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ABSTRACT

Airline delays lead to a tremendous loss of time and resourceantillions of
dollars every year in the United States (U.S.). At certenred, individual airports
become bottlenecks within the National Airspace System (NAS).explore solutions
for reducing the delay, it is essential to understand factusing flight delay and its
impact on airports in the NAS. Major causal factors of flighaylet airports include
over-scheduling, en-route convective weather, reduced ceiling arullityisaround
airports, and upstream delay propagation. Delay at one airport gas®ed on to other
airports in the NAS, in another word, operational improvement at one taipbhave
network effect and benefit to other airports as well. Moreoviayds different airports
in a region might agglomerate to cause delay at differeranegn the NAS. Hence, to
optimally allocate NAS resources, e.g. capital investmentifpor capacity expansion,
the impact of single airport delay to the NAS and vice versd tebe investigated and

guantified.

For air transportation planning and policy purposes, this study cornesntma
providing answers from a macroscopic point of view without being distiday volatile
operational details. In the first part, we estimate the ictiera between flight delay at
one single airport and delay at the rest of the NAS (RNAS) usasg study for
LaGuardia (LGA) and Chicago O’Hare (ORD) airports. In the@sdgart, this research

applies multivariate simultaneous regression models to quantggraidelay spillover

viii



effects across 34 of the 35 Operational Evolution Plan (OEP) arpod the RNAS.
Observing the interactions between these two models, they gressed with an
econometric technique; three stage least square (3SLS). Thusgtéssion results help
us to determine the delay interactions between different &argod the RNAS and
compare these airports based on delay propagation characteristicserAsighificant
contribution of this research is that, the estimated coefficieats be used for

determining the marginal effects of all the delay causal factors peesarthe model.

Also, regional airport system development has been a hot topiceafrchsin the
air transportation community in recent years. Many metropoliégioms are served with
more than one airport making their operations synchronized and inted#gpeand are
known as regional airport system. This paper studies ninedlfifferospective regions
with multi-airport systems in the U.S. and identifies various teeyors affecting the
delay in these regions. Econometrics models and three stagestpamte (3SLS)
estimation method are used to explore interdependency of delay atullieairport
system and the RNAS. Along with it, different factors affegtdelay at the system and
the RNAS is being identified from the research. The outcomes thi@mmresearch will
help aviation planners understand the spillover effects of delays rnaiti-airport

systems and provide decision support for future NAS improvement.



CHAPTER |

INTRODUCTION

1.1 Background

Air transportation industry is considered to be one of the most important
components of our economy. A report by the U.S. Department of Traatsmporand
the FAA indicated that aviation accounts for over $1.3 trillion in esvo@ctivity,
roughly 5.2 percent of U.S. Gross Domestic Product (GDP) in 2009 [k¢ rdport
clearly states that US economy success greatly dependshgeedanomic success of
our aviation system. Considering all these circumstances and écmsomic
ramifications it is imperative for us to produce an efficiantransportation system for
generations. This forms the base of our inspiration to understarairttransportation
system, find out the caveats like delay and capacity constraidtthan finally suggest
possible solutions to improve the system overall.

Airport congestion and delay have been the focus of intense reseanf) tthe
last few decades. The U.S. air transportation demand is constantlasing
throughout the years. Figure 1 shows the trend of domestic aifisgepgers and
domestic flights departed from 1996 to 2011. It is seen that in rgeans growth of

passenger demand surpasses that of increase in number of flights.
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Figure 1 US Domestic Airline Passenger and Flight Trend from 1996 to 2011

Many major airports in the U.S. have significant delay problems tduthis
increased traffic demand and capacity imbalance. According toBtireau of
Transportation Statistics (BTS) in the U.S. Department of Trategpoor, less than 80
percent of arriving flights were on time for the period fromuday 2011to December
2011 [2]. The causes of flight delays include air carrier cadséays, late arrival of
aircrafts, National Airspace System (NAS) delays, secdetays, extreme weather, and
delays due to cancelled or diverted flights. Among these cabsedelay due to late
arrival of aircrafts accounts for more than 25 percent of total fliglhtydelAs a result of
the network structure of the NAS, delay at one airport is bound eotafelay at other
airports.

Then we have a perennial question of who pays for all these fliglatys?
Ultimately it affects all the components of air transportatsystem that includes

airlines, passengers, airports, etc. A recent study byeBall [3], estimated that in

2



2007, the total flight delay led to a loss of $32.9 billion to the U.S. economy. The airline
passengers were the most affected group with a loss of $16.7 billicio dhe loss of
passenger time, flight cancellations, and additional expenses ofafmbdo on. The
second most affected groups were airlines raking up a loss obi$B3. In a recessive
economic period such an enormous loss is highly unacceptable andedeto take
certain measures to curtail the delay.

The Next Generation Air Transportation System (NextGen) plans fhighly-
efficient NAS by 2018, when the total flight delay will be rediidey 35 percent
producing a benefit of $23 billion to aviation industry and saving of about lighbi
gallons of aviation fuel [4]. The NextGen also estimatesttietotal flight operations
will increase by 19 percent at the 35 major U.S. airports leetv2®09 and 2018 [4].
Considering such enormous growth of air traffic on already-consttaiesources, an
appropriate action plan is needed to make this growth smooth and manageaée
airports. The addition or extension of runways at airports andd¢helopment of
innovative technologies and procedures are some of the methods tdhatonée
explored and implemented to achieve the NextGen's goal. Newssheduch an
extensive change to the current NAS will require huge capigaking from the
government and ultimately by the tax payers. According to onkeofite-year plans
that regulates the NAS modernization projects, popularly known d&etheral Aviation
Administration (FAA) Capital Investment Plan (CIP), the FA%ends to invest about
$20 billion during the years 2011 to 2015 for projects that modernize tk&ngxi
system, increase airspace capacity, and introduce new teclasoltmgiachieve the

planned NextGen capabilities [5]. Nevertheless, the impact that an saneasources



and therefore efficiency in a single airport will have on thiieficy of other airports
remains undetermined. This delay propagation has become one ofjtlhgoroblems
of the air transportation industry. With increasing cost of omeratand the current
economic crisis there is an urgent requirement of better techmiqaetermine the
factors causing delay and means to mitigate it. From araasportation planning and
policy point of view, sufficient tools are needed to test the systale effect of such
investment activities and help further strategic planning. Téeareh proposed in this

paper will help this process by quantifying the interactions among airpohis . 8.

This research shows a collective comparison among airports andsegross
the U.S. and the delay causal variables at each airport adcttgrwhich interactions
among airports are likely to create the highest or most redelays. A case study in this
research also helps to determine the benefits of capacity expansdifferent airports

and how it will affect the system overall.

1.2 Research Contribution

This research proposes the path of aggregate analysis condudtesl doythors
explained in detail in further chapters and intends not only to igatstihe impact of
single airport delay on other airports in the NAS (denoted as Ri¢A&after, i.e. the rest
of the NAS excluding the reference airport(s) or multi-airgggtem) but also to explore
how the delay spillover is widely dispersed across the RNAS. aCdastors of the
average daily arrival delays are explored, and multivariatetiegaaare developed for all
airports under consideration along with the RNAS. The average dauglatelay is the

dependent variable in the equation for each airport and the RNAS, sihildétaneously



being considered as an independent variable in the equation of othetsaapdrthe
RNAS. The estimated coefficients can be used to compute nlaeffeat of delay
increase of that airport to the other airports or the RNAS. Vhis of model is widely

used in economics and business management research studies.

Our model tries to establish the correlation between various delay catised &ic
the airports and their effects on the entire system. Most pregiodges estimate the
delay propagated through an individual flight from an airport to the rayste our
research we have tried to estimate and compare flighyy gefgpagation from each
individual airport to another in the US and vice versa. We have dtddferent factors
causing delay and the extent of delay propagation amongst 34 Opaldivolution
Partnership (OEP) airports except Honolulu International AirpoiL{Hand RNAS
containing the remaining of 74 ASPM airports together. This relsaldustrated the
effectiveness of applying multivariate simultaneous equation madedtudy delay
propagation from a single airport to other airports and to the fréisé system, and vice
versa. The model estimates the effect of each of thesesfasiolg the three-staged least
square (3SLS) method. This method is generally used to dealtheitbidirectional
relationship that exists between dependent and independent variablegitable for the
equations with correlated error terms. The estimated reddtp quantify the

interdependency between flight delays at different airports and the NAS.

Going a step further, a collective comparison among airports fereliff regions
in the U.S. is explored. The research includes identifying they dalasal variables at
each such region and the interactions among regions that ayettikeleate the highest

or most regular delays for the RNAS. The regional airpatesy is defined as a system

5



with set of airports that serve airline traffic of a metrajpoliarea [6]. Previously all the
individual airports served only their catchment areas. Howevdr thé increase in
population, city’s geographical growth, better ground transportation modes and
sometimes political factors, there has been steady increasanber of airports within a
region or a metropolitan area. Most of the major cities irUtBere served by more than
one airport. Many of these airports have coordinated operationsms t&r sharing
regional airspace, some act as a reliever airport in caseeoshooting of capacity at the
major airport(s) and also help reduce environmental effectsitils® and air pollution in

one specific area. Hence, it was worthy of researchtd@iaxplore the impact of these

groups of airports in a region on other airports.

There is also a case of major airports situated very ttosach other. Three of
the world’s busiest airports, namely LaGuardia (LGA), John F Kaéynr{@FK) and
Newark (EWR) are situated not very far from each other and d@welinated operations
both in air and ground [7]. The New York airspace being one the mogésted in the
world with both domestic and international air traffic, the FA&sHelt the need to
increase the capacity of airports in the New York region. Homeeeknow that runway
expansion requires enormous capital investment, project delays, pubtiy @urtd
environmental concerns. Hence it is important to identify the pateati alternative
airports to meet regional capacity needs and understand the patéairglort operation
that can make more efficient use of existing resources atet st of limited funds for
airport development. However in some cases the airports mightniygetiog against
each other for air service demand as in the case of Boston LB@8),(Manchester

(MHT) and Providence (PCD) airports in the New England regioheikS. [8]. The



BOS airport is operated by legacy airlines while the MHi@ ¢he PVD airports have
large number of operations offered by low cost carriers (LC®poth the airport
operations completely differ from each other in terms of th@inagement. Hence, it
would be interesting to learn the impact of operations at thgsertsiin comparison to

other airports in the U.S.

In today’s world, delay propagation and airport capacity constraaws become
some of the major problems of the air transportation industryiodsaresearchers have
tried to understand the microscopic perspective of delay propagation, ilay, de
propagation from an individual flight to another flight or the sys{Bmatty et al. [9],
Schaefer and Millner [10], Wang et al. [11] Ahmad Beygi et H2])l However, their
studies capture the details of only a few components of the NAS, asudpecific
airports, sectors, or individual flights, but fail to reflect ystem overall. Our research
takes the first step in considering all the airports in the tdgether and estimates their
effects on the NAS. It tries to determine the relationship éetwarious delay causal
factors at the airports and their effects on the entire mystik also initiates a step to
determine the advantages and disadvantages of a regional airpem systrein two or
more airports operate in a synchronized fashion. Total eleven regigpait systems in
the US were studied in this research depending upon regional sfadire and proximity
[13]. However due to the difficulty in terms of data availapitite final analysis was
limited to nine regions with the exclusion of the Orlando and the Taeyggan. The
research involved steps to determine the percentage share dffear demand in all

airports in these regions and determine their delay at the rédgwmeh The aggregate



delay was then used to determine the combined impact on airporteirregions. The

results obtained were very interesting and will be explained in detail furthe

The remainder of this proposal is organized as follows. Chapaminarizes the
existing literature on delay propagation, factors affectingydand the regional airport
systems. Our approach related to this research is exglaindetail in Chapter IIl.
Chapter IV presents our earlier work related to the casg stutivo airports Chicago
O’Hare (ORD) and LaGuardia (LGA), methodology and the outcomes. pt€&h&
specifies multivariate simultaneous equations and delay propagatida OEP airports.
Chapter VI presents the extension of the methodology to the nplbraisystem.

Chapter VII concludes the study and provides recommendations for furthechesear



CHAPTER Il

LITERATURE REVIEW

The NAS can be defined as a complex agglomeration of diffexeiation
components like airports, airspace, aircrafts, different fed|itetc working together for
the safe and efficient airline operations. Since there are sy nmnponents involved
and most of them are inter-connected, the delay at one componeeagjstpropagated
to others. This research tries to understand different facttestinfj delay and their
immediate impacts. Different studies have already been coudoctdelay in the NAS
and its propagation. The following section gives an insight of all thiest conducted

before.

2.1 Microscopic Methods

Beatty et al. [9] developed the concept of a delay multiplieufalerstanding the
effect of initial flight delay on an airline’s operating scheddlhey assumed that various
airline resources such as crew members, aircraft, passeagd gate space affect flight
delay. The delay multiplier was used to determine all poteshtiahstream flight delays
connected to that initial flight. Their research concludes thaefence of a delay
multiplier is due to the branching nature of crew and aircraftieseces. The research
estimated the delay propagation from one airport to the other basleel connectivity of

airline’s operating resources and its schedule.

9



Delay propagation has also been studied by Schaefer and MilBleusing the
detailed policy assessment tool. They modeled the propagation af ttebughout
airports and airspace sectors given inputs such as air traffimnde and airport
capacities. They synthesized aircraft assignment given theaHiic data from Official
Airline Guide (OAG) and then used the information to simulate del@pagation
according to departure and arrival queues between origin and destaigtions. Three
airports were analyzed using several combinations of Visualavtgtgical Conditions
(VMC) and Instrument Meteorological Conditions (IMC) when capesiteduced due to
inclement weather. The results show that the delay augmehtpreionged duration of
IMC at the airports. They also concluded that although the propagéechfer the first

leg was significant, it diminished along each subsequent leg.

Further research by Wang et al. [11] developed an analytical nmdelparate
controllable factors that influence delays and their propagation ilNA& from other
factors that are random variables in a given scenario. The cabteolfactors are
scheduled and minimum airport turnaround time, slack for airport turnarooneg t
scheduled and minimum flight time between airports, and fixed fligh¢ allowance,
while the variable factors considered in the research warablea airport turnaround
time and variable airport flight time. The model analyzed theraction between fixed
and variable delay components at each airport under both VMC anddhtitions and
emphasized the importance of schedule parameters on delay propdgatie NAS.

Their study shows that airports with less slack time between flights haddalay.

A recent research by AhmadBeygi et al [12] explores alaimbservation in

terms of slack time between two flights. Their study inds#tat the delay of one flight

10



can propagate to disrupt one or many subsequent downstream flighswtiatthe

aircraft and crew from the delayed flight. In such case, theepce of well-planned
slack between flights is critical for absorbing the disruptionll ok these studies
discussed above attempt to show how common resources and weightedsainkdules
can be major causes of delay propagation and are microscopic pegiss. These
research studies are clear indicators that the issue of dedgpgation at airports is

prevalent.

2.2 Macroscopic Methods
The studies discussed above attempt to show how common resources and
weighted airline schedules can be major causes of delay prigqmagBihese research

studies are clear indicators that the issue of delay propagation at asgeegalent.

A macroscopic research by Diana [14] proposed a methodology to codgbaye
propagation from airports based on the Discrete Fourier TransfoRh)(rhe airports
sampled in his study vary in terms of location and traffic thnpuy The research
assumed that the delay propagation is similar as wave propagatere wie delays
represent signals and the NAS acts as the medium. Airlimtespate delays and build
precautionary buffer in their schedule to absorb the propagationseffiedtis study, he
applied the delay concept in airline on-time performance, i.e. aniyakflights with
more than fifteen minutes delay past schedule are considerdelayed flights. Diana
tried to investigate whether market concentrated airports \iith higher traffic
throughput) have more delay propagation effects than less concerdmgieds. The
outcomes show that, when delay propagation is considered as a thignajh the
system, it is not dependent on the degree of market concentration.
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A recent study done by Laskey et al. [15] takes into considar#itie dynamic
aspects of flight delay, such as weather effects, wind spegt{ @ancellations, and
others, to estimate delay propagation in the NAS. They used Bayésiaorks (BN) to
guantitatively analyze major factors affecting each delaypoom@nt and the relationship
among the delay components. The model studied weather effectsgana@ddhcellations
as two variables that might have an effect on flight delayss Tesearch tried to
demonstrate the system level impact due to delay at individymdrsrunder different
weather conditions. In their study, flight arrival delay wasodgmsed into Gate-In
Delay, Turn Around Delay, Gate-Out Delay, Taxi-Out DelaypAine Delay, and Taxi-
In Delay, each of which was considered as a dependent variableatophtase of the
flight, with delays from previous phases as independent variablegriflogal objective
of this research was to estimate the impact of changestinaladecisions and policies
with respect to the ground delay program (GDP), reschedulingcaarwtlled flights on
delay in the system. Nevertheless, only three months of datausedeto identify the
critical phase of the flights from Chicago O’ Hare Inteioradl Airport (ORD) and

Hatrsfield-Jackson Atlanta International Airport (ATL).

A similar study by Liu and Ma [16] used Bayesian Network talgtflight delay
and its propagation for airports in China. They established a dalationship between
arrival and departure delay at the airport studied. Primtrdydelay was divided into
normal, light, medium and heavy categories depending upon differerg, thangging
from less than 20 minutes for normal to more than 60 minutes for Heawgs seen that
the delay propagation is highest during medium and heavy delayd périzvas also

observed that flight cancellation is one technique that could beedtitz reduce flight
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delays. In both the Bayesian network studies discussed above,sders that few

continuous variables needed to be discretized and this could produce erroneous results.

Hansen and Zhang [17] devised a macroscopic technique to study the delay
propagation in the NAS. They studied the operational performandeGAt under
different demand management regimes using multivariate sinedtis-equation
regression model. The outcome of that research shows that, acdorthis¢prical data
from 2000 to 2004, the increase in one minute average-daily-arrivay de¢ldhe
LaGuardia when compared to airline schedule causes an incredme aaerage-daily-
arrival delay at non-LGA airports by 1.7 minute. The researdénitified various factors
causing arrival delay at LGA and non-LGA airports and estimiedmpact of each of

these factors on the total delay.

Morisset and Odoni [18] compared the capacity, schedule and rgjfiabitnajor
airports in Europe and the US. After studying 34 busiest asrioboth US and Europe
it was found that the European airports follow a conservative agiprafaoperating at
IFR rules for all weather conditions. On the contrary all W& airports operate with
higher capacities using VFR rules for most of time. Due te the delays at the US
airports are very volatile and vary a lot due to weather,ehigemand and constrained
scheduling making it less reliable than the airports in the Eur@pe research tries to
identify this effect of adverse weather and regional airpatesys on the delay in the

system.
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2.3 Demand Management Regimes

In 1968, due to the increase in the number of air traffic operatlmmsgjrine slot
management strategy called, High Density Rule (HDR) wabeal at five major airports
in the U.S. namely ORD, LGA, John F Kennedy International (JFK), IRReagan
Washington National (DCA) and Newark Liberty International (EWR&jJports
(Berardino [19]). Eventually it was exempted at EWR airport ay warly stages. In
2000's, this slot control were gradually removed from ORD, LGA drd dirports,
however it still remained at the DCA airport. The demand managestmtegies at
LGA, JFK and ORD have always been parallel, as shown in FR{t8]. During this

period, numerous demand management strategies were employed at pogte air

The HDR period at LGA was characterized by limiting the hogtbts to 68
between 6:00 am and 12:00 midnight. The slots were initially resgulay a scheduling
committee composed of representatives from different airlineter Lia 1986, the
scheduling committee was replaced by “use-it-or-lose-it” ang-4ail” rules (Donohue
[20]). However, with no airline willing to sell its slots, PAgranted 42 slot exemptions
for various air services to LGA, especially for ones that wexe entrant airlines or
essential air services. As a result, by 1997, 30 new entrampéras were approved for
LGA [20]. In April 2000, a demand management strategy called2Ivas introduced
to eliminate slot control. During AIR-21, delay increased dravalyi due to an
increasing number of requests for slot exemptions. To oversogcte delay, the FAA
guashed the AIR-21 slot exemptions it had already granted and ibedesir some of
these exemptions by lottery. It also capped the number of mpergter hour for

commercial flights to 75 from the initial 100 under AIR-21. Theoest attacks on
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September 11, 2001, affected airport operations in many ways. Beginr20§2, air
traffic increased each following year, leading to a period of-sgkeduling, and HDR

completely expired by 2007 [20].

The JFK airport also had similar demand management regimediogeaxathe
airport. The HDR strategy that was applied in 1968 expired onlyamuary 2007.
However, the operations were also affected by 9/11 incident whéreitotal airport
operations reduced a lot. In year 2004, there was an increase in aapadity and

subsequently increase in operations by Delta and Jet Blue airlines [19].

Tan 2004 5% Tun 2004 2.5%
Reduction in Reductionin
UA and AA UA and AA
Partial
HDR >
ORD
April Aug 20006
2000 Limuted
Operations
High
Density >
Rule LGA AIR-21 Jan 2007
HDR
Tan 2001 Tan 2002 Bepired
Slottery Overs
Scheduling >
TFK 4 '
Sept 2001 Jan 2004
9/ 1_1 Capacity Added
Incident

Figure 2 Demand Management Regimes at ORD, LGA and JFK Airports
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ORD, similarly, has its own demand management regimes iaffeatr traffic
operations in and around the airport. As mentioned earlier, the HaRRgt was also
applied at ORD in 1968, one that resulted in the slot control phenomenorajby m
airlines. In the 1990s, 53 new slot exemptions were created at[@RDGradually, the
HDR strategy was reduced at ORD, and its complete elimm#&dok place by 2002. The
operations at ORD reduced greatly after 9/11; however, since 2@2, ths been a
general increase in air traffic, creating a period of -@atreduling, with more than 100
daily operations at ORD. This period of increased operations madg alstaof the
major problems at ORD, resulting in the FAA negotiating a 58tiggon in American
Airlines (AA) and United Airlines (UA) flights in January 2004. Hewer, these vacated
slots were quickly taken up by Northwest Airlines and Independ&mceesulting in a
further reduction of AA and UA flights in June 2004 by 2.5% to reducayddPO]. In
August 2004, from a meeting between Federal officials and individukhes, the
scheduled arrivals of AA and UA flights were further reduce® Bf during peak hours.
Other airlines also agreed to some flight re-timings anditigithe number of scheduled
arrivals. Finally, in August 2006, FAA stated a rule limiting tinght operations until the

completion of first phase of ORD expansion in 2008 [20].

Various researchers have tried to understand the regional a@ystet in the US
and all over the world. There also have been researches conductddyoprdeagation
from individual airports and causal factors of delay. However, thieskes capture the
details of only a few components of the NAS, such as specifiorés; sectors, or

individual flights, but fail to reflect the system overall. Ourviwes research has tried to
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capture the delay propagation phenomena from the system pointvef vie the

following section we will look at all these studies related to the present work.

2.4 Multi-Airport System

The FAA Fact 2 report has identified 14 airports in 10 major metitapalegions
in the US to be capacity constrained by 2015 and even more in 2DPAEL[. While
FAA expects individual airports to improve their capacity, it agsgects them to
investigate the possibility of the Regional Airport Systemn®l4RASP) involving
development of regional transportation system. In order to take thectdecision an
airport planner needs to look at different alternatives like dapiists, aviation safety,
airspace utilization, requirements, environmental impacts, delayoted operational
costs, consistency with local area comprehensive and transportatits; ahd land-use
availability and compatibility [7]. Table 1, mentions the nameshef dirports to be
capacity constrained after planned improvements; however, the numbepested to
increase to 27 by 2025, if no improvements occur during this period [21] . &dimese

metropolitan regions have been studied in this research and will be explainedlin detai

Considering all these difficulties experienced by the existygfem and even
accomplishing planned improvements, developing a RASP for a metropadsm r
might reduce regional congestion, develop airport benefits lilsededelays and more
revenue generation and also produce political benefits like regionastmicture
development and positive environmental impacts. A Citigroup study in ZX)5a[so

recommended decentralization of passengers and air cargo séreinecongested urban
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airports to nearby suburban airports for balanced capacity tithzaThe Table 2 shows

names of all the nine regions studied in this paper with the airports.

Table 1 Airports Needing Capacity Enhancement by 2015 and 2025 according to

the FAA Fact 2 report

Year Airports Metropolitan Region
2015 and 2025, Newark Liberty International (EWR) | New York
even aften LaGuardia (LGA) New York
planned Long Beach (LGB) Los Angeles
improvements | Oakland International (OAK) San Francisco Bay Area
Philadelphia International (PHL) Philadelphia
John Wayne (SNA) Los Angeles
2025, even after Hartsfield-Jackson AtlantpAtlanta
planned International (ATL) Miami-South Florida
improvements | Fort Lauderdale-Hollywood New York
International (FLL) Las Vegas
John F Kennedy International (JFK) | Chicago
McCarran International (LAS) Phoenix
Chicago Midway International (MDW) San Diego
Phoenix Sky Harbor InternationaBan Francisco Bay Area
(PHX)
San Diego International (SAN)
San Francisco International (SFO)

All the airports in these regions, except New York and Houston adé- m
jurisdictional with different organizations handling their operationd ananagement
[22]. Some of them are owned by different cities, different ceanmunicipalities, etc.
Hence a coordinated operation between different airports in aispegion becomes a

challenging and an intriguing task.

Neufville [6, 23-28] is a pioneer in conducting an extensive researoleaassity
and planning of multi-airport systems in the US and around the worlds Iresgarch, a
multi-airport system is defined as set of airports that séneeairline traffic of a
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metropolitan area [6]. Early research found that a multi-airpstem will only work

when the level of originating traffic is high for the metropalitagion. In some cases it

is also affected by the limitations experienced by the pyira&port or some political

circumstances. There are several other factors that afidttairport systems such as

market forces, geographic location, airline traffic activity, governnmtaiferences,

Table 2 Metropolitan Regions and Airports Studied

Metropolitan Regions

Airports

Bay Area

San Francisco International (SFO)
Oakland International (OAK)
San Jose International (SJC)

Chicago Region

Chicago O’Hare International (ORD)
Chicago Midway (MDW)

Dallas Region

Dallas-Fort Worth International (DFW)
Dallas Love Field (DAL)

Houston Region

George Bush Intercontinental (IAH)
Houston Hobby (HOU)

Los Angeles Region

Los Angeles International (LAX)
Long Beach (LGB)
Ontario International (ONT)
John Wayne (SNA)
Bob Hope Burbank (BUR)

New England Region

Boston Logan International (BOS)
Manchester Boston Regional (MHT)
T.F. Green Providence (PVD)

New York Region

John F. Kennedy International (JFK)
Newark Liberty International (EWR)
LaGuardia (LGA)

South Florida Region

Miami International (MIA)
Fort Lauderdale-Hollywood Internation
(FLL)

al

Washington-Baltimore Region

Washington Reagan National (DCA)
Washington Dulles International (IAD)
Baltimore/Washington International (BWI)
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regional economic development, etc. The research also indicatéhthatt secondary
airports is generally volatile since their concentration is &s compared to primary

airport or them being depended on specific airlines [23].

A futuristic study by Neufville [25] explored the regional airp@ystem
development process in the 21st century. The research was babeeeokely elements
namely; expected levels of traffic, development of airportesys and airport system
management. This century has seen lot of changes in airlinatioper like airline
mergers, global partnerships and introduction of new routes. Furtherthereo city
expansion airports those were only concerned with their regionssteated competing
for market shares of other airports. Thus, airport traffic whi@vipusly depended on
region, population and economic activity is now also depended on airthaigort
management [25]. This was studied in depth by Neufville [28], imdbent research on
no-frill airlines and growth of secondary airports in the metrégoliregions.  As
contrary to previous airport operations, no-frill airlines like Southwe&s Train, Jet
Blue, Spirit and other low cost airlines (LCC) have developedalgkairport network
system [28]. The possible consequences of such development is a ghaf$seinger
traffic from congested airports to low-cost competition airpagtewth in sub-urban

regions having low cost airports, decrease in growth of major airports, etc.

More recently, Bonnefoy and Hansman [13, 29] studied in detail teegence
of secondary airports and the regional airport system in theTh® research states that
the emergence of secondary airports in the U.S. were duetdosfike congestion at the
core airport (LGA, SFO, ORD, IAH, etc), entry of new owl cost carriers in the

secondary airport (MDW, FLL, PVD, MHT, HOU, etc) and changeynadnics at the
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airport level. An important observation made in the study wasrtbat of the secondary
airports developed were around airports having large proportion of amgjrieaffic as

compared to transfer passengers. These airports relieved angjorts of increasing
traffic and reduced congestion in the system. However it was saen that closely
located airports in the multi-airport system like New York oegifaced severe
operational constraints at regional airspace level. The odséaghlighted the need for
reducing air traffic interactions to increase the capaditthe system. Bonnefoy et al
[30] also studied the evolution of multi-airport system from a waddvperspective. It
was seen that in the US and Europe development of multi-airpodneegs due to
emergence of secondary airports and growth of low-cost carviénge in Asia it is

mainly due to insufficiency of available airports and greaterd nafe high capacity
airports. The study suggests the need for protecting existingutiided airports in the
US and Europe with an eye for multi-airport regional developmethigifiuture. Whereas

in Asia, there is need to reserve land and other resources to develop this system.

Brueckner et al [31] in their research tried to define the etdde the airline
industry between different metropolitan regions. Since all ni@ropolitan regions
contain more than one airport that compete for passengers, themdsiearto identify if
these multiple airports need to be viewed as same or separatatdes In terms of
airline market the competition will be higher when it is vidvas city-pairs as compared
to airport-pairs. The grouping of airports was done using regression restuitsepairate
analysis for each region with average nonstop fare as the depemdmble. All the
regions were tested for effects of arrival and departure camgpatrports, year and

guarter, routes and carrier, etc. It was found that all regiorepeBoston and Detroit
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can be grouped as city airports. For Boston, it is due to effecC@f at secondary

airports causing fare reduction at the primary airport.

Hess [32] used a mixed multinomial logit (MMNL) model to sttioy passenger
airport choice in a multi-airport region of San Francisco Bakhe research tested
different attributes fare, frequency, access-journey codtt fiigne, size of the aircraft etc
that affects airport choice in the bay region. It was found tihef flequency and access-
journey cost had significant impact on the airport choice. An impootasdgrvation was
passenger’s willingness to accept higher fares for the reduictithe access time to the
airport. It was also seen that different types of passetigersesidents, business and

leisure have different requirements and react differently while chodsenajriport.

Similarly, an earlier research by Hansen and Du [33] uselibaatad logit model
to determine airport choice in the multi-airport region of the Bancisco Bay area. It
was found that accessibility to the airports is a major faadfecting market shares at the
airports. The airport market share depends largely upon the locattohutiisn of trip
origins as compared to other factors. The research cletigssthat transportation
planning could be used to improve airport accessibility and obtain stemisiairport

market share distribution.

We can see that, apart from the traditional approaches to intheasapacity like
new runways, new commercial service airports, congestion manageste One of the
steps we need to look at is ‘Regional Solutions” to study aielti@ehavior in different

multi-airport regions in the US.
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CHAPTER IlI

RESEARCH METHODOLOGY

This chapter presents the methodology to estimate the delay piiopafyjam
individual airports and the multi-airport systems through the rasiecoRNAS. The NAS
comprises of all the airports in the US and the massive netaradngst them. It is
important to understand the causal factors of delay at various sigmattthe interactions
between them. To achieve these objectives, we apply regressibads to analyze the
causal relationship between factors and delays and to capturectiotessabetween
airports. We also study interactions between different metrapalégions in the U.S.
having more than one airport. Previous studies (Bhargava et al @4kré and Hansen
[35] and Himes and Donnell [36]) used simultaneous equation regressiofs rwosleidy
such interactions is different transportation studies. The reseapghoach and

methodology are explained in the following section.

3.1 Simultaneous Equation Regression Model

The multivariate simultaneous equation regression model is atisatimodel
widely used in economics and business management research stitdies. a set of
multivariate equations, where the dependent variable in one equatich lweuthe
independent variable in other equations. In addition, the error terms @gtiations can

be correlated. This research applies multivariate simultanemression models to
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determine the delay spillover effects from individual airportsth@ regional airport

system across the RNAS.

Bhargava et al [34] in their research used three stage d$egastre (3SLS)
regression to analyze the time and cost overruns in a highevestraction project in
Indiana, US. The authors identify that time and cost overruns ardapendent and their
independent variables are not exogenous. Endogeneity spurs from thkaticorr
between independent variables and the error terms and leads todndsedtonsistent

estimates.

A study conducted by Cervero and Hansen [35], investigated terahtion
between induced travel demand and induced road investment using raddeamdasupply
simultaneous equation analysis of California covering the period 197628 The
authors used 3SLS to control for inter-dependability and cross-equatioriaton of
error terms. The study concludes that there is a strong imbderaand simultaneity
between both of them with causal factors like income, price, demograpid
government policy being significant. Similarly, Himes and Ddnf36] developed a
speed prediction model for multi-lane highway in North Carolina and Peang, US
using system of equations. Due to the presence of endogenoablegriHimes and

Donnell used 3SLS to find consistent estimates for lane speeds.

Due to the inter-dependability between delays at different airpogisniseand the
RNAS, we consider using 3SLS regression. The use of 3SLS |mas studying the

physical interactions between airports in the NAS.
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3.2 Definitions

We subdivided the U.S. airports into different groups depending upon thefevel

air traffic operations as explained below:

3.2.1 Operational Evolution Partnership (OEP) 35

The 35 OEP airports are commercial U.S. airports with signifiaativity [37].
These airports serve major metropolitan areas and also senfeuls for airline
operations. The names of all OEP airports are reported in Appéndionolulu
International Airport (HNL) is excluded from the list becauskas somehow different

characteristics due its distant location from the U.S. Continent.

3.2.2 National Airspace System (NAS)

The NAS consists of a complex collection of facilities, systeeqguipment,
procedures, and airports operated by thousands of people to provide adsafécaent
flying environment [38]. It includes more than 750 air traffic con¢ATC) facilities,
more than 18,000 airportapproximately 4,500 air navigation facilities and about 48,000
FAA employees [38].In this study, 74Aviation System Performance Metrics System
(ASPM) airports are selected to represent the NAS, excepk, Hbacramento
International Airport (SMF) and Palm Springs International Aird®®8P) because of

their geographical location and data unavailability.
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3.3 Data Source

We obtained the data for our research from government-maintainadade,
such as those maintained by the Federal Aviation Administratid)(Fthe U.S.
Department of Transportation and the U.S. Department of Commercefolldweing

sections describe these data sources.

3.3.1 Aviation System Performance Metrics System (ASPM)

We use quarter-hourly interval data from the ASPM database, inaithtay
FAA’s Aviation Policy and Plans Office for the period 2000 to 2010. PKSis an
integrated database of air traffic operations, airline schedoleerations and delays,
weather information, runway information and related statistics. deta are available
starting January 2000 for 55 airports and for additional 20 airportsgt&ttober 2004
and for 2 airports from January 2007. ASPM records are created deimgrom a
variety of sources with varying update cycles. Enhanced Trifinagement System
(ETMS) and Aeronautical Radio, Incorporated (ARINC) supply Htext operational
data, and Innovata provides flight schedule data, while US Department of
Transportation’s Aviation’s Airline Service Quality Survey (ABQprovides finalized
schedule data, Out-Off-On-In (OOOI) data, and delay cause=padead by the carriers
after the close of each month. ASPM is also further enhanchdnelusion of weather
data and airport specific information [39]. The database is useddorting and analysis

of operating performance of the NAS.
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3.3.2 National Oceanic and Atmospheric Administration (NOAA)

We obtained weather pattern data from the Surface Summary otifdalase
maintained by the NOAA [40]. NOAA is maintained by the U.Sp#&ément of
Commerce and provides daily weather forecasts, severe stomnggrand climate
monitoring to scientific agencies, fisheries management, aloaststoration and
supporting marine commerce. It provides reliable information raggrdceans and
atmospheric conditions and was used in this research to asselserweatitions in the
NAS. NOAA has its stations in every state in the U.S. and s@pipliermation related

to the environmental patterns.

3.3.3 U.S. Bureau of Transportation Statistics (BTS)

We used the BTS database to obtain passenger load factorligatasdhedule,
historical trends and so on [41]. BTS, as a part of the U.S. Degatrof Transportation,
compiles, analyzes, and makes information accessible on the natarsportation
systems. It improves the quality and effectiveness of DOatststal programs through
research, development of guidelines, and promotion of improvements iacdataition
and use. BTS is a part of the Research and Innovative Technology Aulation
(RITA). The Air Carrier Statistics database, also knowthasl-100 data bank, contains
domestic and international airline market and segment datatheAtiertificated U.S. air
carriers report monthly air carrier traffic information usifgrm T-100. The data are
collected by RITA Office of Airline Information, Bureau of Trgastation Statistics. All

the air carrier data are available online from 1990 to the current year.
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3.4 Dependent and Independent Variables

The following section gives the description of all dependent and independent

variables used in the research.

3.4.1 Dependent Variable: Daily Average Arrival Delay

We define daily average arrival delay as the dependent vanmablé imodel. In
our previous study, the arrival delay of a flight was defined féesréeince between actual
arrival time and the Official Airline Guide (OAG) scheduladival time. [42] This
definition could not reflect the evolution of schedule padding introduced by the ainines i
different time periods. It was observed that with limited airpapacity and increased
air traffic demand, airlines intended to increase scheduled fhtgiwk timings (i.e.,
imbedding more padding in their flight schedules). It is a way for airlmesprove their
on-time performance, which is defined as the percentage ofsflaghte no later than 15
minutes after their scheduled arrival time. [43] [44]. Thus, tiedule-based analysis
does not give us accurate enough results. Figure 3 shows usetite-gate timings for
flights between Atlanta (ATL) and Orlando (MCO) airports obtairfienn the BTS
database for years 1995 to 2011. It is clearly seen that avgasgrto-gate flight timings
are continuously increasing throughout the years. A U.S. governnpemt o economic
analysis of flight delay clearly mentions that schedule paddifiggiis increased before

and after 9/11 incident to compensate for flight delays [45].
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Average Gate-to-Gate Time

Figure 3 Increase in Schedule Time for Flights between ATL and MCO Asrport

Therefore, in this research we use flight-plan-based amefaly, which is equal
to the difference between actual arrival time of a flight anedicted arrival time
according to the flight plan. Then the daily average of eagorairs calculated by
dividing the total delay with the number of total arrivals. Note ithane flight arrived

earlier than the flight-plan arrival time, the delay is considered as zero.

3.4.2 Independent Variables

In this research we investigated the effects of differenibfadike queuing delay,
adverse weather, airline scheduling, demand management regimes, atport arrival
delay. The data downloaded from the ASPM database is used to coanpete of
independent variables used in the model. Appendix Il reports thelidataary used to

calculate these variables and describes the input variables used in this.analys
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3.4.2.1 Deterministic Queuing Delay

Deterministic queuing delay indicates the operational demand apgdlys
relationship at each airport. The arrival count is the actuabaumf arrivals at the
airports in 15 minutes, which is restricted by the number of fi¢at need to land, and
by Airport supplied Arrival Rate (AAR) during the same timei@e In other words, if
the number of flights waiting to land is larger than the AAR,rthen the arrival count is
the AAR rate; otherwise, the arrival count is the number dftighat need to land. The
cumulative flight demand in one quarter-hourly interval is the neimgischeduled

arrival demand until the end of the quarter-hourly interval.

Figure 4 shows the Newell Curve of cumulative number of arrivatgrevthe
actual arrival counts are always less than arrival demand amival counts are either
restricted by arrival demand or the capacity of the airporé ddily average queuing
delay at an airport is calculated by dividing the area betweenurves, which is known
as total queuing delay, by the total number of arrivals at the airport fatahaThe same
definition applies to the RNAS as well, where the daily aveeageal delay is the total
arrival queuing delay at the RNAS airports divided by the totalbeunof arrivals at
those airports. The hypothesis that we would like to test igthease of queuing delay

leading to more observed flight delay.
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Figure 4 Queuing Diagram of Arrivals at ORD

3.4.2.2 Adverse Weather Indicator

Adverse weather is one of the most important factors causing. d@la research
introduces adverse weather into the regression model by meams wofdicators. One
indicator is used to capture the convective weather on the rout@e@isure convective
weather, the U.S. is divided into 16 regions of 10 degrees latitud&Obgiegrees
longitude, as shown in Figure 5. For each region, the proportion of wesatti®ons
reporting thunderstorms is computed from the Surface Summary of dabase
maintained by the National Oceanographic and Atmospheric Adnaitistr (NOAA).
Using thunderstorm data, the thunderstorm ratio is calculated aatithef the number
of stations reporting thunderstorms by the total number of stationseffgot of regional
convective weather on airport delay is complicated. Consideriglgtslifrom different

origins to the reference airport, the convective weather in apariregion may hold
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some flights that alleviate the congestion at the referenperta However, if the flights
held are released later in a batch, then the concentrated cumataitreewill deteriorate
the operational condition at the reference airport. For this varialelevait to see what

the data tells us once we control for all other variables.

The weather close to the airport directly affects the detetion of airport runway
configurations and utilization of runways. We propose to use the Insttum
Meteorological Condition (IMC) ration to measure it. It&oulated as the proportion of
the day in which the airport was under IMC conditions. It is known dhaairport
operating under IMC conditions has a lower capacity than thattpgrunder VMC

conditions, which causes more delays.
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3.4.2.3 Passenger Load Factor

The BTS database contains domestic monthly data reported by Ucarrars,
including carrier, origin, destination, aircraft type and serviassclfor transported
passengers, freight and mail, available capacity, scheduledrtutega departures
performed, aircraft hours, and load factor when both origin and destinafiants are
located within the boundaries of the United States and its testom our first study for
estimating the impact of individual airport, as shown in Chaptep#ié¢senger load factor
is considered as an explanatory variable for the daily averdgg. déhis is because
higher passenger load factor, busier the airlines are moegioarwill be caused towards
turnaround time of the flights and causes the delay at the airppast.calculated as the
monthly average ratio of the number of passengers by the numleatefsailable at the

airport under consideration.

3.4.2.4 Aircraft Equipment Type

This variable is tested as an alternative for passengerfastat in our second
study (Chapter V) for estimating the impact of individual airpdrhe aircraft equipment
type is categorized based on International Air Transportatiorockeson (IATA)
Aircraft Size Classification Scheme as observed in TableiBce3nost airport design
standards are related to aircraft size, it is necessaupderstand the effect of aircraft
fleet size on delay at various airports. In this researatrafis are classified into seven
categories based on their seat capacities and categoriesddbfi the IATA [46]. The
mean weighted number of aircrafts for all seven groups for qaatter is then used as a

variable for each individual airport.
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Table 3 International Air Transportation Association (IATA) Airctaite Classification

Scheme
Category Number of Seats Aircraft
0 <50 Embraer 120, Saab 340
1 50 -124 Fokker 100, Boeing 717
2 125-179 Boeing B727 - 200, Airbus A321
3 180 — 249 Boeing 767 — 200, Airbus A300 - 600
4 250 - 349 Airbus A340 — 300, Boeing 777 — 200
5 350 — 499 Boeing 747 — 400
6 > 500 Boeing 747 — 400 high density seating

3.4.2.5 Total Flight Operations (Air Traffic Volume)

The RNAS model also considers the total flight operations as ahe ofriables.
It captures the effects of total air traffic volume on detathie system. We assume that

with the increase in air traffic volume, there is an increase in the airpayt del

New variables were introduced in our third study for multi-airggstems to understand
the impact of different attributes causing delay propagation fr@rentire region to the

RNAS.
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3.4.2.6 LCC Airline Market Share

The term Low Cost Carriers (LCC) originated within the a@lindustry and
refers to airlines with a lower operating cost structure thair competitors. To keep
their operating costs lower, these airlines apply business mib@elare different from
legacy airlines. For instance, they use only one type of #iittraeduce crew and
maintenance costs, and serve secondary airports to avoid congestibiglarianding
fees at primary airport in the same region. LLC also try taatpewith cost-effective
ways of handling passengers. LCC airlines operating at segoaidports are the prime

reason for the development of the multi-airport region phenomena [47].

In this study, we calculate the percentage share of LLCabpes at each airport
in the region and include it as an explanatory variable to umadersts impact on the

delay in the region and in the RNAS.

3.4.2.7 Herfindahl-Hirschman Index (HHI)

The Herfindahl-Hirschman Index (HHI) is a measure of the sikethe
component in relation to a group and an indicator of competition amond1B8&mit is
seen that with the entry of LCCs, there is an increased tévempetition for market
share in each region. The HHI is calculated as the sum ofesqoérairport market
shares for the time period 2000 to 2010—the higher the value, theolepetdive the
region. For instance, the HHI of the Los Angeles region witk &irports is 0.53,
whereas for the New York region with 4 airports, it is 0.33. Tidécates that the New
York region is much more competitive compared to the Los Angelgsrt, where 70
percent of operations in that region occur at LAX airport.
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3.4.2.8 Demand Management Regimes

We use dummy variables to indicate various demand managementsaggate
at LGA, JFK and ORD airports at given time periods, as showrgurd-1. For instance
at the ORD airport, variable AIR21 takes a value of 1 from May 20@ecember 2000
and zero otherwise. This process was carried out continuously from @@UA0@. As
shown in Table 4, there are total of 14 dummy variables indicatffeyett operational
strategies used at the three airports indicated above andigiDsed as the base for

comparison.

Table 4 Summary of Demand Management Regime Applied in the Model

Period Demand Management Regime
January 2000 to April 2004 High Density Rule (HDR)
May 2000 to December 2000 AIR 21

Year 2001 till September 9, 2001 Before 9/11

September 20, 2011 till December 2001 After 9/11

2002 0oVv2002

2003 0OVv2003

January 2004 till May 2004 CAP

May 2004 till December 2004 REDA

2005 REDB

January 20086 till July 2006 REDC

August 2006 till December 2006 LIM

2007 Year2007

2008 Year2008

2009 Year2009

2010 Year2010

3.4.2. 9.Seasonal Dummy Variables

We introduce dichotomous variables to indicate different seasons throughout
year. Three dummy variables introduced for different seasonslpaummer, fall and
winter, with spring as the base. Since the traffic demandsvanié the airport operations

are affected significantly for different seasons at alldingorts. Assuming the seasonal
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weather variation has been controlled for by the weather indicdéstsibed earlier, this

seasonal variable is proposed to capture airlines scheduling trends in diasoris

3.5 Descriptive Statistics

We obtained data for all the independent variables for the period 2000 to 2010.
The following tables show the sample descriptive statisticghierHartsfield Jackson
Atlanta International Airport (ATL) airport. We carried siarilanalyses for the other

individual airports and the RNAS.

The maximum daily average arrival queuing delay of 11,805.00 minutes wa
observed on September 12, 2001 just after the terrorist attacks.lar§inthe least
number of flights flown on a single day that is two was also orsémee day. In our
research we have excluded those ten days of data from SeptentbeSddtember 20,
2011 to get accurate and consistent results. Also for the thunderstiios there are
eleven missing values for the first day of every year from 20020i® and will be
excluded from the dataset. The following Table 5 shows the pbsgerstatistics of the

data considered.
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Table 5 Descriptive Statistics

Variable N Mean| Standard Deviatio Minimum Maximum
arrobdelay 4008 12.627 11.939 1.792 99.102
depobdelay 4008 18.946 11.922 4.429 206.530
arragdelay 4008 5.384 13.011 0 347.980
arragdelay2 4008 198.251] 2714.49 0 121090.51
depaqdelay 4008 6.435 8.649 0.071 215.494
IFR_ratio 4008 0.235 0.294 0 1.000
IFR_ratio2 4008 0.141 0.249 0 1.000
Regionl 4007 0.107 0.150 0 0.787
Region2 4007 0.084 0.134 0 0.727
Region3 4007 0.044 0.152 0 1.000
Region4 4007 0.054 0.093 0 0.559
Region5 4007 0.108 0.133 0 0.671
Region6 4007 0.114 0.138 0 0.807
Region7 4007 0.085 0.111 0 0.613
Region8 4007 0.026 0.048 0 0.394
Region9 4007 0.006 0.023 0 0.500
Region10 4006 0.022 0.072 0 0.733
Region1l 4007| 0.0490.053 0.098 0 0.789
Region12 4007 0.064 0.094 0 0.558
Region13 4007 0.079 0.115 0 0.686
Region14 4007 0.038 0.125 0 0.714
Region15 4007 0.009 0.073 0 0.528
Region16 4007 28045.89 0.026 0 0.327
EQPT1 4008 1112.09 3468.73 6875.00 35400.00
EQPT2 4008| 100752.15 776.202 0 3393.00
EQPT3 4008/ 60385.98 33398.68 4560.00 194560.04
EQPT4 4008 62730.76 50667.85 2795.00 135020.04
EQPTS 4008 1377.33 64139.67 0 180600.04
EQPT6 4008 62.874 2842.21 0 11900.09
EQPT7 4008 0.030 259.895 0 3000.00
HDR 4008 0.061 0.171 0 1.000
AIR 4008 0.063 0.239 0 1.000
Sepb 4008 0.025 0.243 0 1.000
Sepa 4008 0.091 0.157 0 1.000
0OVv2002 4008 0.091 0.287 0 1.000
0OVv2003 4008 0.037 0.287 0 1.000
CAP 4008 0.053 0.191 0 1.000
REDA 4008 0.091 0.224 0 1.000
REDB 4008 0.052 0.287 0 1.000
REDC 4008 0.038 0.223 0 1.000
LIM 4008 0.091 0.191 0 1.000
Year2007 4008 0.091 0.287 0 1.000
Year2008 4008 0.091 0.288 0 1.000
Year2009 4008 0.091 0.287 0 1.000
Year2010 4008 0.247 0.287 0 1.000
quarterl 4008 0.249 0.431 0 1.000
quarter2 4008 0.250 0.432 0 1.000
quarter3 4008 0.433 0 1.000
quarter4 4008 0.434 0 1.000
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3.6 Correlation Analysis between Independent Variables

If the independent variables used in the analysis are corratatzdates the
problem of multi-collinearity. In that case, parameter esgémavill become unreliable,
exhibiting large p-values or confidence intervals. Hence itiveagssary to check if this
problem exists in our dataset. This correlation between indeperat@atiles could dealt
by removing a variable, introducing variable interactions or byeasing the sample size
[48]. As a part of this process we tested the correlation foperent variables for all

the airports namely from January 2000 to December 2010.

Table 6 shows the relationship between average daily arrival epdrtdre
gueuing delay at LGA and ORD airports. As seen in the table iherdigh degree of
positive correlation between both arrival and departure queuing deémceHn our

research we have only used arrival queuing delay as our explanatory variable.

Table 6 Correlation Analysis between Arrival and Departure Queuing Delay

LGA Arrival Queuing Delay | Departure Queuing Delgy
Arrival Queuing Delay 1.000 0.819
<0.0001
Departure Queuing Delay 0.819 1.000
<0.0001
ORD Arrival Queuing Delay | Departure Queuing Delgy
Arrival Queuing Delay 1.000 0.894
<0.0001
Departure Queuing Delay 0.894 1.000
<0.0001

Table 7 displays the correlation between different explanatargbles used to
analyze average daily arrival delay at the ORD airporbmRhe results it is learned that

only the dummy variable ‘Over_Scheduling’ shares 33.75 percent styniath another
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dummy variable ‘Partial HDR’. For all other variables therao significant correlation
between them. Table 8 includes correlation analysis resultxptanatory variables at

the LGA airport. No significant correlations are observed between trebiesi

Table 7 Correlation Analysis for Independent Variables at the ORD Airport

. Over
orp | Queving r';i Total | HDR Zagsl Sep_11| Sche- | Five | Q1 | Q2 [ Q3 | Q4 v:rEZgIe
duling
Queuing 1| .296] -.140] -.039] -.072[ .015 .001| .123] .o00| .012] -.032| .019 .091
.000| .oo0| .114 .004| 538 980 .0oo| .987| .627| .201| .439 .000
IFR ratio 296 1| -216] .054] -o005] .015] -.024] -.011] .110] -.046] -.151] .082 177
.000 .000[ .030 825 531 329 .643| .ooo| .063| .000| .001 .000
Total -.140] -.216 1| -146]  -.049] -301 057 .354] -.084] .094] .039] -.050] -.068
.000| .000 .000 .045 .000 .020[ .00o| .001| .000| .112| .042 .007
HDR -.039| .054] -.146 1 -183| -.080] -.252| -.100] .301| -.018] -.151| -.151 125
14| .030| .000 .000| .001 .000[ .000| .000| .459] .000| .000 .000
Partial -.072] -.005[ -.049] -.183 1| -184] -581| -229] -132] .050[ .143[| -.055 438
HDR .004| .825| .045| .000 .000 .000[ .000| .oo0| .042] .000| .025 .000
Sep_11 .015] .015| -.301] -.080[ -.184 1| -253] -.100| -.174| -175] .015] .360] -.140
538 .531| .000| .001 .000 .000[ .000| .o00| .000| .546| .000 .000
Over 001 -.024] .057] -252] -581] -.253 1| -.316] -.057| -.055] .060] .060] -.417
Sche- 980 .329| .020| .000 .000[ .000 .000| .021| .025| .015| .015 .000
duling
Five 123[ -.011] .354] -100] -229] -.100] -.316 1| .178] .176] -.190[ -.190 023
.000| .643| .000| .000 .000[ .000 .000 .000| .000| .000| .000 .353
Q1 o000] .110[ -.084] 301 -132[ -174] -057] .178 1| -381] -.331] -.331 016
.987| .000| .001| .000 .000[ .000 .021| .000 .000| .000| .000 516
Q2 012 -.046] .094] -.018 050 -.175] -.055] .176] -.381 1| -.332] -332]  -.002
627 .063| .000| .459 .042| .000 .025 .000| .000 .000| .000 935
Q3 -.032| -.151] .039] -.151 143 015 .060[ -.190[ -.331| -.332 1] -.289 027
.201| .ooof .112| .000 .000| .546 .015| .000| .000| .000 .000 .284
Q4 .019] .082] -.050] -.151] -.055] .360 .060| -.190[ -.331| -.332] -.289 1 -.042
439 .001| .042| .000 025 .000 015 .00o| .ooo| .000| .000 .093
Pred 001 .177] -.068] .125 438] -.140] -.417] .023] .016] -.002] .027| -.042 1
Variable .000| .o00| .007| .000 .000| .000 .000| .353| .516| .935| .284| .093
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Table 8 Correlation Analysis for Independent Variables at the LGA Airport

LGA Predicted

Queing| IFR Total HDR AlR21 Slottry Sepll 2002 2003 2004 Q1 Q2 Q3 Q4 Variable

Queing 1 .020| .126 -.058 .155 .037 -.051| -.176 -.108 .248 -.058 .042 .003 .014 .064

Delay 4141 .000 .019 .000 139 .041 .000 .000 .000 .019 .089 .909 .567 .011

IFR .020 1] -.173 .034 .014 -.006 -.083] -.062 .082 .005 .008 .086| -.052| -.049 .290

414 .000 .170 .565 .808 .001 .012 .001 .848 .755 .000 .035 .047 .000

Total .126 -173 1 -.066 .081 .166 -.297] -.105 -.003 .166 -.031 .098| -.054| -.017 .052

.000 .000 .007 .001 .000 .000 .000 .888 .000 212 .000 .027 .482 .039

HDR -.058 .034| -.066 1 -.118 -117 -.080 -.151 -151| -.100 .301 -.018] -.151f -.151 .084

.019 .170| .007 .000 .000 .001 .000 .000 .000 .000 .459 .000 .000 .001

AlIR21 .155 .014| .081 -.118 1 -174 -119| -.224 -.224| -.148 -.258 -.026 .152 .152 .388

.000 .565 .001 .000 .000 .000 .000 .000 .000 .000 .289 .000 .000 .000

Slottery .037 -.006 .166 -.117 -.174 1 -.118| -.223 -.223| -.147 .089 .091 .031| -.224 124

.139 .808 .000 .000 .000 .000 .000 .000 .000 .000 .000 .207 .000 .000

Sep_11 -.051 -.083| -.297 -.080 -.119 -.118 1] -.151 -.151| -.100 -.174 -.175 .015 .360 -.132

.041 .001 .000 .001 .000 .000 .000 .000 .000 .000 .000 .546 .000 .000

Year2002 -.176 -.062| -.105 -.151 -.224 -.223 -.151 1 -.286| -.189 -.034 -.033 .036 .036 -.248

.000 .012 .000 .000 .000 .000 .000 .000 .000 .167 181 .145 .145 .000

Year2003 -.108 .082| -.003 -.151 -.224 -.223 -.151| -.286 1] -.189 -.034 -.033 .036 .036 -.222

.000 .001 .888 .000 .000 .000 .000 .000 .000 .167 .181 .145 .145 .000

Year2004 .248 .005 .166 -.100 -.148 -.147 -.100[ -.189 -.189 1 .178 .176| -.190| -.190 .072

.000 .848 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .004

Q1 -.058 .008| -.031 .301 -.258 .089 -174] -.034 -.034 178 1 -.381| -331| -331 .023

.019 .755 212 .000 .000 .000 .000 .167 .167 .000 .000 .000 .000 .358

Q2 .042 .086 .098 -.018 -.026 .091 -175] -.033 -.033 176 -.381 1| -332] -.332 .016

.089 .000| .000 .459 .289 .000 .000 181 181 .000 .000 .000 .000 517

Q3 .003 -.052| -.054 -.151 .152 .031 .015 .036 .036| -.190 -.331 -.332 1| -.289 .023

.909 .035 .027 .000 .000 .207 .546 .145 .145 .000 .000 .000 .000 .364

Q4 .014 -.049| -.017 -.151 .152 -.224 .360 .036 .036| -.190 -.331 -.332| -.289 1 -.065

.567 .047 .482 .000 .000 .000 .000 .145 .145 .000 .000 .000 .000 .010

Predicted .064 .290| .052 .084 .388 124 -.132| -.248 -.222 .072 .023 .016 .023| -.065 1
Variable .011 .000| .039 .001 .000 .000 .000 .000 .000 .004 .358 517 .364 .010

41




Table 9 Correlations Analysis for Thunderstorm Ratio

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16
R1 1.000( 0.311]| 0.054/ 0460| 0.514] 0.269 0.540 0.379| -0.013 0.296 0.351| 0.274| 0.328 0.498( 0380 0.121
R2 0.311| 1.000[ 0.292]| 0.247| 0.344( 0.466 0.339 0.191| -0.033 0.163 0.205| 0.163| 0.167 0.208| 0.170( 0.033
R3 0.054( 0.202| 1.000f 0.072| 0.100| 0.194 0.147 0.081( -0.036 0.061 0.070( 0.041 0.015 0.039( 0.043] 0.006]
R4 0.460( 0.247] 0.072| 1.000] 0.629| 0.269 0.384 0.289( -0.026 0.254 0566( 0.328| 0222 0357 0.322| 0.141
R5 0514| 0344 0.100| 0.629| 1.000( 0534 0.405 0.264| -0.046 0.248 0429| 0.488| 0.292 0371 0301 0.134
R6 0.269| 0466 0.194] 0269 0534| 1.000 0.402 0.117| -0.049 0.155 0.255| 0.354( 0315 0.261| 0.162( 0.030
R7 0540 0.339| 0.147| 0.384| 0405| 0.402 1.000 0.498( -0.051 0.270 0.343( 0.280| 0.345 0.647( 0.492]| 0.120
R8 0379 0.191| 0.081| 0289 0.264| 0.117 0.498 1.000] 0.091 0.188 0229 0.146| 0111 0317 0.363| 0.067
R9 -0.013| -0.033| -0.036| -0.026| -0.046[ -0.049] -0.051 0.091| 1.000[f -0.014 -0.017( -0.014| -0.025/ -0.065| -0.009| 0.093
R10 0.296| 0.163( 0.061] 0.254| 0.248( 0.155 0.270 0.188| -0.014 1.000 0476 0.132| 0.137 0.292| 0.235( 0.084
R11 0351 0.205| 0.070( 0.566| 0.429| 0.255 0.343 0.229( -0.017 0.476 1.000; 0.389( 0.133 0.323( 0.285| 0.122
R12 0274 0.163| 0.041] 0.328| 0488| 0354 0.280 0.146( -0.014 0.132 0.389( 1.000] 0.471 0.293( 0.182| 0.074
R13 0.328| 0.167( 0.015] 0222 0.292( 0315 0.345 0.111| -0.025 0.137 0.133| 0471| 1.000 0.498| 0.222( 0.063
R14 0.498| 0.208 0.039] 0357 0371 0.261 0.647 0.317| -0.065 0.292 0.323| 0.293| 0.498 1.000] 0.600( 0.130
R15 0.380( 0.170| 0.043] 0.322| 0.301| 0.162 0.492 0.363( -0.009 0.235 0.285( 0.182| 0222 0.600( 1.000] 0.316
R16 0121 0.033] 0.006] 0.143| 0.134| 0.030 0.120 0.067 | 0.093 0.084 0.122( 0.074| 0.063 0.130( 0.316]| 1.000]
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The correlation results for thunderstorm ratio show very integestin
characteristics. Regions that are very close to each atlographically, shows certain
degree of correlation. For instance Region 7 and Region 14 locatedrad@each other
are 41.8 percent correlated. Similar correlations could be feeeRegion 1 and 5,
Region 4 and 5, Region 4 and 11, Region 12 and 5 and so on. As seen in the Table 9,
numbers that are displayed bold are the ones that are correlated. However the

coefficient of correlation is very small for all the cases.

A correlation analysis was also conducted for all the independeiatbles at
different airports. It was seen that there was no correlatthoating the independence of

explanatory variables for different airports used in the analysis.

After conducting this preliminary analysis we learn that therénsignificant
amount of correlation between independent variables for the samertailn the
following section we discuss the mathematical format of th&RI8 and the regression

techniques applied.

3.7 Regression Methods

Since the equations developed in this research, mentioned in later chapters include
both endogenous and exogenous explanatory variables, that means that thendepende
variable in one equation of interest is the independent variabnather or more
equations and vice versa. This could create the problem of identifichtho enough
variables are excluded from each equation. Also selecting theesghtation technique

to solve this complex simultaneous equation models becomes very important.
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3.7.1 Problem of Identification

The problem of identification may occur in a multi-equation model ahke
equations have both endogenous and exogenous explanatory variables. Comsder a |
system of M equations, with M > 1. According to the order conditioecaiation cannot
be identified from the data if less than (M- 1) variableseaduded from that equation.
For instance, for a model with four equations, at least threeblesiftom each particular
equation have to be exclusive to make sure there is no idemndificaroblem. The
simultaneous equation system considered in this research ideddifigsverage arrival
delay at all the airports and RNAS as the endogenous variableth&ll independent
variables are exogenous since they are uncorrelated and uniqueféoendifirports.
Hence, in our system of 35 equations, more than 34 exogenous varigbeglasive
from each equation. So there is no identification problem in our prososedtaneous

eguation regression model.

3.7.2 Regression Techniques

Regression analysis is defined as a way of estimating dicprng the mean or
average value of the dependent variable on the basis of the kndues \& the

independent or explanatory variables [49].

We define the equation a4,= fo + /1% + Ui

Where,y andp; are unknown parameters also called as regression coefficients.

And Sy + X are called the systematic component, whilis the random component.
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If Boandp, are the estimates 8§ andp..
Then? = B, + B,X is the sample regression function &is the predicted value of

The Ordinary Least Square (OLS) method is the most popular econogtinod
for estimating the unknown parameters in a linear regression mbllisl is a basic

method on which all other methods are dependent.
3.7.2.1 The Ordinary Least Square (OLS) Method

In econometrics, the Ordinary Least Square (OLS) method is thepopslar
method used to obtain estimaf&sand 8; [49]. This method chooses the values&f

and f; such that it minimizes the sum of squared residuals

N
el = Z(Yl - BO - E1X1)2

N
=1 =1

L

A few of the basic assumptions for the OLS method are as follows

- Error term has zero meale; = 0
- Error term is uncorrelated with regressi®; X; = 0
- Error term has constant varianc@/ (u;| X;) = o?)and error terms are
uncorrelated with each ott@r (w;u;) = 0 fori #j).
(V(u;] X;) = o2) indicates homoskedasticity or constant variance assumption and if
V (u| X) depends upon X, then it indicates that the error term exhibits heteroskedasticity.

Also (E (u;u;) = 0 for i # j) is known as no autocorrelation assumption
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We need to overcome these problems faced in the OLS method; usergrdiff
approaches that are modifications of the OLS method and are édaduasbkrief in the
next part. All these approaches are categorized into two paddifference between the
two approaches is that, the system estimation method takes intmlecatisn full
information like parameter restrictions and correlation of ther éerm while the single

eguation system ignores it.

We have identified two econometric approaches to estimateitig@taneous
linear equation models as shown below, including the single equatioratsh method
and the system estimations method [50]. Both these techniquesptamed in brief in

following sections.

3.7.2.2 Single Equation Estimation Methods

This method considers one equation at a time, estimating the safuciun as
does the OLS method. It uses the information as to which variablesrmdgenous and
exogenous, is included in the other equations of the model but excludedtHeom
equation being estimated. In this group there are, following methalsndirect least

squares method (ILS) and the two-stage least squares method (2SLS).

3.7.2.2.1 Indirect Least Squares Method (ILS)

The ILS method uses OLS to estimate the reduced form of equatimhshen
converts the OLS estimates from the reduced form into the agsSnof the structural

form of equations. This method produces estimates that are condisitentt unbiased
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[51]. This method is used for just-identified system of equations.ZBi&S method is

similar to ILS if the system is just identified.

3.7.2.2.2 Two Staged Least Square (2SLS)

A common approach when confronted with autocorrelation and heteroskegasticit
problem in the linear regression context is to try to use tieigue of instrumental
variables (1V), also known as the two-stage least squares (352]S This method does
not give unbiased estimates, but does give consistent estimagefirsilstep involves,
estimating the model in by least squares to get consistentaéssi of the endogenous
variables, and compute the model predictions. In the second step, wateshie model
in by least squares, but replacing endogenous variable with the predictiongdlotahe
first stage. The key assumption needed for consistency of tlestivator is that the

instruments and error term are uncorrelated.

3.7.2.3 System Estimation Methods:

This approach estimates the entire model of the simultaneous &geations
together, using all information's available on each of the equatibtise system. We
consider two methods in this approach: three-stage least squetfesiBSLS) and full-

information maximum likelihood method (FIML).

3.7.2.3.1 Three Stage Least Square (3SLS)

The 3SLS method combines two statistical techniques; one is thetdg® least
square (2SLS) and the other is the seemingly unrelated regr€S&iét). The 3SLS

method generalizes the two-stage least-squares method Img takcount of the
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correlations between equations in the same way that SUR dgeeer@lLS. Three-stage
least squares method contains three steps: first-stagesiegee get predicted values
for the endogenous regressors; a two-stage least-squares getpedsiduals to estimate
the cross-equation correlation matrix; and the final 3SLS asom step. The first two

stages of the 3SLS method are similar to the previously det®&SLS method. The
third stage which is SUR is an extension of a linear regressoalel allowing correlated

errors between equations. It is a way of improving the efiigieri estimation equations

jointly, as it provides consistent estimates for linear equations.

3.7.2.3.2 Full Information Maximum likelihood Method (FIML)

The FIML method obtains maximum likelihood estimates of a nonlinear
simultaneous equations model. The model should have N equations for N endogenous
variables. FIML is an asymptotically efficient estimator §imultaneous models with

normally distributed errors. Some of the key aspects of FIML are as $o]&8{

- FIML does not require instrumental variables.

- FIML requires that the model include the full equation system, agthmany
equations as there are endogenous variables. With 2SLS or 3SLS you can

estimate some of the equations without specifying the complete system.

- FIML assumes that the equation errors have a multivariate nalistabution. If
the errors are not normally distributed, the FIML method may peqaor

results. 2SLS and 3SLS do not assume a specific distribution for the errors.

48



CHAPTER IV

A MACROSCOPIC TOOL FOR MEASURING DELAY PERFORMANCE IN HH

NATIONAL AIRSPACE SYSTEM: CASE STUDY OF ORD AND LGA AIRPOFRS

We conducted the case study of delay propagation from individpairanLGA
and ORD) to the RNAS. This research follows a similar patmadroscopic analysis
that was conducted and not only investigates the impact of simgtatadelay to the
RNAS but also to explore how the delay spillover is widely digueracross the
Operational Evolution Partnership (OEP) 34 airports (see Appendixé) remaining 40
airports in NAS, except the 34 OEP airports (excluding HNL) ganeped together and
are known as the Rest of the NAS (RNAS). RNAS delay is dersil aggregately using
a single multivariate equation in the simultaneous equation regnessidel. Therefore,
our model consists of 35 equations determining average daily adeley at 34 OEP
airports and one equation for the RNAS. Causal factors of the average dadlcgelays
are explored, and multivariate equations are developed for all tairporder
consideration along with the RNAS. The average daily arrivialyde the dependent
variable in the equation for each airport and the RNAS, while aamedusly being

considered as an independent variable in the equation of other airports and the RNAS.
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4.1 Methodology

In our previous study, we developed a set of multivariate simultangoasians

for both individual airports and the RNAS. We regressed these snasialg two-staged
least square (2SLS), as seen in Figure 6.a. As observed in Figure 6.b anduSex] e

predicted value of the average observed arrival delay at the RISABe independent
variable for average observed arrival delay at an individual airpdrivige versa. This
predicted value is the dependent variable created at the end wétistalge of regression
and, along with the other variables, was used in the second staggessrarrival delays

with full models along with heteroskedastic error correction.

however, are insignificant in this case.

Interaction between a Single
Airport and the Rest of the NAS
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The data we used were from ASPM covering the period of January @ JQdé

2004. The model for the individual airport decomposes average déaly ael GA or
ORD into components related to different delay casual factorsiardl earlier. The
explanatory variables include average arrival deterministic quedelgy, average
observed arrival delay at other airports, adverse weather, seasfteab, demand
management regimes, and other factors. Whereas, the NAS demghposes average
daily delay at airports other than the airports under considerdtt®A ¢r ORD). The
explanatory variables include observed delays at LGA or ORD, comwweaetiather, total

operations, seasonal effects, demand management regimes, and other factors.

4.1.1 Equation 1 for Individual Airport

The equation for the individual airport decomposes average daily delay at
reference airport into components related to different delaghtg factors. The
explanatory variables include average arrival deterministic quedeigy, average

observed arrival delay at other airports, adverse weather, and other factors.

Dy(t) = By X Ds(t) + B x LQ() + B3 X LQ*(t) + By X LF()+ Bs X I4(t) +

Bo X 1°(6) + Tplpa Wi(©) + i 0ia Si(8) + ;60,4 D;(t) + v(t)

4.1.2 Equation 2 (daily average arrival delay at RNAS)

The model for the RNAS decomposes average daily delay at aiqiber than
the airports under consideration (LGA or ORD). The explanatory vasainiclude

observed delays at LGA or ORD, convective weather, total operations, and ofibwes. fac
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Ds(t) = y1 X OP(t) + y2 X Da(t) + y3 X SQ(t) + XpAxs Wi (2) +

i Jj
D,(t) average observed arrival delay against schedule at individual airport on day t;

Ds(t) = average observed arrival delay at airports other than LGA or ORD on day t;

Pred D (t) = predicted average observed delay at airports other than LGA or ddRD
dayt (not shown in the above listed models, obtained from the first stagel&f %1

used in the second stage);

LQ(t) = average arrival deterministic queuing delay at individual airport on day ¢;

LF(t) = passenger load factor in the aircraft at the airport on day t;

1,(t) = daily IMC ratio recorded at individual airport on day t;

Ds(t) = average observed arrival delay against schedule at other airports on day ¢;
D,(t) = average observed arrival delay at individual airport (LGA or ORD)on day t;

Pred_D,(t)= predicted average observed delay at individual airport (LGA or )QiRD
dayt; (not shown in the above listed models, obtained from the first sfa®®8LS and

used in the second stage);
OP(t) = total operations (arrivals)of system on day t;
SQ(t) = weighted average arrival deterministic queuing delay of system on day ¢;
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W, (t) = weather index of different region k on day t;

S;(t) seasonal dummy variable, set to 1 if daily arrival delay is observed in quarter i

and O otherwise;

D;(t)demand management regime dummy variable, set to 1 if daily arrival delay is

observed in time period j and 0 otherwise;

v(t),u(t) = stochastic error terms; and

A, w, 8,and y are coefficents

4.2 Research Results

Table 10 and Table 11 show the regression results. We assumeethag¢dn of
delay is zero if all the independent variables are zero. The Resyakies from Table
10; clearly indicate that the model captured about 77.4 percent and 82ehtpef the
variation in the average daily arrival delay at LGA and ORD, respectiVéig.estimated
coefficient for average queuing delay is 0.235 for LGA and 1.270 Rid,Qvhile for the
guadratic term of average queuing delay, the coefficientsegyative. Nevertheless, the
combined effect of linear and quadratic terms of average queuingidelasitive. It is
also found that a one-minute delay at other airports in NAS mag aacreases of 0.946
minute and 0.553 minute delays at LGA and ORD, respectively. Adwerather, as
measured by the IMC ratio, is the principal factor of delalyadth LGA and ORD. For

the thunderstorm ratio, however, only specific regions show sigmificantributions.

53



Region 11, comprising the northeastern part of the U.S., is a magy cmhtributor to
LGA. Regions 12 and 13, which include the upper-middle regions of the WeSlelay
contributors to ORD. The estimates for the seasonal effect, kowslrow smaller
magnitude while compared to other factors. Interestingly, for boplorés; the summer
seasonal effect shows the least amount of delay when comparethdr seasons.
Significant factors affecting delay are demand managenegnies (time-period fixed
effects). HDR was considered as the base in the regressiage &smates provide a
better perspective of different demand management regimesappti different time
periods (see Figure 1) and the success of their application is t#roperations and

delay reduction.

We then graphically decompose the delays according to the daasais, as
shown in Figure 7 and Figure 8. For LGA, the delay increased by than 12 minutes
during the AIR-21 period in comparison to HDR and gradually reduced dtiimg
slottery period. The lowest delay was reached post-9/11 when there weraifewadfic
operations and it slowly increased through 2004. For ORD, the g@heramenon was
the same, with high delays during partial HDR periods, touching éoeld post-9/11,
and sharply shooting up in 2004 to more than 2 minutes. As shown in Figure 7.a, average
delay of other airports in the NAS and passenger load factershar major factors
affecting average arrival delay at LGA. Average arrivalugug delay and delay in the
system are the major contributing factors for the averageabdelay at ORD (Figure

7.0).
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Table 10Estimation Results of Arrival Delay at Individual Airport (LGA/ORD)

D1

LGA ORD

Variable Estimate| SE P-Valuq Estimate SE P-Vall
LQ(t) | Average Queuing Delay 0.235 0.02 <0.00p1 1.270 0.05<0.0001
LQ1) Sg;‘;rgi';ﬁgﬁ:f‘ge Queuingl 4001 | 0.00| <0.0001 -0.007 | 0.00] <0.000
D4(t) ng"’ted arrival delay at | o456 | 008 | <0.0001 0553 | 011 <0.00
1A(t) IMC Ratio 24.900 2.68| <0.000p 21.717 3.41 <0.00
1,4t) | Square of IMC Ratio -9.568

2.82 | 0.0007 | -9.414 3.73 0.0115

LF(t) Passenger Load Factor 0.075 0.02 0.0013 0.020 0.08.4731
W(t) Thunderstorm Ratio

Region 11 45.280 3.64 <0.0041

Region 12 44.144 3.64 <0.000}L

Region 13 11.775 2.79 <0.000L
S(t) Seasonal Dummy Variables

Quarter 1 -3.832 0.79] <0.0001 -1.539 1.3% 0.253)7

Quarter 2 -8.567 0.96/ <0.001 -4.622 151 0.002p

Quarter 3 -6.489 0.96/ <0.0001 -3.353 1.50 0.025p
D/t gggi\%r;ds Management

AIR-21 5.122 1.12 | <0.000]

Slottery -1.227 1.17| 0.2942

Partial HDR 0.231 2.04 0.9271

Post 9/11 Period -10.05( 2.09 <0.00p1 -7.16( 2.530.0047

Year 2002 -3.033 1.14] 0.0079

Year 2003 -3.480 1.024 0.0007

Year 2004 -6.101 1.21p <0.00q1

Overscheduling -3.891 1.87 0.0374

5% Reduction in UA & AA 2.264 1.93 <0.2404
R R-Square 0.7741 0.8254
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Table 11 Estimation Results of Arrival Delay for RNAS

LGA ORD

Variable Estimate| SE | P-Valu¢ Estimatd SH  P-Value
SQ(t) | Average Queuing Delay 1.176 0.04 <0.0400.963 0.05( <0.0001
Da®) Eéeg;gg‘é””"a' Delayat |48 | 0.01| <0.000]0.052 0.00| <0.0001
OP(t) ;:’etaslgffr;a“ons (arivals)inf , 001 | 0.00| <0.000{ 0.001 0.00| <0.0001
Wi (1) Thunderstorm Ratio

Region 04 4.010 0.9 <0.00016.511 0.94| <0.000]

Region 05 4.863 0.79 <0.00015.345 0.78| <0.0001

Region 06 5.056 0.61 <0.00013.623 0.58| <0.000]

Region 11 2.495 1.27 0.0499 11.682 1.10 <0.0po1

Region 12 11.572 | 0.92 <0.0005.625 1.12| <0.0001
S(t) Seasonal Dummy Variables

Quarter 1 0.666 0.47 0.1571 0.242 0.48 0.61p3

Quarter 2 -2.657 0.49 <0,0001-3.275 0.52| <0.0001

Quarter 3 -3.163 0.51 <0.0001-3.802 0.53| <0.000]
Di(t) Dummy Variable f_or Demand

Management Regimes

AIR-21 2.086 0.61| 0.0007

Slottery 0.865 0.61] 0.157§

Partial HDR 1.447 0.57 0.0111

Post 9/11 Period -0.176 0.78 0.8207 -0.795 0({83339B

Year 2002 -0.651 0.54 0.2414

Year 2003 -0.768 0.54 0.170]

Year 2004 0.263 0.63 0.6779

Overscheduling -1.095 0.58 0.038pB

5% Reduction in UA & AA -1.376 0.67 0.041%
R? R-Square 0.944 0.941
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The estimates for the RNAS model are shown in Table 11. These¢ha
regression estimates for average arrival delay for flight3l benchmark airports other
than LGA or ORD. The RNAS model for LGA explains a 94.35 percenatia in
average arrival delay, whereas the model for ORD shows a 94 @hpeariation. The
gueuing delay, total operations, and thunderstorm ratio are all sagtifectors affecting
arrival delay in the NAS. It is also seen that a one-minuteease of delay at LGA
causes a 0.082-minute increase in delay in the NAS, while a oneendialaty at ORD
causes a 0.052-minute delay in the NAS. Thus, if we consider theofaton-LGA to
LGA arrivals of about 34 to 1, the effect of a one-minute delalyGa& on non-LGA
airports is 34 * 0.082 = 2.788 minutes. Similarly, considering the aditraon-ORD to
ORD arrivals as 34 to 1, the effect on other airports of a one-endtalidy at ORD is 34 *
0.052 = 1.768minutes. The decomposition of the RNAS at LGA (Figure 8.a) Rbd O
(Figure 8.b) produced results similar to those of individual airpdrkss is an indication
that different demand management strategies applied at an indidoipalt have a
definite impact on the whole system. The delay in the NAS due to LGA was maorg dur
the AIR-21 period, and the delay due to ORD was more influentiahgitine partial

HDR period before sharply increasing in 2004 due to over-scheduling.

4.3 System-Wide Benefit of Capacity Expansion of Individual Airport

It is interesting to know the NAS-wide delay reduction assalt of expansion of
a single airport. Given the estimation results of 2SLS equatibh&A and the RNAS
or ORD and the RNAS, scenario analysis can be conducted to predict the deldgmeduc
assuming certain percentages of capacity enhancement atndacdtuial airport. The
entire process was done in two steps, as shown in Figure 9.fir§thsetep produces
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output in the form of predicted arrival delay for a single attpdhis value is compared
with baseline observed delay to determine the percentage chaagevaf delay at that
airport. This predicted delay from the first step alondhwiher variables is then used in
the second step to determine the predicted arrival delay in sheofréehe NAS. The
predicted value can then be compared with baseline delay to detesysiteen-wide

improvement. For LGA and ORD, we assume there are 10%, 20%, anda@idity

Increases.
r- .- - - - -~~~ - - TTTTsTsTsTTsT s Ts =T = m = === ==== I
| Capacity Queui _ ] I
| LGA/ORD ueuing Delay Convective weather Reg_ressmn I
/ LGA/ORD IMC Estimates
AAR I
{ | | :
! I
! I
! - N T T T T T Ty
1 Baseline 1 Predicted Arrival P
1 Observed Delay : Delay at I :
I at LGA/ORD : LGA/ORD I :
| | | ‘ '
______________ 1
I Single l i :_ i
1 Airport Peroem‘age_ : Total Operations :
1 Change of Arrival : ! (Arrivals) at NAS Regression :
I Delay at LGA/ORD | i ! Conveclive Estimates | !
| : ! Weather :
R o ! o o o ) o} o i i b i o i L1 1
I [
e = -
! Baseline i
| | Observed Delay at Predicted NAS i
i NAS Arrival Delay .
! | | !
1 L2 -
I Percentage Change System :
: of Arrival Delay at 1
i NAS -
________________________________________________ [

Figure 9 Scenario Analyses
The outcomes of this scenario analysis for LGA and ORD are shoWwabie 12.
The results are noteworthy indicators of the effects of dgpatcrements on delay

reduction. The comparative results show that capacity increa3R@tcan yield better
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outcomes compared to LGA in terms of percentage delay reductiois. efent can be
due to a high congestion rate at ORD, as it was ranked fitstrms of the number of

total operations till 2004, and was later overtaken by ATL [54].

Table 12 Comparison of Scenario Analysis of LGA and ORD Airports

LGA ORD
) 10% 20% 30% ) 10% 20% 30%
Capacit Baseline Baseline
p % Increase | Increase| Increase Increase| Increase| Increase
Airport Delay | o | o 52.21 5056 |  48.98 18.64 11.48 8.84 7.7
(minutes)
% Delay
Reduction at Base 1.83% 4.93% 7.90% Base 38.48% 52.60% 58.39%
Airport
NAS Delay 6.44 6.36 6.21 6.06 8.39 8.02 7.89 7.8
(minutes)
0,
& D,e\lliéRed” Base 136% | 2.34%|  2.29% Base 4.40%  6.02%  6.6f%

4.4 Research Outcomes

Airport delay has always been a major problem for the aviation tiydldost
previous studies estimate the delay propagated through an individyrdl flom an
airport to the system. This research illustrated the ublitynultivariate simultaneous
equations to study delay propagation from a single airport to thensyand vice versa.
The model developed for LGA and ORD takes into account all the dalasal factors
mentioned earlier and also has the scope to include more in the flitereestimated
results clearly point toward the existing interdependency betvileght delay at an
individual airport and the NAS. The delay at LGA and ORD sigmfigadepends on
delay at other airports and, similarly, LGA and ORD are megotributors to delay in

the system.
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The decomposition of delays for different demand management refyjoneshe
year 2000 to June 2004 explains the variation in delay throughout the péfFiosl.
decomposition tries to establish the correlation between varioug clesal factors at
the airports and their effects on the entire system. For LG#&hdws that maximum
delay occurred during the AIR-21 period with slot exemptions. They dgiadually
reduced during the Slottery regime and reached the lowest poingdbe post-9/11
period. However, the results up to 2004 show that the delay slowlasettdo the pre-
9/11 Slottery period level. ORD shows a slightly differentatasn for delay, with the
peak of its delay during 2004. The FAA had to curtail the operatiotsAodnd AA;
however, these emptied slots were taken over by other airlineqjuhifgng the efforts
of the FAA to reduce delay. The decomposition for the NAS showedgesuiilar to
that of individual airports, with total operations in the systenmdene of the major

factors affecting delay.

The research also predicts the system-wide impact of capatdigncement or
improvement in demand management strategies on delay in the NAS. results
indicate that with an increase in capacity there is a propotéigaduction in delay at the
airport and the NAS. However, this phenomenon is more predominant attf@R[xt
LGA. Through further observation, it can be seen that the major loottig factor for
delay at ORD is queuing delay, while adverse weather is ar mpagblem at LGA. This
analysis helps to determine the effectiveness of capacisoiraments and can be used
as a decision making tool for airport improvement projects thatreequassive capital

investments in the future.
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Furthermore, we estimate the impact of single airport delayther OEP 34
airports and the rest of NAS using multivariate simultaneous m@8®]. The variables
used in the model were similar to those described in this chaldtrertheless, instead
of defining average daily arrival delay as the actuaValrtimes minus scheduled arrival
times (if the results are positive), we identify arrival gdby comparing actual arrival
times and arrival times based on flight plans. In this wayekmeinate the noise caused
by schedule buffer variations from the airlines. The reseggfoach, methodology and

the results produced from the study are presented in the following chapters.

63



CHAPTER V

A COMPREHENSIVE MULTI-EQUATION SIMULTANEOUS MODEL FOR
ESTIMATING DELAY INTERACTIONS BETWEEN AIRPORTS AND NATIGQIAL

AIRSPACE SYSTEM

Previously we investigated the delay propagation from one individyedrato
the RNAS and vice versa, using LGA and ORD as our case studiesstiidy follows a
similar path of macroscopic analysis not only investigating ifgact of single airport
delay to the RNAS but also to explore how the delay spilloverdslydispersed across
the Operational Evolution Partnership (OEP) 34 airports (see Appgndiadsal factors
of the average daily arrival delays are explored, and a comigbemulti-equation
simultaneous model is developed for all airports under consideration aitmghe
RNAS. The average arrival delay of each OEP34 airports i€esgd with a multivariate
equation. According to the definition, the RNAS in this chapteressmts the airports in

ASPM75 excluding the OEP 34 airports. In total, there are 35 equations in this model.

5.1 Multivariate Simultaneous-Equation Regression Model (MSERM)

5.1.1 Specification of Multivariate Simultaneous-Equation Regression Model (M$ERM

In this study, multivariate simultaneous equations are generate@4f OEP

airports and RNAS. The causal factors for individual airport andRNW&S are slightly
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different, according to the experiments of specification. For iddal airport, each of
the equations contains causal factors including supply-demand imbalancatandi
delays occurred at other airports and the RNAS, weather factor, and othelsgofsky,

the delay of the RNAS is affected by factors, such as thé dperations in the RNAS,
delays from 34 OEP airports, weather factor, and others. Figurskéhes the

simultaneous characteristic of the system.

Figure 10 Interactions between a Single Airport and the Rest of the NAS

5.1.2 Model Variables

Airport data were collected from the ASPM database for thegef 2000 to
2010. As compared to the previous study, the causal factors for tyeatiéhe individual
airports include the additional explanatory variable ‘aircraft eqeigrtype’ to study the

impact of aircraft fleet size on the delay at airports. @dld lists the factors affecting
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average daily arrival delay at individual airports and the RNARable 4 displays
different demand management regimes operational at JFK, &@@AORD airports and

applied in the model.

Table 13 Causal Factors of Delay at Individual Airport and the RNAS

Individual Airport Rest of NAS (RNAS)

Dependent Variable: Average Daily Arrival Delay

Independent Variables:

Average Arrival Deterministic Queuing Delay

Arrival Delay at Other individual OEP Average Delay at Individual OEP
Airport and RNAS Airport

Adverse Weather Indicators

Aircraft Equipment Type Total Flights

Seasonal and Demand Management Dummy Variables

5.2 Model Specification

The linear regression technique is one of the methods used for exgpléne
relationship between the variables. The flexibility of thishtegue derives from the
possibility of being able to replace the variables in the remgmesequations with
functions of the original variables. Applying polynomials, multiplying dividing
variables by each other, applying logarithms and exponentials, land taciprocals are
just a few of the variable transformations available to generatéinear fits. In our
previous research we have applied quadratic variable transformati@tgdly average
gueuing delay and the IMC ratio as defined before. Even thoughblesimay be

transformed so that the equation is nonlinear in the original uniteeofariables, as long
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as the equation remains in the form of an intercept plus a slojplging transformed

or untransformed variables, it remains a linear regression.

5.2.1 Equation 1-34 (for Individual Airport)

The model decomposes average daily delay into components relatefiétendif
delay casual factors. The explanatory variables include aveaaiyal deterministic
gueuing delay, average observed arrival delay at other airpogtagavobserved arrival
delay in the RNAS, adverse weather, seasonal effects, demaradjen@ent regimes at
JFK,LGA and ORD airports, aircraft equipment type, and others. démand
management dummy variable though used only at three airports, fieeis effould be
studied for all the airports with each dummy variable equal toedtgreriod of demand
management at any airport. For e.g. AIR-21 management wdsatis€&A from April

2000 to December 2001, hence this would be applied to all the 34 airports plus RNAS.

Daj(t) = a+ Bo.Ds(t) + Yiegizjy Bi Dai () + p1. LQ(E) + p2. LQ? (L) + ps. 1, (t) +

Pa- 17 () + ps. Em (1) + X At Wi () + X 0i,Si(8) + X O D () + V(1)
5.2.2 Equation 35 (for RNAS)

The model for the RNAS decomposes daily average delay atrtfaencter of the
airports that excludes the 34 OEP airports. The explanatory \ewiaidlude variable
delays at individual airports, convective weather, total operatioaspsal effects, yearly

dummy variables, and other factors.
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Ds(t) = a+ yo.0P(t) + X;vi Dai(£) +1.5Q(2) + Xy AesWi (£) +

Zi wiSSi(t) + Zm HmSDm(t) + U(t)

The notations in the above two models are described as follows:

D,;(t) = Average observed arrival delay against flight plan at individual airport on day t;

D,;(t) = Average observed arrival delay against flight plan at otidividual airport (i)

on day t;

Ds(t) = Average observed arrival delay at airports other than individual airport on day t;

LQ (t) = Average arrival deterministic queuing delay at individual airport on day t;

I, (t) = Daily IMC ration recorded at individual airport on day t;

Pred_D,(t) = Predicted average observed delay at individual airport ont;dényot
shown in the above-listed models, obtained from the first stage of a8d%sed

in the second stage);

OP(t) = Total operations (arrivals) of the system on day t;

E,,(t) = Aircraft type operating at individual airport on day t;

SQ (t) = Weighted average arrival deterministic queuing delay of the system on day t

Wy (t) = Weather index of region k on day t;
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S;(t) = Seasonal dummy variable, set to 1 if daily arrival delay isrubdein quarter i

and O otherwise;

D,,(t) = Demand Management Dummy Variable, set to 1 if daily arrival ydéda

observed in time period j and O otherwise;

v(t),u(t) = Stochastic error terms; and

B, p, A, w, 8 are coefficients.

5.3 Research Results

Table 14 shows a part of the results, outcomes for equation ATthariRNAS,
from regression using 3SLS regression method. The table shawteé average daily
arrival delay at ATL increases by 0.815 minutes if there ¢eraesponding increase of
average queuing delay at the airport. This is due to capacityaiotsiand increased air
traffic operations at ATL in last few years [56]. The next frows in Table 14 show the
interactions between ATL and other airports, as well as with theSRNAor instance, the
delay at ATL is significantly affected by the RNAS, apresented by the parameter in
front of Ds(t). For adverse weather effects, it can be skan Region 5 has the
significant impact on arrival delay at ATL, more thunderstonrmthis region leading to
more delay at ATL. In contrast, more thunderstorms in Region 1 teésks$ delay at
ATL. If we recall Figure 5, we can see that Region 5 isre/lfeTL is located. It is
intuitively right that convective weather in this region wilfeat the airspace could be
used, so as to lead to more delay at ATL. Region 1 covers Mexigaid Florida. If

there are more thunderstorm, more flights from MCO, MIA, TPA td held on the
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ground and waiting for clearance. Under this circumstance, ad@rabnd at ATL will

be lower and the arrival delay will be less. The equipmentisypesignificant in the case
of the ATL airport. This might be possible due to availabilityeabugh gates at the
ATK airport. Similarly, the table shows results for seasomal demand management

dummy variable.

While going through the regression results from other equatwhisl{ are not
listed in this dissertation due to the limitation of space), #tenated coefficients for
average queuing delay for most of the airports except BWI, DCA, BN, TPA and
RNAS indicate that supply and demand imbalance is likely to tmajar contributing
factor to average daily arrival delays. However, the negatiefficient for the quadratic
term of average queuing delay shows that this factor reducageesge queuing delay
increases. This study explores the delay propagation from atperta and the RNAS to
an individual airport and vice versa. The estimation results shattlie other airports
around the same geographical region or the other airports opeaatangub for the same
carrier contribute significantly on the delay at the referemigeort. For instance, the
airports significantly affect the arrival delay at ATLeaBWI, MCO, MEM, PDX and
RNAS which are mostly located in the eastern part of the cauSingilar regional

phenomena can be observed and are summarized in Table 15.

Counter-intuitively, several airports have negative delay gajpan effects on
some other airports. For example, the delay increase at Wif\keduce the delay at
ATL, BOS, CLT, CVG, DTW, LAX and PHX. The IMC ratio is likelyp impact the
delay at almost all the airports except BWI, FLL and PDX. tMiadsthe airports are

affected significantly by the convective weather index in #raesregion where they are
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located except CVG, LAS, PDX, SLC and SAN. It is also observata few airports
like DEN, BWI and MEM are affected by thunderstorms ocagrat destinations. In
addition, convective weather at region 2, 10 and 13 which represent congtdts

contribute considerably to delay at the rest of the NAS airports.

As long as the weather pattern is captured by the convectiihereadex and
IMC ratios, seasonal dummy variables in the model only reflect the seaséeramdié of
airline scheduling. The estimates for the seasonal effect show thahtpaat on delay is
very small in comparison to other factors. Interestingly, for nobghe airports, the
winter seasonal effect shows highest amount of delay as commamter seasons.
However for the airports in the southern parts of the country like MCO, ATA, DFW
and LAS, delays are higher during spring. The demand managengemiese even
though implemented at only some airports, dummy variables wereagemhand applied
for all the 34 airports and the RNAS. The dummy variable pasmmehow a large
impact on average daily arrival delay. The estimated coefficientedatummy variables
provide a better perspective on how delays vary in comparison to differee periods.
According to the FAA, 34 OEP airports are categorized into difteregions (different
from the convective weather regions that we have definecegd#ii7z]. The trends of
average arrival delay for all the airports along with the N#& shown in Figure 11 to

Figure 18.

71



Table 14 Estimation Results of Arrival Delays at an Individual Airport (Adid the

RNAS
Atlanta (ATL) System

Variable Estimate | SE P-Valug Estimatk SE P-Vajue
Intercept -6.08850 | 1.6120031 0.0002] -0.09598 0.250255 0.7(19

LQ(t) | Average Queuing Delay 0.815279| 0.016347 <.0001] 0.0081p9 0.020269 0.6969

LQ%t) | Quadratic Average Queuing Delay at Airpqrt0.00258 | 0.000064 <.0001]

D4(t) Predicted arrival delay at
ATL 0.010759| 0.004269 0.011§
BOS 0.003150| 0.01807¢ 0.8614 0.0157fl5 0.005199 0.0¢25
BWI 0.253522| 0.088139 0.0040 0.1204B0 0.0249%52 <.0q01
CLE 0.042338| 0.05449 0.4372 0.0195l5 0.015686 0.2135
CLT 0.017762| 0.050061 0.7228 0.0377p3 0.014%93 0.0497
CVG 0.011691| 0.056531 0.8362 0.0200p8 0.016063 0.2325
DCA 0.050516| 0.073527 0.492] 0.1065¢2 0.020753 <.0Q01
DEN -0.08094 | 0.036804 0.0279 0.03541L7 0.010392 0.04o7
DFW -0.13410 | 0.033219 <.0004 0.153919 0.008041 <.04O01
DTW -0.22495 | 0.04610Q <.000Y 0.0455f3 0.013238 0.0406
EWR 0.032303| 0.024109 0.1804 0.0324p2 0.006858 <.0q01
FLL -0.31707 | 0.067743 <.000] -0.03299 0.019346 0.0882
IAD -0.37491 | 0.060993 <.000]] -0.05640 0.017459 0.014
1AH -0.01707 | 0.023049 0.4590 0.048768 0.007271 <.04q01
JFK -0.02792 | 0.035584 0.4328 -0.04844 0.010340 <.0401
LAS -0.02789 | 0.036784 0.4485 0.0090Y5 0.010%76 0.3909
LAX -0.12154 | 0.060264 0.0438] 0.1185448 0.016883 <.0qO1
LGA 0.012100| 0.02329% 0.6035 0.0410p0 0.006832 <.0q01
MCO 0.526641| 0.13126¢ <.000] 0.224844 0.036287 <.0q01
MDW -0.04617 | 0.049609 0.352] 0.050183 0.013709 0.0403
MEM 0.208091| 0.052253 <.000] -0.02290 0.015378 0.1365
MIA -0.00966 | 0.068913 0.8886 0.0377p0 0.019356 0.0410
MSP 0.016713| 0.02293 0.466] 0.0044B9 0.006%82 0.4953
ORD -0.00094 | 0.018501 0.9597] 0.025652 0.005198 <.04O1
PDX 0.252337| 0.106883 0.0183 0.1700B0  0.0297114 <.0q01
PHL -0.02964 | 0.020884 0.1559 -0.044714 0.005872 <.0(o1
PHX 0.043615| 0.038512 0.2575 0.0439p2 0.010956 <.0q01
PIT -0.11213 | 0.08217§ 0.1725 0.0583p1 0.023375 0.0)25
SAN -0.05863 | 0.109244 0.5915 0.0989Y5 0.030358 0.0411
SEA -0.10822 | 0.058934 0.0664] -0.03307 0.016679 0.0475
SFO -0.00046 | 0.012309 0.9699 -0.00136 0.003%43 0.7¢12
SLC -0.05233 | 0.03992Q 0.1900 0.013350 0.011%79 0.2490
STL -0.01448 | 0.025239 0.5661 0.0452%4 0.007162 <.04q01
TPA 0.338615| 0.11394% 0.0030 -0.01013 0.033109 0.7997
Total System 0.00315 0.018070 <.00qg1

T(t) Total Flights 0.000067| 0.000022 0.0027

1a(t) IMC Ratio 3.139454| 1.06463(¢ 0.0032

1a%(t) Square of IMC Ratio 4.279547| 1.22973% 0.0005
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Table 14: Continued

E,.(t) | Equipment 1 2.891E-6| 0.00008Q 0.9712
Equipment 2
Equipment 3
Equipment 4 0.000036| 0.0000171 0.0322
Equipment 5 0.000023| 0.000012 0.0434
Equipment 6 -0.00021 | 0.00008¢ 0.0136

WK(t) | Thunderstorm Ratio
Region 01 -10.0904 1.244729 <.000f -1.19338 | 0.321979 0.0002
Region 02 0.53953 0.276836 0.0514
Region 03 -1.13244 0.521833 0.030L
Region 04 0.009421| 0.37785¢ 0.9801
Region 05 24.56031| 1.350248 <.0001 -0.60270 0.329344 0.0473
Region 06 -0.41505 | 0.36353§ 0.2536
Region 07 0.147004| 0.624867 0.814(0
Region 08 0.508938| 0.364674 0.1629
Region 09 -1.14208 | 0.449764 0.0111
Region 10 -0.07357 | 0.484183 0.8792
Region 11 0.631972| 0.30017f 0.0353
Region 12 -1.19395| 1.000189 0.2327
Region 13 -1.19338 | 0.321979 0.0002
Region 14 0.539538| 0.27683¢ 0.0514
Region 15 -1.13248 | 0.521833 0.0301
Region 16 0.009421 0.3778%6 0.9801

S(t) Seasonal Dummy Variables
Quarter 2 1.091572| 0.378151 0.0039 0.3130p9 0.106¢23 0.0432
Quarter 3 1.37265% 0.474541 0.003B 0.367]125 0.183120.0052
Quarter 4 0.428131 0.360006 0.234p 0.108400 0.09618.2598

Dj(t) Demand Management Regimes
AIR 1.257618| 0.81043¢ 0.1216 -0.16492 0.205¢76 0.4427
Before 9/11 0.437741| 0.838518 0.6029 0.0345p5 0.209368 0.8491
After 9/11 1.582508( 1.078529 0.144Q 1.0019p9 0.275¢13 0.0Q03
OV 2002 0.555405| 0.955752 0.564 1.1886§3 0.201927 <.0Q01
OV 2003 0.374392| 1.03907% 0.7217 0.6157[L7 0.204152 0.0426
CAP -0.81224 | 1.351014 0.5457] 1.1941p1 0.234¢43 <.0401
RED A -1.28303 | 1.226869 0.2930 1.099363 0.240780 <.0q01
RED B -0.95103 | 1.078013 0.3755 0.9924p5 0.224898 <.0q01
RED C 0.847884| 1.413631 0.5507 1.1250f7 0.231898 <.0Q01
LIM 4.785715| 1.48795]1 0.0013 0.9785p8 0.268300 0.0403
Year 2007 3.452351| 1.470327 0.0191 0.8839y8 0.236]55 0.04o2
Year 2008 3.077824| 1.457181 0.035(¢ 1.0821f1 0.228994 <.0Q01
Year 2009 4.308317| 1.387312 0.0019 0.5090[L8 0.225%55 0.0341
Year 2010 3.449082 1.512146 0.022B 1.714824 051%3<.0001
System Weighted MSE 4.5296
Degrees of Freedom 136284

R System Weighted R-Square 0.7335
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Figure 11 shows that the average arrival delays at all thertrin ASO region,
except ATL, CLT and CVG, remained almost the same throughout 2000 to 20&0.
2005 (REDB), average daily arrival delay at ATL and CLT iasesl continuously from
2005 to 2010. On the contrary the average daily arrival delay atréd{eed from 2000
to 2010. In Region AWP, as shown in Figure 12, the delay at LAX dectemastically
after 9/11 and slowly approached the level of pre 9/11 in 2006. For SF®ahé SAN

in the same region, however, the delay increased immediately after 9/11.

Figure 13 shows the delay trends of the airports in ANM regitbimghacomprises
airports in the north-west of the country. The average arrivaldglthose airports was
higher in 2007, but still lower than the pre 9/11 level. However, thegealaily arrival

delay at DEN increased dramatically post 2005.

The north-central part of the U.S. is represented by AGL rediagure 14),
which consists of many connecting airports for east-westadfic. The arrival delays at
most of the airports reduced after year 2000 expect the ORDtaidpevas also noticed
that after reduction of United and American Airlines in 2004, theydatathe ORD
airport reduced a bit as compared to earlier estimates. riNelsss, the delay at MSP
airport has significantly reduced from 2000 to 2010. The ASW regiogui&il15)
consisting of airports from Texas state had arrival delay stgpwipposite trends
throughout the time period. The average daily arrival delay had its peak value for DFW in
2004, while for IAH it reached its peak in 2010. The north-eastetnopdéne country

that has a few of the world’s busiest airports is represented by AEA réggumg 16).
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Table 15 Interactions between Individual Airports and the NAS

Airports Airports Contributing to Average Arrivaldlay Airports Reducing Average Arrival Delay

ATL BWI (0.254), MCO (0.526), MEM (0.208), PDX (0.252), | DFW (-0.134), DTW (-0.224), FLL(-0.317), IAD(-
NAS (0.588) 0.374)

BOS BWI (0.453), LGA (0.127), PIT (0.410), NAS (89 CLE (-0.241), DFW (-0.185), LAX (-0.343)
BOS (0.036), DCA (0.418), IAD (0.275), JFK (0.123), : : :

BWI MDW (0.155), PHL (0.091), TPA (0.253), NAS (0.261) EWR (-0.104), MCO (-0.344), ORD (-0.075)

CLE BWI (0.276), DTW (0.186), PIT (0.546), NAS (84 BOS (-0.036), DCA (-0.255)
CVG (0.113), DCA (0.371), EWR (0.052), MCO (0.332), : .

CLT PIT (0.169). NAS (0.325) DFW (-0.089), FLL (-0.131)
CLT (0.157), DTW (0.141), LGA (0.057), MEM (0.126), . : :

CVG ORD (0.041), PIT (0.417), STL (0.068) DFW (-0.067), MDW (-0.107), SAN (-0.252)

DCA (B})V\;IZ(GO).GII), CLT (0.157), IAD (0.155), PHL (0.0589AS | . (:0.143), MEM (:0.157)
MEM (0.137), MSP (0.056), PDX (0.417), SLC (0.126),

DEN NAS (0.302) SEA (-0.189)

DFW IAH (0.076), LGA (0.076), NAS (1.769) EWR (-88), LAX (-0.343), MDW (-0.165)
CLE (0.284), MCO (0.327), MDW (0.205), PDX (0.321)

DTW and NAS (0.533) DEN (-0.074), DFW (-0.068),
CLE (0.317), IAD (0.284), JFK (0.613), LGA (0.488DX ] ]

EWR (0.763), PHL (0.281), NAS (0.768) BWI (-0.700), TPA (-0.560)

FLL LGA (0.042), MCO (0.834), MIA (0.581) IAD (-026)

IAD BWI (0.572), DCA (0.295), DEN (0.085), EWR (0.064), | FLL (-0.182), JFK (-0.146), MDW (-0.108), MSP (-
LGA (0.093), ORD (0.037), PIT (0.228) 0.061)
DFW (0.191), LAX (-0.313), MEM (0.309), SAN (0.433) ]

IAH NAS (0.827) MDW (-0.255)
BWI (0.734), EWR (0.307), LGA (0.068), MCO (0.956),

JFK ORD (0.095) IAD (-0.479), MDW (-0.327)

LAS PHX (0.072), SAN (0.847) LAX (-0.127)

LAX DCA (0.138), SAN (0.950), SEA (0.087), MAS (28) DFW (-0.101), MDW (-0.144), PDX (-0.184)

LGA BOS (0.111), EWR (0.577), FLL (0.515), IAD (0.413FK | IAH (-0.155), MCO (-1.119), PDX (-1.071), STL (-
(0.212), SEA (0.395), NAS (1.022) 0.176)

MCO E)ngz(;).oss), FLL (0.237), JFK (0.083), TPA (0.61RAS | ., (:0.143), LGA (-0.057), MSP (:0.028)

MDW BWI (0.532), DTW (0.226), ORD (0.369), PIT (0.273RA | CVG (-0.195), IAD (-0.201), JFK (-0.161), LAX (-
(0.332), NAS (0.421) 0.208)

MEM CLE (0.175), CLT (0.128), CVG (0.129), IAH (0.088)SP | DCA (-0.194), JFK (-0.076), MIA (-0.158), SEA (-
(0.047), ORD (0.046), PDX (0.309) 0.111)

MIA FLL (0.611), ORD (0.034) DCA (-0.167), MDW (093)

MSP BWI(0.350), DEN (0.123), EWR (0.126), PDX (0.344), IAD (-0.269), JFK (-0.205), MIA (-0.240), PHL (-®@)
TPA (0.613)

ORD JFK (0.200), MDW (1.827), MSP (0.167) BWI (-03), DTW (-0.247)

PDX DEN (0.043), EWR (0.044), MEM (0.067), SAN (0.229), | IAH (-0.043), LAS (-0.048), LAX (-0.116), TPA (-
SEA (0.456), SFO (0.026), SLC (0.118), NAS (0.262) 0.133)

PHL BWI (1.311), DCA (0.372), EWR (0.414), LGA (0.121), | IAD (-0.746), JFK (-0.292), MSP (-0.121), NAS (-
MEM (0.255), PIT (0.546) 0.527)

PHX DCA (0.115), DEN (0.094), SAN (0.447), SEA (0.138), | BWI (-0.137), DFW (-0.057), IAD (-0.124), PDX (-
SLC (0.069), NAS (0.497) 0.250)

PIT CLE (0.239), CVG (0.111), DCA (0.107), MCO (0.207), | - (:0.053), DTW (-0.075)

MDW (0.104), NAS (0.200)
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Table 15: Continued
IAH (0.035), LAS (0.184), LAX (0.374), PDX (0.162PHX
SAN (0.051), SFO (0.025), NAS (0.172) SEA (-0.097)
SEA ORD (0.040), PDX (1.323) DEN (-0.065), SFO@aR), SLC (-0.095)
SFO ORD (0.071), PDX (0.513), SAN (1.042) 3\2/563-0.207), LAX (-0.326), MCO (-0.605), MDW (-
sLc DEN (0.112), MEM (0.096), PDX (0.637), SAN (973 SEA (-0.185), SFO (-0.023)
CVG (0.210), EWR (0.088), MDW (0.169), MEM (0.147), ] ]
STL NAS (0.766) LAS (-0.088), LAX (-0.148)
TPA BWI (0.143), LGA (0.032), MCO (0.0782), MIA (@91) BOS (-0.024), DCA (-0.097)
SNAS BWI (0.120), DCA (0.106), DFW (0.154), EWR (0.032),
(Systom) | 'AH (0.049), LAX (0.118), LGA (0.041), MCO (0.224), | JFK (:0.043), PHL (-0.044)
y ORD (0.025), PDX (0.170), PHX (0.043), STL (0.045)

This region consists of the largest number of airports as cothpau@ther regions. For
all the airports, except LGA, the average arrival delay haaya been positive. The
average daily arrival delay at PHL, JFK, EWR and IAD sigaifitly increased after
2005. The average arrival delay at BOS (Figure 17) had an inatewltdle for STL it

reduced after 2004. Figure 18, shows estimates for the RNAS adden that the

average daily arrival delay increased constantly from 2000 to 2010.
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Figure 11 Airport Arrival Delay from 2000-2008 for ASO Region
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CHAPTER VI

ESTIMATION OF FLIGHT DELAY PROPAGATION OF THE MULTI-AIRPRT

SYSTEMS IN THE US

With the increase in population, city’s geographical growth, betteungr
transportation modes and sometimes political factors, there hassteegly increase in
number of airports within a region [13]. Most of the major citrethe U.S. are served
by more than one airport. Many of these airports have coordinateatiope in terms of
sharing regional airspace, some act as a reliever airparase of over shooting of
capacity at other airport(s) and also help reduce environmefdatssfike noise and air
pollution in one specific area. For instance, the San Franceéscarkea consists of three
major airports namely SFO, OAK and SJC along with many sanglbrts. The flight
routes at all the three airports are usually conflicting \eglch other [58]. All these
airports need to take additional care to maintain air-borne safféitye flights that might
result in increase of flight delay. Hence, research is wadaotexplore the impact of
these groups of airports in a region on other airports.

Additionally, it is seen that while traffic at major airporss stable, traffic at
reliever airports is volatile depending upon its demand [6]. As seaome cases,
airports might be competing against each other for air set@c®nd due to competing
airlines, close proximity, increasing demand, efficient senvate. In the case of BOS

and MHT airports as shown in Figure 19, the BOS airport is ogkbgtéegacy airlines
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while the MHT airport has large number of operations by low casters (LCC). Both
the airport operations completely differ from each other in tefrtheir management.
Hence, it would be interesting to learn the impact of operatiotigesé airports on other

airports in the country.

(o) Airports
15 mile radius
50 mile radius

sssss

Boston"MA

Massachusetts o3
[ J S

FWorcester,

&7,

Figure 19 Air Service Area at the Greater Boston Region
Our previous studies estimated and compared flight delay propagatedohe
individual airport to another and vice versa, as well as the gelgagated from that
airport to the RNAS and the effect of RNAS delay to that airffivang and Nayak [42]
[55]). The outcomes of our studies provide decision-support for future aogoatity
expansion and a framework to evaluate the nation-wide effectivesfesspacity
expansion or delay reduction at individual airports. In this study, waneled our study

to the multi-airport systems.
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The multi-airport system is defined as a system with afsairports that serve air
traffic a metropolitan area [6]. The New York airspaceng of the most congested
airspaces in the world, with both domestic and international dictrBAA always faces
the challenge of mitigating the delays in the New York regidncreasing airport
capacity by adding more runways could be a solution; however| ilead to enormous
capital investment, projected flight delays, public outcry, and envirotaheoncerns.
Atkins [59], for example, studied the interdependencies between ptexamgorts in the
San Francisco Bay Area and found that the interdependencies ddsuteduction of
airport capacity and operational efficiency. Thus, it is worthevitd investigate the
interdependency between airports for seeking solutions to improveptheational
efficiency of regional airport systems. Also, given the mldtregional airport systems
in the U.S. and their different characteristics, it is intergsio see how the operational
performance of each regional airport system affects the R{ABis study, the NAS

with other airports except the studied regional airport system.)

6.1 Research Approach

The objective of this study is to quantify the interdependencyrpdrms in a multi-
airport system and to investigate the delay propagation frosy#tem to the RNAS and
vice versa. Hence, the first step was to collect datanfdti-airport systems. A total of
11 multi-airport systems in the U.S. were identified based owmabiraffic share and
proximity [13]. Orlando and Tampa regions contain airports for wiiata are not
available in the Aviation Service Performance Management datarabewvere not
included. Table 2 shows the final list of metropolitan regions arpbrés. All the
airports in these regions, except New York and Houston, are mudtdhjctional, with
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different authorities in charge of the operations and managemere difterent airports

in each region [22].

The second step was to define regional level performance iodicas well as
indicators reflecting the characteristics of multi-airporstegns. Research on three
airports in the Bay area (SFO, OAK, and SJC) [60] estimateddibvmestic origin-
destination passenger share at SFO fell from 66 percent in 1980dercent in 2003.
Some of the reasons cited were the introduction of LCC airlingsansfer of legacy
airline operations to regional carrier affiliates. Howevierwas observed that the
introduction of Virgin Atlantic (an LCC) at SFO increased harge to 51 percent. These
numbers are a clear indicator of passengers responding ne &tes for airports located
in the same region. Another important indicator is the LCC maskare. In some
regions, for instance, in the case of BOS, MHT, and PVD in the BNegland region, the
operations at BOS are dominated by legacy airlines whidHiI and PVD, a large
number of operations are offered by LCCs [8]. Correspondingly, thatapes of these

airports differ from each other in terms of their management.

We present elasticity estimates to demonstrate the diffefétts of the multi-
airport system toward the RNAS in the fourth step. Meanwhile, @hee sanalysis was
conducted to identify the major factors leading to the change dit ftiglays at each

regional airport system during different seasons of the year.
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6.2 Model Variables

Figure 20 shows the interactions between multi-airport systachtha RNAS. The

variables in the figure were explained earlier and are shown in the folloabley t

Figure 20 Interactions between Multi-Airport System and the RNAS

Average daily arrival delay is the dependent variable in our modd. aMerage
daily arrival delay is the aggregate average daily ardeddy from all airports in the
region. Only arrival delay is used as the delay metric, sime is a high correlation
between arrival and departure delay for both the region andNAsS. For each multi-
airport system, the average daily arrival delay is a fanctif average arrival delay at
RNAS, deterministic queuing delay caused by the over-scheduling orysigmpbhnd
imbalance due to capacity deficiency in the system, adverstheve&iHIl, and LCC
Market Share, together with dummy variables indicating seasorhlyearly effects.
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Similarly, the average daily arrival delay at RNAS depends uperage arrival delay in
the regional airport system under consideration, deterministic queelayg, total flights,

and other explanatory variables.

Table 16 Causal Factors of Delay at Region and the RNAS

Region Rest of NAS (RNAS)

Dependent Variable: Average Daily Arrival Delay

Independent Variables:

Average Arrival Deterministic Queuing Delay

Arrival Delay at the RNAS Average Delay at particular regior

Adverse Weather Indicators

HHI Index for Region

LCC Airline Market Share Total Flights

Seasonal and Demand Management Dummy Variables

Table 17 Correlation Matrix for LCC Share at Four Airports in the New York

Region
EWR ISP JFK LGA
EWR 1.000 0.720 0.584 0.224
ISP 0.720 1.000 0.924 0.77§
JFK 0.584 0.924 1.000 0.850
LGA 0.224 0.778 0.850 1.000

We also conducted a collinear diagnosis of explanatory variablesfoiWidd that
some of the LCC market shares between airports in the sagienrshow high

correlations. As shown in Table 17, the LCC market shares of BNdRSP are highly

86



correlated, as well as those of JFK and ISP. We also founththadst of the regions,

the IMC ratios at airports in the same region are correlated.

In such cases, principal component analysis is applied to removenute
collinearity from the analysis. It is a statistical tecua that generates a linear
combination of a number of variables and uses them for further anf@g$iand is a
simple variable reduction procedure. The observed variables are egeigtguch a way
that the resulting components account for a maximal amount of gariarthe data set.
The number of principal components generated is equal to the numbeiabfesar The
first few components cover up maximum variance and are used loasealifferent
criteria. For instance, when the principal component analysis isedppl the above
case, it was found that Component 1 = (0.398 EWR_Share) + (0.558 ISP_ S{tab&2+
JFK_Share) + (0.475 LGA_Share). Component 1 covers 77.20 percent @iridnece,

so it was used in regression model.

Table 18 Principal Component Analysis for LCC Share in the New York Region

Prinl Prin2 Prin3 Prin4
EWR 0.398 0.792 0.163 0.434
ISP 0.558 0.072 0.318 -0.763
JFK 0.552 -.134 -0.822 0.048
LGA 0.475 -.591 0.444 0.477

Another test conducted was the test for heteroskedasticity, as lkasothie White
test. The White test examines the null hypothesis that thaneas of the residuals are
homogenous. The test results showed that the p-value was high so that the nulkis/pothe

was accepted.
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6.3 Model Format

6.3.1 Equation 1 for Individual Region

The model decomposes average daily delay into components relatefetendlif
delay casual factors. The explanatory variables include avexagal deterministic
gueuing delay aggregated for all airports in the region, averagevetisarival delay in
the RNAS excluding the region under consideration, proportion of LCCGee aitport,
HHI index of the region, adverse weather, seasonal effectspthrts. Since demand
management strategies were implemented at airports in the ek and Chicago
regions, to capture the effects of those strategies, the stithe time period was divided

into several time windows, and dummy variables were introduced for the windows.

D(t) = a+ Bo.Ds(t) + p1. LQ(L) + p2. LQ?(t) + p3.1c(t) + ps. LC(E) +

pe- HHI(t) + X AgWie () +X; w;Si(8) + Xj 0 D (1) + v(8)

6.3.2 Equation 2 for RNAS

The model for the RNAS decomposes daily average delay at thainden
airports, excluding the airports in the region under consideration. Xplkanatory
variables include delays in the region, convective weather, total tmperaseasonal

effects, yearly dummy variables, and other factors.

Ds(t) = a+ yo.0P(t) +y1.D(t) +v2.5Q(t) + y3. HHI(t) + Xi As Wi () +

Ziwissi(t) + Zm HmSDm(t) + u(t)

88



The notations in the above two models are described as follows:

D (t) = Weighted average observed arrival delay against flight plameimetgion under

consideration on day t;
Ds(t) = Weighted average observed arrival delay in RNAS on day t;

LQ (t) = Weighted average arrival deterministic queuing delay in #gion under

consideration on day t;

SQ (t) = Weighted average arrival deterministic queuing delay in RNAS on day t;
Ic = Daily IMC ratio component for the region on day t;

OP(t) = Total operations (arrivals) in RNAS on day t;

HHI (t) = Herfindahl-Hirschman Index in the region on day t;

Wk = Weather index of region k on day t;

S; = Seasonal dummy variable, set to 1 if daily arrival delaypserved in quarter i and

0 otherwise;

D,, = Yearly/Demand Management Dummy Variable, set to 1 if dailiwardelay is

observed in time period m and O otherwise;

v(t) and u(t) = Stochastic error terms; and

a,p.0.0,andy 4re coefficients.
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6.4 Estimation Results

We used 3SLS regression to estimate the coefficients in thquaien
simultaneous equation models and compare the outcomes from diffeyemisre Table
19 shows the regression estimates for the region equations imeallegions considered
in this research. Due to space limitations, we have not lieeedegression results for
RNAS equations, but we have summarized the effect of delay m regoon on the

RNAS in Table 19.

The 3SLS results shown in Table 19 indicate that for all regim@sage queuing
delay, delay from the RNAS, and weather are significant fa¢ghoghlighted in bold). It
also shows that for all regions, the imbalance between camaditylemand is a major
contributing factor to average daily arrival delay. However,nibgative coefficient for
the quadratic term of average queuing delay shows that this thctmishes as average
gueuing delay increases. The R-square values from the tabitly dhehcate that the

model captured considerable variation in the average daily arrival delthyha segions.

The estimated coefficients of IMC ratio components show thay detaeases due
to the increase of adverse weather conditions, which is intuitoaiect and easy to
observe. The estimates for LCC market share components asdikeofor different
regions. The outcomes indicate that a drift towards the monopbalg©foperations at a
particular secondary airport results in the increase of delayhe Washington DC,
Boston, New York, Los Angeles, Chicago, Houston, and Dallas regions. Tgths$ bbe
due to induced demand of passengers who generally opted for c@ndot short trips.

Also it was noticed that Legacy airlines shifted their openatto new international

90



markets to sustain themselves economically [62]. Hence LCC apesatven though
being beficial to airline passengers put huge pressure mortgiand the NAS. However,

for the South Florida region, the introduction of LCCs at primary dspmicreases
regional delay, and the introduction of LCCs to secondary airport retheekelay. As

can be observed in Table 20 this might be due to a lower percentage of LCC oparations
the South Florida region, not reaching its tipping point. San Franceg@m®a airports
behave distinctly, as the increase of LCCs reduced regional defssiderably. This
might be due to the presence of regional airlines operating lshol distances in and

around the Bay area itself.

Table 19 Estimation Results of Arrival Delays at Different U.S. Regiampbrt

Systems

Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 6 Reg 7 Reg 8 g9Re
R-square 0.591|  0.583 0.592 0.483 0.631 0.492 0.504 0.508 | 0.486
Intercept -8.833 | 6.667 | 0918 | 3546 | 32.274 9295 | 50.256 | 16.116 | 8.638
dA(‘E’g)‘;"ge queuing |\ 046 | 0140 | 1.251 | 0.558 0.201 0.486 0.99 | 0.408 | 0.216
Quadratic average
queuing delay at 0.000 | 0000 | -0.013 | -0.002 0.000 -0.009 0.000 | -0.001 | 0.000
airport
géf;)i/c;tecém;a' 1014 | 0951 | 0356 | 0.394 1.413 0.694 0415 | 0385 | 0.564
IMCcomp1 0235 | 2086 | 0489 | 0437 1.627 0.945 2262 | 1141 | 1.378
IMCcomp?2 0.690
LCCcompl 0401 | 0062 | -3.184 | -0.713 2.011 52.043 | 85.102 | 57.202 | 4.754
LCCcomp2 0.335 -0.518 1.292 -23.304 | 11.457 | -2.387 | -44.233
HHI_region 21583 | -3.431 | -5688 | 0435 | -85.808 | -6.247 | -77.972 | -16.831 | -19.357
Thunderstorm Ratio
Region 01 0073 | 1.921 | 0426 | -0.660 | -0.561 13.367 | 0011 | 0760 | -0.631
Region 02 -0.789 | -1.459 | -1.546 | -1.393 | -1.880 -0.386 0407 | 0689 | 17.853
Region 03 -0.092 | -0.039 | -0.667 | -0.738 | -0.089 0.778 0.250 | -0.227 | 0.732
Region 04 13.583 | 3.926 | -0.271 | -1.420 9.718 4771 1.605 | 2691 | 0.494
Region 05 1759 | -5.111 | -1.074 | -0.316 | -7.051 2595 | -3.726 | -5.621 | -4.979
Region 06 3756 | -4.119 | 2041 | 1531 -8.302 -4.362 0.783 | 22.973 | 14.633
Region 07 0779 | 2496 | -1220 | -1.641 2.783 -0.100 | -1.540 | 3.774 | -1.938
Region 08 1.047 | 5303 | 0884 | 7.467 4.992 0.194 | -3.464 | 0406 | 1.746
Region 09 -4.435 | -8.069 | 19.159 | 25204 | -8.743 -4582 | -8.425 | -7.497 | -9.231

91



Table 19: Continued

Region 10 -0.540 -2.152 0.336 0.739 -3.116 -0.341 4.291 0.449 1.581
Region 11 5.370 17.070 1.202 1271 26.613 0.051 -10.043 0.764 -0.189
Region 12 -0.095 -3.740 1.867 0.300 -6.815 -6.453 37.806 -4.017 -4.976
Region 13 -2.147 | -0.042 0.608 0.696 -0.670 -1.567 6.195 -2.227 -0.951
Region 14 1.081 1.294 1.338 0.842 -0.429 -1.200 1.012 -3.251 -0.891
Region 15 -3.267 | -2.257 1.539 1.885 -5.081 -0.352 1912 2.195 3.824
Region 16 0.066 -3.921 8.294 1.565 -0.118 4.086 -7.081 0.014 -7.012
Demand Mgt.

Regimes

Sepb 0.121 -0.445 -2.847 -1.761 -1.651 -0.017 -0.280 -0.187 -0.994
Sepa 2.894 -2.742 0.463 -4.671 -1.769 1.596 -5.755 -1.488 -1.566
Year2002 1411 -2.872 0.954 -1.266 -1.945 1.013 -5.658 -0.514 | -0.090
Year2003 1.181 -2.432 1.821 -1.374 -2.779 2.288 -4.840 -0.628 0.013
CapA -0.023

Year2004 -0.485 | -3.141 3.104 0.105 -7.748 2.907 -3.533 -0.203 1.184
Year2005 -1.327 -4.168 5.419 1.510 -5.416 3.207 -2.864 -0.712 1.190
LOA -0.419

Year2006 -1.141 -3.887 6.972 2.225 -7.309 2.710 -1.694 0.004 3.837
Year2007 -0.825 -3.474 8.281 1.365 -7.167 4.192 -2.510 1.262 2.546
Year2008 -1.582 | -4.361 10.941 2.091 -10.235 5.991 -1.918 0.443 3.105
Year2009 -1.340 -3.774 13.287 2.252 -9.621 7.428 -4.898 -0.516 1.901
Year2010 -0.824 | -2.675 16.364 2.403 -10.712 8.035 -2.867 0.470 2.745
quarter2 0.828 0.460 -0.208 -1.011 1.587 0.662 -0.976 -0.623 -0.054
quarter3 0.531 1.219 -0.443 -0.699 1.922 0.104 -0.525 -0.467 -0.520
quarter4 -0.598 | -0.243 1.399 0.556 0.050 0.248 0.685 0.449 0.939

Note: Figures in bold are significant for 95% lewéconfidence.

Highlighted cells for LCCcompl and LCCcomp2 indecatdividual airport share and no correlation.
Highlighted cells for dummy variables indicate sitdtnagement instead of yearly dummy.
The column headings represent the following regions

Reg 1 = Washington Metropolitan Area, comprisingfDCAD and BWO airports
Reg 2 = New England Area, comprising BOS, MHT aN@®Rirports

Reg 3 = San Francisco Bay Area, comprising SFO, @A&K SJC airports
Reg 4 = Greater Los Angeles Area, comprising LASH, SNA, BUR and ONT airports
Reg 5 = New York Metropolitan Area, comprising JGIGA, EWR and ISP airports
Reg 6 = South Florida Metropolitan Area, comprisiigh and FLL airports
Reg 7 = Chicago Metropolitan Area, comprising ORId &DW airports

Reg 8 = Dallas—Fort Worth Metropolitan Area, corspry DFW and DAL airports

Reg 9 = Greater Houston Area, comprising |AH and_Hrports

92




Table 20 Percentage of LCC Operations at Airports in Each Region

Region Airports (% LCC share)

Washington—

Baltimore DCA (6.10%) BWI (59.14%) IAD (23.97%)
New England BOS (13.85 %)| MHT (37.16%) PVD (38.62%)

SF Bay Region

SFO (8.91%)

OAK (61.94%)

SJC (47.73%)

Los Angeles LAX (19.39%) | LGB (57.00%) ONT (41.31%) SNA (26.83%) BUR (58.61%)
New York EWR (6.23 %) ISP (75.32 %) JFK (30.55%) LGA (129p -

South Florida MIA (2.22%) FLL (35.32%)

Chicago ORD (7.59%) MDW (84.80%)

Dallas DFW (2.08 %) | DAL (85.33%) - -

Houston IAH (1.17 %) HOU (86.72 %)

The estimates for the HHI index for each region (Table 21) atelithat for every
region except the Washington-Baltimore and Los Angeles areassraase in HHI will
lead to the reduction of delay. This is a clear indication th#t an increase in
competitiveness, there are more interactions and conflicts, thieasnog delay. The
results for the convective weather indicate that most of theorésr are affected
significantly by the convective weather in the same region. résets from the yearly
dummy variables or demand management regimes for some regionsh&hewerage
daily arrival delay trend from 2000 to 2010. For all the regionsptxaé&ew, the average
daily arrival delay decreased relatively from 2000 to 2010. hén regional airport
systems of the San Francisco Bay area, Los Angeles, MiachiHauston, the arrival
delay decreased drastically after 9/11 and slowly incretsélde level of pre—9/11 in
2010. The increase of delay in the Miami and San Francisco Bayegions was higher
than any other regions. The arrival delay at most of the asrpedreased after 9/11 and
then increased gradually afterwards. The slot management teebragairports in New

York, Washington, and Chicago had a definite impact on reducing delay in the regions.
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Table 21 HHI for Each Region

. Washington-| New SF Los New South | Chicago| Dallas | Houston
Region . Bay | Angeles| York : ; . i
Baltimore | England : X . Florida| Region | Region| Region
Region| Region | Region
HHI 0.344 0.750 0.390 0.532 0.33% 0.514 0.678 0.1570.673

6.5 Elasticity Analysis

Figure 21 shows the elasticity of the regional delay to thaydef RNAS in
different quarters of the year 2010. The significant effect sdinoen Regions 1, 5 and 6,
i.e., Washington—Baltimore, New York, and Miami regions. On the cgnithanges in
the delays in the California and Texas regions have very dftect on the delay of
RNAS. It shows that in the first quarter, a one percent a&seren delays in different

regions will lead to about 1.6 percent increase in the delay in the RNAS.

94



1.8
Reg 9
1.6
Reg 8
1.4 - - - g
1.2 ] W Reg 7
2
e 1 Reg 6
7]
5., B BB -
11|
0.6 . T mReg 4
0.4 B Reg3
0.2 mReg 2
O T 1
HRegl
4
Quarter

Note: The lables represent the following regions:
Reg 1 = Washington Metropolitan Area, comprisingf)@D and BWO airports
Reg 2 = New England Area, comprising BOS, MHT aN@Rirports
Reg 3 = San Francisco Bay Area, comprising SFO, @A&K SJC airports
Reg 4 = Greater Los Angeles Area, comprising LAGH, SNA, BUR and ONT airports
Reg 5 = New York Metropolitan Area, comprising JGIGA, EWR and ISP airports
Reg 6 = South Florida Metropolitan Area, comprisMigh and FLL airports
Reg 7 = Chicago Metropolitan Area, comprising ORId &DW airports
Reg 8 = Dallas—Fort Worth Metropolitan Area, corsjiiy DFW and DAL airports
Reg 9 = Greater Houston Area, comprising IAH and_Hrports

Figure 21 Effect of Delay at Each Region on RNAS for Different @usun 2010

Figure 22 presents the effects of average queuing delay ondtaga\arrival delay
in all regions. The elasticities were calculated for@lirfquarters of 2010. It can be seen
from Figure 22 that the average queuing delay has a gragiact to the regions of San
Francisco, New York, and Chicago, i.e., the increase of imbalzgteeeen capacity and
demand will lead to a significant increase of arrival delays in these regtuesnight be
due to closed locations, congested airspace, and all three regionsnb#iegtop five

ranked regions in domestic origin-destination passenger demand [60].
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Note:

Column headings represent the following regio

Reg 1 = Washington Metropolitan Area, comprisingfQ@AD, and BWO airports

Reg 2 = Greater Boston Area, comprising BOS, MHifl BVD airports

Reg 3 = San Francisco Bay Area, comprising SFO, O#id SJC airports

Reg 4 = Greater Los Angeles Area, comprising LAGH, SNA, BUR, and ONT airports
Reg 5 = New York Metropolitan Area, comprising J&GA, EWR, and ISP airports
Reg 6 = South Florida Metropolitan Area, comprisibh and FLL airports

Reg 7 = Chicago Metropolitan Area, comprising ORI &DW airports

Reg 8 = Dallas-Fort Worth Metropolitan Area, corsprg DFW and DAL airports

Reg 9 = Greater Houston Area, comprising IAH and_Hgrports

Figure 22 Average Queuing Delay Elasticity for Different Quarteiédar 2010
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CHAPTER VII

CONCLUSION

The literature review uncovered that airport delay always been a major
problem for the aviation industry. Although several previous studigsatet the delay
propagated through an individual flight from an airport to the systemeview of the
literature shows that research pertaining to interactions antbeg entire air
transportation system has not been conducted. The NextGen alsiiesleatport
congestion and flight delay as two of the important issues forvilaéica industry [4].
This research illustrates the effectiveness of applying utivariate simultaneous
equation model to study delay propagation from a single airport to aitiperts and to

the rest of the system, and vice versa.

In the first section, the model developed for LGA and ORD takesaotount
most of the delay causal factors. The model estimatesfdat ef each of these factors
using 2SLS regression. This approach is generally used to deathwibidirectional
relationship that exists between dependent variables, in thisecasgle airport and the
system. The estimated results clearly point toward the egistterdependency between
flight delay at an individual airport and the NAS. It is sé#eat the delay at LGA and
ORD significantly depends on delay at other airports and, slymilaGA and ORD are

major contributors to delay in the system.

97



The research also studies the system-wide benefit of capadiigncement or
improvement in demand management strategies on delay in the NA$edults indicate
that with an increase in capacity there is a proportiondigcti®on in delay at the airport
and the NAS. However, this phenomenon is more predominant at ORD th&Aat
Through further observation, it can be seen that the major contribatitoy for delay at
ORD is queuing delay, while adverse weather is a major problé&@ At This analysis
helps to determine the effectiveness of capacity improvemewntscan be used as a
decision making tool for airport improvement projects that requiresivescapital

investments in the future.

In the second part, models were developed for 34 OEP airports nakescount
all the delay causal factors mentioned earlier. The modetass the effect of each of
these factors using the 3SLS regression. This method is amplymnbi-directional
relationship that exists between dependent and independent variathlsssaitable for
equations with correlated error terms. The estimated resulgs tbequantify the

interdependency between flight delay at different airports and the NAS.

The regression results show that queuing delay and adverse waehaajor
delay causal factors at most of the studied airports. Airetpfipment type is seen to be
one of the important delay contributors in the case of a few airpdntxe large aircraft
operations result in increasing average daily arrival delaypofs located in same
geographic regions had more interactions than others. Major airpach as PDX,
MCO, ORD, and EWR had a higher impact on average arrival delaghet airports.
From schedule-based models, it was found that a few airporta hadative impact on

arrival delay at other airports. However, this scenario is subdutteinase of flight-
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plan-based results. The graphical representation for differeatgeriods from the year
2000 to 2008 demonstrates a significant delay variation. Most aitpexitsheir delay

reduced after 9/11 and gradually returned to pre-9/11 levels, with a peak in 2007.

In the report of NextGen Concepts of Operations, 15 metropoliteas aare
identified as regional airports that have potential to provide additeapacity. The 15
metropolitan areas are Atlanta, Charlotte, Chicago, Houston, LassVe&gs Angeles,
Minneapolis, New York, Philadelphia, Phoenix, San Diego, San FranS8sattle, South
Florida, and Washington—Baltimore [7]. The change in air transpmrtatructure will
usher the growth of air travel and economic activity and thengghan regional
geography, demographic, and industrial distributions. The “Southwest Effeatirsthe
New England region demonstrated the potential of regional airpetémyplanning.
Investigation of the regional airport system in Boston [8] shows #@iyBsystem
development, with passenger demand shared among the airports initme kégre
importantly, the benefits from the air transportation industry cbaldhared by a greater
area and could encourage the development of the regional economy. tBisen
dynamically-changing background, it is important to have a tool ima&st the evolution
of regional airport systems and their impact on the NAS. Thiy gitalides such a tool

for decision makers and aviation planners.

Delay propagation has been studied extensively, primarily from @oswopic
perspective. To the best knowledge of the authors, this study is réheefiiort to
investigate delay propagation considering multi-airport systems.stidly illustrates the
effectiveness of applying a multivariate simultaneous equatiodemto study delay

propagation from a multi-airport system to the rest of the NA, \ace versa. The
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regression results show that queuing delay and adverse weatleajaredelay causal
factors in most of the studied regions. However, the delay @tgstaused by these two
factors varies among different regions. Two variables weredated to indicate the
characteristics of multi-airport systems—HHI and LCC markedre. The estimated
coefficients of HHI show that more evenly-distributed operatiom®org different

airports lead to increases in regional-level arrival delalyis Texplains the inter-
dependability among different airports, existing conflicts inpaice, and the need for
proper regional level airport and airspace planning. The effett€@fmarket share are
not consistent. In most regions, the increase in LCC market shtasesondary airports
leads to an increase in regional arrival delay. However, thiotigrue for the South
Florida region, with FLL having the lowest LCC operations amoggrsgary airports, as

seen in Table 20.

Hence, it is necessary for airport planners to find the threstwoldairline
operations at individual airports. Furthermore, the outcomes of thily show that
delays in the Washington—Baltimore, New York, and South Floridamediave greater

impacts on delays in the RNAS.

To further this research, we need to explore other explanatdables such as
capacity ratio, runway configuration, wind speed, and demand managesgen¢s for
all the airports. To further this research, we can performapatialysis pertaining to
individual airports and multi-airport regions. We also need to exptordepth each
individual airport and regional delay trends and the impacts they drathe system.

Figure 11 to Figure 18 shows us the trend of average daily allele} at each of the 34
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OEP airports. It would be interesting to explore the factorsctaffg those delays and

ways to reduce them.

We also need to conduct experiments on the specification of thel mod the
methodology used. Furthermore an important and necessary research bgoto
explore the economic implications of these delays on differentresrpod the regions in

the US.
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Appendix |- OEP Airports

3\

al

ATL Atlanta Hartsfield International
BOS Boston Logan International

BWI Baltimore-Washington International
CLE Cleveland-Hopkins International
CLT Charlotte/Douglas International
CVG Cincinnati-Northern Kentucky
DCA Ronald Reagan National

DEN Denver International

DFW Dallas-Fort Worth International
DTW Detroit Metro Wayne County

EWR Newark International

FLL Fort Lauderdale-Hollywood Internation:
IAD Washington Dulles International
IAH George Bush Intercontinental

JFK New York John F. Kennedy Internatior
HNL Honolulu International

STL Lambert St. Louis International
LAS Las Vegas McCarran International
LAX Los Angeles International

LGA New York LaGuardia

MCO Orlando International

MDW Chicago Midway

MEM Memphis International

MIA Miami International

MSP Minneapolis-St Paul International
ORD Chicago O'Hare International
PDX Portland International

PHL Philadelphia International

PHX Phoenix Sky Harbor International
PIT Greater Pittsburgh International
SAN San Diego International Lindbergh
SEA Seattle -Tacoma International
SFO San Francisco International

SLC Salt Lake City International

TPA Tampa International
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Appendix II- Data Dictionary

- LOCID: Every Airport has specific airport ID and it is the firwmin of the dataset
-YYYYMM : Year and Month
- DAY: Day
- HOUR: Local Hour (0 to 23)
- QTR: Quarter Hour (1 to 4)
1 =00 - 14 minutes
2 =15-29 minutes
3 =30 -44 minutes
4 =45 - 59 minutes
- DIaSchOffA: Average OAG-Based Departure Delay Minutes
- DlaSchArrA: Average OAG-Based Arrival Delay Minutes
- DIaFPOffA: Average Flight Plan Based Departure Delay Minutes
- DlaFPArrA: Average Flight Plan Based Arrival Delay Minutes
- MetricDep: Count of ASPM Departures
- MetricArr: Count of ASPM Arrivals
- SchDep: Count of Scheduled Departures
- SchArr: Count of Scheduled Arrivals
- MC: Meteorological Conditions Flag (I-instrument, V-Visual)
- ADR: Airport supplied Departure Rate
- AAR: Airport supplied Arrival Rate
- OBPAX: Average observed number of passengers at the airport in a month

- Seats: Average number of seats in aircraft at the airport in a month
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Appendix Il (Continued)
- ETMS_EQPT: IATA Aircraft Equipment Code from Enhanced Trafflanagement

Systems (ETMS)

- THUN: Value ‘1’ if the station reports thunderstorm, ‘0’ otherwise
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