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Abstract 

IV thrombolysis (rt-PA) for ischemic stroke treatment carries a substantial risk for 

symptomatic intracerebral hemorrhage (sICH) and adverse outcome. Our purpose was to 

develop a computationally simple and accurate clinical predictor of adverse outcome after rt-

PA therapy.   

Our derivation dataset consisted of 210 ischemic stroke patients receiving IV rt-PA 

from January 2009 until July 2013 at Yale New Haven Hospital. Our validation dataset 

included 303 patients who received IV rt-PA during the NINDS rt-PA trial. Predictive ability 

and goodness of fit were quantified by odds ratios (OR) and areas under the receiver 

operating characteristic curve (AUROC). Patient outcomes included sICH, brain swelling, 

90-day severe outcome and 90-day mortality. Severe outcome was defined as 90-day 

modified Rankin Scale (mRS) scores ≥ 5, 90-day Barthel Index (BI) scores < 60 and 90-day 

Glasgow Outcome Scale (GOS) scores > 2. 

Out of seventeen clinical parameters tested, three were independent predictors of 

sICH: prestroke mRS score (OR 1.54, P = 0.02), baseline National Institutes of Health Stroke 

Scale (NIHSS) score (OR 1.13, P = 0.002), and platelet count (OR 0.99, P = 0.04). We 

combined these three parameters to form the TURNP (Thrombolysis risk Using mRS, 

NIHSS and Platelets) score. For added simplicity, prestroke mRS score and baseline NIHSS 

score were also combined to form the TURN (Thrombolysis risk Using mRS and NIHSS) 

score, which predicted sICH without a significant drop in OR or AUROC. TURN predicted 

sICH with AUROC 0.74 (0.58 – 0.90) in the derivation dataset, and AUROC 0.65 (0.54 – 

0.77) in the validation dataset. In the validation dataset, TURN predicted 24-hour brain 

swelling with AUROC 0.69 (0.63 - 0.75), 90-day mRS ≥ 5 with AUROC 0.83 (0.77, 0.89), 



	

	

90-day BI < 60 with AUROC 0.81 (0.76 – 0.86), 90-day GOS > 2 with AUROC 0.81 (0.76 – 

0.86) and 90-day mortality with AUROC 0.82 (0.76 – 0.88).  

 To improve the clinical utility of TURN, we developed and tested a mobile 

application Risk rtPA based on TURN for predicting 90-day outcome after rt-PA treatment. 

Risk rtPA returned predictions of severe outcome for a range of hypothetical patients with 

varying clinical characteristics, demonstrating broad applicability. This mobile application 

brings computationally simple prediction of post-thrombolysis risk to the bedside for real-

time stroke prognostication.  
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1	

Introduction 

Stroke is the number 4 cause of death and a leading cause of long-term disability in 

the United States 1. Roughly 6.8 million Americans 20 years and older have had a stroke, and 

an additional 4 million individuals are projected to have a stroke by the year 2030 1. About 

780,000 strokes are estimated to occur annually in the United States 2. Risk factors for stroke 

are well established and include family history, high blood pressure, diabetes mellitus, atrial 

fibrillation, high cholesterol, smoking, physical inactivity and chronic kidney disease 1.   

87% of all strokes are ischemic (e.g., due to large artery thrombosis or cardiogenic 

embolism). As a result, much attention has been focused on developing treatment strategies 

for this stroke subtype. However, hemorrhagic strokes (intracerebral or subarachnoid) which 

comprise the other 13% of strokes are more frequently associated with impaired 

consciousness and thus carry increased risk of mortality within the first 3 weeks after stroke 

3. Furthermore, intracerebral hemorrhage may lead to ischemic lesions and worse clinical 

outcomes in up to 25% of cases 4,5. Therefore, hemorrhagic strokes warrant careful 

characterization and development of optimal treatment strategies.  

Hemorrhagic strokes may occur spontaneously, or may be associated with trauma or 

with aneurysm rupture. Additionally, hemorrhage may occur secondarily to an ischemic 

stroke, so-called hemorrhagic transformation (HT), leading to symptomatic intracerebral 

hemorrhage (sICH). sICH is of particular clinical importance because whereas thrombolytic 

therapy (rt-PA) for ischemic stroke decreases stroke mortality, it carries a substantial risk for 

sICH 6. The National Institute of Neurological Diseases and Stroke (NINDS) rt-PA trial 

found that ischemic stroke patients receiving rt-PA therapy within three hours of symptom 

onset were at least 30% more likely to recover with little or no disability after three months, 



	

	

however up to 6.5% of these patients developed sICH 7. The European Cooperative Acute 

Stroke Study (ECASS) trials extended the rt-PA time window to 4.5 hours, but confirmed a 

risk for sICH after thrombolysis (8.8% sICH in ECASS II and 2.4% in ECASS III) 8-10.  

As a result of these studies, anticoagulant and thrombolytic treatment is 

contraindicated in patients with hemorrhage, and risk of sICH must be considered when 

treating any ischemic stroke patient 3. However some subsets of ischemic stroke patients such 

as those defined by stringent ECASS exclusion criteria or those with intracranial aneurysms 

may not suffer additional adverse effects from rt-PA therapy 11,12. Yet, the risk of sICH has 

partly hindered broad adoption of rt-PA therapy. A 2005 survey reported that 40% of 

emergency physicians were not likely to use rt-PA, with the risk of sICH cited as the main 

reason in 65% of cases 13. Emergency physicians also reported a mean upper limit of 

tolerable sICH rate of 3.4%, reflecting an increasing demand for wider safety margins for rt-

PA therapy. Further studies are needed to establish safe criteria for thrombolytic therapy.  

The use of rt-PA is also limited by delayed presentation after ischemic stroke. A 

pooled analysis of patients from the ECASS, Alteplase Thrombolysis for Acute 

Noninterventional Therapy in Ischemic Stroke (ATLANTIS), NINDS and Echoplanar 

Imaging Thrombolytic Evaluation Trial (EPITHET) trials found a significant association 

between decreased symptom onset-to-treatment (OTT) duration and favorable 3-month 

outcome 14. Likewise, an analysis of an 80,000-patient cohort in Europe found that early 

treatment was associated with favorable outcome 15. As a result, the American Heart 

Association Science Advisory and Coordinating Committee guidelines emphasize rapid 

recognition of stroke symptoms and rapid transportation of stroke patients to the closest 

appropriate emergency department for administration of time-dependent therapies 16,17. 



	

	

Additionally, longer OTT is included in several clinical scores as an independent predictor of 

adverse outcome 18,19 and symptomatic intracerebral hemorrhage (sICH) 20, and newer 

studies have focused on institution- and system-wide strategies to decrease OTT durations in 

order to improve patient outcomes 21.  

In addition to decreasing OTT, a number of interventions have been proposed to limit 

sICH after rt-PA therapy, including agents involved in the inflammatory and oxidative stress 

responses, free radical trap compounds, and enzymes involved in membrane remodeling such 

as matrix metalloprotease-9 (MMP9) 22. Cerebral edema is a known mechanism for 

development of sICH after ischemic stroke 22. Edema progresses rapidly in the first 2-3 days 

after an ischemic insult, initially as ionic edema through increased permeability of 

endothelial ion channels and transporters, and later as vasogenic edema through paracellular 

pathways as the integrity of tight junctions which make up the blood-brain barrier (BBB) 

deteriorates 23,24. Loss of BBB integrity precedes development of sICH 23, making BBB 

permeability and brain edema attractive targets for prognostication 25, and opening up novel 

therapeutic options via MMP9 inhibition. 

The MMP9 inhibitor glyburide (glibenclamide), which inhibits sulfonylurea receptor 

(SUR1)-regulated NCCa-ATP channel activity, has been shown to reduce cerebral edema, 

infarct volume and mortality by 50% in a rat model of middle cerebral artery occlusion 

(MCAO) 26. In MCAO rats treated with rt-PA, glibenclamide treatment significantly reduced 

hemispheric swelling and lowered mortality compared to controls, even when glibenclamide 

was administered up to 10 hours after ischemia 27. Additionally, since glyburide is a long-

time antidiabetic agent, retrospective analysis of type 2 diabetic patients with non-lacunar 

acute stroke who were on sulfonylurea found no incidences of sICH in patients with 



	

	

sulfonylurea in sharp contrast to diabetic patients who did not take the medication 28. Based 

on these data, a multicenter phase II trial Glyburide Advantage in Malignant Edema and 

Stroke (GAMES) is currently underway to investigate the effect of IV glyburide on sICH in 

patients with severe anterior circulation ischemic stroke.   

 Strategies to predict sICH may also improve outcomes after rt-PA administration by 

excluding patients who are predicted to be at high risk for sICH or poor outcomes. sICH 

prediction has been attempted using a number of imaging techniques 22. Non-Contrast Head 

CT focal hypodensity has been proposed 29, but suffers from difficulties in defining the 

boundaries of the lesion. CT angiography has also been used to measure contrast opacity and 

to develop a clot burden score, which correlates with hypo-perfusion and parenchymal sICH 

30. sICH characterization was attempted in one study using prospective CT scans in ischemic 

stroke patients 4 weeks after stroke 31. sICH occurred in 43% of cases, with most sICH cases 

occurring in the first two weeks after infarct. Other factors that correlated with sICH 

incidence were severe neurological deficit on presentation, disturbance of consciousness, 

cortical involvement and distinct blood/CSF barrier disturbances 31. Additionally, DWI 

sequences on MRI imaging have been used successfuly to correlate sICH with infarct size 

and volume 32.  

Quantitative methodologies have also been employed to assess edema or intracerebral 

hemorrhage volume and its association with clinical outcomes. Volume of spontaneous 

intracerebral hemorrhage has been positively correlated with 30-day mortality, and can 

predict mortality in combination with Glasgow Coma Scale scores with a sensitivity of 96% 

and specificity of 98% 33. A recent small study likewise demonstrated sensitive prediction of 

malignant edema and sICH after ischemic stroke using perfusion CT as a marker for early 



	

	

BBB permeability 34. Another = study described a CT-based technique for accurately 

measuring edema volume using semi-automated volume reconstruction 35. Using similar 

advanced imaging techniques, it has been demonstrated that cerebral edema independently 

predicts poor outcome after nonlacunar ischemic stroke 36. Volumes of edema and 

intracerebral hemorrhage may therefore be applied as objective measurement tools to predict 

sICH and poor outcome after rt-PA therapy.  

Clinical scores predicting risk of sICH may also enhance therapeutic safety after rt-

PA treatment by identifying select ischemic stroke patients who may receive rt-PA without 

additional risk of sICH. At least 8 clinical risk scores have been developed to predict either 

adverse outcome or sICH after rt-PA therapy. They include the Stroke-Thrombolytic 

Predictive Instrument (Stroke-TPI)37; iSCORE38; Dense cerebral artery or early infarct signs 

on CT, mRS, Age, Glucose level on admission, Onset to treatment time and NIHSS 

(DRAGON) 18; Stroke Prognostication using Age and NIH Stroke Scale-100 (SPAN-100) 39; 

Acute Stroke Registry and Analysis of Lausanne (ASTRAL) 19; Post-thrombolysis Risk 

Score (PRS) 40; Hemorrhage After Thrombolysis (HAT) 41; baseline blood Sugar, Early 

infarct signs, Dense cerebral artery sign, Age and NIHSS (SEDAN) 42; and the Safe 

Implementation of Treatments in Stroke Symptomatic Intracerebral Hemorrhage (SITS-ICH) 

score 20. Several of these scores are computationally complex. An exception is SPAN-100 

which requires only two clinical variables, however it has been reported as a poor predictor 

of sICH in several studies 42-44. Future studies are needed to develop scores that are simple 

but yet accurately predict sICH for widespread clinical applicability. 

 

 



	

	

Statement of purpose 

Our aim was to objectively evaluate existing scores available for predicting sICH or 

adverse outcome after rt-PA, and to derive a computationally simple but accurate clinical 

score. Our specific aims were as follows: 

1. Comparison of existing scores for predicting post-thrombolysis risk  

2. Derivation and validation of a novel score  

a. Derivation of a novel score 

b. Validation of clinical score in external dataset 

3. Outcome prediction using clinical score 

a. Prediction of brain swelling  

b. Prediction of adverse outcome  

c. Prediction of 90-day mortality  

4. Expansion of clinical utility of score 

  



	

	

Materials and methods 

Study contributions 

 Study design and clinical data interpretation were done by Dr. Kevin N. Sheth. Data 

collection and clinical data review were done by Karin Nystrom, APRN. Radiological data 

was reviewed by a stroke fellow Hardik Amin, MD. Statistical analyses including data 

presentation and interpretation were performed by myself.   

 

Patient data 

Our internal dataset included all consecutive ischemic stroke patients (n = 210) from 

our dual-center prospective stroke registry who received IV rt-PA therapy from January 2009 

until July 2013 at Yale New Haven Hospital and Yale-New Haven Shoreline Medical Center. 

One patient was excluded due to incomplete data. Eligibility criteria for IV rt-PA treatment 

were applied following the American Heart Association guidelines 17.  

Our external dataset included ischemic stroke patients who received IV rt-PA during 

the NINDA rt-PA Stroke Study, a multicenter, prospective, double-blind, placebo-controlled 

randomized trial from January 1991 to October 1994 7. 9 patients were excluded due to 

incomplete data. Data from the NINDS trial were purchased from the National Technical 

Information Service (NTIS; http://www.ntis.gov/) using internal funds from the Yale 

Department of Neurology. Clinical data was converted to Microsoft Excel format using 

Statistical Analysis System software (SAS Institute Inc, Cary, NC). Individual variables were 

decoded using instructions included in the CD-ROM from NTIS in accordance with 

published guidelines 45.  



	

	

This study was approved by the Yale Human Investigation Committee and the Yale 

Human Research Protection Program. Written informed consent was not required for 

reviewing retrospective de-identified patient data.    

 

Imaging data:  

Computed tomography (CT) or magnetic resonance imaging (MRI) scans were 

performed in the derivation dataset before IV rt-PA treatment, 24 hours after treatment, and 

subsequent to any observed clinical deterioration. Neuroradiological assessment was 

performed on each patient by a board-certified neurologist (Hardik Amin, MD). CT or MRI 

findings in the validation dataset were reported from a consensus of three neuroradiologists 

blinded to treatment group and outcome as previously published 7. Adverse outcome was 

defined as presence of symptomatic intracerebral hemorrhage (sICH) using the National 

Institute of Neurological Diseases and Stroke (NINDS) rt-PA trial definition 7. sICH status in 

the derivation dataset was determined from documented narratives in the patient’s record.  

 

Outcome measures and clinical scores:  

Severe 90-day outcome was defined according to previously published studies as a 

90-day modified Rankin Scale (mRS) score ≥ 5, a Barthel Index (BI) score < 60 or a 

Glasgow Outcome Scale (GOS) score > 2, and excellent 90-day outcome was defined as a 

90-day mRS score ≤ 1, a BI score ≥ 95 or a GOS score = 1 46-48.  

The prestroke mRS score is an indication of patients’ baseline ability to look after 

themselves in daily life, and measures overall independence with moderate to good inter-

observer reliability 49,50. A score of 0 indicates no symptoms, a score of 5 indicates severe 



	

	

disability, and a score of 6 indicates death. The admission National Institutes of Health 

Stroke Scale (NIHSS) score measures stroke severity with good inter-observer reliability 

51,52. Both prestroke mRS and NIHSS scores are routinely available at most centers prior to 

the point of rt-PA administration. The Barthel Index measures ability to perform activities of 

daily living after a stroke 53. Patients able to perform all activities of daily living such as 

eating, bathing, walking and using the toilet receive a score of 100. The Glasgow Outcome 

Scale is a global assessment of function 54, and ranges from 1 to 5 with a score of 1 indicating 

mild disability and a score of 5 death. 

We calculated eight predictive scores for each patient: Stroke-Thrombolytic 

Predictive Instrument (Stroke-TPI), Dense cerebral artery or early infarct signs on CT, mRS, 

Age, Glucose level on admission, Onset to treatment time and NIHSS (DRAGON), Stroke 

Prognostication using Age and NIH Stroke Scale-100 (SPAN-100), Acute Stroke Registry 

and Analysis of Lausanne (ASTRAL), Post-thrombolysis Risk Score (PRS), Hemorrhage 

After Thrombolysis (HAT), baseline blood Sugar, Early infarct signs, Dense cerebral artery 

sign, Age and NIHSS (SEDAN) and Safe Implementation of Treatments in Stroke 

Symptomatic Intracerebral Hemorrhage (SITS-ICH). Detailed derivations of each score have 

been published elsewhere 19,37-42 and summarized in Table 1.  

 

Statistical analysis: 

Clinical parameters were presented as medians with interquartile ranges, as 

proportions, or as means with standard deviations and compared respectively using Mann-

Whitney tests, two-sample tests of proportions or two-sample T-tests after checking for equal 

variance and using Welch’s approximation for degrees of freedom 55. Strength of association 



	

	

between clinical scores and sICH was quantified using univariable logistic regression 

reporting odds ratios, with clinical scores as independent variables and sICH or 90-day 

outcome as the dependent variable. Goodness of fit or model calibration was assessed using 

Hesmer-Lemeshow χ2 statistics, with P > 0.05 considered a statistically significant indicator 

of goodness-of-fit 56. Predictive accuracy or model discrimination was calculated using areas 

under the receiver operating characteristic curve (AUROC). Standard errors were calculated 

by the DeLong method 57. Sensitivity and specificity were assessed by AUROC analyses and 

by 2x2 table analyses. Agreement between sICH and discharge mRS ≥ 5 was assessed using 

linear weighted kappa, which measures agreement between two raters or metrics after 

excluding the effect of chance 58. Clinical scores were internally validated using the 

nonparametric bootstrap method. This resampling technique draws with replacement, n 

observations from an n observation dataset whereby some of the original observations will 

appear once, some more than once and some not at all, and has been successfully used in 

previous studies predicting post-thrombolysis risk 37. 50-200 replications are generally 

adequate for estimates of standard error, and thus for normal-approximation confidence 

intervals 59. We used 250 replications in this study. Agreement between independent clinical 

scores was assessed using the concordance correlation coefficient, which is similar to the 

Kappa test but for continuous variables 60. P values < 0.05 two-tailed were considered 

statistically significant. GraphPad Prism 6.0 software (GraphPad Software, La Jolla, 

California USA) and MATLAB R2014b (MathWorks, Natick, Massachusetts USA) were 

used for statistical figures. Statistical analyses were performed using STATA 14 I/C software 

package (StataCorp LP, College Station, Texas).   

  



	

	

Results 

Aim 1: Comparison of existing scores:  

We first compared 8 scores for predicting sICH or poor outcome after rt-PA treatment 

in our internal dataset using AUROC 44. Details of each score are summarized in Table 1, and 

a summary of patient characteristics in our internal and external datasets are summarized in 

Table 2. Despite considerable variability in complexity, we found no significant differences 

in AUROC for predicting sICH between any of the scores (P > 0.05). We therefore set out to 

derive a computationally simple score that retained predictive accuracy.  

 

Aim 2: Derivation and validation of a novel score: 

Aim 2A: Derivation of a novel score: 

 Using univariable logistic regression, we identified clinical parameters associated 

with sICH in our internal dataset (Table 3) 61. Prestroke modified Rankin scale (mRS) scores, 

admission National Institutes of Health stroke scale (NIHSS) scores and platelet count were 

significant predictors of sICH. We combined these three parameters using multivariable 

logistic regression to form a clinical score TURNP (Thrombolysis risk Using mRS, NIHSS 

and Platelets). TURNP predicted sICH with odds ratio (OR) 2.7, 95% CI (1.6 - 4.6), P < 

0.001. Model calibration testing yielded a Hosmer-Lemeshow χ2 of 7.64 using 10 quantiles, 

P = 0.47 demonstrating good calibration. TURNP also demonstrated fair to good model 

discrimination with AUROC 0.78, 95% CI (0.64 - 0.92).  

However in the multivariable TURNP model, platelet count yielded an OR of only 

0.99 with β coefficient < 0.01. Furthermore, platelet counts require blood draws and 

laboratory testing that can introduce costly delays in the hyperacute stroke setting. Therefore 



	

	

we considered a simpler model using only two parameters: TURN (Thrombolysis risk Using 

mRS and NIHSS). TURN predicted sICH with OR 2.7 (1.5 – 4.9), P < 0.001. Model 

calibration was still good with a Hosmer-Lemeshow χ2 of 5.28 using 10 quantiles, P = 0.73. 

Likewise, model discrimination testing yielded an AUROC of 0.74, 95% CI (0.58 – 0.90), 

Table 4. Therefore for clinical and parsimonious reasons, we continued our analyses using 

the simpler score TURN.  

 

Aim 2B: Validation of clinical score in external dataset: 

 We verified prediction of sICH by TURN using our external dataset 7. TURN 

predicted sICH in the external dataset with OR 1.77, 95% CI (1.08 – 2.91), P < 0.001 and 

AUROC 0.65 (0.54 – 0.77). There was no statistically significant difference in AUROC 

between TURN and six other clinical scores for predicting sICH in the external dataset 

(Figure 1A).  

TURN was developed using the classical case-control approach for identifying 

outcome predictors. We also assessed whether a cohort-based approach would yield 

clinically meaningful results. We distinguished between patients in years with sICH rates 

below the NINDS trial rate of 6.4% (low sICH cohort; 2010, 2011 and 2012) and patients in 

years with sICH rates above 6.4% (high sICH cohort; 2009 and 2013) using our internal 

dataset. sICH occurred in 2 out of 101 patients (2.0%) in the low sICH cohort versus 10 out 

of 109 patients (9.2%) in the high sICH cohort (P = 0.025). We confirmed that there were no 

differences in baseline demographic and clinical characteristics between patients in the low 

sICH cohort and patients in the high sICH cohort.  



	

	

Patients in the low sICH cohort differed significantly from patients in the high sICH 

cohort in several markers of stroke severity, including percent of patients with visual field 

deficits (38.6% versus 24.8%, P = 0.03), percent with decreased levels of consciousness 

(62.4% versus 39.4%, P < 0.001), percent with hyperdense MCA signs (5% versus 13.8%, P 

= 0.03) and percent with early CT hypodensities (14.9% versus 29.4%, P = 0.01). We did not 

find any other statistically significant differences in stroke outcomes or stroke-associated 

fatalities between the two cohorts. We determined whether these significant differences 

between the patient cohorts could predict sICH in individual patients. We performed 

multivariable logistic regression using sICH as the dependent variable and visual field 

deficits, levels of consciousness, hyperdense MCA signs and early CT hypodensities as 

independent variables. This model predicted sICH with odds ratio 2.72, 95% CI (1.12 - 6.61), 

P = 0.03 but AUROC of 0.66, 95% confidence interval = 0.48 – 0.83. Thus, whereas the 

cohort-based approach shows promise for identifying predictors of sICH, this approach did 

not yield predictive accuracy as high as TURN.  

 

Aim 3: Outcome prediction using clinical score: 

Aim 3A: Prediction of brain swelling using TURN: 

Next we assessed the ability of TURN to predict 24-hour brain swelling 62.  Cerebral 

edema independently predicts poor outcome after nonlacunar ischemic stroke 36, therefore 

predictors of cerebral edema may selectively identify ischemic stroke patients who are at risk 

for poor outcome and who may benefit from additional therapy using anti-edema 

medications.  



	

	

We first confirmed the association between brain swelling and outcome. We used 

composite brain swelling defined as presence of at least two out of the three measures: 

edema, mass effect and midline shift 36. In univariable analysis, baseline brain swelling was 

associated with sICH, 90-day severe outcome and 90-day mortality. However, after adjusting 

for covariates (baseline NIHSS, prestroke mRS, early CT hypodensity and decreased level of 

consciousness), none of these associations reached statistical significance. Conversely, 24-

hour brain swelling and new swelling at 24 hours were significantly associated with ICH, 

sICH, 90-day severe outcome and 90-day mortality (P < 0.05) and these correlations 

remained statistically significant after adjusting for covariates (baseline NIHSS, admission 

blood glucose, HDMCA, decreased level of consciousness and visual field deficits for 24-

hour swelling; and baseline NIHSS, HDMCA, decreased level of consciousness and visual 

field deficits for new swelling at 24 hours), thus confirming the association between brain 

swelling and adverse outcome.  

Given this association, we investigated clinical parameters associated with adverse 

outcome as potential predictors of 24-hour brain swelling including age, diabetes, admission 

glucose, baseline NIHSS, prestroke mRS, HDMCA, early CT hypodensity, decreased level 

of consciousness and visual field defects. Using univariable logistic regression, admission 

glucose, baseline NIHSS, HDMCA, decreased level of consciousness and visual field deficits 

were significantly associated with 24-hour brain swelling. However, only three of these 

associations remained statistically significant after adjusting for covariates: HDMCA (P = 

0.05), decreased level of consciousness (P = 0.05) and visual field deficits (P < 0.001). These 

three parameters are thus independent predictors of 24-hour brain swelling after IV 

thrombolysis.    



	

	

Next we investigated whether TURN could predict brain swelling after IV 

thrombolysis. Prediction of baseline brain swelling by TURN did not reach statistical 

significance (OR 2.21, P = 0.07), consistent with our finding that baseline brain swelling was 

not significantly associated with any measures of adverse outcome. Instead, TURN predicted 

24-hour brain swelling (OR 2.5, P < 0.001) and new swelling at 24 hours (OR 2.1, P < 

0.001). To rule out possible contributions of ICH to measures of brain swelling such as mass 

effect and midline shift, we also verified that TURN directly predicted 24-hour edema (OR 

2.5, P < 0.001) and new edema at 24 hours (OR 2.2, P < 0.001) with nearly identical results. 

In patients who did not receive IV thrombolysis, TURN similarly predicted 24-hour brain 

swelling (OR 3.88, P < 0.001) and new swelling at 24 hours (OR 3.49, P < 0.001) but not 

baseline swelling (OR 1.29, P = 0.53) adding robustness to its predictive ability. We further 

assessed for agreement between TURN and 24-hour brain swelling or new brain swelling at 

24 hours using areas under the receiver operating characteristic curve (AUROC) and 

Hosmer-Lemeshow statistics. TURN predicted 24-hour brain swelling with AUROC of 0.69, 

95% CI (0.63, 0.75) and Hosmer-Lemeshow χ2 of 5.14 using 10 groups, P = 0.74 

demonstrating statistically significant agreement. Likewise, TURN predicted new brain 

swelling at 24 hours with AUROC of 0.67, 95% CI (0.61, 0.73) and Hosmer-Lemeshow χ2 of 

6.9 using 10 groups, P = 0.55, confirming modest but statistically significant agreement. 

In order to compare prediction of brain swelling between TURN and existing scores, 

we performed univariable logistic regression and AUROC analyses using TURN and six 

other scores for predicting outcome after IV thrombolysis 44, including Stroke-TPI, 

DRAGON, SPAN-100, ASTRAL, HAT and SEDAN. There was no statistically significant 

difference in AUROC for prediction of baseline brain swelling between TURN and the other 



	

	

six scores. AUROC for 24-hour brain swelling was also significantly higher for TURN than 

for SPAN-100 (AUROC 0.61, P = 0.05) and SEDAN (AUROC 0.59, P = 0.02). Likewise, 

TURN predicted new brain swelling at 24 hours with an OR greater than DRAGON (OR 

1.32, P = 0.02), SPAN-100 (OR 1.02, P < 0.001), ASTRAL (OR 1.07, P < 0.001) and 

SEDAN (OR 1.21, P = 0.01), and AUROC for TURN was higher than for SEDAN for 

predicting new brain swelling at 24 hours (AUROC 0.56, P = 0.01). None of the other scores 

predicted 24-hour brain swelling or new swelling at 24 hours with odds ratio or AUROC 

higher than TURN (Figure 1B).  

 

Aim 3B: Prediction of adverse outcome using TURN: 

Next we assessed for correlation between sICH and 90-day severe outcome defined as 

mRS ≥ 5, Barthel Index < 60 and Glasgow Outcome Scale > 2 using univariable logistic 

regression with sICH as the independent variable. sICH predicted 90-day mRS ≥ 5 with odds 

ratio 10.1, 95% CI (4.0, 25.6), P < 0.001. sICH also predicted 90-day Barthel Index < 60 with 

odds ratio 12.2, 95% CI (4.1, 36.9), P < 0.001, and Glasgow Outcome Scale > 2 with odds 

ratio 14.5, 95% CI (4.2, 49.7), P < 0.001.  

We verified agreement between sICH and 90-day severe outcome using linear 

weighted Kappa 58. We found 80% agreement between sICH and 90-day mRS ≥ 5, Kappa 

0.27, P < 0.0001, 72% agreement with 90-day Barthel Index < 60, Kappa 0.22, P < 0.0001, 

and 69% agreement with 90-day Glasgow Outcome Scale > 2, Kappa 0.21, P < 0.0001. 

Therefore we established a direct correlation between sICH and 90-day severe outcome, with 

the strongest correlation between sICH and 90-day mRS ≥ 5. 



	

	

We next assessed the ability of TURN to predict 90-day severe outcome using 

univariable logistic regression. TURN predicted mRS ≥ 5 with odds ratio 5.73, 95% CI (3.60, 

9.10), P < 0.001. Goodness of fit was assessed as Hosmer-Lemeshow χ2 of 3.63 using 10 

groups, P = 0.89, demonstrating good agreement. We found an AUROC of 0.83, 95% CI 

(0.77, 0.89), confirming good overall accuracy.  

We verified the ability of TURN to predict 90-day severe outcome using the Barthel 

Index (BI) and the Glasgow Outcome Score (GOS). TURN predicted 90-day BI < 60 with 

odds ratio 5.07, 95% CI (3.35, 7.67), P < 0.001. Likewise, TURN predicted 90-day GOS > 2 

with odds ratio 5.17, 95% CI (3.42, 7.80), P < 0.001. Goodness of fit analysis yielded a 

Hosmer-Lemeshow χ2 of 7.93 for 90-day BI < 60 using 10 groups, P = 0.44, and Hosmer-

Lemeshow χ2 of 9.0 for 90-day GOS > 2 using 10 groups, P = 0.34, indicating good 

agreement. TURN also predicted 90-day BI < 60 with AUROC of 0.81, 95% CI (0.76, 0.86), 

and GOS > 2 with AUROC of 0.81, 95% CI (0.76, 0.86) verifying good overall accuracy.     

Next we compared TURN to six existing scores for predicting 90-day outcomes. 

TURN predicted 90-day mRS ≥ 5 with AUROC significantly higher than SPAN-100 and 

SEDAN (P < 0.05) (Figure 1F). Similar results were obtained using 90-day BI < 60 and 90-

day GOS > 2 (Figure 1D-E). None of the other scores yielded an AUROC significantly 

higher than TURN, demonstrating its strength of association and predictive accuracy 

compared to existing scores.   

 

Aim 3C: Prediction of 90-day mortality using TURN: 

We also investigated whether TURN predicts 90-day mortality after IV thrombolysis. 

Since TURN predicted 24-hour brain swelling, and 24-hour brain swelling is associated with 



	

	

90-day mortality, we hypothesized that TURN would predict 90-day mortality. Using 

univariable logistic regression, we found a statistically significant association between 

TURN and 90-day mortality (OR 5.32, P < 0.0001). Agreement was further confirmed by 

AUROC analysis and by Hosmer-Lemeshow statistics. TURN yielded an AUROC of 0.82, 

95% CI (0.76, 0.88), and a Hosmer-Lemeshow χ2 of 2.94 using 10 groups, P = 0.94 

confirming good agreement.  

We further assessed for etiology of 90-day mortality after IV thrombolysis. As 

expected, TURN predicted 90-day cardiovascular mortality (OR 3.84, P < 0.001) and 90-day 

cerebrovascular mortality (OR 3.50, P < 0.001). However, TURN did not predict 90-day 

mortality due to infectious causes (OR 1.52, P = 0.16), indicating specificity in its predictive 

ability.  

We compared the ability of TURN to predict 90-day mortality to the other six scores 

for predicting post-thrombolysis outcome 44. TURN predicted 90-day mortality with an odds 

ratios higher than for DRAGON (OR 2.09, P = 0.02), SPAN-100 (OR 1.09, P = 0.002), 

ASTRAL (OR 1.17, P = 0.002) and SEDAN (OR 2.1, P = 0.02). AUROC for TURN was 

also significantly higher than for SEDAN (AUROC 0.7, P = 0.02, Figure 1C). None of the 

other scores predicted 90-day mortality with odds ratios or AUROC significantly higher than 

TURN. 

  

Aim 4: Expansion of clinical utility of clinical score: 

To improve the clinical utility of TURN, we developed and tested a mobile 

application Risk rtPA based on TURN for predicting 90-day outcome after rt-PA treatment 

63. Risk rtPA requires only prestroke mRS scores and admission NIHSS scores for each 



	

	

patient, and predicts both severe outcome (90-day mRS ≥ 5) and excellent outcome (90-day 

mRS ≤ 1) using the inverse logit of TURN and –TURN as follows: TURN predictor for 

severe outcome = and –TURN predictor for excellent outcome = . 

TURN and –TURN were calculated as follows: TURN = -4.65 + (mRS * 0.27) + (NIHSS * 

0.10), and –TURN = 4.65 – (mRS * 0.27) - (NIHSS * 0.10). The response of Risk rtPA 

followed an S-shaped pattern over the range of possible prestroke mRS scores and admission 

NIHSS scores as expected from the inverse logit function (Figure 2). Risk rtPA also returned 

predictions of severe outcome for a range of hypothetical patients with varying clinical 

characteristics (Figure 3), demonstrating broad applicability.  

After AUROC analysis and using 2x2 tables, we selected a cutoff of 3.5 for severe 

outcome and a cutoff of 97 for excellent outcome for Risk rtPA. At these cutoffs, Risk rtPA 

predicted severe outcome with sensitivity of 94.4% but specificity of 52.2%, and predicted 

excellent outcome with specificity of 83.9% but sensitivity of 61.2%. These cutoffs were 

chosen to maximize sensitivity for predicting severe outcome and to maximize specificity for 

predicting excellent outcome to ensure that patients deemed safe for rt-PA therapy are at 

minimal risk for sICH and poor outcome. Thus, Risk rtPA brings accurate but 

computationally simple prediction of outcomes using TURN to the bedside, and enables real-

time prediction of 90-day outcome in ischemic stroke patients being evaluated for anti-

thrombolytic therapy.  

 

Testing of supplemental hypotheses: 

We tested whether mRS scores at patient discharge could serve as a clinically useful 

surrogate for long-term outcome 64. First we assessed the correlation between discharge mRS 

eTURN

(1+ eTURN )
% e−TURN

(1+ e−TURN )
%



	

	

scores and sICH. There was 83.4% agreement between patients with sICH and discharge 

mRS ≥ 5 (kappa 0.22, P < 0.001). Next we performed logistic regression and AUROC 

analysis using discharge mRS ≥ 5 as the dependent variable and each of the eight clinical 

scores as independent variables. All clinical scores showed good agreement with discharge 

mRS ≥ 5 (ROC area > 0.7). The two scores showing the best agreement with discharge mRS 

≥ 5 were Stroke-TPI with AUROC 0.86, 95% CI (0.80, 0.94) and ASTRAL with AUROC 

0.85, 95% CI (0.79, 0.93), with odds ratios of 1.3, 95% CI (0.86, 1.73) and 0.17, 95% CI 

(0.12, 0.23) respectively. SPAN-100 showed the least agreement with discharge mRS ≥ 5 

with AUROC 0.71, 95% CI (0.62, 0.79) and odds ratio 2.09, 95% CI (1.30, 2.87). Therefore, 

whereas most clinical scores agreed with discharge mRS, this measure does not show 

sufficient correlation with sICH to warrant routine use as a surrogate measure of long-term 

outcome.  

Another question we addressed was whether the time of treatment impacted outcome 

of ischemic stroke patients receiving rt-PA therapy 65. We defined on- and off-hour patient 

cohorts based on time of symptom onset according to published criteria 66. Briefly, the on-

hour cohort consisted of patients developing symptoms between 8am and 6pm Monday 

through Friday. Patients in the off-hour cohort developed symptoms Monday through Friday 

6pm to 8am, weekends, Memorial Day, Labor Day, Independence Day, Thanksgiving 

(Wednesday 6pm through the following Monday 8am), Christmas (December 24th and 25th) 

and New Year’s Day (December 31st and January 1st). 

Patients in the on-hour cohort were older (mean age 73.3 versus 68.2, P = 0.03), had 

significantly more previous strokes or transient ischemic attacks (TIAs) (27.6% versus 

16.3%, P = 0.05) and had higher average pre-stroke mRS scores (1.0 versus 0.6, P = 0.04) 



	

	

than off-hour patients. We found no other statistically significant difference in baseline 

clinical characteristics between patients in the on- versus off-hour cohorts.  

On-hour cohort patients did not have a significantly different median onset-to-

treatment time compared to patients in the off-hour cohort (137 minutes versus 145 minutes, 

P = 0.53), nor were there differences in the percentage of patients treated after 3 hours or 

after 4.5 hours (16.1% versus 26%, P = 0.09; and 1.1% versus 4.9%, P = 0.14 respectively). 

We assessed stroke severity between on- and off-hour cohort patients and found no 

significant differences in mean NIHSS scores (12.4 versus 11.3, P = 0.27) or in percentages 

of patients with visual field deficits (34.5% versus 29.3%, P = 0.42), decreased levels of 

consciousness (57.5% versus 45.5%, P = 0.09), early CT hypodensities (26.4% versus 

19.5%, P = 0.24) or the hyperdense MCA sign on imaging (26.4% versus 19.5%, P = 0.24).   

 We also compared clinical outcomes between patients in the on- and off-hour cohorts 

and found no significant differences in the percentage of patients developing ICH (17.2% 

versus 20.3%, P = 0.58) or sICH (4.6% versus 6.5%, P = 0.56). On-hour cohort patients did 

not have significantly different mean change in mRS scores (2.4 versus 2.8, P = 0.16), and 

did not have significantly different mean discharge mRS scores compared to off-hour 

patients (3.4 versus 3.4, P = 0.85). Furthermore, we found no statistically significant 

differences in stroke fatality between the on- and off-hour patient cohorts (9.2% versus 9.8%, 

P = 0.89). Therefore, despite differences in baseline clinical characteristics, there were no 

significant time-dependent differences in stroke severity or outcome in the internal patient 

dataset from our primary stroke centers.  

 

  



	

	

Discussion 

Development and validation of TURN: 

 In this project we described TURN, a new clinical predictor of sICH, poor outcome 

and 90-day mortality in ischemic stroke patients receiving IV thrombolysis. Despite its 

computational simplicity, TURN predicts outcome with comparable or better accuracy than 

existing scores. We further developed and tested a mobile application Risk rtPA for ready 

assessment of ischemic stroke patients at the bedside.  

 At least six of the clinical scores we evaluated in this series require the baseline 

NIHSS score for their calculation (Table 1). DRAGON also requires the prestroke mRS 

score, therefore it is equivalent to TURN plus four other parameters: age, hyperdense middle 

cerebral artery sign or early CT infarct, blood glucose and symptom onset-to-treatment 

duration 18. The other five clinical scores do not require the prestroke mRS score but rather 

evaluate a number of other baseline parameters such as history of diabetes or blood glucose 

for HAT 41, or early stroke findings such as level of consciousness and visual field deficits 

for ASTRAL 19.  

It is perhaps surprising that TURN predicts outcome as well as or better than some of 

the other scores given its simplicity. The performance of TURN is likely due to its reliance 

on the prestroke mRS score. The prestroke mRS score is influenced by a patient’s age, prior 

stroke, existing comorbidities, physical or mental disabilities and coping mechanisms.  

Interestingly, individual contributors to the prestroke mRS score such as age, hypertension, 

diabetes and prior stroke were not independent predictors of sICH 61. In our view, the 

prestroke mRS score can be considered similarly to frailty as a measure of physiological 

vulnerability or the gestalt of a patient’s biopsychosocial stressors normalized to their ability 



	

	

to cope with such stressors 67, and teasing out individual comorbidities does not appear to 

increase predictive ability.  

In spite of this, we believe our model can be improved by going beyond the prestroke 

mRS score. The prestroke mRS score suffers from limited interobserver reliability due in part 

to its reliance on patient or family-member narratives which may not be reliably available at 

the time of stroke 68. Other markers of overall function such as the Rockwood frailty index, 

Charlson comorbidity index and need for caregivers have greater interobserver reliability, 

and may increase the predictive ability of our score if substituted for the prestroke mRS 

score. However many of these markers also rely on family narratives which limits their 

utility in the acute stroke setting. Biomarkers such as plasma MMP-9 have been shown to 

correlate with cardiovascular risk factors in the general population 69. Future studies are 

needed to investigate biomarkers as surrogate measures of baseline functional status. 

 

Prediction of brain swelling: 

We demonstrated the ability of TURN to predict 24-hour cerebral edema in ischemic 

stroke patients. Cerebral edema is associated with sICH and poor outcome after ischemic 

stroke. Therefore, clinical scores that predict cerebral edema may be helpful in screening for 

ischemic stroke patients who are at increased risk for poor outcome.  

 Blood-brain barrier (BBB) breakdown occurs early in ischemic stroke, and 

contributes to vasogenic edema. BBB breakdown is primarily due to increased matrix 

metalloproteinase-9 (MMP-9) and cellular fibronectin after ischemic stroke 70. As a result, 

early vessel leakiness has been proposed as a prognostic marker for sICH 71-74. Rt-PA 

administration may further exacerbate BBB leakiness by directly upregulating MMP-9 75,76 



	

	

and LDL receptor-related protein 77. Indeed, both the NINDS part 1 trial and the ECASS1 

trial reported more brain edema in rt-PA treated patients compared to controls 7,9, suggesting 

that increased cerebral edema occurs by at least two separate mechanisms in ischemic stroke 

patients receiving rt-PA treatment.  

Cerebral edema is associated with poor outcome after rt-PA treatment. It was noted in 

the NINDS rt-PA trial that cerebral edema occurred more frequently in patients with 

intracranial hemorrhage, however this difference was not quantified 7. We elaborated on this 

finding and demonstrated that 24-hour edema including edema at 24 hours not previously 

seen at baseline is independently associated with ICH, sICH, 90-day severe outcome and 90-

day mortality. This result is consistent with studies from our group and others showing that 

cerebral edema independently predicts worse outcome after ischemic stroke 36,78. Ongoing 

efforts seek to address cerebral edema as a therapeutic target using Glyburide, an agent that 

may decrease plasma MMP-9 levels and vasogenic edema in ischemic stroke patients 79.  

Given the association between cerebral edema and poor outcome, it is perhaps not 

surprising that clinical scores developed to predict post-thrombolysis sICH or poor outcome 

also predict 24-hour cerebral edema, albeit modestly. Likewise, the three factors we 

identified after multivariable logistic regression as independent predictors of 24-hour edema 

(HDMCA, decreased level of consciousness and presence of visual field deficits) have 

previously been identified as sICH predictors after IV thrombolysis 80.  

TURN is calculated using prestroke mRS scores and admission NIHSS scores, 

suggesting that these two parameters are associated with development of edema within 24 

hours. The prestroke mRS score indicates a patient’s baseline ability to look after themselves 

in daily life, and shows moderate to good inter-observer agreement 49,50. The admission 



	

	

NIHSS score measures initial stroke severity and also shows moderate to excellent inter-rater 

reliability 51,81. The link between these two parameters and cerebral edema is currently 

unclear. Plasma MMP-9 levels are independently associated with cardiovascular risk factors 

in the general population 69, and may thus indirectly correlate with baseline functional status. 

Likewise, plasma MMP-9 levels 48 hours after ischemic stroke are significantly associated 

with baseline NIHSS scores 82. Given the potential role of MMP-9 in the pathogenesis of 

cerebral edema, it is tempting to speculate that prestroke mRS scores and baseline NIHSS 

scores are mechanistically linked to development of cerebral edema after ischemic stroke. 

However, neither parameter was independently associated with 24-hour edema in our dataset 

after adjusting for covariates. Further studies are needed to help clarify these findings.  

One limitation of our study is its reliance on CT scans from the 1995 NINDS rt-PA 

trial. Advances in CT technology since the publication of the NINDS rt-PA trial may have 

affected the interpretation of our results. We expect newer CT scanning and reconstruction 

techniques to be more accurate, and markers of brain swelling more readily detected. 

Therefore, any limitations in the CT technology used in the NINDS rt-PA trial would tend to 

bias our results towards the null. Newer scans may show even stronger associations between 

brain swelling and adverse outcome, and TURN may better predict brain swelling as seen on 

newer scans. 

 

Risk rt-PA, a mobile application based on TURN: 

We extended the clinical utility of TURN using a mobile application readily available 

at the bedside. To our knowledge, iSCORE remains the only risk calculator available on the 

iOS platform. We were unable to directly compare iSCORE to TURN in previous studies due 



	

	

to unavailability of required data. Nevertheless, iSCORE has been estimated in the NINDS 

dataset 83, and was found to predict sICH with higher overall accuracy compared to TURN as 

measured by AUROC (0.75 versus 0.65 for TURN), but lower accuracy for detecting 90-day 

adverse outcome (mRS ≥ 4; AUROC 0.67 versus 0.77 for TURN). iSCORE benefits from 

validation in several large patient datasets 38,84,85. However iSCORE relies on 8 clinical 

parameters including presence of lacunar infarcts and history of renal dialysis, which may not 

be routinely accessible in the acute stroke setting, whereas TURN requires only two readily 

available clinical parameters. Risk rtPA therefore provides a comparatively accurate but 

computationally simpler alternative for estimating risk of severe outcome at the bedside.  

One limitation of Risk rtPA is its non-linear response at extreme values for mRS and 

NIHSS. This is largely due to a limitation of the inverse logit function. The logit function 

forms the basis of model fitting using univariable and multivariable logistic regression. The 

inverse logit function or logistic function describes the probability of an event given 

weighted exposures. It has the same general form as the log odds function from linear 

regression but has a sigmoidal or S-shaped profile ranging from 0 to 1 86. It is therefore not 

surprising that the output of our mobile application becomes increasingly nonlinear as we 

approach the limits of input values. Nevertheless we demonstrated its functionality over a 

wide range of clinically relevant values.   

We based our cutoffs for outcome probabilities on maximal sensitivity for predicting 

severe outcome in order to minimize the number of false negatives, i.e. patients who are 

deemed safe for treatment but experience severe outcome. Likewise, for predicting excellent 

outcome, we preferentially maximized specificity and therefore minimized number of false 

positives, which in this case also means patients who are deemed safe but experience severe 



	

	

outcome. Therefore, although our objective was to rule-in all eligible patients who may 

receive rt-PA therapy safely, we chose conservative cutoff values in order to maintain a 

sufficient margin of safety.  

 

Study limitations: 

Our study suffers from a number of limitations. It is a retrospective study with 

relatively small sample sizes, which may have limited our ability to detect statistically 

significant differences between the clinical scores we tested. Future studies are needed to 

verify our results using large prospective datasets. Another limitation of our study is our 

singular use of the NINDS trial definition of sICH 7, which may have placed scores derived 

using other sICH definitions at a relative disadvantage 44. However, 3 scores used in our 

study were derived using the NINDS definition 39-41, and this definition captures a greater 

percentage of hemorrhages compared to the European-Australasian Cooperative Acute 

Stroke Study (ECASS) II and SITS-Monitoring Study (SITS-MOST) definitions 87, which 

require more extensive neurological worsening from baseline (i.e. NIHSS ≥ 4 points). A 

recent comparison of sICH definitions found no clear consensus on the best sICH definition 

in terms of predictive value and interrater agreement 87, and other studies comparing clinical 

scores using multiple sICH definitions have found no meaningful differences between their 

results across sICH definitions 43,88.  

 

 

 

 



	

	

Conclusions and future directions 

 We developed and tested TURN a simple clinical score to predict sICH and poor 

outcome after rt-PA treatment in ischemic stroke patients. A mobile application Risk rtPA is 

available for prognostication at the bedside. A large multicenter prospective study is being 

planned to verify our findings in an independent patient cohort. The study design will be a 

pragmatic randomized clinical trial comparing risk assessment by a clinician alone versus a 

clinician plus the Risk rtPA mobile application in a real-world clinical setting. These results 

may bring Risk rtPA closer to incorporation into routine clinical practice for assessment of 

ischemic stroke patients being evaluated for rt-PA therapy.  
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Tables and figures 

Score Components 

Stroke-TPI Age, NIHSS, Glucose 

DRAGON 

 

Age, prestroke mRS, HDMCA or early CT infarct, glucose, OTT, admission 

NIHSS 

SPAN-100 Age, admission NIHSS 

ASTRAL Age, admission NIHSS, OTT, decreased level of consciousness, visual field 

defects, glucose 

MSS Age, admission NIHSS, glucose, platelets 

HAT DM or glucose, admission NIHSS, early CT hypodensity  

SEDAN Age, NIHSS, glucose, HDMCA sign, early CT infarct 

SITS-ICH Age, weight, hypertension, Aspirin/Clopidogrel, admission NIHSS, systolic BP, 

glucose, OTT 

 

Table 1. Patient characteristics used to derive clinical scores. NIHSS = National Institute of 

Health Stroke Scale score, mRS = modified Rankin Scale, HDMCA = Hyperdense Middle 

Cerebral Artery sign, OTT = Onset To Treatment interval, DM = Diabetes Mellitus, CT = 

Computed Tomography, BP = Blood Pressure. Stroke-TPI = Stroke-Thrombolytic Predictive 

Instrument. SPAN-100 = Stroke Prognostication using Age and NIH Stroke Scale-100. 

ASTRAL = Acute Stroke Registry and Analysis of Lausanne. HAT = Hemorrhage After 

Thrombolysis. 

  



	

	

  YNHH (n = 210) NINDS (n = 303) P value 

Patient characteristics       

Mean age 70.3 67.5 0.033* 

% Males 48.6 57.1 0.057 

Mean weight (lbs) 181.1 167.9 0.006* 

Mean systolic BP (mmHg) 156.5 159.8 0.183 

% Hypertension 73.8 66.6 0.078 

% on Aspirin  38.6 40.7 0.625 

Mean admission glucose 

(mg/dL) 
133.3 148.9 0.006* 

% Diabetic 23.3 21.9 0.708 

% Previous stroke/TIA 21.9 27.6 0.087 

Median prestroke mRS score 0 0 <0.001* 

Median OTT (mins) 140 90 <0.001* 

Stroke severity       

Median NIHSS score 10 14 <0.001* 

% Visual field deficits 31.4 54.5 <0.001* 

% Decreased LOC 50.5 32.7 <0.001* 

% Hyperdense MCA sign 9.5 88.3 <0.001* 

% Early CT Hypodensities 22.4 8.5 <0.001* 

Stroke outcomes       

% ICH 19.0 15.4 <0.001* 

% sICH 5.7 8.0 0.320 



	

	

% Fatalities 9.5 2.9 0.001* 

 

Table 2. Demographic and clinical characteristics, stroke severity and outcomes in the 

derivation dataset (YNHH) compared to the external validation dataset (NINDS). P values 

from Mann-Whitney tests, two-sample tests of proportions and two-sample t tests after 

checking for equal variance. * P values < 0.05 two-tailed considered statistically significant. 

TIA = transient ischemic attack, mRS = modified Rankin Scale, OTT = onset-to-treatment 

duration, NIHSS = National Institute of Health Stroke Scale, LOC = level of consciousness, 

MCA = middle cerebral artery, CT = computed tomography, ICH = intracerebral 

hemorrhage, sICH = symptomatic intracerebral hemorrhage. 

 

 

 

 

 

  



	

	

  Odds ratio 95% Confidence Interval z P > |z| 

Patient characteristics        

Age 1.04 0.99      1.09  1.71 0.09 

Gender 0.33 0.09      1.27 -1.61 0.11 

Hypertension 4.13 0.52     32.72  1.34 0.18 

Aspirin  1.64 0.51      5.27  0.83 0.41 

Diabetes 1.10 0.29      4.24  0.14 0.89 

Previous stroke/TIA 1.72 0.55      5.39  0.92 0.36 

Labs on admission     

Weight (lbs) 1.00 0.98      1.01 -0.67 0.50 

Systolic BP (mmHg) 1.00 0.98      1.02 -0.05 0.96 

Admission glucose (mg/dL) 1.00 0.99      1.01  0.02 0.98 

Platelets (1000/mcL) 0.99 0.98      1.00 -2.05 0.04* 

Prestroke mRS score 1.54 1.09      2.18  2.44 0.02* 

OTT (mins) 0.99 0.98      1.01 -0.96 0.34 

Stroke severity       

NIHSS score 1.13 1.05      1.22  3.08 0.002* 

Visual field deficits 1.10 0.32      3.78  0.15 0.88 

Decreased LOC 2.04 0.60      7.00  1.13 0.26 

Hyperdense MCA sign 3.55 0.88     14.36  1.78 0.08 

Early CT Hypodensities 1.80 0.52      6.27 0.93 0.35 

 



	

	

Table 3. Results of univariate logistic regression identifying predictors of sICH in the 

derivation dataset. *P values < 0.05 two-tailed considered statistically significant. sICH = 

symptomatic intracerebral hemorrhage, TIA = transient ischemic attack, BP = blood 

pressure, mRS = modified Rankin scale, OTT = onset-to-treatment time, NIHSS = National 

Institute of Health stroke scale, LOC = level of consciousness, MCA = middle cerebral 

artery, CT = computed tomography.  

  



	

	

 

TURN  

Clinical parameters β coefficients 

Constant term -4.648 

Baseline NIHSS score 0.104 

Prestroke mRS score 0.270 

  

Prediction of sICH  

Odds ratio 2.7 (1.5, 4.9) 

AUROC 0.74 (0.58, 0.90) 

 

 

 

Table 4. Comparison of TURNP and TURN in the derivation dataset: results of multivariate 

logistic regression reporting log-odds ratios (β coefficients). Dependent variable sICH, 

independent variables NIHSS score, prestroke mRS score and platelet count. sICH = 

symptomatic intracerebral hemorrhage, NIHSS = National Institutes of Health Stroke Scale, 

mRS = modified Rankin Scale, TURNP = Thrombolysis risk Using mRS, NIHSS and 

Platelets, TURN = Thrombolysis risk Using mRS and NIHSS. AUROC = area under the 

receiver operating characteristic curve.  

  

TURNP  

Clinical parameters β coefficients 

Constant term -2.346 

Baseline NIHSS score 0.102 

Prestroke mRS score 0.298 

Platelet count -0.0096 

  

Prediction of sICH  

Odds ratio 2.7 (1.6, 4.6) 

AUROC 0.78 (0.64, 0.92) 



	

	

 

 

 

 

Figure 1. AUROC values for prediction of outcome in the external validation dataset. TURN 

compared to other clinical scores using unequal variance 2-sample T-tests with Welch’s 

approximation for degrees of freedom. * P values < 0.05 two-tailed considered statistically 

significant. AUROC = area under the receiver operating characteristic curve. sICH = 

symptomatic intracerebral hemorrhage. BI = Barthel index. GOS = Glasgow outcome score. 

mRS = modified Rankin scale. TURN = Thrombolysis risk Using mRS and NIHSS. Stroke-

TPI = Stroke-Thrombolytic Predictive Instrument. SPAN-100 = Stroke Prognostication using 

Age and NIH Stroke Scale-100. ASTRAL = Acute Stroke Registry and Analysis of 

Lausanne. HAT = Hemorrhage After Thrombolysis. 
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Figure 2. Expected response curves using Risk rtPA mobile application to predict severe and 

excellent outcome. Severe and excellent outcome defined as 90-day mRS scores ≥ 5 and 90-

day mRS ≤ 1 scores respectively. X-axis prestroke mRS score; Y-axis admission NIHSS 

score; Z-axis TURN or –TURN predictors predicting 90-day outcome. A. Prediction of 

severe outcome for range of prestroke mRS scores and admission NIHSS scores. B. 

Prediction of excellent outcome for range of prestroke mRS scores and admission NIHSS 

scores. mRS = modified Rankin Scale, NIHSS = National Institutes of Health Stroke Scale.  

6
Prestroke mRS

42001020
Admission NIHSS

3040
0

20

40

60

80

100

6
Prestroke mRS

42001020
Admission NIHSS

3040
0

20

40

60

100

80



	

	

 

 

Figure 3. Risk rtPA mobile application for predicting 90-day outcome after IV rt-PA therapy. 

A. Inputs are prestroke mRS score and baseline NIHSS score. Outputs are TURN predictor 

for severe outcome and –TURN predictor for excellent outcome. Severe 90-day outcome 

defined as 90-day mRS scores ≥ 5. Excellent outcome defined as 90-day mRS scores ≤ 1. B. 

Hypothetical patient #1 with a prestroke mRS score of 0 and baseline NIHSS score of 6 

received a TURN predictor of 2 a –TURN predictor of 98. C. Hypothetical patient #2 with a 

prestroke mRS score of 5 and baseline NIHSS score of 37 received a TURN predictor of 64 

and a –TURN predictor of 36. mRS = modified Rankin Scale, NIHSS = National Institute of 

Health Stroke Scale.  
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