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ABSTRACT 

 

Airline delays lead to a tremendous loss of time and resources and cost billions of 

dollars every year in the United States (U.S.).  At certain times, individual airports 

become bottlenecks within the National Airspace System (NAS).  To explore solutions 

for reducing the delay, it is essential to understand factors causing flight delay and its 

impact on airports in the NAS.  Major causal factors of flight delay at airports include 

over-scheduling, en-route convective weather, reduced ceiling and visibility around 

airports, and upstream delay propagation.  Delay at one airport can be passed on to other 

airports in the NAS, in another word, operational improvement at one airport will have 

network effect and benefit to other airports as well.  Moreover delay at different airports 

in a region might agglomerate to cause delay at different regions in the NAS.  Hence, to 

optimally allocate NAS resources, e.g. capital investment for airport capacity expansion, 

the impact of single airport delay to the NAS and vice versa need to be investigated and 

quantified. 

For air transportation planning and policy purposes, this study concentrates on 

providing answers from a macroscopic point of view without being distracted by volatile 

operational details.  In the first part, we estimate the interaction between flight delay at 

one single airport and delay at the rest of the NAS (RNAS) using case study for 

LaGuardia (LGA) and Chicago O’Hare (ORD) airports.  In the second part, this research 

applies multivariate simultaneous regression models to quantify airport delay spillover 
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effects across 34 of the 35 Operational Evolution Plan (OEP) airports and the RNAS.  

Observing the interactions between these two models, they are regressed with an 

econometric technique; three stage least square (3SLS).  Thus, the regression results help 

us to determine the delay interactions between different airports and the RNAS and 

compare these airports based on delay propagation characteristics. Another significant 

contribution of this research is that, the estimated coefficients can be used for 

determining the marginal effects of all the delay causal factors presented in the model.   

Also, regional airport system development has been a hot topic of research in the 

air transportation community in recent years.  Many metropolitan regions are served with 

more than one airport making their operations synchronized and interdependent and are 

known as regional airport system.  This paper studies nine different prospective regions 

with multi-airport systems in the U.S. and identifies various key factors affecting the 

delay in these regions. Econometrics models and three stage least square (3SLS) 

estimation method are used to explore interdependency of delay at the multi-airport 

system and the RNAS.  Along with it, different factors affecting delay at the system and 

the RNAS is being identified from the research.  The outcomes from this research will 

help aviation planners understand the spillover effects of delays from multi-airport 

systems and provide decision support for future NAS improvement.  
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CHAPTER I  

 INTRODUCTION 

 

1.1 Background 

Air transportation industry is considered to be one of the most important 

components of our economy.  A report by the U.S. Department of Transportation and 

the FAA indicated that aviation accounts for over $1.3 trillion in economic activity, 

roughly 5.2 percent of U.S. Gross Domestic Product (GDP) in 2009 [1].  The report 

clearly states that US economy success greatly depends upon the economic success of 

our aviation system.  Considering all these circumstances and huge economic 

ramifications it is imperative for us to produce an efficient air transportation system for 

generations.  This forms the base of our inspiration to understand the air transportation 

system, find out the caveats like delay and capacity constraints and then finally suggest 

possible solutions to improve the system overall. 

Airport congestion and delay have been the focus of intense research during the 

last few decades.  The U.S. air transportation demand is constantly increasing 

throughout the years. Figure 1 shows the trend of domestic airline passengers and 

domestic flights departed from 1996 to 2011. It is seen that in recent years growth of 

passenger demand surpasses that of increase in number of flights.  
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Figure 1 US Domestic Airline Passenger and Flight Trend from 1996 to 2011 

Many major airports in the U.S. have significant delay problems due to this 

increased traffic demand and capacity imbalance. According to the Bureau of 

Transportation Statistics (BTS) in the U.S. Department of Transportation, less than 80 

percent of arriving flights were on time for the period from January 2011to December 

2011 [2].  The causes of flight delays include air carrier caused delays, late arrival of 

aircrafts, National Airspace System (NAS) delays, security delays, extreme weather, and 

delays due to cancelled or diverted flights.  Among these causes, the delay due to late 

arrival of aircrafts accounts for more than 25 percent of total flight delays.  As a result of 

the network structure of the NAS, delay at one airport is bound to affect delay at other 

airports.  

Then we have a perennial question of who pays for all these flight delays? 

Ultimately it affects all the components of air transportation system that includes 

airlines, passengers, airports, etc.  A recent study by Ball et al [3], estimated that in 
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2007, the total flight delay led to a loss of $32.9 billion to the U.S. economy.  The airline 

passengers were the most affected group with a loss of $16.7 billion due to the loss of 

passenger time, flight cancellations, and additional expenses of food and so on.  The 

second most affected groups were airlines raking up a loss of $8.3 billion. In a recessive 

economic period such an enormous loss is highly unacceptable and we need to take 

certain measures to curtail the delay.  

The Next Generation Air Transportation System (NextGen) plans for a highly-

efficient NAS by 2018, when the total flight delay will be reduced by 35 percent 

producing a benefit of  $23 billion to aviation industry and saving of about 1.4 billion 

gallons of aviation fuel [4].  The NextGen also estimates that the total flight operations 

will increase by 19 percent at the 35 major U.S. airports between 2009 and 2018 [4].  

Considering such enormous growth of air traffic on already-constrained resources, an 

appropriate action plan is needed to make this growth smooth and manageable on the 

airports.  The addition or extension of runways at airports and the development of 

innovative technologies and procedures are some of the methods that need to be 

explored and implemented to achieve the NextGen’s goal.  Nevertheless, such an 

extensive change to the current NAS will require huge capital backing from the 

government and ultimately by the tax payers.  According to one of the five-year plans 

that regulates the NAS modernization projects, popularly known as the Federal Aviation 

Administration (FAA) Capital Investment Plan (CIP), the FAA intends to invest about 

$20 billion during the years 2011 to 2015 for projects that modernize the existing 

system, increase airspace capacity, and introduce new technologies to achieve the 

planned NextGen capabilities  [5].  Nevertheless, the impact that an increase in resources 
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and therefore efficiency in a single airport will have on the efficiency of other airports 

remains undetermined.  This delay propagation has become one of the major problems 

of the air transportation industry. With increasing cost of operations and the current 

economic crisis there is an urgent requirement of better technique to determine the 

factors causing delay and means to mitigate it.  From an air transportation planning and 

policy point of view, sufficient tools are needed to test the system-wide effect of such 

investment activities and help further strategic planning.  The research proposed in this 

paper will help this process by quantifying the interactions among airports in the U.S. 

This research shows a collective comparison among airports and regions across 

the U.S. and the delay causal variables at each airport and predicts which interactions 

among airports are likely to create the highest or most regular delays. A case study in this 

research also helps to determine the benefits of capacity expansion at different airports 

and how it will affect the system overall. 

1.2 Research Contribution  

This research proposes the path of aggregate analysis conducted by the authors 

explained in detail in further chapters and intends not only to investigate the impact of 

single airport delay on other airports in the NAS (denoted as RNAS hereafter, i.e. the rest 

of the NAS excluding the reference airport(s) or multi-airport system) but also to explore 

how the delay spillover is widely dispersed across the RNAS. Causal factors of the 

average daily arrival delays are explored, and multivariate equations are developed for all 

airports under consideration along with the RNAS. The average daily arrival delay is the 

dependent variable in the equation for each airport and the RNAS, while simultaneously 
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being considered as an independent variable in the equation of other airports and the 

RNAS.  The estimated coefficients can be used to compute marginal effect of delay 

increase of that airport to the other airports or the RNAS.  This type of model is widely 

used in economics and business management research studies.  

Our model tries to establish the correlation between various delay causal factors at 

the airports and their effects on the entire system. Most previous studies estimate the 

delay propagated through an individual flight from an airport to the system. In our 

research we have tried to estimate and compare flight delay propagation from each 

individual airport to another in the US and vice versa.  We have studied different factors 

causing delay and the extent of delay propagation amongst 34 Operational Evolution 

Partnership (OEP) airports except Honolulu International Airport (HNL) and RNAS 

containing the remaining of 74 ASPM airports together.  This research illustrated the 

effectiveness of applying multivariate simultaneous equation model to study delay 

propagation from a single airport to other airports and to the rest of the system, and vice 

versa.  The model estimates the effect of each of these factors using the three-staged least 

square (3SLS) method.  This method is generally used to deal with the bidirectional 

relationship that exists between dependent and independent variables and suitable for the 

equations with correlated error terms. The estimated results help quantify the 

interdependency between flight delays at different airports and the NAS.  

Going a step further, a collective comparison among airports for different regions 

in the U.S. is explored.  The research includes identifying the delay causal variables at 

each such region and the interactions among regions that are likely to create the highest 

or most regular delays for the RNAS.  The regional airport system is defined as a system 
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with set of airports that serve airline traffic of a metropolitan area [6].  Previously all the 

individual airports served only their catchment areas.  However with the increase in 

population, city’s geographical growth, better ground transportation modes and 

sometimes political factors, there has been steady increase in number of airports within a 

region or a metropolitan area.  Most of the major cities in the US are served by more than 

one airport.  Many of these airports have coordinated operations in terms of sharing 

regional airspace, some act as a reliever airport in case of over shooting of capacity at the 

major airport(s) and also help reduce environmental effects like noise and air pollution in 

one specific area.  Hence, it was worthy of research effort to explore the impact of these 

groups of airports in a region on other airports.  

There is also a case of major airports situated very close to each other. Three of 

the world’s busiest airports, namely LaGuardia (LGA), John F Kennedy (JFK) and 

Newark (EWR) are situated not very far from each other and have coordinated operations 

both in air and ground [7].  The New York airspace being one the most congested in the 

world with both domestic and international air traffic, the FAA has felt the need to 

increase the capacity of airports in the New York region.  However we know that runway 

expansion requires enormous capital investment, project delays, public outcry and 

environmental concerns.  Hence it is important to identify the potential for alternative 

airports to meet regional capacity needs and understand the potential of airport operation 

that can make more efficient use of existing resources and better use of limited funds for 

airport development.  However in some cases the airports might be competing against 

each other for air service demand as in the case of Boston Logan (BOS), Manchester 

(MHT) and Providence (PCD)  airports in the New England region of the U.S. [8]. The 



7 
 

BOS airport is operated by legacy airlines while the MHT and the PVD airports have 

large number of operations offered by low cost carriers (LCC).  Both the airport 

operations completely differ from each other in terms of their management. Hence, it 

would be interesting to learn the impact of operations at these airports in comparison to 

other airports in the U.S. 

In today’s world, delay propagation and airport capacity constraints have become 

some of the major problems of the air transportation industry.  Various researchers have 

tried to understand the microscopic perspective of delay propagation, i.e., delay 

propagation from an individual flight to another flight or the system (Beatty et al. [9],  

Schaefer and Millner [10], Wang et al. [11] Ahmad Beygi et al. [12]).  However, their 

studies capture the details of only a few components of the NAS, such as specific 

airports, sectors, or individual flights, but fail to reflect the system overall.  Our research 

takes the first step in considering all the airports in the U.S. together and estimates their 

effects on the NAS.  It tries to determine the relationship between various delay causal 

factors at the airports and their effects on the entire system.  It also initiates a step to 

determine the advantages and disadvantages of a regional airport system wherein two or 

more airports operate in a synchronized fashion. Total eleven regional airport systems in 

the US were studied in this research depending upon regional traffic share and proximity 

[13].  However due to the difficulty in terms of data availability the final analysis was 

limited to nine regions with the exclusion of the Orlando and the Tampa region. The 

research involved steps to determine the percentage share of air traffic demand in all 

airports in these regions and determine their delay at the regional level. The aggregate 
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delay was then used to determine the combined impact on airports in other regions. The 

results obtained were very interesting and will be explained in detail further.  

The remainder of this proposal is organized as follows. Chapter II summarizes the 

existing literature on delay propagation, factors affecting delay and the regional airport 

systems.  Our approach related to this research is explained in detail in Chapter III.  

Chapter IV presents our earlier work related to the case study of two airports Chicago 

O’Hare (ORD) and LaGuardia (LGA), methodology and the outcomes.  Chapter V 

specifies multivariate simultaneous equations and delay propagation for 34 OEP airports. 

Chapter VI presents the extension of the methodology to the multi-airport system.  

Chapter VII concludes the study and provides recommendations for further research.  
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CHAPTER II 

LITERATURE REVIEW 

The NAS can be defined as a complex agglomeration of different aviation 

components like airports, airspace, aircrafts, different facilities, etc working together for 

the safe and efficient airline operations. Since there are so many components involved 

and most of them are inter-connected, the delay at one component gets easily propagated 

to others. This research tries to understand different factors affecting delay and their 

immediate impacts.  Different studies have already been conducted on delay in the NAS 

and its propagation. The following section gives an insight of all the studies conducted 

before.  

2.1 Microscopic Methods 

Beatty et al. [9] developed the concept of a delay multiplier for understanding the 

effect of initial flight delay on an airline’s operating schedule. They assumed that various 

airline resources such as crew members, aircraft, passengers, and gate space affect flight 

delay. The delay multiplier was used to determine all potential downstream flight delays 

connected to that initial flight. Their research concludes that the existence of a delay 

multiplier is due to the branching nature of crew and aircraft sequences. The research 

estimated the delay propagation from one airport to the other based on the connectivity of 

airline’s operating resources and its schedule. 
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Delay propagation has also been studied by Schaefer and Millner [10] using the 

detailed policy assessment tool. They modeled the propagation of delay throughout 

airports and airspace sectors given inputs such as air traffic demand and airport 

capacities. They synthesized aircraft assignment given the air traffic data from Official 

Airline Guide (OAG) and then used the information to simulate delay propagation 

according to departure and arrival queues between origin and destination airports. Three 

airports were analyzed using several combinations of Visual Meteorological Conditions 

(VMC) and Instrument Meteorological Conditions (IMC) when capacities reduced due to 

inclement weather. The results show that the delay augments with prolonged duration of 

IMC at the airports. They also concluded that although the propagation effect for the first 

leg was significant, it diminished along each subsequent leg. 

Further research by Wang et al. [11] developed an analytical model to separate 

controllable factors that influence delays and their propagation in the NAS from other 

factors that are random variables in a given scenario. The controllable factors are 

scheduled and minimum airport turnaround time, slack for airport turnaround time, 

scheduled and minimum flight time between airports, and fixed flight time allowance, 

while the variable factors considered in the research were variable airport turnaround 

time and variable airport flight time. The model analyzed the interaction between fixed 

and variable delay components at each airport under both VMC and IMC conditions and 

emphasized the importance of schedule parameters on delay propagation in the NAS. 

Their study shows that airports with less slack time between flights had more delay.  

A recent research by AhmadBeygi et al  [12] explores a similar observation in 

terms of slack time between two flights.  Their study indicates that the delay of one flight 
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can propagate to disrupt one or many subsequent downstream flights that await the 

aircraft and crew from the delayed flight.  In such case, the presence of well-planned 

slack between flights is critical for absorbing the disruption.  All of these studies 

discussed above attempt to show how common resources and weighted airline schedules 

can be major causes of delay propagation and are microscopic in perspective.  These 

research studies are clear indicators that the issue of delay propagation at airports is 

prevalent.   

2.2 Macroscopic Methods 

 The studies discussed above attempt to show how common resources and 

weighted airline schedules can be major causes of delay propagation. These research 

studies are clear indicators that the issue of delay propagation at airports is prevalent.   

A macroscopic research by Diana [14] proposed a methodology to compute delay 

propagation from airports based on the Discrete Fourier Transform (DFT). The airports 

sampled in his study vary in terms of location and traffic throughput. The research 

assumed that the delay propagation is similar as wave propagation where the delays 

represent signals and the NAS acts as the medium. Airlines anticipate delays and build 

precautionary buffer in their schedule to absorb the propagation effects. In his study, he 

applied the delay concept in airline on-time performance, i.e. only arrival flights with 

more than fifteen minutes delay past schedule are considered as delayed flights. Diana 

tried to investigate whether market concentrated airports (i.e. with higher traffic 

throughput) have more delay propagation effects than less concentrated airports. The 

outcomes show that, when delay propagation is considered as a signal through the 

system, it is not dependent on the degree of market concentration. 
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A recent study done by Laskey et al. [15] takes into consideration the dynamic 

aspects of flight delay, such as weather effects, wind speed, flight cancellations, and 

others, to estimate delay propagation in the NAS. They used Bayesian Networks (BN) to 

quantitatively analyze major factors affecting each delay component and the relationship 

among the delay components. The model studied weather effects and flight cancellations 

as two variables that might have an effect on flight delays. This research tried to 

demonstrate the system level impact due to delay at individual airports under different 

weather conditions.  In their study, flight arrival delay was decomposed into Gate-In 

Delay, Turn Around Delay, Gate-Out Delay, Taxi-Out Delay, Airborne Delay, and Taxi-

In Delay, each of which was considered as a dependent variable for that phase of the 

flight, with delays from previous phases as independent variables. The principal objective 

of this research was to estimate the impact of changes in tactical decisions and policies 

with respect to the ground delay program (GDP), rescheduling, and cancelled flights on 

delay in the system. Nevertheless, only three months of data were used to identify the 

critical phase of the flights from Chicago O’ Hare International Airport (ORD) and 

Hatrsfield-Jackson Atlanta International Airport (ATL).  

A similar study by Liu and Ma [16] used Bayesian Network to study flight delay 

and its propagation for airports in China. They established a direct relationship between 

arrival and departure delay at the airport studied. Primarily the delay was divided into 

normal, light, medium and heavy categories depending upon different times, ranging 

from less than 20 minutes for normal to more than 60 minutes for heavy. It was seen that 

the delay propagation is highest during medium and heavy delay period. It was also 

observed that flight cancellation is one technique that could be utilized to reduce flight 
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delays. In both the Bayesian network studies discussed above, it is seen that few 

continuous variables needed to be discretized and this could produce erroneous results.  

Hansen and Zhang [17] devised a macroscopic technique to study the delay 

propagation in the NAS. They studied the operational performance at LGA under 

different demand management regimes using multivariate simultaneous-equation 

regression model.  The outcome of that research shows that, according to historical data 

from 2000 to 2004, the increase in one minute average-daily-arrival delay at the 

LaGuardia when compared to airline schedule causes an increase in the average-daily-

arrival delay at non-LGA airports by 1.7 minute.  The research indentified various factors 

causing arrival delay at LGA and non-LGA airports and estimated the impact of each of 

these factors on the total delay. 

Morisset and Odoni  [18] compared the capacity, schedule and reliability at major 

airports in Europe and the US.  After studying 34 busiest airports in both US and Europe 

it was found that the European airports follow a conservative approach of operating at 

IFR rules for all weather conditions.  On the contrary all the US airports operate with 

higher capacities using VFR rules for most of time. Due to this the delays at the US 

airports are very volatile and vary a lot due to weather, higher demand and constrained 

scheduling making it less reliable than the airports in the Europe.  Our research tries to 

identify this effect of adverse weather and regional airport systems on the delay in the 

system. 
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2.3 Demand Management Regimes 

 In 1968, due to the increase in the number of air traffic operations, the airline slot 

management strategy called, High Density Rule (HDR) was applied at five major airports 

in the U.S. namely ORD, LGA, John F Kennedy International (JFK), Ronal Reagan 

Washington National (DCA) and Newark Liberty International (EWR) airports 

(Berardino [19]). Eventually it was exempted at EWR airport at very early stages. In 

2000’s, this slot control were gradually removed from ORD, LGA and JFK airports, 

however it still remained at the DCA airport. The demand management strategies at 

LGA, JFK and ORD have always been parallel, as shown in Figure 2 [19]. During this 

period, numerous demand management strategies were employed at these airports.  

The HDR period at LGA was characterized by limiting the hourly slots to 68 

between 6:00 am and 12:00 midnight. The slots were initially regulated by a scheduling 

committee composed of representatives from different airlines. Later in 1986, the 

scheduling committee was replaced by “use-it-or-lose-it” and “buy-sell” rules (Donohue 

[20]).  However, with no airline willing to sell its slots, FAA granted 42 slot exemptions 

for various air services to LGA, especially for ones that were new entrant airlines or 

essential air services.  As a result, by 1997, 30 new entrant exemptions were approved for 

LGA [20].  In April 2000, a demand management strategy called AIR-21 was introduced 

to eliminate slot control.  During AIR-21, delay increased dramatically due to an 

increasing number of requests for slot exemptions.  To overcome such delay, the FAA 

quashed the AIR-21 slot exemptions it had already granted and redistributed some of 

these exemptions by lottery.  It also capped the number of operations per hour for 

commercial flights to 75 from the initial 100 under AIR-21.  The terrorist attacks on 
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September 11, 2001, affected airport operations in many ways.  Beginning in 2002, air 

traffic increased each following year, leading to a period of over-scheduling, and HDR 

completely expired by 2007 [20].  

The JFK airport also had similar demand management regimes operating at the 

airport. The HDR strategy that was applied in 1968 expired only in January 2007.  

However, the operations were also affected by 9/11 incident wherein the total airport 

operations reduced a lot. In year 2004, there was an increase in airport capacity and 

subsequently increase in operations by Delta and Jet Blue airlines [19].  

 

Figure 2 Demand Management Regimes at ORD, LGA and JFK Airports 
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ORD, similarly, has its own demand management regimes affecting air traffic 

operations in and around the airport. As mentioned earlier, the HDR strategy was also 

applied at ORD in 1968, one that resulted in the slot control phenomenon by major 

airlines. In the 1990s, 53 new slot exemptions were created at ORD [20]. Gradually, the 

HDR strategy was reduced at ORD, and its complete elimination took place by 2002. The 

operations at ORD reduced greatly after 9/11; however, since 2002, there has been a 

general increase in air traffic, creating a period of over-scheduling, with more than 100 

daily operations at ORD. This period of increased operations made delay one of the 

major problems at ORD, resulting in the FAA negotiating a 5% reduction in American 

Airlines (AA) and United Airlines (UA) flights in January 2004. However, these vacated 

slots were quickly taken up by Northwest Airlines and Independence Air, resulting in a 

further reduction of AA and UA flights in June 2004 by 2.5% to reduce delays [20]. In 

August 2004, from a meeting between Federal officials and individual airlines, the 

scheduled arrivals of AA and UA flights were further reduced by 5 % during peak hours. 

Other airlines also agreed to some flight re-timings and limiting the number of scheduled 

arrivals. Finally, in August 2006, FAA stated a rule limiting the flight operations until the 

completion of first phase of ORD expansion in 2008 [20].  

Various researchers have tried to understand the regional airport system in the US 

and all over the world.  There also have been researches conducted on delay propagation 

from individual airports and causal factors of delay.  However, these studies capture the 

details of only a few components of the NAS, such as specific airports, sectors, or 

individual flights, but fail to reflect the system overall. Our previous research has tried to 
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capture the delay propagation phenomena from the system point of view.  In the 

following section we will look at all these studies related to the present work. 

2.4 Multi-Airport System 

The FAA Fact 2 report has identified 14 airports in 10 major metropolitan regions  

in the US to be capacity constrained by 2015 and even more in 2025 [7] [21].  While 

FAA expects individual airports to improve their capacity, it also expects them to 

investigate the possibility of the Regional Airport System Plans (RASP) involving 

development of regional transportation system. In order to take the correct decision an 

airport planner needs to look at different alternatives like capital costs, aviation safety, 

airspace utilization, requirements, environmental impacts, delay and other operational 

costs, consistency with local area comprehensive and transportation plans, and land-use 

availability and compatibility [7].  Table 1, mentions the names of the airports to be 

capacity constrained after planned improvements; however, the number is expected to 

increase to 27 by 2025, if no improvements occur during this period [21] . Some of these 

metropolitan regions have been studied in this research and will be explained in detail. 

Considering all these difficulties experienced by the existing system and even 

accomplishing planned improvements, developing a RASP for a metropolitan region 

might reduce regional congestion, develop airport benefits like lesser delays and more 

revenue generation and also produce political benefits like regional infrastructure 

development and positive environmental impacts. A Citigroup study in 2005 [22] also 

recommended decentralization of passengers and air cargo services from congested urban 
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airports to nearby suburban airports for balanced capacity utilization.  The Table 2 shows 

names of all the nine regions studied in this paper with the airports.  

Table 1 Airports Needing Capacity Enhancement by 2015 and 2025 according to 

the FAA Fact 2 report 

Year Airports Metropolitan Region 
2015 and 2025, 
even after 
planned 
improvements 

Newark Liberty International (EWR) 
LaGuardia (LGA) 
Long Beach (LGB) 
Oakland International (OAK) 
Philadelphia International (PHL) 
John Wayne (SNA) 

New York 
New York 
Los Angeles 
San Francisco Bay Area  
Philadelphia 
Los Angeles 

2025, even after 
planned 
improvements 

Hartsfield-Jackson Atlanta 
International (ATL) 
Fort Lauderdale-Hollywood 
International (FLL) 
John F Kennedy International (JFK) 
McCarran International (LAS) 
Chicago Midway International (MDW) 
Phoenix Sky Harbor International 
(PHX) 
San Diego International (SAN) 
San Francisco International (SFO) 

Atlanta 
Miami-South Florida 
New York 
Las Vegas 
Chicago 
Phoenix 
San Diego 
San Francisco Bay Area 

 

All the airports in these regions, except New York and Houston are multi-

jurisdictional with different organizations handling their operations and management 

[22].  Some of them are owned by different cities, different counties, municipalities, etc.  

Hence a coordinated operation between different airports in a specific region becomes a 

challenging and an intriguing task.  

Neufville [6, 23-28] is a pioneer in conducting an extensive research on necessity 

and planning of multi-airport systems in the US and around the world. In his research, a 

multi-airport system is defined as set of airports that serve the airline traffic of a 
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metropolitan area [6].  Early research found that a multi-airport system will only work 

when the level of originating traffic is high for the metropolitan region. In some cases it 

is also affected by the limitations experienced by the primary airport or some political 

circumstances.  There are several other factors that affect multi-airport systems such as 

market forces, geographic location, airline traffic activity, government interferences, 

Table 2 Metropolitan Regions and Airports Studied 

Metropolitan Regions Airports 
Bay Area San Francisco International (SFO) 

Oakland International (OAK) 
San Jose International (SJC) 

Chicago Region Chicago O’Hare International (ORD) 
Chicago Midway (MDW) 

Dallas Region Dallas-Fort Worth International (DFW) 
Dallas Love Field (DAL) 

Houston Region George Bush Intercontinental (IAH) 
Houston Hobby (HOU) 

Los Angeles Region Los Angeles International (LAX) 
Long Beach (LGB) 
Ontario International (ONT) 
John Wayne (SNA) 
Bob Hope Burbank (BUR) 

New England Region Boston Logan International (BOS) 
Manchester Boston Regional (MHT) 
T.F. Green Providence (PVD) 

New York Region John F. Kennedy International (JFK) 
Newark Liberty International (EWR) 
LaGuardia (LGA) 

South Florida Region Miami International (MIA) 
Fort Lauderdale-Hollywood International 
(FLL) 

Washington-Baltimore Region Washington Reagan National (DCA) 
Washington Dulles International (IAD) 
Baltimore/Washington International (BWI) 
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regional economic development, etc.  The research also indicated that traffic at secondary 

airports is generally volatile since their concentration is less as compared to primary 

airport or them being depended on specific airlines [23].   

A futuristic study by Neufville [25] explored the regional airport system 

development process in the 21st century.  The research was based on three key elements 

namely; expected levels of traffic, development of airport systems and airport system 

management.  This century has seen lot of changes in airline operations like airline 

mergers, global partnerships and introduction of new routes. Furthermore, due to city 

expansion airports those were only concerned with their regions have started competing 

for market shares of other airports. Thus, airport traffic which previously depended on 

region, population and economic activity is now also depended on airline and airport 

management [25].  This was studied in depth by Neufville [28], in the recent research on 

no-frill airlines and growth of secondary airports in the metropolitan regions.   As 

contrary to previous airport operations, no-frill airlines like Southwest, Air Train, Jet 

Blue, Spirit and other low cost airlines (LCC) have developed a parallel airport network 

system [28]. The possible consequences of such development is a shift of passenger 

traffic from congested airports to low-cost competition airports, growth in sub-urban 

regions having low cost airports, decrease in growth of major airports, etc.  

More recently, Bonnefoy and Hansman  [13, 29]  studied in detail the emergence 

of secondary airports and the regional airport system in the US.  The research states that 

the emergence of secondary airports in the U.S. were due to factors like congestion at the 

core airport (LGA, SFO, ORD, IAH, etc), entry of new or low cost carriers in the 

secondary airport (MDW, FLL, PVD, MHT, HOU, etc) and change in dynamics at the 
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airport level.  An important observation made in the study was that most of the secondary 

airports developed were around airports having large proportion of originating traffic as 

compared to transfer passengers.  These airports relieved major airports of increasing 

traffic and reduced congestion in the system. However it was also seen that closely 

located airports in the multi-airport system like New York region faced severe 

operational constraints at regional airspace level. The research highlighted the need for 

reducing air traffic interactions to increase the capacity of the system.  Bonnefoy et al 

[30] also studied the evolution of multi-airport system from a worldwide perspective.  It 

was seen that in the US and Europe development of multi-airport regions is due to 

emergence of secondary airports and growth of low-cost carriers. While in Asia it is 

mainly due to insufficiency of available airports and greater need of high capacity 

airports.  The study suggests the need for protecting existing underutilized airports in the 

US and Europe with an eye for multi-airport regional development in the future. Whereas 

in Asia, there is need to reserve land and other resources to develop this system.  

  Brueckner et al [31] in their research tried to define the market for the airline 

industry between different metropolitan regions.  Since all the metropolitan regions 

contain more than one airport that compete for passengers, the research tried to identify if 

these multiple airports need to be viewed as same or separate destination.  In terms of 

airline market the competition will be higher when it is viewed as city-pairs as compared 

to airport-pairs.  The grouping of airports was done using regression results, with separate 

analysis for each region with average nonstop fare as the dependent variable.  All the 

regions were tested for effects of arrival and departure competing airports, year and 

quarter, routes and carrier, etc.  It was found that all regions except Boston and Detroit 
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can be grouped as city airports.  For Boston, it is due to effect of LCC at secondary 

airports causing fare reduction at the primary airport.  

 Hess [32] used a mixed multinomial logit (MMNL) model to study the passenger 

airport choice in a multi-airport region of San Francisco Bay.  The research tested 

different attributes fare, frequency, access-journey cost, flight time, size of the aircraft etc 

that affects airport choice in the bay region. It was found that fare, frequency and access-

journey cost had significant impact on the airport choice.  An important observation was 

passenger’s willingness to accept higher fares for the reduction in the access time to the 

airport.  It was also seen that different types of passengers like residents, business and 

leisure have different requirements and react differently while choosing the airport.  

 Similarly, an earlier research by Hansen and Du [33] used a calibrated logit model 

to determine airport choice in the multi-airport region of the San Francisco Bay area.  It 

was found that accessibility to the airports is a major factor affecting market shares at the 

airports. The airport market share depends largely upon the location distribution of trip 

origins as compared to other factors. The research clearly states that transportation 

planning could be used to improve airport accessibility and obtain consistent airport 

market share distribution.  

We can see that, apart from the traditional approaches to increase the capacity like 

new runways, new commercial service airports, congestion management, etc. One of the 

steps we need to look at is ‘Regional Solutions” to study air travel behavior in different 

multi-airport regions in the US.   
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CHAPTER III 

RESEARCH METHODOLOGY 

This chapter presents the methodology to estimate the delay propagation from 

individual airports and the multi-airport systems through the rest of the RNAS.  The NAS 

comprises of all the airports in the US and the massive network amongst them.  It is 

important to understand the causal factors of delay at various airports and the interactions 

between them.  To achieve these objectives, we apply regression methods to analyze the 

causal relationship between factors and delays and to capture interactions between 

airports.  We also study interactions between different metropolitan regions in the U.S. 

having more than one airport. Previous studies (Bhargava et al [34], Cervero and Hansen 

[35] and Himes and Donnell [36]) used simultaneous equation regression models to study 

such interactions is different transportation studies. The research approach and 

methodology are explained in the following section.  

3.1 Simultaneous Equation Regression Model 

The multivariate simultaneous equation regression model is a statistical model 

widely used in economics and business management research studies.  It has a set of 

multivariate equations, where the dependent variable in one equation could be the 

independent variable in other equations.  In addition, the error terms in the equations can 

be correlated.  This research applies multivariate simultaneous regression models to 



24 
 

determine the delay spillover effects from individual airports or the regional airport 

system across the RNAS.   

Bhargava et al [34] in their research used three stage least square (3SLS) 

regression to analyze the time and cost overruns in a highway construction project in 

Indiana, US. The authors identify that time and cost overruns are interdependent and their 

independent variables are not exogenous.  Endogeneity spurs from the correlation 

between independent variables and the error terms and leads to biased and inconsistent 

estimates.   

 A study conducted by Cervero and Hansen [35], investigated the inter-relation 

between induced travel demand and induced road investment using a demand and supply 

simultaneous equation analysis of California covering the period 1976 and 1997.  The 

authors used 3SLS to control for inter-dependability and cross-equation correlation of 

error terms.  The study concludes that there is a strong interaction and simultaneity 

between both of them with causal factors like income, price, demographic and 

government policy being significant.  Similarly, Himes and Donnell [36] developed a 

speed prediction model for multi-lane highway in North Carolina and Pennsylvania, US 

using system of equations. Due to the presence of endogenous variables, Himes and 

Donnell used 3SLS to find consistent estimates for lane speeds.   

Due to the inter-dependability between delays at different airports, regions and the 

RNAS, we consider using 3SLS regression.  The use of 3SLS also allows studying the 

physical interactions between airports in the NAS. 
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3.2 Definitions 

We subdivided the U.S. airports into different groups depending upon the level of 

air traffic operations as explained below: 

3.2.1 Operational Evolution Partnership (OEP) 35 

The 35 OEP airports are commercial U.S. airports with significant activity [37].  

These airports serve major metropolitan areas and also serve as hubs for airline 

operations.  The names of all OEP airports are reported in Appendix I. Honolulu 

International Airport (HNL) is excluded from the list because it has somehow different 

characteristics due its distant location from the U.S. Continent.  

3.2.2 National Airspace System (NAS) 

The NAS consists of a complex collection of facilities, systems, equipment, 

procedures, and airports operated by thousands of people to provide a safe and efficient 

flying environment [38].  It includes more than 750 air traffic control (ATC) facilities, 

more than 18,000 airports, approximately 4,500 air navigation facilities and about 48,000 

FAA employees [38].  In this study, 74 Aviation System Performance Metrics System 

(ASPM) airports are selected to represent the NAS, except HNL, Sacramento 

International Airport (SMF) and Palm Springs International Airport (PSP) because of 

their geographical location and data unavailability.  
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3.3 Data Source 

We obtained the data for our research from government-maintained database, 

such as those maintained by the Federal Aviation Administration (FAA), the U.S. 

Department of Transportation and the U.S. Department of Commerce. The following 

sections describe these data sources.  

3.3.1 Aviation System Performance Metrics System (ASPM) 

We use quarter-hourly interval data from the ASPM database, maintained by 

FAA’s Aviation Policy and Plans Office for the period 2000 to 2010.  ASPM is an 

integrated database of air traffic operations, airline schedules, operations and delays, 

weather information, runway information and related statistics. The data are available 

starting January 2000 for 55 airports and for additional 20 airports starting October 2004 

and for 2 airports from January 2007.  ASPM records are created using data from a 

variety of sources with varying update cycles. Enhanced Traffic Management System 

(ETMS) and Aeronautical Radio, Incorporated (ARINC) supply next-day operational 

data, and Innovata provides flight schedule data, while US Department of 

Transportation’s Aviation’s Airline Service Quality Survey (ASQP) provides finalized 

schedule data, Out-Off-On-In (OOOI) data, and delay causes as reported by the carriers 

after the close of each month.  ASPM is also further enhanced with inclusion of weather 

data and airport specific information [39]. The database is used for reporting and analysis 

of operating performance of the NAS.   
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3.3.2 National Oceanic and Atmospheric Administration (NOAA)  

We obtained weather pattern data from the Surface Summary of Day database 

maintained by the NOAA [40].  NOAA is maintained by the U.S. Department of 

Commerce and provides daily weather forecasts, severe storm warnings and climate 

monitoring to scientific agencies, fisheries management, coastal restoration and 

supporting marine commerce.  It provides reliable information regarding oceans and 

atmospheric conditions and was used in this research to assess weather conditions in the 

NAS.  NOAA has its stations in every state in the U.S. and supplies information related 

to the environmental patterns.  

3.3.3 U.S. Bureau of Transportation Statistics (BTS)  

We used the BTS database to obtain passenger load factor data, flight schedule, 

historical trends and so on [41]. BTS, as a part of the U.S. Department of Transportation, 

compiles, analyzes, and makes information accessible on the nation's transportation 

systems.  It improves the quality and effectiveness of DOT's statistical programs through 

research, development of guidelines, and promotion of improvements in data acquisition 

and use. BTS is a part of the Research and Innovative Technology Administration 

(RITA).  The Air Carrier Statistics database, also known as the T-100 data bank, contains 

domestic and international airline market and segment data.  All the certificated U.S. air 

carriers report monthly air carrier traffic information using Form T-100. The data are 

collected by RITA Office of Airline Information, Bureau of Transportation Statistics. All 

the air carrier data are available online from 1990 to the current year.  
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3.4 Dependent and Independent Variables 

The following section gives the description of all dependent and independent 

variables used in the research. 

3.4.1 Dependent Variable: Daily Average Arrival Delay 

We define daily average arrival delay as the dependent variable in our model.  In 

our previous study, the arrival delay of a flight was defined as difference between actual 

arrival time and the Official Airline Guide (OAG) scheduled arrival time. [42] This 

definition could not reflect the evolution of schedule padding introduced by the airlines in 

different time periods.  It was observed that with limited airport capacity and increased 

air traffic demand, airlines intended to increase scheduled flight block timings (i.e., 

imbedding more padding in their flight schedules). It is a way for airlines to improve their 

on-time performance, which is defined as the percentage of flights arrive no later than 15 

minutes after their scheduled arrival time. [43] [44].  Thus, the schedule-based analysis 

does not give us accurate enough results.  Figure 3 shows us the gate-to-gate timings for 

flights between Atlanta (ATL) and Orlando (MCO) airports obtained from the BTS 

database for years 1995 to 2011.  It is clearly seen that average gate-to-gate flight timings 

are continuously increasing throughout the years. A U.S. government report on economic 

analysis of flight delay clearly mentions that schedule padding in flights increased before 

and after 9/11 incident to compensate for flight delays [45].  
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Figure 3 Increase in Schedule Time for Flights between ATL and MCO Airports  

Therefore, in this research we use flight-plan-based arrival delay, which is equal 

to the difference between actual arrival time of a flight and predicted arrival time 

according to the flight plan.  Then the daily average of each airport is calculated by 

dividing the total delay with the number of total arrivals.  Note that if one flight arrived 

earlier than the flight-plan arrival time, the delay is considered as zero.  

3.4.2 Independent Variables 

In this research we investigated the effects of different factors like queuing delay, 

adverse weather, airline scheduling, demand management regimes, etc on airport arrival 

delay. The data downloaded from the ASPM database is used to compute a set of 

independent variables used in the model.  Appendix II reports the data dictionary used to 

calculate these variables and describes the input variables used in the analysis. 
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3.4.2.1 Deterministic Queuing Delay 

Deterministic queuing delay indicates the operational demand and supply 

relationship at each airport.  The arrival count is the actual number of arrivals at the 

airports in 15 minutes, which is restricted by the number of flights that need to land, and 

by Airport supplied Arrival Rate (AAR) during the same time period.  In other words, if 

the number of flights waiting to land is larger than the AAR rate, then the arrival count is 

the AAR rate; otherwise, the arrival count is the number of flights that need to land.  The 

cumulative flight demand in one quarter-hourly interval is the remaining scheduled 

arrival demand until the end of the quarter-hourly interval.  

Figure 4 shows the Newell Curve of cumulative number of arrivals, where the 

actual arrival counts are always less than arrival demand since arrival counts are either 

restricted by arrival demand or the capacity of the airport. The daily average queuing 

delay at an airport is calculated by dividing the area between the curves, which is known 

as total queuing delay, by the total number of arrivals at the airport for that day. The same 

definition applies to the RNAS as well, where the daily average arrival delay is the total 

arrival queuing delay at the RNAS airports divided by the total number of arrivals at 

those airports. The hypothesis that we would like to test is the increase of queuing delay 

leading to more observed flight delay.  
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Figure 4 Queuing Diagram of Arrivals at ORD 

3.4.2.2 Adverse Weather Indicator 

Adverse weather is one of the most important factors causing delay. Our research 

introduces adverse weather into the regression model by means of two indicators.  One 

indicator is used to capture the convective weather on the route. To measure convective 

weather, the U.S. is divided into 16 regions of 10 degrees latitude by 10 degrees 

longitude, as shown in Figure 5.  For each region, the proportion of weather stations 

reporting thunderstorms is computed from the Surface Summary of Day database 

maintained by the National Oceanographic and Atmospheric Administration (NOAA). 

Using thunderstorm data, the thunderstorm ratio is calculated as the ratio of the number 

of stations reporting thunderstorms by the total number of stations. The effect of regional 

convective weather on airport delay is complicated. Considering flights from different 

origins to the reference airport, the convective weather in a particular region may hold 
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some flights that alleviate the congestion at the reference airport. However, if the flights 

held are released later in a batch, then the concentrated cumulative arrive will deteriorate 

the operational condition at the reference airport. For this variable, we wait to see what 

the data tells us once we control for all other variables.  

The weather close to the airport directly affects the determination of airport runway 

configurations and utilization of runways. We propose to use the Instrument 

Meteorological Condition (IMC) ration to measure it.  It is calculated as the proportion of 

the day in which the airport was under IMC conditions.  It is known that an airport 

operating under IMC conditions has a lower capacity than that operating under VMC 

conditions, which causes more delays. 

 

Figure 5 U.S. Weather Regions 
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3.4.2.3 Passenger Load Factor 

The BTS database contains domestic monthly data reported by U.S. air carriers, 

including carrier, origin, destination, aircraft type and service class for transported 

passengers, freight and mail, available capacity, scheduled departures, departures 

performed, aircraft hours, and load factor when both origin and destination airports are 

located within the boundaries of the United States and its territories.  In our first study for 

estimating the impact of individual airport, as shown in Chapter IV, passenger load factor 

is considered as an explanatory variable for the daily average delay. This is because 

higher passenger load factor, busier the airlines are more variation will be caused towards 

turnaround time of the flights and causes the delay at the airport.  It is calculated as the 

monthly average ratio of the number of passengers by the number of seats available at the 

airport under consideration.   

3.4.2.4 Aircraft Equipment Type 

This variable is tested as an alternative for passenger load factor in our second 

study (Chapter V) for estimating the impact of individual airport.  The aircraft equipment 

type is categorized based on International Air Transportation Association (IATA) 

Aircraft Size Classification Scheme as observed in Table 3.  Since most airport design 

standards are related to aircraft size, it is necessary to understand the effect of aircraft 

fleet size on delay at various airports.  In this research, aircrafts are classified into seven 

categories based on their seat capacities and categories defined by the IATA [46]. The 

mean weighted number of aircrafts for all seven groups for each quarter is then used as a 

variable for each individual airport.  
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Table 3 International Air Transportation Association (IATA) Aircraft Size Classification 

Scheme 

Category Number of Seats Aircraft 
0 < 50 Embraer 120, Saab 340 
1 50 - 124 Fokker 100, Boeing 717 
2 125 – 179 Boeing B727 - 200, Airbus A321 
3 180 – 249 Boeing 767 – 200, Airbus A300 - 600 
4 250 - 349 Airbus A340 – 300, Boeing 777 – 200 
5 350 – 499 Boeing 747 – 400 
6 > 500 Boeing 747 – 400 high density seating 

 

3.4.2.5 Total Flight Operations (Air Traffic Volume) 

The RNAS model also considers the total flight operations as one of the variables.  

It captures the effects of total air traffic volume on delay in the system.  We assume that 

with the increase in air traffic volume, there is an increase in the airport delay. 

New variables were introduced in our third study for multi-airport systems to understand 

the impact of different attributes causing delay propagation from the entire region to the 

RNAS.  
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3.4.2.6 LCC Airline Market Share  

The term Low Cost Carriers (LCC) originated within the airline industry and 

refers to airlines with a lower operating cost structure than their competitors.  To keep 

their operating costs lower, these airlines apply business models that are different from 

legacy airlines.  For instance, they use only one type of aircraft to reduce crew and 

maintenance costs, and serve secondary airports to avoid congestion and high landing 

fees at primary airport in the same region. LLC also try to operate with cost-effective 

ways of handling passengers. LCC airlines operating at secondary airports are the prime 

reason for the development of the multi-airport region phenomena [47].  

In this study, we calculate the percentage share of LLC operations at each airport 

in the region and include it as an explanatory variable to understand its impact on the 

delay in the region and in the RNAS.  

3.4.2.7 Herfindahl–Hirschman Index (HHI) 

The Herfindahl–Hirschman Index (HHI) is a measure of the size of the 

component in relation to a group  and an indicator of competition among them [13].  It is 

seen that with the entry of LCCs, there is an increased level of competition for market 

share in each region.  The HHI is calculated as the sum of squares of airport market 

shares for the time period 2000 to 2010—the higher the value, the less competitive the 

region.  For instance, the HHI of the Los Angeles region with five airports is 0.53, 

whereas for the New York region with 4 airports, it is 0.33. This indicates that the New 

York region is much more competitive compared to the Los Angeles region, where 70 

percent of operations in that region occur at LAX airport.  
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3.4.2.8 Demand Management Regimes 

We use dummy variables to indicate various demand management regimes used 

at LGA, JFK and ORD airports at given time periods, as shown in Figure 1. For instance 

at the ORD airport, variable AIR21 takes a value of 1 from May 2000 to December 2000 

and zero otherwise. This process was carried out continuously from 2000 to 2010.  As 

shown in Table 4, there are total of 14 dummy variables indicating different operational 

strategies used at the three airports indicated above and HDR is used as the base for 

comparison.   

Table 4 Summary of Demand Management Regime Applied in the Model 

Period Demand Management Regime 
January 2000 to April 2004 High Density Rule (HDR) 
May 2000 to December 2000 AIR 21 
Year 2001 till September 9, 2001 Before 9/11 
September 20, 2011 till December 2001 After 9/11 
2002 OV2002 
2003 OV2003 
January 2004 till May 2004 CAP 
May 2004 till December 2004 REDA 
2005 REDB 
January 2006 till July 2006 REDC 
August 2006 till December 2006 LIM 
2007 Year2007 
2008 Year2008 
2009 Year2009 
2010 Year2010 

 

3.4.2. 9.Seasonal Dummy Variables 

We introduce dichotomous variables to indicate different seasons throughout the 

year. Three dummy variables introduced for different seasons namely summer, fall and 

winter, with spring as the base.  Since the traffic demand varies and the airport operations 

are affected significantly for different seasons at all the airports.  Assuming the seasonal 
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weather variation has been controlled for by the weather indicators described earlier, this 

seasonal variable is proposed to capture airlines scheduling trends in different seasons.  

3.5 Descriptive Statistics  

We obtained data for all the independent variables for the period 2000 to 2010.  

The following tables show the sample descriptive statistics for the Hartsfield Jackson 

Atlanta International Airport (ATL) airport. We carried similar analyses for the other 

individual airports and the RNAS.  

The maximum daily average arrival queuing delay of 11,805.00 minutes was 

observed on September 12, 2001 just after the terrorist attacks.  Similarly, the least 

number of flights flown on a single day that is two was also on the same day. In our 

research we have excluded those ten days of data from September 11 to September 20, 

2011 to get accurate and consistent results.  Also for the thunderstorm ratios there are 

eleven missing values for the first day of every year from 2000 to 2010 and will be 

excluded from the dataset.  The following Table 5 shows the descriptive statistics of the 

data considered. 
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Table 5 Descriptive Statistics 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Variable N Mean Standard Deviation Minimum Maximum 

arrobdelay 
depobdelay 
arraqdelay 
arraqdelay2 
depaqdelay 
IFR_ratio 
IFR_ratio2 
Region1 
Region2 
Region3 
Region4 
Region5 
Region6 
Region7 
Region8 
Region9 
Region10 
Region11 
Region12 
Region13 
Region14 
Region15 
Region16 
EQPT1 
EQPT2 
EQPT3 
EQPT4 
EQPT5 
EQPT6 
EQPT7 
HDR 
AIR 
Sepb 
Sepa 
OV2002 
OV2003 
CAP 
REDA 
REDB 
REDC 
LIM 
Year2007 
Year2008 
Year2009 
Year2010 
quarter1 
quarter2 
quarter3 
quarter4 

4008 
4008 
4008 
4008 
4008 
4008 
4008 
4007 
4007 
4007 
4007 
4007 
4007 
4007 
4007 
4007 
4006 
4007 
4007 
4007 
4007 
4007 
4007 
4008 
4008 
4008 
4008 
4008 
4008 
4008 
4008 
4008 
4008 
4008 
4008 
4008 
4008 
4008 
4008 
4008 
4008 
4008 
4008 
4008 
4008 
4008 
4008 
4008 
4008 

12.627 
18.946 
5.384 

198.251 
6.435 
0.235 
0.141 
0.107 
0.084 
0.044 
0.054 
0.108 
0.114 
0.085 
0.026 
0.006 
0.022 

0.0490.053 
0.064 
0.079 
0.038 
0.009 

28045.89 
1112.09 

100752.15 
60385.98 
62730.76 
1377.33 
62.874 
0.030 
0.061 
0.063 
0.025 
0.091 
0.091 
0.037 
0.053 
0.091 
0.052 
0.038 
0.091 
0.091 
0.091 
0.091 
0.247 
0.249 
0.250 

 

11.939 
11.922 
13.011 

2714.49 
8.649 
0.294 
0.249 
0.150 
0.134 
0.152 
0.093 
0.133 
0.138 
0.111 
0.048 
0.023 
0.072 
0.098 
0.094 
0.115 
0.125 
0.073 
0.026 

3468.73 
776.202 

33398.68 
50667.85 
64139.67 
2842.21 
259.895 

0.171 
0.239 
0.243 
0.157 
0.287 
0.287 
0.191 
0.224 
0.287 
0.223 
0.191 
0.287 
0.288 
0.287 
0.287 
0.431 
0.432 
0.433 
0.434 

1.792 
4.429 

0 
0 

0.071 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

6875.00 
0 

4560.00 
2795.00 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 

99.102 
206.530 
347.980 

121090.51 
215.494 

1.000 
1.000 
0.787 
0.727 
1.000 
0.559 
0.671 
0.807 
0.613 
0.394 
0.500 
0.733 
0.789 
0.558 
0.686 
0.714 
0.528 
0.327 

35400.00 
3393.00 

194560.00 
135020.00 
180600.00 
11900.00 
3000.00 

1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
1.000 
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3.6 Correlation Analysis between Independent Variables  

If the independent variables used in the analysis are correlated it creates the 

problem of multi-collinearity.  In that case, parameter estimates will become unreliable, 

exhibiting large p-values or confidence intervals.  Hence it was necessary to check if this 

problem exists in our dataset.  This correlation between independent variables could dealt 

by removing a variable, introducing variable interactions or by increasing the sample size 

[48].  As a part of this process we tested the correlation for independent variables for all 

the airports namely from January 2000 to December 2010.  

Table 6 shows the relationship between average daily arrival and departure 

queuing delay at LGA and ORD airports. As seen in the table there is a high degree of 

positive correlation between both arrival and departure queuing delay. Hence in our 

research we have only used arrival queuing delay as our explanatory variable. 

Table 6 Correlation Analysis between Arrival and Departure Queuing Delay 

LGA Arrival Queuing Delay Departure Queuing Delay 
Arrival Queuing Delay 1.000 0.819 
  <0.0001 
Departure Queuing Delay 0.819 1.000 
 <0.0001  
ORD Arrival Queuing Delay Departure Queuing Delay 
Arrival Queuing Delay 1.000 0.894 
  <0.0001 
Departure Queuing Delay 0.894 1.000 
 <0.0001  

 

Table 7 displays the correlation between different explanatory variables used to 

analyze average daily arrival delay at the ORD airport.  From the results it is learned that 

only the dummy variable ‘Over_Scheduling’ shares 33.75 percent similarity with another 
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dummy variable ‘Partial_HDR’.  For all other variables there is no significant correlation 

between them.  Table 8 includes correlation analysis results for explanatory variables at 

the LGA airport. No significant correlations are observed between the variables.  

Table 7 Correlation Analysis for Independent Variables at the ORD Airport 

 

ORD 
Queuing 

IFR 
ratio 

Total HDR 
Partial 
HDR 

Sep_11 
Over 
Sche-
duling 

Five Q1 Q2 Q3 Q4 
Pred  

Variable 

Queuing  1 .296 -.140 -.039 -.072 .015 .001 .123 .000 .012 -.032 .019 .091 

 .000 .000 .114 .004 .538 .980 .000 .987 .627 .201 .439 .000 

IFR ratio .296 1 -.216 .054 -.005 .015 -.024 -.011 .110 -.046 -.151 .082 .177 

.000  .000 .030 .825 .531 .329 .643 .000 .063 .000 .001 .000 

Total -.140 -.216 1 -.146 -.049 -.301 .057 .354 -.084 .094 .039 -.050 -.068 

.000 .000  .000 .045 .000 .020 .000 .001 .000 .112 .042 .007 

HDR -.039 .054 -.146 1 -.183 -.080 -.252 -.100 .301 -.018 -.151 -.151 .125 

.114 .030 .000  .000 .001 .000 .000 .000 .459 .000 .000 .000 

Partial 
HDR 

-.072 -.005 -.049 -.183 1 -.184 -.581 -.229 -.132 .050 .143 -.055 .438 

.004 .825 .045 .000  .000 .000 .000 .000 .042 .000 .025 .000 

Sep_11 .015 .015 -.301 -.080 -.184 1 -.253 -.100 -.174 -.175 .015 .360 -.140 

.538 .531 .000 .001 .000  .000 .000 .000 .000 .546 .000 .000 

Over 
Sche-
duling 

.001 -.024 .057 -.252 -.581 -.253 1 -.316 -.057 -.055 .060 .060 -.417 

.980 .329 .020 .000 .000 .000 
 

.000 .021 .025 .015 .015 .000 

Five .123 -.011 .354 -.100 -.229 -.100 -.316 1 .178 .176 -.190 -.190 .023 

.000 .643 .000 .000 .000 .000 .000  .000 .000 .000 .000 .353 

Q1 .000 .110 -.084 .301 -.132 -.174 -.057 .178 1 -.381 -.331 -.331 .016 

.987 .000 .001 .000 .000 .000 .021 .000  .000 .000 .000 .516 

Q2 .012 -.046 .094 -.018 .050 -.175 -.055 .176 -.381 1 -.332 -.332 -.002 

.627 .063 .000 .459 .042 .000 .025 .000 .000  .000 .000 .935 

Q3 -.032 -.151 .039 -.151 .143 .015 .060 -.190 -.331 -.332 1 -.289 .027 

.201 .000 .112 .000 .000 .546 .015 .000 .000 .000  .000 .284 

Q4 .019 .082 -.050 -.151 -.055 .360 .060 -.190 -.331 -.332 -.289 1 -.042 

.439 .001 .042 .000 .025 .000 .015 .000 .000 .000 .000  .093 

Pred 
Variable 

.091 .177 -.068 .125 .438 -.140 -.417 .023 .016 -.002 .027 -.042 1 

.000 .000 .007 .000 .000 .000 .000 .353 .516 .935 .284 .093  
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Table 8 Correlation Analysis for Independent Variables at the LGA Airport 

 

LGA 
Queing IFR Total HDR AIR21 Slottry Sep11 2002 2003 2004 Q1 Q2 Q3 Q4 

Predicted 
Variable 

Queing 
Delay 

 1 .020 .126 -.058 .155 .037 -.051 -.176 -.108 .248 -.058 .042 .003 .014 .064 

  .414 .000 .019 .000 .139 .041 .000 .000 .000 .019 .089 .909 .567 .011 

IFR  .020 1 -.173 .034 .014 -.006 -.083 -.062 .082 .005 .008 .086 -.052 -.049 .290 

 .414  .000 .170 .565 .808 .001 .012 .001 .848 .755 .000 .035 .047 .000 

Total  .126 -.173 1 -.066 .081 .166 -.297 -.105 -.003 .166 -.031 .098 -.054 -.017 .052 

 .000 .000  .007 .001 .000 .000 .000 .888 .000 .212 .000 .027 .482 .039 

HDR  -.058 .034 -.066 1 -.118 -.117 -.080 -.151 -.151 -.100 .301 -.018 -.151 -.151 .084 

 .019 .170 .007  .000 .000 .001 .000 .000 .000 .000 .459 .000 .000 .001 

AIR21  .155 .014 .081 -.118 1 -.174 -.119 -.224 -.224 -.148 -.258 -.026 .152 .152 .388 

 .000 .565 .001 .000  .000 .000 .000 .000 .000 .000 .289 .000 .000 .000 

Slottery  .037 -.006 .166 -.117 -.174 1 -.118 -.223 -.223 -.147 .089 .091 .031 -.224 .124 

 .139 .808 .000 .000 .000  .000 .000 .000 .000 .000 .000 .207 .000 .000 

Sep_11  -.051 -.083 -.297 -.080 -.119 -.118 1 -.151 -.151 -.100 -.174 -.175 .015 .360 -.132 

 .041 .001 .000 .001 .000 .000  .000 .000 .000 .000 .000 .546 .000 .000 

Year2002  -.176 -.062 -.105 -.151 -.224 -.223 -.151 1 -.286 -.189 -.034 -.033 .036 .036 -.248 

 .000 .012 .000 .000 .000 .000 .000  .000 .000 .167 .181 .145 .145 .000 

Year2003  -.108 .082 -.003 -.151 -.224 -.223 -.151 -.286 1 -.189 -.034 -.033 .036 .036 -.222 

 .000 .001 .888 .000 .000 .000 .000 .000  .000 .167 .181 .145 .145 .000 

Year2004  .248 .005 .166 -.100 -.148 -.147 -.100 -.189 -.189 1 .178 .176 -.190 -.190 .072 

 .000 .848 .000 .000 .000 .000 .000 .000 .000  .000 .000 .000 .000 .004 

Q1  -.058 .008 -.031 .301 -.258 .089 -.174 -.034 -.034 .178 1 -.381 -.331 -.331 .023 

 .019 .755 .212 .000 .000 .000 .000 .167 .167 .000  .000 .000 .000 .358 

Q2  .042 .086 .098 -.018 -.026 .091 -.175 -.033 -.033 .176 -.381 1 -.332 -.332 .016 

 .089 .000 .000 .459 .289 .000 .000 .181 .181 .000 .000  .000 .000 .517 

Q3  .003 -.052 -.054 -.151 .152 .031 .015 .036 .036 -.190 -.331 -.332 1 -.289 .023 

 .909 .035 .027 .000 .000 .207 .546 .145 .145 .000 .000 .000  .000 .364 

Q4  .014 -.049 -.017 -.151 .152 -.224 .360 .036 .036 -.190 -.331 -.332 -.289 1 -.065 

 .567 .047 .482 .000 .000 .000 .000 .145 .145 .000 .000 .000 .000  .010 

Predicted 
Variable 

 .064 .290 .052 .084 .388 .124 -.132 -.248 -.222 .072 .023 .016 .023 -.065 1 

 .011 .000 .039 .001 .000 .000 .000 .000 .000 .004 .358 .517 .364 .010  
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Table 9 Correlations Analysis for Thunderstorm Ratio 

 R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11 R12 R13 R14 R15 R16 

R1 1.000 0.311 0.054 0.460 0.514 0.269 0.540 0.379 -0.013 0.296 0.351 0.274 0.328 0.498 0.380 0.121 

R2 0.311 1.000 0.292 0.247 0.344 0.466 0.339 0.191 -0.033 0.163 0.205 0.163 0.167 0.208 0.170 0.033 

R3 0.054 0.292 1.000 0.072 0.100 0.194 0.147 0.081 -0.036 0.061 0.070 0.041 0.015 0.039 0.043 0.006 

R4 0.460 0.247 0.072 1.000 0.629 0.269 0.384 0.289 -0.026 0.254 0.566 0.328 0.222 0.357 0.322 0.141 

R5 0.514 0.344 0.100 0.629 1.000 0.534 0.405 0.264 -0.046 0.248 0.429 0.488 0.292 0.371 0.301 0.134 

R6 0.269 0.466 0.194 0.269 0.534 1.000 0.402 0.117 -0.049 0.155 0.255 0.354 0.315 0.261 0.162 0.030 

R7 0.540 0.339 0.147 0.384 0.405 0.402 1.000 0.498 -0.051 0.270 0.343 0.280 0.345 0.647 0.492 0.120 

R8 0.379 0.191 0.081 0.289 0.264 0.117 0.498 1.000 0.091 0.188 0.229 0.146 0.111 0.317 0.363 0.067 

R9 -0.013 -0.033 -0.036 -0.026 -0.046 -0.049 -0.051 0.091 1.000 -0.014 -0.017 -0.014 -0.025 -0.065 -0.009 0.093 

R10 0.296 0.163 0.061 0.254 0.248 0.155 0.270 0.188 -0.014 1.000 0.476 0.132 0.137 0.292 0.235 0.084 

R11 0.351 0.205 0.070 0.566 0.429 0.255 0.343 0.229 -0.017 0.476 1.000 0.389 0.133 0.323 0.285 0.122 

R12 0.274 0.163 0.041 0.328 0.488 0.354 0.280 0.146 -0.014 0.132 0.389 1.000 0.471 0.293 0.182 0.074 

R13 0.328 0.167 0.015 0.222 0.292 0.315 0.345 0.111 -0.025 0.137 0.133 0.471 1.000 0.498 0.222 0.063 

R14 0.498 0.208 0.039 0.357 0.371 0.261 0.647 0.317 -0.065 0.292 0.323 0.293 0.498 1.000 0.600 0.130 

R15 0.380 0.170 0.043 0.322 0.301 0.162 0.492 0.363 -0.009 0.235 0.285 0.182 0.222 0.600 1.000 0.316 

R16 0.121 0.033 0.006 0.143 0.134 0.030 0.120 0.067 0.093 0.084 0.122 0.074 0.063 0.130 0.316 1.000 
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The correlation results for thunderstorm ratio show very interesting 

characteristics.  Regions that are very close to each other geographically, shows certain 

degree of correlation. For instance Region 7 and Region 14 located adjacent to each other 

are 41.8 percent correlated.  Similar correlations could be seen for Region 1 and 5, 

Region 4 and 5, Region 4 and 11, Region 12 and 5 and so on. As seen in the Table 9, 

numbers that are displayed in bold are the ones that are correlated. However the 

coefficient of correlation is very small for all the cases.   

A correlation analysis was also conducted for all the independent variables at 

different airports. It was seen that there was no correlation indicating the independence of 

explanatory variables for different airports used in the analysis.  

After conducting this preliminary analysis we learn that there is insignificant 

amount of correlation between independent variables for the same airport. In the 

following section we discuss the mathematical format of the MSERM and the regression 

techniques applied.  

3.7 Regression Methods 

Since the equations developed in this research, mentioned in later chapters include 

both endogenous and exogenous explanatory variables, that means that the dependent 

variable in one equation of interest is the independent variable in another or more 

equations and vice versa. This could create the problem of identification if no enough 

variables are excluded from each equation. Also selecting the right estimation technique 

to solve this complex simultaneous equation models becomes very important.  



44 
 

3.7.1 Problem of Identification 

The problem of identification may occur in a multi-equation model where the 

equations have both endogenous and exogenous explanatory variables. Consider a linear 

system of M equations, with M > 1. According to the order condition, an equation cannot 

be identified from the data if less than (M− 1) variables are excluded from that equation. 

For instance, for a model with four equations, at least three variables from each particular 

equation have to be exclusive to make sure there is no identification problem. The 

simultaneous equation system considered in this research identifies daily average arrival 

delay at all the airports and RNAS as the endogenous variable. All other independent 

variables are exogenous since they are uncorrelated and unique for different airports. 

Hence, in our system of 35 equations, more than 34 exogenous variables are exclusive 

from each equation. So there is no identification problem in our proposed simultaneous 

equation regression model.  

3.7.2 Regression Techniques 

Regression analysis is defined as  a way of estimating or predicting the mean or 

average value of the dependent variable on the basis of the known values of the 

independent or explanatory variables [49].  

We define the equation as, Yi = β0 + β1Xi + ui  

Where, β0 and β1 are unknown parameters also called as regression coefficients.  

And β0 + β1Xi are called the systematic component, while ui is the random component. 
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If ���and ���  are the estimates of β0 and β1. 

Then �� �  ��� 	  ���
 is the sample regression function and ��  is the predicted value of Y 

The Ordinary Least Square (OLS) method is the most popular economic method 

for estimating the unknown parameters in a linear regression model. This is a basic 

method on which all other methods are dependent. 

3.7.2.1 The Ordinary Least Square (OLS) Method 

In econometrics, the Ordinary Least Square (OLS) method is the most popular 

method used to obtain estimates ��� and ���  [49]. This method chooses the values of  ���   

and  ���  such that it minimizes the sum of squared residuals 

� 
�� �  ���� �  ��� �  ���
���
�

���

�

���
 

A few of the basic assumptions for the OLS method are as follows 

- Error term has zero mean, ∑ 
� � 0 

- Error term is uncorrelated with regressors, ∑ 
�
� � 0 

- Error term has constant variance �����| X�� �  σ�� and error terms are 

uncorrelated with each other�� ����� � 0 !"# $ % & �. 

�����| X�� �  σ�� indicates homoskedasticity or constant variance assumption and if 

���| X� depends upon X, then it indicates that the error term exhibits heteroskedasticity. 

Also �� ����� � 0 !"# $ % & � is known as no autocorrelation assumption 
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We need to overcome these problems faced in the OLS method; using different 

approaches that are modifications of the OLS method and are discussed in brief in the 

next part. All these approaches are categorized into two parts. The difference between the 

two approaches is that, the system estimation method takes into consideration full 

information like parameter restrictions and correlation of the error term while the single 

equation system ignores it.  

We have identified two econometric approaches to estimate the simultaneous 

linear equation models as shown below, including the single equation estimation method 

and the system estimations method  [50].  Both these techniques are explained in brief in 

following sections.  

3.7.2.2 Single Equation Estimation Methods 

This method considers one equation at a time, estimating the structural form as 

does the OLS method. It uses the information as to which variables, both endogenous and 

exogenous, is included in the other equations of the model but excluded from the 

equation being estimated. In this group there are, following methods: the indirect least 

squares method (ILS) and the two-stage least squares method (2SLS).  

3.7.2.2.1 Indirect Least Squares Method (ILS) 

The ILS method uses OLS to estimate the reduced form of equations, and then 

converts the OLS estimates from the reduced form into the estimates of the structural 

form of equations. This method produces estimates that are consistent, but not unbiased 
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[51]. This method is used for just-identified system of equations. The 2SLS method is 

similar to ILS if the system is just identified.  

3.7.2.2.2 Two Staged Least Square (2SLS)  

A common approach when confronted with autocorrelation and heteroskedasticity 

problem  in the linear regression context is to try to use the technique of instrumental 

variables (IV), also known as the two-stage least squares (2SLS) [52].  This method does 

not give unbiased estimates, but does give consistent estimates. The first step involves, 

estimating the model in by least squares to get consistent estimates of the endogenous 

variables, and compute the model predictions. In the second step, we estimate the model 

in by least squares, but replacing endogenous variable with the predictions obtained in the 

first stage.  The key assumption needed for consistency of the IV estimator is that the 

instruments and error term are uncorrelated. 

3.7.2.3 System Estimation Methods: 

This approach estimates the entire model of the simultaneous linear equations 

together, using all information's available on each of the equations of the system.  We 

consider two methods in this approach: three-stage least squares method (3SLS) and full-

information maximum likelihood method (FIML). 

3.7.2.3.1 Three Stage Least Square (3SLS) 

The 3SLS method combines two statistical techniques; one is the two-stage least 

square (2SLS) and the other is the seemingly unrelated regression (SUR). The 3SLS 

method generalizes the two-stage least-squares method by taking account of the 
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correlations between equations in the same way that SUR generalizes OLS. Three-stage 

least squares method contains three steps: first-stage regressions to get predicted values 

for the endogenous regressors; a two-stage least-squares step to get residuals to estimate 

the cross-equation correlation matrix; and the final 3SLS estimation step. The first two 

stages of the 3SLS method are similar to the previously discussed 2SLS method. The 

third stage which is SUR is an extension of a linear regression model allowing correlated 

errors between equations. It is a way of improving the efficiency of estimation equations 

jointly, as it provides consistent estimates for linear equations. 

3.7.2.3.2 Full Information Maximum likelihood Method (FIML) 

The FIML method obtains maximum likelihood estimates of a nonlinear 

simultaneous equations model. The model should have N equations for N endogenous 

variables.  FIML is an asymptotically efficient estimator for simultaneous models with 

normally distributed errors.  Some of the key aspects of FIML are as follows [53]: 

- FIML does not require instrumental variables. 

- FIML requires that the model include the full equation system, with as many 

equations as there are endogenous variables. With 2SLS or 3SLS you can 

estimate some of the equations without specifying the complete system.  

- FIML assumes that the equation errors have a multivariate normal distribution. If 

the errors are not normally distributed, the FIML method may produce poor 

results. 2SLS and 3SLS do not assume a specific distribution for the errors. 
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CHAPTER IV 

A MACROSCOPIC TOOL FOR MEASURING DELAY PERFORMANCE IN THE 

NATIONAL AIRSPACE SYSTEM: CASE STUDY OF ORD AND LGA AIRPORTS 

We conducted the case study of delay propagation from individual airports (LGA 

and ORD) to the RNAS.  This research follows a similar path of macroscopic analysis 

that was conducted and not only investigates the impact of single airport delay to the 

RNAS but also to explore how the delay spillover is widely dispersed across the 

Operational Evolution Partnership (OEP) 34 airports (see Appendix I). The remaining 40 

airports in NAS, except the 34 OEP airports (excluding HNL), are grouped together and 

are known as the Rest of the NAS (RNAS).  RNAS delay is considered aggregately using 

a single multivariate equation in the simultaneous equation regression model. Therefore, 

our model consists of 35 equations determining average daily arrival delay at 34 OEP 

airports and one equation for the RNAS. Causal factors of the average daily arrival delays 

are explored, and multivariate equations are developed for all airports under 

consideration along with the RNAS.  The average daily arrival delay is the dependent 

variable in the equation for each airport and the RNAS, while simultaneously being 

considered as an independent variable in the equation of other airports and the RNAS.   
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4.1 Methodology 

In our previous study, we developed a set of multivariate simultaneous equations 

for both individual airports and the RNAS.  We regressed these models using two-staged 

least square (2SLS), as seen in Figure 6.a.  As observed in Figure 6.b and 6.c, we used the 

predicted value of the average observed arrival delay at the RNAS as the independent 

variable for average observed arrival delay at an individual airport and vice versa. This 

predicted value is the dependent variable created at the end of the first stage of regression 

and, along with the other variables, was used in the second stage to regress arrival delays 

with full models along with heteroskedastic error correction.  The auto-correlation, 

however, are insignificant in this case.  

 

Figure 6 Two Stage Least Square Regression 
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The data we used were from ASPM covering the period of January 2000 to June 

2004.  The model for the individual airport decomposes average daily delay at LGA or 

ORD into components related to different delay casual factors explained earlier. The 

explanatory variables include average arrival deterministic queuing delay, average 

observed arrival delay at other airports, adverse weather, seasonal effects, demand 

management regimes, and other factors. Whereas, the NAS model decomposes average 

daily delay at airports other than the airports under consideration (LGA or ORD).  The 

explanatory variables include observed delays at LGA or ORD, convective weather, total 

operations, seasonal effects, demand management regimes, and other factors. 

4.1.1 Equation 1 for Individual Airport         

The equation for the individual airport decomposes average daily delay at a 

reference airport into components related to different delay-causing factors. The 

explanatory variables include average arrival deterministic queuing delay, average 

observed arrival delay at other airports, adverse weather, and other factors. 

'(�)� �   �� * '+�)� 	  �� * ,-�)� 	  �. *  ,-��)� 	  �/ * ,0�)�	 �1 * 2(�)� 	                         

  �3 *  2(��)� 	  ∑ 45(5 65�)� 	  ∑ 7�(� 8��)�  	 ∑ 9�(� '��)� 	  :�)� 

4.1.2 Equation 2 (daily average arrival delay at RNAS) 

The model for the RNAS decomposes average daily delay at airports other than 

the airports under consideration (LGA or ORD). The explanatory variables include 

observed delays at LGA or ORD, convective weather, total operations, and other factors. 



52 
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'(�)� average observed arrival delay against schedule at individual airport  on day ); 

'Q+�)� � average observed arrival delay at airports other than LGA or ORD on day );  

Pred_'Q+�)� � predicted average observed delay at airports other than LGA or ORD on 

day t (not shown in the above listed models, obtained from the first stage of 2SLS and 

used in the second stage); 

,-�)� � average arrival deterministic queuing delay at individual airport on day ); 

,0�)� � passenger load factor in the aircraft at the airport on day ); 

2(�)� �  daily  IMC ratio recorded at individual airport on day ); 

'+�)� � average observed arrival delay against schedule at other airports on day );  

'Q(�)� � average observed arrival delay at individual airport �LGA or ORD�on day ); 

=#
^_'Q(�)�= predicted average observed delay at individual airport (LGA or ORD) on 

day t; (not shown in the above listed models, obtained from the first stage of 2SLS and 

used in the second stage); 

<=�)� � total operations �arrivals�of system on day ); 

8-�)� � weighted average arrival deterministic queuing delay of system on day ); 
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65�)� � weather index of different region k on day ); 

8��)� seasonal dummy variable, set to 1 if daily arrival delay is observed in quarter $  

               and 0 otherwise; 

'��)�demand management regime dummy variable, set to 1 if daily arrival delay  is 

                observed in time period & and 0 otherwise; 

 :�)�, ��)� �  stochastic error terms; and 

 4, 7, 9, and ; are coefeicents 

4.2 Research Results 

Table 10 and Table 11 show the regression results. We assume that the mean of 

delay is zero if all the independent variables are zero. The R-square values from Table 

10; clearly indicate that the model captured about 77.4 percent and 82.4 percent of the 

variation in the average daily arrival delay at LGA and ORD, respectively.  The estimated 

coefficient for average queuing delay is 0.235 for LGA and 1.270 for ORD, while for the 

quadratic term of average queuing delay, the coefficients are negative.  Nevertheless, the 

combined effect of linear and quadratic terms of average queuing delay is positive.  It is 

also found that a one-minute delay at other airports in NAS may cause increases of 0.946 

minute and 0.553 minute delays at LGA and ORD, respectively.  Adverse weather, as 

measured by the IMC ratio, is the principal factor of delay at both LGA and ORD.  For 

the thunderstorm ratio, however, only specific regions show significant contributions. 
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Region 11, comprising the northeastern part of the U.S., is a major delay contributor to 

LGA. Regions 12 and 13, which include the upper-middle regions of the U.S., are delay 

contributors to ORD.  The estimates for the seasonal effect, however, show smaller 

magnitude while compared to other factors. Interestingly, for both airports, the summer 

seasonal effect shows the least amount of delay when compared to other seasons.  

Significant factors affecting delay are demand management regimes (time-period fixed 

effects).  HDR was considered as the base in the regression. These estimates provide a 

better perspective of different demand management regimes applied for different time 

periods (see Figure 1) and the success of their application in terms of operations and 

delay reduction.  

We then graphically decompose the delays according to the causal factors, as 

shown in Figure 7 and Figure 8. For LGA, the delay increased by more than 12 minutes 

during the AIR-21 period in comparison to HDR and gradually reduced during the 

slottery period.  The lowest delay was reached post-9/11 when there were fewer air traffic 

operations and it slowly increased through 2004. For ORD, the general phenomenon was 

the same, with high delays during partial HDR periods, touching low levels post-9/11, 

and sharply shooting up in 2004 to more than 2 minutes.  As shown in Figure 7.a, average 

delay of other airports in the NAS and passenger load factors are the major factors 

affecting average arrival delay at LGA.  Average arrival queuing delay and delay in the 

system are the major contributing factors for the average arrival delay at ORD (Figure 

7.b).  

  



55 
 

Table 10 Estimation Results of Arrival Delay at Individual Airport (LGA/ORD) 

 
 

Variable 

LGA ORD 

Estimate SE P-Value Estimate SE P-Value 

LQ(t) Average Queuing Delay 0.235 0.02 <0.0001 1.270 0.05 <0.0001 

LQ2(t) 
Quadratic Average Queuing 
Delay at Airport 

-0.001 0.00 <0.0001 -0.007 0.00 <0.0001 

DS(t) 
Predicted arrival delay at  
NAS 

0.946 0.08 <0.0001 0.553 0.11 <0.0001 

IA(t) IMC Ratio 24.900 2.68 <0.0001 21.717 3.41 <0.0001 

IA
2(t) Square of IMC Ratio -9.568 

2.82 0.0007 -9.414 3.73 0.0115 

LF(t) Passenger Load Factor 0.075 0.02 0.0013 0.020 0.03 0.4731 

WK(t) Thunderstorm Ratio 
      

 Region 11 45.280 3.64 <0.0001    

 Region 12    44.144 3.64 <0.0001 

 Region 13    11.775 2.79 <0.0001 

Si(t) Seasonal Dummy Variables       

 Quarter 1 -3.832 0.79 <0.0001 -1.539 1.35 0.2537 

 Quarter 2 -8.567 0.96 <0.0001 -4.622 1.51 0.0022 

 Quarter 3 -6.489 0.96 <0.0001 -3.353 1.50 0.0252 

Dj(t) 
Demand Management 
Regimes 

      

 AIR-21 5.122 1.12 <0.0001    

 Slottery -1.227 1.17 0.2942    

 Partial HDR    0.231 2.04 0.9271 

 Post 9/11 Period -10.050 2.09 <0.0001 -7.160 2.53 0.0047 

 Year 2002 -3.033 1.14 0.0079    

 Year 2003 -3.480 1.024 0.0007    

 Year 2004 -6.101 1.216 <0.0001    

 Overscheduling    -3.891 1.87 0.0374 

 5% Reduction in UA & AA    2.264 1.93 <0.2405 

R2 R-Square 0.7741   0.8254   
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Table 11 Estimation Results of Arrival Delay for RNAS 

 
 
Variable 

LGA ORD 

Estimate SE P-Value Estimate SE P-Value 

SQ(t) Average Queuing Delay 1.176 0.04 <0.0001 0.963 0.05 <0.0001 

DA(t) 
Predicted Arrival Delay at 
LGA/ORD 

0.082 0.01 <0.0001 0.052 0.00 <0.0001 

OP(t) 
Total Operations (arrivals) in 
the System 

0.001 0.00 <0.0001 0.001 0.00 <0.0001 

Wk(t) Thunderstorm Ratio       

 Region 04 4.010 0.95 <0.0001 6.511 0.94 <0.0001 

 Region 05 4.863 0.79 <0.0001 5.345 0.78 <0.0001 

 Region 06 5.056 0.61 <0.0001 3.623 0.58 <0.0001 

 Region 11 2.495 1.27 0.0493 11.682 1.10 <0.0001 

 Region 12 11.572 0.92 <0.0001 5.625 1.12 <0.0001 

Si(t) Seasonal Dummy Variables       

 Quarter 1 0.666 0.47 0.1577 0.242 0.48 0.6123 

 Quarter 2 -2.657 0.49 <0,0001 -3.275 0.52 <0.0001 

 Quarter 3 -3.163 0.51 <0.0001 -3.802 0.53 <0.0001 

Di(t) 
Dummy Variable for Demand 
Management Regimes 

      

 AIR-21 2.086 0.61 0.0007    

 Slottery 0.865 0.61 0.1578    

 Partial HDR    1.447 0.57 0.0111 

 Post 9/11 Period -0.176 0.78 0.8207 -0.795 0.83 0.3396 

 Year 2002 -0.651 0.56 0.2416    

 Year 2003 -0.768 0.56 0.1701    

 Year 2004 0.263 0.63 0.6773    

 Overscheduling    -1.095 0.53 0.0383 

 5% Reduction in UA & AA    -1.376 0.67 0.0411 

R2 R-Square 0.944   0.941   
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Figure 7  Decomposition of LGA and ORD Average Arrival Delay 
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Figure 8 Decomposition of RNAS Average Arrival Delay Considering LGA and ORD 
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The estimates for the RNAS model are shown in Table 11. These are the 

regression estimates for average arrival delay for flights to 31 benchmark airports other 

than LGA or ORD.  The RNAS model for LGA explains a 94.35 percent variation in 

average arrival delay, whereas the model for ORD shows a 94.06 percent variation.  The 

queuing delay, total operations, and thunderstorm ratio are all significant factors affecting 

arrival delay in the NAS.  It is also seen that a one-minute increase of delay at LGA 

causes a 0.082-minute increase in delay in the NAS, while a one-minute delay at ORD 

causes a 0.052-minute delay in the NAS.  Thus, if we consider the ratio of non-LGA to 

LGA arrivals of about 34 to 1, the effect of a one-minute delay at LGA on non-LGA 

airports is 34 * 0.082 = 2.788 minutes.  Similarly, considering the ratio of non-ORD to 

ORD arrivals as 34 to 1, the effect on other airports of a one-minute delay at ORD is 34 * 

0.052 = 1.768minutes. The decomposition of the RNAS at LGA (Figure 8.a) and ORD 

(Figure 8.b) produced results similar to those of individual airports.  This is an indication 

that different demand management strategies applied at an individual airport have a 

definite impact on the whole system.  The delay in the NAS due to LGA was more during 

the AIR-21 period, and the delay due to ORD was more influential during the partial 

HDR period before sharply increasing in 2004 due to over-scheduling. 

4.3 System-Wide Benefit of Capacity Expansion of Individual Airport 

It is interesting to know the NAS-wide delay reduction as a result of expansion of 

a single airport.  Given the estimation results of 2SLS equations of LGA and the RNAS 

or ORD and the RNAS, scenario analysis can be conducted to predict the delay reduction, 

assuming certain percentages of capacity enhancement at each individual airport.  The 

entire process was done in two steps, as shown in Figure 9.  The first step produces 
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output in the form of predicted arrival delay for a single airport.  This value is compared 

with baseline observed delay to determine the percentage change of arrival delay at that 

airport.  This predicted delay from the first step along with other variables is then used in 

the second step to determine the predicted arrival delay in the rest of the NAS. The 

predicted value can then be compared with baseline delay to determine system-wide 

improvement.  For LGA and ORD, we assume there are 10%, 20%, and 30% capacity 

increases. 

 

 

Figure 9 Scenario Analyses 

The outcomes of this scenario analysis for LGA and ORD are shown in Table 12.  

The results are noteworthy indicators of the effects of capacity increments on delay 

reduction. The comparative results show that capacity increase at ORD can yield better 
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outcomes compared to LGA in terms of percentage delay reduction.  This event can be 

due to a high congestion rate at ORD, as it was ranked first in terms of the number of 

total operations till 2004, and was later overtaken by ATL [54]. 

Table 12 Comparison of Scenario Analysis of LGA and ORD Airports 

 
Capacity 

LGA ORD 

Baseline 
10% 

Increase 
20% 

Increase 
30% 

Increase 
Baseline 

10% 
Increase 

20% 
Increase 

30% 
Increase 

Airport Delay 
(minutes) 

53.18 52.21 50.56 48.98 18.64 11.48 8.84 7.77 

% Delay 
Reduction at 

Airport 
Base 1.83% 4.93% 7.90% Base 38.48% 52.60% 58.39% 

NAS Delay 
(minutes) 

6.44 6.36 6.21 6.06 8.39 8.02 7.89 7.83 

% Delay Redn 
NAS 

Base 1.36% 2.34% 2.29% Base 4.40% 6.02% 6.67% 

 

4.4 Research Outcomes 

Airport delay has always been a major problem for the aviation industry. Most 

previous studies estimate the delay propagated through an individual flight from an 

airport to the system.  This research illustrated the utility of multivariate simultaneous 

equations to study delay propagation from a single airport to the system, and vice versa. 

The model developed for LGA and ORD takes into account all the delay causal factors 

mentioned earlier and also has the scope to include more in the future. The estimated 

results clearly point toward the existing interdependency between flight delay at an 

individual airport and the NAS.  The delay at LGA and ORD significantly depends on 

delay at other airports and, similarly, LGA and ORD are major contributors to delay in 

the system. 
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The decomposition of delays for different demand management regimes from the 

year 2000 to June 2004 explains the variation in delay throughout the period.  The 

decomposition tries to establish the correlation between various delay causal factors at 

the airports and their effects on the entire system.  For LGA, it shows that maximum 

delay occurred during the AIR-21 period with slot exemptions. The delay gradually 

reduced during the Slottery regime and reached the lowest point during the post-9/11 

period. However, the results up to 2004 show that the delay slowly increased to the pre-

9/11 Slottery period level.  ORD shows a slightly different variation for delay, with the 

peak of its delay during 2004.  The FAA had to curtail the operations of UA and AA; 

however, these emptied slots were taken over by other airlines, thus nullifying the efforts 

of the FAA to reduce delay.  The decomposition for the NAS showed results similar to 

that of individual airports, with total operations in the system being one of the major 

factors affecting delay.  

The research also predicts the system-wide impact of capacity enhancement or 

improvement in demand management strategies on delay in the NAS.  The results 

indicate that with an increase in capacity there is a proportionate reduction in delay at the 

airport and the NAS.  However, this phenomenon is more predominant at ORD than at 

LGA. Through further observation, it can be seen that the major contributing factor for 

delay at ORD is queuing delay, while adverse weather is a major problem at LGA. This 

analysis helps to determine the effectiveness of capacity improvements and can be used 

as a decision making tool for airport improvement projects that require massive capital 

investments in the future. 
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Furthermore, we estimate the impact of single airport delay on other OEP 34 

airports and the rest of NAS using multivariate simultaneous models [55]. The variables 

used in the model were similar to those described in this chapter.  Nevertheless, instead 

of defining average daily arrival delay as the actual arrival times minus scheduled arrival 

times (if the results are positive), we identify arrival delay by comparing actual arrival 

times and arrival times based on flight plans.  In this way, we eliminate the noise caused 

by schedule buffer variations from the airlines.  The research approach, methodology and 

the results produced from the study are presented in the following chapters.     
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CHAPTER V 

A COMPREHENSIVE MULTI-EQUATION SIMULTANEOUS MODEL FOR 

ESTIMATING DELAY INTERACTIONS BETWEEN AIRPORTS AND NATIONAL 

AIRSPACE SYSTEM 

Previously we investigated the delay propagation from one individual airport to 

the RNAS and vice versa, using LGA and ORD as our case studies.  This study follows a 

similar path of macroscopic analysis not only investigating the impact of single airport 

delay to the RNAS but also to explore how the delay spillover is widely dispersed across 

the Operational Evolution Partnership (OEP) 34 airports (see Appendix I). Causal factors 

of the average daily arrival delays are explored, and a comprehensive multi-equation 

simultaneous model is developed for all airports under consideration along with the 

RNAS. The average arrival delay of each OEP34 airports is expressed with a multivariate 

equation.  According to the definition, the RNAS in this chapter represents the airports in 

ASPM75 excluding the OEP 34 airports. In total, there are 35 equations in this model.   

5.1 Multivariate Simultaneous-Equation Regression Model (MSERM) 

5.1.1 Specification of Multivariate Simultaneous-Equation Regression Model (MSERM) 

In this study, multivariate simultaneous equations are generated for 34 OEP 

airports and RNAS.  The causal factors for individual airport and the RNAS are slightly 
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different, according to the experiments of specification.  For individual airport, each of 

the equations contains causal factors including supply-demand imbalance indicator, 

delays occurred at other airports and the RNAS, weather factor, and others.  Analogously, 

the delay of the RNAS is affected by factors, such as the total operations in the RNAS, 

delays from 34 OEP airports, weather factor, and others. Figure 10 sketches the 

simultaneous characteristic of the system.   

 

Figure 10 Interactions between a Single Airport and the Rest of the NAS 

5.1.2 Model Variables 

Airport data were collected from the ASPM database for the period of 2000 to 

2010. As compared to the previous study, the causal factors for the delay at the individual 

airports include the additional explanatory variable ‘aircraft equipment type’ to study the 

impact of aircraft fleet size on the delay at airports. Table 13 lists the factors affecting 
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average daily arrival delay at individual airports and the RNAS.  Table 4 displays 

different demand management regimes operational at JFK, LGA and ORD airports and 

applied in the model.  

Table 13 Causal Factors of Delay at Individual Airport and the RNAS 

Individual Airport Rest of NAS (RNAS) 

Dependent Variable: Average  Daily Arrival Delay 

Independent Variables: 

Average Arrival Deterministic Queuing Delay 

Arrival Delay at Other individual OEP 
Airport and RNAS 

Average Delay at Individual OEP 
Airport 

Adverse Weather Indicators 

Aircraft Equipment Type Total Flights 

Seasonal and Demand Management Dummy Variables 

 

5.2 Model Specification  

The linear regression technique is one of the methods used for explaining the 

relationship between the variables.  The flexibility of this technique derives from the 

possibility of being able to replace the variables in the regression equations with 

functions of the original variables. Applying polynomials, multiplying or dividing 

variables by each other, applying logarithms and exponentials, and taking reciprocals are 

just a few of the variable transformations available to generate nonlinear fits.  In our 

previous research we have applied quadratic variable transformations to study average 

queuing delay and the IMC ratio as defined before.  Even though variables may be 

transformed so that the equation is nonlinear in the original units of the variables, as long 
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as the equation remains in the form of an intercept plus a slope multiplying transformed 

or untransformed variables, it remains a linear regression.  

5.2.1 Equation 1-34 (for Individual Airport)       

The model decomposes average daily delay into components related to different 

delay casual factors.  The explanatory variables include average arrival deterministic 

queuing delay, average observed arrival delay at other airports, average observed arrival 

delay in the RNAS, adverse weather, seasonal effects, demand management regimes at 

JFK,LGA and ORD airports, aircraft equipment type, and others. The demand 

management dummy variable though used only at three airports, their effects would be 

studied for all the airports with each dummy variable equal to shortest period of demand 

management at any airport.  For e.g. AIR-21 management was used at LGA from April 

2000 to December 2001, hence this would be applied to all the 34 airports plus RNAS. 

'(��)� �  f 	 ��. '+�)� 	 ∑ ���hi�j�k '(��)� 	 l�. ,-�)� 	 l�. ,-��)� 	 l.. 2m�)� 	

l/. 2m��)� 	 l1. �n�)� 	  ∑ 4om6o�)�o  + ∑ 7�m8��)�� 	  ∑ 9nm'n�)��  + v(t) 

5.2.2 Equation 35 (for RNAS) 

The model for the RNAS decomposes daily average delay at the remainder of the 

airports that excludes the 34 OEP airports. The explanatory variables include variable 

delays at individual airports, convective weather, total operations, seasonal effects, yearly 

dummy variables, and other factors. 
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∑ 7�+8��)�� 	  ∑ 9n+'n�)�n   + u(t) 

The notations in the above two models are described as follows:  
 

'(��)� � Average observed arrival delay against flight plan at individual airport on day t; 

'(��)� � Average observed arrival delay against flight plan at other individual airport (i) 

on day t; 

'+�)� � Average observed arrival delay at airports other than individual airport on day t; 

,- �)� � Average arrival deterministic queuing delay at individual airport on day t; 

2m�)� � Daily IMC ration recorded at individual airport on day t; 

=#
^_'(�)� �  Predicted average observed delay at individual airport on day t; (not 

shown in the above-listed models, obtained from the first stage of 3SLS, and used 

in the second stage); 

<=�)� � Total operations (arrivals) of the system on day t; 

�n�)� � Aircraft type operating at individual airport on day t; 

8- �)� � Weighted average arrival deterministic queuing delay of the system on day t; 

6o�)� � Weather index of region k on day t; 
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8��)� � Seasonal dummy variable, set to 1 if daily arrival delay is observed in quarter i 

and 0 otherwise; 

'n�)� � Demand Management Dummy Variable, set to 1 if daily arrival delay is 

observed in           time period j and 0 otherwise; 

:�)�, ��)� � Stochastic error terms; and  

�, l, 4, 7, 9 are coefficients. 

5.3 Research Results  

 Table 14 shows a part of the results, outcomes for equation ATL and the RNAS, 

from regression using 3SLS regression method. The table shows that the average daily 

arrival delay at ATL increases by 0.815 minutes if there is a corresponding increase of 

average queuing delay at the airport.  This is due to capacity constraints and increased air 

traffic operations at ATL in last few years [56].  The next few rows in Table 14 show the 

interactions between ATL and other airports, as well as with the RNAS.  For instance, the 

delay at ATL is significantly affected by the RNAS, as represented by the parameter in 

front of Ds(t).  For adverse weather effects, it can be seen that Region 5 has the 

significant impact on arrival delay at ATL, more thunderstorms in this region leading to 

more delay at ATL. In contrast, more thunderstorms in Region 1 lead to less delay at 

ATL.  If we recall Figure 5, we can see that Region 5 is where ATL is located. It is 

intuitively right that convective weather in this region will affect the airspace could be 

used, so as to lead to more delay at ATL. Region 1 covers Mexico Bay and Florida. If 

there are more thunderstorm, more flights from MCO, MIA, TPA will be held on the 



70 
 

ground and waiting for clearance. Under this circumstance, arrival demand at ATL will 

be lower and the arrival delay will be less. The equipment type is insignificant in the case 

of the ATL airport.  This might be possible due to availability of enough gates at the 

ATK airport. Similarly, the table shows results for seasonal and demand management 

dummy variable.  

While going through the regression results from other equations (which are not 

listed in this dissertation due to the limitation of space), the estimated coefficients for 

average queuing delay for most of the airports except BWI, DCA, PDX, SAN, TPA and 

RNAS indicate that supply and demand imbalance is likely to be a major contributing 

factor to average daily arrival delays. However, the negative coefficient for the quadratic 

term of average queuing delay shows that this factor reduces as average queuing delay 

increases. This study explores the delay propagation from other airports and the RNAS to 

an individual airport and vice versa. The estimation results show that the other airports 

around the same geographical region or the other airports operating as a hub for the same 

carrier contribute significantly on the delay at the reference airport. For instance, the 

airports significantly affect the arrival delay at ATL are BWI, MCO, MEM, PDX and 

RNAS which are mostly located in the eastern part of the country. Similar regional 

phenomena can be observed and are summarized in Table 15. 

Counter-intuitively, several airports have negative delay propagation effects on 

some other airports.  For example, the delay increase at DFW will reduce the delay at 

ATL, BOS, CLT, CVG, DTW, LAX and PHX.  The IMC ratio is likely to impact the 

delay at almost all the airports except BWI, FLL and PDX.  Most of the airports are 

affected significantly by the convective weather index in the same region where they are 
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located except CVG, LAS, PDX, SLC and SAN.  It is also observed that a few airports 

like DEN, BWI and MEM are affected by thunderstorms occurring at destinations.  In 

addition, convective weather at region 2, 10 and 13 which represent congested states 

contribute considerably to delay at the rest of the NAS airports.  

As long as the weather pattern is captured by the convective weather index and 

IMC ratios, seasonal dummy variables in the model only reflect the seasonal difference of 

airline scheduling. The estimates for the seasonal effect show that their impact on delay is 

very small in comparison to other factors.  Interestingly, for most of the airports, the 

winter seasonal effect shows highest amount of delay as compared to other seasons.  

However for the airports in the southern parts of the country like MCO, ATL, TPA, DFW 

and LAS, delays are higher during spring. The demand management regimes, even 

though implemented at only some airports, dummy variables were generated and applied 

for all the 34 airports and the RNAS.  The dummy variable parameters show a large 

impact on average daily arrival delay. The estimated coefficients for the dummy variables 

provide a better perspective on how delays vary in comparison to different time periods. 

According to the FAA, 34 OEP airports are categorized into different regions (different 

from the convective weather regions that we have defined earlier) [57].  The trends of 

average arrival delay for all the airports along with the NAS are shown in Figure 11 to 

Figure 18. 
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Table 14 Estimation Results of Arrival Delays at an Individual Airport (ATL) and the 

RNAS 

 
 
Variable 

Atlanta (ATL) System 

Estimate SE P-Value Estimate SE P-Value 

 Intercept -6.08850 1.612001 0.0002 -0.09578 0.250255 0.7019 

LQ(t) Average Queuing Delay 0.815279 0.016347 <.0001 0.008169 0.020269 0.6869 

LQ2(t) Quadratic Average Queuing Delay at Airport -0.00258 0.000068 <.0001    

DS(t) Predicted arrival delay at         

 ATL    0.010759 0.004269 0.0118 

 BOS 0.003150 0.018070 0.8616 0.015715 0.005199 0.0025 

 BWI 0.253522 0.088139 0.0040 0.120480 0.024952 <.0001 

 CLE 0.042338 0.054490 0.4372 0.019515 0.015686 0.2135 

 CLT 0.017762 0.050061 0.7228 0.037763 0.014593 0.0097 

 CVG 0.011691 0.056531 0.8362 0.020028 0.016063 0.2125 

 DCA 0.050516 0.073527 0.4921 0.106542 0.020753 <.0001 

 DEN -0.08094 0.036804 0.0279 0.035417 0.010392 0.0007 

 DFW -0.13410 0.033219 <.0001 0.153919 0.008041 <.0001 

 DTW -0.22495 0.046100 <.0001 0.045573 0.013238 0.0006 

 EWR 0.032303 0.024109 0.1804 0.032462 0.006858 <.0001 

 FLL -0.31707 0.067745 <.0001 -0.03299 0.019346 0.0882 

 IAD -0.37491 0.060995 <.0001 -0.05680 0.017759 0.0014 

 IAH -0.01707 0.023049 0.4590 0.048768 0.007271 <.0001 

 JFK -0.02792 0.035584 0.4328 -0.04884 0.010340 <.0001 

 LAS -0.02789 0.036788 0.4485 0.009075 0.010576 0.3909 

 LAX -0.12154 0.060266 0.0438 0.118548 0.016883 <.0001 

 LGA 0.012100 0.023295 0.6035 0.041000 0.006332 <.0001 

 MCO 0.526641 0.131260 <.0001 0.224844 0.036287 <.0001 

 MDW -0.04617 0.049609 0.3521 0.050133 0.013709 0.0003 

 MEM 0.208091 0.052253 <.0001 -0.02290 0.015378 0.1365 

 MIA -0.00966 0.068913 0.8886 0.037790 0.019356 0.0510 

 MSP 0.016713 0.022930 0.4661 0.004489 0.006582 0.4953 

 ORD -0.00094 0.018501 0.9597 0.025652 0.005198 <.0001 

 PDX 0.252337 0.106883 0.0183 0.170080 0.029714 <.0001 

 PHL -0.02964 0.020885 0.1559 -0.04474 0.005872 <.0001 

 PHX 0.043615 0.038512 0.2575 0.043902 0.010956 <.0001 

 PIT -0.11213 0.082175 0.1725 0.058391 0.023375 0.0125 

 SAN -0.05863 0.109247 0.5915 0.098975 0.030358 0.0011 

 SEA -0.10822 0.058938 0.0664 -0.03307 0.016679 0.0475 

 SFO -0.00046 0.012309 0.9699 -0.00136 0.003543 0.7012 

 SLC -0.05233 0.039920 0.1900 0.013350 0.011579 0.2490 

 STL -0.01448 0.025239 0.5661 0.045254 0.007162 <.0001 

 TPA 0.338615 0.113945 0.0030 -0.01013 0.033109 0.7597 

 Total System 0.003150 0.018070 <.0001    

T(t) Total Flights     0.000067 0.000022 0.0027 

IA(t) IMC Ratio 3.139454 1.064630 0.0032    

IA
2(t) Square of IMC Ratio 4.279547 1.229735 0.0005    
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Table 14: Continued 

�n�)� Equipment 1 2.891E-6 0.000080 0.9712    

 Equipment 2       

 Equipment 3       

 Equipment 4 0.000036 0.000017 0.0322    

 Equipment 5 0.000023 0.000012 0.0434    

 Equipment 6 -0.00021 0.000086 0.0136    

WK(t) Thunderstorm Ratio       

 Region 01 -10.0904 1.244729 <.0001 -1.19338 0.321979 0.0002 

 Region 02    0.539538 0.276836 0.0514 

 Region 03    -1.13248 0.521833 0.0301 

 Region 04    0.009421 0.377856 0.9801 

 Region 05 24.56031 1.350248 <.0001 -0.60270 0.329344 0.0673 

 Region 06    -0.41505 0.363538 0.2536 

 Region 07    0.147004 0.624867 0.8140 

 Region 08    0.508938 0.364675 0.1629 

 Region 09    -1.14208 0.449766 0.0111 

 Region 10    -0.07357 0.484183 0.8792 

 Region 11    0.631972 0.300177 0.0353 

 Region 12    -1.19395 1.000187 0.2327 

 Region 13    -1.19338 0.321979 0.0002 

 Region 14    0.539538 0.276836 0.0514 

 Region 15    -1.13248 0.521833 0.0301 

 Region 16    0.009421 0.377856 0.9801 

Si(t) Seasonal Dummy Variables       
 Quarter 2 1.091572 0.378151 0.0039 0.313029 0.106023 0.0032 

 Quarter 3 1.372655 0.474541 0.0038 0.367125 0.131297 0.0052 

 Quarter 4 0.428131 0.360006 0.2344 0.108400 0.096186 0.2598 

Dj(t) Demand Management Regimes       

 AIR 1.257618 0.810436 0.1216 -0.16492 0.205676 0.4227 

 Before 9/11 0.437741 0.838518 0.6029 0.034505 0.209368 0.8691 

 After 9/11 1.582508 1.078529 0.1440 1.001999 0.275613 0.0003 

 OV 2002 0.555405 0.955752 0.5645 1.188643 0.201927 <.0001 

 OV 2003 0.374392 1.039075 0.7217 0.615717 0.204152 0.0026 

 CAP -0.81224 1.351016 0.5457 1.194191 0.234043 <.0001 

 RED A -1.28303 1.226865 0.2930 1.099363 0.240780 <.0001 

 RED B -0.95103 1.078013 0.3755 0.992495 0.224898 <.0001 

 RED C 0.847884 1.413631 0.5507 1.125077 0.231898 <.0001 

 LIM 4.785715 1.487951 0.0013 0.978558 0.268300 0.0003 

 Year 2007 3.452351 1.470327 0.0191 0.883978 0.236155 0.0002 

 Year 2008 3.077824 1.457181 0.0350 1.082171 0.228994 <.0001 

 Year 2009 4.308317 1.387312 0.0019 0.509018 0.225555 0.0241 

 Year 2010 3.449082 1.512166 0.0228 1.714824 0.215350 <.0001 

 System Weighted MSE 4.5296 

 Degrees of Freedom 136284 

R2 System Weighted R-Square 0.7335 
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Figure 11 shows that the average arrival delays at all the airports in ASO region, 

except ATL, CLT and CVG, remained almost the same throughout 2000 to 2010.  After 

2005 (REDB), average daily arrival delay at ATL and CLT increased continuously from 

2005 to 2010.  On the contrary the average daily arrival delay at CVG reduced from 2000 

to 2010.  In Region AWP, as shown in Figure 12, the delay at LAX decreased drastically 

after 9/11 and slowly approached the level of pre 9/11 in 2006. For SFO, LAS and SAN 

in the same region, however, the delay increased immediately after 9/11.   

Figure 13 shows the delay trends of the airports in ANM region, which comprises 

airports in the north-west of the country.  The average arrival delay at those airports was 

higher in 2007, but still lower than the pre 9/11 level.  However, the average daily arrival 

delay at DEN increased dramatically post 2005. 

The north-central part of the U.S. is represented by AGL region (Figure 14), 

which consists of many connecting airports for east-west air traffic. The arrival delays at 

most of the airports reduced after year 2000 expect the ORD airport.  It was also noticed 

that after reduction of United and American Airlines in 2004, the delay at the ORD 

airport reduced a bit as compared to earlier estimates.  Nevertheless, the delay at MSP 

airport has significantly reduced from 2000 to 2010. The ASW region (Figure 15) 

consisting of airports from Texas state had arrival delay showing opposite trends 

throughout the time period. The average daily arrival delay had its peak value for DFW in 

2004, while for IAH it reached its peak in 2010.  The north-eastern part of the country 

that has a few of the world’s busiest airports is represented by AEA region (Figure 16). 
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Table 15 Interactions between Individual Airports and the NAS 

Airports Airports Contributing to Average Arrival Delay Airports Reducing Average Arrival Delay 

ATL 
BWI (0.254), MCO (0.526), MEM (0.208), PDX (0.252), 
NAS (0.588) 

DFW (-0.134), DTW (-0.224), FLL(-0.317), IAD(-
0.374) 

BOS BWI (0.453), LGA (0.127), PIT (0.410), NAS (1.089) CLE (-0.241), DFW (-0.185), LAX (-0.343) 

BWI 
BOS (0.036), DCA (0.418), IAD (0.275), JFK (0.123), 
MDW (0.155), PHL (0.091), TPA (0.253), NAS (0.261) 

EWR (-0.104), MCO (-0.344), ORD (-0.075) 

CLE BWI (0.276), DTW (0.186), PIT (0.546), NAS (0.284) BOS (-0.036), DCA (-0.255) 

CLT 
CVG (0.113), DCA (0.371), EWR (0.052), MCO (0.332), 
PIT (0.169), NAS (0.325) 

DFW (-0.089), FLL (-0.131) 

CVG 
CLT (0.157), DTW (0.141), LGA (0.057), MEM (0.126), 
ORD (0.041), PIT (0.417), STL (0.068) 

DFW (-0.067), MDW (-0.107), SAN (-0.252) 

DCA 
BWI (0.611), CLT (0.157), IAD (0.155), PHL (0.058), NAS 
(0.326) 

CLE (-0.143), MEM (-0.157) 

DEN 
MEM (0.137), MSP (0.056), PDX (0.417), SLC (0.126), 
NAS (0.302) 

SEA (-0.189) 

DFW IAH (0.076), LGA (0.076), NAS (1.769) EWR (-0.086), LAX (-0.343), MDW (-0.165) 

DTW 
CLE (0.284), MCO (0.327), MDW (0.205), PDX (0.321) 
and NAS (0.533) 

DEN (-0.074), DFW (-0.068),  

EWR 
CLE (0.317), IAD (0.284), JFK (0.613), LGA (0.484), PDX 
(0.763), PHL (0.281), NAS (0.768) 

BWI (-0.700), TPA (-0.560) 

FLL LGA (0.042), MCO (0.834), MIA (0.581) IAD (-0.126) 

IAD 
BWI (0.572), DCA (0.295), DEN (0.085), EWR (0.064), 
LGA (0.093), ORD (0.037), PIT (0.228) 

FLL (-0.182), JFK (-0.146), MDW (-0.108), MSP (-
0.061) 

IAH 
DFW (0.191), LAX (-0.313), MEM (0.309), SAN (0.433), 
NAS (0.827) 

MDW (-0.255) 

JFK 
BWI (0.734), EWR (0.307), LGA (0.068), MCO (0.956), 
ORD (0.095) 

IAD (-0.479), MDW (-0.327) 

LAS PHX (0.072), SAN (0.847) LAX (-0.127) 

LAX DCA (0.138), SAN (0.950), SEA (0.087), MAS (0.426) DFW (-0.101), MDW (-0.144), PDX (-0.184) 

LGA 
BOS (0.111), EWR (0.577), FLL (0.515), IAD (0.411), JFK 
(0.212), SEA (0.395), NAS (1.022) 

IAH (-0.155), MCO (-1.119), PDX (-1.071), STL (-
0.176) 

MCO 
DTW (0.058), FLL (0.237), JFK (0.083), TPA (0.617), NAS 
(0.272) 

BWI (-0.143), LGA (-0.057), MSP (-0.028) 

MDW 
BWI (0.532), DTW (0.226), ORD (0.369), PIT (0.273), TPA 
(0.332), NAS (0.421) 

CVG (-0.195), IAD (-0.201), JFK (-0.161), LAX (-
0.208) 

MEM 
CLE (0.175), CLT (0.128), CVG (0.129), IAH (0.083), MSP 
(0.047), ORD (0.046), PDX (0.309) 

DCA (-0.194), JFK (-0.076), MIA (-0.158), SEA (-
0.111) 

MIA FLL (0.611), ORD (0.034) DCA (-0.167), MDW (-0.093) 

MSP 
BWI (0.350), DEN (0.123), EWR (0.126), PDX (0.344), 
TPA (0.613) 

IAD (-0.269), JFK (-0.205), MIA (-0.240), PHL (-0.097) 

ORD JFK (0.200), MDW (1.827), MSP (0.167) BWI (-0.905), DTW (-0.247) 

PDX 
DEN (0.043), EWR (0.044), MEM (0.067), SAN (0.229), 
SEA (0.456), SFO (0.026), SLC (0.118), NAS (0.262) 

IAH (-0.043), LAS (-0.048), LAX (-0.116), TPA (-
0.133) 

PHL 
BWI (1.311), DCA (0.372), EWR (0.414), LGA (0.121), 
MEM (0.255), PIT (0.546) 

IAD (-0.746), JFK (-0.292), MSP (-0.121), NAS (-
0.527) 

PHX 
DCA (0.115), DEN (0.094), SAN (0.447), SEA (0.138), 
SLC (0.069), NAS (0.497) 

BWI (-0.137), DFW (-0.057), IAD (-0.124), PDX (-
0.250) 

PIT 
CLE (0.239), CVG (0.111), DCA (0.107), MCO (0.207), 
MDW (0.104), NAS (0.200) 

DEN (-0.053), DTW (-0.075) 
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This region consists of the largest number of airports as compared to other regions. For 

all the airports, except LGA, the average arrival delay has always been positive.  The 

average daily arrival delay at PHL, JFK, EWR and IAD significantly increased after 

2005.  The average arrival delay at BOS (Figure 17) had an increment, while for STL it 

reduced after 2004.  Figure 18, shows estimates for the RNAS and it is seen that the 

average daily arrival delay increased constantly from 2000 to 2010. 

 

 

Figure 11 Airport Arrival Delay from 2000-2008 for ASO Region 
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ATL

CLT

FLL

MEM

MIA

MCO

TPA

CVG

Table 15: Continued 

SAN 
IAH (0.035), LAS (0.184), LAX (0.374), PDX (0.162), PHX 
(0.051), SFO (0.025), NAS (0.172) 

SEA (-0.097) 

SEA ORD (0.040), PDX (1.323) DEN (-0.065), SFO (-0.039), SLC (-0.095) 

SFO ORD (0.071), PDX (0.513), SAN (1.042) 
CVG (-0.207), LAX (-0.326), MCO (-0.605), MDW (-
0.216) 

SLC DEN (0.112), MEM (0.096), PDX (0.637), SAN (0.297) SEA (-0.185), SFO (-0.023) 

STL 
CVG (0.210), EWR (0.088), MDW (0.169), MEM (0.147), 
NAS (0.766) 

LAS (-0.088), LAX (-0.148) 

TPA BWI (0.143), LGA (0.032), MCO (0.0782), MIA (0.091) BOS (-0.024), DCA (-0.097) 

RNAS 
(System) 

BWI (0.120), DCA (0.106), DFW (0.154), EWR (0.032), 
IAH (0.049), LAX (0.118), LGA (0.041), MCO (0.224), 
ORD (0.025), PDX (0.170), PHX (0.043), STL (0.045) 

JFK (-0.048), PHL (-0.044) 
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Figure 12 Airport Arrival Delay from 2000-2008 for AWP Region 

 

 

      

Figure 13 Airport Arrival Delay from 2000-2008 for ANM Region 
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  Figure 14 Airport Arrival Delay from 2000-2008 for AGL Region 

 

 

 

Figure 15 Airport Arrival Delay from 2000-2008 for ASW Region 
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Figure 16 Airport Arrival Delay from 2000-2008 for AEA Region 

 

 

 

Figure 17 Airport Arrival Delay from 2000-2008 for ANE (BOS) and AAL (STL) 
Regions 
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Figure 18 Airport Arrival Delay from 2000-2008 for RNAS 
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CHAPTER VI 

ESTIMATION OF FLIGHT DELAY PROPAGATION OF THE MULTI-AIRPORT 

SYSTEMS IN THE US 

 
With the increase in population, city’s geographical growth, better ground 

transportation modes and sometimes political factors, there has been steady increase in 

number of airports within a region [13].  Most of the major cities in the U.S. are served 

by more than one airport.  Many of these airports have coordinated operations in terms of 

sharing regional airspace, some act as a reliever airport in case of over shooting of 

capacity at other airport(s) and also help reduce environmental effects like noise and air 

pollution in one specific area.  For instance, the San Francisco bay area consists of three 

major airports namely SFO, OAK and SJC along with many small airports. The flight 

routes at all the three airports are usually conflicting with each other [58]. All these 

airports need to take additional care to maintain air-borne safety of the flights that might 

result in increase of flight delay. Hence, research is warranted to explore the impact of 

these groups of airports in a region on other airports.  

Additionally, it is seen that while traffic at major airports is stable, traffic at 

reliever airports is volatile depending upon its demand [6].  As seen in some cases, 

airports might be competing against each other for air service demand due to competing 

airlines, close proximity, increasing demand, efficient service, etc.  In the case of BOS 

and MHT airports as shown in Figure 19, the BOS airport is operated by legacy airlines 
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while the MHT airport has large number of operations by low cost carriers (LCC). Both 

the airport operations completely differ from each other in terms of their management. 

Hence, it would be interesting to learn the impact of operations at these airports on other 

airports in the country. 

 

 

Figure 19 Air Service Area at the Greater Boston Region 

Our previous studies estimated and compared flight delay propagated from one 

individual airport to another and vice versa, as well as the delay propagated from that 

airport to the RNAS and the effect of RNAS delay to that airport (Zhang and Nayak [42] 

[55]).  The outcomes of our studies provide decision-support for future airport capacity 

expansion and a framework to evaluate the nation-wide effectiveness of capacity 

expansion or delay reduction at individual airports. In this study, we expanded our study 

to the multi-airport systems. 
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The multi-airport system is defined as a system with a set of airports that serve air 

traffic a metropolitan area [6].  The New York airspace is one of the most congested 

airspaces in the world, with both domestic and international air traffic. FAA always faces 

the challenge of mitigating the delays in the New York region.  Increasing airport 

capacity by adding more runways could be a solution; however, it will lead to enormous 

capital investment, projected flight delays, public outcry, and environmental concerns.  

Atkins [59], for example, studied the interdependencies between proximate airports in the 

San Francisco Bay Area and found that the interdependencies resulted in reduction of 

airport capacity and operational efficiency. Thus, it is worthwhile to investigate the 

interdependency between airports for seeking solutions to improve the operational 

efficiency of regional airport systems.  Also, given the multiple regional airport systems 

in the U.S. and their different characteristics, it is interesting to see how the operational 

performance of each regional airport system affects the RNAS (in this study, the NAS 

with other airports except the studied regional airport system.)  

6.1 Research Approach 

The objective of this study is to quantify the interdependency of airports in a multi-

airport system and to investigate the delay propagation from the system to the RNAS and 

vice versa. Hence, the first step was to collect data for multi-airport systems.  A total of 

11 multi-airport systems in the U.S. were identified based on regional traffic share and 

proximity [13]. Orlando and Tampa regions contain airports for which data are not 

available in the Aviation Service Performance Management database and were not 

included.  Table 2 shows the final list of metropolitan regions and airports. All the 

airports in these regions, except New York and Houston, are multi-jurisdictional, with 
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different authorities in charge of the operations and management of the different airports 

in each region [22].  

The second step was to define regional level performance indicators, as well as 

indicators reflecting the characteristics of multi-airport systems.  Research on three 

airports in the Bay area (SFO, OAK, and SJC) [60] estimated that domestic origin-

destination passenger share at SFO fell from 66 percent in 1990 to 42 percent in 2003.  

Some of the reasons cited were the introduction of LCC airlines or transfer of legacy 

airline operations to regional carrier affiliates.  However, it was observed that the 

introduction of Virgin Atlantic (an LCC) at SFO increased its share to 51 percent.  These 

numbers are a clear indicator of passengers responding to airline fares for airports located 

in the same region. Another important indicator is the LCC market share. In some 

regions, for instance, in the case of BOS, MHT, and PVD in the New England region, the 

operations at BOS are dominated by legacy airlines while at MHT and PVD, a large 

number of operations are offered by LCCs [8].  Correspondingly, the operations of these 

airports differ from each other in terms of their management. 

We present elasticity estimates to demonstrate the different effects of the multi-

airport system toward the RNAS in the fourth step. Meanwhile, the same analysis was 

conducted to identify the major factors leading to the change of flight delays at each 

regional airport system during different seasons of the year.  
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6.2 Model Variables 

Figure 20 shows the interactions between multi-airport systems and the RNAS. The 

variables in the figure were explained earlier and are shown in the following table.  

 

 

Figure 20 Interactions between Multi-Airport System and the RNAS 

Average daily arrival delay is the dependent variable in our model. This average 

daily arrival delay is the aggregate average daily arrival delay from all airports in the 

region.  Only arrival delay is used as the delay metric, since there is a high correlation 

between arrival and departure delay for both the region and the RNAS.  For each multi-

airport system, the average daily arrival delay is a function of average arrival delay at 

RNAS, deterministic queuing delay caused by the over-scheduling or supply-demand 

imbalance due to capacity deficiency in the system, adverse weather, HHI, and LCC 

Market Share, together with dummy variables indicating seasonal and yearly effects. 
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Similarly, the average daily arrival delay at RNAS depends upon average arrival delay in 

the regional airport system under consideration, deterministic queuing delay, total flights, 

and other explanatory variables. 

Table 16 Causal Factors of Delay at Region and the RNAS 

Region Rest of NAS (RNAS) 

Dependent Variable: Average  Daily Arrival Delay 

Independent Variables: 

Average Arrival Deterministic Queuing Delay 

Arrival Delay at the RNAS Average Delay at particular region 

Adverse Weather Indicators 

HHI Index for Region 

LCC Airline Market Share Total Flights 

Seasonal and Demand Management Dummy Variables 

 

Table 17 Correlation Matrix for LCC Share at Four Airports in the New York 

Region 

 EWR ISP JFK LGA 

EWR 1.000 0.720 0.584 0.224 
ISP 0.720 1.000 0.924 0.778 
JFK 0.584 0.924 1.000 0.850 
LGA 0.224 0.778 0.850 1.000 

 

We also conducted a collinear diagnosis of explanatory variables.  We found that 

some of the LCC market shares between airports in the same region show high 

correlations.  As shown in Table 17, the LCC market shares of EWR and ISP are highly 
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correlated, as well as those of JFK and ISP.  We also found that in most of the regions, 

the IMC ratios at airports in the same region are correlated.  

In such cases, principal component analysis is applied to remove the multi-

collinearity from the analysis.  It is a statistical technique that generates a linear 

combination of a number of variables and uses them for further analysis [61] and is a 

simple variable reduction procedure.  The observed variables are weighted in such a way 

that the resulting components account for a maximal amount of variance in the data set.  

The number of principal components generated is equal to the number of variables.  The 

first few components cover up maximum variance and are used based on different 

criteria.  For instance, when the principal component analysis is applied to the above 

case, it was found that Component 1 = (0.398 EWR_Share) + (0.558 ISP_Share) + (0.552 

JFK_Share) + (0.475 LGA_Share).  Component 1 covers 77.20 percent of the variance, 

so it was used in regression model.  

Table 18 Principal Component Analysis for LCC Share in the New York Region 

 Prin1 Prin2 Prin3 Prin4 
EWR 0.398 0.792 0.163 0.434 
ISP 0.558 0.072 0.318 -0.763 
JFK 0.552 -.134 -0.822 0.048 
LGA 0.475 -.591 0.444 0.477 

 

Another test conducted was the test for heteroskedasticity, as known as the White 

test. The White test examines the null hypothesis that the variances of the residuals are 

homogenous. The test results showed that the p-value was high so that the null hypothesis 

was accepted.  
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6.3 Model Format 

6.3.1 Equation 1 for Individual Region 

The model decomposes average daily delay into components related to different 

delay casual factors.  The explanatory variables include average arrival deterministic 

queuing delay aggregated for all airports in the region, average observed arrival delay in 

the RNAS excluding the region under consideration, proportion of LCCs at the airport, 

HHI index of the region, adverse weather, seasonal effects, and others.  Since demand 

management strategies were implemented at airports in the New York and Chicago 

regions, to capture the effects of those strategies, the entire study time period was divided 

into several time windows, and dummy variables were introduced for the windows.  

 '�)� �  f 	 ��. '+�)� 	 l�. ,-�)� 	 l�. ,-��)� 	 l.. 2q�)� 	 l1. ,r�)� 	 

 l3. ss2�)� 	  ∑ 4o6o�)�o  +∑ 7�8��)�� 	  ∑ 9n'n�)�� 	  :�)�     

6.3.2 Equation 2 for RNAS  

The model for the RNAS decomposes daily average delay at the remainder 

airports, excluding the airports in the region under consideration. The explanatory 

variables include delays in the region, convective weather, total operations, seasonal 

effects, yearly dummy variables, and other factors. 

'+�)�  �  f 	 ;�. <=�)� 	 ;�. '�)� 	 ;�. 8-�)� 	  ;.. ss2�)� 	  ∑ 45+65�)�5 	
 ∑ 7�+8��)�� 	  ∑ 9n+'n�)�n 	  ��)�     
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The notations in the above two models are described as follows:  

D �t� � Weighted average observed arrival delay against flight plan in the region under 

consideration on day t; 

Dt�t� � Weighted average observed arrival delay in RNAS on day t; 

LQ �t� � Weighted average arrival deterministic queuing delay in the region under 

consideration on day t; 

SQ �t� � Weighted average arrival deterministic queuing delay in RNAS on day t; 

Iw �   Daily IMC ratio component for the region on day t; 

OP�t� � Total operations (arrivals) in RNAS on day t; 

HHI �t� �  Herfindahl–Hirschman Index in the region on day t; 

W{ � Weather index of region k on day t; 

S� �  Seasonal dummy variable, set to 1 if daily arrival delay is observed in quarter i and 

0 otherwise; 

D| � Yearly/Demand Management Dummy Variable, set to 1 if daily arrival delay is 

observed in time period m and 0 otherwise; 

v(t) and u(t) = Stochastic error terms; and  

γθωλβα  and ,,,,,  are coefficients. 
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6.4 Estimation Results 

We used 3SLS regression to estimate the coefficients in the 2-equation 

simultaneous equation models and compare the outcomes from different regions.  Table 

19 shows the regression estimates for the region equations for all nine regions considered 

in this research.  Due to space limitations, we have not listed the regression results for 

RNAS equations, but we have summarized the effect of delay in each region on the 

RNAS in Table 19.  

The 3SLS results shown in Table 19 indicate that for all regions, average queuing 

delay, delay from the RNAS, and weather are significant factors (highlighted in bold).  It 

also shows that for all regions, the imbalance between capacity and demand is a major 

contributing factor to average daily arrival delay.  However, the negative coefficient for 

the quadratic term of average queuing delay shows that this factor diminishes as average 

queuing delay increases.  The R-square values from the table clearly indicate that the 

model captured considerable variation in the average daily arrival delay in all the regions.  

The estimated coefficients of IMC ratio components show that delay increases due 

to the increase of adverse weather conditions, which is intuitively correct and easy to 

observe.  The estimates for LCC market share components are not alike for different 

regions.  The outcomes indicate that a drift towards the monopoly of LCC operations at a 

particular secondary airport results in the increase of delay for the Washington DC, 

Boston, New York, Los Angeles, Chicago, Houston, and Dallas regions. This might be 

due to induced demand of passengers who generally opted for car or train for short trips. 

Also it was noticed that Legacy airlines shifted their operations to new international 
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markets to sustain themselves economically [62]. Hence LCC operations even though 

being beficial to airline passengers put huge pressure on airports and the NAS.  However, 

for the South Florida region, the introduction of LCCs at primary airports increases 

regional delay, and the introduction of LCCs to secondary airport reduces the delay.  As 

can be observed in Table 20 this might be due to a lower percentage of LCC operations in 

the South Florida region, not reaching its tipping point.  San Francisco Bay area airports 

behave distinctly, as the increase of LCCs reduced regional delay considerably. This 

might be due to the presence of regional airlines operating short haul distances in and 

around the Bay area itself.  

Table 19 Estimation Results of Arrival Delays at Different U.S. Regional Airport 
Systems 

 Reg 1 Reg 2 Reg 3 Reg 4 Reg 5 Reg 6 Reg 7 Reg 8 Reg 9 

R-square 0.591 0.583 0.592 0.482 0.631 0.492 0.594 0.508 0.486 

Intercept -8.833 6.667 0.918 3.546 32.274 9.295 50.256 16.116 8.638 

Average queuing 
delay 

0.046 0.140 1.251 0.558 0.201 0.486 0.199 0.408 0.216 

Quadratic average 
queuing delay at 
airport 

0.000 0.000 -0.013 -0.002 0.000 -0.009 0.000 -0.001 0.000 

Predicted arrival 
delay at RNAS 

1.014 0.951 0.356 0.394 1.413 0.694 0.415 0.385 0.564 

IMCcomp1 0.235 2.086 0.489 0.437 1.627 0.945 2.262 1.141 1.378 

IMCcomp2    0.690      

LCCcomp1 0.401 0.062 -3.184 -0.713 2.011 52.043 85.102 57.202 4.754 

LCCcomp2 0.335   -0.518 1.292 -23.304 11.457 -2.387 -44.233 

HHI_region 21.583 -3.431 -5.688 0.435 -85.808 -6.247 -77.972 -16.831 -19.357 

Thunderstorm Ratio          

Region 01 0.073 1.921 0.426 -0.660 -0.561 13.367 0.011 0.760 -0.631 

Region 02 -0.789 -1.459 -1.546 -1.393 -1.880 -0.386 0.407 0.689 17.853 

Region 03 -0.092 -0.039 -0.667 -0.738 -0.089 0.778 -0.250 -0.227 0.732 

Region 04 13.583 3.926 -0.271 -1.420 9.718 4.771 1.605 2.691 0.494 

Region 05 -1.759 -5.111 -1.074 -0.316 -7.051 -2.595 -3.726 -5.621 -4.979 

Region 06 -3.756 -4.119 2.041 1.531 -8.302 -4.362 0.783 22.973 14.633 

Region 07 0.779 2.496 -1.220 -1.641 2.783 -0.100 -1.540 3.774 -1.938 

Region 08 1.047 5.303 0.884 7.467 4.992 -0.194 -3.464 0.406 1.746 

Region 09 -4.435 -8.069 19.159 25.204 -8.743 -4.582 -8.425 -7.497 -9.231 
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Table 19: Continued 
Region 10 -0.540 -2.152 0.336 0.739 -3.116 -0.341 4.291 0.449 1.581 

Region 11 5.370 17.070 1.202 1.271 26.613 0.051 -10.043 0.764 -0.189 

Region 12 -0.095 -3.740 1.867 0.300 -6.815 -6.453 37.806 -4.017 -4.976 

Region 13 -2.147 -0.042 0.608 0.696 -0.670 -1.567 6.195 -2.227 -0.951 

Region 14 1.081 1.294 1.338 0.842 -0.429 -1.200 1.012 -3.251 -0.891 

Region 15 -3.267 -2.257 1.539 1.885 -5.081 -0.352 1.912 2.195 3.824 

Region 16 0.066 -3.921 8.294 1.565 -0.118 4.086 -7.081 0.014 -7.012 

Demand Mgt.  
Regimes 

         

Sepb 0.121 -0.445 -2.847 -1.761 -1.651 -0.017 -0.280 -0.187 -0.994 

Sepa 2.894 -2.742 0.463 -4.671 -1.769 1.596 -5.755 -1.488 -1.566 

Year2002 1.411 -2.872 0.954 -1.266 -1.945 1.013 -5.658 -0.514 -0.090 

Year2003 1.181 -2.432 1.821 -1.374 -2.779 2.288 -4.840 -0.628 0.013 

CapA       -0.023   

Year2004 -0.485 -3.141 3.104 0.105 -7.748 2.907 -3.533 -0.203 1.184 

Year2005 -1.327 -4.168 5.419 1.510 -5.416 3.207 -2.864 -0.712 1.190 

LOA       -0.419   

Year2006 -1.141 -3.887 6.972 2.225 -7.309 2.710 -1.694 0.004 3.837 

Year2007 -0.825 -3.474 8.281 1.365 -7.167 4.192 -2.510 1.262 2.546 

Year2008 -1.582 -4.361 10.941 2.091 -10.235 5.991 -1.918 0.443 3.105 

Year2009 -1.340 -3.774 13.287 2.252 -9.621 7.428 -4.898 -0.516 1.901 

Year2010 -0.824 -2.675 16.364 2.403 -10.712 8.035 -2.867 0.470 2.745 

quarter2 0.828 0.460 -0.208 -1.011 1.587 0.662 -0.976 -0.623 -0.054 

quarter3 0.531 1.219 -0.443 -0.699 1.922 0.104 -0.525 -0.467 -0.520 

quarter4 -0.598 -0.243 1.399 0.556 0.050 0.248 0.685 0.449 0.939 

Note: Figures in bold are significant for 95% level of confidence. 
Highlighted cells for LCCcomp1 and LCCcomp2 indicate individual airport share and no correlation. 
Highlighted cells for dummy variables indicate slot management instead of yearly dummy. 
The column headings represent the following regions: 

Reg 1 = Washington Metropolitan Area, comprising DCA, IAD and BWO airports 
Reg 2 = New England Area, comprising BOS, MHT and PVD airports 
Reg 3 = San Francisco Bay Area, comprising SFO, OAK and SJC airports 
Reg 4 = Greater Los Angeles Area, comprising LAX, LGB, SNA, BUR and ONT airports 
Reg 5 = New York Metropolitan Area, comprising JGK, LGA, EWR and ISP airports 
Reg 6 = South Florida Metropolitan Area, comprising MIA and FLL airports 
Reg 7 = Chicago Metropolitan Area, comprising ORD and MDW airports 
Reg 8 = Dallas–Fort Worth Metropolitan Area, comprising DFW and DAL airports 
Reg 9 = Greater Houston Area, comprising IAH and HOU airports 
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Table 20 Percentage of LCC Operations at Airports in Each Region 

Region Airports (% LCC share) 

Washington–
Baltimore DCA (6.10%) BWI (59.14%) IAD (23.97%)  

 

New England BOS (13.85 %) MHT (37.16%) PVD (38.62%)   

SF Bay Region 
SFO (8.91%) OAK (61.94%) SJC (47.73%)  

 

Los Angeles  LAX (19.39%) LGB (57.00%) ONT (41.31%) SNA (26.83%) BUR (58.61%) 

New York EWR (6.23 %) ISP (75.32 %) JFK (30.55%) LGA (12.06 %) - 

South Florida MIA (2.22%) FLL (35.32%)    

Chicago ORD (7.59%) MDW (84.80%)    

Dallas DFW (2.08 %) DAL (85.33%) - - - 

Houston IAH (1.17 %) HOU (86.72 %)    

 

The estimates for the HHI index for each region (Table 21) indicate that for every 

region except the Washington-Baltimore and Los Angeles areas, an increase in HHI will 

lead to the reduction of delay.  This is a clear indication that with an increase in 

competitiveness, there are more interactions and conflicts, thus increasing delay.  The 

results for the convective weather indicate that most of the airports are affected 

significantly by the convective weather in the same region.  The results from the yearly 

dummy variables or demand management regimes for some regions show the average 

daily arrival delay trend from 2000 to 2010.  For all the regions except a few, the average 

daily arrival delay decreased relatively from 2000 to 2010.  In the regional airport 

systems of the San Francisco Bay area, Los Angeles, Miami, and Houston, the arrival 

delay decreased drastically after 9/11 and slowly increased to the level of pre–9/11 in 

2010.  The increase of delay in the Miami and San Francisco Bay area regions was higher 

than any other regions. The arrival delay at most of the airports decreased after 9/11 and 

then increased gradually afterwards. The slot management techniques at airports in New 

York, Washington, and Chicago had a definite impact on reducing delay in the regions. 
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Table 21 HHI for Each Region 

Region 
Washington-

Baltimore 
New 

England 

SF 
Bay 

Region 

Los 
Angeles 
Region 

New 
York 

Region 

South 
Florida 

Chicago 
Region 

Dallas 
Region 

Houston 
Region 

HHI 0.344 0.750 0.390 0.532 0.334 0.514 0.678 0.757 0.673 

 

6.5 Elasticity Analysis 

Figure 21 shows the elasticity of the regional delay to the delay of RNAS in 

different quarters of the year 2010. The significant effect comes from Regions 1, 5 and 6, 

i.e., Washington–Baltimore, New York, and Miami regions.  On the contrary, changes in 

the delays in the California and Texas regions have very little effect on the delay of 

RNAS.  It shows that in the first quarter, a one percent increase in delays in different 

regions will lead to about 1.6 percent increase in the delay in the RNAS.  
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Note: The lables represent the following regions: 
Reg 1 = Washington Metropolitan Area, comprising DCA, IAD and BWO airports 
Reg 2 = New England Area, comprising BOS, MHT and PVD airports 
Reg 3 = San Francisco Bay Area, comprising SFO, OAK and SJC airports 
Reg 4 = Greater Los Angeles Area, comprising LAX, LGB, SNA, BUR and ONT airports 
Reg 5 = New York Metropolitan Area, comprising JGK, LGA, EWR and ISP airports 
Reg 6 = South Florida Metropolitan Area, comprising MIA and FLL airports 
Reg 7 = Chicago Metropolitan Area, comprising ORD and MDW airports 
Reg 8 = Dallas–Fort Worth Metropolitan Area, comprising DFW and DAL airports 
Reg 9 = Greater Houston Area, comprising IAH and HOU airports 

Figure 21 Effect of Delay at Each Region on RNAS for Different Quarters in 2010 

Figure 22 presents the effects of average queuing delay on the average arrival delay 

in all regions. The elasticities were calculated for all four quarters of 2010.  It can be seen 

from Figure 22 that the average queuing delay has a greater impact to the regions of San 

Francisco, New York, and Chicago, i.e., the increase of imbalance between capacity and 

demand will lead to a significant increase of arrival delays in these regions. This might be 

due to closed locations, congested airspace, and all three regions being in the top five 

ranked regions in domestic origin-destination passenger demand [60].  
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Note: Column headings represent the following regions: 
Reg 1 = Washington Metropolitan Area, comprising DCA, IAD, and BWO airports 
Reg 2 = Greater Boston Area, comprising BOS, MHT, and PVD airports 
Reg 3 = San Francisco Bay Area, comprising SFO, OAK, and SJC airports 
Reg 4 = Greater Los Angeles Area, comprising LAX, LGB, SNA, BUR, and ONT airports 
Reg 5 = New York Metropolitan Area, comprising JGK, LGA, EWR, and ISP airports 
Reg 6 = South Florida Metropolitan Area, comprising MIA and FLL airports 
Reg 7 = Chicago Metropolitan Area, comprising ORD and MDW airports 
Reg 8 = Dallas-Fort Worth Metropolitan Area, comprising DFW and DAL airports 
Reg 9 = Greater Houston Area, comprising IAH and HOU airports 

Figure 22 Average Queuing Delay Elasticity for Different Quarters in Year 2010 
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CHAPTER VII 

CONCLUSION 

The literature review uncovered that airport delay always has been a major 

problem for the aviation industry.  Although several previous studies estimated the delay 

propagated through an individual flight from an airport to the system, a review of the 

literature shows that research pertaining to interactions among the entire air 

transportation system has not been conducted. The NextGen also identifies airport 

congestion and flight delay as two of the important issues for the aviation industry [4]. 

This research illustrates the effectiveness of applying a multivariate simultaneous 

equation model to study delay propagation from a single airport to other airports and to 

the rest of the system, and vice versa. 

In the first section, the model developed for LGA and ORD takes into account 

most of the delay causal factors.  The model estimates the effect of each of these factors 

using 2SLS regression.  This approach is generally used to deal with the bidirectional 

relationship that exists between dependent variables, in this case, a single airport and the 

system. The estimated results clearly point toward the existing interdependency between 

flight delay at an individual airport and the NAS.  It is seen that the delay at LGA and 

ORD significantly depends on delay at other airports and, similarly, LGA and ORD are 

major contributors to delay in the system. 
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The research also studies the system-wide benefit of capacity enhancement or 

improvement in demand management strategies on delay in the NAS. The results indicate 

that with an increase in capacity there is a proportionate reduction in delay at the airport 

and the NAS. However, this phenomenon is more predominant at ORD than at LGA. 

Through further observation, it can be seen that the major contributing factor for delay at 

ORD is queuing delay, while adverse weather is a major problem at LGA. This analysis 

helps to determine the effectiveness of capacity improvements and can be used as a 

decision making tool for airport improvement projects that require massive capital 

investments in the future. 

In the second part, models were developed for 34 OEP airports takes into account 

all the delay causal factors mentioned earlier.  The model estimates the effect of each of 

these factors using the 3SLS regression.  This method is analyzing the bi-directional 

relationship that exists between dependent and independent variables and is suitable for 

equations with correlated error terms. The estimated results help to quantify the 

interdependency between flight delay at different airports and the NAS.  

The regression results show that queuing delay and adverse weather are major 

delay causal factors at most of the studied airports. Aircraft equipment type is seen to be 

one of the important delay contributors in the case of a few airports, where large aircraft 

operations result in increasing average daily arrival delay. Airports located in same 

geographic regions had more interactions than others.  Major airports such as PDX, 

MCO, ORD, and EWR had a higher impact on average arrival delay at other airports.  

From schedule-based models, it was found that a few airports had a negative impact on 

arrival delay at other airports. However, this scenario is subdued in the case of flight-
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plan-based results. The graphical representation for different time periods from the year 

2000 to 2008 demonstrates a significant delay variation.  Most airports had their delay 

reduced after 9/11 and gradually returned to pre-9/11 levels, with a peak in 2007.   

In the report of NextGen Concepts of Operations, 15 metropolitan areas are 

identified as regional airports that have potential to provide additional capacity.  The 15 

metropolitan areas are Atlanta, Charlotte, Chicago, Houston, Las Vegas, Los Angeles, 

Minneapolis, New York, Philadelphia, Phoenix, San Diego, San Francisco, Seattle, South 

Florida, and Washington–Baltimore [7].  The change in air transportation structure will 

usher the growth of air travel and economic activity and the change in regional 

geography, demographic, and industrial distributions.  The “Southwest Effect” seen in the 

New England region demonstrated the potential of regional airport system planning. 

Investigation of the regional airport system in Boston [8] shows a positive system 

development, with passenger demand shared among the airports in the region. More 

importantly, the benefits from the air transportation industry could be shared by a greater 

area and could encourage the development of the regional economy. Given this 

dynamically-changing background, it is important to have a tool to estimate the evolution 

of regional airport systems and their impact on the NAS. This study provides such a tool 

for decision makers and aviation planners.  

Delay propagation has been studied extensively, primarily from a macroscopic 

perspective. To the best knowledge of the authors, this study is the first effort to 

investigate delay propagation considering multi-airport systems. This study illustrates the 

effectiveness of applying a multivariate simultaneous equation model to study delay 

propagation from a multi-airport system to the rest of the NAS, and vice versa. The 
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regression results show that queuing delay and adverse weather are major delay causal 

factors in most of the studied regions. However, the delay elasticity caused by these two 

factors varies among different regions. Two variables were introduced to indicate the 

characteristics of multi-airport systems—HHI and LCC market share. The estimated 

coefficients of HHI show that more evenly-distributed operations among different 

airports lead to increases in regional-level arrival delay. This explains the inter-

dependability among different airports, existing conflicts in airspace, and the need for 

proper regional level airport and airspace planning.  The effects of LCC market share are 

not consistent. In most regions, the increase in LCC market shares at secondary airports 

leads to an increase in regional arrival delay. However, this is not true for the South 

Florida region, with FLL having the lowest LCC operations among secondary airports, as 

seen in Table 20. 

 Hence, it is necessary for airport planners to find the threshold for airline 

operations at individual airports. Furthermore, the outcomes of this study show that 

delays in the Washington–Baltimore, New York, and South Florida regions have greater 

impacts on delays in the RNAS.  

To further this research, we need to explore other explanatory variables such as 

capacity ratio, runway configuration, wind speed, and demand management regimes for 

all the airports. To further this research, we can perform spatial analysis pertaining to 

individual airports and multi-airport regions. We also need to explore in depth each 

individual airport and regional delay trends and the impacts they have on the system.  

Figure 11 to Figure 18 shows us the trend of average daily arrival delay at each of the 34 
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OEP airports. It would be interesting to explore the factors affecting those delays and 

ways to reduce them. 

We also need to conduct experiments on the specification of the model and the 

methodology used.  Furthermore an important and necessary research would be to 

explore the economic implications of these delays on different airports and the regions in 

the US.   
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Appendix I- OEP Airports 

ATL               Atlanta Hartsfield International 
BOS               Boston Logan International 
BWI               Baltimore-Washington International 
CLE            Cleveland-Hopkins International 
CLT               Charlotte/Douglas International 
CVG   Cincinnati-Northern Kentucky 
DCA  Ronald Reagan National 
DEN  Denver International 
DFW   Dallas-Fort Worth International 
DTW  Detroit Metro Wayne County 
EWR  Newark International 
FLL  Fort Lauderdale-Hollywood International 
IAD  Washington Dulles International 
IAH  George Bush Intercontinental 
JFK  New York John F. Kennedy International 
HNL  Honolulu International 
STL  Lambert St. Louis International 
LAS  Las Vegas McCarran International 
LAX  Los Angeles International 
LGA  New York LaGuardia 
MCO  Orlando International 
MDW               Chicago Midway 
MEM  Memphis International 
MIA  Miami International 
MSP  Minneapolis-St Paul International 
ORD                Chicago O'Hare International 
PDX  Portland International 
PHL  Philadelphia International 
PHX  Phoenix Sky Harbor International 
PIT  Greater Pittsburgh International 
SAN  San Diego International Lindbergh 
SEA  Seattle -Tacoma International 
SFO  San Francisco International 
SLC  Salt Lake City International 
TPA  Tampa International 
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Appendix II- Data Dictionary 

- LOCID: Every Airport has specific airport ID and it is the fir column of the dataset 

- YYYYMM :  Year and Month 

- DAY: Day 

- HOUR:  Local Hour (0 to 23) 

- QTR: Quarter Hour (1 to 4) 

1 = 00 – 14 minutes 

2 = 15 – 29 minutes 

3 = 30 – 44 minutes 

4 = 45 – 59 minutes 

- DlaSchOffA: Average OAG-Based Departure Delay Minutes 

- DlaSchArrA: Average OAG-Based Arrival Delay Minutes 

- DlaFPOffA: Average Flight Plan Based Departure Delay Minutes 

- DlaFPArrA: Average Flight Plan Based Arrival Delay Minutes 

- MetricDep: Count of ASPM Departures 

- MetricArr: Count of ASPM Arrivals 

- SchDep: Count of Scheduled Departures 

- SchArr: Count of Scheduled Arrivals 

- MC: Meteorological Conditions Flag (I-instrument, V-Visual) 

- ADR: Airport supplied Departure Rate 

- AAR: Airport supplied Arrival Rate 

- OBPAX: Average observed number of passengers at the airport in a month 

- Seats: Average number of seats in aircraft at the airport in a month 
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Appendix II (Continued) 

- ETMS_EQPT: IATA Aircraft Equipment Code from Enhanced Traffic Management 

Systems (ETMS) 

- THUN: Value ‘1’ if the station reports thunderstorm, ‘0’ otherwise 
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