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Langmuir turbulence in the upper ocean is generated by the interaction between the wind-

driven shear current and the Stokes drift velocity induced by surface gravity waves. In 

homogenous (neutrally stratified) shallow water, the largest scales of Langmuir turbulence are 

characterized by full-depth Langmuir circulation (LC). LC consists of parallel counter-rotating 

vortices aligned roughly in the direction of the wind. In shallow coastal shelves, LC has been 

observed engulfing the entire water column, interacting with the boundary layer and serving as 

an important mechanism for sediment re-suspension. 

In this research, large-eddy simulations (LES) of Langmuir turbulence with full-depth LC in 

a wind-driven shear current have revealed deviations from classical log-layer dynamics in the 

surface and bottom of the water column. For example, mixing due to full-depth LC induces a 

large wake region eroding the classical bottom (bed) log-law velocity profile. Meanwhile, near 

the surface, Stokes drift shear serves to intensify small scale eddies leading to enhanced mixing 

and disruption of the surface velocity log-law.  

The modified surface and bottom log-layer dynamics induced by Langmuir turbulence and 

full-depth LC have important implications on Reynolds-averaged Navier-Stokes simulations 

(RANSS) of the general coastal ocean circulation. Turbulence models in RANSS are typically 

calibrated under the assumption of log-layer dynamics, which could potentially be invalid during 

occurrence of Langmuir turbulence and associated full-depth LC.  A K-Profile Parameterization 

(KPP) of the Reynolds shear stress in RANSS is introduced capturing the basic mechanisms by 

Abstract 
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which shallow water Langmuir turbulence and full-depth LC impact the mean flow. Single water 

column RANS simulations with the new parameterization are presented showing good 

agreement with LES.  
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1.1 A Brief Introduction to Turbulence  

Most fluid flows occurring in nature are turbulent flows. These flows occur over a wide 

spectrum extending from interstellar gas cloud motion to blood flow in our veins.  Atmospheric 

flows and oceanic currents are further examples of turbulence in nature. Many if not most flows 

of applied science and engineering significance in the fields of geophysics, environmental 

sciences, and engineering can be characterized by turbulence.  The Navier-Stokes equations 

(named after Claude-Louis Navier and George Gabriel Stokes) are universally believed to 

contain the physics of all flows including turbulent flows (within the continuum hypothesis). 

These equations describe the motion of fluids (liquid and gases) in space and time. 

1.1.1 The Physical Nature of Turbulence 

Even though many turbulent flows can be easily observed in day-to-day life, there is no 

precise and commonly accepted definition of turbulence, as it is considered highly complex and 

one of the least known physical processes. However, there do exist a number of generally 

accepted characteristics of turbulence:  

 Turbulent flows are irregular. 

 Turbulent flows are rotational and three-dimensional. 

 Turbulent flows are both diffusive and dissipative 

1 Introduction 
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 Turbulent flows consist of a wide range of length and time scales. 

 Turbulence is a characteristic of the flow and not of the fluid, and occurs at high 

Reynolds number. 

  Turbulence is a continuum phenomenon.  

Velocity fluctuations characteristic of turbulent flows are caused by irregular jostling 

between eddies consisting of packets of fluid elements (see Figure 1.1). The size of eddies is 

wide ranging being as large as the size of the flow domain to as small as on the order of 

millimeters.   

 

Figure 1.1 Two-dimensional image of a turbulent jet. [Jet by C. Fukushima and J.Westerweel, 

Technical University of Delft is licensed under CC BY 3.0. Accessed November15, 2013] 

1.1.2 Turbulent Boundary Layer 

The concept of boundary layer was first introduced by Ludwig Prandtl in 1904. In this 

theory, when a viscous fluid flows over a stationary solid boundary, frictional forces slow down 

the motion of the fluid and the flow divides into two regions (Figure 1.2).    

small eddy structure 

large eddy structure 

http://en.wikipedia.org/wiki/File:Jet.jpg
http://creativecommons.org/licenses/by/3.0/deed.en
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Figure 1.2 Schematic of boundary layer 

i) A thin layer adjoining the solid boundary where the viscous effects are dominant, 

known as a viscous boundary layer region. 

ii) The region beyond where the viscous effects are very small and flow behavior is 

similar to that of ideal fluid flow. This region is known as the Euler or core flow 

region. 

A boundary layer may be laminar or turbulent. In laminar boundary layer, fluid flows in the 

form of laminates, i.e., layer sliding over adjacent layers. On the other hand, a turbulent 

boundary layer is characterized by eddy mixing across the layers. This mixing leads to exchange 

of momentum and energy across different regions of the boundary layer. 

In a simplification of turbulent boundary layer theory, Prandtl postulated a mixing length 

model in which an eddy retains its identity for a certain distance ‘l’ before colliding with other 

eddies, analogous to the concept of mean free path in thermodynamics.  This mixing length ‘l’ is 

further postulated to be proportional to the wall-normal distance between the eddy and the wall 

(boundary): 

 
𝑙 = 𝜅𝑦 

(1-1) 
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where 𝜅 is the empirical Von Karman’s constant, (𝜅 = 0.41) and y is wall-normal distance from 

the wall. 

 

Figure 1.3  Subdivision of turbulent boundary layer 

A turbulent boundary layer can be divided into three regions as depicted in Figure 1.3.  In the 

inner layer, very close to the wall, Prandtl’s mixing length theory does not hold. This region is 

referred to as the viscous sublayer or laminar sublayer. In this region, molecular viscosity plays a 

dominant role in momentum transport and velocity dependence can be approximated as 𝑈+ =

𝑦+ where 𝑈+ =  𝑈 𝑢𝜏⁄   is normalized mean streamwise velocity (i.e. velocity in “plus 

units”), 𝑦+ =  𝑦𝑢𝜏 𝜈⁄    is the normalized distance (i.e. distancein “plus units”) to the wall with 

𝑢𝜏 = √𝜏𝑤
𝜌⁄   the friction velocity, 𝜈 the  kinematic viscosity and 𝜏𝑤  the mean wall shear stress. 

In the middle or log region, where turbulence plays the leading role in momentum transport, 

the mean streamwise velocity possess a logarithmic dependence and can be derived from 

Prandtl’s mixing length model (Schlichting, 1960) as: 

 𝑈+ =  
1

𝜅
ln 𝑦+ + 𝐵     where   B ≈ 5.5 (1-2) 
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This equation is known as the log law and can be applied in the region of 30< y+ <200. 

Note that except in cases of strong adverse pressure gradients (e.g. flow through a diffuser) 

or highly convective flows, the logarithmic velocity profile is a good approximation of velocity 

across the middle (shear dominated) layer. 

Finally, in the outer layer, or so-called defect layer, mean velocity can be predicted by Coles’ 

Law of the Wake [(Coles, 1956)]: 

 𝑈+ = (
1

𝜅
ln 𝑦+ + 𝐵) + Π(𝑦+) 

(1-3) 

where Π is an empirical wake function dependent on Reynolds number. 

1.1.3 Basic Equation of Turbulent Flows 

The fundamental equations that describe any Newtonian, incompressible fluid motion in a 

bounded domain Ω are the continuity equation in (1-4) and the momentum equation or Navier-

Stokes equation in (1-5), both appearing in dimensionless form. 

 
𝜕𝑢𝑖

𝜕𝑥𝑖
= 0 

(1-4) 

 
𝜕𝑢𝑖

𝜕𝑡
+ 𝑢𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
= −

𝜕𝑃

𝜕𝑥𝑖
+

𝜕𝜏𝑖𝑗
𝜐

𝜕𝑥𝑗  
 

(1-5) 

In these equations 𝑢𝑖 denotes the velocity field and 𝑃 is the pressure field divided by constant 

density (ρ). The nonlinear term in the left hand side of equation (1.2) is referred to as the 

advective term. This term is the source of turbulence and when this term becomes significantly 

larger than the diffusive term (𝜕𝜏𝑖𝑗
𝜐 𝜕𝑥𝑗⁄ ) in the right hand side, the flow becomes unstable and 

turbulent. Note that τv in the diffusive term is the molecular viscous stress, which is defined as 
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 𝜏𝑣 =
1

𝑅𝑒
(

𝜕𝑢𝑖

𝜕𝑥𝑗  
+

𝜕𝑢𝑗

𝜕𝑥𝑖  
) 

(1-6) 

Here Re is Reynolds number (Re = U0 D/ν), representative of the importance of advection 

relative to diffusion. U0 and D are characteristic velocity and length scales respectively used to 

non-dimensionalize the equations. 

Even though the Navier-Stokes equations are well defined and derived from fundamental 

laws of physics, no general solution exists except for some simple flows. These equations are 

very sensitive to initial and boundary conditions. For laminar flows, it is possible to obtain 

analytical solution for these equations, but due to randomness in turbulent flows, finding an 

analytical solution of Navier-Stokes equations becomes next to impossible. However, turbulence 

is not completely random; presence of coherent motions in terms of spatial and temporal 

averages reflects some finite characteristics. A coherent motion (or eddy) can be defined as a 

“three-dimensional region of the flow over which at least one fundamental flow variable 

(velocity component, density, temperature, etc.) exhibits significant correlation with itself or with 

another variable over a range of space and/or time that is significantly larger than the smallest 

local scales of the flow” (Robinson, 1991). 

1.2 Numerical Approach to Turbulence Simulation 

As previously discussed, the difficulties and complexity with analytical and physical 

approaches are so enormous that the engineering and applied sciences communities have moved 

to the numerical approach for finding solutions to turbulent flows. Although numerical 

approaches have had significant success, there is no single approach that can tackle all flows 

(Davidson, 2004). 
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A turbulent flow is characterized by a wide range of scales (in both space and time), ranging 

from large scales at which energy typically is supplied to small scales at which energy is 

dissipated in the form of heat by viscosity. Interaction among various scales of eddies results in 

the transfer of energy from large eddies to smaller ones. This phenomenon is known as the 

energy cascade and, can be represented in terms of the Kolmogorov energy spectrum E(k) where 

k is wave number (see Figure 1.4).Spatial scales (or eddies) are classified in three sub-ranges 

based on the energy spectrum. The range of energy containing large eddies is referred to as the 

integral scale. The mid-range of eddies is referred to as the inertial sub-range where the energy 

spectra is characterized by the well-known Kolmogorov’s -5/3 law. The smallest eddies are 

within the energy dissipating range or the Kolmogorov scale.  Note that the k-5/3 shape of the 

energy spectrum within the inertial is universal (i.e. this shape of spectrum occurs in all turbulent 

flows).  

 

Figure 1.4 Sketch of Kolmogorov energy spectrum for all turbulent flows 



8 

 

1.2.1 Direct Numerical Simulation 

 A complete description of flow field variables (e.g. 𝑢𝑖(𝑥𝑖, 𝑡), 𝑃(𝑥𝑖, 𝑡)) can be obtained by 

numerically solving the continuity and Navier-Stokes equations. This most natural approach is 

termed direct numerical solution (DNS) as it resolves all scales of the turbulence. The range of 

scale in turbulent flows increases with Reynolds number. As per Kolmogorov theory, these 

smallest scales are of  O(Re-4/3). Thus in order to resolve all the scales, spatial separation of 

sampling points or grid points (Δx) should be Δx ~ Re-4/3 and the total  number of grid points 

required for a three dimensional computation should be N~ Re9/4
.  

Most of the flows in applied sciences and engineering applications have Reynolds number in 

range of 104 < Re < 108. Therefore, the requirement of massive computational resources for DNS 

of turbulent flows limits its applicability to few existing applications and supercomputers. Thus, 

DNS cannot be considered as a brute force method for applied and industrial problems. Instead, 

it should be considered as a scientific tool that can be used similar to a physical laboratory 

experiment for development and validation. 

1.2.2 Large Eddy Simulation 

Large eddy simulation (LES) is an alternative technique to DNS based on scale separation 

between large energy containing eddies and small energy dissipating eddies of flow. The scale 

separation operator is defined as a low pass filter in wave number space. This corresponds to a 

spatial filter that decomposes the flow field variable in two components as 

 𝑢 = �̅� + 𝑢′ and 𝑃 = �̅� + 𝑃′ 
(1-7) 



9 

 

where  �̅� and �̅� are the filtered components and 𝑢′ and 𝑃′ are unresolved (residual or subgrid) 

components. The effect of filtering can be seen in Figure 1.5 where the filter damps scales 

smaller or of the size of the filter width ∆ (Tejada-Martı́nez, 2002). 

 

Figure 1.5 Sketch of functions 𝑓(𝑥)  and filtered function  𝑓(̅𝑥)with spatial filter of width ∆.  

[Reprinted with permission from A. Tejada-Martínez, Dynamic Subgrid-scale Modeling for 

Large Eddy Simulation of Turbulent Flows with a Stabilized Finite Element Method, PhD thesis, 

Rensselaer Polytechnic Institute, November 2002. Copyright 2002, A. Tejada-Martínez.] 

Applying the spatial filtering operation to the incompressible continuity and Navier-Stokes 

equations, the LES equations can be obtained: 

 
𝜕�̅�𝑖

𝜕𝑥𝑖
= 0 

(1-8) 

 
𝜕�̅�𝑖

𝜕𝑡
+

𝜕�̅�𝑖�̅�𝑗

𝜕𝑥𝑗
= −

𝜕�̅�

𝜕𝑥𝑖
+

1

𝑅𝑒

𝜕2�̅�𝑖

𝜕𝑥𝑗
2

−
𝜕𝜏𝑖𝑗

𝐿𝐸𝑆

𝜕𝑥𝑗
 

(1-9) 

Solution of these equations gives the filtered or resolved velocity and pressure components 

corresponding to the larger (more energetic) scales of the flow. Filtering the Navier-Stokes 

equation introduces a stress apart from the molecular viscous stress usually referred as the 
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residual stress, 𝜏𝑖𝑗
𝐿𝐸𝑆. This stress represents the influence of the smaller (less energetic) residual 

(or filtered-out) components on the resolved components, and is defined as 

 𝜏𝑖𝑗
𝐿𝐸𝑆 = 𝑢�̅�𝑢�̅� − 𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅ 

(1-10) 

The residual stress is often referred to as the subgrid-scale (SGS) stress because typically, in 

what is often referred to as implicit LES, the numerical discretization (including the grid) 

implicitly act as the LES filter, filtering out the small scales that are unresolvable (unsupported) 

by the grid. Thus, the local filter width is roughly equal to the local grid cell size. 

The SGS stress presents a closure problem because it requires knowledge of unfiltered 

velocity 𝑢𝑖, which is not accessible (i.e. unknown) in LES. The SGS stress is typically 

decomposed into deviatoric (trace-free) and isotropic components respectively:  

 𝜏𝑖𝑗
𝐿𝐸𝑆 = 𝜏𝑖𝑗

𝐿𝐸𝑆(𝑑)
+

1

3
δ𝑖𝑗𝜏𝑘𝑘

𝑅  
(1-11) 

where the deviatoric component is defined as  

 𝜏𝑖𝑗
𝐿𝐸𝑆(𝑑)

= (𝑢�̅�𝑢�̅� − 𝑢𝑖𝑢𝑗̅̅ ̅̅ ̅) −
1

3
δ𝑖𝑗(𝑢𝑘̅̅ ̅ 𝑢𝑘̅̅ ̅ − 𝑢𝑘𝑢𝑘̅̅ ̅̅ ̅̅ ̅) (1-12) 

Typically the isotropic component (i.e. the second term in the RHS of (1.8)) is lumped with 

the pressure in the momentum equation giving rise to a modified pressure and the deviatoric 

component is modeled in terms of resolved quantities. The deviatoric SGS stress (or simply the 

SGS stress) can be modeled by making use of an eddy viscosity model: 

 𝜏𝑖𝑗
𝐿𝐸𝑆 (𝑑)

= −2𝜈𝑡
𝐿𝐸𝑆𝑆�̅�𝑗 (1-13) 
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where 𝜈𝑡
𝐿𝐸𝑆 is the LES eddy viscosity and the filtered strain rate is defined as 𝑆�̅�𝑗 = (�̅�𝑖,𝑗 +

�̅�𝑗,𝑖)/2.  Physical arguments suggests that 𝜈𝑡
𝐿𝐸𝑆 should be defined as a product of  characteristic 

length scale (typical filter width) and a characteristic velocity scale (Davidson, 2004). In theory, 

the LES filter or grid filter should fall within the inertial subrange of the energy spectrum (Figure 

1.4) thereby guaranteeing the resolution of eddies within the inertial subrange. This also 

facilitates the derivation of a model for the eddy viscosity 𝜈𝑡
𝐿𝐸𝑆 that is valid for all turbulent 

flows (Smagorinsky, 1963) given the universality of the inertial subrange as mentioned earlier.  

Even though LES is substantially less demanding than DNS in terms of computational 

resources, in theory LES still requires that resolved scales be within the inertial sub-range.  In 

near-wall regions, the length scales corresponding to the inertial subrange become smaller as the 

approximate size of energy containing eddies is of the order of their distance from the wall. 

Thus, in order to resolve the inertial subrange and associated dynamically important eddies a 

high resolution mesh is required in near-wall regions. LES is sometimes performed in 

conjunction with a near-wall model in order to avoid high resolution of the near-wall region 

(Pope, 2000). 

1.2.3 Reynolds Averaged Navier-Stokes Simulation (RANSS) 

A less expensive approach for numerical solution of the Navier-Stokes equation is RANSS. 

The notion behind RANSS is similar to LES, but rather than employing a spatial filter as is done 

in LES, an ensemble average is employed in RANSS. However, RANSS does not attempt to 

resolve any of the turbulent scales, but rather the mean component of the flow only. In contrast, 

LES aims to capture the mean component plus all turbulent scales down to the inertial subrange.  
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In RANSS, a flow field variable can be represented in terms of a mean (large scale) and a 

fluctuating component in what is often referred to as the Reynolds decomposition:   

 𝑢 = 〈𝑢〉 + 𝑢′ and  𝑃 = 〈𝑃〉 + 𝑃′ 
(1-14) 

where fluctuations 𝑢′ and 𝑃′are measures of the turbulent intensity of flow field variables and in 

statistical equilibrium flows (i.e. in statistically steady flows) have zero mean (〈𝑢′〉 =

0 and 〈𝑃′〉 = 0 ). Mean quantities 〈𝑢〉 and 〈𝑃〉 can defined by ensemble or long-term time 

averaging.  

i. Ensemble Averaging: This can be represented by repeating a flow experiment N 

times with identical initial and boundary conditions. Ensemble averaging consists 

of taking the  arithmetic mean of variables of the N experiments and can be 

represented as  

 〈𝑢〉 = lim
𝑁→∞

1

𝑁
∑ 𝑢𝑖

𝑁

𝑖=1

 (1-15) 

ii. Time Averaging: This was Reynolds’ original approach and alternatively referred 

to as Reynolds averaging, which describes a mean flow field variable as   

 〈𝑢〉(𝑡) =
1

𝑇
∫ 𝑢(𝑠)𝑑𝑠

𝑡

𝑡−𝑇

 (1-16) 

where averaging time scale T must be greater than the characteristic time scale of the turbulence 

(τ). In case of statistically equilibrium turbulence, mean flow field variables become time 

independent, thus can be defined as 
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 〈𝑢〉𝑇 =
1

𝑇
∫ 𝑢(𝑡)𝑑𝑡

𝑡

𝑡−𝑇

 (1-17) 

Reynolds averaging the continuity and momentum equations and making use of the 

decomposition in (1-11) leads to the following Reynolds-averaged equations: 

 
𝜕〈𝑢𝑖〉

𝜕𝑥𝑖
= 0 

(1-18) 

 
𝜕〈𝑢𝑖〉

𝜕𝑡
+ 〈𝑢𝑗〉

𝜕〈𝑢𝑖〉

𝜕𝑥𝑗
= −

𝜕〈𝑃〉

𝜕𝑥𝑖
+

1

𝑅𝑒

𝜕2〈𝑢𝑖〉

𝜕𝑥𝑗
2

−
𝜕𝜏𝑖𝑗

𝑅𝑁𝑆

𝜕𝑥𝑗
 

(1-19) 

Reynolds averaging generates a stress (a one-point velocity second-order correlation tensor) 

universally known as the Reynolds stress as a by-product of the advective non-linearity. This 

Reynolds stress represents the effect of the unresolved turbulence on the resolved mean flow and 

is defined as  

 𝜏𝑖𝑗
𝑅𝑁𝑆 = −〈𝑢𝑖

′𝑢𝑗
′〉 (1-20) 

The Reynolds stress 〈𝑢𝑖
′𝑢𝑗

′〉 is in terms of unknown velocity fluctuations (not computed in 

RANSS), thus a mathematical/physical model is needed to provide closure for this stress. 

RANS turbulence models can be divided into two categories, eddy viscosity-based models 

and non-linear eddy viscosity (second moment closure) models. Eddy viscosity models are based 

on the Boussinesq assumption that approximates the Reynolds stress tensor as a function of the 

mean-strain rate tensor and eddy viscosity: 

 𝜏𝑖𝑗
𝑅𝑁𝑆 = 2𝜈𝑡

𝑅𝑁𝑆〈𝑆𝑖𝑗〉 +
2

3
𝑘𝛿𝑖𝑗 

(1-21) 
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where k is turbulent kinetic energy (TKE) defined as k = 〈𝑢𝑖
′𝑢𝑖

′〉/2 and the mean-strain rate tensor 

is 〈𝑆𝑖𝑗〉 = ( 𝜕〈𝑢𝑖〉 𝜕𝑥𝑗⁄ + 𝜕〈𝑢𝑗〉 𝜕𝑥𝑖⁄  ) / 2. 

Most popular eddy viscosity-based models in engineering applications are the k-ɛ and k-ω 

models (Umlauf et al., 2003). In the k-ɛ model, the eddy viscosity is taken as  𝜈𝑡
𝑅𝑁𝑆 = 𝐶𝜇𝑘2/ε , 

where k is TKE, ε is TKE dissipation rate and 𝐶𝜇 is a coefficient calibrated as 0.09 based on 

classical log-layer dynamics. In the k-ɛ model, transport equations are solved in order to predict k 

and ɛ. In contrast, a non-linear eddy viscosity model solves modeled differential equations for 

the Reynolds stress components in (1-20) instead of expressing the stress components via (1-21). 

In geophysical applications, the widely used Mellor-Yamada models (Mellor and Yamada, 1982) 

make use of similar eddy viscosity expressions as the one shown above in terms of k, requiring 

solution of a transport equation for k. 

In simulation of large domains(~105𝑚) involving, for example, the general circulation of 

the ocean or the atmospheric boundary layer, transport equations based on eddy viscosity models 

are accurate but computationally expensive. A zero (algebraic) equation model (i.e. without any 

PDE to describe transport of turbulent stress and fluxes) is less expensive. In these models, a 

simple algebraic relation, for example, based on Prandtl’s mixing length theory is used to predict 

eddy viscosity:  

 𝜈𝑡
𝑅𝑁𝑆 = 𝐿𝑚𝑖𝑥

2 √2〈𝑆𝑖𝑗〉〈𝑆𝑖𝑗〉 
(1-22) 

Here 𝐿𝑚𝑖𝑥 is the mixing length, which is proportional to the standard deviation of vertical 

displacement of fluid parcels. Thus, the definition of 𝐿𝑚𝑖𝑥  is different from problem to problem. 

For example, in a fully developed turbulent region of equilibrium boundary layers, 𝐿𝑚𝑖𝑥 can be 
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approximated using a simple linear relationship, 𝐿𝑚𝑖𝑥 = 𝜅𝑦, where 𝜅  is the von Karman 

constant, κ = 0.41, and 𝑦 is wall normal distance to the wall. Note that Prandtl’s mixing length 

 𝐿𝑚𝑖𝑥 = 𝜅𝑦,may be used to derive the log law (as was mentioned earlier) in what is often referred 

to as similarity theory. 

      In oceanic applications, Prandtl’s mixing theory has been extended to the ocean surface 

boundary layer; in these cases y is the normal distance to the surface.  Furthermore, algebraic 

models such as the K-profile parameterization (KPP) (Large et al. 1994) have been designed to 

calculate eddy viscosity based on Prandtl’s mixing length theory within the surface log-layer 

while blending with an eddy viscosity based on local water column stability (stratification) in the 

interior of the water column. The KPP will be studied in detail in Chapter 6.  

1.3 Chapter Summary 

In this chapter, summaries of turbulence and boundary layer theory were provided. 

Furthermore, numerical methodologies for tackling turbulence such as DNS, LES and RANSS 

were described. In the case of LES and RANSS, it was observed that the presence of unresolved 

motions requires stress closure models in terms of resolved quantities. In RANSS the closure 

model plays an important role in the accuracy of the predicted mean flow component given that 

this model accounts for the effect of the entire range of turbulent scales. In LES, the SGS (or 

subgrid-scale) closure plays a less important role given that it only needs to account for the effect 

of less energetic scales of size smaller than roughly the grid size.   
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2.1 Context and Motivation 

The coastal ocean and shallow sea regions are among the most challenging marine 

environments to model or simulate computationally. These regions are associated with several 

geometric constraints and varying bathymetry, and subjected to complex array of lateral, internal 

and surface forces. These forces include Coriolis, tidal, wind, wave and buoyancy forces, and 

contain a broad range of spatial and temporal scales. Thus, the resulting circulation patterns 

contain both steady and time varying features. These circulation patterns can be characterized by 

vertical stratification, trapped internal waves, intense internal currents, coastal upwelling and 

downwelling and intense turbulent mixing at both surface and bottom boundary layers with the 

mixing engulfing the entire water column in some cases. The latter condition is of interest here.  

2.2 Langmuir Circulation 

In wind driven shear flows, exchange of momentum, energy and species from wind to the 

ocean interior is primarily through wind-current interaction (Donelan, 1998). This wind-current 

interaction has major influence on turbulent mixing in the upper ocean boundary layer, which 

consequently affects surface boundary fluxes of scalars. One of the usually associated 

phenomena with this interaction is Langmuir circulation (LC) which consists of parallel counter 

rotating vortices oriented roughly in the downwind direction ( see sketch in Figure 2.1)  as 

2 Turbulence in the Upper Ocean 
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originally observed by (Langmuir, 1938). It is well known that interaction between the Stokes 

drift velocity induced by the surface gravity waves with the wind-driven current gives rise to 

Langmuir turbulence, characterized by LC. More specifically, LC corresponds to coherent scales 

in the Langmuir turbulence. Wind speeds greater than 3 m s-1 present ideal conditions for the 

generation of LC. Floating particles and foam tend to accumulate at the surface convergence of 

these cells lining up in what is often referred to as windrows. Typical length scales of these 

windrows (or LC) vary across a wide range. For example, the distance between the windrows has 

been observed to be between 2 and 300 meters. The length of the windrows in the direction of 

the wind has been observed to be between 200 and 3000 meters.   

In the upper ocean, turbulence is generated via a number of mechanisms such as surface-

wave breaking, wave-current interaction (giving rise to Langmuir-dominated turbulence), wind 

shear (giving rise to shear-dominated turbulence) and destabilizing surface heat fluxes (giving 

rise to convective turbulence). A recent study by Belcher et al. (2012) found that wind and wave 

forcing conditions in the Southern Ocean are favorable to Langmuir-dominated turbulence over 

80% of the time throughout the year. Meanwhile in the North Atlantic, during winter, conditions 

are favorable to Langmuir-dominated turbulence for about 70% of the time. Overall their 

conclusion was that Langmuir turbulence is important everywhere in the world’s ocean and thus 

must be parameterized in climate models. 

Given its frequent occurrence, Langmuir turbulence has major impact on surface boundary 

layer turbulence and it significantly enhances the vertical mixing in the upper ocean mixed layer 

(UOML) that helps to sustain nearly uniform salinity, temperature and overall density in this 

layer. The UOML refers to the uppermost 30 to 70 meters of the ocean strongly influenced by 
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vertical turbulent mixing generated by the mechanisms mentioned earlier (i.e. surface breaking 

waves, destabilizing surface heat fluxes wind shear and wave-current interaction). 

Langmuir turbulence also plays a dominant role in passive scalar transport of dissolved 

gases.  Transfer of gases (such as CO2) from the air side to the water side across the air-water 

interface as well as the vertical fluxes of these dissolved gases throughout the water column are 

governed by the dynamics of turbulent vertical mixing in the oceanic surface boundary layer. 

Recent LES  in (Akan et al., 2013) has shown that Langmuir turbulence in a fully mixed water 

column with full-depth LC serves to increase the scalar transfer rate across the air-water interface 

by up to 60%, consistent with the laboratory experiments of (Veron and Melville, 2001). 

  

Figure 2.1 Sketch showing Langmuir cells (on left) and associated windrows (on right) along 

downwind direction. Windrows consist of lines of foam accumulated along the surface 

convergence zones of the Langmuir cells. Note the downwelling and upwelling limbs of the cells 

serving to enhance vertical mixing beneath the surface.[windrows (right) :Reprinted with 

permission from Andreas M. Thurnherr, Columbia University, Source: 

http://www.ldeo.columbia.edu/~ant/Langmuir .Accessed November 15, 2013] 

Typically, Langmuir circulation has been observed in the UOML over deep water. However, 

recent measurements reported in  (Gargett et al., 2004) and (Gargett and Wells, 2007) confirmed 

the presence of LC in shallow continental shelves in fully mixed water columns ranging from 15 

http://www.ldeo.columbia.edu/~ant/Langmuir
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meters deep to 30 meters deep. These Langmuir cells were observed engulfing the whole depth 

of the water column and interacting with the bottom boundary layer. These full-depth cells have 

been termed Langmuir supercells as they profoundly affect turbulent kinetic energy and 

Reynolds stresses throughout the entire water column including the bottom boundary layer, 

consequently affecting transport of sediments and benthic (bottom-dwelling) micro-organisms 

across shallow shelf regions. This can be seen through satellite maps (Figure 2.2) of in-water 

particles provided by Gargett and Savidge (2008).  

 

Figure 2.2 Maps of the SeaWiFS particulate backscatter in the South Atlantic bight before (left) 

and during (right) a full-depth Langmuir cell event observed at the Navy R2 tower(denoted with 

an open circle). The simultaneous occurrence of high particulate backscatter and full-depth 

Langmuir cells   suggest that the latter could be a major contributor to sediment re-suspension 

and cross-shelf particle transport. Note that black areas offshore are cloud covered .[ Savidge, 

W.B., A. Gargett, R.A. Jahnke, J.R. Nelson, D.K. Savidge, R.T. Short, and G. Voulgaris. 2008. 

Forcing and dynamics of seafloor-water column exchange on a broad continental shelf. 

Oceanography 21(4):179–184] 
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These maps show backscatter of water column particles in the South Atlantic Bight before 

and during a full-depth LC event observed at the R2 Navy tower. These maps provide evidence 

that the full-depth LC event measured at the R2 tower during the passage of a storm was likely a 

shelf-wide event, playing a key role in the re-suspension and cross-shelf transport of sediments. 

Langmuir turbulence with full-depth Langmuir cells may also potentially play an important 

role in coastal upwelling dynamics in addition to the traditional processes involving 

stratification, bottom topography and Coriolis forcing effects. The Coriolis effect gives rise to 

Ekman transport consisting of surface currents directed at right angles to the direction of the 

winds. More specifically, Ekman transport is directed to the right (left) of the wind direction in 

the Northern Hemisphere (Southern Hemisphere). In the coastal shelf, along-shore winds can 

cause Ekman transport away from the shore, as warm surface waters flowing away from the 

coast are replaced by colder nutrient-rich waters (important for fisheries) brought by upwelling 

cross-shore currents (see Figure 2.3). As shown by the two-dimensional simulations of (Durski, 

2004) strong mixing of the water column in regions closest to the coast may limit the cross-shore 

extent of upwelling currents, forcing these currents to terminate off-shore (i.e. at distances farther 

away from the coast). This results in a shut-down of near-coast, cross-shelf transport of nutrients, 

as well-mixed water becomes trapped at the coast. It is hypothesized that the shut-down 

mechanism may be enhanced by the intense vertical mixing caused by the action of full-depth 

Langmuir cells. Improved understanding and thus representation of water column dynamics 

during occurrences of full-depth LC (which is the overarching goal of the present research) 

should lead to future studies of the previously described hypothesis.  

The previous examples are among many examples of how Langmuir turbulence can impact 

physical, biological and chemical processes in the upper ocean mixed layer and throughout the 
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full-depth of the water column in shallow coastal shelf regions. Reviews containing a large 

number of examples is given by (Thorpe, 2004) and (Barstow, 1983).  

 

Figure 2.3 Ekman upwelling in the coastal ocean.[by Lichtspiel, Released in public domain. 

Retrieved from http://en.wikipedia.org/wiki/Upwelling, Accessed on November 15, 2013] 

2.3 LES of Langmuir Turbulence 

Conventionally, mean velocity depth-profiles within the bottom boundary layer (BBL) and 

surface boundary layer (SBL) in the ocean are  represented by the universal law of wall (Pope, 

2000) described earlier.  As presence of Langmuir turbulence with full-depth LC significantly 

enhances the vertical mixing throughout the entire water column in shallow coastal regions, it 

may also affect both the BBL and SSL dynamics in shallow coastal shelves. In this work, we 

extend the LES of Tejada-Martinez and Grosch (2007) in order to investigate the effect of 

shallow water Langmuir turbulence characterized by full-depth LC on BBL and SBL dynamics, 

specifically on log-layer dynamics.  

http://en.wikipedia.org/wiki/Upwelling
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In the LES, the governing equations are based on the theory of Craik and Leibovich (1976). 

A theory for the generating mechanism behind Langmuir turbulence and associated LC was 

developed by (Craik and Leibovich, 1976). In Craik-Leibovich theory (CL theory), the 

interaction between the wind-driven shear current and Stokes drift velocity induced by surface 

gravity waves generating Langmuir turbulence is parameterized via the Craik-Leibovich vortex 

force appearing in the momentum equation (Navier-Stokes equation). This force consists of the 

cross product between the depth-dependent Stokes drift velocity and the resolved vorticity. 

Inclusion of the Craik-Leibovich vortex force in the governing equations allows for simulations 

without having to resolve the surface gravity waves. Thus, the surface can be taken as non-

deforming or flat, resulting in more economical computations. The Craik-Leibovich theory  has 

enabled a large number of numerical investigations of Langmuir turbulence in the oceanic 

surface mixed layer over deep water [(Skillingstad and Denbo, 1994), (McWilliams et al. 1997), 

(Kawamura, 2000), (Harcourt and D’Asaro, 2008) and (Grant and Belcher, 2009) and many 

others]. For shallow water, (Tejada-Martínez and Grosch, 2007) conducted numerical 

investigation using LES following the field measurement of full-depth Langmuir cells reported 

by (Gargett et al., 2004) and (Gargett and Wells, 2007) and found good agreement between the 

field measurements and computations in terms of the velocity fluctuation magnitude and 

structure characterizing the full-depth LC. 

2.4 Objectives 

Although LES has proven its capability in resolving turbulent quantities and the physics of 

flow consisting of LC in both shallow and deep oceans, its applicability is limited by the number 

of degrees of freedom since a high resolution mesh is required to resolve dynamically important 
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eddies in near-wall and near-surface regions at high Reynolds numbers. Thus LES simulations of 

Langmuir turbulence such as those of Tejada-Martinez and Grosch (2007) have been performed 

at much lower Reynolds numbers than those measured in the field.  

A less computationally expensive approach alternative to LES is that of RANSS, as 

described in the introductory chapter.  In RANSS only the mean component of the flow is 

resolved and the effect of the turbulent scales on the mean component is parameterized via a 

turbulence model.  For example, RANSS is typically used for simulation of the coastal ocean 

circulation where large scale components such as upwelling and downwelling currents are 

resolved and turbulence effects on these large scale components are often accounted for (or 

parameterized) via eddy viscosity-based models such as the k-ε model or Mellor-Yamada models 

mentioned earlier. These models have been derived under the assumption of classical boundary 

layer dynamics while excluding the possibility for the presence of Langmuir turbulence and 

associated full-depth Langmuir cells. In light of this, the main objective of this dissertation is to 

use LES to understand how Langmuir turbulence with full-depth LC affects near-surface and 

near-bottom boundary layers in order to propose and test a new RANSS turbulence 

parameterization that accounts for this turbulence regime.   

A secondary objective of this work is to use LES to begin understanding the impact of tidal 

forcing on shallow water Langmuir turbulence and its interaction with bottom and surface 

boundary layers. It is well-known, that in shallow shelves, tidal currents generate significant 

bottom boundary layer turbulence, and the potential interaction between this turbulence and the 

surface-generated Langmuir turbulence is not well-understood. Previous LES studies of 

Langmuir turbulence with full-depth LC have only simulated bottom and surface boundary layer 

turbulence generated by the wind-driven shear current without the action of tides.  
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2.5  Organization of the Dissertation 

The rest of this dissertation is organized as follows.  

Chapter 3 presents the LES equations consisting of the filtered Craik-Leibovich equations. 

These equations are essentially the Navier-Stokes equations augmented with the Craik-Leibovich 

vortex force representing the generating mechanism for Langmuir turbulence. Chapter 3 also 

presents transport equations for turbulent kinetic energy (TKE), TKE components, and Reynolds 

shear stress. Analysis of the terms in these equation using computed LES velocity and pressure 

fields will provide insight on the impact of Langmuir turbulence on bottom and surface boundary 

layers.  

Chapter 4 presents LES simulations of shallow water Langmuir turbulence in a wind-driven 

shear current under various wind and wave forcing conditions. Focus is placed on the influence 

of the Langmuir turbulence on the surface boundary layer. 

Chapter 5 presents further analysis of the LES simulations focusing on bottom boundary 

layer dynamics. The impact of the full-depth LC (characterizing the Langmuir turbulence) on 

bottom log-layer dynamics is revealed.   

Based on the understanding gained in Chapters 4 and 5 on how the Langmuir turbulence 

influences the surface and bottom boundary layers, Chapter 6 presents a novel turbulence 

parameterization accounting for the impact of Langmuir turbulence and full-depth LC 

throughout the entire water column. The new turbulence parameterization is tested in single 

water column RANS simulations of wind-driven shear flow characterized by Langmuir 

turbulence with full-depth LC and results show improved agreement with LES results over 
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traditional turbulence parameterizations that do not take into account the effect of Langmuir 

turbulence. 

Chapter 7 returns to LES of shallow water Langmuir turbulence in order to understand the 

impact of a crosswind oscillating tidal current on the turbulence structure. These simulations 

have been motivated by field measurements of full-depth LC under weak and strong tidal 

currents by Gargett and Wells (2007) and Gargett and Savidge (2008). Furthermore, these 

simulations open the door for future research further exploring the turbulence structure under the 

combined influence of a wind stress and tidal forcing with and without Langmuir forcing. 

Finally, Chapter 7 presents a summary of the key conclusions obtained in this research and 

provides suggestions for future research.  
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3.1 Governing LES Equations 

In order to understand near-bottom and near-surface boundary layer dynamics in the presence 

of Langmuir turbulence with full-depth LC, LES of wind-driven shallow water flow with and 

without tidal forcing has been performed. The formulation described in this chapter is for the 

case without tidal forcing; the case with tidal forcing will be addressed in Chapter 7. 

The continuity and Navier-Stokes (N-S) equations are the basic governing equations for 

turbulent flows. Interaction between Stokes drift velocity induced by surface gravity waves and 

the wind-driven shear current leads to the generation of Langmuir turbulence characterized by 

LC.  The governing equations for LES of Langmuir turbulence are the filtered continuity and 

Navier-Stokes equations augmented with the Craik-Leibovich (C-L) vortex force [(Craik and 

Leibovich, 1976)], the latter force serving to parameterize the generating mechanism for 

Langmuir turbulence without having to directly resolve the surface gravity waves. 

3.2 Spatially Filtered Navier-Stokes Equation (Craik-Leibovich Equation) 

The non-dimensional, low-pass spatially and time filtered continuity and Navier-Stokes 

equation augmented with the Craik-Leibovich vortex force can be written as 

3 LES of Full-Depth Langmuir Circulation: Computational 

Methodology and Setup 
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𝜕�̅�𝑖

𝜕𝑥𝑖
= 0 (3-1) 

 
𝜕�̅�𝑖

𝜕𝑡
+ �̅�𝑗

𝜕�̅�𝑖

𝜕𝑥𝑗
= −

𝜕𝛱

𝜕𝑥𝑖
+

1

𝑅𝑒𝜏

𝜕2�̅�𝑖

𝜕𝑥𝑗
2

−
𝜕𝜏𝑖𝑗

𝐿𝐸𝑆 (𝑑)
 

𝜕𝑥𝑗
+

1

𝐿𝑎𝑡
2 𝜖𝑖𝑗𝑘𝑈𝑗

𝑠�̅�𝑘 (3-2) 

where ɛijk  is the totally antisymmetric third-rank tensor and over bar denotes the application of 

low pass space and time filters. The filter consists of the spatial filter in traditional LES 

(described earlier) compounded with a time filter for the purpose of filtering out the surface 

gravity waves, as per the Craik-Leibovich (1976) formulation. Variables �̅�𝑖 and �̅�𝑖  are the 

filtered ith component of velocity and vorticity in a Cartesian co-ordinate system (x1, x2, x3). The 

space and time filtered modified pressure is denoted as П̅  The exact expression for П̅ in terms of 

the original pressure and the Stokes drift velocity is defined by (McWilliams et al., 1997): 

 𝛱 =    �̅� +
1

2
𝛤 (3-3) 

where �̅� is the non-dimensional, space- and time-filtered pressure divided by density and 

𝛤 =
1

𝐿𝑎𝑡
4 𝑈𝑖

𝑠 𝑈𝑖
𝑠 + 

1

𝐿𝑎𝑡
2 �̅�𝑖 𝑈𝑖

𝑠 

with  𝑈𝑖
𝑠 denoting the pre-determined Stokes drift velocity induced by surface waves. 

The C-L vortex force is the last term in equation (3-2) consisting of the Stokes drift velocity 

crossed with the flow vorticity.  

These equations have been made dimensionless with water column half depth δ and friction 

velocity uτ. Friction velocity uτ is associated with wind stress 𝜏𝑤 and can be expressed as 𝑢𝜏 =

√𝜏𝑤 𝜌⁄  , where ρ is the density of the water. Friction Reynolds number (𝑅𝑒𝜏 = 𝑢𝜏 𝛿 𝜈⁄ ) is the 

measure of the strength of advection  relative to diffusion.  
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The turbulent Langmuir number Lat appearing in the dimensionless Craik-Leibovich 

equation consists of the ratio of friction velocity uτ to characteristic Stokes drift velocity U0 and 

is expressed as 𝐿𝑎𝑡 = √𝑢𝜏 𝑈0⁄ , where 𝑈0 = 𝜔𝑘𝑎2, with ω  the dominant frequency, k the 

dominant wave number (inversely proportional to the dominant wavelength, 𝜆) and a the 

dominant amplitude of the surface gravity waves generating Langmuir turbulence. Note that, the 

dominant wave number of surface gravity waves is 𝑘 = 2𝜋/𝜆. The turbulent Langmuir number 

Lat  is inversely proportional to strength of wave forcing relative to wind forcing.  

The non-dimensional Stokes drift velocity appearing in Eqn. (3-2) is taken to be non-zero 

only in the downwind (x1) direction and is defined by (Phillips O.M., 1967) as  

 
𝑈1

𝑠 =
cosh(2𝑘(𝑥3 + 1))

2 sinh2(2𝑘)
 

  and 𝑈2
𝑠 = 𝑈3

𝑠 = 0 

(3-4) 

Note that the dimensionless vertical coordinate x3 extends from -1 at the bottom of the water 

column to +1 at the surface in the wind-driven shear flow simulations to be presented in 

upcoming chapters. Furthermore, the Stokes drift velocity profile in (3-4) decays with depth; its 

decay rate is inversely proportional to the dominant wavelength of the surface waves, 𝜆. 

Expanding the C-L vortex force (i.e. the last term in (3-2)) and using the Stokes drift defined in 

(3-4), it can be shown that this force does not contribute to the downwind (x1) momentum 

equation as the Stokes drift velocity is zero in cross-wind and vertical directions (x2 and x3). 

As described earlier, the deviatoric LES subgrid scale (SGS) stress 𝜏𝑖𝑗
𝐿𝐸𝑆  is generated by 

spatial filtering of the momentum equation. The SGS stress is modeled using the eddy viscosity-

based dynamic Smagorinsky model as 
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 𝜏𝑖𝑗
𝐿𝐸𝑆 = 2𝜈𝑡

𝐿𝐸𝑆𝑆�̅�𝑗 (3-5) 

where eddy viscosity is  𝜈𝑡
𝐿𝐸𝑆 = (𝐶𝑠�̅�)2|𝑆̅| with  𝐶𝑠 denoting the Smagorinsky coefficient, Δ̅ is 

the width of the low pass spatial LES filter, |𝑆̅|  is the norm of the filtered strain rete tensor 

defined as |𝑆̅| = (2𝑆�̅�𝑗𝑆�̅�𝑗)
1/2

and 𝑆i̅j is filtered strain rate tensor 𝑆�̅�𝑗 = (�̅�𝑖,𝑗 + �̅�𝑗,𝑖) 2⁄ . Note that 

in practice, the low-pass filter used to obtain the spatially filtered equations in Eqn. 3.2 is 

implicitly set by an undefined combination of the numerical method and the grid discretizing the 

filtered equations. Thus, typically Δ̅ is representative of the characteristic grid-cell size. In this 

study, model coefficient (𝐶𝑠Δ̅)2 is computed dynamically as described by (Lilly, 1992).  

All flow variables and equations have been specified in dimensionless form for ease of 

presentation of important dimensionless parameters such as 𝑅𝑒𝜏 and 𝐿𝑎𝑡. Henceforth all 

variables are taken as dimensional unless specified otherwise. 

3.3 Flow Configuration 

The flow domain for the LES in this study is shown in Fig 3.1. The flow is subjected to 

constant wind shear stress at the surface with zero normal flow. The surface stress is prescribed 

in such a way that the friction Reynolds number is Reτ = 395. Although in the coastal ocean 

Langmuir turbulence occurs under much higher Reynolds numbers (of O(100,000)), Tejada-

Martinez et al. (2009) have shown that the turbulence simulated at a lower Reynolds number 

such as Reτ = 395 is able to scale up favorably to the turbulence measured in the field by Gargett 

and Wells (2007). This was done by re-dimensionalizing the LES velocity solution with wind 

stress friction velocity (𝑢𝜏) and water column half depth (δ) of the field measurements.  
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No-slip boundary condition is applied at the bottom wall of the domain in Figure 3.1 and 

periodic boundary condition is set in horizontal directions (𝑥1 and 𝑥2). The latter condition is 

representative of a coastal shelf region far from (unaffected by) lateral boundaries.  

The domain size in (𝑥1 and 𝑥2) directions is 4πδ and 8πδ/3 respectively. In the vertical (𝑥3) 

direction, the water depth is H= 2δ. The crosswind domain size 8πδ/3 is expected to be 

sufficiently wide to be able to resolve one Langmuir cell (i.e. one counter-rotating cell pair as 

sketched in Figure 2.1). This length (8𝜋 𝛿 3⁄ ≈ 4𝐻) falls within the range of values reported for 

span wise (crosswind) length of one Langmuir cell (3H-6H) during the field observations of 

(Gargett et al., 2004) and (Gargett and Wells, 2007). 

 

 

Figure 3.1 Computational domain and boundary conditions. 

The computational grid for flows with and without LC (i.e. with and without Langmuir 

turbulence) contains 32 points in x1, 64 points in x2 and 97 points in x3 directions. This grid is 

uniform in x1 and x2 directions, however in the vertical direction (x3), the grid is highly stretched 
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using a hyperbolic function in order to resolve the bottom and surface viscous boundary layers. 

Note that the grid stretching is symmetric about mid-depth in the vertical direction, thus both 

surface and bottom viscous boundary layers have the same resolution. In all simulations the first 

grid point off the wall or the surface is at a distance 𝑥3
+ = 1, so the viscous sublayer (0 < 𝑥3

+ <

7) is adequately resolved. Note that  𝑥3
+ is a measure of the distance to the boundary (surface or 

bottom of the water column) in wall or plus units [𝑖. 𝑒 𝑥3
+ = 𝑧𝑅𝑒𝜏], where z is the dimensionless 

distance to the bottom or to the surface.  

The governing equations in (3-1) and (3-2) within the previously described domain 

configuration were solved using the hybrid spectral/finite-difference solver of Tejada-Martinez 

and Grosch (2007), in which horizontal (𝑥1 and 𝑥2) directions are discretized using fast Fourier 

transforms and the vertical (𝑥3) direction is discretized using 5th and 6th order compact finite-

difference schemes. 

In the upcoming chapters, results from wind driven flows with or without LC are presented. 

Four simulations have been performed and corresponding wind and wave forcing parameters are 

summarized in Table 3.1 below. Main parameter inputs to the Craik-Leibovich vortex force 

appearing in the LES equations are the turbulent Langmuir number, 𝐿𝑎𝑡, representative of wind 

forcing relative wave forcing, and 𝜆, the dominant wavelength of surface gravity waves 

generating Langmuir turbulence. Case-II in Table 3.1 with 𝐿𝑎𝑡 = 0.7 and  𝜆 = 12𝛿 corresponds 

to the wind and wave forcing conditions during the full-depth LC field measurements of (Gargett 

et al., 2004) and (Gargett and Wells, 2007). Note that wavelength 𝜆 = 12𝛿 = 6𝐻 represents a 

shallow/intermediate surface wave and 𝜆 = 8𝛿 3⁄ = 4𝐻 3⁄  corresponds to a short (deep-water) 

wave. Figure 3.2 shows depth profiles of the Stokes drift velocity (appearing in the Craik-
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Leibovich vortex force) and Stokes drift vertical shear. Stokes drift shear is important because it 

serves as the source for the generation of LC, as can be seen from the transport equation for 

downwind vorticity derived from the momentum equation with Craik-Leibovich vortex forcing  

(Holm, 1996).  

  Table 3.1 Summary of wind and wave forcing parameters in simulations. 

Case-I 𝐿𝑎𝑡 = ∞ 𝜆 =  𝑁𝐴 flow without LC 

Case-II 𝐿𝑎𝑡 = 0.7 𝜆 =  6𝐻 

flow with LC Case-III 𝐿𝑎𝑡 = 0.4 𝜆 =  6𝐻 

Case-IV 𝐿𝑎𝑡 = 0.7 𝜆 =  4𝐻 3⁄  

 

 

Figure 3.2 (a) Stokes drift velocity (b) Stokes drift velocity vertical shear 

 



33 

 

3.4 Turbulence Statistics  

In the present study, we are interested in understanding the impact of Langmuir turbulence 

and associated full depth LC on surface and bottom log-layer dynamics and throughout the bulk 

of the water column in terms of quantities such as mean velocity, root mean square of velocity, 

sink and sources of resolved turbulent kinetic energy (TKE), energy transfers between TKE 

components and sink and sources of resolved Reynolds shear stress. Such understanding is 

crucial for the development of a turbulence parameterization that takes into account the influence 

of Langmuir turbulence and associated LC on the Reynolds stress appearing in the RANSS 

equations in (1-6).  

In order to understand TKE and Reynolds shear stress behavior under the influence of 

Langmuir turbulence, a Reynolds decomposition of the LES-resolved variables is first adopted:  

 
�̅�𝑖 = 〈�̅�𝑖〉 + �̅�𝑖

′ 
(3-6) 

where the first term on the right hand side  is mean resolved velocity and the second term on the 

RHS is resolved velocity fluctuation. The Reynolds-averaging operation, denoted by brackets, is 

performed by averaging the LES solution in time and over downwind (𝑥1) and crosswind (𝑥2) 

directions. This decomposition and Reynolds-averaging the Craik-Leibovich momentum 

equation in (3-2) can be shown to lead to transport equations for the Reynolds shear stress, 

turbulent kinetic energy (TKE) and TKE components. 

The general transport equation for the resolved Reynolds stress tensor 〈�̅�𝑖
′�̅�𝑗

′〉 is written as 

 

𝜕〈�̅�𝑖
′�̅�𝑗

′〉

𝜕𝑡
+ 〈�̅�𝑘〉

∂〈�̅�𝑖
′�̅�𝑗

′〉

∂𝑥𝑘
= 𝛲𝑖𝑗 + 𝑄𝑖𝑗 + 𝑇𝑖𝑗 + 𝑇𝑖𝑗

𝑠𝑔𝑠
+ 𝐷𝑖𝑗 + 𝐴𝑖𝑗 + 𝐵𝑖𝑗 + 𝜀𝑖𝑗 + 𝜀𝑖𝑗

𝑠𝑔𝑠
 

(3-7) 
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where  

 𝛲𝑖𝑗 =  −〈�̅�𝑖
′�̅�𝑘

′ 〉
𝜕〈�̅�𝑗〉

𝜕𝑥𝑘
− 〈�̅�𝑗

′�̅�𝑘
′ 〉

𝜕〈�̅�𝑖〉

𝜕𝑥𝑘
 (mean shear production rate) 

  
𝑄𝑖𝑗 =  

1

𝐿𝑎𝑡
2 [𝜖𝑗𝑙𝑘𝑈𝑙

𝑠〈�̅�𝑘
′ �̅�𝑖

′〉 + 𝜖𝑖𝑙𝑘𝑈𝑙
𝑠〈�̅�𝑘

′ �̅�𝑗
′〉] 

(C-L (Langmuir) forcing rate) 

 𝑇𝑖𝑗 = − 
𝜕〈�̅�𝑖

′�̅�𝑗
′�̅�𝑘

′ 〉

𝜕𝑥𝑘
 (turbulent transport rate) 

 
𝑇𝑖𝑗

𝑠𝑔𝑠
=

𝜕

𝜕𝑥𝑘
[〈�̅�𝑖

′𝜏𝑗𝑘
𝑑 ′

〉 + 〈�̅�𝑗
′𝜏𝑖𝑘

𝑑 ′
〉] 

(SGS transport rate) 

 𝐷𝑖𝑗 =
1

𝑅𝑒𝜏

∂2〈�̅�𝑖
′�̅�𝑗

′〉

∂𝑥𝑘
2

 (viscous diffusion rate) 

 
𝐴𝑖𝑗 = − 

𝜕

𝜕𝑥𝑘
[𝛿𝑗𝑘〈Π′�̅�𝑖

′〉 + 𝛿𝑖𝑘〈Π′�̅�𝑗
′〉] 

(pressure transport rate) 

 
𝐵𝑖𝑗 = 2〈Π̅′𝑆�̅�𝑗

′ 〉 
(pressure-strain redistribution rate) 

 
𝜀𝑖𝑗 = −

2

𝑅𝑒𝜏
⟨ 

𝜕�̅�𝑖
′

𝜕𝑥𝑘

𝜕�̅�𝑗
′

𝜕𝑥𝑘
 ⟩  

(viscous dissipation rate) 

 
𝜀𝑖𝑗

𝑠𝑔𝑠
= − ⟨𝜏𝑖𝑘

𝑑 ′ 𝜕�̅�𝑗
′

𝜕𝑥𝑘
⟩ − ⟨𝜏𝑗𝑘

𝑑 ′ 𝜕�̅�𝑖
′

𝜕𝑥𝑘
⟩ 

(SGS dissipation rate) 

In the flows simulated here, the dominant Reynolds shear stress component is 〈�̅�1
′ �̅�3

′ 〉. 

Furthermore, time, downwind (𝑥1) and crosswind (𝑥2) derivatives of Reynolds averaged 

quantities are zero based on the definition given in (3-6) above. Taking this into consideration, 

expanding the pressure  𝛱 following its definition in (3-3) and combining the Langmuir forcing 

rate with the pressure transport rate and pressure strain correlation, the transport equation for 

〈�̅�1
′ �̅�3

′ 〉 is given as 
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0 = 𝛲13 + 𝑄13 + 𝑇13 + 𝑇13

𝑠𝑔𝑠
+ 𝐷13 + 𝐴13 + 𝐵13 + 𝜀13 + 𝜀13

𝑠𝑔𝑠
 

(3-8) 

where 

 𝛲13 =  −〈�̅�3
′ �̅�3

′ 〉
𝑑〈�̅�1〉

𝑑𝑥3
 (mean shear production rate) 

  
𝑄13 =  

1

𝐿𝑎𝑡
2

〈�̅�1
′ �̅�1

′ 〉
𝑑𝑈1

𝑠

𝑑𝑥3
 

(Stokes drift shear production rate) 

 
𝑇13 = − 

𝑑〈�̅�1
′ �̅�3

′ �̅�3
′ 〉

𝑑𝑥3
 

(turbulent transport rate) 

 𝑇13
𝑠𝑔𝑠

=
𝑑〈�̅�3

′ 𝜏13
𝑑 ′

〉

𝑑𝑥3
 (SGS transport rate) 

 𝐷13 =
1

𝑅𝑒𝜏

𝑑2〈�̅�1
′ �̅�3

′ 〉

𝑑𝑥3
2

 (viscous diffusion rate) 

 𝐴13 = − 
𝑑〈�̅�′�̅�1

′ 〉

𝑑𝑥3
 (pressure transport rate) 

 
𝐵13 = 2〈𝑃′̅𝑆1̅3

′ 〉 
(pressure-strain redistribution rate) 

 
𝜀13 = −

2

𝑅𝑒𝜏
⟨ 

𝜕�̅�1
′

𝜕𝑥3

𝜕�̅�3
′

𝜕𝑥3
 ⟩  

(viscous dissipation rate) 

 
𝜀13

𝑠𝑔𝑠
= − ⟨𝜏13

𝑑 ′ 𝜕�̅�3
′

𝜕𝑥3
⟩ − ⟨𝜏33

𝑑 ′ 𝜕�̅�1
′

𝜕𝑥3
⟩ 

(SGS dissipation rate) 

Similarly, the transport equations for 〈�̅�1
′ �̅�1

′ 〉 is 
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0 = 𝛲11 + 𝑇11 + 𝑇11
𝑠𝑔𝑠

+ 𝐷11 + 𝐴11 + 𝐵11 + 𝜀11 + 𝜀11
𝑠𝑔𝑠

     (3-9) 

 𝛲11 =  −2〈�̅�1
′ �̅�3

′ 〉
𝑑〈�̅�1〉

𝑑𝑥3
 

(mean shear production rate) 

  𝑇11 = − 
𝑑〈�̅�1

′ �̅�1
′ �̅�3

′ 〉

𝑑𝑥3
 (turbulent transport rate) 

 𝑇11
𝑠𝑔𝑠

= 2
𝑑〈�̅�1

′ 𝜏13
𝑑 ′

〉

𝑑𝑥3
 (SGS transport rate) 

 𝐷11 =
1

𝑅𝑒

𝑑2〈�̅�1
′ �̅�1

′ 〉

𝑑𝑥3
2

 (viscous diffusion rate) 

 𝐴11 = − 2
𝑑〈�̅�′�̅�1

′ 〉

𝑑𝑥1
 (pressure transport rate) 

 𝐵11 = 2〈�̅�′𝑆1̅1
′ 〉 (pressure-strain redistribution rate) 

 𝜀11 = −
2

𝑅𝑒𝜏
⟨ 

𝜕�̅�1
′

𝜕𝑥3

𝜕�̅�1
′

𝜕𝑥3
 ⟩  (viscous dissipation rate) 

 𝜀11
𝑠𝑔𝑠

= −2 ⟨𝜏13
𝑑 ′ 𝜕�̅�1

′

𝜕𝑥3
⟩ (SGS dissipation rate) 

The transport equation for 〈�̅�2
′ �̅�2

′ 〉  is 

0 = 𝛲22 + 𝑇22 + 𝑇22
𝑠𝑔𝑠

+ 𝐷22 + 𝐴22 + 𝐵22 + 𝜀22 + 𝜀22
𝑠𝑔𝑠

     (3-10) 

 𝛲22 =  −2〈�̅�2
′ �̅�3

′ 〉
𝑑〈�̅�2〉

𝑑𝑥3
 (mean shear production rate) 

  
𝑇22 = − 

𝑑〈�̅�2
′ �̅�2

′ �̅�3
′ 〉

𝑑𝑥3
 

(turbulent transport rate) 

 𝑇22
𝑠𝑔𝑠

= 2
𝑑〈�̅�2

′ 𝜏23
𝑑 ′

〉

𝑑𝑥3
 (SGS transport rate) 
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 𝐷22 =
1

𝑅𝑒𝜏

𝑑2〈�̅�2
′ �̅�2

′ 〉

𝑑𝑥3
2

 (viscous diffusion rate) 

 𝐴22 = − 2
𝑑〈�̅�′�̅�2

′ 〉

𝑑𝑥2
 (pressure transport rate) 

 𝐵22 = 2〈�̅�′𝑆2̅2
′ 〉 (pressure-strain redistribution rate) 

 
𝜀22 = −

2

𝑅𝑒𝜏
⟨ 

𝜕�̅�2
′

𝜕𝑥3

𝜕�̅�2
′

𝜕𝑥3
 ⟩  

(viscous dissipation rate) 

 
𝜀22

𝑠𝑔𝑠
= −2 ⟨𝜏23

𝑑 ′ 𝜕�̅�2
′

𝜕𝑥3
⟩ 

(SGS dissipation rate) 

The transport equations for 〈�̅�3
′ �̅�3

′ 〉  is 

0 = 𝛲33 + 𝑄33 + 𝑇33 + 𝑇33
𝑠𝑔𝑠

+ 𝐷33 + 𝐴33 + 𝐵33 + 𝜀33 + 𝜀33
𝑠𝑔𝑠

              (3-11) 

 𝛲33 =  −2〈�̅�3
′ �̅�3

′ 〉
𝑑〈�̅�3〉

𝑑𝑥3
 (mean shear production rate) 

 
𝑄33 =  −

2

𝐿𝑎𝑡
2

〈�̅�1
′ �̅�3

′ 〉
𝑑𝑈1

𝑠

𝑑𝑥3
 

(Stokes drift production rate) 

  
𝑇33 = − 

𝜕〈�̅�3
′ �̅�3

′ �̅�3
′ 〉

𝜕𝑥3
 

(turbulent transport rate) 

 𝑇33
𝑠𝑔𝑠

= 2
𝑑〈�̅�3

′ 𝜏33
𝑑 ′

〉

𝑑𝑥3
 (SGS transport rate) 

 𝐷33 =
1

𝑅𝑒𝜏

𝑑2〈�̅�3
′ �̅�3

′ 〉

𝑑𝑥3
2

 (viscous diffusion rate) 

 𝐴33 = − 2
𝑑〈�̅�′�̅�3

′ 〉

𝑑𝑥3
 (pressure transport rate) 
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𝐵33 = 2〈�̅�′𝑆3̅3

′ 〉 
(pressure-strain redistribution rate) 

 
𝜀33 = −

2

𝑅𝑒𝜏
⟨ 

𝜕�̅�3
′

𝜕𝑥3

𝜕�̅�3
′

𝜕𝑥3
 ⟩  

(viscous dissipation rate) 

 
𝜀33

𝑠𝑔𝑠
= −2 ⟨𝜏33

𝑑 ′ 𝜕�̅�3
′

𝜕𝑥3
⟩ 

(SGS dissipation rate) 

Similarly, the transport equation for resolved turbulent kinetic energy, �̅�  ≡ 〈�̅�𝑖
′�̅�𝑖

′〉 2⁄   can be 

expressed as  

 
0 = 𝑃 + 𝑄 + 𝑇 + 𝑇𝑠𝑔𝑠 + 𝐷 + 𝐴 + 𝜀 + 𝜀𝑠𝑔𝑠 

      (3-12) 

where  

 𝑃 − 〈�̅�1
′ �̅�3

′ 〉
𝑑〈�̅�1〉

𝑑𝑥3
 (mean shear production rate) 

  
𝑄 =  −

1

𝐿𝑎𝑡
2

〈�̅�1
′ �̅�3

′ 〉
𝜕𝑈1

𝑠

𝜕𝑥3
 

(Stokes drift shear production rate) 

 
𝑇 = − 

𝑑〈�̅��̅�3
′ 〉

𝑑𝑥3
 

(turbulent transport rate) 

 𝑇
𝑠𝑔𝑠 =

𝑑〈�̅�1
′ 𝜏13

𝑑 ′
〉

𝑑𝑥3
 (SGS transport rate) 

 
𝐷 =

1

𝑅𝑒𝜏

𝑑2�̅�

𝑑𝑥3
2 

(viscous diffusion rate) 

 
𝐴 = − 

𝑑〈�̅�′�̅�3
′ 〉

𝑑𝑥3
 

(pressure transport rate) 
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𝜀 = −

1

𝑅𝑒𝜏
⟨
𝜕�̅�1

′

𝜕𝑥3

𝜕�̅�1
′

𝜕𝑥3
⟩ 

(viscous dissipation rate) 

 𝜀
𝑠𝑔𝑠 = −〈𝜏13

𝑑 ′
𝑆1̅3

′ 〉 (SGS dissipation rate) 

Simulations conducted here run until the flows reach statistical equilibrium (i.e. until 

horizontally and time averaged quantities remain nearly the same for time windows of increasing 

size).  Furthermore, for flows under statistical equilibrium, the budget terms on the right hand 

sides of (3-7) through (3-12) should sum to zero.  

In the next chapters, LES resolved fields are used to compute the budget terms in equations 

(3-7) through (3-12). Analysis of these budget terms will prove to be useful for understanding the 

impact of shallow water Langmuir turbulence on surface and bottom boundary layer dynamics 

and ultimately for the determination of a Reynolds shear stress turbulence parameterization that 

is able to account for shallow water Langmuir turbulence and associated full-depth LC. 

3.5 Chapter Summary 

In this chapter governing LES equations and Craik-Leibovich (C-L) vortex forcing were 

discussed. The flow domain for the simulations performed was also presented. Additionally, 

transport equations for turbulent kinetic energy and resolved Reynolds stress components were 

described. In upcoming chapters, LES velocity fields will be used to analyze surface and bottom 

boundary layer dynamics in terms of turbulence statistics including the budgets previously 

described and overall turbulence structure.   
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4.1 Introduction 

Research on the relationship between the interior of the water column and near-surface 

dynamics has contributed towards physical understanding of the role of the ocean on air-sea 

interaction and climate. Physical processes such as surface heat and mass transfer which affect 

the weather and climate as well as the water column stability and chemical composition of the 

ocean are often governed largely by processes taking place in the few tens of meters of water 

adjoining the ocean surface. Understanding the near-surface dynamics in the presence of 

Langmuir turbulence is important given the strong impact of LC on surface mass transfer 

efficiency recently evidenced by the laboratory measurements of (Veron and Melville, 2001) and 

by the computations of (Akan et al., 2013). 

This chapter presents a study of the structure of Langmuir turbulence and full-depth LC and 

their effect on momentum mixing and near surface dynamics. The analysis is based on LES-

resolved fields resulting from the flow configurations described in the previous chapter. This 

analysis is required in order to determine a new Reynolds shear stress parameterization taking 

into account shallow water Langmuir turbulence. 

 

 

4 Surface Dynamics in LES of Langmuir Turbulence with Full-Depth LC 
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4.2 Turbulence Structure 

Coherent structures or eddies are features of the turbulent flow field. These structures are 

flow patterns that can be recognized atop the chaotic turbulent motions. These coherent 

structures are continuously evolving, being created and destroyed. In LES with Craik-Leibovich 

vertex forcing (or Langmuir forcing) in the momentum equation, the forcing serves to generate 

Langmuir turbulence. In homogenous shallow water, the largest, most coherent and persistent 

scales of this turbulence regime consist of full-depth LC.   Next, the coherent structures in wind-

driven flow with and without LC (i.e. with and without Langmuir forcing) are described. Note 

that throughout the rest of this dissertation, the terminology “with LC” and “without LC” are 

taken to be equivalent to “with Langmuir turbulence” and “without Langmuir turbulence”, 

respectively. This has been done because historically Langmuir turbulence has been referred to 

as Langmuir circulation.   

In flow without LC, downwind velocity fluctuations visualized on horizontal (𝑥1 − 𝑥2) 

planes within the bottom and surface viscous sublayers are characterized by downwind (𝑥1) 

elongated small-scale streaks alternating in sign in the crosswind (𝑥2) direction (Figure 4.1a and 

Figure 4.2d). These small-scale streaks are typical of classical viscous sublayers (Smith and 

Metzler, 1983). On horizontal planes closer to the middle of the water column, downwind length 

and crosswind width of the streaks become greater. In the middle of the water column (Figure 

4.1d) the downwind elongation of the streaks covers the entire length of the domain and the 

crosswind width of the streaks is close to H = 2δ (i.e. the water column depth). These large scale 

streaks are similar in structure and size to Couette streaks found in classical Couette flow, 

occurring between parallel no-slip plates moving in opposite direction (Pappavasilou and 
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Hanratty, 1997). Thus, henceforth we refer to the streaks in the present LES of wind-driven flow 

without LC as Couette streaks. 

Simulations with LC are initiated by turning on the CL vortex force when the wind-driven 

flow without LC is in statistical equilibrium. The CL vortex force causes a merging of the 

Couette streaks, giving rise to streaks of larger crosswind size (denoted as Langmuir streaks) 

once the flow achieves a new statistical equilibrium state (see Figure 4.1 e–h and Figure 4.2 e– 

h). Note that the Langmuir streak signature is evident from the bottom viscous sublayer up 

through the surface viscous sublayer. This is not the case for Couette streaks, which have strong 

signature at mid-depth but have weaker signature elsewhere (see Figure 4.1a–d and Figure 4.2a–

d). 

As noted by Pappavasilou and Hanratty (1997), in Couette flow, the mean streamwise  

velocity is asymmetric, thus production of turbulent kinetic energy by mean velocity vertical 

shear is everywhere non-zero from wall to wall. Such production favors the growth of near wall 

turbulent structures outward towards the core region, and ultimately structures that extend from 

wall to wall. These characteristics also apply to the wind-driven flow without CL vortex forcing 

in the present study and are responsible for the Couette streaks previously analyzed. Ultimately, 

these Couette streaks give rise to the wider Langmuir streaks once the CL vortex force is turned 

on, as mentioned earlier. 

Couette and Langmuir streaks are coherent in the downwind direction (𝑥1). This suggests 

averaging velocity fluctuations over 𝑥1  in order to stress coherency in this direction. This also 

helps reveal the crosswind (𝑥2)–vertical (𝑥3) variation of the wall-to-wall structures described 
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previously. In the present work, the terminology “wall-to-surface (full-depth) structures” is more 

appropriate than “wall-to-wall”. 

 

Figure 4.1 Snapshots of instantaneous downwind velocity fluctuation on horizontal (𝑥1 − 𝑥2) 

planes at different depths in the upper half of the water column. Depths are given in terms of 𝑥3
+ 

denoting distance from the surface of the water column in plus units. Downwind velocity 

fluctuation is scaled by wind stress friction velocity:  �̅�1
′ /𝑢𝜏 .Wind-driven flow without LC 

(𝐿𝑎𝑡 = ∞) is shown in the panels on the left (a-d) and wind-driven flow with LC (𝐿𝑎𝑡 = 0.7 𝜆 =

6𝐻) is shown in the panels on the right (e-h). 
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Figure 4.2  Snapshots of instantaneous downwind velocity fluctuation on the horizontal (𝑥1 −

𝑥2) planes at different depths in the bottom half of the water column. Depths are given in terms 

of 𝑥3
+ denoting distance from the bottom of the water column in plus units. Downwind velocity 

fluctuation is scaled by wind stress friction velocity: �̅�1
′ /𝑢𝜏. Wind-driven flow without LC 

(𝐿𝑎𝑡 = ∞) is shown in (a)–(d), and wind-driven flow with LC (𝐿𝑎𝑡 = 0.7 𝜆 = 6𝐻) is shown in 

(e)–(h). 

Figure 4.3 through 4-6 show the 𝑥2 − 𝑥3 variation of all three components of 𝑥1-averaged 

(partially averaged) velocity fluctuations in wind-driven flows with and without CL vortex 
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forcing (i.e. with and without LC). All flows with CL vortex forcing (Figure 4.3d–f and Figures 

4.4 through 4.6) are characterized by a full-depth one-cell structure in close agreement with the 

full-depth Langmuir cells observed in the field measurements of Gargett and Wells (2007) and 

Gargett et al (2004). For example, the single-cell structure in the flows with CL vortex forcing 

possesses a crosswind width ≈ 4𝐻 (8𝛿) consistent with the field measurements of Gargett and 

collaborators.  Note that although the computational domain size in the crosswind direction was 

chosen following the expected Langmuir cell crosswind width as described earlier, it has been 

confirmed that the crosswind length of the domain does not set (or force) the crosswind length of 

the resolved Langmuir cell. Confirmation was made by Tejada-Martinez and Grosch (2007) by 

performing LES of wind-driven flow with CL vortex forcing in which the crosswind length of 

the domain was double the length of the one chosen here. In that simulation they were able to 

resolve two full-depth Langmuir cells each with crosswind width consistent with the 

measurements of Gargett and collaborators. Other favorable comparisons between flows with CL 

vortex forcing and field measurements during episodes of full-depth LC are described by Tejada-

Martinez and Grosch (2007) and Tejada-Martinez et al (2009). Thus, henceforth, flows with CL 

vortex forcing will be continued to be referred to as flows with LC and conversely. Here we 

focus on the impact of wind and wave forcing parameters (Lat and λ) on the structure of the full-

depth Langmuir cell generated and on surface log layer dynamics, which had not been explored 

in the earlier studies. 

In flows with LC, crosswind velocity fluctuations are intensified near the surface and exhibit 

a surface convergence zone corresponding to the surface convergence of the Langmuir cell 

(Figure 4.4a and d). Surface convergence leads to the generation of the LC downwelling limb, 

characterized by negative vertical velocity fluctuations (Figure 4.4b and e). Furthermore, the 
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downwelling limb coincides with a region of positive downwind velocity fluctuations (Figure 

4.4c and f) which serves to enhance the mean downwind current within this zone, as sketched in 

Figure 2.1 in Chapter 2.  

 

Figure 4.3  Instantaneous velocity fluctuations averaged over the downwind (𝑥1) direction in 

flow without LC (a)–(c) and in flow with LC with 𝐿𝑎𝑡 = 0.7 and λ = 6H (d)–(f). First row of 

panels shows crosswind velocity fluctuation, the second row shows vertical velocity fluctuation 

and the third row shows downwind fluctuation. 

A decrease in turbulent Langmuir number from 𝐿𝑎𝑡  =  1.0  down to 𝐿𝑎𝑡 = 0.7  while 

holding the wavelength of surface waves constant at 𝜆 = 6H leads to an intensification of the 

averaged velocity fluctuations associated with full-depth LC, especially in terms of crosswind 

velocity fluctuation at the surface and bottom of the water column (Figure 4.4a and d). A 

decrease in 𝐿𝑎𝑡 from 0.7 to 0.4 leads to a re-structuring of the cell reflected through higher 

averaged vertical velocities within the upwelling limb of the cell (Figure 4-5b and e) as well as 
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more intense crosswind velocity fluctuation at the surface, but less intense at the bottom (Figure 

4-5a and d) .  

 

Figure 4.4  Instantaneous velocity fluctuations averaged over the downwind (𝑥1) direction in 

flow with LC with 𝐿𝑎𝑡 = 1.0 and λ = 6H (a)–(c) and in flow with LC with  𝐿𝑎𝑡 = 0.7 and λ = 6H 

(d)–(f). First row of panels shows crosswind velocity fluctuation, the second row shows vertical 

velocity fluctuation and the third row shows downwind fluctuation. 

A decrease in 𝜆 from 6H to 4H/3 with 𝐿𝑎𝑡 fixed at 0.7 leads to less coherent LC, 

characterized by averaged velocity fluctuations weaker in magnitude, especially in terms of 

crosswind and vertical velocity fluctuations (see Figure 4.6a and d and Figure 4.6b and e, 

respectively). This is to be expected because the magnitude of the CL vortex force and Stokes 

drift velocity shear decay with depth faster for smaller values of 𝜆 (see Figure 3.2). 
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Figure 4.5  Instantaneous velocity fluctuations averaged over the downwind (𝑥1) direction in 

flow with LC with 𝐿𝑎𝑡 = 0.4 and 𝜆 = 6H (a)–(c) and in flow with LC with  𝐿𝑎𝑡 = 0.7 and 𝜆 = 6H 

(d)–(f).  First row of panels shows crosswind velocity fluctuation, the second row shows vertical 

velocity fluctuation and the third row shows downwind fluctuation. 

Finally, note that the flow without the CL vortex force (i.e. flow without LC) is characterized 

by a two-cell structure (Figure 4.3a–c) which is weaker and less coherent than the LC resolved in 

the flows with CL forcing. The two-cell structure is similar in size and structure to Couette cells 

resolved in the LES of Couette flow of Papavassiliou and Hanratty (1997). 

The structure of the turbulence in flows with and without LC is further investigated by 

analyzing the normal components of the resolved Reynolds stress (Figure 4.7). The main 

difference between the flow without LC and the flows with LC is that in the former the stresses 

are ordered as 〈�̅�1
′ �̅�1

′ 〉 >  〈�̅�2
′ �̅�2

′ 〉 > 〈�̅�3
′ �̅�3

′ 〉  throughout the entire water column (Fig. 4.7a). This 

ordering is typical of shear-dominated turbulence. 
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Figure 4.6   Instantaneous velocity fluctuations averaged over the downwind (𝑥1) direction in 

flow with LC with 𝐿𝑎𝑡 = 0.7 and 𝜆 = 4H/3 (a)–(c) and in flow with LC with  𝐿𝑎𝑡 = 0.7 and 𝜆 = 

6H (d)–(f). 

In the flows with LC this ordering is changed dramatically, especially in the middle and the 

upper half of the water column (Fig. 4.7b). For example, in the flow with 𝐿𝑎𝑡 = 0.7 and 𝜆 = 6H, 

in the middle of the water column〈�̅�1
′ �̅�1

′ 〉 ≈ 〈�̅�3
′ �̅�3

′ 〉 >  〈�̅�2
′ �̅�2

′ 〉 . Flow with 𝐿𝑎𝑡 = 0.7 and 𝜆 = 6H 

exhibits elevated values of 〈�̅�2
′ �̅�2

′ 〉 near the bottom and the surface, relative to the flow without 

LC. This can be attributed to the surface convergence and bottom divergence zones of the LES-

resolved full-depth LC which serve to increase the magnitudes of crosswind velocity 

fluctuations. A similar trend is also observed in the flow with LC with 𝐿𝑎𝑡 = 0.7and 𝜆 = 4H/3 

(Fig. 4.7c); however, the near-bottom and near-surface elevated values of crosswind velocity 

fluctuations are not as prominent due to weaker full-depth LC. 



50 

 

 

Figure 4.7 Normal components of the resolved Reynolds stress in flow without LC (a) and in 

flows with LC (b), (c). 

 

Figure 4.8  (a) Root mean square (rms) of resolved vertical velocity and (b) contribution to 

resolved vertical velocity rms from full-depth LC.  
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Of particular interest is a comparison in 〈�̅�3
′ �̅�3

′ 〉  between the LC flows with different 𝐿𝑎𝑡 

and 𝜆. Figure 4.8 (a) shows that the flow with (𝐿𝑎𝑡 = 0.7, 𝜆 = 4𝐻/3) is characterized by 

higher 〈�̅�3
′ �̅�3

′ 〉  near the surface, compared to the flow with (𝐿𝑎𝑡 = 0.7, 𝜆 = 6𝐻). This can be 

attributed  to intensification of small scale near-surface eddies in the former case (seen in Figure 

4.9b, c) despite the weaker full-depth cells in the 𝜆 = 4𝐻/3 case compared to the 𝜆 = 6𝐻 case 

(observed earlier in Figure 4.4). Intensification of near-surface eddies in the (𝐿𝑎𝑡 = 0.7, 𝜆 =

4𝐻/3)  case relative to the (𝐿𝑎𝑡 = 0.7, 𝜆 = 6𝐻)  case is due to higher near-surface Stokes drift 

shear in the former (seen in Figure 3.2.b in Chapter 3). 

Figure 4.8b shows 〈�̅�3
′ �̅�3

′ 〉𝐿𝐶  defined as the contribution from full-depth LC to overall vertical 

velocity variance 〈�̅�3
′ �̅�3

′ 〉. The contribution 〈�̅�3
′ �̅�3

′ 〉𝐿𝐶 is computed using a triple decomposition of 

resolved velocity (Tejada-Martinez et al., 2007; Akan et al., 2013)  leading to 

 〈�̅�3
′ �̅�3

′ 〉𝐿𝐶 = 〈〈�̅�3
′ 〉𝑡,𝑥1

〈�̅�3
′ 〉𝑡,𝑥1

〉 (4-1) 

In this expression the interior brackets denote a partial Reynolds averaging over time and 

downwind direction (x1) (the same averaging used to define the partial averaged fluctuations in 

Figures 4.3 through 4.6). The outer bracket in Eqn. (4-1) denotes full Reynolds averaging over 

time, downwind (x1) and crosswind directions (x2). Figure 4.8b shows that the vertical velocity 

variance associated with full-depth LC is much less in the case with (𝐿𝑎𝑡 = 0.4, 𝜆 = 4𝐻/3) than 

in the cases with (𝐿𝑎𝑡 = 0.7, 𝜆 = 6𝐻) and (𝐿𝑎𝑡 = 0.4, 𝜆 = 6𝐻). This is consistent with Figure 

4.5 and Figure 4.6 discussed earlier showing that the strength of LC in the case with 𝜆 = 4𝐻/3 is 

weaker than in the two other cases with 𝜆 = 6𝐻.  
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Figure 4.9  Instantaneous snapshots of vertical velocity fluctuations at 𝑥1 = 𝐿1/2 , where L1 is 

the downwind length of the computational domain. These panels show the near-surface region 

extending from 𝑥3/𝛿 = 0.75 through 𝑥3 𝛿⁄ = 1 (i.e. the upper one-eigth of the water column) 

Recall that the bottom of the water column is located at 𝑥3/𝛿 = −1 and the surface is at 𝑥3/𝛿 =
1. These panels highlight the downwellng and upwelling limbs of small scale vortices near the 

surface.   

Furthermore, Figure 4.8b shows that the full-depth LC in the (𝐿𝑎𝑡 = 0.4, 𝜆 = 6𝐻) case is 

stronger than in the (𝐿𝑎𝑡 = 0.7, 𝜆 = 6𝐻) case in the upper-half of the water column and vice-
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versa. This is consistent with Figure 4.5a, d showing a more intense surface convergence of the 

LC in the  (𝐿𝑎𝑡 = 0.4, 𝜆 = 6𝐻) case than in the (𝐿𝑎𝑡 = 0.7, 𝜆 = 6𝐻) case induced by the 

stronger upwelling limb of the former case (Figure 4.5b, e). The opposite occurs in the lower half 

of the water column where the bottom divergence of the LC in the (𝐿𝑎𝑡 = 0.4, 𝜆 = 6𝐻) case is 

less intense than in the (𝐿𝑎𝑡 = 0.7, 𝜆 = 6𝐻) case due to the weaker downwelling limb of the 

former.  

Although there are differences between the cases with (𝐿𝑎𝑡 = 0.7, 𝜆 = 6𝐻) and (𝐿𝑎𝑡 =

0.4, 𝜆 = 6𝐻) in terms of  〈�̅�3
′ �̅�3

′ 〉𝐿𝐶, these differences are not as pronounced as the differences in 

terms of  〈�̅�3
′ �̅�3

′ 〉 seen in Figure 4-8a. This suggests that a decrease in 𝐿𝑎𝑡 from 0.7 to 0.4 with 

fixed 𝜆 gives rise to intensification of Langmuir turbulence scales of smaller size and less 

coherent than the full-depth LC. Intensification of these smaller Langmuir turbulence scales is 

due to the increase in Stokes drift shear throughout the entire water column  induced by lowering  

𝐿𝑎𝑡 from 0.7 to 0.4 (with 𝜆 fixed at 6H; see Figure 3.2b). 

4.3  Disruption of the Near-Surface Log-Law 

Next, the impact of shallow water Langmuir turbulence within the near-surface log-layer is 

examined in terms of mean velocity and budgets of turbulent kinetic energy (TKE). In all flows 

with LC, the Langmuir turbulence and associated full-depth LC homogenize momentum 

throughout most of the water column, which leads to near constant mean downwind velocity 

profiles, as seen in Figure 4.10a. Figure 4.10b shows mean downwind velocity deficit in the 

upper half of the water column. Mean downwind velocity deficit is defined as 

 (〈�̅�𝑠𝑢𝑟𝑓𝑎𝑐𝑒〉 −  〈�̅�1〉)/𝑢𝜏 , where �̅�𝑠𝑢𝑟𝑓𝑎𝑐𝑒 is downwind velocity, �̅�1, evaluated at the surface. It is 
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well known that the mean downwind velocity deficit under a shear-driven air-water interface 

exhibits behavior similar to the law of the wall in wall-bounded boundary layers. This is the case 

for the flow without LC, for which the mean downwind velocity deficit is characterized by a 

well-developed log-law (Figure 4.10b). 

 

Figure 4.10  Mean downwind velocity (a) and mean downwind velocity deficit in the upper half 

of the water column (b) in flows with and without LC. 𝑥3
+ measures the distance to the surface in 

plus units. Please see a zoomed-in version of mean downwind velocity in (a) within the upper 

half of the water column in Figure 4.16a. 

 As can be seen in Figure 4.10b, in flows with LC the log law profile of the velocity deficit is 

disrupted or eroded. This can be attributed to increased mixing induced by intensification of 

near-surface small scale eddies relative to the flow without LC (as seen earlier in Figure 4-9). As 

noted earlier, this intensification of near-surface small scale eddies is associated with near-
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surface Stokes drift shear. For example, in Figure 4.10b, comparing the case with 𝐿𝑎𝑡 = 0.7 and 

𝜆 = 6H to the case with 𝐿𝑎𝑡 = 0.7 and 𝜆 = 4H/3, it is seen that a decrease in 𝜆 while holding 𝐿𝑎𝑡  

fixed leads to a more pronounced disruption of the log law. The smaller value of 𝜆 serves to 

increase Stokes drift shear near the surface (see Figure 3.2b) leading to higher levels of mixing 

near the surface caused by intensified small-scale eddies (see Figure 4.9b, c). A decrease in 𝐿𝑎𝑡 

can also lead to higher Stokes drift shear near the surface and thus greater disruption of the 

surface velocity log-law, as can been seen comparing the case with 𝐿𝑎𝑡 = 0.7 and 𝜆 = 6H to the 

case with 𝐿𝑎𝑡 = 0.4 and 𝜆 = 6H (see Figure 4.10b and 3.2b).  

The impact of increasing Stokes drift shear on mean velocity can also be seen in Figure 

4.16a, showing a zoomed-in version of Figure 4.10a in the upper-half of the water column. In 

Figure 4.16a it can be seen that the flows with LC with greatest near-surface Stokes drift shear 

(cases with (𝐿𝑎𝑡 = 0.4, 𝜆 = 6H) and (𝐿𝑎𝑡 = 0.7, 𝜆 = 4H/3), respectively) are characterized by 

thinner velocity boundary layers at the surface. For example, the boundary layer at the surface in 

the (𝐿𝑎𝑡 = 0.7, 𝜆 = 4H/3) case is thinner than in the (𝐿𝑎𝑡 = 0.7, 𝜆 = 6H) case due to the greater 

near-surface Stokes drift shear of the former despite its weaker full-depth LC described earlier. 

As will be discussed further below, the strength of full-depth LC plays a prominent role in 

determining the extent of negative mean velocity shear observed Fig. 4.16a in the upper-half of 

the water column in several of the flows with LC.   

4.4 Budgets of Turbulent Kinetic Energy (TKE) 

Figure 4.11 plots all TKE budget terms for flows with and without LC within the surface log-

layer. TKE budgets were defined in Chapter 3 in Eqn. (3-12). In all flows with LC, production 

by Stokes drift velocity shear plays an important role. The magnitude of this production term 
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depends on 𝜆, the wavelength of surface waves. Recall that the Stokes drift velocity decays with 

depth and, furthermore, the decay is faster for shorter wavelengths, which results in greater 

Stokes drift shear (see the Stokes drift velocity definition in Eqn. (3-4) and Figure 3.2.b). Thus, 

as expected, in flow with LC with 𝐿𝑎𝑡= 0.7 and 𝜆 = 4H/3, production by Stokes drift shear 

reaches higher values than in the flow with the same 𝐿𝑎𝑡 but with longer wavelength 𝜆 = 6H (see 

Fig. 4.11b, d). In the case of the flow with LC with 𝐿𝑎𝑡 = 0.4 and 𝜆 = 6H (Figure 4.11c), 

production by Stokes drift shear is greater than production by mean velocity shear throughout the 

entire 𝑥3
+  range shown, partly due to the mixing of momentum (resulting in a diminishing of 

mean velocity shear) caused by strong small-scale near-surface eddies combined with the strong 

full-depth LC relative to the other flows studied.  

The flow without LC (Figure 4.11a) is characterized by a well-developed log-layer for which 

the classical balance between production by mean shear and dissipation holds. In this case, 

dissipation of TKE is caused by viscous (molecular) stress and also by the LES SGS (subgrid- 

scale) stress defined in Chapter 3. Balances in flows with LC within the log-layer are drastically 

different from that in the flow without LC, as turbulent transport and pressure transport in flows 

with LC play non-negligible roles. Consequently, a strict balance between production and 

dissipation does not occur, as seen in the production-to-dissipation ratios plotted in Figure 4.11. 

For the flow without LC this ratio is nearly unity. However, for the flows with LC, the ratios 

deviate greatly from unity. The extent of this deviation depends on both 𝐿𝑎𝑡 and 𝜆 as seen from 

Figure 4.11. A decrease in 𝐿𝑎𝑡 while holding 𝜆 fixed can cause a larger deviation. Moreover, an 

increase in 𝜆 while holding Lat fixed can also cause larger deviation. 



57 

 

 

Figure 4.11  Budgets of TKE scaled by 𝑢𝜏
2 in the surface log-layer. 𝑥3

+ measures the distance to 

the surface in plus units. T is turbulent transport, A is pressure transport, 𝑇𝑠𝑔𝑠 is SGS transport, 

D is viscous diffusion, 𝜀 is viscous dissipation, 𝜀𝑠𝑔𝑠 is SGS dissipation, P is mean velocity shear 

production, and L is production by Stokes drift velocity shear. Definitions of these terms are 

given in previous chapter. Note that under statistical equilibrium, budget terms sum to zero.  
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Figure 4.12  Production to dissipation ratio in the surface log-layer. 𝑥3
+ measures distance to the 

surface in plus units. In flow without LC, production is by mean shear only. In flow with LC, 

production is by mean shear and Stokes drift shear. In all flows, net dissipation is viscous 

(molecular) dissipation plus SGS dissipation. 

4.5 Budgets of TKE Components 

Figure 4.13 plots budget terms for all  TKE components for flows with and without LC 

within the surface log-layer, showing transfer of energy between the individual components of 

TKE. In the flow without LC, as is also the case in traditional boundary layers, mean shear acts 

as the main source of downwind TKE  〈�̅�1
′ �̅�1

′ 〉  while pressure-strain correlation serves to re-

distribute this energy to crosswind  〈�̅�2
′ �̅�2

′ 〉 and vertical 〈�̅�3
′ �̅�3

′ 〉 components (Figure 4.13, first 

row of panels). In the flows with LC, Stokes drift shear  serves as a source of vertical TKE, while 

pressure-strain correlation re-distributes this energy to the crosswind component (Figure 4.13, 

second and third rows of panels). Noteworthy is the fact that pressure-strain re-distribution acts 

as a source of vertical TKE in the flow without LC, but its role is reversed in flows with LC 

acting as a sink. 
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Figure 4.13 Near-surface balance of TKE component budget terms (scaled by 𝑢𝜏
2) in flows with 

and without LC. − is turbulent transport, − −is pressure transport, ∇ is SGS transport, Δ is 

viscous diffusion, □ is viscous dissipation, ⋄  is SGS dissipation, * is pressure strain re-

distribution, × is mean velocity shear production, + is production by Stokes drift velocity shear 

and o is the sum of all tems. 𝑥3
+  measures distance to the surface in plus units. 
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4.6 Budgets of Reynolds Shear Stress 

 
Figure 4.14 Near-surface budget terms of – 〈�̅�1

′ �̅�3
′ 〉  (scaled by 𝑢𝜏

2) in flows with and without LC. 

𝑥3
+  measures distance to the surface in plus units. P is production by mean velocity shear, T is 

turbulent transport, TSGS is SGS transport, D is viscous diffusion, ε is viscous dissipation, εSGS is 

SGS dissipation, A is pressure transport, ST is production by Stokes drift shear and B is pressure-

strain correlation.  

Figure 4.14 shows near-surface budget terms for the Reynolds shear stress (downwind-

vertical) component −〈�̅�1
′ �̅�3

′ 〉. These budget terms were defined earlier in Chapter 3, Eqn. (3-8). 

Within the surface log layer, in the flow without LC (Fig. 4.14a), the only source is production 

−〈𝑢1
′ 𝑢3

′ 〉  budgets −〈𝑢1
′ 𝑢3

′ 〉  budgets 
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by mean velocity shear. In flows with LC (Fig. 4.14b, c, d) production by mean velocity shear is 

a secondary source to production by Stokes drift shear. In flows with LC, near the surface, 

production by mean velocity shear is significant, however, this production diminishes at depths 

100 ≤  𝑥3
+ ≤  150 below the surface. In some of the LC cases [e.g. the cases with (𝐿𝑎𝑡= 0.7, 𝜆 = 

6H), (𝐿𝑎𝑡= 0.4, 𝜆 = 6H), and (𝐿𝑎𝑡= 1.0, 𝜆 = 6H) ] the mean shear source switches sign becoming 

a sink at depths below the 100 ≤  𝑥3
+ ≤  150 range. In Figure 4.14, for the case with (𝐿𝑎𝑡= 0.4, 

𝜆 = 6H), it can be seen that turbulent transport replaces production by mean shear as a secondary 

source to Stokes drift shear when mean shear becomes a sink. This trend of turbulent transport 

becoming more significant as a source compensating for mean velocity shear becoming a sink 

can be seen Figure 4.15.  

 

Figure 4.15 (a) Production by mean velocity shear and (b) turbulent transport budget terms of 

– 〈�̅�1
′ �̅�3

′ 〉  (scaled by 𝑢𝜏
2) in flows with and without LC. 𝑥3

+  measures distance to the surface in 

plus units. 
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Negative mean velocity shear (i.e. the vertical gradients of the mean velocities shown in 

Figure 4.16a) and its previously described relationship with turbulent transport are linked to 

strength of full-depth LC (discussed earlier in this chapter). For example, in Figure 4.16a, it can 

be seen that in flow with (𝐿𝑎𝑡= 1.0, 𝜆 = 6H) the extent of negative mean velocity shear is not as 

great as it is for the cases with stronger full-depth LC with (𝐿𝑎𝑡= 0.7, 𝜆 = 6H) and (𝐿𝑎𝑡= 0.4, 𝜆 = 

6H). In the flow with (𝐿𝑎𝑡= 0.7, 𝜆 = 4H/3), the full-depth cells are weaker than in the other flows 

with LC and, correspondingly, in this case mean velocity shear is always positive (Fig. 4.16a, red 

curve). Given the previous relationship between strength of LC, negative mean velocity shear 

and turbulent transport, the latter may be linked directly to transport induced by the full-depth 

LC. 

 

Figure 4.16  (a) Mean velocity in upper half of water column and (b) Reynolds shear stress, 

– 〈�̅�1
′ �̅�3

′ 〉 in flows with and without LC. 𝑥3
+  measures distance to the surface in plus units. 
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Figure 4.16b shows that the Reynolds shear stress is greater or equal to zero throughout the 

entire water column despite the negative mean velocity shear induced by Langmuir turbulence in  

some of the flows with LC (Figure 4.16a). This suggests a breakdown of the Boussinesq 

approximation in traditional RANS turbulence models, which for the wind-driven shear flows 

being considered here model the Reynolds shear stress −〈�̅�1
′ �̅�3

′ 〉 as 

 𝜏13
𝑅𝑁𝑆 = 2𝜈𝑡

𝑅𝑁𝑆
𝑑〈𝑢1〉

𝑑𝑥3
 (4-2) 

The previous analysis of Reynolds shear stress budgets in Figures 4.14 ad 4.145 suggest that 

for Langmuir turbulence, the Reynolds shear stress model in Eqn. (4-2) should also include a 

term proportional to Stokes drift shear due to its leading contribution to the production of 

−〈�̅�1
′ �̅�3

′ 〉. Furthermore, such a model should also contain a nonlocal term (i.e. a term not 

proportional to local velocity gradients) based on the significant contribution by turbulent 

transport as a source to the Reynolds shear stress budgets in cases when mean velocity shear 

becomes negative. 

In more physical terms, the Reynolds shear stress represents a turbulent vertical momentum 

flux (i.e. vertical flux of downwind velocity fluctuations by vertical velocity fluctuations). The 

fact that this flux remains positive while mean velocity shear becomes negative suggests the 

presence of a counter-gradient flux. In the flows studied here, the full-depth Langmuir cells 

provide this counter-gradient or non-local flux. This flux is not related to mean velocity local 

shear, but rather to the global (full-depth) upwelling and downwelling limbs of the cells. The 

downwelling limbs serve to transport positive downwind velocity fluctuations from the surface 

down to the bottom of the water column and the upwelling limbs serve to do the opposite, both 

contributing towards a positive Reynolds shear stress (i.e. towards a positive −〈�̅�1
′ �̅�3

′ 〉). This can 
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be seen from Figures (4-4) through (4-6) showing the full-depth downwelling limbs of the cells 

(characterized by negative velocity fluctuations) generally coinciding with full-depth regions of 

positive downwind velocity fluctuations and vice-versa.  

Although full-depth LC can induce negative mean velocity shear throughout the core region 

of the water column, near the surface (approximately in the uppermost one-eighth of the water 

column), mean velocity shear is positive for all cases with LC, and thus the Boussinesq 

approximation holds. As noted earlier, in this region, in cases with LC, Stokes drift shear serves 

to enhance near-surface small scale eddies (see Figure 4.9) ultimately leading to greater near-

surface mixing. This is reflected through the rms of vertical velocity in Figure 4.8a explained 

earlier. This is also reflected through the Reynolds shear stress profiles shown in Figure 4.16b. 

For example, in the upper one-eighth portion of the water column, the Reynolds shear stresses in 

flows with (𝐿𝑎𝑡= 0.4, 𝜆 = 6H) and (𝐿𝑎𝑡= 0.7, 𝜆 = 4H/3), respectively, are greater than in the 

other flows with LC. This behavior is similar to the behavior of rms of vertical velocity seen 

earlier in Figure 4.8a and suggests an amplified RANS eddy viscosity near the surface.  

The need for an enhanced near-surface eddy viscosity can be confirmed a posteriori based on 

LES fields. The eddy viscosity is computed by dividing the LES-resolved Reynolds shear stress 

by the LES mean velocity shear: 

 
𝜈𝑡

𝑅𝑁𝑆 = 〈�̅�1
′ �̅�3

′ 〉
𝑑〈�̅�1〉

𝑑𝑥3
  

(4-3) 

The predicted eddy viscosities for all flows studied are shown in Figure 4.17. As expected, the 

highest near-surface eddy viscosities correspond to the flows with the highest near-surface 

Stokes drift shear, i.e. the flows with (𝐿𝑎𝑡= 0.4, 𝜆 = 6H) and (𝐿𝑎𝑡= 0.7, 𝜆 = 4H/3), respectively. 
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           Figure 4.17 A posteriori evaluation of the RANS eddy viscosity based on LES fields. 

4.7 Summary and Conclusions 

Results from LES of wind-driven shallow water flow with Langmuir turbulence with full-

depth LC have been analyzed in terms of turbulence structure, mean velocity, TKE budgets and 

Reynolds shear stress budgets with an emphasis on the near-surface region of the water column.  

Full-depth LC was shown to manifest itself as a secondary component to the mean flow. 

Furthermore, full-depth LC corresponds to the largest scale of the Langmuir turbulence in 

homogeneous shallow water flows. LC is generated by the interaction between surface gravity 

waves and the wind-driven shear current (parameterized by the Craik-Leibovich vortex force in 

the governing momentum equation).  
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Langmuir turbulence led to the disruption of surface log-layer dynamics in terms of the mean 

downwind velocity and the production and dissipation rates of TKE. This disruption consisted of 

deviations from (i) the classical log-law velocity profile and (ii) the classical balance between 

production and dissipation rates of TKE, both exhibited by wind-driven flows without LC in the 

near-surface region of the water column. 

Visualizations of LES velocity fluctuations revealed that the signature of full-depth LC can 

extend into the surface and bottom viscous sublayers altering the structure of the well-known 

low- and high-speed, small-scale streaks occurring within the viscous sublayers of wind-driven 

flow without LC. 

The present LES study revealed that both, the turbulent Langmuir number (𝐿𝑎𝑡, inversely 

proportional to wave forcing relative to wind forcing) and the wavelength (𝜆) of surface waves 

generating LC, play important roles in determining the Langmuir turbulence structure and 

overall dynamics. For example, a decrease in 𝐿𝑎𝑡 from 1.0 to 0.7 while holding 𝜆 fixed lead to 

stronger full-depth LC characterized by higher magnitudes of crosswind and vertical velocity 

fluctuations throughout the water column. A decrease in 𝐿𝑎𝑡 from 0.7 to 0.4 while holding 𝜆 

fixed lead to a re-structuring of the full-depth LC, characterized by stronger vertical velocity 

fluctuations within the upwelling limb of the cells and stronger crosswind velocity fluctuation at 

the surface but weaker at the bottom. Analysis of rms of vertical velocity fluctuation and its 

contribution from full-depth LC revealed that the decrease in 𝐿𝑎𝑡 from 0.7 to 0.4 while holding 𝜆 

fixed led to a more significant enhancement of Langmuir turbulence scales smaller than the scale 

of full-depth LC compared to enhancement of the full-depth LC itself.  Furthermore, a decrease 

in 𝜆 while holding 𝐿𝑎𝑡 fixed, led to weaker full-depth LC, yet stronger near-surface small scale 
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eddies. The latter was due to the higher near-surface Stokes drift shear caused by the decrease 

in 𝜆. Ultimately, it was seen that intensification of near-surface small scale eddies leads to 

greater disruption of the classical surface log-law velocity profile.   

Analysis of mean velocity profiles and budget terms of Reynolds shear stress led to the 

conclusion that sufficiently strong full-depth LC may lead to negative mean velocity shear and 

thus the breakdown of the Boussinesq assumptions in RANS turbulence closures (models) for 

the Reynolds shear stress. Furthermore, from the budgets of Reynolds shear stress it was seen 

that Stokes drift production is the primary source. In cases where mean velocity shear is 

negative, turbulent transport assumes the role of secondary source. Given the previous 

relationship between strength of LC, negative mean velocity shear and turbulent transport, the 

latter may be linked directly to non-local transport induced by the full-depth LC. 

Overall, results indicate that a Reynolds shear stress (RANS turbulence) model able to 

represent shallow water Langmuir turbulence should include the following:  

i. an enhanced eddy viscosity near the surface to account for intensification of near 

surface small scale mixing induced by Stokes drift shear, 

ii. a counter-gradient or non-local flux accounting for the mixing induced by full-

depth LC, and 

iii. a flux down the gradient of Stokes drift velocity. 

Chapter 6 presents a KPP model possessing the three previously listed components.  
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5.1 Introduction 

Field measurements of Gargett et al. (2004), Gargett and Wells (2007) and (Gargett and 

Savidge, 2008) have shown that full-depth LC is an important mechanism for sediment 

resuspension and ultimately suggest strong interaction between the LC and the bottom boundary 

layer. This chapter presents analysis of LES results in order to understand the impact of full-

depth LC on bottom boundary layer dynamics. Focus is on the impact of full-depth LC on the 

bottom boundary log-layer and its dependence on wind and wave forcing parameters 𝐿𝑎𝑡 and 𝜆. 

5.2 Turbulence Structures   

Figure 5.1 shows instantaneous upwelling and downwelling limbs of full-depth LC in terms 

of instantaneous vertical velocity averaged over the downwind direction for flows with different 

values of 𝐿𝑎𝑡and 𝜆. Recall that downwelling limbs are generated at the surface convergence of 

LC, described earlier in the caption of Figure 2.1. As noted in the previous chapter, the 

coherency of the downwelling limbs of LC in Figure 5-1  in terms of downwind-averaged 

velocity fluctuation demonstrates that LC is a secondary, coherent turbulent structure advected 

by the mean flow and corresponds to the largest scales of the Langmuir turbulence generated 

5 Bottom Boundary Layer Dynamics in LES of Langmuir Turbulence 

with Full-Depth LC 
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Figure 5.1 Instantaneous vertical velocity fluctuation ( �̅�3
′ /𝑢𝜏 ) averaged over the downwind 𝑥1 

direction showing upwelling and downwelling limbs of Couette cells in (a) and LC in (b) (c). 

The horizontal axis denotes the crosswind direction. 

by the Craik-Leibovich vortex force in the governing momentum equations. Comparing panels 

(c) and (d) in Figure 5.1, it can be seen that lowering λ from 6H to 4H/3 with 𝐿𝑎𝑡 fixed at 0.7 

leads to less coherent (weaker) upwelling and downwelling limbs. Meanwhile lowering 𝐿𝑎𝑡 from 

0.7 to 0.4 with λ fixed at 6H leads to leads to a strengthening of the upwelling limb of the cell. 
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As will be shown in the upcoming sections, these characteristics play an important role in the 

bottom log-layer behavior induced by full-depth LC. 

As also described in the previous chapter, the flow without LC (𝐿𝑎𝑡 = ∞) is characterized by 

Couette cells, which have been observed in DNS and  LES of classical Couette flow driven by 

two parallel no-slip plates moving in opposite direction (e.g. (Papavassiliou and Hanratty, 1997). 

Downwelling and upwelling limbs of Couette cells are evident in the first panel of Figure 5.1. 

5.3 Mean Velocities 

Figure 5.2a, b show mean velocity in plus units for flows with and without LC. The full 

horizontal axis in these figures extends from  𝑥3
+ ≈ 0 (denoting the bottom wall) up to  𝑥3

+ ≈

790 (denoting the surface). In order to facilitate discussion of results, we have zoomed into the 

bottom log-layer region showing only the part extending from 𝑥3
+ ≈ 40 up to  𝑥3

+ ≈ 395 (the 

middle of the water column). In the region below the bottom log-layer not shown (0 < 𝑥3
+< 40) 

the velocity profiles for all cases are identical, while satisfying the expected 𝑢1
+= 𝑥3

+ theoretical 

profile within the viscous sublayer   𝑥3
+< 7. 

The homogenizing action of LC induces a near constant mean downwind velocity profile 

over the bulk region of the flow (see Figure 5.2c, d). Furthermore this homogenizing action 

extends deeper into the water column as the wavelength of the surface waves generating LC 

becomes larger (i.e. as λ becomes larger) (Figure 5.2c). This is  expected based on the strength of 

full-depth LC, as described in the previous section (see for example Figure 4.6) and the form of 

the Stokes drift velocity shear in Figure 3.2b which has a depth-decay rate inversely proportional 

to λ.  
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Figure 5.2 Mean velocity profiles: panels (a) and (c) show the variation with λ at fixed 𝐿𝑎𝑡 with 

λ = 6H, 𝐿𝑎𝑡= 0.7 the reference and panels (b) and (d) show the variation with 𝐿𝑎𝑡 at fixed λ. 

Note that 𝑢1
+ = 〈�̅�1〉/𝑢𝜏𝑏

 where𝑢𝜏𝑏
   is the mean bottom (bed) stress friction velocity. For all 

flows considered here, the mean bottom stress is equal to the constant wind stress, thus the mean 

bed stress friction velocity is equal to wind stress friction velocity (𝑢𝜏𝑏
= 𝑢𝜏). 

As seen in Figure 5.2a and b, the flow without LC (𝐿𝑎𝑡 = ∞) is characterized by a well-

developed mean velocity log-law in the bottom half of the water column. In the flow without LC, 

the log-law extends from 𝑥3
+≈ 50 up to 𝑥3

+≈ 200. In the flow with LC generated by deepwater 

waves with λ = 4H/3 (Figure 5.2a, c) the mean velocity profile possesses a slight deviation from 
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the log-law. In the case of flows with LC generated by longer (intermediate) waves, the effect of 

LC extends deeper into the water column, causing a larger deviation or erosion of the classical 

log-law down to 𝑥3
+≈ 90 and inducing a velocity profile closer to the law of the wake (Figure 

5.2a). This erosion is primarily caused by the downwelling limbs of the cells which bring high, 

well-mixed momentum closer to the bottom resulting in a shift from a well-developed log-law to 

a near constant profile for 𝑥3
+> 100, as seen in Figure 5.3b, c.  

 

Figure 5.3 Mean velocity profiles within downwelling and upwelling limbs of Couette cells (a) 

and LC (b)-(d) 
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In flow with 𝐿𝑎𝑡= 0.7 and λ = 4H/3, the downwelling limb of LC tends to cause a deviation 

from the log-law (Figure 5.3d), however the resulting deviation is not as strong as in the 𝐿𝑎𝑡= 

0.7 and λ = 4H/3 case (Figs. 5.2a, 5.3b, c). This is consistent with the downwelling limb of the 

LC being weaker in the λ = 4H/3 case compared with the  λ = 6H case as described in the 

previous chapter through Figure 4.6 and also in Figures 5.1c, d.         

In Figure 5.2b,  it can be seen that in the cases with λ = 6H, the case with 𝐿𝑎𝑡=0.7 is 

characterized by a more pronounced deviation from the log-law compared to the case with 

𝐿𝑎𝑡=0.4. The reason for this can be traced to the stronger upwelling limb of the 𝐿𝑎𝑡 = 0.4 case, 

observed by comparing Figures 5.1b and 5.1c. This stronger upwelling limb brings slower 

moving fluid to the log-region (Fig. 5.3b, c) serving to dampen the log-layer disrupting effect of  

the downwelling limb when averaging velocity over the crosswind direction (spanning both 

upwelling and downwelling limbs). 

5.4 Budgets of Turbulent Kinetic Energy (TKE) 

Balances of TKE budget terms below mid-depth within the region 50 < 𝑥3
+< 200 are shown 

in Figure 5.4. We focus on cases with (𝐿𝑎𝑡 = 0.7, λ=6H) and (𝐿𝑎𝑡 = 0.7, λ=4H/3) given that 

differences between these two cases are more pronounced than differences between cases with 

with (𝐿𝑎𝑡 = 0.7, λ=6H) and (𝐿𝑎𝑡 = 0.4, λ=6H).We also show results from the flow without LC. 

The flow without LC exhibits a well-developed bottom log-layer in which mean shear 

production of TKE is nearly balanced by viscous and SGS dissipation. In flow with LC 

generated by surface gravity waves with wavelength λ = 6H, LC disrupts the log-layer balance 

between production and dissipation within 50  < 𝑥3
+ < 200 (Figure 5.5 and 5.5). In this case 
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turbulent transport and pressure transport have greater influence on the dynamics than in the flow 

without LC. For example, turbulent transport becomes of the same magnitude as subgrid-scale 

(SGS) dissipation. In the case of flow with  λ = 4H/3, the disruption of the balances of TKE is 

not as evident (turbulent transport is not as important) consistent with the diminished strength of 

LC in the lower half of the water column. Nevertheless a slight disruption still occurs as seen in 

the ratio between production and dissipation in Figure 5.5.  

 

Figure 5.4 Near-bottom balance of TKE budget terms (scaled by 𝑢𝜏
2) in flows with and flow 

without LC. T is turbulent transport, A is pressure transport, 𝑇𝑆𝐺𝑆 is SGS transport, D is viscous 

diffusion, 𝜀 is viscous dissipation, 𝜀𝑆𝐺𝑆   is SGS dissipation, P is mean velocity shear production, 

and L is production by Stokes drift velocity shear. Definitions of these terms were given in 

Chapter 3. 

TKE budgets TKE budgets TKE budgets 
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Figure 5.5 Ratio of production to dissipation of TKE 

5.5 Budgets of TKE Components 

       Next we analyze transfer of energy between the individual components of TKE. In the flow 

without LC, as is also the case in traditional boundary layers, mean velocity shear acts as the 

main source of downwind TKE 〈�̅�1
′ �̅�1

′ 〉  while pressure-strain correlation serves to re-distribute 

this energy to crosswind  〈�̅�2
′ �̅�2

′ 〉 and vertical  〈�̅�3
′ �̅�3

′ 〉 components (see Figure 5.6 first row of 

panels). In contrast, in flows with LC,  pressure transport and turbulent transport act as the main 

sources of vertical TKE  〈�̅�3
′ �̅�3

′ 〉 while pressure-strain correlation transfers this energy to the 

crosswind TKE component  〈�̅�2
′ �̅�2

′ 〉 (Figure 5.6, first and second rows of panels). Noteworthy is 

the fact that pressure-strain correlation acts as a source of vertical TKE in the flow without LC, 

but its role is reversed in flows with LC acting as a sink. The same behavior was observed earlier 

in Chapter 4 for the surface log layer. 
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Figure 5.6 Near-bottom balance of TKE component budget terms (scaled by 𝑢𝜏
2) in flow with and 

without LC. − is turbulent transport, − −is pressure transport, ∇ is SGS transport, Δ is viscous 

diffusion, □ is viscous dissipation, ⋄  is SGS dissipation, * is pressure strain re-distribution, × is 

mean velocity shear production, and + is production by Stokes drift velocity shear. Definitions of 

these terms are given in (3-7)  
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Figure 5.7  Near-bottom balance of Reynolds shear stress, − 〈�̅�1
′ �̅�3

′ 〉, budget terms (scaled by 𝑢𝜏
2) 

in flows with and flow without LC. − is turbulent transport, − −is pressure transport, ∇ is SGS 

transport, Δ is viscous diffusion, □ is viscous dissipation, ⋄  is SGS dissipation, * is pressure 

strain re-distribution, × is mean velocity shear production, and + is production by Stokes drift 

velocity shear. Definitions of these terms are given in Chapter 3. 

Figure 5.7 shows budgets of Reynolds shear stress − 〈�̅�1
′ �̅�3

′ 〉  within the bottom log layer. 

Similar to the TKE budgets near the bottom (Fig. 5.4), production by mean velocity shear is a 

main source and production by Stokes drift shear is negligible given that Stokes drift shear 

diminishes towards the bottom of the water column (recall Figure 3.2b).  In flows with LC, the 

case with (𝐿𝑎𝑡 = 0.7, λ=6H) is characterized by significant turbulent transport as a source, 

unlike in the case with (𝐿𝑎𝑡 = 0.7, λ=4H/3). The reason for this is that the full-depth LC is 

stronger in the (𝐿𝑎𝑡 = 0.7, λ=6H) case compared to the (𝐿𝑎𝑡 = 0.7, λ=4H/3) case as discussed 

earlier. A key difference between flows with and without LC is the role of pressure-strain re-

distribution. In flow without LC, pressure strain re-distribution is the main sink in the log-layer 

region. In the flows with LC, pressure transport is the main sink. In the flow with (𝐿𝑎𝑡 = 0.7, 

−〈 �̅�1
′  �̅�3

′ 〉  budgets −〈 �̅�1
′  �̅�3

′ 〉  budgets −〈 �̅�1
′  �̅�3

′ 〉  budgets 
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λ=6H) pressure strain re-distribution acts as a source, while in the flow with (𝐿𝑎𝑡 = 0.7, 

λ=4H/3) pressure strain re-distribution remains as a sink, similar to the flow without LC, but not 

as significant. 

5.6 Conclusion 

We have analyzed near-bottom mean velocity profiles and budgets of TKE resolved in large-

eddy simulations of full-depth LC in a wind-driven shear current in neutrally-stratified shallow 

water. It was found that for sufficiently long waves, full-depth LC disrupts classical boundary 

layer dynamics. For example, full-depth LC can disrupt the log-law, inducing a “law of the 

wake-like” behavior. The disruption is primarily caused by the downwelling limb of LC which 

brings high speed fluid down to the log-layer region. The extent of this disruption depends on the 

strength of LC as determined through the wavelength (λ) of the surface waves generating the LC. 

Smaller λ generate weaker, less disruptive LC. . For sufficiently long wavelengths, the extent of 

the disruption also depends on the structure of LC as determined through the turbulent Langmuir 

number, Lat. For example lowering Lat from 0.7 to 0.4 while keeping λ at 6H strengthens the 

upwelling limb of the cell. A stronger upwelling limb is characterized by an increase in the rate 

at which it brings slower moving fluid up to the log-layer, thereby diminishing the log-layer 

disrupting effect of the downwelling limb. 

 Full-depth LC can also disrupt the classical log-layer balance between production and 

dissipation of TKE causing turbulent and pressure transport to play non-negligible roles in the 

dynamics. Furthermore, LC can impact the transfer of energy between TKE components 

inducing new behavior especially in terms of pressure-strain redistribution. In flows with full-

depth LC, pressure-strain redistribution transfers energy from vertical to crosswind TKE 
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components, in contrast to classical boundary layers in which pressure-strain redistribution 

transfer energy from downwind to crosswind and vertical components. 

Finally, turbulent transport was seen as an important source in the Reynolds shear stress 

budgets in cases when full-depth LC is sufficiently strong. This is similar to the behavior 

observed in the near-surface budgets of Reynolds shear stress in Chapter 4.  
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6.1 Introduction  

As described in the Introduction, the total number of grid points required for a direct 

numerical simulation should be N~ Re9/4
.  Most of the flows in applied sciences and engineering 

applications have a Reynolds number in range of 104 < Re < 108. Therefore, the requirement of 

massive computational resources for DNS (direct numerical simulation) limits its applicability. 

Although large-eddy simulation offers a less computationally intensive alternative, it is still 

prohibitive in many applications such as in geophysical flows as LES requires resolution of a 

disparate range of scales extending from the largest scales of the turbulence down to the 

significantly smaller scales within the inertial subrange.  In oceanic flows, one of the largest 

domains LES has been applied to consists of a 5.76 km by 10.5 km horizontal upper ocean 

region, 120 meters in depth with grid resolution of 3 meters (Skyllingstad and Samelson, 2012). 

The focus of that study was to understand the breakdown of frontal sub-mesoscale eddies of ~1 

km in horizontal scale into smaller scale turbulence.  The necessity to study the general ocean 

circulation requires resolution of much larger scales. For example, the classical problem of wind-

driven coastal upwelling and downwelling requires resolution of horizontal scales of O(100 km), 

for which LES (say with grid cell size of O(1 m) similar to that of Skyllingstad and Samelson, 

2012) is out of reach given current computational resources. In order to investigate such flow 

phenomena, researchers have turned to Reynolds-averaged Navier-Stokes (RANS) simulation 

methodology in which only the mean component of the flow is resolved while the effect of the 

6  A K-profile Parameterization of Langmuir Turbulence in Shallow Water 
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unresolved turbulent scales is parameterized via a turbulence model. The turbulence model 

appears in the governing RANS equations as a closure for the Reynolds stress often in terms of 

an eddy viscosity (see equations 1-17 and 1-18).  

In oceanic applications involving the RANS simulation methodology, the eddy viscosity 

should represent turbulent mixing induced by unresolved horizontal and vertical eddies. For 

example, the horizontal eddies could be the sub-mesoscale frontal eddies discussed earlier of 

horizontal size O(1 km) and the vertical eddies could be full-depth Langmuir cells of vertical 

size O(10-20 m). Given this vast difference in length scales between horizontal and vertical 

eddies, which is typical in the ocean, horizontal and vertical diffusion in the RANS momentum 

equation is treated with different eddy viscosities (e.g. see Austin & Lentz, 2002). For example, 

in the 𝑥1 momentum equation, the general diffusion term is expressed as  

 

𝜕

𝜕𝑥𝑖
(𝜈𝑡

𝜕〈𝑢1〉

𝜕𝑥𝑖
) =

𝜕

𝜕𝑥1
(𝜈ℎ𝑜𝑟

𝜕〈𝑢1〉

𝜕𝑥1
) +

𝜕

𝜕𝑥2
(𝜈ℎ𝑜𝑟

𝜕〈𝑢1〉

𝜕𝑥2
) +  

𝜕

𝜕𝑥3
(𝜈𝑣𝑒𝑟

𝜕〈𝑢1〉

𝜕𝑥3
) (6-1) 

where 𝜈ℎ𝑜𝑟 is horizontal eddy (turbulent) viscosity and 𝜈𝑣𝑒𝑟 is vertical eddy viscosity. The focus 

of this chapter is the development of a parameterization for vertical eddy viscosity that takes into 

account vertical mixing induced by the full-depth Langmuir cells studied in the previous 

chapters.   

6.2 Vertical Turbulent Mixing Models for the Coastal Ocean  

An important component of oceanic circulation modeling is the development of efficient and 

accurate parameterizations of the vertical mixing process. A large number of mixing schemes has 

been developed, amongst the most popular being the Mellor-Yamada model (Mellor and 

Yamada, 1982), the 𝜅 − 𝜖 model (Burchard et al., 1998) and  the K-profile parameterization or 
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KPP (Large et al., 1994). Although these vertical mixing parameterizations have led to overall 

good performance of ocean circulation models under certain conditions, these models are not 

able to accurately represent vertical mixing during the occurrence of full-depth Langmuir 

circulation and associated Langmuir turbulence. The main focus of this study is the development 

of a new KPP accounting for full-depth LC. Results of the new KPP model implemented in a 

single water column RANS simulation of the wind-driven flows with full-depth LC studied in 

previous chapters are compared to LES results and to results of RANS with the standard KPP 

and the 𝜅 − 𝜖 models. Note that a description of the 𝜅 − 𝜖 model will not be given (see Burchard 

et al, 1998; Wilcox, 1994 for details), as the focus here is on the KPP. 

6.3 K-Profile Parameterization  

The standard KPP (Large et al., 1994) is a local parameterization of the Reynolds shear stress 

made under the assumption of the presence of surface and bottom (bed) log layers. The modified 

KPP developed here accounts for (i) surface and bottom log-layer disruption mainly caused by 

Stokes drift shear and full-depth LC, respectively (ii) non-local transport induced by full-depth 

LC and (iii) Reynolds shear stress production by Stokes drift shear. These effects have been 

revealed in previous chapters through LES of wind-driven flows with full-depth LC. 

6.3.1 The Standard KPP Parameterization 

The RANS turbulence model developed is based on the K-profile parameterization (or KPP) 

reviewed in (Large et al., 1994). The popularity of the KPP lies in its implementation simplicity 

given that it is an algebraic model unlike Mellor-Yamada and 𝜅 − 𝜖 model which necessitate 

solution of differential equations.  
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In the traditional KPP, the dominant component (i.e. the downwind (x1)-wall-normal (x3) 

component) of the Reynolds shear stress for our flows of interest (i.e. the flows with LC studied 

via LES in previous chapters) is modeled as 

 −〈𝑢1
′ 𝑢3

′ 〉 = 𝜈𝑡

𝑑〈𝑢1〉

𝑑𝑥3
 

(6-2) 

Note that here 𝜈𝑡 will denote vertical eddy diffusivity. Within the surface boundary layer this 

RANS eddy viscosity is taken as 

 𝜈𝑡  =  𝛿 𝑤(𝜎)𝐺(𝜎) 
(6-3) 

where δ is the depth of the surface boundary layer, w(σ) is a velocity scale and G(σ) is a shape 

function. In general, velocity scale w and shape function G are functions of σ, a dimensionless 

coordinate varying between 0 at the surface of the water column and 1 at the base of the surface 

boundary layer. In the present implementation (for the homogeneous (neutrally stratified) flows 

of interest) the surface boundary layer is taken to be the upper half of the water column (see 

domain sketch in Fig. 3.1 in Chapter 3). Dimensionless coordinate σ is defined as σ = z/δ, where 

z measures distance to the surface. Shape function G is taken to be a cubic polynomial: 

 𝐺(𝜎)  =  𝑎0  +  𝑎1𝜎 +  𝑎2𝜎2  +  𝑎3𝜎3 
(6-4) 

Velocity scale 𝑤 and coefficients  𝑎0 and 𝑎1 are chosen so that the resulting eddy viscosity 

matches scale-similarity theory (i.e. log-layer dynamics) (Pope, 2000) near the surface. Velocity 

𝑤 is taken as 𝑤 =  𝜅𝑢𝜏𝑤 where  𝜅 = 0.4 is von Karman’s constant and 𝑢𝜏𝑤 is wind stress friction 

velocity. Thus, 𝑤 is independent of 𝜎. Furthermore, 𝑎0 = 0 and  𝑎1= 1. These two values together 

with 𝑤 =  𝜅𝑢𝜏𝑤 ensure that 𝜈𝑡 goes as 𝜅𝑢𝜏𝑤𝑧 within the surface log-layer in accordance with 

similarity theory. In general, coefficients 𝑎2 and  𝑎3 are taken as 
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𝑎2  =  −2 +  3𝐺(1) −  𝜕𝜎𝐺(1) 

𝑎3  = 1 −  2𝐺(1) +  𝜕𝜎𝐺(1)   

(6-5) 

with 

 

𝐺(1) =
𝜈𝑡0

𝛿𝑤(1)
                    

𝜕𝜎𝐺(1) =
𝜕𝑧𝜈𝑡0

𝑤(1)
−

𝜈𝑡0𝜕𝜎𝑤(1)

𝛿𝑤2(1)
 

(6-6) 

So as to allow for the eddy viscosity to match the interior eddy viscosity 𝜈𝑡0 at the base of the 

surface layer (here corresponding to the middle of the water column) (Large et al., 1994). Eddy 

viscosity 𝜈𝑡0  is obtained via an interior parameterization typically dependent on a Richardson 

number describing water column stability. For the homogenous flows considered here, 𝜈𝑡0  is 

independent of Richardson number. In wind-driven flow without Langmuir cells 𝜈𝑡0  is taken as 

the eddy viscosity at the middle of the water column predicted by the 𝑘 − 𝜖 model. For flows 

with Langmuir forcing and thus full-depth LC, determination of 𝜈𝑡0 will be described further 

below. As will be seen for these cases, 𝜈𝑡0  is an eddy viscosity associated with non-local 

transport and transport down the vertical gradient of Stokes drift velocity. 

Since 𝜈𝑡0 is a constant and in the standard KPP 𝑤 is taken as independent of 𝜎  (𝑤 =

 𝜅𝑢𝜏𝑤), the coefficients in (6-5) become 

 

𝑎2  =  −2 +  3
𝜈𝑡0

𝛿𝑤
 

𝑎3  =  1 −  2
𝜈𝑡0

𝛿𝑤
 

(6-7) 

for the standard KPP. 
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In the bottom half of the water column, within the bed log-layer, the eddy viscosity is 

expected to behave similar to the surface log-layer but as 𝜅𝑢𝜏𝑏𝑧 where 𝑢𝜏𝑏 is bottom (bed) 

friction velocity and z is distance to the bottom wall. Shape function coefficients are also chosen 

so as to match the interior eddy viscosity 𝜈𝑡0. Note that for flows studied in previous chapters, in 

the mean, bottom friction velocity, 𝑢𝜏𝑏, is equal to wind-stress friction velocity 𝑢𝜏𝑤, however, in 

general these two friction velocities do not have to be the same. 

6.4 A Modified KPP 

Recall that the generating mechanism of Langmuir turbulence and associated LC (i.e. 

Langmuir forcing) is the cross product between Stokes drift velocity induced by surface gravity 

waves and flow vorticity. The latter cross product, better known as the Craik-Leibovich vortex 

force, appears in the LES momentum equation. The LES results in the previous chapter (Chapter 

4) have indicated that Langmuir forcing causes deviations from the classical surface similarity 

theory (i.e. surface log-layer dynamics) characteristic of surface stress-driven flows. Surface log-

law disruption is primarily caused by Stokes drift velocity shear serving to intensify near-surface 

small-scale vortices (Figure 4.9) ultimately leading to enhanced mixing in the near-surface 

region (Fig. 4.16a). These results suggest the need for a near-surface eddy viscosity enhancement 

dependent on Stokes drift shear. 

Based on analysis of Chapter 4 Langmuir forcing also affects water column dynamics of 

wind and wave-driven shallow water flows through the non-local effect of the coherent, full-

depth upwelling and downwelling limbs of LC. For example, the downwells bring high speed 

fluid close to the bottom wall thereby inducing a deviation from the classical bottom log-law 

velocity profile. Furthermore, in some instances (under certain combinations of wind and wave 
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forcing) the full-depth cells can be sufficiently strong to lead to regions of negative vertical 

gradient of mean downwind velocity within the core or bulk of flow. Under this circumstance, 

the Reynolds shear stress closure requires an additional non-local term in addition to the 

traditional local term based on mean velocity vertical shear. 

Finally, analysis of Reynolds shear stress budgets in Chapters 4 and 5 have revealed the 

importance of Stokes drift shear throughout the water column, suggesting that the Reynolds 

shear stress closure should have a term proportional to Stokes drift shear, similar to the usual 

local term proportional to mean velocity shear.  

6.4.1 Modification of KPP Based on Near-Surface Dynamics 

In order to account for Stokes drift shear-enhanced near-surface mixing in the KPP model, 

we proceed following (Teixeira, 2012) . Analyzing the budget terms of Reynolds shear 

stress −〈𝑢1
′ 𝑢3

′ 〉 presented in Chapter3, it can be seen that production by mean wind-driven 

current velocity shear is 〈𝑢3
′2〉𝑑〈𝑢1〉/𝑑𝑥3 while production by Stokes drift shear is 〈𝑢1

′2〉𝑑〈𝑈𝑠〉/

𝑑𝑥3 where 𝑈𝑆 is the depth-dependent Stokes drift velocity, taken here to have non-zero 

component only in the downwind direction. Note that 𝑈𝑆 is an input determined from the 

dominant wavelength, amplitude and frequency of the surface gravity waves generating 

Langmuir turbulence, as described earlier in Chapter 3. In an effort to find the influence of 

Langmuir turbulence on turbulent kinetic energy dissipation rate in the upper ocean, (Teixeira, 

2012) decomposes the Reynolds shear stress as 

 
−〈𝑢1

′ 𝑢3
′ 〉  =  −〈𝑢1

′ 𝑢3
′ 〉𝑤𝑖𝑛𝑑  − 〈𝑢1

′ 𝑢3
′ 〉Stokes (6-8) 
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where the first term on the right hand side is a component due to the wind-driven shear and the 

second term is a component due to the Stokes drift shear. Furthermore, assuming a constant 

shear stress layer at the surface (Pope, 2000), the total Reynolds shear stress can be taken as 

 −〈𝑢1
′ 𝑢3

′ 〉  =  𝑢𝜏𝑤
2  

(6-9) 

within the usual surface log-layer. The decomposition in (6-8) and the constant shear stress layer 

approximation in (6-9) suggest that – 〈𝑢1
′ 𝑢3

′ 〉𝑤𝑖𝑛𝑑 < 𝑢𝜏𝑤
2 . This along with the assumption that 

within the usual log-layer the primary sources of Reynolds shear stress are wind-driven shear 

production and Stokes drift shear production leads to the following expression (Teixeira, 2012): 

 
−〈𝑢1

′ 𝑢3
′ 〉𝑤𝑖𝑛𝑑  =

𝑢𝜏𝑤
2

1 +
〈𝑢1

′2〉

〈𝑢3
′2〉

𝑑〈𝑈𝑠〉
𝑑𝑥3

𝑑〈𝑢1〉
𝑑𝑥3

⁄

 (6-10) 

The ratio  

 𝛾 =
〈𝑢1

′2〉

〈𝑢3
′2〉 𝑑〈𝑢1〉/𝑑𝑥3 

  
(6-11) 

appearing in (6-10) may be parameterized using LES. Based on our own LES, we have found γ 

to be O(𝛿/𝑢𝜏𝑤) within the usual surface log-layer and thus take it as simply γ = 𝛿/𝑢𝜏𝑤 (see 

Figure 6.1). Additionally, the total Reynolds shear stress budget collected from the LES (see 

Figure 4.14, repeated here as Figure 6.2 for convenience) shows that within this near-surface 

region, the dominant source terms are indeed production by wind-driven (mean velocity) shear 

and production by Stokes drift shear, lending support to equation (6-10). 
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Figure 6.1  Parameter γ in Eqn. (6-11) evaluated using LES fields within the surface log-layer 

The wind-driven shear component of the total Reynolds shear stress is modeled as 

 −〈𝑢1
′ 𝑢3

′ 〉𝑤𝑖𝑛𝑑 = 𝜈𝑡

𝑑〈𝑢1〉

𝑑𝑥3
 

(6-12) 

with the eddy viscosity within the surface log-layer taken as νt = κuτwz (with z being distance to 

the surface). Equating (6-10) and (6-12) and making use of (6-11) leads to 

 𝜈𝑡 (1 + 𝛾
𝑑𝑈𝑠

𝑑𝑥3
) 

𝑑〈𝑢1〉

𝑑𝑥3
 =  𝑢𝜏𝑤

2  
(6-13) 

implying an amplified near-surface eddy viscosity with amplification factor (1 + 𝛾 𝑑𝑈𝑠/𝑑𝑥3). 

Thus, the KPP model modified for near-surface dynamics induced by Langmuir turbulence 

results in 

 −〈𝑢1
′ 𝑢3

′ 〉 = 𝜈𝑡
′

𝑑〈𝑢1〉

𝑑𝑥3
 (6-14) 
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Figure 6.2  Near-surface budget terms of – 〈�̅�1
′ �̅�3

′ 〉  (scaled by 𝑢𝜏
2) in flows with and without LC. 

𝑥3
+  measures distance to the surface in plus units. P is production by mean velocity shear, T is 

turbulent transport, TSGS is SGS transport, D is viscous diffusion, ε is viscous dissipation, εSGS is 

SGS dissipation, A is pressure transport, ST is production by Stokes drift shear and B is pressure-

strain correlation.  

−〈𝑢1
′ 𝑢3

′ 〉  budgets −〈𝑢1
′ 𝑢3

′ 〉  budgets −〈𝑢1
′ 𝑢3

′ 〉  budgets 
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with amplified eddy viscosity 

 
𝜈𝑡

′ = 𝜈𝑡 (1 + 𝛾
𝑑〈𝑈𝑠〉

𝑑𝑥3
)  (6-15) 

where 𝜈𝑡  is given in (6-3). This amplified eddy viscosity is consistent with LES results of 

Chapter 4 showing that Stokes drift shear serves to enhance near-surface mixing. 

Recall that in the standard KPP, velocity scale w in (6-3) is taken independent of σ as 𝑤 =

 𝜅𝑢𝜏𝑤 where κ = 0.4 is von Karman’s constant and 𝑢𝜏𝑤  is wind-stress friction velocity. The 

amplified eddy viscosity in (6-15) implies that the velocity scale should be 

 
𝑤 = (1 + 𝛾

𝑑〈𝑈𝑠〉

𝑑𝑥3
) 𝜅𝑢𝜏𝑤  (6-16) 

for the modified KPP of the total Reynolds stress in (6-11). Note that this new velocity scale 

affects the shape function coefficients calculated in (6-5). More specifically, the new velocity 

scale is no longer constant and is now a function of σ through the depth dependence of the Stokes 

drift vertical shear, 𝑑𝑈𝑠/𝑑𝑥3. Thus, the shape function coefficients for the modified KPP are 

different than those for the standard KPP appearing in (6-7). 

6.4.2 Modification of KPP Model Accounting for Non-Local Transport  

As noted earlier, mixing induced by full-depth LC causes a negative slope in the vertical 

gradient of mean downwind velocity and thus a breakdown of the local model in (6-14). In order 

to account for this non-local effect induced by LC, the KPP model is augmented as 

 −〈𝑢1
′ 𝑢3

′ 〉 = 𝜈𝑡
′ (

𝑑〈𝑢1〉

𝑑𝑥3
+ Γ) (6-17) 
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where Γ is a counter-gradient defined as 

 Γ =
𝑢𝜏𝑤

2

𝑣(𝜎)𝛿
 (6-18) 

where 𝑣(𝜎) is a velocity scale. Counter-gradients such as this one have been proposed for non-

local transport in the convective atmospheric boundary layer (see for example (Frech and Mahrt, 

1995)  and references within) and have been extended to the upper ocean mixed layer (see for 

example (Smyth et al., 2002)). 

In the current implementation, general velocity scale 𝑣(𝜎) is taken independent of σ as 

simply 𝜅𝑢𝜏𝑤. It is not taken as that given by equation (6-16) because the latter is not 

representative of core (bulk) region non-local effects, but rather of the near-surface Stokes drift 

shear-enhanced mixing via small-scale vortices described in Chapter 4. 

As per the discussion in previous section, the standard KPP eddy viscosity is designed to 

match the eddy viscosity (𝜈𝑡0)  at the base of the surface layer taken to be middle of the water 

column and thus the amplified eddy viscosity of the modified KPP there becomes 

 𝜈𝑡0
′ = 𝜈𝑡0 (1 + 𝛾

𝑑𝑈𝑠

𝑑𝑥3
)

𝑥3=0

  (6-19) 

where x3 = 0 denotes the middle of the water column. We find 𝜈𝑡0 by setting the counter-gradient 

term in (6-17) at the middle of the water column proportional to the wind stress: 

 𝜈𝑡0
′ Γ = 𝐶𝑢𝑡𝑤

2   (6-20) 

where 𝜈𝑡0
′  is given in terms of 𝜈𝑡0 in (6-19). The constant of proportionality, C, is a coefficient 

representative of the strength of the full-depth LC and Stokes drift shear being parameterized. If 
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wind and wave forcing conditions are such that the LC and Stokes drift shear are sufficiently 

strong to cause a negative slope in the vertical gradient of mean downwind velocity, then C > 1; 

otherwise, C ≤ 1.  

Inserting (6-15) with 𝛾 = 𝛿 𝑢𝜏𝑤⁄  into (6-17) and expanding reveals that the modified KPP 

contains the term  (𝜈𝑡𝛤𝛿 𝑢𝜏𝑤⁄ ) 𝑑𝑈𝑠/𝑑𝑥3. This term represents flux down the vertical gradient of 

Stokes drift. The Reynolds shear stress transport equation derived from the momentum equation 

with Craik-Leibovich (Langmuir) forcing (serving to generate Langmuir turbulence) possesses 

production by vertical gradients of mean downwind velocity and Stokes drift velocity, 𝑑〈𝑢1〉/

𝑑𝑥3 and 𝑑𝑈𝑠/𝑑𝑥3, respectively, as shown in Chapter 3. This along with the LES-based analysis 

of Reynolds shear stress transport equation terms (budget terms) in Chapter 4, suggest that a 

parameterization of the Reynolds shear stress should contain a vertical flux down the 

gradient 𝑑𝑈𝑠/𝑑𝑥3, in addition to the usual flux down the gradient 𝑑〈𝑢1〉/𝑑𝑥3. Reynolds shear 

stress parameterizations including transport down the gradient 𝑑𝑈𝑠 𝑑𝑥3⁄  have been postulated 

(although not tested a priori) in (Harcourt and D’Asaro, 2008) and (McWilliams et al., 2012) for 

Langmuir turbulence in the upper ocean mixed layer. Note that Langmuir turbulence in the upper 

ocean mixed layer possess a number of differences from Langmuir turbulence in shallow water, 

primarily associated with the coherency of the full-depth LC in shallow water. In the shallow 

water case, full-depth LC tends to be strongly coherent contributing greatly to negative slope of  

𝑑〈𝑢1〉/𝑑𝑥3 and thus significant non-local effects extending down to (and disrupting) the bottom 

log-layer. In the upper ocean, the LC are less coherent and, obviously, do not interact with the 

bottom log-layer. 
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6.5 A Priori Evaluation of the Modified KPP Model 

Single water column RANS simulations of wind-driven flows at Reτ = 395 (based on wind 

stress friction velocity and water column mid-depth) with full-depth LC were performed with the 

standard KPP, the 𝑘 − 𝜀 model and the newly proposed modified KPP for various combinations 

of wind and wave forcing. LES results of these same flows were presented in Chapters 3, 4 and 

5. Recall that wind-driven flows with LC are characterized by the dominant wavelength of 

surface gravity waves (λ) generating LC and the turbulent Langmuir number (𝐿𝑎𝑡) which is 

inversely proportional to the strength of wave forcing relative to wind forcing. Four cases have 

been simulated: (𝐿𝑎𝑡  = 0.7, λ = 6H), (𝐿𝑎𝑡 = 0.4, λ = 6H), (𝐿𝑎𝑡  = 1.0, λ = 6H) and (𝐿𝑎𝑡 = 0.7, λ = 

4H/3).  

RANS simulations consisted of solving the Reynolds averaged continuity equation and 

momentum equation with Craik-Leibovich vortex force.  The domain consisted of a single water 

column, i.e. a one dimensional domain extending from x3 = 0 at the bottom of the water column 

and x3 = 2δ (same depth as the LES domain). In this domain, the mean velocity  〈𝑢1〉 is 

dependent on x3.The domain was discretized with 33 equally distant points, thus the first grid 

point away from the bottom (surface) was at a distance 𝑧1
+ = 25 from the bottom (surface). As a 

result, these simulations do not resolve viscous nor buffer sublayers and resolution only extends 

into the log layer. The surface boundary condition consists of a prescribed wind stress, the same 

as in the LES described in Chapter 3. The bottom boundary condition will be described in detail 

further below.   

Figure 6.3 compares mean downwind velocity predicted by LES and by RANS with 

modified KPP, standard KPP and 𝑘 − 𝜀 model. With respect to LES, the RANS with modified 
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KPP leads to a better prediction than with standard KPP and 𝑘 − 𝜀 model in representing (i) the 

mixing of momentum throughout the bulk flow region and at the bottom of the water column 

induced by full-depth LC and (ii) the near-surface mixing induced by near-surface small scale 

vortices enhanced by Stokes drift shear. In some cases, the simulations with modified KPP tend 

to over-predict the near-surface mixing of momentum such as in the flow with (𝐿𝑎𝑡 = 0.7, λ = 

4H/3). This is attributed to the coarse mesh which only provides two grid points to resolve the 

rapid transition of the mean velocity at the surface.  

Recall that the modified KPP coefficient C in (6-20) is representative of the strength of the 

full-depth LC and Stokes drift shear (i.e. the strength of Langmuir turbulence) at mid-depth 

being parameterized. From the results in Figure 6.3, it can be concluded that the C coefficient is 

primarily dependent on the strength of full-depth LC in the upper-half of the water column as 

measured through 〈�̅�3
′ �̅�3

′ 〉𝐿𝐶 defined in Eqn. (4-1) in Chapter 4 and plotted in Figure 4.8b for the 

various cases with LC. The quantity 〈�̅�3
′ �̅�3

′ 〉𝐿𝐶 represents the contribution of full-depth LC to 

vertical velocity variance 〈�̅�3
′ �̅�3

′ 〉.  

Figure 6.3 show results with C = 1 and with tuned values of C so as to yield mean velocity 

profiles in closer agreement with the LES. The tuned values of C are consistent with the strength 

of LC in the upper-half of the water column evaluated through 〈�̅�3
′ �̅�3

′ 〉𝐿𝐶 as previously discussed 

(see Fig. 4.8a): for (𝐿𝑎𝑡 = 0.4, λ = 6H), C = 1.4; for (𝐿𝑎𝑡 = 0.7, λ = 6H), C = 1.2; for (𝐿𝑎𝑡= 1, λ = 

6H), C = 1.1; and for (𝐿𝑎𝑡= 0.7, λ = 4H/3), C = 0.7. Thus, as expected, a parameterization of the 

effect of a weaker full-depth LC in the upper-half of the water column via the modified KPP 

requires a smaller value of C. Future research should focus on obtaining a parameterization of C 
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in terms of 𝐿𝑎𝑡 and λ by performing a suite of LES simulations sweeping through a range of 

these parameters. 

In addition to being dependent on the Reynolds shear stress model, the previous results are 

also strongly dependent on the bottom boundary condition of the simulations. The bottom 

boundary condition and its modification to account for log-law disruption caused by full-depth 

LC will be described in the detail in the upcoming sub-section.  

Figure 6.4 shows momentum balances in the RANS simulations of wind-driven flows with 

LC for the cases (𝐿𝑎𝑡 = 0.4, λ = 6H) with C = 1.4, (𝐿𝑎𝑡 = 0.7, λ = 6H) with C = 1.2,  (𝐿𝑎𝑡= 1, λ = 

6H) with C = 1.1, and (𝐿𝑎𝑡= 0.7, λ = 4H/3) with C = 0.7. The RANS equation governing these 

flows yield the following balance: 

 
𝜈

𝑑〈𝑢1〉

𝑑𝑥3
− 〈𝑢1

′ 𝑢3
′ 〉 = 𝑢𝜏𝑤

2  (6-21) 

where the first term on the left hand side is the local molecular viscous stress. The Reynolds 

stress is modeled via the modified KPP modeled in (6-20) yielding  

 
−〈𝑢1

′ 𝑢3
′ 〉  = 𝜈𝑡

′
𝑑〈𝑢1〉

𝑑𝑥3
+ 𝜈𝑡Γ

𝑑〈𝑈𝑠〉

𝑑𝑥3
+ 𝜈𝑡Γ  (6-22) 

The first term on the right hand side is the local eddy viscosity stress or flux, the second term 

is vertical flux down the gradient of Stokes drift and the third term is the non-local flux.  Figure 

6.4 shows that the four stresses (local molecular viscosity stress, local eddy viscosity stress, non-

local flux and flux down the gradient of Stokes drift) sum to the square of the wind stress friction 

velocity, 𝑢𝜏𝑤
2 , as expected.  
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Figure 6.3  Comparison between RANS and LES of flows with LC at 𝑅𝑒𝜏  =  395. RANS is 

performed with the 𝑘 − 𝜀 model, the standard KPP and the modified KPP accounting for 

Langmuir turbulence and associated full-depth LC. Note that 𝐻 =  2𝛿 is the depth water 

column. 
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Figure 6.4  Momentum balance for modified nonlocal KPP in flows with LC at 𝑅𝑒𝜏  =  395. *: 

local eddy viscosity stress, ∆: local molecular viscous stress, ◊: non-local stress □: flux down the 

gradient of Stokes drift velocity, ○: sum 

Looking at Figure 6.4, in flows where the contribution of the flux down the gradient of 

Stokes drift is lower (e.g. in the flow with (𝐿𝑎𝑡 = 1.0, λ = 6H)) the contribution of the non-local 

stress is higher and vice-versa. For example, in the flow with (𝐿𝑎𝑡 = 1.0, λ = 6H), Stokes drift 

shear is smallest compared to the other flows, leading to relatively small contribution from the 

flux down the gradient of Stokes drift in the modified KPP model. Furthermore, the presence of 

the full-depth LC in this case serves to homogenize the entire water column leading to small 

contributions from the local stresses especially in the middle of the water column (which is 

expected given that these stresses are proportional to vertical gradient of mean downwind 
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velocity). As a result, in the  (𝐿𝑎𝑡 = 1.0, λ = 6H) case, the non-local stress is left to provide the 

bulk of wind shear stress vertical transfer throughout the water column, serving to explain why 

the non-local stress in this flow is higher than in the other cases. 

Finally note that in Figure 6.4, in some of the flows it is seen that the local eddy viscosity 

stress becomes negative throughout significant portions of the water column (e.g. in the (𝐿𝑎𝑡 = 

1.0, λ = 6H) case). This is due to the negative vertical gradient of mean downwind velocity 

induced by full-depth LC, consistent with the LES results presented in Chapters 4 and 5. 

6.6 Bottom Boundary Condition 

In the single water column RANS simulations previously described, the bottom boundary 

condition consists of a prescribed bottom stress rather than a no-slip condition. The reason for 

this is that the no-slip condition would require resolution of the buffer and viscous wall regions 

below the log-layer. In order to avoid resolution of these computationally expensive regions, the 

RANS simulation performed relies on imposition of the bottom stress rather than the no-slip 

condition in what is often referred to as near-wall modeling. The bottom stress is defined in 

terms of the bed stress friction velocity (which in these flows is equal to the wind stress friction 

velocity, 𝑢𝜏𝑤). In near-wall modeling [ (Li et al., 2010), (Piomelli and Balaras, 2002)] the bed 

stress friction velocity is obtained by assuming that the computed mean velocity,  〈�̅�1〉, satisfies 

the log-law at the first grid point away from the bottom wall: 

 

〈𝑢1〉

𝑢𝜏𝑤
=

1

𝜅
ln (

𝑢𝜏𝑤𝑧

𝜈
) + 𝐵 (6-23) 

where B=5.2 for classical boundary layers. In traditional near-wall modeling, the previous 

equation is solved dynamically (i.e. during the simulation) for  𝑢𝜏𝑤 with z set equal to the  
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distance between the wall and the first grid point away from the wall and  〈�̅�1〉 set as the 

computed mean velocity at the first grid point away from the wall.  

LES presented in Chapter 5 has shown that full-depth LC disrupts the bottom log-law 

velocity profile in equation (6-23). The behavior induced by the LC can be approximated by 

varying the value of B depending on the strength of full-depth LC in the lower half of the water 

column.  For example, in flow with (𝐿𝑎𝑡= 0.7, λ = 6H) the LES of Chapter 5 has shown that the 

disrupted log-law caused by full-depth LC may be approximated by re-setting B to 7.5 in the log-

law in (6-23). In flow with (𝐿𝑎𝑡= 0.7, λ = 4H/3) in which the full-depth LC is weaker in the 

lower half of the water column than in the (𝐿𝑎𝑡= 0.7, λ = 6H) case, LES of Chapter 5 has shown 

that the disrupted log-law may be approximated by re-setting B to 6.5. Thus, a stronger LC in the 

lower-half of the water column requires a higher value of B. Similar conclusions can be arrived 

at by comparing the cases with (𝐿𝑎𝑡= 0.7, λ = 6H) and (𝐿𝑎𝑡= 0.4, λ = 6H). 

Figure 6.5 shows mean velocities obtained in RANS simulations with the modified KPP with 

different values of the B coefficient in the log-law used for near-wall modeling.  For example, in 

the flow with (𝐿𝑎𝑡= 0.7, λ = 6H), the log-law in (6-23) with B=7.5 leads to a velocity profile in 

better approximation of the LES velocity profile than the traditional B=5.2, as expected.  The 

difference between using B=5.2 and B=7.5 in the RANS single water column simulation with 

modified KPP model is shown in Figure 6.5. The importance of the B coefficient in the near-wall 

model is further demonstrated in Figure 6.5 for the flow with (𝐿𝑎𝑡= 0.7, λ = 4H/3). Following 

the LES results of Chapter 5 and setting B=6.5 in the near-wall model in the RANS simulation 

with modified KPP leads to a better result than B=5.2. 
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Figure 6.5  Mean downwind velocity predicted in RANS with modified KPP and various 

different values of B coefficient in the log-law used for near-wall modeling. 

6.7 Conclusion 

Langmuir turbulence is generated by interaction between Stokes drift velocity induced by 

surface gravity waves and the wind-driven shear. In homogeneous shallow water, Langmuir 

turbulence is often characterized by full-depth LC engulfing the entire water column. LES of 

Langmuir turbulence with full-depth LC in a wind-driven shear current has revealed that mixing 

due to full-depth LC erodes the bottom log-law velocity profile inducing a profile resembling a 

wake law. The full-depth LC also induces negative mean velocity shear under certain 
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combinations of wind and wave forcing parameters. Meanwhile, near the surface, Stokes drift 

shear serves to intensify small scale eddies leading to enhanced mixing and disruption of the 

surface velocity log-law.  

A K-profile parameterization (KPP) of the Reynolds shear stress comprised of local and 

nonlocal components has been introduced capturing these basic mechanisms by which full-depth 

LC and associated turbulence impact the mean flow. Single water column RANS simulations 

with the new parameterization were presented showing good agreement with LES in terms of 

mean velocity profiles. The KPP introduced is characterized by two coefficients (C and B) 

dependent on the strength of the full-depth LC in the upper half of the water column and its 

strength in the bottom half of the water column. Future research should focus on parameterizing 

these coefficients as functions wind and wave forcing parameters λ and  𝐿𝑎𝑡 by performing a 

suite of LES over likely values  of  λ and  𝐿𝑎𝑡.  
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7.1 Introduction 

Full-depth LC in the shallow coastal ocean is affected by the action of tides. For example, 

Figure 7.1 shows field measurements of full-depth LC by Gargett and Wells (2007) during a time 

of relatively weak tidal velocities at 20 cm s-1. In this case, downwind velocity fluctuations are 

intensified near the bottom of the water column. A similar behavior was also observed in the 

LES of full-depth LC without the effect of tides presented in Chapters 4 and 5 (e.g. see Figure 

4.3). Figure 7.2 shows field measurements of full-depth LC by Gargett and Savidge (2008) 

during a time of relatively strong tidal velocities at 60 cm s-1. Unlike the case in Figure 7.1, here 

the downwind velocity fluctuations are not intensified near the bottom. Furthermore, in this case 

with stronger tidal velocities, the downwelling/upwelling limbs of the cells (exhibited through 

the vertical velocity fluctuations) are not as coherent nor as wide in the cross-wind direction as 

the downwelling/upwelling limbs in the case with weaker tidal velocities in Fig. 7.1.  

Kukulka et al. (2011) performed LES of full-depth LC under a constant crosswind body force 

and noted that the body force induces an attraction mechanism between cells ultimately causing 

the cells to merge. The merged cells are characterized by wider crosswind size than the original 

cells without the effect of the crosswind pressure gradient. Simulations conducted by Martinat et 

al. (2011) using the same LES code used here, also found the same attraction mechanism. 

Simulations performed for this dissertation also found similar results. Furthermore, it has also 

7 Influence of Strong Tidal Current on LC in Shallow Continental Shelf 
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been found that the merging of cells occurs when the crosswind body force is sufficiently weak 

relative to the downwind surface force caused by the wind stress. For example, when the 

crosswind Reynolds number (based on crosswind bottom friction velocity and water column 

half-depth) is one-half of the downwind Reynolds number (based on downwind bottom friction 

velocity and water column half-depth), the attraction between cells was observed for a case with 

λ = 6H and Lat = 0.7. 

 

Figure 7.1  Fields of fluctuating velocity components in downwind (u), crosswind (v) and 

vertical (w) directions and backscatter amplitude (A5) measured using an acoustic Doppler 

current profiler (Gargett and Wells 2007). Measurements were made under relatively weak tidal 

velocities of ~ 20 cm s-1. Measurements were made on the continental shelf off southern New 

Jersey at depth of 15 meters. Note: 10 pings ~ 1.5 minutes. [Ann E. Gargett and J. R. Wells 

(2007). Langmuir turbulence in shallow water. Part 1. Observations. Journal of Fluid Mechanics, 

576, pp 27-61. Reprint with permission from Cambridge University Press] 

w (cm/s) 

v (cm/s) 

u (cm/s) 
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Figure 7.2  Fields of fluctuating velocity components in the downwind (u), crosswind (v) and 

vertical (w) directions and backscatter amplitude measured using an acoustic Doppler current 

profiler (Gargett and Savidge 2008). Measurements were made under relatively strong tidal 

velocities of ~ 60 cm s-1. Measurements were made on the continental shelf off Georgia at depth 

of 30 meters. [ Savidge, W.B., A. Gargett, R.A. Jahnke, J.R. Nelson, D.K. Savidge, R.T. Short, 

and G. Voulgaris. 2008. Forcing and dynamics of seafloor-water column exchange on a broad 

continental shelf. Oceanography 21(4):179–184] 

However, when the crosswind Reynolds number was increased such that it became equal to 

the downwind Reynolds number, the cells were observed to undergo a dramatic change in 

structure. In this case the relatively stronger constant crosswind body force led to crosswind 

shear able to break up the LC cells into smaller scale cells characterized by smaller crosswind 

size. Although the smaller scale cells reach the bottom of the water column, their disruption of 

the bottom boundary layer is not as prominent as that reported earlier in Chapter 5 for full-depth 

LC without crosswind body force. The previously described results were all obtained with 

constant pressure gradient (body force) in the crosswind direction. Langmuir turbulence occurs 
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on timescales significantly shorter than the time period of a full tidal cycle. Thus the constant 

crosswind body force applied in these cases represents the force during a time period of the tidal 

cycle which is longer than the timescale of the turbulence, but sufficiently smaller than the tidal 

period to assume the tidal force is temporarily constant. In this Chapter results are presented 

from LES with an oscillating crosswind body force representative of a crosswind tidal cycle. The 

peak value of the crosswind body force is selected such that it matches the intensity of the 

downwind force caused by the wind stress. The goal is to reveal the effect of the body force at 

different phases of the cycle on the LC structure, the overall Langmuir turbulence structure and 

associated disruption of the surface and bottom log laws observed in Chapters 4 and 5. For 

example, as will be shown further below, the cycle is characterized by times when the crosswind 

body force leads to the break-up of full-depth LC into smaller scale LC as found in cases with 

constant body force described earlier. The weakening of the body force as the tide transitions 

from peak tide to low tide leads to the re-emergence of the full-depth LC structure described in 

Chapters 4 and 5 for cases without tides.   

7.2 LES Equations and Flow Configuration 

The governing LES equations are the same as those discussed in Chapter 3, but now 

augmented with a time-dependent dimensionless body force, 𝐴𝑓2 , in the crosswind direction:  

𝜕�̅�𝑖

𝜕𝑥𝑖
= 0 (7-1) 

𝜕�̅�𝑖

𝜕𝑡
+ �̅�𝑗

𝜕�̅�𝑖

𝜕𝑥𝑗
= −

𝜕𝛱

𝜕𝑥𝑖
+

1

𝑅𝑒𝜏

𝜕2�̅�𝑖

𝜕𝑥𝑗
2

−
𝜕𝜏𝑖𝑗

𝐿𝐸𝑆 (𝑑)
 

𝜕𝑥𝑗
+

1

𝐿𝑎𝑡
2 𝜖𝑖𝑗𝑘𝑈𝑗

𝑠�̅�𝑘 + 𝐴𝑓2𝛿𝑖2 
 

 

(7-2) 
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where  𝛿𝑖𝑗 is Kronecker’s delta. The body force 𝐴𝑓2 consists of an oscillating component 

𝑓2varying between -1 and +1. The period of oscillation was taken as 12.5 hours; this period is 

made dimensionless with a wind stress friction velocity of 0.009 m s-1 and water column half-

depth of 7.5 m, characteristic of the field measurements of full-depth LC of Gargett and Wells 

(2007). The Reynolds number based on mean bottom downwind friction velocity (equal to wind 

stress friction velocity) is set to 360. Furthermore, the peak value of the crosswind body force, 𝐴, 

is selected such that it matches the intensity of the downwind force cause by the wind stress. 

Wind and wave forcing parameters are chosen as λ = 6H and Lat = 0.7, which were values 

characterizing the field measurements of Gargett and Wells (2007). 

  

Figure 7.3  Sketch of LES domain in simulations with oscillating crosswind body force. 

The flow domain for the LES in this study is shown in Figure 7.3. Note that crosswind size 

has been expanded by a factor of 2 relative to the domain used in the LES of Chapters 4 and 5 

(see Figure 3.1). The reason for this is to enable resolution of at least two full-depth Langmuir 

cells and thus allow for the possibility of the merging of these cells as a result of the crosswind 

body force; recall that the LES simulations of Kukulka et al. (2011) and Martinat et al. (2011) 
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with constant crosswind body force revealed an attraction mechanism between full-depth cells 

that promotes the merging of the cells.  

First a simulation was carried out with the expanded domain resolving two full-depth 

Langmuir cells without tidal forcing. Then the tidal forcing was turned on from zero gradually 

increasing towards peak tide following the oscillation shown in Figure 7.4. The simulation ran 

for more than 3 tidal cycles beyond which point no significant differences in the turbulence 

structure were observed between peak tide and low tide. The initial condition is shown in Figure 

7.5 in terms of crosswind-vertical variation of downwind-averaged streamwise, crosswind and 

vertical velocity fluctuations. This figure reveals two full-depth Langmuir cells, with the same 

structural characteristics described earlier in Chapter 4. 

 

Figure 7.4  Tidal phases represented via oscillating force 𝑓2 in Eqn. 7.2 in LES of full-depth LC 

with crosswind tidal forcing. 
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7.3 Results 

 

Figure 7.5  Initial instantaneous velocity fluctuations averaged over the downwind (𝑥1) direction 

in flow with LC with 𝐿𝑎𝑡 = 0.7 and 𝜆 = 6H 

Snapshots of crosswind-vertical variation of downwind-averaged velocity fluctuations are 

shown in Figures 7.6 through 7.9. These snapshots of the LC structure were taken during the 

various tidal phases after the simulation had run for more than 3 tidal cycles. Figure 7.6 

corresponds to phase 1 (or peak tide) and Figure 7.7 corresponds to phase 2, the part of the cycle 

between peak and low tides. During peak tide, the LC structure resembles that of the simulation 

without tides (Figure 7.5). However, by phase 2, the effect of the tidal forcing and associated 

crosswind shear is clearly evident in terms of the vertical velocity fluctuations (or upwells and 

downwells) as the cells have broken up into less coherent full-depth cells characterized by 

smaller crosswind width. Furthermore, downwind velocity fluctuations are no longer intensified 
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near the bottom of the water column, the latter being one of the key features associated with 

coherent full-depth cells seen in Figure 7.5 and earlier in Chapter 4. Note that there is a time lag 

between the crosswind tidal force and its impact on LC structure. The full effect of peak tide 

(phase 1) causing the full-depth LC to break up into smaller scales is not observed at the time of 

phase 1, but rather at a later time closer to phase 2 (see Figure 7.4).   The weakening of the body 

force as the tide transitions from peak tide to low tide (phase 2) leads to the re-emergence of the 

full-depth LC structure as seen in the cases without tidal forcing. However, because of the time 

lag between the crosswind tidal force and its impact on LC structure, this re-emergence is seen 

during phase 3 of the body force. The previously described pattern is repeated during phases 4 

and 5 shown in Figures 7.9 and 7.10. 

 

Figure 7.6  Phase 1 instantaneous velocity fluctuations averaged over the downwind (𝑥1) 

direction in flow with LC with 𝐿𝑎𝑡 = 0.7 and 𝜆 = 6H. 
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Figure 7.7  Phase 2 instantaneous velocity fluctuations averaged over the downwind (𝑥1) 

direction in flow with LC with 𝐿𝑎𝑡 = 0.7 and 𝜆 = 6H.  

 
Figure 7.8  Phase 3 instantaneous velocity fluctuations averaged over the downwind (𝑥1) 

direction in flow with LC with 𝐿𝑎𝑡 = 0.7 and 𝜆 = 6H. 
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Figure 7.9  Phase 4 instantaneous velocity fluctuations averaged over the downwind (𝑥1) 

direction in flow with LC with 𝐿𝑎𝑡 = 0.7 and 𝜆 = 6H. 

 
Figure 7.10 Phase 5 instantaneous velocity fluctuations averaged over the downwind (𝑥1) 

direction in flow with LC with 𝐿𝑎𝑡 = 0.7 and 𝜆 = 6H.  
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The structure of Langmuir turbulence in terms of root mean square (rms) of velocity is 

modulated by the crosswind tidal activity, as seen in Figure 7.11. For example, during phases 1, 

3 and 5 during the presence of relatively coherent full-depth cells, vertical velocity rms becomes 

larger than crosswind velocity rms in the middle of the water column. In the upper part of the 

 

           Figure 7.11 Root mean square (rms) of resolved velocity throughout the tidal cycle. 
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water column, the crosswind velocity rms reaches values greater than downwind rms This 

behavior is similar to the velocity rms behavior in the flow with full-depth LC without tides 

(Figure 7.11a). During phases 2 and 4 when the full-depth cells are less coherent and have 

smaller crosswind size, the vertical rms becomes comparable to crosswind rms in the middle of 

the water column, but does not become noticeably greater as it does in phases 1, 3 and 5. 

Furthermore, crosswind rms does not surpass downwind rms in the upper portion of the water 

column. In these instances (during phase 2 and phase 4), the turbulence structure is a hybrid 

between Langmuir-dominated turbulence (Figure 7.11a) and shear-dominated turbulence. In the 

latter case the streamwise velocity rms is dominant over crosswind and vertical rms throughout 

the entire water column (as was shown for the flow without full-depth LC nor tides in Fig. 4.7a 

in Chapter 4).   

 

    Figure 7.12 Mean downwind velocity near bottom and near surface throughout the tidal cycle. 
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Finally, Figure 7.12 shows surface and bottom log-layer disruption in terms of mean 

downwind velocity caused by Langmuir turbulence throughout the tidal cycle. Although surface 

log-layer disruption occurs at all times, it is weakest during phases 2 and 4 corresponding to 

times when the full-depth cells have broken up into smaller scale cells due to the crosswind shear 

induced by the tidal forcing 

7.4 Conclusion 

In this chapter, results were presented from LES of full-depth LC under the action of an 

oscillating crosswind tidal force generating a crosswind tidal current. The crosswind tidal current 

and associated shear serves to sweep the full-depth Langmuir cells in the crosswind direction 

causing the cells to break up into less coherent, full-depth cells of smaller crosswind width. LES 

results obtained with the oscillating current were consistent with field measurements of full-

depth cells during the occurrence of relatively strong tidal velocities. In these cases, full-depth 

cells were no longer characterized by near-bottom intensification of downwind velocity 

fluctuation as is the case when tidal velocities are weaker. As the tidal force weakens in going 

from peak to low tide, the cells gain coherency, become larger in crosswind size, and near-

bottom downwind velocity fluctuations regain strength. Overall, the cells return to similar 

structure to the full-depth cells when no tides are present. Analysis of rms of velocity obtained in 

the LES indicated that the crosswind tidal current leads to a hybrid or intermediate turbulent 

structure in between shear-dominated turbulence (characteristic of wind-driven flows without the 

action of tides) and Langmuir-dominated turbulence (characteristic of wind-driven flows with 

full-depth LC without tides). As the tide weakens, the structure reverts back to Langmuir-

dominated turbulence. Although tidal forcing was seen to dampen Langmuir turbulence (LT) and 
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its effects (for example in terms of disruption of classical surface and bottom log-layers) the tidal 

forcing is not able to extinguish LT and its effects. As the tidal force weakens in going from peak 

to low tide, Langmuir turbulence re-organizes once again causing disruption of the surface and 

bottom log-layers.  
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Langmuir turbulence results from wind-current interaction in the upper ocean, specifically 

the interaction between the Stokes drift induced by surface gravity waves with the wind-driven 

shear current. The largest scales of the turbulence are characterized by Langmuir circulation or 

counter-rotating vortices engulfing the depth of the surface mixed layer in the upper ocean or the 

full depth of the water column in homogenous (fully mixed) shallow coastal shelf regions. 

Langmuir circulation manifests itself as windrows on the surface of the ocean coinciding with 

the surface convergence zone of the Langmuir cells. Windrows can extend for distances on the 

O(1 km) in the downwind direction and typical distances separating the windrows range between 

O(10) to O(100) meters.  

In the upper ocean, turbulence is generated via a number of mechanisms such as surface-

wave breaking, wave-current interaction (giving rise to Langmuir-dominated turbulence), wind 

shear (giving rise to shear-dominated turbulence) and destabilizing surface heat fluxes (giving 

rise to convective turbulence). A recent study by Belcher et al. (2012) found that wind and wave 

forcing conditions in the Southern Ocean are favorable to Langmuir-dominated turbulence over 

80% of the time throughout the year. Meanwhile in the North Atlantic, during winter, conditions 

are favorable to Langmuir-dominated turbulence for about 70% of the time. Overall their 

conclusion was that Langmuir turbulence is important everywhere in the world’s ocean and thus 

must be parameterized in climate models. 

8 Summary and Conclusions 
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This dissertation focused on understanding the impact of Langmuir turbulence in 

homogenous shallow water and associated full-depth Langmuir circulation on bottom and 

surface boundary layers in coastal shelf regions. This understanding formed the basis for the 

derivation and testing of a shallow water Langmuir turbulence parameterization suitable for 

coastal ocean circulation models. 

The effect of Langmuir turbulence with full-depth LC was explored in terms of wind and 

wave forcing parameters such as surface gravity wave wavelength, surface gravity wave 

amplitude and wind stress. Specifically, the parameters were surface wavelength, λ, and turbulent 

Langmuir number,𝐿𝑎𝑡, the latter inversely proportional to wave forcing relative wind forcing.  

Langmuir turbulence led to the disruption of surface log-layer dynamics in terms of the mean 

downwind velocity and the production and dissipation rates of TKE. This disruption included 

deviations from (i) the classical log-law velocity profile and (ii) the classical balance between 

production and dissipation rates of TKE, both exhibited by wind-driven flows without LC in the 

near-surface region of the water column. The primary factor controlling surface log-layer 

dynamics was seen to be Stokes drift vertical shear which serves to enhance near-surface small 

scale vortices and associated vertical mixing. Recall that Stokes drift velocity interacts with the 

wind-driven current to generate Langmuir turbulence. Furthermore, Stokes drift decays with 

depth with decay rate inversely proportional to the dominant wavelength, λ, of surface gravity 

waves. Thus, for deep water waves characterized by relatively shorter wavelengths (short 

waves), Stokes drift decays rapidly with depth inducing high Stokes drift shear near the surface 

and reduced (near zero) shear at depths below. The higher Stokes drift shear near the surface 

leads to intense small scale eddies near the surface and thus stronger surface log-layer disruption 
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despite the weaker full-depth Langmuir cells generated due to the reduced Stokes drift vertical 

shear throughout the bulk of the water column.   

Full-depth LC was also seen to cause negative mean velocity shear throughout the bulk 

region of the flow. Such behavior is important for Reynolds shear stress parameterization, as 

parameterizations purely based on local mean velocity shear are not able to represent the 

negative mean shear of the velocity.       

It was found that for sufficiently long waves, full-depth LC disrupts classical bottom 

boundary layer dynamics. For example, full-depth LC can disrupt the bottom log-law, inducing a 

“law of the wake-like” behavior. The disruption is primarily caused by the downwelling limb of 

LC which brings high speed fluid down to the log-layer region. The extent of this disruption 

depends on the strength of LC in the bottom half of the water column as determined through the 

wavelength (λ) of the surface waves generating the LC. Smaller λ generate weaker, less 

disruptive LC.  For sufficiently long wavelengths, the extent of the disruption also depends on 

the structure of LC as determined through the turbulent Langmuir number, Lat. For example 

lowering Lat can lead to strengthening of the upwelling limb of the cell. A stronger upwelling 

limb is characterized by an increase in the rate at which it brings slower moving fluid up to the 

log-layer, thereby diminishing the log-layer disrupting effect of the downwelling limb. 

A K-profile parameterization (KPP) of Langmuir turbulence in shallow water comprised of 

local and nonlocal components was introduced capturing the basic mechanisms by which 

Langmuir turbulence and associated full-depth LC impact the mean flow. Single water column 

RANS simulations (based on the Reynolds-averaged Navier-Stokes equations) with the new 

parameterization were presented showing good agreement with LES in terms of mean velocity 
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profiles. The new KPP was shown to lead to much better representation of the mean velocity 

profile during the occurrence of Langmuir turbulence than the standard (traditional) KPP (Large, 

1994) and the well-known k-ε model.  The KPP introduced is characterized by two coefficients 

dependent on the strength of the full-depth LC. It was shown that both of these coefficients may 

be calibrated via LES. Future research should focus on parameterizing these coefficients as 

functions of wind and wave forcing parameters λ and  𝐿𝑎𝑡 by performing LES simulations 

covering a range of likely values of  λ and  𝐿𝑎𝑡. 

In Chapter 7 results were presented from LES of Langmuir turbulence in shallow water under 

the action of an oscillating crosswind tidal force generating a crosswind tidal current. These 

simulations were motivated by two separate field measurements of Langmuir turbulence, one 

under relatively weak tidal velocities (Gargett and Wells, 2007) and another under stronger tidal 

velocities (Gargett and Savidge, 2008).  The LES revealed that the crosswind tidal current and 

associated shear serves to sweep full-depth Langmuir cells in the crosswind direction causing the 

cells to break up into less coherent, full-depth cells of smaller crosswind width. LES results 

obtained with the oscillating current were consistent with field measurements of full-depth cells 

during the occurrence of relatively strong tidal velocities. In these cases full-depth cells were no 

longer characterized by near-bottom intensification of downwind velocity fluctuation as is the 

case when tidal velocities are weaker. As the tidal force weakens in going from peak to low tide, 

the cells regain coherency, become larger in crosswind size, and near-bottom downwind velocity 

fluctuations regain strength. This was consistent with the field measurements.  

Overall, tidal forcing was seen to dampen Langmuir turbulence and its effects (for example 

in terms of disruption of classical surface and bottom log-layers) leading to a hybrid regime of 

turbulence between Langmuir-dominated and shear-dominated turbulence. However, as the tidal 
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force weakens in going from peak to low tide, Langmuir turbulence re-organizes proceeding to 

intensify its disruption of the surface and bottom log-layers. 

The previously described understanding of Langmuir turbulence in shallow water and 

parameterization can serve as basis for further research: 

i. The modified KPP model accounting for shallow water Langmuir turbulence 

derived and tested in Chapter 6 may be readily implemented in a general coastal 

ocean circulation model (GCOCM). The coastal upwelling scenario described in 

Chapter 2 would be an excellent test-case for the new KPP and its behavior 

relative to traditional parameterizations that do not take into account the effect of 

Langmuir turbulence.  In this scenario, strong mixing of the water column in 

regions closest to the coast may limit the cross-shore extent of upwelling currents, 

forcing these currents to terminate off-shore (i.e. at distances farther away from 

the coast). This results in a shut-down of near-coast, cross-shelf transport of 

nutrients, as well-mixed water becomes trapped at the coast. It is hypothesized 

that the shut-down mechanism may be enhanced by the intense vertical mixing 

caused by the action of full-depth Langmuir cells within the trapped water close 

to the coast. This behavior would be possible to represent via the newly developed 

KPP.      

ii. The newly derived KPP possess two coefficients dependent on the strength of the 

full-depth Langmuir cells in the upper- and lower-half of the water column. In 

Chapter 6, it was shown that both of these coefficients may be calibrated via LES. 

Future research should focus on parameterizing these coefficients as functions of 
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wind and wave forcing parameters λ and  𝐿𝑎𝑡 by performing a suite of LES over a 

rage of typical values for these parameters.  

iii. The analysis of LES results in Chapters 4 and 5 used to develop the newly 

proposed KPP in Chapter 6 may be also put to use for enabling other RANS 

parameterizations such as the k-ε and Mellor-Yamada models to be able to 

account for Langmuir turbulence. 

iv. The LES of full-depth LC in Chapter 6 was performed with a crosswind 

oscillating tidal current. In the future, tests should be done with an oscillating tidal 

current in the downwind direction as well. In principle, the tidal forcing should be 

extended to general directions following, for example, the work of Sakamoto and 

Akitomo (2008) who included the effect of tides via a tidal velocity advection 

term in the Navier-Stokes equations. Note that the work of Sakamoto and 

Akitomo (2008) has been done without a wind stress (i.e. with zero surface shear 

stress). The turbulence structure of a tidal current together with a surface stress 

over a no-slip bottom has gone largely uninvestigated, and thus this should be 

done first prior to the addition of Craik-Leibovich forcing generating Langmuir 

turbulence. The only research on the effect of a tidal current together with surface 

stress (without Craik-Leibovich (Langmuir) forcing) with a no-slip bottom has 

been explored by Kramer (2010); however, in their case the tidal current and the 

wind stress were aligned. Analysis of surface and bottom log-layer dynamics in 

flows with a surface wind stress and general tidal current should consider the net 

current (between downwind and crosswind components), and not only the 

downwind current which was the case in Chapter 7, Figure 7.12. For example, the 
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net current is expected to also be characterized by a bottom log law and its 

behavior under the influence of the varying phases of full-depth LC due to an 

oscillating crosswind current should be investigated.       
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I will be really glad if you could let me know as early as possible, and i will appreciate your 

help.  

Kind Regards 
--  
Nityanand Sinha 
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A.4 Permission to Use Figure 2.2 and 7.2 
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