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Symmetry has weaved itself into almost all fabrics of science, as well as in arts,
and has left an indelible imprint on our everyday lives. And, in the same manner, it
has pervaded a wide range of areas of computer science, especially computer vision
area, and a copious amount of literature has been produced to seek an algorithmic
way to identify symmetry in digital data.

Notwithstanding decades of endeavor and attempt to have an efficient system
that can locate and recover symmetry embedded in real-world images, it is still
challenging to fully automate such tasks while maintaining a high level of efficiency.

The subject of this thesis is symmetry of imaged objects. Symmetry is one of
the non-accidental features of shapes and has long been (maybe mistakenly) spec-
ulated as a pre-attentive feature, which improves recognition of quickly presented
objects and reconstruction of shapes from incomplete set of measurements. While
symmetry is known to provide rich and useful geometric cues to computer vision, it
has been barely used as a principal feature for applications because figuring out how

to represent and recognize symmetries embedded in objects is a singularly difficult



task, both for computer vision and for perceptual psychology.

The three main problems addressed in the dissertation are: (i) finding approxi-
mate symmetry by identifying the most prominent axis of symmetry out of an entire
region, (ii) locating bilaterally symmetrical areas from a scene, and (iii) automating
the process of symmetry recovery by solving the problems mentioned above.

Perfect symmetries are rare in the extreme in natural images and symmetry
perception in humans allows for qualification so that symmetry can be graduated
based on the degree of structural deformation or replacement error. There have been
many approaches to detect approximate symmetry by searching an optimal solution
in a form of an exhaustive exploration of the parameter space or surmising the cen-
ter of mass. The algorithm set out in this thesis circumvents the computationally
intensive operations by using geometric constraints of symmetric images, and as-
sumes no prerequisite knowledge of the barycenter. The results from an extensive
set of evaluation experiments on metrics for symmetry distance and a comparison
of the performance between the method presented in this thesis and the state of the
art approach are demonstrated as well.

Many biological vision systems employ a special computational strategy to
locate regions of interest based on local image cues while viewing a compound visual
scene. The method taken in this thesis is a bottom-up approach that causes the
observer favors stimuli based on their saliency, and creates a feature map contingent
on symmetry. With the help of summed area tables, the time complexity of the
proposed algorithm is linear in the size of the image. The distinguished regions are

then delivered to the algorithm described above to uncover approximate symmetry.
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Chapter 1

Introduction

Science is based on symmetry. The three main ingredients of science, i.e.,
reproducibility, predictability, and reduction, are all symmetries [186]'. To build
the scientific veracity of a claim, the results can be replicated at different times
and locations (reproducibility), the possible outcome can be expressed in advance
to formulate laws on the phenomena examined (predictability), and last but not
least, the produced results should be unaffected by and independent of the possible
changes in the rest of the universe(reduction).

The goal of this chapter is providing a brief précis on the general understanding
of symmetry from various perspectives ranging from art and physics to biology and
human psychology. While this chapter certainly will not cover all the empirical or
theoretical issues on symmetry, it will provide enough insight into the perceptual

underpinnings of the proposed model.

1.1 Definition of Symmetry

Numerous entities in the world, both natural and man-made, are strongly con-
strained by symmetry. Symmetry is all-pervasive [58, 62, 86, 119, 139, 237], and

comprehended in a loose sense, i.e., besides geometric symmetries, everyone has

!There are four other forms it manifests itself in science, Rosen claims. Symmetry of evolution,
symmetry of states, gauge symmetry and symmetry at quantum theory.



(a) The star HD 44179 (b) Colloidal clusters

Figure 1.1: Symmetry as big as nebula to as small as colloidal clusters.
1.1(a) The star HD 44179 surrounded by a structure known as the Red
Rectangle. The images of it in visible and near infrared light show a
highly symmetric nebula. The nebula is approximately 2,300 light years
distant from Earth. 1.1(b) Highly symmetric colloidal clusters. Scale
bar, 1 pm.[141]

their own idea of what symmetry means. It can be an instance in mathematical
programming that should be removed from a problem to reduce the computation
times of enumerative algorithms for the given optimization problem [115], or a rela-
tion between a boson and a corresponding fermion with the same mass and internal
quantum numbers but differ by half a unit of spin. Musicians may consider it as one
of the fundamental principles that has a huge importance in music in tandem with
contrast [100], someone finds it from the positions and movements involved in T ai
Chi Chuan, the Chinese martial art [74], or a child prodigy just says “Symmetry is
what we see at a glance”?. It is also construed as an equivalence between decidabil-
ity and verifiability in the complexity class P, and the lack thereof in the class NP.
It delivers an important parameter in physical and chemical processes[5] and is an

important criterion in medical diagnosis[142].

2In the Pensées. Blaise Pascal. 1660.



Irrespective of various opinions as to what it means to be symmetric, there
is one common characteristic shared by most people: invariance. Like in physics
symmetry means invariance. It is immune to possible changes or transformation
that could perturb observational activity, measurement. For this reason there should
be an operation (transformation) you can do on something and after you do the
operation on it, still some aspects of it remain the same [186]. As an illustrative
instance, here is a phrase: “rats live on no evil star”, and you read it backward.
You do the operation (reading in the reverse direction) on a phrase and yet it reads
the same, then we call the phrase symmetric under reading in the reverse direction.
Phrases with this type of bilateral symmetry are dubbed palindromes.

Formally, if S € R", a symmetry of S is an isometry f (a transformation
that preserves all pairwise distances between metric spaces, e.g., the rotation of
a plane) with the property that f(S) = S. There are only four mathematically

well-defined primitive symmetry types in 2D Euclidean space (Figure 1.2): Reflec-

tion (f(2,y) = f(—z,y))*, Rotation (f (z,y) = f <7“ cos <2§> 1 sin <2_”)> =

n

Va2 + y?), Translation (f(z,y) = f(z+ Az,y+ Ay)), and Glide reflection (f(z,y) =

f(=z,y+ py))[118].

3 A more rigorous geometrical definition is given at http://mathworld.wolfram.com/Reflection.html.
Given a vector v in Euclidean space R™, the reflection in the hyperplane orthogonal to a is given
by

Ref,(v) =v — 22 %

a-a



(c¢) Translational Symmetry (d) Glide reflective Symmetry

Figure 1.2: Primitive geometrical symmetries in 2D Fuclidean space.
1.2(a): also called bilateral symmetry and has one or more axes of sym-
metry, 1.2(b): the center of rotation is the only invariant point, 1.2(c): in
fact, the figure also contains glide reflection in shape space, 1.2(d): the
composition of two glide reflections commensurates with a translational
symimetry.



(b) Mumtaz Mahal

Figure 1.3: Taj Mahal facing the long reflecting pool and Mumtaz Mahal.
Taj Mahal was constructed by her husband as her final resting place.

1.2 Symmetry in Art

Symmetry, and especially bilateral symmetry, is said to be aesthetically linked
to our emotional sensibility and credited with beauty[238]. The Taj Mahal (Figure
1.3(a)), one of the world’s most amazing jewel of traditional architecture renowned
for its natural beauty, is a mausoleum and the incarnation of symmetry?. Even the
pool of water in front of the building reflects the symmetrical features of structure
on its stationary surface. When his beloved wife (Figure 1.3(b).) died during the
birth of their 14 child, the grief-stricken husband, Emperor Shah Jahan, decided
to build her a tomb, so that she can rest in its perfection and beauty: symmetry.

It is, in point of fact, hard to think of any architectural tradition without

symmetry. Aesthetic value of an object is the satisfaction we can get from its beauty

4Yet there are flaws, albeit not critical, in the symmetry in the placement of the two coffins
and slightly tilted minarets.
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and symmetry is regarded to form a canon of beauty in art as in nature [155].

The symmetry does not have to be visual or spatial: a fugue begins with the
exposition and the subject that is introduced at the beginning will recur throughout
the fugue, repeating the theme at the same time interval (Figure 1.4).

Although symmetry seems to provide stable and attractive sensation towards
the whole structure, it also conveys inflexible platitude that makes it less appealing
than more dynamic and unforeseeable charm of asymmetry. Even Immanuel Kant
agreed that mathematical regularity is “inherently repugnant to taste” 3. When the
underlying symmetry is evident, asymmetry can evoke feelings of excitement and

curiosity, so many painters in the Italian Renaissance chose to use it [139].

1.3 Alan Turing and Symmetry

In the last paper before his committing suicide in 1952 [216], Alan Turing ush-
ered in the first applications of computer modeling in developmental biology and

tried to find out how the symmetric morphology of a spatially homogeneous mass

5“All stiff regularity (such as borders on mathematical regularity) is inherently repugnant to
taste, in that the contemplation of it affords us no lasting entertainment.” in “Kant’s Critiques:
The Critique of Pure Reason, The Critique of Practical Reason, The Critique of Judgment”



of identical cells could be broken (Symmetry breaking) by reactants, called mor-
phogens, with different diffusion rates. He considered asymmetrical patterns that
are later manifested in the anatomical structure of an organism as the result of an
array of biochemical reactions among morphogens. He claimed a small aberration
from homogeneity caused by stochastic fluctuations can be amplified and the inher-
ent symmetry of a form would be dissipated. While it had fallen short of explaining
any particular question up until recently (a natural Turing pattern was found on the
skin of an angelfish [103]), and there are no evidences to support the exact theory
as set out by him, the importance of his claim is that the loss of homogeneity could

be explained in a quantitatively rigorous way.

1.4 Symmetry and Natural Selection

Symmetry is more than obtaining aesthetic gratification from artwork; it might
be emerging from natural selection [54, 221] that decides which species survive and
which perish. The surviving predators must be very sensitive to bilateral gait asym-
metries since that trait can reveal a pathological vulnerability that can help an
attack [194].

The advent of animals with bilateral symmetry goes back more than five hun-
dred million years [198, p. 215]. It has been established that in the world of animal
mating, perfect bilateral symmetry is regarded as a sign of good health and superior
genetic quality, and asymmetry is deemed as an evidence of vulnerability to para-

sitic infection [153, 145]. Therefore, bilateral symmetry serves as a determinant of



mate choice as well as a fitness indicator [145, 146, 117].

Symmetry also gives the conceivable fitness benefits to plants with symmet-
rical flowers, and influences their reproductive prospects. Pollinating insects have
keen sensory biases for symmetry to discern subtle differences in the petals of a
flower and prefer the most symmetric ones for good reason; the more symmetric the
blossom gets, the more nectar it yields and the better a food source it comes to for
pollinators [146]. As a result of more frequent visits from pollinators, symmetrical
plants have more favorable opportunity to be pollinated or to pollinate other flowers

than asymmetrical ones, which more often results in the fruition of a desire.

1.5 Symmetry in Physics

More often than not, symmetry, in physics, means that the laws of physics
are independent of a frame of reference in space, time, and motions of an observer.
Inherently, symmetry means conservation laws in physics. As first brought to no-
tice by Emmy Noether, there is a connection between continuous symmetries and
conservation laws [151], such as the principles of conservation of energy, and an-
gular momentum. Momentum is conserved due to the invariance under spatial
transformation (the isometry of space) and energy is conserved on account of time
translational invariance (the isometry of time). Any feature (physical property) of
the system that is invariant against certain continuous transformations is defined as
a symmetry of the system.

There is another concept of symmetry conjectured by theoretical physicists
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Figure 1.5: Every particle in the Standard Model has its “superpartner”
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in the 1960s that can be consistently added to the symmetries of Einsteins the-
ory: Supersymmetry (SUSY). The idea is that every type of elementary particle in
nature has one or more twins (superpartners). Fermions (matter carrier particles.
e.g., electron) have bosons (force carrier particles. e.g., photon) as superpartners,
and vice versa (Figure 1.5). SUSY makes the unification of strong, weak, and elec-
tromagnetic forces in the Minimal Supersymmetric Standard Model (MSSM), and

helps solve many problems in particle physics including the Hierarchy problem.

1.6 Approximate Symmetry and Global Information; Symmetry in

Real Life.

In the face of scientific endeavors to find symmetries, the universe obstinately
shows asymmetry at all levels, against the best efforts to make it otherwise. An
archetypal example is human faces which are generally considered as “symmetric”;
however, supplanting the left half of the image with a reflection of the right half we

obtain an image which is not the same as that obtained by replacing the left half of



the image with the reflection of the right half.

After the lack of success of the Large Hadron Collider (LHC) to uncover su-
perpartners and extra spatial dimensions, even the SUSY is considered to be “bro-
ken” or “approximate”, and people established that the superpartners should all be
heavier than their counterparts [240]. In the visual world, loss of exact symmetry
is further enhanced; even perfectly symmetric objects loose their exact symmetry
when projected onto the image plane or the retina.

The lack of perfect symmetry defined by mathematics of group theory, and
the ability of human brain that readily perceives departures from perfect symmetry
but still gives a feeling of the exactness make the field of computational symmetry
extremely challenging.

In bridging the gap between a dichotomous definition of symmetry, to wit,
everything that is not symmetric is asymmetric, and the great flexibility of human
perception, the global information of an entire object becomes critically important
because the deviation from the idealized perfect symmetry can only reliably be
determined in conjunction with a symmetry that holds at all elements of the object
under consideration.

Scientists who aim to solve the global symmetry are facing two grave adversi-
ties due to the nature of the problem. Firstly, we need to establish a threshold value
while validating the global symmetry and the value can be an arbitrary constant
which is hard to verify its veracity; how can we tell the approximate symmetry from
asymmetry? The second is the time complexity of ascertaining the relative fitness

for each candidate; all the elements should engage in the decision process.
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1.7 Human Symmetry Perception

More than one hundred years ago, Mach attracted people by the fact that
symmetry is a salient feature and a vertical symmetry is more easily noticeable
than a horizontal symmetry [130, 56]. He also suggests that human do mental
rotation/normalization to perceive symmetry and nature seems to be predisposed
to prefer vertical symmetry by virtue of the force of gravity operating straight up
and down (Gardner [68] also claims that the perfect spherical symmetry is broken by
the vertical force of gravity). Since then there have been substantial number of nice
reviews on human symmetry perception [212, 218, 217, 219, 229]. In this section,
we focus on the bilateral symmetry that is the most salient type of symmetry [69]
out of its family of isometries (others are rotational and translational symmetries®)
and address the characteristics of human perception of symmetry ascertained by

empirical observation.

1.7.1 Symmetry and Gestalt Principles

Gestalt psychology, like behaviorism, arose as a competition to the molecular
approach of structuralism. It is founded on the idea that psychological behavior
should be considered as unified wholes rather than a mere sum of individual parts
and processes, so it clearly dissociates itself from reductionistic approaches that
break psychological phenomena down into their smallest constituent part.

The Gestaltists are inclined to think symmetry as one of the “whole properties”

6sometimes they are called repetition and centric symmetry [219]

11
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Figure 1.6: An example of the law of symmetry

(the other two are closure and equilibrium) that has a high level of goodness”, and
assume it as an important unit-forming factor in the perceptual grouping in human
vision. For the Gestalt psychologists, symmetry signifies not just similarity of parts,
but “the logical correctness of a part considered relative to the whole in which that
part occurs” [53].

The main claim of Gestalt psychology is the human is inclined to shape vi-
sual stimuli into perceptual groups by a set of principles. According to the law of
pragnanz, we have a tendency to reduce our experience into the simplest form with
minimum cognitive effort. If more than one of the Gestalt laws are at work, they
are either cooperating or competing. By the law of proximity, two pairs of square
and curled brackets in Figure 1.6 should be grouped together considering they are
in immediate proximity to each other. We, however, tend to detect three pairs of
symmetrical brackets, as opposed to two asymmetrical pairs and two singles as the
effect of symmetry prevails over proximity in this case. Although there actually
exists a preponderance among the Gestalt laws for grouping, it still remains unclear

if we could predict a priori which laws determine the configuration we seeS.

"The goodness is a general term for detectability, discriminability and insensitivity to noise [219].
Symmetry is deemed to have a high level of goodness for the reason that it can be detected fast,
easily discriminated, and can be found in the middle of noise.

8This is the one of the reasons the Gestalt principles are criticized as rules of little more than

12



1.7.2 The Role of Symmetry

Symmetry serves an important role in providing balance and form to an object
structure and its appearance. If grouped parts give rise to emergent features, e.g.,
closure and symmetry, those features can give configural superiority effects to the
whole shapes so that they become more distinguishable from the previously isolated
contours [162, 171]. Symmetry is often called a local Gestalt glue® or perceptual glue
that connects individual parts into unified whole forms. In summary, symmetry is
a piece of information that informs which part of a pattern in a shape is related to
another part of itself. If a pattern features symmetry, symmetry imposes structure
on the pattern and groups the individual stimulus into a coherent whole, e.g., the
effect of symmetry on figure-ground segregation (Figure 1.7).

There is little doubt that symmetry is an all-pervasive property of a shape,
acts as an one-object cue that signifies the presence of a single object, holds the
attention for perceptual analysis, and the benefit of symmetry in artificial objects
is apparent as it gives balance, stability and affordance to them [212], but does it
provide any benefits for its detectors other than aesthetic enjoyment?

Other patterns are mainly used for identifying a given shape from the past
memory and the main point in question is how to represent the relevant matching-
pattern of objects in memory for the future retrieval. Symmetry perception, how-

ever, is a bit peculiar in that a memory of patterns is not necessary at all, and the

ceteris paribus [92]

9A recent study suggests symmetry detection is based on other grouping properties. Accord-
ingly, a deficit in the integration of local orientation information can lead to severely impaired
mirror symmetry detection. The Gestalt psychologists, still, suggest symmetry is a fundamental
grouping property of perceptual organization.

13



Figure 1.7: Rubin’s vase: The force of symmetry on figure-Ground seg-
regation. The perceptual distinction between figure and ground depends
on how we relate borders to adjoining image regions in a scene. In this
classic example, if we associate the contrast border between the black
and white regions with the white region in the center, we perceive a
goblet-shaped figure in front of a uniform black background. If we in-
stead associate the border with the black region of the image, we perceive
juxtaposed face-shaped figures in front of a uniform white background.
Thus, we must decide which region corresponds to the closer, occluding
surface that gave rise to the border 1i.e., which region “owns” the border.
Reproduced from Pettijohn
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Figure 1.8: Figure-ground segregation does not depend on object recog-
nition. Even in scenes such as this, which contain no recognizable
objects, our visual system still demands a distinction between figure
and ground. In psychophysics experiments using stimuli such as these,
Gestalt psychologists observed that basic geometric properties of image
regions-e. g.convexity or symmetry in the shapes of the regions’ borders-
guide our impressions of figure and ground. Over 92% of people no-
tice the convex shapes as the figures and the concave ones as ground.
Whether the convex shapes are black or white does not affect the deci-
sion. Reproduced from [97].
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patterns to be compared are all presented contiguously in the same image.

1.7.3 Symmetry and Human Visual Attention

When spatial symmetry is brought into a scene, structural irregularity or com-
plexity of the view is reduced, and the field of view becomes less informative than
its asymmetric counterpart. That being so, the symmetrical view should receive
less visual exploration and achieves less attention than asymmetrical scene. Yet
we select the visual information we need in a more involved and sophisticated way
than merely looking at information entropy of an image. It is well known that
psychophysical thresholds for the shape detection would be decidedly lower when
the given shape is symmetric than asymmetric [212]. During visual exploration this
less arousal but more accessible, let alone its aesthetically pleasurable [156], feature
catches the eye. Again, the detection of symmetry and subsequent physiological
arousal seem to be mediated by global information [124].

We did not dismiss the idea that asymmetric entities could receive more visual
exploration than symmetric bodies. Actually they do [123]. Figure 1.9 exhibits eye-
movement records for symmetrical and asymmetrical shapes. Firstly, visual fixations
and fixation time increase with stimulus complexity measured by the number of sides
of the shape. It does not matter whether the shape is symmetric or not. Second, the
number of fixations and their duration are symmetry-blind, too. But the fixation
patterns for symmetrical and asymmetrical shapes are in stark contrast to each

other. Symmetrical shapes display one-sided scanning patterns, while asymmetric

16



Figure 1.9: Eye-movement records for symmetrical and asymmetrical
shapes with different complexity. Adapted from [123]

ones show two-sided patterns. If our visual system finds redundant shapes while
moving eyes, there is no point in fixating those shapes.

For the purpose of this thesis, we mainly pay attention to the computational
models of attention. For an extensive survey on models of visual attention, please
refer to [60].

Since the computational power of the human brain is limited by the order of
10'7 operations per second [168, 49, 71], only a small amount of visual information
can be processed and utilized. Directing more attention to a selected stimulus
leaves other visual input unattended (Winner-takes-it-all). There are two factors
that drive visual attention by influencing the selectivity: bottom-up bias and top-

down control [50]. Salient visual cues (stimulus salience) in the environment, such

17
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as bright colors, high contrast or fast motion contrasts, can introduce a bottom-
up (target-independent) bias toward the stimulus (stimulus-driven) (Figure 1.10),
while, in contrast, contextual target information derived from the requirement of a
task guides top-down control (goal-driven) [150]. (This type of attention control is
sometimes disapproved as being a failed theoretical dichotomy [7]).

In feature integration theory (FIT) [214], there are two stages of visual atten-

tion: a preattentive stage and an attentive stage. Preattentive vision functions in



a spatially parallel manner without attentional constraints (or attentional bottle-
necks), while on the contrary attentive vision allocates attentional resources to the
limited scope of the visual field where the visual target is likely to show itself. The
finding of the existence or nonexistence of a primitive feature during visual search
tasks is known to be irrespective of the number of stimuli (usually the number of
elements in a given scene) [214]. Since the detection of primitive features takes place
preattentively, the location of attention in the visual field is of little consequence.
This dichotomy was a departure from the Gestalt theory and restricted the
preattentive stage to a single stimulus (primitive feature) dimension, e.g., size,
brightness, orientation, color, and direction of movement (later FIT had to include
a master map of locations to reconcile results that reported highly efficient con-
junction searches [149]). Detected primitive features are interacting with each other
on their own dimension prior to conscious perception. When attention is focused
at a particular location, the features in that position are attended to. During the
first stage of FIT, the features of unattended entities do not bind (this can produce
lots of false positives in the end). Therefore it is possible to detect the existence
of interesting features without exact information of the location. In other words,
the normal order of operation (attention to a location precedes identification of an
interesting object) can be broken by separation of locating a feature from detect-
ing it. FIT considers symmetry as a basic feature that can be used as a bounding
condition that limits the candidate locations for the spotlight. As a response to
the FIT, the Guided Search Model has been proposed [242]. In this model, parallel

processes use information about primitive features to guide attention in the search
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for conjunctions.

In 1985, Christof Koch and Shimon Ullman proposed a hypothesis based on
bottom-up attention of FIT [102]. They claimed the set of early representations of
individual visual features that contributes to selective attention is encoded into a
topographically oriented map called the “Saliency map”. It combines the normalized
information from the feature maps into a comprehensive measure of conspicuity.
In their hypothesis, similar to the center-surround representations, the bottom-up
saliency of a given location is computed by a difference between the primitive feature
and its surround at many different scales. The salient locations (usually the positions
of the local maxima in the map) in the “Saliency map”, accordingly, would be good
candidates for attentional selection. This selection is done by a Winner-Take-All
mechanism. Once the selection is drawn, inhibition of return mechanism!® takes
effect and the selection is shifted to the location of the next highest value in the
saliency map. This process would keep going until no interesting point is left in the
saliency map, and the trace of this selections frames the scan of the scene given. The
diagram in Figure 1.10 is based on this hypothesis that a centralized saliency map
provides an efficient control over the deployment of attention based on bottom-up
biases. The saliency map is then examined by attention. Top-down control and

training can fine-tune most stages of the bottom-up model.

10 A mechanism that suppresses the last attended position in the saliency map, so that attention
can shift to the next most salient location.
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Figure 1.11: The effects of location on sensitivity of symmetry detection
in a dot pattern. (a) Near the axis of symmetry. (b) Intermediate stripes.
(c) Outermost stripes. Adapted from [212]

1.7.4  Outline versus Interior Area on Symmetry Detection

Most psychological research papers on symmetry [11, 94, 152] have dealt
mainly with dot patterns or blobs which are not typical patterns to human ob-
servers. In the test of random-dot arrays, the outline is not required and has no
effect on the decision of a symmetry axis whereas the area close to the axis of sym-
metry plays a major role in symmetry detection [11, 234]. The symmetric patterns
located between the axis of the symmetry stripe and the outermost stripes (the

intermediate stripes) are the hardest to detect (Figure 1.11).

1.7.5 Symmetry as a Preattentive Feature and Its Automatic Detec-
tion

We assume symmetry detection, just like grouping processes, is automatic,
that is, it is not involving cognitive control, for the sake of its fast detection [11, 19]

and its contribution to figure-ground segregation [10, 15, 243]. Yet is it preattentive
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(automatic processes usually depend on attention!!)? Though there are supporting
results [11, 14, 122, 230] that static symmetry can be detected preattentively with
a duration!? threshold of 40 msec'® to help efficiently guide attention to relevant
objects, and consistent with specific predictions from a simple feedforward process-
ing model [61], the most recent study [37] shows its detection is not always rapid
(varied from 28-568 msec) and suggests a strong dependence on the context. Again,
symmetry detection is rapid and highly accurate on a simple stimulus, however,
attention seems to play an important part in symmetry perception [154, 233].

On initial consideration, it is surprising that symmetry is a preattentive feature
considering its perceptual complexity of relating different kinds of spatial informa-
tion (locations and angles; both cues do not belong to a single stimulus compo-
nent) around an axis. The human visual system is not able to catch much simpler
conjunctions (relating single stimulus to others) without applying proper atten-
tion [214, 213]. If symmetry detection happens in the fast and parallel preattentive
stage, it should not require a time-costly computation, ¢.e., through a computation-
ally intensive point-by-point comparison of visual cues across the axis.

All in all, it is plausible that symmetry is a preattentive feature that distin-
guishes one region from the other but that explicit symmetry information would
not be delivered to the higher systems without attention [154]. Accordingly, static

symmetry should be located quickly during preattentive perception in a coarsely

Hthere is another hypothesis objects this assertion citing inattention blindness is just inattention
amnesia or a lack of awareness; still not detectable

2time of stimulus exposure

Bthe maximum limit of preattentive perception is less than 160 msec.; a time period that does
not allow attentional scan by eye movements.
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Figure 1.12: An experiment on the orientation of symmetry. Adapted
from [247]

manner, and immediately afterward more scrutinous and detailed exploration on
that attended region would be carried out. The two-phase symmetry detection

scheme described above is the main proposition of this thesis.

1.7.6  Anisotropicity of Symmetry

Figure 1.12 shows that patterns deformed so that vertical symmetry is pre-
served (though horizontal symmetry is destroyed) are more similar to the original
than the same pattern deformed so that horizontal symmetry is maintained (vertical
symmetry is broken).

In measures of preference, symmetries along the vertical seem to have a percep-
tual advantage over other symmetries, because they are congruent with the bilateral
shape of the visual system [159, 235]. Studies on the anisotropy of symmetry failed
to show identical or consistent results, however, vertical and horizontal show strong

saliences over obliques (Figure 1.13), and this advantage might stem from retinal
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Figure 1.13: Sensitivity to symmetry as a function of the orientation.
Adapted from [212]

coordinates.

On structural grounds, nonvertical symmetries would be found only after they
are mentally aligned to the anatomical vertical [41] (A mental rotation model. See
Section 1.7.11), and response time to determine symmetry would be increased lin-
early with increasing angular displacement from gravitational vertical.

Foveation of the symmetry axis is not an essential condition for its detection,

yet detectability drops considerably with deviation from the center [191].

1.7.7  Symmetry in 3D

First, it can be argued that symmetry detection solely depends on the retinal
image, or it is affected by the perception of objects. When viewers are given ran-
domly created asymmetric 2D images, they get a bias that takes asymmetric retinal

projections as oblique views of symmetrical objects (Figure 1.14). As a result, they
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Figure 1.14: Interpreted axes of symmetry from silhouettes. Viewers
consider the polygons as silhouettes that have a near-vertical axis of
symmetry. The dotted arrows show conceptually interpreted matching
parts. (a) Near symmetric figures result in planes of symmetry perpen-
dicular to the picture plane, (b) Near asymmetric figures result in planes
of symmetry parallel to the picture plane. Adapted from [138]

universally construe the shapes as silhouettes of bilaterally symmetric 3D objects
because 3D symmetry can be a strong heuristic for limiting orientation [138].

It could be possible that human visual system selects 3D cues, determines
the 3D orientation of the shape, mentally rotates the images to the fronto-parallel
plane, and detects symmetry in it (use the mentally rotated image rather than the
retinal image) [207]. However the drops in performance observed in [223] can not
be explained by this hypothesis.

If the symmetry in the retinal image is deteriorated, its perceptual salience
is also weakened (symmetry detection is not obstructed when an image is rotated
about the x-axis but it is severely hampered by rotations about the y-axis). The data
from [223] implies the visual system analyzes the retinal projections of 3D rotated

symmetries as an integral part of 3D object perception; not as a post-normalization
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process.

1.7.8 Symmetry Effect and Asymmetry Effect

It is well known that if the deviation from exact symmetry is not too huge,
approximate symmetry can still convey the visual impression of symmetry [11]. The
mechanism of symmetry detection is not highly accurate and symmetry perception
becomes less sensitive when the location of the axis is not central [81].

The assumption of symmetry effect is that forms with high degree of symmetry
would be so exaggerated by perceivers that the forms are considered more symmet-
ric than they actually are [65]. This is a bias in detecting global symmetry and a
small local departure from global symmetry is not noticeable for cost-effective rep-
resentations of stimuli. A nearly symmetric form is found more similar to (or more
confusable with) a more symmetric pick than to a less symmetric choice: Symmetry
effect. (Figure 1.15)

The disposition to the more symmetric form prevails only in highly symmet-
ric conditions. In low symmetric conditions, an asymmetric alternative is chosen:
Asymmetry effect.

By the holographic model (Section 1.7.9.2), these effects are not induced by
an erroneous assessment of the degree of symmetry, rather by a correct estimate of

the symmetry-to-noise ratio [48].
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Figure 1.15: Tripartite comparison of a pedestal’s imperfect symmetry
(upper) with a more symmetrical object (down-left) and a less symmet-
rical object (down-right). The task is deciding which of the two targets
at bottom is more similar to the pedestal at top. Adapted from [65]

1.7.9 Representational Models of Symmetry Detection

Representational models try to detect visual regularities from stimulus ele-

ments by specifying the structures and geometric relationships between them.

1.7.9.1 Transformational Approach(TA)

TA takes symmetries as one of visual regularities that leaves its configura-
tion invariant under reflection. It claims the human visual system is sensitive to
these kinds of invariant group transformations, e.g., translation, rotation and re-
flection [158]. But TA could not explain why symmetry (reflection) is more salient

than repetition (translation).
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Figure 1.16: (a) The transformational approach (invariance under mo-
tion); it puts a block structure to symmetry (left) and repetition (mid-
dle), because the whole symmetry halves and the all duplicates are the
units associated with each other. (b) The holographic approach (in-
variance under growth); it gives a point structure to symmetry, a block
structure to repetition, and a dipole structure to Glass patterns (right),
because corresponding pairs, blocks, and dipoles are the units that can
be stretched out while preserving the regularity of the structure in them.
Adapted from [222]

1.7.9.2 Holographic Approach(HA)

HA is about goodness [219], i.e., the detectability of regularities and nested
regularities regardless of noise, and unlike TA’s invariance under motion, HA is
about invariance under growth.

According to HA, bilateral symmetries have a point structure, and repetitions
a block structure that can be used to quantify the goodness of a regularity by the

weight of evidence. (Figure 1.16)
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1.7.10 Scale Invariance

When we are trying to gauge the strength of symmetry stimuli, there are
numerous candidates: peak spatial frequency that covers the symmetry integration
region, numerosity (number of elements), element density (number of elements per
unit area), or display size. Interestingly, the results of the experiment manifest
that the spatial integration region, a place integrates information, for symmetry is
unaffected by changes in stimulus spatial frequency, numerosity, or size [178]. That
is, the amount of information garnered from a stimulus is constant against size,

number of elements and spatial frequency.

1.7.11 Template Model and Mental Rotation Model

There are 2 descriptive models of the perceptual reference frames (similar to

[40] in object perception) in the context of symmetry perception:

e Template model - There is a template for each angle of symmetry axis that

detects the symmetry in a pattern (Orientation-dependent).

e Mental rotation model - There is a single mechanism to detect symmetry and
all other reflective symmetries are detected by mentally rotating the shape to

align it’s vertical symmetry axis (Object-centered).

Several experiments were done to test these two models, however, the results are
still open to interpretation. Zabrodsky [247] claims that there is more than one

strategy for symmetry detection on the basis of conflicting results.
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1.7.12 Symmetry Detection Can Be Learned?

The controversy over whether the symmetry detection is innate or learned of-
ten gets answered with “It is somewhere in between”; Infants discriminate vertically
symmetric forms from asymmetrical ones (or horizontally symmetrical ones), which
validates sensitivity to the symmetrical pattern rather than components in the pat-
tern [63, 172]. This finding corroborates the claim that symmetry has a prevailing
position in early perceptual development over other perceptual components and that
newborns tend to perceive a pattern as a whole. Zabrodsky [247] argues symme-
try detection has some initial bases in anatomical and physiological mechanisms,

however, is fine-tuned by our experience and learning.

1.7.13  Structure-From-Motion (SfM) and Symmetry in 3D Repre-
sentation

One of the important task of the visual system is to institute a 3D represen-
tation from the visual stimuli affecting the retina. To achieve this goal, it utilizes
many depth cues including but not limited to shading, texture gradients, and mo-
tion. Out of those cues, the kinetic depth effect known as structure-from-motion
(SfM) can elicit strong volumetric perception [26].

Symmetry, a strong one-object cue, can give a structural cue to this 3D rep-
resentation because conceptual thresholds for shape detection become much lower
when the shape considered is symmetric than asymmetric [212].

A study on the relation between symmetry and SfM found that at the level of

30



Classical interpretations

(a) Stimulus /" % @

o0 (Counter)clockwise rotating cylinder
® [ ]
o o New interpretations
= \ </q/[ %
Crossing Collldlng
surfaces surfaces

Figure 1.17: Conflicting perceptual interpretations of a symmetric mo-
tion. (a) Scheme of the vertically symmetrical stimulus, (b) Interpreta-
tions of a rotating cylinder, and (c¢) Symmetric surfaces either crossing
or colliding each other. Adapted from [211]

surface perception the perceptual competition between the symmetric surfaces and
the rotating cylinder surface is resolved [211]. According to these results, SfM is
regarded as an interactive process, which subsumes not only motion cues but also

form cues, i.e., symmetry (Figure 1.17, 1.18, 1.19).

1.7.14 Symmetry Related Brain Parts

A functional MRI (fMRI) experiment shows robust activity of higher-order

regions of human visual cortex (areas V3A, V4, V7, and LO) associated with the
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Figure 1.18: Four possible interpretations of the motion direction of
symmetry surfaces. (a) and (b): For both crossing surfaces or colliding
surfaces, either the two surfaces rotate at fixed position (upper) or wind
toward the observer without touching physically. Adapted from [211]

Stimulus

Figure 1.19: Competition between grouping by motion (common fate)
and grouping by symmetry. The perceptual choice decides the depth
difference between the groups. Adapted from [211]
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visual exposure (both with and without attention control) to symmetric stimuli (Es-
pecially, V3A and LOC are known for the designated region for feature integration)
but no meaningful symmetry-specific reaction in MT/V5 (regions for surface inter-
polation) [194]. The dot (not line) stimuli might induce the lack of robust activity
in V1 and V2.

Against symmetric dot stimuli, symmetry axes manifest the same tilt-aftereffects
as luminance-defined contours [224]. Judging from these results, similar mechanisms
might support the encoding of symmetry as well as the orientation. This result is
in agreement with studies [179, 178] that indicate the concurrent processing of sym-
metry perception at various spatial scales and for different orientations, implying

that simple filters in V1 '* could be involved in symmetry perception.

1.7.15 Some Interesting Factoids

There are some interesting factoids based on evolutionary theory about the

relationships between symmetry and human behavior on attractiveness [227].

e Departures from symmetry mirror an individual’s inability to keep develop-

mental homeostasis [163].

e Predilection for a symmetrical mate is an evolutionary adaptation for the pos-

itive genetic effects on offspring survival not due to perceptual preference [70].

e Facial symmetry is more susceptible to environmental perturbations [70].

M Clusters of neurons in V1 and V2 respond to bars of specific orientations, or combinations
of bars in a selective manner. These orientation selective neurons in area V1 respond to a line
segment of a particular orientation in a specific visual area.
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Figure 1.20: Brain activation caused by symmetric patterns. (A), (B)
Example of the dot stimuli. (C) Brain activation in the right hemi-
sphere (posterior-lateral view), (D) The “inflated” cortex format. (E)
Symmetry-biased activation in the “flattened” cortex format, (F) Aver-
age symmetry-biased activation. Adapted from [194].
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Men and women look more attractive when their faces and bodies are close to
symmetrical [13, 165]; the attractiveness of symmetry is cross-cultural/cross-
racial agreement [183]. However, several recent studies have shown that sym-
metry is not a principal factor in an attractiveness assessment [251] and func-

tionally asymmetrical faces can be perceived as attractive [250).

Facial symmetry serves as a certificate of health in regard to mate poten-

tial [13].

Higher symmetry induce greater procreative potentiality [29].

Female breast symmetry takes part in mate choice related adaptations since
it is linked to best care for children [228]. Women with symmetrical breasts

have more children.

Men who use breast symmetry as a cue for mate selection would gain a se-
lective advantag