
  

 

 

 

 

 

ABSTRACT 

 

 

 

 

Title of Dissertation: ANALYZING THE COMBINED EFFECTS OF 

MEASUREMENT ERROR AND 

PERTURBATION ERROR ON 

PERFORMANCE MEASUREMENT 

  

 Geoffrey M. Stoker, Doctor of Philosophy, 2014 

  

Directed By: Professor Jeffrey K. Hollingsworth, 

Department of Computer Science 

 

 

Dynamic performance analysis of executing programs commonly relies on statistical 

profiling techniques to provide performance measurement results.  When a program 

execution is sampled we learn something about the examined program, but also 

change, to some extent, the program's interaction with the underlying system and thus 

its behavior.  The amount we learn diminishes (statistically) with each sample taken, 

while the change we affect with the intrusive sampling risks growing larger.  

Effectively sampling programs is challenging largely because of the opposing effects 

of the decreasing sampling error and increasing perturbation error.  Achieving the 

highest overall level of confidence in measurement results requires striking an 

appropriate balance between the tensions inherent in these two types of errors.  

Despite the popularity of statistical profiling, published material typically only 

explains in general qualitative terms the motivation of the systematic sampling rates 

used.  Given the importance of sampling, we argue in favor of the general principle of 



  

deliberate sample size selection and have developed and tested a technique for doing 

so.  We present our idea of sample rate selection based on abstract and mathematical 

performance measurement models we developed that incorporate the effect of 

sampling on both measurement accuracy and perturbation effects.  Our mathematical 

model predicts the sampling size at which the combination of the residual 

measurement error and the accumulating perturbation error is minimized.  Our 

evaluation of the model with simulation, calibration programs, and selected programs 

from the SPEC CPU 2006 and SPEC OMP 2001 benchmark suites indicates that this 

idea has promise.  Our results show that the predicted sample size is generally close 

to the best sampling rate and effectively avoids bad choices.  Most importantly, 

adaptive sample rate selection is shown to perform better than a single selected rate in 

most cases. 

 

  



  

 

 

 

 

 

 

 

 

 

ANALYZING THE COMBINED EFFECTS OF MEASUREMENT ERROR AND 

PERTURBATION ERROR ON PERFORMANCE MEASUREMENT 

 

 

 

By 

 

 

Geoffrey M. Stoker 

 

 

 

 

 

Dissertation submitted to the Faculty of the Graduate School of the  

University of Maryland, College Park, in partial fulfillment 

of the requirements for the degree of 

Doctor of Philosophy 

2014 

 

 

 

 

 

 

 

 

 

 

Advisory Committee: 

Professor Jeffrey K. Hollingsworth, Chair/Advisor 

Professor M. Cole Miller, Dean’s Representative 

Professor Ashok K. Agrawala 

Professor Peter J. Keleher 

Professor Alan L. Sussman 

 

 



  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by 

Geoffrey M. Stoker 

2014 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 ii 

 

Dedication 

For Akemi. 



 

 iii 

 

Acknowledgements 

My PhD adventure has largely mirrored Winston Churchill's description of his 

book writing experience – from toy, through amusement, mistress, master, tyrant, and 

finally, to slain monster.  I will be forever grateful to those who accompanied me for 

any length of time on this journey.  The good that has come out of this process is due 

in the largest part to them. 

To my advisor, Professor Jeffrey K. Hollingsworth, thank you for the years of 

patiently-provided, wise advice and thoughtful guidance, without which this 

adventure would not have been possible. 

To the members of my dissertation committee, thank you for your willingness 

to help develop me as a researcher and improve my scholarship. 

To my fellow research group members, AT, Mike, Nick, Ray, and Tugrul, 

thank you so much for the encouragement to persevere that you provided through 

personal example and regular interaction. 

To my leaders at EECS, Colonel Ed Sobiesk and Colonel Gene Ressler, thank 

you for pushing me, encouraging me, and taking a chance on me.  Teaching Cadets 

has been the highlight of my career thus far. 

To the many, many members of the graduate community at UMD and the 

faculty at USMA who made the journey worthwhile, thanks for being such wonderful 

friends and colleagues.  Thanks (in no particular order), Paul, Ed, Bill, Paulo, Rob, 

Todd, Devon, Tim, Mike, Mike, Kyle, Glenn, Mike, Ray, John, Patrick, Aaron, and 

many, many others I'm sorry to have to leave out. 



 

 iv 

 

To Kai-Lynn, Mirana, Geoffrey, Julia, and Sarah, thank you for providing me 

a large part of what makes life worth living – yourselves. 

Finally, to my wife Akemi, you are truly a gift from the Lord.  Without you by 

my side, this adventure would count for nothing.  Thank you for enduring the 

thousands of absent weekend and late night hours along with my emotional ups and 

downs over the past six years.  I love you and eagerly look forward to whatever life 

next holds for us. 

 

 



 

 v 

 

Table of Contents 
 

 

Dedication ..................................................................................................................... ii 
Acknowledgements ...................................................................................................... iii 
Table of Contents .......................................................................................................... v 
List of Tables .............................................................................................................. vii 
List of Figures ............................................................................................................ viii 

 

Chapter 1:  Introduction ................................................................................................ 1 
1.1 Motivation ........................................................................................................... 3 
1.2 Contributions....................................................................................................... 6 

1.3 Outline................................................................................................................. 7 
 

Chapter 2:  Background and Related Work .................................................................. 9 

2.1 Handling Perturbation ......................................................................................... 9 
2.1.1 Perturbation Minimization ........................................................................... 9 

2.1.2 Perturbation Compensation ........................................................................ 10 
2.2 Statistical Science ............................................................................................. 12 

2.2.1 Approximating Hypergeometric with Normal ........................................... 12 

2.2.2 Use in Performance Analysis ..................................................................... 15 
2.3 Tools ................................................................................................................. 17 

2.3.1 Progtime ..................................................................................................... 17 
2.3.2 Prof ............................................................................................................. 17 

2.3.3 Gprof .......................................................................................................... 18 
2.3.4 ATOM ........................................................................................................ 19 

2.3.5 XProfiler .................................................................................................... 19 
2.3.6 HPCToolkit ................................................................................................ 19 
2.3.7 VTune ........................................................................................................ 20 

2.3.8 STAT.......................................................................................................... 20 
2.3.9 DCPI .......................................................................................................... 20 
2.3.10 SimPoint ................................................................................................... 21 

 

Chapter 3:  Sampling Empirical Study ....................................................................... 23 
3.1 Sampling Simulation ......................................................................................... 23 

3.1.1 Fixed Sample Size...................................................................................... 24 

3.1.2 Calculated Sample Size.............................................................................. 28 
3.2 Sampling Calibration Program ......................................................................... 34 

3.2.1 Fixed Sample Size...................................................................................... 35 

3.2.2 Calculated Sample Size.............................................................................. 38 
 

Chapter 4:  Model ....................................................................................................... 42 
4.1 Abstract Model.................................................................................................. 42 
4.2 Analytical Model .............................................................................................. 44 

4.2.1 Background ................................................................................................ 44 



 

 vi 

 

4.2.2 Applying the Intuition ................................................................................ 46 

4.2.3 Analytic Function....................................................................................... 48 
4.3 Simulation ......................................................................................................... 52 

 

Chapter 5:  Sequential Execution ................................................................................ 56 
5.1 Calibration Program .......................................................................................... 56 

5.1.1 Experiment Design and Environment ........................................................ 56 
5.1.2 Program ...................................................................................................... 58 
5.1.3 Measurement Tool ..................................................................................... 59 

5.1.4 Result Comparison ..................................................................................... 60 
5.2 SPEC CPU Programs ........................................................................................ 61 

5.2.1 Experiment Design and Environment ........................................................ 61 
5.2.2 Programs .................................................................................................... 64 

5.2.3 Measurement Tool ..................................................................................... 64 
5.2.4 Execution Details ....................................................................................... 66 

5.2.5 Results ........................................................................................................ 66 
5.2.6 Analysis of Analytic Equation Results ...................................................... 76 

 

Chapter 6:  Parallel Execution .................................................................................... 78 
6.1 Preliminary Notes on Experiments ................................................................... 78 

6.1.1 Variance of Execution................................................................................ 78 
6.1.2 Software Timers ......................................................................................... 81 

6.2 SPEC OMP 2001 Programs .............................................................................. 83 
6.2.1 Experiment Design and Environment ........................................................ 83 
6.2.3 Programs .................................................................................................... 84 

6.2.4 Execution Details ....................................................................................... 84 

6.2.5 Results ........................................................................................................ 85 
 

Chapter 7:  Future Work ............................................................................................. 95 

7.1 Process Refinement ........................................................................................... 95 
7.2 Analytic Function Refinement .......................................................................... 95 

7.3 Other Application Domains .............................................................................. 96 
7.4 Beyond Functions ............................................................................................. 96 

7.5 Computer Universe ........................................................................................... 97 
 

Chapter 8:  Conclusions .............................................................................................. 99 
 

Appendix A ............................................................................................................... 103 

Appendix B ............................................................................................................... 105 
Appendix C ............................................................................................................... 115 

Glossary .................................................................................................................... 161 
Bibliography ............................................................................................................. 163 
 

 



 

 vii 

 

List of Tables 
 

Table 3.1:  Simulation experiment execution percentages for foo and bar. ............... 24 

Table 3.2:  Execution percentage pairings .................................................................. 29 
Table 3.3:  Execution percentage pairings .................................................................. 38 
Table 3.4:  Comparison of number of trials where foo < bar (per 100 runs) .............. 40 
Table 4.1:  Analytic function notation ........................................................................ 46 
Table 5.1:  Calculation of largest function per benchmark. ........................................ 64 

Table 5.2:  Predicted vs. actual outcomes. .................................................................. 76 
Table 6.1:  Sampling intervals and expected approximate sample counts for targeted 

experiments with equake using 4 threads on 4 cores. ..................................... 89 
Table 6.2:  Sampling intervals and corresponding number of runs (out of 20) with 

calculated proportion (percent execution) outside the 95% CI for the "true" 

value of smvp.omp_fn.5 from equake, 4 threads on 4 cores. ......................... 90 
Table 6.3:  Chi-square test results for determining "truth" for the percent execution of 

equake functions. ............................................................................................ 92 
Table 6.4:  Parallel predicted vs. best outcome. ......................................................... 93 

Table A.1:  Analytic function notation ..................................................................... 103 
 



 

 viii 

 

List of Figures 

Figure 1.1:  Theoretical outcome of two performance measurement tools .............................. 5 

Figure 1.2:  Example experiment results where measurements were perturbed by sampling .. 6 
Figure 3.1:  Simulation results of foo=.49; bar=.48; 40,000 samples ..................................... 25 
Figure 3.2:  Simulation results of foo=.40; bar=.39; 40,000 samples ..................................... 25 
Figure 3.3:  Simulation results of foo=.30; bar=.29; 40,000 samples ..................................... 25 
Figure 3.4:  Simulation results of foo=.20; bar=.19; 40,000 samples ..................................... 26 

Figure 3.5:  Simulation results of foo=.10; bar=.09; 40,000 samples ..................................... 26 
Figure 3.6:  Simulation results of foo=.02; bar=.01; 40,000 samples ..................................... 26 
Figure 3.7:  Comparing simulation, hypergeometric, and normal when foo=.49; bar=.48 .... 27 

Figure 3.8:  Comparing simulation, hypergeometric, and normal when foo=.02; bar=.01 .... 28 
Figure 3.9:  Simulation results of foo=.49; bar=.48; 38,375 samples ..................................... 30 
Figure 3.10:  Simulation results of foo=.40; bar=.39; 36,718 samples ................................... 30 

Figure 3.11:  Simulation results of foo=.30; bar=.29; 31,956 samples ................................... 30 
Figure 3.12:  Simulation results of foo=.20; bar=.19; 24,115 samples ................................... 31 

Figure 3.13:  Simulation results of foo=.10; bar=.09; 13,201 samples ................................... 31 
Figure 3.14:  Simulation results of foo=.02; bar=.01; 2,204 samples ..................................... 31 
Figure 3.15:  Comparing simulation, hypergeometric, and normal when foo=.49; bar=.48 .. 33 

Figure 3.16:  Comparing simulation, hypergeometric, and normal when foo=.02; bar=.01 .. 33 
Figure 3.17:  Calibration results of foo=.49; bar=.48; ≈37,500 samples ................................ 35 
Figure 3.18:  Calibration results of foo=.40; bar=.39; ≈37,500 samples ................................ 36 

Figure 3.19:  Calibration results of foo=.30; bar=.29; ≈37,500 samples ................................ 36 
Figure 3.20:  Calibration results of foo=.20; bar=.19; ≈37,500 samples ................................ 37 

Figure 3.21:  Calibration results of foo=.10; bar=.09; ≈37,500 samples ................................ 37 
Figure 3.22:  Calibration results of foo=.02; bar=.01; ≈37,500 samples ................................ 38 

Figure 3.23:  Calibration results of foo=.30; bar=.29; ≈33,400 samples ................................ 39 
Figure 3.24:  Calibration results of foo=.20; bar=.19; ≈25,00 samples .................................. 39 

Figure 3.25:  Calibration results of foo=.10; bar=.09; ≈13,00 samples .................................. 40 
Figure 3.26:  Calibration results of foo=.02; bar=.01; ≈2,200 samples .................................. 40 
Figure 4.1:  Abstract model of the effect on measurement error and perturbation error as an 

increasing number of samples is taken during a program's execution. ....................... 44 
Figure 4.2:  This graph presents the predicted results for measurements of the execution of 

foo within a program that executes for a total of 300 seconds and in which foo 

accounts for 20% of the execution time.  Of the measurements taken at each sample 

level, 95% of them are expected to fall within the upper and lower curves. .............. 49 

Figure 4.3:  This graph presents the simulation results for measurements of the execution of 

foo within a simulated program that executes (when unperturbed) for a total of 300 

seconds and in which foo accounts for 20% of the execution time.  1,000 simulations 

were run per each sample size with the middle 95% of measurements shown as the 

solid part of the bar.  The whiskers above and below each bar indicate the remaining 

5% (2.5% above and 2.5% below). ............................................................................. 54 
Figure 5.1:  This graph presents the results for measurements of the execution of foo within 

our calibration program that executes (when unperturbed) for a total of approximately 

300 seconds and in which foo accounts for approximately 20% of the execution time.  



 

 ix 

 

100 experiments were run per each sample size with the middle 95% of 

measurements shown as the solid part of the bar. The whiskers above and below each 

bar indicate the remaining 5% (2.5% above and below). ........................................... 57 
Figure 5.2:  Sample rate limitations ........................................................................................ 58 

Figure 5.3:  This graph presents a consolidated view of the results depicted in Figs 4.2, 4.3, 

and 5.1.  Each three bar group pictured per sample count are, left to right, model 

prediction, simulation result, and experiment result. .................................................. 60 
Figure 5.4:  This graph presents the distribution of the calculated value of p for 

cMessageHeap::shiftup(int) arranged by number of samples taken. .......................... 62 

Figure 5.5:  This graph depicts the distribution of the calculated value of p for 

cMessageHeap::shiftup(int) ordered from smallest to largest. ................................... 63 
Figure 5.8:  Plot of proportion calculation results for cMessageHeap::shiftup(int), the 

function taking the most execution time for omnetpp, across the 28x10 execution 

runs. ............................................................................................................................. 67 
Figure 5.9:  Plot of proportion calculation results for cGate::deliver(cMessage*,double), the 

function taking the 2nd most execution time for omnetpp, across the 28x10 execution 

runs. ............................................................................................................................. 68 

Figure 5.10:  Plot of proportion calculation results for cSimulation::selectNextModule(), the 

function taking the 3rd most execution time for omnetpp, across the 28x10 execution 

runs. ............................................................................................................................. 68 

Figure 5.11:  Plot of proportion calculation results for cModule::findGate(char const*,int) 

const, the function taking the 4th most execution time for omnetpp, across the 28x10 

execution runs. ............................................................................................................ 69 
Figure 5.12:  Plot of execution time calculation results for cMessageHeap::shiftup(int), the 

function taking the most execution time for omnetpp, across the 28x10 execution 

runs. ............................................................................................................................. 69 

Figure 5.13:  Results for the 28x10 runs compared to "truth" for cMessageHeap::shiftup(int).  

The solid blue line tracks the MAPE for the set of 10 runs at each sample rate and the 

red dashed line indicates the approximate expected MAPE. ...................................... 71 

Figure 5.14:  MAPE results for each of the top four functions in omnetpp. .......................... 71 
Figure 5.14:  cMAPE results for the top four functions in omnetpp (blue solid line) and the 

calculated approximate expected cMAPE (dotted red line). ...................................... 72 
Figure 5.15:  cMAPE results for the top four functions in bzip2 (blue solid line) and the 

calculated approximate expected cMAPE (dotted red line). ...................................... 73 
Figure 5.16:  cMAPE results for the top four functions in mcf (blue solid line) and the 

calculated approximate expected cMAPE (dotted red line). ...................................... 74 
Figure 5.17:  cMAPE results for the top four functions in milc (blue solid line) and the 

calculated approximate expected cMAPE (dotted red line). ...................................... 75 

Figure 5.18:  cMAPE results for the top four functions in sjeng (blue solid line) and the 

calculated approximate expected cMAPE (dotted red line). ...................................... 75 

Figure 6.1:  Distribution of run times, 20 each, sorted shortest to longest within each 

sampling interval, for the SPEC OMP 2001 benchmark equake. ............................... 80 
Figure 6.2:  Distribution of run times, 10 each, sorted shortest to longest within each 

sampling interval, for the SPEC CPU 2006 benchmarks sjeng, milc, mcf, omnetpp, 

and bzip. ...................................................................................................................... 81 



 

 x 

 

Figure 6.3:  Distribution of the percent execution taken by smvp.omp_fn.5 from 100 runs of 

equake with 4 threads on 4 cores, 20 each at 5 different sampling intervals.  Each data 

point includes whiskers indicating the expected 95% confidence interval of the 

calculated proportion. ................................................................................................. 86 

Figure 6.4:  Distribution of the percent execution taken by 4 different functions from 100 

runs of equake with 4 threads on 4 cores, 20 each at 5 different sampling intervals.  

Each data point includes whiskers indicating the expected 95% confidence interval of 

the calculated proportion............................................................................................. 87 
Figure 6.5:  Results of the percent execution of smvp.omp_fn.5 for the 120 runs conducted 

with equake, 4 threads on 4 cores, 20 runs per sampling interval.  The 95% 

confidence intervals of the "true" value are depicted as red dashed lines. ................. 89 
Figure 6.6:  Results of the percent execution of smvp.omp_fn.5 for the 120 runs conducted 

with equake, 4 threads on 4 cores, 20 runs per sampling interval.  The 95% 

confidence intervals of the "true" value are depicted as red dashed lines. ................. 90 
Figure B.1:  Plot of proportion calculation results for BZ2_blockSort), the function taking the 

most execution time for bzip2, across the 28x10 execution runs. ............................ 105 
Figure B.2:  Plot of proportion calculation results for mainGtU, the function taking the 2nd 

most execution time for bzip2, across the 28x10 execution runs. ............................ 105 
Figure B.3:  Plot of proportion calculation results for BZ2_decompress, the function taking 

the 3rd most execution time for bzip2, across the 28x10 execution runs. ................ 106 

Figure B.4:  Plot of proportion calculation results for BZ2_compressBlock, the function 

taking the 4th most execution time for bzip2, across the 28x10 execution runs. ..... 106 

Figure B.5:  The aggregated MAPE results for the top four functions in bzip2 (blue solid 

line) and the calculated approximate expected MAPE (dotted red line). ................. 107 
Figure B.6:  Plot of proportion calculation results for primal_bea_mpp, the function taking 

the most execution time for mcf, across the 28x10 execution runs. ......................... 107 

Figure B.7:  Plot of proportion calculation results for refresh_potential, the function taking 

the 2nd most execution time for mcf, across the 28x10 execution runs. .................. 108 
Figure B.8:  Plot of proportion calculation results for replace_weaker_arc, the function 

taking the 3rd most execution time for mcf, across the 28x10 execution runs. ........ 108 
Figure B.9:  Plot of proportion calculation results for price_out_impl, the function taking the 

4th most execution time for mcf, across the 28x10 execution runs. ......................... 109 
Figure B.10:  The aggregated MAPE results for the top four functions in mcf (blue solid line) 

and the calculated approximate expected MAPE (dotted red line)........................... 109 
Figure B.11:  Plot of proportion calculation results for mult_su3_na, the function taking the 

most execution time for milc, across the 28x10 execution runs. .............................. 109 
Figure B.12:  Plot of proportion calculation results for mult_su3_nn, the function taking the 

2nd most execution time for milc, across the 28x10 execution runs. ....................... 110 

Figure B.13:  Plot of proportion calculation results for mult_su3_mat_vec, the function taking 

the 3rd most execution time for milc, across the 28x10 execution runs. .................. 110 

Figure B.14:  Plot of proportion calculation results for mult_adj_su3_mat_vec, the function 

taking the 4th most execution time for milc, across the 28x10 execution runs. ....... 111 
Figure b.15:  The aggregated MAPE results for the top four functions in milc (blue solid line) 

and the calculated approximate expected MAPE (dotted red line)........................... 111 
Figure B.16:  Plot of proportion calculation results for std_eval, the function taking the most 

execution time for sjeng, across the 28x10 execution runs. ..................................... 111 



 

 xi 

 

Figure B.17:  Plot of proportion calculation results for setup_attackers, the function taking 

the 2nd most execution time for sjeng, across the 28x10 execution runs. ................ 112 
Figure B.18:  Plot of proportion calculation results for gen, the function taking the 3rd most 

execution time for sjeng, across the 28x10 execution runs. ..................................... 112 

Figure B.19:  Plot of proportion calculation results for remove_one, the function taking the 

4th most execution time for sjeng, across the 28x10 execution runs........................ 113 
Figure B.20:  The aggregated MAPE results for the top four functions in sjeng (blue solid 

line) and the calculated approximate expected MAPE (dotted red line). ................. 113 
Figure C.1:  Distribution of run times, 20 each, sorted shortest to longest within each 

sampling interval, for the SPEC OMP 2001 benchmark applu. ............................... 115 
Figure C.2:  Distribution of run times, 20 each, sorted shortest to longest within each 

sampling interval, for the SPEC OMP 2001 benchmark fma3d. .............................. 116 
Figure C.3:  Distribution of run times, 20 each, sorted shortest to longest within each 

sampling interval, for the SPEC OMP 2001 benchmark swim. ............................... 116 
Figure C.4:  Distribution of run times, 20 each, sorted shortest to longest within each 

sampling interval, for the SPEC OMP 2001 benchmark wupwise. .......................... 117 
Figure C.5:  Results of the percent execution of GOMP_taskwait, the function taking the 2nd 

most execution time for the 120 runs conducted with equake, 4 threads on 4 cores, 20 

runs per sampling interval. ........................................................................................ 117 
Figure C.6:  Results of the percent execution of main.omp_fn.10, the function taking the 3rd 

most execution time for the 120 runs conducted with equake, 4 threads on 4 cores, 20 

runs per sampling interval. ........................................................................................ 118 

Figure C.7:  Results of the percent execution of omp_get_num_procs for the 120 runs 

conducted with equake, 4 threads on 4 cores, 20 runs per sampling interval. .......... 118 
Figure C.8:  Distribution of the percent execution taken by 4 different functions from 100 

runs of equake with 8 threads on 8 cores, 20 each at 5 different sampling intervals.  

Each data point includes whiskers indicating the expected 95% confidence interval of 

the calculated proportion........................................................................................... 119 
Figure C.9:  Results of the percent execution of smvp.omp_fn.5, the function taking the most 

execution time for the 120 runs conducted with equake, 8 threads on 8 cores, 20 runs 

per sampling interval................................................................................................. 120 

Figure C.10:  Results of the percent execution of GOMP_taskwait, the function taking the 

2nd most execution time for the 120 runs conducted with equake, 8 threads on 8 

cores, 20 runs per sampling interval. ........................................................................ 120 
Figure C.11:  Results of the percent execution of main.omp_fn.10, the function taking the 3rd 

most execution time for the 120 runs conducted with equake, 8 threads on 8 cores, 20 

runs per sampling interval. ........................................................................................ 121 
Figure C.12:  Results of the percent execution of omp_get_num_procs, for the 120 runs 

conducted with equake, 8 threads on 8 cores, 20 runs per sampling interval. .......... 121 
Figure C.13:  Distribution of the percent execution taken by 4 different functions from 100 

runs of equake with 12 threads on 12 cores, 20 each at 5 different sampling intervals.  

Each data point includes whiskers indicating the expected 95% confidence interval of 

the calculated proportion........................................................................................... 122 
Figure C.14:  Results of the percent execution of smvp.omp_fn.5, the function taking the 

most execution time for the 120 runs conducted with equake, 12 threads on 12 cores, 

20 runs per sampling interval. ................................................................................... 123 



 

 xii 

 

Figure C.15:  Results of the percent execution of GOMP_taskwait, the function taking the 

2nd most execution time for the 120 runs conducted with equake, 12 threads on 12 

cores, 20 runs per sampling interval. ........................................................................ 123 
Figure C.16:  Results of the percent execution of main.omp_fn.10, the function taking the 3rd 

most execution time for the 120 runs conducted with equake, 12 threads on 12 cores, 

20 runs per sampling interval. ................................................................................... 124 
Figure C.17:  Results of the percent execution of omp_get_num_procs, for the 120 runs 

conducted with equake, 12 threads on 12 cores, 20 runs per sampling interval. ...... 124 
Figure C.18:  Distribution of the percent execution taken by 4 different functions from 100 

runs of applu with 4 threads on 4 cores, 20 each at 5 different sampling intervals.  

Each data point includes whiskers indicating the expected 95% confidence interval of 

the calculated proportion........................................................................................... 125 
Figure C.19:  Results of the percent execution of ssor_.omp_fn.2, the function taking the 

most execution time for the 120 runs conducted with applu, 4 threads on 4 cores, 20 

runs per sampling interval. ........................................................................................ 126 

Figure C.20:  Results of the percent execution of GOMP_taskwait, the function taking the 

2nd most execution time for the 120 runs conducted with applu, 4 threads on 4 cores, 

20 runs per sampling interval. ................................................................................... 126 
Figure C.21:  Results of the percent execution of buts_, the function taking the 3rd most 

execution time for the 120 runs conducted with applu, 4 threads on 4 cores, 20 runs 

per sampling interval................................................................................................. 127 
Figure C.22:  Results of the percent execution of blts_, the function taking the 4th most 

execution time for the 120 runs conducted with applu, 4 threads on 4 cores, 20 runs 

per sampling interval................................................................................................. 127 
Figure C.23:  Distribution of the percent execution taken by 4 different functions from 100 

runs of applu with 8 threads on 8 cores, 20 each at 5 different sampling intervals.  

Each data point includes whiskers indicating the expected 95% confidence interval of 

the calculated proportion........................................................................................... 128 
Figure C.24:  Results of the percent execution of ssor_.omp_fn.2, the function taking the 

most execution time for the 120 runs conducted with applu, 8 threads on 8 cores, 20 

runs per sampling interval. ........................................................................................ 129 

Figure C.25:  Results of the percent execution of GOMP_taskwait, the function taking the 

2nd most execution time for the 120 runs conducted with applu, 8 threads on 8 cores, 

20 runs per sampling interval. ................................................................................... 129 
Figure C.26:  Results of the percent execution of buts_, the function taking the 3rd most 

execution time for the 120 runs conducted with applu, 8 threads on 8 cores, 20 runs 

per sampling interval................................................................................................. 130 
Figure C.27:  Results of the percent execution of blts_, the function taking the 4th most 

execution time for the 120 runs conducted with applu, 8 threads on 8 cores, 20 runs 

per sampling interval................................................................................................. 130 

Figure C.28:  Distribution of the percent execution taken by 4 different functions from 100 

runs of applu with 12 threads on 12 cores, 20 each at 5 different sampling intervals.  

Each data point includes whiskers indicating the expected 95% confidence interval of 

the calculated proportion........................................................................................... 131 



 

 xiii 

 

Figure C.29:  Results of the percent execution of ssor_.omp_fn.2, the function taking the 

most execution time for the 120 runs conducted with applu, 12 threads on 12 cores, 

20 runs per sampling interval. ................................................................................... 132 
Figure C.30:  Results of the percent execution of GOMP_taskwait, the function taking the 

2nd most execution time for the 120 runs conducted with applu, 12 threads on 12 

cores, 20 runs per sampling interval. ........................................................................ 132 
Figure C.31:  Results of the percent execution of buts_, the function taking the 3rd most 

execution time for the 120 runs conducted with applu, 12 threads on 12 cores, 20 runs 

per sampling interval................................................................................................. 133 

Figure C.32:  Results of the percent execution of blts_, the function taking the 4th most 

execution time for the 120 runs conducted with applu, 12 threads on 12 cores, 20 runs 

per sampling interval................................................................................................. 133 
Figure C.33:  Distribution of the percent execution taken by 4 different functions from 100 

runs of fma3d with 4 threads on 4 cores, 20 each at 5 different sampling intervals.  

Each data point includes whiskers indicating the expected 95% confidence interval of 

the calculated proportion........................................................................................... 134 
Figure C.34:  Results of the percent execution of platq_internal_forces_.omp_fn.0, the 

function taking the most execution time for the 120 runs conducted with fma3d, 4 

threads on 4 cores, 20 runs per sampling interval. .................................................... 135 
Figure C.35:  Results of the percent execution of GOMP_taskwait, the function taking the 

2nd most execution time for the 120 runs conducted with fma3d, 4 threads on 4 cores, 

20 runs per sampling interval. ................................................................................... 135 

Figure C.36:  Results of the percent execution of platq_stress_integration_, the function 

taking the 3rd most execution time for the 120 runs conducted with fma3d, 4 threads 

on 4 cores, 20 runs per sampling interval. ................................................................ 136 

Figure C.37:  Results of the percent execution of material_41_integration_, the function 

taking the 4th most execution time for the 120 runs conducted with fma3d, 4 threads 

on 4 cores, 20 runs per sampling interval. ................................................................ 136 
Figure C.38:  Distribution of the percent execution taken by 4 different functions from 100 

runs of fma3d with 8 threads on 8 cores, 20 each at 5 different sampling intervals.  

Each data point includes whiskers indicating the expected 95% confidence interval of 

the calculated proportion........................................................................................... 137 
Figure C.39:  Results of the percent execution of platq_internal_forces_.omp_fn.0, the 

function taking the most execution time for the 120 runs conducted with fma3d, 8 

threads on 8 cores, 20 runs per sampling interval. .................................................... 138 
Figure C.40:  Results of the percent execution of GOMP_taskwait, the function taking the 

2nd most execution time for the 120 runs conducted with fma3d, 8 threads on 8 cores, 

20 runs per sampling interval. ................................................................................... 138 

Figure C.41:  Results of the percent execution of platq_stress_integration_, the function 

taking the 3rd most execution time for the 120 runs conducted with fma3d, 8 threads 

on 8 cores, 20 runs per sampling interval. ................................................................ 139 
Figure C.42:  Results of the percent execution of material_41_integration_, the function 

taking the 4th most execution time for the 120 runs conducted with fma3d, 8 threads 

on 8 cores, 20 runs per sampling interval. ................................................................ 139 
Figure C.43:  Distribution of the percent execution taken by 4 different functions from 100 

runs of fma3d with 12 threads on 12 cores, 20 each at 5 different sampling intervals.  



 

 xiv 

 

Each data point includes whiskers indicating the expected 95% confidence interval of 

the calculated proportion........................................................................................... 140 
Figure C.44:  Results of the percent execution of platq_internal_forces_.omp_fn.0, the 

function taking the most execution time for the 120 runs conducted with fma3d, 12 

threads on 12 cores, 20 runs per sampling interval. .................................................. 141 
Figure C.45:  Results of the percent execution of GOMP_taskwait, the function taking the 

2nd most execution time for the 120 runs conducted with fma3d, 12 threads on 12 

cores, 20 runs per sampling interval. ........................................................................ 141 
Figure C.46:  Results of the percent execution of platq_stress_integration_, the function 

taking the 3rd most execution time for the 120 runs conducted with fma3d, 12 threads 

on 12 cores, 20 runs per sampling interval. .............................................................. 142 
Figure C.47:  Results of the percent execution of material_41_integration_, the function 

taking the 4th most execution time for the 120 runs conducted with fma3d, 12 threads 

on 12 cores, 20 runs per sampling interval. .............................................................. 142 
Figure C.48:  Distribution of the percent execution taken by 4 different functions from 100 

runs of swim with 4 threads on 4 cores, 20 each at 5 different sampling intervals.  

Each data point includes whiskers indicating the expected 95% confidence interval of 

the calculated proportion........................................................................................... 143 
Figure C.49:  Results of the percent execution of GOMP_taskwait, the function taking the 

most execution time for the 120 runs conducted with swim, 4 threads on 4 cores, 20 

runs per sampling interval. ........................................................................................ 144 
Figure C.50:  Results of the percent execution of calc2_.omp_fn.2, the function taking the 

2nd most execution time for the 120 runs conducted with swim, 4 threads on 4 cores, 

20 runs per sampling interval. ................................................................................... 144 
Figure C.51:  Results of the percent execution of calc1_.omp_fn.3, the function taking the 

3rd most execution time for the 120 runs conducted with swim, 4 threads on 4 cores, 

20 runs per sampling interval. ................................................................................... 145 
Figure C.52:  Results of the percent execution of calc3_.omp_fn.0, the function taking the 4th 

most execution time for the 120 runs conducted with swim, 4 threads on 4 cores, 20 

runs per sampling interval. ........................................................................................ 145 
Figure C.53:  Distribution of the percent execution taken by 4 different functions from 100 

runs of swim with 8 threads on 8 cores, 20 each at 5 different sampling intervals.  

Each data point includes whiskers indicating the expected 95% confidence interval of 

the calculated proportion........................................................................................... 146 
Figure C.54:  Results of the percent execution of GOMP_taskwait, the function taking the 

most execution time for the 120 runs conducted with swim, 8 threads on 8 cores, 20 

runs per sampling interval. ........................................................................................ 147 
Figure C.55:  Results of the percent execution of calc2_.omp_fn.2, the function taking the 

2nd most execution time for the 120 runs conducted with swim, 8 threads on 8 cores, 

20 runs per sampling interval. ................................................................................... 147 

Figure C.56:  Results of the percent execution of calc1_.omp_fn.3, the function taking the 

3rd most execution time for the 120 runs conducted with swim, 8 threads on 8 cores, 

20 runs per sampling interval. ................................................................................... 148 
Figure C.57:  Results of the percent execution of calc3_.omp_fn.0, the function taking the 4th 

most execution time for the 120 runs conducted with swim, 8 threads on 8 cores, 20 

runs per sampling interval. ........................................................................................ 148 



 

 xv 

 

Figure C.58:  Distribution of the percent execution taken by 4 different functions from 100 

runs of swim with 12 threads on 12 cores, 20 each at 5 different sampling intervals.  

Each data point includes whiskers indicating the expected 95% confidence interval of 

the calculated proportion........................................................................................... 149 

Figure C.59:  Results of the percent execution of GOMP_taskwait, the function taking the 

most execution time for the 120 runs conducted with swim, 12 threads on 12 cores, 

20 runs per sampling interval. ................................................................................... 150 
Figure C.60:  Results of the percent execution of calc2_.omp_fn.2, the function taking the 

2nd most execution time for the 120 runs conducted with swim, 12 threads on 12 

cores, 20 runs per sampling interval. ........................................................................ 150 
Figure C.61:  Results of the percent execution of calc1_.omp_fn.3, the function taking the 

3rd most execution time for the 120 runs conducted with swim, 12 threads on 12 

cores, 20 runs per sampling interval. ........................................................................ 151 

Figure C.62:  Results of the percent execution of calc3_.omp_fn.0, the function taking the 4th 

most execution time for the 120 runs conducted with swim, 12 threads on 12 cores, 

20 runs per sampling interval. ................................................................................... 151 
Figure C.63:  Distribution of the percent execution taken by 4 different functions from 100 

runs of wupwise with 4 threads on 4 cores, 20 each at 5 different sampling intervals.  

Each data point includes whiskers indicating the expected 95% confidence interval of 

the calculated proportion........................................................................................... 152 

Figure C.64:  Results of the percent execution of zgemm_, the function taking the most 

execution time for the 120 runs conducted with wupwise, 4 threads on 4 cores, 20 

runs per sampling interval. ........................................................................................ 153 
Figure C.65:  Results of the percent execution of muldoe_.omp_fn.0, the function taking the 

2nd most execution time for the 120 runs conducted with wupwise, 4 threads on 4 

cores, 20 runs per sampling interval. ........................................................................ 153 

Figure C.66:  Results of the percent execution of muldeo_.omp_fn.0, the function taking the 

3rd most execution time for the 120 runs conducted with wupwise, 4 threads on 4 

cores, 20 runs per sampling interval. ........................................................................ 154 

Figure C.67:  Results of the percent execution of GOMP_taskwait, the function taking the 4th 

most execution time for the 120 runs conducted with wupwise, 4 threads on 4 cores, 

20 runs per sampling interval. ................................................................................... 154 
Figure C.68:  Distribution of the percent execution taken by 4 different functions from 100 

runs of wupwise with 8 threads on 8 cores, 20 each at 5 different sampling intervals.  

Each data point includes whiskers indicating the expected 95% confidence interval of 

the calculated proportion........................................................................................... 155 
Figure C.69:  Results of the percent execution of zgemm_, the function taking the most 

execution time for the 120 runs conducted with wupwise, 8 threads on 8 cores, 20 

runs per sampling interval. ........................................................................................ 156 
Figure C.70:  Results of the percent execution of GOMP_taskwait, the function taking the 

2nd most execution time for the 120 runs conducted with wupwise, 8 threads on 8 

cores, 20 runs per sampling interval. ........................................................................ 156 
Figure C.71:  Results of the percent execution of muldoe_.omp_fn.0, the function taking the 

3rd most execution time for the 120 runs conducted with wupwise, 8 threads on 8 

cores, 20 runs per sampling interval. ........................................................................ 157 



 

 xvi 

 

Figure C.72:  Results of the percent execution of muldeo_.omp_fn.0, the function taking the 

4th most execution time for the 120 runs conducted with wupwise, 8 threads on 8 

cores, 20 runs per sampling interval. ........................................................................ 157 
Figure C.73:  Distribution of the percent execution taken by 4 different functions from 100 

runs of wupwise with 12 threads on 12 cores, 20 each at 5 different sampling 

intervals.  Each data point includes whiskers indicating the expected 95% confidence 

interval of the calculated proportion. ........................................................................ 158 
Figure C.74:  Results of the percent execution of zgemm_, the function taking the most 

execution time for the 120 runs conducted with wupwise, 12 threads on 12 cores, 20 

runs per sampling interval. ........................................................................................ 159 
Figure C.75:  Results of the percent execution of GOMP_taskwait, the function taking the 

2nd most execution time for the 120 runs conducted with wupwise, 12 threads on 12 

cores, 20 runs per sampling interval. ........................................................................ 159 

Figure C.76:  Results of the percent execution of muldoe_.omp_fn.0, the function taking the 

3rd most execution time for the 120 runs conducted with wupwise, 12 threads on 12 

cores, 20 runs per sampling interval. ........................................................................ 160 
Figure C.77:  Results of the percent execution of muldeo_.omp_fn.0, the function taking the 

4th most execution time for the 120 runs conducted with wupwise, 12 threads on 12 

cores, 20 runs per sampling interval. ........................................................................ 160 
 

 

  



 

 1 

 

Chapter 1:  Introduction 

Understanding exactly what a piece of software is doing during execution and 

how well it is performing have been of interest since programs were first written and 

run on the earliest computers over half a century ago.  As software and the machines 

on which it runs have become more complex, interest in evaluating performance has 

only intensified.  To aid in understanding software performance two general methods 

of dynamic analysis, termed profiling [36], have been developed.  The first is 

counting events of interest, like the entry and/or exit points of a particular function, 

and is commonly called measurement-based profiling or just measured profiling [43].  

This is typically accomplished by adding additional lines of code, before or during 

runtime, that will execute during the normal control flow of a program either just 

before or just after (or sometimes both) the code of interest being profiled.  This 

research is not primarily concerned with measured profiling. 

The second category of dynamic software performance analysis methods is 

program status sampling [36], also called sample-based profiling or statistical 

profiling [43].  This technique often uses some type of operating system or underlying 

hardware functionality to interrupt the program being profiled and then note some 

aspect of its current execution before allowing the program to resume running.  For 

instance, we may halt a program, record the current program counter (PC) or the 

name of the function at the top of the call stack, and then resume execution of the 

program.  With the collected samples, experimenters produce a measured value 

(statistic) from which inferences about the executing program's population parameters 



 

 2 

 

can be made.  The research in this dissertation is framed entirely within the context of 

this kind of dynamic software performance analysis. 

Effectively sampling executing programs for the purpose of dynamic 

performance analysis via statistical profiling is a challenging problem.  This is due in 

large part to the opposing effects of measurement error and perturbation error [17, 

41].  Very frequent sampling of a program execution can provide statistically precise 

measured values, but it also risks perturbing the measured program so that it behaves 

very unlike the original object of the analysis (the un-sampled program) and results in 

the production of inaccurate measured values.  Sparse sampling, on the other hand, 

perturbs the executing program to a lesser degree, but also provides less statistically 

precise measurement results that may be less accurate and therefore less useful than 

required for meaningful analysis.  Achieving the highest overall level of confidence 

in measurement results requires understanding the effects of and striking a balance 

between the tensions inherent in these two types of errors. 

We can't determine (predict) application performance from first principles, so 

we use performance analysis to try and understand program behavior [55].  Choosing 

how and when to capture performance data is a key part of the performance analysis 

process and while the process is part science and part engineering, there is still a 

portion that is largely an art [12, 34].  When creating an execution profile via 

sampling, how is a sampling period chosen?  What is an appropriate sampling period?  

It is well understood that increased sampling decreases measurement error and makes 

estimates of population parameters more precise and accurate.  It is generally 

accepted that the act of sampling alters program execution, thereby perturbing 



 

 3 

 

performance.  So, general qualitative guidance is to sample enough to get precise 

measurements, but not so much that perturbation causes the measurements to be 

inaccurate and reflect something unlike the object of interest (the un-sampled 

program).  How do we balance measurement error and perturbation error?  Can we 

model the interaction of measurement and perturbation error?  Is there an optimal 

sampling period?  If so, can we find it?  Can we predict it? 

We hypothesize that along the continuum of possible performance 

measurement results with varying sample-dependent combinations of measurement 

error and perturbation error there exists a "sweet spot" where the combined effects of 

these two error types is minimized and the performance measurement is the smallest 

distance from the true value being sought, and thus the most accurate.  The primary 

aims of the research reported here are the investigation of the existence of the 

hypothesized "sweet spot," the development of a general model for the analysis of the 

interaction between measurement error and perturbation error during statistical 

profiling, and the pursuit of a method for identifying a sample size (and determining 

an appropriate sampling period) that minimizes the combined effects of those errors 

on a particular performance analysis experiment. 

1.1 Motivation 

Our research is motivated by several ideas.  First and most simply, as Linus 

Pauling and others have said, "Science is the search for truth."  Researchers generally 

seek the most feasibly correct results from a given experiment out of a desire to get a 

measurement as close to truth as possible.  We believe that calculating statistics from 

performance measurements taken with a sample size that minimizes the combined 



 

 4 

 

effects of measurement and perturbation error will be more accurate than when any 

other sample size is used.  Second, in many cases there are practical limits to the 

goodness that additional sampling can provide.  As a somewhat naive, but straight-

forward example, consider a situation where you are sampling to calculate the amount 

of time function foo takes to execute in a particular program.  If foo is responsible for 

25% of the execution time and each sample adds 20 microseconds to the overall run 

time, the improvement in the confidence interval around the run time value calculated 

for foo will be less than the cost of an additional sample after about 55,000 samples.  

Another aspect of practical limits comes into play when a very large number of 

samples is collected.  With computers, it's quite easy to collect huge numbers of 

samples and possible to generate confidence intervals that are so narrow that very 

slight differences in performance measurements could lead investigators to conclude 

a statistically significant difference exists between two experiments, when the 

difference is related to some non-deterministic event.  As well, it has been found that 

simply increasing the sample size does not guarantee more accurate performance 

measurement results [62]. 

A third reason we are motivated in our research is that while the most possibly 

correct measurement results are valuable for an individual tool in the absolute sense, 

the implications when comparing different performance measurement tools highlights 

additional value.  Consider two theoretical performance measurement tools.  The best 

tool (BT) is known to generate the least overhead when sampling program 

executions.  The second best tool (SBT) is a good tool, but because of implementation 

differences generates slightly more overhead than BT.  For a particular program 



 

 5 

 

execution both BT and SBT reduce the measurement error an equal amount in 

accordance with established statistical principles.  However, because of the overhead 

(perturbation) differences, any result taken at the same sample point will have BT 

closer to truth than SBT.  If, however, the sample point used by SBT more effectively 

minimizes the overall effect of measurement and perturbation error, SBT could 

produce more accurate results despite inflicting more perturbation per sample than 

BT.  Fig. 1.1 is a theoretical example of this idea based in part on previously 

published results [65]. 

 
Figure 1.1:  Theoretical outcome of two performance measurement tools 

 

A fourth motivation stems from speculation that perturbation can be severe 

enough in some cases that results will lead to incorrect inference.  This result has 

been published before [62] and presented in the conditions of one of our early 

experiments.  As can be seen in Fig. 1.2, as sampling increased, the measurements of 

two particular functions, though they became more tightly grouped, were perturbed to 

the point that they changed positions relative to the order of most computationally 

expensive. 



 

 6 

 

 
Figure 1.2:  Example experiment results where measurements were perturbed by sampling 

 

The results in Fig. 1.2 show the proportion of execution time calculated for 

two particular functions, "scatter" and "khplq," from 11 different executions at each 

of 7 different sampling intervals.  When the executions are lightly sampled, the 

calculated values clearly indicate that scatter takes a greater proportion of execution 

time than khplq; however, when heavily sampled, the results get reversed and it 

appears that khplq takes the greater proportion of execution time.  Despite the tighter 

grouping of the calculated values (higher precision), the values, especially for scatter, 

appear to be much less accurate with higher sampling.  This is potentially a very 

insidious result as efforts to optimize a program based on incorrect ordering of 

functions could result in wasted programmer effort. 

1.2 Contributions 

With our research, we make the following contributions: 

Abstract Model.  We introduce an abstract model that depicts the interaction 

of measurement error and perturbation error and shows how their interplay affects the 

accuracy of measurement results generated by sample-based profiling. 



 

 7 

 

Mathematical Model.  We develop a simplified mathematical model of the 

affects of decreasing measurement error and increasing perturbation error on 

measurement results and use it to predict the measurement point – the "sweet spot" – 

at which overall error should be at a minimum. 

Experimental Results.  We conduct empirical studies and present results of a 

series of simulations, experiments with a calibration program, experiments with a 

subset of sequential programs from the SPEC CPU 2006 benchmark suite [29, 58], 

and experiments with a subset of shared memory parallel programs from the SPEC 

OMP 2001 benchmark suite [6, 59]. 

Quantitative Guidance.  Departing from traditional qualitative guidance 

encouraging the use of "reasonable" or "appropriate" sampling intervals, we provide 

the first quantifiable guidance for choosing a sample period for experimenters 

conducting sample-based performance analysis. 

1.3 Outline 

The remainder of this thesis is divided into seven chapters.  Chapter 2 

discusses background and related work in the field.  We discuss existing techniques 

for dealing with perturbation during performance analysis, outline some of the key 

aspects of the statistical foundations that underpin our research, and provide a survey 

of various profiling tools' process of sample period selection. 

Chapter 3 presents the results of an empirical sampling study on both a series 

of simulations of program execution and a series of calibration programs with known 

population parameters. 



 

 8 

 

Our abstract model and analytical model are introduced and described in 

detail in Chapter 4.  We test the applicability of these models with simulation and 

derive a formula to use for finding an experiment sampling "sweet spot." 

In Chapter 5 we present the results of intensive sampling experiments with a 

calibration program and selected benchmarks from the SPEC CPU 2006 benchmark 

suite.  We compare the empirical results of our study against the prediction of our 

derived formula from Chapter 4. 

Results of intensive sampling experiments using selected benchmarks from 

the SPEC OMP 2001 benchmark suite are described in Chapter 6.  As in Chapter 5, 

we compare the empirical experimental results against the predictive power of our 

analytic function. 

Future work suggested and motivated by our research is outlined in Chapter 7 

and finally, Chapter 8 presents conclusions. 



 

 9 

 

Chapter 2:  Background and Related Work 
 

Previous research related to our work can be broadly categorized in three 

ways:  techniques for dealing with perturbation during performance analysis, 

statistical foundations of experiment design, and existing tools’ handling of sample 

period selection. 

2.1 Handling Perturbation 

Many researchers have wrestled with the problem created when the pursuit of 

accurate and detailed performance measurements results in application perturbation 

effects [39, 40, 41].  We use the term perturbation throughout this dissertation, but 

note that the phenomena has also in the past been variously referred to as interference 

[12,16, 23], degradation [14, 26], artifact [52], side effects [63], probe effect [17], 

intrusion [4, 30], and invasion [48].  It is generally agreed that at this point in time 

perturbation caused by software performance tools cannot be eliminated, so the two 

general approaches to handling perturbation revolve around the strategies of 

compensation and minimization. 

2.1.1 Perturbation Minimization 

Dynamic statistical projection pursuit [68] is a performance analysis technique 

developed out of a motivation to minimize the perturbation effects of instrumentation 

in addition to a desire to decrease the amount of performance data generated and 

reduce the number of performance metrics managed by a performance analysis 

system.  The primary idea is to regularly identify performance metrics of special 

interest and focus only on collecting data for them. 



 

 10 

 

Dynamic instrumentation, an idea pioneered with the Paradyn parallel 

performance measurement tool [46], is another performance analysis technique 

designed to limit the effects of perturbation.  Paradyn is intended primarily to be used 

with very long-running applications (hours or days) on large parallel machines.  By 

delaying inserting instrumentation code until the moment it is needed and then 

removing it when it is no longer needed, Paradyn significantly reduces measurement 

overhead and minimizes the global perturbation effects of the instrumentation. 

Though their techniques applied primarily to the realm of measured profiling, 

Kumar, et al, [38] reduced perturbation effects by optimizing the instrumentation 

used.  They focused on reducing the number of instrumentation points, the number of 

times each point executed its instrumentation code, and by transforming, when 

possible, the instrumentation code into a more efficient form. 

2.1.2 Perturbation Compensation 

Using a timed Petri-net model for intrusively monitored software, Andersland, 

et al [2], and Gannon, et al [18, 19], recover true program traces from corrupted event 

traces post-mortem.  This is one of the techniques developed to handle perturbation 

effects by compensating for them in order to recover the original execution times.  

They view profiled applications as discrete event dynamic systems that can 

adequately be modeled by timed Petri nets. 

Malony, et al, developed perturbation models for sequential [42] and parallel 

[43] executing programs that capture and then remove the additional execution time 

attributable to perturbation effects from instrumentation.  Using these models they 

can determine an approximate actual code execution time from a run conducted with 



 

 11 

 

performance measurement.  The process involves determining the measurement 

overhead and then removing it from the results of the profiling runs. 

Sarukkai and Malony [57] considered methods for removing perturbation 

effects during performance analysis of highly parallel Single-Program, Multiple Data 

(SPMD) programs.  In general terms, the process involved analyzing a trace file with 

a time ordered set of events, eliminating or reducing the perturbation effects, and 

generating a new trace of events with a time ordering that more closely reflects the 

actual execution. 

Najafzadeh and Chaiken [49] developed a flow-graph based perturbation 

model designed to compensate for or minimize perturbation effects. They then used 

the model [50] to estimate performance from the instrumented execution output they 

collected during performance analysis. 

Lehr [40] considered the problem of perturbations caused by software 

monitors in parallel programs and, coming to the conclusion that the effects could not 

be eliminated, focused instead on detecting, measuring, and compensating for them.  

With 99% confidence, he claimed that with the best case results the difference 

between compensated estimates of the average mean and the real average mean could 

be calculated within 1.2 ± 0.9%.  His is the rare case of research in this area that tried 

to quantify the topic. 

Investigators continue to seek better ways to mitigate the effects of 

perturbation that occur during performance analysis.  Beyond minimizing 

perturbation via thoughtful programming and clever instrumentation, we focus on 

minimizing perturbation by identifying when it affects measurement to a greater 



 

 12 

 

degree than measurement is reducing statistical error.  Compared to compensation, 

minimization seems like a simpler and safer idea.  Because sampling has decreasing 

utility value, each sample has less value, in terms of reducing measurement error, 

than the sample before it.  Compensating for perturbation seems to require a much 

greater understanding of the effects of perturbation since each sample reduces 

measurement error to a lesser degree, thus setting a higher requirement to get 

compensation right.  So, though much effort and significant strides have been made in 

the area of perturbation compensation, we believe, as has been observed before [22], 

that "the best solution remains minimizing perturbation." 

2.2 Statistical Science 

2.2.1 Approximating Hypergeometric with Normal 

To determine how best to characterize the distribution of results from program 

profiling experiments, we start with the observation that any given program execution 

can be considered a discrete population of elements from which samples are taken 

without replacement.  Whether we consider the program’s elements to be delineated 

by a chip cycle, a machine instruction, a software clock tick, or something else; they 

can be viewed as a large bin of items from which we extract samples that are not 

replaced.  From this collection of samples, we will find that some occurred within the 

execution context of a given function foo, while the remainder occurred outside the 

execution context of foo.  For the purposes of this section, samples taken of foo are a 

"success." 

It follows from our understanding of a profiling experiment that it is 

hypergeometric and that the number of successes we find for each experiment is a 



 

 13 

 

hypergeometric random variable.  Thus, we would use the hypergeometric 

distribution to describe the expected outcome or probability of the results for our 

experiment.  The hypergeometric distribution describes how many successes you 

could expect after n samples are taken, without replacement, from a population of 

size N.  Success is defined as picking one of the M total items of interest from among 

the N total items in the population.  The probability that exactly m successes are 

picked can be calculated as follows: 

            
  
 
     
   

 

  
 
 

 (2.1) 

 

For small populations where N and M are known, the hypergeometric 

distribution is appropriate and useful to use.  However, because a program execution 

represents a very large population of events and since N and M are generally 

unknown (likely unknowable for a program execution), the hypergeometric 

distribution is rather complicated and labor intensive to use at best and impossible to 

be used at worst.  For these reasons the hypergeometric distribution is often 

approximated by distributions that are simpler to use.  A binomial approximation is 

appropriate when the population is very large and the sample taken is relatively small. 

           
 

 
            (2.2) 

 

The difference between a binomial experiment (aka Bernoulli trial) and a 

hypergeometric experiment is whether sampling is done with or without replacement.  

Since samples are replaced with a binomial experiment, the probability of success 

remains the same for each trial.  The hypergeometric distribution calculation takes 

into account the fact that sampling is done without replacement, thus the probability 



 

 14 

 

of a particular sample being a success is dependent on the previous samples.  

However, with a very large population and a sample size that is small relative to the 

population size, it becomes apparent that removing the sample size will have very 

little effect on the population.  So, the probability of choosing a particular sample a 

second time (assuming we sampled with replacement) would be negligibly small, thus 

making binomial and hypergeometric distributions extremely similar under these 

conditions [51].  Deciding when the sample size is small enough has to do with being 

satisfied with the calculated error.  As a sample size increases, the error calculated in 

the standard way becomes less correct and should be augmented with the finite 

population correction (fpc) factor: 

  
     

     
 (2.3) 

 

The recommendations for a small enough sample size relative to the 

population size seem to land on the two suggestions       (sample size is 10% or 

less of the population) and       (sample size is 5% or less of the population).  

We did come across the suggestion that      is even sufficient [16], but the 

prevalence of the other two standards caused us to not seriously consider it.  There is 

a preference among the many sources we consulted that covered this topic for N > 

10n, of which Brunk, et al, may have been the earliest [10].  Though we expect the 

sample size of a program execution to be much smaller than either of these two 

standards, we will justify our approximating the hypergeometric on the more common 

of the two standards, N > 10n. 

A further approximation using the Normal (Gaussian) distribution is 

appropriate when some additional conditions hold.  These conditions have to do with 



 

 15 

 

the observation that any binomial distribution where the probability of success is .5 

(    ) is symmetrical and thus even for small n, a binomial distribution with    close 

to .5 is appropriately approximated by the normal.  The question then becomes how 

many more samples are required for binomial distributions to approximate the normal 

when    is closer to the edges,      or     .  One of the first efforts to quantify this, 

where    was defined as       , resulted in              [15].  Over time, the rule 

has been modified somewhat.  Some indicate that both        and       should 

hold [27, 61].  Others, including Lilja [39], recommend        .  Once again, we 

expect to encounter no problem meeting any of these guidelines, but we identify 

        as the standard on which we base our appropriate use of the Normal 

distribution. 

2.2.2 Use in Performance Analysis 

Many investigators advocate for additional statistical rigor and better 

experimental design in computer system evaluation across different areas [8, 20, 21, 

34, 35 39, 47, 53, 69].  We surveyed much research related to this area, but will limit 

comments to a representative few.  Georges’, et al, concern flowed from the area of 

Java performance analysis and the disparate uses of statistical rigor among the various 

performance evaluation methodologies.  Yi, et al, observed that statistically rigorous 

simulation methodologies are typically not used during computer architecture design.  

Jain and Lilja have provided books dedicated to advancing the process of computer 

performance analysis with specific emphasis on providing statistical tools and 

concepts that will permit more thorough experiments and analyses.  Patil, co-

authoring with Lilja, provides the most recent comprehensive discussion of the 



 

 16 

 

application of statistical theories to computer performance measurement.  The 

primary points of all the proponents are to provide the highest level of confidence in 

experimental results and to ensure that the best possible conclusions are made from 

the data generated by computer system experiments. 

Statistical science provides a standard error calculation for determining the 

confidence interval of a proportion measurement at a particular confidence level for a 

Normally distributed (Gaussian) random variable.  This standard error formula can be 

algebraically manipulated to permit calculation of the number of samples required to 

produce a proportion measurement within a desired confidence interval and 

confidence level.  Jain, equation (2.4), and Lilja, equation (2.5), each provide an 

exposition on the way this formula is arranged and used when calculating 

proportions.  In each case the result, n, is the sample size required to calculate a 

confidence interval of ±r (the error) for the statistical measure     at the confidence 

level established by z (i.e.        for the 95% confidence level). 

     
          

  
 (2.4) 

 

     
          

       
 (2.5) 

 

Note that Lilja includes     in the denominator which calculates the confidence 

interval with respect to the size of     rather than with respect to the experiment overall 

and computes a much larger sample requirement.  This means that given a proportion, 

       , and desired error range,       , we could expect a confidence interval of 

(.195, .205) and result of          with equation (2.4) and expect a confidence 

interval of (.199, .201) and result of           with equation (2.5) at the 95% 



 

 17 

 

confidence level,       .  Though they differ somewhat in form, they otherwise 

encompass the same principle of targeting a confidence interval at a given confidence 

level in order to determine how many samples to take.  It is through examination of 

these techniques that we received the motivation for our investigation into other 

methods for deliberate sample calculation in other contexts. 

2.3 Tools 

Many sample-based profiling tools have been created to assist with analyzing 

the performance of executing programs.  They all tend to work in a similar manner.  

The execution of a program is interrupted, some aspect of the state of the program is 

sampled and noted, often the program counter (PC) or call-stack, and then execution 

is allowed to continue. 

2.3.1 Progtime 

The program status sampling (statistical profiling) tool used by Knuth in the 

1971 empirical study of FORTRAN programs was an extension of a routine called 

PROGTIME originally developed by T.Y. Johnson and R.H. Johnson for use on the 

IBM System/360 [36].  PROGTIME would, while running, spawn the program of 

interest as a subtask, then sample that program's status word at regular intervals.  At 

runtime completion PROGTIME would produce a histogram of the execution 

frequency for all program instructions. 

2.3.2 Prof 

One of the oldest and most common statistical profilers is the Unix tool prof 

[66].  By compiling a program with a specific flag, typically −p, a monitor function is 



 

 18 

 

added to the executable code of that program.  When the executable is run, profile 

data is generated and then output to a file (mon.out by default) when the program 

terminates normally.  The profile data consists of the number of times each function 

in the program is entered and a statistically-based break-down of the processing time 

used by the program.  The statistical profile of execution time is captured by 

interrupting the program and sampling the PC at regular intervals governed by the 

software clock, commonly every 10 milliseconds.  Executing prof results in the 

creation of a profiling report that displays the data in tabular form. 

2.3.3 Gprof 

The profiling tool gprof [24, 25] was created as an extension to prof.  In 

addition to counting each time a function is entered during execution, it included 

functionality to capture the return address of the call, the name of the caller function, 

and how many times that particular caller-callee arc was traversed.  With this 

additional information a call graph of the profiled program emerged which permitted 

execution times attributed to function calls to be further distributed among whatever 

subsequent function calls might have been invoked. Though only one-level incoming 

call graph arcs were recorded and not complete call graphs, it allowed for a good 

approximation of the distribution of execution time with greater context.  The profile 

report was extended to display the time spent executing a function as well as the time 

spent executing other functions on its behalf.  As well, each function provides 

statistics about the functions that called it.  The other functionality remains similar to 

prof including the PC sampling rate of 100 samples per second. 



 

 19 

 

2.3.4 ATOM 

Analysis Tools with OM or ATOM [60] introduced the concept of an 

instrumentation framework that could be used to build customized program analysis 

tools.  The ATOM framework, in part, enables a program to analyze itself and has 

been used to create all kinds of performance analysis tools, including profilers. 

2.3.5 XProfiler 

XProfiler [32] is part of the International Business Machine (IBM) High 

Performance Computing Toolkit (HPCT) capable of profiling both serial and parallel 

applications on the IBM Unix variant Advanced Interactive eXecutive (AIX).  Given 

a program compiled with an IBM XL compiler and the proper flags, information 

similar to that provided by the gprof tool process is dumped to a profile file which 

XProfiler reads and presents via a graphical interface rather than in a text file.  The 

sampling rate is also 100 samples per second. 

2.3.6 HPCToolkit 

HPCToolkit [1, 56] is a collection of performance analysis tools designed to 

support dynamic performance analysis.  The specific component that collects profile 

data via sampling is hpcrun.  In addition to time intervals, hpcrun will sample based 

on events tracked by hardware counters and accessed via the Performance 

Application Programming Interface (PAPI) [9], like a specified number of cycles or 

specified number of L2 data cache misses.  The time interval between samples can be 

set by the user and is recommended to be something that will generate between 

hundreds and thousands of samples per second.  They note that Linux ITIMER 



 

 20 

 

interrupts cannot occur with greater frequency than a jiffy which is likely 1, 4, or 10 

milliseconds making thousands of samples per second unattainable.  Note that jiffy in 

this Linux context is the smallest unit of time of the software clock.  It is determined 

by the value of the kernel constant HZ which can be set to 100, 150, or 1000. 

2.3.7 VTune 

The VTune Performance Analyzer [33] is a commercial performance analysis 

tool developed by Intel which also includes time-based profiling as well as event-

based profiling.  It allows the user to specify the timing interval, but recommends 

1000 samples per second and will default to that number via automatic calculations if 

not specifically overridden by the user. 

2.3.8 STAT 

A tool specifically designed to collect, analyze, and visualize the stack trace 

profiles of very large parallel and distributed applications is the Stack Trace Analysis 

Tool (STAT) [5].  The tool conceptually contains three parts, the front-end, tool 

daemons, and stack trace analysis routines.  The front-end establishes the tool’s 

components; the daemons collect, process, and transmit the stack samples; and the 

analysis routines analyze the data. Sampling rates are established by specifying a 

sample count and an interval to wait between samples. 

2.3.9 DCPI 

The Hewlett-Packard (HP) Digital Continuous Profiling Infrastructure (DCPI) 

[3, 31] appears to no longer be supported as it was specifically designed to interface 

with the now defunct Digital Equipment Corporation (DEC) Alpha microprocessor.  



 

 21 

 

It’s included here because it is one of the best examples of the class of statistical 

profilers that is continuously running and capable of providing data not only at the 

application level, but also for the entire software system.  As DCPI was integrated 

into the operating system and made use of hardware timing, high-rate sampling was 

possible.  Samples were collected at a fixed rate of 5200 per second. 

2.3.10 SimPoint 

Casas, et al, [13], have done work that is in a substantially different area and 

travels a much different solution path, but in spirit is more closely aligned with ours 

than the others.  They investigate the manner in which portions of instruction streams 

are selected as appropriate benchmarks for evaluating the performance of existing 

computer architectures and assisting with the design of future architectures.  They 

observe that in previous efforts to reduce the number of instructions executed during 

evaluation of an architecture, and thereby trim the time spent, data generated, and 

memory required during analysis, investigators choose a sample length in an arbitrary 

manner and then leave it fixed.  Casas, et al, run an entire benchmark application, 

take periodic hardware counter samples, conduct spectral analysis on the samples to 

determine the existence of periodic phases, and then use this result to select the 

portion of the instruction stream that best represents the overall instruction stream of 

the benchmark application.  In this way, they are able to determine the optimal 

sampling length of the whole instruction stream and provide subsets that improve the 

accuracy of the results of architecture analysis.  They take an existing tool called 

SimPoint [28, 67], which uses a fixed and arbitrary length for the sampling interval, 

and modify its use with their technique to demonstrate that more deliberate and 



 

 22 

 

careful selection of the instruction stream sample provides better overall analysis 

results. 

 

  



 

 23 

 

Chapter 3:  Sampling Empirical Study 
 

In order to gain a better understanding of the behavior of programs when 

being sampled we conducted an empirical study.  We started with a series of 

simulations to both validate what statistical analysis tells us we can expect and also to 

determine how closely the normal approximation fits the expected hypergeometric 

distribution that results from sampling a program execution.  We then conducted a 

series of experiments with a calibration program designed to mirror as closely as 

possible the context of the simulations. 

3.1 Sampling Simulation 

For the set of simulation experiments we constructed a C program that 

manipulated a 1,000,000 member integer array used to represent the execution flow 

of a program that runs for 300 seconds with 1,000,000 function calls.  With each 

experiment, we focused on two functions, foo and bar, that had execution percentages 

within 1% of each other.  We assigned different integer values to the array to 

represent foo, bar, and all other functions in exactly the quantities we wanted for a 

particular experiment.  The array was then shuffled with the Fisher-Yates shuffle 

algorithm making use of the C standard library function rand.  And, we took the first 

x members of the shuffled array as our simple random sample of size x.  For each foo 

and bar execution percentage of interest we ran 10,000 trials and created histograms 

of the results.  So, for example, in our first experiment we setup foo to have an 

execution percentage of 49% and assigned the value 1 to 490,000 integers in the 

array.  Bar had an execution percentage of 48%, so we assigned the value 2 to 



 

 24 

 

480,000 integers.  The remaining 30,000 integers were assigned the value 0.  After 

the shuffle, we selected the first 40,000 integers in the array as our simple random 

sample.  We used this array technique in our simulation rather than directly 

employing the rand() function to generate samples as we might in other statistical 

analysis simulations in order to guarantee that the execution percentages were 

precisely what we wanted and to provide a more intuitive equivalence between the 

statistical simulation and an actual statistical analysis of an executing program. 

3.1.1 Fixed Sample Size  

For the first set of simulation experiments we took 40,000 samples of each of 

the 10,000 trials done with 6 different sets of values for foo and bar.  The pairs of 

execution percentages we used are in the table below. 

 Execution percentage pairings for six different experiments 

foo .49 .40 .30 .20 .10 .02 

bar .48 .39 .29 .19 .09 .01 
Table 3.1:  Simulation experiment execution percentages for foo and bar. 

 

We created histograms for each of the six different pairings and recorded the 

number of times that the statistics generated from the 40,000 samples resulted in foo’s 

calculated proportion – the inferred execution percentage – incorrectly indicating it 

was less than bar’s.  These histograms follow below.  Note that when reading the 

graphs, the bar above a given number on the x axis indicates the number of trials that 

had calculated statistics less than or equal to that number.  For example, as shown in 

Fig. 3.1, the bar above .48 indicates that a little more than 3,500 of the 10,000 trials 

run resulted in a calculated statistic for bar’s execution percentage (let’s call it   bar) to 

be .4775 <   bar <= .48. 



 

 25 

 

 
Figure 3.1:  Simulation results of foo=.49; bar=.48; 40,000 samples 

 

 
Figure 3.2:  Simulation results of foo=.40; bar=.39; 40,000 samples 

 

 
Figure 3.3:  Simulation results of foo=.30; bar=.29; 40,000 samples 

 



 

 26 

 

 
Figure 3.4:  Simulation results of foo=.20; bar=.19; 40,000 samples 

 

 
Figure 3.5:  Simulation results of foo=.10; bar=.09; 40,000 samples 

 

 
Figure 3.6:  Simulation results of foo=.02; bar=.01; 40,000 samples 

 



 

 27 

 

The first observation of note from this set of experiments is that the quality of 

the results differs markedly based on the percentage execution time of the functions 

being analyzed.  In the first simulation with foo = .49 and bar = .48, the distribution 

of the statistics calculated from the samples is noticeably flatter and includes 199 

trials where the execution percentage statistics calculated for foo and bar incorrectly 

indicate that the actual execution percentage of foo is less than that of bar.  In the 

sixth simulation context where foo = .02 and bar = .01, the distribution is quite 

peaked and there are no trials incorrectly indicating that the actual percentage 

execution percentage of foo is less than that of bar. 

The second observation of note is that the distribution does seem to generally 

conform to that of a normal/Gaussian distribution and reinforces our understanding 

that a normal approximation to our hypergeometric distribution would be appropriate 

for our use.  To further validate this idea, we compared the first and sixth simulation 

results to calculated predictions of both hypergeometric and normal distributions with 

the same parameters.  These results are depicted in the following two graphs. 

 
Figure 3.7:  Comparing simulation, hypergeometric, and normal when foo=.49; bar=.48 

 



 

 28 

 

 
Figure 3.8:  Comparing simulation, hypergeometric, and normal when foo=.02; bar=.01 

 

The graphs appear to confirm that the normal approximation of our 

hypergeometric distribution generating experiments is reasonable.  The 

approximation is slightly better when the execution proportion of interest is closer to 

.50, but is not that much worse with lower execution percentages. 

3.1.2 Calculated Sample Size 

For the second set of simulation experiments, rather than take the same fixed 

number of samples like the 40,000 we took for all previous simulations, we calculated 

how many samples were required for each of the 6 different sets of values we were 

using for foo and bar to achieve a similar statistical error result.  Proceeding from our 

understanding that the normal approximation is a reasonable and appropriate 

approximation, we know that a confidence interval for a normally distributed random 

variable is calculated as follows: 

       
        

 
      

        

 
  (3.1) 

 



 

 29 

 

In Eqn. 3.1,    is the execution proportion, z is the standard score (number of standard 

deviations) required for whatever confidence level is used, and n is the number of 

samples taken. 

We wanted to determine the number of samples required to have high 

confidence that our experiments would result in a proper ordering of the execution 

percentage for foo and bar.  So, for a given confidence level (we chose 95%) we 

wanted to know how many samples were needed for the lower end of foo’s 

confidence interval to be equal to the upper end of bar’s confidence interval.  Letting 

p represent the actual proportion, or percentage execution, for foo and q represent the 

same for bar, we start from the following equation and then algebraically solve for n, 

the number of samples. 

     
      

 
     

      

 
 (3.1) 

 

   
                                    

      
 (3.2) 

 

Using this equation to determine our target sample size for each of the 6 

different simulation contexts we again ran 10,000 trials with foo and bar set to 6 

different sets of values and taking 6 different numbers of samples per the table below.  

The graphs that follow provide histograms of the results. 

 Execution percentage pairings for six different experiments 

Foo .49 .40 .30 .20 .10 .02 

Bar .48 .39 .29 .19 .09 .01 

# samples 38,375 36,718 31,956 24,115 13,201 2,204 
Table 3.2:  Execution percentage pairings 



 

 30 

 

 
Figure 3.9:  Simulation results of foo=.49; bar=.48; 38,375 samples 

 

 
Figure 3.10:  Simulation results of foo=.40; bar=.39; 36,718 samples 

 

 
Figure 3.11:  Simulation results of foo=.30; bar=.29; 31,956 samples 

 



 

 31 

 

 
Figure 3.12:  Simulation results of foo=.20; bar=.19; 24,115 samples 

 

 
Figure 3.13:  Simulation results of foo=.10; bar=.09; 13,201 samples 

 

 
Figure 3.14:  Simulation results of foo=.02; bar=.01; 2,204 samples 

 



 

 32 

 

From this second set of simulation experiments we first note that once again, 

the quality of the results differs based on the percentage execution time of the 

functions being analyzed.  With foo = .49 and bar = .48 there are 225 trials in which 

the statistics calculated for foo and bar incorrectly indicate that the actual execution 

percentage of foo is less than that of bar.  Though the shape of the distributions 

change little among the six sets of simulations, as the values of foo and bar are 

changed there are fewer statistics calculated that incorrectly order foo’s and bar’s 

relative execution percentage.  By the sixth simulation context in this set where foo = 

.02 and bar = .01, there are only 21 trials that produce statistics indicating an 

incorrect relative ordering of foo and bar.  This result is rather surprising.  In addition 

to taking over 90% fewer samples during the sixth simulation context, compared with 

the first, there were also 90% fewer trials where the statistics incorrectly indicated the 

percentage of execution for foo < bar. 

The second thing to note from this second set of simulations is that the 

distributions for the first five experiments conform quite well with that of a normal 

distribution as well as with each other, while the sixth doesn’t quite provide that same 

visual affirmation.  We provide the following two graphs to once again compare the 

first and sixth simulation contexts to the expected distribution calculated for both a 

hypergeometric and a normal distribution. 



 

 33 

 

 
Figure 3.15:  Comparing simulation, hypergeometric, and normal when foo=.49; bar=.48 

 

 
Figure 3.16:  Comparing simulation, hypergeometric, and normal when foo=.02; bar=.01 

 

The first graph once again appears to confirm that the normal approximation 

of our hypergeometric distribution generating experiments is reasonable, while the 

second graph clearly depicts a difference.  The first interval less than (to the left) the 

actual execution percentage of both foo and bar is not proportionate to the first 

interval greater than the actual execution percentages.  The difference is more marked 

with bar than with foo.  Beyond the first intervals, the distributions do appear 

equivalent.  It appears that the normal approximation of the hypergeometric 

distribution begins to break down when the execution percentage of a function of 

interest is small (near 0%).  [Note:  we expect we would find the same distribution 

divergence with large execution percentages (near 100%) due to the symmetric nature 



 

 34 

 

of the distribution.]  Fortunately, the divergence is such that results are statistically 

more accurate, so the approximation suits our purposes. 

3.2 Sampling Calibration Program 

We next conducted a series of experiments meant to closely mirror the 

conditions of the simulations.  We created a calibration program that would execute 

1,000,000 function calls in about 300 seconds that could be configured to distribute 

the function calls in such a way that we could control the percent of execution time 

for which each function was responsible.  We used the same 1,000,000 integer array, 

shuffled in the same manner, to call functions in the same order as was done in the 

simulations.  The functions called were composed of identical loops executing simple 

mathematical operations designed to take 300 microseconds each to execute and 

thereby provide a program that runs for a total of 300 seconds.  This calibration 

program was designed with minimal memory requirements and a single function call 

depth, to help minimize the overhead and perturbation effects of sampling.  Due to 

the imprecise nature of this technique the program ends up running approximately 

300 seconds per execution iteration. 

We used the hpcrun component of HPCToolkit [56] to sample our executing 

calibration program.  Because we used timer intervals and the Linux ITIMER_PROF, 

interrupts cannot occur with greater frequency than a jiffy (1 millisecond in our case), 

the number of samples we could take was not as flexible and precise as with our 

simulations.  Note that jiffy in this Linux context is the smallest unit of time of the 

software clock.  It is determined by the value of the kernel constant HZ which can be 

set to 100, 150, or 1000.  Because of the far greater total execution time required to 



 

 35 

 

run experiments with the calibration program, as compared to the simulations, we 

conducted 100 trials per experiment configuration. 

3.2.1 Fixed Sample Size 

For the length of our program we had the option of taking about 42,800 

samples (7 millisecond intervals) or about 37,500 samples (8 millisecond intervals).  

We chose 37,500 because it was slightly closer to the 40,000 we used in our 

simulation. 

 
Figure 3.17:  Calibration results of foo=.49; bar=.48; ≈37,500 samples 

 



 

 36 

 

 
Figure 3.18:  Calibration results of foo=.40; bar=.39; ≈37,500 samples 

 

 
Figure 3.19:  Calibration results of foo=.30; bar=.29; ≈37,500 samples 

 



 

 37 

 

 
Figure 3.20:  Calibration results of foo=.20; bar=.19; ≈37,500 samples 

 

 
Figure 3.21:  Calibration results of foo=.10; bar=.09; ≈37,500 samples 

 



 

 38 

 

 
Figure 3.22:  Calibration results of foo=.02; bar=.01; ≈37,500 samples 

 

 

3.2.2 Calculated Sample Size 

Similar to our investigation progression with the simulations, we repeated the 

previous experiments using different sample rates.  Once again, the millisecond 

granularity restriction with the ITIMER_PROF affected the experiments, so 

experiments with the first two sets of execution percentages were not repeated. 

 Execution percentage pairings for six different experiments 

Foo .49 .40 .30 .20 .10 .02 

Bar .48 .39 .29 .19 .09 .01 

# samples ≈ 37,500 37,500 33,400 25,000 13,000 2,200 
Table 3.3:  Execution percentage pairings 

 



 

 39 

 

 
Figure 3.23:  Calibration results of foo=.30; bar=.29; ≈33,400 samples 

 

 
Figure 3.24:  Calibration results of foo=.20; bar=.19; ≈25,00 samples 

 



 

 40 

 

 
Figure 3.25:  Calibration results of foo=.10; bar=.09; ≈13,00 samples 

 

 
Figure 3.26:  Calibration results of foo=.02; bar=.01; ≈2,200 samples 

 

Comparison of # trials foo < bar (per 100) 

 Simulation Calibration 

Foo Bar 40,000 Various 37,500 Various 

.49 .48 1.99 2.25 3 3 

.40 .39 1.07 1.4 3 3 

.30 .29 .42 .84 1 2 

.20 .19 .03 .62 0 1 

.10 .09 0 .34 0 0 

.02 .01 0 .21 0 0 
Table 3.4:  Comparison of number of trials where foo < bar (per 100 runs) 

 



 

 41 

 

Important observations can be made from the experiments conducted in this 

empirical study.  First, our results suggest that far less sampling than is typically 

collected during dynamic performance analysis is needed to achieve meaningful 

statistical results for execution profiles, at least when the primary objective is 

ensuring a proper ordering of functions based on percent of execution time or simply 

identifying where the majority of execution time is taking place.  Second, calculated 

results for smaller p are likely more accurate than larger p for a given sampling 

experiment, if perturbation effects have not disproportionately affected their 

execution. 

 

 

  



 

 42 

 

Chapter 4:  Model 

4.1 Abstract Model 

Taking more and more samples from a population produces a measured value, 

or statistic, that gets closer and closer to the true population parameter of interest.  

Unless we take all possible samples (a census) the statistic will have a confidence 

interval associated with it within which the actual population parameter lies with 

some degree of likelihood.  Taking more samples narrows the confidence interval in 

which it is very likely the true population parameter is included, making the measured 

value more precise and more accurate with each additional sample. 

The main problem with sampling a running program is that the process of 

taking samples perturbs the program execution in a manner that very likely is not 

fully understood, thus resulting in a statistic that no longer strictly describes only the 

original, un-sampled running program.  Dilation of execution time is typically the 

easiest perturbation effect to observe, but changes to the spatial and temporal access 

patterns of cache and memory locations, event and execution pipeline reordering, 

additional context switching and interrupts, and register interlock stalls [42, 50] are 

all likely to occur and are much more difficult to confirm.  As well, distortion of the 

accuracy of the measurements designed to provide insight into program executions is 

a problem of perturbation [40]. 

This problem is compounded by the diminishing return aspect of sampling on 

measurement error reduction.  Though a statistic becomes more precise (and 

hopefully more accurate) with each additional sample, the improvement in precision 

provided with each additional sample is less and less.  Consider for example, once 



 

 43 

 

we've taken x samples and have a confidence interval of ±r:  How many samples, y, 

would we need to take to reduce the confidence interval by half, such that once we've 

made that much progress in measurement error reduction we cannot possibly take 

enough samples to reduce the remaining confidence interval to 0 without conducting 

a full census?  The answer is relatively straight forward: 

 
 

 
  
        

 
   

        

 
 (4.1) 

 

 
 

 
          

 

  
           

 

  
 (4.2) 

 

 
 

   
 

 

  
 (4.3) 

 
      (4.4) 

 

To make this more concrete, assume z=1.96,   =.5, and we take 100 samples 

to produce a statistic with a confidence interval of ± .098.  To cut that confidence 

interval in half (± .049) we need to take 300 additional samples or 400 total samples 

(y=4x).  At this point, reducing the remaining confidence interval to 0 cannot be 

accomplished as easily as taking another 300 samples; it would take a complete 

census.  Thus, the diminishing return aspect of sampling on measurement error 

reduction is a significant consideration and cannot be ignored. 

We can abstractly describe the competing effects of decreasing measurement 

error and increasing perturbation error on our performance measurement statistic with 

the diagram in Fig. 4.1.  The intuition we gain from this abstract model is that it 

seems likely there exists a sample size that provides the best overall balance between 

reducing measurement error and limiting perturbation error effects.  If we can 



 

 44 

 

determine this point we can calculate the appropriate sampling period to use to 

achieve a performance measurement statistic with the overall least residual error. 

 
Figure 4.1:  Abstract model of the effect on measurement error and perturbation error as an increasing 

number of samples is taken during a program's execution. 

4.2 Analytical Model 

4.2.1 Background 

We begin constructing our analytical model from our abstract model by 

considering a likely performance measurement context.  There exists a program in 

which there is a function foo.  Though it’s not critical to the discussion just yet, we 

will consider foo to be the function which takes the greatest proportion of the given 

program’s execution time.  We would like to know: 

How much execution time is spent in function foo? 

 

We imagine a simple statistical profiling system that halts the execution of our 

program and notes which function is currently in execution.  A total of   samples are 

taken,   of the samples are found to be function foo, and T is the measured execution 



 

 45 

 

time of the entire program.  We can calculate the measured proportion of execution 

time for function foo as: 

     
 

 
 (4.5) 

 

We can then answer our performance analysis question where tfoo(n) is the 

measured execution time for foo after n samples are taken as follows: 

             (4.6) 

 

We know that the statistic    calculated with m and n is likely not equivalent to 

the actual population parameter calculated with M and N, where N is the total number 

of all possible samples and M is the total number of samples that would be taken 

during the execution of foo.  So we could generate a confidence interval around the 

statistic    into which we expect to find the true population parameter with some 

established confidence level.  For this calculation we use the estimated standard 

deviation or standard error formula, 

  
        

 
 (4.7) 

 

to create a confidence interval of: 

        
        

 
        

        

 
   (4.8) 

 

Into this confidence interval we would expect the actual execution time of foo 

to be included with roughly 68% confidence.  Because we only use one standard error 

we would be limited to the 68% confidence level, but we can introduce the well-

known z term in front of the standard error to calculate confidence intervals at a 

greater range of confidence levels: 



 

 46 

 

         
        

 
         

        

 
   (4.9) 

 

At this point we expand our term T, the measured total execution time of the 

program which contains foo, to explicitly show that it includes both the true (un-

sampled) execution time, T, and the additional execution time attributable to the 

sampling which will be the number of samples, n, multiplied by the overhead, o, or 

execution time required per sample.  Thus, equation (4.2) becomes: 

                  (4.10) 

 

4.2.2 Applying the Intuition 

Given these intermediate steps and the intuition from our abstract model, we 

can now create an analytic function to reflect the changes to a measured statistic with 

respect to measurement error and perturbation error that occur with each additional 

sample.  The notation for our analytic function is in Table 4.1. 

tfoo(n) Execution time calculated for foo based on n samples 

n Number of samples 

o Overhead time cost per sample 

   Measured proportion of total program execution time spent in foo 

T Un-sampled (true) total program execution time 

z Standard score (z-value) for confidence level used 
Table 4.1:  Analytic function notation 

 

                     
        

 
  (4.11) 

 

The analytic function combines the two curves from the abstract model.  

Increasing perturbation error is captured in the first part of the equation by 

multiplying together the number of samples taken, the overhead time required for 

each sample, and the proportion of samples that interrupted foo.  Decreasing 



 

 47 

 

measurement error is represented by the common formula for a confidence interval of 

a proportion multiplied by the total program execution time. 

Recall that this analytic function is created to answer the specific question, 

how much execution time is spent in function foo?  In this context, foo is the function 

taking the largest proportion of execution time in the program being analyzed.  We 

choose to frame the question in this particular manner for two primary reasons.  First, 

we wish to explicitly focus on the dilated execution time that is an indication of the 

perturbation caused by sampling.  Most dynamic performance analysis typically 

results in the generation of a list of functions described chiefly by proportion of 

attributed execution time.  Because the primary focus is on proportion of execution 

time it is probable that perturbation effects are masked as there is usually no 

accompanying comparison to actual (or expected actual) execution time. 

The second reason we narrowly frame the question is that the reliability of 

statistical results is greatly affected by the size of the proportion of the measured 

function (see Chapter 3).  The same number of samples provides a different level of 

precision for each different-sized proportion.  The larger a function’s proportion of 

execution time, the greater the width of the confidence interval, thus the less precise 

the statistic for agiven confidence level.  Observe that the sum  (1− ) ranges from 0 

(when    = 1 or    = 0) to .25 (when    = .5), but also note that this fact doesn’t 

invalidate our previous sentence because although a sampled statistical proportion of 

.5 will have a wider confidence interval than one of .6, no program can have function 

execution proportions add up to a sum greater than 1.  For example, if a function foo 

has proportion .6, then function bar must have a proportion of the execution time that 



 

 48 

 

is strictly ≤ .4.  By focusing on the function taking the largest proportion of execution 

time we guarantee the results for all other functions will never be less statistically 

precise and most often they will be more statistically precise. For example, given a 

program with functions foo, bar, and baz calculated after 1,000 samples to take 

respectively .70, .20, and .10 of total execution time, they would have corresponding 

standard error values of .0145, .0126, and .0095.  So, the confidence interval around 

foo, (.6855, .7145), would be wider than those around bar, (.1874, .2126), and baz, 

(.0905, .1095). 

We make the following set of assumptions for our model: 

 Because the full spectrum of perturbation effects is difficult to capture, we 

make the simplifying assumption that time (the additional time the 

analyzed program spends in execution beyond the unperturbed execution 

time) is a representative surrogate for all perturbation effects. 

 The Hypergeometric distribution            may be appropriately 

approximated by a Normal (Gaussian) distribution where       , and  , 

  are at least an order of magnitude larger than  .  See discussion in 

section 2.2.1. 

 Systematic sampling provides results similar to random sampling and 

occurs asynchronously with respect to any periodic events in the analyzed 

program. 

4.2.3 Analytic Function 

Using our current version of the analytic function (4.11), we created the graph 

in Fig. 4.2 that visually presents the predicted changing behavior of the performance 



 

 49 

 

measurement of a hypothetical function foo that is 20% of an executing program of 

300 seconds where each sample incurs 250 microseconds of overhead. 

 
Figure 4.2:  This graph presents the predicted results for measurements of the execution of foo within a 

program that executes for a total of 300 seconds and in which foo accounts for 20% of the execution time.  

Of the measurements taken at each sample level, 95% of them are expected to fall within the upper and 

lower curves. 

 

The top curve depicts the higher end of the confidence interval where the 

standard error is added to  . 

                     
        

 
  (4.12) 

 

The bottom curve depicts the lower end of the confidence interval which 

subtracts the standard error. 

                     
        

 
  (4.13) 

 

The slightly thicker straight line at 60 seconds represents the true execution 

time for foo.  The curves are calculated with a 95% confidence level (  = 1.96) which 

means we would expect 95% of our measurements of function foo for any given 



 

 50 

 

sample size to fall within the two curves.  For example, if we ran this hypothetical 

300 second-long program 100 times and took 2,400 samples each time we would 

expect to find about 95 of the measurements of foo fell between 55 and 65 seconds 

while 5 measurements fell outside those bounds. 

Displaying the data generated by our analytic function in this way makes it 

easier to see the change in the statistical precision of the confidence interval as more 

samples are taken.  It is also easier to see there is an intuitive benefit to using the top 

curve of the model over the bottom curve to identify the sample size at which the 

combined effect of both measurement error and perturbation error are minimized.  

Notice there exists a minimum along the top curve that indicates at what point the 

measurement is no longer making downward progress towards the true execution 

time for foo as the decreasing measurement error begins to be dominated by the 

increasing perturbation effect of the sampling overhead and the curve adopts a 

positive slope.  If we can calculate the minimum of this upper curve, we can then 

determine the sample size (and corresponding sampling period) needed to reach this 

point that strikes the best balance between the two types of error. 

So, we simplify our analytic function to only add the standard error because it 

most clearly displays the point at which the reduction in measurement error begins to 

be less than the accumulating perturbation error.  Our final version of the analytic 

function is: 

                     
        

 
  (4.14) 

 



 

 51 

 

Finding the minimum along this curve is a matter of taking the first derivative 

of our analytic function (4.15) with respect to the number of samples, n, setting it to 

0, and solving.  The steps we used to find equation (4.15), the first derivative of our 

analytic function, and equation (4.16), the result of solving for n after setting the 

derivative to 0, are contained in Appendix A. 

     
         

           

    
 (4.15) 

 

     
           

    
 

 
 

 (4.16) 

 

Using (4.12) and the parameter values mentioned earlier (T = 300, z = 1.96,    

= .2, o = .00025) we get the following result: 

     
                  

           
 

 
 

  

 

    
     

     
 

 
 
         

 

Note that this is the minimum point along the top curve in Fig. 4.2.  Beyond 

this point in the graph the confidence interval continues to narrow as more samples 

are taken, but the confidence limits are converging on a number getting further away 

from what would be the actual unperturbed value of foo’s execution time.  Beyond 

28,000 samples the lower curve no longer even encompasses the true unperturbed 

execution time. 



 

 52 

 

4.3 Simulation 

In order to validate our ideas and corresponding analytical model we next 

constructed a program to simulate the process of sampling the execution of a program 

which spends a specific fraction of time in a single function.  The program was 

designed in such a manner to allow us to corroborate the statistical results predicted 

by our analytical model with the range of actual results from the simulation.  The 

program is written in C.  We simulate a time series of sampled values as an integer 

array of size 1,000,000.  This array represents the execution of a program running for 

300 seconds where each integer represents a notional 300 microseconds of execution 

time.  We assigned 200,000, exactly 20%, of the integers the value 1 to represent the 

function foo and assigned the other 800,000 integers the value -1, representing all 

other non-foo functions. 

Once generated, the entire array was shuffled with the Fisher-Yates shuffle 

algorithm making use of the C standard library function rand.  The result was the 

1,000,000 integer array with the 200,000 values of 1, representing foo, spread 

randomly (not uniformly) throughout.  We used this array technique in our simulation 

rather than directly employing the rand function to generate samples as we might in 

other statistical analysis simulations in order to guarantee that the execution 

percentage   was precisely 20% and to provide a more intuitive equivalence between 

the statistical simulation and an actual statistical analysis of an executing program. 

With each integer representing a notional 300 microseconds of execution 

time, this design is relatively coarse-grained compared to the number of execution 

steps that could be sampled in an actual 300 second-long program.  However, we felt 



 

 53 

 

a total population size of 1,000,000 sufficient for simulation purposes in light of the 

fact that a more fine-grain representation of execution time with a larger array would 

not greatly impact the statistical calculations and therefore provide little gain.  This is 

because the standard error term we’re using, equation (3.3), is really a simplification 

based on the central limit theorem assumption that all samples are randomly chosen 

with replacement from an infinitely large population.  Our simulation takes samples 

without replacement from a finite population as does all sample-based dynamic 

performance analyses of which we’re aware.  A more fully correct formula for error 

would include the finite population correction factor [7] making the population 

proportion standard error from which confidence errors are calculated as follows: 

  
        

 
 
   

   
 (4.13) 

 

We chose to make use of the simplified version because for very large 

populations N and sample sizes n of 5% or less of the total population, the finite 

population correction factor typically evaluates to something very close to 1 and has 

minimal impact on the calculated error measurement.  Additionally, determining N 

for a program execution is likely impossible. 

Once the array was prepared we ran 1,000 iterations of simulated 300 second 

executions for each of the sampling sizes from 900 to 44,400 at increments of 1,500.  

So, we ran 1,000 different iterations which took 900 random samples, then 1,000 

iterations of 2,400 random samples, etc., all the way to 1,000 iterations of 44,400 

random samples.  The sampling scheme was random, not systematic as is typically 

done in dynamic performance analysis and meant to approximate systematic sampling 

rates of 3 per second through 148 per second at increments of 5.  To factor in the 



 

 54 

 

perturbation error each sample was assessed an overhead of 250 microseconds.  The 

results of our simulation are graphed in Fig. 3.3. 

 
Figure 4.3:  This graph presents the simulation results for measurements of the execution of foo within a 

simulated program that executes (when unperturbed) for a total of 300 seconds and in which foo accounts 

for 20% of the execution time.  1,000 simulations were run per each sample size with the middle 95% of 

measurements shown as the solid part of the bar.  The whiskers above and below each bar indicate the 

remaining 5% (2.5% above and 2.5% below). 

 

The results of our simulation compare very favorably with the predicted 

results of our analytic function from Fig. 4.2.  As predicted, 95% of the simulation 

results generated with 2,400 samples fell between 55 and 65 seconds.  As well, the 

lower curve of our prediction graph crossed over the 60 second line after the 28,000 

sample mark which matches what we see with the simulation results.  So, the 

simulation results indicate the model has validity. 

  



 

 55 

 

 



 

 56 

 

Chapter 5:  Sequential Execution 

Given the intuition of our abstract model, the results from our analytic model, 

and the outcome of our simulation, we next progress to examining executing 

programs.  For this part of our research, we conduct experiments with a simple 

calibration program with characteristics very similar to those used to evaluate the 

analytic model and conduct the simulation, then do extensive experiments with 

several programs from the SPEC CPU 2006 benchmark suite [29, 58].  Our model of 

the sampling-induced effects of perturbation on the execution of these sequential 

programs holds up reasonably well.  Though unable to predict the best sampling 

period for every experiment, our model sometimes picks the best period, when not 

picking the best period, chooses something that close to the best period, and, 

importantly, avoids bad choices.  Compared to the 28 sampling intervals used during 

our experiments, our technique guides us to better results than all but two intervals, 

and our results are equally good compared to these other two intervals. 

5.1 Calibration Program 

5.1.1 Experiment Design and Environment 

To further validate our idea we designed an experiment where a program 

running for approximately 300 seconds with a function foo accounting for 20% of the 

execution time was periodically interrupted and the function name at the top of the 

call stack recorded.  We ran the experiment 100 times for each of 23 different specific 

systematic sampling rates from 3 samples per second up to 166 samples per second.  

The results of those experiments are presented in Fig. 5.1. 



 

 57 

 

 
Figure 5.1:  This graph presents the results for measurements of the execution of foo within our calibration 

program that executes (when unperturbed) for a total of approximately 300 seconds and in which foo 

accounts for approximately 20% of the execution time.  100 experiments were run per each sample size with 

the middle 95% of measurements shown as the solid part of the bar. The whiskers above and below each 

bar indicate the remaining 5% (2.5% above and below). 

 

The sampling rates used for the experiments were chosen to match the 

resolution available with ITIMER_PROF, the software interval timer we used.  We 

used rates of 3, 8, 13, 18, 23, 28, 33, 38, 43, 47, 52, 58, 62, 66, 71, 76, 83, 90, 100, 

111, 125, 142, and 166 samples/second.  Because the resolution of the timer used to 

generate interrupts is approximately 1 millisecond, the number of sampling rates 

possible are greatly reduced.  Fig. 5.2 delineates the relationship between the target 

and actual sampling rates from 1 per second through 500 per second.  Instead of the 

seemingly 500 possible sampling rates, only 61 unique sampling rates are actually 

possible when using the straightforward approach of dividing 1 second by the desired 

sampling rate and using the resultant fractional part of a second as the timer interval.  

The millisecond resolution of ITIMER_PROF creates a rounding effect that gets 

more pronounced the greater the number of samples we try to take. 



 

 58 

 

 
Figure 5.2:  Sample rate limitations 

 

Development of our sampling tool and execution of all experiments were done 

on a machine code-named Mashie.  It is a quad duocore Intel Xeon 2.33GHz with 

4GB of main memory.  In runs the Linux operating system, version 2.6.9-89.0.25-

ELsmp, Red Hat 3.4.6-11.  The measured program was written in C and compiled 

with gcc 4.4.3 using compiler flags -Wall –g -fPIC -rdynamic.  The first part of the 

measurement tool was written in C++ and compiled with g++ using compiler flags -

Wall -g -fPIC and library flags -ldyninstAPI -lsymtabAPI –lcommon -liberty -lelf -

ldwarf.  The library part of the measurement tool was written in C and compiled with 

gcc using flags - shared -lm -lrt. 

5.1.2 Program 

The program we analyzed during our experiments was written to mimic as 

closely as possible the behavior of the program used during simulation.  We used the 

same 1,000,000 integer array, shuffled it in the same manner, and seeded rand() with 

the same value.  The array was then used to call functions in the same order as was 

done in the simulation.  We created identical loops executing simple mathematical 

operations in each function in order to ensure each took as close as possible to 300 

microseconds to execute and thereby provide a program that runs very nearly 300 



 

 59 

 

seconds.  Due to the imprecise nature of this technique the program ends up running 

approximately 300 seconds. 

5.1.3 Measurement Tool 

Our measurement tool works in the following way.  We invoke our tool at the 

command line with three arguments:  the length in seconds the analyzed program 

executes when unperturbed, the sampling rate desired, and the executable name of the 

program to be analyzed (plus whatever command line arguments are required by that 

program).  The tool forks a process for the program to be measured and inserts our 

tool library into that address space.  It then calls an initialization function from our 

tool library that establishes some data structures to collect performance analysis data, 

installs a signal handler, saves the start time, and sets the interval timer.  The program 

to measure is then started and it executes in the normal way.  Whenever the interval 

timer expires, a signal is raised that is dealt with by the installed signal handler.  

Within the signal handler the program’s stack is accessed and the currently executing 

function name recorded.  Upon program termination the contents of the performance 

analysis data structures are printed to a file and the tool then exits. 

The measurement tool we constructed consists of two main parts. Both are 

compiled against Dyninst [11], a run-time code-patching library.  The first part 

executes in relationship to the analyzed program much like a parent process.  It is 

responsible for setting up the analyzed program’s runtime environment, adding the 

tool library, calling the library initialization function, and then starting the program 

with its required arguments.  The tool front-end waits until the measured program 

completes execution, and then calls the final library clean-up functions and exits.  The 



 

 60 

 

second part of our tool is the library that is added to the process space of the 

measured program and encapsulates the functionality for computing the sample 

period, handling signals, storing the performance data, and writing it to an output file. 

5.1.4 Result Comparison 

Our results from this experiment with the calibration program are presented in 

Fig. 5.3 alongside the results from our simulation and our model prediction from 

Chapter 4.  The upper and lower curves of the confidence interval at the 95% 

confidence level from Fig. 4.2 are changed to the format of the results from Fig. 4.3 

and Fig. 5.1 in order to make comparison easier. 

 
Figure 5.3:  This graph presents a consolidated view of the results depicted in Figs 4.2, 4.3, and 5.1.  Each 

three bar group pictured per sample count are, left to right, model prediction, simulation result, and 

experiment result. 

 

The results are promising in that they show an outcome for the simulations 

and experiments that is generally consistent with that predicted by our analytic model.  

There is more variability in the results of the experiments than the simulations, which 

is expected partly due to the nature of running on a real system, but may also be 



 

 61 

 

partly attributed to the order of magnitude difference in the number of runs conducted 

- 100 per experimental sampling rate vs. 1000 per simulated sampling rate. 

5.2 SPEC CPU Programs 

To further test our idea, we conducted extensive ITIMER-based sampling 

experiments with the five SPEC CPU 2006 benchmark programs:  bzip2, mcf, milc, 

omnetpp, and sjeng.  We will use omnetpp for the initial explanation of our 

experiments and for more in-depth analyses of the results because it is most close in 

runtime to our simulation and calibration programs. 

5.2.1 Experiment Design and Environment 

Running experiments with the SPEC CPU 2006 benchmark programs 

presented a new challenge to the method of analysis we had been using.  When 

evaluating our analytic function and running simulations, we knew truth for foo.  

With the calibration program, we could carefully and directly affect truth for foo such 

that we had high confidence with the value we used.  However, determining truth for 

the various functions in each SPEC CPU program was part of the very problem we 

are investigating.  So, we decided on the following weak measurement method for 

determining the values for execution proportion of a given program's functions:  

execute a program multiple times and sample with a low perturbative sampling rate, 

then treat the median result for function execution time as "truth."  Determining the 

number of times to execute a program in order to gather the samples necessary to 

calculate "truth" was somewhat arbitrary.  For example, with omnetpp we determined 

that the function that took the most execution time, cMessageHeap::shiftup(int), 



 

 62 

 

accounted for roughly 15% of it.  So, using p=.15, z=1.96 (for 95% confidence level), 

and r=.0025 we used Jain's equation (2.4) to determine 78,369 samples were required.  

We settled on a sample rate of two per second to provide balance between minimizing 

perturbation and keeping the overall experiment runtime to something not unduly 

burdensome.  We then executed omnetpp 115 times accumulating a total of 79,021 

samples (an average of 687 samples per run).  The measured values of 

cMessageHeap::shiftup(int) across all runs were distributed as depicted in Figs. 5.4 

and 5.5.  Fig. 5.4 shows the distribution of the value of p for 

cMessageHeap::shiftup(int) by the number of samples collected on a per run basis.  

Fig. 5.5 shows the distribution of the value of p when sorted from the smallest to the 

largest calculated value. 

 
Figure 5.4:  This graph presents the distribution of the calculated value of p for cMessageHeap::shiftup(int) 

arranged by number of samples taken. 

 



 

 63 

 

 
Figure 5.5:  This graph depicts the distribution of the calculated value of p for cMessageHeap::shiftup(int) 

ordered from smallest to largest. 

 

After inspecting the distributions of these values we reasoned that using the 

median value as truth, rather than the mean, was appropriate because the larger 

estimated values in the distribution likely reflected more perturbation error caused by 

transient system behavior and would therefore unnecessarily skew the mean.  We thus 

determined the "true" value of each function in each of the SPEC CPU programs we 

used in a similar manner.  The following table indicates for each of the SPEC CPU 

2006 benchmarks analyzed, how many times we executed each while taking two 

samples/second; how many total samples were collected aggregated across all runs; 

the average number of samples collected per run; the function (foo) that accounted for 

the greatest percentage of execution time; and the percent of execution time (p) 

attributed to foo. 

  



 

 64 

 

SPEC # Runs # Samples Avg samples/run Foo p 

bzip2 352 61,858 176 BZ2_blockSort 38.5% 

mcf 99 77,596 784 primal_bea_mpp 43.6% 

milc 95 87,537 921 mult_su3_na 18.0% 

omnetpp 115 79,021 687 cMessageHeap:: 
shiftup(in) 

15.8% 

sjeng 76 79,236 1043 std_eval 15.3% 
Table 5.1:  Calculation of largest function per benchmark. 

 

All experiments were done on a machine named Niblick.  It is a quad duocore 

Intel Xeon 2.93GHz with 4GB of main memory.  It runs the Linux operating system, 

version 2.6.9-89.0.25-ELsmp, Red Hat 3.4.6-11. 

5.2.2 Programs 

We chose this particular subset of SPEC programs for several reasons.  First, 

we avoided using the benchmarks that were aggregations of shorter duration program 

runs scripted to run consecutively.  Our concern with them was the potential 

introduction of additional overhead and the possibility of further complicating the 

profile results with an additional level of sample combining.  We did make use of 

bzip2 which is provided by SPEC as an aggregation, but only ran it with the single 

input that caused it to execute the longest.  Second, we focused on programs that had 

execution times nearest to our simulation and calibration run times of 300 seconds.  

Third, we had a slight personal preference for benchmarks written in C and C++ as 

compared to those written in Fortran. 

5.2.3 Measurement Tool 

Rather than use the simple measurement tool we created, we used Rice 

University's HPCToolkit [56], an integrated suite of tools used for measurement and 

analysis of program performance.  This switch was motivated by the maturity of the 



 

 65 

 

Rice tool suite and its acceptance in the systems research community as well as its 

additional functionality, like tracking calling context.  The workflow is depicted in 

Fig. 5.6 which is copied from their site.  We very slightly modified the hpcrun shell 

script utility to output the run time of each program.  We created a small dynamically-

loaded shared library so that atexit() the combined processor time charged for the 

execution of a program's instructions (tms_utime) and the processor time charged for 

execution by the system on behalf of the program (tms_stime) were output to a file.  

Otherwise we used the HPCToolkit components as provided. 

 
Figure 5.6:  HPCToolkit component work flow. 

 

We used the hpcstruct and hpcprof components of HPCToolkit as designed to 

associate calling context measurements with source code structure and to overlay call 

path profiles respectively.  However, because we intended to analyze the 

measurement results in ways other than hpcviewer or hpctraceviewer are designed, 

we inserted our own data processing steps into the workflow.  We wrote a parser to 

handle the XML file that results from running hpcprof, and then two programs to take 

the combined output from the parser program and output per function data for either 

execution percent or execution time.   



 

 66 

 

5.2.4 Execution Details 

When invoking hpcrun we made use of the wall clock timer functionality, e.g., 

hpcrun –e WALLCLOCK@500000 omnetpp omnettpp.ini, runs the 

SPEC CPU program omnetpp with input parameter omnettpp.ini and samples 

omnetpp every 500,000 microseconds.   

In addition to collecting tens of thousands of samples at a sampling period of 

500 milliseconds across tens of runs to establish "truth", we also conducted sampling 

runs with each SPEC program 10 times at each of 28 different sampling rates (200, 

100, 67, 50, 33, 29, 25, 22, 20, 19, 18, 17, 16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 

2, and 1 millisecond intervals) for a total of 280 runs per SPEC benchmark.  The 280 

runs were scripted to execute consecutively iterating over the 28 sampling rates 10 

times in order to create some separation in time among each of the 10 runs of any 

particular sampling rate thus minimizing the impact of any temporary spike in system 

noise.  At the end of the 28x10 experiment runs we parsed the output files, aggregated 

and sorted the results, analyzed them in a spreadsheet, and presented them in a graph. 

5.2.5 Results 

Though we make use of program and function time in our analytic equation 

and in our previous experiments, we will present the results in this section using 

percent of execution (p) because it makes the comparison to "truth" in the analysis 

section more meaningful.  Sampling a running program results in us being able to 

calculate a statistic for the proportion (or percent) of execution time during which a 

given function was executing.  If we convert that to time we would simply be 

multiplying the calculated proportion by the complete execution time of the sampled 



 

 67 

 

program.  As well, picking a best sampling rate when considering more than one 

function creates a situation where using time can cause an unbounded outlier based 

on time to disproportionately affect performance evaluation.  Using proportion 

provides a degree of bounding that limits the effect of outliers. 

Omnetpp 

The next four figures display the results of the 28x10 experiments for each of 

the top four functions of the omnetpp benchmark.  The center gridline in each chart is 

the proportion "truth" for that function as determined during our weak measurements 

run.  The red dashed lines indicate the 95% confidence interval with respect to 

decreasing measurement error only; so, they are computed solely based on the 

proportion "truth" and the number of samples taken.  The red and blue markers are 

intended to make it easier to differentiate among runs of adjacent sample intervals. 

 
Figure 5.8:  Plot of proportion calculation results for cMessageHeap::shiftup(int), the function taking the 

most execution time for omnetpp, across the 28x10 execution runs. 

 



 

 68 

 

 
Figure 5.9:  Plot of proportion calculation results for cGate::deliver(cMessage*,double), the function taking 

the 2nd most execution time for omnetpp, across the 28x10 execution runs. 

 

 
Figure 5.10:  Plot of proportion calculation results for cSimulation::selectNextModule(), the function taking 

the 3rd most execution time for omnetpp, across the 28x10 execution runs. 

 

 



 

 69 

 

Figure 5.11:  Plot of proportion calculation results for cModule::findGate(char const*,int) const, the function 

taking the 4th most execution time for omnetpp, across the 28x10 execution runs. 

 

To provide a visual comparison between the execution proportion results and 

the execution time results and illustrate the reason for looking at proportion as 

opposed to time when evaluating the results for these experiments we've included in 

Fig. 5.12 one graph of our results with execution time on the y axis.  The graph is of 

the function cMessageHeap::shiftup(int), the omnetpp function that takes the most 

execution time. 

 
Figure 5.12:  Plot of execution time calculation results for cMessageHeap::shiftup(int), the function taking 

the most execution time for omnetpp, across the 28x10 execution runs. 

 

To evaluate the accuracy of the results of the 10 runs at each of the 28 

different sampling rates, we decided to calculate the mean absolute percentage error 

(MAPE) for each of the top four functions as compared to "truth," combine the four 

values (equation 5.1), and compare them for each of the 28 sampling rates. 

cMAPE  
            

     
                 

 (5.1) 

 

Whichever sampling rate produced the smallest combined MAPE (cMAPE) 

value was considered to be the best.  The decision to use the top four functions as 



 

 70 

 

opposed to some other number of functions or all of the functions was based on an 

inspection of the data generated from all the experiments run on the SPEC programs.  

A seemingly small difference from "truth" of a function that accounts for a small 

percentage of execution time overall can have a disproportionate impact on the 

aggregate MAPE value, so including all functions seemed unwise.  It also seemed 

important to look at more than only the top function, so we decided, based on 

intuition and experience, upon what seemed a reasonable compromise.  We noticed 

that for the five SPEC programs on which we conducted extensive experiments and 

detailed analysis, almost all of the top four functions of each program took up a 

proportion of execution time above 5%; an arbitrary threshold, but one that seemed 

likely to be of interest. 

We determined the APE for each of the 10 runs at the 28 different sampling 

rates for the top four functions of each SPEC program.  Figure 5.13 graphically 

presents the APE results for each of the 28x10 runs, the calculated MAPE (blue line), 

and the approximate expected MAPE (red dashed line) calculated statistically, for the 

top function of omnetpp, cMessageHeap::shiftup(int).  We calculated the 

approximate expected MAPE by taking a 95% confidence interval and dividing by 2.  

We consider it approximate because with a bell-shaped normal distribution, more 

measurements should be closer to "truth" than are far away, so dividing by 2 puts the 

red dashed line a little further from "truth" that it should be; however, we present it 

here only as a guide, not for measurement purposes, as the approximate nature of the 

calculation has no impact on our results. 



 

 71 

 

 
Figure 5.13:  Results for the 28x10 runs compared to "truth" for cMessageHeap::shiftup(int).  The solid 

blue line tracks the MAPE for the set of 10 runs at each sample rate and the red dashed line indicates the 

approximate expected MAPE. 

 

We then combined the MAPE values for the top four functions to determine 

the best overall sampling rate.  Fig. 5.14 presents the MAPE for each of the top four 

functions in omnetpp while Fig. 5.15 presents the aggregated MAPE results from the 

same. 

 
Figure 5.14:  MAPE results for each of the top four functions in omnetpp. 

 



 

 72 

 

 
Figure 5.14:  cMAPE results for the top four functions in omnetpp (blue solid line) and the calculated 

approximate expected cMAPE (dotted red line). 

 

The sampling total that resulted in the overall best result for the omnetpp 

benchmark was the 48,829 samples taken using a 5 ms interval.  Our technique (eqn. 

4.16) predicted that the best results would occur with 91,830 samples: 

     
                        

               
 

 
 

  

 

    
   

          
 

 
 
         

 

When used with the runtime of omnetpp (345 sec) to calculate sample rate, it 

predicts that 3.75 ms would be the best sampling interval: 

 
   

      
         

 

This calculation brings to light another challenge when using software timer 

based sampling.  In addition to the sample rate limitation illustrated in Fig. 5.2 which 

makes using a sample interval of 3.75 ms infeasible, we see here that the effective 

sampling outcome of the 5 ms sampling interval generated a total number of samples 



 

 73 

 

that would have been expected with the larger interval of 7 ms.  It varies somewhat 

from one program to another, but it is true in a general way that as the sampling 

interval gets smaller, the expected number of total samples generated is further from 

the actual number of total samples generated.  For example, with a sampling interval 

of 100 ms we would expect to generate 3,450 samples, but on average generated 

3,352, a difference of 98 or about 2.8%; at 10 ms expected is 34,500, actual was 

28,665 on average for a difference of 5,835 or 16.9%; and at 1 ms expected is 

345,000, actual was 115,623 on average for a difference of 229,377 or 66.5%.  Thus, 

we must compare total samples as opposed to the calculated sample interval. 

The following four graphs are of the aggregated MAPE results (cMAPE) for 

the other SPEC benchmarks we used.  The graphs of the results of the 28x10 runs for 

the top four functions in each of these other benchmarks is included in Appendix B. 

 
Figure 5.15:  cMAPE results for the top four functions in bzip2 (blue solid line) and the calculated 

approximate expected cMAPE (dotted red line). 

 



 

 74 

 

The sampling total that resulted in the overall best result for the bzip2 

benchmark was the 21,837 samples taken using a 2 ms interval.  Our technique 

predicted that the best results would occur with 21,418 samples. 

 

 
Figure 5.16:  cMAPE results for the top four functions in mcf (blue solid line) and the calculated 

approximate expected cMAPE (dotted red line). 

 

 

The sampling total that resulted in the overall best result for the mcf 

benchmark was the 49,106 samples taken using a 6 ms interval.  Our technique 

predicted that the best results would occur with 38,472 samples. 



 

 75 

 

 
Figure 5.17:  cMAPE results for the top four functions in milc (blue solid line) and the calculated 

approximate expected cMAPE (dotted red line). 

 

The sampling total that resulted in the overall best result for the milc 

benchmark was the 36,622 samples taken using a 10 ms interval.  Our technique 

predicted that the best results would occur with 60,555 samples. 

 
Figure 5.18:  cMAPE results for the top four functions in sjeng (blue solid line) and the calculated 

approximate expected cMAPE (dotted red line). 

 

The sampling total that resulted in the overall best result for the sjeng 

benchmark was the 175,387 samples taken using a 1 ms interval.  Our technique 



 

 76 

 

predicted that the best results would occur with 153,811 samples; this is nearly 

midway between the number of samples possible with a 2 ms sample rate and a 1 ms 

sample rate, but is slightly closer to the 1 ms rate. 

5.2.6 Analysis of Analytic Equation Results 

Our analytic equation guided us to the sampling interval with the best 

outcome twice out of the five experiments conducted.  Table 5.2 presents the overall 

results.  The calculated cMAPE value is shown to provide a sense of how our 

predicted best outcome compares to the measured best outcome as well as to the 

measured worst outcome.  This aggregation of the mean absolute percentage error 

(MAPE) for each of the top four functions as compared to "truth" is calculated per 

equation 5.1. 

 Predicted 
Best Outcome 

Measured 
Best Outcome 

Measured 
Worst Outcome 

 Sample 
Total 

Nearest 
Interval cMAPE 

Sample 
Total Interval cMAPE 

Sample 
Total Interval cMAPE 

Omnetpp 91,830 2 ms 9.78% 48,829 5 ms 8.75% 1,665 200 ms 38.77% 

Bzip2 21,418 2 ms 3.38% 21,837 2 ms 3.38% 431 200 ms 28.96% 

Mcf 38,472 8 ms 8.04% 49,106 6 ms 6.40% 1,954 200 ms 11.29% 

Milc 60,555 6 ms 7.02% 36,622 10 ms 6.05% 2,164 200 ms 18.78% 

Sjeng 153,811 1 ms 5.37% 175,387 1 ms 5.37% 2,580 200 ms 19.00% 
Table 5.2:  Predicted vs. actual outcomes. 

 

On the surface, this is a modest outcome; however, when compared to an 

experimental setup that chooses a single sampling interval to use across all five 

experiments (as is commonly done) our analytic equation does better than all tested 

intervals except two.  And against those two intervals of 5 ms and 2 ms our equation 

is tied, 2-1-2 with 5 ms and 1-3-1 with 2 ms; meaning that twice 5 ms is a better 

choice than what our equation recommends, once they tie, and twice our equation 



 

 77 

 

recommendation is better.  As well, our equation did a good job at avoiding bad 

choices. 

 



 

 78 

 

Chapter 6:  Parallel Execution 

In the next part of our investigation, we examine our idea for predicting the 

"sweet spot" sample count needed to balance the effects of decreasing measurement 

error and increasing perturbation error in the context of evaluating shared-memory 

parallel program executions.  We set out to verify the applicability of our technique 

through extensive experiments with several programs from the SPEC OMP 2001 

benchmark suite [59, 6] and we report that our model does reasonably well.  Our 

model once again sometimes exactly predicts the best sampling rate, but is generally 

within close proximity to the best sampling rate, and avoids bad choices. 

6.1 Preliminary Notes on Experiments 

Running experiments with the SPEC OMP 2001 benchmark programs 

presented two new challenges over those noted earlier in Chapter 5.  The first 

challenge was the difference in how much more the parallel program executions 

varied among runs compared to the variance of sequential executions.  The second 

challenge encountered was the odd behavior of the software timer (ITIMER_PROF) 

used with the profiling tool, HPCToolkit, for performance analysis of shared-memory 

multiprocessing programs. 

6.1.1 Variance of Execution 

Program execution times have been studied and results have been reported 

that indicate non-trivial variations in program behavior are relatively common [64, 

37, 54].  Somewhat surprisingly, it has been recently shown that in addition to 

execution variance rooted in the inherent non-determinism of computer systems, 



 

 79 

 

measurement bias can also be a more common factor that anticipated [47].  In fact, 

Mytkowicz et al claim that measurement bias can manifest when relatively 

insignificant aspects of a computer system are changed.  Their results indicate the 

bias can lead to performance analysis that over-states an effect or even leads to 

incorrect conclusions, and that the bias was evident across all architectures, both 

compilers, and most programs they tested.  Further empirical study has shown that 

parallel execution times are even more variable than sequential execution times [44].  

Mazouz et al specifically use experiments with and comparisons among the SPEC 

CPU 2006 benchmark suite and the SPEC OMP 2001 benchmark suite to demonstrate 

their findings. 

Compared to the overall run time variance seen in our experiments with the 

SPEC CPU 2006 benchmarks used, we also saw a marked increase in the variance of 

the run times of the parallel benchmark executions.  With all SPEC CPU 2006 

benchmarks, the average standard deviation was 1.7% of execution time compared to 

10.5% for SPEC OMP 2001 benchmarks.  As an example, Fig. 6.1 shows the 

distribution of run times from some of our experiments on the SPEC OMP 2001 

benchmark equake.  It is easy to see the large degree of variance possible among each 

set of 20 runs and the greater variance exhibited by 12 core runs compared with 8 

core and 4 core runs; as well as that exhibited by 8 core runs compared with 4 core 

runs.  In comparison, Fig. 6.2 shows a similar sampling of runs of our experiments 

with the SPEC CPU 2006 benchmarks we used.  Though variance is present, it is 

much less of a factor than with equake.  NOTE:  the scale of the y axis of Fig. 6.2 is 

set to match Fig. 6.1 so the comparison is more meaningful.  For both figures, the 



 

 80 

 

legend is at the top of the graph with different shaped/colored markers differentiating 

among the different number of cores (Fig. 6.1) or the different benchmarks (Fig. 6.2).  

The alternating yellow and white background is intended simply as an aid to make it 

easier to see which data points are associated with which sampling intervals. 

 
Figure 6.1:  Distribution of run times, 20 each, sorted shortest to longest within each sampling interval, for 

the SPEC OMP 2001 benchmark equake. 

 

Similar charts showing the variance of run times for the other SPEC OMP 

2001 benchmarks we used are contained in Appendix C.  The benchmark swim 

exhibited the most variance and is the only chart using a different y axis scale in order 

to ensure all runs can be displayed. 

In light of the expected and observed increase in variance of run times for the 

parallel executions, we altered our standard experimental setup to include 20 

iterations of each program execution for any given sample rate explored rather than 

10 iterations as we did with the sequential program executions. 



 

 81 

 

 
Figure 6.2:  Distribution of run times, 10 each, sorted shortest to longest within each sampling interval, for 

the SPEC CPU 2006 benchmarks sjeng, milc, mcf, omnetpp, and bzip. 

 

6.1.2 Software Timers 

For experiments with sequential executions in Chapter 5, we made use of the 

HPCToolkit hpcrun call to WALLCLOCK which specifies ITIMER_PROF, 

indicating that the Linux profiling timer should be used for timing the sampling 

interval.  We switched to using the HPCToolkit hpcrun call to REALTIME, 

specifying the CLOCK_REALTIME Linux timer, for our experiments evaluating 

shared-memory parallel program executions in light of very inconsistent results we 

were getting with ITIMER_PROF.  It seems that a problem with the ITIMER_PROF 

interval timer is that it is not thread-specific and profiles only the main thread when 

profiling a multithreaded program, thereby producing incorrect and highly variable 

results. 



 

 82 

 

Software sample-based profiling uses software clocks or timers to set the 

sample rate.  Each process in Linux is provided with three interval timers:  

ITIMER_REAL, ITIMER_VIRTUAL, and ITIMER_PROF.  ITIMER_REAL 

measures wall-clock time, decrements at all times regardless of whether the profiled 

program is executing, and delivers SIGALRM upon expiration.  ITIMER_VIRTUAL 

measures process time, decrements only when the profiled process is executing, and 

delivers SIGVTALRM upon expiration.  ITIMER_PROF is intended for use with 

profilers, decrements both when the profiled process is executing as well as when the 

operating system is specifically executing on behalf of the profiled process, and 

delivers SIGPROF upon expiration. 

The ITIMER_PROF is the preferred of the three available process-specific 

software interval timers because it should provide the most accurate accounting of the 

profiled process.  We experienced difficulty achieving consistent results during our 

initial profiling experiments with the SPEC OMP 2001 benchmarks and were initially 

very puzzled by the results.  Upon investigation into the cause of the odd results, we 

discovered that the HPCToolkit authors also identified this clock problem and in their 

latest user manual [45] recommend using the hpcrun call to REALTIME, which is 

based on the CLOCK_REALTIME Linux timer that counts wall clock time.  They 

also recommend trying the hpcrun call to CPUTIME, which is based on the 

CLOCK_THREAD_CPUTIME_ID Linux timer, but we found some benchmarks 

tended to hang when using this timer.  In light of the inconsistent results we were 

getting with the ITIMER_PROF interval timer and our subsequent discovery of the 

updated advice in the HPCToolkit user manual, we switched to using REALTIME in 



 

 83 

 

all of our SPEC OMP 2001 benchmark experiments.  All results presented in this 

chapter use calls to REALTIME. 

6.2 SPEC OMP 2001 Programs 

We chose to evaluate five of the SPEC OMP 2001 benchmark suites in our 

experiments:  applu, equake, fma3d, swim, and wupwise.  These particular five 

benchmarks were chosen for a combination of reasons – we experienced no difficulty 

or errors when building them and they had run times that were of reasonable length, 

and thus manageable, for the number of experiments we wanted to conduct  We 

choose to exclude apsi, mgrid, galgel, and gafort because of compiling difficulties 

and some early error-terminating run results; art because it contained a single function 

that dominated overall execution time with >95%; and ammp due to its significantly 

longer runtime than all other benchmarks. 

6.2.1 Experiment Design and Environment 

Execution of all experiments was done on a machine code-named Pygmy.  

During experiment runs the machine was dedicated to a single user.  Pygmy is a 12 

core, Intel Xeon running at 2.53 GHz.  It runs Ubuntu version 12.04.4 LTS with the 

Linux kernel 3.2.  The programs we evaluated were each executed using 4, 8, and 12 

cores of Pygmy.  Since we compiled the benchmarks with GNU's gcc, we had the 

option of specifying during runtime the environment variable 

GOMP_CPU_AFFINITY in order to bind the OpenMP threads to specific processing 

units.  For every run using 4 cores we specified GOMP_CPU_AFFINITY=8-11; 



 

 84 

 

using 8 cores we specified GOMP_CPU_AFFINITY=4-11; and using 12 cores we 

specified GOMP_CPU_AFFINITY=0-11. 

6.2.3 Programs 

Of the SPEC OMP 2001 benchmarks evaluated, equake is written in C and the 

others are written in Fortran.  We used the 'M' input set for all the benchmarks which 

is designed to be used on shared-memory systems with between 4 and 32 processors 

(as opposed to the 'L' input set which can be used with up to 512 processors) [58].  

We used the reference input data set (as opposed to the test or train data sets) for all 

experiments.  The benchmarks were compiled with gcc 4.5.2 within the build system 

provided by SPEC OMP, though all benchmark runs were conducted outside of the 

SPEC scripting system. 

6.2.4 Execution Details 

For each experiment run, we used our analytic function (4.16) to predict 

where we expected to find the sampling "sweet spot" given the experiment 

parameters.  Then, because of the relatively long experiment runtimes involved with 

executing each benchmark multiple times at each sampling interval for each of the 

three thread-core settings of interest (4, 8, and 12), we decided to bracket the results 

with sampling intervals differing by an order of magnitude, compare them to our 

prediction in a qualitative manner, and then allow those results to guide more focused 

investigation.  For each benchmark at each of the three designated thread-core counts, 

we started by conducting 20 runs at each of 5 different sampling intervals:  10,000 ms 

(10 sec), 1000 ms (1 sec), 100 ms, 10 ms, and 1 ms.  Once that was done, we 

conducted comparative qualitative analysis between graphs we created of function 



 

 85 

 

proportions and our sampling equation prediction.  Based on the outcome from that 

analysis, we determined which broad interval was of the most interest, conducted 20 

more runs at each of 6 new different sampling intervals, and then carried out more in-

depth quantitative analysis between the proportion results at our predicted value and 

the results at the new sampling intervals. 

6.2.5 Results 

In this section we present some results from experiments with the SPEC OMP 

2001 benchmark equake executing with 4 threads on 4 cores to demonstrate how we 

arrived at our findings.  When we use our analytic function (4.16) for predicting the 

number of samples we should take during an execution, using preliminary data for 

smvp.omp_fn.5 and equake run with 4 threads on 4 cores, we get the following 

predicted sample count: 

 

     
                    

            
 

 
 

  

 

    
     

        
 

 
 
         

 

Taking samples at the 5 order-of-magnitude differing intervals resulted in 

median sample counts of 116; 1171; 11,737; 117,992; and 1,179,613 respectively 

across the 5 sets of 20 runs.  In Fig. 6.3 are the results from these bracketing runs of 

the calculated percentage of execution for the function taking the most execution 

time, smvp.omp_fn.5.  The data within each set of 20 runs are sorted by run length, 



 

 86 

 

shortest to longest, left to right.  The results in Fig. 6.4 are the calculated percentage 

execution values for the top four functions in equake presented the same way. 

 
Figure 6.3:  Distribution of the percent execution taken by smvp.omp_fn.5 from 100 runs of equake with 4 

threads on 4 cores, 20 each at 5 different sampling intervals.  Each data point includes whiskers indicating 

the expected 95% confidence interval of the calculated proportion. 

 

With qualitative analysis of the two charts, we note that the 10 sec sample 

interval results in calculated proportions that are quite variable and have 95% 

confidence intervals that are far wider than desired.  As can be seen in Fig. 6.4, for 

almost all runs of GOMP_taskwait the CIs overlap with those of both smvp.omp_fn.5 

and main.omp_fn.10, so statistically the correct order of most computationally 

expensive to least cannot be determined.  As confidence intervals indicate precision, 

rather than accuracy, the 1 ms sample interval provides an outcome that is not 

particularly useful.  About half of the runs have a very tight grouping among the 

calculated proportions, but the 95% confidence intervals are so narrow that the 

slightest variation indicates there are statistically significant differences among many 



 

 87 

 

of the runs.  Somewhere between the 100 ms sampling interval and the 10 ms 

sampling interval seems to provide the best balance between narrowing the 

confidence interval and getting consistent results.  Our prediction falls between the 

median counts for the 100 ms sampling interval (11,737 samples) and the 10 ms 

sampling interval (117,992 samples), so we examined this interval more closely. 

 
Figure 6.4:  Distribution of the percent execution taken by 4 different functions from 100 runs of equake 

with 4 threads on 4 cores, 20 each at 5 different sampling intervals.  Each data point includes whiskers 

indicating the expected 95% confidence interval of the calculated proportion. 

 



 

 88 

 

Note that our use of function 4.16 treats the parallel shared-memory program 

wall-clock time in the same manner as for a sequential program.  We make no 

modification to the equation based on the number of threads or number of cores being 

used.  At first glance, this may seem odd since the total execution time (the aggregate 

of core execution times across all cores) seems analogous to the wall-clock time for a 

sequential program.  However, when we explored that technique we found that 

sticking with the wall-clock time provides better results.  Using the longer total 

execution time resulted in taking more samples which unsurprisingly turned out to be 

more disruptive to parallel programs and provided poorer results. 

To evaluate the effectiveness of our prediction, we used a technique similar to 

the broad bracketing used earlier.  We calculated six sampling intervals at which we 

could collect sampling counts that would more narrowly bracket the desired sampling 

count of 78,854.  In addition to running an experiment set at the predicted "sweet 

spot," we used a sample count interval of 20,000 (for predicted sample counts 

>=100,000 we used an interval of 30,000) to calculate the timing intervals required to 

collect 3 intervals below the predicted count and 2 above.  This technique does not 

exhaustively test all sampling intervals around our prediction, but it offers the benefit 

of a check on the qualitative analysis of the results from the large bracket runs while 

also providing an effective trade-off between result granularity and the resource 

burden of intensive experimentation.  The six sampling counts and the respective 

sampling intervals used for the smaller bracket experiments with equake, 4 threads on 

4 cores, are in Table 6.1. 

 



 

 89 

 

Expected approximate sample counts 

Interval (ms) 63 30 20 15 12 10 

Expected sample count 18,000 38,000 58,000 78,000 98,000 118,000 
Table 6.1:  Sampling intervals and expected approximate sample counts for targeted experiments with 

equake using 4 threads on 4 cores. 

 

The next two charts present the results of the calculated percentage execution 

of smvp.omp_fn.5 for the 120 runs conducted with equake, 4 threads on 4 cores, 20 

runs per sampling interval.  Fig. 6.5 displays the experiment runs grouped by 

sampling interval with 95% confidence intervals for the expected "true" value 

depicted as the red dashed lines. 

 
Figure 6.5:  Results of the percent execution of smvp.omp_fn.5 for the 120 runs conducted with equake, 4 

threads on 4 cores, 20 runs per sampling interval.  The 95% confidence intervals of the "true" value are 

depicted as red dashed lines. 

 

Fig. 6.6 displays the same experiment runs using sample count as the x-axis – 

in this format, runs that encountered some kind of non-deterministic system event that 

caused deviation from "normal" execution stand out as having run noticeably longer 

and consequently collected many more samples than peer runs within a particular 

sample interval cohort.  In both graphs, red and blue markers are simply intended to 

more easily distinguish the runs of adjacent sampling intervals. 



 

 90 

 

 
Figure 6.6:  Results of the percent execution of smvp.omp_fn.5 for the 120 runs conducted with equake, 4 

threads on 4 cores, 20 runs per sampling interval.  The 95% confidence intervals of the "true" value are 

depicted as red dashed lines. 

 

Additional charts showing the experimental results for the other three 

functions we looked at for equake, 4 threads on 4 cores, in addition to all charts for 

the other benchmarks we studied are in Appendix C. 

Statistical science indicates to us that with 95% confidence intervals around 

what we believe to be "truth" for a given experiment, we could expect 19 of 20 runs 

to fall w/in the interval.  Considering the number of runs that fall outside the 95% CIs 

provides us a granular indication of the effect of sampling perturbation on 

measurement results.  As can be seen in both figures above, more than 1 experiment 

per group of 20 appears to fall outside the interval, with the incidence of variation 

increasing as more samples are taken.  The table below provides the count of runs per 

sampling interval that are outside the confidence interval. 

Number of runs outside CI 

Interval (ms) 63 30 20 15 12 10 

# runs outside CI 4 3 3 3 6 11 
Table 6.2:  Sampling intervals and corresponding number of runs (out of 20) with calculated proportion 

(percent execution) outside the 95% CI for the "true" value of smvp.omp_fn.5 from equake, 4 threads on 4 

cores. 

 



 

 91 

 

It's important to note at this point that determining the "truth" to compare with 

the calculated proportions for each of our experiments, already a difficult process in 

Chapter 5, is more difficult in light of the greater variability of parallel program 

execution.  Given this greater difficulty, we tried to ensure greater rigor in this 

process by applying a chi-square test of homogeneity to the calculated proportions 

from the many different runs.  We used the chi-square test of homogeneity to 

determine to what degree profiles from the various executions of the same 

experimental context (e.g., equake, 4 threads on 4 cores) differed.  We used the 

results from the chi-square test to determine which runs from our initial bracketing 

runs could be combined to create a "true" proportion value with high confidence.  We 

then did the same for the subsequent executions done with the more targeted brackets.  

After examination of the experimental results, we proceeded in our chi-square test by 

first calculating the chi-square test-statistic with all data.  If the result was statistically 

significant (at a significance level of .05) to reject the hypothesis of homogeneity, we 

sorted all experiments by total runtime within their sample-interval cohorts and then 

re-calculated the chi-square test-statistic using the 10 shortest running experiments 

per cohort. Our rationale is that the longer-running experiments are more likely 

perturbed by a rare, but higher impact event than the shorter-running experiments.  If 

we did not find statistically significant evidence for homogeneity with the 10 shortest 

runs, we then re-calculated with the 5 shortest running experiments per cohort.  The 

results of all the chi-square tests for equake, 4 cores on 4 cores, are in Table 6.3 

below. 

 



 

 92 

 

Chi-Square Test Results 

Function Brackets Χ2 DF P-value    95% CI 

smvp.omp_fn.5 Large 11.04 49 1.0000 .3179 (.3176, .3181) 

 Small 36.1 59 .9919 .3147 (.3143, .3151) 

GOMP_taskwait Large 4.1 99 1.0000 .1953 (.1951, .1954) 

 Small 1.3 59 1.0000 .1957 (.1953, .1961) 

main.omp_fn.10 Large 16.4 49 1.0000 .1324 (.1322, .1326) 

 Small 26.9 59 .9999 .1309 (.1306, .1312) 

omp_get_num_procs Large 5.7 39 1.0000 .0210 (.0208, .0213) 

 Small 19.5 29 .9065 .0228 (.0226, .0230) 
Table 6.3:  Chi-square test results for determining "truth" for the percent execution of equake functions. 

 

Except for GOMP_taskwait, the results of "truth" for percent of execution for 

the aggregation of the initial bracketing runs don't match "truth" for the second set of 

more tightly bracketed runs despite both sets having "passed" chi-square tests for 

homogeneity among their own bracketed runs.  For example, smvp.omp_fn.5 has a 

"true" value of p=.3179 with 95% confidence interval (.3176, .3181) after the initial 

large bracketing runs using order-of-magnitude difference sampling intervals and a 

"true" value of p=.3147 with 95% CI (.3143, .3151) after the small bracketing runs 

around our predicted best sampling count.  These results, not entirely unexpected, 

illustrate the problem of large numbers of samples leading to small CIs and further 

back-up the parallel run variation problem noted earlier in this chapter and reported 

by others [47, 44]. 

We needed to choose one of the values as "truth" to compare performance 

analysis results quantitatively, and we decided upon using the "truth" derived with the 

set of runs to which we were comparing.  Our rationale is rooted in the observation 

that both "true" values for each function differ only after the third significant digit, so 

the difference is relatively small; and is based on the points made earlier about 

inherent execution variability and both data sets passing the chi-square test for 

homogeneity. 



 

 93 

 

Given our choice of "truth" we evaluated the second set of smaller bracketing 

runs for equake, 4 threads on 4 cores, once again making use of equation 5.1 for 

cMAPE, and determined that the best sampling interval was, in fact, the one our 

model predicted.  We then did the same analysis for all experiments.  The results for 

the analysis of all parallel shared-memory experiments are in Table 6.4 below.  The 

calculated cMAPE value is shown to provide a sense of how our predicted best 

outcome compares to the measured best outcome as well as to the measured worst 

outcome. 

 Predicted 
Best Outcome 

Measured 
Best Outcome 

Measured 
Worst Outcome 

 Sample 
Total 

Nearest 
Interval cMAPE 

Sample 
Total Interval cMAPE 

Sample 
Total Interval cMAPE 

 Equake 

4-core 78,854 15 ms 17.87% 80,120 15 ms 17.87% 116 10 s 99.37% 

8-core 53,450 24 ms 17.07% 13,603 100 ms 7.03% 129 10 s 171.75% 

12-core 48,114 31 ms 56.00% 36,922 45 ms 27.27% 156 10 s 188.53% 

 Applu 

4-core 174,420 14 ms 7.84% 230,588 12 ms 7.05% 240 10 s 85.43% 

8-core 126,297 21 ms 9.67% 207,060 17 ms 7.56% 256 10 s 96.41% 

12-core 81,319 37 ms 2.42% 82,764 37 ms 2.42% 288 10 s 152.30% 

 Fma3d 

4-core 185,236 15 ms 3.33% 237,635 13 ms 1.46% 276 10 s 27.52% 

8-core 138,683 22 ms 2.64% 149,203 28 ms 1.61% 304 10 s 35.82% 

12-core 96,618 36 ms 1.91% 159,281 23 ms 1.20% 348 10 s 46.63% 

 Swim 

4-core 131,209 17 ms 144.54% 102,292 23 ms 80.74% 220 10 s 214.14% 

8-core 76,634 31 ms 82.24% 72,584 52 ms 80.05% 232 10 s 249.07% 

12-core 60,505 45 ms 118.92% 145,893 27 ms 65.70% 2,724 1 s 182.09% 

 Wupwise 

4-core 188,336 18 ms 2.71% 159,761 21 ms 2.58% 336 10 s 18.08% 

8-core 159,459 23 ms 5.48% 170,625 23 ms 5.48% 368 10 s 37.70% 

12-core 99,049 39 ms 2.69% 192,689 20 ms 0.73% 384 10 s 52.46% 
Table 6.4:  Parallel predicted vs. best outcome. 

 

The results in Table 6.4 show that our model once again does moderately 

well.  In addition to avoiding bad choices for the sampling interval, our technique led 

to the selection of 3 optimal predictions and 10 total predictions within 30% of the 



 

 94 

 

best sample count of the targeted bracket.  With all n-core experiments of applu, 

fma3d, and wupwise, our predicted best outcomes compare well with all measured 

best outcomes.  For equake the comparison is somewhat mixed while the results for 

swim, the most memory-intensive of the OMP benchmarks, are not nearly as good.  

Both the measured best outcome and our predicted best outcome results for swim are 

noticeably worse than the results for the other experiments.  This is caused by 

significant cache thrashing of the large arrays swim uses during its shallow water 

modeling being further exacerbated by the sampling process. 

When compared to an experimental setup that chooses a single sampling 

interval to use across all 15 experiments (as is commonly done) our analytic equation 

does better than all tested intervals except one and it does at least as equally well as 

that interval.  Thus, using adaptive instrumentation based on our analytic function 

provides more accurate results than picking a single sampling interval. 

Our analytic equation predicts the optimal sample count in our shared-

memory parallel execution experiments with the same efficacy as in our sequential 

execution experiments.  We demonstrated that the number of samples required is 

proportional to time of execution regardless of number of cores used.  Predicting the 

best sample count with wall clock time turns out to provide several benefits.  It 

mitigates the increased perturbation potential observed with larger numbers of cores 

when taking very large numbers of samples.  And, it moderates the decreasing utility 

value of each successive sample as the sample size gets very large helping avoid the 

misleadingly small confidence intervals that very large sample sizes imply. 

 



 

 95 

 

Chapter 7:  Future Work 
 

In this chapter, we describe future work motivated by the research results 

presented in this dissertation. 

7.1 Process Refinement 

Our current technique for predicting the optimal sample interval for 

minimizing overall error relies on initial experiments to determine a starting value for 

p and a value for o (overhead).  There are many ways that we could make the start up 

process less cumbersome and costly.  Statically determining these values or values 

"close enough" would be ideal, but even selectively starting and prematurely ending 

runs could save time and resources with programs of moderate length and would 

likely be necessary for programs long enough that experimenters do not have the 

luxury of running them multiple times. 

7.2 Analytic Function Refinement 

An attractive aspect of the statistical science technique for computing 

confidence intervals, given that certain conditions hold, is the reliance on the number 

of samples collected regardless of many underlying aspects of the population under 

investigation.  Investigating the feasibility of evolving our analytic function's measure 

of perturbation, to something more like the statistical science community's function 

for decreasing measurement error, based on the number of samples taken would 

greatly improve its usefulness.  Even some intermediate improvement of the 

development of different functions for programs with generally equivalent levels of 



 

 96 

 

perturbation sensitivity would be a big improvement and something we intend to 

delve into. 

7.3 Other Application Domains 

We studied portions of the class of programs related to sequential execution 

and shared-memory parallel executions for 12 cores and below.  There are more 

classes of programs where we believe our technique or something very similar can be 

used to improve performance measurement.  Exploring programs running with much 

greater parallelism, especially, programs where some cores are used exclusively for 

program execution while others are used strictly for measurement and management 

tasks is one such area of future research.  Given the continued reemergence of 

virtualized machines based on their practical benefits, exploring the experiment space 

of profiling applications designed to run on virtual machines is another area we would 

like to investigate. 

7.4 Beyond Functions 

The effects of perturbation we examined were primarily on the calculated 

proportion or percent execution of functions – a very common and useful, but 

singular and high-level point of analysis.  We want to conduct further studies below 

the function level; e.g. basic block, source line, instruction; as well as the data centric 

perspective, to determine the impacts of perturbation error and how our model might 

be modified to capture it. 



 

 97 

 

7.5 Computer Universe 

In the course of our investigation, it was not uncommon to brush up against 

references to the Hisenberg Uncertainty Principle with hints at the idea that computer 

systems can be viewed in a manner similar to that of a mini universe where there are 

limits to the accuracy with which we can know or predict anything.  We would like to 

identify and model other aspects of these systems for inclusion with our model to gain 

a better understanding of the limits of accuracy.  Some examples include the clock 

resolution error; the duration or reach of a sample's perturbation effect; and the 

residual "noise" in a system – e.g., interrupts, system calls, context switches. 

 

  



 

 98 

 

 



 

 99 

 

Chapter 8:  Conclusions 
 

With this research, we introduced and explored four ideas related to dynamic 

performance analysis.  We started with the creation of a simple abstract model 

designed to demonstrate the general effects of measurement error and perturbation 

error on a program's execution during the process of statistical profiling.  From this 

abstract model, we developed a mathematical model, constructed with some 

simplifying assumptions, to describe program execution performance; the derivative 

of which can be used to predict the sample count needed to find the "sweet spot" 

where the combined effects of residual measurement error and expanding 

perturbation error are lowest.  In conjunction with the development of our 

mathematical model, we conducted an extensive set of experiments to validate the 

idea that a sampling "sweet spot" existed and to confirm the notion that a model 

might be used to find or predict the "sweet spot."  This confirmation is an important 

(first?) step that undergirds the final larger idea that we should begin to move beyond 

qualitative guidance to experimenters by providing some quantitative guidance 

similar to what is available from the field of statistical science. 

The starting point of our research, the abstract model, is a simple, but useful, 

general model of the interaction of measurement error and perturbation error that 

provides a valuable and constructive manner of thinking about the interaction of the 

two error types and their combined effect on measurement results across the spectrum 

of potential sample counts.  It also serves as a reliable indicator of how the interaction 

of the errors affects overall experimental measurement accuracy of software statistical 

profiling.  It helps challenge the thinking, often implicit in statistical performance 



 

 100 

 

profiling, that collecting a large number of samples is a good and useful thing to do, 

often motivated by the simple fact that it is easy to do so. 

Our mathematical model proved to be reasonably accurate at predicting the 

"sweet spot" sample count which allowed us to often calculate a sample interval at or 

near that which we determined to be optimal, while regularly avoiding those that were 

truly bad.  This model is based on some simplifying assumptions, focusing only on 

cases where performance measurements dilate in response to perturbation; however, 

across all experimental contexts, our predictions performed better than the choice of 

using a single sampling interval for all experiments. 

We demonstrated the high degree of likelihood for the common existence of a 

measurement accuracy "sweet spot" through experimental results from simulations 

and from experiments with our calibration program, with sequential execution on a 

subset of SPEC CPU 2006 benchmarks, and with shared-memory parallel execution 

on a subset of SPEC OMP 2001 benchmarks.  Further, we showed our analytic model 

to be sufficiently accurate in predicting the "sweet spot" and calculating the 

corresponding sample interval that it could stand against any singularly favored and 

unchanging sample interval. 

The systems performance analysis research literature is replete with 

qualitative suggestions and guidance like that provided in a 1969 paper by W.R. 

Deniston:  "A prime consideration in developing a software measurement technique 

to obtain internal data is that a suitable compromise between resolution and system 

degradation must be achieved." [14]  The main thrust of our research is in the 

direction of providing experimenters with some useful quantitative guidance related 



 

 101 

 

to this problem of balancing measurement and perturbation errors.  To that end, we 

believe we have provided an important step intended to help experimental procedures 

move beyond the well-founded suggestions to use "reasonable" or "appropriate" 

sampling intervals, towards solid quantitative guidance that helps experimenters 

calculate sampling intervals resulting in execution profiles with greater accuracy. 

  



 

 102 

 

 



 

 103 

 

Appendix A 
 

In this appendix we provide the sequence of steps by which we progress from our 

mathematical analytic function to our formula for calculating the ideal number of 

samples for a given performance analysis run.  The following notation is used: 

tfoo(n) Execution time calculated for foo based on n samples 

n Number of samples 

o Overhead time cost per sample 

   Measured proportion of total program execution time spent in foo 

T Un-sampled (true) total program execution time 

z Standard score (z-value) for confidence level used 
Table A.1:  Analytic function notation 

 

Our analytic function is as follows: 

                     
        

 
  (A.1) 

 

To begin, we take the first derivative of our analytic function with respect to n as 

follows: 

     
     

 

  
             

        

 
   (A.2) 

 

     
     

 

  
       

 

  
        

        

 
   (A.3) 

 

     
        

 

  
     

 

  
      

        

 
  (A.4) 

 

     
           

 

  
     

 

  
   

        

 
   (A.5) 

 



 

 104 

 

     
                     

 

  
 
 

 
  (A.6) 

 

     
         

           

 
  

 

  
  (A.7) 

 

     
         

           

    
 (A.8) 

 

We can now take the simplified first derivative, set it equal to 0, and solve to find the 

minimum point of our top curve as expressed by our analytic function. 

      
           

    
 (A.9) 

 

    
           

    
 (A.10) 

 

     
           

    
 (A.11) 

 

     
           

    
 

 
 

 (A.11) 

 

We use this final equation (which is also equation 4.10 from section 4.2.2) to 

calculate the sample size and  then determine the sampling rate that provides the best 

balance between achieving measurement precision and limiting the effects of 

perturbation error in the following manner.  Solve for n using known or estimated 

values for terms T, z,   , and o, then divide n (the total number of samples) by the 

number of minutes the program will run. 

  



 

 105 

 

Appendix B 
Additional detailed results relevant to the analysis of the SPEC CPU 2006 

sequential program executions we conducted are contained in this appendix. 

Bzip2 

Following are the graphs of the bzip2 experiments. 

 
Figure B.1:  Plot of proportion calculation results for BZ2_blockSort), the function taking the most 

execution time for bzip2, across the 28x10 execution runs. 

 

 
Figure B.2:  Plot of proportion calculation results for mainGtU, the function taking the 2nd most execution 

time for bzip2, across the 28x10 execution runs. 

 



 

 106 

 

 
Figure B.3:  Plot of proportion calculation results for BZ2_decompress, the function taking the 3rd most 

execution time for bzip2, across the 28x10 execution runs. 

 

 
Figure B.4:  Plot of proportion calculation results for BZ2_compressBlock, the function taking the 4th most 

execution time for bzip2, across the 28x10 execution runs. 

 



 

 107 

 

 
Figure B.5:  The aggregated MAPE results for the top four functions in bzip2 (blue solid line) and the 

calculated approximate expected MAPE (dotted red line). 

 

The sampling interval that resulted in the overall best result for the bzip2 

benchmark was 2 ms. 

Mcf 

Following are the graphs of the mcf experiments. 

 
Figure B.6:  Plot of proportion calculation results for primal_bea_mpp, the function taking the most 

execution time for mcf, across the 28x10 execution runs. 

 



 

 108 

 

 
Figure B.7:  Plot of proportion calculation results for refresh_potential, the function taking the 2nd most 

execution time for mcf, across the 28x10 execution runs. 

 

 
Figure B.8:  Plot of proportion calculation results for replace_weaker_arc, the function taking the 3rd most 

execution time for mcf, across the 28x10 execution runs. 

 

 



 

 109 

 

Figure B.9:  Plot of proportion calculation results for price_out_impl, the function taking the 4th most 

execution time for mcf, across the 28x10 execution runs. 

 

 
Figure B.10:  The aggregated MAPE results for the top four functions in mcf (blue solid line) and the 

calculated approximate expected MAPE (dotted red line). 

 

 

The sampling interval that resulted in the overall best result for the mcf 

benchmark was 2 ms. 

Milc 

Following are the graphs of the milc experiments. 

 
Figure B.11:  Plot of proportion calculation results for mult_su3_na, the function taking the most execution 

time for milc, across the 28x10 execution runs. 

 



 

 110 

 

 
Figure B.12:  Plot of proportion calculation results for mult_su3_nn, the function taking the 2nd most 

execution time for milc, across the 28x10 execution runs. 

 

 
Figure B.13:  Plot of proportion calculation results for mult_su3_mat_vec, the function taking the 3rd most 

execution time for milc, across the 28x10 execution runs. 

 

 



 

 111 

 

Figure B.14:  Plot of proportion calculation results for mult_adj_su3_mat_vec, the function taking the 4th 

most execution time for milc, across the 28x10 execution runs. 

 

 
Figure b.15:  The aggregated MAPE results for the top four functions in milc (blue solid line) and the 

calculated approximate expected MAPE (dotted red line). 

 

The sampling interval that resulted in the overall best result for the milc 

benchmark was 9 ms. 

Sjeng 

Following are the graphs of the sjeng experiments. 

 
Figure B.16:  Plot of proportion calculation results for std_eval, the function taking the most execution time 

for sjeng, across the 28x10 execution runs. 

 



 

 112 

 

 
Figure B.17:  Plot of proportion calculation results for setup_attackers, the function taking the 2nd most 

execution time for sjeng, across the 28x10 execution runs. 

 

 
Figure B.18:  Plot of proportion calculation results for gen, the function taking the 3rd most execution time 

for sjeng, across the 28x10 execution runs. 

 

 



 

 113 

 

Figure B.19:  Plot of proportion calculation results for remove_one, the function taking the 4th most 

execution time for sjeng, across the 28x10 execution runs. 

 

 
Figure B.20:  The aggregated MAPE results for the top four functions in sjeng (blue solid line) and the 

calculated approximate expected MAPE (dotted red line). 

 

  



 

 114 

 

 

 



 

 115 

 

Appendix C 
Additional detailed results relevant to the analysis of the SPEC OMP 2001 

shared-memory parallel program executions we conducted are contained in this 

appendix.  The following four graphs show the distribution of run times observed 

across all experiments.  Legends for these four graphs are across the top, indicating 

the name of the SPEC OMP 2001 benchmark and which graph marker corresponds 

with which core setting. 

 
Figure C.1:  Distribution of run times, 20 each, sorted shortest to longest within each sampling interval, for 

the SPEC OMP 2001 benchmark applu. 

 



 

 116 

 

 
Figure C.2:  Distribution of run times, 20 each, sorted shortest to longest within each sampling interval, for 

the SPEC OMP 2001 benchmark fma3d. 

 

 
Figure C.3:  Distribution of run times, 20 each, sorted shortest to longest within each sampling interval, for 

the SPEC OMP 2001 benchmark swim. 

 



 

 117 

 

 
Figure C.4:  Distribution of run times, 20 each, sorted shortest to longest within each sampling interval, for 

the SPEC OMP 2001 benchmark wupwise. 

 

The graphs from this point to the end of the appendix present either the results 

of individual functions for a specific benchmark or a composite result of the top 4 

functions of a benchmark with 95% confidence interval whiskers.  These first 3 

graphs complement those presented in Chapter 6 for equake 4 threads on 4 cores. 

 
Figure C.5:  Results of the percent execution of GOMP_taskwait, the function taking the 2nd most 

execution time for the 120 runs conducted with equake, 4 threads on 4 cores, 20 runs per sampling interval. 



 

 118 

 

 

 
Figure C.6:  Results of the percent execution of main.omp_fn.10, the function taking the 3rd most execution 

time for the 120 runs conducted with equake, 4 threads on 4 cores, 20 runs per sampling interval. 

 

 

 

 
Figure C.7:  Results of the percent execution of omp_get_num_procs for the 120 runs conducted with 

equake, 4 threads on 4 cores, 20 runs per sampling interval. 

 

 

 

 



 

 119 

 

The next 5 graphs present results of experiments done with equake, 8 threads 

on 8 cores.  First is the composite graph done with the large interval bracketing runs.  

Following that are 4 graphs showing individual function results with 95% CIs for the 

small interval bracketing runs. 

 
Figure C.8:  Distribution of the percent execution taken by 4 different functions from 100 runs of equake 

with 8 threads on 8 cores, 20 each at 5 different sampling intervals.  Each data point includes whiskers 

indicating the expected 95% confidence interval of the calculated proportion. 

 



 

 120 

 

 
Figure C.9:  Results of the percent execution of smvp.omp_fn.5, the function taking the most execution time 

for the 120 runs conducted with equake, 8 threads on 8 cores, 20 runs per sampling interval. 

 

 

 

 
Figure C.10:  Results of the percent execution of GOMP_taskwait, the function taking the 2nd most 

execution time for the 120 runs conducted with equake, 8 threads on 8 cores, 20 runs per sampling interval. 

 



 

 121 

 

 
Figure C.11:  Results of the percent execution of main.omp_fn.10, the function taking the 3rd most 

execution time for the 120 runs conducted with equake, 8 threads on 8 cores, 20 runs per sampling interval. 

 

 

 

 
Figure C.12:  Results of the percent execution of omp_get_num_procs, for the 120 runs conducted with 

equake, 8 threads on 8 cores, 20 runs per sampling interval. 

 

 

 

 

 



 

 122 

 

The next 5 graphs present results of experiments done with equake, 12 threads 

on 12 cores.  First is the composite graph done with the large interval bracketing runs.  

Following that are 4 graphs showing individual function results for the small interval 

bracketing runs. 

 
Figure C.13:  Distribution of the percent execution taken by 4 different functions from 100 runs of equake 

with 12 threads on 12 cores, 20 each at 5 different sampling intervals.  Each data point includes whiskers 

indicating the expected 95% confidence interval of the calculated proportion. 

 



 

 123 

 

 
Figure C.14:  Results of the percent execution of smvp.omp_fn.5, the function taking the most execution 

time for the 120 runs conducted with equake, 12 threads on 12 cores, 20 runs per sampling interval. 

 

 

 

 
Figure C.15:  Results of the percent execution of GOMP_taskwait, the function taking the 2nd most 

execution time for the 120 runs conducted with equake, 12 threads on 12 cores, 20 runs per sampling 

interval. 

 



 

 124 

 

 
Figure C.16:  Results of the percent execution of main.omp_fn.10, the function taking the 3rd most 

execution time for the 120 runs conducted with equake, 12 threads on 12 cores, 20 runs per sampling 

interval. 

 

 

 

 
Figure C.17:  Results of the percent execution of omp_get_num_procs, for the 120 runs conducted with 

equake, 12 threads on 12 cores, 20 runs per sampling interval. 

 

 

 

 

 



 

 125 

 

The next 5 graphs present results of experiments done with applu, 4 threads on 

4 cores.  First is the composite graph done with the large interval bracketing runs.  

Following that are 4 graphs showing individual function results for the small interval 

bracketing runs. 

 
Figure C.18:  Distribution of the percent execution taken by 4 different functions from 100 runs of applu 

with 4 threads on 4 cores, 20 each at 5 different sampling intervals.  Each data point includes whiskers 

indicating the expected 95% confidence interval of the calculated proportion. 

 



 

 126 

 

 
Figure C.19:  Results of the percent execution of ssor_.omp_fn.2, the function taking the most execution 

time for the 120 runs conducted with applu, 4 threads on 4 cores, 20 runs per sampling interval. 

 

 

 

 
Figure C.20:  Results of the percent execution of GOMP_taskwait, the function taking the 2nd most 

execution time for the 120 runs conducted with applu, 4 threads on 4 cores, 20 runs per sampling interval. 

 



 

 127 

 

 
Figure C.21:  Results of the percent execution of buts_, the function taking the 3rd most execution time for 

the 120 runs conducted with applu, 4 threads on 4 cores, 20 runs per sampling interval. 

 

 

 

 
Figure C.22:  Results of the percent execution of blts_, the function taking the 4th most execution time for 

the 120 runs conducted with applu, 4 threads on 4 cores, 20 runs per sampling interval. 

 

 

 

 

 



 

 128 

 

The next 5 graphs present results of experiments done with applu, 8 threads on 

8 cores.  First is the composite graph done with the large interval bracketing runs.  

Following that are 4 graphs showing individual function results for the small interval 

bracketing runs. 

 

 
Figure C.23:  Distribution of the percent execution taken by 4 different functions from 100 runs of applu 

with 8 threads on 8 cores, 20 each at 5 different sampling intervals.  Each data point includes whiskers 

indicating the expected 95% confidence interval of the calculated proportion. 

 



 

 129 

 

 
Figure C.24:  Results of the percent execution of ssor_.omp_fn.2, the function taking the most execution 

time for the 120 runs conducted with applu, 8 threads on 8 cores, 20 runs per sampling interval. 

 

 

 

 
Figure C.25:  Results of the percent execution of GOMP_taskwait, the function taking the 2nd most 

execution time for the 120 runs conducted with applu, 8 threads on 8 cores, 20 runs per sampling interval. 

 



 

 130 

 

 
Figure C.26:  Results of the percent execution of buts_, the function taking the 3rd most execution time for 

the 120 runs conducted with applu, 8 threads on 8 cores, 20 runs per sampling interval. 

 

 

 

 
Figure C.27:  Results of the percent execution of blts_, the function taking the 4th most execution time for 

the 120 runs conducted with applu, 8 threads on 8 cores, 20 runs per sampling interval. 

 

 

 

 

 



 

 131 

 

The next 5 graphs present results of experiments done with applu, 12 threads 

on 12 cores.  First is the composite graph done with the large interval bracketing runs.  

Following that are 4 graphs showing individual function results for the small interval 

bracketing runs. 

 
Figure C.28:  Distribution of the percent execution taken by 4 different functions from 100 runs of applu 

with 12 threads on 12 cores, 20 each at 5 different sampling intervals.  Each data point includes whiskers 

indicating the expected 95% confidence interval of the calculated proportion. 

 



 

 132 

 

 
Figure C.29:  Results of the percent execution of ssor_.omp_fn.2, the function taking the most execution 

time for the 120 runs conducted with applu, 12 threads on 12 cores, 20 runs per sampling interval. 

 

 

 

 
Figure C.30:  Results of the percent execution of GOMP_taskwait, the function taking the 2nd most 

execution time for the 120 runs conducted with applu, 12 threads on 12 cores, 20 runs per sampling 

interval. 

 



 

 133 

 

 
Figure C.31:  Results of the percent execution of buts_, the function taking the 3rd most execution time for 

the 120 runs conducted with applu, 12 threads on 12 cores, 20 runs per sampling interval. 

 

 

 

 
Figure C.32:  Results of the percent execution of blts_, the function taking the 4th most execution time for 

the 120 runs conducted with applu, 12 threads on 12 cores, 20 runs per sampling interval. 

 

 

 

 

 



 

 134 

 

The next 5 graphs present results of experiments done with fma3d, 4 threads 

on 4 cores.  First is the composite graph done with the large interval bracketing runs.  

Following that are 4 graphs showing individual function results for the small interval 

bracketing runs. 

 
Figure C.33:  Distribution of the percent execution taken by 4 different functions from 100 runs of fma3d 

with 4 threads on 4 cores, 20 each at 5 different sampling intervals.  Each data point includes whiskers 

indicating the expected 95% confidence interval of the calculated proportion. 

 

 



 

 135 

 

 
Figure C.34:  Results of the percent execution of platq_internal_forces_.omp_fn.0, the function taking the 

most execution time for the 120 runs conducted with fma3d, 4 threads on 4 cores, 20 runs per sampling 

interval. 

 

 

 

 
Figure C.35:  Results of the percent execution of GOMP_taskwait, the function taking the 2nd most 

execution time for the 120 runs conducted with fma3d, 4 threads on 4 cores, 20 runs per sampling interval. 

 



 

 136 

 

 
Figure C.36:  Results of the percent execution of platq_stress_integration_, the function taking the 3rd most 

execution time for the 120 runs conducted with fma3d, 4 threads on 4 cores, 20 runs per sampling interval. 

 

 

 

 
Figure C.37:  Results of the percent execution of material_41_integration_, the function taking the 4th most 

execution time for the 120 runs conducted with fma3d, 4 threads on 4 cores, 20 runs per sampling interval. 

 

 

 

 

 



 

 137 

 

The next 5 graphs present results of experiments done with fma3d, 8 threads 

on 8 cores.  First is the composite graph done with the large interval bracketing runs.  

Following that are 4 graphs showing individual function results for the small interval 

bracketing runs. 

 
Figure C.38:  Distribution of the percent execution taken by 4 different functions from 100 runs of fma3d 

with 8 threads on 8 cores, 20 each at 5 different sampling intervals.  Each data point includes whiskers 

indicating the expected 95% confidence interval of the calculated proportion. 

 

 



 

 138 

 

 
Figure C.39:  Results of the percent execution of platq_internal_forces_.omp_fn.0, the function taking the 

most execution time for the 120 runs conducted with fma3d, 8 threads on 8 cores, 20 runs per sampling 

interval. 

 

 

 

 
Figure C.40:  Results of the percent execution of GOMP_taskwait, the function taking the 2nd most 

execution time for the 120 runs conducted with fma3d, 8 threads on 8 cores, 20 runs per sampling interval. 

 



 

 139 

 

 
Figure C.41:  Results of the percent execution of platq_stress_integration_, the function taking the 3rd most 

execution time for the 120 runs conducted with fma3d, 8 threads on 8 cores, 20 runs per sampling interval. 

 

 

 

 
Figure C.42:  Results of the percent execution of material_41_integration_, the function taking the 4th most 

execution time for the 120 runs conducted with fma3d, 8 threads on 8 cores, 20 runs per sampling interval. 

 

 

 

 

 



 

 140 

 

The next 5 graphs present results of experiments done with fma3d, 12 threads 

on 12 cores.  First is the composite graph done with the large interval bracketing runs.  

Following that are 4 graphs showing individual function results for the small interval 

bracketing runs. 

 
Figure C.43:  Distribution of the percent execution taken by 4 different functions from 100 runs of fma3d 

with 12 threads on 12 cores, 20 each at 5 different sampling intervals.  Each data point includes whiskers 

indicating the expected 95% confidence interval of the calculated proportion. 

 



 

 141 

 

 
Figure C.44:  Results of the percent execution of platq_internal_forces_.omp_fn.0, the function taking the 

most execution time for the 120 runs conducted with fma3d, 12 threads on 12 cores, 20 runs per sampling 

interval. 

 

 

 

 
Figure C.45:  Results of the percent execution of GOMP_taskwait, the function taking the 2nd most 

execution time for the 120 runs conducted with fma3d, 12 threads on 12 cores, 20 runs per sampling 

interval. 

 

 

 



 

 142 

 

 
Figure C.46:  Results of the percent execution of platq_stress_integration_, the function taking the 3rd most 

execution time for the 120 runs conducted with fma3d, 12 threads on 12 cores, 20 runs per sampling 

interval. 

 

 

 

 
Figure C.47:  Results of the percent execution of material_41_integration_, the function taking the 4th most 

execution time for the 120 runs conducted with fma3d, 12 threads on 12 cores, 20 runs per sampling 

interval. 

 

 

 

 

 



 

 143 

 

The next 5 graphs present results of experiments done with swim, 4 threads on 

4 cores.  First is the composite graph done with the large interval bracketing runs.  

Following that are 4 graphs showing individual function results for the small interval 

bracketing runs. 

 

 
Figure C.48:  Distribution of the percent execution taken by 4 different functions from 100 runs of swim 

with 4 threads on 4 cores, 20 each at 5 different sampling intervals.  Each data point includes whiskers 

indicating the expected 95% confidence interval of the calculated proportion. 

 



 

 144 

 

 
Figure C.49:  Results of the percent execution of GOMP_taskwait, the function taking the most execution 

time for the 120 runs conducted with swim, 4 threads on 4 cores, 20 runs per sampling interval. 

 

 

 

 
Figure C.50:  Results of the percent execution of calc2_.omp_fn.2, the function taking the 2nd most 

execution time for the 120 runs conducted with swim, 4 threads on 4 cores, 20 runs per sampling interval. 

 

 

 



 

 145 

 

 
Figure C.51:  Results of the percent execution of calc1_.omp_fn.3, the function taking the 3rd most 

execution time for the 120 runs conducted with swim, 4 threads on 4 cores, 20 runs per sampling interval. 

 

 

 

 
Figure C.52:  Results of the percent execution of calc3_.omp_fn.0, the function taking the 4th most 

execution time for the 120 runs conducted with swim, 4 threads on 4 cores, 20 runs per sampling interval. 

 

 

 

 

 



 

 146 

 

The next 5 graphs present results of experiments done with swim, 8 threads on 

8 cores.  First is the composite graph done with the large interval bracketing runs.  

Following that are 4 graphs showing individual function results for the small interval 

bracketing runs. 

 
Figure C.53:  Distribution of the percent execution taken by 4 different functions from 100 runs of swim 

with 8 threads on 8 cores, 20 each at 5 different sampling intervals.  Each data point includes whiskers 

indicating the expected 95% confidence interval of the calculated proportion. 

 

 

 



 

 147 

 

 
Figure C.54:  Results of the percent execution of GOMP_taskwait, the function taking the most execution 

time for the 120 runs conducted with swim, 8 threads on 8 cores, 20 runs per sampling interval. 

 

 

 

 
Figure C.55:  Results of the percent execution of calc2_.omp_fn.2, the function taking the 2nd most 

execution time for the 120 runs conducted with swim, 8 threads on 8 cores, 20 runs per sampling interval. 

 

 

 



 

 148 

 

 
Figure C.56:  Results of the percent execution of calc1_.omp_fn.3, the function taking the 3rd most 

execution time for the 120 runs conducted with swim, 8 threads on 8 cores, 20 runs per sampling interval. 

 

 

 

 
Figure C.57:  Results of the percent execution of calc3_.omp_fn.0, the function taking the 4th most 

execution time for the 120 runs conducted with swim, 8 threads on 8 cores, 20 runs per sampling interval. 

 

 

 

 

 



 

 149 

 

The next 5 graphs present results of experiments done with swim, 12 threads 

on 12 cores.  First is the composite graph done with the large interval bracketing runs.  

Following that are 4 graphs showing individual function results for the small interval 

bracketing runs. 

 
Figure C.58:  Distribution of the percent execution taken by 4 different functions from 100 runs of swim 

with 12 threads on 12 cores, 20 each at 5 different sampling intervals.  Each data point includes whiskers 

indicating the expected 95% confidence interval of the calculated proportion. 

 

 



 

 150 

 

 
Figure C.59:  Results of the percent execution of GOMP_taskwait, the function taking the most execution 

time for the 120 runs conducted with swim, 12 threads on 12 cores, 20 runs per sampling interval. 

 

 

 

 
Figure C.60:  Results of the percent execution of calc2_.omp_fn.2, the function taking the 2nd most 

execution time for the 120 runs conducted with swim, 12 threads on 12 cores, 20 runs per sampling interval. 

 

 

 



 

 151 

 

 
Figure C.61:  Results of the percent execution of calc1_.omp_fn.3, the function taking the 3rd most 

execution time for the 120 runs conducted with swim, 12 threads on 12 cores, 20 runs per sampling interval. 

 

 

 

 
Figure C.62:  Results of the percent execution of calc3_.omp_fn.0, the function taking the 4th most 

execution time for the 120 runs conducted with swim, 12 threads on 12 cores, 20 runs per sampling interval. 

 

 

 

 

 



 

 152 

 

The next 5 graphs present results of experiments done with wupwise, 4 

threads on 4 cores.  First is the composite graph done with the large interval 

bracketing runs.  Following that are 4 graphs showing individual function results for 

the small interval bracketing runs. 

 
Figure C.63:  Distribution of the percent execution taken by 4 different functions from 100 runs of wupwise 

with 4 threads on 4 cores, 20 each at 5 different sampling intervals.  Each data point includes whiskers 

indicating the expected 95% confidence interval of the calculated proportion. 

 

 

 



 

 153 

 

 
Figure C.64:  Results of the percent execution of zgemm_, the function taking the most execution time for 

the 120 runs conducted with wupwise, 4 threads on 4 cores, 20 runs per sampling interval. 

 

 

 

 
Figure C.65:  Results of the percent execution of muldoe_.omp_fn.0, the function taking the 2nd most 

execution time for the 120 runs conducted with wupwise, 4 threads on 4 cores, 20 runs per sampling 

interval. 

 

 

 



 

 154 

 

 
Figure C.66:  Results of the percent execution of muldeo_.omp_fn.0, the function taking the 3rd most 

execution time for the 120 runs conducted with wupwise, 4 threads on 4 cores, 20 runs per sampling 

interval. 

 

 

 

 
Figure C.67:  Results of the percent execution of GOMP_taskwait, the function taking the 4th most 

execution time for the 120 runs conducted with wupwise, 4 threads on 4 cores, 20 runs per sampling 

interval. 

 

 

 

 



 

 155 

 

The next 5 graphs present results of experiments done with wupwise, 8 

threads on 8 cores.  First is the composite graph done with the large interval 

bracketing runs.  Following that are 4 graphs showing individual function results for 

the small interval bracketing runs. 

 
Figure C.68:  Distribution of the percent execution taken by 4 different functions from 100 runs of wupwise 

with 8 threads on 8 cores, 20 each at 5 different sampling intervals.  Each data point includes whiskers 

indicating the expected 95% confidence interval of the calculated proportion. 

 

 

 



 

 156 

 

 
Figure C.69:  Results of the percent execution of zgemm_, the function taking the most execution time for 

the 120 runs conducted with wupwise, 8 threads on 8 cores, 20 runs per sampling interval. 

 

 

 

 
Figure C.70:  Results of the percent execution of GOMP_taskwait, the function taking the 2nd most 

execution time for the 120 runs conducted with wupwise, 8 threads on 8 cores, 20 runs per sampling 

interval. 

 

 

 



 

 157 

 

 
Figure C.71:  Results of the percent execution of muldoe_.omp_fn.0, the function taking the 3rd most 

execution time for the 120 runs conducted with wupwise, 8 threads on 8 cores, 20 runs per sampling 

interval. 

 

 

 

 
Figure C.72:  Results of the percent execution of muldeo_.omp_fn.0, the function taking the 4th most 

execution time for the 120 runs conducted with wupwise, 8 threads on 8 cores, 20 runs per sampling 

interval. 

 

 

 

 



 

 158 

 

The next 5 graphs present results of experiments done with wupwise, 12 

threads on 12 cores.  First is the composite graph done with the large interval 

bracketing runs.  Following that are 4 graphs showing individual function results for 

the small interval bracketing runs. 

 
Figure C.73:  Distribution of the percent execution taken by 4 different functions from 100 runs of wupwise 

with 12 threads on 12 cores, 20 each at 5 different sampling intervals.  Each data point includes whiskers 

indicating the expected 95% confidence interval of the calculated proportion. 

 

 

 



 

 159 

 

 
Figure C.74:  Results of the percent execution of zgemm_, the function taking the most execution time for 

the 120 runs conducted with wupwise, 12 threads on 12 cores, 20 runs per sampling interval. 

 

 

 

 
Figure C.75:  Results of the percent execution of GOMP_taskwait, the function taking the 2nd most 

execution time for the 120 runs conducted with wupwise, 12 threads on 12 cores, 20 runs per sampling 

interval. 

 

 

 



 

 160 

 

 
Figure C.76:  Results of the percent execution of muldoe_.omp_fn.0, the function taking the 3rd most 

execution time for the 120 runs conducted with wupwise, 12 threads on 12 cores, 20 runs per sampling 

interval. 

 

 

 

 
Figure C.77:  Results of the percent execution of muldeo_.omp_fn.0, the function taking the 4th most 

execution time for the 120 runs conducted with wupwise, 12 threads on 12 cores, 20 runs per sampling 

interval. 

 

 

  



 

 161 

 

Glossary 

Accuracy.  The absolute difference between a measured value and the corresponding 

reference value, often the true value [39]. 

 

Estimation error (also sampling error).  The range of uncertainty between a statistic 

calculated from a sample and a parameter calculated from an entire population. 

 

Measurement-based profiling (also measured profiling).  Instrumenting of a program 

in order to observe (and record) specific events of interest (e.g., entry and exit of a 

function) [43]. 

 

Perturbation (also interference [12, 23, 16], degradation [14, 26], artifact [52], side 

effects [63], probe effect [17], intrusion [4, 30], and invasion [48]).  The changes 

in a system's behavior caused by measuring some aspect of its performance [39]. 

 

Precision.  The amount of scatter in a set of measurements.  Corresponds to the 

repeatability of the measurements [39]. 

 

Profile.  The collection of frequency counts of program parts (functions, basic blocks, 

line of code). 

 

Sample-based profiling (also program status sampling [36] or statistical profiling).  

Periodic interruption of a program, often coordinated via a timer, in order to 

observe (and record) the current state of an executing program. 

  



 

 162 

 

 



 

 163 

 

Bibliography 
 

[1] L. Adhianto, S. Banerjee, M. Fagan, M. Krentel, G. Marin, J. Mellor-

Crummey, and N. R. Tallent.  Hpctoolkit: tools for performance analysis of 

optimized parallel programs http://hpctoolkit.org. Concurrency and 

Computation: Practice and Experience, 22(6):685–701, 2010. 

 

[2] M. Andersland and T. Casavant. Recovering uncorrupted event traces from 

corrupted event traces in parallel/distributed computing systems. In 

Proceedings of the 1991 International Conference on Parallel Processing, 

pages II.108–II.116, 1991. 

 

[3] J. M. Anderson, L. M. Berc, J. Dean, S. Ghemawat, M. R. Henzinger, S.-T. A. 

Leung, R. L. Sites, M. T. Vandevoorde, C. A. Waldspurger, and W. E. Weihl. 

Continuous profiling: where have all the cycles gone? ACM Trans. Comput. 

Syst., 15(4):357–390, 1997. 

 

[4] Z. Aral and I. Gertner. Non-intrusive and interactive profiling in parasight. 

SIGPLAN Not. 23, 9, 21-30, January 1988. 

 

[5] D. C. Arnold, D. H. Ahn, B. R. D. Supinski, G. L. Lee, B. P. Miller, and M. 

Schulz. Stack trace analysis for large scale debugging. In International Parallel 

and Distributed Processing Symposium, 2007. IPDPS 2007, IEEE 

International, pp. 1-10, March 2007. 

 

[6] V. Aslot and R. Eigenmann. Performance characteristics of the SPEC 

OMP2001 Benchmarks. SIGARCH Comput. Archit. News, December 2001. 

 

[7] M. L. Berenson, D.M. Levine, and T. C. Krehbiel. Basic Business Statistics: 

Concepts and Applications. Prentice Hall, 10th edition, April 2005. 

 

[8] P. Berube and J.N. Amaral. Combined profiling: A methodology to capture 

varied program behavior across multiple inputs. Performance Analysis of 

Systems and Software (ISPASS), 2012 IEEE, pp. 210-220, April 2012. 

 

[9] S. Browne, J. Dongarra, N. Garner, K. London, and P. Mucci. A scalable 

cross-platform infrastructure for application performance tuning using 

hardware counters. Proceedings of the 2000 ACM/IEEE conference on 

Supercomputing, pg. 42, 2000. 

 

[10] H.D. Brunk, J.E. Holstein, and F. Williams. A comparison of binomial 

approximations to the hypergeometric distribution. The American statistician, 

vol. 22, no. 1, 24-26, February 1968. 

 



 

 164 

 

[11] B. Buck and J.K. Hollingsworth. An api for runtime code patching. 

International Journal High Performance Computing Applcations, 14(4):317–

329, 2000. 

 

[12] P. Calingaert. System performance evaluation: suvey and appraisal. Comm. 

ACM Vol 10, No. 1, pp 12-18, January 1967. 

 

[13] M. Casas, H. Savat, R.M. Badia, and J. Labarta. Analyzing the temporal 

behavior of applications using spectral analysis. Technical Report UPC-DAC-

RR-CAP-2009-9, Barcelona Supercomputing Center, February 2009. 

 

[14] W.R. Deniston. SIPE: a TSS/360 software measurement technique" Proc. 

ACM 24th National Conf. 229–245, 1969. 

 

[15] W. Feller. On the normal approximation to the binomial distribution. The 

annals of mathematical statistics, vol. 16, no. 4, 319-329, December 1945. 

 

[16] D. Ferrari, G. Serazzi, and A. Zeigner. Measurement and turning of computer 

systems. Prentice-Hall, 1983. 

 

[17] J. Gait. A probe effect in concurrent programs. Software – Practice and 

Experience, 16(3)225-233, March 1986. 

 

[18] J. Gannon, K. Williams, M. Andersland, and T. Casavant. Trace recovery: a 

distributed computing application for perturbation tracking. Proceedings of 

the 33rd IEEE Conference on decision and control, Vol. 3, pp. 2621 –2626, 

December 1994. 

 

[19] J. Gannon, K. Williams, M. Andersland, J. Lummp, Jr., and T. Gasavant. 

Using perturbation tracking to compensate for intrusion in message-passing 

systems. In Proceedings of the 14th International Conference on Distributed 

Computing Systems, IEEE, pp. 414 –421, June 1994. 

 

[20] A. Georges. Three pitfalls in java performance evaluation. PhD thesis, Ghent 

University, Ghent, Belgium, 2008. 

 

[21] A. Georges, D. Buytaert, and L. Eeckhout. Statistically rigorous java 

performance evaluation. SIG-PLAN Notices, 42(10):57–76, 2007. 

 

[22] A.J. Goldberg and J.L. Hennessy. Performance debugging shared memory 

multiprocessor programs with mtool. Proceedings of the 1991 ACM/IEEE 

conference on Supercomputing, pp. 481–490, 1991. 

 

[23] C.C. Gotlieb. Performance Measurement. In Software engineering, an 

advanced course, reprint of the first edition, pp. 464-491, Springer-Verlag, 

London, UK, 1975. 



 

 165 

 

[24] S.L. Graham, P.B. Kessler, and M.K. Mckusick. Gprof: A call graph 

execution profiler. SIGPLAN Symposium on Compiler Construction, 

17(6):120–126, 1982. 

 

[25] S.L. Graham, P.B. Kessler, and M.K. Mckusick. An execution profiler for 

modular programs. Software - Practice and Experience, 13(8):671–685, 1983. 

 

[26] U. Grenander and R. Tsao. Quantitative Methods for Evaluating Computer 

System Performance: A Review and Proposals. Statistical Computer 

Performance Evaluation, in Statistical Computer Performance Evaluation, W. 

Freiberger, Ed., Academic Press, N.Y., pp. 3-24, 1972. 

 

[27] G.J. Hahn and W.O. Meeker. Statistical intervals a guide for practitioners. 

Wiley-Interscience, 1991. 

 

[28] G. Hamerly, E. Perelman, J. Lau, and B. Calder. Simpoint 3.0: Faster and 

more flexible program analysis. In Journal of Instruction Level Parallelism 7, 

September 2005. 

 

[29] J.L. Henning. SPEC CPU2006 Benchmark Descriptions. SIGARCH Comput. 

Archit. News, September 2006. 

 

[30] J.K. Hollingsworth, J.E. Lumpp Jr., B.P. Miller. Techniques for performance 

measurement of parallel programs. Parallel computers: theory and practice, 

IEEE, pp. 225-240, 1995. 

 

[31] HP. Digital continuous profling infrastructure (dcpi). 

http://h30097.www3.hp.com/dcpi/index.html, August 2010. 

 

[32] IBM. Xprofiler. http://domino.research.ibm.com/comm/research_ 

projects.nsf/pages/hpct.xprofiler.html, August 2010. 

 

[33] Intel. Vtune performance analyzer. http://software.intel.com/en-us/intel-

vtune/, August 2010. 

 

[34] R. Jain. The Art of Computer Systems Performance Analysis. John Wiley & 

Sons, Inc., 1991. 

 

[35] T. Kalibera and R. Jones. Quantifying performance changes with effect size 

confidence intervals. Technical report 4-12, University of Kent, June 2012. 

 

[36] D.E. Knuth. An empirical study of fortran programs. Software - Practice and 

Experience, 1, 1971. 

 

[37] W.T.C. Kramer and C. Ryan. Performance variability of highly parallel 

architectures. Lecture notes in computer science, v. 2659, p. 560-569, 2003. 



 

 166 

 

[38] N. Kumar, B.R. Childers, and M.L. Soffa. Low overhead program monitoring 

and profiling. In PASTE ’05: Proceedings of the 6th ACM SIGPLAN-

SIGSOFT workshop on Program analysis for software tools and engineering, 

pages 28–34, 2005. 

 

[39] D.J. Lilja. Measuring computer performance: a practitioner's guide. 

Cambridge University Press, 2000. 

 

[40] T.F. Lehr. Compensating for perturbation by software performance monitors 

in asynchronous computations. PhD thesis, Carnegie Mellon University, 

Pittsburgh, PA, USA, 1990. 

 

[41] A.D. Malony. Performance observability. PhD thesis, University of Illinois at 

Urbana-Champaign, Champaign, IL, USA, 1990. 

 

[42] A.D. Malony, D. A. Reed, and H. A. G. Wijshoff. Performance measurement 

intrusion and perturbation analysis. IEEE Transactions on parallel and 

distributed systems, 3(4):433-450, July 1992. 

 

[43] A.D. Malony, S. Shende, A. Morris, and F. Wolf. Compensation of 

measurement overhead in parallel performance profiling. International journal 

of high performance computer applications, 21(2):174-194, 2007. 

 

[44] A. Mazouz, S. Touati, and D. Barthou. Study of variations of native program 

execution times on multi-core architectures. Proceedings of the 2010 

International Conference on Complex, Intelligent and Software Intensive 

Systems (CISIS), IEEE, pp. 919-924, 2010. 

 

[45] J. Mellor-Crummey, L. Adhianto, M. Fagan, M. Krentel, and N. Tallent. 

HPCToolkit User's Manual, http://hpctoolkit.org/manual/HPCToolkit-users-

manual.pdf, January 2013. 

 

[46] B. P. Miller, M. D. Callaghan, J. M. Cargille, J. K. Hollingsworth, R. B. Irvin, 

K. L. Karavanic, K. Kunchithapadam, and T. Newhall. The paradyn parallel 

performance measurement tool. IEEE Computer, 28(11):37–46, 1995. 

 

[47] T. Mytkowicz, A. Diwan, M. Hauswirth, and P.F. Sweeney. Producing wrong 

data without doing anything obviously wrong! Proceedings of the 14th 

international conference on architectural support for programming languages 

and operating systems (ASPLOS XIV), ACM, pp. 265-276, 2009. 

 

[48] O. Naim and A. J. G. Hey. Invasiveness of performance instrumentation 

measurements on multiprocessors. IFIP transactions A – computer science and 

technology Vol. 44, 1994. 

 



 

 167 

 

[49] H. Najafzadeh and S. Chaiken. Validated observation and reporting of 

microscopic performance using pentium ii counter facilities. Proceedings of 

the 4th international workshop on software and performance (WOSP), pp. 

161–165, 2004. 

 

[50] H. Najafzadeh and S. Chaiken. Towards a framework for source code 

instrumentation measurement validation. Proceedings of the 5th international 

workshop on software and performance (WOSP '05), ACM, pp. 123–130, 

2005. 

 

[51] W. L. Nicholson. On the normal approximation to the hypergeometric 

distribution. The annals of mathematical statistics, Vol. 27, No. 2, pp. 471-

483, June 1956. 

 

[52] G. J. Nutt. Tutorial: computer system monitors, IEEE Computer , Vol.8, 

No.11, pp.51-61, November 1975. 

 

[53] S. Patil and D. Lilja. Statistical methods for computer performance 

evalutation. Wires computational statistics, Vol. 4, Issue 1, 98-106, 2012. 

 

[54] F. Petrini, D.K. Kerbyson, and S. Pakin. The case of the missing 

supercomputer performance: achieving optimal performance on the 8,192 

processors of ASCI Q. Proceedings of the 2003 ACM/IEEE conference on 

Supercomputing, Vol. 55, pp 15-21, November 2003. 

 

[55] D.A. Reed, R.A. Aydt, L. DeRose, C.L. Mendes, R.L. Ribler, E. Shaffer, H. 

Simitci, J.S. Vetter, D.R. Wells, S. Whitmore, and Y. Zhang. Performance 

analysis of parallel systems: approaches and open problems. Proceedings of 

the joint symposium on parallel processing (JSPP), pp. 239-256, 1998. 

 

[56] Rice University. Hpctoolkit. http://hpctoolkit.org/index.html, August 2010. 

 

[57] S. R. Sarukkai and A. D. Malony. Perturbation analysis of high level 

instrumentation for spmd programs. SIGPLAN Not., 28(7):44–53, 1993. 

 

[58] Standard Performance Evaluation Corporation. SPEC CPU2006 Benchmarks. 

http://www.spec.org/cpu2006/ 

 

[59] Standard Performance Evaluation Corporation. SPEC OMP2001 Benchmarks. 

http://www.spec.org/omp2001/ 

 

[60] A. Srivastava and A. Eusance. ATOM:  A system for building customized 

program analysis tools. Proceedings of the SIGPLAN '94 conference on 

programming language design and implementation (PLDI), pp. 196-205, June 

1994. 

 



 

 168 

 

[61] K. Stoodley. Applied and computational statistics. Halsted Press, 1984. 

 

[62] K.V. Subramaniam and M.J. Thazhuthaveetil. Effectiveness of sampling 

based software profilers. Proceedings of software testing, reliability and 

quality assurance, December 1994. 

 

[63] L. Svobodova. Performance monitoring in computer systems:  a structured 

approach.  ACM Operating system review, Vol. 15, No. 3, July 1981. 

 

[64] V. Tabatabaee, T. Tiwari, and J.K. Hollingsworth.  Parallel parameter tuning 

for applications with performance variability.  Proceedings of the 2005 

ACM/IEEE conference on Supercomputing, 2005. 

 

[65] N.R. Tallent, J. Mellor-Crummey, and M.W. Fagan. Binary analysis for 

measurement and attribution of program performance. In proceedings of the 

2009 ACM SIGPLAN conference on programming language design and 

implementation (PLDI), pp. 441-452, 2009. 

 

[66] K. Thompson and D.M. Ritchie. Unix Programmer’s Manual. Bell Telephone 

Laboratories, Murray Hill, NJ, June 1974. 

 

[67] UCSD. Simpoint. http://cseweb.ucsd.edu/~calder/simpoint/index.htm, August 

2010. 

 

[68] J.S. Vetter and D. Reed. Managing performance analysis with dynamic 

statistical projection pursuit. Proceedings of the 1999 ACM/IEEE conference 

on Supercomputing: High performance networking and computing, 1999. 

 

[69] J.J. Yi, D.J. Lilja, and D.M. Hawkins. Improving computer architecture 

simulation methodology by adding statistical rigor. IEEE Transactions on 

Computers, Vol. 54, pp. 1360–1373, November 2005. 


