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Symmetry has weaved itself into almost all fabrics of science, as well as in arts,

and has left an indelible imprint on our everyday lives. And, in the same manner, it

has pervaded a wide range of areas of computer science, especially computer vision

area, and a copious amount of literature has been produced to seek an algorithmic

way to identify symmetry in digital data.

Notwithstanding decades of endeavor and attempt to have an efficient system

that can locate and recover symmetry embedded in real-world images, it is still

challenging to fully automate such tasks while maintaining a high level of efficiency.

The subject of this thesis is symmetry of imaged objects. Symmetry is one of

the non-accidental features of shapes and has long been (maybe mistakenly) spec-

ulated as a pre-attentive feature, which improves recognition of quickly presented

objects and reconstruction of shapes from incomplete set of measurements. While

symmetry is known to provide rich and useful geometric cues to computer vision, it

has been barely used as a principal feature for applications because figuring out how

to represent and recognize symmetries embedded in objects is a singularly difficult



task, both for computer vision and for perceptual psychology.

The three main problems addressed in the dissertation are: (i) finding approxi-

mate symmetry by identifying the most prominent axis of symmetry out of an entire

region, (ii) locating bilaterally symmetrical areas from a scene, and (iii) automating

the process of symmetry recovery by solving the problems mentioned above.

Perfect symmetries are rare in the extreme in natural images and symmetry

perception in humans allows for qualification so that symmetry can be graduated

based on the degree of structural deformation or replacement error. There have been

many approaches to detect approximate symmetry by searching an optimal solution

in a form of an exhaustive exploration of the parameter space or surmising the cen-

ter of mass. The algorithm set out in this thesis circumvents the computationally

intensive operations by using geometric constraints of symmetric images, and as-

sumes no prerequisite knowledge of the barycenter. The results from an extensive

set of evaluation experiments on metrics for symmetry distance and a comparison

of the performance between the method presented in this thesis and the state of the

art approach are demonstrated as well.

Many biological vision systems employ a special computational strategy to

locate regions of interest based on local image cues while viewing a compound visual

scene. The method taken in this thesis is a bottom-up approach that causes the

observer favors stimuli based on their saliency, and creates a feature map contingent

on symmetry. With the help of summed area tables, the time complexity of the

proposed algorithm is linear in the size of the image. The distinguished regions are

then delivered to the algorithm described above to uncover approximate symmetry.
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Chapter 1

Introduction

Science is based on symmetry. The three main ingredients of science, i.e.,

reproducibility, predictability, and reduction, are all symmetries [186]1. To build

the scientific veracity of a claim, the results can be replicated at different times

and locations (reproducibility), the possible outcome can be expressed in advance

to formulate laws on the phenomena examined (predictability), and last but not

least, the produced results should be unaffected by and independent of the possible

changes in the rest of the universe(reduction).

The goal of this chapter is providing a brief précis on the general understanding

of symmetry from various perspectives ranging from art and physics to biology and

human psychology. While this chapter certainly will not cover all the empirical or

theoretical issues on symmetry, it will provide enough insight into the perceptual

underpinnings of the proposed model.

1.1 Definition of Symmetry

Numerous entities in the world, both natural and man-made, are strongly con-

strained by symmetry. Symmetry is all-pervasive [58, 62, 86, 119, 139, 237], and

comprehended in a loose sense, i.e., besides geometric symmetries, everyone has

1There are four other forms it manifests itself in science, Rosen claims. Symmetry of evolution,
symmetry of states, gauge symmetry and symmetry at quantum theory.
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(a) The star HD 44179 (b) Colloidal clusters

Figure 1.1: Symmetry as big as nebula to as small as colloidal clusters.
1.1(a) The star HD 44179 surrounded by a structure known as the Red
Rectangle. The images of it in visible and near infrared light show a
highly symmetric nebula. The nebula is approximately 2,300 light years
distant from Earth. 1.1(b) Highly symmetric colloidal clusters. Scale
bar, 1 µm.[141]

their own idea of what symmetry means. It can be an instance in mathematical

programming that should be removed from a problem to reduce the computation

times of enumerative algorithms for the given optimization problem [115], or a rela-

tion between a boson and a corresponding fermion with the same mass and internal

quantum numbers but differ by half a unit of spin. Musicians may consider it as one

of the fundamental principles that has a huge importance in music in tandem with

contrast [100], someone finds it from the positions and movements involved in T’ai

Chi Chuan, the Chinese martial art [74], or a child prodigy just says “Symmetry is

what we see at a glance”2. It is also construed as an equivalence between decidabil-

ity and verifiability in the complexity class P, and the lack thereof in the class NP.

It delivers an important parameter in physical and chemical processes[5] and is an

important criterion in medical diagnosis[142].

2In the Pensées. Blaise Pascal. 1660.
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Irrespective of various opinions as to what it means to be symmetric, there

is one common characteristic shared by most people: invariance. Like in physics

symmetry means invariance. It is immune to possible changes or transformation

that could perturb observational activity, measurement. For this reason there should

be an operation (transformation) you can do on something and after you do the

operation on it, still some aspects of it remain the same [186]. As an illustrative

instance, here is a phrase: “rats live on no evil star”, and you read it backward.

You do the operation (reading in the reverse direction) on a phrase and yet it reads

the same, then we call the phrase symmetric under reading in the reverse direction.

Phrases with this type of bilateral symmetry are dubbed palindromes.

Formally, if S ∈ Rn, a symmetry of S is an isometry f (a transformation

that preserves all pairwise distances between metric spaces, e.g., the rotation of

a plane) with the property that f(S) = S. There are only four mathematically

well-defined primitive symmetry types in 2D Euclidean space (Figure 1.2): Reflec-

tion (f(x, y) = f(−x, y))3, Rotation (f (x, y) = f

(
r cos

(
2π

n

)
, r sin

(
2π

n

))
, r =√

x2 + y2), Translation (f(x, y) = f(x+ Mx, y+ My)), and Glide reflection (f(x, y) =

f(−x, y+ My))[118].

3A more rigorous geometrical definition is given at http://mathworld.wolfram.com/Reflection.html.
Given a vector v in Euclidean space Rn, the reflection in the hyperplane orthogonal to a is given
by

Refa(v) = v − 2
v · a
a · a

a
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(a) Refletive Symmetry (b) Rotational Symmetry

(c) Translational Symmetry (d) Glide reflective Symmetry

Figure 1.2: Primitive geometrical symmetries in 2D Euclidean space.
1.2(a): also called bilateral symmetry and has one or more axes of sym-
metry, 1.2(b): the center of rotation is the only invariant point, 1.2(c): in
fact, the figure also contains glide reflection in shape space, 1.2(d): the
composition of two glide reflections commensurates with a translational
symmetry.
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(a) Taj Mahal (b) Mumtaz Mahal

Figure 1.3: Taj Mahal facing the long reflecting pool and Mumtaz Mahal.
Taj Mahal was constructed by her husband as her final resting place.

1.2 Symmetry in Art

Symmetry, and especially bilateral symmetry, is said to be aesthetically linked

to our emotional sensibility and credited with beauty[238]. The Taj Mahal (Figure

1.3(a)), one of the world’s most amazing jewel of traditional architecture renowned

for its natural beauty, is a mausoleum and the incarnation of symmetry4. Even the

pool of water in front of the building reflects the symmetrical features of structure

on its stationary surface. When his beloved wife (Figure 1.3(b).) died during the

birth of their 14th child, the grief-stricken husband, Emperor Shah Jahan, decided

to build her a tomb, so that she can rest in its perfection and beauty: symmetry.

It is, in point of fact, hard to think of any architectural tradition without

symmetry. Aesthetic value of an object is the satisfaction we can get from its beauty

4Yet there are flaws, albeit not critical, in the symmetry in the placement of the two coffins
and slightly tilted minarets.
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Figure 1.4: Isometric transformations in musical space. Adapted from
[75]

and symmetry is regarded to form a canon of beauty in art as in nature [155].

The symmetry does not have to be visual or spatial: a fugue begins with the

exposition and the subject that is introduced at the beginning will recur throughout

the fugue, repeating the theme at the same time interval (Figure 1.4).

Although symmetry seems to provide stable and attractive sensation towards

the whole structure, it also conveys inflexible platitude that makes it less appealing

than more dynamic and unforeseeable charm of asymmetry. Even Immanuel Kant

agreed that mathematical regularity is “inherently repugnant to taste” 5. When the

underlying symmetry is evident, asymmetry can evoke feelings of excitement and

curiosity, so many painters in the Italian Renaissance chose to use it [139].

1.3 Alan Turing and Symmetry

In the last paper before his committing suicide in 1952 [216], Alan Turing ush-

ered in the first applications of computer modeling in developmental biology and

tried to find out how the symmetric morphology of a spatially homogeneous mass

5“All stiff regularity (such as borders on mathematical regularity) is inherently repugnant to
taste, in that the contemplation of it affords us no lasting entertainment.” in “Kant’s Critiques:
The Critique of Pure Reason, The Critique of Practical Reason, The Critique of Judgment”
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of identical cells could be broken (Symmetry breaking) by reactants, called mor-

phogens, with different diffusion rates. He considered asymmetrical patterns that

are later manifested in the anatomical structure of an organism as the result of an

array of biochemical reactions among morphogens. He claimed a small aberration

from homogeneity caused by stochastic fluctuations can be amplified and the inher-

ent symmetry of a form would be dissipated. While it had fallen short of explaining

any particular question up until recently (a natural Turing pattern was found on the

skin of an angelfish [103]), and there are no evidences to support the exact theory

as set out by him, the importance of his claim is that the loss of homogeneity could

be explained in a quantitatively rigorous way.

1.4 Symmetry and Natural Selection

Symmetry is more than obtaining aesthetic gratification from artwork; it might

be emerging from natural selection [54, 221] that decides which species survive and

which perish. The surviving predators must be very sensitive to bilateral gait asym-

metries since that trait can reveal a pathological vulnerability that can help an

attack [194].

The advent of animals with bilateral symmetry goes back more than five hun-

dred million years [198, p. 215]. It has been established that in the world of animal

mating, perfect bilateral symmetry is regarded as a sign of good health and superior

genetic quality, and asymmetry is deemed as an evidence of vulnerability to para-

sitic infection [153, 145]. Therefore, bilateral symmetry serves as a determinant of
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mate choice as well as a fitness indicator [145, 146, 117].

Symmetry also gives the conceivable fitness benefits to plants with symmet-

rical flowers, and influences their reproductive prospects. Pollinating insects have

keen sensory biases for symmetry to discern subtle differences in the petals of a

flower and prefer the most symmetric ones for good reason; the more symmetric the

blossom gets, the more nectar it yields and the better a food source it comes to for

pollinators [146]. As a result of more frequent visits from pollinators, symmetrical

plants have more favorable opportunity to be pollinated or to pollinate other flowers

than asymmetrical ones, which more often results in the fruition of a desire.

1.5 Symmetry in Physics

More often than not, symmetry, in physics, means that the laws of physics

are independent of a frame of reference in space, time, and motions of an observer.

Inherently, symmetry means conservation laws in physics. As first brought to no-

tice by Emmy Noether, there is a connection between continuous symmetries and

conservation laws [151], such as the principles of conservation of energy, and an-

gular momentum. Momentum is conserved due to the invariance under spatial

transformation (the isometry of space) and energy is conserved on account of time

translational invariance (the isometry of time). Any feature (physical property) of

the system that is invariant against certain continuous transformations is defined as

a symmetry of the system.

There is another concept of symmetry conjectured by theoretical physicists
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Figure 1.5: Every particle in the Standard Model has its “superpartner”
particle awaiting to be found. (Illustration: CERN & I.E.S de SAR)

in the 1960s that can be consistently added to the symmetries of Einsteins the-

ory: Supersymmetry (SUSY). The idea is that every type of elementary particle in

nature has one or more twins (superpartners). Fermions (matter carrier particles.

e.g., electron) have bosons (force carrier particles. e.g., photon) as superpartners,

and vice versa (Figure 1.5). SUSY makes the unification of strong, weak, and elec-

tromagnetic forces in the Minimal Supersymmetric Standard Model (MSSM), and

helps solve many problems in particle physics including the Hierarchy problem.

1.6 Approximate Symmetry and Global Information; Symmetry in

Real Life.

In the face of scientific endeavors to find symmetries, the universe obstinately

shows asymmetry at all levels, against the best efforts to make it otherwise. An

archetypal example is human faces which are generally considered as “symmetric”;

however, supplanting the left half of the image with a reflection of the right half we

obtain an image which is not the same as that obtained by replacing the left half of
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the image with the reflection of the right half.

After the lack of success of the Large Hadron Collider (LHC) to uncover su-

perpartners and extra spatial dimensions, even the SUSY is considered to be “bro-

ken” or “approximate”, and people established that the superpartners should all be

heavier than their counterparts [240]. In the visual world, loss of exact symmetry

is further enhanced; even perfectly symmetric objects loose their exact symmetry

when projected onto the image plane or the retina.

The lack of perfect symmetry defined by mathematics of group theory, and

the ability of human brain that readily perceives departures from perfect symmetry

but still gives a feeling of the exactness make the field of computational symmetry

extremely challenging.

In bridging the gap between a dichotomous definition of symmetry, to wit,

everything that is not symmetric is asymmetric, and the great flexibility of human

perception, the global information of an entire object becomes critically important

because the deviation from the idealized perfect symmetry can only reliably be

determined in conjunction with a symmetry that holds at all elements of the object

under consideration.

Scientists who aim to solve the global symmetry are facing two grave adversi-

ties due to the nature of the problem. Firstly, we need to establish a threshold value

while validating the global symmetry and the value can be an arbitrary constant

which is hard to verify its veracity; how can we tell the approximate symmetry from

asymmetry? The second is the time complexity of ascertaining the relative fitness

for each candidate; all the elements should engage in the decision process.
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1.7 Human Symmetry Perception

More than one hundred years ago, Mach attracted people by the fact that

symmetry is a salient feature and a vertical symmetry is more easily noticeable

than a horizontal symmetry [130, 56]. He also suggests that human do mental

rotation/normalization to perceive symmetry and nature seems to be predisposed

to prefer vertical symmetry by virtue of the force of gravity operating straight up

and down (Gardner [68] also claims that the perfect spherical symmetry is broken by

the vertical force of gravity). Since then there have been substantial number of nice

reviews on human symmetry perception [212, 218, 217, 219, 229]. In this section,

we focus on the bilateral symmetry that is the most salient type of symmetry [69]

out of its family of isometries (others are rotational and translational symmetries6)

and address the characteristics of human perception of symmetry ascertained by

empirical observation.

1.7.1 Symmetry and Gestalt Principles

Gestalt psychology, like behaviorism, arose as a competition to the molecular

approach of structuralism. It is founded on the idea that psychological behavior

should be considered as unified wholes rather than a mere sum of individual parts

and processes, so it clearly dissociates itself from reductionistic approaches that

break psychological phenomena down into their smallest constituent part.

The Gestaltists are inclined to think symmetry as one of the “whole properties”

6sometimes they are called repetition and centric symmetry [219]
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Figure 1.6: An example of the law of symmetry

(the other two are closure and equilibrium) that has a high level of goodness7, and

assume it as an important unit-forming factor in the perceptual grouping in human

vision. For the Gestalt psychologists, symmetry signifies not just similarity of parts,

but “the logical correctness of a part considered relative to the whole in which that

part occurs” [53].

The main claim of Gestalt psychology is the human is inclined to shape vi-

sual stimuli into perceptual groups by a set of principles. According to the law of

prägnanz, we have a tendency to reduce our experience into the simplest form with

minimum cognitive effort. If more than one of the Gestalt laws are at work, they

are either cooperating or competing. By the law of proximity, two pairs of square

and curled brackets in Figure 1.6 should be grouped together considering they are

in immediate proximity to each other. We, however, tend to detect three pairs of

symmetrical brackets, as opposed to two asymmetrical pairs and two singles as the

effect of symmetry prevails over proximity in this case. Although there actually

exists a preponderance among the Gestalt laws for grouping, it still remains unclear

if we could predict a priori which laws determine the configuration we see8.

7The goodness is a general term for detectability, discriminability and insensitivity to noise [219].
Symmetry is deemed to have a high level of goodness for the reason that it can be detected fast,
easily discriminated, and can be found in the middle of noise.

8This is the one of the reasons the Gestalt principles are criticized as rules of little more than
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1.7.2 The Role of Symmetry

Symmetry serves an important role in providing balance and form to an object

structure and its appearance. If grouped parts give rise to emergent features, e.g.,

closure and symmetry, those features can give configural superiority effects to the

whole shapes so that they become more distinguishable from the previously isolated

contours [162, 171]. Symmetry is often called a local Gestalt glue9 or perceptual glue

that connects individual parts into unified whole forms. In summary, symmetry is

a piece of information that informs which part of a pattern in a shape is related to

another part of itself. If a pattern features symmetry, symmetry imposes structure

on the pattern and groups the individual stimulus into a coherent whole, e.g., the

effect of symmetry on figure-ground segregation (Figure 1.7).

There is little doubt that symmetry is an all-pervasive property of a shape,

acts as an one-object cue that signifies the presence of a single object, holds the

attention for perceptual analysis, and the benefit of symmetry in artificial objects

is apparent as it gives balance, stability and affordance to them [212], but does it

provide any benefits for its detectors other than aesthetic enjoyment?

Other patterns are mainly used for identifying a given shape from the past

memory and the main point in question is how to represent the relevant matching-

pattern of objects in memory for the future retrieval. Symmetry perception, how-

ever, is a bit peculiar in that a memory of patterns is not necessary at all, and the

ceteris paribus [92]
9A recent study suggests symmetry detection is based on other grouping properties. Accord-

ingly, a deficit in the integration of local orientation information can lead to severely impaired
mirror symmetry detection. The Gestalt psychologists, still, suggest symmetry is a fundamental
grouping property of perceptual organization.
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Figure 1.7: Rubin’s vase: The force of symmetry on figure-Ground seg-
regation. The perceptual distinction between figure and ground depends
on how we relate borders to adjoining image regions in a scene. In this
classic example, if we associate the contrast border between the black
and white regions with the white region in the center, we perceive a
goblet-shaped figure in front of a uniform black background. If we in-
stead associate the border with the black region of the image, we perceive
juxtaposed face-shaped figures in front of a uniform white background.
Thus, we must decide which region corresponds to the closer, occluding
surface that gave rise to the border i.e., which region “owns” the border.
Reproduced from Pettijohn
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(a) (b) (c)

Figure 1.8: Figure-ground segregation does not depend on object recog-
nition. Even in scenes such as this, which contain no recognizable
objects, our visual system still demands a distinction between figure
and ground. In psychophysics experiments using stimuli such as these,
Gestalt psychologists observed that basic geometric properties of image
regions-e.g.convexity or symmetry in the shapes of the regions’ borders-
guide our impressions of figure and ground. Over 92% of people no-
tice the convex shapes as the figures and the concave ones as ground.
Whether the convex shapes are black or white does not affect the deci-
sion. Reproduced from [97].
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patterns to be compared are all presented contiguously in the same image.

1.7.3 Symmetry and Human Visual Attention

When spatial symmetry is brought into a scene, structural irregularity or com-

plexity of the view is reduced, and the field of view becomes less informative than

its asymmetric counterpart. That being so, the symmetrical view should receive

less visual exploration and achieves less attention than asymmetrical scene. Yet

we select the visual information we need in a more involved and sophisticated way

than merely looking at information entropy of an image. It is well known that

psychophysical thresholds for the shape detection would be decidedly lower when

the given shape is symmetric than asymmetric [212]. During visual exploration this

less arousal but more accessible, let alone its aesthetically pleasurable [156], feature

catches the eye. Again, the detection of symmetry and subsequent physiological

arousal seem to be mediated by global information [124].

We did not dismiss the idea that asymmetric entities could receive more visual

exploration than symmetric bodies. Actually they do [123]. Figure 1.9 exhibits eye-

movement records for symmetrical and asymmetrical shapes. Firstly, visual fixations

and fixation time increase with stimulus complexity measured by the number of sides

of the shape. It does not matter whether the shape is symmetric or not. Second, the

number of fixations and their duration are symmetry-blind, too. But the fixation

patterns for symmetrical and asymmetrical shapes are in stark contrast to each

other. Symmetrical shapes display one-sided scanning patterns, while asymmetric
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Figure 1.9: Eye-movement records for symmetrical and asymmetrical
shapes with different complexity. Adapted from [123]

ones show two-sided patterns. If our visual system finds redundant shapes while

moving eyes, there is no point in fixating those shapes.

For the purpose of this thesis, we mainly pay attention to the computational

models of attention. For an extensive survey on models of visual attention, please

refer to [60].

Since the computational power of the human brain is limited by the order of

1017 operations per second [168, 49, 71], only a small amount of visual information

can be processed and utilized. Directing more attention to a selected stimulus

leaves other visual input unattended (Winner-takes-it-all). There are two factors

that drive visual attention by influencing the selectivity: bottom-up bias and top-

down control [50]. Salient visual cues (stimulus salience) in the environment, such
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Figure 1.10: The control of bottom-up attention based on Koch and
Ullman’s hypothesis [102]. A centralized saliency map can provide an
efficient control strategy for the deployment of attention. Adapted from
[90, 91]

as bright colors, high contrast or fast motion contrasts, can introduce a bottom-

up (target-independent) bias toward the stimulus (stimulus-driven) (Figure 1.10),

while, in contrast, contextual target information derived from the requirement of a

task guides top-down control (goal-driven) [150]. (This type of attention control is

sometimes disapproved as being a failed theoretical dichotomy [7]).

In feature integration theory (FIT) [214], there are two stages of visual atten-

tion: a preattentive stage and an attentive stage. Preattentive vision functions in
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a spatially parallel manner without attentional constraints (or attentional bottle-

necks), while on the contrary attentive vision allocates attentional resources to the

limited scope of the visual field where the visual target is likely to show itself. The

finding of the existence or nonexistence of a primitive feature during visual search

tasks is known to be irrespective of the number of stimuli (usually the number of

elements in a given scene) [214]. Since the detection of primitive features takes place

preattentively, the location of attention in the visual field is of little consequence.

This dichotomy was a departure from the Gestalt theory and restricted the

preattentive stage to a single stimulus (primitive feature) dimension, e.g., size,

brightness, orientation, color, and direction of movement (later FIT had to include

a master map of locations to reconcile results that reported highly efficient con-

junction searches [149]). Detected primitive features are interacting with each other

on their own dimension prior to conscious perception. When attention is focused

at a particular location, the features in that position are attended to. During the

first stage of FIT, the features of unattended entities do not bind (this can produce

lots of false positives in the end). Therefore it is possible to detect the existence

of interesting features without exact information of the location. In other words,

the normal order of operation (attention to a location precedes identification of an

interesting object) can be broken by separation of locating a feature from detect-

ing it. FIT considers symmetry as a basic feature that can be used as a bounding

condition that limits the candidate locations for the spotlight. As a response to

the FIT, the Guided Search Model has been proposed [242]. In this model, parallel

processes use information about primitive features to guide attention in the search
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for conjunctions.

In 1985, Christof Koch and Shimon Ullman proposed a hypothesis based on

bottom-up attention of FIT [102]. They claimed the set of early representations of

individual visual features that contributes to selective attention is encoded into a

topographically oriented map called the “Saliency map”. It combines the normalized

information from the feature maps into a comprehensive measure of conspicuity.

In their hypothesis, similar to the center-surround representations, the bottom-up

saliency of a given location is computed by a difference between the primitive feature

and its surround at many different scales. The salient locations (usually the positions

of the local maxima in the map) in the “Saliency map”, accordingly, would be good

candidates for attentional selection. This selection is done by a Winner-Take-All

mechanism. Once the selection is drawn, inhibition of return mechanism10 takes

effect and the selection is shifted to the location of the next highest value in the

saliency map. This process would keep going until no interesting point is left in the

saliency map, and the trace of this selections frames the scan of the scene given. The

diagram in Figure 1.10 is based on this hypothesis that a centralized saliency map

provides an efficient control over the deployment of attention based on bottom-up

biases. The saliency map is then examined by attention. Top-down control and

training can fine-tune most stages of the bottom-up model.

10A mechanism that suppresses the last attended position in the saliency map, so that attention
can shift to the next most salient location.
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Figure 1.11: The effects of location on sensitivity of symmetry detection
in a dot pattern. (a) Near the axis of symmetry. (b) Intermediate stripes.
(c) Outermost stripes. Adapted from [212]

1.7.4 Outline versus Interior Area on Symmetry Detection

Most psychological research papers on symmetry [11, 94, 152] have dealt

mainly with dot patterns or blobs which are not typical patterns to human ob-

servers. In the test of random-dot arrays, the outline is not required and has no

effect on the decision of a symmetry axis whereas the area close to the axis of sym-

metry plays a major role in symmetry detection [11, 234]. The symmetric patterns

located between the axis of the symmetry stripe and the outermost stripes (the

intermediate stripes) are the hardest to detect (Figure 1.11).

1.7.5 Symmetry as a Preattentive Feature and Its Automatic Detec-

tion

We assume symmetry detection, just like grouping processes, is automatic,

that is, it is not involving cognitive control, for the sake of its fast detection [11, 19]

and its contribution to figure-ground segregation [10, 15, 243]. Yet is it preattentive
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(automatic processes usually depend on attention11)? Though there are supporting

results [11, 14, 122, 230] that static symmetry can be detected preattentively with

a duration12 threshold of 40 msec13 to help efficiently guide attention to relevant

objects, and consistent with specific predictions from a simple feedforward process-

ing model [61], the most recent study [37] shows its detection is not always rapid

(varied from 28–568 msec) and suggests a strong dependence on the context. Again,

symmetry detection is rapid and highly accurate on a simple stimulus, however,

attention seems to play an important part in symmetry perception [154, 233].

On initial consideration, it is surprising that symmetry is a preattentive feature

considering its perceptual complexity of relating different kinds of spatial informa-

tion (locations and angles; both cues do not belong to a single stimulus compo-

nent) around an axis. The human visual system is not able to catch much simpler

conjunctions (relating single stimulus to others) without applying proper atten-

tion [214, 213]. If symmetry detection happens in the fast and parallel preattentive

stage, it should not require a time-costly computation, i.e., through a computation-

ally intensive point-by-point comparison of visual cues across the axis.

All in all, it is plausible that symmetry is a preattentive feature that distin-

guishes one region from the other but that explicit symmetry information would

not be delivered to the higher systems without attention [154]. Accordingly, static

symmetry should be located quickly during preattentive perception in a coarsely

11there is another hypothesis objects this assertion citing inattention blindness is just inattention
amnesia or a lack of awareness; still not detectable

12time of stimulus exposure
13the maximum limit of preattentive perception is less than 160 msec.; a time period that does

not allow attentional scan by eye movements.
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(a) (b) (c)

Figure 1.12: An experiment on the orientation of symmetry. Adapted
from [247]

manner, and immediately afterward more scrutinous and detailed exploration on

that attended region would be carried out. The two-phase symmetry detection

scheme described above is the main proposition of this thesis.

1.7.6 Anisotropicity of Symmetry

Figure 1.12 shows that patterns deformed so that vertical symmetry is pre-

served (though horizontal symmetry is destroyed) are more similar to the original

than the same pattern deformed so that horizontal symmetry is maintained (vertical

symmetry is broken).

In measures of preference, symmetries along the vertical seem to have a percep-

tual advantage over other symmetries, because they are congruent with the bilateral

shape of the visual system [159, 235]. Studies on the anisotropy of symmetry failed

to show identical or consistent results, however, vertical and horizontal show strong

saliences over obliques (Figure 1.13), and this advantage might stem from retinal
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Figure 1.13: Sensitivity to symmetry as a function of the orientation.
Adapted from [212]

coordinates.

On structural grounds, nonvertical symmetries would be found only after they

are mentally aligned to the anatomical vertical [41] (A mental rotation model. See

Section 1.7.11), and response time to determine symmetry would be increased lin-

early with increasing angular displacement from gravitational vertical.

Foveation of the symmetry axis is not an essential condition for its detection,

yet detectability drops considerably with deviation from the center [191].

1.7.7 Symmetry in 3D

First, it can be argued that symmetry detection solely depends on the retinal

image, or it is affected by the perception of objects. When viewers are given ran-

domly created asymmetric 2D images, they get a bias that takes asymmetric retinal

projections as oblique views of symmetrical objects (Figure 1.14). As a result, they
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Figure 1.14: Interpreted axes of symmetry from silhouettes. Viewers
consider the polygons as silhouettes that have a near-vertical axis of
symmetry. The dotted arrows show conceptually interpreted matching
parts. (a) Near symmetric figures result in planes of symmetry perpen-
dicular to the picture plane, (b) Near asymmetric figures result in planes
of symmetry parallel to the picture plane. Adapted from [138]

universally construe the shapes as silhouettes of bilaterally symmetric 3D objects

because 3D symmetry can be a strong heuristic for limiting orientation [138].

It could be possible that human visual system selects 3D cues, determines

the 3D orientation of the shape, mentally rotates the images to the fronto-parallel

plane, and detects symmetry in it (use the mentally rotated image rather than the

retinal image) [207]. However the drops in performance observed in [223] can not

be explained by this hypothesis.

If the symmetry in the retinal image is deteriorated, its perceptual salience

is also weakened (symmetry detection is not obstructed when an image is rotated

about the x-axis but it is severely hampered by rotations about the y-axis). The data

from [223] implies the visual system analyzes the retinal projections of 3D rotated

symmetries as an integral part of 3D object perception; not as a post-normalization
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process.

1.7.8 Symmetry Effect and Asymmetry Effect

It is well known that if the deviation from exact symmetry is not too huge,

approximate symmetry can still convey the visual impression of symmetry [11]. The

mechanism of symmetry detection is not highly accurate and symmetry perception

becomes less sensitive when the location of the axis is not central [81].

The assumption of symmetry effect is that forms with high degree of symmetry

would be so exaggerated by perceivers that the forms are considered more symmet-

ric than they actually are [65]. This is a bias in detecting global symmetry and a

small local departure from global symmetry is not noticeable for cost-effective rep-

resentations of stimuli. A nearly symmetric form is found more similar to (or more

confusable with) a more symmetric pick than to a less symmetric choice: Symmetry

effect. (Figure 1.15)

The disposition to the more symmetric form prevails only in highly symmet-

ric conditions. In low symmetric conditions, an asymmetric alternative is chosen:

Asymmetry effect.

By the holographic model (Section 1.7.9.2), these effects are not induced by

an erroneous assessment of the degree of symmetry, rather by a correct estimate of

the symmetry-to-noise ratio [48].
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Figure 1.15: Tripartite comparison of a pedestal’s imperfect symmetry
(upper) with a more symmetrical object (down-left) and a less symmet-
rical object (down-right). The task is deciding which of the two targets
at bottom is more similar to the pedestal at top. Adapted from [65]

1.7.9 Representational Models of Symmetry Detection

Representational models try to detect visual regularities from stimulus ele-

ments by specifying the structures and geometric relationships between them.

1.7.9.1 Transformational Approach(TA)

TA takes symmetries as one of visual regularities that leaves its configura-

tion invariant under reflection. It claims the human visual system is sensitive to

these kinds of invariant group transformations, e.g., translation, rotation and re-

flection [158]. But TA could not explain why symmetry (reflection) is more salient

than repetition (translation).
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Figure 1.16: (a) The transformational approach (invariance under mo-
tion); it puts a block structure to symmetry (left) and repetition (mid-
dle), because the whole symmetry halves and the all duplicates are the
units associated with each other. (b) The holographic approach (in-
variance under growth); it gives a point structure to symmetry, a block
structure to repetition, and a dipole structure to Glass patterns (right),
because corresponding pairs, blocks, and dipoles are the units that can
be stretched out while preserving the regularity of the structure in them.
Adapted from [222]

1.7.9.2 Holographic Approach(HA)

HA is about goodness [219], i.e., the detectability of regularities and nested

regularities regardless of noise, and unlike TA’s invariance under motion, HA is

about invariance under growth.

According to HA, bilateral symmetries have a point structure, and repetitions

a block structure that can be used to quantify the goodness of a regularity by the

weight of evidence. (Figure 1.16)
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1.7.10 Scale Invariance

When we are trying to gauge the strength of symmetry stimuli, there are

numerous candidates: peak spatial frequency that covers the symmetry integration

region, numerosity (number of elements), element density (number of elements per

unit area), or display size. Interestingly, the results of the experiment manifest

that the spatial integration region, a place integrates information, for symmetry is

unaffected by changes in stimulus spatial frequency, numerosity, or size [178]. That

is, the amount of information garnered from a stimulus is constant against size,

number of elements and spatial frequency.

1.7.11 Template Model and Mental Rotation Model

There are 2 descriptive models of the perceptual reference frames (similar to

[40] in object perception) in the context of symmetry perception:

• Template model - There is a template for each angle of symmetry axis that

detects the symmetry in a pattern (Orientation-dependent).

• Mental rotation model - There is a single mechanism to detect symmetry and

all other reflective symmetries are detected by mentally rotating the shape to

align it’s vertical symmetry axis (Object-centered).

Several experiments were done to test these two models, however, the results are

still open to interpretation. Zabrodsky [247] claims that there is more than one

strategy for symmetry detection on the basis of conflicting results.
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1.7.12 Symmetry Detection Can Be Learned?

The controversy over whether the symmetry detection is innate or learned of-

ten gets answered with “It is somewhere in between”; Infants discriminate vertically

symmetric forms from asymmetrical ones (or horizontally symmetrical ones), which

validates sensitivity to the symmetrical pattern rather than components in the pat-

tern [63, 172]. This finding corroborates the claim that symmetry has a prevailing

position in early perceptual development over other perceptual components and that

newborns tend to perceive a pattern as a whole. Zabrodsky [247] argues symme-

try detection has some initial bases in anatomical and physiological mechanisms,

however, is fine-tuned by our experience and learning.

1.7.13 Structure-From-Motion (SfM) and Symmetry in 3D Repre-

sentation

One of the important task of the visual system is to institute a 3D represen-

tation from the visual stimuli affecting the retina. To achieve this goal, it utilizes

many depth cues including but not limited to shading, texture gradients, and mo-

tion. Out of those cues, the kinetic depth effect known as structure-from-motion

(SfM) can elicit strong volumetric perception [26].

Symmetry, a strong one-object cue, can give a structural cue to this 3D rep-

resentation because conceptual thresholds for shape detection become much lower

when the shape considered is symmetric than asymmetric [212].

A study on the relation between symmetry and SfM found that at the level of

30



Figure 1.17: Conflicting perceptual interpretations of a symmetric mo-
tion. (a) Scheme of the vertically symmetrical stimulus, (b) Interpreta-
tions of a rotating cylinder, and (c) Symmetric surfaces either crossing
or colliding each other. Adapted from [211]

surface perception the perceptual competition between the symmetric surfaces and

the rotating cylinder surface is resolved [211]. According to these results, SfM is

regarded as an interactive process, which subsumes not only motion cues but also

form cues, i.e., symmetry (Figure 1.17, 1.18, 1.19).

1.7.14 Symmetry Related Brain Parts

A functional MRI (fMRI) experiment shows robust activity of higher-order

regions of human visual cortex (areas V3A, V4, V7, and LO) associated with the
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Figure 1.18: Four possible interpretations of the motion direction of
symmetry surfaces. (a) and (b): For both crossing surfaces or colliding
surfaces, either the two surfaces rotate at fixed position (upper) or wind
toward the observer without touching physically. Adapted from [211]

Figure 1.19: Competition between grouping by motion (common fate)
and grouping by symmetry. The perceptual choice decides the depth
difference between the groups. Adapted from [211]
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visual exposure (both with and without attention control) to symmetric stimuli (Es-

pecially, V3A and LOC are known for the designated region for feature integration)

but no meaningful symmetry-specific reaction in MT/V5 (regions for surface inter-

polation) [194]. The dot (not line) stimuli might induce the lack of robust activity

in V1 and V2.

Against symmetric dot stimuli, symmetry axes manifest the same tilt-aftereffects

as luminance-defined contours [224]. Judging from these results, similar mechanisms

might support the encoding of symmetry as well as the orientation. This result is

in agreement with studies [179, 178] that indicate the concurrent processing of sym-

metry perception at various spatial scales and for different orientations, implying

that simple filters in V1 14 could be involved in symmetry perception.

1.7.15 Some Interesting Factoids

There are some interesting factoids based on evolutionary theory about the

relationships between symmetry and human behavior on attractiveness [227].

• Departures from symmetry mirror an individual’s inability to keep develop-

mental homeostasis [163].

• Predilection for a symmetrical mate is an evolutionary adaptation for the pos-

itive genetic effects on offspring survival not due to perceptual preference [70].

• Facial symmetry is more susceptible to environmental perturbations [70].

14Clusters of neurons in V1 and V2 respond to bars of specific orientations, or combinations
of bars in a selective manner. These orientation selective neurons in area V1 respond to a line
segment of a particular orientation in a specific visual area.
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Figure 1.20: Brain activation caused by symmetric patterns. (A), (B)
Example of the dot stimuli. (C) Brain activation in the right hemi-
sphere (posterior-lateral view), (D) The “inflated” cortex format. (E)
Symmetry-biased activation in the “flattened” cortex format, (F) Aver-
age symmetry-biased activation. Adapted from [194].
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• Men and women look more attractive when their faces and bodies are close to

symmetrical [13, 165]; the attractiveness of symmetry is cross-cultural/cross-

racial agreement [183]. However, several recent studies have shown that sym-

metry is not a principal factor in an attractiveness assessment [251] and func-

tionally asymmetrical faces can be perceived as attractive [250].

• Facial symmetry serves as a certificate of health in regard to mate poten-

tial [13].

• Higher symmetry induce greater procreative potentiality [29].

• Female breast symmetry takes part in mate choice related adaptations since

it is linked to best care for children [228]. Women with symmetrical breasts

have more children.

• Men who use breast symmetry as a cue for mate selection would gain a se-

lective advantage concerning reproductive success because breast symmetry is

hereditary and their daughters should be subjected to greater mating success

and fertility [147].

• Men with pleasing voices have broader shoulders and women with beautiful

voices have hourglass figures [88]. As symmetry grows, ratings of vocal attrac-

tiveness increase [87].

• Symmetrical men are deemed as better protectors of their mates [66].

• Symmetry is associated with cognitive ability [12].
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• Low facial asymmetry men are more likely to commit adultery [66].

• The overall symmetry can predict the lifetime number of sexual partners and

extra-pair copulations (EPCs) [208].

• Faster middle distance runners have more symmetrical ears and openings of

the nose than slower runners [131].

• Symmetrical men were considered as better dancers than asymmetrical men

and dance is a sexually selected courtship signal [27].

• Men and women with more symmetrical faces are more extroverted [174].

• Psychopathic individuals have greater symmetry than non-psychopathic indi-

viduals [180].

• Alcohol intoxication reduces detection of asymmetry, increases perceptions of

facial attractiveness [202].

• Although the outline of bilateral symmetrical dot patterns participate in sym-

metry detection, the elimination of the outline by a surrounding random-dot

figure merely diminishes the performance by a fixed measure [234].

• Monocular symmetry is neither necessary nor sufficient for bilateral symmetry

perception [236].

• The mechanisms of symmetry perception are inherently color-blind [148].
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1.8 Applications of Symmetry

1.8.1 Symmetry and Multimedia Searching

With an explosive growth in the number of digital images and videos in the

world, content-based video/image retrieval (CBIR) has been an active topic of vision

research [76, 77, 210]. Regrettably, to the best of our knowledge, up until now there

is no commercial CBIR search engines that explicitly label or search symmetric

contents. We speculate that computationally expensive algorithms of current state-

of-the-art detection methods might conjure a strong barrier that thwarts employing

symmetry constraints.

1.8.2 Robotics, Image Compression

RoboCup is an international robotics competition founded in 1997 with an

aim to promote robotics and AI research. To enable a soccer robot to navigate

a RoboCup soccer field efficiently, symmetry detection methods were employed to

gather the location information (especially the lines) of the field [82].

Theoretically, one symmetry axis can reduce the amount of information needed

to be coded by half. For example, a perfect circle can be compressed to one single

line. Symmetry can be used to increase the efficiency of medical image compres-

sion [192] (improvement of 15%), or natural image compression [160].
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1.8.3 Symmetry and Its Underutilization

Symmetry is a rich source of structural information in images. Despite its

intuitive appeal as an essential and ubiquitous concept in nature, symmetry, more

specifically global symmetry, has been underutilized in computer vision. Some re-

searches [77, 205, 210] adopted a local-symmetry-structure based approach [181, 126]

on applications where limited symmetry information on the overall shape would not

be much helpful, while a great portion of researches that can benefit from symmetry

just have disregarded it.

One of the possible causes for the underutilization is that symmetry is not the

only cue that encodes shape information through the relations between features,

besides it is obtained at relatively high expense of computational cost; the high

computational cost of symmetry detection makes it extremely unattractive to ap-

plications that involve fast merging of very large volumes of images. An incidence

relation among points and lines, for example, may also provide enough information

to describe the underlying shapes of objects. The high computational complexity

of symmetry detection arise from a global exploration of the search space, whereas

the other cues can be obtained from local information.

A mathematical representation of symmetry also casts doubts on the usefulness

of symmetry. By the mathematical definition of symmetry, it is a binary feature of

an object; an object is either symmetric or not. Yet the symmetry around us rarely

follows the strict definition of mathematics, and all sorts of errors and inaccuracies in

measurements lead to the conclusion that “everything is anything but symmetric”.
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Chapter 2

Symmetry Detection in Computational Models: Previous Approaches

2.1 Introduction

Automatic detection of symmetry embedded in digital images has long been

pursued by many scientists, yet we are still, after decades of effort, baffled by the

lack of efficient and robust algorithms applicable to a wide range of problems from

computer generated images to natural scene images. For instance, we are having

a multitude of edge or corner (both are considered as preattentive features) detec-

tors [252] or operators for edge/corner detection, e.g., Prewitt, Sobel, Kirsch, Harris

and Stephens, Laplacian of Gaussian (LoG) and difference of Gaussians (DoG),

however, the only bilateral symmetry detector whose standing is roughly commen-

surate with the reputation of those edge/corner detectors is a Generalized Symmetry

Transform (GST) [181].

In this chapter, we selectively review some of the prominent algorithms for

(mostly bilateral) symmetry detection and briefly put forward several enhanced

algorithms we developed based on the existing algorithms. A more detailed and

in-depth comparison between a qualitative approach and a quantitative method is

given in Section 3.1.
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2.2 Previous Work by Other Researchers

2.2.1 Generalized Symmetry Transform (GST)

This point of interest operator [181] is a typical isotropic symmetry detector

that extracts local symmetry based on spatial positions and gradient information.

This operator compares the gradients of two adjacent points and assigns a value to

the midpoint between them in a symmetry map. This process can be implemented

as range voting (cardinal ratings or ratings summation) or plurality voting (first-

past-the-post voting) [181, 126]. If you keep track of the voting record and double

back on the points after voting, the result would be very similar to segmentation

by symmetry (see Figure 2.22). Because the symmetry found is dependent only

on the points voted to it, this approach is less adversely affected by background

noise or other independent symmetry structures around it. The value assigned

to the midpoint location in the symmetry map is controlled by a phase function

that favors symmetrically oriented gradients. The resulting symmetry map can be

interpreted as a map of interesting points (Figure 2.1). Various modified versions of

the GST also have been suggested in 2D [113, 114, 112] and 3D applications [144].

Each list of elements in the set of point-pairs Γ(p) has a distance weight func-

40



Figure 2.1: The contribution to symmetry of the gradients at pi and pj
in [181].
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tion Dσ(i, j) and a phase weight function P (i, j) such that

Γ(p) =

{
(i, j)|pi + pj

2
= p

}
,

Dσ(i, j) =
1√
2πσ

e−
||pi−pj ||

2σ ,

P (i, j) = (1− cos(θi + θj − 2αij))(1− cos(θi − θj)),

where θi is the gradient of the intensity at point pi. The term (1−cos(θi+θj−2αij))

in the phase weight function P (i, j) implies the constraint that a line connecting a

pair of bilaterally symmetric points should be perpendicular to the axis of symmetry.

The other term (1− cos(θi− θj)) favors a pair of gradients with opposite directions

and handicaps vectors with the same direction.

With these functions, the contribution function C(i, j) of the points pi and pj

is defined as

C(i, j) = Dσ(i, j) P (i, j) ri rj,

where rk is a logarithmic function of the pixel pk’s gradient intensity,

rk = log(1 + ‖∇pk‖).

The contributions of all points features the symmetry magnitude Mσ of each point
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p such that

Mσ(p) =
∑

(i,j)∈Γ(p)

C(i, j)

that adds up the symmetry value over all orientations. The direction of the contri-

bution of the points pi and pj is specified (Figure:2.1) as

ϕ(i, j) =
θi + θj

2

The symmetry direction of the point p, φ(p), is defined as

pmaxDir = {(a, b)| arg max
(i,j)∈Γ(p)

C(i, j)},

φ(p) = ϕ(x, y),

where (x, y) = pmaxDir.

Finally, the symmetry of the point p, Sσ(p), is stated as

Sσ(p) = (Mσ(p), φ(p)).

This operator is based on a simple and straightforward algorithm and often

criticized for its high computational cost, O(n2), where n is the number of feature

points in the input scene image. The framework of this algorithm is very close

to smoothed local symmetries (SLS) [25] that provides a way of describing a 2D

shape through image gradient based local symmetries (Figure 2.2). The definition
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Figure 2.2: The geometry of local symmetries in SLS. Adapted from [25]

of local symmetry in SLS is virtually identical, a bit stricter, to the GST, they both

depend heavily on the accuracy of the tangent angle computed by Canny [30] like

edge detector, and even the time complexity of SLS, O(n2), is the same as that of

the GST because SLS also tests every contour point against every other (n is the

number of contour points).

This approach mainly deals with perfect or nearly perfect symmetry and even a

small perturbation of the image edge or image deformation by perspective distortion

can result in incorrect outcomes. Besides, each pair of points in the image votes

to a center of them, not to the best candidate for the symmetry axis; strong local

disruptions might disproportionately affect the result.

In an effort to improve the performance of the GST, several attempts have been

made to reduce the n in O(n2). Instead of random sampling of points, as in [144],

an improved version of the GST [126] takes a scale-invariant feature detector such

as SIFT [125] (pi = (xi, yi, φ, si) is a point feature contains its location, orientation

44



Figure 2.3: An improved version of the GST [126]. Adapted from [121]

and scale information) and uses its descriptor (ki is the 128-dimensional vector that

describes the appearance of the image patch) (see Figure 2.3).

The predominant orientation is retrieved from the maximum of the histogram

of gradient orientations (8 bins are used to quantize the orientations, and their

histogram values are quadratically interpolated) and the mirrored version (mi) of

its descriptor (ki) is also made. The symmetry magnitude for each matched pair

of SIFT features (Mij) is mainly decided by the phase weighting function, and

the polar coordinates of the potential axis of symmetry are pre-computed from

Cartesian coordinates. It also relaxes the constraint on the symmetry diameter to

measure a symmetry magnitude and can get much reliable information on symmetry

direction (the GST does not vote for a symmetry direction but for a midpoint)

by voting in Hough space (Figure 2.4). By virtue of the voting in (r, θ) space,

the distance between the feature points are obscured and the fixation tendencies

based on symmetry magnitude also become indistinct. Despite the fact that the

computational complexity of this method is T (n) = O(n2) as in the GST, the
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Figure 2.4: An example of detection result by the improved version of
the GST [126]. (a) Input image; (b) SIFT feature points detected; (c)
Axes of symmetries related to the reflective matches among SIFT feature
points. Mij decides the intensity in (d) Voting results on the potential
symmetry axes in Hough space; (e) Matched symmetric features linked
to the dominant symmetry axis; (f) Principal axis of symmetry and its
symmetric features that voted for the axis. Adapted from [126]

absolute number of comparisons is claimed to be significantly reduced, because n,

the number of feature points, becomes smaller.

According to a recent research study on the performance evaluation of sym-

metry detectors [161] and a result of the first symmetry detection competition [89],

the improved version of the GST [126] was found the best algorithm. We choose this

algorithm for performance-comparison of symmetry detection since it has proven to
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be the best among all the other detection methods. We also raise two important

questions about this approach:

• Are the scale-invariant features salient features for symmetry detection?

• Does this algorithm decrease the computational burden across the board?

The first question is about whether it provides necessary and sufficient infor-

mation to find an axis of symmetry. The second is about the subquadratic-time

algorithm of this approach as the dimension of the descriptor (SIFT descriptor is a

128-dimensional vector) can be an issue even with the Best-Bin-First (BBF) search

method1.

2.2.2 Radial Symmetry Detection

This approach uses either the gradient of an image [127] or curvature of cir-

cular shapes and responses of oriented filters [170] to locate points of high radial

(co-circular) symmetry. The radial symmetry is most common in flowering plants

and more constrained than bilateral symmetry. Although radial symmetry is not

considered in this thesis, we are still able to combine this algorithm with the point

of interest detector discussed later (Chapter 4).

The algorithm is quite simple and fast since it operates at a pair of equidistant

locations along the image gradient g(p) where p is a point in an image (Figure 2.5).

The radial symmetry contribution is calculated by multiplying a normalized orienta-

tion projection image On that counts the number of points that positively/negatively

1SIFT descriptors with lower dimensionality do not perform well
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Figure 2.5: A pair of locations p+ve(p) and p−ve(p) is affected by the
gradient information g(p) for a range of 2. Adapted from [127]

affects p with their gradients by a normalized magnitude projection image Mn that

accumulates the gradients that influence p. The full transformation is the sum of

the contributions made during the previous step.

The time complexity this algorithm is O(KN) for an image of N pixels with

K ×K neighborhood structure.

2.2.3 Symmetry Detection by Phase Relation

The symmetry detection of this model [157] is based on the phase relation-

ships of frequency components. Since the filter kernels are either symmetric or

antisymmetric, they encode spatial frequencies, such that if the harmonics are in

phase at zero crossing, an edge is detected and if phase congruence happens at

peaks or troughs, a line is detected. In a perfectly symmetrical patch, the model

put the pixels where frequency components are at their extrema on the axes of

48



Figure 2.6: Phase patterns at symmetric point and antisymmetric point.
Adapted from [105]

Figure 2.7: The local phase pattern would be that even-symmetric fil-
ters will respond to a symmetric point, and odd-symmetric filters to a
asymmetric point. Adapted from [105]

symmetry (Figure 2.6). More intuitively, at a symmetric point the absolute output

value of the even-symmetric filter would be large and the absolute output value of

the odd-symmetric filter would be small (Figure 2.7). Because asymmetries reduce

the phase congruency, the model has an inherent bias to perfect symmetry and

asymmetry makes axes less detectable.
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Figure 2.8: From an original shape (a), Zabrodsky et al. [249] normalize
the distances so that the maximum distance to the barycenter is 1 (b),
then applies the symmetry transform to get a symmetric shape P̂ (c).
The value of SD is the average distance from feature points in P to those
in P̂ (d). Adapted from [249]

2.2.4 Symmetry Distance

Zabrodsky et al. [248, 249] define the Symmetry Distance (SD) of a shape as

a minimum effort required to turn a given shape into a symmetric shape. SD is the

mean of the square distances each point should be moved from its location in the

original shape to its corresponding location in the symmetric shape (Figure 2.8).

During the symmetry transform of a shape P to its closest symmetric shape

P̂, the SD of a shape P (the distance between P ({P}n−1
i=0 ) and P̂) is:

SD =
1

n

n−1∑
i=0

‖Pi − P̂i‖.

In this approach, as symmetry is decided by a set of points that represents

a shape of an object, the selection of representative points could be a non-trivial
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problem. And moreover, an exhaustive search (rotating, folding and unfolding of

points) for the nearest symmetric model is not computationally efficient.

2.2.5 Symmetropy

E. Yodogawa et al. [246] proposed a new quantity “symmetropy” based on

Shannon entropy that gauges the combined symmetry and entropy of a given con-

stellation or shape in the spatial domain. The measured quantity is the convolved

projection value between the shape and the spatial distribution of units that cap-

tures symmetry of distributions as well as the spatial distribution. The definition

of symmetropy utilizes a two-dimensional Walsh transformation.

The Walsh function (Figure 2.9) calculates projections into four principal

classes of symmetries (vertical, horizontal, centro-symmetric, and double symme-

try). Then Shannon’s formula is applied and if the value of a symmetry component

in the fracturing pattern is significantly higher than the others (i.e., the symmetropy

value is low when the symmetric pattern is present), the pattern is rich in the cor-

responding symmetry.

The main use of entropy was restricted to checking the uniformity of the filter

output in their approach, and symmetry of a pattern was quantified not by entropy-

related measures but by a two-dimensional discrete Walsh transform.
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Figure 2.9: 2D discrete Walsh basis functions to detect four different
kinds of symmetries. Black represents +1 and white -1. Adapted
from [246]. [244] also contains a similar figure with a bigger window
size.
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2.2.6 Using Entropy for Similarity Measure

Measuring image similarity using entropy related divergence measures is popu-

lar for the image quality inspection [51], informative feature selection [209], texture

retrieval [107] and image registration [128]. Most applications have accepted the

idea of measuring image similarity between the marginal distributions of measur-

able feature sets; it is a fact that embracing entropy related divergence measures

will be sufficiently applicable to the problems of symmetry finding.

2.2.7 The Symmetric Axis Transform (AKA Medial Axis Transform)

In terms of shape classification and description, the symmetric (or medial)

axis is a set of points (centers of all maximal disks2) that are medial between the

boundaries (Figure 2.10). The contours acquired from those points locally approxi-

mate an axis of reflection. In Figure 2.10, the symmetric axis forks at branch points

and falls short of completely delineating the global symmetry of the given shape.

The symmetric axis transform [22] is a process that encodes a visual shape by

giving it a pair of particular descriptions, namely the symmetric axis and the radii

of disks (more precisely, radius function of position on the axis).

The serious flaw of the symmetric axis transform is its sensitivity to the details

of boundary that small changes in boundary cause severe shifts in the symmetric

axis (Figure 2.11). As a result of this sensitivity, two very similar shapes deliver

two significantly different symmetric axes, and consequently the matching distance

2A maximal disk is a circular primitive entirely contained within the object boundaries but not
enclosed by any other disk
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Figure 2.10: A set of maximal disks in shapes and the corresponding
symmetric axis. Adapted from [167].

Figure 2.11: Sensitivity to noise in the boundary.

between the two axes becomes disproportionately large relative to the actual dis-

crepancies between these otherwise similar shapes.

2.2.8 Medial Points by Superpixel Segmentation

The term superpixel [182] means a perceptually meaningful set of pixels that

belongs to an atomic region which can replace the traditional pixel-grid. Levinshtein

et al. [110] merge adjacent medial points of superpixels into a skeletal branch by

54



their symmetry affinity. The symmetry affinity between two adjacent superpixels is

learned from shape (a fitted ellipse) components and appearance (color) components.

Strictly speaking, this method is more about grouping by symmetry than detecting

symmetry.

2.2.9 Spectral Symmetry Detection

To assess the relative similarity among all data points in an image, spectral

clustering methods take advantage of the spectrum (a set of eigenvalues) of the

similarity matrix to partition a dataset of points into clusters. The Normalized

Cuts algorithm [200] is the most notable technique for this operation.

Seeing that a symmetrical shape bears pairs of similar local structures em-

bedded in an image (a representation of self-similarity), the discovery of the self-

alignment of points in the image can provide critical information regarding potential

symmetry axes. Because the local features are not usually reflectionally-invariant, a

reflected copy of the features [36] or a histogram of some feature value occurring in

a window around a location [215] is employed for generating the affinity matrix; and

afterward we can solve for the generalized eigenvectors [3] and find correspondences

between the features [195, 18, 109].

2.2.10 Digital Papercutting

Symmetry can be used in an art of decorative paper cutting as it can provide

folding lines that spawn various patterns. The digital papercutting algorithm [120]
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is a typical example of an exhaustive search algorithm that probes every possible

candidate of symmetry axis, characterized by (r, θ), to locate bilateral symmetry.

This algorithm reflects the image across the given candidate axis, and then tallies the

symmetry score by adding up the angle similarity (the cosine of the angle) between

corresponding edges. The axis with the highest score would be the folding line or

the axis of symmetry.

2.3 Our Different Approaches: Mainly Based on the Previous Work

2.3.1 Barycenter Assumption in a System

It is not clear whether a configural cue of symmetry is a necessary component

of the segregation process, or the process can proceed without contributions from

the cue thereof. With the parallel interactive model [129] that proposed mutually

facilitatory connections between symmetry and area processes, we can reduce the

problem space to segmented images.

If the domain of the problem is a set of single symmetric objects, there has to

be a very simple and fast algorithm to find axes of symmetry. The main idea is that

symmetric balance is created through an equilibrium between individual weights of

components.

If a segmented image represents a single symmetric object, we can easily iden-

tify a point in the Euclidean space that an axis of symmetry passes through.

R =

∑
mi · ri∑
mi

,
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Figure 2.12: Orthogonal angles can shift the average angle.

where R is a barycenter, ri is a position of a particle i and mi is its mass.

A caveat of this approach is the orthogonality of the competing symmetry

axes (Figure 2.12.) which shifts the barycenter to the sum of two symmetric-axes

vectors. An expedient solution for this symptom is averaging the angles without

the orthogonal angles and compute the differences between the orthogonal angles

and average angles. Then the affected average angle pushes the difference to a lower

value and generates local minima (Algorithm 1).

Algorithm 1 Find Axes of Symmetry from a segmented image

Read Image.
Compute edges and their gradients/Orientations from the image.
Find barycenter from the edges.
for all Angle i such that 0 ≤ i ≤ π do

Value(i) = abs(averagej 6=i(angle(j)) - i);
end for
Find local minima from Value

Figure 2.13 shows the detection results of the barycenter based algorithm with

various single object images. The result clearly shows most of prevailing local sym-
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metries of the image tested. Though some tested images are not perfectly symmetric,

this algorithm still can produce results very close to the actual symmetry axes.

The search of symmetry becomes more difficult whenever the image contains

noise or is perspectively distorted. The striking drawback of this approach is absence

of robustness to noise and local perturbation as in Figure 2.14. For this reason, this

algorithm can be used when well-segmented single object images are presented or

you need approximate locations of the symmetry axes for the more elaborate and

sophisticate algorithms that require far more computational time.

As described in Algorithm 1, this approach has a computational complexity

of max(O(n), O(g2
a)), where n is the total number of pixels in the input image and

ga is the angular granularity in Algorithm 1.

2.3.2 The Line-Based Symmetry Detection (LBS) Algorithm

If a scene contains more than one object or significant amount of noise, the

näıve barycenter based method is doomed to fail. To choose the elements that shares

the same axis of symmetry, an algorithm called a “voting scheme” has long been

used. Eq. 3.2 serves as the symmetry measure in [126, 181] by voting to the line Lc.

By tallying up the voting results, the local symmetries of the image emerge and each

local maximum can be used as a candidate symmetry for an object in the image.

In this section, a method based on lines, a more sophisticated version of line-

based voting algorithm that links edges into lines in a preprocessing step, is explained

in detail. Considering that a surprisingly large number of man-made objects around
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Figure 2.13: Detection results of barycenter approach (Success). The
blue lines signify all the local minima found by the algorithm
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Figure 2.14: Detection results of Barycenter approach. (Erroneous de-
tections)

our environments have line pairs which are symmetric to each other with respect to

axes of symmetries, we can easily identify the symmetries embedded in objects via a

plain line matching scheme. Another advantage of using lines instead of all the pixels

in an image is that one can remove the assumption of consistent color and achieve

drastic speedups in detection time, empirically subquadratic time complexity.

The line-based symmetry detection (LBS) algorithm evaluates the symmetry

between two lines by coupling a phase angle and the lengths of line segments. In this

algorithm, all lines (or all points in Hough space) in an image are voting to determine

the symmetry of the given image. Granted this algorithm has the appearance of

a global approach - videlicet, all lines (or all points in Hough space) in an image

contribute to determine the symmetry of the entire image -, it can be easily converted

to the look of a local approach by a line-distance weight function.

Indeed, the LBS algorithm is a local approach in that the image features that

decide the symmetry are a subset of the entire image. In that event we can not
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entirely be sure the symmetry we found embodies a global symmetry. This method

is very similar to [126] in that the voting for axes of symmetries happens in Hough

space, but in place of SIFT descriptor environment, a contiguous set of points (line)

is partaking the voting process. Besides, the LBS does not exclude non-extreme

feature points in the scale space so that the algorithm is robust against missing

feature points.

The LBS is a feature based approach, in which the locations of the visually

salient features in an image are identified and common patterns of them conduce

to more effective representation of the image. The main disadvantage of this ap-

proach is its sensitivity to measurement errors. In order to counter this unfavorable

characteristic, a region based approach is proposed so that symmetry detection is

more dependent on processing the overall shape of the object given, rather than the

constituent parts of it.

2.3.2.1 Motivation

Image processing and psychophysical joint research has shown that line draw-

ings are indeed much more informative than the edges extracted from photographs [193].

This result motivated us to think that a few lines on an image could supply enough

information to recover symmetry. Unlike the silhouette boundaries which might

compromise the capability of symmetry identification by missing crucial internal

features, the LBS does not let these features get ignored.

Over the past decades, researchers in computer vision have explored a number
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of aspects of symmetry to generate symbolic representations of shape and many al-

gorithms have been developed for computing symmetries, particularly reflectional,

of shapes. Understanding how to represent and recognize symmetries embedded

in objects has, however, proven to be a remarkably difficult task, both for com-

puter vision and for perceptual psychology. To our best knowledge, the algorithms

developed either have high-complexity or provide limited information of shapes.

A symmetry detection algorithm introduced here is based on the line compo-

nents in an image. This algorithm does not assume uniform object color, texture

or lighting conditions, and does not rely on any specific a priori object model or

assumption.

2.3.2.2 The Closest Study

The GST mentioned in Section 2.2.1 extracts local symmetry by an attention

operator based on locations and gradient directions of edge points to produce a

symmetry map. The GST decides the symmetry between two points by coupling

a distance weight function, phase weight function, and logarithmic function of the

gradient magnitudes for these two points. A symmetry map of this transform is

interpreted as a map of interesting points in the image.

The algorithm presented here is somewhat similar to the GST, except an input

image is reorganize into a set of lines in preference to edge orientations.
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2.3.2.3 The LBS Using Hough Transform

The most peculiar aspect of the approach is, unlike previous voting schemes,

we test pairs of lines in the given image for the decision of the symmetry axis. Since

each line corresponds to a point in Hough space, a point with maximal votes is

selected as the primary symmetry axis. It is known that normal voting schemes

give rise to high computational complexity, and this approach can alleviate the

computational burden associated with this shortcoming, because the number of

possible pairs involved in the voting is limited. According to the Hough Transform,

each line in image space corresponds to a point in Hough space and vise versa:

therefore, the voting result is not the point of interest but the line of interest.

By Hough transform, we can carry out some feature-extraction procedures in a

different parameter space other than the usual image space. Mostly we parameterize

the lines in the Hough transform with two parameters, commonly referred to as r

and θ that represent the distance between the line and the origin, and the angle of

the vector from the origin to the closest point on the line respectively. The (r, θ)

plane is called as Hough space for the set of straight lines in two dimensions.

2.3.2.4 Algorithm Description

The original images are first preprocessed by an appropriate edge filter. We

tried the Canny and the Sobel edge-detection operators for this part and the Canny

detector showed better performance.

From the binary edge image at the previous step, we make lists of connected
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edge points by linking the edges. In this step, we also removed edges shorter than

certain length as a process of noise rejection. The minimum edge length of interest

depends on the size of the image and the distribution of edge lengths.

Using the lists of connected edge points, we derive straight line segments

through a subsampling of its corresponding edge list such that straight line seg-

ments between these subsampled points do not deviate from the original points by

more than the predefined maximum deviation.

Given 2 lines, l = (a, b, c)T and l′ = (a′, b′, c′)T , the vector x = l × l′ , where

‘×’ means the cross product, is the intersection of two lines l and l′. It is trivial to

find a line that bisects the angle between the two lines if we already have l, l′ and

its intersection point. The average of the two unit-vectors yields the midpoint of

the base of the isosceles triangle the two unit-vectors make and it is a bisector. If

we use the r − θ parameterization for lines found (i.e., r = x · cosθ + y · sinθ), we

can easily find polar coordinates (r, θ) in the Hough space (Figure 2.15).

Let H be a function that takes two lines with homogeneous representation and

returns polar coordinates (r, θ) of the line that bisects the angle between them. The

set of points CL(r, θ) can have a line-length contribution function LL(r, θ) as

CL(r, θ) = {(i, j)|H(li, lj) = (r, θ)} ,

LL(r, θ) =
∑

(i,j)∈CL(r,θ)

(‖li‖+ ‖lj‖). (2.1)

Alternatively the term (‖li‖+ ‖lj‖) can be modified to (‖li‖ · ‖lj‖) · cos(αij/2),
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Figure 2.15: Hough Transform of lines to points (From Euclidean
space(Left) to Hough space(Right))
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where αij is the angle between two lines, li and lj, if you want to exclude some edges

perpendicular to the axis of symmetry concerned.

The LL(r, θ) definition above shows that the algorithm can deal with the case

of occlusion by the repetition of adding.

To find axes of symmetry, we just choose the maximum values from 2D space

of LL(r, θ).

lsymm = H−1(arg max
(r,θ)

LL(r, θ)) (2.2)

2.3.2.5 Psychological Validation:

Up until now, a number of computational models for symmetry detection

have been proposed to model the human visual system. The idea of the line based

approach fits well into two stage model. Palmer et al. [159] suggest that symmetry

is detected in two stages and the first stage is a fast and global analysis to choose a

potential axis of symmetry by considering all the possible orientations of axis at the

same time. Consequently, the first stage should be a global symmetry detection. In

the wake of this stage, an explicit comparison of the two halves of the stimuli for

more elaborate symmetry detection is performed.
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2.3.2.6 Interpretation of the LBS: Centroid in Hough Space?

One of the prominent global approaches is based on moments. The moment

of a 2D shape is described as

Mpq =

∫ ∞
−∞

∫ ∞
−∞

xpyqI(x, y)dxdy , (2.3)

where I(x, y) is 1 at the inside of a shape and 0 otherwise. The central moment

µpq is defined as

µpq =

∫ ∞
−∞

(x− x̄)p(y − ȳ)qI(x, y)dxdy , (2.4)

where x̄ = M10

M00
and ȳ = M01

M00
are the coordinates that represent the center of

mass of the shape.

In the LBS, the axis of symmetry is not the centroid C: a weighted system

of points such that
∑m

i=1wi
−→
C pi 6= 0 in Hough space, where pi is a point that

corresponds to a line in Euclidean space. The Figure 2.15 is somewhat misleading

because the “midpoint-angle bisector” relationship holds only between the lines with

the same slope as in the figure. Eq. 3.3 reveals the genuine symmetry constraints

between two lines defined by the angle bisector.

2.3.2.7 Results of Experiment

A symmetry line map produced by the LBS algorithm is presented in Fig-

ure 2.16. Figure 2.16 shows the detection result of our line based algorithm with

an image from [161]. The result shows a clear peak that represents an axis of sym-
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Figure 2.16: A symmetry map of an image.

Figure 2.17: A symmetry map of a cup.
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metry of the image tested. Figure 2.17, however, shows a case that fails to detect a

desirable symmetry axis because the line components of the handle disrupt a global

symmetry structure. Clearly, when the local symmetric assumption is forced on an

locally asymmetric objects, the inference would be incorrect. The error that stems

from local line features can be corrected by global symmetry detection algorithms.

2.3.2.8 Performance Comparison

The GST [181] has a computational complexity of O(n2), where n is the total

number of pixels in the input image. Hough transform algorithm using mid-point

pairs [245] has a complexity of O(n4
edge), where nedge means the number of edge

pixels. A real time symmetry detection algorithm [114] claims a complexity of

O(BINSθ × n2
edge), where BINSθ is the number of Hough angle division.

The LBS approach performs symmetry detection by line-pairs of an image.

All the line component pairs participate voting operations to decide axes of sym-

metry, and the algorithm requires O(n2
line) time complexity, where nline represents

the number of line components in the image. Though there is no rigorous basis to

establish the relationship between the number of edges and that of lines in an image,

in our experiment a line contains roughly 60 edge-pixels.

2.3.2.9 Applications of the LBS

Finding Areas of Interest: When we look at a scene, we concentrate on certain

points more than others because people process visual information selectively. Those
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areas that contains more interesting information than others are called areas of

interest.

Consider a black and white image consists of N pixels in it. The total number

of distinct pictures with N pixels are 2N . The total number of distinct symmetry

axes we can draw in the image is less than NC2 and for each symmetry axis we can

have at most 2N/2 symmetric pictures.

Then the probability of observing symmetric image from the random permu-

tation of the pixel is less than N(N−1)

2N/2
and if N = 104, the probability becomes

10−1500.

Therefore, if you detect a symmetry in an image, it is either a result of in-

finitesimal chance or a proof of existence of a symmetric object.

In Figure 2.18, two tree like structures in the front and a building structure

in the back are detected when we choose the second and the third best axes of

symmetries. This is due to the voting scheme that nicely subsumes local symmetries.

In Chapter 4, the issue of finding AoIs is investigated more thoroughly.

Object Alignment for Shape Matching: If we describe features of an object

relative to the object itself, changes in viewpoint reshape the appearance of the ob-

ject, yet they do not severely alter the position of a given feature relative to others

in the object (objects can normally be assumed to be rigid). The most renowned

example of an object-centered theory was proposed by Marr and Nishihara [134].

They proposed that an object’s features are described relative to its axis of elon-

gation or the axis of symmetry. Provided that an observer can capture those axes
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Figure 2.18: Symmetry detection results of trees and buildings (lines of
interest).

for a given object, a canonical description of that object is framed and a single

viewpoint-independent representation is built in visual memory for the recognition

from all viewpoints.

It is trivial to rotate the image to align once we know the value of θ. This ca-

pability is especially useful for object classification or shape matching. For example,

in shape matching and object recognition using shape contexts [16], rotation invari-

ance is pretty hard to achieve because many points do not have reliable tangents

for the relative frame. Therefore the primary symmetry axis of the object can be a

good absolute frame for computing the shape context at each point (Figure 2.19).

Shape Recovery: Sometimes, if necessary, a continuous symmetric contour can

be recovered by line segments on the two sides of symmetric objects. The evidence of

a single line pair is reliable only if the local features around the lines are thoroughly
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Figure 2.19: Shape Context with image alignment by symmetry detec-
tion. The numbers represent the matching scores.

reflected by the mirror transformation. If a line couldn’t find its counterpart, yet

its local geometric features surrounding it are mirrored by the symmetry axis, we

can assume the matched pair is occluded or reduced to a useless line segment due

to line-detection error. Shape recovery from occlusion and occlusion detection can

be done by reconstructing the matched line pairs.

Contrary to this approach, there is a research that suggests symmetry does

not play an important role in image segmentation and symmetry is important to

the visual system only after the region is fixated [72].

Segmentation Using Areas of Interest (AoI) of an Image: In order to

analyze an enormous amount of information involved in vision tasks under plausible

time and space constraints, a vision system has to curtail redundant information by
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Figure 2.20: Object segmentation using symmetric areas.

directing its computational resources toward interesting areas [6] (also refer Section

1.7.3). Attention is shifted by fixating the eyes on these areas. A set of those areas

serves as a guide for shifting the attention (or eyes) to fixation points in it.

Figure 2.20 shows the areas of interest distinguished by the LBS algorithm.

Interestingly, the areas spotted by the detector were overlapped with the foreground

object in the image. This finding justifies the use of symmetry as a salient cue that

directs visual attention [127].

The pixel information from areas of interest is able to provide a more natural

way to encode color features as segmentation cues. Then the foreground segmen-

tation is obtained from local pixel similarities using iterated graph-cuts [24] (Fig-

ure 2.21). The results show a clear refinement against a näıve approach that assumes

objects are around the center of the image.
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Figure 2.21: Comparison of results on foreground segmentation.

Segmentation by Retracing the Voting: When we keep track of the voting

history, the group of edges or lines voted for the same candidate could provide a

nice segmentation information. Figure 2.22 shows the results of backtracking from

each local maximum of voting space.

2.3.3 Recovering Axes of Symmetry from Perspectively Distorted Im-

ages

The symmetry of an image is hard to detect. One reason is that real objects

often are not perfectly symmetric and a small amount of perturbation may signif-

icantly affect the detection of symmetry. Even if an object is perfectly symmetric

in 3D, its 2D image under perspective projection might not be. Lighting variations

only serve to aggravate the situation.
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(a) Axes of symmetry found (b) Results of backtracking from the axes of
symmetry recovered.

Figure 2.22: Segmentation by retracing the voting result.

We proposed a method on computing bilateral symmetries of planar objects

under perspective distortion. By exploiting the invariance of the cross ratio under

perspectivities, we analytically compute a set of midpoints of the object as a function

of the vanishing point. Then, we fit a straight line passing through the midpoints.

The goodness-of-fit defines the likelihood of this line to be a symmetry axis. Using

the proposed method, searching for the symmetry axis becomes searching for a

vanishing point. This approach is global in the sense that we consider the whole

image of the object rather than small parts of it. The results will show that the

method presented here is capable of finding axes of symmetry from considerably

distorted perspective images. See A.1 for the details of this method.
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2.3.4 The Trace Transform Based Symmetry Detection (TTS) Algo-

rithm

The trace transform [95, 96], a generalized Radon transform, traces an image

with straight lines along with certain functionals of the image function. More specif-

ically, for an arbitrary function ρ(x, y), its trace transform, denoted as T{ρ(x, y)},

or simply P (p, φ), calculates the trace functional T of the image function ρ(x, y)

along a line (ray) L, criss-crossing its domain.

P (p, φ) = T (ρ(x, y)), (2.5)

where the path L is defined by

x · cosφ+ y · sinφ = p, (2.6)

where the parameters are φ, the orientation of the line, and p, the length of

the normal from the axes origin, that characterize each line. It can be noted that

the function ρ(x, y) is not restricted to binary values such as 0 for the outside of a

shape and 1 for the inside. It can be the intensity value of image pixel signals or

the result of Laplacian operator.

Since we want to have a symmetry measure, We defined a new trace transform
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T (ρ(x, y)) as

T (ρ(x, y)) =

‖
∫ ∞
−∞

sin(
rπ

2R
)ρ(r)dr −

∫ ∞
0

cos(
rπ

2R
)ρ(r)dr +

∫ 0

−∞
cos(

rπ

2R
)ρ(r)dr ‖ , (2.7)

where r = x−c, R = max(||r||) where ρ(r) 6= 0, and and c = medianx{x, ρ(x, y)}.

Then along the column of the trace transform, the diametric function P , the

integration of trace transform, is done.

The time complexity of this algorithm is defined by O(kn), where n is the

total number of pixels in the image and k is the number of angles tested (usually,

k ≤ 180).

2.3.4.1 View Point Selection and the Next-Action Decision for Active

3D Object Recognition.

The rationale for this approach is that when a 3D symmetric object is projected

onto a 2D plane, it can take 2 forms of symmetry: parallel symmetry or/and skew

symmetry. We claim that under the assumption of a flat object, for pairs of segment

points which are possibly skew symmetric at a given skew angle, the trace transform

T for the strip area made by these points through midpoints by the skew angle will

give similar values on the symmetry trace transform (Eq. 2.7) unless the object is

heavily concave or (a) hidden surface(s) of the object begin(s) to be captured by

the camera of a robot. Accordingly, it is safe to say that in a small range of angles,
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Figure 2.23: Measurement and estimation of symmetry degree.

the degree of symmetry predicted/measured by the trace transform (Eq. 2.7) of the

flat symmetric object is reliable. Figure 2.23 supports this claim.

For all the claims we made in the prior paragraph assumed a bird’s-eye view

of a flat object. If an image captured is a side-view of an object, we can choose a

better viewpoint by moving to the direction of the vanishing point that is obtained

from A.1. The speed of movement can be constrained by

v =
∇l
∇t

= k · 1

dv
, (2.8)

where k is a constant value and dv is the distance between the center of the

image captured and the vanishing point recovered.

78



Obviously the schemes above may not work well with non-flat 3D objects.

Likewise, the poses of non-flat 3D images in a database are difficult to decide.

2.3.5 Robust Global Symmetry Detection By Entropy Measures

2.3.5.1 Psychological Motivation

All previous approaches are based on the assumption that symmetric balance

is generated through an equilibrium between individual elements. However, Mc-

Manus et al. [140] found that eliminating 10 ∼ 30 % from one end of the balanced

picture makes “chopped” pictures that are also considered to be balanced. Mc-

Manus et al. concluded that balance depends on an integration of the image as a

unified whole, rather than on a simplistic adjustment of individual elements.

2.3.5.2 Computational Motivation

Measuring image similarity in the presence of noise is very fundamental and

essential for a number of computer vision applications: object recognition, image

search from database and video surveillance. The most prevalent types of measure-

ment used to detect image similarity are mean squared error (MSE), cross correlation

(CC) and peak signal-to-noise ratio (PSNR) and it has been shown that these mea-

sures lack the ability to attain reliable image similarity across distortion types [232].

In this section we introduce the concept of entropy as a measure of symmetry.

Since entropy is tightly coupled with probability, it also can serve as a measure

of symmetry that quantifies symmetries of objects in the world. This measure will
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enable us to compare the degree of symmetry of different shapes as well as the degree

of different symmetries in a single shape. As long as the domain has a probabilistic

model, it can be applied universally.

2.3.5.3 Entropy and Symmetry

Entropy has been considered as an indispensable quantity that measures the

amount of disorder or randomness in a system holding energy or information. The

definition of the information entropy H(X) devised by von Neumann [226] and

Claude Shannon [197] is normally given as

H(X) = −
n∑
i=1

(p(xi) logb p(xi)), (2.9)

where p(xi) is the discrete probability of the ith microstate, n is the number

of microstates and b represents the base-b logarithm.

Now we turn to a measure that quantitatively compares the similarity between

two distributions. The entropy of a random variable is a measure of the amount of

information required on the average to describe it.

The joint entropy H(X, Y ) of a pair of discrete random variables (X, Y ) with

a joint distribution p(x, y) is defined as

H(X, Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) logb p(x, y). (2.10)

Finally, the mutual information I(X;Y ) that measures the amount of infor-

mation that one random variable X contains about another random variable Y is
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stated as follows:

I(X;Y ) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
. (2.11)

If the two distributions p and q of the random variablesX and Y are sufficiently

similar to each other, the joint entropy H(X, Y ) and the mutual information I(X;Y )

approximate to H(X) (or H(Y )). To eliminate the terms of joint/conditional prob-

ability, the relative entropy D(p‖q) is devised.

The relative entropy D(p‖q) is a measure of the inefficiency of inferring that

the distribution is q when the true distribution is p. If we create a code with

average description length H(p), and use it for a distribution q, we should have

H(p) +D(p‖q) bits on the average to describe the random variable q. The relative

entropy or Kullback-Leibler distance between two probability mass function provides

such a measure.

In brief, if p(x, y) and q(x, y) of the random variables X and Y correspond to

the half images of the same symmetric object in the scene, it is surmised that the

minimum of the relative entropy D(p‖q) is achieved when we dissociate one from

the other. Finding symmetry is then interpreted as the process of uncovering the

partition that increase the mutual information between the separated parts.

2.3.5.4 Divergence Measures Based on Entropy

In this section, we principally employ 2D reflective symmetry as an example

of applying the concept of entropy to some important vision problems. The axis of
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symmetry cleaves the 2D Euclidean plane into two parts and the degree of symmetry

is usually involved in comparisons between two adjacent feature sets across the axis.

If the probability distributions of features in each half-plane are similar to each

other, by our definition, the degree of symmetry between the sets is set to high.

The simplest non-symmetric measure of the difference between two probability

distributions P and Q of a discrete random variable is the Kullback-Leibler measure

[106] of Q from P, also known as the measure of cross-entropy, defined as

DKLI (P,Q) =
n∑
j=1

P (j) log
P (j)

Q(j)
(2.12)

with the convention that, whenever Q(j) is 0, P (j) is set to 0 and 0 log 0
0

= 0.

It is well known that DKLI (P,Q) is non-negative, additive and not symmetric [106].

It is zero, if and only if P = Q.

Since the Kullback-Leibler measure is not symmetric, we need to symmetrize

the divergence [93] as

DKLJ (P,Q) = DKLI (P,Q) +DKLI (Q,R). (2.13)

Eq. 2.13 means during the symmetry measurement, either P or Q serves as

the a priori (true) distribution and the other one acts as a unknown distribution,

and vice versa.
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We also adopt the Jensen-Shannon divergence [116] described as

DJS(P,Q) =
1

2
DKLI (P,M) +

1

2
DKLI (Q,M), (2.14)

where M is the average of the two distributions,

M =
1

2
(P +Q). (2.15)

We assumed whenever Q(j) is 0, P (j) is set to 0, and 0 log 0
0

= 0 when

DKLI (P,Q) is calculated. This rule removes the case that DKLI (P,Q) is unde-

fined if Q(j) = 0 and P (j) 6= 0 for any j, however, ignores the difference between

P (j) and Q(j) too. DJS(P,Q) does not occasion this problem and has several other

desirable properties - i.e., non-negativity and boundedness [116].

We select DKLI (P,Q) in Eq. 2.13 and DJS(P,Q) in Eq. 2.14 as divergence

measures to estimate the “closeness” between two probability distributions of feature

sets bisected by the axis of symmetry.

2.3.5.5 Results of Experiment

In this section, we illustrate our entropy scheme on several examples. We want

to emphasize that the features used were the same for all examples. It is pointless

to compare pixel-values to angles of line segments. The choices were determined by

the performance of the algorithm used.

The approach specified below is contingent on the statistical information of
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the lines in an image. A line represents a set of points that share the same gradient

vector defined by an ordered pair of (∂f(x,y)
∂x

, ∂f(x,y)
∂y

). The orientation of the gradient

vector for every image pixel also can be defined as φ = arctan( ∂y
∂x

). In that we

parameterize the points in the image into a different parameter space r and θ, it is

identical to the Hough transform in that the parameter r represents the distance

between the line and the origin, while θ is the angle of the tangential vector of this

point.

The orientation of the global symmetry axis is the collective representation of

the tangential lines’ orientations in the image. A single orientational-constraint the

axis of global symmetry has is (a more accurate and complete description of the

algorithm is given in Chapter 3):

ϕ =
θi + θj

2
, (2.16)

where θi and θj mean the orientations of two corresponding lines and ϕ is the

orientation of symmetry respectively.

Then the problem of finding symmetry angles, or image alignment is simply

a matter of discovering ϕ that minimize the entropy divergence measure between 2

groups of edges,

Θleft = {θi|θi≤ϕ}, (2.17)
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and

Θright = {θj|θj≥ϕ}. (2.18)

Then moving the value of ϕ suffices to find the symmetry angles.

ϕsymmetry = arg min
ϕ

D(Θleft,Θright). (2.19)

Finding bilateral symmetry is not as trivial as sweeping symmetry angles since

this time the motion of sweeping is 2-dimensional. By the chain rule for relative

entropy [45],

D(p(x, y)‖q(x, y)) = D(p(x)‖q(x)) +D(p(x|y)‖q(x|y)). (2.20)

Eq. 2.20 means we have to get the marginal probability of p(x|y) and q(x|y),

where p represents the angle distribution, and q gives descriptions of the distance

distribution from the symmetry axis.

To ease the problem’s probability searching space, we can assume these two

measures are independent, then Eq. 2.20 becomes a simple addition of two entropy

values. We will discuss this problem later and define the concepts more rigorously

in Chapter 3.

2.3.5.6 Image Alignment and Bilateral Symmetry Axis Search

Fig.2.24 shows successful results on the data set with assumption of indepen-

dent measures. Once we get the angle of symmetry axis, the location of the axis
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can be easily retrieved by projecting all the edges in the image onto the line perpen-

dicular to the symmetry axis found. Instead of angle, the distance from the origin

would be the new histogram data. Yet another approach to computing the location

of symmetry axis is to make a 2D histograms with edges and change them into 1D

histograms and compute the divergence by Eq. 2.13. We also make 2D histograms of

the image out of the edge-map, and compute the distance measures and a likelihood

measure in 1D space. The difference of the performance are negligible(91 % versus

89%) and all the entropy measures produce very similar values.

We tested the measures against 42 test images from [161] and 60 symmet-

ric images from internet. Figure 2.25 shows some examples of success and failure

during the experiment. The evaluation of the results are done by 2 raters and if

the axis of symmetry found is off by 5 degree or 5% of diagonal then marked as a

failure of detection. The divergence measures detect the correct axes of symmetry

91% of cases (84/92). Figure 2.25 shows 2 interesting results that should be noted.

Figure 2.25(b)(a) gives a correct axis of symmetry even the original image is per-

spectively distorted. The absolute amount of perspective distortion is mitigated by

the probabilistic representation of divergence measures, and we can not expect the

benefit like this from other normal distance measures. Figure 2.25(b)(b) and (b)(c)

stress the importance of the edge detector. Figure 2.25(b)(b) represents the result

from the edge map of Canny edge detector, and Figure 2.25(b)(c) is the result from

the more sophisticated edge detector [135] that helps detect the accurate axis of

symmetry.

Though there were few attempts [203, 204] to deal with global symmetry,
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Figure 2.24: Examples of images that the symmetries are successfully
found.
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(a) Examples of images that the symmetries are not placed correctly.

(b) Some interesting examples from the results.

Figure 2.25: Some failed or interesting results.
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many previous approaches [231, 126, 175, 127, 181] tried to present ways of grouping

feature points for discovering the underlying symmetries embedded in an image by

a voting process. In the process, all pairs of feature points in the image plane are

made to vote for their axes of symmetry, and these are grouped together to specify

the prevailing symmetries presented in the image. This method is able to locate

local symmetries and global symmetries on account of accumulated local support

but sometimes fails to extract the globally dominant symmetry axis when the image

contains strong local symmetries.

The theory is that letting the distance scale wider will invite strong local

symmetries to make the cut, and local pairs will be strongly responsive to their

local favorites. But this creates a problem. With more candidates, a candidate of

symmetry axis will need fewer votes to win. So a local symmetry axis with a strong

local following can tip the balance, even if, it isn’t anywhere close to being the best

axis of global symmetry.

Figure 2.26 provides a lucid example that sometimes the accumulated local

contributions fall short of recovering a global symmetry. In Figure 2.26(a), the result

of voting is rather uniformly populated into the map so that the local accretion

offsets the balance in favor of a candidate with strong local aficionados, whereas

Figure 2.26(c) demonstrates its desirable behavior.

We used an attention operator described in [181] and, for the purpose of glob-

ally probing the symmetry, employed a distance weight function with a large value

of σ. Even more daunting is the fact that the object (butterfly) in the image is

a bit off the perfect symmetry. Vigorous local symmetries and unconsummated
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(a) Isotropic Symmetry Map of Generalized
Symmetry Transform

(b) Corresponding Symmetry found

(c) An example that fares well to find the globally dominant symmetry axis

Figure 2.26: An example that fails to find the globally dominant sym-
metry axis.
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global-symmetry structure inherent to natural objects compel many voting schemes

to settle for the local winner.

2.3.5.7 Improving Segmentation

Continuous divergence measures could assign a value for each candidate area

which stands for the degree of symmetry and interactively get involved with the

iteration steps. Figure 2.27 shows the feedback of divergence measures to a segmen-

tation procedure [143] that produces multiple edge maps that corresponds to the

candidate areas. One of the main claims of this approach is that the “closeness”

can best be explained from the perspective of entropy. The results also support the

claim that the divergence measure can be used as a measure that compares different

shapes.

2.3.5.8 The Curse of Dimensionality

When we use entropy divergence measures to find symmetry, the actual proba-

bility distributions over two partitions of an image are unknown. Then we calculate

marginal and joint probabilities on every possible partition of the image from his-

tograms since the measures treat the image as distributions of image features in 1D

space. If we shift gears to process higher dimensional data structures, we expose

ourselves to the infamous dimensionality curse phenomenon.

In this section, we either assumed that the features, e.g. angle and distance,

are approximately uncorrelated in the dimensional space, or computed all joint
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Figure 2.27: Symmetry used in evaluating segmentation results. Diver-
gence values for each area: (a) 2.13, (b) 2.25, (c) 4.24, (d) 5.25
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distributions. Our assumption of dimensional independence was vindicated by the

results obtained. What if, however, the distributions are not normally distributed

but correlated to each other? In that case, we need a way to transform the feature

space into a new basis where each dimension is uncorrelated. Then the computation

of the entropy divergence measures is reduced to projecting the data into the new

axes and finding the sum of entropies on these d decoupled distributions by the

property of independence in entropy.

Russakoff et al. [190] proposed a way to calculate high dimensional histograms

on the assumption of normal distribution in <d with covariance matrix Σd as:

Hg(Σd) = log((2πe)
d
2 det(Σd)

1
2 ). (2.21)

Essentially what we are going to do in the future is to expand our approaches

to objects in 3D or even in videos, and this equation will come in handy.

2.3.5.9 Symmetry and Scale

Symmetry has a property that preserves itself invariantly under some transfor-

mations, e.g., rotation, translation, inversion and reflection. Amalie Emmy Noether

states: Each symmetry of a system leads to a physically conserved quantity.

Unfortunately, the symmetry is not well preserved by the scaling factor. It is

a typical problem of “Do you want to see the leaves or the tree”. So we follow the

change of symmetry on the scale and choose the most invariant one as a real axis of

symmetry.
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2.4 Conclusion

In this chapter, we have introduced two simple and fast symmetry detection

algorithms (in Section 2.3.2 and 2.3.5) based on the line components in an image,

and one trace transform based algorithm (explained in Section 2.3.4) that uses the

area information of the image. The results show that the proposed algorithms seem

to be all effective in finding local and/or global symmetries in images. Yet each

approach has its own disadvantages as well as advantages.

For example, the TTS algorithm assumes that a well-segmented image would

be given as an input and the image contains a single object. We also observe the

following two drawbacks of the LBS: the worst-case time complexity is still quadratic

on the number of points, and relatively minor perturbations can lead to the failure

of global symmetry detection. The entropy based algorithm may produce many

false positives and there is no guarantee that a simple addition of the two entropy

values can deliver the global axis of symmetry.

In real-world images, symmetry is approximate: real objects seldom have per-

fect symmetry, and even perfectly symmetric objects fail to retain their symmetries

when they are projected on the image plane. Consequently, we need a continuous

value that represents the degree of symmetry.

A continuous symmetry measure can have intermediate values ranging from

perfectly symmetrical to completely asymmetrical (we can set aside the psychological

validity of the value for a while). It is crucially important when we fancy to use

symmetry as a feature that manifests an inherent property of an image. Learning
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symmetry and classifying objects by symmetric features are next to impossible if we

do not have a measure that represents the degree of symmetry.

From the equation (2.9), it is clear that H(X) is a continuous, positive, and

concave function of [0, 1]n ∈ Rn that maps to [0, 1] ∈ R. H(X) also features totality

in that it sums over all the microstates the system can be in. That is why H(X) is

qualified as a global symmetry measure.

This chapter clearly manifests the divergence measures from the Shannon en-

tropy fit the role of continuous symmetry measures as well as the strong tools for

discovering symmetry in the image. In Chapter 3, we delve into a variety of sym-

metry measures and use them to find approximate symmetries.
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Chapter 3

The Detection and Quantification of Approximate Symmetry

In this chapter we present a reliable and computationally efficient method to

estimate bilateral symmetry (henceforth referred to as symmetry in this chapter)

and compare various measures to compute the degree of it in an image. The prin-

cipal postulate of the approach taken in this chapter assumes that the image of a

bilaterally symmetric object carries two very similar and disjoint feature sets; thus,

the problem of finding symmetry from the image is reduced to discovering an opti-

mal bipartition of features embedded in the image so that the distributions of the

feature values (e.g., the probability density/mass functions) within each subset are

bilaterally similar, and not necessarily identical, to each other. By using the dis-

tribution of image gradients, the proposed method estimates the two parameters of

the axis of symmetry as two one-dimensional estimation problems, by first solving

for the orientation, and then for the translational displacement of the axis. To eval-

uate the difference between two distributions, we investigate various measures that

include but not limited to statistical distance measures, such as Jensen-Shannon

divergence (a symmetrized Kullback-Leibler divergence), Bhattacharyya distance,

and Matusita distance; and examine the accuracy of detection by each measure. We

also provide an empirical comparison of the proposed scheme against another state-

of-the-art symmetry detector on a new data set, in which we categorized symmetric
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images according to two attributes: the naturalness of the image and the perfectness

of the symmetry.

3.1 Introduction

By definition, asymmetries mean any deviations from perfect symmetry, i.e.,

symmetry and asymmetry should be deemed mutually exclusive and, in consequence,

a shape is either perfectly symmetric, or completely asymmetric.

This dichotomous categorization effectively obscures the fact that the assort-

ment of shapes in the world, which has been hitherto considered as symmetric,

rarely, if ever, retains perfect symmetry; for example, human faces and bodies are

not by any means perfectly symmetrical.

The likelihood of asymmetry is further increased by inevitable real-world con-

straints: uneven illumination, occlusion, perspective distortion, and quantization

distortion. We humans, however, get an impression of symmetry while not noticing

the details, and correctly classify “smeared mirror symmetry” as symmetric if the

amount of deviation from perfect symmetry falls within an allowable range [11].

The stark chasm between the rigorous definition of symmetry and approxi-

mate symmetry perception in humans is also found in computer vision literature.

One line of research (hereinafter referred to as an “exact-solution/qualitative ap-

proach”) is aimed at revealing symmetry through identifying non-empty finite set

X on which a mirror (orientation-reversing) isometry f : X → X and distance

function d : X × X → R are defined such that ∀x, y ∈ X, d(f(x), f(y)) = d(x, y).
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Since the Euclidean metric is the most widely used distance function, a set of pairs

< Xi, fi > (or just a set of fi) would be given as an exact solution.

If the number of pixels in an image is n, the number of all possible candidate

sets X is extremely large at nearly 2n. Fortunately, some local features, such as

local edge gradient [33, 181, 175], edge points [4] or the keypoint descriptor [126] of

SIFT (Scale Invariant Feature Transform) [125], provide useful information regard-

ing the possible configuration of symmetry elements, and help reduce the number of

comparisons required to retrieve symmetry parameters to O(n2). In the real world

application, the equality constraint of isometry can be relaxed to an ε-isometry

(or almost isometry) where |d(f(x), f(y)) − d(x, y)| < ε [111]. Some variants of

this approach [31, 42, 43] allow even non-isometric symmetries (e.g., symmetries in

affine/Möbius/perspective transformations) which preserve cross-ratios.

The main thesis of this line of approaches is that the reflection fi is a function

depends only on the elements in Xi tightly conform to its mirror isometry constraints

or, conversely, that the set Xi (usually a set of even number of points) serves as an

impeccable evidence that the reflection fi is the genuine solution. Accordingly, the

elements aberrated from being perfectly symmetric with respect to the reflection

fi do not give any influence to the exact solution < Xi, fi > save the number of

evidences (|Xi|) of the reflection fi if they were supposed to belong to Xi.

Because of this equality constraint, the exact solution approach is reputed

to be resilient to local disturbances as shown in Figure 3.1, and a voting scheme

is commonly used to obtain the symmetry parameters [181, 126, 175] because the

voting process is quite effective on sparse and noisy data sets [73].
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Figure 3.1: Recovered symmetries from cluttered images. Symmetries
are detected by the method described in [126].

For all of its advantages, there are two undesirable features worth considering

that are inherent to symmetry detectors with the scheme described above. First,

they are resilient against adverse background structures because they exhaustively

sift through all possible pairs of elements considered (point-by-point comparison) to

confirm ∀x, y ∈ Xi, d(fi(x), fi(y)) = d(x, y) with time complexity O(n2) where n is

the number of feature points. This computational complexity is barely adequate as

the number n increases. Second, the equality constraint renders the qualitative ap-

proach to achieve very high precision but low recall in identifying relevant elements

of Xi when a shape in an image exhibits some deviation from perfect symmetry. If

the degree of departure from perfect symmetry is high enough to make |Xi| for fi

dwindle away altogether, even an apparent global symmetry would not be distin-

guished from other trivial symmetries which do not need detection (Figure 3.2).

On the other hand, the second line of research [17, 101, 133, 136, 203, 204, 99,

249] (hereafter referred to as an “optimization/quantitative approach”) determines

an optimal solution fo (in general, parameters of symmetry) from a solution space
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Figure 3.2: Recovered trivial symmetries over global symmetries from
approximately symmetric shapes. Symmetries are detected by the
method described in [126].

with,

fo = arg min
f∈FS

C(X, f, d). (3.1)

Here FS is the set of feasible solutions given a non-empty finite set X ∈ P (I)

from image feature data I, and C(X, f, d) is the minimal cost function (or maximal

utility function for coefficient of symmetry [133], correlation function [136, 203, 204]

and a measure of symmetry [101]) of aforementioned X, a candidate solution f

and a metric d : M ×M → R on a set M (d can be a generalized metric). The

term “quantitative” is disparate from the “amount” of symmetry in permutation

groups [38] and somewhat similar to “the degree of a non-structural deviation from

a perfect symmetry” [177].

The quantitative approach directs its attention to a way to weigh the “degree”

of symmetry based on either the relation among the feature values [17, 32, 101, 133,
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Figure 3.3: Detected symmetries encased in images – detected by our
algorithm.

136, 196, 199, 203, 204, 99], or the minimum work to transform a given shape into a

symmetric figure [249]. The optimal solution fo, which mainly evinces a symmetry

in the image (Figure 3.3. Compare this Figure with Figure 3.2), sometimes reflects a

balanced distribution of visual weight that creates a harmonious connection between

the corresponding elements across the fo (Figure 3.4). Indeed, the visual cues of the

two regions are obviously far from identical in Figure 3.4, but there is a easily recog-

nized sense of equivalence between them. Osborne [155] adduces that the balance,

or equivalence of weighting, around an axis is equated by the term “harmony”.

For a given subset of image features X and a metric d, an ordered pair

(fo, C(X, fo, d)) of the optimal solution and its corresponding cost denotes the most

probable symmetry structure and its departure from an “optimal” symmetry, respec-

tively. Note that the optimization approach does not impose any equality constraint

to satisfy on X, and in consequence of that, the elements of features in X that do

not agree with an optimal symmetry of an (symmetric) object embedded in the

image unfavorably affect the measurement of the optimal symmetry (Figure. 3.5).
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Figure 3.4: Detected balances framed in images – detected by the pro-
posed algorithm. Balance is the sense of visual equilibrium and be-
ing called approximate symmetry on some occasions in view of carrying
equivalent not identical forms side by side.

Figure 3.5: Erroneous symmetry detection in cluttered images – detected
by the proposed algorithm.
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For this reason, the optimization approach normally assumes the input to

be an image that contains either a single object or a properly segmented object;

otherwise, there are too many (2n) possible choices for X to be investigated. Con-

sidering various segmentation algorithms[187, 143] consistently churn out possible

candidate areas as intermediate results, the benefit of quantitative approach is ap-

parent in many disciplines: object recognition [32], image segmentation [205], visual

inspection, shape/scene representation and matching. Also pay attention to the

word “optimal” instead of “perfect” in describing the exemplar representation of

symmetry. The optimization approach in the absence of the isometry constraint

carries its own optimal symmetry depends on the objective function C(X, f, d) and

the measure d, namely, the optimal symmetry can be different from an isometric

symmetry.

By and large, each candidate solution fi ∈ FS divides the feature set X into

two disjoint sets. Afterwards, a metric on the two sets provides a distance between

them to moderate the dichotomous distinction between symmetry and asymme-

try. It will give a null distance for reflectively equivalent sets and a positive value

inversely proportional to the degree of equivalence for nonequivalent sets. This op-

eration allows the definition of an approximate symmetry as a substantial degree of

equivalence between the supposedly symmetrical halves having a close to zero dis-

tance with respect to a metric d. The crux of the optimization approach lies here:

the metric should be discriminative enough to be used in accurate symmetry de-

tection, and still be tolerant enough to overcome disruptions within the permissible

range. The evidently preferred metrics are the Euclidean distance (the coefficient of
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symmetry [133], the symmetry distance [169, 249, 253] and the measure of symme-

try [101]) and distance correlation [136, 203, 204]. We hypothesize those metrics are

not always the best choices, and hazard a guess that there are better metrics or mea-

sures that serve to uncover approximate symmetries more reliably and ultimately

allow us to make a decision as to whether an object in an image is symmetrical or

not. To the best of our knowledge, there has been no comprehensive and rigorous

experimental investigation into the role of metrics in symmetry detection yet.

Like everything, different approaches come with their own pros and cons. The

exact-solution approach is supposed to excel in dealing images with multiple and

independent isometric-symmetries; the optimization approach is assumed to be su-

perior in terms of deciding the most probable symmetries over the given image fea-

tures. Thereby indiscriminate comparison of the two approaches seldom produces

meaningful results. For instance, the comparison of the two symmetry detectors

from each approach on a set of images with multiple symmetric objects might give

reassurance that the exact-solution approach performs better against the optimiza-

tion approach, but does not provide more relevant information on their capabilities

unless the regions of interest are given to the optimization approach. We are of the

opinion that the nature of the relation between these two approaches can better

be characterized as complementary rather than competitive. For example, the false

positive rate of the exact-solution approach is pretty high in a recent performance

evaluation tests [161] and this issue can be resolved by employing the optimiza-

tion approach that can evaluate the degree of symmetry on the detected region of

interest [181].
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Interestingly, in a recent seminal study on performance evaluation of symmetry

detection algorithms [161], one of the exact-solution approaches [126] outperforms

other algorithms [120, 201] in detecting discrete symmetries. Even an algorithm

that requires a globally dominant symmetry axis uses this approach for region-based

image segmentation [205]. Regrettably, however, the approximation approach [120]

the performance evaluation study includes is not sophisticated enough to vie with

the well-polished version of generalized symmetry transform (GST) algorithm [181]

because fold-and-cut plan is not conceived for bilateral-symmetry detection per se.

In the previous chapter, We briefly introduced previous approaches center on

the distance measure of symmetry or similarity. Without any a priori assumption

or knowledge of the barycenter (the center of mass) [4], the search of the axes

of symmetry is carried out in a two-dimensional parameter space: two orthogonal

directions in Cartesian coordinates, or a radial (r) and an angular (θ) coordinates

in the polar coordinates [4, 136, 133]. A sweep line algorithm is the bane of most,

if not all, approximation models, seeing that we normally need O(n) operations for

each feasible solution f in Eq. 3.1 to compute the value of C(X, f, d) where n is

the size of image feature data. Section 3.2. specifies symmetry constraints we

employ to reduce the number of feasible solution f to a constant number O(1). We

also articulate in the section that there are two caveats with this approach when

the symmetry constraints are applied (other than the symmetry assumption, to

wit, when the shape in the image is not symmetric, the constraints are to no avail).

Section 3.3. details the algorithm to find fo, and Section 3.4. enumerates summarily

the measures used in the cost function C(X, f, d). The evaluation results are given
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in section 3.5.

3.2 Geometric Constraint of Symmetry

The ultimate goal of symmetry detector has been the estimation of the 1D

parameter of the rotation and the 1D translation defining the axis of symmetry.

To achieve this goal, many of the previous approaches are either fastidiously try to

distinguish the exact values of the parameters by exploring every possible alternative

(all matching pairs of features [181, 126] or all possible solutions [120]) or make an

assumption on the position of the symmetry axis [203].

Our approach, however, divorces itself from the exacting (and computationally

costly) task of precise “point-by-point matching” or “exhaustive searching”, and

instead imposes much relaxed symmetry-constraints, based on statistical measures

without resorting to any parametric assumptions on the symmetry axis, to uncover

rather apparent symmetry that is immune to small local perturbations of a symmetry

structure.

3.2.1 Constraint of Symmetry Used in Exact-solution Approaches

The GST [181] uses an attention operator predicated on spatial position and

gradient information. The algorithm is based on the isometric constraint, and in

addition to that, a measure hinged on the similarity between local gradient structure

is introduced. The additional measure, a phase weight function, prefers pairs of

gradient orientations symmetrically congruent to each other and the intensities of
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gradients are not decisive factors in the symmetry magnitude. The GST chalked its

success up to its freedom from intricacy but the computational complexity comes

with the territory: O(n2), where n is the total number of pixels in the image.

Another improved version [126] of GST also consumes O(N2) though N is the total

number of feature points determined by SIFT and sanguinely expect N � n.

3.2.2 Constraint of Symmetry Used for Rotational Parameter Recov-

ery

The amount of time the exact-solution approaches expend encouraged us to

come up with a more efficient algorithm that transform a line in the image to a

point in other parameter space (in polar coordinate system) where we do not have

to invent a new procedure to identify symmetry.

It is an educated (as well as mistaken) guess that, by the duality of points

and lines in geometry, the barycenter in the Hough space defines the center of

lines, hopefully the symmetry line, just like the barycenter in the Euclidean space

represents the center of mass (the mean location of all the mass in a system).

Let us assume, just for the sake of argument, there are only two non-collinear

line segments in the plane and both segments are of the same length. A genuine

relation between two lines (l1, l2) and the line that bisects the angle between the

two lines (lc), which can make infinite number of congruent triangles between the

lines (Figure 3.6), is defined in the Hough space as follows (see Section 3.8 for the

proof):
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Figure 3.6: Relation between two lines l1, l2 and a line bisects the angle ∠apc between
them(lc).

θ(lc) =
θ(l1) + θ(l2)

2
, (3.2)

r(lc) =
r(l1) + r(l2)

2 · cos( θ(l2)−θ(l1)
2

)
(3.3)

, where θ(l1) = α, θ(l2) = γ and θ(lc) = β in the Figure 3.6.

Although (Eq. 3.3) fails to deliver a linear equation we hoped, (Eq. 3.2) shows

that the angular term is completely decoupled from the radial term so that we can

recover the angle of symmetry axis independently. This is one of the instrumental

geometric constraint that enables previous approaches [136, 203, 204] to retrieve the

orientation of the symmetry axis with none of radial coordinate.

For an image I(x, y), the gradient map of I(x, y), ∇I(x, y), is defined as

∇I(x, y) = (∂I(x,y)
∂x

, ∂I(x,y)
∂y

). Then its polar angle function on the image Cartesian
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coordinates (x, y) is defined by

θ(x, y) = arctan(
∂I(x, y)

∂x
,
∂I(x, y)

∂y
). (3.4)

With a set of given number of data points θ(x, y), there are various statis-

tical approaches to ascertain an estimate of the probability distribution p(θ) of a

continuous variable θ. The oldest, simplest, and most successful approach is a non-

parametric method that bins the data into k regular bins, normalize the bins and

smooth the resulting histogram [164]. The parametric methods assume either like-

lihoods of p(θ) or its known parametric form and try to locate the best fit from the

data θ(x, y). The mixture model that postulates data θ(x, y) are consist of multi-

ple parametric distributions mixed in varying proportions can be used when θ(x, y)

come from multiple objects or include significant amount of noises. Considering the

nature of the optimization approach and the difficulty of estimating the likelihood

of p(θ), we take a non-parametric approach. Section 3.3 contains the details of the

approach we take in our implementation and its rationale.

Suppose now we consider the probability p(θ) as the relative frequency of very

short line segments in an image with the same angular coordinate θ. In case that

the θo is the angle of symmetry axis, by (Eq. 3.2),

p(θo + θ) = p(θo − θ), ∀θ : 0 ≤ θ < π, (3.5)

but the converse is not true. (Eq. 3.5) is the restatement of the the symmetry
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constraint in (Eq. 3.2).

On the one hand, the symmetry constraint in (Eq. 3.5) and an estimate of the

probability distribution p(θ) make it possible to get the exact orientation information

at speed by properly averaging the p(θ), but on the other hand, the barycenter ap-

proach is very prone to numerical errors and outliers (see Section 2.3.1); accordingly,

We use the cost function C(I, θ, d) identical in all important respects to [203, 204]

as

C(I, θ, d) =

∫ π

0

d(p(θ + x), p(θ − x))dx, (3.6)

where d is one of the metrics specified in Section 3.4, and the orientation of

the axis of symmetry θo is:

θo = arg min
0≤θ<π

C(I, θ, d). (3.7)

By (Eq. 3.6), a set of possible orientations of the axes of symmetry(Θo) for

the input image I is:

Θo =

θi
∣∣∣∣∣∣∣∣
d

dθ
C(I, θi, d) = 0,

d2

dθ2
C(I, θi, d) > 0

 . (3.8)

Also it is plain that p(θ) should be a periodic function with period π, that is

p(θ + 2π) = p(θ).

Actually, in real application, the integral operation in (Eq. 3.6) is approxi-
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mated by a probability density estimate at discrete number of points covering the

range of the data. For example, we can divide the range of θ, (0, π), into n discrete

intervals with increment π
n
:

C(I, θ, d) =
n−1∑
i=1

d

(
p(θ +

i

n
π), p(θ − i

n
π)

)
dx. (3.9)

Likewise, we can approximate Θo in (Eq. 3.8) by

Θo(ε) = {θi|C(I, θi, d) < C(I, θ, d), ∀θ : |θi − θ| < ε}, (3.10)

where ε > 0 defines a given neighborhood.

We must take heed that some measures of the statistical distance between

two probability distributions are defined without summing the pairwise differences

between the corresponding points. Thereupon, let Pθ and Qθ be two non-overlapping

and non-empty partitions of a set p(θ) defined as follows:

Pθ =

{
p(θi)|θi = θ +

i

n
π, i = 1, 2, . . . , n− 1

}
,

Qθ =

{
p(θi)|θi = θ − i

n
π, i = 1, 2, . . . , n− 1

}
, (3.11)

where n has the same definition as in (Eq. 3.9). We define Pθ and Qθ with the

assumption that they share the same support. Now, the C(I, θ, d) for the metrics

that take probability distributions of a discrete random variable θ can be computed:
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Figure 3.7: A potent problem of angular sweep on p(θ).

C(I, θ, d) = d(rs(Pθ), rs(Qθ)), (3.12)

where the function rs denotes the rescale operation that makes probabilities

of Pθ and Qθ add to 1 respectively with the presumption that they have the same

bounded (and reflectively symmetric) support as above, so that we do not have to

re-estimate the probability distribution for each Pθ and Qθ.

A possible drawback of this approach is its sensitivity to noise when the input

has the shape of a circle or an ellipse (Figure 3.7). The probability distribution of

p(θ) on these shapes is rather flat in shape and a seemingly small perturbation tip the

balance and may turn an obviously implausible direction into a strong candidates.

This is the common weakness of the approach. If the optimal solution is not so

prominent and conspicuous in the feasible solution space, it can be buried among

the surrounding outliers.

The time complexity of the algorithm is O(n2
θ) where nθ is the number of

discrete intervals covering the range of the data if the metric d takes constant time
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on the given two elements.

3.2.3 Two caveats

The optimization framework to design a 1D structure established on geometric

constraints of symmetry is a pretty efficient way of recovering the orientations of

symmetry axes accurately, but comes with two caveats: First, the image gradient

direction is not always consistent even when its edges are. Second, edges with

gradient direction parallel to the symmetry axis should be handled with care.

In general, two edges can have the same direction and their gradient orienta-

tions are opposite each other. This property comes in handy when we apply the

symmetry constraint to the corresponding image gradients across the axis of symme-

try. We cannot, however, anticipate images to be maintaining clear contrast between

the background and the foreground objects such that edge gradients between the

the symmetrically corresponding edges always hold the constraints in (Eq. 3.5). In

addition to that, synthetically generated features, black and white sketch images,

signs and logos often consist of black-and-white lines only. The two rectangles on

the left in Figure 3.8 have the same shape, yet different set of image gradient orien-

tations. To correct this inconsistency, we change the orientation range from [0, 2π]

to [0, π], namely, p(θ) = p(θ + π). As a result of this change, the same pairs of

gradient orientations are compared to each other at θ and θ + π
2
. (see Section 3.9

for the proof). This adjustment will double the size of the candidates, but does not

affect the order of the time complexity of the algorithm.
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a b

c

d

Figure 3.8: The two caveats of the symmetry constraint. Two rectangles
on the left are of the same shape but of different pairs of image gradients.
A trapezoid on the right has two sides c and d that are not symmetrically
related to each other.

The edges with gradient direction parallel to the axis of symmetry (c and d in

Figure 3.8) are the symmetrical counterparts not by the gradient orientation, but

by the location of the edges. A trapezoid on the right in Figure 3.8 has two sides

c and d, and these two line segments are not symmetrically related to each other;

the edges in each line segment are symmetrical to each other by the distance from

the axis of symmetry (the dotted line). Considering we do not have the distance

information yet, we opt for ignoring them. Observe that ignoring them does not

impose any penalties on the cost function C(I, θ, d) and at least some portion of

the edge population influences the C(I, θ, d) by the smoothing bandwidth of kernel

density estimation.
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3.2.4 Constraint of Symmetry Used for Translational Parameter Re-

covering

The cosine term in the divisor in (Eq. 3.3) foils the barycenter approach or

the optimization approach like in (Eq. 3.7). Now that we have the value of θ(lc),

the value of θ(l2)− θ(l1) can be calculated easily:

θ(l2)− θ(l1)

2
= θ(lc)− θ(l1) = θ(l2)− θ(lc). (3.13)

Let the value in (Eq. 3.13) be θh and rewrite the (Eq. 3.3):

r(lc) =

r(l1)
cos(θh)

+ r(l2)
cos(θh)

2
. (3.14)

(Eq. 3.14) is another geometric constraint of symmetry, and immediately the

problem of finding r(lc) looks very similar to discovering θ(lc). However, the cos(θh)

gives rise to the problem of unbounded values in (Eq. 3.14), just like the slope

parameter of a line have to brace itself for the infinite value from a vertical line. We

may have several different ways available to remedy this problem, such as treating

the unbounded values as special cases (they are parallel lines) or just disregarding

them. None the less, the problem still persists however expedient the correction

may be. First, the r(lc) is not stable in the “vicinity” of a point θh = π
2
. Second, a

trapezoid on the right in Figure 3.8 shows that r(lc) is swayed by edges in c and d

that should be canceled out.

The adopted solution for this situation is the change of parameter space. We
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X1 · n

X2 · n

Figure 3.9: Symmetry constraints on the translational displacement
r(lc).

decide it is better to use a different parameter and go back to a Cartesian coordinate

system and calculate the translation parameter. Along the candidate normal unit

vector n for θ , the line lc sweep the Cartesian plane through (Figure 3.9). The

geometric constraint of symmetry between two points X1 and X2 is:

r(lc, θ) =
X1 · n +X2 · n

2
. (3.15)

From a geometric point of view, it means rotating the image so that the

symmetry axis is placed orthogonal to x-axis, and obtain the x-coordinates of the
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image gradients. Also note that the distance between the symmetry axis and the

origin does not change under pure rotation around a point of origin, and similarly

the angle of symmetry axis does not change under pure translation.

p(r, θ) also defines the probability distribution of a continuous variable r given

θ and if ro(θ) is the distance of symmetry axis from origin:

p(ro + d, θ) = p(ro − d, θ),∀d : −dimg < d < dimg, (3.16)

where dimg is the length of the image diagonal and p(r, θ) = 0, ∀r : r ≤

−dimg, r ≥ dimg.

In the same way,

C(I, r(θ), d) =

∫ ∞
−∞

d(p(r + x, θ), p(r − x, θ))dx, (3.17)

and the distance of symmetry axis from origin ro(θ) is:

ro(θ) = arg min
−dimg<r(θ)<dimg

C(I, r(θ), d). (3.18)

By (Eq. 3.17), a set of possible translational displacements of the axes of

symmetry (Do(θ)) for the input image I is:
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Do(θ) =

ri(θ)
∣∣∣∣∣∣∣∣

d

dr(θ)
C(I, ri(θ), d) = 0,

d2

dr(θ)2
C(I, ri(θ), d) > 0

.
(3.19)

Unlike p(θ), p(r, θ) is not a periodic function, and we have to define a rea-

sonable range for r(θ) in (Eq. 3.18), instead of (−dimg, dimg). Let r(θ) be a ran-

dom variable represents the scalar projection of image points onto the normal unit

vector n of θ with an expected value µ and a variance σ2. By the Chebyshev’s

inequality, less than or equal to 50% of the of the values lie outside of the interval

µ−
√

2σ ≤ r(θ) ≤ µ+
√

2σ, and we choose to use this interval for the radial sweep

in order to make sure it does not miss a feasible solution that corresponds to an axis

of perfect symmetry.

The choice of the sweeping interval, (µ −
√

2σ, µ +
√

2σ), inevitably invites

us to contemplate a way to make two probability distributions for the metric d. In

(Eq. 3.11), we suppose a random variable with the same closed support so that the

support of each distribution is contained in the interval (0, π), that is to say that

regardless of the picking of θ, the support of the distribution is always (0, π) thanks

to the periodicity of the function p(θ). Now the selection of a candidate solution

r(θ) in (Eq. 3.18) divides the domain of the probability distribution function p(r, θ)

(range of a random variable r given θ into (rMIN(θ), r(θ)) and (r(θ), rMAX(θ)), and
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two sets of ranges are usually not equal in size.

There are many different ways to translate distributions using scale and trans-

lation parameters in order that their support is enclosed in a fixed interval (0, k).

For instance, in (Eq. 3.20), we can choose the smaller of the two sets of ranges

and cut out the larger to rebalance (R1 = R2 = min(r(θ) − rMIN(θ), rMAX(θ) −

r(θ))), pick the larger of the two and pad the range of the smaller with extra ze-

ros (R1 = R2 = max(r(θ) − rMIN(θ), rMAX(θ) − r(θ))), or leave them as they are

(R1 = rMAX(θ) − r(θ)), R2 = r(θ) − rMIN(θ)). Ensuingly, we choose the larger of

the two and pad the range of the smaller with extra zeros.

Pr(θ) =

{
p(ri, θ)|ri = r(θ) +

i

k
R, i = 1, 2, . . . , k

}
,

Qr(θ) =

{
p(ri, θ)|ri = r(θ)− i

k
R, i = 1, 2, . . . , k

}
, (3.20)

where R = max(r(θ) − rMIN(θ), rMAX(θ) − r(θ)). The rationale for choosing

R is approximate symmetry we want to recover is closer to perfect symmetry than

affinely distorted symmetry. Please note that the time complexity of this step is

only O(kσ). If selecting multiple candidates for multiple symmetry axes is more

appropriate, e.g., identifying all the possible symmetry axes, we can employ all

three values of R at the cost of O(kσ).

We can observe the computational complexity of this algorithm is O(kσ) where

k is the number of discrete intervals in (0, k) that serves as a common support of

the probability distributions for the metric d, and σ is a standard deviation of the

r(θ).
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At this point, we are having Θo and for each θi ∈ Θo, Do(θi). A set of ordered

pairs (θi, rj(θi)) represents the set of plausible solutions PS ⊂ FS in (Eq. 3.1).

3.2.5 2D Constraint of Symmetry for Decision of Parameters

For a given solution (θi, rj(θi)) ∈ PS, we may impose additional 2D constraints

using the value of the gradient as input. We can either match pairs of image gradient

points (a tightened constraints in 1D space) or use the summed statistics of the

two regions in a bipartite image (a relaxed-constraints in 2D space based on the

probability distribution defined on the value of the gradient). In our implementation

we select the former one. The corresponding point, Xc, of each image point X can

easily be found by:

Xc = X + 2(rj(θi)−X · n) n. (3.21)

(Refer Figure 3.9).

(Eq. 3.21) is the 2D constraint of symmetry and the metric d computes d(X,Xc)

to decide the fo in (Eq. 3.1), the optimal solution. Let fi,j be (θi, rj(θi)):

C(I, fi,j, d) =

∫
X∈I

d(X,Xc) dX, (3.22)

and the fo is

fo = arg min
fi,j∈PS

C(I, fi,j, d). (3.23)
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This step requires order of O(n) time complexity, where n is the number of

elements in the image with gradient magnitude greater than the threshold given.

Another good cost function (I, fi,j, d) would be symmetrized Chamfer distance. As

the matching parameter fo is already fixed, the matching cost is also set at O(n).

While we appreciate the fact that we cannot completely guarantee the set of

plausible solutions PS contains the globally optimal solution (the corruption of the

data sometimes occasions the distortion of symmetry structure) and the globally op-

timal solution is guaranteed to be found in O(nnθ dimg), if one exists, the constraints

we adopt in this section are the very beneficial and suffice to find most approximate

symmetries in an image (our experiments showed that it is almost always the case).

The justification of this approach is based on the saliency of the orientation [184]

that retinal disorientation has an adverse effect on recognition. Our claim is if

human-labeling decides ground truth (the word approximate is somewhat subjec-

tive), angular displacement is more critical than distance aberration. Furthermore,

a complicated coupling of the angular and the radial components in measuring the

loss of symmetry does not guarantee better performance, inasmuch as we do not

know perceptual thresholds and weights of factors affecting asymmetry discrimina-

tion [206].

Thus, to sum up the complexity of the complete algorithm, the solution is

guaranteed to be found in O(max(n, n2
θ, kσ)) if one exists.

It should also be stressed that usable features are not restricted to the gradient

image specified here. Pixel gradients, raw pixel values, filtered pixel information

and/or any other information of the image can be used as a feature as long as the
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feature can provide a probability distribution.

3.3 Algorithm

Figure 3.10 and Algorithm 2 explains the process of finding rotational param-

eter, θ, of symmetry axis.

The first step in distinguishing symmetry from a given image is to recover the

set of rotation parameters Θo in (Eq. 3.10). Algorithm 2 specifies a way to detect

a set of candidate rotations from the probability of edge orientations given edge

responses computed by an edge detector. We used the Canny edge detector for this

purpose, however, note that a better edge detector usually leads to better results.

Algorithm 2 Find rotational parameter θ of symmetry axis.

[e, o]← CannyEdgeDetector(Image)
{e: Edge Strength Image, o: Orientation Image}
for all i such that ei ≥ threshold do

Add oi to the list O {O: Viable orientation}
end for

5: PKDE = KDE(O)
{KDE(O): Kernel density estimation on O}
for i = 0 to π

2
do

Cl(i) = C(PKDE, i, d)
{C(PKDE, i, d): Cost function, d: Metric}

end for
OC ← indices(localMinima(Cl))
{OC: A set of plausible candidates of θ }

Algorithm 3 C(θ, f, d): Cost function. θ: A candidate angle, f : An output of
Kernel density estimation, d: A metric for cost calculation.

for i = 0 to i < π
2
do

C ← C + d(f(θ + i), f(θ − i))
end for
Return C
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Figure 3.10: Algorithm of recovering symmetry angle(θ)

Input Image

Comparison Range

Figure 3.11: Algorithm of recovering the radius of axis of symmetry rsym
with scale the ranges up or down to fit.

For each rotational angle θ from OC in Algorithm 2, we compute possible

candidates (ri(θ)) for the position of the symmetry axis. Algorithm 4 explains the

process of finding the position (radius r) from the probability distribution of edge

distances.

Figure 3.11 shows the case when we decide to compare each region assuming

that both sides are equivalent (case of method = 3 in Algorithm 5)

Finally, in a last step, we check for every possible candidate solution, a con-
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Algorithm 4 Find translational parameter r of symmetry axis along the given
angle θ (or unit normal vector n).

Require: method: Range Comparison Method
for all i such that ei ≥ threshold do

Add Xi · n to EL
{n: unit normal vector of θ}
{EL: List of edge distances}

end for
PKDE = KDE(EL)
{KDE(EL): Kernel density estimation on EL}

5: dmin = min(f) ; dmax = max(f) ;
µ = mean(f) ; σ = σ(f)
for i = µ−

√
2σ to µ+

√
2σ do

CR← range(dmin, dmax, i,method) {CR: Comparison Range}
Cl(i) = C(PKDE, i, d, CR)
{C(i, f, d): Cost function, d: Metric}

10: end for
OC ← indices(localMinima(Cl))
{OC: A set of plausible candidates of θ }

Algorithm 5 range: Range function. dmin: minimum index, dmax: maximum
index, idx: current index, method: 1(Choose smaller range), 2(Choose larger range),
3(Keep the ratio).

rangemin = min(idx− dmin, dmax − idx)
rangemax = max(idx− dmin, dmax − idx)
if method = 1 then

Return (rangemin, rangemin)
5: else if method = 2 then

Return (rangemax, rangemax)
else

Return (dmin, dmax)
end if
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Input Image

Comparison Range

Figure 3.12: Algorithm of recovering the axis of symmetry((rsym, θsym))
with scale the ranges up or down to fit.

straint on the strength of the gradient to find the best symmetry axis. As described

in Section 3.2.5, we define the cost function for a candidate solution fi,j as the

sum of distances between all corresponding point pairs (Eq. 3.22). We employ 5×5

Gaussian blur (with σ = 1.0) on the gradient map 5I(x, y) (in order to decrease

the influence of noise and increase the chance of recovering the genuine approximate

symmetry)

Figure 3.12 shows 3 snapshots pertaining to the calculation of 2D cost function,

and illustrates a way of matching by stretching the smaller-sized image patch to fit.

3.4 Measures of Symmetry

In many areas of science and engineering, especially in the computer vision

community, deciding “how close or distant two distributions are” is a very impor-

tant issue. A variety of measures have been proposed for estimating similarity and

dissimilarity between images based on statistics of image features, such as image

gradient orientations.

Every once in a while a symmetric object in an image is construed as a pair of
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identical objects disposed facing each other and juxtaposed in the region of it [64].

Then the problem of finding symmetry is reduced to discovering two similar objects

placed side by side in the image, to wit, if we can find two disjoint sets of features that

share common reflective attributes with each other, we will be able to identify the

location of a symmetric object as well as its characteristics of symmetries. The most

important operations here are bipartition of the feature values and measurement of

similarity/dissimilarity between these two sets.

Certainly there are subtle differences between measuring image similarity and

symmetry. Since two objects are very closely bound together in the same scene in

the case of symmetry, we can ignore any transformation between them except the

reflection. So if the partition part can give us reliable information on the symmetry

axis, we will have much higher degree of similarity between them.

In this paper eight different measures are presented to evaluate the degree

of (a)symmetry. Manhattan distance, also known as L1 distance, is adopted to

establish a baseline for the other measures and to give a general idea of how different

the two distributions are from each other.

3.4.1 Jensen-Shannon divergence

We employ Jensen-Shannon divergence [116], DJS(P,Q), to measure the dif-

ference between two probability distributions P and Q of a discrete random variable,

described in Eq. 2.14.

DJS(P,Q) does not occasion a special case when it is computed as in the case
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of Kullback-Leibler measure [106] and has several other desirable properties, e.g.,

non-negativity, boundedness(≤ ln(2)) and the square root of DJS(P,Q) is a metric

[116]. One study found that Jensen-Shannon divergence is superior to Cramér-von

Mises test and the Kolmogorov-Smirnov test (K-S test) [176]

3.4.2 Symmetric Chi-squared Divergence

The value of the χ2 test-statistic is

χ2 =
n∑
i=1

(Oi − Ei)2

Ei
(3.24)

where Oi is the observed counts of category i, Ei is the expected counts of category

i, and n is the number of categories. In symmetry detection, we cannot tell the

observed distribution from the expected one, so we modify the original χ2 test-

statistic (3.24) into symmetric χ2 divergence:

χ2
s =

n∑
i=1

(Oi − Ei)2

Oi + Ei
.

3.4.3 Bhattacharyya distance

At first, the Bhattacharyya distance [20] measures the geometric similarity of

two discrete or continuous probability distributions and closely related to the Bayes

error estimation. For discrete probability distributions P and Q over the domain X,
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it is defined as:

DB(P,Q) = − ln

(∑
x∈X

√
P (x)Q(x)

)
, (3.25)

and the cosine-like term
∑

x∈X

√
p(x)q(x) is called the Bhattacharyya coefficient,

BC (0 ≤ BC ≤ 1 and 0 ≤ DB ≤ ∞). DB does not obey the triangle inequality

(so DB is not a metric), but the Hellinger distance
√

1−BC does obey the triangle

inequality. It is known that if two distributions P andQ are normal, Jensen-Shannon

divergence is equal to Bhattacharyya distance up to a constant scale [39].

Previous studies [83, 84] show Bhattacharyya distance performs “noticeably”

better than the L1 and L2 norms.

3.4.4 The Matusita distance

The Matusita measure [137] between two probability distributions P and Q is

given by:

DB(P‖Q) =

∫ (√
P (x)−

√
Q(x)

)2

dx

= 2− 2

∫ √
P (x) ·Q(x) dx,

where x describe the whole space and
∫ √

P (x) ·Q(x) dx is the same as Bhat-

tacharyya coefficient,BC, in 3.4.3. Since the Bhattacharyya term is symmetric and

invariant to scale, the Matusita distance also symmetric and scale invariant.
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3.4.5 Difference of Shannon’s Entropy

This measure is introduced to show the extreme type of measure that does not

need any alignment of the two given probability distributions P and Q.

DB(P‖Q) = ‖H(P )−H(Q)‖ =

‖
n∑
i=1

P (xi) logb
1

P (xi)
−

n∑
i=1

Q(xi) logb
1

Q(xi)
‖

= ‖
n∑
i=1

Q(xi) logbQ(xi)−
n∑
i=1

P (xi) logb P (xi)‖,

3.4.6 Cosine Distance

The cosine distance between two vectors gives the angular distance between

them. By the definition of the scalar product (a · b = ‖a‖ ‖b‖ cos θ), the angle (θ)

between two vectors a and b is:

θ = arccos

(
a · b
‖a‖ ‖b‖

)
.

Sometimes the cosine value of the θ ( a·b
‖a‖‖b‖) is used to represent the similarity

of the given two vectors a and b (cosine similarity).

The cosine distance can have a value from the range [0, π] where π means the

opposite angle (the longest distance), and 0 means the same angle (the shortest

distance). It is known to be less applicable for non-orthogonal vector space.
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3.4.7 The Earth Mover’s Distance (EMD) [189]

One critical problem of the previous distance measures, except the difference

of Shannon’s entropy, is the assumption that when a distribution is superimposed on

the other, they are well-aligned to each other. This strong presumption of alignment

reminds us of the isometry constraint in the exact-solution approach.

The Earth Movers Distance (EMD) [189] is a well-studied cross-bin distance

used in the analysis of dissimilarity between two distributions over a region D. This

distance is considered more robust than other histogram matching algorithms for

the reason that it does not suffer from arbitrary quantization problems attributable

to the fixed binning. The EMD provides for partial matching, and can be applied

to signatures with different sizes [188].

It reckons the minimal cost required to reconstruct one distribution into another

based on a solution to the well-known transportation problem [79].

Given two histograms P,Q the EMD is:

EMD(P,Q) =

min
fij

∑
i,j

fijdij∑
i,j

fij
. (3.26)

with the following constraints:

fij ≥ 0 sumjfij ≤ Pi,
∑
i

fij = Qi , (3.27)

where fij denotes a set of flows that stands for the amount transported from the

i-th supply(or the the first signature) to the j-th demand(or the second signature).
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The cost dij is the ground distance between the i-th supply and j-th demand.

To compare two histograms (or signatures that subsume histograms) with the

EMD, one must define a distance between features, which is interpreted as the cost

of turning a unit mass of one feature into a unit mass of the other. The EMD

between two signatures is then the minimum cost of turning one of them into the

other.

It does not penalize harshly for the non-exact matchings between the distribu-

tions by allowing shifts of mass/density within each distribution. When a mass of

earth is scattered over an area of space where a set of empty holes are also dispersed,

the EMD measures the minimum amount of work needed to fill the holes with soil.

The amount of work is usually computed by multiplying the ground distance by the

weight of earth (or the amount of flow) that should be moved along the distance to

fill the holes.

This concept is deemed as a natural measure to compare two probability distri-

butions with the same support, especially one distribution is derived from the other

by small perturbations, the very definition of approximate symmetry. However,

its high computational complexity O(N3 logN), where N is the number of feature

clusters, prevents itself from being widely used in multidimensional feature clusters.

We use EMD only for the rotational parameter recovery due to this computational

concern.
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3.5 Experiment and Result

A new dataset includes 1051 images, and each of the images holds at least

one symmetric structure in it. Out of this dataset we used 693 images that do not

contain multiple symmetric objects. The images were obtained from the Microsoft

Research Cambridge (MSRC) dataset, the PASCAL Visual Object Classes (VOC)

Challenge, the MPEG-7 CE Shape-1 Part-B data set and the web. Each symmetric

image was examined carefully by eyes so that there was not a disproportionate

share of similar objects (such as butterflies and human faces). The gathered images

were then classified and renamed into our own nomenclature. For the evaluation,

the images were classified by two attributes. The first attribute has two values and

distinguishes “Natural” vs “Synthetic” images, and the second attribute is concerned

with the deviation from perfect symmetry and distinguishes into three subordinate

groups: “Perfect”, “Approximate” and “Clutter”.

To evaluate the different methods, we used a computationally defined measure.

The evaluation only considers whether the axis of symmetry has been computed

correctly or incorrectly. Human labelers who understood the concepts of symmetry

were instructed to label ground-truths using a tool developed by us. The angular

term θ and the radial term r were stored while they were identifying an axis of

symmetry.

When an algorithm presents information on the prevailing axis of symmetry,

a program computes its (θsol, rsol) tuple and evaluates it by the percentage of the

distance from the correctly estimated axis of symmetry (PDCeS) that is defined as
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follows:

When an algorithm presents information on the prevailing axis of symmetry,

a program computes its (θsol, rsol) tuple and evaluates it by the percentage of the

distance from the correctly estimated axis of symmetry (PDCeS) that is defined as

follows:

PDCeSm,n(sol, GT ) =



0 if ∃ i : 200
‖θsol−θGT (i)‖

π
≤ m,

100
‖rsol−rGT (i)‖
‖ImgDiag‖ ≤ n

1 Otherwise,

(3.28)

where sol = (θsol, rsol), (θGT (i), rGT (i)) ∈ GT is an i− th elements of a ground-

truths set GT and ‖ImgDiag‖ denotes a diagonal of an image. Whenever the

PDCeS generates a value ’1’, the count of false negative (FN) is increased by 1.

Likewise, the count of true positive (TP) gets increased by 1 if the PDCeS results

in ’0’. By definition, ‖θsol − θGT (i)‖ ≤ π
2
.

Fig. 3.16 shows the false negative rate that indicates the rate the algorithm

failed to detect the actual axis of symmetry under PDCeS4,3(within ±3.6◦ and ±3%

of a diagonal of the ground truth).
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3.6 Discussion

First, there was a parameter not fixed before the evaluation. Figure 3.13 shows

different profiles of edge orientations with different bandwidth values of KDE. Before

applying KDE, the distribution is too spiky to compare reliably (look at the angle

around 90 degree - true orientation parameter of symmetry axis). If we apply too

broad bandwidth, the profile’s discriminability is significantly damaged. Therefore,

we tested 120 symmetric images(Not from the dataset) to find an optimal bandwidth

values for KDE (Figure 3.14). The sensitivity value is peaked around 1.5, so we

choose this value as a bandwidth of KDE.

Figure 3.15 displays the performance of recovering correct symmetry angle.

As expected, EMD shows best performance in correctly selecting symmetry angle,

and JSD and MD also demonstrate reliable output. The results point to that, to

our chagrin, the overall performance does not show meaningful differences between

measures. Either the existence of perfect symmetry and synthetic images(easy case)

might contribute this obscure result or what really matters is the algorithm itself

not the measures.

As shown in Figure 3.16, our algorithm, which shares some characteristics with

the digital paper cutting [120] algorithm, outdoes the best algorithm [126] (using

SIFT features) in [161] across the board regardless of the measures used. Some

of the results are shown in Figure 3.20. The color images are the results of our

algorithm, the gray images the result of [126]. The most conspicuous problem

of the algorithm [126] is if the shape is not complex enough, the SIFT features it
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Figure 3.13: Kernel Density Estimation results on the distribution of
edge orientation components. When the bandwidth value is 1.5∼2, it
gives most reliable results. Figure 3.14 shows the relationship between
KDE’s bandwidth and performance of the algorithm.
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choose are not informative enough to discern the symmetry. Also if the scene is too

complex, it produces a lot of false positives that dwarf the real axis of symmetry, let

alone its subquadratic time complexity. Figure 3.21 confirms that algorithm [126]

is doing hit or miss depends on the extracted SIFT feature and the SIFT feature

does not guarantee it would be the “good” symmetric feature. The performance gap

gets bigger when the algorithms are allowed to guess up to 3 best axes of symmetry

(Figure 3.17)

Overall, the Jensen-Shannon divergence, Bhattacharyya distance and the Ma-

tusita distance manifest the lowest false negative rates and edge out other measures.

The algorithm in [126] fared well on the set of images in cluttered back-

grounds, but showed very poor performance (over 40% of the false negative rate)

for simple/synthetic images (many of them are perfectly symmetric with relatively

simple image structure). This result stands in stark contradiction to the previous

study [161] that the same algorithm enjoyed 92% of sensitivity against the single

synthetic images.

We want to restate here, that our algorithm is meant to work on images of

single symmetric objects. If an image carries perfect or approximate symmetry

structure, the algorithm we adduced here does indeed suffice. When a cluttered

background is present or multiple symmetric objects are dispersed in the image, we

should consider the algorithm in [126].

And what if we do not have any prior information about the given image? Is

it possible to find a measurement that can inform us about the symmetric nature of

the image? In the next chapter we will investigate whether the distance functions
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Figure 3.15: False Negative Rate( FN
FN+TP

) symmetry angle detection.

can be used also as measure for evaluating the amount of symmetry.

Figure 3.23 is the result from the algorithm in subsection 3.2.4 that scale the

ranges up or down to fit the other. Although that algorithm will generate many

false positives, if the structure of angle is preserved (means if the image still satisfies

the angular constraint of symmetry), variable scale algorithm can detect symmetry

of perspectively distorted images.

Now look to the results in Figure 3.19. These are the images that our algorithm

failed to detect the axis of symmetry and the new result after changing the edge
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Figure 3.16: False Negative Rate( FN
FN+TP

) of symmetry detection(Best candidate).

Figure 3.17: False Negative Rate( FN
FN+TP

) symmetry detection(Up to 3 Best candi-
dates).

Figure 3.18: Symmetry detection results(Success-Cases).

Figure 3.19: Symmetry detection results(Fail-Cases).
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Figure 3.20: Comparisons of symmetry detection results. 1.

Figure 3.21: Comparisons of symmetry detection results. 2.
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Figure 3.22: Ordering of human faces by their degree of symmetries.

Figure 3.23: Results of symmetry detection from perspectively distorted images.

Figure 3.24: Local symmetry failed.

Figure 3.25: Local symmetry failed.
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detector from Canny to the boundary detection algorithm [135]. The algorithm

presented here is heavily dependent on the edge information. The problem of the

boundary detection algorithm [135] is it takes too long to get the result. Adopting

the algorithm in [135] might defeat the purpose of the algorithm that provides fast

detection, however, if the matching cost is too high for a region then instead of

generating unreliable output, applying more reliable boundary detector is not a bad

idea.

3.6.1 From Detection to Evaluation

The main topic of this study is the efficient detection of approximate symmetry

and we do not dare speculate the optimal cost from a metric is the right measure

on the degree of symmetry. The overall degree of symmetry is not the simple

sum of similarity between the features of the image but the interactions(including

competitions) among the regularities in the image.

Nonetheless, our approach provides the likelihood of the symmetry, p(C(I, f, d)|w),

the evidence factor, p(C(I, f, d)), and the prior probability, p(w), where w is the

state of nature,

w = {wi| w1 = perfect, w2 = approximate,

w3 = clutter, w4 = not symmetric}.

Figure 3.26 shows four class-conditional probability density functions for the

optimal cost value(distance).
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Figure 3.26: Probability distributions of optimal cost on three metrics.

Regrettably, the data gathered are heavily biased towards symmetric im-

ages(75% of the images are more or less symmetrical),i.e., the evidence factor,

p(C(I, f, d)), and most seriously the prior probability, p(w), are probably wrong.

Figure 3.26 shows that the degree of the departure from the optimal symmetry

gets larger as the value of optimal cost gets larger, regardless of the metric used.

It shed light on the use of the optimal cost value. Though we could not say low

cost means more symmetric(it is the inverse of the statement that “if the image

is symmetric, then the cost will be low”, and is not true), we could say “the high

cost means not symmetric”(this is contraposition of our assumption and if the as-

sumption “if the image is symmetric, then the cost will be low” is right, then this

statement’s truth value is as reliable as the assumption.)

3.6.2 Segmentation by symmetry

The Lipschitz function φ(i, j, t), where (i, j) is a 2D location of the given image

and t is time such that t ∈ (0,∞), is called level-set function that defines an edge
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contour by the zero level curve(φ(i, j, t) = 0). The evolution of the zero-level curve

defines geometric active contour evolution. The zero-level curve evolves according to

differential equation, and hopefully will reach a steady state φ(i, j, t+ 1) = φ(i, j, t)

that gives a useful segmentation of the image[34].

The energy functional F (c1, c2, φ) is written as

F (c1, c2, φ) = µ

∫
Ω

δ(φ(x, y)) | ∇φ(x, y) | dxdy (3.29)

+ ν

∫
Ω

H(φ(x, y))dxdy

+ λ1

∫
Ω

| u0(x, y)− c1 |2 H(φ(x, y))dxdy

+ λ2

∫
Ω

| u0(x, y)− c2 |2 (1−H(φ(x, y)))dxdy

, where H is the Heaviside function, δ is the 1D Dirac measure, and c1, c2 are

constant that have the average image intensity of inside/outside of the zero level

curve respectively.

Function H(φ(x, y)) provides a binary image of the current zero-level curve

defined by φ(x, y), and we can try to detect symmetry from it. Of the two areas the

axis of symmetry partitioned, we select a half of the area that is closer to the image

edge boundary and create a bounded symmetric area by reflective transformation

with respect to the symmetry axis found. To avoid the false positive, we went

through the steps above only when the degree of symmetry is high enough.

Let us : Ω→ R be a given symmetric image from φ(x, y) and rewrite the new

energy functional F (c1, c2, 1, 0, φ)
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F (c1, c2, 1, 0, φ) = µ

∫
Ω

δ(φ(x, y)) | ∇φ(x, y) | dxdy (3.30)

+ ν

∫
Ω

H(φ(x, y))dxdy

+ λ1

∫
Ω

| u0(x, y)− c1 |2 H(φ(x, y))dxdy

+ λ2

∫
Ω

| u0(x, y)− c2 |2 (1−H(φ(x, y)))dxdy

+ λ3

∫
Ω

| us(x, y)− 1 |2 H(φ(x, y))dxdy

+ λ4

∫
Ω

| us(x, y) |2 (1−H(φ(x, y)))dxdy

In short, now we have two fitting terms and by the proportions of the values

λi, we can control the importance of symmetry in the segmentation. Figure 3.27

shows the two different results on an image that does not delimit the clear boundary

of an object.

3.6.3 Heuristic based on Psychological Experiments

One of the well-known psychological findings on human symmetry perception

is that there are position effects of symmetry information such that humans are

more sensitive to three stripes of regions: a region centered around the axis of

symmetry(central region) and outermost stripes(outline region) [11, 234].

To take advantage of this special characteristic, a function of proximity, of

symmetry perception as a heuristic approach, we modified the minimal cost function

(3.17) to:
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(a) Segmentation without the symmetry constraint

(b) Segmentation with the symmetry constraint

Figure 3.27: Segmentation by level sets and symmetry constraint.
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C(I, r(θ), d) =

∫ ∞
−∞

w(x, r(θ)) d(p(r + x, θ), p(r − x, θ))dx, (3.31)

where w(x, r(θ)) is a Gaussian of x with center at r(θ). Because we do not

know the exact location that outlines the shape of an object, and the outermost

regions are the areas where clutter is easily seen, we take account of only the central

region.

Contrary to our expectations, we observe the performance deterioration as the

width of the Gaussian increases. This heuristic fails to return a more feasible solution

on the images with perfect or close to perfect symmetry because the detection rate

on them are already high at 98∼100%. For a similar reason, we were unsuccessful in

finding any single case that gives a better solution for the images with approximate

symmetry. Instead, we find out the weight function w(x, r(θ)) in (3.31) amplify the

clutter and noise around the symmetry axis.

Admitting the claim that the location of a visual stimulus does not have the

same share of influence over symmetry detection is true, the benefit of using it as

a heuristic is not apparent at this time and its importance in human perception is

not necessarily compatible with computational significance.

3.7 Conclusion

Three measures(JSD, MD and BC) are virtually tied though is marginally

better than other measures. This results agrees with the results of previous stud-

ies [1, 84, 85, 2] and the choice of measure is not as critical as we thought.
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Now we can have “cost” values for various distributions of features(mainly

edges) around symmetry axes, and an algorithm that reliably recover the parame-

ters of axis, with an algorithm that provides symmetric area from images, we can

complete the automatic symmetry detector.

3.8 Proof of Geometrical Symmetry Constraints

In Figure 3.6,

∠(boe) = ∠(bpc) (4boe ∼ 4bpc) (3.32)

=
θ(l2)− θ(l1)

2
(4aod ∼ 4apb)

θ(Lc) = θ(l2)− ∠(boe) (3.33)

=
θ(l1) + θ(l2)

2

and,

| of | = r(l2)

cos(∠(bpc))
(3.34)

| od | = r(l1)

cos(∠(bpc))
(3.35)

| oe | = | of | + | od |
2

(4pfe ≡ 4pde) (3.36)

=
r(l1) + r(l2)

2 · cos( θ(l2)−θ(l1)
2

)
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�

3.9 Proof of Periodicity of (3.6) with Period π
2

Without loss of generality, let us assume θ < π
2
. During the angular sweep,

angles θ + a and θ − a are a pair of inputs to the metric d for the angle θ, i.e.,

d(θ − a, θ + a). For the angle θ + π
2
(still less than π), the angle θ + a should be

coupled with θ + π
2
− a+ π

2
by (3.5) and θ − a+ π = θ − a.

�
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Chapter 4

Fast and Robust Detection of Regions of Symmetry Using Summed

Area Tables

How can we differentiate an object from the meaningless chunk of noise? Even

flower-näıve bumblebees (Bombus terrestris), with no wisdom of symmetric or asym-

metric shapes have an intrinsic inclination toward bilateral symmetry [185]. And so

flowers in the world have been taking advantage of it for a long time by taking the

symmetric form.

Without a prior knowledge of the interesting objects, we have to think a fea-

ture model up to distinguish the target objects and draw them apart from the back-

grounds so that processing demand and reaction time can be reduced (by limiting

computation to smaller subregions). With regard to this step to find significant and

discriminative regions of the image that contain objects of interest, the constraint

of symmetry could be a sufficient, but not necessary, condition to satisfy.

Symmetry is considered as a crucial visual primitive that can be encoded

without overt attention [28, 124, 122], however, it has been mostly overlooked and

greatly underutilized. The main reason behind this seemingly unreasonable lack

of employment is its disproportionate cost burden. To address this problem, we

introduce a simple and fast algorithm to locate regions contain bilateral symmetries.

As it has been already detailed at full length in the Section 1.7.3, symmetry
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can be used as stimulus salience1 that yields a bottom-up bias (sometimes referred

to as exogenous attention), or a selection goal of the top-down control (also referred

to as endogenous control).

In the chapter, we concentrate on elucidating how the constraint information

about bilateral symmetry is modeled as pop-out stimuli that contrast nicely with

surrounding elements, and eventually leads to distinguishing:

• The center of bilateral symmetry serves as a Point of Interest, or PoI, in a

scene.

• The Area of Symmetry (AoS) that presents the Area of Interest(AoI) (squares,

rectangles).

• Bilateral symmetry parameters (an angle and a distance) that provide topo-

logical information about the object resides in the AoS.

During the first stage of the presented algorithm, the locations of features

and coded orientations which act as descriptors of regions from a given image are

stored in a data cube by the algorithm of a summed area table so that they can

be comfortably and efficiently processed by the symmetry detector tailored to find

regions of symmetry. Those data cube structure is very similar to the set of feature

maps in Figure 1.10 in that the input image given is broken down through a few

pre-attentive feature detection systems. Yet our model is different from [102] as

neurons in each feature maps that encode for spatial contrast would not spatially

1The degree to which a physical feature is likely to attract attention. It is based on low-level
physical characteristics and independent of the observer’s mental state.
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vie for salience, and the model yields multiple layers of feature maps depend on

the size of interest regions with the same level of details of visual data instead of

multiscale feature maps that might distort or destroy the structure of symmetry.

In the second stage of the algorithm, it generates several conspicuity maps

that subsume a degree of symmetry (DoS) map out of the primitive data cube

constructed in the first stage. These conspicuity maps indicate which sub-regions of

the given image are visually salient and perceptually relevant.

At the final stage, the algorithm distinguishes information of potentially high

visual salience (PoIs, AoIs and symmetry parameters) from the conspicuity maps

built in the second stage.

We put forward two models that each takes on a different dimension of the

problem such as a perceptually-plausible model of selective attention or a computa-

tionally efficient symmetry detection model. The models are tested and verified by

computing the conspicuity maps on a wide variety of images, and comparing the fix-

ation locations, areas of symmetry and symmetry parameters of the selected regions

obtained from subjects who viewed those images with the computed information at

the final stage of the given algorithm.

While admitting that the computational model of the brain that uncovers

symmetries around us is not clearly established so far, we present novel and compu-

tationally efficient ways to obtain conspicuity maps for the DoS. The models take

advantage of the hypothesis of the natural vision systems that choose fairly small

areas first and mobilize the most resources toward them to get the information

crucial to the survival of life. By doing so, the proposed models can enhance the

152



performance in efficiency and accuracy, as well as bring themselves into harmony

with visual attention models.

The important contributions of the work in this chapter are:

• A complete and automated bilateral symmetry detection system

• A novel and efficient computational method of building up AoS conspicuity

maps with the same level of details of visual data in O(N logN) where N is

the size of a given image.

• A global AoS conspicuity map that is size invariant.

• A set of quantitative evaluation methods for algorithms on AoS detection and

labeled image data.

4.1 Introduction

What is intriguing about the picture Las Meninas is that the painter, Diego

Velázquez, is pictured to the left and stares nonchalantly at the viewer. His blasé

countenance seemingly more pronounced than those of other people in the painting

because he is looking back at us, namely, his face looks more symmetric when it

comes to our view (Figure 4.1). This picture typifies the problems we tackle in this

chapter.

The lovely blond Infanta Margaret Theresa is escorted by the entourage of

maids of honor, a chaperon, a bodyguard, two dwarfs and a dog. Diego Velázquez

paints himself at a large canvas behind them. There is a mirror in the background
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that casts back the images of the king and queen. Out of those entities, how can we

weed out all relatively uneventful parts and develop an appreciation for his brilliant

ingenuity? Furthermore, we also have to factor in the time complexity that depends

on the size of the input image given.

The full resolution of this picture (3,475×4,000) is not overly high. Current

consumer digital cameras produce images with excessively high (tens of millions of

pixels) resolutions and soon we can easily find cameras with billions of pixels [44].

Since gigapixel images were introduced for viewing [104], the amount of computa-

tional time required for analyzing and recognizing them has reached an entirely new

order of magnitude. Surely we can and should resize or divide the image so that it

falls within a certain manageable range. An efficient symmetry detection algorithm

can make all the difference by increasing the manageable size and dividing the image

into semantically more meaningful representation (Figure 4.3).

In the study of figural goodness that facilitates fast, precise and stable percep-

tion, symmetry, especially bilateral symmetry, is considered asymmetrically superior

to other salient visual cues: uniformity, compactness [132] and repetition [19, 47,

220]. Although there are some conflicting claims concerning the preponderance of

symmetry over repetition [28, 173], two patterns in Figure 4.4 show a prima facie

example where symmetry prevails over repetition in visual grouping. A pair of con-

tours on the right shares the same visual characteristics, such as shape, size and

color, however, a pair of contour lines facing each other on the left commands more

attention and we tend to associate them into one coherent object.

There are two noteworthy, and not necessarily mutually exclusive [35], cognitive-
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Figure 4.1: Las Meninas (The Maids of Honor) painted by Diego Rodr-
guez de Silva Velázquez, the great realist painter. He is at the center of
a looking-glass universe, off to the side, but bigger than anyone else in
the painting.
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Figure 4.2: The detected regions of symmetry by an algorithm described
in this chapter is squared and uncovered bilateral axes of symmetries are
marked.
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Figure 4.3: Symmetry detection can be used as an intelligent image
partitioner.

Figure 4.4: The visual regularity formed by the symmetric contours on
the left(black) tends to be perceived with ease, whereas the regularity
engendered by the repeated contours on the right(blue) does not seem
as apparent. Therefore the relevant contours on the left are more likely
perceived to be belonging to a same object. All contours have exactly
the same morphological complexity. The shape of contours is adapted
from an image found in [173]
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(a) (b)

Figure 4.5: The boundary between a camouflaged or disguised butterfly
(or moth) and a natural background (or substrate) is hard to perceive.
The only remaining visual queue in this case is symmetry. The line
represents the detected symmetry by our model, and the circle indicates
the size of the detection window.

Figure 4.6: Accidental symmetries found in our dataset images.
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architecture principles that try to explain how an objective stimulus feature (e.g.,

symmetry) affects a subjective evaluation for the given visual stimuli. Each princi-

ple also shapes its own answer to what underlying mechanisms enable us to perceive

scenes as structured wholes when a visual stimulus can be interpreted in many ways.

The first one is called the simplicity principle [80] and it conjectures that the

interpretation of a stimulus is selected to be as simple as possible. By this principle,

symmetry is a dominant feature of the visual stimuli because it is the simplest of

all feature types (perceptual economy).

The second principle, called the likelihood principle [78], surmises that per-

ceptual organization is elected to be in agreement to the most likely distal layout.

The interpretation of symmetry preference in the frame of the likelihood principle

is that the concept of symmetry is a ubiquitous property of objects in nature, and

the symmetric shapes are very frequent in the environment. Much as it is possible

that the symmetric shapes would be generated by accident, symmetry is considered

as one of the five non-accidental2 properties [21] and the possibility that a given

symmetric shape is produced by an accidental alignment should be rejected because

it is less likely (Unfortunately, however, Figure 4.6 shows it is not as rare as people

like to believe).

The aforementioned principles do not contradict each other; they dovetail

perfectly together. Since symmetry is omnipresent, our visual system would get

overwhelmed to handle the stimuli unless a system to cope with them is already in

place. On the other way around, the facile detection of symmetries enables us to

2it is unlikely that a view of an asymmetric object ends up in symmetric image on the retina.
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see them in everyday objects.

On account of its ubiquity in every meaningful object and the presence of the

visual system that detects it without the application of focal attention, symmetry has

been deemed to subserve selective visual attention during a preattentive stage [23,

122]. In the course of preattentive processing, a number of features in a scene

(e.g., size, color, location and orientation) that can direct attention to locations of

objects are rapidly retrieved, and at a later phase, an attentive stage, attention is

converged upon a specific area to give rich and coherent representations of objects

(Refer Section 1.7.3).

While there is no denying that symmetrical pattern has great Gestalts and is

exceptionally conspicuous so, as a human being, perceiving it is comparably effort-

less, we rarely, if ever, use symmetry on the computer-vision problem to locate un-

specified objects in a scene. One of the reasons for the underutilization of symmetry

is that it is consistently expensive to decode image symmetry assuredly, especially

for large images. The other reason for the lack of the utilization of symmetry is the

dearth of suitable algorithms that are tolerant and sensitive to moderate amounts

of disruption in the symmetry structure of the scene.

4.1.1 Overview of the Approach

In this chapter we introduce two new methods to detect regions of symmetry

in a scene without consuming too much resources. Conceding that operations like

uncovering symmetry for 3D object reconstruction or drawing out non-planar 3D
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symmetry under severe perspective distortion would be computationally intensive

tasks, context-free symmetry detection, we claim, does not have to be complex

or unduly time consuming to be effective. Even if no satisfactory account has

been given from cognitive psychophysiology, we decouple the tolerance from the

sensitivity.

In lieu of point by point or feature by feature comparisons that take quadratic

time relative to the number of image pixels in the worst case, the algorithms pro-

posed here use 2D array operations that would take only linear time. Figure 4.7

presents 4 square quadrants method. In this method, the decomposition step splits

the subregion of an image investigated into four equal-sized square quadrants (as a

matter of fact, the algorithm divides the subregion into eight isosceles right-triangle

regions to detect two oblique orientations). Each of four distributions of image fea-

tures from the subset quadrants is compared to its counterpart to decide the degree

of symmetry of the investigated area (or at the center of the area).

This approach relies on computing an objective function with a sliding window

which still has high computational cost as a main limiting factor for performance. A

normal sliding window algorithm has time complexity linear to the size of the slid-

ing window and it renders the time complexity of the entire algorithm subquadratic.

The algorithms used in this chapter carry an efficient method that has a constant

complexity (O(1)) to the size of the window. This is achieved by harnessing the spa-

tial coherence of the image and computing the objective function with summed area

tables. The significant performance enhancement by this method is demonstrated

through testing it on an extensive image dataset. Compared with state-of-the-art
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Figure 4.7: A brief and schematic description of the 4 square quadrants
algorithm. The blue window in the picture signifies a current sliding
window. The window comprises 4 square quadrants and measures the
degree-of-symmetry (DoS) on 4 different directions.
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techniques, the summed area table based method typically achieves times speed up

by several orders of magnitude on large and complex images.

4.2 Previous Work

There are two groups of previous research studies center their attention on

symmetry or employ symmetry to find symmetry supporting regions. One is focusing

on finding affinely skewed rotation symmetry group [108], and the other is honing

in on either a region-based attention model that uses a symmetry map [8] or an

attention based active vision system [9]. Since the main subject of this chapter is

about region-based visual attention, the later group [8, 9] is reviewed here.

4.2.1 Region-Based Visual Attention Using Symmetry Map [8]

The main idea of this approach is clustering of pixels with common attributes.

There are three different approaches for the clustering: Clustering after attention

(the authors name it a pixel-based method), Gabor filter based clustering in the

frequency domain, and region-segmentation based feature clustering.

Pixel-based approaches usually use the absolute intensity difference between

an attended pixel and its surround at six different scales (an image gradient for an

edge can be a candidate for the feature). Then the computed difference is compared

with those of its neighbors to decide its exclusiveness.

In the frequency domain, high color contrast and the difference in local orien-

tation are mainly used, and the GST generates a symmetry map from the outputs
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of Gabor orientation filters [9].

The conspicuity of the region is decided by various factors: the mean gradient

of the color along the boundary of the regions, moments of the segmented region,

and color and texture contrasts. Since the regions can have size properties, a size

contrast map can be applied, but rarely used.

The factors employed by this approach are color contrast saliency, size saliency,

three 2D moments, and a symmetry map. The method of generating the symmetry

map is rather straightforward. A scanning function, Ψ(L, Ps) totals the number of

symmetric points around the point Ps along the line L. It computes equidistant

points around 12 predefined orientations on the bounding rectangle and normalizes

the value Ψ(L, Ps) by the area of the given region (αRi).

4.2.2 Gaze Control for an Active Vision System [9]

According to the mental spotlight model [55], at a given time, attention is

concentrated on a certain area of a visual field and within that region the quality

of perceptual processing is enhanced while other parts remain unprocessed. When

a target comes into view at an unattended location, a mental focus has to be repo-

sitioned to that location.

Wolfe’s Guided Search model [241] dictates that during the process of a visual

search, attention would be given to the most salient item in the display. The items

in a scene are ordered in terms of the amount of preattentiveness, and the visual

search courses through from the most likely to the least likely until we find the mark
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or an “activation threshold” is reached to terminate the search. The preattentive

stage guided by the weighted sum of top-down or bottom-up guidance handles basic

features, such as color, size, and orientation, in parallel across the visual scene. In

attentive stage, serial attention is deployed to find salient locations.

In their model depicted in Figure 4.8, Gabor filters with 12 orientations are

used for the GST (though their descriptions on a radius-image and the algorithm

used are not clear at all) to generate a symmetry conspicuity map. And to get maps

of the dimension eccentricity, segmentation-based gradient fields are used with a

principal component analysis to compute moments with cross covariances. Finally,

the mean color gradient in the HVC color space along the boundary to the neighbor

is calculated for a superimposition with other feature maps obtained above.

4.2.3 Related Works on the Implementation

4.2.3.1 Summed Area Tables

A summed area table (SAT, also known as an integral image [225]) is an

entity or an algorithm originally introduced by Crow [46] as an alternative to mip

mapping [239]. It is an array that each of its elements holds the value amounts

to the sum of all the elements above and to the left of the element to efficiently

calculate the sum of the table element values at a fixed amount of time.
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Figure 4.8: An overview of the neural active vision system model archi-
tecture. Adapted from [9]
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The value at any point (x, y) in the table I is interpreted as follow:

I(x, y) =
∑
x′≤x
y′≤y

i(x′, y′), (4.1)

where i(x′, y′) is the original value of the table (or image).

The value I(x, y) can be computed at a cost of two additions and one subtrac-

tion per each entry in a single pass.

I(x, y) = i(x, y) + I(x− 1, y) + I(x, y − 1)− I(x− 1, y − 1). (4.2)

Once the table has been tallied up, the integral of the values in any rectangular

region can be carried out in constant time with two subtractions and one addition.

∑
A(x)<x′≤C(x)
A(y)<y′≤C(y)

i(x′, y′) = I(A) + I(C)− I(B)− I(D). (4.3)

The location of A,B,C, and D are marked in Figure 4.9.

The power of summed area tables is based on the fact that the block operation

on the image subset can be done in constant time regardless of its potential block

size. It allows for a very fast feature evaluation if our detection system does not

work directly with image intensities at the pixel level.

For the purpose of the symmetry detection with a 4 square quadrants algorithm

(Figure 4.7) that mandates 2 reflective shapes of isosceles right triangles, we also use

a summed area table for an isosceles right triangle (a trapezoid near the boundary)
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Figure 4.9: A Summed Area Table for fast rectangular region computa-
tion.

region so that the value at point (x, y) in the table is

Itriangle(x, y) =
∑
x′≤x
y′≤x′

i(x′, y′), (4.4)

and can be computed at a cost of one addition and one subtraction per each

entry in a single pass.

Itriangle(x, y) = Itriangle(x− 1, y − 1) + I(x, y)− I(x− 1, y). (4.5)

The integral value in any isosceles right triangle region can be computed by

(Figure 4.10)

∑
A(x)<x′≤C(x)
A(y)<y′≤x′

i(x′, y′) = Itriangle(C) + I(A)− I(B)− Itriangle(A). (4.6)

A reflection over y = C(x) of this isosceles right triangle region can be defined
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Figure 4.10: Summed Area Table for isosceles right triangle region com-
putation

by the similar way in Eq. 4.4, 4.5, and 4.6.

4.3 The Algorithm - General

The ultimate goal of symmetry detection is the recovery of rotational and

translational parameters of symmetry axes. To achieve this goal, most of the pre-

vious approaches are fastidiously trying to distinguish and identify the exact values

of the parameters. Instead of the pixel-by-pixel probing to find the exact symmetry,

we choose algorithms that quickly examine the whole block of area with a bird’s-eye

view to get the less-than-detail information and make a crude decision mainly based

on the orientation spread of the region.

The approaches taken in this chapter abandon the exacting task of a pre-

cise parameter-estimation, and impose the most crucial/independent symmetry-

constraints in a much relaxed manner to uncover rather apparent symmetry that is

immune to small local perturbations to the symmetry structure. In very brief form,
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the algorithms described here estimate either differences between quadrants or the

most probable orientation parameter directly from a given block.

4.3.1 Application of Log-Gabor Filter Bank and Summed Area Ta-

bles

It is well known that the frequency and orientation representations of Gabor

filters are analogous to those of the visual system of mammals [166]. Since the

associations between activations for a particular spatial location are very unique

between objects, the phase symmetry of points in an image can be used as a line

and blob detector [105]. Likewise if you want to use a symmetry detector on some

locations from the image truly worth your while, walking on the Gabor space is

preferable to a random or sequential search.

The receptive-field characteristics of mammalian cortical cells are believed to

be well-adapted for the images of the natural environment, and Log-Gabor filters

are considered better in capturing the spatial-frequency tuning curves in those cells

than ordinary Gabor filters [59].

The filter banks employed here are having a bandwidth of single octave with

either 8-orientation selectivities and the angular interval of 22.5◦ for the 4 Square-

Quadrants algorithm, or 16-orientation selectivities (the angular interval of 11.25◦)

for the single block based algorithm.

Gray intensity values of the pixels in the image are convolved with a bank of

filters. Then responses are log filtered. The responses from Log-Gabor filters are
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advantageous because the filters give us great flexibility in the angular spread and

the range of frequencies to cover. But they are not indispensable. The intensity gra-

dient and orientational information of the image from edge detection operators (e.g.

Canny, Roberts, Prewitt, Sobel) also served the purpose in our early experiment.

The filter responses and intensity values of phase-congruency/edges, and po-

sitions of high phase-congruency pixels/edges are processed and saved by summed-

area tables.

The resulting 2D tables are stacked up to create a 3-dimensional data set,

called a data cube. The stored values are made available to the symmetry operator

with a specific size parameter upon request. Or, more formally, the transformation

ST of image data I to data cube D can be denoted as:

ST : I → D, I ⊂ <2, D ⊂ <3. (4.7)

A pixel I(x, y) in the image I is mapped to a vector d (d ∈ <k), where the

value of k depends on the number of features needed to represent a block of the

image I.

d(x, y) = {(d1, . . . , dk) | di = D(x, y, i)}. (4.8)
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4.4 4 Square Quadrants Algorithm

4.4.1 Overview

This is a perceptually plausible model that reflects the anisotropic symmetry

detection (Section 1.7.6). If the upper-left quadrant of the region (in an image) is

symmetrically similar (the corresponding orientations should be re-arranged to be

compared. See Figure 4.12 for their correspondences) to the upper-right quadrant,

and lower-left to lower right, the given region is likely to have vertical symmetry

(Figure 4.11 illustrates 4 different orientations of symmetries can be found by the

4 square-quadrants algorithm). But this decidedly simple approach has two caveats

come with the territory, i.e., a selection of robust features (particularly features that

represent rotational parameters of symmetry) and the computational cost of block

operations.

If the 4 square-quadrants contain an object that is a bit off from the 4 pre-

ferred orientations, some small aberrations from them could take their toll on the

measurement of the degree of symmetry unless the features can compensate this

sensitivities. And furthermore, an increase in granularity, e.g., 16 directions instead

of 8, often invites an increased computational burden.

4.4.2 Algorithm and Its Implementation

We choose Gabor filtered images along 8 different orientations (Figure 4.13),

compile phase congruency or Canny edges, store locations of the feature points (to

determine the barycenter of each quadrant) of high phase congruency/edges into a
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Figure 4.11: 4 filters to detect 4 different orientations of symmetries.
Vertical/Horizontal/Slant Right/Slant Left. From the lower left, clock-
wise.

set of primitive features, and create a data cube out of it (Figure 4.14).

In turn, to get the symmetry information of the block centered at a point

(x, y), the algorithm calculates the integral values from all k-layers in the data cube

D using Eq. 4.3 and Eq. 4.6 and makes four (or six for oblique orientations) feature-

vectors; each represents one quadrant (or one isosceles right triangle region) of the

Figure 4.12: Rearrangement of an orientation descriptor symmetrically
consistent with the candidate axis of symmetry(red)
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Figure 4.13: Gabor filters used in the 4 square quadrants algorithm.

block queried (See Algorithm 6).

Eventually, then the problem is reduced to matching the four feature-vectors

using various measures: a cosine similarity( A·B
‖A‖‖B‖), EMD (Subsection 3.4.7) or JSD

(Subsection 3.4.1) with different combinations of tuples for each preferred direction.

We can evaluate the orientational symmetry distance, for instance, with measures

including EMD where each d(i, j)orientation is the 8-tuple (8 orientations), and the

ground distance is a 1D Gaussian distribution that has a minimum value at the

symmetrically consistent combination of orientations (for this reason, it is not a

metric).

The three feature maps we want to have are: a symmetry feature map for the

degree of symmetry (DoS), an intensity map that decides whether a location I(x, y)

has enough stimulus to cause attention, and an eccentricity map that can tell us

the location information of the thresholded stimulus. The DoS map is acquired by

adequately matching its 4 subregions. The intensity map would be either the output

of Gabor filters or high phase congruency/edge response. The eccentricity map is

the symmetrically placed image moments (M10/M00,M01/M00. Refer Eq. 2.3) from

the 4 subregions.

Figure 4.14 shows the entire process that makes use of the SAT and Figure 4.15
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demonstrates a course of actions to get one data point in the symmetry feature map

at a predefined scale.

In Algorithm 6, the operations getFeatures and getFeaturesTriangle return

the sum of values in a square (or an isosceles right triangle) grid defined by two

points whose coordinates represent top-left and bottom-right positions. Usually

it takes O(s2) time, where s is the size of the sliding window, to calculate the

sum of the values, and renders the computational complexity for the entire process

be subquadratic. But thanks to the advantages provided by the SATs, we can

complete this operation in O(1) time. The functions getDoS and getSLDoS (for

oblique directions) that compute the degree of symmetry between the given fixed-size

feature vectors only take O(1) time. The resulting data cube, SFM , contains tuples

that stand for the degree of symmetries in four directions (also see Figure 4.15).

Accordingly, the entire computational complexity of the algorithm is linear in

the size of the image, O(n), where n is the number of pixels in an image (with one

sliding window). The number of locations for local extreme is confined to less than

or equal to 5 for each size of interest.

4.4.3 Elements in One Feature Vector

A pixel I(x, y) in the image space corresponds to a vector d (d ∈ <k) in the

data cube D. The elements contained in d are:

• Orientational information for the upper left/upper right/down left/down right

quadrant: 8×4 elements from 8-direction SATs.
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Algorithm 6 Symmetry Feature Map Generation

D ← 0s, SFM ← 0s
{D: Data Cube, SFM : Symmetry Feature Map}
ws← Size(SlidingWindow)
D ← SummedAreaTable(Image(x, y))
{D(x, y, z) contains Orientation, Intensity, Location information.}

5: for all (x, y) in Image(x, y) do
UL← getFeatures(D, (x, y), (x− ws, y − ws))
{UL: Upper Left Quadrant}
UR← getFeatures(D, (x+ ws, y), (x, y − ws))
{UR: Upper Right Quadrant}
DL← getFeatures(D, (x, y + ws), (x− ws, y))
{UL: Down Left Quadrant}
DR← getFeatures(D, (x+ ws, y + ws), (x, y))
{UL: Down Right Quadrant}

10: SL← getFeaturesTriangle(D, (x+ ws, y + ws), (x− ws, y − ws))
{UL: Slant Left Quadrant}
SR← getFeaturesTriangle(D, (x− ws, y − ws), (x+ ws, y + ws))
{SR: Slant Right Quadrant}

SFM(x, y, V ertical) = getDoS(UL,UR) + getDoS(DL,DR)
SFM(x, y,Horizontal) = getDoS(UL,DL) + getDoS(UR,DR)

15: SFM(x, y, SlantLeft) = getDoS(UR,DL) + getSLDoS(SL,UL+DR)
SFM(x, y, SlantRight) = getDoS(UL,DR) + getSLDoS(SR,UR +DL)

end for
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Figure 4.14: Method of utilizing summed are tables for obtaining a sym-
metry map with an arbitrary window size.
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Figure 4.15: Process of acquiring a tuple of the symmetry map.

• Orientational information for the slant left/slant right quadrant: 8×2 elements

from 8-direction SATs.

• Phase congruency/edges stimuli for 6 quadrants: 6 elements from 6 SATs.

• (x, y) Coordinate information for 6 quadrants: 6×2 elements from 6 SATs.

The value of k is set at 66, to wit, we have to keep 66 images to find symmetries

in one single image. If 4-directional resolution is not satisfactory, then we could

rotate the image to increase the resolution to 22.5◦. As a result, even the time

complexity of the algorithm is still at O(N), N is the size of the image given, the

space requirement is pretty high at 132 images for one.
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4.4.4 Sliding window sizes

We adopt a variable-sized sliding-window scheme that takes different sizes for

the sliding window (from 32×32 to one-quarter the size of the image). It starts with

the smallest size 32×32 then increases its size by
√

2 (doubles its area).

4.4.5 Results and Evaluation

To find centers of symmetries, a superimposition of the eccentricity map and

the sum of the DoS (only the pixels with an intensity above a certain threshold value

are considered) is selected, i.e., add all the responses values from the DoS feature

map (responses from all directions, SFM(x, y, V ertical)+SFM(x, y,Horizontal)+

SFM(x, y, SlantLeft) + SFM(x, y, SlantRight)) and the eccentricity map, then

choose the maximum values out of them. This is usually the conspicuity map’s

job. By doing so, the algorithm prefers closed circular contours with high degree

of symmetries. The locations of maximum responses are selected as the PoIs and

the size of the window determines the size of the AoIs. The estimated directions of

symmetries at selected locations are determined by the max (not the sum) of the

DoS map (the most preferred direction). Figure 4.16 shows detected AoIs with red

circles.

4.4.5.1 Evaluation Method

Firstly, 153 images were collected and the performance of an algorithm is

measured against them. They are obtained from Microsoft Research Cambridge
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Figure 4.16: Results of 4 Square Quadrants Algorithm.
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Table 4.1: Image file nomenclature

POSITION MNEMONIC DESCRIPTION

1 2 — 3 3 for non-planar 3D symmetry (212 images).
Otherwise, 2 (839 images)

2 S — M S: Single object (615 images),
M: Multiple objects (436 images)

3 N — S S: Synthetic image (214 images),
N: Natual photograph (837 images)

4 P — Q — C — N P: Scene of perfect or near perfect
symmetry (198 images)
Q : Approximate symmetry (352 images).
C : Symmetric obj.in cluttered background (102 images)
N : Non-symmetric(but locally symmetric) scene
(399 images)

5-10 A serial number of the file

(MSRC) dataset, the PASCAL Visual Object Classes (VOC) Challenge [57], MPEG-

7 CE Shape-1 Part-B data set and Yahoo and Google images. Just like in Section 3.5,

we examined each image carefully by eye to make sure that some types objects in

the dataset chosen to display symmetry do not carry a disproportionate share of the

image population. The gathered images are then classified and renamed into our

own nomenclature (Table 4.1). For instance, “2SNP000388” denotes a 2D natural

image that contains a single object with perfect symmetry and 388th image in our

dataset .

Secondly, the classified images are labeled by 2 raters who understand the

concepts of symmetry. The raters were asked to identify centers of the symmetric

objects with circles around each. The annotation tools were written in Java and all

the test data reside in web. The annotation values of each data object (total 281

objects) are either averaged into a single value or registered as independent values
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Figure 4.17: Symmetry labeling application to annotate axes and areas
of symmetry.

(multiple axes of symmetry) respectively.

Lastly, to appraise the performance of algorithms, only the type II errors (A

false negative error. Table 4.2) are measured. Figure 4.6 shows a case that tells us

why we still have to resort to type II errors. An accidental symmetry as in Figure 4.6

is not as rare as people like to think and it is not reasonable to treat these cases as

false positives. If the detected PoI (the center of symmetry) is inside the symmetric

objects, it is considered as a true positive.
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Table 4.2: Type II Error

Algorithm TP / (TP + FN)

Algorithm in [126] 0.68 (191/281)
4 Square Quadrants Algorithm 0.79 (221/281)

Figure 4.18: Angle spread experiment. A symmetric object is rotated to
8 different orientations.

4.4.5.2 Test for Angle Spread

We always begin our experiment with “Angle Spread Experiment”. Though we

detect symmetries on 4 different orientations with 8 different orientational measures,

we want to make sure our detector covers symmetries between those 4 preferred ori-

entations. Figure 4.18 shows our detector actually covers angles not exactly aligned

with 4 predefined orientations. If an orientation of the symmetry falls between two

predefined orientations, the symmetry is detected at both orientations.
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Figure 4.19: A moderate level of image noise.

4.4.5.3 Test for Noises

The proposed PoIs detector also proves its resiliency to noise (Figure 4.19 for

the moderate noise, and Figure 4.20 for the severe noise).

Please compare these results with the other algorithm’s [126]. (Figure 4.21 for

the moderate level of noise, and Figure 4.22 for the severe noise).

4.4.5.4 Max of DoS instead of Sum of DoS

A PoI detector using the sum of the DoS values shows very nice results as a

region detector (refer Figure 4.16 and Table 4.2). When the number of candidates is

deliberately increased, the locations of the PoIs are mostly preserved (Figure 4.23).

However, they are not the most symmetrical PoIs because the sum of the DoS

averages the values of the DoS.

If the PoI detector uses a more symmetry-relevant descriptor, the max of the
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Figure 4.20: A more severe level of noise disruption.

Figure 4.21: A moderate level of image noise. Algorithm in [126]
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Figure 4.22: A more severe level of image noise disruption. Algorithm
in [126]

DoS, the detection of PoIs gets unstable. Figure 4.24 shows two problems in using

the maximum value of the DoS for PoIs detection. Just like a human subject, if the

axis of symmetry is off from the preferred directions (this case, vertical, horizontal

and two slants), the performance gets worse. Secondly, the locations of the local

maximum of the DoSs do not agree with the results from human annotators since

the maximum of the DoS does not have any information on a “center” of symmetry

and the results are pretty local (Figure 4.24).

4.4.5.5 Discussion and Conclusion

Even the sum of the DoS works poorly on a noisy image like Figure 4.25. This

test data was made from a perfectly symmetric image and three asymmetric areas

have strong symmetry structures in the stimuli. If the PoI detector is not sensitive

and tolerant at the same time with asymmetric features, selecting better symmetric
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Figure 4.23: The centers of symmetries are focused and correct for the
sum of DoS.

Figure 4.24: The centers of symmetry get shaky when the PoI detector
uses the local maximum of the DoSs.
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Figure 4.25: Very tricky test data. Some non-symmetric regions have
high stimuli and still holds symmetry structure under them.

regions could not be an easy task. To overcome this limitation, there should be a

more sensitive but still tolerant symmetric PoI detector.

Though the PoI detector using the sum of the DoS failed to meet the expec-

tation as a symmetric PoI detector, it is, at least, a consistent blob detector (as

in [170]).

The other drawback of this algorithm is that if the image features are close to

the axis of symmetry, a small displacement of a shape occasions a large difference

in the degree of symmetry (Figure 4.26).

4.5 A Single Block Based Algorithm

The 4 square-quadrants approach is too restrictive in that it is quite sensitive

to a set of predefined directions and has a strict limitation on the shape of a block

(only a square shape is allowed). A novel approach presented in this section involves
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Figure 4.26: The problems of the inconsistent shape of the region for
the oblique orientations (left), and of features centered around the axis
of symmetry (right).

the symmetry constraint specified at Eq. 3.2. This constraint is very descriptive and

nicely fits into the block-constraint operation that the SAT can easily afford. The

symmetry constraint adopted for the new algorithm is much less restrictive and

certainly much more effective overall than the 4 square-quadrants approach.

4.5.1 Algorithm and Its Implementation

The algorithm is virtually the same as the steps detailed in Section 3.2.2

and Section 4.4.2. The entire algorithm can be construed as iterative applications

of the Algorithm 2 to the sliding window. As stated in Section 3.2.2, the time

complexity of the Algorithm 2 is O(max(n, n2
θ)) where nθ is the number of discrete

intervals covering the range of the data, and n is the number of features in the image.

Accordingly, the entire time complexity of the algorithm is quadratic, however,
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the SATs of the orientation map render the time complexity of the Algorithm 2

O(n2
θ) ≈ O(1) and the computational complexity of the algorithm is linear in the

size of the image, O(n).

During the first stage, the locations of edges (x and y coordinates), the number

of edges, and coded orientations which act as descriptors of regions from a given

image are stored in a data cube by the algorithm of the SAT.

In the second stage, the algorithm generates several conspicuity maps that

subsume a DoS, an intensity, and an image moment.

At the final stage, points (or areas) of high visual salience (PoIs and AoIs) from

the conspicuity maps are distinguished (the orientations of symmetry axes also can

be identified by the symmetry-orientation feature map).

Algorithm 7 Symmetry Feature Map Generation

D ← 0s, SFM ← 0s
{D: Data Cube, SFM : Symmetry Feature Map}
ws← Size(SlidingWindow)
D ← SummedAreaTable(Image(x, y))
{D(x, y, z) contains Orientation, Intensity, Location information.}

5: for all (x, y) in Image(x, y) do
EBLK ← getFeatures(D, (x+ ws, y + ws), (x− ws, y − ws))
{EBLK: Entire Block}

for all θ in 0 ≤ θ < π do
SFM(x, y, θ) = getDoS(EBLK, θ)

10: end for
end for

In Algorithm 7, the operation getFeatures returns the sum of values in a

block defined by two points whose coordinates represent the top-left corner and the

bottom-right corner of a rectangle (it does not have to be a square). The function

190



getDoS that computes the degree of symmetry from the given block EBLK takes

only O(n2
θ) time. The resulting data cube, SFM , contains tuples that stand for the

degree of symmetries in 32 directions.

4.5.2 Elements in One Feature Vector

The elements contained in a vector d from the data cube D are:

• Orientational information for the entire block: 16×1 elements from 16-direction

SATs.

• Phase congruency/edges stimuli for the block: 1 elements from 1 SAT.

• (x, y) coordinates information for the block: 2×1 elements from 2 SATs.

The value of k is set at 19.

4.5.3 Evaluation Methods

Since the results of the AoSs detection are a set of lines, line segment Hausdorff

distance [67] (Figure 4.27 and 4.28) can be used as measures of the performance. But

considering the limited accuracy and insufficient reliability of the human annotation,

the Percentage of Correctly estimated body Parts (PCP) [52] that estimates the

accuracy of the results by measuring the distance between the segment endpoints

and those of the ground-truth segment seems more reliable.

The most conspicuous problem of human annotation comes from the annota-

tion process that is neither bottom-up/preattentive nor context-free. Therefore a
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Figure 4.27: Line segment Hausdorff distance(1). Adapted from [67]

Figure 4.28: Line segment Hausdorff distance(2). Adapted from [67]
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human annotator is prone to label the area only through a serial search to locate

the stimulus that the annotator think symmetric. For this reason, we decided to

continue with the type II errors.

4.5.4 Results and Evaluation

We work with the Gabor filter bank having a bandwidth of single octave,

16-orientation selectivities and the angular interval is 11.25◦. Canny edge detector

is selected for an eccentricity map that shows the difference between the current

location and the block moment measured at that point. The intensity map also uses

the sigmoid function (weight of 5) on the filtered Canny edge detector output. The

new assumption is that the intensity map just decides whether the cell should fire or

be silent and weeds out the irrelevant symmetry responses from regions with small

or no stimulus intensity.

The other settings are much the same as the 4 Square Quadrants algorithm.

Since 16-orientation information is handled with edge locations information, at most

16 SATs are used for symmetry detection at a time. Once the size of the interest

window is set, the algorithm computes the cost function defined at Eq. 3.2 with

the 16 Gabor-filter responses. The resolution of the detected angle parameter is

5.625 ◦. In order to incorporate the center of symmetry constraint (Figure 4.31)

to the conspicuity map, the maximum values of the DoS and the values of the

eccentricity map are summed together. The locations of the PoIs are obtained from

the local maxima of the symmetry conspicuity map.
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Figure 4.29: A single block based algorithm for the PoI detector.

The algorithm and more illustrative explanations are given in Figure 4.29

and 4.30.

The algorithm passes all the preliminary test cases, such as the angle spread

test (Figure 4.32), and the noisy image test. Figure 4.33 and 4.34 confirm that the

new measure overcomes the problem of stimuli prevalence.

The Figure 4.35, 4.36, 4.37, 4.38, 4.39, 4.40 contrast the AoIs detection

capabilities between the proposed single block based algorithm and the state-of-

the-art algorithm proposed in [126]. Those results might be the answer that the

scale-invariant features are not necessarily salient features for symmetry detection

(refer the question given in Section 2.2.1).

To make the experiment more challenging, we evaluate both algorithms using

194



Input Image

Gabor Filter

Orientation Images

Degree of Symmetry
Feature Map

Edge Detector

Eccentricity 
Feature Map

Intensity
Map

Symmetry Conspicuity
Map

Merge

Summed Area Table
Operation

Summed 
Orientation Images

Angular Degree of 
Symmetry Operation

Symmetry Orientation
Feature Map

Figure 4.30: Illustrative explanations on the single block based algo-
rithm. The process to find vertical symmetries.
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Figure 4.31: (a) Mean spontaneous fixation areas for various geometric
figures, each subtends about 2 ◦ a visual angle on the retina, adapted
from [98]. The small dotted circles indicate the region in which 86%
of the fixations occurs.(b) Attractivity map for symmetry (darker values
denote higher symmetric saliency). Adapted from [9]

Figure 4.32: The result of the angle-spread test against the single block
based algorithm. The circles represent AoIs and the lines mean the
orientations correspond to the maximum values of the DoS.
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Figure 4.33: AoIs detection result. The dotted boxes represent the AoIs
and the magenta lines show the orientations correspond to the maximum
values of the DoS

Table 4.3: Type II Error

Algorithm TP / (TP + FN)

Algorithm in [126] 0.492 (159/323)
The single block based algorithm 0.80 (259/323)

the image-dataset contains many images that the 4 square-quadrants algorithm has

failed or barely succeeded. Table 4.3 evinces that the single block based algorithm

excels the enhanced GST algorithm [126].

4.6 Put It All Together

To make a complete and automated symmetry detection system, we feed the

AoIs detected by the single block based algorithm to the approximate symmetry

detection system described in Chapter 3.
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Figure 4.34: The DoS output on the noisy data. Though the intensity
of stimuli is much stronger on the noisy parts, the PoI detector correctly
identified symmetric areas. The dark red color means a high degree of
symmetry.

(a) The single block based algorithm (b) The algorithm in [126]

Figure 4.35: Find a baby polar bear. A comparison of the AoIs detection
results with an algorithm in [126] (a black and white image).
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(a) The single block based algorithm (b) The algorithm in [126]

Figure 4.36: A part of Las Meninas

(a) The single block based algorithm (b) The algorithm in [126]

Figure 4.37: A girl and a cat.
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(a) The single block based algorithm (b) The algorithm in [126]

Figure 4.38: Dogs.

(a) The single block based algorithm (b) The algorithm in [126]

Figure 4.39: An insignia.
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(a) The single block based algorithm (b) The algorithm in [126]

Figure 4.40: Butterflies.

First, Figure 4.41, 4.42, 4.43, 4.44, 4.45 show that the approximate symmetry

detection system can complement the single block based algorithm by correcting the

“crude decision”.

Second, Figure 4.46, 4.47, 4.48, 4.49 represent results that merge the axes of

symmetry retrieved from different sizes of sliding windows, and select the axes with

the highest degree of symmetry.

4.7 Discussion and Conclusion

To recapitulate, we address the problem of locating interesting areas in a given

image by estimating the symmetry focal. Among the various avenues to explore

the image to find points around which the groups of pixels exhibit a good deal

of symmetry, we employ a simple estimation algorithm that incorporates Gabor

features and summed-area tables.

In general, scale-invariant features are useful features for matching and it seems
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Figure 4.41: A leaf.
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Figure 4.42: A butterfly.
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Figure 4.43: A sheep.
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Figure 4.44: A butterfly.

Figure 4.45: Zebras.
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Figure 4.46: Cats.

Figure 4.47: A zebra.
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Figure 4.48: A butterfly.

natural to employ these features to find symmetry. Unfortunately, most of the false

negative results in algorithm [126] stem from the failure of retrieving symmetry

relevant features. In other extreme, if the number of scale-invariant features selected

are overwhelming, then the performance takes the heat from it. This hit-or-miss

property of the scale-invariant features and the sensitivity to the noise make us

hesitant to be relying on it.
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Figure 4.49: A bear.
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Appendix A

Appendix

A.1 Recovering axes of symmetry from perspectively distorted image

A.1.1 Problem statement and notation

Let us assume that there is a symmetric planar object Osym with axis of

symmetry LS. Our goal is to find the axis of symmetry. We denote Li lines that

are perpendicular to LS. Both LS and Li are expressed in homogeneous coordinates

(i.e., a column vector with 3 elements). Depending on the context, the same symbols

are used for the 3D lines and their 2D projection on the image plane I : z = 1. In

the rest of the paper, we commonly use the following symbols:

• PV is the vanishing point, i.e., the point of intersection between any pair of

lines Li. Note that Li are parallel by virtue of being perpendicular to LS.

• PA, PB denote the intersection of a line Li with the boundary of the object

Osym. PB is the closest point to PV , while PA is the furthest away.

• PM is the midpoint of PA and PB. By definition PM is also the intersection of

Li with LS, so it belongs to the symmetry axis.
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• the cross ratio of four points is denoted as

λ(PA, PB, PC , PD) =
|
−−−−−→
PC − PA|
|
−−−−−→
PC − PB|

:
|
−−−−−→
PD − PA|
|
−−−−−→
PD − PB|

=
|
−→
AC|
|
−−→
BC|

:
|
−−→
AD|
|
−−→
BD|

, (A.1)

where |
−−−−−→
PC − PA| = |

−→
AC| etc, is the signed distance between points C and A.

Note that the order of the points in the cross ratio matters.

A.1.2 Computing the midpoint under perspective projection

If we consider a line Li perpendicular to the axis of symmetry LS, then the

point PM of the intersection Li × LS is between the boundary points PA and PB

and has equal distance from both. The cross ratio of points PA, PB, PM , and the

vanishing point PV is 2.

Since the cross ratio λ is preserved under any projective transformation, we

consider the vanishing point to be at infinity PV = P∞, i.e., the object is frontopar-

allel. In this case,

λ(PA, PM , PB, P∞) =
|
−−−−−→
PB − PA||

−−−−−−→
P∞ − PM |

|
−−−−−−→
PB − PM ||

−−−−−−→
P∞ − PA|

. (A.2)
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If we denote the distance |
−−−−−−→
P∞ − PM | = x and consider the limit x→∞ we have

λ(PA, PM , PB, P∞) = lim
x→∞

|
−→
AB|x

|
−−→
MB|(x+ |

−→
AB|)

=
|
−→
AB|
|
−−→
MB|

= 2 (A.3)

In the general case the point at infinity P∞ maps to the vanishing point PV

and the parallel lines connecting the boundary points PA and PB pass through the

vanishing point. If we have the vanishing point we can compute the midpoint along

a single line using two equations

LTi PM = 0

λ(PA, PM , PB, PV ) = 2, (A.4)

where Li = PA×PB. If we denote with dM , dB and dV the distance of points PM , PB

and PV from point PA respectively, then

λ(PA, PM , PB, PV ) =
dB(dV − dM)

(dB − dM)dV
(A.5)

From Eqs. A.4, A.5 we find the distance of the midpoint from the boundary point

PA

dM =
dBdV

2dV − dB
. (A.6)
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Algorithm 8 Find the bilateral symmetry of object silhouette

1. Sample the 2D plane for candidate vanishing point

2. For each candidate vanishing point PV

(a) Randomly select a fixed number of points Pi inside the object

(b) For each Pi

i. Find the line Li = Pi × PV
ii. Find the intersection points PA, PB of Li with the object boundary

iii. Compute the midpoint P i
M using the cross ratio as described in Sec.

A.1.2

3. Fit the least square line LS through all the midpoints P i
M and compute the

average Euclidean distance of the points from the line

4. Select the vanishing point corresponding to the best fitted line LS. LS is the
axis of symmetry for the object

A.1.3 The Algorithm

Based on the observation of the previous section detecting the symmetry axis

is reduced to finding the vanishing point that gives the best results. In Alg. 8

we present the approach we employ to find the vanishing point (and consequently

the symmetry axis). We use a least square based line fitting algorithm and the

goodness-of-fit is the average of the squared distance of the midpoints from the line.

The line with the smallest value is the best candidate for the symmetry axis LS.

A.1.4 Conclusions and Future Work

We present a framework for detecting bilateral symmetries in planar 3D ob-

jects viewed under perspective projection. The method exploits the invariance of

the cross ratio under perspective transformations. Using this framework the search
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for 3D symmetries is reduced to a 2D search for the vanishing point of the lines

perpendicular to the axis of symmetry. While 2D search is computationally expen-

sive, there are ways (e.g., hierarchical search, gradient descent) to reduce the search

space, which we will explore in the future.
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