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ABSTRACT 

 

 Integrated aquaculture systems (IAS) are a type of recirculating aquaculture systems 

(RAS) where the wastewater is treated and returned to the fish tanks. The important difference 

between the two is that in an IAS, wastes from the aquaculture component are recovered as 

fertilizer to produce an agricultural product whereas in an RAS, waste organics, nutrients and 

solids are treated and discharged.  A pilot marine IAS at Mote Aquaculture Research Park in 

Sarasota, FL was studied for this project.  Water quality monitoring, measurements of fish health 

and growth rates of fish and plants were performed over a two-year period to determine the 

effectiveness of the system in producing fish and plant products and removing pollutants.  The 

goal of this portion of the project was to develop, calibrate and evaluate a model of the system, to 

understand the nitrogen transformations within the Mote IAS and to investigate other potential 

configurations of the Mote IAS.   

 The model was divided into the various compartments to simulate each stage of the 

system, which included fish tanks, a drum filter for solids removal, and moving bed bioreactor 

(MBBR) for nitrification and disinfection.  A solids tank after the drum filter was used to store 

the drum filter effluent slurry, which was then divided between three treatment processes: a 

geotube, a sand filter followed by a plant bed, and a plant bed alone.  Nitrogen species modeled 

were particulate organic nitrogen (PON), dissolved organic nitrogen (DON), ammonium and 

nitrate.  Of the physical components of the IAS, models of the MBBR and the two plant 
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raceways included physical, chemical and biological nitrogen transformation processes.  The 

sand filter, solids tank and geotube models were simple mass balances, incorporating factional 

removals of each species based on the observed data.  Other variables modeled included 

temperature, dissolved oxygen, volatile suspended solids and chemical oxygen demand 

concentrations.  The model was built in a computer program, STELLA
TM

, to simulate the Mote 

IAS.   

 The model calibration involved experimental, literature and calibrated parameters.  

Parameters were adjusted until the model’s output was a best fit to the observed data by 

minimizing the sum of the squared residuals.  During the sensitivity analysis, two model 

parameters caused large variations in the model output.  The denitrifier constant caused the most 

variation to the model’s output followed by the denitrifier fraction of volatile suspended solids. 

 Of the removal processes, denitrification was the largest nitrogen removal mechanism 

from the model, accounting for 59% and 55% of the nitrogen removed from the south and north 

plant raceways respectively.  Plant and soil uptake represented only 0.2% of the overall nitrogen 

removal processes followed by 0.1% by sedimentation. 

 Finally, the model was used to investigate other treatment designs if the Mote IAS was 

redesigned.  The first option involved a geotube and one plant raceway in series to treat the solid 

waste while the second option did not have a geotube, but two plant raceways.  The first option 

was the most effective at removing nitrogen while the second was as effective as the original 

system and would cost less.   
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CHAPTER 1: INTRODUCTION 

 

 Aquaculture, the farming of aquatic organisms, can minimize the need from wild caught 

food sources for an expanding global population (FAO, 2012).  As fish consumption increases 

and wild caught fisheries decline, aquaculture production has increased (Figure 1-1).  

Aquaculture is likely to continue to play a vital role in the global food supply in the future (FAO, 

2012).   

 

 

Figure 1-1.  Comparison of global wild caught and aquaculture food fish production.  Data taken 

from FAO (2008, 2012). 
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 However, aquaculture faces a number of environmental problems.  Almost all 

aquaculture systems produce waste nutrients, solids and organic matter and these wastes are 

either discharged into the environment or treated on site (Tucker et al, 2008).  Nitrogen tends to 

be the limiting nutrient in marine environments, resulting in increased eutrophication or excess 

algae and plant growth.  Approximately, 67% to 75% of the nitrogen in feed is lost as either 

uneaten feed or fish excretion (Chen and Fornshell, 2000).  In raceway or pen cage aquaculture, 

the nitrogen load to the environment can cause eutrophication (Treece, 2000).  Another potential 

waste damage to the environment is the release of pathogens.  Since fish are produced in high 

densities, fish can be stressed to a point where they are vulnerable to diseases (Tucker et al., 

2008).  These disease causing microorganisms can be discharged into the environment; thereby 

effecting the local ecosystem.  Additionally, the potential for the fish to escape can also effect the 

local ecosystem.  Depending upon the system, the escaped fish can compete for resources with 

the endemic species, consume the endemic species if the escaped fish are predators, or can 

reproduce faster than the endemic species and alter the food web (Tucker et al., 2008). 

 A potential solution to aquaculture problems is the use of recirculating aquaculture 

systems (RAS).  In RAS, wastewater from the fish tank is treated and recirculated back to the 

fish tank (Tucker et al., 2008).  Some of the benefits of RAS include reduced daily water 

demands and greater control over fish growth and waste treatment.  However, a high value 

market product is required to offset the high cost of water pumping and wastewater treatment in 

RAS. 

An integrated aquaculture system (IAS) is a type of RAS that incorporates an agriculture 

component.  In IAS, the aquaculture waste becomes a fertilizer resource for agriculture (Jamu 

and Piedrahita, 2002a).  IAS is a low technology system, which diversifies production, promotes 
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efficiency and reduces discharges to the environment (FAO, 2001).  From an economic 

standpoint, the diversification of products results in marketing flexibility.  With IAS, two 

markets are accessible, increasing the resiliency of the production system.  With respect to 

efficiency, the waste from one system becomes a resource for another.  Finally, since nutrients 

are recycled from one system to the other, water and pollutant discharges to the environment are 

reduced (FAO, 2001).   

 This thesis investigates an IAS at Mote Aquaculture Research Park (MAP) in Sarasota, 

FL where the Florida pompano (Trachinotus carolinus) was the aquaculture product and red 

mangrove (Rhizophora mangle), smooth cordgrass (Spartina alterniflora), and black needlerush 

(Juncus roemerianus) were the agricultural products. Pompano are a resilient fish, capable of 

tolerating varying salinities, surviving with concentrations of dissolved oxygen (DO) as low as 

3.0 mg/L and high turbidities (Craig, 2000).  In Florida, pompano fisheries are in decline because 

it is an important species in sport and commercial activities (Murphy et al., 2008).  In 2009, 

whole pompano cost $6.93/kg, while pompano fillets ranged from $35/kg to $45/kg (Weirich, 

2011).  Growing pompano in IAS will result in the production of a high value fish and offset 

costs associated with IAS. 

 Selection of salt tolerant plants for IAS that are in demand can be challenging.  In 

Florida, one of the most important salt tolerant plants along the coast is the mangrove (Florida 

DEP, 2012).  Mangroves trap various organic and chemical nutrients with their elongated root 

structure and help filter the water.  Their root system also acts as a nursery for many species of 

fish, which have a significant recreational value.  Mangroves, however, have been removed to 

make way for development in the Southeastern United States.  Depending upon the location, 

developers who want to remove mangroves have the opportunity to mitigate this activity through 
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a wetland mitigation program.  Wetland mitigation provides a market for the sale of mangroves.  

Aquatic Plants of Florida sells three gallon red mangrove plants at $12.50 per plant, providing a 

second revenue stream for the IAS (Aquatic Plants of Florida, 2012).   

It is important to model an IAS, such as the one at MAP, so private companies can design 

full scale systems.  By supplying feed input rates and composition, a model can be used to size 

efficient water treatment systems and plant beds.  Feed input rates can be estimated based on the 

fish growth rates and feed conversion efficiency.  Providing private companies a model for 

design also allows them to increase employment.  There are an estimated four jobs produced for 

every one job in fisheries and aquaculture production in auxiliary industries, such as fish 

processing equipment, ice production, or packaging (FAO, 2008).  Another important reason to 

model IAS is to understand nutrient removal mechanisms.  Few prior modeling studies have 

been done on IAS.  Jamu and Piedrahita (2002a) built an IAS model based on pond aquaculture.  

Their model included nutrient cycling between aquaculture and agriculture, but also included an 

effluent discharge from the pond after harvesting.  The Mote IAS model was built without an 

effluent discharge to simulate a zero discharge RAS. 

Seven fish tanks were available for fish production in the Mote IAS.  The waste stream 

from the fish tanks were sent to a drum filter where the solids and liquids were separated (Figure 

1-2).  The liquid waste stream was treated by a moving bed biofilm reactor (MBBR) and a UV 

disinfection unit.  The solid waste stream was divided into two plant raceway systems and a 

geotextile bag, or geotube.  The effluent from the plant raceways and geotube was recirculated 

back to the drum filter.  This project was funded by the National Oceanic and Atmospheric 

Administration for a two year period, beginning October 2010.  Two students at the University 

of South Florida investigated water quality (Kruglick, 2012) as well as soil and plant analysis 
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(Boxman, 2013).  This thesis is a continuation of the project by using the data collected by 

Kruglick (2012) and Boxman (2013) and developing a model to investigate the mechanisms of 

nitrogen removal in the Mote IAS. 

 

 

Figure 1-2.  Diagram of Mote IAS. 

 

 The overall goal of this research was to understand the nitrogen removal and 

transformation processes in a marine IAS for future IAS development.  The three objectives 

were: 

 1. Develop, calibrate and evaluate a marine IAS model used to simulate the fate of 

nitrogen in the Mote IAS. 

 2. Understand the fate of nitrogen in a marine IAS. 

 3. Apply this model to evaluate two Mote IAS reconfiguration scenarios. 
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CHAPTER 2: LITERATURE REVIEW 

 

 There are a limited number of journal articles pertaining to marine IAS.  Thus, it was 

important to subdivide the literature review into specific parts pertaining to each aspect of marine 

IAS.  An overview of the nitrogen cycle is presented, followed by modeling of RAS, modeling 

of IAS, and finishing with modeling of constructed wetlands. 

 

2.1 Nitrogen Cycle 

 Representing 78% of the atmosphere, nitrogen gas (N2(g)) is bioavailable only to a few 

groups of microorganisms that have the ability to fix atmospheric nitrogen (Vaccari et al, 2006).  

Nitrogen fixation can occur near the root zone of plants or in the sediment and under aerobic or 

anaerobic conditions (US EPA, 2000).  Other nitrogen fixation processes include lightning and 

industrial practices that can fix nitrogen gas into NH4
+
 and NO3

-
 for fertilizer production (US 

EPA, 1993).  One general form of nitrogen fixation is given by: 

      
                 (1) 

Ammonification is the process in which organic nitrogen compounds (RNH2), such as 

those in plant and animal waste, are converted to NH4
+
 (Schlesinger, 1997).  Ammonification 

can occur under aerobic and anaerobic conditions (NRCS, 2007).  Ammonification is also 

temperature dependent; as temperature increases, ammonification increases (US EPA, 2000).  

Depending upon the organic compound, ammonification can proceed as follows: 
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  (2) 

Nitrification is a two-step process where NH4
+
 is converted to NO3

-
 (US EPA, 1993) and 

is given by: 

    
  

 

 
      

        
  (3) 

 

    
  

 

 
      

  (4) 

In the first step (Equation 3), bacteria such as Nitrosomonas oxidize ammonium to nitrite.  In the 

second step (Equation 4), bacteria such as Nitrobacter rapidly oxidize nitrite to nitrate.  

Nitrification occurs under aerobic conditions and is temperature and pH dependent (US EPA, 

2000).   

Finally, nitrogen is returned to the atmosphere through denitrification to complete the 

nitrogen cycle.  Denitrification occurs under anoxic conditions and is represented by: 

 
 

 
        

  
 

 
    

 

 
   

 

 
      

  (5) 

If NH4
+
 and NO3

-
 are available in soil, plants can uptake the nitrogen and convert it into 

biomass.  Through plant decay, the organic nitrogen is returned to the soil where ammonification 

can reoccur (US EPA, 1993).  The plant uptake of nitrogen creates a mini nitrogen cycle where 

the nitrogen is not required to return to the atmosphere.   

 A conceptual model of the nitrogen cycle in the Mote IAS is shown in Figure 2-1.  The 

plant beds in the Mote IAS are similar to constructed wetlands.  In a constructed wetland, plants 

can be considered as a source of organic nitrogen as the biomass decays.  However, if plants are 

harvested at a young age, plant decay may not be considered.  Particulate organic nitrogen 

(PON) has three different pathways in a constructed wetland.  First, PON can proceed to 

dissolved organic nitrogen (DON) via hydrolysis.  Hydrolysis is the process where large particles 

are physically and chemically broken down into smaller particles that can be utilized by 
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microorganisms (Rittman and McCarty, 2001).  Second, PON can accumulate in the plant soil 

and be removed from the system at plant harvest.  Lastly, PON can settle underneath the plant 

containers via sedimentation and remain there until physically removed from the system.  Similar 

to the general nitrogen cycle, ammonification (Equation 2) converts DON to NH4
+
. 

 

 

Figure 2-1.  Conceptual model of the nitrogen cycle in an IAS. 

 

 NH4
+
 and NO3

-
 also follow similar pathways in IAS as in the general nitrogen cycle.  In 

the IAS, NH4
+
 is converted to NO3

-
 via nitrification (Equations 3 and 4), mainly in the biofilter.  

Biofilters used in RAS or IAS include trickling filters, rotating biological contactors (RBC) or 

MBBRs.  All three biofilters are attached growth systems where a biofilm will grow on a media, 

composed of plastic, sand or rock material (Vaccari et al., 2006).  In a trickling filter, the media 

does not move as the wastewater trickles through the media.  In a RBC, large disks with attached 
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biofilm rotate through the wastewater.  In a MBBR, the plastic media is suspended in a basin 

with the wastewater.  NH4
+
 can also be removed by plant uptake.  Finally, denitrification 

removes nitrate by releasing nitrogen gas into the atmosphere (Equation 5). 

 

2.2 RAS Models 

 Losordo and Hobbs (2000) presented a RAS model that used computer based 

spreadsheets to estimate the required biofilter size needed to maintain the desired water quality.  

This model can be used by someone with little modeling experience and focused on five separate 

areas: the fish tank size and biomass, total ammonia nitrogen (TAN) mass balance, biofilter 

sizing, solids mass balance and oxygen mass balance.  The model was based on a previous study 

utilizing a trickling filter and drum screen filter while growing tilapia.  The user inputs various 

system parameters and goals for their system.  With respect to nitrogen, inputs include the 

following: feed protein content, desired TAN concentration, passive nitrification and 

denitrification rates, maximum NO3
-
 concentration as well as TAN removal efficiency of the 

biofilter.  There was no denitrification component to this model; however the model calculates 

the amount of water required to be added per day in order to maintain the maximum NO3
-
 

concentration.  With this information, the model estimates the flow rate required to maintain the 

target TAN concentration and the amount of water that needs to be replaced to maintain the 

maximum NO3
-
 concentration for the RAS.  This model does not simulate the details of the 

nitrogen cycle within a RAS but could be used for “back of the envelope” calculations for RAS 

construction. 

 Wik et al. (2009) investigated nitrogen transformations using a RAS model with multiple 

MBBRs.  This model was built for Matlab and each component was based on transient states 
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(non-steady state).  The model was separated into three parts: fish model, waste production and 

waste treatment.  Within the fish model, the subcomponents included growth and feeding.  After 

feeding, waste production increases to a point before decreasing, as the model takes into account 

the digestion of the fish, where there was a residence time from the time feed was consumed to 

when it was digested and released into the environment.   

In the second model component, waste production was divided into four categories: feed 

not consumed by fish, consumed and digested, consumed and absorbed and finally consumed 

and respired.  Each of the four categories contains various amounts of organic or inert material, 

various nitrogen constituents, phosphorus and dissolved carbon dioxide.  This allows the model 

to calculate loading rates of different constituents to the MBBRs.   

Within the last component, the MBBRs were modeled using the activated sludge model 

number 1 (ASM 1) but modified for MBBRs used in aquaculture.  The MBBRs were modeled as 

biofilm reactors in series with both suspended sludge and biofilm media.  The first was a 

denitrification MBBR, followed by an aerobic MBBR for BOD removal, a sand filter to collect 

sludge and ending with a nitrification MBBR. 

 Their work provides a framework for modeling RAS.  From their simulations, they 

concluded the following: 

 the entire system should be modeled as a dynamic system, 

 organic carbon was the limiting factor in denitrification and the addition of organic 

carbon can cause concentration oscillations due to the recirculation, 

 building a “by-pass” over the nitrification MBBR can improve performance and 

reduce the required reactor volumes. 
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 Wik et al. (2009) described sixteen different waste products from aquaculture.  The 

nitrogen waste products include five forms: DON, PON, NO3
-
, nitrite and NH4

+
.  One drawback 

to this model was that the case study used was a theoretical example.  The model was not 

calibrated or validated with a real world case.  Another drawback was the use of ASM 1, which 

is an activated sludge model, for an attached growth reactor.  Current models, such as BIOWIN 

and GPXS, are now available for biofilm reactors. 

 

2.3 IAS Models 

Jamu and Piedrahita (2002a and 2002b) developed an IAS model to simulate the 

dynamics of organic matter and nitrogen through aquaculture and agriculture.  Previous 

aquaculture models lacked the dynamic aspect and excluded important biological, physical or 

chemical processes to accurately predict the water quality. 

 The IAS model was divided into two components: aquaculture and agriculture.  The 

model built upon existing models, such as a pond ecosystem model (Nath, 1996; Piedrahita, 

1990) and a basic crop model (Spitters et al., 1989), but was different from previous models by 

its treatment of nitrogen, organic matter and soil sediments.  Nitrogen was considered a major 

dynamic component because nitrogen was required for plant growth yet some forms are 

detrimental to fish populations.  Furthermore, organic matter plays an important role in recycling 

nutrients in the ecosystem.  Finally, the sediments play a role in nitrogen transformation 

processes and plant growth.   

The aquaculture and agriculture components can be modeled separately or integrated as 

one system, connected by a cycle.  After the initial harvest of plants, the crop waste was used to 

fertilize the aquaculture pond.  During fish growth, the pond water was used to irrigate the crops.  
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After fish were harvested, the aquaculture pond sediments were used as the initial sediments for 

the crop. 

 Only the aquaculture model was calibrated because the agriculture model was validated 

using data from a previous study (Spitters et al., 1989).  Each aquaculture sub-model was 

calibrated until a general fit was achieved.  The data used to calibrate the model was from a site 

in Rwanda where the crop waste was used as a pond fertilizer (Berkman, 1995).   

 Model verification was performed by comparing the output of the model to data from 

sites in Honduras, Thailand and Malawi (Berkman, 1995).  Since each site had different site 

specific details, the model was recalibrated for each site.  The model was evaluated and deemed 

satisfactory as simulations were within one standard deviation of the observed data.  The 

sensitivity analysis was performed by varying different rate coefficients.  To determine which 

ones were the most sensitive, the rate coefficients were ranked based upon the magnitude of their 

values.  Lastly, the verification step showed that their model fit within two of the three sites, with 

Thailand not fitting into the model.  The zooplankton and phytoplankton may account for this 

discrepancy because the fish may have had different grazing preferences. 

 A model developed by Jamu and Piedrahita (2002a and 2002b) provided a good reference 

for the Mote IAS model but required some adjustments.  Feed in the Jamu and Piedrahita model 

included phytoplankton that grew within the fish pond.  If the phytoplankton component did not 

produce enough feed for the fish, a fertilizer feed was added.  Within the Mote IAS, the Florida 

pompano do not consume phytoplankton.  Thus the commercial feed was the only outside input 

of nitrogen to the system.  Another difference is that Jamu and Piedrahita (2002a) simulated the 

diffusion of nitrogen species using a sediment column model and allowed for losses of nitrogen 

into the upper and lower layers of the sediment.  Since the Mote IAS has a liner, a sediment 
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column component was not included.  One last major difference is the Jamu and Piedrahita 

model was a freshwater system.  A salinity factor needed to be included in the Mote IAS. 

 

2.4 Constructed Wetland Models 

 Kadlec and Wallace (2009) describe a simple nitrogen model for constructed wetlands 

(Figure 2-2).  Some of the influent organic nitrogen is converted to NH4
+
 via ammonification.  

Wastewater treatment literature often combines organic nitrogen and NH4
+
 as total Kjeldahl 

nitrogen, assuming that ammonification is instantaneous (Kadlec and Wallace, 2009).  However, 

Kadlec and Wallace (2009) explain that ammonification is not instantaneous in constructed 

wetlands because of the background concentrations of organic nitrogen from plant residuals.  

Another simplifying assumption Kadlec and Wallace (2009) made in the model was that plants 

only use NH4
+
 for growth. 

 

Figure 2-2.  Simplified constructed wetland model (adapted from Kadlec and Wallace, 2009).  
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 Mayo and Mutamba (2005) developed a model to investigate nitrogen removal from a 

university’s wastewater by treating it with a high rate pond (HRP) followed by an unplanted 

horizontal subsurface flow constructed wetland.  A pilot system was constructed to collect data 

for the model, including pH, DO, NO3
-
, nitrite, NH3 and chemical oxygen demand (COD) 

concentrations.  A mass balance was performed for organic nitrogen, NH3 and NO3
-
 within the 

HRP and the constructed wetland.  A conceptual model of the constructed wetland component is 

shown in Figure 2-3.   

 

 

Figure 2-3.  Constructed wetland component of model (adapted from Mayo and Mutamba, 

2005). 
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 This model assumed that as microorganisms utilize NH3 and NO3
-
, the waste and decay 

products became organic nitrogen.  These organisms included suspended and attached bacteria.  

Ammonification was modeled using an equation developed by DiToro et al (1971), where the 

water temperature influences the reaction rate.  For the amount of organic nitrogen loss to the 

sediments, the model followed Stokes Law for small particles.  The nitrification process was 

modeled using Monod kinetics, with terms that considered temperature, DO and pH.  Unlike 

other wastewater models, the Mayo and Mutamba (2005) model used an exponential equation for 

temperature, developed by Downing (1996).  Below a pH value of 7.2 and above 9.3, 

Nitrosomonas are not as effective.  The model used an “if then else” function depending upon 

the pH to influence nitrification.  The denitrification process was also modeled using Monod 

kinetics and the rate was a function of temperature, organic carbon and NO3
-
 concentration. 

 Wynn and Liehr (2001) built a constructed wetland model and calibrated it with data 

from a constructed wetland in Maryland.  The model was used to demonstrate the effect of 

microbial growth on the carbon and nitrogen cycles.  Previous models examined by Wynn and 

Liehr (2001) adjusted for pH and temperature, but considered microbial growth and decay as a 

“black box.”  This model consisted of six components that include the nitrogen, carbon and 

water cycles, growth of autotrophic and heterotrophic microorganisms and the DO budget. 

Examining the nitrogen cycle, Wynn and Liehr (2001) decided to model ammonification, 

nitrification, denitrification, microbial uptake and sedimentation with respect to PON, DON, 

ammonium and nitrate.  Plant uptake of nutrients was not considered in this constructed wetland 

model.  Instead, plant growth was assumed to occur at a constant rate if water and nutrients were 

in abundance.  Thus, plant growth only contributed as an input to the PON via plant decay once 

the growing season was completed.   
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The microorganism component for autotrophs and heterotrophs were modeled based on 

Monod kinetics (Wynn and Liehr, 2001).  The autotrophic component represented Nitrosomonas 

with limiting reactants of ammonium and DO.  The heterotrophic component represented aerobic 

and anaerobic microorganisms with limiting reactants of total organic carbon and DO.  Both 

autotrophic and heterotrophic microorganisms’ death rates were based on a first order reaction 

rate. 
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CHAPTER 3: MODEL DEVELOPMENT 

 

3.1 Description of Mote IAS  

 The major physical components of the Mote IAS are shown in Figure 3-1.  The 

specifications of each piece of equipment can be found in Table 3-1.Samples were collected 

from seven sampling points (labeled W#), and used to understand the physical, chemical and 

biological processes occurring in each stage of the IAS.  Constructing the model required an 

additional three points (M#), where mass balances were used to estimate concentrations.   

 

Figure 3-1.  Overview schematic diagram of Mote pilot IAS, showing sample point locations 

(W#) and locations where mass balances were used to estimate concentration (M#).    
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Table 3-1.  Description of physical components of the Mote IAS. 

Item Dimensions Volume (L) Notes 

Fish tank Six 3m diameter tanks and one 

6m diameter tank 

89,000 Dolphin Fiberglass 

Products, Miami, FL. 

Drum filter Equipped with a 60 µm screen 

for solids filtration. 

2,800 PR Aqua Drum Filter, 

Model RFM 3236, 

Nanaimo, BC, Canada.   

Solids tank 3m diameter tank 7,100 Received the solids 

backwash from the drum 

filter.   

Sand filter 2.4m x 2.4m 5,760 Two sand filters acted as 

solids pretreatment prior to 

the north plant raceway. 

Plant raceways 18m x 4.5m 50,000 Two plant raceways 

contained Smooth 

Cordgrass (Spartina 

alterniflora), Black Needle 

Rush (Juncus 

roemerianus) and Red 

Mangrove (Rhizophora 

mangle). 

Geotube 3m x 3m 13,500 Ten Cate Nicolon, 

Commerce, GA.  A 

polymer was periodically 

added to help coagulate the 

solids. 

MBBR 6m x 3m 27,000 Contained 350 m
2
/m

3
 

KMT media (Fureneset, 

Norway) with a fill 

fraction of 60%.   

 

3.2 Water Quality Sampling and Analysis 

Water samples were collected and concentrations of COD, total suspended solids (TSS), 

volatile suspended solids (VSS), total nitrogen (TN), NH4
+
, NO3

-
, total phosphorus and 

orthophosphate were measured using Standard Methods (Eaton et al., 2005) and HACH tests 

kits, as shown in Table 3-2.  TSS and phosphorus concentrations were not used in the model.  

Soil and plant samples were collected on three separate site visits and TN and total phosphorus 

concentrations were measured in the plant tissues (Boxman 2013).  More detailed explanations 
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of the sampling processes and laboratory experiments can be found in Kruglick (2012) and 

Boxman (2013).  Measurements were made at the Environmental Engineering laboratories at the 

University of South Florida (USF), Tampa, FL and at Mote Marine Laboratories in Sarasota, FL.  

USF samples of NH4
+
 and Mote samples of NO3

-
 were used for comparison with the model 

results.  NO3
-
 samples analyzed by USF were not used because there were initial problems with 

NO3
-
 laboratory testing.  NH4

+
 samples analyzed by Mote were not used because USF had more 

data than Mote.   

 

Table 3-2.  Measured water quality constituents and measurement methods. 

Parameter Units Unfiltered Filtered Method 

Detection 

Limit 

Method* 

TN mg/L N X X 1.34 Hach Method 10071 (Persulfate 

Digestion). 

NH4
+
 mg/L 

NH4
+
-N 

 X 0.012 Hach Method 10023 (Salicylate 

Method). 

NO3
-
 mg/L 

NO3
-
 -N 

 X 0.207 Resorcinol method (Zang and 

Fischer, 2006). 

COD mg/L  X  3.06 Hach Method 8000, 40 CFR 

136.3; SM 5220 D. 

DO mg/L   N/A Quanta Hydrolab mulitmeter 

probe (Loveland, CO). 

Temperature 
o
C   N/A Quanta Hydrolab mulitmeter 

probe (Loveland, CO). 

VSS mg/L  X  N/A Standard Methods (2540 E). 

*Additional methodology information can be found in Kruglick (2012) and Boxman (2013). 

 

3.3 Mass Balances 

 The Mote IAS was a closed loop system (Figure 3-1), where the water was recirculated, 

moving through different stages.  The model was therefore broken into components that 

represented the different processes of the IAS.  Transformations of PON, DON, NH4
+
-N and 

NO3
-
-N were examined through each component (Figure 3-2).  Each stage had some or all of the 
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various transformations occurring.  For example, the solids tank, drum filter and MBBR did not 

have any plant uptake.  For a complete list of assumptions for each physical stage, see Appendix 

B.  Volatilization of NH4
+
 was not considered because the pH was too low.   

 

 

Figure 3-2.  Overall conceptual model of nitrogen transformations in the IAS. 

 

3.3.1 Fish Tank Mass Balance 

 Water samples were not collected from the fish tank.  The equations used for the fish tank 

component were based upon current literature and data on feed rates.  The physical dimensions 

of the seven fish tanks can be found in Table 3-1.  The main source of nitrogen input to the IAS 

was by feed added to the fish tanks.  As shown in Figure 3-3, feed input increased or decreased 

based upon the requirements of the fish.  The feed was Zeigler Finfish Silver (Zeigler, N.D.) and 
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was comprised of a minimum of 40% crude protein, a minimum of 10% crude fat, a maximum of 

4% crude fiber, a maximum of 12% moisture and a maximum of 8% ash.  It was assumed that 

nitrogen was contained only in the crude proteins.  

  

 

Figure 3-3.  Amount of nitrogen in feed entering Mote IAS on a daily basis. 

 

  In the Mote IAS, automated feeders were attached to the fish tanks and fed continuously 

for 12 hours.  If total daily feed was added once a day, then the concentration of nitrogen species 

will peak four to six hours after feeding and a constant nitrogen concentration cannot be assumed 

(Timmons et al., 2002).  Since feed was applied continuously for 12 hours, it was assumed that 

the nitrogen concentration in the fish tank was constant.   
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 The feed conversion efficiency (FCE) is a measure of how much biomass is gained per 

unit mass of feed applied (Ernst, 2000).  Weirich et al. (2009) investigated the FCE of Florida 

pompano and found the FCE ranged from 25% to 46%.  Thus, of the feed applied, 54% to 75% 

was wasted by the fish.     

 An overview of how the nitrogen in fish feed is divided into fish biomass, PON, DON 

and NH4
+
 is presented in Figure 3-4.  According to Chen and Fornshell (2000), 67% - 75% of the 

nitrogen in fish feed will be lost as either feed waste or excretion.  Therefore, approximately 25% 

- 33% of the nitrogen added to the system will be retained within the fish biomass.  Of the 

nitrogen consumed and excreted, 70% - 90% is metabolized into NH4
+
 (Chen and Fornshell, 

2000).  For marine fish, Jobling (1994) found that the nitrogen in the fish waste can represent up 

to 30% - 40% of the TN in the tank.  In this model, it was assumed that fish excretion consisted 

of only DON and NH4
+
.  Fish may also excrete PON, but it was assumed that the PON would be 

rapidly hydrolyzed into DON.     

 

Figure 3-4.  Overview of how feed was divided into different nitrogen species.  
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 A mass balance on PON in the fish tank is given by: 

    
    
  
                        (6) 

where VFT is the volume of the fish tank (L), C8P is the PON concentration in the fish tank 

(mg/L), Q7 is the flow through the MBBR (L/day), C7P is the PON concentration from the 

MBBR (mg/L), fP is the fraction of feed in the fish tank converted to PON and rfeed is the rate of 

feed added to the fish tanks (mg/L*day).   

 A mass balance on DON in the fish tank is given by: 

    
    
  
                        (7) 

where C8D is the DON concentration in the fish tank (mg/L), C7D is the DON concentration from 

the MBBR (mg/L) and fD is the fraction of feed in the fish tank converted to DON. 

 A mass balance on NH4
+
-N in the fish tank is given by: 

    
    
  
                                 (8) 

where C8A is the NH4
+
-N concentration in the fish tank (mg/L), C7A is the NH4

+
-N concentration 

from the MBBR (mg/L), fA is the fraction of feed in the fish tank converted to NH4
+
-N and fni is 

the fraction of NH4
+
-N nitrified in the fish tank.  Nitrification occurs in the fish tank due to 

aerobic conditions and the presence of nitrifying bacteria attached to the tank surfaces (Losordo 

and Hobbs, 2000).  Little to no biofilm was observed on the walls of the fish tanks, most likely 

due to the shear forces caused by flow.  An assumption that only 10% of the NH4
+
-N was 

nitrified was made. 

 Since NO3
-
-N is not excreted by fish, the only source of NO3

-
-N is nitrification.  A mass 

balance on NO3
-
-N in the fish tank is given by:  

    
    
  
                      (9) 
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where C8N is the NO3
-
-N concentration in the fish tank (mg/L) and C7N is the NO3

-
-N 

concentration from the MBBR (mg/L).   

 

3.3.2 Drum Filter Mass Balance  

 Water from the fish tank, south and north plant raceways and geotube flowed to an Aqua 

Drum Filter (PR AquaSupplies, Nanaimo, BC, Canada).  The drum filter separated the water and 

the solids.  A rotating microscreen filters the water and captures the solids.  Since there were no 

samples collected prior to the drum filter, a simple mass balance was used to determine the drum 

filter influent assuming no transformations or losses of nitrogen species:  

                               (10) 

                               (11) 

                               (12) 

                               (13) 

where Q2 is the flow of the south or north plant raceway or geotube (L/day), C2P, C3P, C4P and C9P 

are the PON concentrations of the south plant raceway, north plant raceway, geotube and drum 

filter, respectively (mg/L), Q9 is the flow through the drum filter (L/day), C2D, C3D, C4D and C9D 

are the DON concentrations of the south plant raceway, north plant raceway, geotube and drum 

filter, respectively (mg/L), C2A, C3A, C4A and C9A are the NH4
+
-N concentrations of the south 

plant raceway, north plant raceway, geotube and drum filter respectively (mg/L) and C2N, C3N, 

C4N and C9N was the NO3
-
-N concentration of the south plant raceway, north plant raceway, 

geotube and drum filter, respectively (mg/L). 

The drum filter was assumed to only transport nitrogen, not transform it.  Using 

laboratory data from Kruglick (2012) and Boxman (2013), an estimated average of the drum 
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filter effluent for each nitrogen species going to the MBBR and solids tank was calculated.  A 

mass balance on the drum filter effluent is given by:   

                    (14) 

                    (15) 

                    (16) 

                    (17) 

where Q1 is the flow through the solids tank (L/day), C6P and C10P are the PON concentrations 

entering the MBBR and solids tank (mg/L), respectively, C6D and C10D are the DON 

concentrations entering the MBBR and solids tank (mg/L), respectively, C6A and C10A are the 

NH4
+
-N concentrations entering the MBBR and solids tank (mg/L), respectively, and C6N and 

C10N are the NO3
-
-N concentrations entering the MBBR and solids tank (mg/L), respectively.    

 

3.3.3 Solids Tank Mass Balance 

 As the water flow in the drum filter slowed, the solids were removed from the 

microscreen by backwashing.  The solids slurry backwashed from the microscreen flowed to a 

solids tank.  The solids tank retained the effluent after each backwash cycle until a float switch 

was activated.  Once the float switch activated, the solids tank would flush out the backwash 

effluent into three different flow pathways: south and north plant raceways and the geotube.  It 

was assumed that the flow was equally divided between the three flow pathways.  Since no 

solids tank influent data was collected, the only assumed processes occurring in the solids tank 

was ammonification and denitrification.  Ammonification was assumed to take place because of 

the high observed NH4
+
-N concentrations observed in the solids tank effluent.  Denitrification 

was assumed to take place because the observed averaged DO concentration was 1.2 mg/L in the 
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solids tank (Boxman, 2013).  PON, DON, NH4
+
-N and NO3

-
-N mass balances in the solids tank 

are given by: 

    
    

  
              (18) 

    
    

  
                      (19) 

    
    

  
                     (20) 

    
    

  
                       (21) 

where VST is the volume of the solids tank (L), C1P is the PON concentration in the solids tank 

(mg/L), C1D is the DON concentration in the solids tank (mg/L), rmi is the rate of mineralization 

(mg/L*day), C1A is the NH4
+
-N concentration in the solids tank (mg/L), C1N was the NO3

-
-N 

concentration in the solids tank (mg/L) and fde is the fraction of NO3
-
-N that was denitrified in 

the solids tank.  Due to the low DO concentration, it was assumed that the nitrate in the solids 

tank was reduced by 15% via denitrification.   

Mineralization is a process where an organic compound is transformed into an inorganic 

one (Senzia et al., 2002).  With respect to nitrogen, ammonification transforms organic nitrogen 

into inorganic nitrogen or DON into NH4
+
-N.  The rate of ammonification was dependent upon 

the water temperature and is given by: 

            (22) 

             (23) 

where kmi is a rate constant for ammonification (1/day) and T is the water temperature (
o
C).  

Senzia et al. (2002), Mayo and Mutamba (2005) and Jamu and Piedrahita (2002) used this 

equation to model ammonification, which was developed by Di Toro et al. (1971). 
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 Temperature was modeled using a simple sine wave equation.  The hottest and coldest 

days represented the peaks of the temperature graph.  Equation 24 was used to model the water 

temperature in the plant raceway.   

         ( 
  

  
)     (24) 

where TA is the amplitude of the sine wave (
o
C), D is the day (day), TP is the period of the sine 

wave (day) and T0 is the average water temperature of the plant raceway (
o
C).  The coldest 

observed water temperature was 15.4
o
C and the hottest was 31.3

o
C (Boxman, 2013) over the 

course of a year.  The average temperature of the plant raceways (T0) was 23.35
o
C, with 

amplitude (TA) of 7.95
o
C over a period (TP) of 365 days. 

 

3.3.4 MBBR Mass Balance 

 An MBBR has characteristics of both suspended growth and biofilm reactors (Odegaard, 

1999).  As in activated sludge systems, the MBBR uses the entire volume of the reactor for 

microbial growth.  Instead of freely suspended microorganisms, the majority of the MBBR’s 

microorganisms are attached to a submerged media.  As in biofilm reactors, such as trickling 

filters, the MBBR does not require any recycling of sludge as in activated sludge processes.  The 

MBBR within the Mote IAS had a total volume of 72.61 m
3
.  Kaldnes carriers (Furenest, 

Norway) with a surface area to volume ratio of 350 m
2
/m

3
 were used as the media for biofilm 

growth.  Hem et al. (1993) found that in aerated MBBRs, the constant mixing caused by air 

bubbles are so turbulent that one can assume the MBBR is completely mixed.  In the Mote IAS, 

the MBBR was constantly aerated.  A UV system disinfected the water to inactivate any harmful 

bacteria prior to the fish tank.   
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It was assumed that there was no degradation of PON or DON in the MBBR.  MBBRs 

have the ability to remove high organic loading rates from municipal wastewater (Rusten et al., 

2006).  However, in aquaculture, the objective of the MBBR is to nitrify ammonium (Rusten et 

al., 2006).  At high organic loading rates, heterotrophic bacteria will compete with nitrifiers; thus 

aquaculture MBBRs typically operate with low organic loading rates.  It was assumed that the 

only nitrogen transformation occurring within the MBBR was the oxidation of NH4
+
-N to NO3

-
-

N via biological nitrification.  Mass balances on PON, DON, NH4
+
-N and NO3

-
-N in the MBBR 

are given as: 

    
    

  
                   (25) 

    
    

  
                   (26) 

    
    

  
                            (27) 

    
    

  
                            (28) 

where VMB is volume of the MBBR (L) and rMBni is the rate of nitrification in the MBBR 

(mg/L*day). 

 The rate of nitrification in the MBBR is given by: 

          (29) 

               (30) 

where N is the liquid phase NH4
+
-N flux to the biofilm (mg/m

2
*day), a is the surface area per 

volume of the media in the MBBR (m
2
/m

3
), C6A is the liquid phase NH4

+
-N concentration in the 

MBBR (mg/L), kMBni is the first order nitrification rate coefficient in the MBBR (1/day), LB is 

the thickness of the biofilm in the MBBR (m) and β is a biofilm constant involving the NH4
+
-N 
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diffusion constant, the length of the biofilm and the reaction rate (unitless).  Equations 29 and 30 

were adapted from Eweis et al. (1998) on modeling biofilters for biological treatment. 

 

3.3.5 South Plant Raceway Mass Balance 

 The south plant raceway was assumed to act similar to a constructed wetland.  As a 

complex system, constructed wetlands use various processes to remove nutrients and solids from 

the water (US EPA, 2000).  Some of the nutrient removal processes include sedimentation, 

adsorption, plant uptake and biodegradation (Tucker et al., 2008).  Another assumption was that 

the plant raceway acted as a completely mixed flow reactor.  A recirculation pump recirculated 

the water from the end of the plant raceway back to the front of the plant raceway, allowing for 

the plant raceway to be completely mixed.  All processes were assumed to operate under first 

order reaction rates based upon the low concentrations observed in the effluent.  Biological 

processes can be modeled using first order kinetics; when concentrations are much less than the 

half saturation constants (C << Ks where Ks is the half saturation constant).  The observed NH4
+
-

N concentration in the plant raceway was as low as 0.1 mg/L, while the Ks for nitrification 

ranges between 0.5 to 1.0 mg/L (Metcalf and Eddy, 2003).  Similarly, the observed NO3
-
-N 

concentration reached as low as 0.1 mg/L, while the Ks for denitrification ranges between 0.2 to 

0.5 mg/L (Henze et al., 2002).  Kadlec and Wallace (2009) also described typical constructed 

wetlands as operating under first order reaction rates.   

 A mass balance on PON in the south plant raceway is given by: 

    
     

  
 
 

 
                                    (31) 

where VPR is the volume of the plant raceway (L), rhyd is the rate of hydrolysis (mg/L*day), rsed is 

the rate of PON sedimentation in the plant raceway (mg/L*day) and racc is the rate of PON 
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accumulation in the soil of the plant raceway (mg/L*day).  The flow entering the south plant 

raceway was only one third of the solids tank effluent flow rate.  As mentioned previously, it was 

assumed that the flow was equally distributed from the solids tank to the south and north plant 

raceway and the geotube.   

 Hydrolysis is the process of converting PON to DON.  Equations 32 and 33 were 

developed by Henze and Mladenovski (1991), who described the rate of hydrolysis of PON 

under different oxygen conditions at 20
o
C in batch reactors seeded with raw municipal 

wastewater as:   

              (32) 

           
    (    ) (33) 

where khyd was a rate constant dependent upon temperature (1/day).   

 The soil accumulation term describes the amount of PON in the soil when plants were 

harvested.  Equation 34 describes the rate of PON soil accumulation: 

                   (34) 

where facc is the fraction of PON in the plant soil.  A value of 0.0093 was used for facc and was 

determined by Boxman (2013).   

Sedimentation is the physical removal of particulates (Kadlec and Wallace, 2009).  In the 

IAS, sedimentation occurs underneath the plant trays, where the particulates are trapped.  This 

layer of sedimentation on the bottom of the plant raceways remained in the system until it was 

manually removed.  Mayo and Mutamba (2005) and Kadlec and Wallace (2009) used equations 

involving the Reynolds number, gravity and density of the particulates.  Given the complexities 

of those equations, a simple estimate of the fraction of nitrogen, in the sediments was used 

instead.  The rate of PON sedimentation is given by:  
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                   (35) 

where fsed is the fraction of PON found in the sediments.  A value of 0.05 was used for fsed and   

was determined by Boxman (2013).   

 A mass balance on DON in the south plant raceway is given by: 

    
    

  
 
 

 
                           (36) 

Mineralization was described in the solids tank mass balance (Equations 22 and 23).     

 A mass balance on NH4
+
-N in the south plant raceway is given by:  

    
    

  
 
 

 
                                  (37) 

where rup1 is the rate of plant uptake of NH4
+
-N (mg/L*day) and rni is the rate of nitrification in 

the plant raceway (mg/L*day). 

 The rate of plant uptake of NH4
+
-N is given by: 

                    (38) 

where Fup1 was the fraction of the TN concentration taken up by plants and P1 was the preference 

factor forNH4
+
-N.  A value of 2.12 was used for Fup1.  Fup1 was described by Boxman (2013) 

when the TN per plant mass in the south plant raceway was determined.  However, since 

Boxman (2013) was unable to differentiate between the amount of NH4
+
-N and NO3

-
-N in the 

plants, a preference factor was included.  Kadlec and Wallace (2009) stated that NH4
+
-N would 

be the preferred nitrogen species because plants would need to reduce NO3
-
-N before it could be 

used for biosynthesis.  Thus, the initial assumption used was that the preference factor for NH4
+
-

N was higher than NO3
-
-N.   

 The rate of nitrification in the plant raceways was assumed to follow first order reaction 

kinetics and is given by: 

            (39) 
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]  [     ] (40) 

    
 ̂  
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where kni is the first order nitrification rate in the plant raceway (1/day), k1 is a nitrifier constant 

(L/mg*day),  ̂   is the max specific growth rate for nitrifiers (1/day), Xni is the active biomass 

for nitrifiers (mg/L), Yni is the yield coefficient for nitrifiers (g biomass/g NH4
+
-N), Kni is the 

half saturation constant for nitrifiers (mg/L), CDO is the DO concentration in the plant raceway 

(mg/L), KDO is the half saturation constant for DO (mg/L), Csalt is the salt concentration (mg/L) 

and θ is the Arrhenius constant (unitless).   

 In constructed wetlands, DO can be supplied by physical transfer, plant transfer or by 

mechanical aeration (Kadlec and Wallace, 2009).  In the Mote IAS, there were no aerators in the 

plant raceways.  Emergent plants will release DO near their roots for their own biological 

processes, but this additional oxygen is not enough to contribute to the overall system (Kadlec 

and Wallace, 2009).  Physical transfer processes include any interaction between the atmosphere 

and the water such as turbulence from a river or wind.  Temperature also influences the gas 

transfer rate of DO.  Equation 42 was developed by Elmore and Hayes (1960), where 

temperature impacted the DO concentration at 1 atmosphere: 

                              
               (42) 

 A mass balance on NO3
-
-N in the plant raceway is given by: 

    
    

  
 
 

 
                                  (43) 

where rup2 is the rate of plant uptake of NO3
-
-N (mg/L*day) and rde is the rate of denitrification 

(mg/L*day) in the plant raceway.   

 The rate of plant uptake of NO3
-
-N is given by: 
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                    (44) 

         (45) 

where P2 is the preference factor of plant uptake for NO3
-
-N.  Equation 44 is the same equation 

as Equation 38 except that the preference factor is expected to be lower for NO3
-
-N.  The 

preference factor can be adjusted for other models if the plant species favors one form of 

nitrogen over the other. 

 The rate of denitrification is assumed to follow first order reaction kinetics and is given 

by: 

            (46) 

     [     ]  [
    

         
]  [

     

           
]  [     ] (47) 

    
 ̂  

       
 (48) 

where kde is the first order denitrification constant (1/day), k2 is a denitrifier constant 

(L/mg*day),  ̂   is the max specific growth rate of the denitrifiers (1/day), Xde is the active 

biomass of denitrifiers (mg/L), Yde is the yield coefficient of denitrifiers (g biomass/g NO3
-
-N), 

Kde is the half saturation constant for NO3
-
-N (mg/L), CCOD is the COD concentration (mg/L) and 

KCOD is the half saturation constant for COD (mg/L).  DO inhibits denitrification at 

concentrations above 0.3-1.5 mg/L (Kadlec and Wallace, 2009), but was not included in 

Equation 47.  The observed bulk influent and effluent DO concentrations of the south plant 

raceway indicated an increase of DO through the plant raceway, with an average observed DO 

concentration of 1.9 mg/L (Boxman, 2013).  However, sampling within the plant raceway, using 

the Quanta Hydrolab multimeter probe showed there were locations in the middle of the plant 

raceway where there were low enough DO concentrations for denitrification (Boxman, 2013).  

Within the south plant raceway, the average DO concentration was 0.17 mg/L (Boxman, 2013).  
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3.3.6 Sand Filter Mass Balance 

 Unlike the south plant raceway, the north plant raceway incorporated a sand filter for 

solids removal.  Only ammonification was modeled in the sand filter and no other physical, 

chemical or biological removal mechanisms were included.  Using the laboratory data presented 

by Kruglick (2012) and Boxman (2013), NH4
+
-N was the only nitrogen species to increase 

through the sand filter.  This was assumed to be due to ammonification of DON.  

Ammonification in the sand filter followed Equations 22 and 23.  Mass balances for the sand 

filter are given by: 
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            (52) 

where VSF is the volume of the sand filter (L), C5P is the PON concentration in the sand filter 

(mg/L), f5P is the fraction of PON removed by the sand filter, C5D is the DON concentration in 

the sand filter (mg/L), C5A is the NH4
+
-N concentration in the sand filter (mg/L), C5N is the NO3

-
-

N concentration in the sand filter (mg/L) and f5N is the fraction of NO3
-
-N removed by the sand 

filter.   

 

3.3.7 North Plant Raceway Mass Balance 

 The north plant raceway used the same equations as the south plant raceway with two 

differences.  First, the influent of the south plant raceway was from the solids tank while the 

influent from the north plant raceway was from the sand filter.  Another difference was the PON 
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accumulation and sedimentation.  The sand filter removed most of the PON, thus decreasing the 

constants used in those equations. 

 

3.3.8 Geotube Mass Balance 

The last third of the flow was treated by a mesh bag called a geotube.  The geotube was a 

commercially purchased product from Ten Cate Nicolon, Commerce, GA.  In the Mote IAS, the 

geotube was approximately 3m in length by 3m in width and had the capability of growing to a 

height of 1.5m once full.  The physical, chemical and biological removal mechanisms occurring 

in the geotube were not modeled.  Data taken from Kruglick (2012) and Boxman (2013) 

provided a range of removal efficiencies.  Average removal efficiencies were used for each 

nitrogen species to simulate the geotube and are given by: 
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where VGE is the volume of the geotube (L), f4P is the fraction of PON removed by the geotube, 

f4D is the fraction of DON removed by the geotube, f4A is the fraction of NH4
+
-N removed by the 

geotube and f4N is the fraction of NO3
-
-N removed by the geotube.  

 

3.4 Initial Conditions 

 Although fish feed and fish growth data recording began in November 2010, no water 

quality data was available for that month.  The experimental plan was to let the system stabilize 
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before the first sample collection.  The first data set (1 March 2011) was used as the initial 

nitrogen concentrations (Boxman, 2013).  The model begins to predict nitrogen concentrations 

on day 120, which simulates 1 March 2011. 

 

3.5 STELLA
TM

 

 STELLA
TM

 is an easy to use computer program for dynamic model building and has been 

used in various biological and environmental models (Ouyang, 2008).  STELLA
TM

 allows the 

user to build a model by drawing a diagram (ISEE, 2013).  The integration method selected was 

Euler’s Method, with a time step size of 0.25.  The unit of time is in days.  The run and 

interaction modes are selected as normal.  The equations from the south plant raceway and the 

MBBR were evaluated first in Microsoft Excel under static conditions.  A detailed explanation of 

the check is located in Appendix C.  Dr. Sarina Ergas at the University of South Florida has a 

copy available for anyone who would like a copy.  She can be reached by email at 

sergas@usf.edu or by at phone 813-974-1119. All the equations used in STELLA
TM

 are listed in 

Appendix D. 
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CHAPTER 4: RESULTS AND DISCUSSION 

 

4.1 Calibration 

  Three types of parameters were used in the model (Table 4-1): experimental, literature 

and calibrated.  Experimental data was used to estimate the plant uptake of TN, soil 

accumulation of PON and soil sedimentation of PON.  Details of these experiments were given 

by Kruglick (2012) and Boxman (2013).  Literature values were used for biokinetic parameters: 

the half saturation constants for denitrification, nitrification, DO and heterotrophic metabolism, 

the maximum specific growth rate for denitrifiers and nitrifiers, the MBBR first order reaction 

rate constant as well as the yield coefficients for denitrifiers and nitrifiers.  Literature values were 

from studies of biological processes at wastewater treatment plants or constructed wetlands.  

Each literature value was given as a range of values and calibration was done only within this 

range.  Finally, the completely calibrated values were the fraction of active biomass for 

denitrifiers and nitrifiers, fractions of nitrogen in waste as uneaten feed, fish waste as DON and 

fish waste as NH4
+
-N, preference factors for plant uptake of NH4

+
-N and NO3

-
-N.  Calibrated 

parameters values were adjusted manually until the model’s output was a best fit to the observed 

data by minimizing the sum of the squared residuals.   
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Table 4-1.  Parameters used in the model.  *Details on methods used for experimentally 

determined parameters are provided in Boxman (2013). 

Variable Description of parameters Literature 

range 

Source Value used in 

model 

    Fraction of nitrogen in waste 

as NH4
+
-N 

--- Calibrated 0.504 

      Fraction of PON 

accumulated in plant soil 

--- Experimental 0.93 

    Fraction of nitrogen in waste 

as DON 

--- Calibrated 0.056 

     Fraction of active biomass 

for denitrifiers 

--- Calibrated 0.25 

     Fraction of active biomass 

for nitrifiers 

--- Calibrated 0.12 

    Fraction of nitrogen in waste 

as uneaten feed 

--- Calibrated 0.14 

      Fraction of PON in 

sediments  

--- Experimental 0.05 

     Fraction of TN taken up by 

plants 

--- Experimental 0.0212 

      Fraction of feed as VSS --- Calibrated 10
-4.25

 

      
(1/day) 

MBBR first order reaction 

rate constant  

0.5 Rusten et al 

(2006) 

0.5 

     
(mg/L) 

Half saturation constant for 

heterotrophic metabolism 

10 – 20  Henze et al 

(2002) 

10 

    
(mg/L) 

Half saturation constant for 

denitrification  

0.2 – 0.5 Henze et al 

(2002) 

0.2 

    
(mg/L) 

Half saturation constant for 

DO 

0.5 – 1.0 Henze et al 

(2002) 

0.7 

    
(mg/L) 

Half saturation constant for 

ammonium  

0.5 – 1.0 Metcalf and 

Eddy (2003) 

0.75 

    Preference factor of plant 

uptake for NH4
+
-N 

--- Calibrated 0.50 

    Preference factor of plant 

uptake for NO3
-
-N 

--- Calibrated 0.50 

 ̂   
(1/day) 

Maximum specific growth 

rate for denitrifiers 

0.015 Wynn and Liehr 

(2001) 

0.015 

 ̂   
(1/day) 

Maximum specific growth 

rate for nitrifiers 

0.1 Wynn and Liehr 

(2001) 

0.01 

    (g/g) Yield coefficient for 

denitrifiers 

0.25 Rittman and 

McCarty (2001) 

0.25 

    (g/g) Yield coefficient for 

nitrifiers 

0.1 – 0.15 Metcalf and 

Eddy (2003) 

0.1 
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The VSS concentration was an important parameter because it determined the active 

biomass concentration for nitrifiers and denitrifiers.  Rather than creating a model component 

involving the active biomass life cycle, it was assumed that the active biomass was a fraction of 

the VSS.  The VSS concentration was a function of the feed rate, as shown in Figure 4-1.     

 

 

Figure 4-1.  Observed and modeled VSS concentrations. 

 

 Another important parameter was the maximum specific growth rate for nitrifiers and 

denitrifiers (Equations 41 and 48).  These parameters fell outside the literature range for 

wastewater treatment plants, ranging from one to two orders of magnitude lower in constructed 

wetlands.  According to Wynn and Liehr (2001), some of the microorganism parameters needed 

to be lowered beyond the wastewater treatment plants literature range in their constructed 

wetland model.  Wynn and Liehr (2001) hypothesized that the literature range was for 

conventional wastewater systems where microorganisms were growing under ideal conditions.  
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Within a constructed wetland, the growth conditions are slowed perhaps due to diffusion through 

the soil’s pore spaces and by the low substrate concentrations.   Kadlec and Wallace (2009) did 

not provide ranges for maximum specific growth rates but bring up the point that conditions in 

conventional wastewater treatment plants do not also apply to constructed wetlands.  For 

instance, the DO and alkalinity needed for nitrification and denitrification are lower in 

constructed wetlands than in wastewater treatment plants.  These areas need further 

investigation.   

  

4.2 Sensitivity Analysis 

 A sensitivity analysis was performed to determine how sensitive the model output was to 

variations in model parameters.  Sensitivity analysis can also help identify where future research 

should be conducted (Jamu and Piedrahita, 2002b).  One parameter that has already been 

mentioned is the maximum specific growth rate of the nitrifiers and denitrifiers.  The maximum 

specific growth rates are outside the literature range for wastewater treatment plants and warrant 

further investigation in constructed wetlands.  The sum of the squared residuals was calculated 

by comparing the model output to the observed data for each sample day, averaged together for 

the four different sample locations, then averaged all together to represent how the system was 

effected. 

 The biological constants used in nitrification (k1, Equation 41) and denitrification (k2, 

Equation 48) were varied only by the half saturation constants of nitrifiers and denitrifiers.  As k1 

decreased, the sum of the squared residuals doubles (Table 4-2).  However, since the NH4
+
-N 

concentration was low, there was very little overall change in the model’s concentration output 

of NH4
+
-N and NO3

-
-N.  As k2 decreased, it caused a huge difference in the model output; the 
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sum of the square residuals nearly doubles (Table 4-3).  Unlike NH4
+
-N, the NO3

-
-N 

concentration is large enough that any small changes to the biological constant, causes huge 

differences between the model output and the observed data. 

 

Table 4-2.  Sum of squared residuals for the nitrifier constant (k1) with respect to the NH4
+
-N 

concentration at different sample locations (Figure 3-1).  Only the half saturation constant for 

nitrifiers was varied.  The larger the sum of squared residuals, the less accurate the model 

output is. 

k1 (L/mg*day) W2 (mg
2
/L

2
) W3 (mg

2
/L

2
) W6 (mg

2
/L

2
) W7 (mg

2
/L

2
) Average 

(mg
2
/L

2
) 

2.0 0.00792 0.0205 0.00293 0.00198 0.00832 

1.7 0.0110 0.0277 0.00308 0.00198 0.0110 

1.4 0.0126 0.0352 0.00213 0.00164 0.0129 

1.1 0.0172 0.0469 0.00213 0.00225 0.0171 

 

Table 4-3.  Sum of squared residuals for the denitrifier constant (k2) with respect to the NO3
-
-N 

concentration at different sample locations (Figure 3-1).  Only the half saturation constant for 

denitrifiers was varied.  The larger the sum of squared residuals, the less accurate the model 

output is. 

k2 (L/mg*day) W2 (mg
2
/L

2
) W3 (mg

2
/L

2
) W6 (mg

2
/L

2
) W7 (mg

2
/L

2
) Average 

(mg
2
/L

2
) 

0.3 10.51 3.40 1.49 1.57 4.24 

0.2 19.2 5.94 1.55 1.68 7.09 

0.15 33.7 9.81 11.7 11.8 16.5 

0.12 59.4 16.3 26.1 28.2 32.49 

 

 When the fraction of VSS for nitrifiers and denitrifiers were varied, changes in the 

denitrifier fraction resulted in large differences in the model output.  The NH4
+
-N concentration 

was low throughout the study, so varying the nitrifier fraction did not affect the overall sum of 

the squared residuals.  However, the NO3
-
-N concentration was high enough that by varying the 

denitrifier fraction, there was a noticeable change in the sum of the square residuals (Table 4-4).   
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Table 4-4.  Sum of squared residuals as a function of the denitrifier fraction of VSS (fde) with 

respect to the NO3
-
-N concentration at different sample locations (Figure 3-1).  The larger the 

sum of squared residuals, the less accurate the model output is. 

fde W2 (mg
2
/L

2
) W3 (mg

2
/L

2
) W6 (mg

2
/L

2
) W7 (mg

2
/L

2
) Average 

(mg
2
/L

2
)  

0.06 34.5 10.0 11.1 12.1 16.9 

0.12 10.6 3.45 1.45 1.54 4.27 

0.2 4.92 1.59 8.58 9.54 6.16 

0.26 3.07 0.984 12.4 13.7 7.54 

 

 The model was not sensitive to changes in the preference factors for plant uptake (Tables 

4-5 and 4-6).  Schulz et al. (2003) mentioned that the emergent plants in a constructed wetland 

have a minor impact on the overall nitrogen removal process.  Instead, the plants play an 

important role in creating the environment necessary for an effective treatment strategy.  

Boxman (2013) also suggested that plants have a minor role in nitrogen removal. 

 

Table 4-5.  Sum of square residuals for the NH4
+
-N preference factor at different sample 

locations.  The larger the sum of squared residuals, the less accurate the model output is. 

Preference factor 

of plant uptake for 

NH4
+
-N 

W2 (mg
2
/L

2
) W3 (mg

2
/L

2
) W6 (mg

2
/L

2
) W7 (mg

2
/L

2
) Average 

(mg
2
/L

2
) 

0.25 0.0125 0.0343 0.0021 0.0017 0.0127 

0.50 0.0125 0.0343 0.0021 0.0017 0.0127 

0.75 0.0125 0.0343 0.0021 0.0017 0.0127 

 

Table 4-6.  Sum of square residuals for the NO3
-
-N preference factor at different sample 

locations.  The larger the sum of squared residuals, the less accurate the model output is. 

Preference factor 

of plant uptake for 

NO3
-
-N 

W2 (mg
2
/L

2
) W3 (mg

2
/L

2
) W6 (mg

2
/L

2
) W7 (mg

2
/L

2
) Average 

(mg
2
/L

2
) 

0.25 10.64 3.43 1.45 5.79 4.27 

0.50 10.51 3.40 1.49 5.78 4.24 

0.75 10.46 3.39 1.50 5.78 4.24 
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4.3 Model Verification 

 To determine how closely the model resembles the observed data, model verification 

evaluated if the model output was within one standard deviation of the observed mean.  The 

model was within one standard deviation of the observed mean at all locations for NH4
+
-N and 

NO3
-
-N with the exception of the sand filter (W5) for NO3

-
-N (Figures 4-2 and 4-3).  One 

explanation is that there were biological, chemical and physical processes occurring in the sand 

filter that was not captured by the model.   

 

 

Figure 4-2.  Comparison between the average observed and average model concentrations for 

NH4
+
-N at each sample location.  Error bars represent plus or minus one standard deviation of 

the observed mean.   
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Figure 4-3.  Comparison between the average observed and average model concentrations for 

NO3
-
-N at each sample location.  Error bars represent plus or minus one standard deviation of the 

observed mean.   
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-N concentrations higher than 1.86 mg/L are deadly (Randall and 

Tsui, 2002).  Nitrification represented the only nitrogen removal process for NH4
+
-N in the 

MBBR.  The observed average MBBR influent NH4
+
-N concentration was 0.13 mg/L and the 

model average influent concentration was 0.14 mg/L (Figure 4-4).  Observed average MBBR 

effluent NH4
+
-N concentration was 0.17 mg/L and the model average effluent concentration was 

0.10 mg/L (Figure 4-5).  Of the observed concentrations, the 3 December 2011 data point was 

unusually high when compared to the others.  This data point reflects the complete opposite of 

what was expected; the NH4
+
-N concentration decreases through the MBBR, not increases.  If 

that data point was removed, the average observed effluent NH4
+
-N concentration was 0.12 

mg/L, representing a decrease through the MBBR, which was expected.  On average, the 

-10

0

10

20

30

40

50

W1 W2 W3 W4 W5 W6 W7

N
O

3- -
N

 c
o

n
ce

n
tr

at
io

n
 (

m
g/

L)
 

Observed Model



45 
 

ammonium removal efficiency based on the observed data was 8% while the model predicted 

11% removal. 

 

 

Figure 4-4.  Influent NH4
+
-N concentration of the MBBR (W6). 

 

 

Figure 4-5.  Effluent NH4
+
-N concentration from the MBBR (W7). 
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 Although fish are not as sensitive to NO3
-
-N as ammonium, at high concentrations, NO3

-
-

N can be dangerous to fish.  Periodically, a RAS needs to exchange its water to maintain a 

moderate NO3
-
-N concentration in RAS if a denitrification component is not included.  However, 

in the Mote IAS and in the model, it is clearly visible that NO3
-
-N is removed even though 

denitrification is not occurring in the MBBR (Figures 4-6 and 4-7).  On average, the observed 

data showed a 3% increase of NO3
-
-N through the MBBR while the model showed an increase of 

0.5%.  Reduction of NO3
-
-N in the overall system was occurring in the plant raceways, geotube 

and solids tank.   

 

 

Figure 4-6.  Influent NO3
-
-N concentration of the MBBR (W6). 
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Figure 4-7.  Effluent NO3
-
-N concentration from the MBBR (W7). 

 

4.5 South Plant Raceway 

 The south plant raceway received waste directly from the solids tank.  The model 
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average of 0.77 mg/L (Figure 4-8).  The low model output NH4
+
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raceway.  On average, the NH4
+
-N removal efficiency based on the observed data was 79% while 

the model predicted 51% removal. 
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Figure 4-8.  Effluent NH4
+
-N concentration from the south plant raceway (W2). 
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Figure 4-9.  Effluent NO3
-
-N concentration from the south plant raceway (W2). 
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Like the solids tank, the model was unable to produce the high NH4
+
-N concentrations observed 

in the sand filter.  The sand filter was not modeled for physical, biological and chemical 

processes, creating lower model NH4
+
-N concentrations than what was observed.   

 The NO3
-
-N concentration on 17 May 2011 in the north plant raceway was also high.  

The observed sand filter NO3
-
-N concentration was three times lower than the north plant 

raceway (Boxman, 2013).  Similar to the south plant raceway on that same sample day, plant 

trays could have been moved and sediments removed from underneath the plant trays, creating 

an environment not suitable for denitrification. 

 

 

Figure 4-10.  Effluent NH4
+
-N concentration from the north plant raceway (W3). 
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Figure 4-11.  Effluent NO3
-
-N concentration from the north plant raceway (W3). 

 

4.7 Fate of Nitrogen 

 From the model, the sand filter-north plant raceway combo removed the most nitrogen of 

the three solid treatment processes (Figure 4-12).  Denitrification was the major nitrogen removal 

process in the south and north plant raceways, accounting for 59.0% and 54.6% of the nitrogen 

removal respectively (Figure 4-13).  This was most likely due to the fact that NO3
-
-N was the 

form of nitrogen present at the highest concentration in the system and that DO and bioavailable 

COD concentrations provided favorable conditions for denitrifying bacteria.  Plant and soil 

uptake represented only 0.20% in both plant raceways and sedimentation only 0.1%.  Of the 

nitrogen remaining in both plant raceways, NO3
-
-N was the largest and NH4

+
-N was the smallest. 
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Figure 4-12.  Comparison between the solids tank, south plant raceway, sand filter and north 

plant raceway combo and the geotube with respect to the four different nitrogen species.   

 

 

Figure 4-13.  Fate of nitrogen comparing the south and north plant raceway.  
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Only a few studies have been performed on the nitrogen mass balance involving 

constructed wetlands (Kadlec and Wallace, 2009).  In Orlando, Florida, a free water surface 

constructed wetland was used to polish treated municipal wastewater (Kadlec and Wallace, 

2009).  It was estimated that 52% of the nitrogen was removed by gasification, 30% remained in 

the effluent and 18% was stored as either biomass or sediments.  The authors used the term 

gasification to describe all nitrogen transformation processes that turn nitrogen into a gas form, 

including denitrification, volatilization and anammox.  In Tanazania, Australia, a horizontal 

subsurface flow wetland was constructed to treat a primary facultative pond effluent located at a 

university (Kadlec and Wallace, 2009).  It was estimated that gasification accounted for 48.8% 

of the nitrogen while 46.4% remained in the effluent and 4.8% was stored in the system (Kadlec 

and Wallace, 2009).  The Mote IAS model showed that 41% and 45% of the nitrogen remained 

in the water from the south and north plant raceways, respectively.  This is similar to the Orlando 

and Tanazania constructed wetlands.  However, the Mote IAS model had a higher percentage of 

denitrification than the Orlando and Tanazania constructed wetlands at 59% and 55% while the 

plant and soil accumulation was much lower at 0.3%.   

Kadlec and Wallace (2009) describe nitrification as the main transformation for NH4
+
-N 

in constructed wetlands.  Nitrification represented 60% of the south plant raceway 

transformations and 71% of the north plant raceway.  Hydrolysis was larger in the south plant 

raceway than the north as expected.  The north plant raceway had a sand filter where most of the 

hydrolysis would occur as PON is captured.   
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4.8  Redesigning the Mote IAS 

 If the feeding rate and initial nitrogen concentrations remain the same, then it’s possible 

to have different outcomes if the Mote IAS was redesigned.  Two options were explored; (1) an 

option where the entire flow from the solids tank enters the geotube, followed by a 40.5m
2
 plant 

raceway prior to the drum filter (Figure 4-14) and (2) the geotube and sand filter components are 

removed, leaving only two parallel plant raceways with a total area of 81m
2
 (Figure 4-15).  In 

both options, the plant raceways were modeled without a sand filter.  During this study at Mote, 

the sand filter caused operational problems.  On more than one occasion, the sand filter clogged 

due to the accumulation of particulates from the solids tank.   

 

 

Figure 4-14.  Option one if the Mote IAS was redesigned where the flow from the solids tank 

entered the geotube, followed by a plant raceway before flowing back to the drum filter. 
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Figure 4-15.  Option two if the Mote IAS was redesigned where the flow from the solids tank 

was divided to two plant raceways before flowing back to the drum filter. 

 

 In option one, the geotube would act as the initial treatment process while the plant 

raceway would act as a polishing step.  The overall TN removal from the geotube and south plant 

raceway combined was 74% compared with 57% under the original system.  The nitrogen 

removal processes for option one is shown in Figure 4-16.  The option one geotube maintained 

an average TN removal of 37% compared to 38% under the original system.  Denitrification is 

still the main removal mechanism in the plant raceway, followed by plants and sedimentation.  In 

option two, the two plant raceways are the only treatment processes for the solids tank.  The 

nitrogen removal processes for option two is in Figure 4-17.  Under this option, the overall TN 

removal was 60%, similar to the original system’s removal of 57%.  Again, denitrification is the 

main nitrogen removal mechanism with plants, soil and sedimentation contributed very little to 

the removal process. 
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Figure 4-16.  The nitrogen removal processes if option one is implemented. 

 

 

Figure 4-17.  The nitrogen removal process if option two is implemented. 
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If a commercial developer wanted to duplicate the Mote IAS, option two would be the 

best choice.  Although option one has a higher removal efficiency, it would also have a higher 

cost due to the purchase and maintenance of a geotube.  The original system would be less 

effective and would also require the geotube.  Option two requires no geotube and increases the 

amount of plant production compared to option one.  Even though there is little difference 

between the removal efficiencies of option two and the original system, the overall cost of option 

two would be lower with no geotube. 
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CHAPTER 5: CONCLUSION 

 

 An IAS is a potential solution for some of the environmental impacts associated with 

aquaculture.  By incorporating an agriculture component to aquaculture, the solids waste can be 

used as a fertilizer for producing a plant crop.  The Mote IAS produced market size Florida 

pompano and various plants for wetland restoration while at the same time effectively treating 

the recirculating water.  By including an agriculture component, the overall profitability for the 

system increases. 

 The first objective of this study was to develop, calibrate and evaluate a marine IAS 

model of the fate of nitrogen in the Mote IAS.  A conceptual model was constructed by 

examining the nitrogen cycle and determining which processes applied to each stage of the 

system.  The MBBR and south and north plant raceways were modeled using physical, biological 

and chemical processes while the solids tank, sand filter and geotube were not.  It was not 

feasible to obtain internal samples of the sand filter and geotube to determine what processes 

were occurring inside.  The model calibration involved experimental, literature and calibrated 

parameters.  Using the sum of the squared residuals, the model was calibrated by adjusting the 

parameters until the model’s output was a best fit to the observed data.  A sensitivity analysis 

was performed and also used the sum of the squared residuals to determine which parameters 

caused large variations in the model output.  Of all the parameters, the denitrifier constant (k2) 

caused the most variation in the model output.  The denitrifier constant involved the maximum 
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specific growth rate, yield coefficient and half saturation constant for denitrifiers.  The denitrifier 

fraction of VSS was another parameter that the model output was sensitive to.  The model was 

not sensitive to the plant uptake preference factors because of the minor role plants have in 

nitrogen removal.   Overall, the model predicted within one standard deviation of the observed 

mean for all physical stages except for the sand filter. 

 Of the nitrogen removal processes in the plant raceways, denitrification was the largest, 

accounting for 59% and 55% in the south and north plant raceways respectively.  About 41% to 

45% of the nitrogen remained in the water, similar to other nitrogen mass balances involving 

constructed wetlands.  Of the NH4
+
-N processes, nitrification was the largest, accounting for 

64% and 71% in the south and north plant raceways respectively.   

 The last objective was to determine other treatment designs if the Mote IAS was 

redesigned.  Two options were explored.  The first option contained a geotube and one plant 

raceway in series as the treatment system while the second option explored using two plant 

raceways in parallel without a geotube.  The first option had a better overall removal efficiency 

compared to the second, but would cost more with the geotube.  The second option would also 

produce more plants since it had twice the area for plant growth.   

 Further research should be involved in the investigation of the solids tank, sand filter and 

geotube.  Those stages were not modeled for their physical, chemical and biological processes.  

Additional, further research should investigate the microbial parameters such as the maximum 

specific growth rates or the half saturation constants used in constructed wetlands.   
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Appendix A – List of Symbols 

θ Arrhenius constant (unitless) 

 

  Biofilm constant involving the NH4
+
-N diffusion constant, the length of the biofilm and 

the reaction rate (unitless) 

 

  Surface area per volume of the media in the MBBR (m
2
/m

3
) 

    NH4
+
-N concentration in the solids tank (mg/L) 

    DON concentration in the solids tank (mg/L) 

    NO3
-
-N concentration in the solids tank (mg/L) 

    PON concentration in the solids tank (mg/L) 

    NH4
+
-N concentration in the south plant raceway (mg/L) 

    DON concentration in the south plant raceway (mg/L) 

    NO3
-
-N concentration in the south plant raceway (mg/L) 

    PON concentration in the south plant raceway (mg/L) 

    NH4
+
-N concentration in the north plant raceway (mg/L) 

    DON concentration in the north plant raceway (mg/L) 

    NO3
-
-N concentration in the north plant raceway (mg/L) 

    PON concentration in the north plant raceway (mg/L) 

    NH4
+
-N concentration in the geotube (mg/L) 

    DON concentration in the geotube (mg/L) 

    NO3
-
-N concentration in the geotube (mg/L) 

    PON concentration in the geotube (mg/L) 

    NH4
+
-N concentration in the sand filter (mg/L) 

    DON concentration in the sand filter (mg/L) 

    NO3
-
-N concentration in the sand filter (mg/L) 
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Appendix A (Continued) 

    PON concentration in the sand filter (mg/L) 

    Liquid phase NH4
+
-N concentration in the MBBR (mg/L) 

    NH4
+
-N concentration in the MBBR (mg/L) 

    DON concentration in the MBBR (mg/L) 

    NO3
-
-N concentration in the MBBR (mg/L) 

    PON concentration in the MBBR (mg/L) 

    NH4
+
-N concentration in the fish tanks (mg/L) 

    DON concentration in the fish tanks (mg/L) 

    NO3
-
-N concentration in the fish tanks (mg/L) 

    PON concentration in the fish tanks (mg/L) 

    NH4
+
-N concentration in the drum filter (mg/L) 

    DON concentration in the drum filter (mg/L) 

    NO3
-
-N concentration in the drum filter (mg/L) 

    PON concentration in the drum filter (mg/L) 

     NH4
+
-N concentration in the solids tank (mg/L) 

     DON concentration in the solids tank (mg/L) 

     NO3
-
-N concentration in the solids tank (mg/L) 

     PON concentration in the solids tank (mg/L) 

     COD concentration in the plant raceway (mg/L) 

    DO concentration in the plant raceway (mg/L) 

      Concentration of salt in the plant raceway (mg/L) 

D Day (day) 
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Appendix A (Continued) 

    Fraction of the NH4
+
-N removed by the geotube 

    Fraction of the DON removed by the geotube 

    Fraction of the NO3
-
-N removed by the geotube  

    Fraction of the PON removed by the geotube 

    Fraction of the PON removed by the sand filter  

    Fraction of the NO3
-
-N removed by the sand filter 

     Fraction of the drum filter’s NH4
+
-N entering the MBBR 

     Fraction of the drum filter’s DON entering the MBBR 

     Fraction of the drum filter’s NO3
-
-N entering the MBBR 

     Fraction of the drum filter’s PON entering the MBBR 

   Fraction of feed in the fish tank converted to NH4
+
-N 

     Fraction of PON in the plant soil 

   Fraction of feed in the fish tank converted to DON 

    Fraction of NO3
-
-N that was denitrified in the solids tank 

    Fraction of NH4
+
-N nitrified in the fish tank 

   Fraction of feed in the fish tank converted to PON 

     Fraction of PON found in the sediments 

    Fraction of TN concentration take up by plants in the plant raceway 

   Thickness of the biofilm in the MBBR (m) 

      First order nitrification rate coefficient in the MBBR (1/day) 

    First order rate for ammonification (1/day) 

    First order nitrification rate in the plant raceway (1/day) 
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Appendix A (Continued) 

     First order rate for hydrolysis (1/day) 

     Half saturation constant for COD (mg/L) 

    Half saturation constant for denitrifiers (mg/L) 

    Half saturation constant for DO (mg/L) 

    Half saturation constant for nitrifiers (mg/L) 

N Liquid phase NH4
+
-N flux to the biofilm (mg/m

2
*day) 

   Preference factor of plant uptake for NH4
+
-N 

   Preference factor of plant uptake for NO3
-
-N 

   Flow through the solids tank (L/day) 

   Flow through the south plant raceway, north plant raceway or geotube (L/day) 

   Flow through the MBBR or fish tanks (L/day) 

    Flow through the drum filter (L/day) 

     Rate of PON accumulation in the soil of the plant raceway (mg/L*day) 

    Rate of denitrification in the plant raceway (mg/L*day)  

      Rate of feed added to the fish tanks (mg/L*day) 

     Rate of hydrolysis (mg/L*day)  

      Rate of nitrification in the MBBR (mg/L*day)   

    Rate of mineralization (mg/L*day)  

    Rate of nitrification in the plant raceway (mg/L*day)  

     Rate of PON sedimentation (mg/L*day)  

     Rate of plant uptake of NH4
+
-N (mg/L*day)  

     Rate of plant uptake of NO3
-
-N (mg/L*day)  
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Appendix A (Continued) 

  Water temperature (
o
C) 

   Average water temperature of the plant raceway (
o
C) 

   Amplitude of sine wave (
o
C) 

   Period of sine wave (day) 

    Max specific growth rate for denitrifiers (1/day) 

    Max specific growth rate for nitrifiers (1/day) 

    Volume of the fish tanks (L) 

    Volume of the geotube (L) 

    Volume of the MBBR (L) 

    Volume of the plant raceway (L) 

    Volume of the sand filter (L) 

    Volume of the solids tanks (L) 

    Active biomass for denitrifiers (mg/L) 

    Active biomass for nitrifiers (mg/L) 

    Yield coefficient for denitrifiers (g biomass/g NO3
-
-N) 

    Yield coefficient for nitrifiers (g biomass/g NH4
+
-N) 
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Appendix B – List of Assumptions 

 The following is a list of assumptions for each physical stage of the Mote IAS.  A more 

detailed description of each stage can be found in Chapter 3. 

 

B.1 Fish Tank 

 1. Nitrogen in feed is only in the protein. 

 2. Nitrogen concentration from fish excretion was constant due to feeding schedule. 

3. Of the 100% of the nitrogen in feed, 30% was retained as fish biomass, 14% was 

wasted as PON, 5.6% was wasted as DON and 50.4% was wasted as NH4
+
 (see Figure 

3-4). 

 4. PON excreted by fish is rapidly hydrolyzed to DON. 

5. 10% of NH4
+
-N is nitrified due to the aerobic conditions and presence of nitrifying 

bacteria attached to the tank surfaces. 

 

B.2 Drum Filter 

 1. Nitrogen is only transported, not transformed.   

 

B.3 Solids Tank 

1. Outflow is equally divided between the south and north plant raceways and the 

geotube. 

 2. The only processes occurring are ammonification and denitrification. 

 3. 15% of NO3
-
-N is denitrified due to the low DO concentrations. 
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Appendix B (Continued) 

B.4 MBBR 

 1. The MBBR behaves like a completely mixed flow reactor. 

 2. Nitrification is the only transformation process 

 

B.5 South and North Plant Raceways 

1. The plant raceways behaves like a constructed wetland and a completely mixed flow 

reactor. 

 2. All processes operate under first order reaction rates. 

 3. Plants uptake NH4
+
-N and NO3

-
-N. 

 4. VSS concentration was a function of the feed. 

 5. Nitrifiers and denitrifiers were a function of the VSS concentration. 

 

B.6 Sand Filter 

 1. Ammonification was the only transformation process occurring. 
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Appendix C –Equations Checked in Microsoft Excel 

 Prior to implementation in STELLA
TM

, the equations used to describe the physical, 

chemical and biological processes occurring in the plant raceways and the MBBR were 

compared to the observed data by using Microsoft Excel.  Since the both plant raceways utilized 

the same equations, only the observed data from the south plant raceway was checked.  The 

influent data used for the south plant raceway model was from the solids tank (W1) and the 

model output was compared against the observed effluent concentration from the south plant 

raceway (W2).  The model NH4
+
-N concentration remained below 1.25 mg/L while the observed 

data remained below 2.5 mg/L (Figure C-1).  The model NO3
-
-N concentration followed the 

same trends as the observed NO3
-
-N concentration, climbing for the first two data sets and then 

remaining below 2 mg/L for the rest (Figure C-2). 

 

 

Figure C-1.  Equation check of the NH4
+
-N concentration in the south plant raceway (W2) in 

Microsoft Excel.   
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Appendix C (Continued) 

 

Figure C-2.  Equation check of the NO3
-
-N concentration in the south plant raceway (W2) in 

Microsoft Excel. 

 

The observed data from the drum filter (W6) was used as the influent for the model’s 

MBBR.  The effluent from the model was compared to the observed effluent (W7).  The average 

observed effluent NH4
+
-N concentration was 0.11 mg/L while the average model effluent was 

0.10 mg/L (Figure C-3).  With respect to NO3
-
-N, the model output and the observed data were 

roughly the same (Figure C-4). 
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Appendix C (Continued) 

 

Figure C-3.  Equation check of the NH4
+
-N concentration in the MBBR in Microsoft Excel. 

 

 

Figure C-4.  Equation check of the NO3
-
-N concentration of the MBBR in Microsoft Excel. 
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Appendix D – Stella
TM

 Equations 

DO_plant_beds(t) = DO_plant_beds(t - dt) + (DO_in - DO_out) * dt 

INIT DO_plant_beds = 0 

INFLOWS: 

DO_in = DO_Sat-(0.995/0.2)*DO_salt_factor 

OUTFLOWS: 

DO_out = DO_plant_beds 

 

Drum_filter_DON(t) = Drum_filter_DON(t - dt) + (Drum_filter_DON_in -

Drum_filter_DON_out) * dt 

INIT Drum_filter_DON = 0 

INFLOWS: 

Drum_filter_DON_in = 

(DON_in_fish_tank)+(Geotube_DON_out)+(South_plant_DON_out)+(N

orth_plant_DON_out) 

OUTFLOWS: 

Drum_filter_DON_out = Drum_filter_DON 

 

Drum_filter_NH4(t) = Drum_filter_NH4(t - dt) + (Drum_filter_NH4_in - 

Drum_filter_NH4_out) * dt 

INIT Drum_filter_NH4 = 0 

INFLOWS: 

Drum_filter_NH4_in = 

(NH4_in_fish_tank)+(Geotube_NH4_out)+(South_plant_NH4_out)+(Nort

h_plant_NH4_out) 

OUTFLOWS: 

Drum_filter_NH4_out = Drum_filter_NH4 

 

Drum_filter_NO3(t) = Drum_filter_NO3(t - dt) + (Drum_filter_NO3_in - 

Drum_filter_NO3_out) * dt 

INIT Drum_filter_NO3 = 0 

INFLOWS: 

Drum_filter_NO3_in = 

(NO3_in_fish_tank)+(Geotube_NO3_out)+(South_plant_NO3_out)+(Nort

h_plant_NO3_out) 

OUTFLOWS: 

Drum_filter_NO3_out = Drum_filter_NO3 

 

Drum_filter_PON(t) = Drum_filter_PON(t - dt) + (Drum_filter_PON_in - 

Drum_filter_PON_out) * dt 

INIT Drum_filter_PON = 0 

INFLOWS: 

Drum_filter_PON_in = (PON_in_fish_tank)+(Geotube_PON_out) 

OUTFLOWS: 

Drum_filter_PON_out = Drum_filter_PON 
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Appendix D (Continued) 

Feed(t) = Feed(t - dt) + (Feed_input - Feed_wasted - Feed_consumed) * dt 

INIT Feed = 0 

INFLOWS: 

Feed_input = day_0_to_480 

OUTFLOWS: 

Feed_wasted = Feed*Percent_feed_wasted 

Feed_consumed = Feed*Percent_feed_consumed 

 

Geotube_DON(t) = Geotube_DON(t - dt) + (Geotube_DON_in - Geotube_DON_out - 

Geotube_DON_removed) * dt 

INIT Geotube_DON = 282759 

INFLOWS: 

Geotube_DON_in = Solids_tank_DON_out_2 

OUTFLOWS: 

Geotube_DON_out = Geotube_DON 

Geotube_DON_removed = Geotube_DON*Geotube_DON_removal_eff 

 

Geotube_NH4(t) = Geotube_NH4(t - dt) + (Geotube_NH4_in - Geotube_NH4_out - 

Geotube_NH4_removed) * dt 

INIT Geotube_NH4 = 319556 

INFLOWS: 

Geotube_NH4_in = Solids_tank_NH4_out_2 

OUTFLOWS: 

Geotube_NH4_out = Geotube_NH4 

Geotube_NH4_removed = Geotube_NH4*Geotube_NH4_removal_eff 

 

Geotube_NO3(t) = Geotube_NO3(t - dt) + (Geotube_NO3_in - Geotube_NO3_out - 

Geotube_NO3_removed) * dt 

INIT Geotube_NO3 = 6400367 

INFLOWS: 

Geotube_NO3_in = Solids_tank_NO3_out_2 

OUTFLOWS: 

Geotube_NO3_out = Geotube_NO3 

Geotube_NO3_removed = Geotube_NO3*Geotube_NO3_removal_eff 

 

Geotube_PON(t) = Geotube_PON(t - dt) + (Geotube_PON_in - Geotube_PON_out - 

Geotube_PON_removed) * dt 

INIT Geotube_PON = 38558 

INFLOWS: 

Geotube_PON_in = Solids_tank_PON_out_2 

OUTFLOWS: 

Geotube_PON_out = Geotube_PON 

Geotube_PON_removed = Geotube_PON*Geotube_PON_removal_eff 
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Appendix D (Continued) 

MBBR_DON(t) = MBBR_DON(t - dt) + (MBBR_DON_in - MBBR_DON_out) * dt 

INIT MBBR_DON = 10073825 

INFLOWS: 

MBBR_DON_in = DF_to_MBBR_DON_in 

OUTFLOWS: 

MBBR_DON_out = MBBR_DON 

 

MBBR_NH4(t) = MBBR_NH4(t - dt) + (MBBR_NH4_in - MBBR_NH4_out - 

MBBR_nitrification) * dt 

INIT MBBR_NH4 = 361944 

INFLOWS: 

MBBR_NH4_in = DF_to_MBBR_NH4_in 

OUTFLOWS: 

MBBR_NH4_out = MBBR_NH4 

MBBR_nitrification = 

(MBBR_first_order_reaction_constant*MBBR_NH4*MBBR_biofilm_len

gth)*MBBR_media_surface_area_per_volume*MBBR_volume 

 

MBBR_NO3(t) = MBBR_NO3(t - dt) + (MBBR_nitrification + MBBR_NO3_in - 

MBBR_NO3_out) * dt 

INIT MBBR_NO3 = 106899710 

INFLOWS: 

MBBR_nitrification = 

(MBBR_first_order_reaction_constant*MBBR_NH4*MBBR_biofilm_len

gth)*MBBR_media_surface_area_per_volume*MBBR_volume 

MBBR_NO3_in = DF_to_MBBR_NO3_in 

OUTFLOWS: 

MBBR_NO3_out = MBBR_NO3 

 

MBBR_PON(t) = MBBR_PON(t - dt) + (MBBR_PON_in - MBBR_PON_out) * dt 

INIT MBBR_PON = 1373703 

INFLOWS: 

MBBR_PON_in = DF_to_MBBR_PON_in 

OUTFLOWS: 

MBBR_PON_out = MBBR_PON 

 

North_plant_DON(t) = North_plant_DON(t - dt) + (North_plant_hydrolysis + 

North_plant_DON_in - North_plant_ammonification - North_plant_DON_out) * dt 

INIT North_plant_DON = 300321 

INFLOWS: 

North_plant_hydrolysis = 

(North_plant_rate_of_hydrolysis*North_plant_PON*(exp((-0.2)*(20-

Temperature)))) 

North_plant_DON_in = Sand_filter_DON_out 
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Appendix D (Continued) 

OUTFLOWS: 

North_plant_ammonification = (0.002*Temperature)*North_plant_DON 

North_plant_DON_out = North_plant_DON 

 

North_plant_NH4(t) = North_plant_NH4(t - dt) + (North_plant_ammonification + 

North_plant_NH4_in - North_plant_nitrification - North_plant_NH4_out - 

North_plant_NH4_plant_uptake) * dt 

INIT North_plant_NH4 = 286104 

INFLOWS: 

North_plant_ammonification = (0.002*Temperature)*North_plant_DON 

North_plant_NH4_in = Sand_filter_NH4_out 

OUTFLOWS: 

North_plant_nitrification = 

North_plant_NH4*North_plant_nitrification_DO_factor*North_plant_nitr

ification_salinity_factor*North_plant_nitrifiers_factor*Temp_factor 

North_plant_NH4_out = North_plant_NH4 

North_plant_NH4_plant_uptake = 

North_plant_NH4*North_plant_plant_uptake_factor*North_plant_prefere

nce_1 

 

North_plant_NO3(t) = North_plant_NO3(t - dt) + (North_plant_nitrification + 

North_plant_NO3_in - North_plant_NO3_out - North_plant_denitrification_1 - 

North_plant_NO3_plant_uptake) * dt 

INIT North_plant_NO3 = 977155 

INFLOWS: 

North_plant_nitrification = 

North_plant_NH4*North_plant_nitrification_DO_factor*North_plant_nitr

ification_salinity_factor*North_plant_nitrifiers_factor*Temp_factor 

North_plant_NO3_in = Sand_filter_NO3_out 

OUTFLOWS: 

North_plant_NO3_out = North_plant_NO3 

North_plant_denitrification_1 = 

North_plant_NO3*North_plant_COD_factor*North_plant_denitrification

_salinity_factor*North_plant_denitrifier_factor*Temp_factor 

North_plant_NO3_plant_uptake = 

North_plant_NO3*North_plant_plant_uptake_factor*North_plant_prefere

nce_2 

 

North_plant_PON(t) = North_plant_PON(t - dt) + (North_plant_PON_in - 

North_plant_hydrolysis - North_plant_PON_sedimentation - North_plant_PON_accumulation) * 

dt 

INIT North_plant_PON = 40935 

INFLOWS: 

North_plant_PON_in = Sand_filter_PON_out 
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Appendix D (Continued) 

OUTFLOWS: 

North_plant_hydrolysis = 

(North_plant_rate_of_hydrolysis*North_plant_PON*(exp((-0.2)*(20-

Temperature)))) 

North_plant_PON_sedimentation = 

North_plant_PON*North_plant_rate_of_sedimentation 

North_plant_PON_accumulation = 

North_plant_PON*North_plant_rate_of_accumulation 

 

Sand_filter_DON(t) = Sand_filter_DON(t - dt) + (Sand_filter_DON_in - Sand_filter_DON_out - 

Sand_filter_ammonification) * dt 

INIT Sand_filter_DON = 278885 

INFLOWS: 

Sand_filter_DON_in = Solids_tank_DON_out_2 

OUTFLOWS: 

Sand_filter_DON_out = Sand_filter_DON 

Sand_filter_ammonification = (0.002*Temperature)*Sand_filter_DON 

 

Sand_filter_NH4(t) = Sand_filter_NH4(t - dt) + (Sand_filter_NH4_in + 

Sand_filter_ammonification - Sand_filter_NH4_out) * dt 

INIT Sand_filter_NH4 = 319556 

INFLOWS: 

Sand_filter_NH4_in = Solids_tank_NH4_out_2 

Sand_filter_ammonification = (0.002*Temperature)*Sand_filter_DON 

OUTFLOWS: 

Sand_filter_NH4_out = Sand_filter_NH4 

 

Sand_filter_NO3(t) = Sand_filter_NO3(t - dt) + (Sand_filter_NO3_in - 

Sand_filter_NO3_removed - Sand_filter_NO3_out) * dt 

INIT Sand_filter_NO3 = 6400367 

INFLOWS: 

Sand_filter_NO3_in = Solids_tank_NO3_out_2 

OUTFLOWS: 

Sand_filter_NO3_removed = Sand_filter_NO3*Sand_filter_NO3_removal_eff 

Sand_filter_NO3_out = Sand_filter_NO3 

 

Sand_filter_PON(t) = Sand_filter_PON(t - dt) + (Sand_filter_PON_in - Sand_filter_PON_out - 

Sand_filter_PON_removed) * dt 

INIT Sand_filter_PON = 38030 

INFLOWS: 

Sand_filter_PON_in = Solids_tank_PON_out_2 

OUTFLOWS: 

Sand_filter_PON_out = Sand_filter_PON 

Sand_filter_PON_removed = Sand_filter_PON*Sand_filter_PON_removal_eff 
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Appendix D (Continued) 

Solids_tank_DON(t) = Solids_tank_DON(t - dt) + (Solids_tank_DON_in - 

Solids_tank_DON_out_2 - ammonification_solids_tank_NH4) * dt 

INIT Solids_tank_DON = 2371582 

INFLOWS: 

Solids_tank_DON_in = Solids_tank_DON_out 

 

OUTFLOWS: 

Solids_tank_DON_out_2 = Solids_tank_DON 

ammonification_solids_tank_NH4 = (0.002*Temperature)*Solids_tank_DON 

 

Solids_tank_NH4(t) = Solids_tank_NH4(t - dt) + (Solids_tank_NH4_in + 

ammonification_solids_tank_NH4 - Solids_tank_NH4_out_2) * dt 

INIT Solids_tank_NH4 = 319556 

INFLOWS: 

Solids_tank_NH4_in = Solids_tank_NH4_out 

ammonification_solids_tank_NH4 = (0.002*Temperature)*Solids_tank_DON 

OUTFLOWS: 

Solids_tank_NH4_out_2 = Solids_tank_NH4 

 

Solids_tank_NO3(t) = Solids_tank_NO3(t - dt) + (Solids_tank_NO3_in - 

Solids_tank_NO3_out_2 - denitrification) * dt 

INIT Solids_tank_NO3 = 6400367 

INFLOWS: 

Solids_tank_NO3_in = Solids_tank_NO3_out 

OUTFLOWS: 

Solids_tank_NO3_out_2 = Solids_tank_NO3 

denitrification = Solids_tank_NO3*solids_tank_denitrification 

 

Solids_tank_PON(t) = Solids_tank_PON(t - dt) + (Solids_tank_PON_in - 

Solids_tank_PON_out_2) * dt 

INIT Solids_tank_PON = 323518 

INFLOWS: 

Solids_tank_PON_in = Solids_tank_PON_out 

OUTFLOWS: 

Solids_tank_PON_out_2 = Solids_tank_PON 

 

South_plant_DON(t) = South_plant_DON(t - dt) + (South_plant_DON_in + 

South_plant_hydrolysis - South_plant_DON_out - South_plant_ammonification) * dt 

INIT South_plant_DON = 330604 

INFLOWS: 

South_plant_DON_in = Solids_tank_DON_out_2 

South_plant_hydrolysis = 

(South_plant_rate_of_hydrolysis*South_plant_PON*(exp((-0.2)*(20-

Temperature)))) 
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Appendix D (Continued) 

OUTFLOWS: 

South_plant_DON_out = South_plant_DON 

South_plant_ammonification = (0.002*Temperature)*South_plant_DON 

 

South_plant_NH4(t) = South_plant_NH4(t - dt) + (South_plant_NH4_in + 

South_plant_ammonification - South_plant_NH4_out - South_plant_nitrification - 

South_plant_NH4_plant_uptake) * dt 

INIT South_plant_NH4 = 319556 

INFLOWS: 

South_plant_NH4_in = Solids_tank_NH4_out_2 

South_plant_ammonification = (0.002*Temperature)*South_plant_DON 

OUTFLOWS: 

South_plant_NH4_out = South_plant_NH4 

South_plant_nitrification = 

South_plant_NH4*South_plant_nitrification_DO_factor*South_plant_nitr

ification_salinity_factor*South_plant_nitrifiers_factor*Temp_factor 

South_plant_NH4_plant_uptake = 

South_plant_NH4*South_plant_plant_uptake_factor*South_plant_prefere

nce_1 

 

South_plant_NO3(t) = South_plant_NO3(t - dt) + (South_plant_NO3_in + 

South_plant_nitrification - South_plant_NO3_out - South_plant_NO3_plant_uptake - 

South_plant_denitrification) * dt 

INIT South_plant_NO3 = 6400367 

INFLOWS: 

South_plant_NO3_in = Solids_tank_NO3_out_2 

South_plant_nitrification = 

South_plant_NH4*South_plant_nitrification_DO_factor*South_plant_nitr

ification_salinity_factor*South_plant_nitrifiers_factor*Temp_factor 

OUTFLOWS: 

South_plant_NO3_out = South_plant_NO3 

South_plant_NO3_plant_uptake = 

South_plant_NO3*South_plant_plant_uptake_factor*South_plant_prefere

nce_2 

South_plant_denitrification = 

South_plant_NO3*South_plant_denitrifcation_salinity_factor*South_plan

t_denitrification_COD_factor*South_plant_denitrifier_factor*Temp_facto

r 

 

South_plant_PON(t) = South_plant_PON(t - dt) + (South_plant_PON_in - 

South_plant_hydrolysis - South_plant_sedimentation - South_plant_accumulation) * dt 

INIT South_plant_PON = 45072 

INFLOWS: 

South_plant_PON_in = Solids_tank_PON_out_2 
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Appendix D (Continued) 

OUTFLOWS: 

South_plant_hydrolysis = 

(South_plant_rate_of_hydrolysis*South_plant_PON*(exp((-0.2)*(20-

Temperature)))) 

South_plant_sedimentation = 

South_plant_PON*South_plant_rate_of_sedimentation 

South_plant_accumulation = 

South_plant_PON*South_plant_rate_of_accumulation 

 

 

Active_biomass_for_denitrifiers = Feed_input*(10^-4.25)*0.16 

Active_biomass_for_nitrifiers = Feed_input*(10^-4.25)*0.24 

Apr_11 = 1.87*10^6 

Arr_constant = 1.02 

Aug_11 = 2.89*10^6 

COD = Feed_input*10^-4.5 

COD_half_saturation_constant = 20 

crude_protein_percent = 0.40 

day_0_to_180 = IF(TIME<90)THEN(day_0_to_90)ELSE(day_91_to_180) 

day_0_to_480 = If(TIME<180)THEN(day_0_to_180)ELSE(day_181_to_480) 

day_0_to_90 = IF(TIME<30)THEN(Nov_10)ELSE(day_31_to_90) 

day_121_to_180 = IF(TIME<150)THEN(Mar_11)ELSE(Apr_11) 

day_181_to_270 = IF(TIME<210)THEN(May_11)ELSE(day_211_to_270) 

day_181_to_360 = IF(TIME<270)THEN(day_181_to_270)ELSE(day_271_to_360) 

day_181_to_480 = IF(TIME<360)THEN(day_181_to_360)ELSE(day_361_to_480) 

day_211_to_270 = IF(TIME<240)THEN(Jun_11)ELSE(Jul_11) 

day_271_to_360 = IF(TIME<300)THEN(Aug_11)ELSE(day_301_to_360) 

day_301_to_360 = IF(TIME<330)THEN(Sep_11)ELSE(Oct_11) 

day_31_to_90 = IF(TIME<60)THEN(Dec_10)ELSE(Jan_11) 

day_361_to_420 = IF(TIME<390)THEN(Nov_11)ELSE(Dec_11) 

day_361_to_480 = IF(TIME<420)THEN(day_361_to_420)ELSE(day_421_to_480) 

day_421_to_480 = IF(TIME<450)THEN(Jan_12)ELSE(Feb_12) 

day_91_to_180 = IF(TIME<120)THEN(Feb_11)ELSE(day_121_to_180) 

Dec_10 = 9.17*10^5 

Dec_11 = 4.00*10^6 

DF_to_MBBR_DON_in = (Drum_filter_DON_out*Drum_filter_to_MBBR_percent_DON) 

DF_to_MBBR_NH4_in = Drum_filter_NH4_out*Drum_filter_to_MBBR_percent_NH4 

DF_to_MBBR_NO3_in = Drum_filter_NO3_out*Drum_filter_to_MBBR_percent_NO3 

DF_to_MBBR_PON_in = (Drum_filter_PON_out*Drum_filter_to_MBBR_percent_PON) 

Dissolved_Oxygen = 0.5 

DON_excreted = Percent_feed_wasted-PON_lost-NH4_excreted 

DON_in_fish_tank = (MBBR_DON_out)+(DON_excreted*feed_waste_as_nitrogen) 

DON_in_MBBR = 18 
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Appendix D (Continued) 

DO_factor_denitrification = 

Do_half_saturation_constant/(Dissolved_Oxygen+Do_half_saturation_constant) 

Do_half_saturation_constant = 0.7 

DO_salt_factor = 0.9 

DO_Sat = 14.652-(0.41022*Temperature)+(0.007991*(Temperature^2))-

(0.00007777*(Temperature^3)) 

Drum_filter_to_MBBR_percent_DON = 0.9 

Drum_filter_to_MBBR_percent_NH4 = 0.8 

Drum_filter_to_MBBR_percent_NO3 = 0.98 

Drum_filter_to_MBBR_percent_PON = 0.3 

Drum_filter_to_solids_tank_percent_DON = 1-Drum_filter_to_MBBR_percent_DON 

Drum_filter_to_solids_tank_percent_NH4 = 1-Drum_filter_to_MBBR_percent_NH4 

Drum_filter_to_solids_tank_percent_NO3 = 1-Drum_filter_to_MBBR_percent_NO3 

Drum_filter_to_Solids_tank_percent_PON = 1-Drum_filter_to_MBBR_percent_PON 

Feb_11 = 1.15*10^6 

Feb_12 = 1.51*10^6 

Feed_consumed_and_excreted = 1-Feed_lost_to_environment 

Feed_lost_to_environment = 0.2 

feed_waste_as_nitrogen = (crude_protein_percent*Feed_wasted)/(6.25) 

Fish_excretion_as_NH4 = 0.9 

Flow_Drum_Filter = 1815508.8 

Flow_Fish_Tank = 1683460.8 

Flow_Geotube = Flow_Solids_Tank/3 

Flow_MBBR = 1683460.8 

Flow_North_Bed = Flow_Solids_Tank/3 

Flow_Solids_Tank = 132048 

Flow_South_Bed = Flow_Solids_Tank/3 

Geotube_DON_in_as_concentration = Geotube_DON_in/Flow_Geotube 

Geotube_DON_out_as_concentration = Geotube_DON_out/Flow_Geotube 

Geotube_DON_removal_eff = 0.37 

Geotube_NH4_in_as_concentration = Geotube_NH4_in/Flow_Geotube 

Geotube_NH4_out_as_concentration = Geotube_NH4_out/Flow_Geotube 

Geotube_NH4_removal_eff = 0.40 

Geotube_NO3_in_as_concentration = Geotube_NO3_in/Flow_Geotube 

Geotube_NO3_out_as_concentration = Geotube_NO3_out/Flow_Geotube 

Geotube_NO3_removal_eff = 0.7 

Geotube_PON_in_as_concentration = Geotube_PON_in/Flow_Geotube 

Geotube_PON_out_as_concentration = Geotube_PON_out/Flow_Geotube 

Geotube_PON_removal_eff = 0.87 

Geotube_TN_in_as_concentration = 

Geotube_DON_in_as_concentration+Geotube_NH4_in_as_concentration+Geotube_NO3_in_as

_concentration+Geotube_PON_in_as_concentration 
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Appendix D (Continued) 

Geotube_TN_out_as_concetration = 

Geotube_DON_out_as_concentration+Geotube_NH4_out_as_concentration+Geotube_NO3_out

_as_concentration+Geotube_PON_out_as_concentration 

Half_saturation_constant_for_NH4 = 0.75 

Half_satuuration_constant_for_NO3 = 0.2 

Jan_11 = 1.06*10^6 

Jan_12 = 4.71*10^6 

Jul_11 = 1.75*10^6 

Jun_11 = 2.14*10^6 

Mar_11 = 1.43*10^6 

Max_specific_growth_rate_for_denitrifiers = 0.015 

Max_specific_growth_rate_for_nitrifiers = 0.01 

May_11 = 2.21*10^6 

MBBR_biofilm_length = 10^-5 

MBBR_DON_in_as_concentration = MBBR_DON_in/Flow_MBBR 

MBBR_DON_out_as_concentration = MBBR_DON_out/Flow_MBBR 

MBBR_first_order_reaction_constant = 0.5 

MBBR_media_surface_area_per_volume = 350 

MBBR_NH4_diffusion_coefficient = 0.0019 

MBBR_NH4_in_as_concentration = MBBR_NH4_in/Flow_MBBR 

MBBR_NH4_out_as_concentration = MBBR_NH4_out/Flow_MBBR 

MBBR_NO3_in_as_concentration = MBBR_NO3_in/Flow_MBBR 

MBBR_NO3_out_as_concentration = MBBR_NO3_out/Flow_MBBR 

MBBR_PON_in_as_concentration = MBBR_PON_in/Flow_MBBR 

MBBR_PON_out_as_concentration = MBBR_PON_out/Flow_MBBR 

MBBR_TN_effluent = 

MBBR_DON_out_as_concentration+MBBR_NH4_out_as_concentration+MBBR_NO3_out_as

_concentration+MBBR_PON_out_as_concentration 

MBBR_TN_influent = 

MBBR_DON_in_as_concentration+MBBR_NH4_in_as_concentration+MBBR_NO3_in_as_co

ncentration+MBBR_PON_in_as_concentration 

MBBR_volume = 72.61 

MBBR_zero_order_reaction_constant = 50 

NH4_excreted = Feed_consumed_and_excreted*Fish_excretion_as_NH4*Percent_feed_wasted 

NH4_in_fish_tank = (MBBR_NH4_out)+(NH4_excreted*feed_waste_as_nitrogen)-

(Passive_nitrification*MBBR_NH4_out) 

NH4_in_MBBR = 0.2 

NO3_in_fish_tank = (MBBR_NO3_out)+(Passive_nitrification*MBBR_NH4_out) 

NO3_in_MBBR = 27.9 

North_plant_COD_factor = COD/(COD+COD_half_saturation_constant) 

North_plant_denitrification_salinity_factor = (15200)/(Salinity+15200) 

North_plant_denitrifier_factor = 

(Active_biomass_for_denitrifiers*Max_specific_growth_rate_for_denitrifiers)/(Yield_coefficien

t_for_denitrifiers*Half_satuuration_constant_for_NO3) 
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Appendix D (Continued) 

North_plant_DO_half_saturation_constant = 0.7 

North_plant_nitrification_DO_factor = 

DO_out/(DO_out+North_plant_DO_half_saturation_constant) 

North_plant_nitrification_salinity_factor = (14200)/(Salinity+14200) 

North_plant_nitrifiers_factor = 

(Max_specific_growth_rate_for_nitrifiers*Active_biomass_for_nitrifiers)/(Half_saturation_cons

tant_for_NH4*Yield_coefficient_for_nitrifiers) 

North_plant_plant_uptake_factor = 0.0210 

North_plant_preference_1 = 0.75 

North_plant_preference_2 = 1-North_plant_preference_1 

North_plant_rate_of_accumulation = 0.00754 

North_plant_rate_of_hydrolysis = 0.06 

North_plant_rate_of_sedimentation = 0.01 

North_Plant_TN_effluent = 

NP_DON_out_as_concen+NP_NH4_out_as_concen+NP_NO3_out_as_concen 

North_Plant_TN_influent = 

NP_DON_in_as_concen+NP_NH4_in_as_concen+NP_NO3_in_as_concen+NP_PON_in_as_co

ncen 

North_plant_volume = 6370 

Nov_10 = 7.75*10^5 

Nov_11 = 2.38*10^6 

NP_DON_in_as_concen = North_plant_DON_in/Flow_North_Bed 

NP_DON_out_as_concen = North_plant_DON_out/Flow_North_Bed 

NP_NH4_in_as_concen = North_plant_NH4_in/Flow_North_Bed 

NP_NH4_out_as_concen = North_plant_NH4_out/Flow_North_Bed 

NP_NO3_in_as_concen = North_plant_NO3_in/Flow_North_Bed 

NP_NO3_out_as_concen = North_plant_NO3_out/Flow_North_Bed 

NP_PON_in_as_concen = North_plant_PON_in/Flow_North_Bed 

Oct_11 = 3.43*10^6 

Passive_nitrification = 0.1 

Percent_feed_consumed = 0.30 

Percent_feed_wasted = 1-Percent_feed_consumed 

PON_in_fish_tank = (MBBR_PON_out)+(PON_lost*feed_waste_as_nitrogen) 

PON_in_MBBR = 1.44 

PON_lost = Feed_lost_to_environment*Percent_feed_wasted 

Salinity = 18000 

Sand_filter_NO3_removal_eff = 0.8 

Sand_filter_PON_removal_eff = 0.85 

Sep_11 = 2.84*10^6 

SF_DON_out_as_concen = Sand_filter_DON_out/Flow_North_Bed 

SF_NH4_out_as_concen = Sand_filter_NH4_out/Flow_North_Bed 

SF_NO3_out_as_concen = Sand_filter_NO3_out/Flow_North_Bed 

SF_PON_out_as_concen = Sand_filter_PON_out/Flow_North_Bed 
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Appendix D (Continued) 

SF_TN_out_as_concen = 

SF_DON_out_as_concen+SF_NH4_out_as_concen+SF_NO3_out_as_concen+SF_PON_out_as

_concen 

solids_tank_denitrification = 0.13 

Solids_tank_DON_out = 

((Drum_filter_DON_out*Drum_filter_to_solids_tank_percent_DON)/3) 

Solids_tank_NH4_out = (Drum_filter_NH4_out*Drum_filter_to_solids_tank_percent_NH4/3) 

Solids_tank_NO3_out = Drum_filter_NO3_out*Drum_filter_to_solids_tank_percent_NO3*(1-

solids_tank_denitrification) 

Solids_tank_PON_out = (Drum_filter_PON_out*Drum_filter_to_Solids_tank_percent_PON)/3 

South_plant_denitrifcation_salinity_factor = (15200)/(Salinity+15200) 

South_plant_denitrification_COD_factor = COD/(COD+COD_half_saturation_constant) 

South_plant_denitrifier_factor = 

(Max_specific_growth_rate_for_denitrifiers*Active_biomass_for_denitrifiers)/(Half_satuuration

_constant_for_NO3*Yield_coefficient_for_denitrifiers) 

South_plant_DO_half_saturation_constant = 0.7 

South_plant_nitrification_DO_factor = 

DO_out/(DO_out+South_plant_DO_half_saturation_constant) 

South_plant_nitrification_salinity_factor = (14200)/(Salinity+14200) 

South_plant_nitrifiers_factor = 

(Max_specific_growth_rate_for_nitrifiers*Active_biomass_for_nitrifiers)/(Half_saturation_cons

tant_for_NH4*Yield_coefficient_for_nitrifiers) 

South_plant_plant_uptake_factor = 0.0212 

South_plant_PON_in_as_concen = South_plant_PON_in/Flow_South_Bed 

South_plant_preference_1 = 0.75 

South_plant_preference_2 = 1-South_plant_preference_1 

South_plant_rate_of_accumulation = 0.0093 

South_plant_rate_of_hydrolysis = 0.06 

South_plant_rate_of_sedimentation = 0.01 

South_plant_volume = 6370 

SP_DON_in_as_concen = South_plant_DON_in/Flow_South_Bed 

SP_DON_out_as_concen = South_plant_DON_out/Flow_South_Bed 

SP_NH4_in_as_concen = South_plant_NH4_in/Flow_South_Bed 

SP_NH4_out_as_concen = South_plant_NH4_out/Flow_South_Bed 

SP_NO3_in_as_concen = South_plant_NO3_in/Flow_South_Bed 

SP_NO3_out_as_concern = South_plant_NO3_out/Flow_South_Bed 

SP_TN_effluent = 

SP_DON_out_as_concen+SP_NH4_out_as_concen+SP_NO3_out_as_concern 

SP_TN_influent = 

South_plant_PON_in_as_concen+SP_DON_in_as_concen+SP_NH4_in_as_concen+SP_NO3_i

n_as_concen 

ST_DON_concen = Flow_Solids_Tank/Solids_tank_DON_out_2 

ST_NH4_concen = Flow_Solids_Tank/Solids_tank_NH4_out_2 

ST_NO3_concen = Flow_Solids_Tank/Solids_tank_NO3_out_2 
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Appendix D (Continued) 

ST_PON_concen = Flow_Solids_Tank/Solids_tank_PON_out_2 

Temperature = SINWAVE(7.95,365)+23.35 

Temp_factor = Arr_constant^(Temperature-20) 

VSS = Feed_input*10^-4.25 

Yield_coefficient_for_denitrifiers =  0.25 

Yield_coefficient_for_nitrifiers = 0.1 
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