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ABSTRACT 

The demand for aviation has been steadily growing over the past few decades and will 

keep increasing in the future. The anticipated growth of traffic demand will cause the current 

airspace system, one that is already burdened by heavy operations and inefficient usage, to 

become even more congested than its current state. Because busy airports in the United States 

(U.S.) are becoming “bottlenecks” of the National Airspace System (NAS), it is of great 

importance to discover the most efficient means of using existing facilities to improve airport 

operations.  

This dissertation aims at designing an efficient airport surface operations management 

system that substantially contributes to the modernized NAS. First, a global comparison is 

conducted in the major airports within the U.S. and Europe in order to understand, compare, and 

explore the differences of surface operational efficiency in two systems. The comparison results 

are then presented for each airport pair with respect to various operational performance metrics, 

as well as airport capacity and different demand patterns. A detailed summary of the associated 

Air Traffic Management (ATM) strategies that are implemented in the U.S. and Europe can be 

found towards the end of this work. These strategies include: a single Air Navigation Service 

Provider (ANSP) in the U.S. and multiple ANSPs in Europe, airline scheduling and demand 

management differences, mixed usage of Instrument Flight Rule (IFR) and Visual Flight Rules 

(VFR) operations in the U.S., and varying gate management policies in two regions. 

For global comparison, unimpeded taxi time is the reference time used for measuring taxi 

performance. It has been noted that different methodologies are currently used to benchmark taxi 
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times by the performance analysis groups in the U.S. and Europe, namely the Federal Aviation 

Authority (FAA) and EUROCONTROL. The consistent methodology to measure taxi efficiency 

is needed for the facilitation of global benchmarking. Therefore, after an in-depth factual 

comparison conducted for two varying methodologies, new methods to measure unimpeded taxi 

times are explored through various tools, including simulation software and projection of 

historical surveillance data. Moreover, a sophisticated statistical model is proposed as a state-of-

the-art method to measure taxi efficiency while quantifying the impact of various factors to taxi 

inefficiency and supporting decision-makers with reliable measurements to improve the 

operational performance. 

Lastly, a real-time integrated airport surface operations management (RTI-ASOM) is 

presented to fulfil the third objective of this dissertation. It provides optimal trajectories for each 

aircraft between gates and runways with the objective of minimizing taxi delay and maximizing 

runway throughput. The use of Mixed Integer Linear Programming (MIP) formulation, Dynamic 

Programming for decomposition, and CPLEX optimization can permit the use of an efficient 

solution algorithm that can instantly solve the large-scale optimization problem. Examples are 

shown based on one-day track data at LaGuardia Airport (LGA) in New York City. In additional 

to base scenarios with historical data, simulation through MATLAB is constructed to provide 

further comparable scenarios, which can demonstrate a significant reduction of taxi times and 

improvement of runway utilization in RTI-ASOM. By strategically holding departures at gates, 

the application of RTI-ASOM also reduces excess delay on the airport surface, decreases fuel 

consumption at airports, and mitigates the consequential environmental impacts. 
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CHAPTER 1: INTRODUCTION 

1.1 Status Quo of Air Transportation 

The demand for aviation has been steadily growing over the past few decades and will 

keep increasing in the future.  Since the 1970’s, air traffic on a global scale has doubled every 15 

years, and has reached a 4.7% annual traffic growth in terms of Revenue Passenger Kilometers 

(RPK) (1). As the top developed aviation markets in the world, the U.S. market is estimated to 

increase an average annual rate of 2.2 % carrier passengers for the next 20 years (2) while the 

Europe market is estimated to grow an average annual rate of 3.7% (3). Meanwhile, emerging 

regions that represent 70% of the worldwide population are leading the future air traffic growth 

with the highest annual growth rate of 6% (1). The anticipated progression of traffic demand will 

cause the current airspace system, which is already burdened by heavy operations and inefficient 

usage, to become more congested with increasing delays and consequential economic and 

environmental penalties. 

Airport surface congestions at major airports contribute significantly to excessive delays 

and congestions (4-6). In the U.S., 19% of recorded delays are observed at airports and around 

terminal areas and an increase in average taxi-out time was reported at 21% from 1995 to 2007 

(4, 7-9). Excessive amounts of fuel consumed during the taxi-out phase in 2013 was recorded at 

about 79kg per flight in the U.S. (10); accounting for 30% of fuel savings among the estimated 

benefit pool actionable by Air Traffic Management (ATM). A similar trend was observed in 

Europe that aircraft spent 10-30% of their flight time on the ground, resulting in the excessive 

burning of fuel, the production of loud noises and the emission of pollutions (9). Similarly, as in 
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many other industries, global comparison and benchmarking helps identify the most efficient 

practices and improvements in ATM performance. The performance analysis groups in the U.S. 

and Europe, i.e. the Federal Aviation Administration (FAA) and EUROCONTROL, have 

produced a series of joint reports to compare ATM performance between two regions. For 

airport-related ATM performance, the percentage of delayed flights on airport surface is nearly 

twice as high in the U.S. than in Europe (10). 

In the U.S., busy airports are considered “bottlenecks” of the National Airspace System 

(NAS), with inefficient usage of taxiway and runway infrastructures being one of the main 

causes of surface delays and congestions. At the flight level, surface delays diminish the 

punctuality of flights at the destination airport and add uncertainty and unpredictability to 

connecting flights. As a result, the performance of terminal airspace and en route sections is 

degraded consequentially with delays propagated to the entire NAS (11). Therefore, improving 

the efficiency of airport operations is essential to alleviate current congestions in the system and 

accommodate the increasing demand.  One intuitive way to do this is to extend airport capacity 

by adding more runway and taxiway infrastructures and expanding terminal areas. Nevertheless, 

such solutions are quite expensive and are especially arduous for airports with limited 

geographic space, or those under rigorous environmental regulations. Moreover, it may take 

many years for airport expansion projects to be approved and fully executed, while the situations 

at airports may deteriorate further and impair the performance of entire air traffic network. As a 

result, how to utilize existing facilities as efficiently as possible to improve airport operations 

becomes a critical question in ATM; thus requiring further investigation. 
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1.2 Surface Operations Management 

Airport surface operations management includes arrival and departure management on 

runways, aircraft routing and scheduling on taxiways, and gate allocation/release. The sequence 

of arrivals is managed in an orderly flow into terminal area. After landing, each aircraft is 

directed to an allocated gate by following a designated taxi route while avoiding conflicts with 

other aircraft. The management of departure procedures is comparably more complex. After 

received clearance from the controller, aircraft can start to pushback from gates and enter the 

airport movement area. During the taxi-out phase, aircraft may be assigned a particular amount 

of waiting time at designated holding points to avoid conflicts or to adjust flight sequences. As 

compared to taxi-in aircraft, taxi-out aircraft tend to experience longer holding times on the 

surface due to the fact that these aircraft usually taxi-out with a single functioning engine (12); 

this can lead to lower fuel costs per unit time. Varied by runway configurations and fleet mix, 

minimum separations between aircraft (13) are strictly enforced for all landing and takeoff 

movements on runways to avoid the impact of wake vortexes. Runway clearance is then issued 

to the next aircraft, i.e. the aircraft waiting at the end of the runway for takeoff or circling around 

the terminal area for landing, as soon as the runway is cleared and ready for the next operation. 

Similarly, on taxiways, minimum separation is required between any two successive aircraft 

approaching the same taxiway intersection/segment. 

For busy airports, controllers in the control tower at airport handle aircraft on the surface 

and near the terminal area. Generally, there are three main positions in a control tower. Local 

controllers, referred to as "Tower" by pilots, are responsible for all takeoffs and landings on the 

runway. To ensure efficient flight operations within their assigned airspace, local controllers 

coordinate with other members of the tower, Terminal Radar Approach Control Facilities 
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(TRACON), and the Air Route Traffic Control Center (ARTCC, or “Center”). After landing on 

the runway, arrivals are guided by ground controllers to taxi through the movement area until 

they reach their designated gate. Ground controllers are also responsible for assigning departure 

and arrival runways to aircraft. Ground controllers and local controllers work closely to ensure 

that arriving and departing aircraft do not conflict with one another. The third main position in 

the tower is clearance delivery. Clearance delivery communicates routing information to pilots 

and issues appropriate adjustments to assure flights adhere to local procedures.  

To address the inefficiency of surface operations, several concepts and procedures have 

been tested at some U.S. airports. Most approaches involve departure queue management that 

aim at shifting excessive taxi times to the gate and apron area, including Collaborative Departure 

Queue Management (CDMQ) (14, 15), pushback rate control (16, 17), and virtual queue 

departure management (18). Spot and Runway Departure Advisor (SARDA) and Tower Flight 

Data Manager (TFDM) are two approaches that strive to provide terminal automation platforms 

so as to support decision-making in surface operations management. Specifically, SARDA 

provides advisories on flight sequences as well as the earliest releasing time for departures at the 

spot and runway to maximize runway throughput (19), while TFDM monitors aircraft 

conformity to assigned routes and alerts controllers of any conflict between aircraft and ground 

vehicles (20, 21). Outcomes of these approaches are promising in terms of reduced taxi times, 

fuel burn and associated emissions; however, they have primarily focused on queue management 

at one airside facility at a time. Efforts have been made (22, 23) to consider taxiway planning 

and runway scheduling as a combined problem but with limited practical features. It appears that 

little to no studies have tackled integrated operations management involving all airport airside 

facilities simultaneously, namely, runways, taxiways, and gates. 
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As the ongoing transformation of the NAS, NextGen represents an evolution from a 

ground-based system of Air Traffic Control (ATC) to a satellite-based system of ATM. A series 

of new procedures and technologies are currently developed, deployed or planned for the NAS to 

attain various objectives of NextGen. Ongoing NextGen programs consist of Automatic 

Dependent Surveillance Broadcast (ADS-B), System Wide Information management (SWIM), 

NextGen Data Communications, NextGen Network Enabled Weather (NNEW), NAS Voice 

Switch (NVS) and NextGen Demonstrations and Infrastructure Development (15). Trajectory-

Based Operations (TBO) is one of the key NextGen concepts that dynamically adjust a flight 

path in space (longitude, latitude, altitude) and time using a known position and intent in en route 

airspace (24). The shift from clearance-based control to TBO can enable a decrease in separation 

and an increase in NAS capacity. It can also enable aircraft to fly negotiated flight paths by 

taking both operator preferences and optimal system performances into consideration. With the 

support of critical NextGen elements, such as ADS-B, SWIM, and Data Communications, TBO 

will provide new capabilities to improve capacity, safety and efficiency in airspace. 

1.3 Research Objectives 

The main goal of this research is to design an efficient airport surface operations 

management system and to eventually contribute to the modernized NAS. Surface operations 

management in this research covers the management of all flight movements on the runways, 

taxiways, gates and apron area.  The three following research objectives are to be fulfilled in this 

dissertation.   

• Gain a better understanding of surface operations efficiency by comparing operational 

performance in the U.S. and Europe, and explore related ATM strategies that lead to 

performance differences, if any  
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• Summarize different methodologies currently used for deriving taxi performance 

indicators, and propose new methods to measure taxi efficiency by exploiting various tools 

• Develop a Real-Time Integrated Airport Surface Operations Management (RTI-ASOM) 

system to optimize flight trajectories for surface operations management and extend TBO in 

NextGen from en route airspace to airports 

The first objective of this research is to explore various factors that lead to inefficiency of 

airport operational performance by comparing European and U.S. airports in large detail. To 

avoid the influence of different airport surface management initiatives, the year 2008 is selected, 

a time when no initiatives were implemented at either European or U.S. airports of interest. 

Comparable airports are selected with similar characteristics. By examining fundamental 

philosophies between two systems, the author elucidates the essential differences that lead to 

operational performance discrepancy and provide analytics support to drive improvements. 

Taxi-time is one of the widely accepted performance indicators to measure airport 

operational efficiency. It is noted that different methodologies are developed by the FAA 

Aviation Policy and Planning Office (APO) and EUROCONTROL Performance Review Unit 

(PRU) for computing taxi delay. Further studies exploiting consistent methods are needed to 

measure taxi efficiency and facilitate global benchmarking. Hence, the second objective of this 

dissertation starts with summarizing two different methodologies currently used for deriving taxi 

performance indicators. New methods to measure taxi efficiency are explored by exploiting 

various tools, including simulation software and projection of historical surveillance data. 

Moreover, a sophisticated statistic model is proposed to derive accurate indicators for taxi 

performance and quantify impacts of various factors to taxi inefficiency.  
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The third objective of this research is to embrace the trajectory-based control of NextGen 

by proposing a Real-Time Integrated Airport Surface Operations Management (RTI-ASOM). 

Integrated management means that for all arrivals and departures, holistic control strategies are 

developed to manage flight operations between gates and runways with optimized schedules and 

sequences. Real-time means that the proposed strategy provides real-time decision support to 

controllers and pilots by using real-time inputs from the cockpit and control tower. The objective 

of RTI-ASOM is to increase the efficiency of surface operations by (1) reducing taxi delay and 

(2) improving runway throughput.  It is modeled with Mixed Integer Linear Programming (MIP) 

formulation and a solution algorithm that obtains optimal solutions efficiently. The outcomes of 

RTI-ASOM include optimal passage times of aircraft to visit each node along their respective 

taxi routes in a digitalized airport surface network. Such information can be shared via a data 

link between the control tower and the Flight Management System in the cockpit (24) so as to 

create an automation platform that enables the control of complicated surface operations in a safe 

and orderly manner. 

Altogether, the application of proposed study entails substantial benefits for various 

stakeholders and the entire air traffic system. For airport operators, it improves the usage of 

existing facilities by providing more accurate timing and location information. It also allows 

tactic operations management with respect to unexpected events on the surface and expansion of 

airside facilities in the future, by providing real-time advisories that help keep such disturbances 

to a minimum. For air traffic controllers, it reduces their workload with an envisioned situation 

on the surface and enables a great predictability of traffic based on real-time flight data. For local 

communities, it eases the impact of delays and congestions on the environment with less noise 

and lower levels of air pollution and emissions from aircraft. For airlines, it improves pilots’ 
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awareness regarding the current and intended status of aircraft at airports and helps airline 

operation centers make more accurate fleet predictions and better flight schedules. Smooth 

turnaround processes, enabled by efficient surface operations, lead to less flight delays, 

alleviated system congestions, and reduced operational costs for airlines. Passengers also benefit 

from reliable surface operations with reduced delays, reliable flight schedules and better flying 

experiences. For the entire network, integrated airport surface operations management helps 

eliminate bottleneck effects of major airports in the system, improves predictability in the en 

route airspace and facilitates better system performance.  

The remainder of this dissertation is organized as follows: In Chapter 2, current strategies 

and related efforts on airport surface operations management are elaborated. The comparison on 

operational performance between select U.S. and European airports is presented in Chapter 3. In 

Chapter 4, current methods to derive taxi times are summarized and new methods are proposed 

for better benchmark on surface operational performance. In Chapter 5, the author describes the 

proposed RTI-ASOM with problem definition, mathematical formulation, a solution algorithm 

and a demonstration with numerical results.  The concluding remarks and future research are 

presented in Chapter 6.  
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CHAPTER 2: LITERATURE REVIEW 

2.1 On-going Surface Congestions Management Initiatives 

To alleviate the inefficiency of airport surface operations, Airport Collaborative Decision 

Making (A-CDM) has been implemented at some European airports. A-CDM enables data 

sharing amongst multiple stakeholders and allows each to optimize decision-making in 

collaboration with others. The main focus is on the aircraft turnaround and pre-departure 

sequencing process. So far, nine major airports in Europe have fully implemented A-CDM, 

including Munich and London Heathrow airport (25). A study evaluating A-CDM at Munich 

airport in Germany showed that A-CDM could allow an increase in sector capacity by up to 4%, 

and could allow room for delay improvement by up to 33%-50% (26). 

 Parallel to the implementation of A-CDM in Europe, several departure metering 

approaches have also been tested at a few U.S. airports. At airport level, an approach to manage 

airport surface congestion by controlling the pushback rate has been tested at Boston Logon 

International Airport (BOS) (17). At airline level, Collaborative Departure Queue Management 

(CDQM) determining airline-specific push back quotas has been verified at Memphis Airport 

(MEM) (27). At aircraft level, a departure metering program was deployed at John F. Kennedy 

International Airport (JFK) as a remedy for the closure of a runway in 2010; since 2012, a new 

ground management program has been established (18). A simulation of Spot and Runway 

Departure Advisor (SARDA) has been testing at Dallas-Fort Worth International Airport (DFW) 

with advised release times at the spot (the hand-off point between the ramp control and tower 

control) (19). At runway level, the FAA initiated Tower Flight Data Manager (TFDM) that 
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aimed at modernizing automation system and implementing prototype that is undergoing 

operation testing at DFW (28). These methods and procedures are triggered by the increasing 

taxi delays observed back in 2007 (10) and are initialized in the context of CDM. The basic 

function of departure metering approaches is to monitor and reduce the amount of aircraft 

entering airport movement area by holding aircraft at gates when active flight operations are 

reaching airport capacity.  

Pushback rate control approach is designed to maintain the number of departures on 

airport surface by controlling aggregated pushback rate under a predetermined value for the 

entire airport. The pushback rate is determined based on predicted airport capacity for 15 

minutes per planning window. Using historical ASDE-X (Airport Surface Detection Equipment, 

Model X) data, the estimated pushback rate is predicted from a regression model on airport 

takeoff rate with the number of taxi-out flights. By controlling the number of aircraft released at 

gates, controllers can prevent adding more traffic onto congested airport surface. Such an 

approach is exclusively operated in the Air Traffic Control (ATC) Tower, with little to no room 

for data exchange with flight operators. During eight 4-hour tests at BOS in 2011, aircraft taxi 

times were estimated to decrease by 5.3 minutes per flight by holding 144 flights at gates, with 

the estimated fuel consumption being reduced by nine tons (a total of ~286 gallons) (17). 

Collaborative Departure Queue Management (CDQM) is developed under the Surface 

TBO project to minimize waiting times at the runway before flights taking off. Departure slots 

are allocated to flight operators to enter airport movement area and the operators have the 

flexibility of assigning flights to the slots. The allocations are designed in a manner that ensures 

constant pressure on the runway for maximum usage of the facility without causing extensive 

delays at the end of the runway.  During the test at MEM in 2010, this approach was estimated to 
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reduce 86,000 minutes (1433 hours) of excessive taxi time, 2.1 million pounds of fuel 

consumption (~0.3 million gallons), and 6.7 million pounds of carbon dioxide emissions (27). 

A departure metering program was organized at JFK due to a runway reconstruction 

project in 2010. A virtual queue system is used to facilitate shorter physical queues prior to 

aircraft entering the taxiway. Following a similar principle, since 2012 an improved ground 

management program has been implemented at JFK. The program was intended to control the 

total number of active aircraft maneuvering on the airport surface (taxi-out queue) as it is 

identified as the most significant contributing factor to taxi-out delays (4). The program disperses 

departure slots to aircraft based on predicted airport capacity and requested pushback times of 

aircraft within the planning window so as to balance high demand during peak times. Rather than 

exacerbating the congested surface area while experiencing long delays with running engines, 

aircraft are kept at gates until allocated departure time slots are met. Such collaborative processes 

involve all carriers and allow exchanges amongst assigned slots. Compared to pre-metering 

operations, the average taxi-out time saved at JFK was estimated at 1.5 to 2.7 minutes per flight 

(18). 

Spot and Runway Departure Advisor (SARDA) manages surface operations with two 

schedulers to interact with taxiway and runway operations. One provides an optimal schedule to 

release departures on the spot (the hand-off point between the ramp control and tower control) 

while maximizing runway throughput. Based on that schedule, the other scheduler provides 

runway-crossing sequences for arrivals while maintaining optimal throughput for departure 

runway. However, gate management or time control was not included in SARDA. The human-

in-the-loop simulation was conducted for two weeks in 2010 and it showed a 64% reduction in 
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terms of average taxi-out delay and a 38% reduction in estimated fuel consumption and engine 

emissions in the movement area (19). 

Tower Flight Data Manager (TFDM) aims at providing a platform to integrate 

communications among various FAA systems and consolidate many tower automation systems. 

It is designed to provide taxi route advisories and alert controllers of aircraft deviations from an 

assigned route or alert them of any conflict between aircraft. In 2011, the prototype field 

demonstration was conducted, and based on an evaluation survey yielded 90% positive feedback 

from participants (28). 

Recently, several approaches of surface operations management have been tested at 

individual airports in order to alleviate levels of inefficiency of surface operations. While the 

outcomes seem promising in terms of reduced taxi time, delay, and environmental impact, 

additional aspects of airport surface operations need to be investigated for a more comprehensive 

understanding of the obstacles that have been impeding overall improvement.  

2.2 Studies on Benchmarking Airport Performance  

The FAA and EUROCONTROL joined efforts in comparing the ATM performance 

between the U.S. and Europe, creating a basis for performance comparison and recognized 

notable differences between the two systems. At the system level, overall operational 

performance in the U.S. was diminished since 2008, while performance in Europe was improved. 

Specifically, by comparing ATM-related efficiency by phases of flight, the taxi-out phase 

exhibited the largest variability between the two systems, with an average of 2 minutes more per 

departure in the U.S. This gap between the U.S. and Europe was relatively narrowed by the 

improved U.S. performance from 2008 to 2012, yet U.S. performance started to deteriorate in 

2013 (10). 
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Following the 2008 report, Odoni et al (29) investigated airside performance by 

comparing Newark Liberty International Airport (EWR) and Flughafen Frankfurt Airport (FRA). 

Remarkable differences were observed in terms of airport throughput, demand and delay 

performance. The paper also called for the emphasis on the role of departure demand 

management policies in Europe. However, a small representative sample of airports (i.e. one 

airport per system) limits the application of comparison results. Further study with representing 

larger sample of diverse operation levels is needed to generalize comparison findings in the 

system level. 

Besides comparison on operational performance, there are efforts comparing other 

aspects of airport performance in literature. A global overview of current airport benchmark 

practices was presented in (30) from economic, operational, and environmental perspectives. 

Another study (31) investigated airport performance in terms of airport connectivity. It was 

concluded that the U.S. network tends to be more coordinated while the European network 

provides a consistent level of service regardless of airport size. A comparison on airport capacity 

assessment (32) stated that higher runway utilization was achieved in the U.S. than in Europe. 

Among these airport comparison studies, it has been suggested that the problem of comparability 

exists as a common issue and that the diversity of airport characteristics needs to be balanced for 

global comparison.  

Overall, it has been of keen interest for researchers to conduct comparison studies so as to 

identify the best practice and improve airport performance. Further investigation is needed to 

target airport surface operations performance, which exhibit the largest variability by flight 

phases between the U.S. and Europe (10, 29). To fill this gap, a comprehensive factual 

comparison on surface operations is provided in this dissertation. Additionally, factors that lead 
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to inefficiency of airport operational performance are identified by comparing European and U.S. 

airports in vast detail. 

2.3 Studies on Surface Operations Optimization Problems 

This subsection summarizes existing literature on surface operations optimization 

problems. Related researches are categorized into three groups based on primary focus on single 

airside facility: 1) runway operations planning, including Constrained Position Shifting (CPS) 

(33), departure queue management (15, 27), and runway scheduling (34); 2) taxi planning, 

including route allocation  (35), and taxiway scheduling  (36, 37); and 3) pushback rate control 

(16, 17). In (33), A CPS method was used to optimize the landing sequence on a single runway 

and maximum of 3 position shifts per flight was allowed based on first-come-first-serve (FCFS) 

sequence. While the runway makespan was minimized as the model objective, it is possible that 

decreasing the makespan increases the average delay. Collaborative Departure Queue 

Management (CDQM) conceptual approach (14, 27)) is developed under the Surface TBO 

project to minimize queue waiting time at the runway end before taking off. Departure slots are 

allocated to flight operators to enter the airport movement area and the operators have the 

flexibility of assigning flights to each particular slot. The number of slots is predetermined to 

ensure constant pressure on the runways. In (34), solutions were provided for runway scheduling 

by minimizing operational and environmental costs. By putting monetary value on deviations 

from scheduled runway time, two objectives were combined together as one cost function. For 

taxi planning, Roling and Visser (35) presented a study for taxi route allocation which used time 

discretization instead of continuous variables. Alternative taxi routes were generated based on 

the shortest path while minimizing total taxi delay. In (36, 37), MIP formulation was used to 

model taxiway scheduling problem with the objective to minimize taxi delay. Based on 
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predetermined taxi routes and sequences, optimal schedule solutions were produced along each 

taxi intersection at the airport network. Simaiakis et al. (16, 17) presented a strategy to manage 

airport surface congestions, in which pushback rate per interval of minutes is controlled under a 

predetermined value based on predicted departure throughput. Apart from the three 

aforementioned groups, efforts have been made to deal with operations management that 

involves multiple airside facilities. SARDA (19) manages surface operations with two schedulers 

to interact with taxiway and runway operations. One provides an optimal schedule to release 

departures on the spot (the hand-off point between the ramp control and tower control) while 

maximizing runway throughput. Based on that schedule, the other scheduler provides a runway-

crossing sequence for arrivals while maintaining optimal throughput for departure runway. 

However, gate management or time control was not included in SARDA. In (22, 23), both 

taxiway planning and runway scheduling were considered over a small constructed scenario. 

Nevertheless, limited practical features and inefficient computational performance restrict the 

usage of such approaches for real-time operations management. Hitherto, no optimization study 

has effectively incorporate integrated surface operations management, while simultaneously 

enabling the set of precise safety and operation requirements. In contrast, this paper combines 

gate pushback controlling, taxiway scheduling, and runway sequencing together and proposes an 

efficient decomposition algorithm to obtain optimal solutions instantly. Realistic features on 

surface operations are explicitly included in the model and an automated tool with a user-friendly 

interface is developed to facilitate real-time management. 

From the methodology aspect, approaches used to formulate surface operations problems 

can be categorized as follows: 1) Mixed Integer Linear Programming (MIP) (22, 34-37), 2) 

Integer Programming (IP) (38, 39), 3) Genetic Algorithm (GA) (40), and 4) Dynamic 
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Programming (19, 33). MIP formulation utilizes both continuous and integer variables when 

modeling problems as a linear program. It is widely used to formulate taxiway planning 

problems (22, 35-37) to minimize taxi time, and runway scheduling problems (34) to maximize 

runway throughput. Compared to IP, MIP formulation has a higher degree of realism that can 

account for different aircraft types and separation requirements on the airport surface. For real-

time planning purpose, computational efficiency is one of the main challenges by using MIP and 

thus various pre-processing methods have been proposed to speed up the computation process 

(22, 35, 36). A typical construction of IP that models aircraft movements is to split up time and 

space into small blocks and allow a set of time slots for an aircraft to arrive at any chosen 

location. One critical limitation of IP is the high dependence of computational complexity on the 

number of time and space blocks. With too little available slots, considerable space in the 

taxiway can be wasted. With too many integer variables, increasing computational complexity 

can be problematic. Therefore, precise safety constraints are usually not included in the model 

except capacity constraint (38, 39). GA is often used to search a theoretical solution for taxiway 

scheduling problems. It is a search heuristic that repeatedly generates, modifies, and selects from 

a population of randomly-generated solutions until the best one is found or terminated due to 

pre-determined rules. Examples are usually conducted at constructed airports with simulated 

flight data (40). DP is numerically feasible only for special classes of (typically discrete) 

problems and, therefore, is often used to model flight sequencing problems (19, 33). It is a 

general recursive decomposition technique for optimization problems. When the problem 

structure is favorable, such as runway sequencing problems, DP can be used to provide an 

efficient optimal solution. In this study, MIP formulation is adopted as the best fit to model the 
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integrated surface operations, and DP is applied as a part of a decomposition algorithm to solve 

the optimization problem efficiently.  
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CHAPTER 3: COMPARISONS OF AIRPORT SURFACE PERFORMANCE 

BETWEEN THE U.S. AND EUROPE  

To perform comparisons between major U.S. and European airports in this chapter, the 

author first presents data sources and selections of comparable airport pairs. Two varying 

methods used in the U.S. and Europe respectively for benchmarking performance indicators are 

analyzed on each airport. Comparison results are interpreted for each airport pair with respect to 

various operational performance metrics, including delays, queue length, airport capacity and 

demand. Associated ATM strategies implemented in the U.S. and Europe are summarized at the 

end of this chapter: a single Air Navigation Service Provider (ANSP) in the U.S. and multiple 

ANSPs in Europe, airline scheduling and demand management differences, mixed usage of 

Instrument Flight Rule (IFR) and Visual Flight Rules (VFR) operations in the U.S., and different 

gate management policies in two regions, to name a few. 

3.1 Methodology 

This subsection presents the methodology of the comparison study. First, operational data 

are obtained from three Spanish airports which represent airports with heavy, medium, and 

moderate annual traffic in Europe. Their comparable counterparts in the U.S. are selected with 

highly similar airport characteristics. Second, airport performance indicators are discussed and 

compared among European and U.S. airports. Last, associated ATM strategy differences 

between the two regions are discussed with observed performance disparities. 
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3.1.1 Data Source 

A set of airport operational data with a sufficient level of details and coverages is needed 

from both regions to conduct informed comparisons. However, such data is especially hard to 

obtain for most European airports due to restricted access to airport operational data. For this 

study, AENA (Aeropuertos Españolesy Navegación Aérea), the Spanish ANSP, provides 

historical data from January to March 2008 for three largest Spanish airports: Madrid-Barajas 

Airport (MAD), Barcelona Airport (BCN) and Palma de Mallorca Airport (PMI). Driven by 

available data source, these airports are used to represent European airports with heavy, medium, 

and moderate annual traffic. The obtained database contains the following attributes for each 

flight at airport: basic flight plan, gate and runway used, off-block and in-block times (as 

measured by airport operator), and takeoff and landing times derived from air traffic control 

radar information.  

The FAA’s Aviation System Performance Metrics (ASPM) online access system is used 

as it contains similar attributes to Spanish dataset. The ASPM system provides detailed data on 

flights to and from the ASPM airports (currently 77) and all flights by the ASPM carriers 

(currently 22). It is compiled with multiple data sources, including basic flight plans, flight 

information captured by the Enhanced Traffic Management System (ETMS), next-day OOOI 

data (Out of the gate, Off the runway, On the runway, Into the gate), published scheduled data, 

and Aviation System Quality and Performance (ASQP) data for the largest U.S. carriers (41). 

3.1.2 Selection of European and U.S. Airport Pairs 

3.1.2.1 Determination of Selection Criteria 

For any global comparison, the diversity of airport characteristics needs to be balanced to 

avoid the problem of comparability. Depending on the research focus, different characteristics 
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have been used in literature as matching criteria for comparable airports. For example, the 

number of annual airport operations was used as an approximate estimate of airspace volume for 

capacity assessment (32). Two airports were selected for the benchmark study by examining 

their geometric runway layouts and annual movements (29).  

MAD BCN PMI 

   
PHL 

    
FLL 

 
 

TPA 

  MAD PHL  BCN FLL PMI TPA 
Annual Movements 469,740    492,038  321,693 295,496 193,379 237,885 
Active Number of 
Runways in Use  4 4 3 3 2 2 
Location of Terminal 
w.r.t. Runways By Side By Side 

In 
Between 

In 
Between 

In 
Between 

In 
Between 

Figure 1 Overview of main airport characteristics in 2008. 
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In this study, the author uses three criteria to search for comparable airport pairs: 1) 

similar runway characteristics with respect to the number of runways and geometric runway 

layout, 2) similar runway configuration in use and airport layout, referring to the location of 

terminal building with respect to runways, 3) similar amount of annual and monthly flight 

operations. After scrutinizing 35 main airports in the U.S., the following three airports are chosen 

as the counterparts for each aforementioned Spanish airport: Philadelphia International Airport 

(PHL) paired to MAD; Fort Lauderdale-Hollywood International Airport (FLL) to BCN, and 

Tampa International Airport (TPA) to PMI. An overview of airport characteristics during the 

study period (January to March 2008) is presented in Figure 1. Note that although three runways 

are displayed in the diagram of TPA, runway 9-27 (not highlighted) was not actively in use 

during the study period. 

3.1.2.2 Other Important Airport Features  

Besides the three main criteria, the author also looks into other aspects of airport features 

to assure comparability between paired airports. Table 1 presents an overview of main airport 

features in 2008, such as annual flight movements, cargo volume and airport facility information. 

Table 1 Comprehensive Overview of Airport Features in 2008 
  MAD PHL  
Annual Movements* 469,740  492,038  
Annual Cargo Volume (tons)* 0.3 million 0.5 million 
Active Number of Runways in 2008 4 4 
Crossing 0 1 
Number of Gates (Jetway equipped) 119 109 
Airport Capacity* 90 96 
Wake Turbulence Category   
Medium 90.52% 94.51% 
Heavy 9.20% 4.42% 
Light 0.28% 1.05% 
B757 0.01% 0.01% 

     
 

21 



 
Table 1 (Continued) 

  BCN FLL 
Annual Movements* 321,693 295,496 
Annual Cargo Volume (tons)* 0.1 million 0.1 million 
Active Number of Runways in 2008 3 3 
Crossing 1 2 
Number of Gates (Jetway equipped) 70 56 
Airport Capacity* 61 56 
Wake Turbulence Category   
Medium 96.54% 95.68% 
Heavy 1.88% 2.82% 
Light 1.58% 1.50% 
B757 0.00% 0.01% 

 
  PMI TPA 
Annual Movements* 193,379 237,885 
Annual Cargo Volume (tons)* 0.03 million 0.1 million 
Active Number of Runways in 2008 2 2 
Crossing 0 0 
Number of Gates (Jetway equipped) 30 58 
Airport Capacity* 60 74 
Wake Turbulence Category 

  Medium 94.83% 93.25% 
Heavy 0.21% 2.30% 
Light 4.95% 4.45% 
B757 0.00% 0.00% 

   *Airport Council International (ACI), 2008 (42)  

From Table 1 it can be observed that each airport pair handles similar annual movements 

and cargo operations with comparable airport facilities. Airport capacity listed in the table is 

represented by declared capacity of European airports and IFR capacity of the U.S. airports, 

respectively. More discussion on airport capacity is presented in section 3.3. In addition, aircraft 

fleet composition during the study period at each airport is presented at the bottom. Take MAD 

and PHL as an example, both are regional hub airports with similar airport infrastructure and 

handle comparable air traffic. Fleet mix of aircraft operated at airport is also quite alike, with 

PHL operating a slightly more medium aircraft. Also, runway systems at two airports are both 
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utilized for mixed departures and arrivals. Overall, a high degree of comparability on main 

airport features is confirmed between each pair of European and the U.S. airports.  

3.2 Comparison of Delay, Punctuality and Predictability 

3.2.1 Arrival Delay and Punctuality  

Arrival delays are derived from flight plans in AENA dataset and ASPM system by 

subtracting scheduled gate-in time from actual gate-in time. Note that actual gate-in time could 

be earlier than scheduled time so arrival delays could be negative in reality. Figure 2, Figure 3 

and Figure 4 depict the distribution of hourly arrival delay and flight movements by time of day 

at MAD and PHL, BCN and FLL, PMI and TPA, respectively. Flights operating between 5:00am 

to 11:00pm are included for the analysis, considering the fact that quite a number of European 

airports are restricted by night noise curfews (10). 

 
Figure 2 Hourly arrival delay and flight movements at MAD and PHL. 
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Figure 3 Hourly arrival delay and flight movements at BCN and FLL. 

 
Figure 4 Hourly arrival delay and flight movements at PMI and TPA. 

Observed from Figure 2, arrival delay at MAD presents a flatter distribution over time of 

day with slightly higher hourly traffic than PHL. Average arrival delay is maintained below 20 
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minutes per flight at MAD even though there was a small peak of delay right before the airport 

closure. At PHL, an increasing trend of arrival delay is observed from morning to night and the 

longest hourly delay (over 40 minutes per flight) is observed during late afternoon when flight 

demands also reach the peak (see more details of demand analysis in section 3.3). Similar 

patterns are also observed for BCN and FLL in Figure 3. The difference of flight movements 

between PMI and TPA as shown in Figure 4 is more distinct than the other two pairs; yet an 

increasing trend of hourly arrival delay is observed at TPA while a flat delay distribution is 

presented at PMI. 

 
Figure 5 Arrival delay distribution over different peak hours at MAD and PHL. 
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Figure 6 Arrival delay distribution over different peak hours at BCN and FLL. 

 
Figure 7 Arrival delay distribution over different peak hours at PMI and TPA. 
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To obtain more insights on flight punctuality, the author compares arrival delay 

distribution over three peak hours for all airports: 8am-9am, 2pm-3pm, and 5pm-6pm as shown 

in Figure 5, Figure 6, and Figure 7 (also dot-marked in Figure 2, Figure 3, and Figure 4). It is 

observed that arrival delay distributions at European airports are stable and steady over different 

peak hours with similar standard deviations. In contrast, arrival delays at the U.S. airports are 

vastly distributed with unstable standard deviations and the situation deteriorates along the time 

of day with larger values of average delay and standard deviation.  

In addition, industry-standard indicators for punctuality are calculated for each airport 

pair, which are represented by the percentage of arrivals delayed by more than 15 minutes versus 

their schedule times. During these three study months, 28% of arrivals are delayed more than 15 

minutes at PHL and 20% at MAD. Such punctuality indicator is calculated at FLL as 32% and  

18% at BCN. At TPA, 27% of arrivals experienced long delays and only 14% at PMI. Yet 

further investigation on the comparison of punctuality is needed to consider the influence of 

block buffers on punctuality. As shown in Figure 5, Figure 6, and Figure 7, there are more 

arrivals with negative delays at the U.S. airports. It is possible that more-than-sufficient block 

buffers are embedded into flight schedules by carriers so as to improve arrival punctuality 

statistically. Future research could investigate how block buffers are implemented by different 

carriers in Europe and the U.S.  

3.2.2 Taxi-out Delay, Queue Length and Predictability 

In this part of the study, the author compares surface operational efficiency during the 

departure phase of flights. There are different perspectives in defining taxi-out times and in this 

study it is measured as the difference between gate-out and wheel-off time. Both time variables 

are available in AENA dataset and ASPM system. 
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Unimpeded taxi-out time is defined as the time for aircraft to traverse from the gate to 

runway end without any interference of other traffic (4). It is compared with actual taxi-out time 

to measure operational inefficiencies during taxi-out phase, i.e., taxi-out delay (or additional taxi-

out time). Whereas the same definition is found in the U.S. and Europe, different methodologies 

to compute unimpeded times are used, namely the FAA APO method and EUROCONTROL 

PRU method (4). Comparisons in methodology differences of two methods are presented in 

chapter 4.   

 

  
APO PRU 

Qo Cal_DlaTo  Cal_NomTo  Qo Cal_DlaTo  Cal_NomTo  

MAD Mean 8.78 4.33 10.60 8.53 2.83 12.24 
SD 3.74 40.60 1.44 21.51 39.87 2.77 

PHL Mean 11.44 10.54 10.44 12.54 8.36 12.60 
SD 6.72 14.41 1.88 9.19 14.06 3.59 

 

Note: Qo – departure queue length, Cal_DlaTo – taxi-out delay, Cal_NomTo – unimpeded taxi-out time 
Figure 8 Unimpeded taxi-out time, taxi-out delay and departure queue at MAD and PHL by 
applying different methods. 

By following APO and PRU methods respectively, unimpeded taxi-out times and taxi 

delays are computed for all flights at each airport. Figure 8, Figure 9, and Figure 10 compare 

taxi-out performance with respect to unimpeded taxi-out time, taxi-out delay, and departure 

queue length for each airport pair by applying different methods. 
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APO PRU 

Qo Cal_DlaTo  Cal_NomTo  Qo Cal_DlaTo  Cal_NomTo  

BCN Mean 6.62 4.51 12.39 6.55 2.00 14.95 
SD 3.01 17.71 1.15 9.34 19.48 2.45 

FLL Mean 6.69 7.26 12.74 7.09 4.61 15.35 
SD 4.14 11.79 1.80 5.38 11.99 0.47 

 

Figure 9 Unimpeded taxi-out time, taxi-out delay and departure queue at BCN and FLL by 
applying different methods. 

 

  

APO PRU 

Qo 
Cal_DlaTo 
(min) 

Cal_NomTo 
(min) Qo 

Cal_DlaTo 
(min) 

Cal_NomTo 
(min) 

PMI Mean 2.31 2.65 7.72 2.46 2.05 8.33 
SD 2.52 11.64 1.38 3.28 11.42 1.73 

TPA Mean 3.81 3.21 10.09 3.98 2.86 10.47 
SD 2.29 6.84 1.55 2.91 7.06 0.89 

 

Figure 10 Unimpeded taxi-out time, taxi-out delay and departure queue at PMI and TPA by 
applying different methods. 
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For all six airports, using PRU method yields higher values of average unimpeded taxi-

out time and corresponding lower taxi-out delay than APO method. It can be noted that 

differences on average unimpeded taxi-out time by APO and PRU method range from 0.38 

minutes (TPA) to 2.61 minutes (FLL). By following the same method, average values of 

calculated unimpeded taxi-out times between matching airports are very close, which in turn 

confirms the comparability of each pair. However, delay patterns between the U.S. and European 

airports are quite different. For example, average taxi-out delay at PHL is about 6 minutes more 

than MAD and standard deviation of delays is higher at PHL by either APO or PRU method. 

Differences are also observed with respect to departure queue length, with each flight at PHL 

experience 3-4 more flights ahead in the queue. 

 

 
Figure 11 Taxi-out delay, departure queue length and demand at MAD and PHL. 

0

5

10

15

20

0
10
20
30
40
50
60

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

D
el

ay
 in

 m
in

 

# 
of

 D
ep

 M
ov

em
en

ts
 

Time of Day 

MAD 

Cal_DlaTo

Demand

Qo_pru

0

5

10

15

20

0
10
20
30
40
50
60

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

D
el

ay
 in

 m
in

 

# 
of

 D
ep

 M
ov

em
en

ts
 

Time of Day 

PHL 
Cal_DlaTo

Demand

Qo_pru

Cal_DlaTo – taxi-out delay 
Qo_pru – departure queue length by PRU method 
 

30 



 
Figure 11 exhibits the patterns of taxi-out delay, departure queue length and scheduled 

demand over time of day at MAD and PHL. It is observed that departure queue length (left scale, 

green line) at MAD is maintained steadily along the time of day. On average, each departure has 

about 8 to 10 flights ahead on the surface when entering airport movement area. Similar stable 

distribution is observed for taxi-out delay (right scale, blue bar) with an average of 2 minutes and 

maximum of 4 minutes. In contrast, both departure queue length and taxi-out delay varies 

distinctly along the time of day at PHL. A peak of 19 flights queuing on the surface per hour 

occurred around 6pm and the highest hourly taxi-out delay of 16 minutes is also observed during 

the same hour.  

 
Figure 12 Taxi-out delay, departure queue length and demand at BCN and FLL. 
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and Figure 13. Similar to the previous pair, departure queue lengths at BCN are evenly 

distributed along the time of day and lower value of taxi-out delays are observed at BCN than 

0

5

10

15

20

0

10

20

30

40

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

D
el

ay
 in

 m
in

 

# 
of

 D
ep

 M
ov

em
en

ts
 

Time of Day 

BCN 

Cal_DlaTo

demand

Qo_pru

0

5

10

15

20

0

10

20

30

40

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

D
el

ay
 in

 m
in

 

# 
of

 D
ep

 M
ov

em
en

ts
 

Time of Day 

FLL 

Cal_DlaTo

Demand

Qo_pru

31 



 
FLL. As for PMI and TPA, variances in delay and queue distributions are relatively subtle due to 

the moderate amount of annual traffic at both airports. 

 

 
Figure 13 Taxi-out delay, departure queue length and demand at PMI and TPA. 

To provide more insight on airport surface congestions, scatter diagrams of taxi-out time 

over departure queue length by occurrences are presented for each airport pair, as in Figure 14, 

Figure 15, and Figure 16. For instance, each red square in the figure represents an incident with 

the same combination of actual taxi-out time and departure queue length that occurred three to 

nine times during the study period. A distinct linear trend is observed from each figure between 

departure queue lengths and taxi-out times. It has been stated in previous research that long 

queue lengths on the surface is one of the main causal factors for excessive taxi times (4). It is 

also observed from these figures that flights at the U.S. airports are more likely to be caught in 

longer departure queue and thus experience longer taxi-out delay.  
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Figure 14 Departure queue length (Qo) vs. actual taxi-out time (ACTTO) at MAD and PHL. 

 

 
Figure 15 Departure queue length (Qo) vs. actual taxi-out time (ACTTO) at BCN and FLL. 
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Figure 16 Departure queue length (Qo) vs. actual taxi-out time (ACTTO) at PMI and TPA. 
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Figure 17 Comparison of taxi-out delay (Cal_DlaTo) by airlines at MAD and PHL. 

 
Figure 18 Comparison of taxi-out delay (Cal_DlaTo) by airlines at BCN and FLL. 
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*AWE (American West Airlines) acquired the US Airways (USA) Group since 2005 but the code is still in use. 
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Figure 19 Comparison of taxi-out delay (Cal_DlaTo) by airlines at PMI and TPA. 

Different delay patterns by airlines at busy airports could be explained by varying gate 

managements at the European and U.S. airports. In Europe, there is a great use of common gates 

that provides more flexibility in terms of gate assignments. In the U.S., however, most gates are 

exclusively or preferentially used by certain airlines. For airlines that lease gates farther from 

runways, they bear substantially longer taxi time and may experience longer delays. For example, 

American Airlines (AAL) located at Terminal A at PHL (see Figure 20), has to move aircraft 

along the entire perimeter of the terminal to take off on runway 17, 35, 26 or 8. Other airlines, 

such as Southwest Airlines (SWA) located at Terminal E, are much closer to those runways and 

thus experience less taxi times.  
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Figure 20 Terminal locations of AAL and SWA at PHL. 

3.3 Comparison of Airport Capacity and Demand  

3.3.1 Airport Capacity  

As a fundamental element for airport planning, the ultimate capacity of an airport is 

typically determined by the capacity of the airfield and specifically determined by runway 

systems. There are several alternative measures of runway capacity in use. Maximum throughput 

capacity as the principle measure is defined as the number of movements on the runway system 

per hour in the presence of continuous demand. Declared capacity as another measure commonly 

used in Europe is defined somewhat ambiguously as the number of runway movement per hour 

while accommodating a reasonable level-of-service (LOS) at airport (13). Recall from Table 1, 
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airport capacity listed for MAD is declared capacity with a value of 90 flight movements per 

hour in 2008. As for PHL, the estimated capacity is 96 under Instrument Meteorological 

Conditions (IMC) while in good weather the capacity is estimated to range from 104 to 116 

during the study period. One reason why two similar airports have quite unparalleled capacity is 

associated with the different strategic planning by ANSPs in the U.S. and Europe. In the U.S., 

VFR associated with Visual Meteorological Conditions (VMC), is operated when weather 

permits, under which pilots maintain visual separations (smaller than instrument separations) 

among aircraft. In contrast, aircraft in Europe are operated under IFR associated with IMC at all 

times, regardless of prevailing weather conditions.  

Figure 21 shows a comparison of average taxi-out delay under VFR and IFR at three U.S. 

airports, calculated with both APO and PRU methods. This displays how good and bad weather, 

indicated by VFR and IFR procedures, influence taxi-out delay in the U.S. On average, flights 

under IFR procedures experience 1.91 minutes (TPA) to 6.33 minutes (PHL) more delay than 

VFR procedures. In Europe, such weather impact is relatively small since runway capacity is 

regulated in a more conservative way to ensure the operational reliability at airports. During the 

study months, there is only 2.1% of times or less when airport demand from the schedule was 

over declared capacity at selected European airports.  

 
Figure 21 Average taxi-out delay under IFR and VFR procedures at U.S. airports. 
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Figure 21 (Continued). 

3.3.2 Airport Demand  

In this subsection, the author investigates scheduled demand patterns at U.S. and 

European airports. As airlines’ initially requested flight schedules are not available, the author 

uses scheduled departure and arrival times from AENA and ASPM database and define airport 

demand as the total number of flights being scheduled during a certain time period (namely an 

hour) at each airport.  

Figure 22 depicts airport demand patterns at MAD and PHL. With similar total number 

of flights scheduled, both airports present an alternative pattern of arrival and departure demand 

to avoid the stack of scheduling peaks. Yet a larger variability of demand over time of day at 
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dropped from 53 to 19 flights. In contrast, both arrival and departure demand at MAD flow 

smoothly with smaller variation (within 5 flights) during the same time period. 

 
Figure 22 Scheduled flight movements over time of day at MAD and PHL. 

At airports with medium and moderate levels of daily traffic, flight scheduling is not 

restricted by airport capacity. As shown in Figure 23 and Figure 24, scheduled traffic for the 

other two airport pairs is not as distinctive as busy airports, yet is presented with relatively 

random patterns.  

As a representative example, Figure 25 compares flight demand with actual movements 

at MAD and PHL, along with average taxi-out delay distribution over the time of day. It can be 

observed that the number of scheduled or actual flights at MAD is quite close to and barely over 

its declared capacity of 90. It indicates that airport demand at MAD is already capacity 

constrained and that the published schedule does not fully capture its initial demand pattern 

without any demand management.  
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Figure 23 Scheduled flight movements over time of day at BCN and FLL. 

 
Figure 24 Scheduled flight movements over time of day at PMI and TPA. 
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Figure 25 Demand and actual movement at MAD and PHL. 

During the study period, the overall weather conditions at PHL were not good as 91.5% 

of flights operated under IFR. Yet neither airport demand nor actual movement is close to its IFR 

capacity of 96. Moreover, the number of actual movement during most of high-demand hours is 

lower than the demand itself. It indicates that airport throughput is not constrained by runway 

capacity and congestions on taxiways and apron area deteriorate surface operation reliability 

significantly. 

The explanation of such different patterns is associated with slot control and schedule 

coordination at three Spanish airports and other European airports. Slots are allocated to airlines 

as permissions to arrive or depart at an airport during a specific time window so as to balance 

airport capacity and demand (25). Such administrative control of European regulators prevents 

the excessive flight scheduling over the declared capacity. It ensures the reliability of airport 
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as well as small and evenly distributed taxi-out delays. Yet the conservative way of determining 

the declared capacity yields a large potential for European airports to improve the usage of 

scarce runway facilities especially under good weather conditions. 

3.4 Policy Implications and Recommendations 

Both the U.S. and Europe air traffic systems are operating with a similar geographic area 

and equally advanced technologies and concepts. However, important differences exist within 

the surface operations management as shown from high-level factual comparisons in previous 

subsections. Between each two comparable airports, smaller and evenly distributed delays are 

observed from European airports while the U.S. airports obtain more efficient usage of airfield 

facilities. In this subsection, the author summarizes the differences of the ATM of the two 

regions and the impacts on surface operations management.  

3.4.1 Air Transport Regulators 

One of the key differences between the U.S. and European systems is the air transport 

regulators. One ANSP (FAA) operates the U.S. system while European system comprises 37 

ANSPs. As the only service provider, the FAA aims to improve the system performance using 

the same tool, regulations and procedures. In Europe, there has been continuous effort to 

cooperate air traffic operations and management among different ANSPs but they are still highly 

fragmented within their own boundaries in terms of ATM (10). 

The emphasis of air service providers also varies. In the U.S., the centralized 

administration of FAA focuses on the overall flight plan to enhance the system and airport 

performance and tactically manage air traffic with respect to various conditions in the NAS. In 

Europe, cooperated strategic planning may occur months in advance to strictly constrain 
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scheduled demand under the declared airport capacity. Yet each ANSP still processes the final 

approval based on its own rules and regulations.  

3.4.2 Airline Scheduling and Demand Management 

Another main difference between the U.S. and Europe is the practice of airline 

scheduling and demand management.  

In Europe, airlines submit their desired flight schedules to Network Manager Operations 

Centre (NMOC, formerly CFMU) (25) during the strategic planning phase and schedule 

coordination is applied strictly as an administrative way to manage and balance airport capacity 

and demand. MAD, BCN and PMI are all coordinated airports during the study period. Any 

flight operations, like landing or taking-off, shall be allocated with a slot by AENA's Airport 

Slots Coordinator Office; the total amount of flights that can be scheduled is constrained by the 

declared capacity of the airport. Under certain circumstances the NMOC will issue changes to 

revised departure times to manage the congestions at the departure airport.   

In the U.S., flight scheduling is not as restricted at most of the airports as it is in Europe. 

Only five airports, John F. Kennedy International Airport (JFK), LaGuardia Airport (LGA), 

Newark Liberty International Airport (EWR), O'Hare International Airport (ORD) and Reagan 

National Airport (DCA) had a history of demand management. The FAA tends not to favor such 

regulations to impede the competition and airport access especially at highly-congested airports. 

3.4.3 IFR and VFR 

Another notable difference is the allowance of flights operating under VFR in the U.S. 

when weather permits. Visual separations are smaller than IFR separations and are maintained by 

pilots instead of controllers. The implementation of VFR separations allows more flights to land 

and take off during good weather days. The uncertainty of weather, however, has a greater 
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influence on airport operations that are planned according to good weather conditions. Long taxi-

out delay with large variability is observed when weather is less than good at U.S. airports. In 

Europe, IFR is strictly implemented even in good weather conditions with the declared capacity 

close to IMC capacity. It reduces the impact of weather on flight operations, yet limits the 

flexibility to accommodate more flights under good weather. The strictly implemented IFR 

procedures with conservative declared capacity in Europe result in an inefficient usage of scarce 

runway facilities. It restricts access to the airport and airspace and may discourage healthy 

competitions amongst carriers. 

3.4.4 Gate Management 

Recall from subsection 3.2, delays experienced by airlines varied in the U.S. while 

airlines in Europe shared similar amount of delay. One of the reasons for such differences stems 

from different gate management policies in the two regions. 

In the U.S. most of the gates are exclusively or preferentially used by certain airlines. 

Further gate locations increase the difficulty to access the runway and result in higher 

possibilities of encountering long taxi delay. In Europe, there is a greater use of common gates 

that provide more flexibility and more means to manage high demand for gates. It also facilitates 

the procedure when aircraft have to be held at gates longer in order to reduce taxi-out delay and 

to conserve fuel consumption. 

3.5 Summary 

Several airport surface management initiatives have been tested at various U.S. airports. 

Consequent operational performance improvements encourage the promotion of the initiatives to 

more airports. Nevertheless, the author argues throughout this study that additional investigation 

of airport surface operations is needed for a more comprehensive understanding of the obstacles 
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preventing further improvements. The research approach involves a comparison study for major 

U.S. and European airports, an examination of different methods used in the U.S. and Europe for 

benchmarking operational performance indicators, and a discussion of comparison results and 

ATM strategies implemented in the U.S. and Europe: single ANSP in the U.S. and multiple 

ANSPs in Europe, airline scheduling and demand management differences, mixed usage of IFR 

and VFR operations in the U.S., and different gate management policies in two regions, to name 

a few. Although policy recommendations are beyond the scope of this study, the outcomes offer 

analytics support to decision makers who are responsible for improving airport surface 

operations. 
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CHAPTER 4: AIRPORT TAXI TIMES MODELS 

Unimpeded taxi time is the reference time used for estimating taxi delay, a widely 

accepted performance indicator of airport surface movement. Nevertheless, different 

methodologies are currently in use by the FAA and EUROCONTROL to derive unimpeded taxi 

time. Hence, this chapter fulfils the need for consistent method for the measurement of taxi-out 

efficiency and the facilitation of global benchmarking. First, the author clarifies an array of 

definitions of taxi performance indicators in this study. A comparison on different methods that 

are currently in use is performed, focusing on the respective methodology. New methods to 

determine unimpeded taxi times are explored through simulation and observation of historical 

operational data. Moreover, the author proposes a statistical model that demonstrates a state-of-

the-art method to measure taxi-out efficiency. The application of various methods in this study is 

focused on the taxi-out phase that exhibits the largest variance when comparing the different 

phases of flights between the U.S. and Europe (10). 

4.1 Definition of Taxi-out Performance Indicators 

4.1.1 Taxi-out Time 

For flight operations at airports, “bottleneck” areas on the surface where congestion could 

occur include gates, apron area, taxiways, and runways--with the last two elements often referred 

to as the airport movement area. There are different perspectives in defining taxi-out times in 

this area of literature. On the one hand, an explicit definition of taxi-out time refers to the amount 

of time between an aircraft’s pushback from the gate (off-block time) and its takeoff from the 

runway (wheel-off time). From an airlines’ point of view, once an aircraft has left the gate, any 
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excess time from an optimum unimpeded time that occurs before takeoff shall be considered as 

inefficient, regardless of its occurrence in the ramp or movement area. In addition, this definition 

only requires two time stamps: off-block time and takeoff time for each flight, which are both 

readily available in both the ASPM (41) and Spanish airport databases that the author used to 

obtain flight data. On the other hand, it is usually the airports or airlines themselves that control 

aircraft movement in the ramp area; ANSP (i.e., the FAA in the U.S.,) oversees the movement 

area in the U.S. To evaluate the performance of each entity, aircraft movements in two areas 

need to be separately considered. For major airports with both a ramp control tower and an air 

traffic control tower, agreements are made on which spots to appropriately take over the control 

of aircraft from each other. For instance, only three out of 14 available spots on the surface of 

PHL are utilized between two towers to take over the control of flight movements (4). The taxi 

time for ANSP, according to this alternative definition, shall be the time that aircraft spend 

beyond the handover spots and before takeoff. Which definition to use is truly dependent upon 

research objectives and the availability of data. To evaluate taxi performance by control areas 

would require more sophisticated data sources in additional to the available data for this study. 

Therefore, the taxi-out time in this study is defined as the difference between off-block time and 

runway takeoff time.  

4.1.2 Unimpeded Taxi-out Time and Taxi-out Delay 

Unimpeded taxi-out time is defined as the travel time of an aircraft from pushback from 

the gate to takeoff on the runway without any interference of other traffic. This time variable is 

considered as the reference to estimate inefficiencies during the taxi-out phase. Whereas the U.S. 

and European systems have the same definition of unimpeded taxi-out time (43), methodologies 

used to derive this variable are different. The operational inefficiency during the taxi-out phase, 
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also defined in this research as additional taxi-out time (or taxi-out delay), is measure by the 

excessive time that aircraft take for the taxi-out process in addition to the unimpeded reference 

time. Note that inefficiency on taxiway systems is not the only cause for additional taxi-out time; 

sometimes a certain amount of additional time is desirable to maximize the utilization of other 

airside facilities, e.g., to avoid idle periods and maximize runway throughput (4, 43). 

4.2 Methods for Computing Unimpeded Taxi-out Time  

4.2.1 The U.S. APO Method  

The FAA Aviation Policy and Planning Office (APO) established a process for 

estimating unimpeded (nominal) taxi times recorded in the ASPM database. It is based on two 

linear equations, one for taxi-in and the other for taxi-out, and contains both taxi-in and taxi-out 

queue lengths. The APO process seeks to build a numerical relationship between aircraft on the 

ground and taxi time through a linear regression model. Model inputs are derived from the 

ASPM database.  Note that aircraft are not recorded as either being in a queue or even outside 

the ramp area of the gates; the parameters recorded are a gate-out time and a wheel-off time. 

These values are used as surrogates for taxi-out time even though an aircraft may spend 

considerable time within the ramp area after a gate-out message is triggered. Appendix A 

describes the details of the APO method and Figure 26 summaries the methodology in a flow 

chart. The APO method explains taxi time by departure and arrival queue lengths; however, it 

does not involve any other contributing factors such as runway configurations, weather 

conditions, or terminal/gate location. Also, APO method only applies to ASQP carriers 

(Appendix C) and other airlines at airports are assigned with an average value (41). To be 

consistent, a similar procedure is performed in this study.  
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Figure 26 APO method for determining unimpeded taxi-out time. 

4.2.2 Europe Performance Review Unit (PRU) Method 

Namely, the PRU method developed by EUROCONTROL determines a common 

unimpeded taxi-out time for a group of flights that share similar characteristics. Dependent upon 

data availability, these characteristics include aircraft class and pairs of departure stand and 

runway end, or aircraft class only (as in a simplified version of this method). A congestion index 

is calculated for every flight and a congestion index threshold is established for each group. After 

trimming flights by the threshold value on the congestions index, the truncated mean of 

remaining flights in the group (i.e. averaging taxi-out times between 10th to 90th percentiles) is 

calculated as the unimpeded taxi-out time for the group.  

Due to data limitation of ASPM systems, there is no available record for runway or stand 

information. Hence, a simplified version of the PRU method is applied in this study. The 

simplified version of the PRU method (43) for calculating the additional taxi-out time is divided 
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into five steps shown in Figure 27. Tables on the right side present sample outcomes after each 

step. 

 
Figure 27 Simplified PRU method for determining unimpeded taxi-out time. 

4.2.3 20th Percentile Method (P20) 

Another method used in this field of literature to calculate unimpeded taxi times is simply 

to construct the cumulative distribution function of taxi-out times for each group of flights, 

grouped by flight carrier, season, and runway configuration, and then take the value of actual 

taxi-out times at the 20th percentile as the reference time. In this study, P20 method is also 

compared to APO and PRU methods to show the variances. 

4.2.4 Comparison of Three Methods 

LaGuardia Airport (LGA), Philadelphia International Airport (PHL), and Charlotte 

Douglas International Airport (CLT) are among the airports with longest taxi delays in the U.S. 

(10) and they are selected for comparing the taxi-out times by applying different methods. The 

flight data of 2007 are used, as it is the year with the highest taxi times in last decade.  
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Table 2 Comparison of Unimpeded Taxi-out Times Using Different Methods 

Unimpeded Taxi-
out Times (min) 

LGA PHL CLT 
APO  PRU P20 APO  PRU P20 APO  PRU P20 

Mean 12.41 14.91 16.66 10.86 15.44 13.57 11.73 14.59 12.16 
SD 1.64 1.62 2.92 1.86 2.99 3.02 1.48 1.88 1.37 
Group Min 9.90 11.22 9.00 6.50 8.02 6.00 9.80 10.49 8.00 
Group Max 15.20 20.72 29.00 17.10 28.87 23.00 17.30 23.00 20.00 
Flight Count 115,993 103,152 128,863 
 

 
Figure 28 Comparison of average unimpeded taxi-out times at LGA, PHL and CLT. 

Table 2 and Figure 28 compares unimpeded taxi-out times recorded in ASPM by APO 

method with estimations by the PRU and P20 methods.  Only ASQP carriers are included in the 

results when grouping flights by carrier and season.  Groups with a low number of flights (less 

than 100) are not considered either. Once an unimpeded taxi-out time is obtained for a group 

(with the same carrier during the same season), the same value is assigned to all flights in the 

group. The first two rows in Table 2 show the average unimpeded taxi-out times among all 

flights and standard deviations (SD). After that, the minimum and maximum unimpeded taxi-out 

times across the different groups are listed by different methods. Given the historical flight data 
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at LGA, PHL and CLT, it can be suggested that the PRU method and P20 methods led to higher 

estimations on unimpeded taxi-out times than that of APO method.  

4.3 New Methods for Computing Taxi Delays 

4.3.1 Airport Simulation 

In addition to statistical methods that are based on historical data, qualitative research 

through simulation is also an efficient way to determine unimpeded taxi times and derive taxi 

delays.  According to the definition, unimpeded taxi-out time is defined as the time it takes for 

aircraft to reach a runway from the gate without stopping or holding; viz., aircraft taxiing with a 

consistent taxi speed could be identified as unimpeded. Thereby, simulation tools can be utilized 

to determine taxi distances of any given taxi routes. With a reasonable estimation of unimpeded 

taxi speed, unimpeded taxi time can be obtained by dividing taxi distance by taxi speed. 

Advanced Airfield Delay Simulation Model (ADSIM+) is an airport simulation under 

development by the FAA. A prototype of ADSIM+ is used to test the aforementioned simulation 

method.  The precise geographic information of airside facilities, namely runways, taxiways and 

gates are imported into the model. Figure 29 shows the layout of PHL in the simulation with 

sample taxi routes from different gates to runways.  

There are seven terminals PHL (A West, A East, B, C, D, E, and F) and two major 

runways used for departures. 27L|9R, 27R|9L, 27L are the most frequently used runway 

configurations. Altogether, there are 28 terminal-runway combinations for different taxi routes.  

A schedule of 28 flights is specified in the simulation, with each flight representing an example 

using distinct terminal-runway combinations. The gate that is closest to the movement area is 

identified as reference point for each terminal in this experiment.  An example is shown in 

Figure 29 when a flight is scheduled to leave from a gate in terminal B to takeoff on runway 27L. 
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Taxi routes are designed based on the shortest path from the gate to the runway. During the 

simulation, flight movements are simulated in a conflict-free environment so that when one 

aircraft is taxiing, there is no interference from any other aircraft. Average taxi speed of 15 knots 

is assumed for all aircraft in this simulation. 

 
Figure 29 Layout of PHL in the simulation with sample taxi routes. 

With this experimental design, unimpeded times are obtained from flights taxiing through 

each terminal-runway combination. The numerical results for each terminal-runway combination 

are shown in Table 3. The sample flight taxiing from terminal B to runway 27L indicates an 

unimpeded taxi-out time of 2.30 minutes for this taxi route. 

Table 3 Unimpeded Taxi Times for Different Terminal-Runway Pairs from Simulation 
 Runway/Terminal A-West A-East B C D E F 

9L 1.23 2.73 3.80 4.65 5.65 6.28 7.05 
9R 6.92 8.42 9.48 10.33 11.33 11.4 12.27 
27L 6.52 3.40 2.30 2.50 3.40 4.03 4.90 
27R 8.12 5.78 4.68 3.97 4.87 3.22 3.65 

27R 

27L 9L 

B 
A-West 

A-East C 
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E 
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Note that the impact of uncertainties at the airport is not included during the simulation. It 

can be assumed that aircraft pushback from the gate and taxi into the movement area without any 

interference or delay.  The procedure of aircraft pushback and taxiing through the apron area is 

more complex in reality and further studies are needed to provide a higher resolution of 

simulation in the ramp area. Future research also includes the impact of different aircraft types 

and other taxi route options for each terminal-runway pair. 

4.3.2 PDARS Observation  

With the applications of advance technologies in aviation, more sophisticated airport 

surface data become available, including Performance Data Analysis and Reporting System 

(PDARS) based on data recorded by Airport Surface Detection Equipment, Model X (ASDE-X).  

PDARS data provides historical surveillance data on surface operations at a few U.S. airports.  

After an initiated data request, surface trajectories for individual flights are presented with 

Graphical Airspace Design Environment (GRADE).  

 
Figure 30 Snapshot of flight trajectories at PHL. 
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An example of multiple flight trajectories at PHL is shown in Figure 30. Two days of 

traffic at PHL, April 8, 2010, and May 20, 2010, are available for this study. It is noted that 

flights in historical data are operated in different taxi routes other than the shortest path assumed 

in the ADSIM+ simulation. Taking the same example from terminal B to runway 27 R, the 

shortest path is designed for flights to exit the ramp and then directly cross runway 27R to 

runway 27L. From the observation, most flights taxi around either end of runway 27R then 

approach to 27L to avoid active runway crossing. Only a few flights took the shortest taxi route. 

After observing two days of ASDE-X data, about 100 flights are identified without delay during 

taxi-out phase or hold for other traffic in the movement area.  Flight trajectories and time stamps 

of these flights are retrieved from PDARS to derive their unimpeded taxi-out times. Table 4 

summarizes the numerical results of unimpeded taxi-out times from historical data.  

Table 4 Maximum, Minimum, and Average Unimpeded Taxi Times from PDARS Observation 
Maximum Taxi Time Runway 

Terminal 27L 27R 35 
A-East 0:07:35   
A-West 0:04:43   

B 0:08:39 0:04:37  
C 0:07:46 0:03:33  
D 0:07:46 0:03:33  
E 0:06:18   
F 0:05:26  0:02:41 
    

Minimum Taxi Time Runway 
Terminal 27L 27R 35 

A-East 0:02:48   
A-West 0:03:53   

B 0:01:53 0:02:55  
C 0:01:53 0:02:55  
D 0:02:07 0:03:33  
E 0:02:12   
F 0:03:04  0:01:40 
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Table 4 (Continued) 

Average Taxi Time Runway 
Terminal 27L 27R 35 

A-East 0:05:11   
A-West 0:04:18   

B 0:05:11 0:03:46  
C 0:04:44 0:03:14  
D 0:05:02 0:03:33  
E 0:04:15   
F 0:04:18  0:02:10 

Among 17 flight trajectories observed from terminal B to runway 27L, the unimpeded 

time is observed as high as 8 minutes 39 seconds and as low as 1 minute 53 seconds.  One 

explanation for such a big gap is different choices of taxi routes.  For example, flight AWE1633 

(Figure 31, left) took 3 minutes 7 seconds to traverse a direct route from terminal B to runway 

27L while flight RPA3124 (Figure 31, right)  takes 6 minutes 57 seconds to taxi around left 

corner of runway 27R and then approach to runway 27L.  

 
Figure 31 Different taxi routes of two flights with the same terminal-runway pair. 

Hitherto, playing back ASDE-X data through PDARS is one of the most accurate ways to 

observe and understand historical flight operations. However, it is very time-consuming to 

conduct observations for a large number of flight operations. Hence, sophisticated statistical 
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methods are needed to deal with taxi performance efficiency measure for the airport and the 

entire network.  

4.3.3 Proposed Statistical Model  

In addition to heuristic simulation and observation methods, a sophisticated statistical 

model is proposed in this subsection to measure surface operations performance. First, the author 

identifies causal factors that contribute significantly to taxi delay by exploiting available data 

sources. A log-normal regression model is adapted to model taxi times followed with a 

comprehensive set of regression diagnosis and stability test. After that, numerical results are 

interpreted for a sample group of flights with a mathematical model equation. The aggregated 

results for all flights are compared among three airports at the end.  

The procedure of model development is summarized as following. 

• Data Collection 

Flight data, airport information and other factors that contribute to taxi delay are collected 

at the early stage of this study. Annual flight data from ASPM (41) is retrieved for each flight, 

including OOOI data (Out of the gate, Off the runway, On the runway, Into the gate), published 

scheduled data, etc. Airport information is obtained through airport websites and other online 

sources. Other factors, such as historical weather information at airports, are obtained from the 

database of National Oceanic and Atmospheric Administration (44). 

• Factor Identification 

This step aims at identifying causal factors of excessive taxi time and delay. In this area 

of literature, the number of aircraft on the airport surface is considered to be one of the main 

contributing factors to excess taxi delay (45, 46). A comprehensive examination of other causal 
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factors has been summarized in our previous work (4, 8). In this study, the same set of factors is 

included in this model to explore the influence on taxi performance. 

• Model Specification and Validation  

With collected data and a set of contributing factors, the statistical form of the regression 

model is determined based on preliminary analysis and a complete procedure of regression 

diagnostic is followed to specify and validate the model. After that, the test of collinearity is 

performed to assure the stability of the model. 

4.3.3.1 Contributing Factors 

• Departure and Arrival Queue Length 

Departure queue length for each departure is defined as the number of takeoffs that occur 

ahead of the reference aircraft during its taxi-out process, while arrival queue length for each 

arrival is represented by the number of aircraft landed and parked at gates ahead of the reference 

aircraft during its taxi-in process. The variable of queue length is calculated for each flight at 

each study airport. Only ASQP flights are included in the analysis to provide a consistent 

comparison with an existing benchmark method. 

In addition to the variable of queue length itself, quadratic terms of departure and arrival 

queues are included in the model to test the significance of quadratic terms in a polynomial 

regression. 

• Airport Traffic Demand 

To account for the impact from current airport operations to the reference flight, two 

variables from ASPM dataset are included in the model to represent airport traffic demand at the 

moment, viz. EFFDEP which is the count of departures for efficiency computation and EFFARR 
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which is the count of arrivals for efficiency computation. Airport departure and arrival demand 

in 15 minute-intervals are represented by these two variables. 

• Expected Departure Clearance Times (EDCT) 

As one of tactic approaches to assess the imbalance of air traffic demand and airport 

capacity, EDCT is implemented by assigning runway release time due to Traffic Management 

Initiatives (TMIs) that require holding aircraft on the ground at the departure airport (41). In the 

ASPM system, EDCT is recorded when the flight was held on the ground past its planned wheels 

off departure time. In the model, the assignment of EDCT is indicated by a dummy variable for 

each flight, viz. the variable is set at 1 if the flight is assigned with an EDCT and 0 otherwise.   

• Runway Configuration 

For airports with multiple runways, the active runway is based on weather conditions, 

traffic demand and other factors to optimize the operational efficiency. In the ASPM dataset, 

such information is recorded by the runway configuration variable, which lists both departure 

and arrival runways in use. To account for the impact of different runway configuration on taxi 

times, departure and arrival runway configurations are considered separately and multiple 

dummy variables are introduced to represent the set of frequently-used runway configurations. 

For each flight, the dummy variable of the active runway configuration is set at 1 and dummy 

variables for other runway configurations are set at 0. 

• Taxi Route 

Different preferences on taxi routes could result in inconsistent taxi performance.  Ideally, 

the distance of taxi route for each flight should be obtained to account for its impact on taxi time. 

However, such information is neither recorded in ASPM nor publicly accessible at airports. As 

an estimate, runway configuration in use is used to indicate different levels of taxi distance 
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between the terminal and runway end. The estimation is more accurate for some airports with a 

simple layout, such as LGA, which has only one runway for arrivals and the other for departures.  

• Weather Factors 

When weather conditions are less than perfect, the impact on airports and airspace is 

profound in terms of reduced visibility for pilots and controllers, degraded capability for traffic 

management and decreased airport capacity. Obtained from National Oceanic and Atmospheric 

Administration online resource(44),  a set of weather factors are analyzed in the model, including 

wind speed (SPD), ceiling of cloud (CLG), visibility at the airport (VSB), temperature (TEMP), 

precipitation of last hour (PCP01) and average precipitation of previous 6 hours (PCP06). 

4.3.3.2 Regression Function  

To illustrate the technique for carrying out a regression analysis, an example of the 

regression model at CLT airport is presented in this and next two subsections. The diagram of 

CLT airport is shown in Figure 32. 

 
Figure 32 Diagram of CLT airport. 
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Obtained from ASPM database, annual flight data at CLT is first grouped by different 

seasons, air carriers and aircraft class as these factors are demonstrated to have a profound 

impact on taxi times (4, 8). After grouping, taxi models with the same structure but different 

parameters are developed for each group of flights. To illustrate this, a group of flights at CLT, 

“USA, spring, Jet Small”, which represents all small jet aircraft operated by US Airways during 

spring is selected as an example. The group contains a total of 19204 flights. Figure 33 depicts 

the distribution of actual taxi-out time (ACTTO) for all flights within the group. A log-normal 

distribution is observed from the continuous frequency distribution of actual taxi-out times. 

Driven by the observation, a log-normal regression method is determined for that modeling in 

which the dependent variable of the regression function is represented by log10 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. 

 
Figure 33 Frequency distribution of actual taxi-out time for selected group of flights. 

4.3.3.3 Regression Diagnostic 

The objective of regression diagnosis is to assure that the data meet all regression 

assumptions prior to implementation so that regression results are valid and accurate. In this part 

of the study, Y is used to represent the dependent variable log10 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴  and X is used to 

indicate different decision variables that were introduced in the previous subsection. Before the 
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implementation of regression technique, the following five Gauss-Markov assumptions need to 

be satisfied to assure that Ordinary Least Square (OLS) is the best linear unbiased estimate 

(BLUE) (47): 

• Linearity between Y and X 

• Random sample 

• E(ϵ|X) = 0 

• No perfect collinearity among X’s 

• Var(ϵ|X) = σ2 (homoscedasticity) 

The linearity between Y and X is examined by simply observing the scatter chart between  

log10 𝐴𝐴𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 and each decision variable. As an example, Figure 34 shows the plot of departure 

queue length versus log10 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. A linear trend line is also presented in the figure and a high 

level of goodness of fit is observed with R² = 0.741. 

 
Figure 34 Scatter plot of departure queue length versus logACTTO. 

It is also observed from Figure 34 that the scatter chatter presents a concave shape 

between departure queue length and log10 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴. It indicates that taxi time will not be linearly 
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elongated with the increase of departure queue length. To account for this impact, quadratic 

terms of queue length are introduced in the regression model. 

In this study, entire flight data for the whole year is used for analysis and no pre-

processing is conducted. Therefore, the assumption of random sample and E(ϵ|X) = 0  is 

satisfied for the regression.   

To test for perfect collinearity, correlations between each two decision variables are 

calculated as in Table 5. Qo and Qi represent departure and arrival queue length, EFFDEP and 

EFFARR indicate departure and arrival demand at the airport. SPD, CLG, VSB, TEMP, PCP01 

and PCP06 are different weather factors including wind speed, ceiling of cloud, visibility, 

temperature, precipitation of last hour and average precipitation of previous 6 hours. Dummy 

variables of EDCT and runway configuration are not listed in the table below where the 

correlation values are all close to 0. Based on the table, it can be assumed that no perfect 

collinearity among decision variables exists as none of these correlation values is or even close 

to 1. 

Table 5 Correlations among Decision Variables 
  Qo Qi EFFDEP EFFARR SPD CLG VSB TEMP PCP01 PCP06 

Qo 
          Qi 0.04 

         EFFDEP 0.16 0.00 
        EFFARR -0.03 0.24 -0.06 

       SPD -0.04 0.02 -0.01 0.15 
      CLG -0.01 -0.03 0.11 -0.03 -0.28 

     VSB -0.01 -0.05 0.12 0.01 0.11 0.37 
    TEMP -0.04 0.02 0.10 0.20 0.35 -0.01 0.14 

   PCP01 -0.01 0.03 -0.04 0.01 0.04 -0.13 -0.30 -0.02 
  PCP06 0.01 0.01 -0.03 0.00 0.00 -0.11 -0.13 0.02 0.06 

 
To test for homoscedasticity, one popular method is to assure that heteroscedasticity is 

not represented in the model. Thereby, the linear regression of Y on all X variables is performed 

first and the distribution of predicted Y values versus regression residuals is examined for 

64 



 
heteroscedasticity, as shown in Figure 35. It can be noted from the scatter plot that regression 

residuals are quite evenly and symmetrically distributed over the horizontal axis, which is 

predicted Y. Hence, it is concluded that heteroscedasticity does not apply to this model and the 

assumption of Var(ϵ|X) = σ2 (homoscedasticity) is satisfied.  

 
Figure 35 Scatter plot of residuals versus predicted logACTTO. 

So far, all of Gauss-Markov assumptions are tested and the outputs together imply that 

OLS can be applied in our model and that it provides the best linear unbiased estimate. In reality, 

there are issues that can arise during the analysis that, while strictly speaking, are not 

assumptions of regression, are nonetheless, of great concern to regression analysts. Thereby, the 

test of collinearity is performed by measuring Variance Inflation Factor (VIF) and Condition 

Index (CI) to assure the stability of the model. A multicollinearity problem is indicated if a 

tolerance is less than 0.10 and/or a VIF is higher than 10 and/or a CI is above 30 (47). With the 

test results shown in Table 6, it can be suggested that all indexes are within the reasonable range 

and no multicollinearity problem is detected in the model. 
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Table 6 Test Results for Collinearity 

Variable1 DF Tolerance VIF CI 
Intercept 1 . 0  
Qo 1 0.16216 6.16656 1 
Qi 1 0.16604 6.02263 1.18105 
QoQi 1 0.22528 4.43885 1.2932 
Qo2 1 0.16408 6.09477 1.34509 
Qi2 1 0.31981 3.12689 1.64664 
EDCT 1 0.91239 1.09603 1.69685 
SPD 1 0.76244 1.31157 1.72487 
CLG 1 0.75602 1.32272 1.80794 
VSB 1 0.7349 1.36072 1.88587 
TEMP 1 0.82851 1.20699 2.0829 
PCP01 1 0.90262 1.10789 2.4966 
PCP06 1 0.97705 1.02349 3.29985 
EFFDEP 1 0.9153 1.09254 5.09241 
EFFARR 1 0.87007 1.14933 5.6924 

4.3.3.4 Numerical Results 

4.3.3.4.1 Example Model Equation 

Hitherto, all five Gauss-Markov assumptions are demonstrated to be satisfied and the test 

of multicollinearity is performed to ensure the stability of the model. The output of regression 

model for the sample group of flights is shown as Table 7. 

Table 7 Summary of Regression Output for the Sample Group 

Variable Label DF 
Parameter 
Estimate 

Standard 
Error t Value Pr>|t| 

Intercept Intercept 1 1.05284 0.01044 100.85 <.0001 

Qi Arrival Q 1 0.00343 0.00061 5.59 <.0001 

Qo Departure Q 1 0.02044 0.00015 134.77 <.0001 

Qo2 Quadratic of Q 1 -8E-05 2.9E-06 -27.76 <.0001 

Qi2 Quadratic of Q 1 -9E-05 3E-05 -3.07 0.0021 

1 Qo and Qi represent departure and arrival queue length, EFFDEP and EFFARR stands for departure and arrival 
demand. SPD, CLG, VSB, TEMP, PCP01 and PCP06 are different weather factors indicating wind speed, ceiling of 
cloud, visibility, temperature, precipitation of last hour and average precipitation of previous 6 hours. EDCT is the 
EDCT dummy variable. 
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Table 7 (Continued) 

QoQi Quadratic of Q 1 3.8E-06 2.5E-05 0.15 0.8781 

d6 Runway Dummy 1 -0.075 0.00945 -7.94 <.0001 

d7 Runway Dummy 1 0.24265 0.08952 2.71 0.0067 

d9 Runway Dummy 1 -0.0019 0.01049 -0.18 0.8557 

d11 Runway Dummy 1 0.09699 0.08952 1.08 0.2786 

d12 Runway Dummy 1 -0.0441 0.00947 -4.65 <.0001 

edct_d EDCT Dummy 1 0.06002 0.00295 20.33 <.0001 

SPD Wind Speed 1 0.00099 0.00017 5.99 <.0001 

CLG Cloud Ceiling 1 -2E-05 2.4E-06 -9.57 <.0001 

VSB Visibility 1 -0.0036 0.00036 -9.92 <.0001 

TEMP Temperature 1 3.1E-05 6.3E-05 0.49 0.6216 

PCP01 Precipitation 1 0.15975 0.0234 6.83 <.0001 

PCP06 Precipitation 1 0.09078 0.03125 2.9 0.0037 

EFFDEP Departure Demand 1 -0.0017 5.1E-05 -33.69 <.0001 

EFFARR Arrival Demand 1 0.00086 4.8E-05 17.81 <.0001 

The positive coefficient of departure queue length (Qo) and arrival queue length (Qi) 

indicates that the more flights taxiing on the airport surface, the longer taxi delays are expected 

for the reference flight while all other conditions stay the same until a turning point is reached 

with the quadratic terms. The negative coefficient of quadratic terms (Qo2,Qi2) confirms the 

concave shape in Figure 34. Dummy variable R6, R7, R9, R11 and R12 indicates the impact of 

different runway configurations on taxi times. A positive coefficient of EDCT dummy variable 

indicates that flights assigned with EDCT are expected to experience longer delays during 

taxiing. The magnitude of this coefficient also suggests a larger impact of EDCT than that of 

runway configuration. SPD, CLG, VSB, TEMP, PCP01 and PCP06 are different weather factors 

indicating wind speed, ceiling of cloud, visibility, temperature, precipitation of last hour and 

average precipitation of previous 6 hours. EFFDEP and EFFARR represent an estimate on 

airport departure and arrival demand during the 15-minute time window. 
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Overall, the size of all data points evolved in this regression model is 19197, with 390 

missing points excluded. A total of 19 independent variables are analyzed in this model. The p 

value of F test is less than 0.001 which indicates explanatory variables altogether are statistically 

significant. 

4.3.3.4.2 Comparison Results 

To provide comparable results, these proposed models are implemented for three airports, 

LGA, CLT and PHL, respectively. The comparison results are illustrated from two aspects:  

goodness of fit and average taxi time. The APO method is set as the reference to demonstrate the 

performance of a proposed statistical model. In addition, variants of this statistical model with 

different combinations of decision variables are derived as the following: 

0.  Basic = constant + queue lengths 

1.  Basic + EDCT dummy (E) 

2.  Basic + Runway configuration dummy (R) 

3.  Basic + Queue length quadratic terms (Q) 

4.  Basic + E + Q 

5.  Basic + R + Q 

6.  Basic + E + R + Q 

The basic model contains only departure and arrival queue length as decision variables. 

Six variants of models are derived by adding a mixed combination of EDCT dummy variables, 

runway configuration dummy variables, and quadratic terms of queue lengths. 

• R-Square Value 

Based on annual flight data in 2007 from ASPM, flights at each airport are first grouped 

by carrier and season. There are 63 groups obtained for LGA, 56 for CLT and 62 for PHL. Next, 

68 



 
the regressions analysis of proposed models is conducted for each group at each airport. 

Descriptive statistics across all groups are collected together and compared with results from the 

APO method. As shown in Table 8, the goodness of fit of APO method is quite poor with a much 

lower value of R2 than any variant of proposed models. For example, the average R-squares of 

proposed models range from 0.72 to 0.74 among 63 groups at LGA while that of the APO 

method is only 0.39. The table also shows the regression model with a complete set of decision 

variables involved, where (Basic+R+E+Q) yields the best goodness of fit with the highest R-

squares among all other variants for all three airports.  

Table 8 Comparison of R-Squares of Different Models at CLT, PHL and LGA 

Airport 𝐑𝐑𝟐𝟐 APO Basic Basic 
+E 

Basic 
+R 

Basic 
+Q 

Basic 
+E+Q 

Basic 
+R+Q 

Basic+ 
R+E+Q 

LGA 
(63 

Groups) 

Mean 0.39 0.72 0.72 0.73 0.73 0.73 0.73 0.74 

SD 0.07 0.06 0.06 0.06 0.05 0.05 0.05 0.05 

CLT 
(56 

Groups) 

Mean 0.13 0.42 0.43 0.48 0.43 0.43 0.48 0.49 

SD 0.06 0.12 0.12 0.10 0.12 0.12 0.10 0.10 

PHL 
(62 

Groups) 

Mean 0.30 0.59 0.59 0.61 0.60 0.60 0.62 0.62 

SD 0.11 0.11 0.11 0.11 0.11 0.11 0.10 0.10 

E = EDCT dummy, R = runway configuration dummy, Q = queue length quadratic terms 
 
• Taxi Time 

A comparison of calculated unimpeded taxi times by APO method and the proposed 

model is presented in Figure 36. For three airports, it can be observed that this proposed model 

leads to a lower value of unimpeded taxi time compared to the APO method. With a high level of 

goodness of fit, the proposed model provides a more accurate measurement for taxi performance, 

quantifies the impact of various factors to taxi inefficiency, and supports decision-makers with 

reliable measurements to improve the operational performance.  
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Figure 36 Average taxi-out times by different methods at CLT, LGA and PHL. 

4.4 Summary 

Unimpeded taxi time is the reference time used for estimating taxi delay, a widely 

accepted performance indicator of airport surface movement. As noted, the varying methods 

applied by the FAA and EUROCONTROL are used to measure taxi efficiency. Hence, this study 

first compares two methods of determining unimpeded taxi-out times for the same airports. The 

comparison shows that the APO and PRU methods lead to different unimpeded taxi-out times, 

consequently different taxi-out levels of efficiency. It is suggested that a clear definition of taxi 

time should be defined and a consistent method of determining unimpeded taxi times should be 

developed for the evaluation of airport operational performance.  A log-normal regression model 

is adapted to model taxi times followed by a comprehensive set of regression diagnosis and 

stability test. 

On the other hand, new heuristic methods are explored by the simulation and observation 

of historical operational data in a geographic platform. However, due to various limitations, such 

heuristic methods are not yet generally applicable at airports. Hence, a sophisticated statistical 
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model is proposed in this chapter to measure surface operations performance. Compared to 

existing methods, the proposed model provides a more accurate measurement for taxi 

performance with a high level of goodness of fit. It quantifies the impact of various factors to 

taxi inefficiency and supports decision-makers with reliable measurement to improve the 

operational performance.  
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CHAPTER 5: REAL-TIME INTEGRATED AIRPORT SURFACE OPERATIONS 

MANAGEMENT  

To fill the gap in existing literature and embrace the trajectory-based control of NextGen, 

a Real-Time Integrated Airport Surface Operations Management (RTI-ASOM) is proposed in 

this study. Integrated management means that for all arrivals and departures, holistic control 

strategies are developed to manage flight operations between gates and runways with optimized 

schedule and sequence. Real-time means that the proposed strategy provides real-time decision 

support to controllers and pilots by using real-time inputs from the cockpit and control tower. 

The objective of RTI-ASOM is to increase the efficiency of surface operations by (1) reducing 

taxi delay and (2) improving runway throughput.  It is modeled with Mixed Integer Linear 

Programming (MIP) formulation and a solution algorithm is developed to obtain optimal 

solutions efficiently. The outcomes of RTI-ASOM include optimal passage times of aircraft to 

visit each node along their respective taxi routes in a digitalized airport surface network. Such 

information can be shared via a data link between the control tower and the Flight Management 

System in the cockpit (24) so as to create an automation platform that enables the control of 

complicated surface operations in a safe and orderly manner. 

The author first describes the problem statement of RTI-ASOM, followed by a 

mathematical formulation and solution algorithm. The demonstration of RTI-ASOM is presented 

based on the layout and data from LGA. The numerical results are compared among historical 

scenario, constructed simulation scenario and RTI-ASOM.  
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5.1 Problem Definition 

Given a set of departures and arrivals, the RTI-ASOM proposed in this study optimizes 

aircraft surface operations by balancing two objectives: 1) maximal runway usage and 2) 

minimal total taxi times, subject to operational constraints of recursive planning requirements, 

ready time limits, conflict-free constraints, precedence constraints, minimum separation 

requirements, gate availability constraints, engine warm-up time requirements and speed limits. 

Optimized trajectories for each aircraft between the gate and the runway are the main output of 

RTI-ASOM.   

5.1.1 Recursive Planning Horizon 

For real-time planning purposes, an entire day is split into small time windows, such as 

every 5 minutes. The length of planning horizon could be customized to vary from airport to 

airport and also adjusted to fit current operational conditions on the airport surface. Any aircraft 

that is ready to move will be either cleared within current planning horizon or postponed to the 

following planning periods. 

Aircraft are not only constrained to avoid conflict with others in the same window, but 

also required to be separated from other aircraft scheduled in previous time windows that are still 

operating on the surface. For this purpose, the status of each node in the airport surface network 

is updated with the latest passage time from the previous planning period. Such information is 

then converted into a new set of constraints for minimum separations during the consecutive 

planning period.  

5.1.2 Ready Time Limit 

In RTI-ASOM, the earliest ready time of an aircraft at departure airport is Target Off-

Block Time (TOBT), (i.e., the time that aircraft operator estimates when an aircraft is ready [all 
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doors closed, boarding bridge removed, a pushback vehicle present] to pushback immediately 

upon reception of clearance from the tower). The ready time for landing is Estimated Time Of 

Arrival (ETA), i.e. the earliest time estimated at the beginning of the planning horizon when an 

aircraft would reach the runway, if there were no interference from other aircraft (48). Ready 

times of arrivals and departures are the inputs of the model and are presented in the constraints 

so that no aircraft could pushback or land before its ready time.  

In order to enable operational strategy of gate holding, constraints that are set for actual 

pushback times are not included in the model. The idea of the gate holding strategy is to hold 

aircraft at their gates for a short time period with less fuel consumption, as opposed to allowing 

them to pushback from their gates early and queuing in the taxiways/runways. By assigning 

proper gate holding times to aircraft, the length of departure queues can be decreased by 

releasing less aircraft onto the congested surface. Gate holding, instead of queuing at taxiway or 

runway end with engines on, expends much less fuel consumption and mitigates the burden to 

the environment. 

5.1.3 Conflict-Free Constraint 

For safety and efficiency purposes, the optimized flight trajectories are guaranteed to be 

conflict-free. Three types of conflicts are identified and considered in RTI-ASOM: crossing 

conflict, trailing conflict, and head-on conflict. The decision variable tiu represents the time for 

aircraft i to pass node u in the network. By tracking the time and position of each aircraft at 

taxiway intersections and on taxiway segments, the model ensures that no aircraft will cross, trail, 

or head-on towards another at the same node or segment in the network. 
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5.1.4 Precedence Constraint 

In this study, given a short planning horizon, aircraft reordering at the runway end is not 

enabled. Instead, a precedence constraint is enforced in the model to govern the right-of-way of 

aircraft, i.e., the runway sequences are followed in a way such that an earlier aircraft is 

prioritized when passing through the same node or segment in the network.  

5.1.5 Minimum Separation Requirements 

While waiting for clearance to access on a runway, aircraft are required to maintain 

certain separations to prevent the danger of wake turbulence. Minimum time separations between 

aircraft (Table 9) differ for various leading and trailing aircraft types (13) which are based on the 

maximum takeoff weight (MTOW).  

Table 9 Minimum Time Separation (in sec) between Two Successive Arrival/Departure Aircraft 
on the Same Runway  

Arrivals/Departures Trailing Aircraft 

Leading Aircraft Heavy Medium Light 

Heavy 96/90 157/120 196/120 

Medium 60/60 69/60 131/60 

Light 60/45 69/45 82/45 
Note: ICAO wake turbulence category (WTC) (49) : 

 H (Heavy) aircraft types = 136 000 kg (300 000 lb) or more. 
 M (Medium) aircraft types = less than 136 000 kg (300 000 lb) and more than 7 000 kg (15 500 lb). 
 L (Light) aircraft types = 7 000 kg (15 500 lb) or less. 

Additionally, when an airport has two active runways intersecting with each other, a 

minimum separation time of 55 seconds is required between two runway operations. 

Also in the taxiway area, a separation distance  𝑆𝑆𝑇𝑇  is required to avoid conflicts and 

maintain safety. A separation distance  𝑆𝑆𝑇𝑇=200 meters (36) complies with all safety regulations 

on the taxiway.  
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5.1.6 Gate Availability 

In this problem, gate assignments of each aircraft are given as model input. To absorb the 

stochastic flight delays that often occur during real-time operations, a buffer time is introduced 

between two continuous flights assigned to the same gate (50). In this case, a commonly used 

buffer time tbuffer=15 minutes is built in the constraints for each gate after one aircraft leaves 

and before another aircraft arrives. The implementation of buffer time constraints avoids gate 

conflicts and restricts the length of gate holding for departures. 

5.1.7 Engine Warm-up Time 

For departures, aircraft engines must be fully warmed up prior to takeoff. The allotted 

time for warm-up ranges from 2 to 5 minutes depending on the engine type. However, a 

minimum warm-up time of twarm−up=5 minutes before departure complies with the requirement 

of most of the aircraft operator’s manuals. Hence, 5-minute constraints are included within the 

model to ensure the duration of the taxi-out phase for each departure. Aircraft with too short of a 

taxi time to warm-up the engine will be advised to taxi at a lower speed. 

5.1.8 Speed Limit 

To maintain safety operations, aircraft movements on the airport surface are constrained 

by a maximum taxiing speed. The optimized 4 flight trajectories should be compliant with the 

possible taxi speed ranges of aircraft. For this purpose, constraints are derived to set the 

minimum time needed to traverse any segment and the maximum taxi speed for all aircraft. As a 

maximum taxi time for an edge is not strictly necessary (36), the minimum taxi speed is not 

limited in the model. 

Hitherto, no official guideline is available for the aircraft speed limit in taxiways and 

various assumptions were made in the literature. For example, a minimum speed of 5 knot is 
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assumed in (36) during any taxi process on the surface and a maximum taxi speed of 15.5 knots 

is assumed in (22, 37). In some areas of literature, maximum speed limit varies by areas on the 

surface (39) from 8 knots to 40 knots, or by multiple levels (35) between from 15.5 knots to 31.1 

knots. Since there is little consensus on the speed variable, analysis on surveillance data is 

conducted to derive the most suitable speed limit for this study. 

5.2 Mathematical Formulation 

In general, the network for airport surface operations can be represented by a directed 

graph G=(V, E), with V being the set of nodes representing intersections on taxiway/runways 

and E being the set of directed links representing taxiway segments between two intersections. 

The nomenclature of the index sets and inputs are listed as in Table 10. 

Table 10 Nomenclature of Index Sets and Inputs 
A 
D 
N 
RN 
TN 
GN 
𝑇𝑇𝑖𝑖 
𝑆𝑆𝑇𝑇 
𝑆𝑆𝑅𝑅 
𝐿𝐿𝑢𝑢𝑢𝑢 
𝑇𝑇𝑢𝑢 
tbuffer 
twarm−up 
𝑆𝑆𝑆𝑆𝑆𝑆𝑚𝑚𝑚𝑚𝑚𝑚 

Set of arrivals 
Set of departures 
Set of all nodes 
Set of runway nodes, RN∈N 
Set of taxiway nodes, TN∈N 
Set of gate nodes, GN∈N, RN ∪ TN ∪ GN = 𝑁𝑁 
Earliest ready time of aircraft i 
Minimum separation distance between any two aircraft on taxiway 
Minimum separation matrix when two aircraft use the same runway 
Link distance between adjacent node u & v 
Last passage time of node u 
Buffer time between two aircraft using the same gate 
Minimum engine warm-up time before take-off 
Maximum taxi speed limit 

The input variables 𝑇𝑇𝑖𝑖 are referred to as the TOBT for departures from the cockpit and the 

ETA for arrivals from the control tower. 𝑆𝑆𝑇𝑇 is set as 200 m as aforementioned and 𝑆𝑆𝑅𝑅is shown as 

in Table 9. Variables 𝑇𝑇𝑢𝑢 are dynamic parameters to keep records of passage times when each 

node u (𝑢𝑢 ∈N) is visited by an aircraft. The set of  𝑇𝑇𝑢𝑢  is updated at the end of each planning 
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window and is taken as a subset of inputs in the separation constraints for the next planning 

window.   

The objective of this model is to minimize the total taxi time and maximize runway 

throughput. Let 𝑡𝑡𝑖𝑖𝑖𝑖1 denotes the time of aircraft i to visit its first node 𝑢𝑢1 (gate for departures and 

runway for arrivals) and 𝑡𝑡𝑖𝑖𝑖𝑖𝑘𝑘 the time of aircraft i to visit its last node 𝑢𝑢𝑘𝑘 on the surface (runway 

end for departures and gate for arrivals). The total taxi time for all aircraft in current planning 

horizon is ∑ (𝑡𝑡𝑖𝑖𝑖𝑖𝑘𝑘 − 𝑡𝑡𝑖𝑖𝑖𝑖1)𝑖𝑖  . Given the set of aircraft in a planning horizon, maximizing runway 

throughput is equivalent to minimizing runway access time of the last aircraft. Let 𝑡𝑡𝑖𝑖′𝑢𝑢𝑅𝑅  denotes 

the time of last aircraft  𝑖𝑖′ in the planning horizon to access its runway node 𝑢𝑢𝑅𝑅. 𝑢𝑢𝑅𝑅 is the first 

node in its route 𝑢𝑢1 for arrivals and the last node 𝑢𝑢𝑘𝑘 for departures. Thereby, multiple objectives 

are combined into one minimization objective function.  The weighted sum method is used for 

this multi-objective optimization by introducing a set of weight factors  𝑤𝑤1,𝑤𝑤2 . It provides 

multiple solution points by varying the weights consistently (51). For instance, if extensive 

runway queues with relatively moderate surface traffic are observed at an airport, the weight of 

the last runway access time, i.e., 𝑤𝑤1, could be set higher to give primacy to runway utilization.  

In addition to decision variables 𝑡𝑡𝑖𝑖𝑖𝑖, a set of binary variables 𝑧𝑧𝑖𝑖𝑖𝑖 is introduced to represent 

the sequence of any two aircraft when visiting the same node/link along their taxi routes. Aircraft 

i, j does not need to be consecutive. Variable zij = 1 if aircraft i visits any common node u 

before aircraft j and 0 otherwise: 

zij = �
1, if tiu < tju

0, o/w  

The mathematical formulation of the proposed optimization problem is displayed by the 

following:  
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Min  w1 × ti′uR + w2 × ∑ (tiuk − tiu1)i  

s.t. 

 𝐭𝐭𝐢𝐢𝐢𝐢 ≥ 𝐓𝐓𝐢𝐢,∀𝐢𝐢 (1) 

 zij + zji = 1,  ∀i, j,  i ≠ j (2) 

 
tiv − tiu ≥

Luv
spd𝑖𝑖

,∀i,∀(u, v)ϵEi 
(3) 

 
zij × �tju − tiu −

ST
min (spd𝑖𝑖, spd𝑗𝑗)

� ≥ 0,∀u ∈ Vi ∩ Vj, u ∈ TN, i ≠ j 
(4) 

 zij × �tju − tiu − SR� ≥ 0,  ∀u ∈ Vi ∩ Vj, u ∈ RN,  i ≠ j (5) 

 tiu − Tu ≥ SR,∀u ∈ RN (6) 

 tiu − Tu ≥ ST/spd𝑖𝑖,∀u ∈ TN (7) 

 zji × �tju − tiu − tbuffer� ≥ 0,∀i ∈ D, j ∈ A, u ∈ GN (8) 

 tiuk − tiu1 ≥ twarm−up,∀i ∈ D, u ∈ N (9) 

 spd𝑖𝑖 ≤ SPDmax,∀i   (10) 

 tiu ≥ 0,∀i ∈ A ∪ D, u ∈ N (11) 

 zij ∈ {0,1},∀i, j, i ≠ j (12) 

Constraint (1) assures that any aircraft that is ready to pushback from gate or land on the 

runway must not be proceeded before its earliest ready time Ti. Constraint (2) requires that once 

the sequence between any two aircraft i and j is fixed, no sequence re-ordering is allowed 

anywhere on the surface. Constraint (3) assures that the minimum travel time for any aircraft to 

traverse any edge along its route must be met, represented by the edge distance divided by its 

speed variable. Constraint (4) states the minimum separation requirement on taxiways when the 

two aircraft i and j share a common node u along their respective taxi routes Vi and Vj. If aircraft 
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i reaches the node u before aircraft j, the time interval between i and j arriving at the node u must 

be longer than minimum separation distance ST divided by the smaller taxi speed between i and j. 

Similarly, constraint (5) states the minimum time separation requirement on runways SR when 

two aircraft are assigned to utilize the same runway. For each aircraft i in the current planning 

window reaching a node u, either taxiway intersection or runway end, constraints (6) and (7) 

state that the aircraft i needs to maintain a minimum separation from the last aircraft in the 

previous planning window leaving node u. Constraint (8) assures that a minimum buffer time 

tbuffer is met after an aircraft leaves the gate u (u ∈ GN) and before another arrives at the same 

gate. For each departure, constraint (9) requires aircraft engines must be fully warmed up for a 

minimum duration twarm−up before takeoff. Constraint (10) states that speed variables of any 

aircraft are restricted by the maximum taxi speed SPDmax. 

5.3 Solution Algorithm 

The large-scale MIP optimization problem in RTI-ASOM is NP-hard. With the number 

of m flights in the planning window and a total of n nodes on the airport surface, the size of 

decision variables tiu  and zij add up to m*n and 𝑛𝑛2, respectively. Some hard constraints in the 

MIP formulation, such as constraint 4, 5, and 8, contain up to 𝑛𝑛3 ∗ 𝑚𝑚2equations. As the problem 

size of MIP is exponential in m and n, commercial solvers are not sufficient to obtain the 

solutions within a reasonable execution time period for a complex surface network.  

To provide real-time solutions to surface operations management, an effective solution 

algorithm is proposed in this subsection, using DP to reduce the model complexity and CPLEX 

to solve decomposed problems. In addition, a scripted user interface is designed to facilitate the 

implementation of RTI-ASOM in real-world practice.  
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5.3.1 Linearization  

Some constraints previously listed are in nonlinear format. As a first step, constraints (4, 

5, 8) are linearized by introducing a large scalar M. The linearized formulation is shown as 

following: 

Min  w1 × ti′uR + w2 × ∑ (tiuk − tiu1)i  

s.t. 

 𝐭𝐭𝐢𝐢𝐢𝐢 ≥ 𝐓𝐓𝐢𝐢,∀𝐢𝐢 (1) 

 zij + zji = 1,  ∀i, j,  i ≠ j (2) 

 
tiv − tiu ≥

Luv
spd𝑖𝑖

,∀i,∀(u, v)ϵEi 
(3) 

 
tju − tiu −

ST
spd𝑖𝑖

+ M × �1 − zij� ≥ 0,  ∀i, j, i ≠ j,∀u ∈ Vi ∩ Vj, u ∈ TN 
(4a) 

 
tju − tiu −

ST
spd𝑖𝑖

− M × zij ≤ 0,∀i, j, i ≠ j,∀u ∈ Vi ∩ Vj, u ∈ TN 
(4b) 

 
tju − tiu −

ST
spd𝑗𝑗

+ M × �1 − zij� ≥ 0,  ∀i, j, i ≠ j,∀u ∈ Vi ∩ Vj, u ∈ TN 
(4c) 

 
tju − tiu −

ST
spd𝑗𝑗

− M × zij ≤ 0,∀i, j, i ≠ j,∀u ∈ Vi ∩ Vj, u ∈ TN 
(4d) 

 tju − tiu + M × �1 − zij� ≥ SR,  ∀u ∈ Vi ∩ Vj, u ∈ RN,  i ≠ j (5a) 

 tju − tiu − M × zij ≤ SR,∀u ∈ Vi ∩ Vj, u ∈ RN,  i ≠ j (5b) 

 tiu − Tu ≥ SR,∀u ∈ RN (6) 

 tiu − Tu ≥ ST/spd𝑖𝑖,∀u ∈ TN (7) 

 tju − tiu + M × �1 − zji� ≥ tbuffer,∀i ∈ D, j ∈ A, u ∈ GN (8a) 

 tju − tiu − M × zji ≤ tbuffer,∀i ∈ D, j ∈ A, u ∈ GN (8b) 
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 tiuk − tiu1 ≥ twarm−up,∀i ∈ D, u ∈ N (9) 

 spd𝑖𝑖 ≤ SPDmax,∀i   (10) 

 tiu ≥ 0,∀i ∈ A ∪ D, u ∈ N (11) 

 zij ∈ {0,1},∀i, j, i ≠ j (12) 

5.3.2 Decomposition Algorithm 

To solve the above MIP problem, a decomposition algorithm is introduced to obtain the 

optimal solution efficiently. The main idea behind this decomposition algorithm is to narrow 

down the feasible region of sequence binary variable zij  so that the complexity of the 

optimization model is reduced to an executable level for commercial solvers. In the first stage, 

dynamic programming is applied to extract a subset of flight sequences that lead to low values of 

last runway access times. Each flight sequence is then converted into a matrix of sequence 

variable zij  for the use in each MIP problem. Thereby, the complexity level of the model is 

reduced significantly with a smaller feasible region of zij. In the second stage, a set of MIP 

optimization problems are parallelly solved with commercial solver CPLEX and compared to 

obtain the optimal solution. The final outcome includes an optimized schedule for each flight 

visiting any node along its taxi route (represented by tiu), and the optimized runway sequence for 

all active aircraft (represented by zij).     

5.3.2.1 Dynamic Programming for Runway Sequencing 

The idea of applying DP is to extract a subset of highly-likely optimal runway sequences 

to reduce the feasible region of the model and thus reduce the model complexity. 

Given the number of flights to be scheduled in each planning horizon, their preferred taxi 

routes, TOBT for departures and ETA for arrivals, dynamic programming recursion is conducted 
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to search through all possible options of runway sequence, and those with low value of last 

runway access time (high runway throughput) are exported for use in the next stage. Tj is the 

same input variable that indicates the earliest ready time of aircraft j, i.e. TOBT for departures 

and ETA for arrivals. If there is no predecessor aircraft before j, its earliest runway access time 

is Tj + ∆𝑡𝑡, where ∆𝑡𝑡 is unimpeded taxi-out time for departures and 0 for arrivals. Otherwise, let 

Ts,j
′  be the estimated runway access of aircraft j at stage s, which is derived from runway access 

time of predecessor aircraft i at previous stage Ts−1,i  and separation requirement sepij  (from 

matrix SR) between i and j. Then Ts,j, the earliest runway access time for aircraft j at stage s is the 

maximal of Ts,j
′  and Tj + ∆𝑡𝑡. The process of each sequence search is shown in Figure 37. 

 
Figure 37 Flow chart of using DP in sequence search. 

Each flight sequence with high estimated runway throughput, represented by a small 

value of the last runway access time, is converted into a matrix of a binary variable zij. For any 

two aircraft, the same sequence is kept along the planning horizon, and no overtaking or 

sequence reordering is allowed once the sequence is given. Next, the decomposed MIP problems 
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are coded in General Algebraic Modeling System (GAMS) and solved with commercial solver 

CPLEX. 

5.3.2.2 User Interface 

In this study, Dynamic Programming for flight sequences is translated into Visual Basic 

(VB) language, and the optimization model is solved by CPLEX as coded in GAMS. All input 

variables are read from Excel and final outputs are also stored in Excel. To facilitate the planning 

process with RTI-ASOM among multiple software and languages, a series of shell-scripted 

modules are coded to call for GAMS files so as to apply CPLEX in the VB environment. The 

integrated user interface with descriptions is shown in Figure 38. It enables an automated 

computation process that can obtain solutions from RTI-ASOM by simply executing all modules 

consecutively. The sample results shown in Figure 38 list optimized schedule (time in minutes) 

for five sample flights with taxi route nodes on the top and corresponding passage time 

underneath. The final outputs with optimized trajectories for all aircraft are written in a separate 

tab of the same Excel file. 

 
Figure 38 Snapshot of user interface and sample results. 
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5.4 Case Study 

To illustrate the efficiency and effectiveness of RTI-ASOM, a case study is conducted 

using LGA layout and historical surface track data.  

5.4.1 Airport Layout and Track Data 

LaGuardia airport is one of three major commercial airports in the New York region, 

with two runways intersecting each other. In practice, most of flights are assigned to take off on 

runway 4-22 and land on runway 31-13 (see Figure 39). For the case study, the author first 

digitalizes the airport surface into a node-link network. LGA’s layout is represented by the graph 

structure shown in Figure 39 with 65 nodes and over 100 links. Airside facilities identified as 

nodes in the graph include terminal gates, taxiway intersections, and runway ends. Taxiway and 

runway segments are denoted by directed links connecting two adjacent nodes. 

One-day threaded track data on December 14, 2010 are used for the case study. It 

contains radar track data recorded within the terminal and aircraft tracks from individual sensors. 

Fields collected in the radar track data includes thread ID, time, latitude, longitude and altitude; 

and fields gathered in the aircraft track data includes thread ID, origin and destination airports, 

call sign and aircraft type. A new dataset is constructed by merging these two types of data 

through unique thread ID. Thereby, unified trajectories are identified for aircraft at the airport 

(sets of consecutive green dots in Figure 39). 

The combined track data provides historical aircraft trajectories on the airport surface by 

gathering surveillance data between surface radar and aircraft transponders. However, not all 

inputs needed for the model are available from the track data. For example, there is no scheduled 

time information recorded in the dataset, such as TOBT or ETA. Conversations with tower 

controllers indicated that, in current operations, they usually do not hinder the pushback of the 
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aircraft. Thus in this case study, historical pushback times are used as the estimate of TOBT and 

actual landing times are assumed as ETA for arrivals. Normally, pilots turn on their transponders 

just prior to takeoff and turn it off after landing. When Airport Surface Detection Equipment, 

Model X (ASDE-X) is operational at an airport, such as LGA, the ATIS (Automatic Terminal 

Information Service) requests pilots to set their transponders to on while operating on taxiways 

and runways to help reduce runway incursions (15). It is observed from Figure 39 that first nodes 

of many departures at LGA are in the ramp area but they did not match gate locations at the 

airport, due to the fact that most aircraft transponders were not switched on until entering airport 

movement area. In the future, when more accurate surface management is enabled, transponders 

could be required to be set on before pushback to collect higher resolution of surveillance data.  

Nevertheless, due to limitations of the historical data in this case study, gate management 

constraints in MIP formulation are not applicable. Instead, the first detected nodes of departures 

are estimated as their gates and assume aircraft pushback from the “gates” without any holding. 

Furthermore, an additional 2 minutes is added to each taxi-out process to account for uncaptured 

time spent from actual pushback to the estimated gate location. 

 
Figure 39 LGA surface networks with nodes and links. 

D      C        B   A 
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From the surveillance data, a total of 1,056 surface trajectories are obtained on the study 

day, and 972 valid trajectories are kept for further analysis after removing incomplete trajectories. 

Each flight trajectory is projected onto the LGA graphic network to locate source nodes and sink 

nodes of aircraft movements on the surface, as well as a set of consecutive nodes identifying 

each taxi route. Table 11 summarizes the statistics on routing options for each distinct gate-

runway pair.  

Table 11 Summary of Routing Options for Distinct Gate-Runway Pairs 
Route 

Options 
# of Gate-

Runway Pair % Cumulative % 

1 40 43.5% 43.5% 
2 19 20.7% 64.1% 
3 11 12.0% 76.1% 
4 4 4.3% 80.4% 
5 6 6.5% 87.0% 
6 1 1.1% 88.0% 
7 2 2.2% 90.2% 
8 2 2.2% 92.4% 
9 3 3.3% 95.7% 
11 1 1.1% 96.7% 
12 1 1.1% 97.8% 
15 2 2.2% 100.0% 

SUM 92 100%  
Among the 92 distinct gate-runway pairs, 76.1% of pairs have, at most, three routing 

options, and almost half of the pairs (40 of 92, or 43.5%) have only one unique routing option. 

Thereby, the level of variety on routing options for most gate-runway pairs is relatively low. 

Hence in this study, one routing option is assumed for each distinct gate-runway pair at LGA.  

Historical operational performance is evaluated by first extracting and validating taxi 

times from the projected surveillance data. Table 12 presents the statistics of taxi times of all 

flights from 18:00 to 19:00 on the study day. By averaging over 65 aircraft during this hour, the 

mean value of taxi times is 7.7 minutes with a standard deviation of 4.7. Compared to arrivals 
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with an average 3.8 minutes taxi-in time, departures experienced a much longer taxi time with 

average 11.0 minutes per flight and a higher standard deviation. The total taxi time of all active 

aircraft within this hour adds up to 498.1 minutes (8.3 hours). Such historical performance 

metrics set a baseline scenario for comparison analysis with RTI-ASOM in the next subsection.  

Table 12 Mean Value and Standard Deviation of Historical Taxi Time (18:00-19:00) 

 Total Departures Arrivals 
Mean 7.7 11.0 3.8 

SD 4.7 3.6 2.2 

5.4.2 Weight Factor 

In this case study for LGA airport, the weighted sum method is used to reflect neutral 

preferences between multiple objective functions. Weight factors are determined in a way to 

transform multiple objective functions so that they have similar magnitudes and so that none of 

them dominates the aggregate objective function (51). In our study, weight factors are 

normalized as the reciprocal of the minimum of their respective objectives: 

𝑤𝑤1 = 1 min 𝑓𝑓1⁄  

𝑤𝑤2 = 1 min 𝑓𝑓2⁄  

Before the optimization, the minimal value of each objective is estimated by assuming 

the unimpeded taxi process for each aircraft. Min𝑓𝑓1, which represents the minimal of the last 

runway access time, is obtained when the last aircraft in the sequence taxi out with unimpeded 

taxi speed (if departure) or land without delay (if arrival). Min𝑓𝑓2, which represents the minimum 

total taxi time, is estimated by adding up unimpeded taxi times for all aircraft. Both objective 

terms are estimated before each planning window and the corresponding weight factors are 

derived from their reciprocals, respectively.  
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5.4.3 Speed Limit 

Speed limit is determined by analyzing historical track data. Observed from surveillance 

data, an unimpeded aircraft is identified when its taxi speed is reluctant to drop below the 

threshold speed of 3 knots (52). Unimpeded taxi speed is obtained from total the taxi distance 

divided by the taxi time of each unimpeded aircraft. During the study hour, the average 

unimpeded taxi speed over all unimpeded aircraft is observed as high as of 21.3 knots. As a 

result, the maximum taxi speed in this case study is set to be 22 knots for all aircraft. 

Additionally, a sensitive analysis on various speed limits is conducted and the results are shown 

in the next subsection.   

5.4.4 Engine Warm up Time 

To assure that aircraft engines are fully warmed up before takeoff, a minimum of 5 

minutes is required for taxi-out time, defined as the difference between pushback time (tiu1) and 

take-off time (tiuk). Due to the limitations of surveillance data, accurate pushback times at gates 

are not available. As a result, the time at which pilots activate the transponder and radar device 

begin to pick up the surveillance data, is used as the estimate. To account for the uncaptured time 

spent between the gate and the first detected spot with the transponder on, an additional 2 

minutes is added to each taxi-out phase assuming that aircraft engines have been running for 2 

minutes already. 

5.4.5 Simulation 

In addition to this historical scenario, a simulation scenario is constructed to demonstrate 

the effectiveness of RTI-ASOM. The simulation is set up to exclude uncertain factors in the 

airport environment, such as ground vehicles and human errors, and their influence on 

operational performance. Historical pushback times for departures and landing times for arrivals 
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are used as simulation inputs. Flight movements on the surface are subject to safety and 

operational requirements only. The maximum taxi speed is set as 22 knots for all taxi procedures. 

Moreover, because no gate-holding is assigned to any departures, flights are released from gates 

at their historical pushback times. The sequence of runway utilization by mixed departures and 

arrivals in the historical scenario is kept for all flights in the simulation. When a conflict is 

detected as any two aircraft approaching the same node in the surface network, flight priority is 

determined according to the historical runway sequence, viz., an aircraft that accessed a runway 

first in the historical scenario (no matter landing or takeoff) is given the priority to proceed while 

the other is on hold to maintain the regulated separation. To this end, the simulation presents a 

comparable scenario of flight movements at airport surface without disturbances from the 

uncertain factors. The entire simulation is executed through MATLAB and is conducted for all 

65 flights during the study hour at LGA.  

5.5 Numerical Results 

First, the efficiency of implementing RTI-ASOM in the LGA case study is reported in 

this subsection. For demonstration purposes, computation time for each application is recorded. 

There are 65 flight operations during the study time period of 18:00-19:00 on December 14, 

2010, including 35 departures and 30 arrivals. Flight trajectories from 17:00-18:00 are also 

included in the model to assure that no conflict with aircraft from previous hour. The MIP model 

in the case study contains 8,450 variables and over 4 million constraints. With the solution 

algorithm built in the user interface, the execution time is around 5 seconds per planning window, 

with a schedule horizon of 5 flights. All experiments are performed on a Dell computer with an 

Intel Core i5 processor (3.20 GHz), 8 GB RAM, and a 64-bit operating system.  
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To demonstrate the effectiveness of RTI-ASOM, multiple performance metrics of surface 

operations are first compared to RTI-ASOM and the initial historical scenario. The simulation 

results without the impact of uncertainties at the airport are then compared to RTI-ASOM. 

Following that, the sensitivity analysis is performed to test the impact of different speed limits on 

optimization results. Finally, performance analysis is conducted to compare optimal solutions 

from RTI-ASOM and commercial solver for small MIPs. 

5.5.1 Comparison with Historical Scenario 

5.5.1.1 Taxi Time 

During the study time period, runway 4|31 is the only runway configuration in use, with 

takeoffs on runway 4 and landings on runway 31. For the sake of simplicity, the earliest ready 

time of the first aircraft to be scheduled is set as the reference time (0 minute). As the first 

aircraft in the hour is a departure, the reference time is set as its TOBT and all other times are 

presented as the differences from the reference time. To be comparable with historical data, the 

measure of taxi-out times herein also starts from the first surface spot with the aircraft 

transponder on.  Figure 40 and Figure 41 show operational performance improvement in terms of 

taxi times after implementing RTI-ASOM for departures and arrivals, respectively. In this 

historical scenario, the total taxi time of all active aircraft during the study hour is 498.1 minutes, 

averaging 7.7 minutes per flight. With RTI-ASOM, the total taxi time is reduced to 181.7 

minutes, averaging 2.8 minutes per flight. Compared to the stochastically distributed taxi times 

among flights in the historical scenario, RTI-ASOM maintains much lower taxi times within a 

narrowed standard variation range. The standard deviation is dropped from 4.7 minutes before to 

0.9 minutes. 
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Figure 40 Taxi-out time for departures before and after RTI-ASOM. 

 
Figure 41 Taxi-in time for arrivals before and after RTI-ASOM. 

Table 13 lists the average taxi time and standard deviation before and after RTI-ASOM. 

For both arrivals and departures, the overall taxi performances are improved with less average 

taxi times and smaller standard deviations. While average taxi-in time is reduced by 1.7 minutes 

(44%) for arrivals, a more significant improvement is observed for departures with 7.6 minutes 

(69%) excessive taxi-out delay diminished. 

Table 13 Statistics of Taxi Times for Departures and Arrivals Before and After RTI-ASOM 

Departures Historical RTI-ASOM Arrivals Historical RTI-ASOM 

Mean 11.0 3.4 Mean 3.8 2.1 
SD 3.6 0.4 SD 2.2 0.7 
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5.5.1.2 Gate Holding 

Figure 42 shows the amount of gate holding time assigned to each departure with RTI-

ASOM, compared with its reduced excessive taxi time. By strategically holding aircraft and 

controlling release times at gates, air traffic flow is maintained in a sustainable pattern on the 

airport surface and partial taxi delays are shifted from the taxiways and runways to the gates. The 

total gate holding time for 35 departures adds up to 108.4 minutes as shown in Table 14, while 

there is no gate holding in the historical scenario. A total of 265.3 minutes reduction on 

excessive taxi-out times is observed for 35 departures. As shown in Figure 42, gate holdings are 

distributed strategically among all departures, with a maximal of 7.7 minutes.  

 
Figure 42 Holding time and excessive taxi time reduced for departures. 

Table 14 Summary of Performance Metrics before and after RTI-ASOM 
Time (min) Historical RTI-ASOM 

Total Taxi Time 0 -316.4 

Total Gate Holding Time NA 108.4 

Last Runway Access Time 0 -13.2 

5.5.1.3 Runway Throughput 

To evaluate the performance of RTI-ASOM in terms of runway throughput, the time of 

the last scheduled aircraft accessing the runway is compared between the historical and 
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optimized scenarios, with the time in historical scenario set to 0 as the reference in Table 13. It is 

found that RTI-ASOM reduces the last runway access time by 13.2 minutes for the study hour. 

The extra 13-minute time saved by RTI-ASOM can be used to accommodate about 18 more 

runway operations given similar fleet mix in the study hour. For a congested airport such as LGA, 

this amount of time saved during peak hours enables significant capacity increase to 

accommodate more flight operations and more efficient usage of scarce airside facilities. 

5.5.1.4 Stop-and-go Scenarios 

In practice, aircraft frequently perform stop-and-go on the surface to visually ensure the 

separation requirements with other aircraft. With RTI-ASOM, this practice can be reduced or 

removed completely and thus, aircraft can taxi between gates and runways with consistent taxi 

speed.  

To demonstrate the removal of stop-and-go scenarios after RTI-ASOM, the author looks 

into the distribution of taxi speed for two consecutive departures named Aircraft 1 and 2 by the 

chronological order of their historical pushback times. Figure 43 shows the variation of 

instantaneous taxi speed along their partial taxi routes (identified by a set of consecutive nodes). 

Aircraft 1, which entered the airport movement area first, maintained a relatively consistent 

speed until N4, which is part of the only taxi route (N5-N4-N3-N1) to approach the departure 

runway (N1, see Figure 39). The main reason Aircraft 1 completed multiple stop-and-goes from 

N4 to N1 is because many aircraft that were scheduled earlier were queuing at the runway end. 

The delay propagated from previous flights to Aircraft 1 was also propagated to Aircraft 2, 

which shared a common taxi route from N5 to N1. Without consideration of the delay 

experienced by Aircraft 1, Aircraft 2 in the historical scenario was released from the gate without 

any gate holding and had to slow down at N6 and completely stop before N5 to maintain the 
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spatial separation from Aircraft 1. Following that, Aircraft 2 followed a similar stop-and-go 

pattern of Aircraft 1 until the end of the runway.  

 
Figure 43 Examples of taxi speed variation along their taxi routes for two consecutive departures 
in historical scenario and RTI-ASOM. 

After optimization in RTI-ASOM, Aircraft 2 is advised to pushback before Aircraft 1 

after 3.7 minutes of gate holding while Aircraft 1 is released after being held for 4.4 minutes. As 

a result, a smooth taxi-out process with consistent taxi speed and no stops were observed for both 

aircraft in RTI-ASOM. It demonstrates the improvement of taxi-out experience by assigning 

proper holding time at gates and assuring a conflict-free environment for surface operations. The 

drop lines in Figure 43 represent the excessive taxi time reduced for both aircraft. The time it 

took for Aircraft 1 to taxi from N4 to N1 is reduced from 4 minutes to 1.2 minutes and the time it 
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took for Aircraft 2 to taxi from N6 to N1 is reduced from 7.6 minutes to 2.8 minutes, with a 

maximum taxi speed of 15 knots. 

5.5.2 Comparison with Simulation Results 

5.5.2.1 Taxi Time, Gate Holding and Runway Throughput 

A comparison of performance metrics between simulation and RTI-ASOM is presented 

in Table 14. Among 65 flights during the study hour, a significant improvement is first presented 

in terms of taxi efficiency. A total of 340.6 minutes taxi time is observed from simulation results 

and reduced to 181.7 minutes after RTI-ASOM, with a reduction of 158.9 minutes total taxi time 

(Table 14). At the individual flight level, average taxi time decreases from 5.2 minutes in 

simulation to 2.8 minutes in RTI-ASOM, which yields 47% improvement of excessive travel 

time. Figure 44 shows the comparison of taxi time by individual flights between simulation and 

RTI-ASOM. Descriptive statistics of taxi times are listed in Table 15 for arrivals and departures. 

From this, it can be suggested that performance difference of taxi-in phase between RTI-ASOM 

and simulation is negligible. However, RTI-ASOM improves taxi-out performance significantly 

by reducing the average taxi-out time from 7.9 minutes to 3.4 minutes, with standard deviation 

reduced from 3.0 to 0.4 minutes.  

Table 15 Summary of Performance Metrics from Simulation and RTI-ASOM 
Time (min) Simulation RTI-ASOM 
Total Taxi Time 0 -158.9 

Total Gate Holding Time NA 108.4 

Last Runway Access Time 0 -5.1 
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Figure 44 Taxi times by flight from simulation and RTI-ASOM. 

Table 16 Statistics of Taxi Times for Departures and Arrivals between Simulation and RTI-
ASOM 

Departures Simulation RTI-ASOM Arrivals Simulation RTI-ASOM 
Mean 7.9 3.4 Mean 2.1 2.1 
SD 3.0 0.4 SD 0.7 0.7 

In the simulation, departures are released from gates at their historical pushback times 

without any gate holding, while in RTI-ASOM, the optimized outcomes lead to a total gate 

holding of 108.4 minutes. Setting performance of simulation scenario as the reference, Table 15 

shows that RTI-ASOM achieves a time reduction of 5.1 minutes in terms of the last runway 

access time. Considering the similar fleet mix in the study hour, roughly 7 more runway 

operations can be accommodated. 

5.5.2.2 Stop-and-go Scenarios 

The taxi speed profiles of two consecutive departures, Aircraft 1 and Aircraft 2, are 

presented in Figure 45 to illustrate the stop-and-go scenarios along their partial taxi routes after 
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before Aircraft 2 and thus is given the priority to access any common node in the simulation. It 

was observed that Aircraft 1 which entered airport movement area first, stopped before N33 to 

maintain spatial separation from the previous aircraft. The delay was then propagated to Aircraft 

2, who was on hold before N5 until Aircraft 1 passed the common node N5. Later, Aircraft 2 

stopped again at the runway end N1 and waited until the runway was cleared after the takeoff of 

Aircraft 1.After optimization in RTI-ASOM, Aircraft 2 was advised to pushback before Aircraft 

1 after 3.7 minutes of gate holding while Aircraft 1 was released after being held for 4.4 minutes. 

As a result, smooth taxi-out procedures are enabled for both aircraft in RTI-ASOM with 

consistent taxi speed and no stops observed. 

 
Figure 45 Examples of taxi speed variation along their taxi routes for two consecutive departures 
in simulation and RTI-ASOM. 
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5.5.3 Sensitivity Analysis on Speed 

In order to test the impact of different speed limits on the optimization results, a 

sensitivity analysis is conducted on various maximum speed limits at LGA. The author compares 

the optimized taxi time for each aircraft under different maximum speed, ranging from 15 knots 

to 22 knots as shown in Figure 46. It is noted that the variance in optimized taxi times with eight 

levels of speed limits is relatively small, roughly 1 minute per flight on average. A summary of 

performance metrics with different speed limits in RTI-ASOM is presented in Table 17. Setting 

the scenario with 22 knots speed limit as the reference, the scenario with 15 knots speed limit 

leads to the largest difference of 3.5 minutes in terms of additional runway usage, 81.5 minutes 

with respect to total gate holding time and accumulated 64 minutes difference in terms of total 

taxi time for all 65 flights during the study hour. At the individual aircraft level, average taxi 

times range from 2.8 to 3.8 minutes per flight after RTI-ASOM, with a higher speed limit 

leading to a lower average value.  

 
Figure 46 Comparison of optimized taxi time by aircraft with various maximum speed limits in 
RTI-ASOM. 
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Table 17 Summary of Performance Metrics with Various Maximum Speed Limits in RTI-ASOM 

Time (min) 
RTI-ASOM 

Max 
Spd=22 

Max 
Spd=21 

Max 
Spd=20 

Max 
Spd=19 

Max 
Spd=18 

Max 
Spd=17 

Max 
Spd=16 

Max 
Spd=15 

Last Runway 
Access Time  0.0 0.4 0.7 1.2 1.7 2.2 2.8 3.5 
Total Gate 
Holding 0.0 5.1 14.0 24.8 43.3 67.2 93.7 81.5 
Total Taxi Time 0.0 6.0 12.7 20.2 28.8 38.8 50.5 64.0 
Average Taxi 
Time 2.8 2.9 3.0 3.1 3.2 3.4 3.6 3.8 

5.5.4 Performance Analysis on Optimization 

To measure and compare the optimized solutions from RTI-ASOM, performance analysis 

on optimization is conducted in this part of dissertation. Three sample groups of flights at LGA 

are used to construct smaller MIPs that can be directly executed through commercial solver 

without RTI-ASOM. First, all flights are initially sorted in a chronological order of their earliest 

ready times. Then, each sample group of five flights is formed by randomly picking one flight 

out of a total of 65, along with four following consecutive flights in the list. By considering only 

active surface nodes used by five flights, the problem size of MIP for each group is reduced 

significantly. Following that, the commercial solver, i.e., CPLEX, is used to obtain solutions of 

small MIPs and the results are compared with solutions from RTI-ASOM. 

Table 18 summarizes the optimization performance of RTI-ASOM and solver when 

optimizing small MIPs for three random groups. On the top of the table, it compares objective 

values of RTI-ASOM and solver in terms of total taxi time and the last runway access time 

(shown as the time difference). An optimization gap of 0% is observed from two groups, 

indicating excellent optimal performance of RTI-ASOM, while an optimization gap of 3% is 

noted for another group. Moreover, RTI-ASOM shows a great advantage in terms of execution 

time, which is about three times faster than solver itself. After expanding the airport surface 
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network to the full scale, RTI-ASOM could still provide solutions within 5 seconds while 

CPLEX solver is not sufficient enough to obtain optimal solutions for large MIPs.  

Table 18 Comparison of Optimization Performance between RTI-ASOM and Solver 
Time Group 1 Group 2 Group 3 
(min) RTI-ASOM Solver RTI-ASOM Solver RTI-ASOM Solver 
Total taxi time 14.4 14.4 13.2 13.2 12.8 12.8 
Last runway access time 0 0 0 0 2.5 0 
Optimization Gap 0%  0%  3%  
Execution Time (sec) 3.5 10.2 3.2 9.1 3.3 9.2 

5.6 Summary 

This chapter describes a real-time integrated airport surface operations management 

(RTI-ASOM) that provides optimal trajectories for each aircraft between gates and runways with 

the objective of minimizing total taxi time and maximizing runway throughput. The use of 

Mixed Integer Linear Programming (MIP) formulation, Dynamic Programming for 

decomposition, and CPLEX optimization allows an efficient solution algorithm that can solve 

the large-scale optimization problem instantly. Examples are shown based on one-day track data 

at LaGuardia Airport. Besides historical data, simulation through MATLAB is constructed to 

provide another comparable scenario and the comparison results demonstrate significant 

reduction of taxi times and improvement of runway utilization in RTI-ASOM. By strategically 

holding departures at gates, the application of RTI-ASOM also reduces excess delay on the 

surface, decreases fuel consumption at airports, and mitigates the consequential environmental 

impacts. 

The application of RTI-ASOM entails benefits from several aspects. First, it improves 

operational efficiency by identifying and mitigating surface congestions and delays. Second, it 

augments the predictability of airport operations by allowing precise management of current and 
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intent positions of aircraft. It also benefits the Air Route Traffic Control Center (ARTCC) with 

enhanced management capabilities that eventually lead to better system performance of the NAS. 

Last, it extends the TBO solution from en route airspace to airport and terminal area so as to 

make gate-to-gate 4-D trajectory-based ATM applicable.  
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CHAPTER 6: CONCLUSIONS AND FUTURE WORK 

6.1 Global Comparison 

In this dissertation, a comprehensive comparison between major airports in the U.S. and 

Europe is conducted with emphasis on airport surface operational performance. Comparable 

airport pairs are selected according to a set of airport characteristics, including: 1) same number 

of runways and geometric runway layout, 2) similar runway configuration and airport layout, 3) 

and comparable annual and monthly air traffic. 

The comparison study underlines that different methods are currently used in the U.S. 

and Europe to benchmark surface operational performance indicators, namely unimpeded taxi 

times and taxi delays. Insights are given on how to refine taxi time modeling procedures and 

explore the roles of other important causal factors. A refined and consistent model, which is also 

addressed in this dissertation, can yield more accurate estimates of taxi times and thus provide a 

more efficient way to benchmark airport operational performance. 

The analytics of European airport data shows that demand management policies help 

maintain a stable traffic pattern along the time of day that leads to less taxi-out delay at the cost 

of less efficient usage of airport facilities and limited airport access. As counterparts of European 

airports, selected U.S. airports are not capacity constrained but present relatively poorly 

operational performance in terms of higher level of taxi delay, larger variability and less 

reliability. However, U.S. airports achieve a higher utilization of runway facilities and are 

capable to accommodate heavier loads of traffic when weather permits.  
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Due to varying system structures, neither of the two regions can expect to improve their 

operational performance by simply copying the strategies from one another. By comparing major 

U.S. and European airports in early 2008, this study provides a comprehensive factual 

comparison on the fundamental differences in Europe and the U.S. without the impact of CDM 

initiatives. The observed comparison results are associated with differences between a single 

ANSP in the U.S. and multiple ANSPs in Europe, airline scheduling and demand management 

differences, mixed usage of IFR and VFR operations in the U.S., and different gate management 

in two regions.   

As a final comment of the comparison study, selections of comparable airport pairs in the 

U.S. and Europe are driven by restricted data obtained from three Spanish airports. With highly 

successful benchmarking of three airport pairs in this dissertation, improved insights on airport 

performance could be obtained by expanding the comparison to involve more airports from each 

system. To conduct further comparison, nonetheless, the access to operational data from different 

European airports is the main challenge. With a set of high-resolution operational data, future 

research could also extend performance comparisons on flight punctuality by investigating how 

block buffers are implemented by carriers in Europe and the U.S. 

6.2 Benchmark Model 

Unimpeded taxi time is the reference time used for estimating taxi delay, a widely 

accepted performance indicator of airport surface movement. It has been noted that there are 

different perspectives in defining taxi times and a clear definition of unimpeded taxi times is 

needed before the implementation of any benchmark method. From the passenger point of view, 

once the aircraft leaves the gate, any additional time beyond the scheduled takeoff time is 

considered a delay, regardless if it occurs in the ramp area or in the movement area. Thus, taxi 
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time is intended to be the time difference between wheel-off time and gate-out time, which is 

defined in the ASPM database. Nevertheless, the management over the taxi process is 

fragmented as airport/airlines take control of flight movements in the ramp area while ANSP 

oversees movement area. Therefore, aircraft movements shall be measured by considering two 

areas independently to enable a more accurate measure of taxi efficiency. To support future 

analysis, high resolutions of surface flight data that clearly indicate the beginning and ending of 

traffic control over these two areas are essential.  

Whereas the U.S. and European system have the same definition of unimpeded taxi time, 

different methodologies are currently in use by the FAA and EUROCONTROL. In order to 

provide a more efficient way to benchmark airport operational performance, an in-depth factual 

comparison is conducted between the APO method by FAA and the PRU method by 

EUROCONTROL. One of the main differences is the criteria used to group similar flights: the 

APO method group flights only by season and carrier, while the PRU method also includes stand 

and runway configuration. Another major difference is that the APO method assumes the 

reference aircraft is the only active aircraft on the surface while calculating unimpeded taxi times, 

whereas the PRU method allows a certain number of aircraft on the system, which is constrained 

by the congestion index threshold.   

Furthermore, new methods to determine unimpeded taxi times are explored through 

simulation and observation of historical operational data, which provides new capabilities to 

measure taxi performance. However, such heuristics are not yet applicable for real-time 

measurement. Hence, a sophisticated statistical model is developed. Causal factors that 

contribute significantly to taxi delay are identified by exploiting available data sources. A log-

normal regression model is then adapted to model taxi times after a comprehensive set of 
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regression diagnosis and model stability test. Numerical results demonstrate more accurate 

measurement for taxi performance at three airports. The proposed model quantifies the impact of 

various factors to taxi inefficiency and supports decision-makers with reliable measurements to 

improve the operational performance.  

In chapter 5, the author presents a reliable regression model to reveal impacts of 

explanatory variables and measure taxi efficiency. The decision variables involved in the model, 

however, are not estimable at pushback and thus the model is not directly applicable for 

predicting taxi times. For future research, taxi-out time prediction model could be developed 

based on findings of this dissertation by including only explanatory variables that are known at 

the moment of pushback.  With a high-resolution surveillance data on airport surface, future 

research could also examine the travel times in the ramp area and taxiway system separately and 

thus obtain improved insights on taxi performance. 

6.3 RTI-ASOM 

An integrated airport surface operations management involving runway, taxiway, and 

apron area is proposed in this study, namely RTI-ASOM. Given the earliest ready time of a mix 

of departures and arrivals, RTI-ASOM optimizes aircraft surface operations by maximizing 

runway throughput and minimizing total taxi times, subject to the operational constraints of 

ready time limits, conflict-free constraint, recursive planning requirement, precedence constraint, 

minimum separation requirements, gate availability constraint, engine warm-up time constraint 

and speed limit. To solve the MIP formulated optimization problem, a decomposition algorithm 

is presented by first using DP to extract potential options of runway sequences and then solving 

decomposed MIP problems in CPLEX. An amalgamated user interface is developed with a series 

of shell-scripted modules in the VB environment to facilitate the implementation of RTI-ASOM 
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in real-time planning. The final outputs of RTI-ASOM include optimized sequence and schedule 

along each flight trajectory between gates and runways.  

The experimental analysis is conducted using threaded track data at LGA to demonstrate 

substantial benefits of RTI-ASOM, in terms of taxi times, delay, runway usage and 

computational efficiency. Besides historical data, simulation through MATLAB is constructed to 

exclude the uncertainties at the airport and thus provide a comparable scenario for demonstration. 

Compared with simulation results, RTI-ASOM shows a total reduction of 158.9 minutes of 

excessive taxi time for 65 flights. As part of the strategies provided by RTI-ASOM, gate 

holdings are implemented among departures to mitigate the congestion in movement area and 

partially absorb excessive taxi times. RTI-ASOM also prevents stop-and-go scenarios along 

flight trajectories and helps reduce delay propagations on the surface. Moreover, the analysis at 

LGA reveals that RTI-ASOM improves runway throughput by shortening the last runway access 

time by 5.1 minutes for the study hour. Furthermore, sensitivity analysis is conducted to test the 

impact of various speed limits on optimization results. With the maximum speed limit ranging 

from 15 knots to 22 knots, the variance in the last runway access time is at most 3.5 minutes and 

average taxi times range from 2.8 minutes to 3.8 minutes per flight, with higher speed limits 

leading to lower values. With integrated interface, the application of RTI-ASOM is also 

demonstrated as a computational efficient, with 5 seconds of execution time per planning 

window.  

A few assumptions are made in the case study due to limitations of available surveillance 

data. As no scheduled timing information is recorded in the dataset, historical pushback times are 

used as the estimate of TOBT and actual landing times are assumed as ETA for arrivals. Also, 

gate management constraints in RTI-ASOM are temporarily deactivated in the case study 
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because precise time and location of aircraft pushbacks are not available. This is mainly due to 

the fact that most aircraft transponders were not switched on until entering airport movement 

area. A higher resolution of airport surface surveillance could extend current optimization 

capabilities of RTI-ASOM to include gate area and integrate gate management into the 

optimization.  

The proposed integrated tool provides a valuable approach for gauging the benefits of 

both current and future operational techniques. It enables accurate time control along each flight 

trajectory while guaranteeing a safe, efficient and conflict-free environment for surface 

operations. It also prepares NextGen with more automation of surface operations management 

and extends 4-D TBO from en route airspace to airports. With the development of innovative 

Aircraft Ground Propulsion Systems (AGPS) (12), pilots will be able to maneuver aircraft 

pushback with more automation and less uncertainties, which provides more space and 

possibilities for implementing the proposed integrated tool.   

With the ongoing transformation of NAS, it will take a few years to realize TBO in 

NextGen for fully-functional 4D trajectory-based control. Nevertheless, RTI-ASOM can provide 

intermediate applications to facilitate current surface operations management at airports. For 

instance, the optimized trajectory-based schedule can be used to understand the implication of 

demand and to identify critical control points on the airport surface where time-based control 

yield the maximal benefit in terms of mitigating surface congestions and increasing airport 

capacity. As shown in Figure 47, ten critical control points in the taxiways at LGA (runway ends 

N1&N2 not included) are identified with the consideration of multiple factors, such as 

accessibility to the runway/gate, frequency of usage among preferred taxi routes, range of impact 

to other nodes in the network, etc. Rather than monitoring all 65 nodes at LGA, controllers are 

108 



 
suggested to focus on monitoring these critical control points. Together with the gate holding 

strategy, optimized passage times of critical control points for each aircraft can be used by 

controllers to significantly improve the current practice and manage aircraft movements 

efficiently with this practice-ready application.  

 
Figure 47 Example of critical control points at LGA. 

Future research could include relaxing the single taxi route assumption in the current 

version of RTI-ASOM. The effect of uncertainties should be considered, exploiting the 

flexibility of routing and enabling multiple route options. Furthermore, the environmental 

benefits of RTI-ASOM could be evaluated with accurate aircraft engine information. Other data 

sources need to be exploited to lookup matching engine types for flights recorded in our 

surveillance data. Future work could also include comparing RTI-ASOM with other control 

regimes for airport surface operations and extensions to the method to handle more realistic 

features. 
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Appendix A U.S. Methodology for Nominal Taxi Times  

This appendix describes the methodology used for the calculation of nominal 

(unimpeded) taxi times for the U.S.  

1. Start with a city pair flight with the data items of date (year, month, and day), 

departure and arrival airport, departure and arrival times (both scheduled and actual), and OOOI 

times (out, off, on, in). The season parameter is defined as winter (December, January, February), 

spring (March, April May), summer (June, July, August), and fall (September, October, 

November).  

2. Split a flight into two parts: departure and arrival. 

3. Departure data include airport, carrier, season, actual gate-out time (entry time 

into a departure queue), and actual wheels-off time (exit time out of the departure queue). 

4. Arrival data include airport, carrier, season, actual wheels-off time (entry time 

into an arrival queue), and actual gate-in time (exit time out of the arrival queue). 

5. Set up a bin for each minute of a single day and count how many aircrafts (both 

departing and arriving) are ahead of the flight at the queue entry time for the departure and 

arrival queues separately. 

6. Compute for each group an upper quartile (75th percentile) and exclude the upper 

25 percent from the estimation computation. This is done to prevent extremely large values from 

exerting excessive effects on the estimates. This is to estimate optimal taxi times, assuming there 

is no obstruction on the taxiways. 

7. Run a regression for each subgroup determined by the airport, air carrier, and 

season, separately for the departure and arrival queues. yo = axo + bxi + c, where yo is a taxi-out 
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time and xo and xi are the number of aircraft taxing out and taxing in, respectively. a and b are 

regression coefficients with a ≥ 0 and b ≥ 0. 

8. Only adopt results for which both regression coefficients are positive (the more 

aircraft, the longer the taxi times). 

9. For the subgroups with non-positive regression coefficients, do other things with 

boundary conditions set for the resulting coefficients to be positive. (SAS used has some 

regression or nonlinear model fitting procedures in which can be specified in the boundary 

conditions.)  

10. Finally, to obtain the unimpeded taxi-out times, set the number of the departing 

aircraft at 1 and the arriving aircraft at 0 in the regression equation for the departure queue, 

meaning that only one aircraft is moving. For the unimpeded taxi-in times, set the number of the 

arriving aircraft at 1 and the departing aircraft at 0 in the equation for the arrival queue. 

11. The other statistics are for information only as a reference to determine if the 

unimpeded times are reasonable. 
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Appendix B European Methodology for Unimpeded Taxi Times 

This appendix describes the methodology used by European Performance Review Unit 

(PRU) for the calculation of the unimpeded taxi times in the taxi-out phase.  

Step 1:  Each departing flight is categorized according to:  

• Stand type and location: The type of stand (nose in, etc.) and the location of the stand are 

likely to affect performance measurement. To account for similar characteristics, individual 

stands are grouped for the calculation of the unimpeded time described in step 2. As the 

information on stands is not available from the databases accessible to the PRU, this analysis 

parameter is subject to data availability from the airport communities. 

• Departure runway: The inclusion of the departure runway enables stand – runway 

combinations and, hence, provides additional useful information for performance analyses.  

• Congestion index: The allocation of a congestion index to each departing flight is 

important to remove congestion effects in the calculation of the unimpeded surface movement 

transit times. It is expressed by the number of departures of other aircraft between the time the 

departing flight went off-block and the actual take-off time of the flight. 

Step 2: For each group (stand-runway combination, as available), an unimpeded reference 

transit time is calculated by taking the truncated mean (the average of all observations in the 

truncated 10th to 90th percentile set) transit time for all flights within the group with a 

congestion index below a defined threshold (i.e., 4 flights or less).   

Step 3: For each group (stand-runway combination, as available), the surface movement 

delay is calculated as the difference between the average transit time (of all flights in this group) 

and the unimpeded transit time for this group determined in the previous step. 
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Step 4:  To get high-level results, the weighted average of all the individual surface 

movement delay groups is calculated in a final step. 
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Appendix C Carriers in Airline Service Quality Performance System (ASQP) and Aviation 

System Performance Metric (ASPM) 

ASPM Carriers ASQP Carriers 
Carrier Name Carrier Name 

1. Air Canada (ACA) 1. Pinnacle Airlines (FLG) 
2. AirTran Airways TRS 2. American Airlines (AAL) 
3. Alaska Airlines (ASA) 3. Aloha (AAH) 
4. Aloha Airlines (AAH) 4. Alaska Airlines (ASA) 
5. American Airlines (AAL) 5. JetBlue Airways (JBU) 
6. American Eagle (EGF) 6. Continental Airlines (COA) 
7. America West (AWE) 7. Atlantic Coast Airlines (BLR) 
8. ATA Airlines (AMT) 8. Delta Air Lines (DAL) 
9. Atlantic Coast (BLR) 9. Atlantic Southeast Airlines (CAA) 
10. Atlantic Southeast Airlines (ASQ) 10. Frontier Airlines (FFT) 
11. Atlantic Southeast Airlines (CAA) 11. AirTran Airways (TRS) 
12. Comair (COM) 12. Hawaiian Airlines (HAL) 
13. Continental Airlines (COA) 13. America West (AWE) 
14. Delta Air Lines (DAL) 14. American Eagle (EGF) 
15. ExpressJet Airlines (BTA) 15. Northwest Airlines (NWA) 
16. FedEx (FDX) 16. Comair (COM) 
17. Frontier Airlines (FFT) 17. SkyWest Airlines (SKW) 
18. Hawaiian Airlines (HAL) 18. ExpressJet Airlines (BTA) 
19. Independence Air (IDE) 19. ATA Airlines(AMT) 
20. Jetblue Airways (JBU) 20. United Airlines (UAL) 
21. Mesa Airlines (ASH) 21. US Airways (USA) 
22. Northwest Airlines (NWA) 22. Southwest Airlines (SWA) 
23. Pinnacle Airlines (FLG) 23. Mesa Airlines (ASH) 
24. Skywest Airlines (SKW)   
25. Southwest Airlines (SWA)  
26. TWA (TWA)  
27. United Airlines (UAL)   
28. United Parcel Service (UPS)   
29. US Airways (USA)   
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