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ABSTRACT 

 

 

 

Self-supply is widely reported across various contexts, filling gaps left by other forms of 

water supply provision. This research assesses low-cost household groundwater supply 

technologies in markets in developing country contexts of sub-Saharan Africa and Latin 

America, with a focus on the potential for improving Self-supply technology implementation and 

markets in sub-Saharan Africa. Specifically, a mature and unsubsidized Self-supply market for 

Pitcher Pump systems (suction pumps fitted onto hand-driven boreholes) is studied in an urban 

context in Madagascar, EMAS low-cost water supply technologies are assessed in Bolivia, and a 

technical comparison is completed with manual EMAS Pumps and family versions of the Rope 

Pump in Uganda. 

In Madagascar, locally manufactured Pitcher Pump systems are widely provided by the 

local private sector, enabling households to access shallow groundwater. This market has 

developed over several decades, reaching a level of maturity and scale, with 9000 of these 

systems estimated to be in use in the eastern port city of Tamatave. The market is supplied by 

more than 50 small businesses that manufacture and install the systems at lower cost (US$35-

100) than a connection to the piped water supply system. Mixed methods are used to assess the 

performance of the Pitcher Pump systems and characteristics of the market. Discussion includes 

a description of the manufacturing process and sales network that supply Pitcher Pump systems, 

environmental health concerns related to water quality, pump performance and system 

management. 
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The research additionally considers the potential of EMAS low-cost household water 

supply technologies in accelerating Self-supply in sub-Saharan Africa, and consists of a field 

assessment of EMAS groundwater supply systems (handpumps on manually-driven boreholes) 

and rainwater harvesting systems as used at the household level in Bolivia, focusing on user 

experiences and the medium/long-term sustainability of the pump (cost, functionality, etc.).  

The EMAS Pump is a low-cost manual water-lifting device appropriate for use at the 

household level. Developed in the 1980s, the EMAS Pump has been marketed extensively for 

local manufacture and use at the household level in Bolivia, and marketed to a lesser extent in 

other developing countries (mainly in South and Central America). The simple design of the 

EMAS Pump, using materials commonly found locally in developing countries, allows for it to 

be fabricated in many rural developing community contexts. Its capability for pumping from 

significant depths to heights above the pump head makes it quite versatile (e.g. for pumping to 

household tanks, reservoirs at higher elevations, or for installing multiple pumps on wells). A 

survey/inspection of 79 EMAS Pumps on household water supply systems in areas of three 

regions of Bolivia (La Paz, Santa Cruz and Beni regions) showed nearly all EMAS Pumps (78 

out of 79) to be operational. 85% of these operational pumps were found to be functioning 

normally, including 72% that were reported to have been installed eleven or more years earlier. It 

is shown that rural households in Bolivia are able to maintain EMAS Pumps. The EMAS Pump 

can be installed and repaired by local technicians, and numerous examples were seen of small 

groups of local technicians that operate small businesses installing and repairing such systems. 

The cost of a new EMAS Pump was reported by users to be US$ 30-45. Maintenance and repair 

costs of the EMAS Pump were found to be reasonable, with pump valve replacement (the repair 

most commonly reported by users) costing an average of US$9 (materials and labor).  
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The Rope Pump has some similar attributes to the EMAS Pump, in that it is can be made 

locally from materials commonly available in developing communities, it has a relatively low 

cost, and is simple to understand. The Rope Pump is well-known among international rural water 

supply professionals, and thus serves as a good baseline to compare the lesser-known EMAS 

Pump. A technical comparison completed in Uganda of the EMAS Pump and the Rope Pump 

considered performance (flow rates and energy expended, pumping from various depths), 

material costs, and requirements for local manufacture.  The study concluded that, based on its 

relative low-cost (material costs ranging from 21-60% that of the family Rope Pump, dependent 

on depth and pumping pipe size), similar technical performance to the Rope Pump when 

pumping from a range of depths, and the minimal resources needed to construct it, the EMAS 

Pump has potential for success in household water supply systems in sub-Saharan Africa. 

Combined with the conclusion from the research in Bolivia, it is believed that there is 

considerable potential for the EMAS Pump as a low-cost option for Self-supply systems in sub-

Saharan Africa. 

Recommendations for further research focus on: (1) improvements to the Pitcher Pump 

system (focusing on reducing risk of water contamination); (2) formative research to identify 

factors that have led to the sustainability of the Pitcher Pump market in eastern Madagascar, and 

(3) development of the Self-Supply Market in Madagascar beyond Pitcher Pump systems.
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CHAPTER 1: INTRODUCTION 

 

 

 

Lack of access to adequate water supply and sanitation results in more than one million 

preventable deaths throughout the world each year (Montgomery et al., 2009). In attempt to 

reduce this mortality statistic, and additionally to decrease morbidity caused by water-borne 

diseases, the United Nations’ Millennium Development Goal (MDG) target (Goal 7, Target 7C) 

for water supply aims to halve, between 1990 and 2015, the proportion of the world’s population 

without access to improved drinking water (UN, 2010). To date, efforts to achieve this target, by 

local and national governments as well as international actors, have largely focused on the 

implementation of new water supply infrastructure projects to serve populations suffering from 

inadequate access to drinking water. Much of the world is currently on target to reach or surpass 

the MDG drinking water target by 2015. However, despite laudable efforts, in many countries in 

sub-Saharan Africa this target will unfortunately not be met by 2015. 

A primary reason for the forecasted failure of these sub-Saharan African countries to 

reach their MDG drinking water target is that a significant portion of previously implemented 

community-managed water systems have proven to be non-sustainable (Carter et al., 1999).  

According to the Rural Water Supply Network (RWSN, 2010), existing rural water supply 

infrastructure has proven to be far more difficult to keep operational than planned for, and, 

largely due to poor maintenance, these systems often fail completely prior to the end of their 

design lifetime. 
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1.1  Rural Water Supplies for Developing Communities 

 1.1.1  Community-Managed Rural Water Supply Systems 

The use of community-management models for the operation and maintenance of rural 

water supply projects has become increasingly popular in developing countries over the past 

several decades. During the 1980’s and 1990’s, various types of major actors (e.g., governments, 

donors, non-governmental organizations, and multilateral lending institutions) agreed to 

community-management concepts (Lockwood, 2004). Despite their popularity, however, the 

long-term sustainability of community-managed water systems is less than impressive. In Africa, 

studies have shown community-managed rural water supply systems to have failure rates of 

between thirty and sixty percent (Baumann, 2005; Harvey and Reed, 2007). Multiple recent 

studies of community-managed water supply systems in parts of Latin American countries show 

failure rates reaching twenty to forty percent (Reents, 2003; Suzuki 2010; Schweitzer and 

Mihelcic, 2012). 

Carter et al. (1999) propose several main causes of the non-sustainability of community-

managed water and sanitation systems in developing countries. These causes of failure most 

applicable to water supply projects can be summarized as follows: 

1. Lack of willingness or ability of community members to pay user fees, 

2. Lack of perceived ownership by the community, 

3. Lack of perceived health benefits from the water system, 

4. Behavior change strategies, e.g. community education, are insufficiently implemented, and, 

5. Community members involved have moved away. 
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Well-designed community-managed water supply projects aim to address each of the 

above issues during project design, planning and construction phases. However, it is often not 

reasonable for issues such as these to be overcome during relatively short design, planning and 

construction periods. Therefore, to increase the chance of system sustainability, it is necessary 

for communities to receive medium- to long-term support (often termed “post-construction 

institutional support”) after the construction phase (Lockwood, 2004).  

1.1.2  Improving Sustainability of Rural Water Supplies 

Harvey and Reed (2007), in discussing the need to improve sustainability of community-

managed water supplies in sub-Saharan Africa, propose three categories of solutions: (1) 

Institutional support to communities (as described above), (2) Private sector service delivery 

models, and, (3) Household and small-group water supplies, which is the focus of this research. 

While ‘community participation’ in the implementation of rural community water supply 

projects has proven important to system sustainability, this does not mean that communities 

should be obligated to manage the operation and maintenance of systems themselves (with or 

without external support). Rather, communities should have the option to essentially contract out 

these services to the private sector. Because the community would be making the decision on 

who manages their system, and would have the right to take management control back, “this 

should not be seen as disempowerment” (Harvey and Reed, 2007). Limited evidence from rural 

water supply projects in developing countries managed by private sector entities has shown 

potential for this strategy to be a sustainable alternative to the community-management model. 

1.1.3  Household Water Supplies 

Private household and small-group water supplies offer the potential to complement 

community-managed water supply systems, either in their place (when community-managed 
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systems are non-existent or not accessible), or as secondary sources for households to use in 

combination with community systems. When used in combination with community systems, 

household systems offer several advantages, including taking pressure off of community systems 

that have difficulty in supplying sufficient quantities of water to all users.   

Over the past decade, there has been increased emphasis on household water supply as a 

means of improving access to drinking water in developing countries. This strategy is often a 

focus in rural areas, but can also be beneficial in many peri-urban and some urban contexts in 

developing countries. ‘Self-supply’ is a term that is commonly used, and is defined as “the 

improvement to household or community water supply through user investment in water 

treatment, supply construction and upgrading, and rainwater harvesting” (Sutton, 2009). 

Self-supply is based on the idea of users making affordable, incremental improvements to 

their private family or neighborhood (i.e. small group) water supply systems. While it is not a 

feasible option in every context, where it is possible implementation of Self-supply can result in 

“the obstacles to sustainability created by a lack of trust, cohesion, and co-operation within 

communities” being greatly reduced (Harvey and Reed, 2007). Self-supply projects can be 

complementary to community water supply systems, and can play an important role in helping 

developing countries to reach the MDG target for improved drinking water supply coverage, as 

conventional community water supplies often bypass the poorest and most remote communities. 

This potential improved coverage will additionally impact most of the main MDG objectives, 

including reduction of poverty and child mortality (Sutton, 2010). 
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1.2  Low-Cost Household Water Supply Technologies 

Low-cost household water supply technologies often make use of either groundwater in 

the immediate vicinity around a household, or rainwater that falls in a similar area. Common 

low-cost household water supply technologies include: (1) family wells, which can be either 

hand-dug or manually drilled; (2) water-lifting devices, which can range from being as simple as 

a rope attached to a bucket, to a manually-operated pump; and (3) rainwater harvesting systems.  

While more advanced technologies, such as electric or fuel-powered pumps or drills, may in 

some cases be relatively inexpensive, for the purpose of this research they are not considered to 

be low-cost water supply technologies. In this context, low-cost water supply technologies are 

defined as manually-operated set-ups which owners in developing communities can feasibly 

purchase or construct and use either with minimal or no subsidies, or through micro-credit loan 

programs. 

Low-cost water supply technologies are increasingly being promoted as sustainable 

solutions when implementing water supply projects at the small-community or household level 

in developing areas. Specific types of low-cost technologies, as mentioned above, are often based 

on concepts or technologies that have been used in water supply or other sectors for hundreds of 

years or more, such as the Rope Pump and manual percussion drilling, both of which are based 

on technologies that were originally developed in China over a thousand years ago (Missen, 

2003; Sutton and Gomme, 2009).   

 

1.3  Benefit of the Study 

This research focuses on sustainable implementation of low-cost household groundwater 

supplies in developing communities. Low-cost household water supply technologies are studied 
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in the field at two primary field locations (i.e., Bolivia and Madagascar) and one secondary field 

location (Uganda), for their suitability to use in developing communities. Through these studies, 

possibilities for further research and introduction of improved household water supply 

technologies to developing communities are recommended. The research emphasizes 

applicability of such technologies in sub-Saharan Africa. 

Chapter 2 assesses the sustainability of a specific type of low-cost groundwater supply 

system, the Pitcher Pump system, which has been marketed in Madagascar for more than five 

decades. This type of low-cost water supply system, which is built independently by more than 

fifty small businesses in eastern Madagascar and sold to private users at unsubsidized prices, 

provides an example of Self-supply in a sub-Saharan African context that has proven to be 

sustainable over many years. Mixed methods are used to assess the Pitcher Pump technology and 

market in eastern Madagascar, including Pitcher Pump system construction practices, 

performance, system management, water quality, and household drinking water treatment 

practices. The study provides recommendations for potential improvements and further research. 

Chapter 3 provides an overview of three types of low-cost water supply technologies 

appropriate to Self-supply (manual water pumps, manual well drilling techniques, and rainwater 

harvesting systems), in the context in which specific models of these types of technologies have 

been developed by the organization EMAS and implemented for use in household water supply 

systems in Bolivia. Through assessing the technical capabilities and the context in which these 

technologies have proven to be effective in Bolivia, the research provides insight into the 

potential for use of these technologies in other developing community contexts. 

A third topic of the research, Chapter 4, considers the potential of a type of manual water 

pump that was developed in Bolivia, the EMAS Pump, for use in Self-supply in developing 
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community contexts, and emphasizes the potential for use of this type of pump in sub-Saharan 

Africa. A technical comparison is done between the EMAS Pump and another type of manual 

water pump, the Rope Pump, which has been most successfully marketed as a household-level 

pump in Nicaragua. The Rope Pump has been introduced in many other developing countries in 

recent years, with varying degrees of success (Sutton and Gomme, 2009). The study provides an 

analysis that allows researchers and development practitioners to better understand the technical 

attributes and capabilities of the EMAS Pump, as well as socio-economic considerations related 

to its introduction and use, and to compare it with the Rope Pump (as well as other documented 

low-cost pumping devices) as a Self-supply option for developing communities. 

The lessons learned from the various aspects of the proposed research help to form 

recommendations for further research, introduction of low-cost water supply technologies, and 

improvements to Self-supply markets, as summarized in Chapter 5. These recommendations 

focus on the potential for use of low-cost water supply technologies in Self-supply projects in 

sub-Saharan Africa. 

 

1.4  Guiding Framework 

This study focuses on researching appropriate low-cost household water supply 

technologies and markets. The presented topics (Chapters 2, 3, and 4) are components of a 

broader trans-disciplinary research that has been developed at the University of South Florida 

(and led by the author of this dissertation) with the aim of improving health and livelihoods of 

vulnerable populations in developing countries through improved access to water supply at the 

household level. This research theme focuses on using qualitative and quantitative formative 

research to assist local actors in developing communities find appropriate solutions through 
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better understanding communities and their needs, helping them to engineer improvements, and 

working with them to promote behavior changes that can lead to improved health and 

livelihoods.  

Instrumental in this process is Social Marketing, which has been a guiding framework in 

the development of the research, and plays a larger role in on-going and future research related to 

this work. Social Marketing is a behavior change planning process that uses marketing principles 

and techniques to develop new markets and design and deliver socially beneficial products and 

practices. Social Marketing’s consumer orientation is essential for understanding how to 

motivate target markets, overcome barriers, and make socially beneficial products and practices 

uniquely better than those that compete with them. 

 

1.5  Research Questions 

The overall goal of the proposed research is to assess low-cost household water supply 

options for their suitability to sustainable use in developing communities, particularly in sub-

Saharan Africa, and evaluate possibilities for the introduction of improved household water 

supply technologies to such contexts.  The research aims to address the following research 

questions, each related to sustainable implementation of low-cost household water supply 

systems for developing communities: 

1. What improvements can be made to the Pitcher Pump system used in Madagascar to 

improve the quality of the product (including reliability, pumping rates, and/or quality of 

extracted water)? 
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2. Are low-cost water supply systems that have been developed in Bolivia (EMAS 

technologies) suitable, affordable options for household water supply (Self-supply) for 

developing communities in sub-Saharan Africa? 

3. Would EMAS manual water pumps be an effective, less-costly alternative to the Rope 

Pump, offering a better chance for households or small groups of families in sub-Saharan 

Africa to improve their private water supplies, while lifting water at an acceptable rate? 

4. Based on the results of Research Questions 1 through 3, what recommendations can be 

offered to improve sustainable low-cost water supply systems for use at the household level 

in developing contexts in sub-Saharan Africa? 
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CHAPTER 2: UNSUBSIDIZED SELF-SUPPLY IN EASTERN MADAGASCAR1 

 

2.1  Introduction 

Self-supply – to develop private family or neighborhood (i.e. small group) water supply 

systems through own investment – typically relies on low-cost technologies to either extract 

shallow groundwater or collect rainwater. Some types of household water supply technologies 

include: 1) family wells (which can be either hand-dug or drilled), 2) water-lifting devices 

(which can range from being as simple as a bucket attached to a rope, to manually operated, 

electric or fuel-powered pumps), and 3) rainwater collection set-ups. Self-supply may also 

include household water treatment, which is commonly done through boiling, filtration or 

disinfection. 

Self-supply is driven by households’ interest to access an affordable and convenient 

water supply, independent of public investment in hardware. It is an alternative, and oftentimes 

more convenient option to using an improved communal water-point (a protected well, tap stand, 

or household connection from a piped water supply system), or an alternative to dependence on 

unprotected sources such as surface water. The willingness of households to bear the full costs of 

water supply comes with a strong sense of ownership in the developed infrastructure. This, and 

other attributes of Self-supply systems (e.g. non-donor-driven, building on local knowledge and 

                                                           
1 This chapter was published as “Unsubsidised self-supply in eastern Madagascar” in Water Alternatives journal, 

volume 6, issue number 3, pages 424-438.  The author of this dissertation retains the copyright of the journal article. 
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practices, etc.), have been reported to lead to such supplies being more sustainable than other 

options (Sutton, 2004). 

Poor water quality and its associated health risks are commonly the main concerns about 

Self-supply (Sutton, 2009). This issue is much more complex than simply comparing the water 

quality of household and communal sources at the point of collection. Households may use water 

from multiple sources for different purposes, contaminate water between source and point of 

consumption, and treat water at household level by filtering or boiling. Furthermore, if Self-

supply often delivers water supplies that are more accessible, convenient and reliable than 

alternative options (e.g. communal water supplies), the potential negative health effects of sub-

standard water quality may be offset by potential positive health effects related to increased 

water usage. Previous studies have shown a link between increased domestic water usage and 

improved health, and that improvements resulting in the use of increased quantities of water have 

a larger impact on the burden of disease than improvements to water quality at the source (Esrey 

et al., 1985; Howard and Bartram, 2003). 

While much of the literature on Self-supply has been focused on rural areas, Self-supply 

is also a common phenomenon in many peri-urban and urban communities. It is found where 

populations are either unserved, intermittently served, or where households cannot afford, or do 

not see value in, the communal water supply service. For example, a recent study in southwest 

Nigeria showed hand-dug wells to be very common in areas of a city unserved by community 

water supply systems (Oluwasanya et al., 2011). Using statistics from Demographic and Health 

Surveys, Gronwall et al. (2010) estimated that 269 million people in urban areas of 43 surveyed 

countries in sub-Saharan Africa, South and Southeast Asia, and Latin America (including the 

Caribbean) rely directly on Self-supply wells as their principal drinking water source. 
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In eastern Madagascar, there is a well-developed market for the locally manufactured 

Pitcher Pump. This chapter presents the findings of a study investigating this form of water 

supply and market, believed to be the first in-depth assessment of this type of system in 

Madagascar. It focuses on the port city of Tamatave (also commonly called Toamasina) and the 

nearby town of Foulpointe to assess the performance of Pitcher Pump systems (including 

delivered water quality), user acceptability of the technology, and sustainability of the market. 

The objectives of the research were specifically to: 1) assess user experience and associated 

water quality of locally manufactured household groundwater supply systems prevalent in 

eastern Madagascar and 2) assess local manufacturing practices and sales of these systems. 

 

2.2  Background 

2.2.1  Water Supply in Madagascar 

According to the most recent Joint Monitoring Program (JMP) update, coverage of 

improved drinking water sources in Madagascar in 2011 was estimated to be 78% in urban areas 

and 34% in rural areas (JMP, 2013). JIRAMA, the national parastatal water and electric 

company, manages piped schemes that supply water to 65 urban municipalities. However, 

JIRAMA is plagued by operational inefficiencies and lacks the capacity to upgrade aging 

infrastructure. JIRAMA’s poor performance is partly attributed to high operating costs, 

uneconomically low water rates, and affordability issues among target customers (USAID, 

2010). 

In rural areas, coverage numbers remain stubbornly low and considerable challenges 

persist in maintaining existing coverage and extending water supply services to the remaining 

majority of rural dwellers. Rural water supply systems have been commonly implemented using 
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community water-management models, with questionable long-term sustainability rates. For 

example, a 2006 study reported that over 90% of donor-funded water projects in the Ikongo 

District in south-eastern Madagascar failed to develop or implement adequate financial 

management schemes to collect money from community members for routine maintenance and 

purchase of spare parts (Annis, 2006). 

There is scope for alternatives in both urban and rural water supply. Piped water supply 

systems managed by public-private partnerships in rural communities have shown recent 

potential to be a more sustainable water delivery model (Annis and Razafinjato, 2012). 

Household investment in Self-supply continues to fill other gaps in service provision in both 

urban and rural areas. 

2.2.2  Self-supply in Madagascar 

Traditional Self-supply practices in Madagascar include the development of household 

wells and, to a more limited extent, household rainwater harvesting systems. Household hand-

dug wells (typically with rope-and-bucket systems) are common in many areas of the high 

plateau region in the central part of the country. In coastal areas with shallow water table depths 

and sandy soils, manually drilled wells and suction pump systems – the focus of this study – are 

common at the household level. This type of low-cost system was reportedly first introduced to 

eastern Madagascar over 50 years ago by a French expatriate working for the national electricity 

company. 

Over the past two decades, numerous other types of low-cost groundwater supply 

technologies have been introduced in various parts of the island, including two types of 

handpumps appropriate for household and small community use, and amenable to local 

manufacture. The Rope Pump was first introduced in Madagascar in 2000 by the national non-
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governmental organization Taratra (with support from the Swiss organization SKAT), and later 

by other international organizations (Daw, 2004). The Canzee Pump was initially introduced by 

the international organization MedAir during disaster relief efforts following a hurricane in 2004, 

and a commercial market for this pump was later developed by Bushproof, a national company 

founded during that same period (Mol et al., 2005). In the case of the Rope Pump, which is now 

manufactured by several local workshops throughout the island, a small private market for these 

pumps has developed for household and community water supply. The market for the Canzee 

Pump in Madagascar has been restricted almost exclusively to donor-supported community 

water supply projects. Several manual drilling techniques have also been introduced to 

Madagascar over the past decade, including hand-augering introduced by an FAO project 

(Naugle, 2006), jetting by MedAir, rota-sludge drilling by the Practica Foundation, and hybrid 

percussion-jetting-rotation manual drilling by Bushproof. While each of these technologies has 

played a role in increasing access to groundwater in parts of rural Madagascar, none of them 

have achieved scale in an unsubsidised Self-supply market. 

2.2.3  Pitcher Pump Systems in Madagascar 

The Pitcher Pump system (locally called Pompe Tany, combining the French word for 

pump with the Malagasy word for ground) consists of a small-diameter well fitted with a suction 

pump. Wells are drilled up to a depth of 12 meters. Figure 2-1 (a) shows a diagram of the Pitcher 

Pump system components while Figure 2-1 (b) shows a locally constructed Pitcher Pump in use 

in Tamatave. 

As shown in Figure 2-1 (a), the Pitcher Pump has two check valves that are weighted 

(one on the lower end of the pump head, and a second one on a piston that attaches to the pump 

handle via a rod) and the pump is installed directly on a drilled well. The check valves are 
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usually made of leather and weighted with lead (Pb). The well is installed by manually boring 

(coring) down to near the water table, then hammering into the ground a permanent galvanized 

iron casing pipe that includes a well screen and a pointed drill bit (well-point) at its lower end. 

 

 

Figure 2-1. (a) Diagram of Pitcher Pump system (reprinted from Mihelcic et al., 2009, with 

permission of Linda D. Phillips); (b) Pitcher Pump in use in Tamatave, Madagascar. 

 

2.3  Methodology 

Data related to Pitcher Pump systems were collected in the city of Tamatave (estimated 

population of 280,000) and the nearby town of Foulpointe (estimated population of 15,000) in 

the Atsinanana Region of eastern Madagascar (see Figure 2-2). Primary field data were gathered 

over a four-week period in August-September 2011, and a local research assistant gathered 

additional data in 2012 and early-2013. 
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The field research made use of mixed methods, consisting primarily of a quantitative 

survey of households that owned Pitcher Pump systems, semi-structured interviews with pump 

manufacturers, inspection/observation of household water and sanitation infrastructure, and 

testing of water quality. Supplementary methods consisted of focus group interviews with 

owners of Pitcher Pump systems and observation of installation of Pitcher Pump systems. Prior 

to the actual collection of field data, the research objectives and a summary of the field data 

collection plans were submitted to the Institutional Review Board (IRB) of the University of 

South Florida (USF), who determined that it was not considered to be human-subjects research 

under the purview of IRB. 

Household visits consisting of a household survey, water/sanitation infrastructure 

inspection, and water testing were conducted in three neighborhoods of Tamatave, and in the 

town of Foulpointe. These areas were chosen based on information from key informants 

indicating there would be significant numbers of Pitcher Pump systems operational in each area. 

Households visited within each neighborhood were identified using 'snowball sampling'. This 

technique was chosen due to the lack of any available records to locate wells that are often 

hidden behind walls and within courtyards. A first household in the neighborhood with a Pitcher 

Pump system was identified by the researchers, either through visually observing the Pitcher 

Pump from the road/path, or through talking to local residents of the area. At the end of the first 

household visit, the surveyed participant was asked if she/he could identify locations of other 

Pitcher Pump systems in the neighborhood, which were then visited by the field research team 

and included in the research sample. In cases where many systems existed in a small area, the 

field research team made efforts to distribute the sampling of households throughout the 

neighborhood. 
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Figure 2-2. Map of Madagascar showing field research sites of Tamatave and Foulpointe, in the 

Atsinanana region (highlighted). 

 

2.3.1  Household Surveys 

The 53 surveyed owner-users of Pitcher Pump systems included adult female (32) and 

male (21) respondents. Survey questions focused on the following aspects of household water 

supply: 1) basics of water and sanitation infrastructure/technologies used by the household, 

including length of time the households had used the infrastructure and how it was obtained (e.g. 

self-financing, subsidy through a local grant or project, with microfinance, etc), 2) water usage 

by the household, and 3) maintenance, repair, or performance issues. 

2.3.2  Observation/Inspection 

Water supply and sanitation infrastructure were visually inspected at all surveyed 

households. Installed pumps were tested to confirm their state of operation. A sanitary survey of 

the area was performed, focusing on the area immediately around the pump head, and estimating 

its distance to the household latrine. The flow rates of ten Pitcher Pump systems in one 
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neighborhood were also tested, representing a range of depths and pump attributes (pump head 

design, well diameter, etc). 

Five local manufacturers were shadowed during construction of Pitcher Pump system 

components, to gain an understanding of construction techniques and materials used. 

Additionally, the research team observed the installation of three Pitcher Pump systems. 

2.3.3  Water-quality Testing 

Water-quality tests were performed on 51 Pitcher Pump systems to determine the basic 

microbiological and chemical characteristics of the water delivered. For comparative purposes, 

the same water-quality tests were run on samples taken from JIRAMA tap stands in each 

neighborhood visited in Tamatave, and a sample was taken from a community hand-dug well in 

Foulpointe. All water-quality testing was done in mid-August 2011, a time that generally 

coincides with the beginning of the driest period of the year (FAO, 2006). This period can be 

considered to be relatively favorable for microbiological water quality, compared to wetter 

periods of the year when there would be increased likelihood of contamination of well water 

from surface water run-off and shallower water-table levels. 

Sampled water was collected and analyzed using portable field kits for thermo-tolerant 

coliforms, nitrates, nitrites, arsenic, alkalinity, and pH. Palintest® colorimetric methods were 

used to detect the presence of nitrate, nitrite and alkalinity, while the Palintest® VisuPass 

method was utilized to detect the presence of arsenic. An Oxfam Delagua portable water-testing 

kit was used to measure fecal coliforms in water samples through the membrane filtration 

technique. Escherichia coli and thermo-tolerant coliforms are a subset of the total coliform group 

that can ferment lactose at higher temperatures (WHO, 2011). 
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Ten water samples collected from a subset of the surveyed Pitcher Pump systems were 

also analyzed for lead (Pb). These water samples were collected in plastic bottles and tested in a 

laboratory at USF. From each of the sample bottles 5 milliliters (ml) were drawn with a syringe 

and filtered with a 0.2-µm filter into ten separate 10 ml glass containers. All filtered samples 

were acidified with 2 drops of 70% nitric acid to ensure a constant matrix between standards and 

samples, as well as to dissolve any particulate lead in solution. The acidified samples were left 

undisturbed for two days and then analyzed on an Atomic Absorption Spectrophotometer 

(Varian model AA240Z) for lead (Pb) concentration. 

2.3.4  Semi-structured Interviews 

Semi-structured interviews were also a primary tool used for data gathering. Sixteen such 

interviews were completed with various local water supply and development stakeholders in 

eastern Madagascar, including: 1) technicians involved in the construction, installation, and/or 

repair of Pitcher Pump systems, 2) agents involved in the promotion of water, sanitation, hygiene 

and/or health, and 3) a government water supply representative. 

Interviews with Pitcher Pump system manufacturers/technicians yielded an understanding 

of practices related to both Pitcher Pump system manufacturing/installation and marketing/sales 

of the systems. Interviews with other stakeholders provided background on the water supply 

context of the study area. 

2.3.5  Focus Groups 

Three focus group interviews with Pitcher Pump system owners were organized as a 

supplementary methodological strategy to better understand owner-user management of Pitcher 

Pump systems, as well as to gain further insight into user appreciation of the Pitcher Pump 

technology. A focus group was held in each of the three surveyed neighborhoods of Tamatave. 



 

20 

 

2.3.6  Data Collection 

Most of the collection of field data was carried out by a team of three researchers 

comprising the primary field researcher – a USF water supply specialist (civil engineer); a USF 

environmental health specialist; and a Malagasy research assistant experienced in the collection 

of social science research data. Additional collection of data in 2012 and early-2013 was 

coordinated by the primary field researcher and carried out by the local research assistant. 

 

Table 2-1. Core data collection: quantities of household visits and semi-structured interviews 

performed in each location. 

Location No. of household visits (including 

survey and inspection of water 

infrastructure)  

No. of semi-

structured 

interviews  

Tamatave (City)  15 

  – Mangarivotra South 18 

  – Analankinina 20 

  – Ambalakisoa 10 

Foulpointe (a small town) 5 1 

TOTAL 53 16 

 

2.4  Results and Discussion 

2.4.1  Extent of Use, Well Reliability and Pump Attributes 

According to the 2006 census carried out by the National Institute of Statistics of 

Madagascar (INSTAT), 60% of the population of Tamatave used Pitcher Pump systems 

(INSTAT, 2006). In 2009, INSTAT estimated the population of Tamatave as 232,568 (INSTAT, 

2009). Considering this population estimate, the 60% usage of Pitcher Pump Systems, and 

assuming 5% annual population growth, there could be approximately 170,000 people in 

Tamatave using Pitcher Pump systems in 2013. Considering the average number of users per 
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pump to be 19 (based on collected data showing an average of 4.6 households using a single 

pump, with an average of 4.2 persons per household in Tamatave as reported by INSTAT), 

around 9000 Pitcher Pump systems were estimated to be in use throughout the city. 

Pitcher Pump systems are also commonly used in other areas along the East and South 

Coast of Madagascar. One such area, Foulpointe, was included in this field research, and several 

others have been confirmed during follow-up studies in 2012 and 2013. A conservative 

estimation of the number of Pitcher Pump systems installed in Madagascar outside of Tamatave 

is a few thousands. Combined with the estimated number of systems in Tamatave, the authors 

estimate that there are currently over 12,000 Pitcher Pump systems in use in Madagascar. 

Of 53 households surveyed, 50 households (94%) reported that their Pitcher Pump wells 

provided water throughout the entire year. The other three households (6%) said that their 

Pitcher Pump wells provided water for 10-11 months per year. Households and manufacturers 

reported that if a well does not provide water, the casing can be removed and an additional length 

of pipe added to it, to allow it to be installed deeper in the ground, so that it could still provide 

water during seasonal low water-table levels. 

Analysis of focus group interviews of Pitcher Pump system owners showed that the 

attributes pump owners found important were: 1) low purchase cost and low running (i.e. 

operation and maintenance) costs, 2) reliability compared to either a piped water supply system 

or a community well, and 3) convenience, i.e. ease of access and proximity of their system to the 

homestead compared to community water points. 

In Tamatave, Pitcher Pump systems operate in many neighborhoods served by the 

JIRAMA-managed public water supply system. Here, there are commonly multiple houses built 

on one parcel of land (compound). Generally, a landowner who lives on the property will 
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purchase a Pitcher Pump system for use by the entire compound. During household interviews 

numerous pump owners stated that they would prefer to have a household connection to the 

piped water network, if not for the prohibitively high connection costs and water tariffs. Focus 

group participants also expressed a preference to have a household connection if it was available 

at a similar price to a Pitcher Pump system. As of 2013, the minimum cost for installation of a 

household connection was reported to be approximately US$215. There are an estimated 10,000 

household connections in Tamatave. Owners also frequently mentioned that Pitcher Pump 

systems were more reliable, as the utility water supply was often interrupted for several hours at 

a time. Additionally, Pitcher Pump systems were reported to be preferable to getting water from 

distant communal tap stands. 

The researchers observed that numerous non-surveyed compounds with a household 

piped water connection also had a Pitcher Pump system. The extent to which Self-supply and 

piped supply might compete with or complement each other is an important question. Self-

provision likely leads to lower per capita consumption from the piped system, and may 

potentially cause the utility company to increase water tariffs to compensate for the lost revenue 

as volumes supplied decline. Alternatively, Self-supply may equally supply volumes of water 

that are additional to, or are not supplied by, the piped system. Pitcher Pump systems in 

Tamatave appear to be filling a void created by the inability of the utility to provide desired 

service levels at an affordable price to potential customers in its catchment area. It is 

questionable if JIRAMA is capable of providing sufficient water and service levels to the entire 

population of Tamatave in the near future. In this context, Pitcher Pump systems offer an 

affordable, reliable and necessary domestic water supply option in the short term. 



 

23 

 

This highlights the need for regulation of both piped systems and Self-supply in urban 

and peri-urban situations, so as to complement long-term urban planning efforts to extend the 

customer base of piped water schemes. Such is the case in southwest Nigeria, where groundwater 

systems are not permitted in some areas that have access to a piped water supply system 

(Oluwasanya et al., 2011). There is no such regulation in Tamatave, and some government 

offices themselves use Pitcher Pump systems. 

2.4.2  Local Construction, Installation and System Costs 

Pitcher Pump systems were estimated to be built by more than 50 separate local small 

businesses in Tamatave. These fall into three categories: 1) welding workshops that manufacture 

and install Pitcher Pump systems as their principal activity or one of their primary activities 

(reported range of 12-30 systems sold per month), 2) welding workshops that fabricate and 

install Pitcher Pump systems as a secondary activity (these workshops commonly focus on other 

activities such as the construction of steel gates or repair of cars, bicycles and rickshaws; 4-12 

systems sold per month), and 3) technicians/artisans who construct and install Pitcher Pump 

systems as a primary activity, but get the welding work done by a workshop (1-16 systems sold 

per month). Included in this third category are pump repair technicians who may occasionally 

also build Pitcher Pump systems. 

Installation of Pitcher Pump systems (well drilling/installation, pump attachment) 

typically takes 1-4 hours on site, and is largely dependent on drilling depth and soils encountered 

(drilling through silt or clay layers takes longer than drilling through sand). When household 

Pitcher Pump systems were inspected it was found that any form of well-head protection was 

rare. Of the Pitcher Pump systems inspected during household visits, less than 4% (2 out of 53) 
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had a sanitary apron (seal) at ground level around the well casing. One household in Foulpointe 

reported plans to install a concrete apron around their Pitcher Pump well within the next year. 

The costs of a Pitcher Pump system were determined primarily from semi-structured 

interviews with local manufacturers in Tamatave (and one in Foulpointe), and household surveys 

were used to confirm the range of prices. Complete Pitcher Pump systems are commonly sold in 

Tamatave and Foulpointe at unsubsidized prices of US$35-100. This price includes system 

construction and installation, with the variance in cost largely dependent on well depth. The price 

of the Pitcher Pump itself is typically US$15-25, with well components and installation costing 

an additional US$5-7 per meter of depth (minimum 4 meters). Manufacturers generally make a 

profit of US$15-25 per Pitcher Pump system. All households surveyed (53 out of 53) reported 

paying the full purchase price of their Pitcher Pump system themselves, i.e. without subsidy. 

Nearly half the number of Pitcher Pump system owners surveyed (49%; 26 out of 53) 

reported that they would have significant repairs/upgrades done to their systems over the next 

year. This included planning to purchase a new Pitcher Pump system (23%; 12 out of 53); well 

casing pipe addition or replacement (9%; 5 out of 53); and replacement of a pump head (4%; 2 

out of 53). Of the Pitcher Pump system owners surveyed, 8% (4 out of 53) reported plans to 

install a household connection from the JIRAMA system within the next year. Despite an 

available adaptation to the Pitcher Pump system that allows water to be pumped to an elevated 

storage container (adding an estimated cost of US$80-150 to the price of a system, not including 

storage apparatus), none of the surveyed households mentioned any intention to make this 

investment within the next year. 
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2.4.3  Pump Performance and System Management 

The performance of Pitcher Pump systems varied considerably and was related to: 

installed well depth; condition of the valves (if the leather seals in the valves are not sealing 

properly the pump needs to be primed at the start of use); and the material within the piston 

column of the pump head (e.g. mild steel, stainless steel, or PVC). Of 52 pumps tested during 

household visits, 12% (6 pumps) required priming by adding water through the top of the piston 

valve in order to function. Testing of pumping rates (single pumping subject – healthy adult 

female (29 years old, 50 kg)) from ten Pitcher Pumps showed a range from 4 liters/minute to 11 

liters/minute. 

Replacement of the leather pump valves was reported to be the most common 

maintenance/repair needed. Depending on the use of the pump, as well as the piston column 

material (that the piston valve makes contact with), this maintenance may need to be done as 

often as every few months. Other less frequent minor maintenance/repairs include replacement 

of the well screen, cleaning of the well pipe due to sand infiltration, and minor work to the pump 

head (e.g. replacing a nut and bolt, or the handle). All of these repairs are most commonly 

performed by local technicians (as reported by 75% of surveyed households, 40 out of 53) for 

total costs generally of US$2-6 for replacement of a leather valve. Some respondents (25%, 13 

out of 53) reported doing at least some maintenance/repairs themselves. Other reported major 

repairs/changes to Pitcher Pump systems consisted of replacing the pump head and lengthening 

the well pipe (to deepen the well), done by local technicians/manufacturers. 

Focus group data showed that, typically, Pitcher Pump system owners had general 

management rules for the use of their systems. The owner typically paid the entire cost of the 

system herself/himself, but maintenance and repair costs were commonly divided among all 
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families using the system. Many owners said that activities such as washing clothes, bathing or 

cooking are not allowed within a radius of a couple of meters from the pump. Most owners 

explained that users who live within the compound where the Pitcher Pump system is located are 

allowed access at any time, night or day, while users outside the compound would be permitted 

to access it usually during the day (generally under the same conditions as other users, i.e. 

sharing maintenance and repair costs with other families). Public tap stands and private water 

vendors selling water from the piped network are open 8-10 hours/day, 6-7 days/week. 

2.4.4  Water Quality and Household Water Treatment 

Table 2-2 shows the distribution of fecal coliform counts in tested Pitcher Pump systems 

in Tamatave and Foulpointe. Fecal coliforms were detected above the WHO guideline of zero 

fecal coliforms/ 100 ml in 73% (37 of 51) of the Pitcher Pump samples tested. Some 55% (28 of 

51) of the Pitcher Pump systems showed fecal contamination of between 0 and 10 coliforms/100 

ml of water, which is considered low-risk. Five systems were severely contaminated with greater 

than 100 fecal coliforms/100 ml. Of the 23 households where Pitcher Pump system water 

samples showed greater than 10 fecal coliforms/100 ml, 16 households reported they drank water 

from their Pitcher Pump, and 13 of these 16 households reported treating their water by 

chlorination and/ or boiling prior to consumption. Pitcher Pump systems where the drilled well 

was reported to have been installed at a depth of more than 7 meters showed relatively little 

contamination (all showing either no growth or 1-10 fecal coliforms/100 ml). However, ongoing 

research commissioned after this study is apparently showing other wells in Tamatave with 

installed depths of more than 7 meters to have considerable microbiological contamination. The 

collected data did not show a correlation between microbiological water quality and the distance 

of the Pitcher Pump system from a latrine. Single water samples taken from JIRAMA tap stands 
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in each of the three surveyed neighborhoods of Tamatave showed no contamination (i.e. no 

thermo-tolerant coliform growth). A sample from a community well in Foulpointe was highly 

contaminated (thermo-tolerant coliforms were 'too numerous to count'). 

 

Table 2-2. Microbiological water quality of Pitcher Pump systems. 

Location No. of 

Pitcher 

Pump 

systems 

sampled 

Measured thermo-tolerant coliforms (per 

100 ml) 

No  

growth 

1-10 11-100 Greate

r than 

100 

Tamatave (city)      

- Mangarivotra South 17  3  2 10 2 

- Analankinina 19  2  7  8 2 

- Ambalakisoa 10  8  2  0 0 

Foulpointe (a small town)  5  1  3  0 1 

TOTAL 51 14 14 18 5 

Pitcher Pump systems sampled (%) 27 27 35 10 

 

Nitrate was detected in all water samples. The nitrate concentrations ranged from 4.4 to 

35 mg NO3
‐/l (average concentration = 23; standard deviation = 12), while nitrite was detected in 

four of the nine samples tested, though typical concentrations ranged from 0.1 to 0.2 mg NO2
‐/l. 

All these nitrogen samples are below WHO guidelines (50 mg NO3
‐/l and 3 mg NO2

‐/l) but 

suggest some impact on the groundwater supply by anthropogenic activities associated with 

waste disposal. 

Each of the ten water samples tested for lead (Pb) was obtained from households that 

reported consuming water from their Pitcher Pump systems. All ten samples showed the 
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presence of lead, including four samples that had lead levels higher than the WHO guideline of 

10 µg/l (WHO, 2011). These four samples had Pb concentrations of 15, 31, 118, and 215 µg/l. 

The range of Pb concentrations in the tested samples is shown in Figure 2-3. 

According to WHO, exposure to lead is related to numerous health issues, including 

neurological issues, cardiovascular disease and issues with fertility and pregnancy (WHO, 2011). 

The presence of lead in water extracted from Pitcher Pump systems may be due to a combination 

of three sources: 1) weights used to hold down the two leather valves, 2) brass well screens, and 

3) solder used to attach the well screens to the galvanized iron well casing. USF is currently 

performing additional in-depth research on these three possible pathways of lead contamination 

from Pitcher Pump systems in Tamatave. 
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Figure 2-3. Lead (Pb) concentrations of 10 sampled Pitcher Pump systems in Tamatave and 

Foulpointe. The WHO guideline is 10 µg/l of lead. 
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In terms of other water-quality parameters, pH values were determined to be less than 

6.8, the limits of the testing meter (follow-up testing in Tamatave has shown pH values in the 

6.1-6.9 range). Alkalinity typically ranged from 150 to 250 mg/L CaCO3. Arsenic was not 

detected in any of the 51 Pitcher Pump system samples (detection level of 10 μg/l). 

Regarding the local perception of quality of water delivered from their Pitcher Pump 

systems, focus group discussions revealed that a small number of owners insisted the water from 

their systems was potable (and of no risk to their health) without any treatment, while the great 

majority understood that the water from their systems was likely contaminated, yet said they 

commonly drink it without treating it. A minority of focus group participants reported the water 

from Pitcher Pump systems to be not of potable quality and reported either treating the water 

(through boiling) prior to drinking, or collecting drinking water from an alternative source. 

Among surveyed households, 75% of households (40 of 53) reported that they drink 

water from their Pitcher Pump system. Of these, several (15%, 6 of 40) reported treating water 

with a chlorination product ('Sur Eau', marketed in Madagascar by the NGO PSI) prior to 

drinking, and 58% (23 of 40) reported boiling water prior to drinking, including two households 

that reported both boiling and treating the water with chlorine prior to consumption. It is also 

common practice in Madagascar to drink boiled rice water after each meal (Ranon’ampango in 

Malagasy – made from adding water to a pot with leftover cooked rice in it, and heating/boiling 

it). It is believed that this traditional practice is why the local population is open to boiling water 

(though it may also have led to over-reporting of the habitual practice of properly boiling water 

in household surveys). Table 2-3 shows reported drinking water treatment practices among 

surveyed households. 
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Table 2-3. Reported water treatment practices of Pitcher Pump users. 

Location 

 

Nb. of 

house-

holds 

Reported data from household surveys 

Drink water 

from Pitcher 

Pump systems 

Pitcher Pump drinking water treatment method 

Boiling Chlorination None 

Nb. % Nb. % Nb. % Nb. % 

Tamatave (city)          

 – Mangarivotra South 18 15 83 8 53 1 7 6 40 

 – Analankinina 20 12 60 8 67 5 42 1 8 

 – Ambalakisoa 10 9 90 4 44 0 0 5 55 

Foulpointe  

(a small town) 

5 4 80 3 75 0 0 1 25 

TOTAL 53 40 75 23  58 6 15 13  33 

 

2.4.5  Potential Improvements and Further Research 

Potential options for 'technology improvements' that focus on improving water quality 

include: 

Adaptations to Pitcher Pump system components: 

1. Elimination of lead-containing pump components. An ongoing study is identifying specific 

pathways of lead contamination from Pitcher Pump systems, and is considering the 

technical and social feasibility of using non-lead alternatives for each of the current Pitcher 

Pump system components that contain lead (e.g. using iron in place of lead for weights on 

pump valves). 

2. Installation of well-head protection. Installation of a concrete sanitary apron (or, at 

minimum, a clay apron) to provide a sanitary seal needed to prevent microbiological (fecal) 

contamination from entering the well alongside the casing. 

3. Possible increased well-installation depth. A separate study is being done to determine the 

change in water quality at different depths subject to the same environmental conditions. 
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4. Boiling of water prior to drinking. Many surveyed owners reported that they boiled water 

from their Pitcher Pump systems prior to consumption. Follow-up research is exploring 

local practices for making rice water – to determine if the water is sufficiently heated to 

allow for effective treatment of microbiological contamination, to find out if users later add 

non-boiled (and untreated) water for cooling down, etc. 

5. Household rainwater harvesting for drinking water. Most (90%) of the households surveyed 

in Tamatave had houses with corrugated metal roofing, which is a very suitable surface for 

rainwater catchment, and several examples were seen of households practicing rainwater 

harvesting in basic forms (capturing rainfall off their roofs in buckets or larger containers, 

usually without any gutter system). Tamatave has an average annual rainfall of over 3000 

mm, including 9 months with an average of at least 200 mm of rain, and a minimal average 

monthly reported rainfall of around 120 mm (FAO, 2006). Considering this rainfall amount 

and the common existence of corrugated metal roofs on houses in Tamatave, low-cost 

rainwater harvesting technologies could be further explored as a possible household 

drinking water supply option. This is particularly important for health improvements, as a 

previous study found that addition of water storage of as little as 400 liters integrated with 

household rainwater harvesting could reduce the diarrheal disease burden (measured as 

disability adjusted life years) by as much as 25% (Fry et al., 2010). Rainwater harvesting 

would also eliminate the nitrogen and lead contamination concerns uncovered in this study. 

6. Regulation of the Pitcher Pump system market. This could include quality control support to 

technicians/manufacturers for construction and installation of Pitcher Pump systems (e.g. 

minimum standards to reduce health risks from lead contamination, improve 

microbiological well quality, etc), research of the potential for better complementarity 
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between the JIRAMA system and Self-supply, an environmental awareness campaign to 

educate users on the risks of using Pitcher Pump systems for drinking water, and monitoring 

the water quality of Pitcher Pump systems by local stakeholders. 

The price of accessing water using Pitcher Pump systems in Tamatave is US$35-100 

(initial cost) plus small running costs for maintenance and repairs. While changes in prices for 

potential improvements are to be determined through further research (e.g. evaluating well-water 

quality vs. depth, impact of sanitary aprons on water quality, etc), the aim should be to keep 

costs low while improving the Pitcher Pump system product. 

The Self-supply market for Pitcher Pump systems in eastern Madagascar is well-

developed. The research has shown there to be an established market for improving access to 

water for households in the study area at unsubsidized prices that are affordable for most 

landowners. The existing Pitcher Pump market should be further explored, to determine 

possibilities to build on existing capacities and practices to design low-cost Self-supply 

groundwater markets using drilling and pumping technologies which can be used in more diverse 

hydrogeological conditions, i.e. to drill to deeper depths and through harder soils, and to pump 

water from deeper depths. The ability to adapt the market to areas where water tables are deeper 

and soils are harder would be of great value to many areas of Madagascar. 

Given the market success of the current Pitcher Pump systems in Tamatave, resistance to 

change could be expected if the benefits of proposed improvements are not well understood by 

consumers or Pitcher Pump manufacturers. This resistance could be in the form of unwillingness 

of consumers to invest in hardware improvements or to implement behavioral change(s) 

necessary to ensure consumption of water of a good quality. Resistance could also come from 

manufacturers and installation technicians, who may not be willing (or may be hesitant) to adopt 
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changes to system construction and installation. The relative complexity of the Self-supply 

context in Tamatave makes further market research important, as the well-established market 

could be disrupted if changes are not well-designed/implemented. 

 

2.5  Conclusion 

Pitcher Pump systems are widely used in the research area of Tamatave and Foulpointe in 

eastern Madagascar and are shown to provide reliable and convenient access to water at a low 

cost relative to household connections to the piped water system. The Pitcher Pump market in the 

research area is unsubsidized, with system owners paying 100% of the initial cost. This market is 

believed to be the most significant documented example of an unsubsidized household 

handpump market in sub-Saharan Africa. Owners commonly share maintenance and repair costs 

with their tenants and/or neighbors. System maintenance is done by local technicians or family 

members, with more significant repairs undertaken by local technicians or manufacturers. 

There are, however, concerns with the quality of water supplied through these systems 

(i.e. its suitability for drinking), specifically microbiological and lead contamination. Only 55% 

of wells sampled provided water associated with low-risk of microbial contamination for 

household systems, and four out of a small sample of ten wells contained lead in excess of safe 

limits. The market is also unregulated, neglected even, and there are several potential entry 

points for enhancements to current Pitcher Pump system construction and installation practices 

that could improve the quality of water delivered. 

Results of this study are being shared with USAID and local government officials 

responsible for urban water supply and public health. Complementary research is ongoing to 

assess the cause of the lead contamination and make recommendations to mitigate exposure. 
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Follow-up efforts in urban Tamatave seek to support WASH (Water, Sanitation, and Hygiene) 

sector stakeholders and local government officials to increase regulation of the Self-supply 

market and address issues of quality of water delivered by Pitcher Pumps, including the 

important issue of lead contamination. Further research is needed to determine potential 

improvements to Pitcher Pump systems, to understand how to create synergies between the 

Pitcher Pump market and community piped water system, as well as to determine the feasibility 

of household water treatment and rainwater harvesting Self-supply options to improve access to 

drinking water. 
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CHAPTER 3: EMAS HOUSEHOLD WATER SUPPLY TECHNOLOGIES  

IN BOLIVIA – INCREASING ACCESS TO LOW-COST  

WATER SUPPLIES IN RURAL AREAS2 

 

 

 

3.1 Summary 

EMAS household water supply technologies have been developed in Bolivia, South 

America over the past three decades, and consist primarily of: (1) manually-operated water 

pumps made from materials commonly available in developing countries, (2) a hybrid 

percussion-jetting-rotation manual drilling method, and (3) rainwater harvesting systems that 

often use underground storage tanks. This research is the first published independent field 

assessment that considers users’ and technicians’ experiences with EMAS low-cost water supply 

technologies in Bolivia. Research methods consist of household visits that include a survey and 

observation/inspection, combined with semi-structured interviews with technicians and other 

stakeholders involved in implementation of EMAS technologies. Results of the investigation 

suggest the EMAS Pump to have low capital and maintenance costs, show the use of EMAS 

manually-drilled well systems with EMAS Pumps to be widespread in parts of Bolivia, show that 

EMAS well systems as used in the surveyed areas provide a reliable source of water, and 

demonstrate a willingness of households to invest in EMAS water supply systems. While EMAS 

rainwater harvesting systems (RWHS) exhibit potential to provide adequate household water 

                                                           
2 This chapter was published as “EMAS Household Water Supply Technologies in Bolivia: Increasing Access to 

Low-Cost Water Supplies in Rural Areas”, as RWSN Field Note No. 2013-4.  It is included with permission from 

the copyright holders. 
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supply, the implementation of EMAS RWHS in Bolivia has been very limited. The paper 

considers the potential for increased use of EMAS technologies in Bolivia and internationally, 

and makes recommendations for further research. 

3.1.1 Purpose 

The purpose of this publication is to provide background on select EMAS household 

water supply technologies to the wider sector audience, and to assess and present experiences 

with these technologies as used in Bolivia. The document provides: (1) an overview of EMAS 

household water supply technologies (specifically the EMAS Pump, percussion-jetting-rotation 

manual drilling method, and rainwater harvesting systems) and of EMAS’s approach to 

improving water supply, and (2) an independent assessment of these EMAS technologies as used 

in Bolivia. Reference is given to other available resources related to EMAS technologies, 

including EMAS training videos that are available on the internet. 

3.1.2 Audience 

The intended audience includes all actors involved in household water supply in Bolivia 

and throughout the developing world. The document is meant for users, technicians and field 

workers who may be interested in implementing low-cost water supply technologies, and for 

those involved in project design and policy-making (e.g. local and national government workers, 

development partners).   

 

3.2 Abbreviations 

 CABI – Grassroots indigenous organisation working in Izozog area [Spanish 

acronym,Capitania del Alto y Bajo Izozog] 

 EMAS – Mobile Water & Sanitation School [Spanish acronym, Escuela Móvil de Agua y 

Saneamiento] 

 EPARU – Non-Governmental Organisation associated with the Catholic Diocese 

[Spanish acronym, Equipo Pastoral Rural] 
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 HDI – Human Development Index 

 JMP – Joint Monitoring Program for Water Supply and Sanitation 

 MDG – Millennium Development Goal 

 RWHS – Rainwater Harvesting System(s) 

 SENASBA – National Service for Sustainable Sanitation Services (Bolivia) [Spanish 

Acronym] 

 

3.3  Introduction 

Assessing low-cost water supply technologies in developing world contexts where they 

have been in use over a significant time period can provide valuable insight into the potential for 

use of these technologies in similar contexts. The assessment can also act as a baseline for 

improving and/or expanding implementation of the technologies in the studied context. Known 

previous studies have focused mainly on the technological aspects of EMAS water systems in 

Bolivia (Tapia-Reed, 2008). This study is the first published independent field assessment that 

considers EMAS manual water supply technologies and users' and technicians’ experiences with 

these systems in Bolivia. The research provides an overview description of the EMAS Pump, the 

standard EMAS manual drilling method, and EMAS Rainwater Harvesting Systems (RWHS). 

The study primarily assesses functionality of EMAS Pumps at the household level, common 

maintenance/repair issues including cost, reliability of EMAS manually drilled well systems, and 

financing of EMAS water supply systems.  

 

3.4  Context 

3.4.1  Bolivian Context 

Bolivia, a landlocked country located on the continent of South America, has an 

estimated population of just over ten million people (World Bank, 2013). It ranks 108th out of 

186 countries included in the Human Development Index (HDI) of the 2013 Human 
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Development Report, commissioned by the United Nations Development Program (UNDP, 

2013). Within South America, Bolivia currently has the 3rd-lowest HDI ranking, just below 

Suriname (105) and above Paraguay (111) and Guyana (118). 

3.4.2  Rural Water Supply in Bolivia 

The most recent JMP (a program of the United Nations that reports progress towards the 

Millennium Development Goal [MDG] target for drinking water) estimate shows that as of 2010 

71% of the rural population of Bolivia have access to improved drinking water sources. This 

rural water supply coverage statistic has increased significantly since 1990, when the percentage 

of rural users with improved drinking water sources was estimated at 43%. The improvement in 

water supply coverage puts Bolivia on track to meet its target for drinking water supply by the 

2015 MDG deadline. However, rural drinking water coverage is still drastically less than the 

urban coverage for Bolivia, as the same report estimated that as of 2010 96% of the urban 

population have access to improved drinking water sources (JMP, 2012). Table 3-1 lists the types 

of drinking water systems that JMP considers to be improved or unimproved, along with the 

studied types of EMAS household water supply systems. By the JMP definition, all of the types 

of household water supply systems considered in this study are improved drinking water sources. 

The Bolivian government accepts these EMAS household water supply systems as improved 

drinking water sources. 

 

Table 3-1. Categories of improved and unimproved water sources (JMP, 2013), and EMAS 

household water supply systems considered in the research  

Improved drinking water sources Unimproved drinking water sources 
EMAS  household water 

supply systems studied 

- Piped water into dwelling 

- Piped water to yard/plot 
- Public tap or standpipe 

- Tubewell or borehole 

- Protected dug well 
- Protected spring 

- Rainwater 

- Unprotected spring 

- Unprotected dug well 

- Cart with small tank/drum 
- Tanker truck 

- Surface water  

- Bottled water 

- Manually drilled wells (i.e. 

tubewell or borehole) fitted with 
manual pump 

- Rainwater Harvesting Systems 

(including manual pump) 
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SENASBA is the Bolivian national government agency responsible for rural water 

supply. Newly created in 2009, SENASBA is a decentralized entity of the Bolivian National 

Ministry of Environment and Water. The mission of SENASBA is to strengthen operators and 

service providers of water supply and basic sanitation, through technical assistance, capacity 

building, information sharing, technology transfer, training, and policy/strategy implementation 

(SENASBA, 2012). SENASBA is a proponent of household water supplies as a sustainable 

service in rural areas, and is collaborating with actors involved in rural water supplies to develop 

strategies to effectively disseminate information on household water supply options. Other key 

stakeholders at the national level involved in the promotion of household water supplies include 

several non-governmental organizations, the Catholic University system, the Water and 

Sanitation Program of the World Bank, and the Inter-American Development Bank. These 

stakeholders support EMAS technologies, and SENASBA has co-sponsored EMAS’s training of 

local technicians in Bolivia. 

3.4.3  Low-Cost Water Supply Technologies in Bolivia 

Bolivia has a significant recent history of development of low-cost water supply 

technologies, particularly of manual drilling and hand-pumps. Hand-augering drilling techniques 

have been largely promoted by a Mennonite missionary organization for several decades. EMAS 

has worked to develop manual drilling and hand-pump technologies in Bolivia, and it is 

estimated that over 20,000 manually drilled well systems have been installed in households 

throughout Bolivia using EMAS methods (Danert, 2009). Additionally, ‘Water for All 

International’ developed the ‘Baptist’ drilling technique and a low-cost water pump in Bolivia. 

EMAS Pumps (and variations) and Baptist Pumps are commonly used at the household level in 

numerous areas of Bolivia. 
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3.5  Methodology 

The research includes an overview of EMAS low-cost water supply technologies and 

EMAS’s approach to improving water supply, and provides an independent assessment of select 

EMAS water supply technologies as implemented at the household level in rural areas of 

Bolivia. Field data were gathered during two trips to Bolivia, in March-April 2011 and June-July 

2011.  

As part of the information-gathering process for the assessment, the primary researcher 

(an experienced water supply engineer from the United States) participated in a month-long 

(300-hour) EMAS-sponsored training workshop on low-cost water supply and sanitation 

technologies at the EMAS training center in Puerto Perez, Bolivia (La Paz region). The field 

assessment was subsequently carried out by a team of three researchers (the primary researcher 

and two colleagues: a civil engineering graduate student from the United States and an ecological 

engineering undergraduate student from Bolivia) from early-June to early-July 2011. EMAS 

provided information to the research team on EMAS-developed technologies, project 

implementation locations, and key stakeholders. EMAS also assisted with logistics in La Paz 

region. 

Qualitative data collection involved mixed-methods, consisting of surveys, semi-

structured interviews, and observation/inspection. The methodology for the field research was 

submitted to the Institutional Review Board of the University of South Florida, and determined 

to not meet the definition of human subjects research requiring review and approval. Table 3-2 

shows the numbers of household visits and semi-structured interviews done in each region of 

Bolivia. 
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Table 3-2. Summary of number of household visits and interviews by region 

Region Research Sites 

No. of household 

visits (including 

survey and water 

infrastructure 

inspection) 

No. of semi-structured 

interviews 

Santa 

Cruz 

Santa Cruz (city), Izozog, 

Gutierrez, San Julian 
36 3 

Beni 
Trinidad, Somopai, 

Reyes 
35 6 

La Paz 

La Paz (city), Cachilaya, 

Pampa Chililaya, 

Huarina, Taquina 

15 6 

TOTAL 86 15 

 

3.5.1  Surveys 

Surveys at the household level of users of EMAS water supply technologies provided the 

primary data. Survey questions focused on water and sanitation infrastructure/technologies used 

by the household; water usage; and responsibilities and costs for installation and repair of EMAS 

technologies. 

3.5.2  Semi-structured Interviews 

Semi-structured interviews were conducted with rural water supply technicians and 

organizations involved in the promotion, construction, installation, and/or repair of EMAS 

household water supply systems. The interviews focused on the interviewees’ experiences with 

EMAS technologies, including current prices for system installation. 

3.5.3  Visual and Physical Inspection of Infrastructure 

Household water and sanitation infrastructure was inspected for all surveyed households, 

including a sanitary risk inspection of the water system. Installed manual pumps were tested to 

determine state of functionality, by filling a bucket of water from the pump, observing flow and 

any above-ground leaking from the pump. 
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3.5.4  Research Locations 

Research was carried out in three regions of Bolivia: Santa Cruz, Beni, and La Paz 

(Figure 3-1). In Santa Cruz, household visits were done in Izozog, an indigenous area located 

over 200 km southeast of the city of Santa Cruz. Additionally, the city of Santa Cruz and the 

towns of San Julian (100 km northeast of the city of Santa Cruz) and Gutierrez (175 km south of 

the city of Santa Cruz) were visited. In the city of Santa Cruz, interviews were done with the 

grassroots indigenous organization CABI, who works on economic growth and community 

development in the Izozog area. Experienced EMAS-trained technicians were interviewed in San 

Julian and Gutierrez. 

 

 

Figure 3-1. Map of Bolivia showing geographic regions and  

study locations (in La Paz, Santa Cruz, and Beni regions) 
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In the Beni region, research was carried out in the city of Trinidad, the village of 

Somopai (30 km southeast of Trinidad), and the town of Reyes (280 km west of Trinidad). In 

Trinidad, interviews were held with EPARU, a local development organization affiliated with the 

Catholic diocese that has been involved in manual drilling for over three decades, and 

independent technicians involved in the implementation of EMAS water supply technologies. In 

addition, installation of a borehole using the standard EMAS drilling method was witnessed in 

Trinidad. In Somopai, household visits were conducted, and installation of an EMAS Pump on a 

new manually drilled well was also observed. In the rural town of Reyes, families with EMAS 

manually drilled boreholes were visited. The boreholes were fitted with either EMAS Pumps 

(with locally-adapted pump valve designs, in some cases), or with small electric pumps. Manual 

drilling of an EMAS well was also observed in Reyes. 

In the Lake Titicaca area of La Paz region, several small communities near the EMAS 

training center were included in the research. In Cachilaya village, RWHS using EMAS 

underground storage tanks and EMAS manual pumps were assessed. Cachilaya was chosen to 

assess household RWHS as this community provides the largest known sample of EMAS RWHS 

systems in Bolivia. (Uptake of this technology in Bolivia has been very limited to date.) 

Additionally, households were visited in Pampa Chililaya village, where EMAS manually drilled 

borehole and pump systems are used by many families. In Huarina and Taquina villages, 

interviews were conducted with technicians who had recently participated in EMAS trainings. 

 

3.6  EMAS Approach to Improving Water Supply 

To encourage families to use EMAS water and sanitation technologies, and to 

incrementally improve their household infrastructure, EMAS has adopted a strategy which 
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focuses on the ‘added value’ of EMAS technologies towards improving household living 

conditions and lifestyles. This added value comes from the higher level of service that is 

provided largely through having a reliable water system and water piped to taps in the house. 

EMAS implements its strategy primarily through the training of local independent technicians 

from various parts of Bolivia (subsidized by EMAS), as well as through the broadcasting of 

EMAS training videos on Bolivian television and on the internet. Figure 3-2 is an example of 

EMAS promotional material, and illustrates RWHS with an underground storage tank and 

EMAS Pump, a shower with a small elevated tank and washing sink, and a ventilated latrine. 

EMAS’s strategy is further illustrated in Figure 3-2. In their work outside of Bolivia, EMAS 

typically partners with other organizations and local/national governments for implementation, 

and promotes the same strategy through trainings and assessment trips. 

 

 

Figure 3-2. EMAS promotional material showing basic household water and sanitation 

technologies - RWHS with underground water storage tank; a manual pump to lift water to a 

small elevated tank for a shower and washing sink; and a ventilated latrine (Procedamo, 2004) 



 

45 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-3. Example of EMAS strategy (Buchner, 2011) 

 

For clarity of information dissemination, EMAS makes the comparison to a similar 

situation with household electricity supply. For instance, when there is electricity power failure 

in a household that uses the power source only for bulb lighting, the household may be satisfied 

to use lanterns or candles as alternatives in the short-term. However, when electricity usage also 

includes powering a television, refrigerator, and/or computer, the household’s dependence on 

electricity is greater, and they thus will be more likely to get the electricity connection repaired 

promptly in the event of failure. Also, in marketing their technologies, EMAS considers peoples’ 

tendencies to pay attention to what their neighbors have, as if they see value in it, they will likely 

want to replicate it (Buchner, 2011). 

 

1)  If a household has access to a water source in their yard, for 
example a well with a manual pump attached to it, this is an 
improved level of service compared to using either a community 
water source (e.g. a public tap stand or a community well) or an 
unprotected water source (e.g. a lake or stream). Yet, if the 
manual pump breaks, there may not be sufficient incentive for 
the household to repair it in a timely manner (i.e. the household 
may simply revert to using an alternative water source). 

 
2) If, however, in addition to having access to the water source in 

their yard, the household is also pumping water through pipe(s) 

and/or hose(s) to an elevated household tank (so that there is, 

for example, water readily available at household taps for kitchen 

tasks, cleaning clothes, taking showers, etc.), the users are 

going to value the higher level of service, and become 

significantly more dependent upon the water supply. The 

appreciation of the service and increased dependence upon the 

water supply system, caused by its ‘added value’, makes it more 

likely that when there are problems with the pump (or other 

aspects of the system), the household will rectify the issue in a 

timely manner. 
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3.7  Results and Discussion 

3.7.1  EMAS Pump - Description, Components and Mode of Operation 

EMAS manual water pumps are used in many of the EMAS household water supply 

systems, to lift either groundwater from wells or rainwater from underground storage tanks. The 

EMAS Pump (also known as the Flexi-Pump, or ‘Bomba Flexi’ in Spanish) is a manually-

operated pump that can reportedly lift water from depths of more than 30 meters (Buchner, 

2006). The simple design of the EMAS Pump, using materials commonly available in 

developing countries (e.g. PVC pipes, glass play marbles in the pump valves, and rubber cut 

from a used car tire) and basic tools, allows for the pumps to be fabricated by trained technicians 

in many developing communities. The ability of the EMAS Pump to lift water from significant 

depths to heights above the pump head (e.g. for pumping to household tanks, reservoirs at higher 

elevations, or for installing multiple pumps on wells) adds to the pump’s value. It is important to 

note that the EMAS Pump is designed for use on household systems (up to 5-6 families, or 30 

users maximum). The EMAS Pump is not meant to be used as a community pump. Common 

uses of EMAS Pumps are provided in Figure 3-4.  

 

Pumping from below-ground to surface 

 A single EMAS Pump lifting water from a hand-dug well, drilled borehole, or storage tank 

 Multiple EMAS Pumps lifting water from a single below-ground water source (hand-dug well, storage tank) 

 Pumping to ground level at a distance from an underground water source, through hose(s) and/or pipes 

attached to the EMAS Pump spout 
 

Pumping from below-ground to an elevated point 

 Lifting water from an underground source through the EMAS Pump and directly through hose(s) and/or pipes 

to an elevated point (a household tank, reservoir on a hillside, or for direct output e.g. for irrigation) 
 

Pumping from near ground-level  to an elevated point 

 Lifting water from a surface water source (e.g. a lake, river, or storage tank) to an elevated point 
 

Circulating fluid in EMAS manual drilling 

 The manual ‘mud’ pump used to circulate drilling fluid in EMAS percussion-jetting-rotation manual drilling is 

a modified version of the EMAS Pump 

Figure 3-4. Common uses of EMAS Pumps 
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The EMAS Pump consists of an outer PVC pipe (‘pump cylinder’ - typically of 20-40 

mm diameter) with a one-way foot valve on its lower end, and a smaller-diameter inner PVC 

pipe (‘piston pipe’ – typically of 16mm diameter) with a one-way piston valve on its lower end. 

A rubber gasket on the outside of the piston valve provides a seal with the pump cylinder. The 

upper end of the piston pipe attaches to a handle, which is commonly made of galvanized iron. 

The pump is installed in a well or tank so that the piston valve and foot valve are below water. 

The pump cylinder remains static, and when the handle (piston pipe) is lifted, suction force 

causes the foot valve to open (while the piston valve remains closed), and water enters from the 

well into the pump cylinder. When the handle is then lowered, the foot valve closes and 

compression pressure causes the piston valve to open, and water flows into the piston pipe. 

Figure 3-5 shows how the EMAS pump valves function. Continued pumping alternately 

displaces water from the well into the pump cylinder then into and up the piston pipe, and the 

water flows out a spout that is located on one side of the pump handle. The EMAS Pump differs 

from conventional piston pumps in that the water is lifted inside the ‘pump rod’ (piston pipe) 

rather that outside it, which avoids the problem of sealing the pump rod, and additionally results 

in the water being delivered to the pump outlet at pressure. Photos of the EMAS Pump in use are 

shown on the cover of this document (bottom left and bottom right). 

 

 

Figure 3-5. Mode of operation of EMAS Pump: Valves function on pump upstroke [left] and 

down stroke [right] (adapted from Buchner, 2006)   
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3.7.2  EMAS Pump – Assessment of Cost and Functionality 

Analysis of ‘snapshot’ field data (i.e. data collected one time) found a very high 

percentage of households in the studied contexts in Bolivia to have functional EMAS Pumps. 

The cost of a new EMAS Pump, to be installed to 15 meters depth, was reported by local 

technicians to be US$ 30-45 (for pump material and construction costs only, i.e. not including 

well drilling). Visits to almost eighty households that use EMAS Pumps in their primary water 

supply systems (manually drilled wells or RWHS) showed nearly all pumps to be operational (78 

out of 79). As shown in Table 3-3 and Figure 3-6, 84% of the EMAS Pumps surveyed  were 

found to be functioning normally (i.e. without significant issues, and with water discharging 

normally), including 72% of pumps (13 out of 18) that were reported to have been installed 11 or 

more years ago.  

 

Table 3-3. Reported EMAS Pump age distribution and inspected functionality 

EMAS 

Pump age 

(years) 

No. of 

pumps 

surveyed  

No. 

operational 

w/ no issues 

Percent 

operational 

w/ no issues 

No. 

operational 

w/ issues 

Percent 

operational 

w/  issues 

0-3 20 19 95 1 5 

4-10 39 32 82 6 15 

11-15 13 11 85 2 15 

16-20 4 1 25 3 75 

over 20 1 1 100 0 0 

unknown 2 2 100 0 0 

TOTAL 79 66 84 12 15 
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Figure 3-6. (a) Operational state of all EMAS Pumps surveyed [left]; (b) Operational state of 

sub-set of EMAS Pumps installed 11 or more years ago [right] 

 

Of the surveyed EMAS Pumps that were not operating normally, the issues were 

determined to be either due to significant leakage from the handle or above-ground pump joint 

(observed), or below-ground issues such as leakage through the pump pipes or valves (not 

directly observed, except in one case where a family removed their pump from the well during 

the household visit). Of the twelve pumps that were functional but not operating normally, three 

pumps had observable above-ground leakage (including the pump that was removed from the 

ground during the research visit - this pump was also determined to have a significant leak 

below-ground, in the pump piston pipe). Two of these pumps were reported to have been first 

installed 4-10 years ago, and one pump 11-15 years ago.   

Of the nine functional pumps determined to have solely below-ground issues, only one 

pump was reported to have been first installed recently (0-3 years ago), while four were installed 

4-10 years ago, and four more at least eleven years ago (including three 16-20 years ago). The 

considerable age of most of the functional pumps that had below-ground issues suggests that 

Operational 
w/ no issues 

84% (66)

Operational, 
w/ issues
15% (12)

Non-
operational

1% (1)

EMAS Pump functionality (79 surveyed)

Operational 

w/ no issues 

72% (13)

Operational, 

w/ issues  
28% (5)

EMAS Pump functionality, 11 years or 
older (18 surveyed)
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while maintenance/repair should be done on these older pumps it has perhaps been neglected due 

to the pumps still functioning (although at a reduced level). 

In the community of Somopai in the Beni region, there were a few additional instances 

where non-functional EMAS Pumps were observed at non-surveyed homes. In each of these 

cases, the pump and borehole had been abandoned, either due to current use of another water 

system or when a family had moved and also abandoned their house. 

Reported EMAS Pump maintenance and repairs consisted primarily of replacing one of 

the two pump valves and/or replacing the pump handle, and were usually performed by a local 

technician. The most common repair was replacement of a pump valve, which in Beni and Santa 

Cruz regions was reported to have been done on 35 of 71 surveyed pumps. The replacement of 

the pump valve was reported by households to cost an average total of approximately US$ 9 

(materials and labor) in the areas where the question was posed (Izozog, Somopai, and Reyes). 

Technicians capable of performing EMAS Pump repairs were available in all of the research 

areas. Among surveyed households, 59% (47 out of 79) reported that repairs were done by a 

local technician, 35% (28/79) by a household member (male or female) and the other 

respondents (5%, 4/79) either gave no reply or stated that no repairs had been done to that point. 

In most of the surveyed areas, the manual pump handles were made out of galvanized 

iron piping (with pieces either connected with fittings or welded). This type of handle requires 

minimal maintenance. In one context, in Reyes, PVC handles were almost exclusively used, 

because users did not want the taste of their water to be affected by the iron pipes of the pump 

handle. (Local residents of this area are sensitive to iron, as their community water system has 

issues with high iron levels.) The majority of users throughout the various research sites 
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exhibited a good understanding of how the EMAS Pump works, and were able to talk 

knowledgably about the main components of the EMAS Pump. 

In surveyed areas of both Santa Cruz and Beni regions some users expressed a preference 

for manual pumps that provide a higher flow rate than the standard EMAS Pump. This 

preference was not expressed by users in surveyed areas of La Paz region, where other types of 

manual household pumps were neither observed nor mentioned by participants during the 

research. In Santa Cruz region, several surveyed households in Izozog expressed plans to replace 

their EMAS Pump with a ‘Baptist Pump’, as promoted by the organization Water for All 

International, due to its higher flow rate. 

In the surveyed area of Santa Cruz region, the installed EMAS Pumps used were of a 

small pump cylinder diameter (20mm). EMAS now also promotes larger pump cylinder 

diameters (25mm to 40mm) where feasible (depending on water table depth), which allows for 

higher pumping rates. An experienced EMAS-trained technician in San Julian confirmed that 

families in that area prefer the Baptist Pump due to its higher-flow rate, and that he and other 

technicians working in that area using EMAS drilling methods now usually build and install 

Baptist-type manual pumps. 

In Reyes, the standard EMAS Pump piston valve design has been adapted by local 

technicians to increase the pump flow rate. The adapted design, which is used by many 

households in the area, significantly increases the pump flow rate, but ends up delivering the 

water from the pump head at very-low pressure (as does the Baptist Pump). While this low 

pressure is not a problem when collecting water directly from the pump spout, it eliminates the 

ability of the pump to deliver water from the pump head to higher elevations (e.g. to an elevated 

storage tank) via a hose and/or pipes. 
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In the village of Cachilaya (La Paz region), several surveyed families pump water from 

underground storage tanks, through their manual EMAS Pump, to a sink, shower tank, and/or 

solar water heater. The ability of the EMAS Pump to discharge water at pressure from the pump 

head makes this possible, and is a valuable attribute. However, in the other research sites, 

pumping to elevations above the pump head was not mentioned by users, nor was it witnessed 

during the household visits.  

In recent years EMAS has been promoting the use of a simple foot-pedal adaptor that 

connects to the EMAS Pump handle. This ergonomic modification makes pumping of water for 

long durations with the EMAS Pump considerably easier (as tested by the researchers). 

3.7.3  EMAS Manually Drilled Well Systems 

In Bolivia, EMAS manually drilled well systems are primarily promoted for domestic 

water use. EMAS teaches a few different methods for manually drilling wells (Figure 3-7), with 

the most common (the ‘Standard EMAS’ method) incorporating percussion, jetting, and rotation 

drilling techniques. The standard EMAS method is capable of drilling to depths of up to 100m, 

through sand, clay, and thin layers of soft rock, with a team drilling with a trained technician 

commonly able to drill 20-30 meters per day (Buchner, 2011). This hybrid percussion-jetting-

rotation method consists of a fluid (water mixed with a thickener, usually clay) being pumped 

down drilling pipe that runs the entire depth of the well, and out through a drill bit attached to the 

bottom of the pipe. The drilling pipe is alternately raised, dropped, then rotated (usually ¼ to ½ 

turn, equally in each direction) while fluid is continuously being pumped through the pipe. The 

earthen material that is broken up (cuttings), primarily by the percussion and rotation actions, 

rises out the top of the borehole in the circulating fluid. Beside the well, a small dug trench and 

basin(s) allow for the drilling fluid and cuttings to settle out, and the fluid is then re-circulated 
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back through the drilling system. A support structure with a rope and pulley(s) facilitates raising 

and dropping of the drilling pipe. Figure 3-8 depicts how a hybrid percussion-jetting-rotation 

system functions. Figure 3-9 shows this type of EMAS drilling method in practice.  

 

 

Percussion-Jetting-Rotation (‘Standard EMAS’ drilling method) 
 Drilling is done primarily through percussion (raising and dropping of drilling pipe) and rotation (turning ¼ to 

½ turn in each direction). Injection of drilling fluid (water thickened with clay) down the drilling pipe and out 

the drill bit (jetting) using a pump assists the process, mainly by circulating the earthen cuttings out of the well, 

as well as by stabilizing the well wall. (Described in Section 7.3, and shown in Figure 5, Figure 6, and the top-

left cover photo.) 
 

Percussion-Suction-Rotation 
 Similar to the Standard EMAS method, but water circulation is reversed, with drilling fluid and cuttings being 

sucked up through the drill bit and drilling pipes (Sludging). A one-way valve, placed either at the top of the 

drilling pipe or between the drill bit and the bottom of the drilling pipe (like in the ‘Baptist’ manual drilling 

method), allows for fluid and cuttings to be sucked up the drilling pipe as it is raised and lowered. 
 

The Percussion-Suction-Rotation drilling method is better suited to drill through thick layers of coarse sand or 

in the presence of small stones (<2 cm) than the Standard EMAS drilling method. The Percussion-Suction-

Rotation method is capable of using thicker drilling fluids and larger pipe diameters to carry the stones up the 

drilling pipe. The larger pipe diameters limit the feasible drilling depth to approximately 30 meters due to the 

additional weight of drilling pipe. 
 

Sand Sludging 
 Used exclusively in sandy soils and where the water table is shallow. (EMAS has used this method primarily in 

coastal areas of Sri Lanka.) Consists of telescoping temporary casings into the ground (decreasing pipe 

diameter every few meters). Drilling within the casings is done by extracting soil with a smaller diameter pipe 

(above the water table) and suction/Sludging (near, below the water table). 
 

Figure 3-7. Manual drilling techniques developed/promoted by EMAS 

 

 

 

Figure 3-8. Diagram of EMAS hybrid percussion-jetting-rotation (‘Standard EMAS’ method) 

manual drilling system 
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Figure 3-9. EMAS percussion-jetting-rotation manual drilling, Trinidad (Beni region) 

 

EMAS recommends keeping the diameter of the drilled well as small as possible, to 

minimize the costs of the well casing and the effort needed to drill the well. Well casings of 

40mm diameter up to 75mm diameter are common, and sometimes slightly larger diameter pipes 

are used. PVC well casing is used to line the well, including a well screen made from cutting 

slots in the pipe with a hack saw. The slotted length of pipe is covered with a polyester sleeve, to 

prevent fine sand from entering through the screen. Sand is added to the outside of the installed 

well screen, with the polyester sock minimizing the need for a gravel pack. Well development is 

done using manual pumping and plunging techniques. 

3.7.4  EMAS Manually Drilled Well Systems Assessment 

In the research areas of Santa Cruz and Beni regions, it was evident that EMAS manual 

drilling methods are used widely by small businesses. In Trinidad, there are several technicians 

previously trained by EMAS that operate their own independent manual drilling businesses. In 
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Reyes, a rural town context, most of the houses had a borehole in their yard drilled using the 

EMAS standard manual drilling method. Two technicians that were trained by EMAS around 

fifteen years ago (in a water and sanitation project that included training of more than 60 

technicians in manual drilling throughout Beni region) continued their independent drilling 

business in Reyes, and several other local technicians that once worked as assistants to EMAS-

trained drillers have since started up their own manual drilling businesses. Two independent 

drilling team leaders in Reyes each reported currently charging families approximately US$ 140 

for complete drilling and installation of a 50mm diameter well at a depth of 14-15 meters, with 

an EMAS or similar-type manual pump installed (pump included in the pricing).   

In Somopai, a team of manual drillers reported that they get most of their business from 

well-off clients, as poor families cannot afford the wells, which the drillers charged about US$ 

20 per meter to install (with an EMAS Pump included in the pricing). This price for an installed 

borehole with pump in Somopai is around double the price of a similar system in Reyes. The 

higher price in Somopai is likely primarily due to the less-developed market in this area (with the 

drillers having fewer clients, and no competition). While the inability of poor families in 

Somopai to afford the wells is likely largely true, it also appears that prior subsidies for 

household wells and latrines in this area may be encouraging some families to wait for the arrival 

of another development project, hoping that they can receive subsidies towards their purchase of 

a household water supply system. Additionally, it was clear that the local drillers in Somopai are 

flexible with their pricing structure, as during the research visit they were just completing a 

manually drilled well fitted with an EMAS Pump, for which the client bought the materials 

himself and exchanged labour (work in the drillers’ fields) in place of paying cash for the 

drillers’ services. 
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EMAS manually drilled well systems in each of the surveyed areas were reported by 

households to be very reliable. Of 75 household respondents with knowledge of system 

reliability, 97% (73 out of 75) reported their system to provide water throughout the entire year 

(i.e. throughout all 12 months). This reliability statistic refers to the manually drilled well 

producing water, and is independent from pump functionality. Table 3-4 shows the reported 

reliability of the manually drilled wells surveyed, according to age. 

 

Table 3-4. Reported EMAS manually drilled well age distribution and reliability 

EMAS 

manually 

drilled 

wells age 

(years) 

No. of 

surveyed 

wells w/ 

response  

No. of wells 

providing 

water 

throughout 

entire year 

No. of wells 

providing water 

for less than 12 

months per year 

[and reported 

months] 

Location of wells 

providing water for 

less than 12 

months/year 

0-3 12 11 1 [1-3 months] Pampa Chililaya 

4-10 42 41 1 [6-9 months] Somopai 

11-15 12 12 0  

16-20 5 5 0  

over 20 1 1 0  

unknown 

age 
3 3 0  

TOTAL 75 73 2  

 

As the only two wells that were reported to provide water for less than 12 months out of 

the year were relatively new (both 10 years old or less), it is possible that other wells that were 

not supplying water throughout the year had already been abandoned or replaced with a new 

well. Fourteen surveyed households reported that their previous primary water source was also a 

manually drilled well (in their yard).  

EMAS promotes well head protection with a concrete apron around the top of the 

manually drilled well (commonly placing an old car tire around the base of the pump at ground 
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level and filling it with concrete).  However, inspections of EMAS manually drilled well systems 

at surveyed households showed that many wells did not have a protective apron. 

3.7.5  EMAS Rainwater Harvesting Systems 

Rainwater Harvesting refers to the “collection and subsequent storage of water from 

surfaces on which rain falls” (Mihelcic et al., 2009). RWHS can be appropriate as a primary or 

secondary (complementary) source of water for use at the household level, depending on the 

quantity of local rainfall. An EMAS household RWHS consists of a catchment area, which is 

commonly the roof of a house, to which a gutter/drainage system is attached, which guides the 

rainwater that falls onto the roof to a simple filter (to catch debris) and onwards to a storage tank. 

EMAS storage tanks can either be below-ground or above-ground. Where conditions permit, it is 

generally preferred to construct a below-ground tank, as the material costs are considerably less 

due to the walls of the underground tank being supported by the surrounding soil. From an 

underground tank, water can then be pumped to the surface (or above, to household or other 

elevated tanks) using a manual EMAS Pump. EMAS promotes the construction of underground 

tanks of various sizes, including up to 7,000 liters (nearly 2,000 gallons) capacity, using a 

cement and sand mortar as the base and walls, and a reinforced concrete lid. Five to seven 50kg 

bags of cement are typically used in the construction of a 7,000 liter tank. Above-ground tanks of 

similar sizes are made using ferrocement (cement and wire mesh) construction, which makes use 

of wire-reinforced cement mortar. Figure 3-10 shows an underground EMAS tank fitted with an 

EMAS Pump, and the top-right cover photo shows the same type of tank under construction. 
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Figure 3-10.  Surface view of EMAS underground tank with EMAS Pump 

 

EMAS underground tanks require occasional maintenance to control leakage, 

sedimentation, and water quality (Buchner, 2006). Tanks can began to leak due to settling and 

poor waterproofing, with settling being a primary concern shortly after construction. Improper 

waterproofing of tanks is the most common cause of leaks, with repair requiring a layer of 

cement (or asphalt) paint to be applied to the interior of the tank. Over time tanks collect 

sediment near the pump drain, thus requiring cleanout (much of which can be done with the 

EMAS Pump). If water quality is an issue, chlorination of water can be done within the tank. 

3.7.6  EMAS Rainwater Harvesting Systems Assessment 

The use of EMAS-style RWHS in Bolivia was very limited at the time of the field 

research. Although the systems have been promoted in Bolivia through EMAS trainings over the 

past several years, the only known area where a considerable number of households had 

implemented these systems was the village of Cachilaya, located one kilometer from EMAS’s 

training center. In Cachilaya, construction of EMAS household RWHS was starting to become 
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more popular after several years of promotion that included training of numerous local residents 

in RWHS system construction. There were an estimated 25-30 households with EMAS 

household RWHS that families have mostly financed themselves. Additionally, a project being 

developed by the local municipality (completely independently of EMAS) planned to subsidize 

(either partially or fully) the construction of household RWHS. 

In Gutierrez (Santa Cruz region), an experienced EMAS-trained independent technician 

built a demonstration site for EMAS technologies at his home in 2010, including RWHS, with 

EMAS paying for the cost of construction materials. At the time of the field research, the 

technician had not built any EMAS RWHS systems in the area for clients, nor had others 

replicated the systems themselves. It is evident that increased support, at a minimum in the form 

of promotion of the EMAS RWHS technology, is required in Gutierrez (and other areas of 

Bolivia) for households to consider uptake of the technology. 

In surveyed areas where EMAS-type RWHS are not in existence there was evidence of 

potential for household RWHS, as it is commonly practiced in very basic form (e.g. catching 

rainfall off of roofs using buckets or larger containers). Most (80%) of the houses surveyed 

without EMAS RWHS had either corrugated metal or clay shingle roofing, both of which are 

very suitable surfaces for rainwater catchment. The average estimated area of these types of 

roofs among surveyed households is nearly sixty square meters. 

3.7.7  Financing of EMAS Water Supply Systems in Bolivia 

The majority of EMAS water supply systems surveyed (62%, 53 out of 86) were reported 

to have been paid for fully by the household, without any subsidy or loan. Loans were reported 

to have been used to help pay for systems by 5% of households (4/86), with 3 households having 

received a loan from a bank or official lender, and 1 household having received a loan from a 
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relative. 28% of households reported receiving subsidies to partially fund their EMAS water 

systems, and 6% reported not knowing specifically how their water system was financed. There 

were not any households that reported receiving full subsidies for their systems. Table 3-5 shows 

reported EMAS water supply system financing for each of the research areas. 

 

Table 3-5. Reported financing of EMAS water supply systems in Bolivia 

Survey Area No. of households 

total 

surveyed  

unsubsidized 

systems, paid 

without a loan 

received  loan 

to help pay 

for system 

partially 

subsidized 

systems 

Not known 

Cachilaya 8 6 0 2 0 

Pampa Chililaya 7 0 0 7 0 

Izozog 36 23 3 9 1 

Somopai 9 1 0 6 2 

Reyes 26 23 1 0 2 

TOTAL 86 53 4 24 5 

Percent of total households 62 5 28 6 

 

The types and levels of subsidies received varied between (and within) the surveyed 

areas, with subsidies reportedly coming from either the implementing agency/project or local 

government. In Reyes, no households reported receiving subsidies, while in Somopai there was 

only one household that reported paying for their system in full. In Izozog, the majority of 

households reported paying for their system in full. In Pampa Chililaya, near the EMAS training 

center, all of the surveyed households had received labour (well installation services) for free, 

while paying the full costs of system materials. All of the wells in Pampa Chililaya had been 

installed by EMAS during training sessions. In Cachilaya, the only area where households with 

EMAS RWHS systems were surveyed, 75% of respondents said that they had paid for their 

systems in full, without a loan, while 25% received subsidies in the form of construction 

materials. 

 



 

61 

 

3.8  EMAS Beyond Bolivia 

In addition to promoting EMAS technologies in Bolivia, EMAS has also worked in 

various other countries in South and Central America, as well as in Africa and Asia (where 

EMAS technology introduction and promotion has been very limited). EMAS’s activities outside 

of Bolivia typically consist of supporting in-country groups/organizations with training and 

technical support (Buchner, 2011). 

Given the low cost of EMAS household water supply systems, and their conduciveness to 

being built and repaired by local technicians, these technologies offer considerable potential for 

success in accelerating self-supply in sub-Saharan Africa. The potential includes using the 

EMAS Pump on existing or new household manually drilled or hand-dug wells (with the 

possibility of installing multiple pumps on the same hand-dug well), manual drilling of wells 

using EMAS methods, upgrading of such systems as appropriate/feasible (e.g. pumping through 

hoses or pipes to a tank/reservoir), and RWHS. 

A valid point of comparison in considering the potential of the EMAS Pump for 

household use in sub-Saharan Africa is the Rope Pump (specifically ‘family’ models of the Rope 

Pump, rather than ‘community’ models). It is estimated that there are over 20,000 Rope Pumps 

installed in Africa and Asia (Holtslag, 2011). The Rope Pump has some similar attributes to the 

EMAS Pump, such as a simple concept, relatively low cost, construction from commonly-

available materials, and the potential for local production at the small town or village level. A 

study in Honduras (Brand, 2004) compared the EMAS Pump and the Rope Pump, and found that 

both types of pumps were appropriate to use in rural water supply in Honduras. While the Rope 

Pump was found to have a more established market in Honduras at the time, the estimated 
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private market cost of the EMAS Pump was determined to be considerably less than the Rope 

Pump. 

Sutton and Gomme (2009) explored recent experiences and issues of various 

organizations with introducing the Rope Pump to over a dozen sub-Saharan African countries, 

where the Rope Pump had to that point had relatively limited market success as a household-

level pump. The study found Ethiopia to be the only country to have had a “relatively large-scale 

development” of Rope Pumps for the household self-supply market. More recent information 

shows a growing market-based Rope Pump market in Tanzania (Haanen and Kaduma, 2011). In 

considering the introduction of the EMAS Pump, it may be particularly valuable to further assess 

specific issues previously encountered in Rope Pump introduction projects (regarding cost, 

product promotion, project implementation, technical performance, acceptance by users/ 

governments/ donors, etc.) and to assess how the EMAS Pump may be able to overcome the 

aforementioned obstacles. With knowledge gained from working in low-cost pump markets, 

current Rope Pump manufacturers may see value in offering the EMAS Pump, which can likely 

be manufactured and sold for a considerably lower price, to customers as alternative option to the 

Rope Pump. 

 

3.9  Conclusion 

EMAS manual water pumps are shown to have a high rate of functionality as used at the 

household level in the studied contexts in Bolivia. The EMAS manually drilled wells surveyed, 

which were installed by numerous different drilling teams (most of whom are independent of 

EMAS) were reported to be reliable, with a very high percentage of wells providing water 

throughout the entire year. These conclusions combine with an evident considerable adoption of 
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the EMAS Pump and manually drilled wells to show that the technologies have had an important 

impact on increasing access to water supply at the household level in many rural areas of 

Bolivia. Households are able to maintain low-cost EMAS Pumps, with repairs commonly done 

by local technicians or household members, and in some cases the same EMAS Pumps have 

been used for more than a decade. 

Manual drilling using the Standard EMAS method is widespread throughout much of the 

research areas in Bolivia, with evidence of local technicians running small manual drilling 

businesses. Given the willingness of EMAS water system owners to contribute to the costs of 

purchasing the systems (and in many cases contributing all of the hardware costs), it is important 

that the potential of linking low-cost water supply systems with micro-financing loans (which 

EMAS does not currently get involved in) be explored in Bolivia, to allow for access to the 

systems by more households. 

EMAS household RWHS show potential, based on their success in one of the research 

areas and the common practice of basic forms of rainwater collection in the other research areas. 

For the EMAS RWHS technology to have a good chance of broader uptake in other areas of 

Bolivia, continued training of technicians should be complemented by further support to promote 

the technology. 

The study therefore recommends that further research include: 

 An investigation of conditions necessary for successful introduction and further effective 

scale-up of EMAS household water supply technologies in Bolivia, 

 An in-depth comparative analysis of the EMAS Pump and the Rope Pump, exploring the  

potential for use of the EMAS Pump in household water supply in sub-Saharan Africa 

(currently taking place by our research group, in Uganda), 
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 An evaluation of a potential project in Cachilaya (near the EMAS training center) which 

proposes to provide local households with support to build EMAS household RWHS, and 

 A study of the social and economic impact of EMAS technologies in Bolivia, focusing on 

the results of a previous project that trained over sixty technicians in Beni region in EMAS 

manual well drilling and pump construction. 

 

3.10  Resources – EMAS Technologies 

Over 30 training videos of EMAS technologies (Figure 3-11), including text descriptions 

in English and Spanish, can be viewed at:  

http://vimeo.com/emas    and    http://blip.tv/mobile-school-for-water-and-sanitation 

Additionally, the following websites offer valuable information on EMAS technologies: 

 AKVO: http://www.akvo.org/wiki/index.php/EMAS 

 EMAS (in Spanish and German; limited English): http://www.emas-international.de/ 

 RWSN: http://www.rural-water-supply.net/en/implementation/handpump-overview/135-

emas-flexi-pump 

 

Water Supply 
 Pumps – EMAS Pump construction (standard; high-yield; high-pressure); pipe fittings, air chambers, etc.; pedal-powered 

EMAS Pump; wind-powered EMAS Pump; hydraulic ram pump 

 Manual Drilling – EMAS standard drilling; suction drilling variant; sand sludging;   

 RWHS – storage tanks of various sizes (ferrocement; mortar-lined underground tanks) 

 Wells – improving existing hand-dug wells, multiple EMAS Pumps on wells 

 Spring catchment; irrigation 
 

Other Topics 
 EMAS Introduction; EMAS training site 

 Household water filter; subsurface wetland water treatment, iron removal; 

 EMAS VIP Latrine; water shower; concrete kitchen sink 

 Solar water heating, solar room heating 

Figure 3-11. EMAS web video topics (Vimeo, 2012; Blip 2012) 

http://vimeo.com/emas
http://blip.tv/mobile-school-for-water-and-sanitation
http://www.akvo.org/wiki/index.php/EMAS
http://www.emas-international.de/
http://www.rural-water-supply.net/en/implementation/handpump-overview/135-emas-flexi-pump
http://www.rural-water-supply.net/en/implementation/handpump-overview/135-emas-flexi-pump
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CHAPTER 4: A TECHNICAL COMPARISON OF 

THE EMAS PUMP AND THE ROPE PUMP3 
 

 

 

4.1  Introduction  

This research assesses the potential of the EMAS Pump for use in Self-supply in 

developing community contexts, with specific focus on use in sub-Saharan Africa. A 

comparative analysis was carried out in Uganda with the EMAS Pump and another manual water 

pump, the Rope Pump. The Rope Pump, which has been most successfully marketed as a 

household-level pump in Nicaragua, was selected for comparison because it is well-known in the 

international rural water supply sector. It has been introduced in many other developing countries 

over the past fifteen years, with varying degrees of success (Sutton and Gomme, 2009). 

 As introduced in Chapter 1, Self-supply is based on the idea of users making affordable, 

incremental improvements to their private family or neighborhood (i.e. small group) water 

supply systems. While it is not a feasible option in every context, where it is possible 

implementation of Self-supply can result in “the obstacles to sustainability created by a lack of 

trust, cohesion, and co-operation within communities” being greatly reduced (Harvey and Reed, 

2007). Self-supply projects can be complementary to community water supply systems, and can 

                                                           
3 This Chapter is part of a study assessing the potential of the EMAS Pump as a low-cost water-lifting option for 

household water supply systems in sub-Saharan Africa, carried out by the University of South Florida. The chapter 

author designed the main aspects of the pump comparative analysis, advised on field data collection, and led 

analysis of pumping rate and material cost data.  A fellow University of South Florida graduate student, Jacob D. 

Carpenter, assisted with design of the pumping rate study, led the design and analysis of heart rate monitoring and 

energy expenditure, and led all field data collection. 
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play an important role in helping developing countries to reach the Millennium Development 

Goal (MDG) target for improved drinking water supply coverage, as conventional community 

water supplies often bypass the poorest and most remote communities. This potential improved 

coverage will additionally impact most of the main MDG objectives, including reduction of 

poverty and child mortality (Sutton, 2010). 

In recent years, there has been considerable attention paid to the Rope Pump as a low-

cost water supply option for developing communities (e.g. Alberts, 2004; MacCarthy, 2004; 

Harvey and Drouin, 2006; Sutton and Gomme, 2009). Yet, there has been little published 

independent documentation related to the manual EMAS Pump and its potential for use in low-

cost water supply.  A 2004 field note published by the Water and Sanitation Program of the 

World Bank compares and summarizes experiences with the Rope Pump and the EMAS Pump in 

Honduras (Brand, 2004). While providing a basic overview and comparison of these two manual 

pumping technologies, this publication does not present specific scientific data on the technical 

performance of the EMAS Pump.  The article does, however, present a summary table adapted 

from the Nicaraguan Handpump Evaluation, which compares various attributes of the EMAS 

Pump and Rope Pump, including initial costs, function and reliability, and overall sustainability. 

Chapter 3 (and MacCarthy et al., 2013) showed EMAS Pumps in household water supply 

systems in Bolivia to have a high rate of functionality, with 99%  (78 out of 79) pumps surveyed 

found to be operational, including 84% (66 out of 79) that were functioning without any apparent 

problems. A subset of this sample, which consisted of pumps reported to have been installed 11 

or more years ago, showed 72% (13 out of 18) to be operational. The results of the study in 

Bolivia, combined with the results of the comparison of the EMAS Pump and Rope Pump in 

Honduras, highlight multiple qualities of the EMAS Pump (e.g. low-cost, feasibility of local-
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manufacture in developing communities, and ability for households to maintain in operation) that 

lend it to potentially be very suitable as a Self-supply water-lifting option in sub-Saharan Africa.   

Harvey and Drouin (2006) performed a field study in northern Ghana comparing the 

Rope Pump to the Nira Pump, proposing the Rope Pump as an alternative, locally manufactured 

option to standardized imported handpumps, for community water supplies in sub-Saharan 

Africa. They found the Rope Pump to outperform the Nira Pump in a number of ways (e.g. low 

operating and maintenance costs, greater pumping head and flow rate), and found there to be no 

significant difference between the two pump types in delivered microbiological water quality. 

The study concluded that the Rope Pump “provides a significant technological opportunity to 

improve water supply sustainability in Africa”. 

In a more recent article on the transfer of the Rope Pump technology, Sutton and Gomme 

(2009) reviewed numerous experiences with the introduction of the Rope Pump in areas of sub-

Saharan Africa. That study concluded that the Rope Pump has numerous ‘strengths’ that make it 

a good option for use in sub-Saharan African communities, including: (1) its amenability to local 

manufacture and user-led maintenance; (2) improved quality of water delivered by wells with 

Rope Pumps, compared to wells that use ‘rope and bucket’ water-lifting systems, and (3) its 

affordability, leading to considerable potential for people to use it to help themselves improve 

their quality of life. Despite these strengths, that study emphasizes issues with the Rope Pump 

being marketed in sub-Saharan Africa both as a community pump (often perceived “as ‘low’ 

technology” – leading to reduced acceptance by various water supply stakeholders) and the 

likelihood that it may be too expensive to be marketed as an unsubsidized household pump 

(“Could it be too cheap for donors and too expensive for users?”). The issue of affordability for 
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households in sub-Saharan Africa is an important factor in comparing the EMAS Pump and the 

Rope Pump. 

A 2003 field study in the Maputaland area of northern KwaZulu Natal, South Africa, 

carried out by the University of Southampton and Partners in Development (and led by the 

author of this dissertation), considered locally manufactured Rope Pumps as an alternative to 

“Bucket Pumps” (a bailer and windlass water-lifting system) for use on manually drilled wells 

(Still et al., 2004; MacCarthy, 2004). That study showed Rope Pumps to have considerably 

higher water-lifting rates than Bucket Pumps (lifting water from depths of 4 m, 15 m, and 18 m), 

leading to a significant upgrade in the level of service provided. 

As the Honduras Rope Pump and EMAS Pump study does not present specific data on 

the technical performance of the EMAS Pump, further testing is required. Independently 

collected pump performance data (e.g. pumping rates from various well water depths) is valuable 

to allowing researchers and development practitioners to more objectively assess the potential of 

the EMAS Pump for use at the household level in developing communities. Additionally, an 

assessment of needs for local construction of the EMAS Pump (e.g. material costs, tools required 

for construction) in a sub-Saharan African environment is of value in helping to determine the 

relevance of the EMAS Pump to such contexts. Accordingly, the objective of this study is to 

analyze (for performance, cost, and construction requirements) the suitability of the EMAS 

Pump as a locally constructed option for use on household wells in developing community 

contexts in sub-Saharan Africa, through a technical comparison with the Rope Pump. 

The comparative analysis allows researchers and development practitioners to better 

understand the technical capabilities of the EMAS Pump, as well as socio-economic 

considerations related to its introduction and use, through comparison with the Rope Pump (and, 
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in turn, with other documented low-cost water-lifting devices) as a Self-supply option for 

developing communities. Two versions of both the EMAS Pump and the Rope Pump were tested 

in the field in Uganda (lifting water from various depths to assess flow rates at different depths, 

and energy expended during pumping). 

 

4.2  Background 

4.2.1  EMAS Pump 

The EMAS Pump (also known as the EMAS Flexi-pump), as introduced in Chapter 3, is 

a manual low-cost water-lifting device appropriate to use at the household level. Originally 

developed in the 1980s by Wolfgang Buchner, the EMAS Pump has been marketed extensively 

for local construction and use at the household level in Bolivia, and to a lesser extent in other 

developing countries, mostly in South and Central America (Akvo, 2012). The EMAS Pump has 

also been introduced on a relatively small-scale in several countries in sub-Saharan Africa, 

including recently in Sierra Leone (Bunduka, 2013). The simple design of the EMAS Pump, 

using materials that can commonly be found locally in developing countries, allows for the pump 

to be fabricated in many developing community contexts. The low-cost of the EMAS Pump, 

combined with its capability of pumping from significant depths to heights above the pump head, 

adds to its versatility (e.g. for pumping to household tanks, reservoirs at higher elevations, or for 

installing multiple pumps on a single well). 

The EMAS Pump is a type of piston pump. However, it differs from conventional piston 

pumps in that the water is lifted inside the ‘pump rod’ (piston pipe) rather that outside it, which 

avoids the problem of sealing the pump rod, and additionally results in the water being delivered 

to the pump outlet at pressure. The EMAS Pump can be constructed entirely from materials that 
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are commonly found in developing areas, i.e. PVC and galvanized iron (GI) pipes and fittings, 

glass play marbles for the pump valves, and rubber cut from an old car tire for a piston valve 

gasket.  

As shown in Figure 4-1, the EMAS Pump consists of an outer PVC pipe with a one-way 

foot valve on its lower end, and an inner PVC pipe with a one-way piston valve on its lower end. 

The upper end of the inner pipe attaches to a handle, which is commonly made of galvanized 

iron (GI). The pump is installed in a well or tank so that the valves of the inner and outer pipes 

are both below water. The outer pipe remains static, and when the handle (attached to the inner 

pipe) is lifted, suction force causes the foot valve to open (while the piston valve remains 

closed), and water enters from the well into the outer pipe. When the handle is alternately 

lowered, the foot valve on the outer pipe closes and the piston valve on the inner pipe opens, 

causing water to flow into the inner pipe. Continued pumping alternately displaces water into the 

outer pipe then into and up the inner pipe, and the water flows out a spout that is located on one 

side of the pump handle (i.e. at the GI elbow shown in Figure 4-1). 

 

 

Figure 4-1. EMAS Pump components 
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A rubber gasket located on the outside of the piston valve forms a seal between the two 

pipes, and causes the pumped water to flow from the pump spout with considerable pressure. 

Pumping water at pressure from the pump head is a valuable attribute of the EMAS Pump, as this 

makes it possible to pump water directly from the well, through the pump head, then through a 

hose or pipe(s) to an elevated tank (e.g. on a house or a hillside). Figure 4-2 shows (a) an EMAS 

Pump installed on a drilled well, and (b) an EMAS Pump in use on a hand-dug well upon which 

several EMAS Pumps are installed. 

 

 

Figure 4-2. (a) Photo of EMAS Flexi-Pump on manually drilled well [left]; (b) Photo of multiple 

EMAS Pumps installed on a single hand-dug well [right] 

 

4.2.2  Rope Pump 

The Rope Pump has a basic design that consists of five principal components, as shown 

in Figure 4-3: (1) a pulley wheel attached to supports; (2) a rope with washers attached to it at 

equally spaced intervals; (3) a top guide, including a spout; (4) a rising main pipe; and (5) a 

bottom guide (MacCarthy, 2004). The rope with washers forms a loop and runs up the rising 

main pipe, through the front side of the top guide, around the pulley wheel and back down 
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through the back side of the top guide into the well and through the bottom guide, where it 

changes direction once again to go up through the rising main. The bottom guide of the Rope 

Pump is installed under water in a well, and when a handle/crank on the pulley wheel is turned 

(in the counter-clockwise direction relative to the view in Figure 4-3), the rope and washers 

move up the rising main pipe, with water from the well being lifted on the washers within the 

pipe, and being freely discharged through a spout above the top guide. 

 

 

Figure 4-3. Details of Rope Pump installed on a drilled well (MacCarthy, 2004) 
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Like the EMAS Pump, the Rope Pump can be constructed entirely from materials commonly 

found in developing areas (e.g. PVC and GI pipes, old car or truck tires, nylon rope, etc.). Figure 

4-4 shows (a) a family model Rope Pump installed on a hand-dug well in northern Uganda, and 

(b) a family model Rope Pump installed on a drilled well in South Africa. 

 

 

Figure 4-4. (a) Family Rope Pump in use in Gulu, Uganda (photo: J.D. Carpenter); (b) Family 

Rope Pump in use in South Africa (MacCarthy, 2004) 

 

4.3  Methodology  

4.3.1  Introduction 

The research considers the potential of EMAS manual pumps (EMAS Pump) for use in 

Self-supply in developing community contexts, with an emphasis on its potential for use in sub-

Saharan Africa. The research builds upon an assessment of EMAS Pumps at the household level 

in Bolivia (Chapter 3) that showed these pumps to have a high rate of functionality in the studied 
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contexts. A comparative analysis was completed of the EMAS Pump and the Rope Pump, 

considering the technical performance of the two types of pumps, pump material costs, and 

resources required for local fabrication. 

4.3.2  Pumps Examined 

Two versions of the EMAS Pump and two versions of the Rope Pump were tested in the 

field in northern Uganda – a version of each type of pump designed for pumping from depths up 

to 20 m (using a 25-mm diameter pumping pipe), and a version of each pump designed to pump 

from deeper depths (30-m-plus; using a 20-mm diameter pumping pipe). Table 4-1 summarizes 

the details of the two pumps tested in the field. The selection of these pumping pipe sizes was 

based on Rope Pumps currently promoted in Uganda. Other versions of these pumps, such as the 

Rope Pump with 32-mm pumping pipe and high-flow EMAS Pump with 16-mm pumping pipe, 

are less common in household water supply, and were not tested in this study. 

 

Table 4-1. Details of pumps tested 

Pump Type 

Recommended Pumping 

Depth Range (Buchner, 2011; 

Holtslag, 2013) 

Pumping Pipe Casing Pipe 

EMAS ‘Standard’ 

(20-mm) 
30+ m 20-mm PN 16 32-mm PN 10 

EMAS ‘Quantity’ 

(25-mm) 
Up to 20 m 25-mm PN 10 38-mm ‘drain’ pipe 

Rope Pump  (20-mm) 30+ m 20-mm PN 16 Not Applicable 

Rope Pump  (25-mm) Up to 20 m 25-mm PN 10 Not Applicable 

 

The two versions of the Rope Pump tested consisted of a version with 20-mm pumping 

(rising main) pipe and pistons and another with 25-mm pumping pipe and pistons; these are 

referred to as the 20-mm Rope Pump and the 25-mm Rope Pump, respectively. A version of the 

Rope Pump with 32-mm pumping pipe is recommended for very shallow wells of up to 10 m; 
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this version was not assessed as it is less common in Uganda, and the 25-mm and 20-mm 

versions were more comparable to the EMAS Pump variants tested. 

The Rope Pump tested in this study corresponds to the low-cost “Family Model” design 

promoted by the organizations Connect International 

(http://www.connectinternational.nl/index.html) and SHIPO (http://www.shipo-tz.org/), and 

manufactured locally by small enterprises in parts of east Africa (Tanzania, Malawi, and 

Uganda). The EMAS Pump tested is nearly identical to the design recommended by EMAS 

(http://emas-international.de/index.php?id=32&L=3), with only a slight design variation to the 

valve construction for the 25-mm “Quantity Pump”. This modification was made to allow for 

simpler construction using the pipes commonly available in Uganda, and is not believed to have 

made any significant difference in pump operation. In addition, such slight design variation is 

encouraged by EMAS, depending on the specifications of materials available in a given context. 

The frame of the Rope Pump tested was modified to mount the community handpump pedestals 

on the boreholes at the testing sites. The EMAS Pump only required a fabricated mounting plate 

to be fitted to the standard handpump pedestals and a short hose connected to the spout of the 

EMAS Pump to ensure that no water was spilled during testing. An alternative version of the 

EMAS “Quantity” Pump with a 20-mm pumping pipe was not tested in this study.  See 

Carpenter (2014) for more details. 

4.3.3 Technical Assessment of Pumping Performance 

4.3.3.1  Development of Performance-testing Methodology 

The context of performing pumping tests in the field presented numerous challenges, 

primarily: (1) locating wells of a various range of static water levels (SWLs), (2) determining 

method to ensure that the pumping rate measurement comparisons between the different pumps 

http://www.connectinternational.nl/index.html
http://www.shipo-tz.org/
http://emas-international.de/index.php?id=32&L=3
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tested are valid, and (3) identifying test subjects that were representative of adults that would be 

using the pumps in Uganda (sub-Saharan Africa). 

Two options were initially considered for carrying out the tests: (a) identification of wells 

with a range of static water levels (with an aim to have several wells in 5 m to 30 m static water 

level depth) in the same geographic area, so that the studied pumps could be tested on each well, 

and (b) identification of a deep hand-dug well (of diameter equal or greater than 1.5 m) that 

could be fitted with a specifically-built testing apparatus (a water container, e.g. a barrel, on a 

rope and pulley) which would be lowered to incremental levels within the well. An assessment of 

available groundwater sources in Uganda failed to identify an appropriately deep hand-dug well 

to carry out the tests, thus option (b) was eliminated. Through collaborators in northern Uganda, 

numerous possibilities were, however, identified to use community boreholes of various static 

water levels in Kitgum and Gulu districts, and thus option (a) was pursued. 

 The distance between the selected well sites (and relative difficulty in accessing them) 

made it impractical to have more than two test subjects. This necessarily increased the 

importance of using a reliable method to compare pumping rates. The South Africa Rope Pump 

study had similarly used two subjects (an adult male and an adolescent female) for all pumping 

trials, with the subjects being instructed to pump at normal rates (trying to exert the same amount 

of energy for each test), and with at least half an hour of time between pumping trials to ensure 

fatigue was not a significant factor in results (MacCarthy, 2004). For the current study, it was 

determined that this method was not sufficient to ensure reliability of results. Thus, it was 

decided to additionally monitor the heart rate of the testing subjects during all pumping trials, 

and to use that to calculate energy expended during pumping. Pumping rates for the EMAS 

Pump were ‘normalized’ by adjusting them to reflect the ratio of energy expended for the EMAS 
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Pump to the energy expended for the corresponding Rope Pump. This methodology is expected 

to provide sufficient ‘internal reliability’, i.e. comparing the various pumping rates of a specific 

testing subject, while not necessarily providing ‘external reliability’, i.e. comparing the pumping 

rates of one testing subject to those of another testing subject. 

4.3.3.2  Measuring of Pumping Rates 

Field data collection consisted of a number of pump tests that were carried out using 

variants of the EMAS Pump and the Rope Pump detailed in Table 1. These tests included tests 

on boreholes and wells of various water level depths in Kitgum and Gulu Districts, northern 

Uganda. Each pump underwent two 40-liter pumping trials by each of two test subjects at five 

different sites. Testing sites were chosen to represent a range of well depths from approximately 

5 to 30 m. 

The specifications of the pumps tested are summarized in Table 4-2. The 20-mm variants 

of both pumps were tested at five wells, with static water levels of 5.1 m, 12.6 m, 18.4 m, 21.1 

m, and 28.3 m. Meanwhile, the 25-mm variants of each pump were tested at wells with static 

water levels of 5.1 m, 12.6 m, and 17.0 m. Each pump was tested for two timed trials for each 

test subject (male and female) in which 40 liters was pumped. 

4.3.3.3  Heart Rate Monitoring 

The continuous heart rate (pulse) of the test subjects was measured and recorded during 

pumping trials with a Polar FT7™ system (Polar Electro, Kempele Finland) that consisted of the 

H1™ heart rate sensor (chest strap with sensor) and the FT7 training computer (wrist watch with 

display). The system relies on telemetry signals sent from the chest strap to the wrist-watch 

computer and was first introduced by Polar in the late 1970’s (Shephard & Aoyagi, 2012). Polar 

still is widely recognized as a leading manufacturer of quality heart rate monitoring hardware 
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and it was noted that Polar devices with chest straps were used in many recent studies focused on 

energy estimations from heart rate monitoring (Bot & Hollander, 2000). Furthermore, the type of 

system utilized has been characterized as accurate in relevant literature (Achten & Jeukendrup, 

2003). Prior to each round of testing, the chest strap was fitted to the user and the training 

computer was checked for reliable signal reception. Heart rate was recorded prior to the start of 

the test and then at each 10-second interval during pumping. 

4.3.3.4  Calculation of Energy Expenditure for Pumping 

Heart rate was recorded for each 10-second interval during pump testing, so a rate of 

energy expenditure could be calculated and applied to each interval. When resting energy 

expenditure is subtracted from the total estimated energy expenditure, an estimation of energy 

expenditure specifically for pumping can be made. However, this is still a representation of 

energy rate (energy per unit time, also known as power). The energy expenditure rate for 

pumping was then applied step-wise to each 10-second interval of the pumping trial in order to 

determine the total energy spent for each interval. A sum of energy for each of these intervals 

provides an estimation of total energy for pumping. See Carpenter (2014) for more details on the 

energy expenditure calculations. 

4.3.3.5  Normalization of Pumping Rates 

To account for potential differences in energy expended by the pumping subjects when 

using the different types and variants of pumps, the energy expenditure during each pumping 

trial was estimated by heart rate monitoring and empirical relationships were used to estimate 

energy expenditure from heart rate data. It is believed that energy data has significant internal 

validity for comparisons in this study, however external validity may be limited. Details of the 
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methodology for heart-rate monitoring and estimation of energy, as well as implications of 

energy expenditure calculations and its limitations are discussed in detail by Carpenter (2014). 

4.3.3.6  Selection of Test Users  

Two pumping test subjects, one adult female and one adult male, were selected based on 

several factors. Due to logistical constraints associated with the distance to field sites and the 

time required for installing and uninstalling pumps, it was only feasible to have two subjects 

perform testing. Thus, one adult male and one adult female were identified, with their 

availability for the entire data collection period being a primary concern. The pumping test 

subjects were a 23-year woman and a 24-year man (unrelated to each other) living in Kitgum 

Town, each of average build and both accustomed to collecting water from handpumps. Neither 

subject was previously familiar with the specific pump models tested in this study. The users 

were paid corresponding to the common local daily wage for skilled labor and provided with 

water and meals on testing days. 

4.3.3.7  Details of Testing Trials  

Pumping trials took place at five separate locations in northern Uganda, four in Kitgum 

District and one in Gulu District, over a one-month period in September-October 2013. Most 

sites were more than 50 km from the testing base of Kitgum Town and one was more than 100 

km away. Throughout each pumping test water levels were measured using a surveying tape 

measure with a weight attached to the end. One site (Site 3) was visited on two separate 

occasions (about 30 days apart) for testing of the two different pump sizes (as it was not initially 

planned to test the 25-mm pumps at this site). The static water level of the Site 3 well had 

changed during this time. Table 4-2 provides the measured static water levels for each site at the 

time of testing. 



 

80 

 

Table 4-2. Static water levels of wells during testing (meters below ground surface) 

 Site 1 Site 2 Site 3 Site 4 Site 5 

20-mm pumps 5.1 m 12.6 m 18.4 m 21.1 m 28.3 m 

25-mm pumps 5.1 m 12.6 m 17.0 m - - 

*Tests for 20-mm and 25-mm pumps at Site 3 took place at different times because it was not 

initially planned to test the 25-mm pumps at this site 

 

All five sites had existing boreholes (wells) that were fitted with a standard pump 

pedestal, though only the Site 1 pump was operational. Non-functional handpumps were targeted 

by the field researchers in order to avoid disturbing operational community water supplies. The 

one operational pump was located at an unused borehole inside World Vision’s compound in the 

town of Gulu. Local handpump mechanics were hired at each site to assist with removing and 

reinstalling components of the community handpumps that were installed on the boreholes. 

Ambient temperature was hot each day during testing, estimated to be around 29° - 35° C (84°- 

95° F), though the temperature could change rapidly on partially overcast days. The availability 

of shade was limited at a few of the sites, forcing the test subjects to sit in the vehicle with 

limited breeze while resting between tests. Two of the sites had large shade trees over the 

borehole, so test subjects were likely cooler during these trials. In an effort to keep the test 

subjects properly hydrated, large bottles of water were made available during testing. Each test 

subject had more than two liters of water available to them and was encouraged to drink plenty 

of water to prevent dehydration. The water intake for each pump tested was placed 

approximately 2.5 m below the static water level to eliminate any chance of well drawdown 

beyond the pump intake. For the Rope Pump, this measurement was made at the bottom of the 

pumping pipe while for the EMAS Pump it was made at the bottom of the piston valve (in the 

lowest position). 
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4.3.3.8  Measurement of Pumping Rates  

As the study is assessing pumps for use at the household level, it is expected that the 

water source will be in close proximity to the household. In such cases, it is common for users to 

regularly pump water on an ‘as needed’ basis, rather than pumping larger quantities to store at 

the household. Twenty liters is the nominal volume of the most common size of water collection 

container (i.e., the jerrycan) used in Uganda and many other countries in sub-Saharan Africa, and 

thus for the study was chosen as the standard amount to be compared for calculating pumping 

rates.   

For comparison purposes, it is also of interest to measure pumping rates when pumping 

two 20-liter buckets consecutively. Thus, the objective of each pumping trial was for the user to 

pump 40 liters of water at a normal pace, which was explained to the testing subjects as, “a pace 

that you would pump if you were collecting 40 liters of water on a typical day.” Each test was 

started with the pump primed (ready to immediately discharge water) and time was recorded to 

the second with a digital stopwatch. All pumped water was collected in containers and each trial 

was timed to allow for a calculation of average pumping rates. Two marked containers of 20 

liters each were used to allow for the “split” time and a comparison of pumping rate for the first 

20 liters to second 20 liters of each trial. Marked volume measurements for testing containers 

were approximated under field conditions by weighing 20 kg of water with a calibrated infant-

weighing scale and (assuming a fluid density of 1 kg/liter) marking the 20-liter line with the 

container on a level surface. Actual measurement during pumping trials was judged by a member 

of the testing team who took into account the estimated effects of the slope of the ground surface. 

When the first container reached the 20 liter mark for each trial, it was swiftly exchanged with 

the second container, and it is believed that no appreciable amount of water was lost. The water 
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level in the well was measured before and after each test and pumped water was poured back 

into the well to ensure that changes in static water level from pumping did not introduce error to 

the following pump test. 

4.3.4 Material Cost Comparison and Assessment of Pump Construction Needs 

The Rope Pump and the EMAS Pump can both be fabricated in Uganda, using local 

supply chains. Retail costs of materials needed for the pumps were identified by visiting 

representative manufacturers, importers, and retailers in Kampala, the capital and economic hub 

of Uganda. Prices of materials in the capital were used in this study because these costs (and 

particularly percent differences in material costs between the different pump types) are likely to 

be comparable in other major cities in sub-Saharan Africa. In contrast, price comparisons outside 

of Kampala may fluctuate more based on local supply chains and other local conditions. 

 PVC materials are manufactured by two companies in Uganda while most galvanized 

piping materials are imported. There are some basic differences in skill and resource 

requirements for the fabrication of the EMAS Pump and the Rope Pump that were included in 

the assessment. The availability of electricity is a major delineation between areas where the 

Rope Pump can and cannot be fabricated.  

 

4.4  Results and Discussion 

4.4.1  Pumping Performance 

4.4.1.1  Pumping Rates from Various Water Depths 

Pumping rates were calculated based on the time to pump the first 20 liters of water for 

each trial and averaged for both users for each pump. Tables 4-3 and 4-4 summarize the pumping 

rates for the EMAS Pump as a percentage of the Rope Pump for the 20-mm and 25-mm pumps, 
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respectively. The observed pumping rates are presented in Figures 4-5 (average of adult female 

and adult male), 4-6 (adult female), and 4-7 (adult male).  

  

Table 4-3. EMAS Pump pumping rate as a percentage of 20-mm Rope Pump pumping rate 

Static Water 

Level
Male Female Combined

5.1 129% 98% 111%

12.6 114% 95% 103%

18.4 118% 80% 93%

21.1 110% 72% 85%

28.3 62% 64% 63%

Pumping Rate Comparison - EMAS Pump to Rope Pump (20mm)

 
 

Table 4-4. EMAS Pump pumping rate as a percentage of 25-mm Rope Pump pumping rate 

Static Water 

Level
Male Female Combined

5.1 86% 73% 79%

12.6 81% 67% 73%

17 109% 81% 93%

Pumping Rate Comparison - EMAS Pump to Rope Pump (25mm)

 

 

Figure 4-5 shows that the 20-mm version of the EMAS Pump had greater average 

combined pumping rates (adult female and adult male) than the 20-mm Rope Pump at SWL 

depths of 5.1 m (111%) and 12.6 m (103%), while at deeper depths the average combined 

pumping rates were lower than for the 20-mm Rope Pump, i.e. at 18.4 m (93%), 21.1 m (85%), 

and 28.3 m (63%). Combined average pumping rates for the 20-mm EMAS Pump ranged from 

5.1 l/m to 17.1 l/m (i.e. 17.1 l/m pumping from 5.1 m SWL, 13.6 l/m from 12.6 m, 9.8 l/m from 
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18.4 m, 8.0 l/m from 21.1 m, and 5.1 l/m from 28.3). Combined average pumping rates for the 

20-mm Rope Pump ranged from 8.0 l/m to 15.5 l/m (i.e. 15.5 l/m pumping from 5.1 m SWL, 

13.l/m from 12.6 m, 10.5 l/m from 18.4 m, 9.5 l/m from 21.1 m, and 8.0 l/m from 28.3). 

Figure 4-5 also shows that the 25-mm version of the EMAS Pump had average combined 

pumping rates (adult female and adult male) lower than the 25-mm Rope Pump at all three tested 

pumping depths (79% the pumping rate of the 25-mm Rope Pump at 5.1 m SWL, 73% at 12.6 m, 

and 93% at 17.0 m). Combined average pumping rates for the 25-mm EMAS Pump ranged from 

20.9 l/m to 29.5 l/m (i.e. 29.5 l/m pumping from 5.1 m SWL, 21.4 l/m from 12.6 m, and 20.9 l/m 

from 17.0 m). Combined average pumping rates for the 25-mm Rope Pump ranged from 22.4 l/m 

to 37.2 l/m (i.e. 37.2 l/m pumping from 5.1 m SWL, 29.3 l/m from 12.6 m, 22.4 l/m from 17.0 

m). 

 

 
 

 

Figure 4-5. Average pumping rates at various depths, combined for adult male and adult female 

subjects (two trials) 
 

Figure 4-6 shows that the 20-mm version of the EMAS Pump had average pumping rates 

for the adult female subject that were very similar to those of the 20-mm Rope Pump at SWL 
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depths of 5.1 m (98%; 14.8 l/m vs. 15.1 l/m) and 12.6 m (95%; 12.0 l/m vs. 12.6 l/m). At deeper 

depths the difference the difference in pumping rates was more pronounced: 18.4 m SWL, 80% 

(7.5 l/m vs. 9.3 l/m); 21.1 m SWL, 72% (6.1 l/m vs. 8.5 l/m); and 28.3 m SWL, 64% (3.9 l/m vs. 

6.1 l/m) (63%).  For the 25-m version of the EMAS Pump, the average pumping rate for the 

adult female subject was 73% that of for the 20-mm Rope Pump at 5.1 m SWL (27.9 l/s vs. 38.1 

l/s), 67% at 12.6 m SWL (19.0 l/s vs. 28.2 l/s) and 81% at 17.0 m SWL (18.2 l/s vs. 22.4 l/s). 

 

 
 

 

Figure 4-6. Average pumping rate at various depths for adult female user (two trials) 

 

Figure 4-7 shows that the for the adult male subject, the average pumping rate of the 20-

mm version of the EMAS Pump was greater than that for the 20-mm Rope Pump at SWL depths 

of 5.1 m (129%; 20.3 l/m vs. 15.8 l/m), more similar at 12.6 m (114%; 15.7 l/m vs. 13.7 l/m), 

18.4 m SWL, (118%; 14.1 l/m vs. 12.0 l/m) and 21.1 m SWL (110%; 11.7 l/m vs. 10.6 l/m), and 

significantly less at 28.3 m SWL (62%; 7.3 l/m vs. 11.7 l/m). For the 25-m version of the EMAS 

Pump, the average pumping rate for the adult male subject was 86% that of for the 20-mm Rope 

Pump at 5.1 m SWL (31.1 l/s vs. 36.3 l/s), 81% at 12.6 m SWL (24.5 l/s vs. 30.4 l/s) and 109% 

at 17.0 m SWL (24.5 l/s vs. 22.4 l/s). 
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Figure 4-7. Average pumping rate at various depths for adult male user (two trials) 
 

The observed pumping rates for the adult female user were always lower with the EMAS 

Pump than with the Rope Pump (refer to Figure 4-6, Tables 4-3 and 4-4), while a majority of 

trials for the male user showed lower pumping rates with the EMAS Pump than the Rope Pump 

(Figure 4-7, Tables 4-3 and 4-4). It was also observed during the trials that the male subject used 

longer strokes than the female subject when pumping the EMAS pump, facilitated by his greater 

height, which would have led to more efficient pumping because less time was spent on 

changing directions in the pumping cycle. This finding is in-line with the EMAS manual, which 

indicates that higher pumping rates are common for taller people (Buchner, 2006).   

4.4.1.2  Expended Energy and Normalized Pumping Performance 

To account for potential differences in energy expended by the pumping subjects when 

using the different types and variants of pumps, measured pumping rates for the EMAS Pump 

were ‘normalized’ by adjusting them to reflect the ratio of energy expended for the EMAS Pump 

to the energy expended for the corresponding Rope Pump. This calculation is an approximation 

of what the pumping rate would have been for the EMAS Pump if the energy expenditure had 
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been equal to that of the Rope Pump. “Normalization” of the EMAS pumping rate involved the 

following equation:  

 

 [Eq. 4-1] 

 

where  and  are the energy expenditures (in kilojoules) determined for the particular 

pumping trial for the Rope Pump and EMAS pump, respectively. Details on heart rate 

monitoring and the calculation of energy expenditures are provided in Carpenter (2014). 

 The average energy expended to pump 20 liters for each of the pumping trials are 

displayed in Figures 4-8, 4-9, and 4-10. Figure 4-8 shows the combined average energy 

expended for the adult female and adult male subjects, at all sites and for all pumps tested. The 

combined average energy expended for the 20-mm variant of the EMAS Pump was calculated to 

be 115% that of the 20-mm Rope Pump at 5.1 m SWL; 107% at 12.6 m SWL; 104% at 18.4 m 

SWL; 117% at 21.1 m SWL; and 135% at 28.3 m SWL. For the 25-mm variant of the EMAS 

Pump, combined average expended energy was calculated to be 137% that of the 25-mm Rope 

Pump at 5.1m SWL; 165% at 12.6 m SWL; and 126% at 17.0 m SWL. 

 

 

Figure 4-8. Average energy expended by adult female and adult male subjects for EMAS Pump 

and Rope Pump trials 
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Figure 4-9 shows the average energy expended for the adult female subject, at all sites and for all 

pumps tested. The average energy expended for the 20-mm variant of the EMAS Pump was 

calculated to be 116% that of the 20-mm Rope Pump at 5.1 m SWL; 110% at 12.6 m SWL; 

128% at 18.4 m SWL; 130% at 21.1 m SWL; and 133% at 28.3 m SWL. For the 25-mm variant 

of the EMAS Pump, average expended energy for the female subject was calculated to be 140% 

that of the 25-mm Rope Pump at 5.1m SWL; 163% at 12.6 m SWL; and 136% at 17.0 m SWL. 

 

 

Figure 4-9. Average energy expended by adult female subject for EMAS Pump and Rope Pump 

trials 

 

Figure 4-10 shows the average energy expended for the adult male subject, at all sites and for all 

pumps tested. The average energy expended for the 20-mm variant of the EMAS Pump was 

calculated to be 113% that of the 20-mm Rope Pump at 5.1 m SWL; 104% at 12.6 m SWL; 83% 

at 18.4 m SWL; equal (100%) at 21.1 m SWL; and 135% at 28.3 m SWL. For the 25-mm variant 

of the EMAS Pump, average expended energy for the male subject was calculated to be 134% 

that of the 25-mm Rope Pump at 5.1m SWL; 171% at 12.6 m SWL; and 114% at 17.0 m SWL. 
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Figure 4-10. Average energy expended by adult male subject for EMAS Pump and Rope Pump 

trials 

 

The normalized average pumping rates of the EMAS Pumps are presented in Figures 4-

11 (average of adult female and adult male), 4-12 (adult female), and 4-13 (adult male) (along 

with the measured values for the corresponding variants of the Rope Pump, which were used as 

the baseline).  

 

 
 

 

Figure 4-11. Average pumping rates for all trials at various depths with EMAS pumping rates 

normalized for energy expenditure 
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Figure 4-12. Adult female subject: Average pumping rates at various depths with EMAS 

pumping rates normalized for energy expenditure 
 

 
 

 

Figure 4-13. Adult male subject: Average pumping rates at various depths with EMAS pumping 

rates normalized for energy expenditure 

 

The normalized pumping rate calculation provides a more objective comparison between 

the pumps. In all instances except for the male subject using the 20-mm pump at the 18.4 m deep 

well, energy expenditure was always greater for the EMAS Pump than the Rope Pump. This 

means that the effective pumping rates of the EMAS Pump were reduced by normalization in all 

other instances. 
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There are some issues that suggest the energy expenditure data calculated from the 

pumping trials are not reliably accurate in terms of absolute energy expenditure. This relates 

primarily to resting energy rates and metabolisms in different populations that play a role in how 

resting energy expenditure is calculated.  Additionally, high ambient temperatures in the field 

could also affect energy expenditure. However, it is believed that the calculated energy data has 

significant internal validity for comparisons in this study (where comparisons with the same two 

subjects testing the various pumps in the same field conditions), while external validity (i.e. 

comparing the results from one testing subject to those from another) may be limited. More 

details about these concerns can be found in Carpenter (2014). Regardless, the same test subjects 

underwent the same methodologies for pumping, so it is believed with some confidence that the 

energy expenditure data has some precision and can be used to indicate relative energy expended 

for the two pumps. This provides validity to internal comparisons made in this study, but may 

potentially limit the external comparability of raw energy data. The normalized pumping rate 

calculations (and results presented in Figures 4-11, 4-12, and 4-13) were made for this reason. 

4.4.2  Material Cost Comparison and Assessment of Pump Construction Needs 

It was found that the EMAS Pump can be fabricated in Uganda, with locally available 

materials costing approximately 9 to 32 US dollars (depending on pump length). Currently, the 

Rope Pump is the most affordable groundwater pump available in Uganda (Carpenter, 2014). 

The total material costs for both pumps at selected static water levels (i.e., depths) are provided 

in Table 4-5. This table also indicates the cost of materials for each model/version of pump as 

well as the cost of the EMAS Pump as a percentage of the corresponding version of the Rope 

Pump. Full material costs estimates for selected EMAS Pumps and Rope Pumps are provided in 

Appendix C. All costs are based on retail prices found in Kampala in late-2013.  
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Table 4-5. Material costs for EMAS Pump compared to the Rope Pump in Uganda (prices from 

Kampala, Cost % is the ratio of cost of EMAS Pump to Rope Pump) 

Static 

Water 

Level (m) 

EMAS 20-

mm 

Rope 

Pump 20-

mm 

Cost % EMAS 25-

mm 

Rope 

Pump 25-

mm 

Cost % 

5 $9.10 $44.2 21% $12.5 $44.7 28% 

10 $13.6 $46.9 29% $19.5 $47.9 41% 

15 $18.2 $49.7 37% $26.0 $51.9 50% 

20 $22.7 $52.4 43% $32.8 $54.5 60% 

25 $27.2 $55.1 49% - - - 

30 $31.8 $57.8 55% - - - 

 

Table 4-5 shows that the EMAS Pump represents the greatest savings over the Rope 

Pump for shallow wells with depth ranging from 5 to 30 m. For example, material cost for a 25-

mm EMAS Pump is 28% that of a 25-mm Rope Pump for a well with 5 m static water level. 

Though economic savings for the EMAS Pump decrease by approximately 3 US dollars as depth 

increases by 5 m for the 25-mm pump, and 2 US dollars per 5 m for the 20-mm pump (because 

the major cost of Rope Pump materials is in the pump head, at an approximate fixed material 

cost of 42 US dollars, is the same regardless of depth, while the EMAS Pump head is simpler in 

design), the material cost of EMAS Pump is still only 55% at the deepest recommended depth 

for the 20-mm pump and 60% that of the Rope Pump at the deepest recommended for the 25-mm 

pumps. 

If costs for pump fabrication were to be assessed and added to pump material costs, it is 

likely the total difference in costs between the Rope Pump and the EMAS Pump would increase 

more. This is because the Rope Pump requires extensive welding and cutting that takes time (and 

more specialized skills, for welding) and incurs electricity costs. In contrast, the EMAS Pump 

can be constructed with a few simple hand tools such as a hand saw, files, wrenches (spanners), 
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files, and PVC glue. However, the EMAS Pump will also require marginal increased costs 

associated with the limited use of a heat source such as a gas flame, wood fire, or a charcoal 

stove. 

Based on  the differences in fabrication costs, it is not unreasonable to assume that the 

percentage savings presented in Table 4-5 for the EMAS Pump over the Rope Pump, would 

translate directly to similar (or greater) savings in regard to the retail price of complete pumps. In 

other words, this data suggest that the 25-mm EMAS Pump could sell at 28% of the price of the 

comparable Rope Pump for a 5-m deep well and the 20-mm EMAS Pump could sell at almost on 

half (49% reported in Table 4-5) of the price of the 20-mm Rope Pump for a 25-m deep well.  

 Materials required for the fabrication of the EMAS Pump are currently available through 

existing supply chains in Uganda, though not in all parts of the country. PVC pipes are available 

in all towns large enough to have a hardware store, though many rural stores may not stock all of 

the pipes necessary. The lack of metric pipes in some areas is a challenge for the Rope Pump and 

the EMAS Pump as well as manually drilled boreholes that utilize larger metric pipes for well 

screens. Marbles are also not readily available upcountry (outside of Kampala), but can be 

bought at low prices in Kampala (and are known to be common in many other areas of sub-

Saharan Africa). Based on current supplies chains and the fact that all materials are readily 

available in Kampala, it is believed that improvement in the supply of relevant materials in most 

rural towns is quite feasible. Standard unit pipes, such a Schedule 40 (blue) PVC pressure pipe 

and standard sanitary drainage pipes are commonly available upcountry because they seem to be 

the paradigm for plumbing in Uganda.  
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4.5  Conclusion 

This research demonstrated that the EMAS Pump can perform similarly in terms of 

pumping rate to the Rope Pump at pumping depths that ranged 5 m to 18 m, but less so at deeper 

depths.  Specifically for the 20-mm variants of the EMAS Pump and the Rope Pump, average 

pumping rates were similar at shallow to medium depths (5.1m SWL to 18.4m SWL), with the 

average EMAS Pump pumping rate being 10% higher at 5.1 m depth and 6% lower at 18.4 m 

depth. At the deepest tested depth of 28.3 m, the EMAS Pump pumping rate diverged from the 

Rope Pump and was 30% lower. The normalized pumping rate (considering energy expended by 

the user) accentuated the differences between the EMAS and Rope Pump. The small advantages 

that the EMAS Pump had at shallow depths of 5.1 m and 12.6 m were eliminated (going from 

111% of the Rope Pump rate to 97% at 5.1 m, and 103 to 97% at 12.6 m) and the advantage of 

the Rope Pump at deeper depths was increased (with the EMAS Pump rate dropping from 93 to 

90% of the Rope Pump rate at 18.4 m, 85 to 72% at 21.1 m, and 63 to 47% at 28.3 m). 

The cost of materials necessary to construct the EMAS Pump were found to be 

significantly less than those to build the Rope Pump, based on material costs in the Ugandan 

capital city of Kampala. The material costs for the EMAS Pump were found to range from 21 to 

60% of the material costs of the Rope Pump for the tested variants (21 to 55% for the 20-mm 

version, 28 to 60% for the 25-mm version), considering pumping depths from 5 m to 30 m. 

The manufacturing needs for the EMAS Pump were determined to be considerably less 

than for the Rope Pump, and no electricity is required for manufacturing the EMAS Pump, 

which may make it much more feasible to construct in rural areas of sub-Saharan Africa. 

Based on its relative low-cost, similar technical performance to the Rope Pump when 

pumping from a range of depths, and the minimal resources needed to construct it, the results of 
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this research show the EMAS Pump has potential for success in household water supply systems 

in sub-Saharan Africa. Combined with the conclusion from Chapter 4, which showed a high rate 

of functionality among surveyed household EMAS Pumps in rural areas of Bolivia, it is believed 

that there is considerable potential to introduce the EMAS Pump as a very low-cost option for 

Self-supply systems in sub-Saharan Africa. 
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CHAPTER 5: CONCLUSIONS & FURTHER RESEARCH 
 

 

 

5.1 Summary 

The below summary aligns the conclusions of the topics studied with the Research 

Questions from Chapter 1: 

1.  What improvements can be made to the Pitcher Pump system used in Madagascar to 

improve the quality of the product (including reliability, pumping rates, and/or quality of 

extracted water)? 

The Madagascar research found that Pitcher Pump systems are widely used in the 

research area of Tamatave and Foulpointe in eastern Madagascar and are shown to provide 

reliable and convenient access to water at a low cost relative to household connections to the 

piped water system. The Pitcher Pump market in the research area is unsubsidized, with system 

owners paying 100% of the initial cost. This market is believed to be the most significant 

documented example of an unsubsidized household handpump market in sub-Saharan Africa. 

Owners commonly share maintenance and repair costs with their tenants and/or neighbors. 

System maintenance is done by local technicians or family members, with more significant 

repairs undertaken by local technicians or manufacturers. 

There are, however, concerns with the quality of water supplied through these systems 

(i.e. its suitability for drinking), specifically microbiological and lead contamination. Only 55% 

of wells sampled provided water associated with low-risk of microbial contamination for 

household systems, and four out of a small sample of ten wells contained lead in excess of safe 
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limits. The market is also unregulated, neglected even, and there are several potential entry 

points for enhancements to current Pitcher Pump system construction and installation practices 

that could improve the quality of water delivered. 

Results of this study are being shared with USAID and local government officials 

responsible for urban water supply and public health. Complementary research is ongoing to 

assess the cause of the lead contamination and make recommendations to mitigate exposure. 

Follow-up efforts in urban Tamatave seek to support WASH (Water, Sanitation, and Hygiene) 

sector stakeholders and local government officials to increase regulation of the Self-supply 

market and address issues of quality of water delivered by Pitcher Pumps, including the 

important issue of lead contamination. Further research is needed to determine potential 

improvements to Pitcher Pump systems, to understand how to create synergies between the 

Pitcher Pump market and community piped water system, as well as to determine the feasibility 

of household water treatment and rainwater harvesting Self-supply options to improve access to 

drinking water. 

2.  Are low-cost water supply systems that have been developed in Bolivia (EMAS 

technologies) suitable, affordable options for household water supply (Self-supply) for 

developing communities in sub-Saharan Africa? 

EMAS manual water pumps (EMAS Pumps) are shown to have a high rate of 

functionality as used at the household level in the studied contexts in Bolivia. The EMAS 

manually drilled wells surveyed, which were installed by numerous different drilling teams 

(most of whom are independent of EMAS) were reported to be reliable, with a very high 

percentage of wells providing water throughout the entire year. These conclusions combine with 

an evident considerable adoption of the EMAS Pump and manually drilled wells to show that the 
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technologies have had an important impact on increasing access to water supply at the household 

level in many rural areas of Bolivia. Households are able to maintain low-cost EMAS Pumps, 

with repairs commonly done by local technicians or household members, and in some cases the 

same EMAS Pumps have been used for more than a decade. 

Given the low cost of EMAS household water supply systems, and their conduciveness to 

being built and repaired by local technicians, these technologies offer considerable potential for 

success in accelerating self-supply in sub-Saharan Africa. The potential includes using the 

EMAS Pump on existing or new household manually drilled or hand-dug wells (with the 

possibility of installing multiple pumps on the same hand-dug well), manual drilling of wells 

using EMAS methods, upgrading of such systems as appropriate/feasible (e.g. pumping through 

hoses or pipes to a tank/reservoir), and RWHS. 

3.  Would EMAS manual water pumps be an effective, less-costly alternative to the Rope Pump, 

offering a better chance for households or small groups of families in sub-Saharan Africa 

to improve their private water supplies, while lifting water at an acceptable rate? 

The technical comparison of the EMAS Pump and the Rope Pump concluded that, based 

on its relative low-cost, similar technical performance to the Rope Pump when pumping from a 

range of depths, and the minimal resources needed to construct it, the EMAS Pump has potential 

for success in household water supply systems in sub-Saharan Africa. Combined with the 

conclusion from Chapter 4, which showed a high rate of functionality among surveyed 

household EMAS Pumps in rural areas of Bolivia, it is believed that there is considerable 

potential to introduce the EMAS Pump as a very low-cost option for Self-supply systems in sub-

Saharan Africa. 
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4.  Based on the results of Research Questions 1 through 3, what recommendations can be 

offered to improve sustainable low-cost water supply systems for use at the household level 

in developing contexts in sub-Saharan Africa? 

 Results of the Madagascar Pitcher Pump study are being shared with USAID and local 

government officials responsible for urban water supply and public health. Follow-up efforts in 

urban Tamatave seek to support WASH (Water, Sanitation, and Hygiene) sector stakeholders 

and local government officials to increase regulation of the Self-supply market and address 

issues of quality of water delivered by Pitcher Pumps, including the important issue of lead 

contamination.  

Further research is needed to determine potential improvements to Pitcher Pump systems, 

to understand how to create synergies between the Pitcher Pump market and community piped 

water system, as well as to determine the feasibility of household water treatment and rainwater 

harvesting Self-supply options to improve access to drinking water.  Topics of ongoing and 

potential further research are described in the following subsection. 

 

5.2  Further Research 

 Ongoing and potential future related research has been developed from this dissertation 

work are discussed, focusing on accelerating Self-supply in Madagascar, and include: technical 

improvements to the Pitcher Pump technology; formative research in Social Marketing; and 

Development of the Self-Supply Market in Madagascar beyond Pitcher Pump systems 

1.  Technical Improvements to the Pitcher Pump system 

(a) The identification of lead (Pb) contamination in Pitcher Pump systems in this study has 

been followed up in a more in-depth study, which confirmed Pb contamination to be an 
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issue in Pitcher Pump systems, and identified the major source of this contamination as the 

Pb valve weights used by most system manufacturers (Akers, 2014)4. 

(b) A second follow-up study investigated fecal contamination in Pitcher Pump systems in 

Tamatave, Madagascar (Wahlstrom-Ramler, 2014)5.  This study did not find any link 

between Pitcher Pump system well depth and level of contamination (which was a 

suggested possibility from Chapter 2 data analysis).  However, the fecal contamination 

study found that Pitcher Pump priming was significant factor in microbiological water 

quality in these systems. 

(c) An continuing manual drilling study in eastern Madagascar is exploring: (i) ways of 

improving water quality through use of alternative well-lining materials and drilling 

methods that reduce/eliminate the use of Pb-containing components in the well screen 

drilling; and (ii) expanding the household groundwater supply market to areas with more 

diverse hydrogeological conditions (i.e. deeper water tables, harder soils) through the use 

of alternative manual well drilling and water pumping technologies. 

2.  Formative Research in Social Marketing 

Ongoing Social Marketing research led by the author of this dissertation is focusing on the 

following topics: 

(a) Identification of factors that Picher Pump users find important about Pitcher Pump 

systems (i.e. why do consumers continue to buy, use them). 

                                                           
4 This research was led by University of South Florida Peace Corps Master’s International student D. Brad Akers.  

The dissertation author provided research support and mentorship on Self-supply and the water supply context in 

Tamatave, Madagascar. 

5 This research was led by University of South Florida Peace Corps Master’s International student Meghan 

Wahlstrom-Ramler.  The dissertation author provided research support and mentorship on Self-supply and the water 

supply context in eastern Madagascar.   
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(b) Identification of factors that Pitcher Pump manufacturers appreciate about Pitcher Pump 

systems (i.e. why do they keep making, selling them). 

These studies are being carried out through in-depth interviews with Pitcher Pump system 

manufacturers and owners-users in Tamatave. Interviews of manufacturers are in the 

process of being analyzed.  Future research involves combining this with the results of the 

Pitcher Pump market and technology assessment, and using a Social Marketing framework 

to design and propose improvements to the Pitcher Pump market in eastern Madagascar. A 

Social Marketing framework is distinguished from other social change planning approaches 

by its careful segmentation of target markets, reliance on research to generate insights into 

consumers’ needs, desires, and preferences and use of consumer insights to create an 

integrated strategic plan based on marketing’s conceptual framework known as the ‘Four 

Ps’ of marketing (Product, Price, Place, Promotion) (Grier and Bryant, 2005). 

A Social Marketing framework can be used to guide the assessment/evaluation of current 

Self Supply markets and practices, particularly when aiming to make improvements. The 

use of such a framework provides a structure for the collection and analysis of data that 

assists in assessing how the project adheres to Social Marketing principles. Importantly, 

even when Social Marketing has not previously been considered in the design of an 

existing market, assessing it using a Social Marketing framework can be done through 

interpretation of a Social Marketing purpose and focus for the existing market and 

constructing the framework from that base with further information gathered during the 

formative research process. This assessment is valuable towards designing improvements 

to the existing market that can achieve determined Social Marketing objectives. 
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3.  Development of the Self-Supply Market in Madagascar beyond Pitcher Pump systems 

Ongoing research led by the author of this dissertation is focusing on assessing other 

traditional Self-supply practices in areas of Madagascar (e.g. hand-dug wells in the south-

central highlands, rainwater harvesting systems in the south of the country, etc.).  Field data 

has been collected during four field “rapid assessments”, and will contribute to a future 

field note publication on ‘The Potential for Accelerating Self-Supply in Madagascar”, 

aimed at disseminating the acquired knowledge from to local actors in Madagascar (and 

beyond). 
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Appendix A  Madagascar Field Data Collection Guide and Raw Data 

 

A.1  Survey Form 

Date:       

ID:       

Interviewer:      

                       Interviewee:       Male            

Female   

  

Madagascar Self-Supply:  Assessing Access to Household Water and Sanitation  

with Pitcher Pump systems in eastern Madagascar  

Household Survey 

Demographic Information 

1. What is your age? 
a. 18-35 
b. 36-50 
c. 50-65 
d. Over 65 

 
2. How many persons live in your household? __________ 

 
3. How many are adults aged 18 and above? ____________ 

 
4. How many children aged 5 – 17? _______________ 

 
5. How many children under 5 years? ____________ 

 
6. What is the occupation of male head of household? ___________ 

 
7. What is the occupation of female head of household? ___________ 

 
 

Water and Sanitation Infrastructure Systems in Household 

8. What type of household water source does your family have?  (If two or more, circle all that are 
relevant, but consider Pump Tany as primary, and for responding to following questions) 

a. Hand-dug well 
b. Manually drilled Well 
c. Rainwater Harvesting System 
d. Piped water from community system 
e. Other __________________________ 

 
9. What is the age of the household water source? 
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a. 0-3 years 
b. 4-10 years 
c. 11-15 years 
d. 16-20 years 
e. Older than 20 years 

 
10. Where did you get your water before you had the current system? 

a. Hand-dug well 
b. Manually drilled Well 
c. Rainwater Harvesting System 
d. Piped water from community system 
e. Other __________________________ 

 
11. How many months per year does this source provide water? 

a. 1-3 months per year 
b. 4-6 months per year 
c. 6-9 months per year 
d. 10-11 months per year 
e. Other __________________________ 

 
12. Who is responsible for maintaining the water source? 

a. Female head of household 
b. Male head of household 
c. Other female adult in household 
d. Other male adult in household 
e. Female child 
f. Male child 
g. Other __________________________ 

 
13. What do you use to lift water from the water source? 

a. Rope and Bucket 
b. Manual pump 
c. Fuel-powered pump 
d. Motorized pump 
e. Other __________________________ 

 
14. What is the age of the household water-lifting device? 

a. 0-3 years 
b. 4-10 years 
c. 11-15 years 
d. 16-20 years 
e. Older than 20 years 

 
15. Who is responsible for repair and maintenance of the water-lifting device? 

a. Female head of household 
b. Male head of household 
c. Other female adult in household 
d. Other male adult in household 
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e. Female child 
f. Male child 
g. Other __________________________ 

 
16. What repairs have you made to the water-lifting device?   _____________________________ 

 
17. How much did these repairs cost?     Materials ______ Labor________          TOTAL 

 
18. Does your family get any water for the household from another source?     YES         or         NO 

If YES, what type of source is this secondary source? 
a. Hand-dug well 
b. Manually drilled Well 
c. Rainwater Harvesting System 
d. Piped water from community system 
e. Other __________________________ 

 
 

Water and Sanitation System Construction 

19. Who built/installed your household water supply system (circle all that apply)?  
a. Self (anyone in family) 
b. Friend 
c. Local Technician(s) 
d. Other __________________________________ 

 
20. How much did your household water supply system cost?  Materials_______    Labor_______      

TOTAL _______ 
 

21. Did you receive subsidies to pay for your household water and sanitation system?     YES         or         
NO 

If YES, where did the subsidies come from? 
a. Local municipality  (specify name ______________) 
b. Local or national NGO  (specify name ___________) 
c. International NGO  (specify name _______________) 
d. Other __________________________________ 

 
22. If YES to QUESTION 21, how much did you receive in subsidies?  _________ 

 
23. Did you receive a loan to pay for your household water and sanitation system?     YES         or         

NO 
If YES, where did the subsidies come from? 

a. Local municipality  (specify name ______________) 
b. Local or national NGO  (specify name ___________) 
c. International NGO  (specify name _______________) 
d. Other __________________________________ 

 
24. If YES to QUESTION 23, how much did you receive as a loan?  _________ 
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25.  Do you have any plans to upgrade your household water system within the next year? 

 YES         or         NO 
If YES, what upgrade(s) do you plan on making? 

a. Replace pump  (specify type of new pump  _____ ) 
b. Add tank 
c. Add piping to house 
d. New well 
e. Other __________________________________ 

 
 

Household Water Practices & Use 
 

26. Is the water from the Pump Tany system used for drinking water? 
a. Yes 
b. No 

 
27. If no, what is the source for drinking water? _________________________ 

 
28. What is the water from the Pump Tany system used for? (circle all that apply) 

a. Drinking (Note:  Already answered in Question #21) 
b. Washing food/cooking 
c. Hand washing 
d. Bathing 
e. Brushing teeth 
f. Clothes washing 
g. Irrigation (flowers, crops, etc.) 
h. Other _____________ 

 
29. What methods do you use to treat your water before use? 

a. Storage tank disinfection (What kind of disinfection? ___________________________) 
b. Point of use disinfection (What kind of disinfection? ____________________________) 
c. Boiling 
d. Filter (what type? ____________) 
e. Other ___________ 
f. None  

 
30. Is water treated for all uses or only for drinking? 

a. Yes 
b. No 
c. Treated for drinking and _________________ 

 
31. Does someone disinfect the water in the storage tank? (If answer is NO, skip to Question 34) 

a. Yes 
b. No 

 
32. If yes to disinfection, how frequently is the water disinfected? 

a. Daily 
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b. Weekly 
c. Monthly 
d. Every 6 months 
e. Annually 
f. Rarely 
g. Other _____________ 

 
33. If yes to disinfection, when was the last time of disinfection? 

a. Within the last two weeks 
b. Within the last month 
c. Within the last six months 
d. Within the last year 

 
  34.  If you disinfect your water, how long after disinfection do you use it? 
        a.  Immediately 

 b.  1-5 minutes 

 c.  5-10 minutes 

 d.  15-30 minutes 

 e.  30 minutes or more 

 

  35.  If you disinfect your water, do you feel your health is better, worse, or the same as a result of this 

(for example, you have seen a decrease in diarrheal episodes)? 

 a. Better  

 b. Worse 

 c. The same 

 
Household Sanitation 

36.  What type of sanitation system do you have in your household? 
a. None 
b. Pit Latrine 
c. VIP Latrine 
d. EcoSan Latrine 
e. Pour-flush latrine 
f. Septic System 
g. Other __________ 

 
36. What is the age of the household sanitation system? 

a. 0-3 years 
b. 4-10 years 
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c. 11-15 years 
d. 16-20 years 
e. Older than 20 years 

 
 
37. What type of household sanitation system did you have before you had the current system? 

a. None 
b. Pit Latrine 
c. VIP Latrine 
d. EcoSan Latrine 
e. Pour-flush latrine 
f. Septic System 
g. Other __________ 

 

Household Hygiene 

39. Prior to getting water from the point source (well, spigot, river, etc.), do you wash your hands (with 

soap)? 

 a. yes 

 b. no 

 c. sometimes 

 

40.  Generally, during what times do you wash your hands (circle all that apply)? 

 a. After going to the toilet 

 b. After changing child diapers or washing baby’s bottom 

 c. Before preparing food 

 d. Before eating 

 e. Before giving food to others (including the child 

 f. Never or do not know 

Thank you for your time.  The survey is now complete. 
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A.2  Observation/Inspection Sheet 

    Date:  

ID:   

Observer:   
 

Self-Supply:  Assessing Access to Household Water and Sanitation In Madagascar 

Inspection Sheet 

House (building) Observations 

1. How many levels does the house have? 

a. One                b. Two 

2. Approximately how many rooms are in the house?  

a. 1-3 

b. 4-6 

c. 7-9 

d. 10 or more 

3. Is there a separate room for the kitchen? 

Yes             No 

4. What type of toilet do the household members use?  (Confirm – also asked in survey) 

a. None 
b. Pit Latrine 
c. VIP Latrine 
d. EcoSan Latrine 
e. Pour-flush latrine 
f. Septic System 
g. Other __________ 

 
5. Estimate the area (in sq. meters) of the roof (i.e. area that can be used to capture rain) 

 

6. General observations (roof and housing materials, fresh paint, general condition of the house, 

etc.) 

 

_____________________________________________________________________________________

__________ 

Water System Inspection 

7. What is the type of water source?  (Confirm – also asked in survey) 

a. Hand-dug well 
b. Manually drilled Well 
c. Rainwater Harvesting System 
d. Piped water from community system  
e. Other __________________________ 
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8. Is there a water storage tank.  

YES NO 

9.  If YES to Question 8, What is the approximate tank capacity in liters? ___________ (diam_____   

,    depth____) 

10. Where is the tank located? 

a. Roof top 

b. On top of other elevated structure 

c. Above ground, not elevated 

d. Below ground 

e. Other _____________ 

11. What is the tank made of? 

a. Reinforced concrete 

b. Unreinforced concrete 

c. Ferrocement 

d. Plastic 

e. Metal 

f. Other _____________ 

12. Does the tank have a cover or lid? Yes              No 

13. If yes to Question 12, what is the cover or lid made of? ____________ 

 

14. Is a manual pump used? 

YES  NO 

15. If YES to Question 14, is the manual pump functional? 

YES NO NA 

 

16. If YES to Question 15, what is the measured flow rate from the manual pump? 

________ time to pump 20 liters (trial 1) _________ time to pump 20 liters (trial 

2)  _____ average 

 

17. General observations (conditions of well, pump, tank, RWH gutters, etc.) 

 

 

___________________________________________________________________________ 

Sanitation System Inspection 

 

18. If no to Question 18, what is the latrine made of? (circle all that apply, and take photos) 

a. Reinforced concrete 

b. Unreinforced concrete 

c. Ferrocement 

d. Plastic 
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e. Metal  (e.g. currogated iron/zinc) 

f. Other _____________ 

19. Does the latrine appear to be used on a regular basis? 

YES              NO 

20. Are there hand-washing facilities within 5 meters of the latrine? 

YES              No 

21. Describe the general condition of the sanitation infrastructure: 

 

22. ______  # of housholds use the household water source. 

 

23. _____ meter(s), latrine to water source. 

 

24. _____ meter(s), reported wellpoint depth. 

 

 

 

A.3  Focus Group Script 

Focus Group Script – Pitcher Pump (Pump Tany) Systems 

 

Note:  Expected total time of Focus Group is 2 hours.  Estimated time of Questions is 1 hour 40 minutes.  

Expected Focus Group size is 8-10 participants. 

Introduction:  Good day, and welcome.  Thank you for agreeing to participate in our discussion of 

household water supply systems.  My name is Mike MacCarthy, and I represent the University of South 

Florida in the Unites States.   My project colleague(s), __________________, will be assisting.  We are 

attempting to gather information on low-cost water supply systems used at the family/household level 

in Madagascar.  We have invited people from several different areas around the city of Tamatave 

(eastern Madagascar) to share their experiences and ideas. 

You have been selected because you are each users of “Pump Tany” water supply systems (locally made 

pump and drilled well lining).    More specifically, you are each the head females in households which 

use these water supply systems. 

Today we will be discussing your experiences with the Pump Tany systems.  This will include how long 

you have been using the technology, where you first learned of it, how and from whom you came to 

purchase it, and your experiences with its use, maintenance, and repair.  Please tell us about both 

positive and negative aspects of the systems.  Different points of view are welcome, and there are no 

correct or in-correct answers. 
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I’d like to inform you of a few basic ground rules before we start.  Please only speak one person at a 

time.  We are taping your comments on an audio recorder, to insure that we properly record everyone’s 

comments.  If multiple people are talking at the same time, the audio becomes difficult to understand.  

We can all call each other by our first names during our discussion.  Your names will not be attached to 

the comments in the report.  

Our discussion will last for about an hour, with no planned breaks.   Name cards have been placed on 

the table to help us remember each other’s names.  To get to know each other, we’ll now go around the 

table and give each person a chance to introduce themselves.  Please tell us your name and the 

village/neighborhood where you live. 

 

Questions: 

Opening:   1.  Tell us your name (first name and family name) and the name of the 

village/neighborhood where you live.  (5 minutes) 

Introductory:  2.  How did you learn about Pump Tany household water supply systems?         

(5 minutes) 

Transition: 3.  When you first saw a Pump Tany system working, what were your first 

impressions? (5 minutes) 

4.  How (and when) did you obtain a Pump Tany system for your 

family/household?  (5 minutes) 

Key Questions: 5.  What do you like about your Pump Tany system? (10 minutes) 

6.  Prior to obtaining a Pump Tany system, how did you get water for your 

household? (5 minutes) 

7.  How has the Pump Tany system changed the uses for water within your 

household?  (5 minutes) 

8.  Is your household any different because you now have a Pump Tany 

household water supply system?  If so, how?  (10 minutes) 

9.  What do you (or a member of your household) do to keep the Pump Tany 

system operating?  (15 minutes) 

10.  What specific issues have you had with breakdown of the Pump Tany 

system, and how have these issues been resolved? (10 minutes) 

11.  How are costs for maintaining and repairing your Pump Tany system paid ?  

(5 minutes) 
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Ending Questions: 12.  If you could offer improvements to the Pump Tany system, what would you 

recommend?  (10 minutes) 

13.  We would like for you to help us to evaluate the Pump Tany technology and 

how it is used by local communities.  We want to know how the service that it 

provides can be improved.  Is there anything that we have not spoken about 

that you would like to add about the Pump Tany systems and your experiences 

with household water supply?  (10 minutes) 

 

A.4  Madagascar Household Surveys – Raw Data 

Survey 

No. 
Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 

 

Age 
(years) 

# 
in 
hh Adults 

kids 
5-
17 

kids 
lt 5 Male Job Fem Job 

Type, 
Water 
Source 

1 18-35 3 2 0 1 driver homemaker 

manually-
drilled 
well; 

faucet 

2 50-65 4 2 2 0 instituteur homemaker 

manually-
drilled 

well 

3 36-50 6 4 1 1 shopkeeper accountant 

manually-
drilled 

well 

4 18-35 2 2 0 0 painter student 

manually-
drilled 

well 

5 50-65 4 3 0 1 mechanic homemaker 

manually-
drilled 

well 
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6 18-35 7 2 4 1 

technician 
(welding, 
roofing) salesperson 

manually-
drilled 

well 

7 18-35 5 2 3 0 
independent 

work homemaker 

manually-
drilled 

well 

8 18-35 4 3 0 1 student X 

manually-
drilled 

well 

9 18-35 4 4 0 0 salesperson homemaker 

manually-
drilled 

well 

10 18-35 5 2 3 0 driver homemaker 

manually-
drilled 

well 

11 18-35 3 2 1 0 officework institutrice 

manually-
drilled 

well 

12 18-35 4 2 1 1 driver salesperson 

manually-
drilled 

well 

13 50-65 15 7 5 3 
work at 
garage institutrice 

manually-
drilled 
well; 

faucet 

14 50-65 8 4 3 1 nurse homemaker 

manually-
drilled 

well 
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15 36-50 7 6 1 0 
independent 

work homemaker 

manually-
drilled 
well; 

faucet 

16 NR 7 2 5 0 
independent 

work farmer 

manually-
drilled 

well 

17 36-50 4 3 1 0 NR craftmaker 

manually-
drilled 

well 

18 50-65 7 4 3 0 state nurse animatrice 

manually-
drilled 

well 

19 36-50 6 3 3 0 salesperson auditor 

manually-
drilled 

well 

20 18-35 3 3 0 0 electrician homemaker 

manually-
drilled 

well 

21 18-35 3 2 1 0 barber homemaker 

manually-
drilled 

well 

22 50-65 6 4 2 0 retired salesperson 

manually-
drilled 

well 

23 18-35 4 2 0 2 
pousse 
driver homemaker 

manually-
drilled 

well 

24 36-50 6 4 1 1 military homemaker 

manually-
drilled 

well 
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25 36-50 2 1 1 0 X homemaker 

manually-
drilled 

well 

26 36-50 5 2 2 1 military homemaker 

manually-
drilled 

well 

27 65+ 2 1 1 0 X homemaker 

manually-
drilled 
well; 

faucet 

28 18-35 2 1 0 1 X salesperson 

manually-
drilled 

well 

29 18-35 3 2 0 1 
work at 
garage secretary 

manually-
drilled 

well 

30 65+ 6 4 2 0 retired retired 

manually-
drilled 
well; 

faucet 

31 36-50 6 4 1 1 
machinist / 

woodworker homemaker 

manually-
drilled 

well 

32 18-35 4 2 2 0 X cashier 

manually-
drilled 

well 

33 36-50 4 4 0 0 boat worker salesperson 

manually-
drilled 

well 
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34 18-35 7 4 2 1 secretary homemaker 

manually-
drilled 

well 

35 36-50 6 4 2 0 driver tailor 

manually-
drilled 

well 

36 36-50 4 4 0 0 
machine 

driver animatrice 

manually-
drilled 

well 

37 50-65 2 2 0 0 retired X 

manually-
drilled 

well 

38 36-50 2 2 0 0 X homemaker 

manually-
drilled 

well 

39 18-35 8 4 3 1 technician salesperson 

manually-
drilled 

well 

40 36-50 5 2 2 0 
agent - 

JIRAMA! homemaker 

manually-
drilled 

well 

41 18-35 3 2 1 0 security homemaker 

manually-
drilled 

well 

42 18-35 5 2 3 0 fisherman homemaker 

manually-
drilled 

well 
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43 50-65 10 5 4 1 state nurse salesperson 

manually-
drilled 

well 

44 50-65 3 3 0 0 retired homemaker 

manually-
drilled 

well 

45 36-50 6 2 3 1 
daily worker 

at port salesperson 

manually-
drilled 

well 

46 18-35 8 2 3 3 salesperson homemaker 

manually-
drilled 

well 

47 36-50 5 3 2 0 salesperson salesperson 

manually-
drilled 

well 

48 36-50 6 2 3 1 driver homemaker 

manually-
drilled 

well 

49 36-50 7 4 2 1 storekeeper salesperson 

manually-
drilled 

well 

50 18-35 2 2 0 0 mason homemaker 

manually-
drilled 

well 

51 18-35 5 4 1 0 
independent 

work salesperson 

manually-
drilled 

well 

52 18-35 6 3 2 1 mason doctor 

manually-
drilled 

well 

53 36-50 7 2 4 1 driver homemaker 

manually-
drilled 

well 
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Survey 
No. Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 

  

Age, 
Water 
Source 
(years) 

Previous 
Source 

Months 
of year 
gives 
water 

Responsib
le, 
Maintena
nce of 
Water 
Point 

Water 
Lifting 
Device 

Age, 
Water 
Lifting 
Device 
(years) 

Responsible, 
Mainten / 
Repair, WL 
Dev 

WL Dev 
Repairs 
Done 

1 0-3 

manually 
drilled 

well 12 
local 

technician 
manual 
pump NR 

local 
technician 

replace 
leather 

2 0-3 faucet 12 
local 

technician 
manual 
pump NR 

local 
technician 

replace 
leather 

3 

more 
than 
20 

manually 
drilled 

well 12 
local 

technician 
manual 
pump NR 

local 
technician 

add 3m 
piping (9 
to 12): 
replace 
leather 

4 0-3 faucet 12 
local 

technician 
manual 
pump NR 

local 
technician 

replace 
leather 

5 0-3 

manually 
drilled 

well 12 
local 

technician 
manual 
pump NR 

other male 
adult in 
house 

weld 
handle 

connection 

6 4-10 faucet 12 

male head 
of 

household 
manual 
pump NR 

male head of 
household "plomb" 

7 4-10 

manually 
drilled 

well 12 
local 

technician 
manual 
pump NR 

local 
technician 

replace 
leather 
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8 4-10 

manually 
drilled 

well 12 
local 

technician 
manual 
pump NR 

local 
technician 

replace 
leather, 
piston 

9 0-3 
household 

faucet 12 
local 

technician 
manual 
pump NR 

local 
technician 

replace 
leather 

10 4-10 

manually 
drilled 

well 12 

male head 
of 

household 
manual 
pump NR 

male head of 
household 

replace 
leather 

11 4-10 faucet 12 
local 

technician 
manual 
pump NR 

local 
technician bolt 

12 16-20 

manually 
drilled 

well 12 
local 

technician 
manual 
pump NR 

local 
technician 

leather, 
bolt 

13 20+ 

manually 
drilled 

well 12 
local 

technician 
manual 
pump NR 

local 
technician 

replace 
leather 

14 20+ 

manually 
drilled 

well 12 
local 

technician 
manual 
pump NR 

local 
technician 

replace 
leather, 
pump 
head 

15 20+ 

manually 
drilled 

well 12 
boy in 

household 
manual 
pump NR 

boy in 
household 

replace 
leather 
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16 20+ 

manually 
drilled 

well 12 

male head 
of 

household 
manual 
pump NR 

male head of 
household 

replace 
leather 

(top and 
bottom) 

17 4-10 

manually 
drilled 

well 12 
local 

technician 
manual 
pump NR 

local 
technician 

pump 
head 

18 11-15 faucet 12 
local 

technician 
manual 
pump NR 

local 
technician 

replace 
leather 

19 4-10 

manually 
drilled 

well 12 
local 

technician 
manual 
pump NR 

local 
technician 

replace 
leather 

20 11-15 

manually 
drilled 

well 12 

male head 
of 

household 
manual 
pump NR 

male head of 
household 

replace 
leather 

21 11-15 

manually 
drilled 

well 12 
boy in 

household 
manual 
pump NR 

boy in 
household 

replace 
pump 
head, 

wellscreen
, leather 

22 4-10 

manually 
drilled 

well 12 

male head 
of 

household 
manual 
pump NR 

male head of 
household 

replace 
leather 

23 11-15 

manually 
drilled 

well 12 
boy in 

household 
manual 
pump NR 

boy in 
household 

replace 
leather 

24 4-10 

manually 
drilled 

well 12 
local 

technician 
manual 
pump NR 

local 
technician 

replace 
head of 

pump and 
pipes 

25 0-3 

manually 
drilled 

well 12 
local 

technician 
manual 
pump NR 

local 
technician 

replace 
leather, 

pipes 
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26 4-10 faucet 10-11 
local 

technician 
manual 
pump NR 

local 
technician 

replace 
leather 

27 0-3 
household 

faucet 12 
local 

technician 
manual 
pump NR 

local 
technician 

replace 
wellscreen

, pipes 

28 11-15 faucet 12 
local 

technician 
manual 
pump NR 

local 
technician 

replace 
leather 

29 20+ 

manually 
drilled 

well 12 

male head 
of 

household 
manual 
pump NR 

male head of 
household 

leather, 
pump 

arm/handl
e 

30 20+ 

manually 
drilled 

well 12 
local 

technician 
manual 
pump NR 

local 
technician 

replace 
leather 

31 20+ 

manually 
drilled 

well 12 
local 

technician 
manual 
pump NR 

local 
technician 

replace 
leather 

32 4-10 

manually 
drilled 

well 12 
local 

technician 
manual 
pump NR 

local 
technician 

replace 
leather 

33 20+ 

manually 
drilled 

well 12 
local 

technician 
manual 
pump NR 

local 
technician 

replace 
leather, 

wellscreen
, bolts 
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34 0-3 

manually 
drilled 

well 12 
local 

technician 
manual 
pump NR 

local 
technician 

replace 
bolt(s) 

35 11-15 

manually 
drilled 

well 12 
local 

technician 
manual 
pump NR 

local 
technician 

replace 
leather, 

wellscreen
, pipes 

36 0-3 

manually 
drilled 

well 12 
local 

technician 
manual 
pump NR 

local 
technician 

replace 
leather 

37 4-10 

manually 
drilled 

well 12 

male head 
of 

household 
manual 
pump NR 

male head of 
household 

replace 
leather, 
piston 

38 0-3 

manually 
drilled 

well 12 
local 

technician 
manual 
pump NR 

boy in 
household 

replace 
bolt 

39 4-10 

manually 
drilled 

well 12 
local 

technician 
manual 
pump NR 

local 
technician 

replace 
leather 

40 4-10 

manually 
drilled 

well 12 

male head 
of 

household 
manual 
pump NR 

male head of 
household 

replace 
leather 

41 0-3 
traditional 

well 12 
local 

technician 
manual 
pump NR 

male head of 
household 

replace 
bolt 

42 0-3 
traditional 

well 12 
local 

technician 
manual 
pump NR 

local 
technician 

replace 
leather, 
wood 

support, 
bolt 
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43 0-3 

manually 
drilled 

well 12 
local 

technician 
manual 
pump NR 

local 
technician 

replace 
leather, 

wellscreen
, bolt(s) 

44 4-10 

manually 
drilled 

well 12 
local 

technician 
manual 
pump NR 

boy in 
household 

replace 
leather 

45 0-3 

manually 
drilled 

well 10-11 
boy in 

household 
manual 
pump NR 

boy in 
household 

replace 
leather 

46 20+ 

manually 
drilled 

well 10-11 
boy in 

household 
manual 
pump NR 

boy in 
household 

replace 
leather, 
piston 

47 4-10 

manually 
drilled 

well 12 
local 

technician 
manual 
pump NR 

local 
technician 

replace 
pipes 

48 4-10 

manually 
drilled 

well 12 
local 

technician 
manual 
pump NR 

local 
technician 

replace 
leather, 

wellscreen
, bolt(s) 

49 11-15 

manually 
drilled 

well 12 
local 

technician 
manual 
pump NR 

local 
technician 

replace 
leather 

(top and 
bottom) 

50 0-3 

manually 
drilled 

well 12 
local 

technician 
manual 
pump NR 

local 
technician 

replace 
leather 

51 16-20 

manually 
drilled 

well 12 
local 

technician 
manual 
pump NR 

local 
technician 

replace 
wellscreen 

52 11-15 

manually 
drilled 

well 12 
local 

technician 
manual 
pump NR 

local 
technician 

replace 
leather 

53 11-15 

manually 
drilled 

well 12 

male head 
of 

household 
manual 
pump NR 

male head of 
household 

replace 
leather 
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Surve
y No. Q17a Q17b Q17c Q18 Q19 Q20a Q20b Q20c 

  

WL D 
Repair 
Cost - 
Material
s 

WL D 
Repair Cost 
- Labor 

WL D 
Repair 
Cost - 
Total 

Other 
Water 
Source?? 

Who built 
/ 
installed 
water 
system? 

Cost of 
System -  
Material
s 

Cost of 
Syste
m - 
Labor 

Total 
Cost of 
System 

1 8000 4000 12000 faucet 

local 
technicia

n 160000 16000 176000 

2 5000 1000 6000 faucet 

local 
technicia

n 120000 20000 140000 

3 40000 0 40000 faucet 

local 
technicia

n X X 
Don't 
Know 

4 5000 2000 7000 faucet 

local 
technicia

n 160000 20000 180000 

5 X X 
Don't 
Know faucet 

local 
technicia

n X X 
Don't 
Know 

6 X X 
Don't 
Know faucet 

someone 
in the 

househol
d X X 

Don't 
Know 

7 5000 5000 10000 faucet 

local 
technicia

n 50000 50000 100000 

8 10000 4000 14000 faucet 

local 
technicia

n 50000 0 50000 
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9 3000 3000 6000 NO 

local 
technicia

n 70000 0 70000 

10 7000 0 7000 faucet 

local 
technicia

n X X 
Don't 
Know 

11 X X 
Don't 
Know faucet 

local 
technicia

n X X 
Don't 
Know 

12 15000 0 15000 NO 

local 
technicia

n X X 
Don't 
Know 

13 6000 6000 12000 faucet 

local 
technicia

n 160000 30000 190000 

14 37000 0 37000 NO 

local 
technicia

n 30000 0 30000 

15 3500 0 3500 faucet 

someone 
in the 

househol
d X X 

Don't 
Know 

16 9000 0 9000 NO 

local 
technicia

n 20000 0 20000 
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17 50000 16000 66000 NO 

local 
technicia

n X X 
Don't 
Know 

18 7000 1000 8000 faucet 

local 
technicia

n X X 
Don't 
Know 

19 3000 2000 5000 faucet 

local 
technicia

n X X 
Don't 
Know 

20 3500 0 3500 faucet 

local 
technicia

n 140000 0 140000 

21 80000 0 80000 NO 

someone 
in the 

househol
d X X 

Don't 
Know 

22 3000 0 3000 NO 

local 
technicia

n 30000 0 30000 

23 7000 0 7000 NO 

local 
technicia

n 100000 20000 120000 

24 100000 0 100000 faucet 

local 
technicia

n 140000 20000 160000 

25 20000 10000 30000 faucet 

local 
technicia

n 60000 0 60000 



 

134 

 

26 3000 2000 5000 faucet 

local 
technicia

n 100000 20000 120000 

27 30000 0 30000 
househol
d faucet 

local 
technicia

n 140000 10000 150000 

28 3000 1000 4000 faucet 

local 
technicia

n 140000 20000 160000 

29 40000 0 40000 faucet 

local 
technicia

n X X 
Don't 
Know 

30 4000 2000 6000 faucet 

local 
technicia

n X X 
Don't 
Know 

31 6400 0 6400 faucet 

local 
technicia

n X X 
Don't 
Know 

32 4000 2000 6000 faucet 

local 
technicia

n 120000 20000 140000 

33 56000 0 56000 NO 

local 
technicia

n 60000 0 60000 
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34 2000 0 2000 faucet 

local 
technicia

n 100000 20000 120000 

35 40000 0 40000 faucet 

local 
technicia

n 90000 0 90000 

36 3000 0 3000 faucet 

local 
technicia

n 100000 20000 120000 

37 13000 0 13000 NO 

someone 
in the 

househol
d 95000 0 95000 

38 1000 0 1000 NO 

local 
technicia

n 135000 0 135000 

39 8000 3000 11000 NO 

local 
technicia

n 140000 0 140000 

40 7000 0 7000 

Water 
from San 
Gabriel 
system* 

local 
technicia

n 110000 20000 130000 

41 X X X NO 

local 
technicia

n 200000 0 200000 

42 20000 0 20000 NO 

local 
technicia

n 160000 60000 220000 
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43 12000 0 12000 NO 

local 
technicia

n 100000 0 100000 

44 4500 0 4500 faucet 

local 
technicia

n X X 
Don't 
Know 

45 4000 0 4000 NO 

someone 
in the 

househol
d 120000 0 120000 

46 12000 0 12000 

other 
manually 

drilled 
well 

someone 
in the 

househol
d X X 

Don't 
Know 

47 30000 0 30000 faucet 

local 
technicia

n X X 
Don't 
Know 

48 30000 0 30000 faucet 

local 
technicia

n X X 
Don't 
Know 

49 7000 2000 9000 faucet 

local 
technicia

n 80000 0 80000 

50 5000 0 5000 faucet 

local 
technicia

n 120000 25000 145000 

51 8000 4000 12000 faucet 

local 
technicia

n 45000 0 45000 

52 5000 0 5000 NO 

local 
technicia

n X X 
Don't 
Know 

53 15000 0 15000 NO 

local 
technicia

n 120000 0 120000 
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Survey 
No. Q21/22 Q23/24 Q25 XX YY ZZ Q26/27 

  
Subsidy, 
Amount 

Loan, 
Amount 

Improvement 
Plans in next 
year? 

Current 
Daily 
Water 
Usage 
(liters) 

Daily 
Water 
Usage 
MORE, 
LESS, or 
Equal 
previously? 

Previous 
Daily 
Water 
Usage 
(liters) 

Drink water 
from primary 
source?  If 
not, where? 

1 NONE NONE new borehole - - - YES 

2 NONE NONE 
replace 
leather - - - YES 

3 NONE NONE new borehole - - - YES 

4 NONE NONE 
add 3m of 

pipe - - - YES 

5 NONE NONE NONE - - - YES 

6 NONE NONE 

replace 
wellscreen, 

pipes - - - YES 

7 NONE NONE 
replace pump 

head - - - YES 

8 NONE NONE 
replace 
handle - - - YES 
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9 NONE NONE NONE 300 more 200 YES 

10 NONE NONE 
replace 

wellscreen 250 more 150 

NO, from 
community 

tap 

11 NONE NONE replace parts 150 same 150 

NO, from 
community 

tap 

12 NONE NONE NONE 100 same 100 YES 

13 NONE NONE NONE 800 more 600 

NO, from 
household 

connection to 
community 

system 

14 NONE NONE NONE 500 more 400 YES 

15 NONE NONE 
replace pipes, 

wellscreen 250 more 200 YES 

16 NONE NONE new borehole 300 more 200 YES 
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17 NONE NONE replace pipes 120 more 80 YES 

18 NONE NONE new borehole 150 more 100 YES 

19 NONE NONE new borehole 300 more 260 

NO, from 
community 

tap 

20 NONE NONE new borehole 150 more 80 

NO, from 
community 

tap 

21 NONE NONE 

household 
connection to 

community 
water system 300 more 200 YES 

22 NONE NONE new borehole 800 more 500 YES 

23 NONE NONE 
new pump 

head 200 more 140 YES 

24 NONE NONE 

household 
connection to 

community 
water system 200 more 100 YES 

25 NONE NONE NONE 80 more 60 YES 
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26 NONE NONE 

replace pipes, 
wellscreen 

(i.e. new well, 
same pump) 130 more 100 faucet 

27 NONE NONE NONE 50 less 160 
household 

faucet 

28 NONE NONE new borehole 300 more 200 faucet 

29 NONE NONE new borehole 200 more 160 YES 

30 NONE NONE 

replace 
wellscreen, 

leather 200 less 300 
household 

faucet 

31 NONE NONE NONE 360 more 300 YES 

32 NONE NONE 

household 
connection to 

community 
water system 250 more 200 YES 

33 NONE NONE NONE 300 more 200 YES 
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34 NONE NONE NONE 450 more 300 faucet 

35 NONE NONE 

household 
connection to 

community 
water system 400 more 300 YES 

36 NONE NONE NONE 150 more 120 faucet 

37 NONE NONE new borehole 120 more 100 YES 

38 NONE NONE NONE 200 less 250 YES 

39 NONE NONE NONE 600 more 400 YES 

40 NONE NONE NONE 300 more 250 

ONG San 
Gabriel 
system 

41 NONE NONE NONE 150 more 100 YES 

42 NONE NONE 
add concrete 
around pump 300 more 200 YES 
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43 NONE NONE NONE 400 more 330 YES 

44 NONE NONE NONE 100 less 200 faucet 

45 NONE NONE NONE 250 more 230 YES 

46 NONE NONE new borehole 300 more 260 YES 

47 NONE NONE NONE 300 more 220 YES 

48 NONE NONE 
replace 
leather 200 more 160 YES 

49 NONE NONE new borehole 320 more 280 YES 

50 NONE NONE NONE 75 more 100 YES 

51 NONE NONE new borehole 100 less 150 YES 

52 NONE NONE 

replace 
wellscreen, 

leather 320 less 400 YES 

53 NONE NONE 
replace 
leather 400 more 370 YES 
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40 out of 53 
households 

reported 
drinking from 

Pump Tany 
well 
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Appendix B  Bolivia Field Data Collection Guide and Raw Data 

 

B.1  Survey Form 

Date:       

ID:       

Interviewer:      

                       Interviewee:       Male            

Female   

  

Bolivia Self-supply:  Assessing Access to Household Water and Sanitation  

with EMAS Technologies in Rural Areas of Bolivia  

Household Survey 

Demographic Information 

1. What is your age? 
a. 18-35 
b. 36-50 
c. 50-65 
d. Over 65 

 
2. How many persons live in your household? __________ 

 
3. How many are adults aged 18 and above? ____________ 

 
4. How many children aged 5 – 17? _______________ 

 
5. How many children under 5 years? ____________ 

 
6. What is the occupation of male head of household? ___________ 

 
7. What is the occupation of female head of household? ___________ 

 
 

Water and Sanitation Infrastructure Systems in Household 

8. What type of household water source does your family have? 
a. Hand-dug well 
b. Manually drilled Well 
c. Rainwater Harvesting System 
d. Piped water from community system 
e. Other __________________________ 

 
9. What is the age of the household water source? 

a. 0-3 years 
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b. 4-10 years 
c. 11-15 years 
d. 16-20 years 
e. Older than 20 years 

 
10. Where did you get your water before you had the current system? 

a. 0-3 years 
b. 4-10 years 
c. 11-15 years 
d. 16-20 years 
e. Older than 20 years 

 
 
 

11. How many months per year does this source provide water? 
a. 1-3 months per year 
b. 4-6 months per year 
c. 6-9 months per year 
d. 10-11 months per year 
e. Other __________________________ 

 
12. Who is responsible for maintaining the water source? 

a. Female head of household 
b. Male head of household 
c. Other female adult in household 
d. Other male adult in household 
e. Female child 
f. Male child 
g. Other __________________________ 

 
13. What do you use to lift water from the water source? 

a. Rope and Bucket 
b. Manual pump 
c. Fuel-powered pump 
d. Motorized pump 
e. Other __________________________ 

 
14. What is the age of the household water-lifting device? 

a. 0-3 years 
b. 4-10 years 
c. 11-15 years 
d. 16-20 years 
e. Older than 20 years 

 
15. Who is responsible for repair and maintenance of the water-lifting device? 

a. Female head of household 
b. Male head of household 
c. Other female adult in household 
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d. Other male adult in household 
e. Female child 
f. Male child 
g. Other __________________________ 

 
16. Does your family get any water for the household from another source?     YES         or         NO 

If YES, what type of source is this secondary source? 
a. Hand-dug well 
b. Manually drilled Well 
c. Rainwater Harvesting System 
d. Piped water from community system 
e. Other __________________________ 

 
 
 
 
 

Water and Sanitation System Construction 

17. Who built/installed your household water and sanitation systems (circle all that apply)?  
a. Self (anyone in family) 
b. Friend 
c. Local Technician(s) 
d. Other __________________________________ 

 
18. Did you receive subsidies to pay for your household water and sanitation system?     YES         or         

NO 
If YES, where did the subsidies come from? 

a. Local municipality  (specify name ______________) 
b. Local or national NGO  (specify name ___________) 
c. International NGO  (specify name _______________) 
d. Other __________________________________ 

 
19. Did you receive subsidies a loan to pay for your household water and sanitation system?     YES         

or         NO 
If YES, where did the subsidies come from? 

a. Local municipality  (specify name ______________) 
b. Local or national NGO  (specify name ___________) 
c. International NGO  (specify name _______________) 
d. Other __________________________________ 

 
20.  Do you have any plans to upgrade your household water and sanitation system within the next 

year? 
 YES         or         NO 
If YES, what upgrade(s) do you plan on making? 

a. Replace pump  (specify type of new pump  _____ ) 
b. Add tank 
c. Add piping to house 
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d. New well 
e. Other __________________________________ 

 
 

Household Water Practices & Use 
 

21. Is the water from the EMAS system used for drinking water? 
a. Yes 
b. No 

 
22. If no, what is the source for drinking water? _________________________ 

 
23. What is the water from the EMAS system used for? (circle all that apply) 

a. Drinking (Note:  Already answered in Question #21) 
b. Washing food/cooking 
c. Hand washing 
d. Bathing 
e. Brushing teeth 
f. Clothes washing 
g. Irrigation (flowers, crops, etc.) 
h. Other _____________ 

 
24. What methods do you use to treat your water before use? 

a. Storage tank disinfection (What kind of disinfection? ___________________________) 
b. Point of use disinfection (What kind of disinfection? ____________________________) 
c. Boiling 
d. Filter (what type? ____________) 
e. Other ___________ 
f. None  

 
25. Is water treated for all uses or only for drinking? 

a. Yes 
b. No 
c. Treated for drinking and _________________ 

 
26. Does someone disinfect the water in the storage tank? (If answer is NO, skip to Question 29) 

a. Yes 
b. No 

 
27. If yes to disinfection, how frequently is the water disinfected? 

a. Daily 
b. Weekly 
c. Monthly 
d. Every 6 months 
e. Annually 
f. Rarely 
g. Other _____________ 
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28. If yes to disinfection, when was the last time of disinfection? 
a. Within the last two weeks 
b. Within the last month 
c. Within the last six months 
d. Within the last year 

 
Household Sanitation 

29. What type of sanitation system do you have in your household? 
a. None 
b. Pit Latrine 
c. VIP Latrine 
d. EcoSan Latrine 
e. Pour-flush latrine 
f. Septic System 
g. Other __________ 

 
30. What is the age of the household sanitation system? 

a. 0-3 years 
b. 4-10 years 
c. 11-15 years 
d. 16-20 years 
e. Older than 20 years 

 
31. Where did you get your water before you had the current system? 

a. None 
b. Pit Latrine 
c. VIP Latrine 
d. EcoSan Latrine 
e. Pour-flush latrine 
f. Septic System 
g. Other __________ 

 

Thank you for your time.  The survey is now complete. 
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 B.2  Observation/Inspection Sheet 

    Date:  

ID:   

Observer:   

 

Factors Bolivia Self-Supply:  Assessing Access to Household Water and Sanitation  

with EMAS Technologies in Rural Areas of Bolivia 

Inspection Sheet 

House (building) Observations 

1. How many levels does the house have? 

a. One                b. Two 

2. Approximately how many rooms are in the house?  

a. 1-3 

b. 4-6 

c. 7-9 

d. 10 or more 

3. Is there a separate room for the kitchen? 

Yes             No 

4. What type of toilet do the household members use?  (Confirm – also asked in survey) 

a. None 
b. Pit Latrine 
c. VIP Latrine 
d. EcoSan Latrine 
e. Pour-flush latrine 
f. Septic System 
g. Other __________ 

5. Estimate the area (in sq. meters) of the roof (i.e. area that can be used to capture rain) 

 

6. General observations (roof and housing materials, fresh paint, furniture, general condition of 

the house, etc.) 

 

 

______________________________________________________________________________ 

 

 

Water System Inspection 

7. What is the EMAS-type water source?  (Confirm – also asked in survey) 

a. Hand-dug well 
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b. Manually drilled Well 
c. Rainwater Harvesting System 
d. Piped water from community system  
e. Other __________________________ 

 

8. Is there a water storage tank.  

YES NO 

9.  If YES to Question 8, What is the approximate tank capacity in liters? ___________ (diam_____   

,    depth____) 

10. Where is the tank located? 

a. Roof top 

b. On top of other elevated structure 

c. Above ground, not elevated 

d. Below ground 

e. Other _____________ 

11. What is the tank made of? 

a. Reinforced concrete 

b. Unreinforced concrete 

c. Ferrocement 

d. Plastic 

e. Metal 

f. Other _____________ 

12. Does the tank have a cover or lid? 

Yes              No 

13. If yes to Question 12, what is the cover or lid made of? ____________ 

 

14. Is a manual pump used? 

YES  NO 

15. If YES to Question 14, is the manual pump functional? 

YES NO NA 

 

16. If YES to Question 15, what is the measured flow rate from the manual pump? 

________ time to pump 20 liters (trial 1) _________ time to pump 20 liters (trial 

2)  _____ average 

 

17. General observations (conditions of well, pump, tank, RWH gutters, etc.) 

________________________________________________________________________ 

 

Sanitation System Inspection 

18. Does the latrine appear to be a standard EMAS latrine? 
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YES              NO 

19. If no to Question 18, what is the latrine made of? (circle all that apply, and take photos) 

a. Reinforced concrete 

b. Unreinforced concrete 

c. Ferrocement 

d. Plastic 

e. Metal  (e.g. currogated iron/zinc) 

f. Other _____________ 

20. Does the latrine appear to be used on a regular basis? 

YES              NO 

21. Are there hand-washing facilities within 5 meters of the latrine? 

YES              No 

22. Describe the general condition of the sanitation infrastructure: 

 

 

B.3  Semi-structured Interview Script 

Bolivia Self-Supply Study 

Semi-Structured Interview Script:  Water/Sanitation Technicians 

 

Purpose:  to help determine the experiences that technicians have had with implementing EMAS 

household water and sanitation technologies in rural areas of Bolivia. 

Introduction 

Good morning/afternoon, and welcome.  Thank you for agreeing to participate in our discussion of 

household water supply systems.  My name is Michael MacCarthy, and I represent the University of 

South Florida in the Unites States.   My project colleague(s)  ( _____________  and  _______________ , 

will be assisting.  We are attempting to gather information on EMAS low-cost water supply systems used 

at the family/household level in Bolivia.  We have invited several other people to share their experiences 

and ideas. 

 

Questioning Route (time estimates in parentheses are for Focus Groups) 

 

Opening:   1.  Tell us your name (first name and family name) and the name of the 

village/region in which you work.   

Introductory:  2.  How did you learn about EMAS household water and sanitation systems?          
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Transition: 3.  When you first saw an EMAS manual water pump working, what were your 

first impressions?  

 4.  When you first saw an EMAS water well being drilled, what were your first 

impressions?  

5.  How (and when) did receive training in EMAS technologies?   

Key Questions: 6.  What do you like about EMAS systems? 

7.  In your experience, what specific problems do users of EMAS systems most 

often have?  

8.  What do users tell you that they like about EMAS systems? 

9.  What percentage of your monthly income comes from building, installing or 

servicing EMAS systems?  

10.  In managing your project/business, what aspect do you find the most 

difficult?  

11.  Who do you get help from when you have questions about EMAS 

technologies or running your project/business?  

12.  Is the help that you get from others about EMAS technologies or running 

your project/business sufficient?  What additional support do you feel would be 

of benefit to you in managing your project/business? 

Ending Questions: 13.  We would like for you to help us to evaluate the EMAS systems and your 

experiences implementing projects using these systems.  We want to know how 

the service these systems provide can be improved.  Is there anything that we 

have not spoken about that you would like to add about the EMAS systems and 

your experiences with household water supply
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B.4  Bolivia Household Surveys – Raw Data 

 

Table B1.  Cachilaya survey data 
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Table B2.  Pampa Chililaya survey data 
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Table B3.  Izozog survey data 
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a X
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manual 
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manual 

pump 0-3 YES Normal

7 Male a 7 3 0 4
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pump 4-10 YES
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manual 
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pump 4-10 YES Normal

14

Femal

e b 8 3 5 0

agriculto

ra X

manually-

drilled 

well 4-10

brother's 

manually-

drilled 

well 12

female head 

of 

household

manual 

pump 4-10 YES Poor
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manual 
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pump 4-10 YES Normal

20

Femal

e a 9 4 4 1

agriculto

r X

manually-

drilled 

well 4-10

manually-

drilled 

well 12

male head 

of 

household

manual 
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male head 

of 
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manual 

pump 4-10 YES
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leak at 

connection of 

spout and 

handle

22 Male b 7 4 2 1

agriculto

r

tejido / 

telar

manually-

drilled 

well 11-15

communit

y well 12

male head 

of 

household

manual 

pump 11-15 YES

Not very 

good

pump takes a 

while to 

prime, pumps 

a bit slowly

owner 

took 

pump 

out - 

there 

was a 

piercing 

just 

above 

the valve 

where 

water 

was 

leaking

23

Femal

e b 2 2 0 0

agriculto

r X

manually-

drilled 

well 4-10

communit

y well 12

female head 

of 

household

manual 

pump 4-10 YES good

24

Femal

e a 2 2 0 0 tecnico X

manually-

drilled 

well 4-10

brother's 

manually-

drilled 

well 12

female head 

of 

household

manual 

pump 4-10 YES

Not very 

good

25

Femal

e a 8 3 3 2

agriculto

r X

manually-

drilled 

well 11-15

communit

y well 12

female head 

of 

household

manual 

pump 11-15 YES Normal

26

Femal

e a 15 4 10 3

tejido/t

elares X

manually-

drilled 

well 4-10

communit

y well 12

female head 

of 

household

manual 

pump 4-10 YES Normal

27

Femal

e d 8 6 1 1

agriculto

r
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a

manually-

drilled 

well 4-10

communit

y well 12

male head 
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household

manual 

pump 4-10 YES Normal
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Femal

e c 7 7 0 0
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manually-
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well 4-10

communit

y well 12

female head 
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household

manual 

pump 4-10 YES Normal
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agriculto

r

tejido/t

elares

manually-

drilled 

well 4-10

communit

y well 12

male head 

of 

household

manual 

pump 4-10 YES Normal

30 Male b 6 3 3 0

agriculto

r X

manually-

drilled 

well 4-10

communit

y well 12

male head 

of 

household

manual 

pump 4-10 NO

Pump 

reported 

to be 

broken 

for a 

week

Pump not in 

well - has 

been pulled 

out

owner 

says 

bottom 

valve is 

the 

problem 

(has no 

rubber 

ring)

outer 

pump 

tubing 

fell down 

the 

borehole

31 Male b 8 5 3 0

agriculto

r X

manually-

drilled 

well 11-15

communit

y well 12

male head 

of 

household

manual 

pump 11-15 YES Normal

32 Male c 3 2 1 0

agriculto

r X

manually-

drilled 

well 11-15

manually-

drilled 

well 12

male head 

of 

household

manual 

pump 11-15 YES Normal

also an 

old well - 

kids had 

taken 

pump 

out and 

filled in 

with 

sand

33

Femal

e d 6 5 1 0

agriculto

r X

manually-

drilled 

well 16-20

communit

y well 12

female head 

of 

household

manual 

pump 16-20 YES Normal

34

Femal

e b 10 5 2 3

agriculto

r

agricult

ora

manually-

drilled 

well 11-15

communit

y well 12

female head 

of 

household

manual 

pump 11-15 YES Normal

35

Femal

e b 10 6 0 4

agriculto

r tejido

manually-

drilled 

well 16-20

communit

y well 12

female head 

of 

household

manual 

pump 16-20 YES

Not very 

good

low flow from 

pump

36

Femal

e c 8 7 0 1

agriculto

r

artesan

a

manually-

drilled 

well 4-10

communit

y well 12

female head 

of 

household

manual 

pump 4-10 YES

Very 

Good

36 out 

of 36 

provid

e 

water 

12 

month

s per 

year

10 out 

of 14 

pumps 

installe

d over 

10 yrs 

ago 

functio

ning 

normal

ly

35 out of 

36 pumps 

working

27 out of 

35 

functioni

ng pumps 

operate 

normally  
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Table B4.  Somopai survey data 
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V
ill

a
g

e
s

B
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S
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m
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p
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1 Female 50-65 4 1 3 0 dentista X

manual

ly-

drilled 

well No sabe

communit

y well 12

female 

head of 

household

manual 

pump

No 

sabe YES Normal

2 Female 36-50 8 6 2 0 maestro

maestr

a

manual

ly-

drilled 

well 4-10

communit

y well 6-9

female 

head of 

household

manual 

pump 4-10 YES Normal

3 Male 36-50 4 4 0 0 maestro X

manual

ly-

drilled 

well 4-10

communit

y well 12 "all"

manual 

pump 4-10 YES Normal

4 Male 18-35 5 2 2 1

ganader

ia X

manual

ly-

drilled 4-10

communit

y well 12

female 

head of 

household

manual 

pump 4-10 YES Normal

5 Female 36-50 5 2 2 1

agricult

or

panade

ria

manual

ly-

drilled 

well 4-10

communit

y well 12

female 

head of 

household

manual 

pump 4-10 YES Normal

6 Female 18-35 4 2 0 2

contrati

sta X

manual

ly-

drilled 4-10

communit

y well 12

female 

head of 

household

manual 

pump 4-10 YES Normal

7 Female 18-35 4 2 0 2

agricult

or X

manual

ly-

drilled No sabe

communit

y well 12

female 

head of 

household

manual 

pump 4-10 YES Normal

Salty 

water 

taste

8 Male 36-50 5 2 2 1

agricult

or

agricult

ora

manual

ly-

drilled 

well 4-10

communit

y well 12

female 

head of 

household

manual 

pump 4-10 YES Normal

9 Female 36-50 4 2 1 1

comerci

o X

manual

ly-

drilled 

well 4-10

communit

y well 12

female 

head of 

household

manual 

pump 4-10 YES Normal

8 out of 

9 

provide 

water 

12 

months

/yr

9 out of 9 

manual 

pumps 

working

9 out of 9 

manual 

pumps 

functioni

ng 

normally  
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Table B5.  Reyes survey data 
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Ru
ra

l T
ow

n

Re
ye

s

1

Fema

le 36-50 7 1 5 1

logger 

and 

driller X

manually-

drilled 

well 0-3

neighbor's 

manually-

drilled well NR

female head 

of household

manual 

pump 0-3 YES Normal

2 Male 50-65 5 5 0 0 farmer X

manually-

drilled 

well 4-10

family well 

(hand dug) 12

male head of 

household

manual 

pump 4-10 YES Normal

3 Male 50-65 6 3 2 1 farmer X

manually-

drilled 

well 0-3

family well 

(hand dug) 12

male head of 

household

manual 

pump 0-3 YES Normal

4

Fema

le 36-50 7 2 3 2 chapista X

manually-

drilled 

well

No 

sabe No sabe 12

female head 

of household

electric 

pump

No 

sabe

NA - 

Electric 

Pump NA

5

Fema

le 36-50 2 1 1 0

homema

ker X

manually-

drilled 

well

No 

sabe No sabe 12

female head 

of household

manual 

pump

No 

sabe YES Normal

6

Fema

le 36-50 8 5 3 0

ganader

o comercio

manually-

drilled 

well 4-10

family well 

(hand dug) 12

female head 

of household

manual 

pump 4-10 YES Normal

7 Male

over 

65 3 3 0 0 jubilado X

manually-

drilled 

well 4-10

tap from 

community 

system, 

manually-

drilled well 12

male head of 

household

electric 

pump 0-3

NA - 

Electric 

Pump NA

8

Fema

le 18-35 4 2 0 2

asesor 

de 

credito docente

manually-

drilled 

well 0-3

manually-

drilled well 12

female head 

of household

electric 

pump 0-3

NA - 

Electric 

Pump NA

9

Fema

le 36-50 11 6 4 1

ganader

o

homema

ker

manually-

drilled 

well 4-10

family well 

(hand dug) 12

female head 

of household

electric 

pump 0-3

NA - 

Electric 

Pump NA

10

Fema

le 36-50 6 3 3 0

madarer

o X

manually-

drilled 

well 16-20

neighbor's 

hand-dug 

well 12

female head 

of household

manual 

pump 16-20 YES

Not very 

good 

(very 

slow 

pumping)

11

Fema

le 18-35 10 5 3 2

cerrajeri

a X

manually-

drilled 

well 4-10

tap from 

community 

system, 

manually-

drilled well 12

female head 

of household

manual 

pump 4-10 YES

Not very 

good

12

Fema

le

over 

65 6 4 1 1 ??? X

manually-

drilled 

well 4-10

tap from 

community 

system, 

hand dug 

well 12

female head 

of household

manual 

pump 4-10 YES Not great

13

Fema

le 18-35 9 2 3 4 logger X

manually-

drilled 

well 11-15

family well 

(hand dug), 

community 

water 

system 12

male head of 

household

manual 

pump 11-15 YES Normal

14

Fema

le 36-59 4 2 2 0

panaderi

a X

manually-

drilled 

well 4-10

family well 

(hand dug), 

community 

water 

system 12

female head 

of household

manual 

pump 11-15 YES Normal

15 Male 50-65 1 1 0 0

transpor

te X

manually-

drilled 

well 4-10

manually-

drilled well 12

male head of 

household

manual 

pump 0-3 YES Normal

16

Fema

le 50-65 7 5 2 0

jornaler

o

lavander

a

manually-

drilled 

well 0-3

neighbor's 

hand-dug 

well 12

female head 

of household

manual 

pump 0-3 YES Normal

17 Male 18-35 4 2 2 0

mecanic

o X

manually-

drilled 

well 0-3

family well 

(hand dug) 12

female head 

of household

manual 

pump 0-3 YES Normal

18

Fema

le 18-35 4 2 1 1

carpinter

ia X

manually-

drilled 

well 4-10

family well 

(hand dug) 12

female head 

of household

electric 

pump 4-10

NA - 

Electric 

Pump NA

19 Male 18-35 8 4 3 1 artesano artesana

manually-

drilled 

well 0-3 No sabe NR

male head of 

household

manual 

pump 0-3 YES Normal

20 Male 36-50 10 5 4 1

ganaderi

a, 

motosier

homema

ker

manually-

drilled 

well 0-3

manually-

drilled well 12

other adult 

male in the 

household

manual 

pump 0-3 YES Normal

21 Male 36-50 5 4 1 0

caminos 

(ABC 

transpor artesania

manually-

drilled 

well 0-3

hand-dug 

well 12

female head 

of household

manual 

pump 0-3 YES Normal

22

Fema

le 18-35 5 3 1 1

veterina

rio

profesor

a

manually-

drilled 

well 4-10

hand-dug 

well 12

female head 

of household

manual 

pump 4-10 YES Normal

23

Fema

le

over 

65 6 3 3 0 albanil X

manually-

drilled 

well 4-10 arroyo??? 12

female head 

of household

manual 

pump 4-10 YES Normal

24 Male 50-65 12 8 2 2 armero comercio

manually-

drilled 

well 4-10

hand-dug 

well 12

male head of 

household

manual 

pump 4-10 YES Normal

25 Male 18-35 6 3 2 1

agriculto

r

mecanic

o

manually-

drilled 

well 11-15

hand-dug 

well 12

other adult 

male in the 

household

manual 

pump 11-15 YES Normal

26

Fema

le 50-65 7 3 2 2

jornaler

o

secretari

a

manually-

drilled 

well 0-3

manually-

drilled well 12

female head 

of household

manual 

pump 0-3 YES Normal

24 out 

of 24 

(with 2 

no 

replies) 

provide 

water 

12mont

hs out 

of the 

year

3 out of 

4 

pumps 

installe

d over 

10 yrs 

ago 

functio

ning 

normal

ly

21 out of 

21 

manual 

pumps 

working

18 out of 

21 pumps 

function 

normally  
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Appendix C  Uganda Field Data 

 

C.1  Uganda Field Data - Additional Charts from Pumping Tests 
 

Figure C1. Graphs indicating average time to pump 20 liters at various depths 
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C.2  Material Costs for EMAS Pumps and Rope Pumps (Kampala) 

 

Table C1. Material costs for 20-mm Rope Pump – 10 m depth 

Family Model Rope  Pump (20mm riser pipe)  Depth = 10

Material Size Type Misc Use Unit Quantity Unit Sold Unit Price 1 Total Price USD $

GI 1/2" STD pipe  2.2mm wall pump frame / guide box m 5.75 6 m UGX 28,000 UGX 26,833 $10.73

GI 3/4" STD pipe pump frame / guide box m 1 6 m UGX 35,000 UGX 5,833 $2.33

GI 1" STD pipe pump frame / guide box m 0.3 6 m UGX 68,000 UGX 3,400 $1.36

PVC 20mm PN 16 (~1/2") riser pipe m 10.75 6 m UGX 5,500 UGX 9,854 $3.94

PVC 25mm PN10 (~3/4") handle grip m 0.1 6 m UGX 6,800 UGX 113 $0.05

PVC 32mm PN 10 (~1") guide pipes m 1.5 6 m UGX 10,800 UGX 2,700 $1.08

PVC 50mm PN 6 (~1.5") pump spout m 1 6 m UGX 17,000 UGX 2,833 $1.13

PVC 50mm Tee fitting spout connection EACH 2 6 m UGX 4,800 UGX 1,600 $0.64

PVC 50mm>32mm Bushing fitting riser > spout adaptor EACH 4 1 EACH UGX 1,500 UGX 6,000 $2.40

PVC 32mm>25mm Bushing fitting riser > spout adaptor EACH 2 1 EACH UGX 600 UGX 1,200 $0.48

PVC 32mm>20mm Bushing fitting riser > spout adaptor EACH 2 1 EACH UGX 600 UGX 1,200 $0.48

polyrope 4mm 100m roll rope EACH 23 100 m roll UGX 22,000 UGX 5,060 $2.02

Used Car Tire 14" No Steel!! whole tire washers /wheel EACH 1 1 EACH UGX 10,000 UGX 10,000 $4.00

Iron round bar 8mm rebar for install m 2 12 m UGX 20,000 UGX 3,333 $1.33

Paint Rex Oxide prevents rust Small can 1 1 EACH UGX 6,000 UGX 6,000 $2.40

Spray Paint Any Color coating Can 1 1 EACH UGX 15,000 UGX 15,000 $6.00

Welding Rods 2.5mm welding EACH 12 1 EACH UGX 200 UGX 2,400 $0.96

Grinding Discs cutting / grinding EACH 1 1 EACH UGX 14,000 UGX 14,000 $5.60

UGX 117,361 $46.94  

 

 

Table C2. Material costs for 20-mm Rope Pump – 25 m depth 

Family Model Rope  Pump (20mm riser pipe)  Depth = 25

Material Size Type Misc Use Unit Quantity Unit Sold Unit Price 1 Total Price USD $

GI 1/2" STD pipe  2.2mm wall pump frame / guide box m 5.75 6 m UGX 28,000 UGX 26,833 $10.73

GI 3/4" STD pipe pump frame / guide box m 1 6 m UGX 35,000 UGX 5,833 $2.33

GI 1" STD pipe pump frame / guide box m 0.3 6 m UGX 68,000 UGX 3,400 $1.36

PVC 20mm PN 16 (~1/2") riser pipe m 25.75 6 m UGX 5,500 UGX 23,604 $9.44

PVC 25mm PN10 (~3/4") handle grip m 0.1 6 m UGX 6,800 UGX 113 $0.05

PVC 32mm PN 10 (~1") guide pipes m 1.5 6 m UGX 10,800 UGX 2,700 $1.08

PVC 50mm PN 6 (~1.5") pump spout m 1 6 m UGX 17,000 UGX 2,833 $1.13

PVC 50mm Tee fitting spout connection EACH 2 6 m UGX 4,800 UGX 1,600 $0.64

PVC 50mm>32mm Bushing fitting riser > spout adaptor EACH 4 1 EACH UGX 1,500 UGX 6,000 $2.40

PVC 32mm>25mm Bushing fitting riser > spout adaptor EACH 2 1 EACH UGX 600 UGX 1,200 $0.48

PVC 32mm>20mm Bushing fitting riser > spout adaptor EACH 2 1 EACH UGX 600 UGX 1,200 $0.48

polyrope 4mm 100m roll rope EACH 53 100 m roll UGX 22,000 UGX 11,660 $4.66

Used Car Tire 14" No Steel!! whole tire washers /wheel EACH 1 1 EACH UGX 10,000 UGX 10,000 $4.00

Iron round bar 8mm rebar for install m 2 12 m UGX 20,000 UGX 3,333 $1.33

Paint Rex Oxide prevents rust Small can 1 1 EACH UGX 6,000 UGX 6,000 $2.40

Spray Paint Any Color coating Can 1 1 EACH UGX 15,000 UGX 15,000 $6.00

Welding Rods 2.5mm welding EACH 12 1 EACH UGX 200 UGX 2,400 $0.96

Grinding Discs cutting / grinding EACH 1 1 EACH UGX 14,000 UGX 14,000 $5.60

UGX 137,711 $55.08  
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Table C3. Material costs for 20-mm EMAS Pump – 10 m depth 

EMAS "Standard" Pump 20mm pumping pipe Depth of pump= 10

Material Size Type Misc Use Unit Quantity Unit Sold Unit Price 1 Total Price USD $

GI 1/2" Std Pipe Handle m 1.3 6 m UGX 28,000 UGX 6,067 $2.43

GI 1/2" Tee Handle EACH 1 1 EACH UGX 1,000 UGX 1,000 $0.40

GI 1/2" Elbow Handle EACH 1 1 EACH UGX 1,000 UGX 1,000 $0.40

GI 1/2" Cap Handle EACH 1 1 EACH UGX 1,000 UGX 1,000 $0.40

PVC 20mm PN 16 grey pressure pipe Pumping Pipe m 9.5 6 m UGX 5,500 UGX 8,708 $3.48

PVC 32mm PN 10 grey pressure pipe Pump Casing m 7.5 6 m UGX 10,800 UGX 13,500 $5.40

PVC 25mm PN 16 grey pressure pipe Valve Component m 0.3 6 m UGX 8,700 UGX 435 $0.17

PVC 1/2" Sch 40 blue pressure pipe Valve Component m 0.3 6 m UGX 10,700 UGX 535 $0.21

Used Car Tire small sidewall gasket EACH 1 1 EACH UGX 1,000 UGX 1,000 $0.40

marble small valves EACH 2 12 bag UGX 5,000 UGX 833 $0.33

UGX 34,078 $13.63  

 

 

Table C4. Material costs for 20-mm EMAS Pump – 25 m depth 

EMAS "Standard" Pump 20mm pumping pipe Depth of pump= 25

Material Size Type Misc Use Unit Quantity Unit Sold Unit Price 1 Total Price USD $

GI 1/2" Std Pipe Handle m 1.3 6 m UGX 28,000 UGX 6,067 $2.43

GI 1/2" Tee Handle EACH 1 1 EACH UGX 1,000 UGX 1,000 $0.40

GI 1/2" Elbow Handle EACH 1 1 EACH UGX 1,000 UGX 1,000 $0.40

GI 1/2" Cap Handle EACH 1 1 EACH UGX 1,000 UGX 1,000 $0.40

PVC 20mm PN 16 grey pressure pipe Pumping Pipe m 24.5 6 m UGX 5,500 UGX 22,458 $8.98

PVC 32mm PN 10 grey pressure pipe Pump Casing m 18.75 6 m UGX 10,800 UGX 33,750 $13.50

PVC 25mm PN 16 grey pressure pipe Valve Component m 0.3 6 m UGX 8,700 UGX 435 $0.17

PVC 1/2" Sch 40 blue pressure pipe Valve Component m 0.3 6 m UGX 10,700 UGX 535 $0.21

Used Car Tire small sidewall gasket EACH 1 1 EACH UGX 1,000 UGX 1,000 $0.40

marble small valves EACH 2 12 bag UGX 5,000 UGX 833 $0.33

UGX 68,078 $27.23  
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Table C5. Material costs for 25-mm Rope Pump – 5 m depth 

Family Model Rope Pump (25mm riser pipe)  Depth = 5

Material Size Type Misc Use Unit Quantity Unit Price 1 Total Price USD $

GI 1/2"  2.2mm wall pump frame m 5.75 6 m UGX 28,000 UGX 26,833 $10.73

GI 3/4" pump frame m 1 6 m UGX 35,000 UGX 5,833 $2.33

GI 1" pump frame m 0.25 6 m UGX 68,000 UGX 2,833 $1.13

PVC 25mm PN10 (~3/4") riser pipe / handle grip m 5.85 6 m UGX 6,800 UGX 6,630 $2.65

PVC 32mm PN 6 (~1") guide pipes m 1.5 6 m UGX 10,800 UGX 2,700 $1.08

PVC 50mm PN 6 (~1.5") pump spout m 1 6 m UGX 17,000 UGX 2,833 $1.13

PVC 50mm Tee fitting spout connection EACH 2 6 m UGX 4,800 UGX 1,600 $0.64

PVC 50mm>32mm Bushing fitting riser > spout adaptor EACH 4 1 EACH UGX 1,500 UGX 6,000 $2.40

PVC 32mm>25mm Bushing fitting riser > spout adaptor EACH 2 1 EACH UGX 600 UGX 1,200 $0.48

PVC 32mm>20mm Bushing fitting riser > spout adaptor EACH 2 1 EACH UGX 600 UGX 1,200 $0.48

polyrope 6mm 100m roll rope EACH 13 100 m roll UGX 25,000 UGX 3,250 $1.30

Used Car Tire 14" No Steel!! whole tire washers / plungers EACH 1 1 EACH UGX 10,000 UGX 10,000 $4.00

Iron round bar 10mm rebar for install m 2 12 m UGX 20,000 UGX 3,333 $1.33

Paint Rex Oxide prevents rust Small can 1 1 EACH UGX 6,000 UGX 6,000 $2.40

Spray Paint Any Color coating Can 1 1 EACH UGX 15,000 UGX 15,000 $6.00

Welding Rods 2.5mm welding EACH 12 1 EACH UGX 200 UGX 2,400 $0.96

Grinding Disc cutting /grinding EACH 1 1 EACH UGX 14,000 UGX 14,000 $5.60

UGX 111,647 $44.66  

 

 

Table C6: Material costs for 25-mm Rope Pump – 15 m depth 

Family Model Rope Pump (25mm riser pipe)  Depth = 15

Material Size Type Misc Use Unit Quantity Unit Price 1 Total Price USD $

GI 1/2"  2.2mm wall pump frame m 5.75 6 m UGX 28,000 UGX 26,833 $10.73

GI 3/4" pump frame m 1 6 m UGX 35,000 UGX 5,833 $2.33

GI 1" pump frame m 0.25 6 m UGX 68,000 UGX 2,833 $1.13

PVC 25mm PN10 (~3/4") riser pipe / handle grip m 15.85 6 m UGX 6,800 UGX 17,963 $7.19

PVC 32mm PN 6 (~1") guide pipes m 1.5 6 m UGX 10,800 UGX 2,700 $1.08

PVC 50mm PN 6 (~1.5") pump spout m 1 6 m UGX 17,000 UGX 2,833 $1.13

PVC 50mm Tee fitting spout connection EACH 2 6 m UGX 4,800 UGX 1,600 $0.64

PVC 50mm>32mm Bushing fitting riser > spout adaptor EACH 4 1 EACH UGX 1,500 UGX 6,000 $2.40

PVC 32mm>25mm Bushing fitting riser > spout adaptor EACH 2 1 EACH UGX 600 UGX 1,200 $0.48

PVC 32mm>20mm Bushing fitting riser > spout adaptor EACH 2 1 EACH UGX 600 UGX 1,200 $0.48

polyrope 6mm 100m roll rope EACH 33 100 m roll UGX 25,000 UGX 8,250 $3.30

Used Car Tire 14" No Steel!! whole tire washers / plungers EACH 1 1 EACH UGX 10,000 UGX 10,000 $4.00

Iron round bar 10mm rebar for install m 2 12 m UGX 20,000 UGX 3,333 $1.33

Paint Rex Oxide prevents rust Small can 1 1 EACH UGX 6,000 UGX 6,000 $2.40

Spray Paint Any Color coating Can 1 1 EACH UGX 15,000 UGX 15,000 $6.00

Welding Rods 2.5mm welding EACH 12 1 EACH UGX 200 UGX 2,400 $0.96

Grinding Disc cutting /grinding EACH 1 1 EACH UGX 14,000 UGX 14,000 $5.60

UGX 127,980 $51.19  
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Table C7. Material costs for 25-mm EMAS Pump – 5 m depth 

EMAS "Quantity" Pump (Uganda Version) 25mm pumping pipe Depth of pump= 5

Material Size Type Misc Use Unit Quantity Unit Sold Unit Price 1 Total Price USD $

GI 3/4" Std Pipe Handle m 1.3 6 m UGX 35,000 UGX 7,583 $3.03

GI 3/4" Tee Handle EACH 1 1 EACH UGX 1,500 UGX 1,500 $0.60

GI 3/4" Elbow Handle EACH 1 1 EACH UGX 1,500 UGX 1,500 $0.60

GI 3/4" Cap Handle EACH 1 1 EACH UGX 1,500 UGX 1,500 $0.60

PVC 1 1/2" Pipe gray drain pipe Pump Casing m 4.5 6 m UGX 13,500 UGX 10,125 $4.05

PVC 25mm PN 10 gray pressure pipe Pumping Pipe m 4.25 6 m UGX 6,800 UGX 4,817 $1.93

PVC 1 1/4" drain pipe gray drain pipe Valve Component m 0.2 6 m UGX 11,500 UGX 383 $0.15

PVC 3/4" sch 40 blue pressure pipe Valve Component m 0.2 6 m UGX 14,200 UGX 473 $0.19

PVC 1" sch 40 blue pressure pipe Valve Component m 0.2 6 m UGX 20,200 UGX 673 $0.27

Used Car Tire small piece EACH 1 1 EACH UGX 1,000 UGX 1,000 $0.40

marble small valves EACH 2 6 bag UGX 5,000 UGX 1,667 $0.67

UGX 31,222 $12.49  

 

 

 

 

Table C8: Material costs for 25-mm EMAS Pump – 15 m depth 

EMAS "Quantity" Pump (Uganda Version) 25mm pumping pipe Depth of pump= 15

Material Size Type Misc Use Unit Quantity Unit Sold Unit Price 1 Total Price USD $

GI 3/4" Std Pipe Handle m 1.3 6 m UGX 35,000 UGX 7,583 $3.03

GI 3/4" Tee Handle EACH 1 1 EACH UGX 1,500 UGX 1,500 $0.60

GI 3/4" Elbow Handle EACH 1 1 EACH UGX 1,500 UGX 1,500 $0.60

GI 3/4" Cap Handle EACH 1 1 EACH UGX 1,500 UGX 1,500 $0.60

PVC 1 1/2" Pipe gray drain pipe Pump Casing m 14.5 6 m UGX 13,500 UGX 32,625 $13.05

PVC 25mm PN 10 gray pressure pipe Pumping Pipe m 14.25 6 m UGX 6,800 UGX 16,150 $6.46

PVC 1 1/4" drain pipe gray drain pipe Valve Component m 0.2 6 m UGX 11,500 UGX 383 $0.15

PVC 3/4" sch 40 blue pressure pipe Valve Component m 0.2 6 m UGX 14,200 UGX 473 $0.19

PVC 1" sch 40 blue pressure pipe Valve Component m 0.2 6 m UGX 20,200 UGX 673 $0.27

Used Car Tire small piece EACH 1 1 EACH UGX 1,000 UGX 1,000 $0.40

marble small valves EACH 2 6 bag UGX 5,000 UGX 1,667 $0.67

UGX 65,055 $26.02  
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C.3  Raw Data from Pumping Trials 

 

Table C9. Raw data summary for 20 mm EMAS Pump 

Static 

Water 

Level 

(meters)

Trial 1st 20L Time 2nd 20L Time Total (40L) Time Note 1st 20L Time 2nd 20L Time Total (40L) Time Note

(KJ) (sec) (KJ) (sec) (KJ) (sec) (KJ) (sec) (KJ) (sec) (KJ) (sec)

5.1 1 40.86 59 60.58 61 101.44 120 46.27 83 65.88 93 112.15 176

5.1 2 44.26 59 68.55 63 112.81 122 46.50 79 60.61 79 107.11 158

5.1 AVG 42.56 59.0 64.57 62.0 107.12 121.0 46.38 81.0 63.25 86.0 109.63 167.0

12.6 1 67.61 81 98.88 89 166.49 170 68.05 106 79.77 99 147.82 205

12.6 2 67.65 72 101.49 86 169.14 158 70.93 94 70.58 92 141.51 186

12.6 AVG 67.63 76.5 100.19 87.5 167.81 164.0 69.49 100.0 75.17 95.5 144.66 195.5

17.0 1

17.0 2

17.0 AVG

18.4 1 81.64 85 134.36 105 216.00 190 110.55 160 142.57 176 253.12 336

18.4 2 88.42 85 137.29 105 225.70 190 114.28 160 144.47 176 258.74 336

18.4 AVG 85.03 85.0 135.82 105.0 220.85 190.0 112.41 160.0 143.52 176.0 255.93 336.0

21.1 1 94.81 98.0 146.67 117.0 241.49 215 189.41 198.0

21.1 2 127.96 108.0 174.68 130.0 302.64 238 194.71 195.0

21.1 AVG 111.39 103.0 160.67 123.5 272.06 226.5 192.06 196.5

28.3 1 145.38 160 196.20 185 341.58 345 189.07 321

28.3 2 158.83 169 205.16 193 363.99 362 190.60 295

28.3 AVG 152.11 164.5 200.68 189.0 352.79 353.5 189.84 308

EMAS Pump Standard

Male Female

 

Table C10. Raw data summary for 20 mm Rope Pump 

Static 

Water 

Level 

(meters)

Trial 1st 20L Time 2nd 20L Time Total (40L) Time Note 1st 20L Time 2nd 20L Time Total (40L) Time Note

(KJ) (sec) (KJ) (sec) (KJ) (sec) (KJ) (sec) (KJ) (sec) (KJ) (sec)

5.1 1 36.79 77 53.46 78 90.25 155 39.14 78 67.28 90 106.42 168

5.1 2 38.74 75 52.45 78 91.20 153 40.63 80 61.81 79 102.43 159

5.1 AVG 37.77 76 52.96 78 90.72 154.0 39.88 79.0 64.54 84.5 104.43 163.5

12.6 1 62.57 94 85.39 82 147.96 176 56.23 94 76.03 91 132.26 185

12.6 2 68.05 81 92.19 84 160.24 165 70.03 96 80.76 96 150.79 192

12.6 AVG 65.31 88 88.79 83 154.10 170.5 63.13 95.0 78.40 93.5 141.53 188.5

17.0 1

17.0 2

17.0 AVG

18.4 1 103.91 100 146.86 120 250.78 220 93.65 140 116.12 143 209.77 283

18.4 2 101.60 100 147.79 123 249.39 223 82.29 117 123.67 145 205.96 262

18.4 AVG 102.76 100 147.33 122 250.08 221.5 87.97 128.5 119.90 144.0 207.87 272.5

21.1 1 97.71 100 152.27 108 249.98 208 149.66 146.0

21.1 2 124.39 126 169.12 130 293.51 256 145.76 135.0

21.1 AVG 111.05 113 160.70 119 271.75 232.0 147.71 140.5

28.3 1 103.55 96 197.05 157 300.60 253 152.64 208

28.3 2 119.29 109 211.02 170 330.31 279 132.16 186

28.3 AVG 111.42 103 204.03 164 315.45 266.0 142.40 197.0

Male Female

Rope Pump 20mm
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Table C11. Raw data summary for 25 mm Rope Pump 

Static 

Water 

Level 

(meters)

Trial 1st 20L Time 2nd 20L Time Total (40L) Time Note 1st 20L Time 2nd 20L Time Total (40L) Time Note

(KJ) (sec) (KJ) (sec) (KJ) (sec) (KJ) (sec) (KJ) (sec) (KJ) (sec)

5.1 1 19.02 33 29.09 34 48.11 67 15.33 30 22.66 33 37.99 63

5.1 2 23.12 33 28.62 32 51.75 65 18.08 33 23.45 34 41.53 67

5.1 AVG 21.07 33.0 28.86 33.0 49.93 66.0 16.70 31.5 23.06 33.5 39.76 65.0

12.6 1 24.35 38 38.30 42 62.65 80 23.81 45 34.30 48 58.11 93

12.6 2 22.87 41 38.62 42 61.48 83 25.01 40 32.91 40 57.92 80

12.6 AVG 23.61 39.5 38.46 42.0 62.07 81.5 24.41 42.5 33.60 44.0 58.02 86.5

17.0 1 33.46 44.0 71.58 42.0 105.04 86 43.06 57.0

17.0 2 38.09 63.0 93.52 75.0 131.61 138 48.32 50.0

17.0 AVG 35.77 53.5 82.55 58.5 118.33 112.0 45.69 53.5

Male Female

Rope Pump 25mm

 

 

 

Table C12. Raw data summary for 25 mm EMAS Pump 

Static 

Water 

Level 

(meters)

Trial 1st 20L Time 2nd 20L Time Total (40L) Time Note 1st 20L Time 2nd 20L Time Total (40L) Time Note

(KJ) (sec) (KJ) (sec) (KJ) (sec) (KJ) (sec) (KJ) (sec) (KJ) (sec)

5.1 1 27.08 38 42.25 41 69.33 79 23.03 41 34.04 45 57.07 86

5.1 2 29.54 39 42.25 40 71.79 79 23.70 45 37.34 48 61.04 93

5.1 AVG 28.31 38.5 42.25 40.5 70.56 79.0 23.36 43.0 35.69 46.5 59.05 89.5

12.6 1 34.64 48 56.65 52 91.30 100 43.75 68 50.55 61 94.31 129

12.6 2 46.02 50 69.08 55 115.10 105 35.74 58 51.96 60 87.70 118

12.6 AVG 40.33 49.0 62.87 53.5 103.20 102.5 39.75 63.0 51.26 60.5 91.00 123.5

17.0 1 39.16 53.0 78.40 64.0 117.57 117 61.91 71.0 89.35 99.0 151.26 170

17.0 2 42.13 45.0 71.30 60.0 113.43 105 62.66 61.0 64.29 69.0 126.95 130

17.0 AVG 40.64 49.0 74.85 62.0 115.50 111.0 62.29 66.0 76.82 84.0 139.10 150.0

EMAS Pump Quantity

Male Female
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Table C13. Raw data from Site 1 

Location WV Gulu Site 1

Static Water Level = 5.1m

Pump Depth = 7.8m

Rope Pump 20mm PN 16 pumping pipe - guide box installed at 7.8m from top of pedestal

Resting HR: 71 71 Resting HR: 85 85

Time Heartrate Note Heartrate Note Time Heartrate Note Heartrate Note

0 78 one hand (right) 76 pump primed 0 87 pump primed 103 pump primed

10 96 97 one hand 10 104 one hand 111 one hand R

20 109 102 20 118 118

30 108 111 30 127 127

40 115 118 40 136 135

50 112 128 50 144 140

60 116 128 60 147 145

70 123 1:17 - 20 L full 128 1:15- 20L full 70 148 1:18 - 20L full 150

80 127 two hands 122 switch hands - L 80 146 switch hands 148 1:20 - 20L full

90 115 one hand (left) 124 90 145 145 switch hands L

100 118 122 100 151 147 switch hands R

110 125 122 110 150 150

120 128 126 120 152 157

130 128 130 130 157 154

140 130 135 140 158 switch hands 152

150 134 2:35 - 40L full 136 2:33 - 40L full 150 155 155 2:39 - 40L full

160 153 2:48 - 40L full

EMAS Pump 20mm PN 16 pumping pipe, 32mm PN 10 cylinder pipe - piston valve installed at 7.8m from top of pedestal

Resting HR: 80 80 Resting HR: 90 9190

Time Heartrate Note Heartrate Note Time Heartrate Note Heartrate Note

0 83 pump primed 93 pump primed 0 98 pump primed 91 pump primed

10 107 long strokes 110 10 112 98

20 123 130 20 132 135

30 129 136 30 137 slow pumping 145 slow pumping

40 137 140 40 137 153

50 150 0:59 - 20L full 156 0:59 - 20L full 50 137 156

60 155 162 60 155 158

70 157 166 70 157 159 1:19 - 20L full

80 160 170 80 156 1:23 - 20L full 160

90 160 171 90 155 163

100 159 172 100 159 168

110 165 173 110 159 168

120 170 2:00 - 40L full 173 2:02 - 40L full 120 161 170

130 130 161 171

140 163 170

(46 strokes on 2nd 20L) 150 165 172 2:38 - 40L full

160 163

170 162 2:56 - 40L full (64 strokes on 2nd 40L)

Rope Pump 25mm PN 10 pumping pipe - guide box installed at 7.8m from top of pedestal

Resting HR: 80 82 Resting HR: 97 93

Time Heartrate Note Heartrate Note Time Heartrate Note Heartrate Note

0 83 one hand (right) 89 pump primed 0 98 pump primed 108 pump primed

10 113 120 one hand 10 115 one hand R 128 one hand R

20 116 136 20 135 139

30 131 0:33 - 20 L full 143 0:33 - 20 L full 30 154 0:30 - 20 L full 149 0:33 - 20 L full

40 143 150 40 150 one hand L 149 two hands

50 152 153 50 159 158

60 149 1:07 - 40L full 153 1:05 - 40L full 60 164 1:03 - 40L full 163 1:07 - 40L full

EMAS Pump 25mm PN 10 pumping pipe, 1.5" "drain" cylinder pipe - piston valve installed at 7.8m from top of pedestal

Resting HR: 79 81 Resting HR: 87 89

Time Heartrate Note Heartrate Note Time Heartrate Note Heartrate Note

0 87 pump primed 96 pump primed 0 101 pump primed 99 pump primed

10 115 long strokes 123 10 121 102

20 138 141 20 139 132

30 141 0:38 - 20 L full 147 0:39 - 20 L full 30 146 slow pumping 149 slow pumping

40 149 152 40 158 0:41 - 20 L full 153 0:45 - 20 L full

50 156 160 50 160 159

60 165 167 60 166 164

70 172 1:19 - 40L full 173 1:19 - 40L full 70 169 172 1:19 - 20L full

(21 strokes on 2nd 20L) 80 172 1:26 - 20L full 174

90 176 1:33 - 20L full

Sam - Test 1 Sam - Test 2 Clair - Test 1 Clair - Test 2

Sam - Test 1 Sam - Test 2 Clair - Test 1 Clair - Test 2

Sam - Test 1 Sam - Test 2 Clair - Test 1 Clair - Test 2

Sam - Test 1 Sam - Test 2 Clair - Test 1 Clair - Test 2
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Table C14. Raw data from Site 2 for 20 mm Pumps 

Location Muchwini Central Site 2

Static Water Level = 12.6m

Pump Depth = 15.1m

Rope Pump 20mm PN 16 pumping pipe 

Time Heartrate Note Heartrate Note Time Heartrate Note Heartrate Note

0 76 pump primed 79 pump primed 0 108 pump primed 121 pump primed

10 95 two hands 103 10 126 two hands 142 one hand

20 109 one hand 127 20 140 one hand 150

30 112 switch hands 140 30 152 switch hands 159 two hands

40 120 143 40 155 163

50 137 157 50 160 168 one hand

60 135 163 60 164 172

70 144 170 70 169 173 two hands

80 156 one hand  - support 172 1:21 - 20L full 80 172 one hand  - support 172

90 159 1:34 - 20L 171 90 175 1:34 - 20L 172 1:36 - 20L full

100 151 two hands 171 two hands 100 172 two hands 172 one hand

110 148 one hand supprt 171 110 175 one hand supprt 175 two hands

120 150 switch hands 170 120 179 switch hands 177

130 155 172 130 178 179 one hand

140 158 two hands 173 140 178 two hands 179

150 160 switch hands 173 150 178 switch hands 180 two hands

160 163 172 2:45 - 40L full 160 178 180

170 163 faster 170 181 faster 180 one hand

180 2.56 - 40L full 180 181 3.05 - 40L full 181

190 182 3:12 - 40L full

EMAS Pump 20mm PN 16 piston pipe

Time Heartrate Note Heartrate Note Time Heartrate Note Heartrate Note

0 85 84 0 88 85

10 114 121 10 120 118

20 136 151 20 130 138

30 146 159 30 139 145

40 148 163 40 150 155

50 150 167 50 156 162

60 156 170 60 157 167

70 159 173 1:12 - 20L full 70 159 169

80 162 1:21 - 20L full 170 80 164 171

90 169 179 90 168 175

100 173 178 100 170 1:46 - 20L full 172 1:34 - 20L full

110 169 179 110 168 168

120 171 180 120 167 171

130 172 183 130 171 177

140 173 183 140 173 180

150 175 181 2:38 - 40L full 150 174 182

160 177 160 174 174

170 177 2:50 - 40L full 170 176 174

180 180 176 173

190 190 178 173 3:11  - 40L full

200 200 179 3:25 - 40L full

210 210

220 0

User didn't stand on tire user stood on tire

Sam - Test 1 Sam - Test 2 Clair - Test 1 Clair - Test 2

Sam - Test 1 Sam - Test 2 Clair - Test 1 Clair - Test 2
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Table C15. Raw data from Site 2 for 25 mm Pumps 

Location Muchwini Central Site 2

Static Water Level = 12.6m

Pump Depth = 15.1m

Rope Pump 25mm PN 10 pumping pipe

Time Heartrate Note Heartrate Note Time Heartrate Note Heartrate Note

0 75 Pump primed 75 Pump primed 0 90 Pump primed 102 Pump primed

10 106 112 10 118 one hand 130 one hand

20 127 118 20 131 two hands 150

30 139 0:38 - 20L full 118 30 140 156

40 144 130 0:41 - 20L full 40 150 0:45 - 20L full 164 0:40 - 20L full

50 150 153 50 156 slower 170 two hands

60 153 154 60 157 faster 176 faster

70 153 154 70 163 faster 180

80 162 1:20 - 40L full 157 1:23 - 40L full 80 165 one hand 180 1:20 - 40L full

90 90 165 1:33 - 40L full

Like this pum very much. Feels little difference from other RP but much more flow Says this pump is the easiest and likes that it is so fasr

Qty EMAS Pump 25mm PN 16 piston pipe

Time Heartrate Note Heartrate Note Time Heartrate Note Heartrate Note

0 65 Pump primed 70 Pump primed 0 101 Pump primed 101 Pump primed

10 120 107 10 125 121

20 125 150 20 137 138

30 135 161 30 150 141

40 146 0:48 - 20L full 174 40 159 162

50 158 182 0:50  - 20L full 50 163 165 0:58 - 20L full

60 162 183 60 165 1:08 - 20L full 170

70 170 186 70 172 174

80 172 186 80 175 187

90 175 187 90 178 180

100 178 1:40 - 40L full 190 1:45 - 40Lfull 100 177 184

110 110 177 186 1:58 - 40 L full

120 179 2:09 - 40L full

Prefers lighter emas pump

prefers lighter emas pump.  Says that 25mm rope pump is the best

Sam - Test 1 Sam - Test 2 Clair - Test 1 Clair - Test 2

Sam - Test 1 Sam - Test 2 Clair - Test 1 Clair - Test 2
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Table C16. Raw data from Site 3 for 25 mm Pumps 

Location Wangowet (Amida) Site 3*

Static Water Level = 17 *25 mm Pumps

Pump Depth = 19.5

Rope Pump 25mm PN 10 pumping pipe - guide box installed at 19.5m from top of pedestal

Resting HR: 71 71 Resting HR: 91 91

Time Heartrate Note Heartrate Note Time Heartrate Note Heartrate Note

0 92 OHR 95 pump primed 0 99 TH 104 TH

10 107 124 OHR 10 124 122

20 138 150 20 140 139

30 147 162 30 153 151

40 159 0:44 - 20 L full 173 0:42 - 20 L full 40 159 158

50 158 TH 179 TH 50 161 :57 - stopped at 20L 168 :50 - 20L full

60 170 176 171

70 170 174 OHR 174 1:15  stopped

80 170 180 aprox 28 L

90 171 186 TH

100 169 1:47 - 40L full 179

110 183 1:57 - 40L full

EMAS Pump 25mm PN 10 pumping pipe, 1.5" "drain" cylinder pipe - piston valve installed at 19.5m from top of pedestal

Resting HR: 84 93 Resting HR: 87 90

Time Heartrate Note Heartrate Note Time Heartrate Note Heartrate Note

0 85 pump primed 106 pump primed 0 91 pump primed 120 pump primed

10 104 112 10 117 146

20 130 138 20 135 153

30 136 159 30 145 162

40 147 164 0:45- 20 L full 40 153 169

50 161 0:53 - 40L full 164 50 158 173

60 170 180 60 163 175 1:01 - 20L full

70 173 183 70 166 1:11 - 20L full 179

80 173 185 80 168 180

90 175 186 90 170 183

100 180 185 1:45 - 40L full 100 172 184

110 183 1:57 - 40 L Full 110 173 185

120 174 186 2:10 - 40L Full

130 175

140 175

150 177 2:50 - 40 L Full

Clair stated afterward that she prefers the EMAS pump to the RP for this applications.

Says that it is easier to pump and she doesn’t get so tired.

Sam - Test 1 Sam - Test 2 Clair - Test 1 Clair - Test 2

Sam - Test 1 Sam - Test 2 Clair - Test 1 Clair - Test 2
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Table C17. Raw data from Site 3 for 20 mm Pumps 

Location Wageowet Site 3*

Static Water Level = 18.4 *20 mm pumps

Pump Depth = 20.9

Rope Pump 20mm PN 16 pumping pipe - guide box installed at 20.95m from top of pedestal

Time Heartrate Note Heartrate Note Time Heartrate Note Heartrate Note

0 80 pump primed 83 pump primed 0 87 pump primed 105 pump primed

10 127 two hands 116 two hands 10 120 one hand 130

20 161 152 20 135 two hand 145

30 166 164 30 143 152 one hand / sideways

40 167 165 40 150 one hand / sideways 160

50 167 167 50 153 two hand / sideways 165 two hand / sideways

60 170 170 60 156 two hand 170

70 170 172 70 159 one hand 170

80 177 176 80 162 two hand 173

90 177 177 90 164 176

100 179 1:40 - 20L full 180 1:40 - 20L full 100 165 178

110 180 179 110 168 179 1:57 - 20L full

120 181 170 120 169 177 two hand / sideways

130 184 171 130 169 179

140 181 178 140 169 2:20 - 20L full 177

150 181 182 150 170 180

160 181 182 160 170 faster 180

170 186 182 170 175 180

180 185 185 semi-sideways 180 175 180

190 185 185 190 177 179

200 185 185 200 177 179 two hands

210 187 187 210 177 faster 179

220 188 3:40 - 40L full 190 3:43 - 40L full 220 172 twohand / sideways 181

230 174 faster 182

240 175 one hand / sideways 184 two hand / sideways

250 175 two hand / sideways 184

260 177 184 4:22 - 40L full

270 178

280 178 4:43 - 40L full

EMAS Pump 20mm PN 16 pumping pipe, 32mm PN 10 cylinder pipe - piston valve installed at 20.95m from top of pedestal

Time Heartrate Note Heartrate Note Time Heartrate Note Heartrate Note

0 86 pump primed 84 pump primed 0 100 pump primed 98 pump primed

10 111 123 10 124 120

20 137 135 20 140 137

30 139 152 30 140 139

40 157 159 40 140 154

50 164 174 50 154 159

60 176 184 60 156 161

70 176 186 70 160 170

80 179 1:25 - 20L full 188 1:25 - 20L full 80 166 171

90 181 190 90 168 171

100 181 191 100 169 172

110 182 189 110 171 173

120 181 188 120 171 174

130 179 190 130 171 173

140 180 190 140 170 173

150 181 191 150 170 173

160 181 194 160 171 2:40 - 20L full 171 2:40 - 20L full

170 180 194 170 169 168

180 183 195 180 169 169

190 184 3:10 - 40L full 195 3:10 - 40L full 190 171 172

200 171 174

210 172 176

220 174 176

230 175 176

240 175 178

250 175 179

260 174 178

270 175 178

280 175 178

User says that he prefers the EMAS pump to the rope pump at this depth 290 177 178

300 179 178

310 180 178

320 179 181

330 179 5:36 - 40L full 178 5:36 - 40L full

User says that she prefers the rope pump to the EMAS pump at this depth

Sam - Test 1 Sam - Test 2 Clair - Test 1 Clair - Test 2

Sam - Test 1 Sam - Test 2 Clair - Test 1 Clair - Test 2
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Table C18. Raw data from Site 4 

Location Yepa Mucwini Site 4

Static Water Level = 21.05

Pump Depth = 23.55

Rope Pump 20mm PN 16 pumping pipe - guide box installed at 23.55m from top of pedestal

Resting HR: 88 103 Resting HR: 107 107

Time Heartrate Note Heartrate Note Time Heartrate Note Heartrate Note

0 93 OHR 103 TH 0 107 OHR 110 TH

10 121 127 10 126 TH 125

20 141 148 20 141 146

30 150 TH 155 30 151 156

40 163 159 40 156 166

50 170 170 50 161 Speed up 170

60 170 172 60 166 172

70 168 175 70 170 175

80 171 180 80 171 178 Sideways

90 173 182 90 173 179

100 175 1:40 - split 183 100 174 180

110 178 182 1:48 - Split 110 173 180

120 178 OHR 181 120 172 178

130 179 TH 181 130 172 177 2:15 - 20L full

140 180 180 140 171 2:26 - 20L full Stop

150 180 181 Stop

160 180 183

170 182 185

180 184 185

190 185 185

200 186 OHR 185

210 183 185

220 183 3:46 - 40L Full 186

187 3:58 - 40L Full

EMAS Pump 20mm PN 16 pumping pipe, 32mm PN 10 cylinder pipe - piston valve installed at 23.55m from top of pedestal

Resting HR: 79 79 Resting HR: 86 86

Time Heartrate Note Heartrate Note Time Heartrate Note Heartrate Note

0 93 pump primed 94 pump primed 0 95 pump primed 100 pump primed

10 121 long strokes 131 10 99 115

20 134 158 20 130 137

30 138 166 30 132 slow pumping 141 slow pumping

40 157 176 40 140 150

50 165 184 50 151 154

60 170 188 60 156 162

70 174 189 70 159 162

80 178 190 80 160 159

90 180 1:38 Split 192 90 160 166

100 180 191 1:48 Split 100 160 169

110 180 191 110 163 168

120 183 192 120 168 168

130 181 190 130 169 170

140 185 192 140 170 171

150 187 193 150 169 172

160 186 192 160 170 172

170 186 193 170 170 170

180 188 194 180 168 166

190 190 196 190 168 3:18 - 20L full 165 3:15 - 20L full

200 192 197

210 192 3:35 - 40L Full 198

220 198

230 198 3:58 - 40L full

Sam - Test 1 Sam - Test 2 Clair - Test 1 Clair - Test 2

Sam - Test 1 Sam - Test 2 Clair - Test 1 Clair - Test 2
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Table C19. Raw data for Site 5 

Location Akara P/S Muchwini Site 5

Static Water Level = 28.3

Pump Depth = 30.4

Rope Pump 20mm PN 16 pumping pipe - guide box installed at 30.4m from top of pedestal

Resting HR: 67 67 Resting HR: 84 84

Time Heartrate Note Heartrate Note Time Heartrate Note Heartrate Note

0 82 pump primed 83 pump primed 0 89 pump primed 85 pump primed

10 118 one hand (fast) 123 one hand (fast) 10 120 two hands 126 two hands

20 150 156 two hands 20 135 143

30 165 170 30 148 sideways 157

40 173 173 using body a lot 40 156 162

50 177 176 50 162 167

60 181 179 60 166 172

70 183 178 70 168 175

80 185 slower 178 80 168 slower 177

90 187 1:36 - 20 L full 188 90 169 178

100 186 183 1:49 - 20L full 100 169 180

110 186 182 110 170 180 sideways

120 186 slower 183 slower 120 173 180 slower

130 186 using body a lot 183 130 173 180

140 185 183 140 174 180

150 185 slower 182 150 174 180

160 186 184 160 174 180

170 186 185 170 174 180

180 187 186 semi-sideways 180 173 slower 179 3:06 - 20L full

190 187 186 190 171 stopped at 20L

200 188 187 200 170 3:28 - 20L full

210 188 186 slower (seems tired) Stopped at 20L 

220 188 185

230 188 186

240 188 187

250 186 4:13 - 40L full 187

260 187

4:30 187 4:39 - 40L full

4:40

EMAS Pump 20mm PN 16 pumping pipe, 32mm PN 10 cylinder pipe - piston valve installed at 30.4m from top of pedestal

Resting HR: 75 75 Resting HR: 83 83

Time Heartrate Note Heartrate Note Time Heartrate Note Heartrate Note

0 79 pump primed 80 pump primed 0 93 pump primed 101 pump primed

10 130 114 long strokes 10 109 115

20 137 143 20 116 120

30 137 long strokes 149 30 122 slow pumping 131 slow pumping

40 144 150 40 134 141

50 152 157 50 138 149

60 158 165 steady pumping 60 142 154

70 163 162 70 145 158

80 162 steady pumping 159 80 148 159

90 163 155 90 148 159

100 159 159 100 147 160

110 156 166 110 146 161

120 159 167 120 149 158

130 160 164 130 145 157

140 158 164 140 146 155

150 161 163 150 150 154

160 160 2:40 - 20L full 162 2:49- 20L full 160 150 156

170 159 165 170 148 155

180 161 167 180 150 154

190 165 165 190 149 155

200 165 162 200 153 154

210 167 165 210 154 156

220 167 170 220 153 158

230 167 173 change grip 230 151 159

240 167 171 240 151 159

250 170 171 250 150 158

260 169 168 260 149 160

270 171 171 270 149 159

280 169 170 280 150 158

290 169 167 290 152 157 4:55 - 20L full

300 170 163 300 152 Stopped at 20L

310 172 165 310 149

320 172 170 320 149 5:21 - 20L full

330 171 169 330 Stopped at 20L

340 173 5:45 - 40L full 171

350 171

360 170 6:02- 40L full

Sam - Test 1 Sam - Test 2 Clair - Test 1 Clair - Test 2

Sam - Test 1 Sam - Test 2 Clair - Test 1 Clair - Test 2
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Appendix D  USF Institutional Review Board (IRB) Correspondence 

 

D.1  IRB Correspondence – EMAS Technologies Research 
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D.2  IRB Correspondence – Hand Pump Research 
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Appendix E  Permissions 

 

 Below are permissions to use published manuscripts in Chapter 2 and Chapter 3. 
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