
ABSTRACT

Title of dissertation: Testing GUI-based Software with
Undetermined Input Spaces

Bao N. Nguyen, Doctor of Philosophy, 2013

Dissertation directed by: Professor Atif M. Memon
Department of Computer Science
University of Maryland, College Park

Most software applications feature a Graphical User Interface (GUI) front-end

as the main, and often the only, method for the user to interact with the software.

System-testing a software application requires it to be tested as a whole through the

GUI. Testers need to generate sequences of GUI events (e.g., mouse clicks and menu

selections) to exercise various behaviors of the application. Because the input space

of a typical GUI (i.e., the space of all possible GUI events and their interactions) is

often enormous, manual GUI testing is impractical. Model-based testing is a new

approach that automatically and systematically generates a large number of test

cases by leveraging a formal model representing the GUI input space. Unfortunately,

modern applications often have a “context-sensitive reachability GUI,” in which

the GUI components are only reachable with some particular state or environment

constraints. Thus, it is challenging to determine the GUI input space and and obtain

a GUI model for automated GUI testing.

This research proposes new testing techniques to tackle the challenges in

model-based GUI testing. The central thesis is this: GUI-based applications can

be effectively and efficiently tested by systematically and incrementally leveraging

the application runtime execution observations.

To explore the thesis, a novel model-based testing paradigm called Observer-

Model-Exercise* (OME*) is developed. This paradigm relies on the opportunistic

observations obtained during test case execution to incrementally explore the GUI

input space and construct a GUI model for test case generation.

To evaluate OME*, an open-source automated model-based GUI testing frame-

work called GUITAR is developed. An empirical study with 8 widely-used open-

source applications demonstrated that the OME* approach is feasible. Compared to

previous model-based testing approaches, OME* was able to increase the GUI input

space discovered by as much as 1,044%. As a result, 34 new faults were detected in

the subject applications.

Testing GUI-based Software With Undetermined Input Spaces

by

Bao N. Nguyen

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2013

Advisory Committee:
Professor Atif M. Memon, Chair and Advisor
Professor Ashok K. Agrawala
Professor Pete Keleher
Professor Alan Sussman
Professor Gang Qu

c© Copyright by
Bao N. Nguyen

2013

Acknowledgments

This dissertation would not have been possible without the help, encourage-

ment, and support of many other people.

I would like to thank my advisor, Atif Memon, for his continuous advice,

support, and encouragement since I first came to UMD. I was very fortunate to

have Atif as my advisor. I would also like to thank my other thesis committee

members, Ashok Agrawala, Pete Keleher, Alan Sussman and Gang Qu, for giving

me valuable feedback on the thesis, and selfless support in the process.

Many of my colleagues commented on my ideas, critiqued my drafts, directed

me to related work, or provided bug patches for my programs. I am grateful to

Penelope Brooks, Jaymie Strecker, Scott McMaster, Xun Yuan, Mike Lam, Ishan

Banerjee, Ethar Elsaka, Leslie Milton, Bryan Robbins, and Bryan Ta.

Special thanks to the students in two classes CMSC 435 and CMSC 737 for

their contributions to the GUITAR project. I would also like to acknowledge the

open-source community for making their software publicly available. Without their

products, I would not be able to conduct my experiments to validate my research.

Part of my research was funded by the National Science Foundation and the

Vietnam Education Foundation. I am grateful to all the folks in these organizations.

Their financial support allowed me to concentrate on research.

Finally, I own my deepest thanks to my family, especially my parents and my

loving wife, Trang. Their exceptional support, love, and understanding have been a

constant source of encouragement for me during my PhD.

ii

Table of Contents

List of Tables v

List of Figures vi

1 Introduction 1
1.1 Thesis Statement . 7
1.2 Approach . 7
1.3 Related Work . 9
1.4 Research Scope . 12
1.5 Dissertation Outline . 12

2 Background 14
2.1 Running Example . 15
2.2 Test Case Generation Techniques . 17

2.2.1 State Machines . 17
2.2.1.1 Finite State Machines 18
2.2.1.2 Variable Finite State Machines 21
2.2.1.3 Complete Interaction Sequences 23
2.2.1.4 Off-nominal Finite State Machines 27

2.2.2 Workflows . 29
2.2.2.1 Event Flow Graph 30
2.2.2.2 Event Interaction Graph 32
2.2.2.3 Event Semantic Interaction Graph 35
2.2.2.4 Off-nominal Event Graph 41

2.2.3 Pre- Post-Condition Models 44
2.2.4 Event Sequence-Based Models 47
2.2.5 Probabilistic Models . 50
2.2.6 Combinatorial Interaction Models 54

2.2.6.1 Latin Squares . 54
2.2.6.2 Covering Arrays . 56

2.2.7 Hierarchical Models . 57
2.2.7.1 Keyword-driven Models 58
2.2.7.2 Hierarchical Finite State Machines 62
2.2.7.3 UML Diagram-based 64

2.3 Summary . 67

3 Observe-Model-Exercise* Testing Paradigm 69
3.1 Overview . 70
3.2 Realizing the OME* Paradigm . 76

3.2.1 Contribution 1: Context-Aware Mapping 76
3.2.2 Contribution 2: Simultaneously Extracting New Model Ele-

ments During Test Execution 79
3.2.3 Contribution 3: Unique Widget Signatures 82

iii

3.2.4 Contribution 4: Incremental EFG+ Enhancements 85
3.2.5 Contribution 5: Incremental Test-Case Generation 87

3.3 Summary . 88

4 GUITAR: A Generic Model-based GUI Testing Framework 89
4.1 Overall Architecture . 89

4.1.1 Model Core . 90
4.1.2 Platform-independent Components 92
4.1.3 Platform-specific Components 94

4.1.3.1 The Ripper . 96
4.1.3.2 The Replayer . 97
4.1.3.3 Using Executors . 98

4.2 Creating Testing Workflow . 99
4.3 Extending GUITAR . 101

4.3.1 Within-platform Extension . 101
4.3.1.1 Custom GUI Components 102
4.3.1.2 Custom Event Types 103

4.3.2 Cross-platform Extension . 104
4.4 GUITAR in Practice . 107
4.5 Summary . 111

5 Empirical Evaluation 113
5.1 Research Questions and Metrics . 113
5.2 Selecting & Setting Up Software Subjects 114
5.3 Defining Functions for Unique Signatures 117

5.3.1 Sandbox and Text Parameters 118
5.4 Running the Experiment . 119
5.5 Threats to Validity . 122
5.6 Results . 123
5.7 Discussion . 132
5.8 Benchmark . 135
5.9 Summary . 135

6 Conclusions 136
6.1 Discussion . 137

6.1.1 Effectiveness . 137
6.1.2 Efficiency . 138
6.1.3 Limitations . 139

6.2 Future Work . 141

Bibliography 146

iv

List of Tables

2.1 GUI Testing Techniques Discussed. 14
2.2 Technique Taxonomy. 15
2.3 Events available on each widget. 16

3.1 Partial Mapping. 77

4.1 Accessing GUI component information 106
4.2 Mapping the internal GUI objects . 107
4.3 Performing GUI events . 107
4.4 GUI platforms supported by GUITAR 108

5.1 Subject applications . 116
5.2 Automated Widget/Window Identification vs. Manual Oracle. 119
5.3 Test Cases Generated and Execution Time 122
5.4 Data for RQ1 and RQ2. 124
5.5 Summary of faults detected in the iterative phases of OME* 130

v

List of Figures

1.1 MS Word 2010 motivating example. 4

2.1 The Radio Button Demo Application. 16
2.2 The Finite State Machine for Radio Button Demo. 19
2.3 Variable Finite State Machine. 22
2.4 FSM for the create a new shape responsibility. 27
2.5 Faulty Complete Interaction Sequence - dotted edges are transitions

in the CIS. 29
2.6 Event Flow Graph. 31
2.7 Event Interaction Graph. 34
2.8 Event semantic interaction example. 36
2.9 Event Semantic Interaction Graph. 41
2.10 Inverse Event Sequence Graph. 43
2.11 A Task Specification. 46
2.12 AI Planning. 47
2.13 Example test cases. 51
2.14 Probabilistic Event Flow Graph with history H = 2. 53
2.15 2-way Covering and Covering Array. 57
2.16 Label Transition Systems. 59
2.17 Hierarchical Finite State Machine (self-loops are omitted for readabil-

ity). 65
2.18 Use case diagram. 67

3.1 Running example. 71
3.2 Available Events Observed During Execution. 78
3.3 Code to collect GUI widget states. 81
3.4 A partial window hierarchy of MS Word. 86

4.1 GUITAR component architectures. 91
4.2 The Executor component. 95
4.3 A simple GUITAR-based testing workflow. 100
4.4 Customized component in JabRef Preferences window. 103

5.1 Continuous Integration Testing System. 121
5.2 OME* sees more of the EFG with each iteration. 129

6.1 Reaching the “Project Properties” window in DrJava. 144
6.2 Reaching the “New To Do Item” window in ArgoUML. 145
6.3 The user inactivity warning window in Rachota. 145

vi

Chapter 1

Introduction

Graphical User Interface (GUI) is an integral component of contemporary software

applications. To the end-users, the GUI is the only part of the software that they can

actually “see” and interact with. A GUI abstracts away the complexity of the back-

end components such as databases, communication systems and hardware. Because

the only way to access the functionalities of GUI-based software is through its GUI,

system testing a software often means ensuring it works properly and reliably as a

whole at the GUI level. GUI testing is the process of executing sequences of GUI

events1 (i.e., GUI test cases) on the software’s GUI front-end to reveal any possible

defect.

The most prominent features of a GUI are the ease-of-use and the flexibil-

ity that it offers to both software users and software developers. Unfortunately,

these features also create many challenges for software testing. Testing an appli-

cation with a GUI front-end requires testers to handle (1) the enormous number

of GUI components, (2) the complexity and diversity of GUI behaviors, and (3)

the susceptible-to-change nature of GUI designs. Over the last decades, there have

been many advances in automation for “behind-the-scenes” software testing activi-

1A GUI event (e.g., click-on-Cancel-button, select-Radio-button) is the action that a user per-
forms on a widget (e.g., Cancel button, Radio button). Whenever the context is clear, we use the
terms “event” and “widget” interchangeably; e.g., when we say “the user performs the Cancel
event” we actually means that “the user performs the action click-on the Cancel button widget.”

1

ties such as unit testing [1, 2, 3], concurrency testing [4, 5], security testing [6, 7],

and performance testing [8, 9]. However, GUI testing still remains a largely manual

and ad hoc process [10, 11, 12, 13]. This research aims to address the challenges in

GUI testing automation.

Why is the automation of GUI testing so difficult? Consider how GUI-based

software applications are tested today. Most often, a tester is given a set of tasks

with the goal of verifying that these tasks can be performed using the software; and

that the software does not “behave badly.” Sometimes, the tester is also given a

set of use cases with high-level descriptions of their steps (e.g., “save the file”, “load

the document”). The tester executes these high-level steps by using GUI widgets on

which events can be performed. The choice of which events to execute is most often

left to the tester. For example, the tester may perform “save the file” in one of three

ways: (1) click on the Save icon in the toolbar, (2) use menu items File→Save, or (3)

use alternative menu items File→Save As followed by a file name in the text-box.

During this process, the tester may discover new ways to combine certain events to

perform a task.

The tester does not always have a complete picture of the GUI’s input space

(i.e., the space of all possible GUI events and their interactions). In many software

development environments, the tester is not usually supplied a blueprint of the GUI

or its set of allowable workflows. In principle, the tester has no idea of what event

sequences were missed during the testing process. End-users may execute untested

event sequences and encounter failures. Moreover, the implemented GUI may allow

event sequences that the designers never wanted to allow. But there is no way for a

2

tester to determine which sequences are missed and which should not be allowed.

Human testers have the experience and domain knowledge to navigate through

and verify the correctness of such systems with unknown or partially known input

spaces without the aforementioned blueprint [10]. For example, a human tester who

clicks on a button labeled Close expects that something (most often the current

window) in the GUI to close, and all of its constituent events to become subsequently

unavailable. Similarly, in MS Word 2010, Figure 1.1(a), a human tester creating a

new document will expect the menu structure (and corresponding set of available

events) to be different for a blog type of document versus a conventional blank

document.

However, automated test harnesses and tools lack the experience and domain

knowledge of humans. Without a representation of allowed and disallowed work-

flows, they are unable to reason their way out of an unexpected situation. This

causes many GUI testing tools to either (1) rely on a human tester or (2) perform

very limited automated testing tasks. An example of the former is the capture/re-

play (record/playback) tools [14] to recreate manually pre-recorded (or programat-

ically coded) event sequences. An example of the latter is the random testing tools

such as the Monkey2 and Eclipse-based GUIdancer3 to perform simple random walks

of the user interface, execute events as encountered and detect crashes.

Recently, a new GUI testing approach called model-based testing [15, 16, 17]

has been developed. This approach creates a graphical model of the GUI input

2http://developer.android.com/guide/developing/tools/monkey.html
3http://www.guidancer.com

3

http://developer.android.com/guide/developing/tools/monkey.html
http://www.guidancer.com

Publish

Home

Page
Page

Layout

References

Mailings

Review

View

Create

Blank

document

Blog post

Insert

Insert

(a) The Create button (top) is context-driven; the selected document type, either Blank document
or Blog post, creates different events (bottom-left for Blog; bottom-right for regular document).

(b) The partial event-flow graph.

Figure 1.1: MS Word 2010 motivating example.

space and obtains test cases by automatically and systematically traversing the

model. The most popular GUI model used is the event-flow graph (EFG) [18].

4

An EFG is essentially a type of GUI blueprint containing all workflows allowed by

the GUI’s structure and events. More specifically, it is a directed graph structure

with nodes that represent events, and edges that represent the follows relationship.

The relationship “ex follows ey” means that event ex may be executed immediately

after event ey along some execution path in the GUI. This is represented as an edge

from node nx to ny, where nx represents ex and ny represents ey. Part of the EFG

for the GUI of Figure 1.1(a) is shown in Figure 1.1(b). The EFG contains edges

from Create to Publish, Home Page, and Insert (in Blog post window) ; and to

Page Layout, References, Mailings, Review, Insert, and View (in Blank Document

window). Each of these events may be executed immediately after Create in the

GUI.

It is not straightforward to create an EFG for a GUI. In previous work, a

reverse engineering technique called GUI Ripping was developed to automatically

create an approximation of the EFG [19]. The GUI Ripper dynamically traverses the

GUI, opening windows, performing events, keeping track of all windows seen, and

using algorithms to construct an EFG. The goal of Ripping is not to test the GUI’s

events; rather, it attempts to open as many windows as possible, extracting events

from each, and computing the follows relationship. Because the Ripper performs a

generalized, fully automatic traversal, it may miss application-specific parts of the

GUI that are “guarded” with very specific inputs (such as a password) or behavior

that requires very specific combinations of inputs, such as context-sensitive menu

items. In our example of Figure 1.1(a), starting with the top-most window, the

Ripper would select Blank document (because it is the first icon in the list) and then

5

click Create. This opens a new window. After the Ripper has finished interacting

with this window and of its all sub-windows, it returns to the top window and

performs all remaining events. Unfortunately, without any human intervention, the

Ripper does not know that it needs to perform Create again, and in a specific context

where the Blog post icon is selected, to reveal the bottom-right state of the main

window. Hence, this window part will never be reached and events Page Layout,

References, Mailings, Review, and View will be missed.

Existing testing approaches assume that it is straightforward to fully determine

the GUI input space and to create a GUI model for testing. Unfortunately, this

assumption does not hold true for most modern software. Today, software often has

a “context-sensitive reachability GUI,” in which GUI components are only reachable

under some certain state and environment conditions. In our example, depending on

the document options selected, clicking on the Create button will lead to different

sets of GUI components. Another example is on the GUI of mobile devices where

GUI components are often hidden and only pop up in specific senarios. With such

complex and dynamic GUIs, it is not easy to determine which GUI events are

available and how they are related. The current GUI testing approaches rely on an

incomplete GUI input space; thus, they are unable to adequately test the GUI. As

a result, GUI defects are still very common [20, 21].

6

1.1 Thesis Statement

This work aims to overcome the limitations in the current model creation approaches

in model-based testing, specifically the GUI Ripping technique. The key idea is that

the runtime information available during software execution can be valuable in un-

derstanding the structure of the GUI input space. By systematically leveraging this

information, the GUI input space can be incrementally determined as the software

runs.

This leads to the following thesis statement:

GUI-based applications can be effectively and efficiently tested by systemati-

cally and incrementally leveraging the application runtime execution observations.

1.2 Approach

To prove the above thesis, we develop a new paradigm Observe-Model-Exercise*

(OME*) for GUI testing. Starting with an incomplete model of the GUI’s input

space, a set of coverage elements to test, and test cases, OME* iteratively (1) ob-

serves the existence of new events during execution of the test cases, (2) expands

the model of the GUI’s input space, computing new coverage elements, and (3) ob-

tains new test cases to exercise the new elements. The star in the paradigm’s name

represents the iterative nature of the testing process.

This work makes 5 main contributions, corresponding to 5 challenges for test-

ing applications with a context-sensitive GUI:

Challenge 1: It is challenging to generate specific event sequences to repli-

7

cate context-sensitive behaviors. Because events and event sequences are context

sensitive, they may have been observed due to the execution of particular prior event

sequences.

Contribution 1: We make use of a new context-aware mapping that maintains

information about the event sequences that were used to reach model elements.

Challenge 2: It is hard to devise new event sequences that reveal new parts

of the input space and help to enhance the model without incurring significant

additional cost.

Contribution 2: We simultaneously extract new GUI model elements–events

and follows relationships–during test execution.

Challenge 3: It is not straightforward to identify new events, i.e., to deter-

mine in multiple contexts whether an event has already been seen before.

Contribution 3: We develop a unique signature for each widget and matching

heuristics to help detect new widgets.

Challenge 4: It is complex to incrementally make changes to the model to

add new elements.

Contribution 4: We develop new operations on the EFG+ to incrementally

enhance the model as new information becomes available.

Challenge 5: It is challenging to incrementally generate new test cases.

Contribution 5: We develop an algorithm to compute new test requirements

from recent model enhancements and generate test cases to satisfy the requirements.

Our final contribution is our experiment, involving 8 open-source applications

on which we executed over 400,000 test cases and consumed almost 1000 machine

8

days. We compared OME* with the current state-of-the-art. We saw significant

improvements, both in terms of new areas of the input space that we explored, and

fault detection – we fully automatically detected 34 new faults in these applications.

1.3 Related Work

The GUI Ripping technique proposed in 2003 [19] set the stage for using the execut-

ing GUI software itself to automatically model its own input space. In summary, the

Ripper starts at the main window of a software application under test, automatically

detects all ‘clickable’ GUI widgets and exercises the application by systematically

executing these elements. The GUI structure obtained is then converted to an EFG,

which is subsequently used to systematically generate test cases. Since then, sev-

eral techniques have been developed to augment the EFG model using annotations.

For example, Yuan et al. [22] annotated the EFG with semantic information de-

rived from the runtime state of the GUI. However, these approaches were unable to

discover unexplored parts of the input space.

A technique called exploratory testing [5, 10] is closest to our current approach.

In exploratory testing, human testers manually explore the system under test with-

out fully knowing its input space. As the system is being tested, they learn the

system’s behaviors and manually decide what to do next. There is no predetermined

test script or test input. This technique takes advantage of the testers’ experiences

and provides rapid feedback to the developers. However, because it relies heavily

on human skills, the results are often subjective, hard to replicate [23], and difficult

9

to apply to large systems [13].

Extending the work on GUI ripping, Mesbah et al. [24] leverage a crawl-

based technique to reverse engineer the structure of a website under test. A tool

called Crawljax automatically detects all ‘clickable’ web elements and crawls the

website by exercising these elements. The website structure is then analyzed to

construct an intermediate abstract state machine model, which is used as a skeleton

to systematically generate test cases. Saxena et al. [6] extend this technique by

adding a string constraint solver to the crawler to better explore the event space.

The remainder of the related work we discuss here shares a common theme.

During test execution, these approaches keep track of all new event handlers, object

states and web services observed during execution and try to generate additional

test cases to exercise these new elements.

In web application testing, Artzi et al. [25] use execution states to generate

additional test inputs. Due to the nature of the web applications, the event handlers

can be dynamically registered to and removed from the client at runtime. An

execution unit dynamically monitors the set of events registered at a particular

time and attempts to exercise them.

In object-oriented unit testing, Dallmeier et al. [26] dynamically synthesize a

state-machine model by monitoring the object states in different executions. As test

cases are executed, new object states are observed and incrementally incorporated

into the original model. The extended model is then used to generate additional

test cases until some stopping criterion is met. To further enhance the model, a

source code scanning technique is used to extract all available method calls. The

10

methods are invoked from all obtained states in a trial-and-error process, to reveal

possibly unobserved class behaviors. Zhang et al. [9] present a similar approach

but use advanced static analysis techniques to infer the constraints between method

calls and their arguments. The constraints help to avoid generating illegal test cases

as well as to direct test case generation toward unexplored program behaviors to

achieve higher code coverage. At the system level, Walkinshaw et al. [27] propose a

similar approach but for embedded system testing.

In service oriented application (SOA) testing, Bartolini et al. [28] introduce

an approach to “whiten” the binary services from the external, third-party libraries

to support testing the service consumers. An intermediate agent is added to the

services through instrumentation to expose their coverage level as the test cases

are executed. Based on the data collected, the test case generator can infer the

internal behaviors of the services and decide how to generate test cases for the

service consumers.

Our work differs from the above approaches in several ways. First, our target

domain is that of GUIs, which have enormous, possibly infinite, input spaces. GUI

applications increasingly integrate multiple source code languages and object code

formats, along with virtual function calls, reflection, multi-threading, and event-

handler callbacks. These features severely impair the applicability of techniques

that rely on static analysis or the availability of platform-specific and format-specific

instrumentation tools. Second, we have a fully automated and scalable technique.

Our underlying model is an EFG rather than a state machine, which, for reasons

discussed in prior work [29] are more appropriate for this domain. Third, our model

11

enhancement is based on new events, not states. In other words, we are extending

the input alphabet which is often considered unchanged in the state machine models.

Finally, most of the above approaches rely on code instrumentation. Our approach,

in contrast, does not require any knowledge of intermediate binary code or source

code.

1.4 Research Scope

GUIs may be used as front-ends to any different types of software applications.

Thus, the number of all possible GUIs is enormous. It would be extremely difficult

to create a universal testing approach to work with all possible types of GUIs.

In this dissertation, to provide focus, we only consider a sub-class of GUIs. In

particular, the GUIs of our interest react to events performed only by a single user;

the events are deterministic, i.e., their outcomes are completely predictable. Testing

GUIs that react to temporal and non-deterministic events is beyond the scope of

this research.

1.5 Dissertation Outline

The remainder of this dissertation is structured as follows. Chapter 2 provides a

background review and discusses the existing related work in more detail. Then

we present the formal models and algorithms to realize the OME* testing paradigm

(Chapter 3). We describe our experimentation tool implementation (Chapter 4) and

an empirical evaluation for OME* (Chapter 5). Finally, we conclude with a discus-

12

sion of our testing approach and provide directions for future work (Chapter 6).

13

Chapter 2

Background

The testing approaches presented in this work belongs to the family of model-based

techniques for testing GUI-based applications. This chapter presents a survey on

existing model-based GUI testing techniques to provide a research context for this

work. The techniques surveyed are summarized in Table 2.1.

In summary, all techniques require the creation of a model of the software or

its GUI, and algorithms to use the model to generate test cases. The techniques

of interest to us employ 6 distinct models, shown in Column 1 of Table 2.1; the

“hierarchical” model uses a combination of these models organized in a hierarchy.

Model Technique Abbreviation Section

State machine

Finite State Machine FSM 2.2.1.1
Variable Finite State Machine VFSM 2.2.1.2
Complete Interaction Sequence CIS 2.2.1.3
Faulty Complete Interaction Sequence FCIS 2.2.1.4

Workflow

Event Flow Graph EFG 2.2.2.1
Event Interaction Graph EIG 2.2.2.2
Feedback based ESIG 2.2.2.3
Faulty Event Sequence Graph FESG 2.2.2.4

Pre- Post-condition AI Planning AI 2.2.3
Event sequence Genetic Models GA 2.2.4
Probabilistic Probabilistic Event Flow Graph PEFG 2.2.5

Combinatorial
Latin Squares LS 2.2.6.1
Coverage Arrays CA 2.2.6.2

Hierarchical

Keyword-driven Model KW 2.2.7.1
Hierarchical Finite State Machines HFSM 2.2.7.2
UML-Diagram Based UML 2.2.7.3

Table 2.1: GUI Testing Techniques Discussed.

There are two important aspects of each technique that we discuss. First is

the model that it employs. In some cases, the models are created manually; in

14

others, they are derived in an automated manner. The second important aspect

is the test-case generation approach, which, for some techniques is manual; but

for most is automated. Table 2.2 shows the set of techniques discussed in this

chapter, partitioned along two dimensions: (model creation {manual, automated},

test generation {manual, automated}).
hhhhhhhhhhhhhhhhhhTest generation

Model creation
Manual Automated

Manual FSM, VFSM, CIS,
FCIS

—

Automated KW, FESG, AI,
GA, PEFG, LS,
CA, HFSM, UML

EFG, EIG, ESIG

Table 2.2: Technique Taxonomy.

The remainder of this chapter presents these techniques. But first, we present

a small GUI application, that we use as a running example. This running example is

used to illustrate the important aspects of each technique, and its relative strengths

and weaknesses.

2.1 Running Example

The simple running example application called “Radio Button Demo” is seen in

Figure 2.1. The GUI contains 9 widgets labeled w0 through w8. A user can perform

events on almost all the widgets (there is no event available on w4). Table 2.3 shows

the events associated with each widget. We note that in this simple example, each

widget has at most one associated event. In a more complex GUI, a widget may

have multiple associated events.

The application’s functionality is very straightforward – the initial state has

15

w
4

w
5

w
8

w
6

w
7

w
2

w
1

w
0

w
3

Figure 2.1: The Radio Button Demo Application.

Widget Event name
w1 circle
w2 square
w3 create
w5 reset
w0 exit
w6 (un)check
w7 yes
w8 no

Table 2.3: Events available on each widget.

Circle (corresponding to w1) selected, the Rendered Shape area (widget w4) is

empty and the Reset button is disabled. Events are used to change the state of the

GUI. Event circle sets the radio button setting to circle; if there is already a square in

the Rendered Shape area, then the shape is immediately changed to a circle. Event

square is similar to circle, except that it changes the shape to a square. Event

create creates a shape in the Rendered Shape area according to current settings of

w1 and w2. Event reset resets the entire software to its initial state. This event

is only available when there is an existing shape. Event exit opens a modal “Exit

16

Confirmation” window that contains widgets w6, w7, and w8. This window blocks

all widgets in the main window when open. Event (un)check changes the status of

the check-box w6 (originally unchecked) so that when it is checked the exiting time

will be logged to a file before the application is terminated. Event no closes the

window and moves focus back to the main window; and event yes closes the entire

application.

The GUI of this application is simple, yet quite flexible. The numbers of 1-,

2-, 3-, 4-, and 5-way unique event sequences (and hence possible test cases) that

may be executed in the initial state of the GUI are 4 (remember that the Exit

Confirmation window is initially closed and w5 is disabled), 17, 66, 253, and 798

respectively.

2.2 Test Case Generation Techniques

This section presents an overview of all the techniques listed in Table 2.1. The

techniques are classified according to the underlying model used.

2.2.1 State Machines

Because GUIs are composed of objects (i.e., the widgets) that maintain state, in

terms of widget-properties (e.g., Enabled, Caption, Width) and their values (e.g.,

TRUE, “Cancel”, 20), many researchers have found it natural to model GUIs us-

ing state machines [30, 31, 32, 33]. For example, the GUI of Figure 2.1 starts in

an “initial state” in which, among other widgets, widget w3 is not selected and

17

w5 is disabled. If one were to model the state of the GUI as a set of triples

(widget, property, value), the initial state could be represented as {. . .,(w3, Selected,

FALSE), (w3, Enabled, TRUE), (w5, Enabled, FALSE), . . .}. As can be imagined,

depending on how one models the state, such machines can get extremely large for

non-trivial GUIs. In this section, we present several techniques that researchers

have employed to control this state space explosion. Esmelioglu et al. [30] use con-

straints, Shehady et al. [31] use global variables, White et al. [32] focus on a part of

the state machine, and Belli et al. [33] develop off-nominal test cases. We present

these techniques next.

2.2.1.1 Finite State Machines

In this section, we present details of the approach taken by Esmelioglu et al. [30],

who model the GUI as a finite state machine (FSM). Formally, a FSM can be

represented as a quintuple FSM = (S, I, O, T,Φ), where S is the finite set of GUI

states, I is the set of inputs, i.e., events that may be performed on the GUI, O is the

finite set of outputs, T is the transition function S × I → S that specifies the next

state as a function of the current state and input event, Φ is the output function

S × I → O that specifies the resulting output from a transition.

For GUI testing, a tester is free to select certain aspects of the software to

model in the state. For example, we choose to represent the state of the GUI using

4 of its elements: (1) log, which is 1 if w6 is checked, 0 otherwise; (2) exitWinOpen,

which is 1 if the Exit Confirmation window is open, 0 otherwise; (3) created which

18

S000C

circle S000S

square

S010C

exit

S001C

create

circle

square

S010S

exit

S001S

create

no

S110S (un)check

St

yes

no

S110C (un)check

yes

S011S

S111S

(un)check

yes

no

S011C

S111C
(un)check

yes

no

S100S

square

S100C circle

S101S

create

exit
square

circle

S101C

create

exit

reset

square/create

circle

exit

reset

square

circle/create

exit

(un)checkno

yes

(un)check

no

yes

(un)check

no

yes

(un)check

no

yes

log = 0

exitWinOpen = 0

created = 0

shape = Circle

log = 1

exitWinOpen = 1

created = 1

shape = Square

reset

exit

square/create

circle

reset

exit

square

circle/create

Figure 2.2: The Finite State Machine for Radio Button Demo.

is 1 if a shape is created, 0 otherwise; (4) shape which is either Circle or Square.

We can then represent the state of the GUI using a length 4 vector consisting

of the above 4 elements in the order specified above. For example, state S000C is the

initial state in which w6 is unchecked, the exit confirmation window is closed, no

shape is created at w4, and the shape radio button for circle is set. Similarly, S111S

is the state in which w6 is checked, the exit confirmation window is open, a shape

is visible at w4, and the shape radio button for square is set.

19

We use the above definition of GUI state to create an FSM. Figure 2.2 shows

the FSM of the GUI of Figure 2.1. Nodes in the graph represent states and edges

represent transitions; there are two special states (shaded nodes) in the FSM: the

initial state right after the software starts (S000C), and the terminal state when the

software has been terminated (St). Some of the state transitions are as follows: If

the Create button has never been clicked, then the user can transit between S000x

states by selecting different radio button options (x represents any value of the

corresponding state element, in this case x is either C or S). Once Create has been

clicked, the GUI transits to a new state where the third state element turns from 0 is

1 (i.e., a new shape has been created). The user can transit back and forth between

Sx0xC and Sx0xS by selecting different radio button options (x represents any value

of the corresponding state element). However, the user cannot do the same for the

pair (S01xC , S01xS) or S11xC states because the Exit Confirmation window blocks

all widgets in the main window.

Once the FSM has been created, test case generation from an FSM is very

intuitive. The test designer may start at the initial state, traverse edges of the FSM

as desired and record the transitions as events. For example, in Figure 2.2, a test

case could be: 〈square, circle, create, exit , (un)check , yes〉 which takes the software

through states S000S, S000C , S001C , S011C , S111C , and St.

Although FSMs are easy to create, they suffer from some major problems.

First, they do not scale for large GUIs. Moreover, the states may not have any

relationship to the structure of the GUI. Hence they can be difficult to maintain. A

new model called variable finite state machines (VFSMs), developed by Shehady et

20

al. [31], presented next, attempts to rectify some of these problems.

2.2.1.2 Variable Finite State Machines

Shehady et al. [31] use Variable Finite State Machines (VFSMs) for testing GUIs.

The key difference between VFSMs and FSMs is that VFSMs allow a number of

global variables, each of which takes values from a finite domain. The values of the

variables are used to compute the next state and the output in response to an input.

Transitions may also modify the values of these variables. In principle, the space of

GUIs that can be modeled using VFSMs is the same as those that can be modeled

using FSMs.

Formally, a VFSM is represented as a 7-tuple V FSM = (S, I, O, T,Φ, V, ζ),

where S, I, O are similar to their counterparts in FSMs, V = {V1, V2, V3, . . . , Vn}

(each Vi is the set of values that the ith variable may assume) and n is the total

number of variables in the VFSM. Let D = S× I ×V1×V2× . . .×Vn and DT ⊆ D;

T is the transition function DT → S and Φ is a function DT → O. Hence the

current state of each of the variables affects both the next state and the output of

the VFSM. ζ is the set of variable transition functions. At each transition, ζ is used

to determine whether any of the variables’ values have been modified. Each variable

has an initial state at startup.

Figure 2.3 shows an VFSM of the Radio Button Demo’s GUI. The VFSM is

much smaller than the corresponding FSM (Figure 2.2) because the states have been

simplified. Each state is simply represented by a length 3 vector, i.e., that specifies

21

S00C

circle
create [V = 1]

 (V == 1) reset [V = 0]

S00S

square

S01C
exit

circle

square
create [V = 1]

 (V == 1) reset [V = 0]
S01S

exit

no

S11C(un)check

St

yes

no

S11S

(un)check

yes

S10C

circle
create [V = 1]

 (V == 1) reset [V = 0]

S10S

square/circle

exit

square
create [V = 1]

 (V == 1) reset [V = 0]

exit

(un)check

no

yes

(un)checkno

yes

log = 0

exitWinOpen = 0

shape = Circle

log = 1

exitWinOpen = 1

shape = Square

Figure 2.3: Variable Finite State Machine.

whether log needs to be maintained, the Exit Confirmation window is open, and

the type of shape that has been selected.

The states have been simplified because the element created has been removed

from the state. This information is now maintained in a variable V that can take

values 0 and 1. Edges of the VFSM are annotated with predicates (shown in paren-

thesis placed before the edge label) and assignments to the variables (shown in

square brackets placed after the edge label). Initially, V is set to 0. Transitions are

taken depending on the outcome of the predicates. For example, the reset transition

is taken from S00C only if V == 1; once taken, it changes V to 0. Similarly, create

changes V to 1.

The VFSM created is much more concise (it has 9 states) than the original FSM

in Figure 2.2 (which has 17 states). This is because several states in the FSM are

grouped and represented by a single state in the VFSM. VFSMs can be converted

into their equivalent FSMs for test case generation. The key idea is to fold the

22

information of V and ζ into S and T . Given a VFSM’s S and V = {V1, V2, . . . , Vn},

the new FSM’s set of states Seq is obtained as Seq = {Si|Si ∈ S × V1 × V2 × V3 ×

. . . × Vn}, i.e., this creates a set of states that combines the information of the

states and the variables into one state. Similarly, the new FSM’s transition function

Teq : Seq × I → Seq may be created by combining the T and ζ functions of the

VFSM. Since the range of T is S and the range of ζ is V = {V1, V2, . . . , Vn}, Seq is

the Cartesian product of the two ranges; also T and S have the same domain.

2.2.1.3 Complete Interaction Sequences

Another approach to restrict the state space of a state machine is by employing

software usage information. The method proposed by White et al. [32] solves the

FSM’s state explosion problem by focusing on a subset of interactions performed on

the GUI. They key idea is to identify responsibilities for a GUI; a responsibility is a

GUI activity that involves one or more GUI objects and has an observable effect on

the surrounding environment of the GUI, which includes memory, peripheral devices,

underlying software, and application software. For each responsibility, a complete

interaction sequence (CIS), which is a sequence of GUI objects and selections that

will invoke the given responsibility, is identified. Parts of the CIS are then used for

testing the GUI.

The GUI testing steps for CIS are as follows.

1. Manually identify responsibilities in the GUI.

2. For each responsibility, identify its corresponding CIS.

23

3. Create an FSM for each CIS.

4. Apply transformations to the FSM to obtain a reduced FSM. These transfor-

mations include the following.

(a) Abstracting strongly connected components into a superstate.

(b) Merging CIS states that have structural symmetry.

5. Use the reduced FSM to test the CIS for correctness.

The two abstractions mentioned above (Steps 4a and 4b) are interesting from

a modeling point of view. They are described in more detail next.

Definition: A part of a FSM, called a subFSM, is a strongly connected compo-

nent if for every pair (S1, S2), S1, S2 ∈ S, there exists a directed path from S1 to S2.

Each such component is then replaced by a superstate and tested in isolation.

A subFSM has structural symmetry if the following conditions hold.

1. it contains states S1 and S2 such that S1 has one incoming transition, S2 has

one outgoing transition, and a number of paths reach S2 from S1;

2. for each path in the subFSM, context (the path taken to get to S1 from outside

the subFSM) has no effect on the states/transitions or output;

3. no transition or state encountered after S2, is affected by paths taken inside

the subFSM.

Such a subFSM can be reduced into a superstate and tested in isolation.

24

Given a GUI, the test designer first reduces the FSM after applying the above

transformations, thereby reducing the total number of states in the FSM. This

results in smaller number of paths in the FSM, hence reducing the number of test

cases. Without any loss of generality, each FSM is assumed to have a distinct start

state and distinct terminating state.

As was the case before, a test is a path through the FSM. The test designer

creates two types of tests: design tests that assume that the FSM is a faithful

representation of the GUI’s specifications, and implementation tests that for each

CIS, consider the possibility that potential transitions not described in the design

may occur in the implementation.

For design tests, the test designer creates sufficient number of tests starting at

the initial state and ending at the termination state so that the following conditions

hold:

• all distinct paths in the reduced FSM are executed; each time a path enters

a superstate corresponding to a component, an appropriate test path of the

component is inserted into the test case at that point,

• all the design subtests of each component are included in at least one test,

which may require additional tests of the reduced FSM to satisfy this con-

straint.

The key idea of conducting implementation testing is to check all GUI events in

the CIS to determine whether they invoke any new transitions in the reduced FSM.

To implement test the reduced FSM, the test designer must construct sufficient test

25

sequences at the initial state and stopping at the terminal state so that the following

conditions hold:

• all the paths of the reduced FSM are executed, and

• all the implementation tests for each remaining component are included at

least once.

By using the CIS concept, the test designer can test a GUI from various

perspectives, each defined by the CIS. These CIS can also be maintained in a library

to be reused across various GUIs.

For example, in the Radio Button Demo application, the tester may design

a “create a new shape” responsibility that involves 4 objects w1, w2, w3, and w5

(assuming that the Rendered Shape area is empty and the Exit Confirmation

window is not opened). Figure 2.4 shows an FSM for this responsibility where each

node represents a GUI state and each edge represents a state transition. Note that

the states in this FSM are abstract states representing several states in the FSM in

Section 2.2.1.1. For example, Sx00C is an abstraction of all states where the Circle

radio button is selected (x can be replaced by any value of the corresponding state

element).

The subFSM consisting of the two states Sx00C and Sx00S is a strongly con-

nected component. Thus, this subFSM can be tested in isolation and then replaced

it by a superstate Sx00x (i.e., a shape is selected). To test the internal behaviors

of the subFSM, the state sequence needed to be covered is 〈Sx00C , Sx01S〉; which is

obtained by the event sequence 〈square, circle〉. With an assumption that the sub-

26

Initial

Sx00C

Sx00S

Terminal

circle

square

Sx01x

create

circle

square

create

reset

create

Figure 2.4: FSM for the create a new shape responsibility.

FSM is well tested, state sequence needed to test the reduced FSM is 〈Initial, Sx00x,

Sx01x, Sx00x, Sx01x, Terminal〉. This sequence is then translated to an executable

test case taking the GUI from the initial state to the terminal state: 〈create, reset,

create〉.

2.2.1.4 Off-nominal Finite State Machines

The three approaches discussed thus far generate test cases to test the GUI for legal

event sequences specified in the state machine model. However, the GUI might

have been coded incorrectly to allow other sequences left unspecified in the state

machine. For example, in our Radio Button Demo GUI, does the GUI allow the

user to click on the reset button when the application is launched, or after reset has

been executed once? For example, is the sequence 〈reset, reset, reset〉 allowed?

The implicit assumption is that such off-nominal sequences are illegal and

should not be allowed by the GUI. Belli et al. [33] argue that these sequences should

also be tested in addition to the legal sequences. They augment the Complete In-

27

teraction Sequence approach to test the GUI system’s robustness by generating such

off-nominal test cases. The augmented model is called Faulty Complete Interaction

Sequence (FCIS).

As was the case for the CIS, each FCIS can be specified by an FSM. This FSM

is constructed by the following steps:

1. Build the CIS and the corresponding FSM consisting of all legal sequences of

user-system interactions. Each edge of the FSM is called an Interaction Pair

(IP).

2. Identify Faulty Interaction Pairs (FIPs) consisting of inputs that are not legal.

These are all the “missing” IPs in the original FSM. Note that FIPs and IPs

together define a complete FSM called the Complete Finite State Automata

(CFSA).

Figure 2.5 shows an FSM of the FCIS corresponding to the CIS in Figure 2.4.

The solid lines in the graph represent the FIPs and the dotted lines represent the

edges in the CIS’s FSM.

Test case generation for a FCIS is straightforward. The tester can systemati-

cally design test cases for various undesired system behaviors by covering all possible

FIPs. One way to do this is to select an untested FIP, i.e., an edge in the FCIS,

generate a sequence of events from the FSM’s start state to the first event in the

selected edge, and prepend this sequence to the edge, creating a test case that will

test the selected FIP. Once this is done for each FIP, all of them would be tested

and covered.

28

Initial

Sx00C

Sx00S

Terminal

circle

square

Sx01x

create

circle

square

create

reset

reset

create

Figure 2.5: Faulty Complete Interaction Sequence - dotted edges are transitions in
the CIS.

As we can see in Figure 2.5, there is one FIP in the FSM: 〈Sx01x, Sx00S〉. By

prefixing this FIP with the state sequence 〈Initial, Sx00C , Sx01x〉, we get a complete

sequence in the CFSA to examine the illegal behavior: 〈Initial, Sx00C , Sx01x, Sx00S〉.

The sequence can be translated to a test case which is a sequence of events starting

at the initial state: 〈create, reset〉.

2.2.2 Workflows

Some researchers have used the GUI’s business workflow, i.e., a sequence of con-

nected steps, for test case generation. A typical GUI workflow is represented by

a set of events (the steps) and some type of sequencing relationship between the

events. In this section, we describe the Event Flow Graph model [34], a seminal work

in this category. Then, we present two variants of this model: the Event Interaction

Graph [35] and the Event Semantic Interaction Graph [22]. Finally, we discuss the

Faulty Event Sequence Graph [33], an off-nominal model for the workflow-based

29

approach.

2.2.2.1 Event Flow Graph

Intuitively, an Event Flow Graph (EFG) represents all possible event sequences that

may be executed on a GUI [34]. The graph nodes represent events in the GUI and

the graph edges represent a sequencing relationship that shows the set of events

events that may be performed immediately after a given event. The concept of the

EFG is similar to that of a control-flow or program-flow graph [36] that capture the

flow of all possible executions of program statements, except that an EFG represents

the flow of events, not code, in a GUI.

Definition: An EFG for a GUI G is formally defined as a triple <V, E, B>

where:

1. V is a set of vertices representing all the events in G. Each v ∈V represents

an event in G.

2. E ⊆ V × V is a set of directed edges between vertices. Event ej follows ei

(or equivalently ej = follows(ei)) iff ej may be performed immediately after

ei. An edge (vx, vy) ∈ E iff the event represented by vy follows the event

represented by vx.

3. B ⊆ V is a set of vertices representing initial events of G that are available

to the user when the GUI is first invoked.

30

The EFG for the Radio Button Demo application is shown in Figure 2.6. The

events are shown as oval nodes. The shaded nodes are initial events, i.e., they are

available to the user when the GUI is first launched. The directed edges show the

follows relationship between events. For example, a user can click on the Yes

button in the Exit Confirmation window either immediately after clicking on the

Exit button or immediately after clicking on w6; hence there is an edge from exit to

yes, and from (un)check to yes. The user cannot click on the Yes button after the

No button because no closes the dialog; there is no edge from no to yes. Similarly,

there is no edge from no to no; nor is there an edge from yes to yes.

circle

square

create

exit

(un)check

yes

no

reset

Figure 2.6: Event Flow Graph.

An approximation of the EFG for a GUI can be automatically obtained by a

reverse engineering process call GUI ripping [19]. All events available in the GUI

are automatically performed to open the hidden widgets and windows in a depth-

31

first manner. During the GUI ripping process, the key attributes of each widget

are captured (e.g., whether it opens a modal/modeless window, it opens a menu,

it closes a window). These attributes are then used to automatically construct the

EFG. Because such a process is unable to infer complex state-based relationships

between events, e.g., one enables/disables the other, a tester has to manually check

and edit it to obtain the final EFG.

Because the EFG captures all possible sequences of events that may be exe-

cuted by a user on the GUI, any path in the EFG is a valid user-executed event

sequence, and hence, a potential test case. Moreover, any graph traversal technique

on the EFG can be used to yield test cases. Examples of some techniques that have

been used in the past are goal-directed search [37], random-walk [35], and bounded

breadth-first search [38]. For example, a random walk of the EFG of Figure 2.6 may

yield the test case 〈square, square, circle, square, create, reset, exit, yes〉.

2.2.2.2 Event Interaction Graph

Because the EFG captures all possible event sequences that may be executed on the

GUI, the number of event sequences that may be generated from an EFG becomes

extremely large. In fact, the number grows exponentially with sequence length

[39, 34]. It is important to reduce this number for practical reasons. To address this

issue, Xie et al. [38] conducted several empirical studies on the characteristics of test

cases derived from the EFG model. The experiments showed that a large number of

faults were detected by the test cases that tested interactions between certain type

32

of events which (1) close a modal window (termination events) or (2) interact with

the underlying code (system-interaction events). Other events used to manipulate

the GUI structure such as open or close menu/modeless windows, called structural

events, are unlikely to reveal faults. One possible explanation for these results was

that the code for structural events is usually simple and generated automatically

by visual GUI-building tools; therefore it is less likely to be faulty. Based on these

results, a new model called the Event Interaction Graph (EIG) was developed.

Intuitively, an EIG contains only termination and system-interaction events;

an edge between two nodes in the EIG shows that one event might be executed

after (not necessarily immediately after) the other along some execution path. For-

mally, EIG edges are defined by an interacts-with relation through the following

definitions:

Definition: There is an event-flow-path from node nx to node ny iff there

exists a (possibly empty) sequence of nodes nj;nj+1;nj+2; . . . ;nj+k in the event-flow

graph E such that {(nx, nj), (nj+k, ny)} ⊆ edges(E) and {(nj+i, nj+i+1)for 0 ≤ i ≤

(k − 1)} ⊆ edges(E).

Definition: An event-flow-path < n1;n2; . . . ;nk > is interaction-free iff none

of n2, . . . , nk−1 represent termination or system-interaction events.

Definition: A system-interaction (or termination) event ex interacts-with system-

interaction and termination event ey iff there is at least one interaction-free event-

flow-path from the node nx (that represents ex) to the node ny (that represents

ey).

The EIG edges actually represent the above interacts-with relationship between

33

events. An EFG can be automatically transformed into an EIG by using graph-

rewriting rules (details are presented in [40]). The EIG for the Radio Button Demo

application is shown in Figure 2.7. Note that the EIG does not contain the window-

opening exit event. The graph-rewriting rule used to obtain this EIG was to (1)

delete exit because it is a window-open event, (2) for all remaining events ex replace

each edge (ex,exit) with edge (ex, ey) for each occurrence of edge (exit, ey), and (3)

for all ey, delete all edges (exit, ey).

circle

square

create

reset

exit

(un)check

yes

no

Figure 2.7: Event Interaction Graph.

As was the case with EFGs, a test case in the EIG model is also a path in the

EIG, starting with an initial event. One possible test case might be 〈square, square, circle, yes〉.

Because EIG nodes do not represent events to open or close menus/windows, the

sequences obtained from the EIG may not be executable. For example, the test case

〈square, square, circle, yes〉 will not execute because yes is not available for execu-

34

tion after circle. For that reason, at execution time, other events needed to reach the

EIG events are automatically inserted using the original EFG. During the test-case

execution, the EIG test case above will be expanded to 〈square, square, circle, exit, yes〉

2.2.2.3 Event Semantic Interaction Graph

Although the EIG model is smaller than the EFG, it is still a dense graph and suffers

from the same problems as does the EFG – the number of generated event sequences

grows exponentially with length. In more recent work, Yuan et al. [22] create a sparse

graph, where events are connected by edges only if they were shown to influence

each other’s execution behavior. Consider the Radio Button Demo example. The

top-left GUI in Figure 2.8 shows the initial state (S0) of the application. After an

event square is executed, the GUI changes its state to the one shown in the top-right

(square(S0)). In this state, the Square radio button is selected. Starting from S0,

one can execute another event (create) and obtain the state shown in the bottom-

left (create(S0)); a circle is created by clicking the Create button. If, however,

the sequence 〈square; create〉 is executed in S0, a new state (create(square(S0))),

shown in the bottom-right is obtained; a square has been created. This execution

is equivalent to the execution of event create in the state square(S0). The event

square clearly influences the event create. We say that event square “interacts

with” event create, and should be tested together to check for interaction problems.

The main idea behind observing GUI run-time states and using them to de-

termine which events to test together can also be justified by examining the code

35

of event handlers. For example, the event handlers for square and create share two

variables created, which indicates if a shape is created, and currentShape, which

specifies the current selected shape; create sets created to TRUE and influences

square’s flow of control; square sets currentShape to a square, which create uses

as a parameter to create a shape; hence it’s not surprising that they influence each

other’s execution.

create

square

< square; create>

Figure 2.8: Event semantic interaction example.

The example illustrated in Figure 2.8 is just one case of how the GUI state

may be used to pinpoint interactions between event handlers. Yuan et al. formally

define six cases that describe (as evaluative predicates) situations in which two

events, called e1 and e2, interact, i.e., e1 influences e2. In these six cases, e1 and

e2 are system-interaction events in modeless windows; this situation is referred as

Context 1.

36

Case 1: P1(1)(e1, e2) = ∃w ∈ W, p ∈ Pw, v ∈ Vp, v′ ∈ Vp, s.t. ((v 6= v′) ∧ ((w, p, v) ∈

{S0 ∩ e1(S0) ∩ e2(S0)}) ∧ ((w, p, v′) ∈ e2(e1(S0)))); there is at least one widget w

with property p with initial value v (hence the triple (w, p, v) is in S0), which is not

affected by the individual events e1 or e2 (the triple is also in e1(S0) and e2(S0));

however, it is modified when the sequence 〈e1; e2〉 is executed, i.e., the value of w’s

property p changes from v to v′.

Case 2: P2(1)(e1, e2) = ∃w ∈ W, p ∈ Pw, v ∈ Vp, v′ ∈ Vp, v′′ ∈ Vp, s.t. ((v 6= v′)∧(v′ 6=

v′′) ∧ ((w, p, v) ∈ {S0 ∩ e2(S0)}) ∧ ((w, p, v′) ∈ e1(S0)) ∧ ((w, p, v′′) ∈ e2(e1(S0))))

there is at least one widget w with property p that has an initial value v, which is

not modified by the event e2; it is modified by e1; however, it is modified differently

by the sequence 〈e1; e2〉.

In our running example, widget w4, in the GUI’s initial state, is not modified

by event square, i.e., it remains empty; it is modified by event create, i.e., a circle is

shown; however, w4 is modified differently by the sequence 〈create; square〉. Hence,

Case 2 applies to create and square.

Case 3: P3(1)(e1, e2) = ∃w ∈ W, p ∈ Pw, v ∈ Vp, v′ ∈ Vp, v′′ ∈ Vp, s.t. ((v 6= v′)∧(v′ 6=

v′′) ∧ ((w, p, v) ∈ {S0 ∩ e1(S0)}) ∧ ((w, p, v′) ∈ e2(S0)) ∧ ((w, p, v′′) ∈ e2(e1(S0))))

there is at least one widget w with property p that has an initial value v, which is

not modified by the event e1; it is modified by e2; however, it is modified differently

by the sequence 〈e1; e2〉. Note that this case is different from Case 2 because the

event sequence remains the same, i.e.e1 is executed before e2.

In our running example, widget w4, in the GUI’s initial state, is not modified

by event square, i.e., it remains empty; it is modified by event create, i.e., a circle is

37

shown; however, w4 is modified differently by the sequence 〈square; create〉. Hence,

Case 3 applies to square and create.

Case 4: P4(1)(e1, e2) = ∃w ∈ W, p ∈ Pw, v ∈ Vp, v′ ∈ Vp, v′′ ∈ Vp, v̄ ∈ Vp, s.t. ((v 6=

v′) ∧ (v 6= v′′) ∧ (v′′ 6= v̄) ∧ ((w, p, v) ∈ S0) ∧ ((w, p, v′) ∈ e1(S0)) ∧ ((w, p, v′′) ∈

e2(S0)) ∧ ((w, p, v̄) ∈ e2(e1(S0)))); there is at least one widget w with property p

that has an initial value v, which is modified by individual events e1 and e2; however,

it is modified differently by the sequence 〈e1; e2〉.

The above four cases all handle widgets that persist across the four states being

considered, i.e.,, S0, e1(S0), e2(S0), and e2(e1(S0)). In many cases, event execution

“creates” new widgets, e.g., by opening menus; the next case handles newly created

widgets.

Case 5: P5(1)(e1, e2) = ∃w ∈ W, p ∈ Pw, v ∈ Vp, v′ ∈ Vp, s.t. ((v 6= v′) ∧ ((w, p, v) ∈

ex(S0))∧ ((w, p, v) 6∈ S0)∧ ((w, p, v′) ∈ e2(e1(S0)))); there is at least one new widget

w with property p and value v in ex(S0), i.e.,, it was created by event ex (either e1

or e2) but did not exist in state S0; it was created by the sequence 〈e1; e2〉 but with

a different value for some property.

A common occurrence of event interaction in GUIs is enabling/disabling wid-

gets, which may be modeled as the widget’s ENABLED property being set to TRUE or

FALSE.

Case 6: P6(1)(e1, e2) = ∃w ∈ W, ENABLED ∈ Pw, TRUE ∈ VENABLED, FALSE ∈ VENABLED,

s.t. (((w, ENABLED , FALSE) ∈ S0) ∧ ((w, ENABLED, TRUE) ∈ e1(S0)) ∧ EXEC(e2, w));

there exists at least one widget w that was disabled in S0 but enabled by e1. Event

e2 is performed on w, represented by a predicate EXEC(e2, w).

38

In our running example, create enables reset; hence Case 6 applies.

Modal windows create special situations for Cases 1 through 6 due to the pres-

ence of termination events. User actions in these windows do not cause immediate

state changes; they typically take effect after a termination event has been executed,

leading to contexts 2 and context 3.

Context 2: If both e1 and e2 are associated with widgets that are contained in

one modal window with termination event TERM, then the definitions of e1(S0) ,

e2(S0), and e2(e1(S0)) are modified as follows: e1(S0) is the state of the GUI after

the execution of the event sequence 〈e1; TERM〉, e2(S0) is the state of the GUI after

the execution of the event sequence 〈e2; TERM〉, and e2(e1(S0)) is the state of the GUI

after the execution of the event sequence 〈e1; e2; TERM〉. All the predicates defined in

Cases 1 through 6 apply, using these modified definitions, for e1 and e2 in the same

modal window. The notation used for these predicates when applied in Context 2

is Pn(2)(e1, e2), where n is the case number.

Context 3: If e1 is associated with a widget contained in a modal window with

termination event TERM, and e2 is associated with a widget contained in the modal

window’s parent window (i.e.,, the window that was used to open the modal win-

dow) then e1(S0) is the state of the GUI after the execution of the event se-

quence 〈e1; TERM〉, e2(S0) is the state of the GUI after the execution of the event

e2, and e2(e1(S0)) is the state of the GUI after the execution of the event sequence

〈e1; TERM; e2〉. All the predicates defined in Cases 1 through 6 apply. The notation

used for these predicates when applied in Context 3 is Pn(3)(e1, e2), where n is the

case number.

39

There is an Event Semantic Interaction relationship between two events e1 and

e2 at least one of the predicates in Cases 1 through 6 evaluates to TRUE in at least

one context. If multiple cases apply, then one of the case numbers is used. Due to

the specific ordering of the events in the sequence 〈e1; e2〉, the ESI relationship is

not symmetric. As demonstrated earlier, for our Radio Button Demo application:

square→create, create→square, and create→reset.

Once all of the cases have been implemented, the feedback-based process exe-

cution is straightforward. The steps of the execution are as follows.

1. The seed suite consisting of all 2-way interactions 〈ex; ey〉 between GUI events

is executed on the software in state S0; these test cases are simple enumerations

of all EIG edges. All events ey are also executed in S0. The state information

ex(S0), ey(S0), ey(ex(S0)) is collected and stored.

2. The above predicates are evaluated for each pair of system-interaction events

in the EIG that are either (1) directly connected by an edge (Context 1) or (2)

connected by a path that does not contain any intermediate system-interaction

events (contexts 2 and 3), i.e., there is at least one termination event that closes

a modal window on this path. If one of the predicates evaluates to TRUE, the

two events are ESI-related.

Once all the ESIs in a GUI have been identified, a graph model called the ESI

graph (ESIG) is created. The ESIG contains nodes that represent events; a directed

edge from node nx to ny shows that there is an ESI relationship from the event

represented by nx to the event represented by ny. Figure 2.9 shows the ESIG of the

40

Radio Button Demo GUI. The solid lines are ESIG edges; for comparison, we also

show the EFG edges (dotted lines) and EIG edges (dashed lines).

circle

square

create

reset

exit

(un)check

yes

no

Figure 2.9: Event Semantic Interaction Graph.

As was the case for EFGs and EIGs, the ESIG may be traversed using different

graph traversal algorithms to generate test cases. For our example ESIG in Fig-

ure 2.9, two test cases are 〈create; reset〉 and 〈square; create; square; create; reset〉.

2.2.2.4 Off-nominal Event Graph

Belli et al. develop a technique to generate off-nominal test cases using the GUI’s

workflow [33]. They define the workflow as an Event Sequence Graph (ESG).

Definition: An event sequence graph ESG = (V,E) is a directed graph where

V 6= ∅ is a finite set of vertices (nodes), E ⊆ V ×V is a finite set of arcs (edges), and

Ξ,Γ ⊆ V are finite sets of distinguished vertices with ξ ∈ Ξ and γ ∈ Γ called entry

41

nodes and exit nodes, respectively, wherein ∀v ∈ V there is at least one sequence

of vertices < ξ, v0, ..., vk > from each ξ ∈ Ξ to vk = v and one sequence of vertices

< v0, . . . , vk > from v0 = v to each γ ∈ Γ with (vi, vi+1) ∈ E), for i = 0, ..., k − 1

and v 6= ξ, γ.

Intuitively, the ESG is similar to the event-flow graph, except that there is a

notion of exit nodes in an ESG. Such a workflow allows the definition of an event

sequence (ES).

Definition: Let V,E be as defined above. Then any sequence of vertices

< v0, . . . , vk > is called an event sequence ES if (vi, vi+1) ∈ E, for i = 0, . . . , k.

This definition is used to define a complete event sequence (CES) in the ESG.

Definition: An ES is a complete ES (or, it is called a complete event sequence,

CES), if α(ES) = ξ ∈ Ξ is an entry and β(ES) = γ ∈ Γ is an exit.

where α and β are the manually defined functions used to determine the entry

and exit vertex of an ES.

These above definitions allow the formal definition of an off-nominal test case

(or faulty event sequence) based on the ESG.

Definition: For an ESG = (V,E), its completion is defined as ÊSG = (V, Ê)

with Ê = V × V .

Definition: The inverse (or complementary) ESG is then defined as ESG =

(V, Ē) with Ē = Ê \ E.

Figure 2.10 shows the inverse ESG of the Radio Button Demo GUI. The dotted

edges are ESG (EFG) edges. The oval shaded nodes represent initial events while

the octagon nodes represent exit events.

42

e1

e2

e3

e4

e6

e7

e5

e9

e10

e11

Figure 2.10: Inverse Event Sequence Graph.

The solid edges in Figure 2.10 are the ones that are absent from the ESG.

More formally, they represent faulty event pairs.

Definition: Any edge of the ESG is a faulty event pair (FEP) for the ESG.

Definition: Let ES = v0, . . . , vk be an event sequence of length k + 1 of an

ESG and FEP =< vk, vm > a faulty event pair of the corresponding ESG. The

concatenation of the ES and FEP then forms a faulty event sequence FES =<

v0, ..., vk, vm >.

Such an FES can be used as an off-nominal test case. An example of such a

test case for our running example is 〈square, circle, reset, no〉. The pair (reset, no)

should not be executable because of the Exit Confirmantion modal dialog.

43

2.2.3 Pre- Post-Condition Models

In an approach presented by Memon et al. [34], the test designer models the GUI in

terms of pre- and post-conditions for each event. The test designer then identifies

commonly used tasks for the GUI; these are then input to the test case generator.

The generator employs the pre- and post-conditions and specifications to generate

event sequences to achieve the tasks.

The motivating idea behind this approach is that GUI test designers will often

find it easier to specify typical user goals than to specify sequences of GUI events

that users might perform to achieve those goals. The software underlying any GUI is

designed with certain intended uses in mind; thus the test designer can describe those

intended uses. However, it is difficult to manually obtain different ways in which

a user might interact with the GUI to achieve typical goals. Users may interact

in idiosyncratic ways, which the test designer might not anticipate. Additionally,

there can be a large number of ways to achieve any given goal, and it would be

very tedious for the GUI tester to specify even those event sequences that s/he can

anticipate. The test case generator described in this section uses AI planning to

generate GUI test cases for commonly used tasks using a GUI model based on pre-

and post-conditions of all GUI events.

The test case generation process is partitioned into two phases, the setup

phase and plan-generation phase. In the first step of the setup phase, the GUI

representation is employed to identify planning operators, which are used by the

planner to generate test cases. By using knowledge of the GUI, the test designer

44

defines the preconditions and effects of these operators. During the second or plan-

generation phase, the test designer describes scenarios (tasks) by defining a set

of initial and goal states for test case generation. Finally, the AI plannig system

generates a test suite for the tasks using the plans. The test designer can iterate

through the plan-generation phase any number of times, defining more scenarios

and generating more test cases.

Formally, a planning problem P (Λ, D, I,G) is a 4-tuple, where Λ is the set of

operators, D is a finite set of objects, I is the initial state, and G is the goal state.

Note that an operator definition may contain variables as parameters; typically an

operator does not correspond to a single executable action but rather to a family

of actions, one for each different instantiation of the variables. The solution to a

planning problem is a plan: a tuple < S,O,L,B > where S is a set of plan steps

(instances of operators, typically defined with sets of preconditions and effects),

O is a set of ordering constraints on the elements of S, L is a set of causal links

representing the causal structure of the plan, and B is a set of binding constraints

on the variables of the operator instances in S. Each ordering constraint is of the

form Si < Sj (read as “Si before Sj”) meaning that step Si must occur sometime

before step Sj (but not necessarily immediately before). Typically, the ordering

constraints induce only a partial ordering on the steps in S. Causal links are triples

< Si, c, Sj >, where Si and Sj are elements of S and c represents a proposition that

is the unification of an effect of Si and a precondition of Sj. Note that corresponding

to this causal link is an ordering constraint, i.e., Si < Sj. The reason for tracking a

causal link < Si, c, Sj > is to ensure that no step “threatens” a required link, i.e.,

45

no step Sk that results in ¬c can temporally intervene between steps Si and Sj.

For the Radio Button Demo application, one possible task may be to create

a square shape for w4. This task is shown in Figure 2.11. Even with this simple

application, there are several ways to perform this task. In fact, there are an infi-

nite number of ways—in principle, a user can click on the Square radio button an

arbitrary number of times. This task is input to the planner by describing the state

of all the widgets in the initial and goal states.

Initial State
Goal State

?

Figure 2.11: A Task Specification.

Together with a specification of all pre- and postconditions of the events, the

task is used by the planner to output the plan shown in Figure 2.12(a). As mentioned

above, most AI planners produce partially-ordered plans, in which only some steps

are ordered with respect to one another. The plan in Figure 2.12(a) is one such

plan. The ordering constraints are shown as edges and also explicitly stated in

Figure 2.12(b).

A total-order plan can be derived from a partial-order plan by adding ordering

constraints, induced by removing threats. Each total-order plan obtained in such a

way is called a linearizion of the partial-order plan. A partial-order plan is a solution

46

Start Application

si Square

sj

Create

sk
Square Created

sl

(a) A Partial-order Plan.

Si < Sj;Si < Sk;Sk < Sl;Sj < Sl

(b) The Ordering Constraints in the Plan.

Start Application Square

Create Square Created

Start Application Create

Square Square Created

(c) the Two Linearizations.

Figure 2.12: AI Planning.

to a planning problem if and only if every consistent linearizion of the partial-order

plan meets the solution conditions. Figure 2.12(c) shows the two linearizion of the

plan; each of these linearizion can be used as a test case.

2.2.4 Event Sequence-Based Models

Because GUI test cases are sequences of events, Kasik et al. [41] manipulate such

sequences of events to obtain new test cases. Their approach is based on genetic

algorithms. The key motivation behind using genetic algorithms is that there is a

need to test the GUI from the perspective of different groups of users, e.g., experts

and novice users. Unsophisticated and novice users often exercise GUI applications

in ways that the designer, the developer, and the tester did not anticipate. An

47

expert user or tester usually follows a predictable path through an application to

accomplish a familiar task. The developer knows where to probe, to find the po-

tentially problematic parts of an application. Consequently, applications are well

tested for state transitions that work well for predicted usage patterns but become

unstable when given to novice users. Novice users follow unexpected paths in the

application, causing program failures. Such failures are difficult to predict at design

and testing time.

One approach to test the GUI for novice interactions is to release the software

to a small community for beta testing. However, this approach is expensive and time-

consuming. Kasik et al.’s approach generates test cases that mimic a novice user.

The key idea behind this approach is that expert users take short paths through an

application’s GUI, using short-cuts when available and perform their tasks quickly.

Novice users, on the other hand, take longer, exploratory paths to complete a task

and gradually build better ways as they learn more about the application. It is

challenging to automatically generate these paths for GUI testing.

In its simplest form, a genetic algorithm manipulates a table of random num-

bers; each row of the table represents a gene. The individual elements of a row

(gene) contain a numeric genetic code and are called alleles. Allele values start

as numbers that define the initial genetic code. The genetic algorithm lets genes

that contain “better” alleles survive to compete against new genes in subsequent

generations.

The basic genetic algorithm is as follows:

48

• Initialize the alleles with valid numbers.

• Repeat the following until the desired goal is reached:

– Generate a score for each gene in the table.

– Reward the genes that produce the best results by replicating them and

allowing them to live in a new generation. All others are discarded using

a death rate.

– Apply two operators, mutation and crossover, to create new genes.

For GUIs testing, the event sequence is represented by a gene, each element

being an event. The primary task of setting up the genetic algorithm is to set the

death rates, crossover styles, and mutation rates so that novice behavior is gener-

ated. Also, to use genetic algorithms to generate meaningful interactions mimicking

novice users, a clear and accurate specification of both the user interface dialog and

the program state information is needed. The state information controls the legality

of specific dialog components and the names of a legal command during an inter-

action. Without access to the state information, the generator may produce many

meaningless input events.

For our running example, the Radio Button Demo GUI, an expert might use

〈square, create〉 to create a square. The genetic algorithm may convert this sequence

into the longer sequence 〈circle, create, square, create〉, thereby mimicking a novice

user.

49

2.2.5 Probabilistic Models

As seen in this chapter, there are several techniques to generate GUI test cases

based on a model of the GUI. In practice, a GUI test designer may use a mix of

these techniques to obtain several test suites. The test designer is faced with two

significant challenges:

• Overlaps in test suites: As can be imagined, many of these techniques often

overlap in what they test. A test designer who uses two or more GUI testing

techniques may waste valuable resources testing and retesting the same parts

of the GUI. Ideally, the test designer would like to consolidate all the test

suites and obtain one suite that minimizes overlaps.

• Large number of short tests and few long tests: The sheer size of the individual

suites presents practical problems for test execution. Because each test case

requires significant overhead in terms of setup and teardown, having a large

number of short tests is inefficient. Ideally, the test designer would like to ob-

tain longer sequences that combine the strengths of individual short-sequence

suites.

Consider for example, the three test suites shown in Figure 2.13, each gen-

erated using a different technique. It may be expensive to execute and maintain

all these test cases. Brooks et al. [42] employ a probabilistic model of the GUI to

combine these suites.

The probabilistic model is based on the event-flow graph model. The model

contains a collection of R paths through the EFG called r1, r2, . . . , rR. Each path

50

square, create
create, reset
create, square

exit, yes
exit, (un)check, no

square, circle, create, square
create, exit, (un)check, (un)check, yes
create, circle, reset, exit, no, create

(a) Technique 1 (b) Technique 2 (c) Technique 3

Figure 2.13: Example test cases.

ri where 1 ≤ i ≤ R, consists of a sequence of n events in addition to INIT and

FINAL:

ri = INIT, x1, x2, . . . , xn, F INAL;

∀j ej ∈ {e1, e2, . . . , en−1}∧

follows(ej+1, ej)

where x1, x2, . . . , xn and e1, e2, . . . , en−1 are events in the EFG, ri denotes a path,

and each path ri contains only events with a follows relationship between them.

Valid paths can also be formed by the concatenation of two paths, e.g., ra and rb,

provided the first event of rb follows the last event of ra in the EFG.

Let count(ei) return the number of times event ei occurs in the paths r1, r2, . . . , rR.

The prior probability that a randomly selected event from any of r1, r2, . . . , rR is ei

is:

P (ei) =
count(ei)

ΣE
j=1count(ej)

.

Now, count(ei) and the prior probability calculation are extended from single

events to sequences of events. Let s be a length-S subsequence of some path through

51

the EFG (not necessarily in r1, r2, . . . , rR):

si = x1, x2, . . . , xS

∀j ej ∈ {INIT, e1, e2, . . . , en−1, F INAL}∧

follows(ej+1, ej).

The prior probability that a randomly selected, length-S subsequence from

any of r1, r2, . . . , rR turns out to be s is

P (s) =
count(s)

Σsi∈subs(S)count(si)
,

where count(s) returns the number of times s occurs as a subsequence of r1, r2, . . . , rR

and subs(S) is the set of all length-S subsequences in r1, r2, . . . , rR.

Given that s immediately precedes ei, the conditional probability of ei is

P (ei|s) =
P (s1, s2, . . . , sS, ei)

ΣE
j=1P (s1, s2, . . . , sS, ej)

.

Note that P (ei|s) can be thought of as P (ei) when s has length 0. This is not the

same as P (ei|INIT), which is the probability that event ei is the first event in the

sequence, occurring immediately after INIT . Rather, P (ei|s) is the probability of

ei given no information about the events that precede it.

A probabilistic EFG (PEFG) is created by annotating each event (node) in the

EFG with a table containing the event’s prior probability and its probability con-

52

ditioned on each subsequence in {r1, r2, . . . , rR} up to some maximum subsequence

length, or history, H.

Figure 2.14 shows the PEFG obtained for the test suites of Figure 2.13. Col-

umn 2 of each table associated with every node shows the probability of executing

the event associated with the node after the length 2 sequence shown in Column

1 of the table. For example, the entry for node (un)check corresponding to row

exit, (un)check is 0.5. This is because the subsequence exit, (un)check appears twice

in the original test suites. Once exit, (un)check has been executed, there is a 0.5

probability that the next event will be (un)check. These probabilities can be used to

generate event sequences. One example sequence is INIT, exit, (un)check, FINAL.

The resulting test case is 〈exit, (un)check〉.

circle

create

reset

square

FINAL

exit

(un)check

yes

no

INIT

INIT,create 0.33

INIT, square 0.50

circle,create 1.00

INIT,create 0.33

exit,no 1.00

INIT,square 0.50

square,circle 0.50

circle,reset 1.00

create,circle 1.00

INIT,create 0.33

create,exit 1.00

exit,(un)check 0.50

INIT,exit 0.50

(un)check,(un)check 1.00

INIT,exit 0.50

exit,(un)check 0.50

reset,exit 1.00

(un)check,no 1.00

(un)check,yes 1.00

create,reset 1.00

create,square 1.00

exit,yes 1.00

no,create 1.00

square,create 0.50

Figure 2.14: Probabilistic Event Flow Graph with history H = 2.

53

2.2.6 Combinatorial Interaction Models

Software system faults are not only caused by individual components working in

isolation but also caused by the interactions between them [43, 44]. In its basic

form, GUI interaction testing consists of testing for interactions between all GUI

components and their selections. However, since the number of GUI components

is often huge, the number of tests required to cover the combinational interactions

grows large very quickly [22]. Several combinational interaction models have been

proposed to model GUI component interactions and reduce the number of test cases.

This section presents two combinatorial models used for test case generation – a

Latin square to cover pair-wise interactions [39] and a Covering Array to cover

multi-way interactions with an arbitrary coverage strength [45].

2.2.6.1 Latin Squares

White [39] proposes the use of Latin squares to model the GUI inputs and generate

test cases. He identifies two ways in which GUI interactions can arise: statically

and dynamically (or a combination of both). Static interactions are restricted to one

screen whereas dynamic interactions move from one screen to another to perform

events on GUI objects. White makes the assumption that it is enough to test pair-

wise interactions of GUI events. Similar assumptions have led to success in finding

errors efficiently for conventional software [46].

The concept of Latin square is used to maintain the pairwise interaction cov-

erage while keeping the number of test cases minimized.

54

Definition: A Latin square, of order n, is a matrix of n symbols in a n × n

cells, arranged in n rows and n columns, such that every symbol exactly once in

each row and once in each column.

Definition: A pair of Latin squares A = (aij) and B = (bij) are orthogonal

iff the ordered pairs (aij, bij) are distinct for all i and j. In other words, when

superimposed on each other, the ordered elements pairs of two orthogonal squares

created in each cell cover all n2 pairs.

Given k factors F1, F2, . . . , Fk, where each factor is a GUI component from

which selections are made. The GUI inputs are modeled as follow:

• Reorder k factors by cardinality: |F1| ≥ |F2| ≥ · · · ≥ |Fk|.

• Construct k−2 orthogonal Latin squares with size n, where n is the cardinality

of |F1|.

To test k GUI components with maximum n level, we need k − 2 orthog-

onal Latin squares. The cell entries of the superimposed square represent k − 2

components in the test and the row and column indices represent the additional 2

components. Since the generated triples (row index, column index, cell entry) are

unique, the pairwise coverage requirement is guaranteed.

The original model proposed by White only considered menu items. Because

our running example does not have menus, we cannot use this approach to test our

example GUI.

55

2.2.6.2 Covering Arrays

Yuan et al. [45] use covering arrays [34] to generate test cases. The key motivation

behind using covering arrays is to generate longer sequences that are systematically

sampled at a particular coverage strength. This approach is a generalization of the

Latin square discussed in the previous section; a fundamental difference is that in

covering arrays, the coverage strength is not limited to 2-way interactions. Further-

more, the use of covering arrays allows fine control over the location of each event

in the test case.

Definition: A covering array CA(N ; t, k, v) is an N × k array on v symbols

with the property that every N × t sub-array contains all ordered subsets of size t

of the v symbols at least once. In other words, any subset of t-columns of this array

will contain all t-combinations of the symbols.

Constructing a covering array with a minimal number of rows is an optimiza-

tion problem. There are both mathematical algorithms as well as computational

techniques such as greedy and meta-heuristic search [44]for this problem.

This test case generation technique leverages covering arrays to keep the num-

ber of test cases minimized while maintaining a required t-way coverage is between

GUI events. A GUI is taken as input and first partitioned into different parts. Then,

for each GUI part, a covering array is constructed to cover all events inside it. The

output of this process is a set of covering arrays for all GUI partitions. Each array

row becomes a GUI test case.

For our example Radio Button Demo application, we first partition the events

56

into different groups. For example, the three events (un)check, yes and no in the

Exit Confirmation window can form the ‘Exit’ group.

Suppose we are interested in 2-way coverage (i.e., test all possible 2-way inter-

actions shown in Figure 2.15(a)) such that each event occupies all four positions in a

length 4 sequence. If we used exhaustive enumeration, we need 3×3×3×3 = 81 test

cases. Formulating the problem as a covering arrays CA(N ; 2, 4, 3), Figure 2.15(b),

the number of test cases is only nine, each of which becomes a test case.

1. 〈yes, yes〉
2. 〈yes, no〉
3. 〈yes, (un)check〉
4. 〈no, no〉
5. 〈no, (un)check〉
6. 〈no, yes〉
7. 〈(un)check, (un)check〉
8. 〈(un)check, yes〉
9. 〈(un)check, no〉

(a) 2-way covering.

yes yes yes yes
yes (un)check (un)check no
yes no no (un)check
no yes (un)check (un)check
no (un)check no yes
no no yes no
(un)check yes no no
(un)check (un)check yes (un)check
(un)check no (un)check yes

(b) Covering Array: CA(9; 2, 4, 3)

Figure 2.15: 2-way Covering and Covering Array.

2.2.7 Hierarchical Models

All of the testing techniques discussed thus far use a single model of the GUI. How-

ever, using only one model may be impractical for a large GUI. Several researchers

have addressed this problem by modeling the GUI at multiple levels of abstraction.

The GUI is broken down into different components and modeled hierarchically.

We now discuss three such hierarchies, namely Keyword-driven hierarchy [47],

Hierarchical finite state machines [48], and UML-diagram based hierarchy [49].

57

2.2.7.1 Keyword-driven Models

Keyword-driven testing [50] is a script-based testing technique widely used in In-

dustry. This technique divides the test case generation process into two phases:

test plan and test implementation. In the test plan phase, the test designers design

test cases using high-level activities called action words. In the test implementation

phase, the test engineers transform the action words into executable events called

keywords. To avoid ambiguities, the selected keywords are unique.

The idea behind using abstract test cases, i.e., those that contain high-level

action words, is that domain experts, without any implementation skills, can easily

design test cases using only the action words. This step can be done early, even

before the system implementation has been started. The abstract test cases are also

easier to comprehend; test maintenance is also more efficient.

Inspired by the keyword-driven testing technique, Antti et al. [47] propose a

GUI testing model using Label Transition Systems (LTS). A LTS is a state machine

whose transition names are taken from an alphabet. Formally, a LTS is defined as:

Definition: A labeled transition system (LTS) is a quadruple (S,Σ,∆, ŝ)

where S is a set of states, Σ is a set of actions (alphabet), ∆ ⊆ S × Σ× S is a set

of transitions and ŝ ∈ S is an initial state.

A GUI is modeled using two sets of LTSs corresponding to the two levels

levels of abstraction in the keyword driven approach. The LTSs for the action

word level are called action machines and the LTSs for the keyword level are called

refinement machines. The action machines provide an overview of the system while

58

each refinement machines describes GUI navigation for certain parts of the GUI.

Figure 2.16(a) presents an action machine A for the Radio Button Demo ap-

plication GUI. The labels in this machine represent the action words. Figure 2.16(b)

is a refinement machine for the main window. The labels in this machine are key-

words describing the actual GUI events.

A0

A1
 awCreateShape

A2 awQuit
 awReset

 awQuit

 awCancel

 awCancel

(a) Action machine A.

R0

R1

 kwClickCreate

R2

 kwSelectSquare

 kwClickReset

R3

 kwSelectSquare

 kwClickReset

 kwSelectCircle

 kwSelectCircle
 kwClickCreate

(b) Refinement machine R .

(A0,R0)

(A1,R1)

 kwClickCreate

(A0,R2)

 kwSelectSquare

(A2,R0)

awQuit

 kwClickReset

(A1,R3)

 kwSelectSquare

(A2,R1)

awQuit

 kwSelectCircle

 kwClickCreate

(A2,R2)
awQuit

 kwClickReset

 kwSelectCircle

(A2,R3)
awQuit

awCancel

awCancel

awCancel

awCancel

(c) Parallel composition C.

Figure 2.16: Label Transition Systems.

These machines are automatically composed to an executable LTS by a parallel

composition operator defined as follows.

Definition: ||R(L1, . . . ,Ln) is the parallel composition of n LTSs according to

59

rules R where LTS Li = (SiΣi,∆i, ŝi) if let ΣR be a set of resulting actions and
√

be a “pass” symbol such that ∀i :
√
6∈ Σi. The rule set R ⊆ (Σ1 ∪ {

√
}) × · · · ×

(Σn ∪ {
√
})× ΣR. Now ||R(L1, . . . ,Ln) = (S,Σ,∆, ŝ) where:

• S = S1 × · · · × S)n

• Σ = {a ∈ ΣR|∃a1, . . . , an : (a1, . . . , an, a) ∈ R}

• ((s1, . . . , sn), a, (s′1, . . . , s
′
n)) ∈ ∆ if and only if there is (a1, . . . , an, a) ∈ R such

that for every i (1 < i < n)

– (si, ai, s
′
i) ∈ ∆ or

– ai =
√

and si = s′i

• ŝ = 〈ŝ1, . . . , ŝn〉

A rule in a parallel composition associates an array of actions (or “pass” symbol

√
) of input LTSs to an action in the resulting LTS. The action is the result of the

synchronous execution of the actions in the array. If there is a
√

instead of an

action, the corresponding LTS will not participate in the synchronous execution

described by the rule.

60

Assuming that we have the following composition rules:

R = { (1)〈awCreateShape, kwClickCreate, kwClickCreate〉

(2)〈awCreateShape, kwSelectCircle, kwClickCircle〉

(3)〈awCreateShape, kwSelectSquare, kwClickSquare〉

(4)〈awReset, kwClickReset, kwClickReset〉

(5)〈awCancel,
√
, awCancel〉

(6)〈awQuit,
√
, awQuit〉}

Figure 2.16(c) shows the composition machine C synthesized using the above

rules. As we can see, the states in C are a combination (product) of A’s states

and R’s states. By applying rules (1)-(4), two action words awCreateShape and

awReset are refined to the corresponding keywords in C. However, the action words

awCancel and awQuit still remain unchanged. The rules (5) and (6) only copy

them from A to C. To refine those action words we need other refinement machines

and composition rules.

After the composition machine is created, the test case generation is straight-

forward. Each path in the composition machine will become a GUI test case,

which is a sequence of keywords. For our example, one possible test case might

be 〈kwClickCreate, kwSelectSquare, kwSelectCircle, kwClickReset〉, which translates

to 〈create, square, circle, reset〉.

61

2.2.7.2 Hierarchical Finite State Machines

Paiva et al. [48] use the hierarchy of GUI dialogs to create a hierarchical state-

machine model for testing. In particular, the GUI is modeled as a hierarchy of

FSMs whose vertices can either represent single states or groups of states in the

original FSM. The model consisting of these FSMs is called a Hierarchical Finite

State Machine (HFSM).

The hierarchy is based on GUI dialogs. Consider a GUI represented by k

dialogs D1, D2, . . . , Dk which manipulate a set of variable V : V = {v1, . . . , v|V |}.

From the complete FSM of the application, the tester manually specifies the state

machine Fi for each dialog Di. Given the FSMDi
for a dialog Di, it is possible

to deduce the variables manipulated that dialog. A variable vi is written by (or is

affected by) a dialog D if there is a transition in FSMD that changes the value of

vi. A variable vi is read by (or influences the behavior of) a dialog D if at least one

of the following conditions holds:

1. there are two transitions T and T ′ in FSMD and a variable vk in V (not

necessarily i 6= k) such that: (i) the source states of T and T ′ are different

only in the value of vi; (ii) T and T ′ have the same triggering action (name

and arguments); (iii) the destination states of T and T ′ have different values

of vk; and (iv) at least one of the transitions (say T) changes the value of vk;

2. there are two states S and S ′ and a transition T with source S in FSMD such

that: (i) S and S ′ are different only in the value of vi; (ii) there is no transition

T ′ with source S ′ and the same action as T .

62

Let PFSMDi be the projection of FSMDi onto the variables manipulated by

dialog Di then we can use PFSMDi
to describe the internal behaviors of Di. Also

from PFSMDi
, it is possible to reconstruct FSMDi

by taking the union of the

instances of PFSMDi
for all possible combinations of variable values that are not

manipulated by it.

Using the notation of PFSMs, the original state machine can be organized into

a 3-level HFSM:

1. The top level is an abstract FSM representing the relationships between inde-

pendent dialogs.

2. The intermediate level is a set of projected FSMs representing internal behav-

iors for each dialog.

3. The bottom level is a complete FSM representing the behaviors of the entire

GUI.

Considering the Radio Button Demo application, and its GUI states repre-

sented by a length 4 vector {log, exitWinOpen, created, shape} as done in Sec-

tion 2.2.1.1, a tester may specify a subFSM for the main window (dialog DMain) to

include all states where exitWinOpen is set to 0 and the transitions between them.

The other states make up the subFSM for the Exit Confirmation window (dialog

DExit). Figure 2.17(c) shows the complete FSM (bottom level) for the application.

The states are organized into two regions (enclosed by dashed lines) corresponding to

two subFSMs. Note that the same full FSM was previous shown in Section 2.2.1.1,

except that its layout has changed.

63

We can infer that that created and shape are two variables manipulated by

DMain while log is the only variable manipulated by DExit. Neither DMain nor DExit

manipulates exitWinOpen. Using this analysis, the top level and the intermediate

level of the HFSM can be constructed as shown in Figure 2.17(a) and Figure 2.17(b).

Two dialogs are independent if the set of variables written by one dialog is

disjoint from the set of variables manipulated (read or written) by the other. In this

case, instead of testing the complete FSM we only need to consider their PFSMs

individually. In other words, those dialogs do not need to be tested very time there

is a change on variables they do not depend on. To test a dialog D, the variables not

manipulated by D are fixed to a particular value and the test cases are generated

using the PFSM of D.

Applying this strategy to test the Radio Button Demo’s GUI, we first realize

that DMain and DExit are two independent dialogs. So we can test DMain by fixing

log = 0 (exitWinOpen is already fixed) and generate test case in the PFSMMain.

Similarly, to test DExit we fix created = 0 and shape = C. Two transiting actions

exit and no also need to be tested once by fixing created = 0, shape = C and

log = 0. Instead of testing all possible paths of the FSM in Figure 2.17(c), we now

only need to examine those in bold.

2.2.7.3 UML Diagram-based

As seen in previous sections, using formal models to represent GUIs makes it possible

to systematically generate and analyze test cases. However, these models are often

64

D
Main

[exitWinOpen=0]

Exit

No

D
Exit

[exitWinOpen=1]

(a) Level 1.

S
0c

S
0S

S
1S

S
1c

reset

create

squarecirclecircle
reset

square

create

S
0 S

1

uncheck yesyes

check

PFSMmain PFSMexit

(b) Level 2.

reset

(un)check

S
010C

S
110C

(un)check yesyes

S
100C

S
100S

S
101S

S
101C

reset

create

squarecirclecircle
reset

square

create
S
001C

S
001S

create

squarecirclecircle
reset

square

create

S
011C

S
100S

(un)check yesyes

(un)check

S
011S

S
111S

(un)check yesyes

(un)check

S
011C

S
111C

(un)check yesyes

(un)check

exit no

exitno

no exit

exit

exitexit
exit

exitno

no

no
no

no

FSM
Main

FSM
Exit

S
000C

S
001C

(c) Level 3.

Figure 2.17: Hierarchical Finite State Machine (self-loops are omitted for readabil-
ity).

not intuitive, causing difficulties for test designers who are not familiar with formal

Computer Science concepts. Paiva et al. [49] builds another visual layer on top of

formal models to assist testers. The GUI is modeled using familiar UML notations

65

and then automatically translated to the underlying formal model by tools. More

specifically, the formal model is a set of FSMs which are encoded in a specification

language called Spec# (an extension of the C# programming language) [51].

The GUI behaviors are specified by four UML diagrams: use case diagrams,

activity diagrams, class diagrams and state machine diagrams. These diagrams are

enriched with additional stereotypes to enable automatic transformation from the

visual forms to Spec# code.

Use case diagrams provides an overview of the main functionalities and fea-

tures of the GUI application. They describe the scenarios in which the GUI is used.

The use case diagrams are used to support other UML diagrams. However, there is

no formal Spec# code directly generated from these diagrams. Figure 2.18 shows

a use case diagram one might design for the Radio Button Demo example. The

diagram consists of three main use case Edit shape, Reset, and Exit corresponding

to three main scenarios the user may interact with the GUI.

Activity diagrams describes the business logic of use cases. The conditions

and steps in the diagrams are directly encoded in Spec# syntax. Besides the user

steps, they may have parameters that correspond to user inputs, pre/post-conditions

(describing use case intent) and assertions. Class diagrams describes the static

structure of the GUI. Each top-level window is modeled as an object. The state

variables are represented by class variables, while the interactive controls are State

machine diagrams describe the dynamic reactive behaviors of the GUI. The diagrams

show GUI states at different levels of abstraction, the user actions available at each

state, their effects on the GUI states, and the sequences of user actions. Each state

66

User

Edit shape

Reset

Exit Log time

Select shape

Create shape

Select circle

Select box

<<include>>

<<include>>

<<include>>

Figure 2.18: Use case diagram.

of the state machine can be formalized by a Boolean condition on the state variables.

Each transition has a triggering event that is the call of a method representing a

user action. The transitions may additionally have pre- and post-conditions on

state variables and method parameters. A set of rules are developed to translate

the state machine diagrams in to the Spec # code. After the formal specifications

(e.g., Spec# code) are generated for all UML diagrams, an analyzer tool (e.g., Spec

Explorer) is used to analyze the formal models and generate test cases for each

diagram accordingly.

2.3 Summary

This chapter presented some of the recent advances in automated model-based GUI

testing to motivate the need of the proposed work. Graphical user interfaces are by

far the most popular means used to interact with software today. Unfortunately, the

67

state-of-the-practice in GUI testing has not kept pace with the rapidly evolving GUI

technology. In practice, GUI testing is largely manual, often resulting in inadequate

testing.

In its very fundamental form, the goal of GUI testing is to determine whether

the GUI executes as expected, as documented in the specifications, or as required

by the intended user. This definition is very broad and may encompass factors such

as testing the GUI’s usability, correctness, and performance. Since GUI testing is

a multifaceted problem, no one technique can be used for GUI testing; in fact, in

practice, a collection of techniques are almost always used. Model-based testing

can be considered a promising approach to handle the complexity of the GUI-based

software.

Finally, in all of the proposed model-based testing techniques, the GUI input

space is assumed determined. However, with the context-sensitive nature of the

modern GUIs, this assumption is no longer true. More comprehensive approaches to

explore the GUI’s input space and construct an adequate testing model are needed.

The field of model-based GUI testing remains ripe for the application of upcoming

areas of research.

68

Chapter 3

Observe-Model-Exercise* Testing Paradigm

System testing of software applications with a graphical-user interface (GUI) front-

end requires that sequences of GUI events—that sample the application’s input

space—be generated and executed as test cases on the GUI. However, the context-

sensitive behavior of the GUI of most of today’s non-trivial software applications

makes it practically impossible to fully determine the software’s input space. Con-

sequently, GUI testers—both automated and manual—working with undetermined

input spaces are, in some sense, blindly navigating the GUI, unknowingly missing

allowable event sequences, and failing to realize that the GUI implementation may

allow the execution of some disallowed sequences.

This chapter presents a new paradigm for GUI testing called Observe-Model-

Exercise* (OME*) to tackle the emerging challenges in GUI testing. The key feature

of OME* is its opportunistic use of test case execution for model enhancement. More

specifically, we now observe the existence of new events either during Ripping or test

execution to create or enhance an EFG+ model – an extension of the EFG model

– and exercise the newly observed GUI events in test cases using test adequacy

criteria. The “*” in OME is due to the iterative nature of the entire approach. As

new test cases are generated and executed, their executions are used to observe new

events, which are added to the model and used to compute new test requirements,

69

and subsequently to obtain additional test cases. The iteration ends when no new

enhancements can be made to the model.

In next section, we present a step-by-step overview of OME* via an example.

Then, we conceptually discuss the new models and algorithms to realize OME*.

More detail on the emprical evaluation of OME* will be provided in the following

chapters.

3.1 Overview

Because this work leverages several of previously reported techniques [19, 38, 22, 45]

we feel that it is appropriate to present an overview, with a running example, to

demonstrate the prior work as well as the new OME* paradigm. Figure 3.1(a)

presents the GUI of our running example, motivated by the MS Word example that

we showed in the previous section. It consists of four events in the New document

window. Events e1, e2, and e3 are non-structural events—they do not open/close

windows/menus—that manipulate radio buttons and checkbox states. Selecting the

Blog post radio button enables e3. Event e4 opens a new modal window1 entitled

either Blog post (with non-structural events e5, e6, and e7) or Blank document (with

non-structural events e5 and e8) depending on the states of the radio buttons in the

New document window. Checking the Already have a home page check box enables

e7.

1A modal window, once invoked, restricts the focus of the user to the events within the window,
until explicitly closed.

70

e5 e6 e7 e5 e8

e1

e3

e2

e4

S2 = { (Insert, Class, Button);
 (Insert, Enabled, True);
 (PageLayout, Enabled, True);
 ...
 }

S0 = { (BlankDoc, Class, Radio);
 (BlankDoc, Enabled, True);
 (BlankDoc, Selected, True);
 (HaveHomePage, Class, CheckBox);
 (HaveHomePage, Enabled, False);
 ...
 }

S1 = { (Insert, Class, Button);
 (Insert, Enabled, True);
 (HomePage, Enabled, False);
 ...
 }

(a) GUI of running example

Edge Path to edge
.
(e1, e2) NONE
(e2, e3) 〈e1〉
(e3, e4) 〈e1, e2〉
(e4, e5) 〈e1, e2, e3〉
(e5, e7) 〈e1, e2, e3, e4〉
.

(b) Context-Aware Mapping

e1

e2

e3

e4

e5

e6

e7

(c) EFG after Ripping

e1

e2

e3

e4

e5

e6

e7

e8

(d) EFG after e8 is observed

e1

e2

e3

e4

e5

e6

e7

e8

(e) EFG after e8 is executed

Figure 3.1: Running example.

71

Our overall goal is to test this running example. We summarize our process

using the following steps:

Step 1: Running the Ripper: We start by running our Ripper on the application

to obtain its EFG. Events e1, e2, e3, and e4 are all available in the main window;

their states are as shown in Figure 3.1(a). Because of their availability in the GUI’s

start state, these events form the initial nodes set, I. The Ripper incorporates these

nodes into the EFG; they are shown as shaded ovals in Figure 3.1. The Ripper then

starts executing the encountered events one by one: e1 followed by e2, then e3, and

e4. After events e1, e2, and e3, the Ripper determines that they are non-structural

events because no window is opened or closed; the follows relationships are then

computed according to the algorithms presented in earlier work [19] and added to

the EFG. Event e4 opens a new window; because of the selected state of the Blog

post radio button and checked state of e3, the new window is titled Blog post with

three events e5, e6, and e7, all enabled. They are all executed but no new window

opens. Their follows relationships are then computed and added to the EFG. The

final EFG after the Ripping phase is shown in Figure 3.1(c).

Step 2: Generating and executing test cases: In this example, we will assume that

we want to cover all EFG edges as our test criterion; we have used this criterion

in earlier work (e.g., [18, 38, 22]). There are 24 edges in the EFG of Figure 3.1(c),

yielding 24 test cases. The process for test case generation has been explained in

earlier reported work [19]. Edges are selected one by one; for each edge (ex, ey), a

path is computed—using a method called prepend context()—from one of the initial

nodes to (ex, ey), yielding a test case.

72

In previous work, because we lacked specific information about the events, our

prepend context() method could only rely on the EFG’s topology to obtain a path

from one of the nodes in the initial nodes set to the edge in question. For efficiency

reasons, we used the shortest path. For example, if we select the edge (e5, e7), the

shortest path to its first event is 〈e4〉, yielding a test case 〈e4, e5, e7〉. However,

execution of this test case stops at e5 because e7 is disabled. This presents us

with Challenge 1 mentioned in Section 1.2, Chapter 1: it is challenging to generate

particular event sequences to replicate context-sensitive behavior of events.

In our work presented in this research, we now maintain a context-aware map-

ping between edges and paths to edges that have previously been seen to be ex-

ecutable. This mapping, together with our previous EFG model forms our new

EFG+ model. Using the mapping, partly seen in Figure 3.1(b), the entry for edge

(e5, e7) is 〈e1, e2, e3, e4〉 because this was the executable path seen during Ripping.

Hence, we will get 〈e1, e2, e3, e4, e5, e7〉 as our test case. All 24 test cases are gener-

ated in this fashion, guaranteeing that all 24 EFG edges will be covered. These 24

test cases are then executed.

From our knowledge of the GUI, we know that we have yet to test event e8.

However, our Ripper does not even know of the existence of e8. We need ways to

drive the GUI into such a state that e8 is exposed, tested, and added to our EFG

model. To do so would, in principle, require that we traverse all possible paths in

the GUI. This presents us with Challenge 2: it is challenging to devise new event

sequences that reveal new parts of the input space and help to enhance the model

without incurring significant additional cost.

73

In our work presented in this research, our approach to handle this challenge is

to simultaneously use test execution for model enhancement. For example, one of our

24 test cases is 〈e1, e4〉, whose execution will open the Blank document window with

events e5 and e8. If at this time, we can recognize e8 as a new yet-to-cover event, we

can devise ways to cover it. We have developed mechanisms to add newly discovered

events during test execution to our EFG. This presents us with Challenge 3: it is

challenging to identify new events/widgets, i.e., to determine whether an event/

widget has already been seen. For example, we know that e5 is the Insert button

that we have seen earlier. On the other hand, we have never before seen e8, the

Page Layout button. Do we make a determination based solely on the “text labels”

of these widgets? This would cause problems as many widgets in the GUI have

the same text label (e.g., OK, Cancel). We have developed mechanisms to assign

unique signatures to each widget; and heuristics to determine the uniqueness of the

signatures.

Step 3: Iteratively enhancing the EFG model, and generating and executing new

test cases: Having developed the ability to identify newly encountered widgets dur-

ing test execution, we face Challenge 4: it is challenging to incrementally make

changes to the model to add new elements. To date, we have developed algorithms

to create the EFG in one pass. In our work presented in this dissertation, we develop

techniques to incrementally enhance the EFG. The new EFG after the addition of

e8 is shown in Figure 3.1(d). Because we observed e8 after the execution of e4, we

know that “e8 follows e4” which is why we have a new edge from e4 to e8. More-

over, because we know that e5 is not a structural event, i.e., it does not open a new

74

window nor does it close the current window, e8 could potentially follow e5; hence,

we also add the edge (e5, e8) to the EFG.

Now that we have two new not-yet-covered edges, (e4, e8) and (e5, e8), we need

to generate test cases to cover them so that we can satisfy our test criteria. This

presents us with Challenge 5: it is challenging to incrementally generate new test

cases. In our work presented in this research, we have developed an algorithm to

compute new test requirements from changes to the EFG+ model and generate test

cases to satisfy the requirements. Using that algorithm, assume that we get test

cases 〈e1, e4, e8〉 and 〈e1, e4, e5, e8〉, to cover (e4, e8) and (e5, e8), respectively. These

test cases are executed; e8 is determined to be a non-structural event; two new

follows relationships are added; these are new EFG edges (e8, e8) and (e8, e5) (new

EFG shown in Figure 3.1(e)). As before, we now need to cover these new edges

via new test cases. No changes are made to the EFG model during the execution

of these test cases, and so the test process is complete, having satisfied the test

criterion of covering all edges.

Even though we used a small example, we were able to show how OME* is

used to discover new parts of the input space and exercise them. However, as we

will see in our evaluation in Chapter 5, it is possible that we may not be able to

automatically exercise all model elements that we observe; in such cases, manual

intervention is needed.

75

3.2 Realizing the OME* Paradigm

We now discuss the new models, algorithms, and techniques that we developed to

realize the new OME* paradigm. We structure our discussion around the contribu-

tions listed in Chapter 1 (Section 1.2).

3.2.1 Contribution 1: Context-Aware Mapping

In our past work, we relied on the “shortest-path algorithm” to obtain a sequence

of events starting with a node in I, the initial nodes set, to the model element (e.g.,

EFG nodes, edges) that we are trying to exercise. As demonstrated by the example

of edge (e5, e7) in the previous section, this does not always yield an executable

event sequence, especially when GUI behavior is extremely context sensitive. To

address this problem, we now maintain a new context-aware mapping between model

elements and executable event sequences that have previously been successfully used

to exercise these elements. Intuitively, during Ripping and test case execution, if

we observe a certain model element is available after the execution of a particular

event sequence, we create a new mapping to use later to reach the element.

Consider, for example, the execution of event sequence 〈e2, e3, e4〉 on the GUI

of Figure 3.1(a). Recall that our coverage elements are EFG edges; hence our

mapping will be between EFG edges and event sequences used to reach them. We

start with the execution of e2, after which the events e1, e2, e3, and e4 are available

for execution. We execute e3, which does not change the set of available events. We

execute e4, after which events e5, e6, and e7 are available. The same information,

76

put in terms of the model elements, EFG edges, can be thought of as: “edges (e4, e5),

(e4, e6), and (e4, e7) are reachable via the event sequence 〈e2, e3〉.” If, in the future,

we want to cover these edges, we can use this information. This is precisely what

we record in our mapping. Hence we see entries for the edges (e4, e5), (e4, e6), and

(e4, e7) in our partial mapping shown in Table 3.1; there are several more, e.g.,

(e3, e4), which needs e2. There are also several NONE entries, which means that the

first element in the edge is in I, and it is enabled, making it trivial to reach this

edge from the initial state.

Table 3.1: Partial Mapping.
Edge Path to edge
(e4, e5) 〈e2, e3〉
(e4, e6) 〈e2, e3〉
(e4, e7) 〈e2, e3〉
(e2, e1) NONE
(e3, e4) 〈e2〉
(e3, e1) 〈e2〉
(e2, e2) NONE
(e2, e4) NONE
.

We now describe the mapping formally and present an algorithm for its con-

struction.

Definition: A Context-aware Mapping CM is a table of key-value pairs

{me; 〈ei, . . . , ej〉}; where me is a model element and 〈ei, . . . , ej〉 is an event sequence

after which me was previously observed to be available for execution, where event

ei ∈ I, the initial event set for the GUI. The entry is NONE if the first event in me

is in I, i.e., no sequence is required to reach me.

As alluded to previously, the context-aware mapping is constructed from event

77

sequence execution. During the execution of each sequence, we maintain an explicit

structure to compute the context-aware mapping. Figure 3.2 shows the structure

for the example discussed above. At the very top is the executing event sequence

〈e2, e3, e4〉. The set of enabled events after each executed event is enclosed in a dotted

oval. The shaded nodes are events in I. Solid arrows show the sequence executed;

a dashed arrow from event ex to ey shows that ey was available and enabled after

the execution of ex. To obtain the context-aware mapping, one needs only to trace

each edge back to the starting event. For example, the edges (e4, e5), (e4, e6), and

(e4, e7) have a path 〈e2, e3〉 from the left-most node.

e4

e1

e2

e3

e2

e1

e4

e3

e1

e2

e4

e7

e5

e6

Figure 3.2: Available Events Observed During Execution.

Algorithm 1 shows how this structure, T , is constructed and used to cre-

ate/update the mapping, CM. The algorithm takes three inputs: (1) a sequence of

executed events, each paired with a set of events available and enabled after its exe-

cution, (2) the context-aware mapping available thus far (from previously processed

event sequences), and (3) the set of events enabled in the initial state I. Lines 1–6

create the structure T . Edges are added from each executed event ei to all events

ej that are available and enabled after ei. Lines 7–23 use the structure to create

the mapping. First, all the model elements ME are obtained from T (Line 7); for

78

our example, this is the set of edges. Then each element me is processed using one

of two cases: (1) if the first event of me is enabled in the initial state, as is the

case for edge (e2, e2), the mapping entry is set to NONE (Line 10), (2) otherwise a

searchPath() function is used to find a sequence from the left-most element of T to

me (Line 12). For example, for the edge (e4, e7), the path returned is 〈e2, e3〉.

Because event sequences may be long, it is possible that the GUI is driven

back to its initial state multiple times during execution. In such cases, the path

may become unnecessarily long, which is why we use truncate() to remove leading

events (Line 14). Lines 15–22 update the mapping CM. If an entry for me does not

already exist in CM, the key-value pair {em, contextSeq} is simply added; otherwise,

the shorter of existing and new path is retained.

3.2.2 Contribution 2: Simultaneously Extracting New Model Ele-

ments During Test Execution

We define a GUI test case as a pair (S0, 〈e1; e2; e3; . . . ; en〉), where S0 is a designated

start state of the GUI for this test case; and each ei∈E, the set of events in the GUI.

Our test executor (or Replayer) starts executing the test case by launching the GUI

under test in start state S0, and executes each event one by one. It determines the

correctness of the GUI by using a test oracle [52]. Consider the GUI of our running

example shown in Figure 3.1(a). The start state is marked S0. All test cases start

in this state. During test execution, the GUI transitions through a sequence of

states where each state is obtained after the execution of an event. In our work,

79

Algorithm 1 Construct Mapping

Require: 〈(e1, α(S1)) . . . , (en, α(Sn)〉: executed sequence
Require: CM: Context-aware mapping
Require: α(I): Events enabled in initial state

1: T = ∅
2: for i = 1→ n do
3: for all ej ∈ α(Si) do
4: T.addEdge(ei, ej)
5: end for
6: end for
7: ME← getModelElements(T)
8: for all me ∈ ME do
9: if firstEvent(me) ∈ α(I) then

10: contextSeq = NONE
11: else
12: contextSeq = searchPath(me, T)
13: end if
14: truncate(contextSeq)
15: if me /∈ CM then
16: CM.addEntry(me, contextSeq)
17: else
18: contextSeqold ← lookUp(CM,me)
19: if |contextSeqold| > |contextSeq| then
20: CM.updateEntry(me, contextSeq)
21: end if
22: end if
23: end for
24: return CM: Updated context-aware mapping

we assume that the outcome of an event in a given state is deterministic. In our

running example, once e4 is executed, the GUI changes to state S1 or S2 based on

the states of widgets corresponding to events e1 and e2.

We define a GUI state as the full set of all triples (wi, pj, vk), where wi is a

widget currently extant in the GUI, pj is a property of wi, taken from a designated

set of properties, and vk is a value for pj, taken from a set of possible values. We

see some such triples in Figure 3.1(a) for our running example. The GUI states S0,

S1, and S2 would need to contain such triples for all widgets, all their properties,

80

and values.

We augmented our test executor to collect the state of the GUI after the

execution of each event. Using reflection, we obtain the object class for each widget

as well as the set of methods associated with the class. If the method name starts

with the get, (e.g., getLabel(), getX(), getY()), we invoke it to dynamically obtain

the value of the property. The part of the method name immediately following get

becomes the name of the property. This approach is useful because it is impossible

to predict the list of all properties of all possible widget types. For example, the

label property is available for a JButton but not for a JTextField. Similarly, if the

method name starts with the is, (e.g., isEnabled(), isVisible()), we assume that it

returns a boolean value that is also added to our properties. Figure 3.3 shows part

of our Java code used to collect states for GUI widgets.

Method[] methods = widget.getClass().getMethods();

for (Method m : methods) {

String methodName = m.getName();

if (methodName.startsWith("get")) {

property = methodName.substring(3);

value = m.invoke(widget, new Object[0]);

}

if (methodName.startsWith("is")) {

property = methodName.substring(2);

value = m.invoke(widget, new Object[0]);

}

...

}

Figure 3.3: Code to collect GUI widget states.

Once we have the sequence of states, one state after each event, we developed

a post-processing step to pass it for addition to the EFG model, which we discuss

81

in Section 3.2.4.

3.2.3 Contribution 3: Unique Widget Signatures

So far, we have conveniently referred to individual widgets by their text labels, e.g.,

Insert. Although this is fine for informal discussion in this chapter’s text so long

as the context is clear, use of a text label to identify a widget is insufficient for

our tools such as the Ripper or Replayer. One cannot expect to perform an event

on a widget, for example, using a method invoke(“Insert”), and expect it to work

correctly in all contexts; for instance, there might be two widgets, a button and a

pull-down menu, in the current window with text label “Insert”; an automated tool

does not know which one to execute. In such a situation, one might disambiguate

by adding the “widget type” to the call, e.g., invoke(“Insert”, Button). But this too

would not work if both widgets were buttons. One may specify additional widget

attributes, e.g., widget coordinates to the invocation to further disambiguate.

The above discussion is moot if each widget in the GUI had a unique identi-

fier, perhaps assigned when programming the GUI, that remains unchanged across

application runs. Such identifiers may be used by testers/tools to identify a wid-

get, e.g., during the ripping and test generation phases, and then again later during

test execution. Several researchers and practitioners have advocated the need for

such identifiers for good testability of GUI software [53, 54]. However, in practice,

such identifiers are rarely used [55]. In all fairness, there are situations in which it

becomes difficult to use identifiers for widgets. For example, widgets may be dy-

82

namically generated based on some underlying data, e.g., one widget for each item

available in an online store’s database.

Whatever the reasons for not having widget identifiers in practice, the prob-

lem of not being able to uniquely identify widgets severely complicates our new

work. Consider the Insert button in our running example. Our tools (Ripper and

Replayer) may encounter it in two different contexts: first in the modal window

entitled Blog post and second in the window entitled Blank document. These tools

need to determine whether both these encounters were for the same widget or two

different widgets; the determination will result in either one or two nodes in the

EFG. Because we created this running example, we know that it is the same Insert

in both instances, which is why we gave it the unique identifier e5. In fact, we know

that Blog post and Blank document are two instances of the same modal window.

However, an automated tool has no way of knowing this information.

Admittedly, it is impossible to devise a general unique widget identification

scheme that works for all possible GUIs. Any solution will have to be application-

specific. In this section, we describe a general mechanism that must be manually

fine-tuned on a per-GUI basis. Our mechanism is based on using a combination of

certain parts of the state of the widget and its container (e.g., window). We cannot

use the entire state for identification because it will contain some property values

that change during the GUI’s execution but do not play any role in identifying

that widget. For example, the value of the text property for a JTextField object

will change when the text changes; the enabled property changes when the object

is enabled/disabled. Such properties cannot be used for our signature because any

83

change to their values will indicate a new widget, which would be incorrect.

More formally, we define the signature, Csig, for a container C as follows:

Cstate ← 〈(p1, v1), (p2, v2), . . . , (pn, vn)〉 (3.1)

〈vi, . . . , vk〉 ← select(filterp, Cstate) (3.2)

Csig ← Φ(φi(vi), . . . , φk(vk)) (3.3)

where the user defines, per GUI, filterp, a specification of a subset of the container’s

properties and transformations φi . . . φk on the values of the properties. The function

select returns the values of the properties specified by filterp and function Φ is a

hash function on the transformed values.

Along similar lines, we define the signature, wsig, for a widget w in a container

with signature Csig, as follows:

wstate ← 〈(p1, v1), (p2, v2), . . . , (pn, vn)〉 (3.4)

〈vi, . . . , vk〉 ← select(filterp, wstate) (3.5)

wsig ← Γ(Csig, γi(vi), . . . , γk(vk)) (3.6)

where filterp and γi . . . γk are user-defined; and function Γ is a hash function on the

transformed values and the container’s signature.

In Section 5.3 (Chapter 5), we give examples of these user-defined functions

and transformations, and empirically show, for our subject GUI applications, that

they help to uniquely identify widgets.

84

3.2.4 Contribution 4: Incremental EFG+ Enhancements

Once a new widget/event is identified, it is used to enhance the EFG+ model. We

have already discussed, in Section 3.2.1, how to incrementally update the context-

aware mapping, which is an important part of the EFG+ model. We now discuss

how to incrementally enhance the EFG.

We have already informally discussed EFG enhancement in Section 3.1 and

illustrated it in Figures 3.1(d) and 3.1(e). These figures actually show the three

important steps for incremental EFG enhancement: (1) add a node to represent the

new event; (2) add edges to the new node and (3) add edges from the new node to

other nodes.

To explain these steps, we revisit two important terms in GUIs: modal and

modeless windows. At any time during GUI interaction, a user is allowed to execute

events within a modal window and any modeless window that was opened from

the modal window. At no time can the user jump between modal windows without

explicitly terminating them. Moreover, the user cannot interleave events that belong

to modeless windows associated with different modal windows. Again, the user must

explicitly terminate the modal window that is associated with the modeless window,

explicitly invoke the other modal window, open the modeless window, and invoke

any of its constituent events. A part of MS Word’s window hierarchy is shown

in Figure 3.4. Edit Picture and Edit Chart are modal windows whereas Format

Picture, Help Picture, Manage Template, and Help Chart are modeless. Consider

events x, y, z, a, b, and c. A user may execute x, y, and z together because they

85

are all contained in Edit Picture’s window group; similarly, events a, b, and c may

be executed together. However, these two sets of events cannot interleave without

their modal windows being explicitly invoked and terminated. The above behavior

Help

Picture

Format

Picture

Edit

Picture

Edit

Chart

Main

Window

Format

Chart
Help

Chart

Figure 3.4: A partial window hierarchy of MS Word.

of GUI windows to restrict sets of events leads to the definition of a new term that

we call the scope of an event. We define the scope of an event e as the set of events

contained in the group of modal and modeless windows to which e belongs. We use

scope in an algorithm to incrementally and efficiently enhance the EFG model.

More formally, we use Algorithm 2 to enhance our EFG. The algorithm is

invoked after each event, e, is executed. It takes two parameters: (1) the EFG, and

(2) the executed event. The set of all events available (enabled or disabled) is first

obtained (Line 1). For each event, ei, in this set, three steps are performed. First,

if ei has never been seen before (as was the case with e8 in Figure 3.1(d)), then it

is added to the set of nodes in the EFG (Line 4). Second, if the edge that was used

to get to ei was never seen before, then it is added as an edge (Line 7). This was

the case for the edge (e4, e8) in Figure 3.1(d). Third, the set of events in ei’s scope

are obtained (Line 9). Those that are not structural, i.e., do not open/close modal

86

windows, are used to add edges to the newly observed event ei (Line 13). This is

what we used for edge (e5, e8) in Figure 3.1(d).

Algorithm 2 Enhance EFG Model
Require: (N,E): EFG
Require: e: event executed
1: AE← getAllEventsAfter(e)
2: for all ei ∈ AE do
3: if ei /∈ N then
4: N.addNode(ei)
5: end if
6: if (e, ei) /∈ E then
7: E.addEdge(e, ei)
8: end if
9: scopei ← getScope(ei)

10: for all eij ∈ scopei do
11: if not (structural(eij)) then
12: if (eij , ei) /∈ E then
13: E.addEdge(eij , ei)
14: end if
15: end if
16: end for
17: end for
18: return (N,E): Updated EFG

The same algorithm is also used to add new edges from newly discovered

events, as we saw in Figure 3.1(e) for e8. However, this is done in a separate

invocation of Algorithm 2, after the event is executed. Consider the invocation

where the second parameter, e is the event e8. The events available after e8, Line 1,

are {e5, e8}. Because there are no outgoing edges from e8 in the EFG so far, Line 7

will add two new edges (e8, e5) and (e8, e8).

3.2.5 Contribution 5: Incremental Test-Case Generation

The new elements added to our model (e.g., EFG) may create new test requirements.

For example, if a new edge has been added to the EFG and our test criterion is “cover

all edges at least once,” then we need to cover the new edge via a new test case.

87

Hence, we need new ways to incrementally generate test cases to cover new model

elements. Note that not all changes to the model will create a need for new test

cases. For example, if the criterion is “cover all nodes,” then newly added edges in

the model may not require additional test cases. The need for additional test cases

is dictated by the test criteria, not new model elements.

To incrementally generate test cases, we maintain a set of model elements

that have already been covered. Another set of model elements (the complete set –

covered and not covered) is obtained from the latest EFG. These two sets give us

the set of model elements that still need to be covered. For each not-yet-covered

model element, we generate a test case to attempt to cover it. We first try to get

a path from the initial state to the element using the context-aware mapping; this

test case is guaranteed to be executable. If there is no mapping entry, then a path

is generated using the shortest-path algorithm.

3.3 Summary

In this chapter, we presented a new testing paradigm that we call Observe-Model-

Exercise* (OME*) to address the challenges in model-based GUI testing. We de-

scribed the key features of OME* and the algorithms used to realize it. In the

next chapters, we will discuss more detail on our experimentation infrastructure

(Chapter 4) and the empirical studies (Chapter 5) to evaluate OME*.

88

Chapter 4

GUITAR: A Generic Model-based GUI Testing Framework

In the previous chapters, we have introduced the ideas and models that make up

the OME* testing paradigm. To evaluate the abstract concepts we have devel-

oped a framework for testing GUI-based application called GUITAR. The GUITAR

framework provides tools to automate GUI testing activities including GUI model

construction, test case generation, test case execution and test result analysis. It

also supports multipe GUI platforms including Java Swing, Java SWT, UNO (Open

Office), Android, iPhone and Web. The innovation of GUITAR lies in its architec-

ture, which uses plug-ins to support flexibility and extensibility.

The framework is publicly released as an open-source project and available for

download at http://guitar.sourceforge.net. Software developers and testers

may use GUITAR to create new toolchains, new workflows based on the toolchains,

and plug in a variety of measurement tools to conduct GUI testing. In this work, we

will leverage GUITAR to conduct empirical studies to evaluate our OME* testing

paradigm (Chapter 5).

4.1 Overall Architecture

We take the component-based approach [56] to design GUITAR. Figure 4.1 shows the

UML2 component diagram [57] representing GUITAR’s overall architecture. Each

89

http: //guitar.sourceforge.net

component has a stereotype describing its role in the system: The ‘core’ components

provide global services in the system. The ‘tool’ components provide blocks to build

individual tools. The ‘plugin’ components add additional, customized features to

the tools.

Tools assemble components in different ways via their common interfaces.

Testers can use tools independently or integrate into toolchains to support a specific

workflow.

Each GUITAR component includes two separate layers to improve its flexi-

bility and extensibility. The abstract layer defines an API to communicate with

other components. This layer makes heavy use of abstract classes and interfaces

to provide an abstract view of the component. The implementation layer provides

low-level implementations for the component. This layer of separation makes com-

ponents interchangeable, so that replacing one component does not interfere with

other components of the framework. We describe each component in detail.

4.1.1 Model Core

The central component in GUITAR is the Model core. This component defines the

conceptual data structures shared amongst other components, including three main

structures:

• The GUI Structure represents the hierarchical view of the GUI. It consists of

a set of the windows in the application. The windows initially available when

the application starts are marked as root windows. All other windows are

90

component guitarcomponentComponent

<<component>>

Model core

<<component>>

Ripper

<<component>>

Replayer

<<plugin>>

Test monitor

<<component>>

Orace verifier

<<component>>

Event model converter
<<component>>

GUI structure converter

<<component>>

Test case generator

<<plugin>>

Ripper adapter

<<component>>

Importer/Exporter

XML

GUI structure & Event model
Event model

<<component>>

Executor

Event model & Test case

GUI model

GUI structure

Test case

Executor API

Figure 4.1: GUITAR component architectures.

invoked from root windows or their descendants. Each window contains GUI

components with their properties and associated values. The GUI Structure

organizes components in their natural, structural hierarchical layout (e.g., sub-

menu is a child of top-level menu). In GUITAR, a GUI Structure can be used

to represent either the static structure of the entire GUI or the dynamic GUI

state as observed at a particular time. For example, the GUI Structure is

used for both GUI trees output by the Ripper and GUI states output by the

Replayer.

91

• An Event Model represents the relationships between events on GUI com-

ponents, which we refer to as simply “events” for short. The Event Model

consists of a directed graph with nodes representing events and edges rep-

resenting relationships between events, e.g., the follows relationships in the

EFG. Each event has an event type representing the class of action performed

(e.g., left click, right click, text entry). Test Case Generators use an Event

Model to systematically generate replayable test cases.

• The Test Case structure represents a sequence of GUI events, which can be

performed one after another on the application from its initial state. A test

case can optionally contain a sequence of GUI Structure objects representing

the expected state of the GUI after each event as a form of assertion.

The remaining components interact with one another using the common data

structures defined in the Model Core.

4.1.2 Platform-independent Components

As a feature of GUITAR, we want as many of the GUITAR components as possible to

work independently of the GUI platform. Indeed, many components in the GUITAR

architecture work at the abstract level of the GUI and therefore do not require any

platform-specific details to provide important functionality.

The GUI Structure Converter converts from a GUI Structure to an Event

Model. This tool analyzes the application GUI tree, extract all GUI events and

constructs a graphical model representing the relationships between events. The

92

graph output by the GUI Structure Converter supports automatically generating

test cases.

The Event Model Converter is similar to the GUI Structure Converter, except

that it transforms from one event model to another. For example, probabilistic

values can be added to the edges of an Event Model in support of probabilistic test

case generation techniques. Users of GUITAR can extend model converters of both

types to work with their own models and support tools based on these models.

The graph structure of the Event Model reduces test case generation to a

graph traversal problem. The Test Case Generator takes an event model as input

and performs specified graph traversal algorithms on the model to automatically

generate test cases. Depending on the model exploration strategies, various test

case generators can be built around an event model. The Test Case Generator

also generates values for event parameters if necessary (e.g., reading text inputs

from a data file to support text input events). Currently, GUITAR supports two

types of test case generation strategies: systematic and random sampling on event

models. The systematic sampling strategy generates test suites by covering all

possible sequences of a given length from the event model. The random sampling

strategy, on the other hand, generates test suites performing a random walk traversal

on the model.

The Oracle Verifier provides mechanisms to automatically determine whether

a GUI executed correctly for a test case. Since a test case for a GUI is a sequence

of events, a test designer must decide both what to assert and when or how often

to check an assertion, e.g., after each event in a test case or after the entire test

93

case completes execution. Variations of these two factors significantly impact the

fault-detection ability and cost of a GUI test case. Currently, we have developed

two Oracle Verifier implementations with GUITAR: the CrashVerifier for reporting

crashes and the StateVerifier for matching output GUI states across different test

case executions.

4.1.3 Platform-specific Components

Though we strive for as much platform-independence as possible in GUITAR, the

need for test case execution requires platform-specific be specified in some compo-

nents. These components interact with the GUI components and automate the GUI

executions.

To enable the interactions between platform-specific and platform-independent

components, we provide an intermediate component called Executor for GUI au-

tomation. Figure 4.2 shows the design of the Executor at a lower level. The Ex-

ecutor consists of two sub-components: The Native GUI Automation component

is a platform-specific library such as Java Accessibility for Java JFC or Selenium

WebDriver for Ajax-based web. This component directly interacts with the GUI.

The Executor Bridge component communicates with the Native GUI Automation

component to support the platform-independent Executor API. This API works

as a contract between the platform-specific library and the high-level, platform-

independent models defined in the Model Core. The Executor API interfaces with

all other GUITAR components, so that once an Executor supports the Executor

94

API, the platform-specific components of the Executor can communicate with the

rest of GUITAR in a platform-independent way.

<<component>>

Executor

Native GUI Automation

<<component>>

Executor Bridge

GUI Model

Executor API

Native calls

<<external library>>

Figure 4.2: The Executor component.

The Executor API consists of four following interfaces:

• GApplication1: represents a GUI application and methods to initialize ap-

plications, such as starting and terminating the GUI and accessing window

handlers.

• GWindow: represents a GUI window and methods to access window properties

• GComponent: represents a GUI component (i.e., a widget) and methods to

access component properties

• GEvent: represents an event type and associated behavior, such as left-click,

right-click, and text entry. A GEvent paired with the GComponent represents a

specific GUI event on a GUI component (e.g., a left-click on the OK button).

1The prefix “G” indicates that a component is a GUITAR abstract class

95

The first three interfaces provide functionality to access the content of the GUI

such as the GUI hierarchy and GUI properties. The last interface provides func-

tionality to interact with the GUI. Section 4.3.2 will provide a case study discussing

how to implement the Executor API to work with a specific platform.

The Executor plays an important role in GUITAR, replacing the need for

manual interaction with GUIs to enable the use of much larger test suites. We

currently provide two instances of the Executor : the Ripper and the Replayer. They

implement two different automation strategies on the GUI.

4.1.3.1 The Ripper

The Ripper implements an algorithm (referred to as the “ripping algorithm”) to

reverse engineer an application’s GUI structure [19]. The ripping algorithm auto-

matically traverses the GUI, extracts all observed GUI components, and constructs

a hierarchical structure of the GUI called the GUI tree. The GUI structure is stored

in an XML file later for later use with various GUITAR tools.

The default Ripper behaviors can also be dynamically tuned by adding plu-

gins called Ripper Adapters. A Ripper Adapter inserts additional actions at each

ripping step to override the default GUI traversal strategy of the algorithm. De-

velopers can implement a specific Ripper Adapter by extending the abstract class

GRipperAdapter, which has two important methods:

• isProcessed: specifies which components that should be handled by this

Ripper Adapter

96

• ripComponent: specifies how the Ripper should proceed with handling (e.g.,

interacting with and extracting properties from) the identified components

For example, an adapter called IgnoreComponentAdapter implements the ca-

pability to ignore undesired components (e.g., the ‘Print’ button leading to the

external Printing dialog that we do not want to include in our testing process).

This adapter overrides the Ripper’s handling of components specified in the config-

uration file so that the Ripper skips these components. Section 4.3.1 will provide

a more comprehensive example, where we use a Ripper Adapter to incorporate the

handling of customized components into the Ripper or Java JFC.

4.1.3.2 The Replayer

The Replayer automatically executes test cases. It takes a test case as input, starts

the application and executes the events of the test case in order, one-by-one. The

users can also create plugins called Test Monitors to inject additional monitoring ac-

tivities during execution. More specifically, Test Monitors extend the GTestMonitor

interface with four main methods which are invoked at particular points during test

case execution:

• init: invoked before any event is executed.

• beforeStep: invoked before an individual event is executed. It takes a GTest-

StepEventArgs object as argument to pass in any step-specific data (e.g.,

event ID).

97

• afterStep: invoked after an individual event is executed. It also takes a

GTestStepEventArgs object as an argument.

• term: invoked after all events are executed.

An example of GTestMonitor is the built-in StateMonitor to capture GUI

states during test case execution. In this monitor, the afterStep method records

GUI states after the execution of the entire test case. Those states are exported as

GUI Structure XML files that can be examined to determine test results. Another

example of using Test Monitors is to inject a code coverage collector between each

event to measure code coverage at the GUI event level.

4.1.3.3 Using Executors

Importantly, GUITAR itself does not impose any restrictions on the types of ap-

plications it can be used to test. However, a specific Executor implementation will

usually only work on applications of a certain kind, due to the Executor’s dependence

on GUI automation. For this reason, we refer to GUITAR as supporting platforms

of applications which can be accessed by a specific Executor implementation.

As we show in the following case study, we can implement an Executor for

brand new platforms by providing implementations of all required abstract classes,

then implement platform-specific Ripper and Replayer components to provide a

toolchain. While we do not explore other extensions within this chapter, we could

also use an existing Executor to develop new types of tools which need the au-

tomation of GUI interaction, such as a manual capture tool or alternative reverse

98

engineering tool.

Aside from the testing-related components above, GUITAR also provides Im-

port and Export utilities to convert between its various XML structures and more

popular data formats. These components help to incorporate powerful external

tools into the GUITAR workflow. For example, the visualizations in Figure 5.2

(Chapter 5) were produced by exporting an EFG to the graph formats used by a

visualization tool called Gephi2. The Gephi visualization can be edited with Gephi’s

own external graph editor, then imported back to GUITAR for use with other tools

(e.g., test case generation and execution).

4.2 Creating Testing Workflow

Tools in the GUITAR framework can be used independently or stringed together into

toolchains. In this section, we will show how testers can create GUITAR toolchain

to support different testing workflows via an example.

Figure 4.3 shows a simple testing workflow using GUITAR tools. In this

Figure, ovals represent processes and boxes represent testing artifacts or results. The

workflow takes an application under test as input and automatically detects possible

faults in the application. In particular, the workflow consists of five following steps:

1. GUI Ripping: Use the Ripper to reverse engineer a structural model of the GUI

of an application called a GUI tree. The user may need to manually configure

the Ripper to obtain a sufficiently valid GUI structure for the application.

2https://gephi.org

99

https://gephi.org

2. Model Conversion: Use the Graph Converter to converting GUI trees produced

by the Ripper and other graphical models into to an EFG.

3. Test Case Generation: Use a Test case generator to automatically and sys-

tematically convert the EFG into test cases. Test cases are generated with

various graph traversal algorithms.

4. Test Case Execution: Use the Replayer to automatically execute test cases on

the application. The Replayer can instantiate values for events that require

parameters (e.g., text-box, combo-box) by using user-specified or a database

of default values. Runtime artifacts such as application logs and GUI state

information are collected during test case execution.

5. Test Evaluation: Use the Test Analyzer tool analyze test case execution arti-

facts to determine if the test cases are passed or failed.

Application

Under Test

GUI

Ripping

GUI

Structure

Model

Conversion

Test Case

Generation

Test Case

Execution

EFG Test

cases
Test

Cases

GUI States

and Logs

Test Case

Evaluation
Results

Figure 4.3: A simple GUITAR-based testing workflow.

This workflow, although simple, provides an end-to-end fully automated pro-

cess to test GUI applications. It is also able to automatically collect a large amount

of software artifacts such as test cases and runtime data. These features are very

100

important in enabling large-scale empirical studies. In Chapter 5, we will lever-

age GUITAR tools to evaluate a more comprehensive testing workflow - our OME*

testing approach.

4.3 Extending GUITAR

With a loose-coupling design, GUITAR can be easily extended to support multiple

research scenarios. Next sections describe several case studies to demonstrate how

GUITAR is extended. A GUITAR extension can either work within a specific GUI

platform or work cross multiple GUI platforms.

4.3.1 Within-platform Extension

In many cases, the application under test may use custom or otherwise unsupported

GUI components. Custom events, custom widget-specific properties, and custom

implementation can affect the Ripper’s ability to extract GUI widgets and its prop-

erties. To better gather properties and interact with such components, a custom

extension of GUITAR is required. In this case study, we consider an extension of

GUITAR which improves testing of JabRef3, an open-source application. JabRef is

implemented using Java Swing and has some advanced GUI components which are,

by default, inaccessible by GUITAR tools.

3http://jabref.sourceforge.net

101

http://jabref.sourceforge.net

4.3.1.1 Custom GUI Components

When ripping an application, the Ripper delegates the ripping of custom components

to Ripper Adapters (see Section 4.1.3.1). Each adapter directs the extraction of

its corresponding components during ripping to make the GUI Structure richer,

improving the accuracy of subsequent models and test cases.

JabRef uses a custom-developed GUI component called GeneralTab. This

component improves the appearance of the Preferences window (see the left part

of the window in Figure 4.4). Because of the implementation of GeneralTab, GUI-

TAR by default does not know how to discover its child components, such as the

components revealed on the right-hand part of the window when an item is selected

on the left side. By default, when a GeneralTab is selected, the corresponding GUI

components revealed on the right-hand side of the window do not show up directly

as children of the GeneralTab in the GUITree. This problem occurs because the

implementation of GeneralTab creates a separate panel and explicitly moves the

affected components to their new location. Without support for this custom com-

ponent, the Ripper attempts to handle the component as a standard Java Tab,

missing all of the components on the right-hand side.

We implemented GeneralTabAdapter, which follows the specific logic of GeneralTab

to extract the previously missed components. When the Ripper encounters a GeneralTab

object, this adapter automatically searches for the location of the GeneralTab’s chil-

dren and redirects the ripping of the tab to the new locations, as appropriate.

102

��������������	
	� �	����
��
��
���
���
	����������������	
	�
Figure 4.4: Customized component in JabRef Preferences window.

4.3.1.2 Custom Event Types

The GUITAR architecture manages GUI events separately from GUI components.

GUITAR supports the implementation of customized event types for interacting

with GUI components in custom ways. All event types in GUITAR extend the

abstract GEvent class. There are two main methods in GEvent to implement:

• isSupportedBy: defines the class of components that support this event type.

• performs: defines what the event type actually performs on the components

specified by the isSupportedBy method.

The existing GUITAR toolchain only supports a basic method to enter text

at the begin of a JTextArea. GUITAR can also be extended with a custom event

to enter text at a specified position in the JTextArea. In this case, a GEvent class

should provide an isSupportedBy method which recognizes JTextArea objects and

a performs method which invokes the low-level methods of JTextArea to insert the

input text at the specified position. This additional event complements the GUITAR

103

toolchain’s default text interaction of modifying the entire text of the component.

4.3.2 Cross-platform Extension

In this section, we describe GUITAR to how to extend an existing workflow to sup-

port multiple GUI platforms. As discussed in Section 4.1, there are two types of com-

ponents in GUITAR: platform-independent and platform-specific components. To

extend an existing workflow, we only need to implement the extensions for platform-

specific components.

We use the Java JFC and Web platforms for illustration. We compare the

extensions of the two platforms to show how to extend a testing workflow across

multiple platforms.

In this case study, the JFC extension leverages the Java Accessibility Frame-

work to monitor and drive interaction with a JFC GUI while the Web extension uses

Selenium WebDriver for the same purposes. Supporting a new platform requires ex-

tension of the Executor API of GUITAR, as described in Section 4.1. More precisely,

extending Executor requires three steps:

Step 1: Mapping platform’s native objects to GUITAR’s abstract objects: Each na-

tive GUI automation library (e.g., Java Accessibility Library, Selenium Web-

Driver) should have mechanisms for monitoring GUIs on the platform. This

step involves identifying native objects in the platform which correspond to

the abstract objects GApplication, GWindow and GComponent of the Execu-

tor API. Table 4.2 shows this mapping for both JFC and Web platforms. For

104

example, in the JFC platform, GApplication only needs to know the tested

application’s main class. In the Web platform, a WebDriver instance and the

URL of the site’s root web page provides analagous information.

Step 2: Accessing GUI properties: This step requires implementing methods for

GApplication, GWindow, and GComponent objects to access GUI functionality.

Columns 2 and 3 in Table 4.1 detail the required methods, with reference

implementations in Columns 4 and 5 for the corresponding platforms. As we

can see, the platform-specific implementation details can be very different,

as long as they provide the correct functionality to the Executor API. For

example, in the JFC platform, the connect method call invokes the main

method in the main class, which starts the GUI application. In the Web

platform, a WebDriver object handles the connection by starting the browser,

loading the root URL, and setting up the connection between the Executor

and the web site under test.

Step 3: Implementing event types: Finally, the platform needs support for any rel-

evant event types. These extensions are similar to those for the custom event

type described in Section 4.3.1.2. The event types extend the GEvent inter-

face. For each event type, we need to specify the classes of GUI components

supporting the event and how the event is actually performed in the supported

components. Table 4.3 shows the summary of the event types implemented

for our two example platforms. As we expect, some event types (e.g., submit)

are platform-specific.

105

Table 4.1: Accessing GUI component information
Interface Method Descripion JFC platform Web platform

GApplication

connect Establish a connection with the
application under test and start
testing

Use reflection to find and invoke
the main method in the main class

Use the WebDriver to start the
browser and load the root page

terminate Disconnect with the application
under test

Invoke Java System.exits method Invoke quit method from the

WebDriver

getAllWindows Get all windows currently
available

Return the values of
Frame.getFrames

Return all open pages

GWindow
isModal Check if the window is modal or

not
Invoke the isModal method in
Window

Always returns false

getContainer Get the window’s top level
component

Return the window’s top JPanel

object
Return the top level ‘body’ tags

GComponent

getTitle Get title of component return text label or icon name of
the Component

return tag (e.g., h1, img) of the

WebElement

getClassVal Get class of the component Return class name of the
Component

Return tag type of the WebElement

getGUIProperties Get all GUI properties and their
value

Use Java reflection to find and
invoke all bean methods of
Component

Use the getAttributes method to

get all attributes of WebElement

106

Table 4.2: Mapping the internal GUI objects
JFC platform Web platform

GApplication Application’s main class Selenium WebDriver object and the root page

GWindow Java Window object A Web page URL

GComponent Java Component object Selenium WebElement object

Table 4.3: Performing GUI events

GEvent
JFC platform Web platform

Supported by Implementation Supported by Implementation

Click Components
implementing the
AccessibleAction

interface

Invoke the
doAccessibleAction

method in
AccessibleAction

The ‘a’, ‘href’ tags
and the ‘input’ tags
having type ‘checkbox’
or ‘radio’

Invoke the click

method in WebElement

EnterText Components
implementing the
Accessible-

EditableText

interface

Invoke the
setTextContents

method in
AccessibleEditab-

leText

The ‘input’ tags
having type ‘text’ and
the ‘textarea’ tags

Invoke the sendKeys

method in WebElement

Submit Not available Not available The ‘input’ tags
having type ‘submit’

Invoke the submit

method in WebElement

GUITAR has been extended with Executor implementations for several com-

mon GUI platforms. Table 4.4 shows all platforms currently supported by GUITAR

and the underlying Native GUI automation library used. The human effort required

for these platform specific extensions varied considerably. For example, iOS, UNO,

and Web implementations took considerably longer than their Java counterparts

(typically one month by 4-member teams of undergraduate software engineering

students). We attribute this difference primarly to the extra implementation re-

quired to interface between the Java core of GUITAR and the platform’s native

implementation.

4.4 GUITAR in Practice

Several researchers have been using GUITAR in their work. In most existing cases,

researchers use the GUITAR framework to empirically study software testing in

107

Table 4.4: GUI platforms supported by GUITAR
GUI platform Native GUI automation library

Java JFC Java Accessibilty Framework

Web Selenium Web Driver

Java SWT Java SWT Accessibilty Frameworka

Android Robotium Framework

iOS iOS Simulatorb

UNO (Open Office) UNO Accessibilty Frameworkc

ahttp://wiki.eclipse.org/Accessibility
bhttp://developer.apple.com
chttp://openoffice.org/ui/accessibility

an automated way. For clarity, we divide the work of the primary researchers of

GUITAR (i.e., from the University of Maryland) from the work of others who have

applied GUITAR to their own scenarios.

We divide work by the GUITAR developers into six broad categories: develop-

ing workflows, and conducting large-scale studies of GUI testing, developing testing

models from the EFG, designing GUI oracles, and repairing regression test cases.

In 2005, Memon et al. proposed the DART QA process for rapidly evolving

software [35]. DART uses GUITAR tools to automate regression testing tasks, in-

cluding model construction, test case generation, and analysis of test results. In

later studies, researchers enhanced the test case generators in DART by incorporat-

ing the the actual usage of the application [42] and GUI runtime state feedback [58]

to provide a better test case quality. These represent two interesting adaptations

to workflow which required the development of custom tools to support the new

workflow.

GUITAR researchers have implemented several test case generation techniques

by developing Model Converters. To date, these tools input the existing EFG as a

108

http://wiki.eclipse.org/Accessibility
http://developer.apple.com
http://openoffice.org/ui/accessibility

base model and augment or filter the EFG before generating test cases. In this mod-

ified workflow, existing Test Case Generators (e.g., SequenceLength Generator) can

operate on the new model, but test cases must then be reconstructed as necessary to

be compatible with the standard EFG-driven Replayer. Existing techniques use the

Event Interaction Graph (EIG) [40], Event Semantic Interaction Graph (ESIG) [40],

and Probabilistic Event-flow Graph (PEFG) [42].

GUITAR supports the generation, execution and analysis of very large num-

bers of test cases. With this scalability, GUITAR toolchains provide very good

support for the consideration of coverage criteria for GUI testing. In particular,

researchers have used GUITAR to analyze three criteria for GUI testing cover-

age: event-interaction based [59], event-context based [45] and call-stack based [60].

GUITAR can provide candidate test suites for both model-based and non-modeled

reduction techniques. In these workflows, we introduce the concept of a test pool

being completely generated by GUITAR and the associated reduction techniques

then executed and analyzed potential faults by GUITAR.

Strecker et al. [21] also leveraged this scalability to conduct a series of em-

pirical experiments to studying the relationships between testing techniques and

the characteristics of faults detected. The authors used GUITAR to automatically

generate, execute and collect experimentation artifacts (e.g., logs of error informa-

tion, code coverage, and GUI state information) supported by GUITAR tools. The

experiment consisted of the execution of 100 test suites on 2 fault-seeded open-

source applications. The entire process consumed nearly 100 machine-days and was

executed on a cluster.

109

Researchers have also used Test Monitor extensions of GUITAR to perform

in-depth analysis of GUI oracles. Xie et al. [38] proposed 6 types of GUI oracles and

conducted a series of experiments on four fault-seeded Java applications to evaluate

their strengths and weaknesses. In these experiments, a Test Monitor collected

event-specific GUI states and a customized Oracle Verifier tool matched GUI states

to expectations.

Using the information available in the EFG, Memon [61] proposed an approach

to repair test cases for regressing testing by developing a Test Case Repairer tool

which extended from the Test Case Generator modules of GUITAR. The Repairer

automatically transforms all test cases detected by the Replayer as being unable to

run due to GUI changes between application versions to executable ones. Later,

Huang et al. [62] developed a similar tool but employed genetic algorithms instead.

Other researchers unaffiliated with GUITAR’s development have also used

GUITAR in their own studies of GUI testing. Swearngin et al. [63] used GUITAR

to construct a model to predict human performance in HCI studies. The model

creator starts by manually creating a set of methods (i.e., sequences of events on

the GUI) to accomplish a specific task (e.g., changing text font face to bold). These

methods are treated as GUITAR test cases and eventually executed automatically on

the GUI by the Replayer. The author also added a Test monitor to collect additional

widget properties required for their studies. Those states are used to infer implicit,

unspecified methods. All of the methods (whether explicitly created or implicitly

inferred) are supplied to a tool called CogTool to create a cognitive model of the

GUI. This approach has been implemented in a tool call CogTool-Helper, which

110

uses the Replayer for JFC and UNO platforms as back-ends.

Some authors leverage GUITAR to support their own event models and test

case generation algorithms. Huang et al. [64] introduce a weighted EFG model for

test case generation. They use GUITAR to obtain a non-weighted version of the

EFG, then assign weights to each node in the EFG based based on its properties.

An empirical study conducted with 3 open source applications showed that the new

approach can obtain a better fault detection rate than our standard workflow.

Focusing on the test case generation problem, Huang et al. [65] propose to build

an feedback-directed approach on top of the standard GUITAR test case generator.

They apply their “ant colony” algorithm to dynamically select the graph traversing

path as test cases are executed.

GUITAR has also been used to produce benchmarks to evaluate GUI testing

techniques. Mariani et al. [66] study with four open-source applications and com-

pared the GUITAR standard workflow to their technique called AutoBlackTest. In

a similar effort, Belli et al. [67] used GUITAR to evaluate a new event model called

Event-sequence Graph. A case study with of two large modules of the commercial

web portal ISELTA was conducted to compare the new model with the EFG.

4.5 Summary

In this chapter, we discuss GUITAR, a novel automated model-based testing frame-

work for GUI-based applications. GUITAR supports many activities in GUI testing.

GUITAR has an extensible architecture and works on multiple GUI platforms. The

111

framework is open-sourced and publicly available online. Next chapter will present

a large-scale empirical study to evaluate OME* using the GUITAR framework.

112

Chapter 5

Empirical Evaluation

This chapter presents our empirical studies to evaluate the OME* paradigm dis-

cribed in Chapter 3. More specifically, we empirically determine whether the OME*

paradigm improves the state-of-the-art, called the baseline (BL), in GUI testing. To

this end, we will select several popular open-source software as subject applications

to test. We will then generate and execute test cases (for BL and OME*) that

attempt to satisfy predetermined adequacy criteria. Finally, we will compare the

outcomes of the test runs.

5.1 Research Questions and Metrics

In this study, we are interested in answering the following two research questions:

RQ1: How effective is OME* when compared with BL? We will measure the fault

detection effectiveness (FDE), event coverage (EC), and code coverage (CC) of the

two approaches.

RQ2: By how much does the context-aware mapping improve the OME* approach?

We will implement OME* in two ways—one with the context-aware mapping and

the other without—and compare their FDE, EC, and CC.

Metrics: For FDE, we count the number of faults that led to the software crashing

(terminating abnormally or throwing an uncaught exception). For EC, we mea-

113

sure EFG node coverage (E1) and EFG edge coverage (E2). For CC, we measure

statement (stmt.), branch, method, and class coverage.

5.2 Selecting & Setting Up Software Subjects

We select eight subject applications from two popular open-source communities

Tigris.org1 and SourceForge2.

1. ArgoUML: A CASE tool for UML diagram design, code generation and

reverse engineering;

2. Buddi: A financial tool for personal budget management;

3. CrosswordSage: A tool for creating and solving crosswords;

4. DrJava: An advanced integrated development environment (IDE) for Java

programs;

5. JabRef: A database management tool for bibliographies management;

6. OmegaT: A language tool for automated translation;

7. PdfSam: An office utility for advanced pdf files manipulation;

8. Rachota: A time management tool for project time tracking;

They are all implemented in Java and rely on the GUI for user input. Table 5.1

summarizes their characteristics. The applications span a variety of domains, rang-

ing from games to office utilities and software development tools. We selected the

1http://www.tigris.org
2http://sourceforge.net

114

http://www.tigris.org
http://sourceforge.net

most recent released versions at the time the study was conducted. All of them are

widely used, demonstrated by the high numbers of downloads, and have broad user

communities, demonstrated by the multiple numbers of languages available. They

are all mature applications, in that they have been around for at least 5 years. They

also have non-trivial code sizes in terms of the numbers of non-comment statements

(S), branches (B), methods (M), and classes (C). Over the years, a large number of

bugs have been reported by their respective communities and fixed by the developers

in response.

Having identified the study subjects, we now prepare our tools to use them.

115

Table 5.1: Subject applications

Name Abbv. Version Download Usage Languages Year
Bug Reports Size∗∗

Fixed Total S B M C

ArgoUML AU 0.33.1 N/A∗ 11 1999 N/A∗ N/A∗ 69,954 32,084 16,091 1,891

Buddi BD 3.4.0.8 897,520 13 2006 279 304 9,588 3,711 2,318 384

CrosswordSage CS 0.3.5 4,623 1 2005 1 8 1,826 456 336 34

DrJava DJ r5004 1,227,393 1 2002 966 1091 64,994 17,485 15,229 2,394

JabRef JR 2.7b 1,173,313 4 2003 564 768 44,522 18,176 7,502 1,267

OmegaT OT 2.1.3 254,559 29 2002 462 503 19,756 6,772 4,519 714

PDFSam PS 2.2.1 2,548,362 21 2006 71 87 6,097 2,043 1,504 194

Rachota RC 2.3 74,107 11 2003 124 174 11,183 2,837 1,898 320

∗ The all-time statistics for ArgoUML are not publicly available. However, its popularity
and maturity are partially demonstrated by the current more than 19,000 registered users
and over 150 active developers (http://www.isr.uci.edu/tech-transition.html).
∗∗ S = Statements; B = Branches; M = Methods; C = Classes

116

http://www.isr.uci.edu/tech-transition.html

5.3 Defining Functions for Unique Signatures

Our first preparation step is to ensure that we correctly identify each window and

widget in the applications. As described in Section 3.2.3, we develop functions for

windows (our containers) and widgets for this purpose. We start with windows, for

which we need to develop filterp, to select a subset of window properties, and φ() and

Φ() to generate a unique window signature. It turns out that our study subjects only

require the use of one window property, namely “window title.” The value of this

property is the title of the window, which, for the most part, are already unique. The

exceptional cases are handled by mapping a few titles to regular expressions. For

example, the title of the window “Save file” in ArgoUML can change dynamically

during its execution; it always starts with the string Save followed by the full path to

the file’s location. The title changes when the user saves the file in another location.

Hence, if we rely solely on window title, there is a danger that we consider each

instance with a different title as a new window. To ensure that our tools recognize

that all instances of this Save file window, with different titles, are in fact the same

window, we map the title string, via the φ() function, to the regular expression

‘Save (/.*)*’. We did this for a few windows.

The case for widgets is more complex. The title of widgets in our study subjects

is repeated many times in the application. For example, many buttons share the

title OK. For this reason, we use three properties to identify widgets, namely title,

icon, and class, representing the main title/label of the widget, the file-name of

the icon labeling the widget if it exists, and the object class used to implement

117

the widget, respectively. The values of these three properties are used in the Java

HashCodeBuilder utility to generate a hash code for each widget.

We verified that our signatures are indeed unique. We manually examined

each application and counted all its widgets and windows; we show the numbers in

Table 5.2 under “Manual Oracle”. We then used our tools to do the same. Our

tools first extracted the Unique Title Strings and used our φ() function to map

some of them to regular expressions. Similarly, our tools extracted the Text Titles

for widgets, determined the image used for the Icons, and the Java Classes used to

implement the widgets. These were then mapped to Widget Hash codes. Combined

with their associated window hashes, we obtained unique Mapped Widget Signatures.

As Table 5.2 shows, the resulting numbers matched our manual oracle exactly.

5.3.1 Sandbox and Text Parameters

Our second preparation step for testing the applications included setting up a sand-

box. The key role of this sandbox was to ensure that each run of the application

was independent of all prior runs. We defined a default configuration for each

application. Before a test case is executed, the application is reset to its default

configuration.

Finally, our third preparation step involved setting up data for parameterized

events. A general parameter populating strategy was used. For events requiring

a text input (e.g., text field, text area), a database that contains one instance for

each of the text types in the set {negative number, real number, zero, long random

118

Table 5.2: Automated Widget/Window Identification vs. Manual Oracle.

(a) Window Identification.

SUT
Manual Oracle Automated

Numbers of
Windows

Unique
Title Strings

Mapped
Title Strings

AU 28 38 28

BD 20 24 20

CS 9 9 9

DJ 38 44 38

JR 52 56 52

OT 30 31 30

PS 6 6 6

RC 12 18 12

(b) Widget Identification.

SUT
Manual Oracle Automated

Numbers of
Widgets

Text Titles Icons Classes Widget
Hashcodes

Mapped Widget
Signatures

AU 1040 710 20 113 1023 1040

BD 728 410 0 119 697 728

CS 137 111 0 40 130 137

DJ 1144 742 16 114 1132 1144

JR 1600 1127 30 134 1511 1600

OT 824 539 6 96 801 824

PS 323 272 18 72 315 323

RC 462 361 6 65 453 462

string, empty string, string with special characters} was used. All instances in the

text type set were tried in succession for each test case.

5.4 Running the Experiment

Having prepared the study subjects, we are now ready to run the experiment, first

establishing the baseline (BL) and then 2 instances of OME* (with and without

the context-aware mapping). For each, we record coverage (E1, E2, Stmt., Branch,

Method, Class), number of Nodes and Edges in the EFGs, and number of test cases

119

that were Generated, and those that executed to completion (Feasible), and number

of faults found.

More specifically, for each study subject, we perform the following steps:

1. Create EFG using the Ripper.

2. Generate tests from EFG, execute them, and record all metrics. This forms

our BL.

3. As discussed in Section 3.2.2, new model elements are extracted during Step 2

above.

4. As per Section 3.2.4, enhance the EFG model.

5. Generate test suite from new EFG and execute them. Record all metrics for

this suite. This forms our first implementation of OME* that does not use the

context-aware mapping. We call this noMap.

6. As per Section 3.2.1, the context-aware mapping is created. Together with the

EFG from Step 4, this forms the EFG+ model.

7. Generate test suite from new EFG+ and execute them. This forms one iter-

ation of our withMap approach. Record all metrics for this suite and extract

new model elements.

8. Enhance both EFG and mapping. Repeat Step 7 until the EFG+ model does

not change.

120

 Build History

 Project Relationship

 Check File Fingerprint

 Bulk Builder

Build Queue

sum-crash-random

Build Executor Status

Master

1 Idle

2 Idle

frodo.cs.umd.edu (offline)

samwise.cs.umd.edu (offline)

skoll000.umiacs.umd.edu (offline)

skoll001.umiacs.umd.edu

1 Idle

skoll002.umiacs.umd.edu

1 Idle

skoll003.umiacs.umd.edu

1 Idle

skoll004.umiacs.umd.edu

1 Idle

skoll005.umiacs.umd.edu

1 Idle

skoll006.umiacs.umd.edu

1 Idle

skoll007.umiacs.umd.edu

1 Idle

skoll008.umiacs.umd.edu

JabRef
ArgoUML ArgoUML-random Buddi CrosswordSage DrJava DrJava extra JabRef-random JabRef-random-ext OmegaT PdfSam Ra

 S W Name ↓ Last Success Last Failure Last Duration

JabRef-1.0 12 min (#9) N/A 12 min

JabRef-1.1 N/A 3 mo 25 days (#6) 7 hr 24 min

JabRef-1.2 N/A 3 mo 25 days (#6) 7 hr 24 min

JabRef-1.3 N/A N/A N/A

JabRef-1.4 3 mo 18 days (#7) N/A 20 hr

JabRef-1.5 3 mo 18 days (#7) 3 mo 25 days (#6) 23 hr

JabRef-1.6 3 mo 18 days (#7) N/A 20 hr

JabRef-1.7 3 mo 18 days (#7) N/A 17 hr

JabRef-1.8 3 mo 18 days (#7) 3 mo 25 days (#6) 23 hr

JabRef-1.9 3 mo 18 days (#7) N/A 21 hr

JabRef-2.0 6 mo 5 days (#4) 3 mo 25 days (#6) 1 min 32 sec

JabRef-2.1 6 mo 5 days (#4) 3 mo 25 days (#6) 1 min 28 sec

JabRef-2.2 5 mo 0 days (#5) N/A 3 days 20 hr

Figure 5.1: Continuous Integration Testing System.

The total number of test cases and their execution times (in hours) are shown

in Table 5.3. Note that we executed over 400,000 test cases in almost 1000 machine

days. We used 120 2.8 Ghz P4 Linux nodes running in parallel.

The entire experiment process is scripted to provide fully automation. We

used a distributed continuous integration tool called Jenkins3 to control test case

execution. Figure 5.1 shows a screenshot of our continuous integration testing sys-

tem4. The left-hand side of the screen shows the list of available slave machines and

the right-hand side details existing testing jobs and their current status.

3http://jenkins-ci.org
4See more detail at http://samwise.cs.umd.edu:8080

121

http://jenkins-ci.org
http://samwise.cs.umd.edu:8080

Table 5.3: Test Cases Generated and Execution Time
BL withMap noMap

Test
cases

Exec
time (h)

Test
cases

Exec
time (h)

Test
cases

Exec
time (h)

AU 4,468 309 25,086 2,504 9,782 563

BD 2,890 50 32,712 752 8,204 124

CS 266 2 333 3 333 3

DJ 5,842 356 34,702 2,602 18,141 582

JR 39,555 2,982 170,809 10,984 54,516 3,945

OT 3,605 85 18,275 435 9,581 180

PS 6,856 68 9,135 116 9,135 100

RC 1,456 12 8,504 177 4,784 70

Total 64,938 3,863 299,556 17,573 114,476 5,567

5.5 Threats to Validity

As is the case with all empirical studies, our experiments suffer from several threats

to validity. Threats to external validity are factors that may impact our ability to

generalize our results to other situations. We have used eight open-source Java

applications. Although carefully selected, they do not reflect the spectrum of all

possible GUIs that are available today. Moreover, the applications are extremely

GUI-intensive, i.e., most of the code is written for the GUI. We expect that results

may be different for applications that (1) have complex underlying business logic

and a fairly simple GUI, (2) are developed using other programming paradigms, and

(3) are tested in-house for commercial applications. Finally, we initialized various

values for text-fields manually and stored them in a database. We may see different

results for different values.

Threats to internal validity are possible alternative causes for experimental

results. Because we wanted to achieve full automation, we developed functions to

identify widgets/windows uniquely. The instruments used for run-time state collec-

122

tion of GUI widgets were based on Java Swing API. These widgets may have addi-

tional properties that are not exposed by the API. Hence the states captured may

be incomplete, causing us to map different windows/widgets into the same unique

element. Moreover, because GUI execution requires frequent painting/repainting of

windows, the captured state will be inaccurate if captured too early in the painting

process; we set long artificial delays to allow the GUI to finish repainting.

Threats to construct validity are discrepancies between the concepts intended

to be measured and the actual measures used. We used the number of crashes as

our fault detection effectiveness metric; event and code as coverage metrics; these

might not be useful metrics in all situations.

5.6 Results

We summarize our results in terms of the metrics that we collected for all 3 suites,

i.e., BL, noMap, and withMap, in Table 5.4. We also break up the results of withMap

by iteration so as to see the effect of OME*. From this raw data, we want to bring

several points to the reader’s attention.

Number of Iterations: Technique noMap has a single iteration as opposed to sev-

eral for withMap. This is because even though new model elements were discovered

during test execution in BL and used in Iteration 1 of noMap, very few of them were

in fact reachable because of the absence of the mapping. This led to a large number

of “infeasible” test cases that did not execute to completion. We revisit this point

in more detail later.

123

Table 5.4: Data for RQ1 and RQ2.
AU BD

1 2 3 4 5 1 2 3 4 5
Nodes 328 372 385 418 473 - 372 # Nodes 249 297 344 412 457 500 297

Edges 4,468 9,062 11,731 17,147 20,485 - 9,062 # Edges 2,890 7,129 11,011 17,019 24,396 30,196 7,129

Mapping # Entries - 8,485 11,014 15,600 18,481 - - Mapping # Entries - 5,486 8,130 13,993 20,661 25,369 -

Gen. 4,468 5,314 3,911 6,621 4,772 - 5,314 # Gen. 2,890 4,289 4,271 6,757 7,943 6,562 4,289

Feas. 3,763 4,771 2,743 5,376 3,223 - 556 # Feas. 2,324 3,721 3,434 5,966 7,094 5,577 2,471

% E1 66.81 84.78 86.47 88.16 89.01 - 69.40 % E1 40.00 48.20 56.60 65.40 68.60 72.00 31.01

% E2 18.37 41.66 55.05 81.29 97.03 - 19.21 % E2 7.70 20.02 31.39 51.15 74.64 93.11 15.88

% Stmt 22.45 24.87 24.89 24.91 24.91 - 24.15 % Stmt 38.54 47.61 48.90 49.04 49.19 49.34 38.67

% Brnch 10.31 11.83 11.86 11.88 11.88 - 11.29 % Brnch 17.06 21.77 22.42 22.50 22.90 22.96 17.08

% Mthd 26.21 28.22 28.23 28.23 28.23 - 27.59 % Mthd 36.45 42.23 42.92 43.18 43.27 43.49 36.71

% Class 52.09 54.63 54.63 54.63 54.63 - 53.83 % Class 64.06 75.00 75.78 75.78 76.30 76.30 64.32

- 2 2 0 0 - 0 - 4 3 0 0 0 0

4 6 8 8 8 - 4 1 4 7 7 7 7 1

CS DJ

1 2 3 4 5 1 2 3 4 5
Nodes 40 40 - - - - 40 # Nodes 275 399 462 523 - - 399

Edges 266 330 - - - - 330 # Edges 5,842 12,299 19,876 30,613 - - 12,299

Mapping # Entries - 283 - - - - - Mapping # Entries - 9,614 17,260 28,272 - - -

Gen. 266 67 - - - - 67 # Gen. 5,842 9,120 8,189 11,551 - - 9,120

Feas. 230 64 - - - - 7 # Feas. 4,237 6,108 7,256 11,359 - - 2,094

% E1 97.50 97.50 - - - - 97.50 % E1 46.85 69.41 78.78 82.22 - - 33.25

% E2 69.70 89.09 - - - - 71.82 % E2 13.84 33.79 57.50 94.60 - - 20.68

% Stmt 25.19 26.62 - - - - 25.19 % Stmt 26.09 27.70 28.95 29.63 - - 26.30

% Brnch 8.55 8.77 - - - - 8.55 % Brnch 17.74 19.90 21.11 22.08 - - 18.17

% Mthd 25.60 28.27 - - - - 25.60 % Mthd 28.28 29.58 30.61 31.26 - - 28.43

% Class 41.18 41.18 - - - - 41.18 % Class 51.92 52.80 54.51 55.18 - - 51.96

- 3 - - - - 0 - 1 0 0 - - 0

5 8 - - - - 5 3 4 4 4 - - 3

JR OT

1 2 3 4 5 1 2 3 4 5
Nodes 483 603 830 1,058 1,177 - 603 # Nodes 309 333 337 347 - - 333

Edges 39,555 54,272 68,063 123,757 168,658 - 54,272 # Edges 3,605 7,705 10,988 15,961 - - 7,705

Mapping # Entries - 45,622 62,960 109,672 145,840 - - Mapping # Entries - 4,716 8,065 13,652 - - -

Gen. 39,555 14,961 14,686 56,199 45,408 - 14,961 # Gen. 3,605 5,976 3,517 5,177 - - 5,976

Feas. 30,850 21,164 14,302 53,607 44,601 - 12,248 # Feas. 2,712 4,308 3,356 5,001 - - 2,730

% E1 39.25 50.89 70.18 88.62 98.81 - 28.00 % E1 81.56 93.08 94.81 96.54 - - 75.13

% E2 18.29 30.84 39.32 71.10 97.55 - 25.55 % E2 16.99 43.98 65.01 96.34 - - 34.10

% Stmt 29.12 33.70 37.16 38.36 38.63 - 29.15 % Stmt 40.97 45.96 46.44 48.31 - - 41.45

% Brnch 12.04 15.12 17.53 18.84 19.16 - 12.17 % Brnch 23.36 29.43 29.71 32.21 - - 24.08

% Mthd 29.95 34.95 38.10 39.24 39.43 - 29.95 % Mthd 38.22 41.93 42.38 43.46 - - 38.44

% Class 51.62 57.62 62.83 63.38 63.54 - 51.62 % Class 62.61 65.97 66.67 67.23 - - 62.75

- 6 3 0 0 - 1 - 1 0 0 - - 0

4 10 13 13 13 - 5 3 4 4 4 - - 3

PS RC

1 2 3 4 5 1 2 3 4 5
Nodes 111 118 - - - - 118 # Nodes 151 167 171 185 185 - 167

Edges 6,856 8,273 - - - - 8,273 # Edges 1,456 4,726 6,136 6,849 8,324 - 4,726

Mapping # Entries - 7,557 - - - - - Mapping # Entries - 3,444 5,684 6,188 7,490 - -

Gen. 6,856 2,279 - - - - 2,279 # Gen. 1,456 3,328 1,474 739 1,507 - 3,328

Feas. 6,086 1,675 - - - - 445 # Feas. 1,107 3,288 1,451 718 1,476 - 1,237

% E1 94.07 100.00 - - - - 45.38 % E1 73.51 84.32 87.03 96.22 96.22 - 83.24

% E2 73.56 93.81 - - - - 91.03 % E2 13.30 52.80 70.23 78.86 96.59 - 38.10

% Stmt 41.74 42.43 - - - - 41.74 % Stmt 61.19 64.37 65.62 66.37 66.40 - 61.19

% Brnch 15.91 16.84 - - - - 15.91 % Brnch 33.45 37.12 38.14 38.74 38.88 - 33.45

% Mthd 36.97 37.50 - - - - 36.97 % Mthd 46.21 47.89 48.89 50.53 50.53 - 46.21

% Class 68.04 68.56 - - - - 68.04 % Class 81.88 85.63 86.25 86.25 86.25 - 81.88

- 5 - - - - 0 - 1 2 1 0 - 0

2 7 - - - - 2 2 3 5 6 6 - 2

Code Cov. Code Cov.

New Faults # New Faults

Total Faults # Total Faults

EFG EFG

Test Cases Test Cases

Event Cov. Event Cov.

BL withMap noMap BL withMap noMap

Code Cov. Code Cov.

New Faults # New Faults

Total Faults # Total Faults

EFG EFG

Test Cases Test Cases

Event Cov. Event Cov.

BL withMap noMap BL withMap noMap

Code Cov. Code Cov.

New Faults # New Faults

Total Faults # Total Faults

EFG EFG

Test Cases Test Cases

Event Cov. Event Cov.

BL withMap noMap BL withMap noMap

Code Cov. Code Cov.

New Faults # New Faults

Total Faults # Total Faults

EFG EFG

Test Cases Test Cases

Event Cov. Event Cov.

BL withMap noMap BL withMap noMap

EFG: The EFG+ model improves—gets bigger in size—with each iteration of withMap.

In most cases, the number of EFG edges is significantly larger (e.g., 1044% for Buddi)

compared to BL, showing that we were able to observe, model, and exercise a larger

124

number of GUI events, hence test more functionality. The number of entries in the

context-aware mapping also grows steadily with each iteration, indicating that we

are able to reach and execute new coverage elements. This is all directly reflected

in improved fault-detection effectiveness and increased event and code coverage.

We pictorially examine and explain the growth in the EFG model via an

example. Figure 5.2 shows a bird’s eye view of the EFGs of our subject application

Buddi for BL and 5 iterations of withMap5. Our goal is not to show details of the

EFGs; rather, we want to show very high level pictures of the EFGs so that the

reader can visually appreciate the changes from one EFG to the next. The EFGs

have been drawn in such a way that the (x, y) location of each node in the EFG is

fixed across iterations. For example, the OK event labeled in Figure 5.2(a) is in the

same location, relative to all other nodes in Figures 5.2(b) through 5.2(f). We add

labels to highlight specific parts that we discuss in the text.

At a high level, there are stark differences between the EFGs of Figure 5.2(a)

(BL technique) and Figure 5.2(f) (final iteration of withMap). For example, the

Language Items, New Account, Edit Account Types clusters and a large number of

edges do not even appear in Figure 5.2(a); all these are observed only during the

OME* process. Hence, BL has no way to cover these events/edges.

Buddi has a context sensitive GUI, which changes the set of available events

based on the end-user’s current “working perspective,” i.e., at any time during its

execution, events related to specific perspective are displayed. For example, during

5Additional visualizations of the EFGs, detailed code coverage reports, and actual fault reports
are available at http://www.cs.umd.edu/~atif/OME

125

http://www.cs.umd.edu/~atif/OME

the execution of the Ripper, the Edit menu is only exercised only once in the Report

creation perspective. Hence, only the report related sub-menu items are observed

by the Ripper, and hence the BL technique.

In contrast, withMap is able to exercise Edit several times in many other

perspectives. As a result, new sub-menu items are observed. As marked in Fig-

ure 5.2(b), for example, three new events Edit All Transaction, Edit account types,

and Create Account are added to the original EFG when Edit is executed in the

Account Management perspective. These events, when performed in subsequent it-

erations, will in turn, open new windows to extend the EFG even further (marked

by the ovals in Figure 5.2(c)).

Our example illustrations also show that changes to the EFGs across iterations

may not necessarily be changes in events, i.e., new edges may be added between

previously observed events. For example, events in both Edit Account Types and

New Account windows have been observed during Iteration 2 (via menu items in

the main window). However, the edges linking these two windows are only revealed

during Iteration 3, when the New Account event in Edit Account Types is exercised

(shown using a “New edges” label at the bottom-left of Figure 5.2(d)). These new

edges provide a new way to exercise events in the New Account window.

We also note that even a very small number of newly observed events may lead

to a significant change in model size. Because Buddi allows users to work in multiple

perspectives simultaneously (e.g., adding a new account when generating a report),

the windows are mostly implemented as modeless. For that reason, as soon as a

new event is observed and added to the model, it gets connected to all previously

126

known events, making the graph very dense. As shown in Figure 5.2(d) through

Figure 5.2(f), the edge cluster from the All Transactions window’s events back to

all the events in the main window (the center of the EFG) grows significantly across

iterations.

Mapping and Test Case Feasibility: Our context-aware mapping size also grows

across iterations of withMap. This mapping plays a big role in ensuring that a

larger number (compared to noMap) of test cases remain feasible. The 4 most

important data points to illustrate this are the # Generated and # Feasible entries

under Iteration 1 of withMap, and under noMap. For example, in ArgoUML, only

556 of 5314 test cases were feasible, i.e., executed to completion, with noMap. In

contrast, 4771 of 5314 test cases were feasible with withMap. This shows that by

retaining when events were observed to be executable and using this information

when exercising these events again proved to be very successful at making test cases

executable.

The JabRef data of # Generated and # Feasible entries under Iteration 1 of

withMap highlights another important aspect of our mapping. Even though we

generated 14,961 new test cases during this iteration, a total of 21,164 test cases

were feasible and executed. This is because some of the test cases from the previous

run (in this case from BL) that remained unexecutable earlier, were now executable

due to new entries in the mapping.

Event and Code Coverage: We see that we gradually increase the amount of

code and events that we cover across iterations. However, we never achieve 100%

coverage of our criterion, i.e., cover all EFG edges. This means that we observe

127

edges during some iterations but never get to reach them in subsequent iterations.

This is due to the highly context-sensitive nature of our GUIs, where a context-

aware mapping entry is no longer valid for a subsequent iteration. Addressing these

cases is a subject for future work.

Faults: In total, we discovered 34 new faults that have not been detected before.

Table 5.5 provides the detail of faults detected only in the iterative phases of OME*

(recall that the first phase of OME* is actually BL). These faults were only detected

in the later iterations because the new model elements (i.e., EFG edges) were only

able to reach by leveraging the information collected in the previous iterations.

We also reported these faults to the developers of the subject applications.

In response to our report, they have confirmed and fixed some of these faults in

subsequent releases of the applications. There is only a few cases the reported

faults were not fixed (e.g., in CrosswordSage). The reason is because at the time

we reported the faults, the projects were no longer under an active development.

More details of the faults detected can be found online at http://www.cs.umd.edu/

baonn/projects/guitar/bugs.

128

http://www.cs.umd.edu/ ̃baonn/projects/guitar/bugs
http://www.cs.umd.edu/ ̃baonn/projects/guitar/bugs

Edit

Use Proxy

OK

Proxy Port
Proxy URL

(a) BL: Initial Model.

.

Edit

Proxy Port

Use Proxy

OK (bd1, bd2)

bd3

bd4

Edit All Transactions

Edit Account Types

Create Account

Proxy URL

(b) Iteration 1.

All Transactions

Edit Account Types

New Account

bd5
bd6

bd7

(c) Iteration 2.

New edges

Edges to Main window

Language items

(d) Iteration 3.

Edges to Main window

Language items

(e) Iteration 4.

Language items

Edges to Main window

(f) Iteration 5: Final Model.

Figure 5.2: OME* sees more of the EFG with each iteration.

129

Table 5.5: Summary of faults detected in the iterative phases of OME*

BugID Iteration Confirmed Fixed Description

AU4 1 X X ProfileException when using ‘/crash/crash’ as name to save a user profile

AU5 2 X X NullPointerException when changing layout of an empty Activity diagram

AU6 1 X X NullPointerException when trying to ‘Revert to Saved’ an unsaved document

AU7 2 X X InvalidObjectException when keeping the ‘Open Project’ window open and saving another project

BD1 1 X X IllegalArgumentException with an out-of-range Proxy Port

BD2 1 X X IllegalArgumentException when updating with an non-existing proxy address

BD3 1 X X InvalidValueException when creating a transaction with an empty name

BD4 1 X X FileNotFoundException when saving with a non-encrypted file with name containing special characters

BD5 2 X X FileNotFoundException when saving with an encrypted file with name containing special characters

BD6 2 X X ZipException when using a plugin name containing special characters

BD7 2 X X FileNotFoundException when configuring with a non-existing language file

CS1 1 × × FileNotFoundException when providing an invalid file name to save

CS2 1 × × NullPointerException when generating Write Clue with an empty crossword

CS3 1 × × NullPointerException when generating Suggest Word with an empty crossword

DJ1 1 X X IOException when saving file with a file name containing special characters

JR1 1 × × StringIndexOutOfBoundsException when using ”!#́” as a ‘Preview text’ in Preferences

JR2 1 X X ArrayIndexOutOfBoundsException when allowing to generate keyword for a disabled bibtex entry

JR3 1 X X ArrayIndexOutOfBoundsException when generating keyword for an already closed bibtex file

Continued on next page

130

Table 5.5 – Summary of faults detected in the iterative phases of OME* (continue)

BugID Iteration Confirmed Fixed Description

JR4 2 X X Pattern Exception when searching with an regular expression containing the special characters ‘ []’

JR5 2 × × IOException when setting default owner name containing a ‘{’ character

JR6 1 X X ClassNotFoundException when providing a non-existing class to setup the ‘Look and Feel’

JR7 1 X X ServerSocketException with an out-of-range Proxy port

JR12 1 X X ArrayIndexOutOfBoundsException when changing properties of an already closed bibtex file

JR13 2 × × StringIndexOutOfBoundsException when import with a non-exist ImportFormat plugin

OT1 1 X X NullPointerException when checking spell with a blank spell-checking plugin name

PS1 1 × × ParseException when providing a non-numeric value for the split after these pages text filed

PS2 1 × × ParseException when providing a non-numeric value for the split every “n” pages text field

PS3 1 × × ParseException when providing a non-numeric value for the split at this size text file

PS4 1 X X NullPointerException when providing an invalid split by bookmarks level

PS7 1 × × FileNotFoundException when saving with an invalid environment file name

RC1 2 X X NullPointerException when generating report with a non-existing file name

RC2 2 × × NullPointerException when adjusting time after switching to a previous day

RC3 1 X X NumberFormatException when entering a non-numberic value to the Inactivity time text field

RC7 3 × × NullPointerException when simultaneously adjusting starting time and correcting the scheduled time

131

5.7 Discussion

To better understand the role of dynamic input space exploration on fault detec-

tion and adequacy, we analyzed the faults that were detected only by the OME*

technique. This section provides details of our analysis and findings.

A total of 7 new faults were detected in Buddi. All 7 were detected by the

withMap technique. Of these 7, one fault was also detected by noMap. These faults

are also indicated in Figure 5.2. The faulty events (i.e., the last events in the failed

test cases) are solid dark nodes with their IDs (bd1–bd7) pointed by an arrow. We

now discuss these faults and the test cases that detected them.

Fault bd1 results in an IllegalArgumentException when setting an out-of-range

proxy port for network configuration. It is detected by a test case consisting of 6

events: 〈e1: Expand Edit menu; e2: Open Preferences window ; e3: Select Network

tab; e4: Enable Use Proxy option; e5: Enter a large number for proxy port ; e6:

Click OK 〉. This fault did not occur earlier in the BL iteration because, by default,

the Proxy Port text box (i.e., e5) is disabled. It is unable to change the proxy port

unless the Enable Use Proxy check box is checked (i.e., performing e4). However, this

information is not available at BL. During the BL process, event e5 was observed

after the execution of event e4. Hence, a new context aware mapping entry was

created to reach e5. In the next iteration, test cases were generated to cover e5.

One of them led to the failure. Fault bd2 is similar to bd1 except that it throws an

UnknownHostException when using a non-existing proxy URL (with a valid port).

This is a particularly interesting test case because event e6, i.e., Click OK, the

132

one that revealed the failure had been executed several times in BL. However, the

failure was manifested only when e6 executed in the context of e5. Moreover, e6

revealed a different failure, bd2, when executed after setting a non-existing proxy

URL. All events in the fault-revealing test cases were available in the initial model

(as marked in Figure 5.2(a)). However, the faults were revealed only when the events

were tested in specific combinations.

The remaining faults in Buddi were detected due to the discovery of new

events. For example, fault bd3 causes an InvalidValueException when saving a

transaction with an empty name. In Buddi, a transaction can be saved only after a

document change. However, during ripping, the events related to the save function-

ality (e.g., Save, Save All buttons) were all executed before any document changing

event. Hence, the Save Transaction dialog, which is opened by these events, did

not show up. In subsequent iterations, however, it was opened and tested in new

executing contexts. As a result, the fault was detected.

Faults bd5, bd6, bd7 were detected during Iteration 2 when new events were

observed and exercised. Detecting faults in later iterations is not uncommon, as

can be seen in Table 5.4. The reason for this is that exercising fault-revealing

events requires going through multiple other events, performed in a sequence. By

iteratively identifying the enabling/opening relationships between events, the OME*

test case generator is able to compose test cases that reveal faults. Consider, for

instance, Fault rc7 in Rachota; this was detected in Iteration 3. It is an uncaught

NullPointerException, thrown when simultaneously adjusting the current date, and

setting the starting time of an active task to empty (recall that Rachota is an

133

application for tracking project time). The event sequence leading to this fault is:

〈e11: Select a task ; e12: Start selected task ; e13: Expand Tool menu; e14: Open Adjust

start time window ; e15: Change to a previous date; e16: Click OK to confirm the

start time adjustment〉. This sequence brings the GUI through a series of states

where events are reached in a chain: first, e11 enables e12 in BL, and then e12 in turn

enables e14 in Iteration 1. When performed in Iteration 2, e14 opens a new Adjust

starting time window (e13 is known earlier to expand the Tool menu to reach e14).

This window contains the events allowing the user to adjust the starting time of the

active task (e.g. e16). Finally, the pair (e15, e16) is exercised in Iteration 3, leading

to the exception.

We conclude our discussion of these faults by noting that due to the complexity

of the GUI, the state-based relationships between events that led to failures are

difficult to predict manually. Similarly, because GUI event handlers are often spread

across multiple independent modules/classes [68], such faults cannot be detected by

code analysis techniques such as static analysis.

Going back to our research questions, we were able to show that OME* is

more effective than BL, when using FDE, EC, and CC as our metrics. Further, we

implemented OME* in two ways, with and without the mapping, and showed that

because noMap does not maintain the context-aware mapping to reach coverage

elements, it yields many infeasible test cases. The mapping is key to the success of

OME*.

134

5.8 Benchmark

The data, scripts and tools used in this study require thousands of computation-days

and hundreds of person-hours to create. We packaged all of these experimentation

artifacts into a benchmark and made it available online for the research community6.

The purpose of this benchmark is to provide other researchers with a similar exper-

imentation environment when they want to compare their work with OME*. The

benchmark will allow them to objectively experiment with a common set of tools

and subjects, using similar models, processes and experimentation assumptions.

We also provide detail documentation for artifacts in the benchmark. Re-

searchers may reuse our data to perform new studies. Similarly, they can extend

our experimentation tools and scripts to support their new testing techniques.

5.9 Summary

This chapter empirically studies the OME* testing paradigm. An extensive experi-

ment on 8 open-source applications showed that OME* did much better compared

to the current state-of-the-art. In some cases, we observed more than 200% im-

provement in the set of events that we executed. We also discovered 34 new faults

that have not been detected before. This result confirmed our believe on the appli-

cability of the new testing paradigm for modern, event-driven GUI application. To

make our study more transparent and replicable for other researchers, we released

our tools and experiment data as an online experimentation benchmark.

6http://www.cs.umd.edu/~atif/OME

135

http://www.cs.umd.edu/~atif/OME

Chapter 6

Conclusions

As software systems have grown increasingly complex, the testers are tasked with

verifying that these systems function correctly. However, often the testers do not

have a complete knowledge of the systems’ overall input spaces, i.e., the spaces of

all possible input that may be supplied to the systems. This problem is severely

compounded in GUIs that have immense or even infinite input spaces. GUI testers

routinely miss allowable event sequences, any of which may cause failures once

the software is released. The tester may also fail to discover that the software

implementation allows the execution of some disallowed sequences. In practice,

testing GUI-based applications still remains largely an ad-hoc and labor-intensive

activity.

In this dissertation, we show that GUI-based applications can be effectively

and efficiently tested by systematically and incrementally leveraging the applica-

tion runtime execution observations. To demonstrate this thesis we have developed

a novel testing paradigm called Observe-Model-Exercise* (OME*). The OME* test-

ing paradigm iteratively observes the GUI runtime behaviors, incrementally models

the GUI input space and automatically generates test cases to exercise the newly ob-

served GUI elements. To realize OME*, we have developed a new model to capture

the context-sensitive behaviors of GUI applications and algorithms to incrementally

136

explore the GUI input space and generate context-aware test cases. We have im-

plemented OME* in the open-source GUITAR testing framework. GUITAR was

used to conduct a comprehensive empirical study with 8 popular open-source GUI

applications and detected 34 previously unknown faults.

In next sections, we further discuss OME* in more detail and provide directions

for future work.

6.1 Discussion

We evaluate OME* in terms of its effectiveness and efficiency. Then we discuss some

limitations of the approach.

6.1.1 Effectiveness

OME* is an effective testing approach. It improves the fault detection effectiveness

and test adequacy in testing GUI-based applications. By leveraging the additional

information available at runtime, OME* is able to more precisely and completely

capture the GUI input space. As a result, more effective test cases are automatically

generated to reach the “deep” parts of the GUI, e.g., those guarded by special

event sequences and only available in a particular context. The empirical study in

Chapter 5 demonstrated that OME* could improve the test coverage, both at the

code level and the GUI level. It detected new faults in GUI elements which were not

reachable or even not “seen” by the other state-of-the-art testing techniques. These

faults, while missed by the testers, were often considered severe to the applications.

137

At the management level, OME* can aid in improving the quality of a soft-

ware testing process. A valuable output of OME* is the formal model representing

the overall GUI input space. With this concrete picture of the input space, test

managers can define metrics to quantitatively control the software testing process.

Such metrics would help the managers in objectively predicting and tracking the

testing effectiveness to make multiple sorts of forecasts, judgments and trade-offs

during the software life-cycle.

6.1.2 Efficiency

OME* is an efficient testing approach. It leverages the already-available data to

improve the test coverage obtained. In GUI testing, the GUI states are always

needed to collect to determine if a test case is passed or failed. Hence, the only

overhead in OME* is the effort to further analyze these GUI states and expand the

GUI model. As the effort to execute test cases often dominates the entire testing

process, this overhead can be considered small and negligible.

OME* is fully automated in all phases of the testing process: from model cre-

ation, to test case generation, test case execution, and model enhancement. This

approach therefore can be used without any human intervention throughout the

software development life-cycle. Potentially, OME* can be implemented with a

continuous integration system [69] to provide an end-to-end regression testing work-

flow [35, 70].

In traditional GUI testing, GUI test cases are often obtained by manually

138

writing automation scripts. With this labor-intensive process, the number of test

cases created is often small. In contrast, OME* can automatically generate a large

number of test cases; thus, it is able to cheaply cover a broad range of a system’s

behaviors. The testing efficiency can even be further improved by adopting a dis-

tributed testing workflow [71] to run test cases in parallel, as partially demonstrated

in Chapter 5.

6.1.3 Limitations

The current implementation of OME* has certain known limitations. First, as in

the case with all automated model-based testing techniques, the test suites obtained

by OME* are not optimal. There are often many “redundant” test cases leading

to the same faults. Second, the GUI input space models obtained do not perfectly

represent the GUI behaviors as they are derived through dynamic analysis. As

a result, test cases generated from these models might be infeasible, leading to

false positive fault reports. Third, to avoid any human intervention, the current

OME* implementation only relies on runtime analysis to construct the GUI model

and completely ignores the application’s specifications. On one hand, this strategy

preserves OME* as a fully automated technique. On the other hand, it fails to

incorporate application domain knowledge into the testing process. Exploring the

trade-off between automated and manual model construction is something we need

to consider in the future.

Most importantly, the OME* testing paradigm misses parts of the GUI. Hence,

139

the input spaces discovered by OME* are still incomplete. There are several reasons

for this limitation:

1. Special inputs are required: Certain parts of the GUI are guarded by a specific

input value. For example, in DrJava, the “Project Properties” window is

triggered by the “Project Properties” menu item in the main window (see

Figure 6.1(b)). However, initially, this menu item is disabled. It is only

enabled if a specific project name is supplied in the “Open Project” window

to open an existing project (Figure 6.1(a)). However, OME* uses a standard

set of inputs for all text fields and none of them matches with an existing

project name. Thus, the “Project Properties” menu item is never enabled

during the testing process and as a result, the “Project Properties” window is

never included in the final input space model.

2. Stronger test adequacy criterion are required: The OME* paradigm relies on

the test case execution observations to explore the GUI input space. However,

these test cases are generated based on a specific test adequacy criteria. If there

are parts of the GUI only requires a stronger criteria, they will be missed. For

example, in ArgoUML, the “New To Do Item” window is triggered by the “To

Do” button in the main window (Figure 6.2). This button is only enabled by

the event triple 〈e1: Insert a class object, e2: Select the object, e3: Select ToDo

Item tab〉. However, to meet the pairwise event interaction testing criteria,

OME* only attempts to generate test cases to cover all possible event pairs.

Therefore, it never executes these three events together and the “New To Do

140

Item” window is missed.

3. Non-GUI operations are required: Sometimes, the GUI elements are triggered

by a non-GUI event. Because the test cases in OME* are restricted to se-

quences of GUI events, these elements will be missed. For example, in Rachota,

the “User inactivity detected” warning window only shows up after the user

does not interact with the keyboard for a specified period of time (Figure 6.3).

The event to trigger this window is actually a timing event instead of a GUI

event. In this case, OME* is unable to detect the window.

In the future, the OME* paradigm should be improved to overcome the above

limitations. Next section will discuss in more about our future work.

6.2 Future Work

We discuss our future work in short, medium and long terms.

In the immediate future, we will extend our subject application pool. In par-

ticular, we want to use non-Java, non-desktop (e.g., web, mobile) as well as indus-

trial applications to reduce the external threats to validity in our empirical studies.

Furthermore, we used natural faults (i.e., crashes) to measure fault detection effec-

tiveness. This approach, on one hand, provides evidence that our technique can

detect actual faults. On the other hand, we are limited in the analysis that we can

perform. For example, we cannot examine faults that were missed. For this reason,

we will seed artificial faults in future work. Cross empirical studies between seeded

faults and natural faults can provide more insight to our approach. In a similar line,

141

we want to use different types of test oracles such as GUI state matching [38] or

invariant checking [24] to evaluate the results. Finally, for input supplied to text

fields, we intend to use domain specific data instead of our current general purpose

database. One possible direction is to leverage some existing static analysis tools

to analyze source code and generate application specific text input, similar to what

has been done in a recent work for JavaScript testing [6].

In the medium term, we will apply our paradigm to other test case generation

techniques (e.g., capture/replay, AI planning) as well as other test adequacy crite-

ria (e.g., event system interaction [40] and event context [45] coverages). Also, as

partially shown in Chapter 5, there is a correlation between the model exploration

phase and test case generation phase. It would be insightful to study the impacts

of test case generation on model creation and vice versa. Finally, in this work, the

GUI states collected are only used to explore and expand the input space. In the

future, we also plan to leverage those valuable information as feedback for test case

selection, similar to the work we have done in the past [22].

Some of the challenges of GUI testing are also relevant to testing of event-

driven software [29]. In the long term, we will explore similar techniques for these

application domains too. For example, we will apply our techniques to test web

applications and object-oriented software as they also share similar input space

characteristics with GUI applications. One way to test these classes of software

is to generate test cases that are sequences of events (e.g., web user actions and

method calls). Some of the techniques developed in this research may be used to

better test these systems. Another direction for future work is studying different

142

GUI input space exploration strategies. For example, the initial model created by

GUI ripping may significantly influence the subsequent GUI input space exploration

results. If we start the OME* process with different application configurations, we

may get different results. To address this bias, we can rip the GUI multiple times,

each for a different configuration. The specification documents can also be employed

to maximize the spectrum of explored GUI behaviors.

In summary, in this dissertation, we have shown that the combination of dy-

namic input space exploration and model-based testing can cope well with the chal-

lenges in testing GUI applications. To provide focus, we have limited our discus-

sion in the context of GUI testing. However, the general idea of OME* can be

broadly extended for testing applications in other domains with similar, hard-to-

determine input spaces. Examples of such domains include object-oriented pro-

grams [9], component-based systems [28, 72], and distributed systems [73]. In the

future, we will empirically explore the applications of our approach on these do-

mains.

143

(a) The “Open Project” window

(b) Opening the “Project Properties” window

Figure 6.1: Reaching the “Project Properties” window in DrJava.

144

Figure 6.2: Reaching the “New To Do Item” window in ArgoUML.

Figure 6.3: The user inactivity warning window in Rachota.

145

Bibliography

[1] Carlos Pacheco, Shuvendu K. Lahiri, Michael D. Ernst, and Thomas Ball.
Feedback-directed random test generation. In ICSE’07, Proceedings of the 29th
International Conference on Software Engineering, pages 75–84, Minneapolis,
MN, USA, May 23–25, 2007.

[2] Cristian Cadar, Daniel Dunbar, and Dawson Engler. KLEE: unassisted and
automatic generation of high-coverage tests for complex systems programs. In
Proceedings of the 8th USENIX conference on Operating systems design and
implementation, OSDI’08, pages 209–224, Berkeley, CA, USA, 2008. USENIX
Association.

[3] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: a concolic unit testing
engine for C. SIGSOFT Softw. Eng. Notes, 30:263–272, September 2005.

[4] Walter I. Wittel, Jr. and Theodore G. Lewis. Integrating the MVC Paradigm
into an Object-Oriented Framework to Accelerate GUI Application Develop-
ment. Technical Report 91-60-06, Department of Computer Science, Oregon
State University, 1991.

[5] J. Bach. What is exploratory testing. E. van Veenendaal, The Testing
Practitioner–2nd edition, UTN Publishing, pages 90–72194, 2004.

[6] Prateek Saxena, Devdatta Akhawe, Steve Hanna, Feng Mao, Stephen McCa-
mant, and Dawn Song. A Symbolic Execution Framework for JavaScript. In
Proceedings of the 2010 IEEE Symposium on Security and Privacy, SP ’10,
pages 513–528, Washington, DC, USA, 2010. IEEE Computer Society.

[7] Patrice Godefroid, Michael Y. Levin, and David Molnar. SAGE: whitebox
fuzzing for security testing. Commun. ACM, 55(3):40–44, March 2012.

[8] Wilbert O. Galitz. The essential guide to user interface design: an introduction
to GUI design principles and techniques. John Wiley & Sons, Inc., New York,
NY, USA, 1997.

[9] Sai Zhang, David Saff, Yingyi Bu, and Michael D. Ernst. Combined static and
dynamic automated test generation. In Proceedings of the 2011 International
Symposium on Software Testing and Analysis, ISSTA ’11, pages 353–363, New
York, NY, USA, 2011. ACM.

[10] James A. Whittaker. Exploratory Software Testing: Tips, Tricks, Tours, and
Techniques to Guide Test Design. Addison-Wesley Professional, 1st edition,
2009.

146

[11] José L. Silva, José Creissac Campos, and Ana C. R. Paiva. Model-based User
Interface Testing With Spec Explorer and ConcurTaskTrees. Electron. Notes
Theor. Comput. Sci., 208:77–93, 2008.

[12] Theodore D. Hellmann and Frank Maurer. Rule-Based Exploratory Testing of
Graphical User Interfaces. In Proceedings of the 2011 Agile Conference, AGILE
’11, pages 107–116, Washington, DC, USA, 2011. IEEE Computer Society.

[13] Juha Itkonen, Mika V. Mantyla, and Casper Lassenius. How do testers do it?
An exploratory study on manual testing practices. In Proceedings of the 2009
3rd International Symposium on Empirical Software Engineering and Measure-
ment, ESEM ’09, pages 494–497, Washington, DC, USA, 2009. IEEE Computer
Society.

[14] James H Hicinbothom and Wayne W Zachary. A Tool for Automatically Gener-
ating Transcripts of Human-Computer Interaction, volume 2, page 1042. 1993.

[15] Mark Utting and Bruno Legeard. Practical Model-Based Testing: A Tools
Approach. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 2007.

[16] Atif M. Memon and Bao N. Nguyen. Advances in automated model-based
system testing of software applications with a GUI front-end. In Marvin V.
Zelkowitz, editor, Advances in Computers, volume 80, pages nnn–nnn. Aca-
demic Press, 2010.

[17] Jonathan Jacky, Margus Veanes, Colin Campbell, and Wolfram Schulte. Model-
Based Software Testing and Analysis with C#. 1 edition.

[18] Atif M. Memon, Adithya Nagarajan, and Qing Xie. Automating regression
testing for evolving GUI software. Journal of Software Maintenance, 17(1):27–
64, 2005.

[19] A. Memon, I. Banerjee, and A. Nagarajan. GUI ripping: Reverse engineering
of graphical user interfaces for testing. In Reverse Engineering, 2003. WCRE
2003. Proceedings. 10th Working Conference on, pages 260–269, 2003.

[20] Alan Page and Ken Johnston. How We Test Software at Microsoft. Microsoft
Press, 2008.

[21] Jaymie Strecker and Atif M. Memon. Accounting for Defect Characteristics in
Evaluations of Testing Techniques. ACM Trans. on Softw. Eng. and Method.,
NN(N), 2011.

[22] Xun Yuan and Atif M. Memon. Generating event sequence-based test cases us-
ing GUI runtime state feedback. IEEE Transactions on Software Engineering,
36:81–95, 2010.

147

[23] David Martin, John Rooksby, Mark Rouncefield, and Ian Sommerville. ’Good’
Organisational Reasons for ’Bad’ Software Testing: An Ethnographic Study of
Testing in a Small Software Company. In Proceedings of the 29th international
conference on Software Engineering, ICSE ’07, pages 602–611, Washington,
DC, USA, 2007. IEEE Computer Society.

[24] Ali Mesbah and Arie van Deursen. Invariant-based automatic testing of AJAX
user interfaces. In Proceedings of the 31st International Conference on Software
Engineering, ICSE ’09, pages 210–220, Washington, DC, USA, 2009. IEEE
Computer Society.

[25] Shay Artzi, Julian Dolby, Simon Holm Jensen, Anders Møller, and Frank Tip. A
framework for automated testing of javascript web applications. In Proceedings
of the 33rd International Conference on Software Engineering, ICSE ’11, pages
571–580, New York, NY, USA, 2011. ACM.

[26] Valentin Dallmeier, Nikolai Knopp, Christoph Mallon, Sebastian Hack, and
Andreas Zeller. Generating test cases for specification mining. In Proceedings
of the 19th international symposium on Software testing and analysis, ISSTA
’10, pages 85–96, New York, NY, USA, 2010. ACM.

[27] Neil Walkinshaw, John Derrick, and Qiang Guo. Iterative Refinement of
Reverse-Engineered Models by Model-Based Testing. In FM ’09: Proceed-
ings of the 2nd World Congress on Formal Methods, pages 305–320, Berlin,
Heidelberg, 2009. Springer-Verlag.

[28] Cesare Bartolini, Antonia Bertolino, Sebastian Elbaum, and Eda Marchetti.
Bringing white-box testing to Service Oriented Architectures through a Service
Oriented Approach. J. Syst. Softw., 84:655–668, April 2011.

[29] Atif M. Memon. An event-flow model of GUI-based applications for testing.
Softw. Test. Verif. Reliab., 17:137–157, September 2007.

[30] Sadik Esmelioglu and Larry Apfelbaum. Automated Test Generation, Exe-
cution, and Reporting. In Proceedings of Pacific Northwest Software Quality
Conference. IEEE Press, Oct 1997.

[31] R. K Shehady and D. P. Siewiorek. A Method to Automate User Inter-
face Testing Using Variable Finite State Machines. In Proceedings of The
Twenty-Seventh Annual International Symposium on Fault-Tolerant Comput-
ing (FTCS’97), pages 80–88, Washington - Brussels - Tokyo, June 1997. IEEE
Press.

[32] Lee White and Husain Almezen. Generating test cases for GUI responsibili-
ties using complete interaction sequences. In Proceedings of the International
Symposium on Software Reliability Engineering, pages 110–121, October 8–11
2000.

148

[33] Fevzi Belli. Finite-State Testing and Analysis of Graphical User Interfaces.
In ISSRE ’01: Proceedings of the 12th International Symposium on Software
Reliability Engineering, page 34, Washington, DC, USA, 2001. IEEE Computer
Society.

[34] Myra B. Cohen, Peter B. Gibbons, Warwick B. Mugridge, and Charles J. Col-
bourn. Constructing test suites for interaction testing. In ICSE ’03: Pro-
ceedings of the 25th International Conference on Software Engineering, pages
38–48, Washington, DC, USA, 2003. IEEE Computer Society.

[35] Atif M. Memon and Qing Xie. Studying the Fault-Detection Effectiveness of
GUI Test Cases for Rapidly Evolving Software. IEEE Trans. Softw. Eng.,
31(10):884–896, 2005.

[36] Frances E. Allen. Control flow analysis. SIGPLAN Not., 5(7):1–19, 1970.

[37] Atif M. Memon, Martha E. Pollack, and Mary Lou Soffa. Hierarchical GUI Test
Case Generation Using Automated Planning. IEEE Transactions on Software
Engineering, 27(2):144–155, February 2001.

[38] Qing Xie and Atif M. Memon. Designing and comparing automated test ora-
cles for GUI-based software applications. ACM Trans. Softw. Eng. Methodol.,
16(1):4, 2007.

[39] Lee J. White. Regression Testing of GUI Event Interactions. In ICSM ’96:
Proceedings of the 1996 International Conference on Software Maintenance,
pages 350–358, Washington, DC, USA, 1996. IEEE Computer Society.

[40] Qing Xie and Atif M. Memon. Using a Pilot Study to Derive a GUI Model for
Automated Testing. ACM Trans. on Softw. Eng. and Method., 2008.

[41] David J. Kasik and Harry G. George. Toward automatic generation of novice
user test scripts. In CHI ’96: Proceedings of the SIGCHI conference on Human
factors in computing systems, pages 244–251, New York, NY, USA, 1996. ACM.

[42] Penelope A. Brooks and Atif M. Memon. Automated GUI testing guided by
usage profiles. In ASE ’07: Proceedings of the twenty-second IEEE/ACM in-
ternational conference on Automated software engineering, pages 333–342, New
York, NY, USA, 2007. ACM.

[43] Renée C. Bryce, Charles J. Colbourn, and Myra B. Cohen. A framework of
greedy methods for constructing interaction test suites. In ICSE ’05: Pro-
ceedings of the 27th international conference on Software engineering, pages
146–155, New York, NY, USA, 2005. ACM.

[44] David M. Cohen, Siddhartha R. Dalal, Michael L. Fredman, and Gardner
C. Patton. The AETG System: An Approach to Testing Based on Combi-
natorial Design. IEEE Transactions on Software Engineering, 23(7):437–444,
1997.

149

[45] Xun Yuan, Myra B. Cohen, and Atif M. Memon. GUI interaction testing:
Incorporating event context. IEEE Transactions on Software Engineering,
37(4):559–574, 2011.

[46] D. M. Cohen, S. R. Dalal, A. Kajla, and G. C. Patton. The automatic efficient
test generator (AETG) system. In Proceedings of the Fifth International Sym-
posium on Software Reliability Engineering, pages 303–309. IEEE Computer
Society Press, November 1994.

[47] Antti Kervinen, Mika Maunumaa, Tuula Pakkonen, and Mika Katara. Model-
based testing through a GUI. In In Proceedings of the 5th International Work-
shop on Formal Approaches to Testing of Software (FATES 2005), number 3997
in Lecture Notes in Computer Science, pages 16–31. Springer, 2006.

[48] A.C.R. Paiva, N. Tillmann, J.C.P. Faria, and R. Vidal. Modeling and testing
hierarchical GUIs. Proceedings of ASM 2005, 2005.

[49] A.C.R. Paiva, J.C.P. Faria, and R.F.A.M. Vidal. Towards the integration
of visual and formal models for GUI testing. Electronic Notes in Theoretical
Computer Science, 190(2):99–111, 2007.

[50] H Buwalda. Action Figure. STQE Magazine, 2003.

[51] M. Barnett, K.R.M. Leino, and W. Schulte. The Spec# programming system:
An overview. Lecture Notes in Computer Science, 3362:49–69, 2005.

[52] Luciano Baresi and Michal Young. Test Oracles. Technical Report CIS-TR-01-
02, University of Oregon, Dept. of Computer and Information Science, Eugene,
Oregon, U.S.A., August 2001.

[53] Scott McMaster and Atif M. Memon. An Extensible Heuristic-Based Frame-
work for GUI Test Case Maintenance. In TESTBEDS’09: Proceedings of
the First International Workshop on TESTing Techniques & Experimentation
Benchmarks for Event-Driven Software, Washington, DC, USA, 2009. IEEE
Computer Society.

[54] Andrea Adamoli, Dmitrijs Zaparanuks, Milan Jovic, and Matthias Hauswirth.
Automated GUI performance testing. Software Quality Control, 19:801–839,
December 2011.

[55] Alex Ruiz and Yvonne Wang Price. GUI Testing Made Easy. In Proceedings of
the Testing: Academic & Industrial Conference - Practice and Research Tech-
niques, pages 99–103, Washington, DC, USA, 2008. IEEE Computer Society.

[56] Luca de Alfaro and Thomas A. Henzinger. Interface theories for component-
based design. In Proceedings of the First International Workshop on Embed-
ded Software, EMSOFT ’01, pages 148–165, London, UK, UK, 2001. Springer-
Verlag.

150

[57] Scott W. Ambler. The Elements of UML 2.0 Style. Cambridge University
Press, 2005.

[58] Xun Yuan and Atif M. Memon. Iterative execution-feedback model-directed
GUI testing. Information and Software Technology, 52(5):559–575, 2010.

[59] Atif M. Memon, Mary Lou Soffa, and Martha E. Pollack. Coverage criteria for
GUI testing. In Proceedings of the 8th European software engineering conference
held jointly with 9th ACM SIGSOFT international symposium on Foundations
of software engineering, volume 26 of ESEC/FSE-9, pages 256–267, New York,
NY, USA, September 2001. ACM.

[60] Scott McMaster and Atif Memon. Call-Stack Coverage for GUI Test Suite
Reduction. IEEE Transactions on Software Engineering, 34:99–115, 2008.

[61] Atif M. Memon. Automatically Repairing Event Sequence-Based GUI Test
Suites for Regression Testing. ACM Trans. on Softw. Eng. and Method., 2008.

[62] Si Huang, Myra Cohen, and Atif M. Memon. Repairing GUI Test Suites Using
a Genetic Algorithm. In ICST 2010: Proceedings of the 3rd IEEE International
Conference on Software Testing, Verification and Validation, Washington, DC,
USA, 2010. IEEE Computer Society.

[63] Amanda Swearngin, Myra B. Cohen, Bonnie E. John, and Rachel K. E. Bel-
lamy. Easing the Generation of Predictive Human Performance Models from
Legacy Systems. In Proceedings of the 2011 annual conference on Human fac-
tors in computing systems, 2012. to appear.

[64] Chin-Yu Huang, Jun-Ru Chang, and Yung-Hsin Chang. Design and analysis
of GUI test-case prioritization using weight-based methods. J. Syst. Softw.,
83(4):646–659, April 2010.

[65] Y. Huang and L. Lu. Apply ant colony to event-flow model for graphical user
interface test case generation. IET Software, 6(1):50–60, 2012.

[66] Leonardo Mariani, Mauro Pezzè, Oliviero Riganelli, and Mauro Santoro. Au-
toBlackTest: a tool for automatic black-box testing. In Proceedings of the 33rd
International Conference on Software Engineering, ICSE ’11, pages 1013–1015,
New York, NY, USA, 2011. ACM.

[67] Fevzi Belli, Christof J. Budnik, and Lee White. Event-based modelling, analysis
and testing of user interactions: approach and case study: Research Articles.
Softw. Test. Verif. Reliab., 16:3–32, March 2006.

[68] Atanas Rountev, Scott Kagan, and Michael Gibas. Evaluating the imprecision
of static analysis. In Proceedings of the 5th ACM SIGPLAN-SIGSOFT work-
shop on Program analysis for software tools and engineering, PASTE ’04, pages
14–16, New York, NY, USA, 2004. ACM.

151

[69] Jez Humble and David Farley. Continuous Delivery: Reliable Software Re-
leases through Build, Test, and Deployment Automation. Addison-Wesley Pro-
fessional, 1st edition, 2010.

[70] David Saff and Michael D. Ernst. An experimental evaluation of continuous
testing during development. SIGSOFT Softw. Eng. Notes, 29(4):76–85, July
2004.

[71] Adam Porter, Cemal Yilmaz, Atif M. Memon, Douglas C. Schmidt, and Bala
Natarajan. Skoll: A Process and Infrastructure for Distributed Continuous
Quality Assurance. IEEE Transactions on Software Engineering, 33:510–525,
2007.

[72] Ilchul Yoon, Alan Sussman, Atif Memon, and Adam Porter. Testing Com-
ponent Compatibility in Evolving Configurations. Information and Software
Technology, 55(2):445–458, 2013.

[73] Lionel C. Briand, Yvan Labiche, and Johanne Leduc. Toward the Reverse
Engineering of UML Sequence Diagrams for Distributed Java Software. IEEE
Transactions on Software Engineering, 32:642–663, 2006.

152

	List of Tables
	List of Figures
	Introduction
	Thesis Statement
	Approach
	Related Work
	Research Scope
	Dissertation Outline

	Background
	Running Example
	Test Case Generation Techniques
	State Machines
	Workflows
	Pre- Post-Condition Models
	Event Sequence-Based Models
	Probabilistic Models
	Combinatorial Interaction Models
	Hierarchical Models

	Summary

	Observe-Model-Exercise* Testing Paradigm
	Overview
	Realizing the OME* Paradigm
	Contribution 1: Context-Aware Mapping
	Contribution 2: Simultaneously Extracting New Model Elements During Test Execution
	Contribution 3: Unique Widget Signatures
	Contribution 4: Incremental EFG+ Enhancements
	Contribution 5: Incremental Test-Case Generation

	Summary

	GUITAR: A Generic Model-based GUI Testing Framework
	Overall Architecture
	Model Core
	Platform-independent Components
	Platform-specific Components

	Creating Testing Workflow
	Extending GUITAR
	Within-platform Extension
	Cross-platform Extension

	GUITAR in Practice
	Summary

	Empirical Evaluation
	Research Questions and Metrics
	Selecting & Setting Up Software Subjects
	Defining Functions for Unique Signatures
	Sandbox and Text Parameters

	Running the Experiment
	Threats to Validity
	Results
	Discussion
	Benchmark
	Summary

	Conclusions
	Discussion
	Effectiveness
	Efficiency
	Limitations

	Future Work

	Bibliography

