and 20th year) have been considered 

over a design horizon of 20-years. 

 

Spatial 
extent    

 
 

 

S5 
   

 C2, C3 
 

S4    C1, C7 C1, C7 
 

S3 
  

C4, C5, C6 C4, C5, C6 C4, C5, C6 
 

S2 
 

C8 C8 C8 C8 
 

S1 C9 C9 C9 C9 C9 
 

 
T0 

(2012) 
T1 

(2017) 
T2 

(2022) 
T3 

(2027) 
T4 

(2032) 
Time 
(Year) 

 
Figure 7.12 Staged spatial growth for the town 
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Figure 7.13 Water demand scenarios (spatial and temporal- A in m3/d) 

 

The water demand values represent cumulative of all nodal demands in 

the area. The eleven scenarios listed in Table 7.3 represent the different possible 

combination of the water demand A and time T shown in Figure 7.13. The 

scenarios are used as input for the design of centralized and clustered WDS. In 

order to analyze the flexibility of the two systems, the centralized WDS is 

designed based on traditional approach where the system growth in centralized 

fashion, whereas the flexibility framework developed in Chapter 3 applied to 

develop clustered/decentralized WDS for Arua town. Then the flexibility of the 

two systems is analyzed with respect to the future change scenarios. 
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7.4.1 Centralized and Clustered WDS 

The WDS design process considered the centralized as well as the 

clustered system to accommodate the predicted future spatial and temporal 

demand growth of the town for 20 years. The values for pipe cost and laying 

costs are used from Mbale, Uganda. The total cost is the sum of pipe material 

and laying cost, calculated using Equation 6.6.  

 𝐶𝑊𝐷𝑆 = 𝐶𝑝𝑖𝑝𝑒 + 𝐶𝑙𝑎𝑏𝑜𝑟 7.1 

 

Thirteen different commercially available diameters are used. The pipes’ 

diameters range from a minimum of 50.8mm to a maximum of 609.6mm. The 

pipe diameters and their associated material and laying costs shown in Table 5.3 

are used for designing (Prasad et al., 2004; NWSC, 2012). GA is applied to 

determine an optimal WDS for the range of uncertainties considered.  

 

Centralized WDS for the area is designed using a conventional design 

approach where the existing central WDS is expanded to the emerging area of 

the town. The WDS development follows the predicted spatial growth of the city. 

Figure 7.14 shows the designed optimal WDS extent at different stages. The 

optimized WDS costs (in NPV terms) for each possible scenario are summarized 

in Table 7.4. The total NPV includes the cost of reservoir for the centralized 

system. A detailed calculation of reservoir costs is shown in Appendix 2. 
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Figure 7.14 Staged development of centralized WDS for Arua town (scenario A1T0- A2T1- A3T2- A4T3-A5T4:(a) Year T0 
(b) Year T1; (C) Year T2; (d) Year T3 (e) Year T4)
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Table 7.4 Cost of centralized WDS 

Scenario 
No. Scenario 

Clustered 
WDS (US$) 

1 A1T0- A1T1- A1T2- A1T3- A1T4 964,208 
2 A1T0- A1T1- A1T2- A1T3-- A2T4 1,104,607 
3 A1T0- A1T1- A1T2- A2T3-- A2T4 1,126,968 
4 A1T0- A1T1- A2T2- A2T3-- A2T4 1,152,892 
5 A1T0- A2T1- A2T2- A2T3-- A2T4 1,182,944 
6 A1T0- A2T1- A2T2- A2T3—A3T4 1,440,495 
7 A1T0- A2T1- A2T2- A3T3—A3T4 1,481,516 
8 A1T0- A2T1- A3T2- A3T3—A3T4 1,529,071 
9 A1T0- A2T1- A3T2- A3T3—A4T4 1,789,360 
10 A1T0- A2T1- A3T2- A4T3—A4T4 1,830,817 
11 A1T0- A2T1- A3T2- A4T3—A5T4 1,989,697 

 

Clustered WDS for Arua town is also designed based on the new 

approach such that it involves small and decentralized autonomous WDS for 

each cluster. The WDS for a clustered system has the same layout as the 

centralized WDS that is used for clustered systems. A staged design of clusters 

following the predicted growth pattern is performed using the GA optimization 

technique. For example, the stage development for scenario A1T0- A2T1- A3T2- 

A4T3-A5T4 involves expansion to cluster C8 in year 2017; to clusters C4, C5 & 

C6 in year 2022; to clusters C1 & C7 in year 2027; and to clusters C2 & C3 in 

year 2032. The designed optimal clustered system for this scenario is shown in 

Figure 7.15. The diagrams from Figure 7.15 (a) to (d) show the design stages of 

a clustered WDS for the town under scenario A1T0- A2T1- A3T2- A4T3-A5T4. The 

optimized WDS costs (in NPV terms) for each possible scenario are summarized 

in Table 7.4. The total NPV includes the cost of reservoirs for the decentralized 

system and the detailed calculation is shown in Appendix 2.  
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Figure 7.15 Staged development of clustered WDS for Arua town  (scenario A1T0- A2T1- A3T2- A4T3-A5T4: (a) Year T0 (b) 
Year T1; (c) Year T2; (d) Year T3 (e) Year T4)
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Table 7.5 Cost of clustered WDN 

Scenario 
No. Scenario 

Clustered 
WDS (US$) 

1 A1T0- A1T1- A1T2- A1T3- A1T4 687,977 
2 A1T0- A1T1- A1T2- A1T3-- A2T4 750,619 
3 A1T0- A1T1- A1T2- A2T3-- A2T4 760,596 
4 A1T0- A1T1- A2T2- A2T3-- A2T4 772,163 
5 A1T0- A2T1- A2T2- A2T3-- A2T4 785,571 
6 A1T0- A2T1- A2T2- A2T3—A3T4 1,029,357 
7 A1T0- A2T1- A2T2- A3T3—A3T4 1,068,186 
8 A1T0- A2T1- A3T2- A3T3—A3T4 1,113,199 
9 A1T0- A2T1- A3T2- A3T3—A4T4 1,336,780 
10 A1T0- A2T1- A3T2- A4T3—A4T4 1,372,391 
11 A1T0- A2T1- A3T2- A4T3—A5T4 1,504,730 

 

According to the NPV depicted in Table 7.4 and Table 7.5, the investment 

cost of a centralized WDS is higher than that of a clustered system. The 

proposed clustered WDS offers 24% to 34% cost savings (over a range of eleven 

scenarios) when compared to the centralized WDS. However, cost alone does 

not guarantee flexibility of a WDS. The flexibility of a WDS depends on its 

capability to react and respond to future changes and uncertainties. In the next 

subsection, this study applies the framework developed in Chapter 3 to evaluate 

the flexibility of both centralized and clustered systems.  

7.4.2 Assessing Flexibility of Clustered and Centralized WSS 

The Capability to respond (Crs) is represented by the ratio of the range of 

responses (Urs) to the optimized cost of change Cc for the WDS options under 

different scenarios. Figure 7.16 and Figure 7.17 show the Urs and Cc of a 

centralized and clustered WDS, respectively.  
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Figure 7.16 Range of response for centralized and clustered WDS 

 

 
 

Figure 7.17 Cost of change for centralized and clustered WDS 
 

0

200

400

600

800

1,000

1,200

1,400

1 2 3 4 5 6 7 8 9 10 11

R
an

ge
 o

f r
es

po
ns

e 
U

rs
 (1

0 
5 

m
3)

 

Scenarios 

Centralized WDS

Clustered WDS

0

400

800

1,200

1,600

2,000

2,400

1 2 3 4 5 6 7 8 9 10 11

C
os

t o
f c

ha
ng

e 
C

c 
(1

0 
3 

U
S$

) 

Scenarios 

Centralized WDS

Clustered WDS



202 
 

As shown in Figure 7.16, the centralized conventional WDS, which is 

designed based on deterministic assumptions, is over-designed to absorb future 

changes and uncertainties. This means that the range of responses of the 

conventional WDS is larger than the range of responses of the Clustered WDS. 

However, this larger range also incurs greater costs (Cc) than the clustered WDS 

as shown in Figure 7.17.  

 

The range of response Urs values shown in Figure 7.16, and the cost of 

change Cc values shown in Figure 7.17 are used to calculate the capability to 

respond Crs of each WDS design under different scenarios and these values are 

summarized in Table 7.6. 

 

Table 7.6 Crs  value for centralized and clustered WSS 

Scenario 
No. Scenario 

Crs (m3 /US$) 

Centralized Clustered 
1 A1T0- A1T1- A1T2- A1T3- A1T4 77.7 102.0 
2 A1T0- A1T1- A1T2- A1T3-- A2T4 69.7 96.4 
3 A1T0- A1T1- A1T2- A2T3-- A2T4 70.2 97.9 
4 A1T0- A1T1- A2T2- A2T3-- A2T4 70.5 99.2 
5 A1T0- A2T1- A2T2- A2T3-- A2T4 70.5 100.2 
6 A1T0- A2T1- A2T2- A2T3—A3T4 62.9 83.5 
7 A1T0- A2T1- A2T2- A3T3—A3T4 66.0 87.2 
8 A1T0- A2T1- A3T2- A3T3—A3T4 68.7 90.1 
9 A1T0- A2T1- A3T2- A3T3—A4T4 60.8 77.9 
10 A1T0- A2T1- A3T2- A4T3—A4T4 61.5 78.7 
11 A1T0- A2T1- A3T2- A4T3—A5T4 58.8 74.6 
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The results in Table 7.6 shows that clustered WDS, designed based on 

the principles of flexibility, is capable of responding to future scenarios that the 

centralized WDS designed based on conventional approaches. This is because 

the centralized WDS incurs a large cost associated with the excess capacity of 

the system. 

 

The Capability to react (Cra) is represented by the ratio of the range of 

uncertainties that the WDS can handle (Ura) to the effort required to adapt (Ca). 

The range of adaptation values, as well as the cost of these adaptation values, is 

plotted in Figure 7.18 and Figure 7.19. 

 

 

Figure 7.18 Range of adaptation for centralized and clustered WDS 
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Figure 7.19 Cost of adaptation associated with each WDS design option  
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Table 7.7 Cra values of centralized and clustered WDS 

Scenario 
No. Scenario 

Cra (m3 /US$) 

Centralized Clustered 
1 A1T0- A1T1- A1T2- A1T3- A1T4 40.5 51.4 
2 A1T0- A1T1- A1T2- A1T3-- A2T4 44.5 52.9 
3 A1T0- A1T1- A1T2- A2T3-- A2T4 43.2 50.7 
4 A1T0- A1T1- A2T2- A2T3-- A2T4 42.0 48.6 
5 A1T0- A2T1- A2T2- A2T3-- A2T4 40.9 46.6 
6 A1T0- A2T1- A2T2- A2T3—A3T4 46.9 55.3 
7 A1T0- A2T1- A2T2- A3T3—A3T4 36.5 43.7 
8 A1T0- A2T1- A3T2- A3T3—A3T4 24.7 30.3 
9 A1T0- A2T1- A3T2- A3T3—A4T4 30.7 38.3 
10 A1T0- A2T1- A3T2- A4T3—A4T4 25.2 31.8 
11 A1T0- A2T1- A3T2- A4T3—A5T4 0.0 0.0 

 

The results in Table 7.7 show that clustered WDS, designed based on the 

flexibility principles, has a higher capability to react (Cra) to uncertain future 

scenarios.  This is because the effort required to adapt to a unit range of future 

change is smaller for the clustered system as they are modular and adaptable 

units than conventional centralized WDS. However, scenario 8 (A1T0- A2T1- 

A3T2- A4T3) is based on the maximum possible future demand, and both WDS-1 

and WDS-2 designed for this scenario are not required to adapt to any scenario. 

 

Level of flexibility (Fopt) is used to determine the flexibility of centralized 

and clustered WDS options. Figure 7.20 shows Fopt values based on an equal 

weighting factor for Cra and Crs in terms of each WDS option under different 

scenarios.  
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Figure 7.20 The optimal flexibility value for centralized and clustered WSS 
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the present decision. A sample calculation of the regret associated with the 

different options under scenario-A is shown below. 

𝑓𝑓𝑅(𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑) = 𝑚𝑚𝑎𝑥�𝐹opt(i,j)� −  𝐹opt(i,j) = 76.7 − 59.1 = 17.7 

𝑓𝑓𝑅(𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑒𝑑) = 76.7 − 76.7 = 0 

  

The regret for each alternative for all other scenarios is calculated using 

the same approach, and the results are summarized in Table 7.8 The lowest 

value of maximum regret for each option is then considered as the preferred 

alternative in terms of the cost of change. 

 

Table 7.8 Regret associated with the different design options 
 

Scenario 
No. Scenario 

Regret with respect to 
Fopt 

(m3/US$) (m3 /US$) 

Centralized Clustered 
1 A1T0- A1T1- A1T2- A1T3- A1T4 17.7 0.0 
2 A1T0- A1T1- A1T2- A1T3-- A2T4 17.5 0.0 
3 A1T0- A1T1- A1T2- A2T3-- A2T4 17.6 0.0 
4 A1T0- A1T1- A2T2- A2T3-- A2T4 17.7 0.0 
5 A1T0- A2T1- A2T2- A2T3-- A2T4 17.7 0.0 
6 A1T0- A2T1- A2T2- A2T3—A3T4 14.5 0.0 
7 A1T0- A2T1- A2T2- A3T3—A3T4 14.2 0.0 
8 A1T0- A2T1- A3T2- A3T3—A3T4 13.6 0.0 
9 A1T0- A2T1- A3T2- A3T3—A4T4 12.4 0.0 
10 A1T0- A2T1- A3T2- A4T3—A4T4 12.0 0.0 
11 A1T0- A2T1- A3T2- A4T3—A5T4 8.0 0.0 

Maximum regret   
Minimax regret  
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Based on the minimax regret analysis above, the clustered WDS has a 

lower regret associated with the potential future conditions in comparison to a 

centralized WDS. Thus, this case study has verified that clustered systems 

provide higher flexibility than centralized WDS. The gradual stepwise 

development of clustered systems enables the expansion or deferral of WDS in 

correspondence with spatial growth. Therefore, clustered WDS have a better 

ability to cope with the uncertainties of spatial growth than conventional 

centralized systems. In addition to flexibility, in this study an overall cost 

comparison (in NPV) between clustered and centralized supply system is 

performed and presented in Appendix 2 to Appendix 4. The comparison includes 

investment costs associated with water collection pipes, water distribution 

network, reservoirs and water treatment plants, and operation and maintenance 

costs such as pumping and water treatment. The result shows that the clustered 

water supply system is cheaper than centralized water supply system (see 

Appendix 4) 

7.5 Conclusions: Flexibility of Clustered WDS 

This chapter presents the applications of the developed clustering 

methodology in chapter 6 to a real world case study in Arua, Uganda. The WDS 

in Arua is divided into nine clusters thereby reducing the effort required to move 

water and wastewater, as well as developing systems that offer opportunity to 

adapt to future changes. The case study demonstrated that it is possible to apply 
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the developed methodology to develop clusters based on minimization the 

distance between source and use, and maximizing the intra-cluster homogeneity.  

 

In addition this chapter assessed the flexibility of decentralized and 

clustered WDS against future changes and uncertainties and compared it with a 

conventional centralized WDS. The overall cost (NPV) comparison shows that a 

decentralized clustered WDS offers a cost reduction of 24%-34% (for a range of 

five scenarios) and that these cost savings are associated with the ability of the 

decentralized system to be staged in such a way that the system traces the 

urban growth trajectory more closely. Based on a minimax regret analysis, a 

decentralized clustered WDS has shown a lower regret (a difference of 

17.7m3/US$) associated with its flexibility to deal with the potential future 

conditions than a conventional centralized system. This chapter has verified that 

a decentralized clustered WDS has a better ability to cope with the uncertainties 

of spatial growth than conventional centralized systems. 
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8 Conclusions and Recommendations 

The main conclusion of this research is that the deterministic assumptions 

used when designing water distribution systems is no longer valid due to the 

inherent uncertainties associated with global change pressures. Hence there is a 

need to develop new approaches and methodologies that recognize these 

inherent uncertainties and develop more adaptable and flexible systems that 

have the ability to use their active capacity to act or respond to future alterations 

in a timely, performance-efficient and cost-effective manner.  

 

In order to effectively design flexible WDS it is important to effectively 

articulate the uncertainties against which the system is being designed. Scenario 

trees are well suited for this purpose. To assess the degree of flexibility of 

different designs, it is important to develop appropriate performance metrics. 

These metrics should include components that capture the capability of the 

distribution system to respond and react to change. These metrics can then be 

used to inform and influence the design of a flexible WDS and should be hence 

evaluated using appropriate rules of decision making under uncertainty, such as 

the minimax regret rule.  
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As WDS are large and complex, and their design can often be counter-

intuitive, it is important to utilize formal optimization techniques to help identify an 

optimal design. However, the optimization model should recognize the duality of 

maximizing flexibility at the least cost. In addition, the optimization should be able 

to generate flexible, staged development plans for the incremental growth of 

WDS.  Similarly there is a growing consensus that decentralized/clustered 

systems promote greater flexibility as they provide internal degrees of freedom, 

allowing different combinations of distribution systems to be considered so that 

their flexibility can be optimized over time. Hence any methodology developed for 

flexibility should support development of decentralized distribution systems.  

 

In this study, a framework is developed and applied for the design of 

flexible WDS that are adaptable to new, different, or changing requirements. The 

framework consists of several components including: an uncertainty model based 

on scenario trees; a suite of performance metrics that allow an assessment of the 

degree of flexibility of a distribution system; a tailor-made decision making 

framework based on the minimax regret principle. In addition two optimization 

models are developed to maximize the flexibility of a WDS at the least cost. The 

first considers the design of centralized WDS’s and the second is an optimization 

model for clustering of WDS. Both models provide flexibility by allowing gradual 

development of the systems. The sections below will summarize and provide 

conclusions on the various components of the framework.  
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8.1 Framework for Design of Flexible WDS  

The development of the framework involved four major steps: description of 

uncertainties affecting WDS design; identification of potential options for WDS for 

enhancing flexibility; the generation of flexibility; and rules for decision making 

under uncertainty. 

 

In this dissertation, a scenario approach was used to describe potential 

future uncertain states of a WDS as this does not require the formal description 

of probabilities associated with anticipated change. The scenarios are generated 

based on possible future change drivers and their associated uncertainties and 

these scenarios are articulated through the development of scenario trees. The 

conclusion of this research is that scenario trees are helpful in reflecting the 

possible future states of WDS in a simple manner, while capturing the impact of 

uncertainties on the design of these future states.  

 

Different typologies of options that enhance flexibility of the WDS are 

identified in this dissertation. WDS options can best be categorized into three 

main groups. System design options are technical possibilities that allow 

designers to modify a system to adapt to the future change requirements. These 

options include platform design, stage design, and clustered design. System 

management options are ones that increase the ability of planners/decision 

makers to implement different management decisions at different times. These 

options include investment deferral, multistage deployment, and expansion. 
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System element options are physical, flexible elements or combinations of 

elements within a WDS that deliver better flexibility. These physical elements 

include valves, pipes, pumps and reservoirs. 

 

When generating flexibility it is important to think about the degree of 

flexibility (a spectrum varying from totally inflexible to partially flexible to fully 

flexible). The degree of flexibility also impacts cost and hence it is important to 

consider a multi-objective problem where one attempts to maximize flexibility at 

the least cost. In this dissertation a GA based flexibility optimization (GAFO) 

model for centralized WDS is developed as well as an optimization tool for the 

flexible, design of decentralized/clustered WDS is developed. Depending on the 

nature of the problem the appropriate optimization model for centralized or for 

decentralized/clustered WDS has to be selected. The application of the 

developed optimization models, which build the core of the framework, will be 

discussed in detailed in sections 8.2 and 8.3 below.  

 

Since different flexible design alternatives (based on different flexible 

options) could be generated using the GAFO model, the framework incorporates 

a post-optimization flexibility assessment. In this case two new performance 

metrics were developed: capability to respond and capability to react. Capability 

to respond is the capability of the WDS to absorb specific future alterations. This 

flexibility dimension indicates the intended degree of change that embedded 

options allow for the system to cope with future changes without change 
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requirement. Capability to react is the capability of the WDS to react to unknown 

future alterations. This dimension indicates the nature and degree of change (in 

response to unknown future alterations) that the system is able to adapt to, 

beyond what it was designed for. These metrics are then combined in to a single 

metric called the ‘optimal level of flexibility’ metric. These metrics are used for 

decision making under uncertainty as they allow assessment of the extent of 

flexibility of a WDS with respect to their capability to respond and react to future 

uncertainties.   

 

The dissertation concludes that a minimax regret rule is valuable for 

flexibility-based decision-making for WDS alternatives. This rule is based on “fear 

of guilt” principle that reduces the chance that an outcome will turn disappointing 

or regretful. In this study a minimax regret rule was developed where the regret is 

described in terms of the opportunity loss of WDS alternatives, associated with 

flexibility. The opportunity loss is defined as the difference between the maximum 

possible flexibility and the flexibility of each alternative. Hence, the lower the level 

of regret associated with an alternative, the greater its flexibility. Through case 

study applications, the dissertation demonstrated the usefulness of such an 

approach. 
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8.2 Optimization of Centralized WDS for Flexibility  

In this dissertation, a new optimization model is developed for the flexible 

design of centralized WDS. The new model is called GAFO (Genetic Algorithm 

based Flexibility Optimization) and was coded in C++. 

 

The objective function developed in the GAFO model focuses on the 

minimization of investment and adaptation costs associated with responding to a 

changing environment. The objective function is optimized subject to constraints 

that ensure system performance at all stages of the implementation of the 

design. The unique feature of GAFO is that it allows flexibility to be embedded 

into a WDS design as the optimization is performed against all possible future 

scenarios. The outcome of the optimization is that it develops a WDS that can 

follow different trajectories (based on future conditions) and hence generates a 

staged implementation strategy that allows a stepwise evolution of the WDS over 

time. 

 

GAFO employs a genetic algorithm process for the optimization. However, 

unlike traditional GA optimization, GAFO involves a dynamic decision-making 

process that recognizes a range of possible future conditions through a scenario 

tree and explores this tree to maximize the changeability of the WDS. Hence the 

developed GAFO model includes a unique nested loop process that optimizes 

across several future states and stages, described by the scenario tree. It should 

be noted that the dynamic decision-making process involves a decision at each 
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time stage, and that each decision is influenced by the decision made at the 

previous time stage. The GAFO model was tested on several hypothetical case 

studies and was found to perform well in terms of convergence and in terms of 

flexible design solutions where cost savings in the range of 14% to 72% were 

realized (compared with conventional, non-flexible designs). 

 

The GAFO model was applied for the design of a flexible centralized WDS 

in Mbale, a small town in Eastern Uganda. In this case study two major 

uncertainties were considered: changes in water consumption patterns; and 

changes in the spatial growth of the town. Based on these two uncertainties, 

eight possible future scenarios were developed and flexible designs were 

generated that allowed staged changes to occur so as to respond to the 

predicted changes. Flexibility was embedded into the design through the addition 

of parallel pipes to the system in response to future growth. The optimization 

results of this application showed that considering several future scenarios, the 

flexibility framework was able to generate a flexible staged design that was 

cheaper than a conventional designed system. The costs of the flexible design 

were 4% – 50% cheaper than the conventional design. In addition, the flexibility 

of the designed system was evaluated using the minimax regret principle and the 

results of this highlighted that the flexible design has a lower regret compared to 

the conventionally designed system (a difference of 11m3/US$).  
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8.3 Optimization of Clustered WDS for Flexibility 

In this dissertation an optimization model is developed that supports 

development of decentralized distribution systems. It is argued that these 

clustered systems promote flexibility as they provide internal degrees of freedom, 

allowing many different combinations of distribution systems to be considered so 

that their flexibility can be optimized over time (Webster et al., 2012; Bieker et al., 

2010, PSGS, 2010). To the best of the authors knowledge, currently there is no a 

well-developed methodology for clustering WDS. The clustering optimization 

model is based on two objectives: minimization of the distance from a source to 

consumer; maximization of the homogeneity within a cluster by minimizing the 

variation in cluster characteristics (population density, land-use, socio-economic 

level and topography). The model employed a Euclidean distance minimization 

approach to cluster available local sources and assign demand to the closest 

source center, and K-means approach to maximize the intra-cluster 

homogeneity.  

 

The developed model is applied to real case study in Arua, Uganda. The 

flexibility of the clustered WDS against future changes and uncertainties was 

assessed and compared with the flexibility of conventional centralized WDS. To 

verify the flexibility of clustered systems, the GAFO model was also applied to 

the design of Arua water supply system.  
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The overall cost comparison shows that decentralized clustered WDS 

offer a cost reduction of 24% - 34% (for a range of eleven scenarios) and that 

these cost savings are associated with the ability of the decentralized system to 

be staged in a way that traces the urban growth trajectory more closely. The 

flexibility of the clustered system is analyzed using a minimax regret analysis 

approach and it is found that the clustered WDS has a lower regret (a difference 

of 17m3/US$) associated with the flexibility.  

8.4 Future Potential Research 

 
Although this research has been extensive and complete, as with other 

PhD’s, time is limited and hence many interesting areas of exploration were not 

considered. As the research undertaken in this study is very new and the topic of 

flexibility is still in its infancy, it is recommended that further research is 

encouraged in this important area. Specific areas of research that could be 

considered include the following: 

i) This study has limited the uncertainty parameters under consideration to 

water demand. It is recommended that further research be undertaken to 

extend the developed models to other uncertain parameters such as pipe 

aging and deterioration, mixed land-use, water quality etc.  

ii) In this study, a suite of options are explored and embedded into the 

flexible design of WDS. However a pre-identification and prioritization of 

flexible options that offer better life flexibility is required. Several 
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disciplines have attempted to develop a method for pre-prioritization of 

flexibility options but this has not been done for WDS.  

iii) This study developed a model for the decentralization of WDS and 

showed cost and flexibility related benefits compared to centralized 

systems. However there is a need for further research on determination of 

the optimal size of clusters, the resulting decentralized closed loop water 

systems and the potential benefits of interactions between clusters.  

iv) The focus of this study has been on flexibility design for new WDS. 

However, it is recognized that it is important to consider existing WDS and 

to develop methods for them to transition to a more flexible state. This will 

include identifying optimal transitional pathways that allows a staged 

transition from a highly centralized inflexible system, to a more 

decentralized flexible one.  

  



220 
 

 
 
 
 
 
References 

Allen, T., Moses, J., Hastings, D., Lloyd, S., Little, J., McGowan, D., Magee, C., 
Moavenzadeh, F., Nightingale, D., Roos, D., and Whitney, D. (2001) ESD 
Terms and Definitions. Massachusetts Institute of Technology, 
Engineering Systems Division. 

Alperovits, E. and Shamir, U. (1977). "Design of optimal water distribution 
systems." Water resources research 13(6): 885-900. 

Al-Saleh, M. F., and Yousif, A. E. (2009) Properties of the Standard Deviation 
that are Rarely Mentioned in Classrooms. Australian Journal of Statistics, 
38, 193-202. 

Arboleda, C. A., and Abraham, D. M. (2006) Evaluation of flexibility in capital 
investments of infrastructure systems. Engineering Construction and 
Architectural Management, 13(3), 254. 

Arbues, F., Garcıia-Valinas, M. A., and Martıinez-Espineira, R. (2003) Estimation 
of residential water demand: a state-of-the-art review. Journal of Socio-
economics, 32(1), 81-102. 

Awumah, K., and Goulter, I. (1992) Maximizing entropy defined reliability of water 
distribution networks. Engineering optimization, 20(1), 57-80. 

Babayan, A. V., Savic, D. A., and Walters, G. A. (2007) Multiobjective 
optimization of water distribution system design under uncertain demand 
and pipe roughness. Topics on system analysis and integrated water 
resource management, 161. 

Babayan, A., Kapelan, Z., Savic, D., and Walters, G. (2005) Least-Cost Design of 
Water Distribution Networks under Demand Uncertainty. Journal of Water 
Resources Planning and Management, 131(5), 375-382. 

Back, T., and Hoffmeister, F. (1991) Extended selection mechanisms in genetic 
algorithms. Proceedings of the Fourth International Conference on 
Genetic Algorithms and Their Applications, 92-99. 

Beard, L. R. (1982) Flexibility - a key to the management of risk and uncertainty 
in water supply. Optimal Allocation of Water Resources  



221 
 

Bell, D. E. (1982) Regret in decision making under uncertainty. Operations 
research, 961-981. 

Bernanke, B. S. (1983) Irreversibility, uncertainty, and cyclical investment. The 
Quarterly Journal of Economics, 98(1), 85-106. 

Bieker, S., Cornel, P., and Wagner, M. (2010) Semicentralised supply and 
treatment systems: integrated infrastructure solutions for fast growing 
urban areas. Water science and technology: a journal of the International 
Association on Water Pollution Research, 61(11). 

Blickle, T. (1995) YAGPLIC-User Manual. Computer Engineering and 
Communication Networks Lab (TIK), Swiss Federal Institute of 
Technology (ETH) Zurich, Gloriastrasse, 35. 

Blickle, T., and Thiele, L. (1995) A mathematical analysis of tournament 
selection. Proceedings of the Sixth International Conference on Genetic 
Algorithms, 9-16. 

BMBF (2006) Semicentralized supply and disposal systems for fast growing 
urban regions in China, Final report of Sino-German Research Project. 
German Federal Ministry of Science and Technology. 

Böhm, H. R., Schramm, S., Bieker, S., Zeig, C., Anh, T. H., and Thanh, N. C. 
(2011) The semicentralized approach to integrated water supply and 
treatment of solid waste and wastewater—a flexible infrastructure strategy 
for rapidly growing urban regions: the case of Hanoi/Vietnam. Clean 
Technologies and Environmental Policy, 13(4), 617-623. 

Brest, J., and Maucec, M. S. (2008) Population size reduction for the differential 
evolution algorithm. Applied Intelligence, 29(3), 228-247. 

Cardin, M.-A., and Neufville, R. d. (2008) A Survey of State-of-the-Art 
Methodologies and a Framework for Identifying and Valuing Flexible 
Design Opportunities in Engineering Systems. Massachusetts Institute of 
Technology, Cambridge. 

Chan, C., Wong, C., Cheung, S., and Tang, N. (2002) Genetic algorithms in 
multi-stage portfolio optimization system. In proceedings of the eighth 
international conference of the Society for Computational Economics, 
Computing in Economics and Finance, Aix-en-Provence, France. 

Chen, R., and Wang, X. (2009) Cost-benefit evaluation of a decentralized water 
system for wastewater reuse and environmental protection. Water science 
and technology, 59(8), 1515-1522. 

COWATER (2005) District Town Sewerage /Sanitation Feasibility study: Arua 
master plan, National Water and Sewerage Corporation, Uganda. 



222 
 

Crow, J. F., and Kimura, M. (1970) An introduction to population genetics theory, 
Harper and Raw, New York. 

de Neufville, R. (2000) Dynamic strategic planning for technology policy. 
International Journal of Technology Management, 19(3), 225-245. 

de Neufville, R. (2001) Real options: dealing with uncertainty in systems planning 
and design. 5th. International Conference on "Technology Policy and 
Innovation", Delft University of Technology, Delft, Netherlands. 

de Neufville, R. (2002) Architecting/Designing Engineering Systems Using Real 
Options. Monograph, Engineering Systems Division Internal Symposium, 
Massachusetts Institute of Technology. [Online] [Access date: Jan] 

de Neufville, R. (2004) Uncertainty Management For Engineering Systems 
Planning And Design. Engineering Systems Monograph, Cambridge, MA. 

de Neufville, R., and Cardin, M. ( 2008) A Survey of State-of-the-Art 
Methodologies and a Framework for Identifying and Valuing Flexible 
Design Opportunities in Engineering Systems. Working Paper, Cambridge 
MA. 

de Weck, O. L., and Suh, E. S. (2005) Flexible product platforms, Massachusetts 
Institute of Technology. 

Dettinger, M. D. and J. L. Wilson (1981). "First Order Analysis of Uncertainty in 
numerical models of groundwater flow, Mathematical Development." 
Water Resources Research 17(1): 149-16. 

Dijk, M. v., Vuuren, S. v., and Zyl, J. v. (2008) Optimising water distribution 
systems using a weighted penalty in a genetic algorithm. Water SA, 34 
(5). 

Dopp, K. (2011) Legislative Redistricting-Compactness and Population Density 
Fairness. Available at SSRN 1945879. 

Eckart, J., Sieker, H., and Vairavamoorthy, K. (2010) Flexible Urban Drainage 
System. Water Convention Singapore International Water Week, 
Singapore  

Eckart, J., Tsegaye, S., and Vairavamoorthy, K. (2011) Measuring the flexibility 
of urban drainage systems. The Future of Urban Water: Solutions for 
Livable and Resilient Cities, January 24th – 26th Paris  

Eckert, C., Clarkson, P. J., and Zanker, W. (2004) Change and customisation in 
complex engineering domains. Res Eng Des, 15(1), 1–21. 

Eiben, A. E., and Smith, J. E. (2003) Introduction to evolutionary computing, 
Springer Verlag. 



223 
 

Einhorn, H. J., and Hogarth, R. M. (1986) Decision making under ambiguity. 
Journal of Business, 225-250. 

EPA (1999) Survey data, unit construction cost of traditional filter water treatment 
plants, US Environmental Protection Agency. 

Eppen, G. D., R. K. Martin, et al. (1989). "A scenario approach to capacity 
planning." Operations Research: 517-527. 

Kazi A S, Aouad G, and Baldwin A (2009). "Construction IT in 2030: a scenario 
planning approach." Journal of Information Technology in Construction 14: 
539-555. 

Erlenkotter, D., Sethi, S., and Okada, N. (1989) Planning for surprise: Water 
resources development under demand and supply uncertainty I. The 
general model. Management science, 35(2), 149-163. 

Espinoza, F. P., and Minsker, B. S. (2006) Development of the enhanced self-
adaptive hybrid genetic algorithm (e-SAHGA). Water resources research, 
42(8), 8501.  

Farmani, R., Walters, G. A., and Savic, D. A. (2005) Trade-off between total cost 
and reliability for Anytown water distribution network. Journal of water 
resources planning and management, 131, 161. 

Finne, T. (1998) The Three Categories of Decision Making and Information 
Security. Computers and Security, 17(5), 397-405. 

Fricke, E., and Schulz, A. P. (2005) Design for changeability (DfC): Principles to 
enable changes in systems throughout their entire lifecycle. Systems 
Engineering-New York-, 8(4), 342. 

Fujiwara, O., and Ganesharajah, T. (1993) Reliability assessment of water supply 
systems with storage and distribution networks. Water Resources 
Research, 29(8), 2917-2924. 

GAUFF (2011) Arua Emergency Water Supply Project: Inception report. [Online] 
http://www.amk.rwth-aachen.de/uploads/media/RECLAIM_WATER_ 
Publishable_Final_Activity_Report.pdf [Access date: July 2012] 

Giustolisi, O., Laucelli, D., and Colombo, A. F. (2009) Deterministic versus 
Stochastic Design of Water Distribution Networks. Journal of Water 
Resources Planning and Management, 135(2), 117-127  

Goldberg, D. E., and Deb, K. (1991) A comparative analysis of selection 
schemes used in genetic algorithms. Urbana, 51, 61801-2996. 



224 
 

Gomes, H. P., de Tarso Marques Bezerra, S., De Carvalho, P. S. O., and 
Salvino, M. M. (2012) Optimal dimensioning model of water distribution 
systems. Water SA, 35(4). 

Goulter, I. (1995) Analytical and simulation models for reliability analysis in water 
distribution systems, Norwell, MA: Kluwer. 

Goulter, I. C. (1987) Current and future use of systems analysis in water 
distribution network design. Civil Engineering Systems, 4(4), 175-184. 

Grefenstette, J. J., and Baker, J. E. (1989) How genetic algorithms work: A 
critical look at implicit parallelism. Proceedings of the third international 
conference on Genetic algorithms, 20-27. 

Gu, P., M. Hashemian, et al. (1997). "An integrated modular design methodology 
for life-cycle engineering." CIRP Annals-Manufacturing Technology 46(1): 
71-74. 

Gupta, I., Gupta, A., and Khanna, P. (1998) Genetic algorithm for optimization of 
water distribution systems. Environmental Modelling & Software. 

Halhal, D., Walters, G. A., Ouazar, D., and Savic, D. A. (1997) Water network 
rehabilitation with structured messy genetic algorithm. Journal of Water 
Resources Planning and Management, 123(3), 137-146. 

Hassan, R., and de Neufville, R. (2006) Design of Engineering Systems under 
Uncertainty via Real Options and Heuristic Optimization. Massachusetts 
Institute of Technology, unpublished paper. 

Herrera, M., Canu, S., Karatzoglou, A., Perez-García, R., and Izquierdo, J. 
(2010) An approach to water supply clusters by semi-supervised learning. 
Proceedings of iEMSs. 

Hocke, S., and Heinzl, A. (2006) Flexibilitätsmanagement – eine 
systemtheoretisch-kybernetische Betrachtung. University of Mannheim, 
Department of Information Systems, Mannheim. 

Holland, J. (1975) Adaptation in Natural and Artificial Systems, University of 
Michigan Press, Ann Arbor. 

Huang, D., Vairavamoorthy, K., and Tsegaye, S. (2010) Flexible Design of Urban 
Water Distribution Networks  World Environmental & Water Resources 
Congress 2010, Rhode Island, USA. 

Jacobs, P., and Goulter, I. (1988) Evaluation of methods for decomposition of 
water distribution networks for reliability analysis. Civil Engineering 
Systems, 5(2), 58-64. 



225 
 

Jacobs, P., and Goulter, I. C. (1989) Optimization of redundancy in water 
distribution networks using graph theoretic principles. Engineering 
optimization, 15(1), 71-82. 

Kahneman, D., and Tversky, A. (1979) Prospect theory: An analysis of decision 
under risk. Econometrica: Journal of the Econometric Society, 263-291. 

Kalligeros, K. (2006) Platforms and Real Options in Large-Scale Engineering 
Systems, Massachusetts Institute of Technology, Cambridge, MA. 

Karatzas, G. P., and Finder, G. F. (1996) The solution of groundwater quality 
management problems with a nonconvex feasible region using a cutting 
plane optimization technique. Water Resources Research, 32(4), 1091-
1100.  

Kessler, A., and Shamir, U. (1989) Analysis of the linear programming gradient 
method for optimal design of water supply networks. Water Resources 
Research, 25(7), 1469-1480. 

Khatri, K. B., and Vairavamoorthy, K. (2007) Challenges for urban water supply 
and sanitation in the developing countries. 81. 

Khosrowpanah, S., and Heitz, L. (2003) Slow Sand Filter Conceptual Design for 
the Federated States of Micronesia (FSM), Water and Environmental 
Research Institute of the Western Pacific, University of Guam. 

Khu, S. T., and Keedwell, E. (2005) Introducing more choices (flexibility) in the 
upgrading of water distribution networks: the New York city tunnel network 
example. Engineering Optimization, 37(3), 291-305. 

Kirkpatrick, S., Gelatt Jr, C. D., and Vecchi, M. P. (1983) Optimization by 
simulated annealing. science, 220(4598), 671-680.  

Kleiner, Y. (1997) Rehabilitation Planning of Water Distribution Networks: The 
Component and the System Perspective, National Research Council 
Canada, Institute for Research in Construction. 

Lansey, K. E., and Mays, L. W. (1989) Optimization models for design of water 
distribution systems. Reliability Analysis of Water Distribution Systems. 
American Society of Civil Engineers, New York, 37-84. 

Lau, J., and Chan, J. (2004) Strategic reasoning: Decision Theory. School of 
Humanities, Faculty of Arts, The University of Hong Kong. [Online] 
http://philosophy.hku.hk/think/strategy/decision.php [Access date: 
December 2010] 



226 
 

Lipshitz, R., and Strauss, O. (1997). Coping with uncertainty: A naturalistic 
decision-making analysis. Organizational Behavior and Human Decision 
Processes, 69(2), 149-163. 

Lobo, F., and Lima, C. (2007) Adaptive population sizing schemes in genetic 
algorithms. Parameter Setting in Evolutionary Algorithms, 185-204. 

Lopez-Pujalte, C., Guerrero-Bote, V. P., and de Moya-Anegon, F. (2003) Order-
based fitness functions for genetic algorithms applied to relevance 
feedback. Journal of the American Society for Information Science and 
Technology, 54(2), 152-160. 

Lund, J. R. (1988) Regional water supply development in south Sweden. Journal 
of Urban Planning and Development, 114(1), 14-33. 

Maier, H. R., Simpson, A. R., Zecchin, A. C., Foong, W. K., Phang, K. Y., Seah, 
H. Y., and Tan, C. L. (2003) Ant colony optimization for design of water 
distribution systems. Journal of water resources planning and 
management, 129, 200. 

Maskey, S. and V. Guinot (2003). "Improved first-order second moment method 
for uncertainty estimation in flood forecasting." Hydrological sciences 
journal 48(2): 183-196. 

Mays, L. W. (2000) Water Distribution Systems Handbook, McGraw-Hill, New 
York., Tempe, Arizona. 

Ministry of Water and Environment (2011) Water and Environment Sector 
Performance Report, Uganda. 

Nachbar, J. (2009) Basic Properties of the Euclidean Norm. In, J. Nachbar, ed., 
Economics 511. 

Newman, P. (2001) Sustainable urban water systems in rich and poor cities--
steps towards a new approach. Water science and technology: a journal 
of the International Association on Water Pollution Research, 43(4), 93. 

Nicklow, J., Reed, P., Savic, D., Dessalegne, T., Harrell, L., Chan-Hilton, A., 
Karamouz, M., Minsker, B., Ostfeld, A., and Singh, A. (2010) State of the 
art for genetic algorithms and beyond in water resources planning and 
management. Journal of Water Resources Planning and Management, 
136, 412. 

Nilchiani, R. (2005) Measuring Space Systems Flexibility: A Comprehensive Six-
element Framework, Massachusetts Institute of Technology, Cambridge, 
MA,. 



227 
 

Nilchiani, R., and Hastings, D. E. (2007) Measuring the value of flexibility in 
space systems: A six-element framework. Systems Engineering, 10(1), 
26-44. 

NWSC (2011) Uganda National Water and Sewerage Corporation Annual 
Report, Kampala, Uganda. 

Olewnik, A., and Lewis, K. (2006) A decision support framework for flexible 
system design. Journal of Engineering Design, 17(1), 75-97. 

Ostfeld, A. (2004) Reliability analysis of water distribution systems. Journal of 
Hydroinformatics, IWA, 6(4), 281-294. 

Parsons, S., and Wooldridge, M. (2002) Game theory and decision theory in 
multi-agent systems. Autonomous Agents and Multi-Agent Systems, 5(3), 
243-254. 

Peng, S., and Zhao, X. (2009) A Review of Uncertainty Methods Employed in 
Water Quality Modeling. 32-35. 

Popov, A. (2005) Genetic Algorithms for optimization. User Manual, Hamburg, 
Germany. 

Prasad, T. D. (2004) Multiobjective genetic algorithms for design of water 
distribution networks. Journal of Water Resources Planning and 
Management, 130, 73. 

PSGS (2010) Integrated Urban Water Management for Arua, Uganda, World 
Bank. 

Raad, D. N., Sinske, A. N., and van Vuuren, J. H. (2010) Comparison of four 
reliability surrogate measures for water distribution systems design. Water 
Resources Research, 46(5), W05524. 

Ramirez, N. (2002) Valuing flexibility in infrastructure developments: the Bogota 
water supply expansion plan, Massachusetts Institute of Technology. 

Ross, A. M., Rhodes, D. H., and Hastings, D. E. (2008) Defining changeability: 
Reconciling flexibility, adaptability, scalability, modifiability, and robustness 
for maintaining system lifecycle value. Systems Engineering, 11(3), 246-
262. 

Safe, M., Carballido, J., Ponzoni, I., and Brignole, N. (2004) On stopping criteria 
for genetic algorithms. Advances in Artificial Intelligence, SBIA 2004, 405-
413. 

Saleh, J. H., Hastings, D. E., and Newman, D. J. (2001) Extracting the essence 
of flexibility in system design. 59-72. 



228 
 

Saleh, J. H., Hastings, D. E., and Newman, D. J. (2003) Flexibility in system 
design and implications for aerospace systems. Acta Astronautica, 53(12), 
927-944. 

Savic, D. (2002) Single-objective vs. Multiobjective Optimisation for Integrated 
Decision Support. In: Integrated Assessment and Decision Support, 
Rizzoli, A.E. and A.J. Jakeman (eds.), Proceedings of the First Biennial 
Meeting of International Environmental Modelling and software Society, 
Lugano, Switzerland, 7-12. 

Savic, D. A. (2005) Coping With Risk And Uncertainty In Urban Water 
Infrastructure Rehabilitation Planning School of Engineering, Computer 
Science and Mathematics, University of Exeter. 

Savic, D., Walters, G., and Schwab, M. (1997) Multiobjective genetic algorithms 
for pump scheduling in water supply. Lecture Notes in Computer Science, 
1305, 227-236. 

Schoemaker, P. J. H. (1991). "When and how to use scenario planning: A 
heuristic approach with illustration." Journal of forecasting 10(6): 549-564.  

Scholtes, S. (2007) Flexibility: The Secret to Transforming Risks into 
Opportunities. [Online] http://www.eng.cam.ac.uk/~ss248/publications/ 
BusinessDigest.pdf [Access date: Nov 12] 

Schulz, A. P., Fricke, E., and Igenbergs, E. (2000) Enabling Changes in Systems 
throughout the Entire Life-Cycle – Key to Success ? 10th annual INCOSE 
conference, Minneapolis, USA. 

Segrave, A. (2007) Report on trends in the Netherlands. TECHNEAU. 

Shah, N. B., Viscito, L., Wilds, J., Ross, A. M., and Hastings, D. (2008) 
Quantifying flexibility for architecting changeable systems. 

Shannon, C. E. (1948) A mathematical theory of communication. Technical 
journal, AT & T Bell Labs. October. 

Shibu A. and Janga Reddy M.  (2011). Uncertainty Analysis of Water Distribution 
Networks by Fuzzy - Cross Entropy Approach, World Academy of 
Science, Engineering and Technology, 59, 724-731. 

Siedlecki, W., and Sklansky, J. (1993) Constrained genetic optimization via 
dynamic reward-penalty balancing and its use in pattern recognition. 
Handbook of pattern recognition & computer vision, 108-123. 

Silver, M. R., and de Weck, O. L. (2007) Time-expanded decision networks: A 
framework for designing evolvable complex systems. System Engineering-
New York, 10(2), 167. 



229 
 

Simpson, A. R., Dandy, G. C., and Murphy, L. J. (1994) Genetic algorithms 
compared to other techniques for pipe optimization. Journal of Water 
Resources Planning and Management, 120(4), 423-443. 

Singh, K., Malik, D., and Sharma, N. (2011) Evolving limitations in K-means 
algorithm in data mining and their removal. International Journal of 
Computational Engineering & Management, 12, 105-109. 

Srinivas, M., and Patnaik, L. M. (1994) Adaptive probabilities of crossover and 
mutation in genetic algorithms. Systems, Man and Cybernetics, IEEE 
Transactions on, 24(4), 656-667. 

Su, Y. C., Duan, N., and Lansey, K. E. (1987) Reliability- Based Optimization 
Model for Water Distribution Systems. Journal of Hydraulic Engineering, 
113, 1539. 

Suh, E. S. (2005) Flexible Product Platforms, Massachusetts Institute of 
Technology,Engineering Systems Division Cambridge, MA. 

Swamee, P. K., and Sharma, A. K. (2008) Design of water supply pipe networks, 
Wiley-Interscience. 

Tanyimboh, T. T., and Templeman, A. B. (1993) Maximum entropy flows for 
single-source networks. Engineering Optimization, 22(1), 49-63. 

Tanyimboh, T. T., and Templeman, A. B. (1993) Optimum design of flexible 
water distribution networks. Civil Engineering Systems, 10(3), 243-258. 

Tanyimboh, T. T., and Templeman, A. B. (2000) A quantified assessment of the 
relationship between the reliability and entropy of water distribution 
systems. Engineering Optimization, 33(2), 179-199. 

Thomure, T. (2009). Scenario Planning: Making Strategic Decisions in Uncertain 
Times. 54th Annual New Mexico Water Conference, Water Planning in a 
Time of Uncertainty. 

Todini, E. (2000) Looped water distribution networks design using a resilience 
index based heuristic approach. Urban water, 2(2), 115-122. 

Todini, E. (2000) Looped water distribution networks design using a resilience 
index based heuristic approach. Urban water, 2(2), 115-122. 

Tolson, B. A., and Maier, H. R. (2004) Genetic algorithms for reliability-based 
optimization of water distribution systems. Journal of Water Resources 
Planning and Management, 130, 63. 



230 
 

Tolson, B. A., and Maier, H. R. (2004) Genetic algorithms for reliability-based 
optimization of water distribution systems. Journal of Water Resources 
Planning and Management, 130, 63. 

Trifunovic, N. (2012) Pattern Recognition for Assesement of Water Distribution 
Network, UNESCO-IHE Institute for Water Education, Delft, Netherland. 

Troffaes, M. (2007) Decision making under uncertainty using imprecise 
probabilities. International Journal of Approximate Reasoning, 45(1), 17-
29. 

Tsegaye, S., and Vairavamoorthy, K. (2011) Water Demand management in the 
City of the Future: Agent Based Modelling for Demand Side Water 
Management Strategies (Chapter 5), Water, Engineering and 
Development Center, Loughborough University, UK. 

Tsegaye, S., Eckart, J., and Vairavamoorthy, K. (2011) Decision Support 
Framework for Design of Flexible Urban Water Distribution Systems. The 
Future of Urban Water: Solutions for Livable and Resilient Cities  Paris. 

Tsegaye, S., Eckart, J., and Vairavamoorthy, K. (2012) Urban Water 
Management in Cities of the Future: Emerging Areas in Developing 
Countries. On the Water Front, 42. 

UBOS. (2011). "Mid-Year Projected Population for Town Councils ", Uganda 
Bureau of Statistics (UBOS), Kampala, Uganda. 

Upton, D. M. (1994) The management of manufacturing flexibility. California 
management review, 36, 72-72. 

Vairavamoorthy, K., and Ali, M. (2000) Optimal design of water distribution 
systems using genetic algorithms. Computer-Aided Civil and Infrastructure 
Engineering, 15(5), 374-382. 

Vairavamoorthy, K., and Tsegaye, S. (2011) Water Distribution Systems: Design 
of Water Distribution Systems (Chapter 7), ICE Publishing,Thomas 
Telford, UK. 

Vairavamoorthy, K., Ghebremichael, K., Eckart, J., Tsegaye, S., and Khatri, K. 
(2012) Chapter 2: An Integrated Perspective for Urban Water, 
Management The Future of Water in African Cities: Why Waste Water? . 
World Bank. 

Valerie, N. (2008) New Approach in Decentralized Water Infrastructure. Coalition 
of Alternative Wastwater Treatement. 



231 
 

Wagner, J. M., Shamir, U., and Marks, D. H. (1988) Water distribution reliability: 
analytical methods. Journal of Water Resources Planning and 
Management, 114(3). 

Walski, T. M., Brill, E. D., and Gessler, J. (1987) Battel of the network models. 
Journal of  Water Resource Planning and Management, 113(2). 

Walski, T. M., Chase, D. V., Savic, D. A., Grayman, W., Beckwith, S., and Koelle, 
E. (2003) Advanced Water Distribution Modeling and Management. 
Haestad Press, Waterbury CT. 

Wang, X., Chen, R., Zhang, Q., and Li, K. (2008) Optimized plan of centralized 
and decentralized wastewater reuse systems for housing development in 
the urban area of Xi'an, China. Water science and technology, 58(5), 969. 

Watanatada, T. (1973) Least-cost design of water distribution systems. Journal of 
the Hydraulics Division, 99(9), 1497-1513 

Weber, B., Cornel, P., and Wagner, M. (2007) Semi-centralized supply and 
treatment systems for (fast growing) urban areas. 55(1-2), 349-356. 

Webster, M., Jacobsen, M., and Vairavamoorthy, K. (2012) The Future of Water 
in African Cities: Why Waste Water? 

Whitley, D. (1989) The GENITOR algorithm and selection pressure: Why rank-
based allocation of reproductive trials is best. Proceedings of the third 
international conference on Genetic algorithms, 116-121. 

Xu, C., and Goulter, I. C. (1999) Reliability-based optimal design of water 
distribution networks. Journal of Water Resources Planning and 
Management, 125, 352. 

Yassine, A. A., and Falkenburg, D. R. (1999) A Framework for Design Process 
Specifications Management. Journal of Engineering Design, 10(3). 

Zecchin, A. C., Maier, H. R., Simpson, A. R., Leonard, M., and Nixon, J. B. 
(2007) Ant colony optimization applied to water distribution system design: 
comparative study of five algorithms. Journal of Water Resources 
Planning and Management, 133, 87.  

Zecchin, A. C., Simpson, A. R., Maier, H. R., and Nixon, J. B. (2005) Parametric 
study for an ant algorithm applied to water distribution system 
optimization. IEEE transactions on evolutionary computation, 9(2), 175-
191. 

Zhao, T., and Tseng, C. L. (2003) Valuing Flexibility in Infrastructure Expansion. 
Journal of Infrastructure Systems, 9(3), 89-97. 

  



232 
 

 
 
 
 
 
Appendices 

  



233 
 

Appendix 1 Water Source Grouping 

Table A.1 Matrix for water source centers determination 

 

  

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 0 1485 3926 3926 4119 5091 5419 5284 7591 6316 4149 3986 6792 4203 2372 1006 1
2 0 2442 2442 2683 3606 3937 3833 6172 5284 3578 3612 5708 3276 2163 2040 1
3 0 212 960 1172 1544 1530 3894 4119 3795 4149 4360 2885 3502 4327 2
4 0 750 1172 1500 1657 4002 4327 3986 4329 4562 3089 3628 4373 2
5 0 1358 1477 2148 4360 5040 4708 5029 5248 3833 4200 4708 2
6 0 450 960 3004 4149 4522 4952 4248 3502 4555 5493 3
7 0 1290 3015 4500 4970 5402 4562 3946 4986 5867 3

0 2372 3210 3912 4391 3290 2854 4298 5515 8
9 0 3314 5303 5842 3004 4327 6259 7710 4

10 0 2624 3121 541 2121 4224 6004 5
11 0 541 3164 1061 1806 3600 6
12 0 3662 1566 1616 3331 6
13 0 2620 4743 6512 5
14 0 2148 3894 6
15 0 1806 7
16 0 1
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Appendix 2 Investment Cost Comparison  

In addition to the cost comparison of WDS presented in Chapter 7, this 

subsection compares other investment costs for centralized and clustered water 

supply systems (WSS) for Arua town. These include the cost of collection, 

storage and treatment for both centralized and clustered WSS.  

A2.1 Water Collection 

In respect to water collection, Arua town is located in water scarce area 

and one of the alternative sources for centralized system under consideration is 

22km away from the town at Olewa, which is also the location for a proposed 

hydropower plant along the River Enyau.   
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Appendix 2 (continued) 

According to a hydrological study undertaken at this location 

(Environmental Management Associates, 2002) the estimated average flow is 

59,184 m3/d with an estimated range of 10,900 to 198,700 m3/d. This source 

can provide sufficient quantity to Aura to meet the 2032 demand but it requires 

huge collection effort as it is located 200m below the elevation of the Town. 

However the proposed clustered WSS development in this study exploits the 

potential local water sources in the area. So in addition to the water distribution 

pipes, investment cost for water collection pipe for both WSS is considered for 

comparison. The collection pipe cost is calculated for each WSS in Table A.2 and 

Table A.3 and summarized in Table A.4. 

 

Table A.2 Water collection for centralized WSS (real cost) 

Source 
Flow 

(m3/d) 

Distance 
to WTP 

(m) 
Diameter 

(mm) 
Pipe cost 

(US$) 
Pipe laying 
cost (US$) 

Total 
(US$) 

Olewa 11457 22000 406.4 1980000 440000 2420000 
Enyau 5760 1209 406.4 108840 24187 133027 

 

Table A.3 Water collection cost for clustered WSS (real cost) 

 

X2 (m) Y2 (m) X2 (m) Y2 (m)
C9 2700 3000 3900 2850 1209 508 0.45 5.4 205588 30233 235821.0
C8 5400 2850 5400 3158 308 254 0.40 1.2 9856 2156 12012.0
C4 6150 600 5700 900 541 304.8 0.40 2.2 27042 5408 32450.0
C5 3110 510 2850 2100 1611 203.2 0.50 8.1 37058 11278 48336.3
C6 2062 3108 1350 2250 1115 254 0.45 5.0 35681 7805 43486.5
C7 1650 4950 1650 4800 150 254 0.40 0.6 4800 1050 5850.0
C1 1992 6772 2850 7500 1126 203.2 0.59 6.6 25888 7879 33766.4
C2 5461 4650 5400 5100 454 254 0.45 2.0 14534 3179 17713.0
C3 6181 3600 6750 3600 569 254 0.35 2.0 18195 3980 22174.6

Pipe cost 
(US$)

pipe 
laying 
(US$)

Total 
(US$)

Source 
center

Source location
Reservoir  
location Distance 

to WTP
Pipe Dia. 

(mm)

Head 
loss 

m/km
Total 
loss
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Appendix 2 (continued) 

Table A.4 Water collection cost comparison 

Stage Year Area 

Cost (US$) NPV(US$) 

Centralized Clustered Centralized Clustered 
0 2012 C9 2553027 235821 2553027 235821 
1 2017 C8 - 12012 - 10362 
2 2022 C4, C5, C6 - 124273 - 92471 
3 2027 C7, C1 - 39616 - 25428 
4 2032 C2, C3 - 39888 - 22085 

 Total 2553027 451610 2553027 386166 
 

The comparison in NPV shows that the clustered system offers 85% cost 

saving than centralized system. This is because the clustered system water 

sources are located within the small clusters closer to the collection unit, thus the 

cost of collection pipes are relatively small whereas the centralized system 

required collection of water from Olewa River which is 22km and makes this 

option more expensive in terms of both capital and operational expenditure.  

A2.2 Elevated Reservoirs  

The proposed WSS for Arua Town has one reservoir in case of centralized 

system for the whole area and nine reservoirs in case of clustered WSS. Thus 

the determination of the cost of reservoirs is essential for comparison between 

central and clustered approach. Relevant data for cost of construction concrete 

reservoirs is taken from NWSC (2011). The cost proportion involves US $2469 

for 25m3, US $3137 for 39m3 and US $331305 for 50m3 reservoir sizes.  
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Based on the proportion, the cost of construction of elevated concrete 

reservoirs for the proposed systems is calculated and shown in Table A.5. 

 

Table A.5 Construction cost of reservoirs 

Stage Year Area 

Cost (US$) NPV(US$) 

Centralized Clustered Centralized Clustered 
0 2012 C9 116183 84742 2553027 667068 
1 2017 C8 - 26343 - 292239 
2 2022 C4, C5, C6 60026 83864 38529 777619 
3 2027 C7, C1 - 49323 - 418344 
4 2032 C2, C3 - 52295 - 373351 

 Total 176209 296567 154712 2528620 
 

The above table shows that the cost of construction of large reservoir for 

centralized WSS is 49% less expensive than constructing many small reservoirs 

for clustered WSS. That is because as the unit enlarged from smaller to larger 

size, the scale generally results in lower construction cost per unit capacity. Thus 

large centralized systems generate huge benefit from economy of scale. 

A2.3 Water Treatment Plant (WTP) 

The investment cost of water treatment plant (WTP) varies with the scale 

of the units. According to (Webster et al., 2012) the specific investment and 

operation cost decrease with increasing size of the treatment units. Centralized 

and large WTP have the lowest unit investment cost, and are favored by the 

economy of scale.   
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However the clustered system benefits from small scale low cost 

treatment units such as Slow Sand Filters (SSF). SSF is a reliable water 

purification technology in developing countries because of its performance, low 

construction cost, low operation and maintenance requirement and no purchase 

of chemicals. In this subsection, the conventional WTP (coagulation, 

sedimentation, filtration and disinfection) and SSF treatment technologies are 

considered in the cost comparison. First conventional WTP is proposed for both 

centralized and clustered system and cost comparison is performed. Second a 

conventional water treatment unit for the centralized system, and a SSF for the 

clustered system is proposed and independent comparison is performed.  

i)  Conventional WTP for Both Centralized and Clustered: There is lack of 

data to calculate the cost of WTP for different scales in Uganda. Although 

the unit costs might differ considerably for different countries, the casual 

correlation between size and specific cost will be alike (Webster et al., 

2012). Thus the correlation for different scales conventional treatment 

units is taken from US Environmental Protection Agency survey data 

(1999) and scaled using local treatment plant cost data from Uganda 

(Webster et al. 2012). Figure A.1 shows correlated unit cost for 

construction of conventional WTP in Uganda.  
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Figure A.1 Unit construction cost of conventional filter WTPs in Uganda 

 

To avoid the problem associated with expanding the centralized WTP, a 

two stage development is proposed. The first stage considers demand for 

year 2012 and the second stage for year 2027.  Unlike the centralized 

systems, the cluster systems are small and independent such that the 

design could follow the stages proposed by the population growth. Thus 

the centralized WSS will have one treatment plant constructed in two 

stages and the clustered WSS will have nine treatment units constructed 

in five stages. The total construction cost is calculated using the unit cost 

for respective treatment capacity. Table A.6 shows the total investment 

cost for conventional WTP for Arua centralized and clusters systems.  
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Table A.6 Construction cost of conventional WTP  
 

Stage Year Area 
Demand 

(m3/d) 

Conventional WTP 
(real cost US$) 

Conventional WTP 
(NPV in US$) 

Centralized Centralized Centralized Clustered 
0 2012 C9 7694 2232676 1650289 2232676 1650289 
1 2017 C8 1166 - 538916 - 464874 

2 2022 
C4, C5, 
C6 3949 - 1709509 - 1272035 

3 2027 C7, C1 2100 1186081 1011741 761300 649398 
4 2032 C2, C3 2308 - 1070069 - 59247 

Total 
 

17217 3418757 5980524 2993976 4629067 
 

According to the result depicted Table A.6, the investment cost (in NPV 

term) of WTP for clustered water system is 55% higher than the 

centralized WTP. This is because that the centralized large treatment 

plants have lowest unit investment cost than small clustered treatment 

systems. However the smaller units could benefit from other low-cost 

small treatment units discussed below.  

ii) SSF for Clustered and Conventional WTP for Centralized WSS: A small 

and autonomous clustered system could benefit from small scalable low 

cost treatment units. So in addition to the conventional WTP for both 

centralized and clustered system this study proposes comparison based 

on Slow Sand filtration (SSF) for clustered WSS. SSF is a simple and 

reliable filtration technology for low turbidity (<20TU) water sources. It has 

an excellent removal capacity for pathogenic organisms. SSF is especially 

appropriate for small scale treatment and requires less amount of cost for 

construction.   
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SSF provides a low energy treatment process. SSF requires large amount 

of land because of the slow filtration process however it’s a great 

adaptability in components and provides a low maintenance system that 

doesn’t need constant attention for operation. It can also be manufactured 

using local skills and materials. In ordered to calculate the cost of SSF for 

Arua Town, similar approach as conventional WTP is followed. To the best 

of our knowledge SSF has not been built in Uganda. Thus investment cost 

data from the other less-developed country, Federated States of 

Micronesia (FSM) is used in the calculation of the SSF investment 

expense (Khosrowpanah and Heitz, 2003). A casual correlation between 

size and specific cost is done using the required treatment unit. Figure A.2 

shows the unit cost for construction of SSF in Arua. 

 

 
 

Figure A.2 Unit construction cost of SSF 
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The construction cost of SSF for all clusters is calculated based on the 

unit cost shown above and tabulated in Table A.7 (column eight). 

Whereas the same cost for conventional WTP calculated in Table A.6 is 

used for the centralized system. This is because SSF requires huge 

amount of land and is not reliable for large scale treatment systems. 

 
Table A.7 Conventional WTP for centralize and SSF for clustered WSS 

 

Stage Year Area 
Flow 

(m3/d) 

Real cost (US$) NPV (US$) 
Conventional 
centralized 

SSF for 
Clustered 

Conventional 
centralized 

SSF for 
Clustered 

0 2012 C9 7694 2232676 667068 2232676 667068 
1 2017 C8 1166 - 338785 - 292239 

2 2022 
C4, C5, 
C6 3949 - 1045056 - 777619 

3 2027  C7, C1 2100 1186081 651766 761300 418344 
4 2032 C2, C3 2308 - 674313 - 373351 

Total 17217 3418757 3376987 2993976 2528620 
 

The investment cost of SSF for clustered water system is 16% less 

expensive than the centralized WTP. This is because the clustered WSS 

benefits from the economic scale of low cost treatment units of SSF.  
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A3.1 Conventional WTP for Both Centralized and Clustered 

In calculation of the annual operation cost of conventional WTP different 

cost expenses are considered. One of the largest cost items for conventional 

water treatment is chemicals, which typically include various coagulants, 

disinfectants, and pH adjusters (Dearmont, McCarl, and Tolman 1998).  Others 

include cost related to electricity, administration, labor and maintenance. A 20 

mg/L FeCl3 and 3 mg/L Cl2 for 100,000m3/d flow, a yearly 1% total construction 

cost for maintenance and an administration cost of 50% of staff cost is 

considered for calculation of operation cost. The summary of the cost 

comparison for conventional WTP for both centralized and clustered approach is 

shown in Table A.8. 

 

Table A.8 Cost for operation and maintenance of conventional WTP 
 

Year 
Area/ 

clusters 
Flow 
(m3/d) 

Annual cost  
(real cost in US$) 

O&M  
NPV in US$ 

Centralized Clustered Centralized Clustered 
2012 to 
2017 C9 7694 1164527 1086246 1098637 1024786 
2017 to 
2022 C9, C8 8860 1721091 1388149 1400627 1129679 
2022 to 
2027 

C9, C8, 
C4, C5, C6 12809 2197825 2336065 1542858 1639901 

2027 t0 
2032 

C9, C8, 
C4, C5, 
C6, C7, C1 14909 2690671 2917805 1629323 1766863 

2032 

C9, C8, 
C4, C5, 
C6, C7, 
C1, C2, C3 17217 629849 703870 348732 389716 

Total 8403963 8432135 6020177 5950944 
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Table A.8 shows that the operation cost of for clustered system is 1.2% 

less expensive than centralized once. The smaller but many conventional WTPs 

may not offer much O&M benefit because of the trade-off between increase in 

the unit cost of chemical, and electric costs and reduced cost of management 

and maintenance requirement for staged development. 

A3.2 SSF for Clustered and Conventional WTP for Centralized WSS 

SSF is a reliable water purification technology for small community. It 

requires low operation and maintenance and no purchase of chemicals. Some of 

the operation and maintenance components involve: removal of floating material, 

slow drain of the water below sand media level, scrape the top 1-3 cm of sand, 

sand replacement (Federated States of Micronesia).  Thus one of the largest cost 

items for SSF operation and maintenance is manpower. Staffing requirements 

depend upon the size of a facility, the treatment processes that it employs. 

Operating labor for SSF facilities of capacity 940- 7570 m3/d requires 1-2hr/day 

plus scraping (Environmental Health program 2003). It is also required to replace 

the sand in 2 years.  In this calculation 3 people for 2 days of monthly sand 

scraping and 5 people for 2 days of sand replacement of 100m2 surface are SSF 

is considered and proportioned with the treatment unit capacity required for each 

clusters. The total annual operation and maintenance cost of SSF for each 

clusters is summarized in Table A.9. 
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Table A.9 Annual running cost for SSF 

Clus
ter 

DQ 
(m3/
d) 

Annual Cost US$ 
Yearly 
Total 
US$ 

Yearly 
total 
(US$) 

Sum (real 
cost US$) 

Area  
(m2) 

Sand 
Scraping  

Sand 
replac. 

Staff 
(1@100

0$) 

Admin. 
(50% of 

staff cost) 

C9 7694 70 4029 4756 1000 500 123422 123422 123422 

C8 1166 11 610 721 1000 500 33970 33970 157392 

C4 1910 17 1000 1181 1000 500 44175 

108113 265505 

C5 752 7 394 465 1000 500 28299 

C6 1287 12 674 796 1000 500 35639 

C7 1166 11 611 721 1000 500 33982 

64779 330284 C1 934 8 489 577 1000 500 30797 

C2 1272 12 666 786 1000 500 35426 

67620 397904 C3 1036 9 542 640 1000 500 32194 
 

Table A.10 Annual running cost comparison (conventional Vs. SSF) 

Year  Area/clusters Flow 
(m3/d) 

Operation cost 
(NPV in US$) 

Conventional SSF 

2012 to 2017 C9 7694 1098637 582193 
2017 to 2022 C9, C8 8860 1400627 640429 
2022 to 2027 C9, C8, C4, C5, C6 12809 1542858 931913 

2027 to 2032 C9, C8, C4, C5, 
C6, C7, C1 14909 1629323 1000009 

2032 C9, C8, C4, C5, 
C6, C7, C1, C2, C3 17217 348732 220310 

Total 6020177 3374853 
 

The result in Table A.10 depicts that the operation cost of SSF is 44% less 

expensive than the centralized conventional WTP. In addition to many of the new 

values being discovered from clustering, such as the ability to reuse recycle, 

adaptability etc decentralization offers cost saving from investment and operation 

cost of small scale low-cost treatment units like SSF.   
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A3.3 Water Pumping Costs 

Most of the energy consumed in drinking water supply is associated with 

pumping water. Since the WDS in Arua Town is a gravity system, the energy cost 

calculation in this section considers pumping used to abstract (surface and 

groundwater) and deliver raw water to the treatment plant, and to deliver clean 

water to elevated reservoirs. Equation A3.1 is used to determine the required 

energy for collection and distribution, and local unit cost is used to determine 

related cost. 

 𝑃 =
𝜌𝑔ℎ𝑄
𝜇

 A3.1 

where P  is the power in Watt, ρ  is density of liquid in Kg/m3,  g  is gravity 

(9.81m/s2), h  is head in meter of water, Q  is flow in m3/s, and µ  is pump 

efficiency. 

 

Arua municipality has proposed centralized WSS that involves raw water 

collection from both Enyau and Olewa River. Olewa River is located at a distance 

of 22Km and elevation of 200m below Arua Town and this involves huge 

pumping cost. In contrary, the clustered WSS proposed in this study explore 

potential local water sources and reduce the effort to collect and deliver to the 

consumers. In this section the pumping cost for the proposed centralized and 

clustered WSS is calculated.  
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A pump efficiency of 70% and an average local energy cost of 0.17$/Kwh 

(umeme LTD, NWSC 2012) is used for calculation of pumping cost. A summary 

of the output is shown in this section (see Table A.11). 

  

Table A.11 Annual pumping cost for centralized and clustered WSS 

Year  
Source 

centers/clusters 

Pumping Cost (NPV in US$) 
Centralized 

WSS Clustered WSS 

2012 to 2017 C9 148051 113388 

2017 to 2022 C9, C8 167912 121200 

2022 to 2027 C9, C8, C4, C5, C6 278026 137215 

2027 to 2032 
C9, C8, C4, C5, C6, 
C7, C1 312744 137130 

2032 
C9, C8, C4, C5, C6, 
C7, C1, C2, C3 74462 35711 

Total 981195 544644 
 

The result shows that the pumping cost for centralized WSS is 44% higher 

than the clustered WSS. This is because the centralized WSS require pumping 

and distributing water long distance than the cluster WSS which exploit the local 

water sources and reduce the effort required to transport water. 
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Recently attention has been paid to the economic feasibility of 

decentralized WSS (Chen and Wang, 2009; Bieker et al., 2010). Therefore in this 

section the cost comparisons between centralized and decentralized systems for 

Arua, Town is presented. The cost comparison involves investment cost 

(collection and distribution pipes, elevated reservoirs, water treatment plants), 

and operation and maintenance (running water treatment plants, pumping energy 

cost for water collection and distribution). These cost components are calculated 

in the previous subsection and the comparison is done in two different categories 

such as (i) Both the centralized and clusters WSS involving conventional WTP (ii) 

The centralized WSS involving conventional WTP and the clustered WSS 

involves Slow Sand Filter system.  

 

In this case study the Net Present Value (NPV) of system components, 

and operation and maintenance for a period of 20 years is calculated and 

Equivalent Annual Cost (EAC) is used for the comparison of centralized and 

decentralized system. In financial term EAC is the cost per year of owning and 

operating an asset. The EAC is determined by dividing the NPV by Annuity factor 

(At). At is termed as a fixed payment over a specific period of time. Equation 

A4.1, A4.2 and A4.3 show the formulas for calculating NPV, At and EAC for this 

case-study. 
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 NPV = �
Rtn

(1 + r)tn
 A4.1 

 At =
(1 + r)t − 1
r ∗ (1 + r)t

 A4.2 

 EAC =  
NPV

At
 A4.3 

 

where Rtn is the net cash flow (initial investment or running costs) in US$ at any 

yearn, tn is the time of cash flow in years, r is the annual interest rate (3% is 

used), t is the operating life time in years, At is the annuity factor. 

A4.1 Both Centralized and Clusters WSS Involving Conventional WTP 

In this case a conventional WTP for both centralized and clustered 

systems is considered in the cost calculation. In addition to the treatment units, 

other cost components considered include investment costs for collection and 

distribution pipes, reservoirs, pumping energy cost for water collection and 

distribution and water treatment, and operation and maintenance. A 20 year 

design period is and an annual interest rate of 3% is used. Table A.12 and Table 

A.13 summarized the cost components in NPV for both centralized and clustered 

systems respectively.   
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Table A.12 Cost component for centralized WSS with conventional WTP 
 

Year Clusters 

WSS cost components (US$) 

NPV 
Distribu-
tion pipe 

Collec-
tion pipe 

Reser-
voir 

Pump-
ing WTP 

WTP 
O&M 

0 C9 848025 2553027 116183 31386 2232676 232905 6014203 

1   0 0 0 30472 0 226122 256594 

2   0 0 0 29584 0 219536 249120 

3   0 0 0 28723 0 213141 241864 

4   0 0 0 27886 0 206933 234819 

5 C8 218736 0 0 35596 0 296926 551258 

6   0 0 0 34560 0 288277 322837 

7   0 0 0 33553 0 279881 313434 

8   0 0 0 32576 0 271729 304305 

9   0 0 0 31627 0 263815 295441 

10 C4+C5+C6 346126 0 0 58940 0 327078 732144 

11   0 0 0 57223 0 317551 374775 

12   0 0 0 55557 0 308302 363859 

13   0 0 0 53939 0 299322 353261 

14   0 0 0 52368 0 290604 342972 

15 C7+C1 263218 0 38529 66300 761300 345408 1474755 

16   0 0 0 64369 0 335347 399716 

17   0 0 0 62494 0 325580 388074 

18   0 0 0 60674 0 316097 376771 

19   0 0 0 58907 0 306890 365797 

20 C2+C3 158880 0 0 74462 0 348732 582074 

Total 1834985 2553027 154712 981195 2993976 6020177 14538073 
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Table A.13 Cost components for clustered WSS with conventional WTP 

Year Clusters 

WSS cost components (US$) 

NPV 
Distribu-
tion pipe 

Collec-
tion pipe 

Reser-
voir 

Pump-
ing WTP 

WTP 
O&M 

0 C9 603235 235821 84742 24038 1650289 217249 2815374 

1   0 0 0 23338 0 210922 234259 

2   0 0 0 22658 0 204778 227436 

3   0 0 0 21998 0 198814 220812 

4   0 0 0 21357 0 193023 214380 

5 C8 74870 10362 22724 25694 464874 239486 838009 

6   0 0 0 24945 0 232511 257456 

7   0 0 0 24219 0 225738 249957 

8   0 0 0 23513 0 219164 242677 

9   0 0 0 22829 0 212780 235609 

10 C4+C5+C6 265225 92471 62402 29089 1272035 347650 2068872 

11   0 0 0 28242 0 337525 365766 

12   0 0 0 27419 0 327694 355113 

13   0 0 0 26620 0 318149 344770 

14   0 0 0 25845 0 308883 334728 

15 C7+C1 227534 25428 31659 29071 649398 374566 1337655 

16   0 0 0 28224 0 363656 391880 

17   0 0 0 27402 0 353064 380466 

18   0 0 0 26604 0 342781 369385 

19   0 0 0 25829 0 332797 358626 

20 C2+C3 103385 22085 28954 35711 592471 389716 1172322 

Total 1274249 386166 230482 544644 4629067 5950944 13015552 
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Figure A.3 shows the comparison of NPV cost components for centralized 

and cluster system. 

 

 
 

Figure A.3 Cost comparison between centralized and clustered systems (with 
conventional WTP) 

 
The cost calculation for the centralized WSS is shown below: 

NPV = �
Rtn

(1 + r)tn
= 14538073 US$ 

At =
(1 + r)t − 1
r ∗ (1 + r)t

=
(1 + 0.03)20 − 1

0.03 ∗ (1 + 0.03)20
= 15 

EAC =  
NPV
At

= 977187 US$ 

The cost calculation for clustered WSS is shown below: 

NPV = 13015552 US$ 

EAC =  
NPV
At

= 874850 US$ 
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The result shows that the total cost of WTP (sum of 9 small units) is 55% 

higher than the conventional WTP for centralized system. This is because the 

large WTP is favored by the economy of scale. However the overall comparison 

of EAC for this case-study depicts that clustered WSS (US $874,850 per year) is 

cheaper than the centralized WSS (US $977,187 per year). This means the 

clustered WSS offers an annual cost saving of 10% every year than centralized 

WSS. In addition cluster WSS could offer more benefit from the implement of 

small and low cost treatment units. Thus next subsection explores the advantage 

of clusters using small scale cheap treatment systems- SSF. 

A4.2 Conventional WTP for Centralized and SSF for Clusters  

In this case a conventional WTP for centralized and SSF for clustered 

systems is considered in the cost calculation. Table A.14 summarizes the 

calculated cost components from clustered WSS in NPV term. Figure A.4 shows 

the comparison of each NPV cost components for centralized and cluster 

system. 
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Table A.14 Cost components for clustered WSS with SSF treatment 
 

Year Clusters 

WSS cost components (US$) 

NPV 
Distribu-
tion pipe 

Collec-
tion pipe 

Reser-
voir 

Pump-
ing WTP 

WTP 
O&M 

0 C9 603235 235821 84742 24038 667068 123422 1738326 

1   0 0 0 23338 0 119827 143165 

2   0 0 0 22658 0 116337 138995 

3   0 0 0 21998 0 112948 134946 

4   0 0 0 21357 0 109659 131016 

5 C8 74870 10362 22724 25694 292239 135768 561656 

6   0 0 0 24945 0 131813 156758 

7   0 0 0 24219 0 127974 152193 

8   0 0 0 23513 0 124247 147760 

9   0 0 0 22829 0 120628 143456 

10 C4+C5+C6 265225 92471 62402 29089 777619 197561 1424367 

11   0 0 0 28242 0 191806 220048 

12   0 0 0 27419 0 186220 213639 

13   0 0 0 26620 0 180796 207416 

14   0 0 0 25845 0 175530 201375 

15 C7+C1 227534 25428 31659 29071 418344 211997 944032 

16   0 0 0 28224 0 205822 234046 

17   0 0 0 27402 0 199827 227229 

18   0 0 0 26604 0 194007 220611 

19   0 0 0 25829 0 188356 214185 

20 C2+C3 103385 22085 28954 35711 373351 220310 783796 

Total 1274249 386166 230482 544644 2528620 3374853 8339014 
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Figure A.4 Cost comparison between centralized WSS with conventional WTP 
and clustered systems with SSF 
 

The cost calculation for the centralized WSS is shown below: 

NPV = 14538073 US$ 

At =
(1 + r)t − 1
r ∗ (1 + r)t

=
(1 + 0.03)20 − 1

0.03 ∗ (1 + 0.03)20
= 15 

EAC =  
NPV
At

= 977187 US$ 

 

The cost calculation for the clustered WSS is shown below: 

NPV = 8339014 US$ 

EAC =  
NPV
At

= 560513 US$ 
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The comparison of EAC for this case-study shows that clustered WSS (US 

$560,513) is cheaper than the centralized WSS (US $977,187). This means the 

clustered WSS offers an annual cost saving of 43% every year than centralized 

WSS. This is because the small scale clustered UWS offer huge cost saving from 

pipe network and pumping energy. In addition the investment expense incurred 

due to the economic scale of treatment units is minimized by exploiting the 

opportunity associated with small scale low cost treatment units. Thus for the 

case we studied in this chapter, small clustered WSS with small scale low cost 

treatment units offer huge cost saving.  
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