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Machine translation represents one of the core tasks in natural language processing:

performing an automatic analysis of input text to produce a structured output. Most mod-

ern statistical machine translation (SMT) systems learn how to translate by constructing

a discriminative model based on statistics from the data. While this allows the introduc-

tion of feature functions representing important attributes of the translation process, the

associated model parameters must be learned from data. A growing number of methods

for discriminative training in SMT have been proposed, but most suffer from limitations

that hinder their utility for training feature-rich models on large amounts of data.

In this thesis, we present novel models and learning algorithms that address this

issue by tackling three core problems for discriminative training: what to optimize, how

to optimize, and how to represent the input. The first issue amounts to selecting an appro-

priate objective function, the second to properly searching for parameters that optimize

that objective, and the third to extracting informative features of the data. In addressing

these issues, we develop fast learning algorithms that are both suitable for large-scale



SMT training and capable of generalization in high-dimensional feature spaces.

The algorithms are developed in an online margin-based framework. Their online

nature facilitates easily scaling to perform discriminative training on large training sets,

and maximum margin optimization allows efficient feature-rich learning, permitting ex-

ploration into many new types of sparse features for translation.

While online margin-based methods are firmly established in the machine learn-

ing community, their adaptation to machine translation is not straightforward. Thus, the

first problem we address is what to optimize when learning for SMT, which involves

loss-augmented inference over latent variables. To this end, we define a family of objec-

tive functions for large-margin learning in SMT and investigate their optimization perfor-

mance in standard and high-dimensional feature spaces. We also show that this approach

shows promise not just with respect to the size of the feature space, but with respect to

the size of the tuning data.

After establishing what to optimize, the second problem we focus on is how to

improve learning in the feature-rich space. While the goal of all learning methods is to

produce a model from a limited number of training instances that generalizes well to un-

seen data, this becomes increasingly difficult as the feature dimension grows. Following

recent developments in machine learning that show that generalization ability can be im-

proved by incorporating higher order information into the optimization, we develop an

online gradient-based algorithm based on Relative Margin Machines that improves upon

large-margin learning by considering and bounding the spread of the data while maximiz-

ing the margin.

By utilizing the learning regimes developed thus far, we are able to focus on the



third problem and introduce new features specifically targeting generalization to new do-

mains. While domain adaptation has typically been done with manually defined domains

and corpora, we employ topic models to perform unsupervised domain induction, and in-

troduce translation model adaptation features based on probabilistic domain membership.

As a final question, we look at how to take advantage of the latent derivation struc-

ture for optimization. In current models of SMT, there is an exponential number of

derivations by which the same translation output can be produced. However, only the

final output is observed, thereby necessitating the treatment of these paths as a latent vari-

able. The standard practice is to sidestep this ambiguity by treating each derivation as

an individual translation, and performing training and inference toward a single way of

producing the output. While addressing the learning problem above, we were still firmly

situated in that standard regime. In the final part of the thesis, we revisit and present a

more thorough approach for what to optimize, defining a framework for latent variable

models which explicitly takes advantage of all derivations in both learning and inference.

We present a novel loss function for large-margin learning in that setting, and develop a

suitable optimization algorithm for training an SMT system with this objective.
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1 Introduction

We know very little, and yet it is astonishing that we know so much, and still more
astonishing that so little knowledge can give us so much power.

— Bertrand Russell

Machine translation represents one of the core tasks in natural language processing

(NLP): performing an automatic analysis of input text to produce a structured output; in

this case, a translation of a sentence. Although early machine translation systems used

manually encoded knowledge, given the complexities and ambiguity inherent in language,

coupled with the available computational power and amount of translated examples of

data, modern statistical machine translation (SMT) systems learn how to translate by

constructing a discriminative model based on statistics from the data (Koehn, 2010).

Translation rule patterns are extracted using a corpus of translation examples, al-

lowing important attributes for the translation process to be selected and encoded with the

use of feature functions. The chief aim of learning is then to properly set the correspond-

ing model parameters to score alternative translation hypotheses in accordance with an

external translation quality metric. However, there are a number of difficulties that make

the application of machine learning in this setting uniquely challenging. Despite a grow-
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ing number of proposed methods for discriminative training, most suffer from limitations

that hinder their utility for training feature-rich models on large amounts of data.

In this thesis, we present novel models and learning algorithms that address three

core problems for discriminative training: what to optimize, how to optimize, and how to

represent the input. The first issue amounts to selecting an appropriate objective function,

the second to properly searching for parameters that optimize that objective, and the third

to extracting informative features of the data. In addressing these issues, we develop effi-

cient learning algorithms that are both suitable for large-scale SMT training and capable

of generalization in high-dimensional feature spaces for structured output.

While training is a crucial step in SMT system development, it remains one of

the most time and resource consuming. To achieve faster training time and facilitate

easily scaling to perform discriminative training on large training sets, our algorithms

are developed in an online learning framework. Although most current systems tend to

employ only a handful of features of the data which are believed to be important, there

could potentially be millions (Chiang et al., 2009; Watanabe et al., 2007). Thus, a large-

margin criterion is used for optimization, as it allows efficient feature-rich learning,

permitting exploration into many new types of sparse features for translation.

While online margin-based methods are firmly established in the machine learning

community, their adaptation to machine translation is not straightforward. Thus, each

chapter in the dissertation is devoted to defining and examining an issue with training for

SMT, presenting novel learning algorithms and methods to address it, as well as empirical

results on an array of languages (French, Czech, German, Russian, Chinese and Arabic)

to verify the effectiveness of our methods.
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1.1 Outline of the dissertation

We begin in Chapter 2 by formally introducing the problem of statistical machine

translation, specifically highlighting the structure of translation models and the problems

they pose for inference and learning. The focus then turns more specifically to learning,

introducing the fundamental algorithms which are used throughout the rest of the dis-

sertation. Chapters 3, 4, 5, and 6 propose new methods for learning, introducing both

algorithms and features for better estimation of SMT model parameters.

Chapter 3 introduces and addresses the divergence between the standard application

of online large margin learning, and learning in machine translation. Since MT presents

a setting without unique correct outputs and with unobserved structures, the first prob-

lem we address is what to optimize when learning with loss-augmented inference over

latent variables. By defining a family of objective functions for large-margin learning in

SMT and empirically investigating their optimization performance in standard and high-

dimensional feature spaces, we show that this approach shows promise not just with re-

spect to the size of the feature space, but with the size of the tuning data.

After establishing what to optimize, in Chapter 4 we focus on how to improve learn-

ing in the feature-rich space. While the goal of all learning methods is to produce a

model from a limited number of training instances that generalizes well to unseen data,

this becomes increasingly difficult as the feature dimension grows. Following recent de-

velopments in machine learning that show that generalization ability can be improved

by incorporating higher order information into the optimization, we develop an online

gradient-based algorithm based on Relative Margin Machines (Shivaswamy and Jebara,
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2009b) that improves upon large-margin learning by considering and bounding the spread

of the data while maximizing the margin.

Utilizing the learning regimes presented in Chapters 3 and 4, Chapter 5 introduces

a new type of feature specifically targeting generalization to new domains. While do-

main adaptation has typically been done with manually defined domains and corpora, we

employ topic models to perform unsupervised domain induction and bias machine trans-

lation systems toward relevant translations based on topic-specific contexts by introducing

adaptation features based on probabilistic domain membership.

As a final question, in Chapter 6, we look at how to take advantage of all the la-

tent derivations during optimization. In current models of SMT, there are an exponential

number of derivational paths by which the same translation output string can be produced.

However, only the final output is observed, thereby necessitating the treatment of these

derivations as a latent variable. While the probability of a translation is the total prob-

ability of all its derivations, finding the maximum probability translation is intractable.

Thus, the standard practice is to sidestep this ambiguity by treating each derivation as

an individual translation, and performing training and inference toward a single way of

producing the output by using the maximum Viterbi derivation. While addressing the

learning problem above, we were still firmly situated in this standard regime. Chapter 6

revisits what to optimize and presents an approach moving to maximum translation de-

coding and training, by introducing a new way of combining a probabilistic framework

for dealing with latent variables with a geometric model that performs margin maximiza-

tion. We present a unified representation of a family of latent structured losses which

explicitly account for this ambiguity in both learning and inference, from which we de-
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velop a novel loss function for large-margin learning in the latent variable setting along

with a suitable optimization algorithm for training an SMT system with this objective.

1.2 Contributions

This thesis makes a number of research contributions to machine learning and its

application in machine translation.

1.2.1 Machine Learning

• We show that commonly used loss-augmented objectives for large-margin learning

can be generalized into a single family of loss functions with different parameteri-

zations.

• We introduce a loss function for structured relative margin with loss-augmented

inference and latent variables, and derive an online gradient-based solver, RM, with

a closed-form parameter update to optimize the relative margin loss.

• We present a unified representation and show the relationship between different

latent structured losses, from which we introduce a novel objective for combining

a probabilistic framework for dealing with latent variables with a geometric model

that performs margin maximization.

1.2.2 Applications to Machine Translation

• We perform a comprehensive empirical analysis of optimization strategies within

the family of loss-augmented objective functions applicable to SMT. We show that
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the choice of inference for loss-augmented hypotheses used in training plays an

important role in the stability and effectiveness of the large-margin update.

• We show that incorporating additional information, through bounding the spread

utilizing our RM algorithm, significantly outperforms the standard large-margin

update.

• We show that we can reinterpret the common notion of domains in MT with unsu-

pervised domain induction using topic models, and introduce a method for perform-

ing dynamic domain adaptation using features representing probabilistic domain

membership which yields significant gains for SMT.

• We describe how to learn using the maximum probability translation and show

that maximum translation learning and inference does improve upon the standard

maximum derivation regime.

• We develop an open-source tool for large-scale, decoder-agnostic, large-margin

learning with Hadoop, and we perform experiments to show the practical efficiency,

as well as preliminary advantages and challenges, of large-scale learning.
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2 Statistical Machine Translation

Behold, they are one people, and they have all one language ... and nothing that they
propose to do will now be impossible for them. Come, let us go down and there confuse
their language, so that they may not understand one another’s speech.

— Genesis 11:6-7

Shall I refuse my dinner because I do not fully understand the process of digestion?

— Oliver Heaviside

This chapter formally introduces the problem of statistical machine translation. Al-

though a thorough review of SMT is beyond the scope of this thesis, we introduce the

fundamental concepts necessary for the remainder of this dissertation, specifically high-

lighting points of particular relevance to this work. The structure of the discussion is

divided into three main research areas: translation modeling and decoding (§2.2), model

parameterization (§2.3), and learning (§2.4).

We delve into the most detail on background related to the last of these, as it draws

heavily upon concepts in machine learning, and encompasses prior work directly related

to the main topic of this thesis, discriminative optimization of SMT system parameters.1

1For a complete introduction to SMT, we refer the reader to Lopez (2008) and Koehn (2010).
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2.1 Background

The roots of machine translation can be traced to the creation of programmable dig-

ital computers over half a century ago, when it was hoped that imbuing a machine with

programmed knowledge about translation rules might allow it to act intelligently enough

to automatically translate from a foreign source language sentence to a desired target

language sentence accurately and fluently. Researchers endeavored to develop rule-based

systems with a manually determined set of translation rules and lexicon (Koehn, 2010).

As it became apparent that the problem of language translation, as with other problems

in computational linguistics, encompasses far more ambiguity and complexity than a pre-

scribed knowledge-based formalism can manage, research efforts were at first stymied,

and then after some time, turned toward building a system based on the empirical evidence

of human translation (Hutchins and Somers, 1992). However, it was not until the avail-

ability of large data sources and increased computational processing power allowed the

introduction of machine learning that the field of statistical machine translation began

to show promise.

After successfully applying statistical techniques to automatic speech recognition,

Brown et al. (1990) at IBM adapted optimization techniques to machine translation that

captured uncertainty and made decisions through probabilistic modeling. Statistical ma-

chine translation became the problem of automating language translation by designing

systems that learn how to translate using a statistical analysis of large bilingual corpora

of human translations. In essence, translation is reduced to a machine learning problem.

Thus, in principle, given enough samples of source sentences paired with correspond-
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ing translated target sentences, an SMT system could be built for any language pair with

minimal time and labor.

As this mode of thinking about machine translation has become all but ubiquitous

in academic and commercial applications, the core questions of research interest have

turned out to be the following:

• Modeling: How do we model and evaluate the mapping between the source and

target sentences in order to create and select the best translation? This breaks down

into:

– The type of rules that we use to map from source to target

– Features of the source and target used to evaluate the quality of the translation

– A weighting on the features that tells us how much importance we place in

each features value

– A model that makes use of the features and weights to allow us to make a

decision

• Learning: How do we optimize the weights on each feature so that the translation

with the best model score is actually the best translation?

• Decoding: How do we search through our model’s possible translations to select

the best one?

In the following sections, we address each of these core questions in turn, beginning

with how we model the translation process.
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2.2 Modeling

To construct a statistical MT system we rely on training data, which consists of

a parallel corpus of translated text in the source and target languages.2 Formally, our

training data T consists of parallel sentences (f , e) ∈ (X ,Y(f)).3 Here f is the source

sentence, coming from the set of all possible source sequences, X , and e is the target

sentence, coming from the set of all possible translations of f , Y(f).

Let f be a sequence of words f1, f2, ...fj , and analogously e, consists of words

e1, e2, ...ek. Thus, given f , an SMT system needs to produce a translation e that is both

faithful to the original source (alternatively accurate or adequate), and fluent in the target

language.

2.2.1 Language Model

Language models are a core component of every translation system, necessary for

evaluating the fluency aspect of translation. They tell us how good a sentence is in the

target language by evaluating how probable each sequence of words is and assigning it a

score. Typically n-gram language models are used, which use the Markov independence

assumption to break up a long sequence of words, such that only the previous context of

n-1 words is considered. The probability of the 5-word sequence e1...e5 with a trigram

2The bitext is usually accompanied by a large monolingual corpus used to build the language model,
described below.

3For this introduction, we use the standard notation introduced by Brown et al. (1993) to represent the
source sentence as f for French (or foreign) and the target as e for English.
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language model (where n=3), and the general form for a word sequence of length |e|, are:

p(e1...e5) = p(e1)p(e2|e1)p(e3|e1, e2)p(e4|e2, e3)p(e5|e3, e4)

p(e) =

|e|∏
i=1

p(ei|ei−n+1...ei−1)

(2.1)

Although the independence assumption constrains the length of possible word relation-

ships, it also allows efficient estimation of language model probabilities from large mono-

lingual corpora.4

2.2.2 Translation Model

The faithfulness, or adequacy aspect, is the responsibility of the translation model.

The translation model we employ contains 1) the set of rules or correspondences that

are necessary to produce e from f and 2) a scoring function that allows us to judge the

quality of competing translations. From a high level, it is the mechanism by which we

break f into pieces and transform it into e.

The translation model breaks down the translation process into several steps: seg-

menting the source sentence into spans according to the translation rules being used,

translating each source span into the target vocabulary by applying the appropriate trans-

lation rule, and scoring the different complete translation hypotheses.

Translation models are largely distinguished by how they define the mapping be-

tween source and target, i.e. translation equivalence, which is constrained by the set of

4As there will be many words sequences that have not occurred in the training data, typically the prob-
abilities will be smoothed by reserving some probability for unseen events (Kneser and Ney, 1995; Katz,
1987).
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translation rules they use. The set of rules is automatically extracted from the training

data to build a model of translation. Initially the translation models introduced by IBM

consisted of increasingly complex word-based models (Brown et al., 1993), known col-

lectively as IBM Models 1 through 4. However, these only accounted for word-to-word

correspondences. As increased context might help relieve problems of ambiguity and re-

ordering between languages, it would be beneficial to have the smallest atomic unit of

translation be larger than single words.

Phrase-based models (§2.2.3) were introduced to allow the translation of continu-

ous multi-word sequences with one rule. While a much more powerful formalism than

word correspondences, phrase-based models lacked the ability to model the hierarchical

structure of language. Thus, hierarchical phrase-based models (§2.2.4) extended phrase-

based models by allowing rules to represent phrases that can be reordered recursively.

These are the two dominant formalisms today.5

While we will be using hierarchical phrase-based models in this thesis, as they are

an extension of phrase-based models, elucidating the latter will be essential to understand-

ing the strengths and weaknesses of the former, and will directly tie into the challenges

that we will encounter later in this chapter when decoding and learning with these models.

2.2.3 Phrase-Based Models

In the first formalism, phrase-based translation (Koehn et al., 2003; Och and Ney,

2004), translation equivalence is modeled using pairs of contiguous word sequences, re-

5There are also other approaches to machine translations that are active areas of research: string-to-
tree (Galley et al., 2006; Shen et al., 2010), tree-to-string (Huang et al., 2006), and tree-to-tree (Liu et al.,
2009).
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ferred to as phrases. These phrases need not correspond to any syntactic notion of phrasal

structure; rather they are merely word sequences that tend to cooccur together in the cor-

pus. This captures the intuition that sequences of words should often translate as a single

unit, thereby eliminating potential causes of error which come from translating every

word individually and then having to order them correctly. Therefore, in phrase-based

models, phrase pairs are the representation of the model’s rules on correspondences.

In order to learn phrase pairs automatically from the training corpus, we need to

know which word sequences f = f1, ...fj on the source side align with which target

word sequences e = e1, ...ek. However, since all we know from our training data is that

e is a translation of f , but not which words in e are translations of which words in f , this

poses a problem. Before we can compute a phrasal alignment and extract phrase pairs

(f , e), we must first compute a word alignment.

A word alignment marks word-to-word correspondences between f and e with

alignment links. Since the word alignments are not observable, we induce them automat-

ically from the parallel corpus, typically using the expectation-maximization algorithm,

and include them in our model as a latent variable (Dempster et al., 1977; Och and Ney,

2003). As word alignments are typically induced in an unsupervised manner, they often

result in noisy and problematic word correspondences.6 Since phrase-based and hierar-

chical models will depend on these word alignments to extract translation rules, these

errors will be propagated further, resulting in problems we discuss below.

Our training sentence pairs become tuples of (f , e,a) ∈ (X ,Y(f),D(f , e)), where

6While there has been work on discriminative word-alignment, by far the vast majority of systems are
built with generative alignment models.
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   не  знает  ли  кто  то  когда  он  дома  будет  ? 

 

does  anyone  know  when  he  will  be  home  ? 

Figure 2.1: Example of word-to-word alignment links between a Russian and English
sentence pair.

a ∈ D(f , e) represents an alignment between words in f and e. It is important to point

out here that there can be exponentially many alignments a for a sentence pair, with each

a defining a possibly different set of translation equivalences between f and e. As each a

defines a translation e, typically we will pair (e,a) together as the output of the translation

model.

Figure 2.1 shows alignment links drawn between a Russian and English sentence

pair. Looking at the alignment, we notice several phenomena which make machine trans-

lation difficult. First, we see two Russian words, кто то , aligning to a single word

anyone, and a single Russian word будет , aligning to two English words will be. Sec-

ond, we see links crossing each other, indicating that the relative order of the words must

change during translation. Finally, the Russian negative particle не is unaligned on the

target side, indicating that it has a NULL alignment.

Once we have obtained word alignments, we use them to constrain the possible

phrase pairs (f , e) we can extract.7 Specifically, the phrases need to be consistent with

the word alignment. Formally, this is indicated by:

7Word alignments constrain phrase extraction since the fewer word alignments we have, the more
phrases we can extract, and vice versa.
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∀ei ∈ e : (ei, fj) ∈ a⇒ fj ∈ f

AND ∀fj ∈ f : (ei, fj) ∈ a⇒ ei ∈ e

AND ∃ei ∈ e, fj ∈ f : (ei, fj) ∈ a

(2.2)

Conceptually, this means that any words in f that are aligned, must be aligned to

words in e, and vice versa. Figure 2.2 presents an alternative view of the word alignment

shown before, now as a two-dimensional grid, with f and e on the x and y axis, respec-

tively. In this presentation, we can clearly visualize which phrase pairs are consistent with

the alignment, and will thus be extracted. Graphically, extractable phrase pairs are those

around which we can draw a rectangle and have no extraneous points in any of the four

cardinal directions. Furthermore, while the latent word alignment a may contain NULL

alignments, each latent phrase alignment is a nonempty one-to-one relationship. Phrases

may be of different lengths, as in the case for both phrases marked in Figure 2.2. Theoret-

ically, we may be able to learn larger phrases, memorizing whole chunks of sentences, but

thus far, phrases beyond length 3 have not been shown to be useful (Koehn et al., 2003).

All extracted phrase pairs contained in a translation model are represented via a

phrase table, which may look like the example shown in Table 2.1. Along with each

phrase pair itself, the phrase table encodes statistics that can be used to score the phrase.

As we will see in §2.2.4.1, the statistics constitute features of the phrase pair.

Formally, this model is equivalent to a finite-state transducer (FST) (Lopez, 2008),

which has also proven successful in automatic speech recognition (ASR). While FST’s

are a powerful computational paradigm, unlike speech recognition, which is highly mono-
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Figure 2.2: Two-dimensional grid showing word-to-word alignment between the same
Russian and English sentence pair as Figure 2.1.

tonic, translation often exhibits local and long-distance reordering. This is problematic for

FSTs, as they are meant for monotonic alignments, and thus have no efficient reordering

mechanism. Thus, phrase-based models can only only handle local reordering, usually

with a distance-based reordering cost. Even so, an exact search for the best translation is

intractable (Koehn et al., 2003). Thus, approximate inference algorithms are employed

for decoding, typically with a heuristic beam-search to extract the maximum weighted

path (Koehn et al., 2003).8 While phrase-based models have several drawbacks, chief

among them being the inability to efficiently model non-local reordering, they nonethe-

less still power some of the most widely used translation systems.

8Although Rush et al. (2013) recently presented a beam-search based decoding algorithm based on
Lagrangian relaxation that is capable of producing the optimal hypothesis.
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Source Target Probability p(e|f )

знает know 0.7
дома будет will be home 0.35
будет дома will be home 0.45
будет will be 0.82
знает ли кто то does anyone know 0.23
когда он when he 0.5

Table 2.1: Partial excerpt of the phrase translation table for the sentence pair in Figure 2.1.

2.2.4 Hierarchical Phrase-Based Models

Hierarchical phrase-based translation models (Chiang, 2005, 2007) were designed

to capitalize on the notion that language is hierarchical by incorporating syntax into

phrase-based translation.9 In relation to phrase-based models, the hierarchical phrase

pairs contain words as before, which we will now refer to as terminal symbols, but are

now also allowed to contain gaps represented as a nonterminal variable. This nonterminal

is a placeholder for another phrase. The principal benefit of this is to create hierarchical

phrases, which can contain other phrases, which addresses two major problems of phrase

based models: allowing recursive reordering and discontinuous phrases. By introduc-

ing these nonterminals into the grammar, such a system is able to utilize both word and

phrase-level reordering to capture the hierarchical structure of language. This means that

they can easily capture long-distance phrase reordering without incurring the intractabil-

ity of phrase-based models.

Just as phrase-based models can be seen as instances of a finite-state formalism,

9Although not necessarily a linguistic syntax, in the sense of using constituents motivated by linguistic
theory. Chiang (2007) discusses the difference between a system that is formally structured on a CFG,
versus one that utilizes linguistic resources such as treebanks or lexicons.

17



hierarchical models are instances of context-free grammars (CFG). The phrase table is

generalized in the resulting model as a grammar, which can be represented with a rule

table.

Formally, hierarchical phrase-based models are synchronous context free grammars

(SCFG). An SCFG is a generalization of monolingual CFG that allows for the simultane-

ous production of two output strings via a single synchronous derivation, where a deriva-

tion encodes the sequence of synchronous production rules r ∈ G used in translating the

sentence. Each production rule r has the form

X −→ 〈γ, α,∼〉

where the left-hand side is always the single nonterminal X, and the right-hand side indi-

cates an aligned sequence of terminals and nonterminals in the source γ and target α. The

alignment of nonterminals in γ and α, which is a one-to-one correspondence, is given by

∼. This rule states that in a synchronous derivation, the expansion of X→ γ on the source

side happens synchronously with X→ α on the target. Note that ∼ can be empty, result-

ing in a traditional phrase pair translation rule. Thus, we are still able to have pairs of

word sequences, the main advantage of phrase-based models, but now with the additional

element of a recursive structure.

The grammar is represented as a rule table, a partial example of a which is given in

Table 2.2.4. Much like a phrase table, it contains the rules themselves, along with features

of those rules, described below. The first three hierarchical rules with one nonterminal

present different possibilities of reordering the translation of when in relation to когда .
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The next two rules have the maximum of two nonterminals, with the same source side,

but different target reorderings. Notice that the last rule represents a phrasal translation,

without any gaps.

X −→ 〈 X0 когда , X0 when 〉
X −→ 〈 X0 когда , when X0 〉
X −→ 〈 когда X1 , when X0 〉
X −→ 〈X0когда X1 , X1 X0 when 〉
X −→ 〈X0 когда X1 , X0 когда X1 〉
X −→ 〈 когда , when 〉

Table 2.2: Partial grammar for the sentence pair in Figure 2.1.

Hierarchical translation rules are extracted automatically from a word-aligned par-

allel corpus without the need for syntactic annotation. First, an initial phrase extraction

is performed as described above, and all phrase rules (f , e) are added to the grammar

G. Next, we generalize our current rule set to include hierarchical phrases by taking any

existing phrase pair (f , e) ∈ G contained inside another phrase, and replacing it with

a nonterminal symbol X. This new hierarchical phrase pair is then added to G, and the

process is extended recursively, allowing rules with multiple nonterminal symbols.

Figure 2.3 graphically presents several such hierarchical phrase pairs, or equiva-

lently, synchronous context-free rules, which could be extracted from our earlier exam-

ple. Notice that the two parts of the sentence indicating a question, знает ли and ?,

are far away from each other, and thus could not be modeled in a single rule by a purely

phrase-based model. However, by replacing corresponding word spans on both sides with

a variable, we are able to capture a more general single rule containing both those termi-

nal items. Furthermore, while phrase-based models would capture the word reordering

of знает ли кто то to does anyone know by purely lexical means, the hierarchical rule
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Figure 2.3: Two-dimensional grid showing possible initial phrase pairs, and example hier-
archical rules demarcated by transparent rectangles with colored borders, for the Russian
and English sentence pair in Figure 2.2. The red covering with white borders indicates a
subphrase that was replaced by a nonterminal.

replaces the reordered part with co-indexed nonterminals, thereby allowing other fillers

that fit the same pattern to take advantage of this reordering.

2.2.4.1 Features

For reasons we discuss later in this chapter, which relate largely to the historical

models and optimization procedures employed, typically only a handful of features have

been used in SMT systems. These are frequently occurring, i.e. dense, features, as they

are present for all, or many, rules in the translation model. These features are commonly

the log-probability of a previously learned generative model. Standard features include:

• target-to-source rule translation log p(f |e): relative frequency estimate of how of-

ten we see e translated as f .
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• source-to-target rule translation log p(e|f): relative frequency estimate of how of-

ten we see f translated as e.

• target n-gram language model log p(e): smoothed relative frequency estimate of

how likely e is in the target language.

• source-to-target lexical translation log plex(e|f): smooths the phrase probability by

estimating probabilities of the individual words in e given f .

• target-to-source lexical translation probability plex(f |e): smooths the phrase prob-

ability by estimating probabilities of the individual words in f given e.

• ‘pass-through’ penalty: allows but penalizes passing the source word, since we

might not know how to translate it, to the target side without translating it.

• Arity count: counts the number of times that rules with 0, 1, or 2 nonterminals were

used.

• Total rule count: counts the total number of rules used in a derivation.

• Source word penalty: counts the number of source words.

• Target word penalty: controls target sentence length by adding a penalty for each

target word.

• Glue rule: discourages piecemeal translation by concatenation.10

In later chapters, we will use this set of features for our experiments, where we may

refer to it as either the baseline, low-dimensional, small, or dense feature set.
10We introduce glue rules in Section 2.2.5
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2.2.5 Decoding

To decode, or, translate using a SCFG, we parse the source side by applying rules

from r ∈ G that span parts of the source sentence, until the entire source has been cov-

ered. Because G contains synchronous rules, this simultaneously produces a correspond-

ing parse structure on the target side whose yield is the target translation, which we can

obtain by reading off the target terminal symbols.

A translation forest, or more formally a hypergraph (Gallo et al., 1993; Chiang,

2007), encodes the entire search space of the translation model. A hypergraph is a com-

pact structure encoding exponentially many different translation strings e ∈ Y(f) of the

source sentence f , along with many different derivations d ∈ D(f , e) that produce the

same e, where D(f , e) represents the set of derivations d that yield translation string e.

Since we are only able to observe e, we model d as a latent variable. Thus, derivations are

the latent structure SCFG models produce during the translation process. The derivation

d ∈ D(f , e) represents the particular set of rules r ∈ G used when producing e from

f , and is analogous to the alignment variable a in phrase-based models. An SCFG and

a hypergraph are equivalent representations of a given parse forest. Figure 2.4 shows an

example of a small hypergraph encoding alternate derivations of the hierarchical phrase-

based translation of the sentence from Figure 2.1.

An alternative view to parsing for the decoding process is that of performing a

composition of binary relations (Dyer, 2010b). As our further work will take advantage

of established algorithms for performing efficient inference over hypergraphs, it is useful

to make the connection explicit. The synchronous parse described above can be consid-
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Figure 2.4: A small hypergraph encoding a partial SCFG for the sentence from Figure 2.1.

ered as computing the composition of the source sentence f , represented as finite-state

transducer, with the source side of the translation model SCFG G, f ◦ G, where ◦ denotes

the composition operation. The result of this composition is another SCFG, G(f), which

while being able to generate exponentially many translation strings e on the target side,

can only generate f on the source side. We can further compose the target side of G(f)

with a FST representation of the target string e, G(f)◦e, to obtain another SCFG G(e,f)

which encodes all the derivations that exactly derive f on the source side and e on the tar-

get side. Dyer (2010b) presented a two-parse algorithm for performing this composition

and showed that synchronous parsing could be performed without restricting the search

space with heuristics. We will utilize this approach for decoding in later chapters.

While the parsing algorithm above allows us to decode exactly over an SCFG for

the best translation, we have not yet factored in a crucial element of the process: the

language model probabilities. In principle, composing the language model with G(f)

23



can be carried out efficiently. We can treat the language model l, as an FST where each

state is a sequence of n-1 words, and compose the target side of G(f) with it to produce

G(f , l). However, this composition becomes prohibitively expensive to compute due to

the necessary changes to the structure of the hypergraph that cause an explosion in the size

of the resulting grammar G(f , l). Thus, approximate algorithms are needed which prune

the search space as they compose G(f) with l (Wu, 1996; Bar-Hillel et al., 1961). The

most popular heuristic algorithm for performing this composition is cube-pruning (Huang

and Chiang, 2007). Cube pruning is an efficient algorithm for integrating the LM with the

complete hypergraph, which only looks at the top k subtranslations at each node (Chiang,

2007).

2.2.6 Causes of Ambiguity

The extraction mechanism outlined above allows the introduction of an exponential

number of possible rules in a hierarchical phrase-based model. While it might seem

advantageous to have the largest grammar possible in order to allow the greatest flexibility,

this actually creates several important practical problems.

First, decoding complexity increases with the size of the grammar, as the search

space grows to encode all the possible translation paths, and can become prohibitively

slow. Second, and more important for our work, a larger rule set exacerbates the existing

problems of translation ambiguity and spurious ambiguity.

Translation ambiguity results when the same source phrase in different contexts

might have different meanings or senses, and thus can produce multiple target transla-
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tion’s. This might be caused by legitimate contextual differences, or be a by-product of

noisy word alignments and rule extraction. Spurious ambiguity arises when many distinct

derivations, which are the sequence of rule applications necessary to obtain a translation,

produce the same translation string with the same features. We return to this problem in

Chapter 6, but for now it suffices to say that both of these problems combine to create an

enormous number of latent derivations for a given source sentence.

In order to create a more manageable grammar, hierarchical rule extraction is con-

strained in several ways. In a standard hierarchical phrase-based system, the grammar

only contains one nonterminal symbol, X, which may appear no more than twice on ei-

ther side of a rule, and never adjacently on the source side. This eliminates a major cause

of spurious ambiguity (Chiang, 2007), while also reducing the size of the grammar from

exponential to polynomial (Koehn, 2010). Furthermore, rules must always have at least

one, but no more than N , typically with N=5, aligned words. There is also a special sym-

bol S, which is used in so-called glue rules to combine rules together by concatenation:11

S −→ 〈 X0 , X0 〉
S −→ 〈 S0 X1 , S0 X1 〉

11There has been interest for some time in enriching the SCFG model with a larger nonterminal vocabu-
lary (Blunsom et al., 2008a; Zollmann and Venugopal, 2006). This would allow more expressive power for
reordering, as well as introduce some context sensitivity into our context-free model. However this comes
at the cost of increased complexity, both for rule extraction and decoding.
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Phrase-Based Hierarchical

Translation equivalence flat continuous word sequence terminal and nonterminal sequence

Latent Variable phrasal alignment derivation

Packed representation lattice hypergraph

Decoding strategy beam-search cube-pruning

Table 2.3: Comparison of typical modeling and decoding methods in phrase-based and
hierarchical models.

2.2.7 Translation Model Summary

Over the past 25 year, the field of machine translation has progressed from word-

based, to phrase-based, to hierarchical phrase-based models of translation. Table 2.3 sum-

marizes the relationships between the major modeling components of phrase-based and

hierarchical models. In practice, both of these are based on a pipeline of components that

propagate errors; beginning with data normalization (word segmentation, casing, etc.), to

create word alignments, leading to rule extraction based on those word-alignments, and

finally pruning the search-space we create from those rules. All these errors contribute to

additional ambiguity in the translation process, a challenge for learning that we discuss in

Section 2.4.

A key benefit of using the more powerful hierarchical phrase-based models is that

they combine the strengths of phrase-based modeling with a representation of syntax,

thus providing the ability to handle longer reorderings. Due to these advantages, and their

proven state-of-the-art performance across many language pairs (Chiang, 2007), this is

the translation formalism we use in this dissertation.
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2.3 Model Parameterization

We have so far described the formalism through which our model views the trans-

lation process, and thus we can now enumerate the possible ways in which a source sen-

tence can be translated. However, the packed representation of those possibilities, the

hypergraph, encodes an enormous number of different translations, and we as yet can-

not determine which of those will be a good translation. Since there are an exponential

number of translations licensed by the rules of the translation model grammar, in order to

select the desired translation, we need a mechanism for scoring the best translation higher

than other possible hypotheses.12 Model parameterization is the process by which we

are able to efficiently represent such a score function. Following Brown et al. (1993), this

is done by expressing the problem in a probabilistic framework and parameterizing the

model such that we can compute a real-valued score for every pair of source and target

translations, p(e|f). The decoding problem in SMT then becomes finding the translation

that maximizes this probability:

e∗ = argmax
e∈Y(f)

p(e|f) (2.3)

2.3.1 Generative Models

The first applications of machine learning to SMT were based on modeling trans-

lation using the noisy-channel paradigm (Brown et al., 1993), adapting an approach that

12We are deliberately being ambiguous as to what best means at the moment. This will be elucidated
later.
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Figure 2.5: Graphical depiction of the noisy-channel model of SMT. The blue “source”
model generates e, which is then corrupted by the channel p(f |e) into the “target” f . The
decoder then uses these two models to find the best “source” e that generated f . Notice
that this notation inverts the definition of source and target languages.

had been successful in ASR (Bahl et al., 1983; Brown et al., 1990). This model sup-

poses that the source sentence is actually a corrupted version of the target sentence. After

the target sentence is generated according to the source model, p(e), it is sent through

the channel p(f |e) to produce f . Figure 2.5 presents a depiction of the model. Fol-

lowing Weaver (1955), the process of recovering the original target f is referred to as

decoding.

This model has the advantage of breaking the posterior probability in Eq. 2.3 into

two independent probability models. By applying Bayes’s Rule, we can decompose the

posterior probability p(e|f) into:

e∗ = argmax
e∈Y(f)

p(e|f) = argmax
e∈Y(f)

p(f |e)p(e)

p(f)
(2.4)

Since f is fixed for a given e, and we do not necessarily require a proper probability

distribution for p(e|f) if we only care about computing the argmax, we only need to have

an estimate for two sets of parameters: p(f |e), our translation model (§2.2), containing
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the rules discussed above, and p(e), the language model (§2.2.1), encoding fluency in the

target language.

These two distributions are further decomposed using the chain rule and indepen-

dence assumptions. We have already seen how p(e) is decomposed into a product of

smaller probabilities. Similarly, p(f |e) is decomposed into a product of translation prob-

abilities over each single translation decision that our model can make. For phrase-based

models this means a parameter for each phrase pair, while in hierarchical translation it

means one for each production rule. The parameters of these distributions can be es-

timated from the data in a number of ways, most commonly using relative frequencies

based on the maximum likelihood criterion (Koehn, 2010).

2.3.2 Decision Rules

However, we cannot simply score the output translation e, because the translation

is actually the yield produced by the rule applications encoded in the latent structure, d ∈

D(f , e) during the translation process. Thus, it is actually to each derivation that we must

assign a score. Many different derivations may produce the same translation, and although

our models are actually defined over derivations, since constructing a derivation produces

a translation, and we only observe the output sentence e, derivations will always be paired

with translations, (e,d), and will be included in our probability model: p(e,d|f). Thus,

Eq. 2.3 becomes:

(e∗,d∗) = argmax
e∈Y(f),d∈D(f ,e)

p(e,d|f) (2.5)
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This is the problem of jointly finding the maximum probability derivation and trans-

lation. Since we are actually interested in obtaining p(e|f), we can treat d as a nuisance

variable and marginalize over it to obtain the best translation:

e∗ = argmax
e∈Y(f)

p(e|f) = argmax
e∈Y(f)

∑
d∈D(f ,e)

p(e,d|f) (2.6)

Equation 2.6 presents the problem of finding the maximum probability transla-

tion, which amounts to using the maximum a posteriori (MAP) decision for e∗.

How we select the best hypothesis is known as the decision rule. Unfortunately,

decoding with the maximum probability translation decision rule proves to be NP-hard

(Sima’an, 1996). For this reason, most systems address the decoding problem by ap-

proximating the maximum probability translation with the maximum derivation using

Eq. 2.5 (Koehn, 2010; Lopez, 2007). Using the maximum derivation decision rule is also

known as Viterbi decoding, since we are selecting the most probable hyperpath through

the hypergraph (Viterbi, 1967). In effect, the probability of a translation e is approximated

by the probability of e’s best scoring derivation.

The maximum derivation in a hypergraph can be computed exactly in polynomial

time using dynamic programming. It is an approximation insofar as the hypergraph itself

has been pruned after language model integration, thus the derivation we are selecting is

likely not going to be the same as the best derivation we would have selected if we had

the unpruned hypergraph. It is also worth noting that we can also find the total probability

of all derivations in a hypergraph using dynamic programming.13

13The INSIDE algorithm assumes the hypergraph is acyclic, a condition that is met by our hypergraphs.
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Another common decision rule is minimum Bayes risk (MBR), which tries to min-

imize expected loss according to a given external cost function ∆ (Kumar and Byrne,

2004).

e∗risk = argmin
e∈Y(f)

∑
e′∈Y(f)

∆(e, e′)p(e|f) (2.7)

For most of this dissertation, we will use the maximum derivation approximation in

Eq. 2.5. However, as ideally we would like to train and decode toward the maximum prob-

ability translation, thereby not ignoring most of the translation space, several approximate

inference algorithms for decoding in hierarchical models have been developed (Blunsom

and Osborne, 2008; Blunsom et al., 2008b; Li et al., 2009). This will also be the subject

of Chapter 6.

In addition to find the best derivation, we may be interested in finding the k-best

derivations. These are often used in training to approximate the entire hypergraph search

space with a finite set of derivations. We extract k-best approximations for training using

the method developed by Huang and Chiang (2005).

2.3.3 Discriminative Models

The noisy-channel generative model was supplanted around a decade ago in favor

of discriminative models (Och and Ney, 2002; Och, 2003), which allow the ability to

optimize parameters toward an arbitrary external error function. Thus, discriminative

models allow moving away from the maximum-likelihood criterion, which the noisy-

channel model was based on, to a translation quality metric.
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Beyond this ability they relax the independence assumptions imposed by generative

models, and allow integration of expressive and non-independent features for translation.

The ability of discriminative models to define novel features is an important aspect for

this thesis, as work within the noisy-channel modeling paradigm was restricted to the

translation and language model features. In the last five years, there has been a surge in

exploration of features for use in SMT (Lopez, 2008; Chiang et al., 2008a, 2009; Simianer

et al., 2012; Green et al., 2013).

The forerunner of current discriminative modeling for SMT, and still the most

widely used parametrization today, is the log-linear model presented by Och and Ney

(2002):

(e∗,d∗) = argmax
e∈Y(f),d∈D(f ,e)

p(d, e|f) (2.8a)

= argmax
e∈Y(f),d∈D(f ,e)

exp
∑n

i wifi(f , e,d)∑
e∈Y(f),d∈D(f ,e) exp

∑n
i wifi(f , e,d)

(2.8b)

= argmax
e∈Y(f),d∈D(f ,e)

exp
∑
i

wifi(f , e,d) (2.8c)

= argmax
e∈Y(f),d∈D(f ,e)

w>f(f , e,d) (2.8d)

where, as opposed to Eq. 2.4, we model the conditional probability p(d, e|f) directly.

The model is parameterized by a real-valued n-dimensional parameter vector w. Each

parameter wi is associated with a corresponding feature fi(f , e,d) from a vector of fea-

ture functions f(f , e,d). The score of each translation and derivation pair (e,d) can

then be computed as the dot product between the parameter and feature vectors, where
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the weight determines the contribution of each feature to the final score:

score(f , e,d) = w>f(f , e,d) (2.9)

Since oftentimes we will not require the score to be a proper probability, we can

reduce the log-linear model in Eq. 2.8b to the linear scoring function in Eq. 2.9. Thus, we

will refer to Eq. 2.9 as the score of d without implying any probabilistic interpretation.

Feature functions f(f , e,d) represent knowledge sources and salient aspects of the

translation process. For instance, the translation and language models we encountered

earlier, p(f |e) and p(e), remain two of the primary features employed. In fact, notice

that if we restrict our feature set to these two with uniform w, we recover the noisy

channel model.

While features can be very expressive, they must conform to certain restrictions.

Most importantly, features must decompose over rules in the derivation, such that we

can compute the global score of a derivation d using local features h on each rule of the

derivation r ∈ d.

score(f , e,d) = w>f(f , e,d) =
∑
r∈d

w>h(r) (2.10)

This implies that every hyperedge in the hypergraph also has a score assigned to it based

on the local feature functions. When performing inference over the hypergraph, each edge

corresponds to a partial translation and has associated with it a decomposable score which

is comprised of the features on that edge and the current weight vector. These can then be
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summed together to produce the score associated with a specific hypothesis translation. If

a feature does not decompose neatly over rules, such as the language model, we call it a

stateful feature. Such features necessitate splitting the states in the hypergraph in order to

incorporate them, and can thus create practical problems due to the resulting complexity

of the search space and ensuing search error.

We focus on the problem of developing feature functions that improve translation

in Chapter 5.

Since statistical models represent knowledge in the form of features, different weight

settings give precedence to the contribution of different features to the final score. Thus,

properly setting the weights in order to emphasize the important feature contributions for

scoring alternative translations is an integral part of constructing a state-of-the-art SMT

system. The problem of parameter estimation, or tuning the model to obtain optimal

weight settings is the subject of Chapters 3, 4 and 6.

2.4 Learning

As described in Section 2.3.3, discriminative models have superseded generative

models, and have become the standard in SMT, due primarily to their ability to allow

independent feature functions and arbitrary optimization criteria.

Now that the formalism for the translation model is settled (hierarchical phrase-

based modeling (§2.2)), and there is a parameterization of the probability model (linear

(Eq. 2.8d)), we turn to the problem of optimally setting the parameters of w in Eq. 2.8d

for f(f , e,d) in order to correctly rank the model’s translation hypotheses according to
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how good they actually are. The goal of training then is to estimate, or optimize the

model parameters w to maximize a given objective.14

In this section, we first introduce the necessary formal foundations of learning the-

ory, and then elucidate the adaptation of machine learning to the SMT problem. Since a

complete review of machine learning and its application to SMT is beyond the scope of

this thesis, we will focus the discussion on the major approaches to learning. For a thor-

ough introduction to machine learning, we refer the reader to Bishop (2006) and Mitchell

(1997).

2.4.1 Background

One of the core applications of machine learning is to produce some intelligent

behavior, but without having to specify the mechanism for that behavior, only the prod-

uct. For SMT, this means that instead of analyzing the process of how humans translate,

and getting experts to specify translation rules, we should instead focus our attention on

creating algorithms that learn from examples of what good translation looks like.

More generally, we want our algorithms to learn from experience. This means

figuring out and remembering the correct answer for the examples they have seen, and

doing it in such a way as to then be able to correctly predict the answer to previously

unseen examples. Designing learning algorithms that are able to efficiently learn the

correct predictions and then generalize well to unseen data is a core challenge in machine

learning.

The field of machine learning has been making steady advances over recent years,

14We could alternatively minimize a given loss, since the two are complementary.
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both in theory and practice, and advances in machine learning have led directly to ad-

vances in statistical NLP. However, adapting existing machine learning algorithms to

SMT is often complicated, due to the differences between SMT and other tasks. This

will be discussed in Section 2.4.3.

2.4.2 Structured Prediction

Formally, prediction, or classification, involves problems where given a training

set T of examples (x1,y1), ..., (xn,yn) ∈ X × Y drawn from an unknown but fixed

distribution t(x,y), we want to learn a discriminant function fw : X → Y that is capable

of mapping an input x to a discrete output y. The hypothesis space is the set of functions

fw∈W mapping x to y, which is parameterized by w, whose values are set by the learning

algorithm. In general terms, the learning algorithm searches the hypothesis space to find

fw that optimizes some criterion `, such as the large-margin or conditional likelihood

criteria. The most difficult parts of the learning problem are then how to represent the x

and y, and selecting an appropriate loss function `.

Since we have output labels for all our inputs, prediction is a form of supervised

learning. The most common form of prediction in machine learning is binary classifi-

cation, where the learner has to choose one of two answers. In that case, (xi,yi) ∈

Rn × {±1} and fw : X → {±1}.

While binary classification is a fundamental problem, accounting for much of the

research into classification, the output space is not rich enough to handle many problems

in statistical NLP. Multiclass classification extends binary classification by allowing Y to
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be a finite set of size k, where k is greater than two. However, even that setting is still

not capable of handling the exponentially sized output space that we need to deal with in

SMT.

Structured prediction further generalizes multiclass classification, and involves

problems where we want to map x to a y that has a rich internal structure. Now Y is

an exponentially large set of possible output structures. In NLP, examples of structured

prediction include sequence labeling, where y is a sequence of labels, and parsing, where

y is a parse tree (Taskar et al., 2005; Tsochantaridis et al., 2004). SMT can also be seen

as an instance of structured prediction, where y is the translation.

For structured prediction, we also introduce an auxiliary evaluation function

gw : X × Y → R,

capable of taking x and a proposed y as input and assessing the quality of y:

fw(x) = argmax
y∈Y

gw(x,y) (2.11)

The structured prediction models we consider represent this function as a linear

model, w>f(x, y), where w are the model parameters and f(x, y) is a set of feature func-

tions over x and y. This weighted linear combination produces a score:

gw(x,y) = w>f(x,y) = score(x,y) (2.12)

and the goal is to learn w such that for a given feature vector representation of x, the
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correct y scores higher than any incorrect y′. Then, given a previously unseen x, we can

predict the optimal y∗ as:

y∗ = argmax
y∈Y

score(x,y) (2.13)

Finally, in order to find the best w, we need to define a loss function to optimize.

Since we are dealing with complex structures, we need to be able to articulate the fine-

grained distinctions between possible outputs. Some mistakes will be notably worse than

others. Thus, we assume a task-specific cost function ∆(y,y′) = Y × Y → R+, which

quantifies how bad predicting y′ is when the true label is y. By definition, if y=y′,

∆(y,y′) = 0, while it increases the worse y′ becomes. Instances of ∆(y,y′) are the

Hamming loss for sequence labeling (Taskar et al., 2005), and F-score for parsing (Mc-

Donald et al., 2005). The exact form of the cost function we use is discussed in Sec-

tion 2.4.4.

With this in hand, we can say that we want to select the fw that minimizes the

expected loss, under the true distribution of our training data T , t(x,y):

w∗ = argmin
w∈W

Et(x,y)∆(y, fw(x)) (2.14)

Eq. 2.14 is referred to as Bayes risk minimization (Bishop, 2006). However, re-

call that t(x,y) is unknown, thus making the direct minimization of Eq. 2.14 impossible.

Structural risk minimization (Vapnik, 1995), however, can be used as a stochastic ap-

proximation, as it is based on the observed distribution of T , and minimizes the regular-

ized empirical risk:
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w∗ = argmin
w∈W

R+
C

N

N∑
i=1

∆(yi, fw(xi)) (2.15)

where the second term approximates the expected loss, and the first termR is a regularizer

to prevent overfitting. R penalizes complex solutions, and usually takes the form of

the `1 or `2 norm. Unfortunately, as directly minimizing Eq. 2.15 for a linear model is

still usually impractical, most techniques instead focus on defining and minimizing an

alternative loss function ` that forms a convex upper-bound (Zhang, 2003). Thus, the

final form of our optimization problem is:

w∗ = argmin
w∈W

R+
C

N

n∑
i=1

`w(xi,yi) (2.16)

where `w can be instantiated by well known loss functions, such as conditional log-

likelihood (CRF (Lafferty et al., 2001)), or margin maximization (Max-Margin Markov

Networks, SVM (Taskar et al., 2004; Joachims, 1998)). The learning frameworks which

we discuss below are derived from regularized risk minimization.

2.4.3 Structured Prediction à la SMT

There are a few important points of divergence between standard structured predic-

tion problems, even in NLP, and structured prediction for SMT, which introduce unique

challenges. These differences necessitate the adaptation of standard machine learning al-

gorithms, and are in large part the motivating factor behind the work presented in this

dissertation. The first problem is related to the output space Y , and our model’s ability to

generate hypotheses in that space, while the second problem is related to the derivation
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our model produces which necessitates the inclusion of a latent structure d in our model.

While traditionally most problems in supervised learning posit a single correct out-

put,15 by the inherent nature of translation trying to pass the meaning of a sentence from

one symbolic representation to another, there are a multitude of possibilities for what the

reference translation can be.16

This is actually two separate but equally troubling problems: on the one hand, we

want fewer reference translations, on the other hand, we want more! Most evaluation

corpora for SMT have from one to four translations. If we have multiple references, then

we may want to select one of them to treat as the correct one, but which one? While

one translation may be more fluent, another may be more easily attainable by the model,

and a third might induce the best set of derivations to generalize to new examples. Thus,

systems usually try to leverage all of available references.

However, as there are on average many more ways of translating a sentence than

we can manually enumerate, our reference set is still missing most of the possible ref-

erences.17 This is problematic not only because we are missing potential sources of

information, but more importantly, because our model might not be able to derive the

references we do have at all.

Recall that our translation model is based on the SCFG formalism, where we use

a parallel training corpus to extract all the possible translation rules which we can use.

15In general, the problem of multi-label classification, where each input is associated with a set of cor-
rect labels (Tsoumakas and Katakis, 2007), has been increasingly popular. Although typical multi-label
techniques are inapplicable to multi-label structured prediction, for the same reasons as standard multi-
class prediction is inapplicable to structured prediction, recent work on multi-label structured prediction
has shown that efficient techniques can be developed (Lampert, 2011).

16Reference translations are stipulated to be the correct translations provided by a human translator.
17This is an ongoing research area, with attempts being made to manually create reference lattices, or

generate a broader set of references via automatic paraphrases (Madnani, 2010).
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Due to a number of factors mentioned above, including a cascade of errorful models

used to align and extract the grammar, as well as the beam-search or pruning mechanism

used to decode, we may encounter a sentence for which the decoder may not be able to

generate translations exactly matching the reference. Causes of this include the grammar

not containing the necessary rules to produce the reference translation, or their being

pruned out during the search. The effect is that the reference becomes unreachable: yi /∈

Y(xi). Most structured prediction problems in machine learning assume yi ∈ Y(xi).

Take for example the following simple grammar:18

Rule 1 | X −→ 〈 morgen , tomorrow 〉
Rule 2 | X −→ 〈fliege ,will fly 〉
Rule 3 | X −→ 〈X1 ich , I X1 〉
Rule 4 | X −→ 〈ich , I 〉

source: morgen fliege ich
reference: tomorrow I will fly

Given a source sentence morgen fliege ich, with reference translation tomorrow I

will fly, we can apply Rules 1-2 to translate morgen fliege to tomorrow will fly, and then

reorder fliege ich to I will fly using Rule 3, and our output, tomorrow I will fly, matches

the reference. Suppose, however, that the grammar we have extracted lacks Rule 3, and

we only have Rules 1, 2 and 4. Then our output becomes tomorrow will fly I. In this case,

the reference is unreachable, since our system cannot construct any output that matches

the true reference.

This is problematic because in order to perform discriminative training in many

regimes, we need to be able to produce and score the correct output structure. If yi /∈
18Example sentence adapted from Koehn (2010).
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Y(xi), this precludes the construction of its feature vector to use when updating our

parameters. Thus, we need to rely on an approximation of the reference which our model

can generate.

A major question for most linear discriminative machine translation models is there-

fore what to update w towards, i.e. what to use as the oracle or surrogate reference output

y+ ∈ Y(xi), in place of the real reference yi if it is unreachable, since it is this output’s

feature vector we will use when computing the loss function. As a look ahead, the pro-

cedure to select y+ will require cost-augmented inference (Smith, 2011). We explore

surrogate reference selection and cost-augmented inference in Chapter 3.

The second problem is that while the structured objective, the derivation, that pro-

duces each translation is unobserved and must be modeled as a latent variable, most

losses examined in machine learning do not posit latent variables. In principle, latent

variables do not complicate the formulation, since they are simply added as an additional

unobserved output variable, and modeled jointly with the observed output. However,

they complicate the learning, since their presence generally makes the loss function `

non-convex (Nowozin and Lampert, 2011). Convexity provides nice theoretical guaran-

tees (Boyd and Vandenberghe, 2004), and non-convexity means that our optimization may

not find the global optimum. When compounded with the cost-augmented inference we

must perform to select y+, we end up with latent structured loss functions that are not yet

well established in machine learning (McAllester and Keshet, 2011; Gimpel and Smith,

2012).
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2.4.4 Evaluation Metric

Up until this point, we have assumed that an external automated metric for judging

MT quality is readily available. However, the development of such a metric is quite an

undertaking in of itself (Macháček and Bojar, 2013).

Human evaluation of MT quality has traditionally required trained specialist’s to

rank each sentence on a scale of 1-5 for adequacy and fluency (White et al., 1993). Under-

standably, this process is both laborious and expensive. With the development of crowd

sourcing, human MT evaluation has taken on a new life. Using crowdsourcing platforms

such as Amazon’s Mechanical Turk, Zaidan and Callison-Burch (2010) were able to ob-

tain reasonably good quality judgments relatively cheaply. While improving the cost, this

process is still not capable of producing the quick and repeated judgments necessary for

system development. For training and evaluating changes to our system, we need to re-

peatedly evaluate thousands of sentences on the order of seconds. Automated metrics will

likely never be as informative as actual human evaluation, but we must rely on them.

The main principle behind automated metrics is that they should be closely corre-

lated with human judgments, commonly evaluated by human-targeted translation edit rate

(HTER): the fewest number of edits a human has to make to the output. In order to do

that, they usually make use of the reference translations available for our training data,

and compute some sort of similarity score between reference(s) and the system output.

In order to choose between metrics, we can break the criteria into two pieces: how well

we tune when we use that metric, and how much the evaluation proposed by that metric

correlates with HTER. While for evaluation, other proposed metrics have shown higher
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correlation with HTER (Macháček and Bojar, 2013), the most commonly used metric

for tuning and evaluation is the bilingual evaluation understudy (BLEU) (Papineni et al.,

2002a).

BLEU is a precision-oriented metric, and evaluates the output translation h against

the reference translation(s) r by considering the number of n-gram matches between

them, where n usually runs from 1 to 4. The number of matches is then divided by the

total number of possible n-grams in the hypothesis output. To compute the BLEU score

of our system’s outputs {y′}n1 against the reference translations {y}n1 , we first compute

n-gram precision matches on a per-sentence basis as follows:

pj =

∑n
i=1

∑
g∈grams(j) countclip(g,y

′
i)∑n

i=1

∑
g∈grams(j) count(g,y′i)

(2.17)

where count(g,y′i) is the count of an n-gram g in hypothesis y′i, and countclip(g,y
′
i) is the

clipped n-gram count, representing the maximum number of times any reference contains

g. Clipping is used to not give any hypothesis credit for producing an n-gram more often

than it appears in the reference. Combining n-gram precisions pj of different length using

the geometric mean, we can compute the BLEU score as:

log BLEU = min (1− |r|
|h|
, 0)︸ ︷︷ ︸

brevity penalty

+
4∑
i=j

1

4
log pj︸ ︷︷ ︸

geometric mean

(2.18)

To penalize sentences that are shorter than the reference, a brevity penalty term BP is also

included in the metric.

BLEU is a corpus-level metric, meaning that it is meant to be computed as the
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aggregate score over the set of sentences in a corpus. However, in learning, we oftentimes

need to approximate BLEU on a sentence-level, since we will be evaluating the decision

and loss our algorithm makes on each sentence. This poses a problem, since if the number

of n-gram matches for any j ∈ n is 0, which can reasonably happen in practice, BLEU is

0, and if the number of hypothesized n-grams is 0, BLEU is undefined. Furthermore, the

BLEU score of a single sentence isolated from the corpus may not be informative of the

overall BLEU score of the corpus.

For these reasons, it is necessary to approximate BLEU on a sentence-level. Several

proposals have been suggested for dealing with this problem. The simplest is to smooth

the score with pseudo counts (Lin and Och, 2004). This has traditionally been done in

an add-1 fashion, or with some decay, such as exponential, for the term to add to higher

order n-grams (Li and Khudanpur, 2009):

psmooth
j =

∑n
i=1

1
2j

+
∑

g∈grams(j) countclip(g,y
′
i)∑n

i=1
1
2j

+
∑

g∈grams(j) count(g,y′i)
(2.19)

Watanabe et al. (2007) introduced an approximate scoring approach which scores a

sentence as part of a pseudo-document of previously translated sentences. Chiang (2012)

elaborated on this concept and added an exponential decay to the document, effectively

keeping the impact of the new sentence relatively high. We make use of the add-1 smooth-

ing with an exponential decay in Eq. 2.19 along with scoring sentences in the context of

previous 1-best translations for our sentence-level approximation.

With the learning paradigm and evaluation metric defined, we will now present the

most commonly applied or relevant approaches to learning for SMT, starting with MERT,
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then moving to Minimum Risk, PRO, MIRA, and RAMPION.

2.4.5 Minimum Error Rate Training

Minimum-Error Rate Training (MERT) (Och, 2003) is the most popular parameter

optimization technique for SMT in use today (Lopez, 2007; Macherey et al., 2008; Kumar

et al., 2009). It is the yardstick against which all other methods have been compared, and

therefore understanding MERT’s strengths and weaknesses provides valuable context for

the other methods.

MERT aims to optimize parameters to directly maximize the BLEU score of the

maximum weighted derivation (Eq. 2.5), referred to as the 1-best BLEU, over the entire

tuning set. Alternatively, we can say that it wants to minimize the error (1-BLEU). The

loss function for MERT over the corpus of references yi and system outputs y′ can be

expressed as:

`MERT =
n∑
i=1

∆

(
yi, argmax

y′∈Y(xi),d∈D(xi,y′)

score(xi,y
′,d)

)
(2.20)

Notice that it does not depend on the model score of the maximum derivation; we

only use the model score to select the 1-best derivation to compute the cost. As the loss is

non-convex and not differentiable for error metrics like BLEU, we cannot rely on gradient-

based optimization procedures, such as those used in standard log-linear models (Liu and

Nocedal, 1989).

Thus, MERT’s optimization routine is gradient-free; coordinate descent with a spe-

cialized line search is the core technique behind MERT’s parameter optimization, which
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aims to directly minimize the corpus-level error on the training data. It does so by con-

structing a piece-wise linear error surface from the entire tuning set, and performing a

line search in each dimension of the parameter vector in order to find the global mini-

mum in that dimension. In practice, many random restarts and directions are used at each

iteration (Macherey et al., 2008; Cer et al., 2008).

The error surface can be constructed from a k-best list of candidates from each

sentence in the tuning set, as in the original formulation by Och (2003), or from a com-

pact representation of the full hypothesis space, such as a lattice for phrase-based or hy-

pergraph for hierarchical phrase-based translation (Macherey et al., 2008; Kumar et al.,

2009).

As its strengths, the gradient-free optimization method is relatively simple to im-

plement, and, when dealing with the standard small set of features, it is highly effective

at optimizing parameters even on a small tuning set. Because it is gradient-free, it can

be used to optimize non-differentiable task-specific loss functions. Furthermore, since

it does not require computation of the features or score of the reference yi in order to

compute the loss, it is free to use the actual reference translation, not requiring the use

of surrogate references. As a result, most MT systems are set up to optimize within the

MERT framework.

The primary limitation of MERT, which is responsible for its inability to scale, is

the unknown direction of the line search. When done in a handful of dimensions, random

directions work relatively well; however, as we increase the dimensionality of the feature

space this becomes a severe problem.

Foster and Kuhn (2009) and Hopkins and May (2011) have both recently explored
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this phenomenon. Hopkins constructed a synthetic data set using a known optimal weight

vector, reducing MERT’s role to learning the initial weight setting that generated the

data. Repeating this experiment with an increasing number of dimensions, they found

that as the dimensions grow, MERT quickly is incapable of learning the correct weights.

After tens of features the quality of MERT’s line search decreases. As we move to take

advantage of the high-dimensional feature spaces that are one of the main advantages

of discriminatively trained systems, MERT’s inability to scale is prohibitive in allowing

research into more expressive features.

2.4.6 Minimum Risk

For this reason, while MERT remains the most widely used method, in recent years,

there has been a growing trend moving away from MERT to other methods.

Expected BLEU (Rosti et al., 2010), or alternatively, minimum risk (Smith and

Eisner, 2006; Li and Khudanpur, 2009), training is a probabilistic method that can be

seen as an attempt to address some of these shortcomings. If instead of maximizing the

1-best hypothesis, as we do with MERT, we try to minimize the risk, or expected error,

using the model’s log-linear probability distribution over all the hypotheses, we create a

continuous, and therefore differentiable, function for optimization which allows us to use

gradient-based methods such as stochastic gradient descent or L-BFGS (Liu and Nocedal,

1989).

The loss can be computed over k-best list approximations of the model search

space (Arun et al., 2010) or packed representations (Rosti et al., 2011). Smith and Eis-
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ner (2006) present an annealed minimum risk approach which minimizes the expected

loss for MT by gradually sharpening the objective to avoid local minima. Rosti et al.

(2010) and Li and Khudanpur (2009) developed approaches for optimizing over lattices

and hypergraphs, respectively.

Minimum risk training also does not require scoring the reference yi, and unlike

conditional likelihood based models can incorporate an arbitrary cost function.

`risk =
∑

y′∈Y(xi),d∈D(xi,y)

∆(yi,y)
exp (score(xi,y,d))∑

y′∈Y(xi),d∈D(xi,y) exp (score(xi,y,d))

=
∑

y′∈Y(xi),d∈D(xi,y)

∆(yi,y)p(d,y|xi)
(2.21)

2.4.7 Pairwise Ranking Optimization

There are a number of other approaches that formulate tuning as a ranking prob-

lem (Chen et al., 2009; Haddow et al., 2011; Hopkins and May, 2011; Watanabe, 2012).

Instead of focusing on the exact score of a hypothesis, these approaches aim to make sure

better hypotheses are ranked higher by the scoring function.

Pairwise ranking optimization (PRO) (Hopkins and May, 2011) has recently come

to the forefront of these approaches. In PRO, the task of learning to rank translations is

reduced to binary classification between translation pairs using an off-the-shelf classifier.

It samples pairs of hypotheses from aggregated k-best approximations of the search space

and trains a binary classifier to make pairwise comparisons in accordance with the cost

of each hypothesis. The main motivation for PRO was staying as close as possible to the
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batch optimization framework established by MERT, but allowing the learning algorithm

to scale to higher-dimensional feature spaces.

Since the set of candidate translations is derived from the model’s hypothesis space,

PRO also does not need to approximate the reference translation. However, as PRO has

to compare candidate translations of a given source sentence, it approximates the corpus

BLEU score with a sentence-level approximation.

2.4.8 Margin-based Methods

Another group of methods has moved away from MERT and the batch optimization

strategies presented above, and turns to online linear large-margin optimization (Chiang

et al., 2008a; Watanabe et al., 2007; Arun and Koehn, 2007). Most structured predic-

tion learners, such as CRFs, Max-Margin Markov Networks, and Support Vector Ma-

chines (Lafferty et al., 2001; Taskar et al., 2004; Joachims, 1998) were designed as batch

learners: they consider all examples simultaneously when optimizing the objective. The

alternative, an online learner, optimizes one example, or a handful of examples, at a time,

thus allowing more flexibility with regard to the size of the training set.19

Beyond the desire to tune a large number of features, online margin-based methods

for SMT also target large-scale discriminative training scenarios where batch optimization

is prohibitive or undesirable. While a slew of recent alternative optimization strategies

focusing on margin-based methods have been proposed (Watanabe, 2012; Cherry and

Foster, 2012; Chiang, 2012; Yu et al., 2013; Tan et al., 2013), here we focus on the most

successful thus far.
19We will discuss the exact mechanics of different online learning scenarios in Chapter 3.
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Liang et al. (2006) was one of the first to apply a structured online linear model,

namely the structured perceptron (Collins, 2002), to SMT. This paved the way for many

other large-margin linear models for discriminative training: MIRA (Chiang et al., 2009;

Watanabe et al., 2007; Watanabe, 2012), batch-MIRA (Cherry and Foster, 2012), Struc-

tured SVM (Cherry and Foster, 2012), and RAMPION (Gimpel and Smith, 2012),

The main conceptual difference between these methods and probabilistic ones based

on log-linear models is that margin-based methods do not posit a probabilistic view of

w>f(x,y). Instead they only care about a geometric view of the linear scoring function.

Since each hypothesis is associated with a n-dimensional feature vector, composed of nu-

merical attributes, all hypotheses can be mapped to a point in the n−dimensional feature

space. Hypotheses that are similar to each other are then closer in distance to one another,

and vice versa. The parameter vector w defines a separating hyperplane in n-1 dimen-

sions, and the goal is to create a large separating distance between the correct hypothesis

yi and all others y′. The distance between the scores of two hypotheses is the margin:

score(xi,yi,d)−score(xi,y
′,d).

2.4.8.1 MIRA

Crammer and Singer (2003) first introduced the Margin Infused Relaxed Algo-

rithm (MIRA) as an online large-margin learner for multiclass classification. Taskar et al.

(2005) later introduced this to the NLP community as a method for performing large-

margin online training for structured prediction problems, which has proven useful for

applications such as dependency parsing (McDonald et al., 2005) and MT (Chiang et al.,
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2008a). Intuitively, it can be viewed as either introducing a classification margin into the

perceptron to reduce generalization error, creating a large-margin perceptron, or alterna-

tively, as an online SVM.

The main motivation for MIRA is that we want our model to enforce a margin

between the correct and incorrect outputs of a sentence that agrees with our cost func-

tion. This is done by making the smallest update possible to our parameters, w, on every

sentence, that will ensure that the difference in model scores δfi(y′) = w>(f(xi,yi) −

f(xi,y
′)) between the correct output yi and incorrect output y′ is at least as large as the

cost, ∆(yi,y
′), incurred by predicting the incorrect output. The optimization problem is:

wt+1 = argmin
w

1

2
||w −wt||2 + Cξi

s.t. w>f(xi,yi)−w>f(xi,y
′) ≥ ∆(yi,y

′)− ξi ∀y′ ∈ Y(xi)

(2.22)

where C is a regularization parameter that controls the size of the update, trading off be-

tween margin maximization and constraint violations. The underlying objective of MIRA

is the same as that of the margin-rescaled Structural SVM (Tsochantaridis et al., 2004;

Martins et al., 2010). Thus, MIRA can be seen as constructing a SVM on each instance,

while the norm constraint ||w||2 from SVM is replaced with a proximity, or conservativity,

constraint, ||w −wt||2 (Crammer et al., 2006). This indicates that we want to update our

parameters, but keep them as close as possible to the previous parameter estimates. Since

the worse y′ is, the more distant its score will be from yi, simply scaling the weights could

produce a sufficiently large margin to match any cost. Thus, the objective is to minimize
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the distance between successive weight vectors.

In the original formulation for separable classification (Crammer and Singer, 2003),

if no constraints are violated, no update occurs. However, when there is a loss, the algo-

rithm updates the parameters to satisfy the constraints. A more general version of the

MIRA algorithm was later presented by Crammer et al. (2006), where it was shown to

belong to a class of passive-aggressive (PA) algorithms. A PA algorithm will not update

the parameters when the loss is less than zero, or, in other words, it will be passive when

we have correctly scored the output. However, when there is a loss, the weight update is

aggressive, in that it forces the new weights to correctly score the output, regardless of the

size of the necessary update. To allow for noise in the data, i.e. nonseparable instances,

a slack variable ξi is introduced for each example, and we optimize the margin-rescaled

version of the soft-margin (Joachims et al., 2009; Crammer and Singer, 2001), where we

are permitted but penalized for not satisfying the constraints.

In order to optimize the objective in Eq. 2.22, we need to solve a quadratic program

(QP) with linear constraints, which can be handled by techniques such as Hildreth’s al-

gorithm (McDonald et al., 2005), Sequential Minimal Optimization (SMO) (Platt, 1998;

Chiang et al., 2008a), or using a cutting-plane (Joachims et al., 2009; Chiang, 2012).

However, Crammer et al. (2006) showed that there exists an analytical, or closed-form,

update for PA algorithms based on looking at only one constraint. This simplified update

forgoes complex machinery, such as the cutting plane, and still guarantees a cumulative

loss bound (Crammer et al., 2006). With a PA update, the ∀y′ constraint above can be
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approximated by selecting the single most violated constraint, which maximizes

y− ← argmax
y∈Y(xi)

w>f(xi,y) + ∆(yi,y),

since the second term below is an upper bound on the first term:

∀y ∈ Y(xi) −w>f(xi,yi) +
(
w>f(xi,y) + ∆(yi,y)

)
≤−w>f(xi,yi) + max

y′∈Y(xi)

(
w>f(xi,y

′) + ∆(yi,y
′)
) (2.23)

Selecting y− based on the model score and cost requires cost-augmented decoding

(Smith, 2011). Although the exact update step is different from other subgradient op-

timizers, in essence this reduces to performing a subgradient descent step, where the step

size is adjusted based on each example. This update is simple and performs well, reducing

the optimization problem in Eq. 2.22 to:

wt+1 = argmin
w

1

2
||w −wt||2 + Cξi

s.t. w>f(xi,yi)−w>f(xi,y
−) ≥ ∆(yi,y

−)− ξi

(2.24)

The structured hinge loss, which can be shown to underlie this objective (Martins et al.,

2010) can be rewritten as:

`hinge = −w>f(xi, yi) + max
y′∈Y(xi)

(
w>f(xi, y

′) + ∆(yi, y
′)
)

(2.25)

Recently, MIRA has gained prominence for SMT, largely thanks to its ability to
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learn models in low- and high-dimensional feature spaces. Arun and Koehn (2007) and

Watanabe et al. (2007) were the first to apply a MIRA-based trainer to SMT. Chiang et al.

(2008a) then extended this work, and through a series of improvements produced the most

successful structured MIRA learner (Chiang et al., 2009; Chiang, 2012).

While previous settings of MIRA in machine learning were able to directly use yi

in the loss, for reasons of (un)reachability described in Section 2.4.3, applying MIRA

to SMT necessitates approximating the correct translation with y+ ∈ Y(xi). We will

defer an in depth discussion of the implications of this and strategies for selecting y+ to

Chapter 3, but here we note that, this will require some form of cost-diminished decoding:

y+ ← argmax
y∈Y(xi)

w>f(xi,y)−∆(yi,y)

which, along with the presence of latent variables, has the effect of changing the opti-

mization problem for SMT to:

wt+1 = argmin
w

1

2
||w −wt||2 + Cξi

s.t. w>f(xi,y
+,d+)−w>f(xi,y

−,d−) ≥ ∆(yi,y
−)−∆(yi,y

+)− ξi

(2.26)

with a correspondingly modified loss:

`PA = − max
(y+,d+)∈Y(xi),D(xi,yi)

(
w>f(xi,y

+,d+)−∆(yi,y
+)
)

+ max
(y−,d−)∈Y(xi),D(xi,yi)

(
w>f(xi,y

−,d−) + ∆(yi,y
−)
) (2.27)

While most previous SMT literature has optimized the loss above and referred to
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it as the structured hinge loss, Gimpel and Smith (2012) recently pointed out that we

are in fact optimizing losses that are closer to different variants of the structured ramp

loss (McAllester and Keshet, 2011). The difference in definition between the two lies

in the fact that for the ramp loss, yi is replaced with y+. The ramp loss objectives are

non-convex, and since we are separately computing the max for both y+ and y−, where

the first max is negated, subgradient methods are no longer guaranteed to be optimizing

the desired loss.

However, as with many non-convex optimization problems in NLP, such as those

involving latent variables, in practice subgradient-based learning of Eq. 2.27 in this setting

behaves quite well.

Table 2.4.8.1 presents a concise comparison between MERT, Minimum Risk, and

MIRA training.

MERT MIRA Minimum Risk

Type 1-best Margin-based Probabilistic

Objective Minimize error Minimize loss augmented score Minimize expected error

Optimization Line search QP/PA Gradient Based

Limitations Direction of search unknown Approximation of reference Approximate expectation

Table 2.4: Comparison of training regimes for MERT, Minimum risk, and MIRA.

2.4.8.2 RAMPION

RAMPION (Gimpel and Smith, 2012) aims to directly address the disconnect be-

tween MT and machine learning discussed above by actually optimizing the loss function

that MIRA wants to optimize: the structured ramp loss. RAMPION uses CCCP (Yuille and
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Rangarajan, 2003), a batch concave-convex procedure also used for solutions to the latent

SVM (Yu and Joachims, 2009) to minimize the ramp loss. CCCP can be used to solve

loss functions of the form f(w)−g(w), which are a combination of a convex (f(w)) and

concave (g(w)) term. RAMPION alternates between solving g(w), by first finding the best

y+
i for each sentence in the whole tuning set, and then keeping those fixed, optimizing

the loss as if the y+
i are observed using stochastic subgradient descent. The loss function

that RAMPION optimizes is thus:

`ramp = max
(y−,d−)∈Y(xi),D(xi,yi)

(
w>f(xi,y

−,d−) + ∆(yi,y
−)
)

− max
(y+,d+)∈Y(xi),D(xi,yi)

(
w>f(xi,y

+,d+)−∆(yi,y
+)
) (2.28)

2.5 Summary

In this chapter we introduced the problem of statistical machine translation, giving

a brief overview of the progression of the field from its inception to today. In so doing,

we covered modeling, decoding, and learning concerns. In modeling, we define the trans-

lation equivalence and latent structure our model uses, along with the feature functions.

In decoding, we search for the best translation under our decision rule, usually Eq. 2.5. In

learning, we select the optimal w. It would be fair to say that progress in SMT depends

on progress in these three issues.

In this thesis, we focus on the learning and modeling issue, introducing advance-

ments to current learning algorithms in Chapters 3, 4 and 6, and new features for the

translation model in Chapter 5. Although we concentrate on SMT, the algorithms we
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propose in the following chapters can be directly (or with slight modification) applied to

other structured prediction tasks.
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3 Large-Scale Online Large-Margin

Learning

I have no data yet. It is a capital mistake to theorise before one has data. Insensibly one
begins to twist facts to suit theories, instead of theories to suit facts.

— Sherlock Holmes

Learning is not child’s play; we cannot learn without pain.

— Aristotle

In this chapter we contribute a deeper understanding of online large-margin learn-

ing for statistical machine translation. The difficulties of applying large-margin methods

in this setting described in Chapter 2 have led to a wide array of implementations and

confusion about proper optimization. Thus, we address the question of what to optimize

in SMT by proposing a unified form for different cost-augmented objectives in SMT as a

family of loss functions and placing prior work within this setting. We utilize this frame-

work to extensively empirically analyze the optimization performance of different loss

functions, parallelization, and updating strategies, first in the standard low-dimensional

setting, and then moving to high dimensions.
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After we establish the proper loss function to optimize for both learning stability

and generalization ability, we move to large-scale discriminative training. We develop a

decoder-agnostic tool for distributed learning on a MapReduce architecture, and show the

practicability and benefits of large-scale training.

The contributions in this chapter are largely empirical, and specifically aimed at

providing a practical guide for practitioners of SMT of best practices for large-margin

learning.1

3.1 Introduction

MIRA (Crammer et al., 2006) is a popular method for online large-margin opti-

mization, which has been shown to perform well for machine translation, as well as other

structured prediction tasks (McDonald et al., 2005). This is an attractive method because,

as we showed in Chapter 2, it has a simple analytical solution for the optimization prob-

lem at each step, which reduces to dual coordinate descent when using 1-best MIRA.

Despite the proven success of MIRA-based large-margin optimization for both

small and large numbers of features (Chiang, 2012), these methods have not yielded wide

adoption in the community. This is partially due to a perception that these methods are

complicated to implement, which has been cited as motivation for other work (Hopkins

and May, 2011; Gimpel and Smith, 2012). The complications stem in part from the

divergence between the standard application of these methods in machine learning, as

discussed in Section 2.4.3, and our application in machine translation, where we have no

1This chapter is based on material originally published in Eidelman (2012), Eidelman et al. (2013c), and
Eidelman et al. (2013b).
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unique correct output and latent structures. As a consequence of the above, there is a lack

of understanding in what MIRA optimizes, and the best practices for large-margin learn-

ing for SMT, which have resulted in numerous different implementations of MIRA-based

optimizers, further adding to the confusion.

This chapter aims to shed light on practical concerns with online large margin train-

ing. Specifically, we first unify previous objectives into a single family of losses (§3.2.1),

and present the MIRA passive-aggressive update for SMT (§3.3.3), which underlies all

MIRA-based training. The resulting algorithm can be used directly for learning in SMT

and is simple to implement.

We then empirically analyze several widespread as well as novel optimization strate-

gies that emerge from this framework for large-margin training on Czech-to-English (cs-

en) and French-to-English (fr-en) translation across important factors for learning: loss

function (§3.4.2), parallelization (§3.5.1), and updating strategies (§3.5.2).

In Section 3.6 we move to large-scale learning in MapReduce and develop tools for

highly distributed learning, showing that online large-margin learning is not only capable

of handling large feature spaces, but scaling to large data as well.

3.2 Large-Margin Learning

Recall that our training corpus T = (xi,yi)
T
i=1 for selecting the parameters w that

optimize our objective consists of input sentences xi in the source language paired with

reference translations yi in the target language. In Section 2.4.8.1, we saw that the usual

presentation of MIRA is given as:

61



wt+1 = argmin
w

1

2
||w −wt||2 + Cξi

s.t. w>f(xi,yi)−w>f(xi,y
−) ≥ ∆(yi,y

−)− ξi

(3.1)

with an underlying structured hinge loss objective function:

`hinge = −w>f(xi,yi) + max
y′∈Y(xi)

(
w>f(xi,y

′) + ∆(yi,y
′)
)

(3.2)

3.2.1 Hypothesis Selection

Notice that `hinge depends on computing the margin between y′ ∈ Y(xi) and the

correct output, yi. However, there is no guarantee that yi ∈ Y(xi) since our decoder is

often incapable of producing the reference translation yi. Since we need to have some

notion of the correct output in order to compute its feature vector for the margin, in prac-

tice we revert to using surrogate references in place of yi. These are often referred to as

oracles, or hope (Chiang, 2012), translations y+, which are selected from the hypothesis

space Y(xi) of the decoder with cost-diminished decoding.2

We are also faced with the standard problem of how best to select the most ap-

propriate y′ to shy away from, which we will refer to as y−. These are referred to as

fear translations (Chiang, 2012). Since optimization will proceed by setting parameters

to increase the score of y+, and decrease the score of y−, the selection of these two hy-

potheses is crucial to success. We present a unified view of the possible loss functions for

cost-augmented and diminished learning in Eq. 3.3.

2In practice we can define Y(xi) to either be the entire hypergraph or k-best output K(xi).
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` = − max
(y−,d−)∈Y(xi),D(xi,yi)

(
γ+w>f(x,y+,d+)− β+∆(yi,y

+)
)

+ max
(y−,d−)∈Y(xi),D(xi,yi)

(
γ−w>f(x,y−,d−) + β−∆(yi,y

−)
) (3.3)

Each setting of γ± and β± corresponds to optimizing a different loss function. Sev-

eral definitions of `r have been explored in the literature, and we discuss them below

with corresponding settings of γ± and β±. To our best knowledge, other loss functions

explored below are novel.

3.2.1.1 Oracle Selection

In selecting y+, we vary the settings of γ+ and β+. Assuming our cost function is

based on BLEU, in setting β+ → 1 and γ+ → 0, if Y(xi) is taken to be the entire space of

possible translations, we are selecting the hypothesis with the highest BLEU overall. This

is referred to in past work as max-BLEU (Tillmann and Zhang, 2006) (MB).

(y+,d+)← argmax
y∈Y(xi),D(xi,yi)

−∆(yi,y)

One special case for max-BLEU oracle selection is to update towards the actual reference

yi and simply throw away the training sentence pairs for which the decoder is unable to

generate the reference. This approach, referred to as bold or optimistic updating, was

first explored by Liang et al. (2006), and then repeated in Blunsom et al. (2008b). A

variation on this is performed by Tillmann and Zhang (2006) and Arun and Koehn (2007),

where a preprocessing run with a decoder modified to use BLEU against references as

its scoring function is used to find the best candidate translation, and these so-called
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surrogate references are saved for use in the learning phase. Both Arun and Koehn

(2007) and Liang et al. (2006) found that updating conservatively toward a derivation

which the decoder produces at each iteration of training performs significantly better than

updating optimistically toward the reference.

Another related method is to approximate the search space by restricting Y(xi)

to a k-best list K(xi), and update towards the lowest cost candidate. In this case, we

have the so-called local-update (Liang et al., 2006; Arun and Koehn, 2007; Chiang et al.,

2009; Watanabe et al., 2007), where we select the highest BLEU candidate from those

hypotheses that the model already considers good (LU):

(y+,d+)← argmax
y∈K(xi),D(xi,yi)

−∆(yi,y)

With increasing k-best size, the max-BLEU and local-update strategies begin to converge.

Setting both β+ → 1 and γ+ → 1, we obtain the cost-diminished hypothesis,

which considers both the model, i.e. model score, and the cost, and corresponds to the

hope hypothesis (Chiang et al., 2008a; Chiang, 2012) (M-C):

(y+,d+)← argmax
y∈Y(xi),D(xi,yi)

w>f(xi,y,d)−∆(yi,y)

This can be computed over the entire space of hypotheses or a k-best list. In a sense,

this is the intuition that local-updating is after, but expressed more directly, since we

are explicitly accounting for both the model score and cost. Part of the impetus behind

selecting the oracle using this combination is that some translations may have a low cost,
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e.g. a high BLEU score, but a distant model score from the area in which most good

translations reside, which could cause issues if we are searching for only the lowest cost

candidate across the whole search space, or a very large k-best list.

3.2.1.2 Fear Selection

The alternatives for selecting y− are quite similar. Setting β− → 1 and γ− → 0,

we penalize the hypothesis with the highest cost (MC), which to our best knowledge has

not been evaluated in SMT:

(y−,d−)← argmax
y∈Y(xi),D(xi,yi)

∆(yi,y)

Setting β− → 0 and γ− → 1, we select the highest scoring hypothesis according to

the model, which corresponds to prediction-based selection (Crammer et al., 2006) (PB):

(y−,d−)← argmax
y∈Y(xi),D(xi,yi)

w>f(xi,y,d)

Setting both to 1, we have the cost-augmented hypothesis, which is referred to as

the fear (Chiang et al., 2008a), and max-loss since it is the maximum violator of the

constraints (Crammer et al., 2006) (M+C):

(y−,d−)← argmax
y∈Y(xi),D(xi,yi)

w>f(xi,y,d) + ∆(yi,y)

This hypothesis is considered the most dangerous because it has a high model score along
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Figure 3.1: Visual representation of hypotheses generated for one instance graphed ac-
cording to their BLEU and model score. The shaded region represents the k-best output.
The green elements represent alternatives for y+ selection: � outside k-best is max-
BLEU, and the same square inside the k-best is the local update,4 is the cost-diminished
selection. The red elements represent y−: � is the max-cost, 4 is cost-augmented, and
- is prediction-based. The dotted-line represents the point where loss is 0, i.e., margin is
equal to cost.

with a high cost. This is the constraint we usually care most about since it directly max-

imizes the hinge loss: our system believes the hypothesis is a good one, and thus assigns

it a high score, while the cost is high, thus proving in fact to be a poor translation.

Figure 3.1 represents the hypothesis space according to cost and model score for

one example, showing the visual representation of the different oracle and fear selection

strategies and their corresponding location in the search space.

Considering the settings for both parts of Eq. 3.3, γ+, β+ and γ−, β−, assigning all

γ± and β± to 1 corresponds to the most commonly used loss function in MT (Gimpel

and Smith, 2012; Chiang et al., 2009). This is the hope/fear pairing, where we use the
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cost-diminished hypothesis y+ and cost-augmented hypothesis y−:

` = − max
(y+,d+)∈Y(xi),D(xi,yi)

(
w>f(xi,y

+,d+)−∆(yi,y
+)
)

+ max
(y−,d−)∈Y(xi),D(xi,yi)

(
w>f(xi,y

−,d−) + ∆(yi,y
−)
) (3.4)

Other loss functions that have been explored are similar to γ± → 1, β+ → 1, β− →

0 (Liang et al., 2006):

` = − max
(y+,d+)∈Y(xi),D(xi,yi)

(
w>f(xi, y

+,d+)−∆(yi,y
+)
)

+ max
(y−,d−)∈Y(xi),D(xi,yi)

(
w>f(xi,y

−,d−)
) (3.5)

which does not consider cost when selecting y−. Liang et al. (2006) used this loss with

a perceptron using the 1-best derivation to update towards the 1-best oracle. This can be

approximated as a special case of 1-best MIRA, which produces the standard perceptron

update rule. Another loss used is an approximation of γ± → 1, β+ → 0, β− → 1 (Cherry

and Foster, 2012):

` = − max
(y+,d+)∈Y(xi),D(xi,yi)

(
w>f(xi,y

+,d+)
)

+ max
(y−,d−)∈Y(xi),D(xi,yi)

(
w>f(xi,y

−,d−) + ∆(yi,y
−)
) (3.6)

which is closer to the usual loss used for max-margin in machine learning.3

Since our external metric, BLEU, is a gain, we can think of the first term in Eq. 3.4

as the model score plus the BLEU score, and the second term as the model minus the

3As discussed in the Section 2.4.8.1, Gimpel and Smith (2012) have recently pointed out that these types
of loss are different variants of the structured ramp loss.
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BLEU score. That is, with all γ± and β± set to 1, we want y+ to be the hypothesis with

a high model score, as well as being close to the reference translation, as indicated by a

high BLEU score. While for y−, we want a high model score, but it should be far away

from the reference, as indicated by a low BLEU score. The motivation for choosing y−

in this fashion is grounded in the fact that since we are penalized by this term in the loss,

we should try to optimize on it directly. In practice, we can compute the cost ∆(yi,y) for

both terms as 1− BLEU(y,yi) .

3.3 Online Learning

Online learning is one of the oldest machine learning approaches, first gaining

prominence with the perceptron (Rosenblatt, 1958). It has nonetheless proven itself to

be one of the most successful and popular methods across a variety of tasks due to its

speed, simplicity, robustness and scalability (Crammer et al., 2012; Schaul and LeCun,

2013). It offers fast convergence to reasonable solutions, and is memory efficient, since

only one training instance needs to loaded in memory, thus facilitating scaling. It is es-

pecially applicable to natural language problems, which deal with large training sets and

high-dimensional input representations. Online learners achieve some of the best perfor-

mance on tasks such as parsing (McDonald et al., 2005), part-of-speech tagging (Shen,

2007), and SMT (Chiang et al., 2008a).

The basic online learning algorithm performs iterative optimization, and is an in-

stance of Stochastic Subgradient Descent (SGD) (Ratliff et al., 2006). It proceeds as in

Algorithm 1. We operate on the data in several successive iterations, or rounds. During
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each iteration, the algorithm receives a training example (xi,yi), and must predict an out-

put based on the current parameter settings. The correct answer is revealed immediately

after the prediction, and if we predicted incorrectly, we perform an update of the weight

vector. We then use the new weight vector to process the next round’s instance, and so

on, until we reach a predetermined convergence criterion. (The exact form of the update

will depend on the algorithm employed, and will be the subject of future sections.) The

goal is to answer with the fewest number of mistakes.

After convergence, we may choose to average over the weight vectors to produce

a final weight vector. We may average over all weight updates, only the final update

from each iteration, or not average at all. The averaging of the weight vector, rather than

using the final weight, is done to reduce overfitting, and has proved effective in previous

applications (Collins, 2002). Whichever method is used to produce the final weight vector,

these weights are then used as the parameters w of our model.

Batch learners usually make fewer passes through the data, but one pass through

the entire data is required to make one update; although the update is better informed

about the global loss, we have wasted resources solving for each instance with the same

stale parameters. On the other hand, SGD learners make many more smaller updates,

which although individually noisier, result in faster convergence and robustness to local

optima (Schaul and LeCun, 2013; Bottou and Bousquet, 2011).
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3.3.1 Learning Rate

In online learning, since we learn from each instance, the update is based on only

that instance’s component of the overall loss. This updating method can be shown to be

a generalization of gradient descent, which is a method for updating parameters using the

entire gradient of the loss function with respect to the parameters (Smith, 2011). Instead,

here we only take the subgradient with respect to the active parameters, and step in the

direction of the subgradient. The general form of the SGD online update is:

w←w + η∇`t

∇`t =f(xi,y
+,d+)− f(xi,y

−,d−)

(3.7)

where ∇`t is the subgradient of the loss at time t, and η is the learning rate, or step size;

how much we allow our parameters to change at each update. Determining the proper step

size to adjust the parameters for each update is a crucial part of effective online learning.

Both small and large step sizes may pose problems. Different learning rate schedules

have been suggested which lead to improved performance (Schaul et al., 2013; Schaul

and LeCun, 2013). Commonly, these adapt the learning rate by decreasing it throughout

learning, adjusting it on a per-instance basis, or even per-parameter basis.

Since the MIRA optimization problem is an instance of a general structured prob-

lem with an `2 norm, the passive-aggressive update we discussed in §2.4.8.1 at each step

reduces to dual coordinate descent (Smith, 2011). In our soft-margin setting, this is analo-

gous to the PA-I update of Crammer et al. (2006). Thus, we are performing a subgradient

descent step with a single learning rate η for all features, but with an additional α step
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size adjusted based on each example:

α← min

(
C,

`

‖∇`t‖2

)
w← w + αη∇`t

(3.8)

The step size η along with α limits the amount each feature weight can change

at each update. However, since the typical dense features (e.g., language model) are

observed far more frequently than sparse features (e.g., rule identity), it has been shown

to be advantageous to use an adaptive per-feature learning rate that allows larger steps for

features that do not have much support (Green et al., 2013; Duchi et al., 2011). Essentially,

in ADAGRAD (Duchi et al., 2011) instead of having a single parameter η, we instead have

a vector Σ with one entry for each feature weight:

Σ−1
t+1 ←Σ−1

t + λdiag
(
∇`t∇`>t

)
=
t+1∑
j=1

λdiag
(
∇`j∇`>j

)
wt+1 ←wt + αΣ

1/2
t+1∇`t

(3.9)

where for each dimension i in the weight vector at time t the update becomes:

∇i`t =
∂`t
∂wi

= fi(x,y
+,d+)− fi(x,y−,d−)

Σ−1
i,t+1 =

t+1∑
j=1

∇i`
2
j

wi,t+1 ←wi,t + α
∇i`t√∑t+1
j=1∇i`2

j

(3.10)
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Algorithm 1 Algorithm for Stochastic Gradient Descent

Require: : Training set T = (xi,yi)
T
i=1

1: w0,0 ←0
2: for iteration i← 0 to N do
3: for example j ← 0 to T do
4: Y(xi)←DECODE(xj ,wi,j)
5: wi,j+1 ←UPDATE(wi,j)
6: end for
7: wi+1,0 ← wi,T

8: end for
9: wa = 1

NT

∑N∑T wi,j

10: wb = 1
N

∑N wi,0

11: wf = wN,T

12: return wa|b|f

This means in addition to the w we need to keep track of a |w| dimensional vector accu-

mulating the squared subgradients for each feature. This adaptive update is very similar

to that of AROW (Crammer et al., 2009a; Chiang, 2012).

3.3.2 Parallelization

A number of improvements to the basic algorithm (Alg. 1) have been presented in

order to allow for efficient processing of large training sets.

To make parameter estimation more efficient and scalable, some form of paral-

lelization is necessary, where instead of a single learner, we have multiple concurrent

learners. Thus, the first adaptation to the SGD algorithm introduces parallelization in

the framework of MapReduce (Dean and Ghemawat, 2008) and parameter mixing (Mc-

Donald et al., 2010), where the training data is broken up into shards s, with each shard

undergoing SGD training separately, but in parallel, and then having their final weight

vectors mixed together by averaging. This is presented in Algorithm 2.
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Algorithm 2 Algorithm for Parameter Mixing

Require: : Training set T = (xi,yi)
T
i=1

1: ws,0,0 ←0
2: for shard s ∈1...K in parallel do
3: for iteration i← 0 to N do
4: for example j ← 0 to T do
5: Y(xi)←DECODE(xj ,ws,i,j)
6: ws,i,j+1 ←UPDATE(ws,i,j)
7: end for
8: ws,i+1,0 ← ws,i,T

9: end for
10: end for
11: wf = 1

K

∑K wa|b|f
12: return wf

The second adaptation presented by McDonald et al. (2010) is iterative parameter

mixing, where weights are not only mixed at the end of training, but are mixed between

shards after each parallel iteration. The same mixed weights are used to initialize each

shard for the next iteration. This is shown in Algorithm 3, with the mixing of weights

taking place on line 10.

While Chiang (2012) develops a complex parallelization procedure which neces-

sitated passing derivations and updates between learners, performing iterative parameter

mixing has been shown to be an effective alternative (Chiang, 2012).

From a multi-task learning perspective (Duh et al., 2010; Simianer et al., 2012),

each learner can be seen as optimizing the objective for its own task, and by learning

multiple parameter vectors and then mixing them we are creating a set of features and

weights that are useful across all of them. Thus, by simultaneously learning toward mul-

tiple related tasks, as opposed to each task individually, we achieve greater generalization.

We empirically analyze different parallelization strategies in Section 3.5.1.
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Algorithm 3 Algorithm for Iterative Parameter Mixing

Require: : Training set T = (xi,yi)
T
i=1

1: u←0
2: for iteration i← 0 to N do
3: for shard s ∈1...K in parallel do
4: ws,i,0 ←u
5: for example j ← 0 to T do
6: Y(xi)←DECODE(xj ,ws,i,j)
7: ws,i,j+1 ←UPDATE(ws,i,j)
8: end for
9: end for

10: u← 1
K

∑K ws,i,T

11: end for
12: return u

3.3.3 Parameter Update

The major practical concern with online large-margin methods for SMT is that

oftentimes the implementation aspect is unclear and appears difficult. This is further

compounded with a lack of standard practices; both theoretical, such as the objective to

optimize, and practical, such as efficient parallelization. The former is a result of the dis-

connect discussed in §2.4.3 between the standard machine learning setting, which posits

reachable references and lack of latent variables, and our own application. The latter is

an open engineering problem. Both of these aspects have been receiving recent atten-

tion (McAllester et al., 2010; McAllester and Keshet, 2011; Gimpel and Smith, 2012;

McDonald et al., 2010), and although certain questions remain as to the exact loss be-

ing optimized, we now have a better understanding of the theoretical underpinnings of

this method of optimization. We now review the methods that have been suggested for

optimizing this criterion.

The first adaptations of MIRA-based learning for structured prediction in NLP uti-
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lized a set of k constraints, either for y+, y−, or both. This complicated the optimization

by creating a quadratic programming (QP) problem with a set of linear constraints which

needed to be solved with either Hildreth’s algorithm or SMO style optimization, thereby

precluding the possibility of a simple analytical solution. In Chiang et al. (2008a), they

use k-best MIRA, where derivations are obtained directly from the hypergraph to gen-

erate constraints, and they update toward the 1-oracle. They obtain three different sets

of k-best lists. The first is the model k-best, chosen only according to model score, the

second is the cost-diminished hypothesis list, the first of which is referred to as hope, and

the third is the cost-augmented hypothesis list.

Watanabe et al. (2007) goes further to k-best MIRA with k-oracle by generating a

k-best list of oracles O(x).

The more candidates present, the more constraints on the QP exist, and the more

computationally intensive each updating iteration becomes. Thus there is a tradeoff be-

tween having enough constraints to achieve good performance and running time. The

approaches based on k-constraints use an arbitrary k, usually 10, as this is sufficient to

achieve close to best performance. Furthermore, large k have been shown to degrade

performance, possibly due to overfitting (McDonald et al., 2005).

Recently, Chiang (2012) introduced a cutting plane algorithm for use in MIRA, like

that of Structured SVM’s (Tsochantaridis et al., 2004), which optimizes on a small set

of active constraints. The algorithm is reproduced in Alg. 5. As opposed to attempting

to satisfy the exponentially many constraints, or k constraints simultaneously, the cutting

plane algorithm creates successively tighter relaxations of the objective by selecting a

growing subset of constraints and satisfying them exactly. This guarantees a solution
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which is accurate to within ε, meaning that the other exponential number of remaining

constraints are not violated by more than ε.

While these methods of dealing with structured prediction are in principle able

to have tighter error bounds, they come with a higher computational cost. However,

the passive-aggressive update shows that satisfying the single most violated margin con-

straint, commonly referred to as 1-best MIRA, is amenable to a simple analytical solution

for the optimization problem at each step (Crammer et al., 2006). Furthermore, the 1-best

MIRA update is conceptually and practically much simpler, while retaining most of the

optimization power of the more advanced methods.

In fact, this update remains largely intact as the inner core within k-best constraint

or cutting plane optimization. Algorithm 4 presents the entire update necessary for each

instance in 1-best MIRA training of a machine translation system. When this method

replaces Update(wi,j)) on line 5 in Alg. 1, we have a single processor MIRA learner.

When it replaces Update(ws,i,j) on line 7 of Alg. 3, we have a parallelized MIRA learner.

This is the method we use in practice.4

As can be seen, the parameter update at step 11 depends on the difference between

the features of y+ and y−, where α is the step size, which is controlled by the regulariza-

tion parameter C; indicating how far we are willing to move at each step. Y(xi) may be

a k-best list or the entire space of hypotheses.

We empirically compare cutting-plane optimization with passive-aggressive up-

dates in Section 3.5.2.
4The algorithm is agnostic as to the underlying hardware: it can be executed using multiple cores on a

single machine, or on a cluster.
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3.4 Experiments

3.4.1 Setup

To empirically analyze which loss, and thereby which strategy, for selecting y+

and y− is most appropriate for machine translation, we conducted a series of experi-

ments on Czech-to-English and French-to-English translation. The parallel corpora are

taken from the WMT2012 shared translation task, and consist of Europarl data along with

the News Commentary corpus (Koehn, 2005). Table 3.1 summarizes the data statistics.

All data were tokenized and lowercased, then filtered for length and aligned using the

GIZA++ implementation of IBM Model 4 (Och and Ney, 2003) to obtain bidirectional

alignments, which were symmetrized using the grow-diag-final-and method (Koehn et al.,

2003). Grammars were extracted from the resulting parallel text and used in our hierar-

chical phrase-based system implemented in cdec (Dyer et al., 2010).

All our experiments are carried out within cdec, an efficient and modular open

source framework for aligning, training, and decoding with a number of different trans-

lation models, including SCFGs (Dyer et al., 2010).5 cdec’s modular framework facili-

tates seamless integration of a translation model with different language models, pruning

strategies and inference algorithms. As input, cdec expects a string, lattice, or context-

free forest, and uses it to generate a hypergraph representation, which represents the full

translation forest without any pruning. The forest can now be rescored, by intersecting it

with a language model, for instance, to obtain output translations. The above capabilities

5http://cdec-decoder.org
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of cdec allow us to perform the experiments described in this and subsequent chapters,

which would otherwise be quite cumbersome to carry out in another system.

We constructed a 5-gram language model from the provided English News mono-

lingual training data as well as the English side of the parallel corpus using the SRI lan-

guage modeling toolkit (Stolcke, 2002) with modified Kneser-Ney smoothing (Chen and

Goodman, 1996). This was binarized using KenLM (Heafield, 2011).

As the tuning set for both language pairs, we used the 2051 sentences in news-

test2008 (NT08), and report results on the 2525 sentences of news-test2009 (NT09) and

2489 of news-test2010 (NT10) using the parameters from the best scoring iteration on the

tuning set.

Corpus Sentences Tokens
en *

cs-en 764K 20.5M 17.5M
fr-en 2M 57M 63M

Table 3.1: Corpus statistics.

We approximate cost-augmented decoding by obtaining a k-best list with k=500

unique best from our decoder at each iteration, and selecting the respective hypotheses

for optimization from it. To approximate max-BLEU decoding using a k-best list, we

set k=50k unique best hypotheses.6 As can be seen in Table 3.2, we found this size was

sufficient for our purposes as increasing size led to small improvements in oracle BLEU

score. We use a learning rate of η=1 and regularization strength ofC=0.01. The decoder is

6 We are theoretically able to extract more constraints from a large list, in the spirit of k-constraints or
a cutting plane, but (Chiang, 2012) and ourselves observe that cutting plane performance is approximately
0.2-0.4 BLEU better than a single constraint, so although there is a tradeoff between the simplicity of a
single constraint and performance, it is not substantial.
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pair 1 500 50k 100k

cs-en 17.9 24.9 29.4 29.7

fr-en 20.25 29.9 33.8 34.1

Table 3.2: Oracle score for model 1-best (baseline) and for k-best of size 500, 50k, and
100k on NT08.

configured to use cube pruning (Huang and Chiang, 2007) with a limit of 200 candidates

at each node.

For comparison with MERT, we create a baseline model which uses the small stan-

dard set of features described in Section 2.2.4.1.

To optimize the feature weights for our model with MERT, we use Viterbi envelope

semiring training (VEST), which is an implementation of MERT over hypergraphs (Dyer

et al., 2010; Och, 2003). VEST reinterprets MERT within a semiring framework, which

is a useful mathematical abstraction for defining two general operations, addition (⊕) and

multiplication (⊗) over a set of values. Formally, a semiring is a 5-tuple (K,⊕,⊗, 0, 1),

where addition must be communicative and associative, multiplication must be associa-

tive and must distribute over addition, and an identity element exists for both. For VEST,

having K be the set of line segments, ⊕ be the union of them, and ⊗ be Minkowski

addition of the lines represented as points in the dual plane, allows us to compute the

necessary MERT line search with the INSIDE algorithm.7

While BLEU is usually calculated at the corpus level, we need to approximate the

metric at the sentence level. In this, we follow a slightly different combination of previous

approaches, where in the first iteration through the corpus we use a smoothed sentence

7This algorithm is equivalent to the hypergraph MERT algorithm described by Kumar (Kumar et al.,
2009).
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level BLEU approximation, as given in Eq. 2.19, and in subsequently iterations, the BLEU

score is calculated in the context of the previous set of 1-best translations of the entire

tuning set.

We use Algorithm 3 to parallelize training, where we divide the tuning set into n

shards and distribute them among n learners, along with the parameter vector w. Each

learner decodes and updates parameters on its shard of the tuning set, and once all learners

are finished, these n parameter vectors are averaged to form the initial parameter vector

for the next iteration. Learning is carried out across n=15 learners on our PBS-managed

batch cluster unless otherwise noted.

3.4.2 Results

The results of using different optimization strategies for cs-en and fr-en are pre-

sented in Tables 3.3 and 3.4 below. For all experiments, all settings are kept exactly

the same, with the only variation being the loss dictating the selection of the oracle y+

and prediction y−. The first column in each table indicates the method for selecting the

prediction, y−. PB indicates prediction-based, MC is the hypothesis with the highest

cost, and M+C is cost-augmented selection. Analogously, the headings across the table

indicate oracle selection strategies, with LU indicating local updating, and M-C being

cost-diminished selection.

From the cs-en results in Table 3.3, we can see that two settings fare the best: LU

oracle selection paired with MC prediction selection (LU/MC), and M-C oracle selection

paired with M+C prediction selection (M±C). On both sets, (M±C) performs better, but
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cs-en NT09 NT10

Selection of y+

Selection of y− LU M-C LU M-C

PB 17.71 19.67 18.32 20.55

MC 19.69 17.38 20.34 19.13

M+C 18.92 20.15 19.42 21.06

Table 3.3: Results with different strategies on cs-en translation. MERT baseline is 19.92
for NT09 and 21.38 for NT10. PB indicates prediction-based, MC is the hypothesis with
the highest cost, and M+C is cost-augmented selection. Analogously, the headings across
the table indicate oracle selection strategies, with LU indicating local updating, and M-C
being cost-diminished selection.

the results are comparable. Pairing M-C with PB is also a viable strategy, while no other

pairing is successful for LU.

When comparing with MERT, note that we use a hypergraph based MERT (Kumar

et al., 2009), while the MIRA updates are computed from a k-best list. For max-BLEU

oracle selection paired with MC, the performance decreases substantially, to 16.91 and

18.26 BLEU on NT09 and NT10, respectively. Using the augmented k-best list did not

significantly affect performance for M-C oracle selection.

For fr-en, we see much the same behavior as in cs-en. However, here LU/MC

slightly outperforms M±C. From both tasks, we can see that LU is more sensitive to

prediction selection, and can only optimize effectively when paired with MC. M-C on

the other hand, is more forgiving, and can make progress with PB and MC, albeit not as

effectively as with M+C.
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fr-en NT09 NT10

Selection of y+

Selection of y− LU M-C LU M-C

PB 21.03 24.93 22.45 26.75

MC 25.61 24.78 27.26 26.36

M+C 23.77 25.45 25.27 26.97

Table 3.4: Results with different strategies on fr-en translation. MERT baseline is 26.11
for NT09 and 27.8 for NT10.

3.4.3 Sparse Feature Set

Since one of the primary motivations for large-margin learning is the ability to ef-

fectively handle large quantities of features, we further evaluate the ability of the strategies

we are investigating by introducing a large number of sparse binary indicator features into

our model of the form commonly found in MT research (Chiang et al., 2009; Watanabe

et al., 2007). Specifically, we introduce two types of features based on word alignment

from hierarchical phrase pairs and a target bigram feature. The first type, a word pair

feature, fires for every word pair (ei, fj) observed in the phrase pair.

f(ei, fi) =


1 if fi = “rappelle” and ei = “remind”

0 otherwise

(3.11)

The second, insertion features, account for spurious words on the target side of a

phrase pair by firing for unaligned target words, associating them with every source word,

i.e. (ei, fj), (ei, fj+1),etc.:
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f(ei, f0...fj) =


1 if ei = “the” and(ei, f0...fj) /∈ a

0 otherwise

(3.12)

The target bigram feature fires for every pair of consecutive words on the target side

(ei, ei+1):

f(ei, ei+1) =


1 if ei = “forget” and ei+1 = “to”

0 otherwise

(3.13)

In all, we introduce 650k features for cs-en, and 1.1M for fr-en. Taking the two best

performing strategies from the baseline model, LU/MC and M±C, we compare their

performance with the larger feature set in Table 3.5.

fr-en cs-en

NT09 NT10 NT09 NT10

LU/MC 25.5 27.1 19.62 20.66

M±C 25.51 26.90 20.03 21.24

Table 3.5: Results on cs-en and fr-en with full larger feature set.

Although integrating these features improves the performance on the tuning set,

they do not significantly alter the performance on either task on the test sets. This is

in line with previous observations that dealt with sparse features on small tuning sets,

which usually restrict the number of active features by only using those containing high-

frequency words, resulting in approximately 10k features (Hopkins and May, 2011; Gim-

pel and Smith, 2012). Here, however, we optimize with up to 1 million, showing that

margin-based optimization is practical, and still finds a comparable solution, even with
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several orders of magnitude more features.

To show the utility that correctly selecting sparse features can provide for trans-

lation, we follow previous approaches and restrict lexical features according to observed

frequency in the training data. Specifically, we replace the word pair feature with context-

dependent word pairs for the 300 most frequent aligned word pairs (f ,e) in the training

corpus, which fire on triples (f ,e,f+1) and (f ,e,f−1), capturing when we see f aligned to

e, with f+1 and f−1 occurring to the right or left of f , respectively:

f(fi−1fi, ei) =


1 if fi = “de” and ei = “of” and fi−1 = “politique”

0 otherwise

(3.14)

Examples of some of the top context-dependent word pairs are presented in Ta-

ble 3.6. All other words fall into the default 〈unk〉 feature bin, which we have found to be

an important factor. In addition, we have insertion and deletion features for the 150 most

frequently unaligned target and source words, and lexical features on rules indicating the

rule identity, which fires on every unique grammar rule, and serves as a discriminative

analog to the phrase translation probabilities:

f(r) =


1 if rf = “X0 la position de X1” and re = “X0 the position of X1”

0 otherwise

(3.15)

Non-lexical features include structural distortion, which captures the dependence
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(de la, the) (de l’, the) (la commission, commission)
(, et, and) (, je, i) (l’ union, union)

(le président, president) (que nous, we) (, nous, we)
(, mais, but) (à la, the) (union européenne, european)

(président „ ,) (états membres, member) (dans le, the)
(, la, the) (pense que, that) (que la, the)
(, le, the) (que le, the) (à l’, the)

(parce que, because) (d’ un, a) (que les, the)
(d’ une, a) (, qui, which) (l’ ue, eu)

(le parlement, parliament) (l’ europe, europe) (les états, states)
(c’ est, is) (sur la, the) (n’ est, is)
(, les, the) (il est, is) (le conseil, council)

(, il, it) (sur le, the) (parlement européen, european)
(du conseil, council) (que l’, the) (, comme, as)

(dans les, the) (dans la, the) (qu’ il, it)
(la politique, policy) (est pas, not) (de cette, this)

(la commission, committee) (, l’, the) (du parlement, parliament)
(parlement européen, parliament) (européenne ., .) (, dans, in)

Table 3.6: Examples of top context-dependent word pairs for fr-en.

between reordering and the size of a filler (Chiang et al., 2008b):

f(r) =


1 if reordered and span = 4

0 otherwise

(3.16)

and rule shape, which bins grammar rules by their sequence of terminals and nontermi-

nals (Simianer et al., 2012):

f(r) =


1 if rf = “01110” and re = “11010”

0 otherwise

(3.17)

All of these features are generated from the translation rules on the fly, and thus do

not have to be stored as part of the grammar. These feature templates resulted in millions
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fr cs

Left context pair 4919 2870

Right context pair 5417 2975

Target bigram 14508 13658

Insertion 132 131

Deletion 144 138

Rule Id 55230 62507

Rule Shape 36 37

Distortion 18 18

Total 80415 82345

Table 3.7: Active sparse features for cs-en and fr-en tuning.

fr-en cs-en

NT9 NT10 NT09 NT10

LU/MC 25.77 27.69 20.3 21.3

M±C 26.40 27.60 20.92 22.05

Table 3.8: Results on cs-en and fr-en with selected sparse feature set.

of features, of which only a fraction were active for tuning, as shown in Table 3.7.

Table 3.8 shows the substantial gains achieved across all settings when using the

selected sparse feature set. The gains are up to 1 BLEU for Czech and French as compared

to Tables 3.3 and 3.4, respectively..

3.5 Discussion

Although the performance of the two strategies is competitive on the evaluation

sets, this does not fully convey the success of the optimization. For a more complete view

of the differences between optimization strategies, we turn to Figures 3.2-3.7. Figure 3.2
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Figure 3.2: Comparison of performance on
tuning set for cs-en when using LU/MC and
M±C selection.
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Figure 3.3: Comparison of performance on
tuning set for fr-en when using LU/MC and
M±C selection.

and 3.3 present the comparison of performance on the NT08 tuning set for cs-en and

fr-en, respectively, when using LU/MC to select the oracle and prediction versus M±C

selection. M±C is indicated with a solid black line, while LU/MC is a dotted red line.

The corpus-level oracle and prediction BLEU scores at each iteration are indicated with

error bars around each point, using solid lines for M±C and dotted lines for LU/MC.

As can be seen in Figure 3.2, while optimizing with M±C is stable and smooth, and

we converge on our optimum after several iterations, optimizing with LU/MC is highly

unstable. This is at least in part due to the wide range in BLEU scores for the oracle and

prediction, which are in the range of 10 BLEU points higher or lower than the current

model best. On the contrary, the range of BLEU scores for the M±C optimizer is on the

order of 2 BLEU points, leading to more gradual changes. We see a similar, albeit slightly

less pronounced behavior on fr-en in Figure 3.3. M±C optimization is once again smooth,

and converges quickly, with a small range for the oracle and prediction scores around the

model best. LU/MC remains unstable, oscillating up to 2 BLEU points between iterations.

The highly unstable performance of LU/MC on cs-en could be responsible for the subpar
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Figure 3.4: Comparison of performance on
tuning set for cs-en of the three prediction
selection strategies when using M-C selec-
tion as oracle.
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Figure 3.5: Comparison of performance on
tuning set for cs-en of the three prediction
selection strategies when using LU selection
as oracle.
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Figure 3.6: Comparison of performance on
tuning set for fr-en of the three prediction se-
lection strategies when using M-C selection
as oracle.
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Figure 3.7: Comparison of performance on
tuning set for fr-en of the three prediction se-
lection strategies when using LU selection as
oracle.

test performance compared to M±C, while the relatively smoother curve of LU/MC for

fr-en produces better results.

Figures 3.4- 3.7 compare the different optimization strategies further. In Figures 3.4

and 3.6, we use M-C as the oracle, and show performance on the tuning set while using

the three prediction selection strategies, M+C with a solid blue line, PB with a dotted

green line, and MC with a dashed red line. Error bars indicate the oracle and prediction

BLEU scores for each pairing as before. In all three cases, the oracle BLEU score is in

about the same range, as expected, since all are using the same oracle selection strategy.
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We can immediately observe that PB has no error bars going down, indicating that the PB

method for selecting the prediction keeps pace with the model best at each iteration. On

the other hand, MC selection also stands out, since it is the only one with a large drop in

prediction BLEU score. Crucially, all learners are stable, and move toward convergence

smoothly, which serves to validate our earlier observation that M-C oracle selection can

be paired with any prediction selection strategy and optimize effectively. In both cs-en

and fr-en, we can observe that M±C performs the best.

In Figures 3.5 and 3.7, we use LU as the oracle, and show performance using the

three prediction selection strategies, with each line representing the same strategy as de-

scribed above. The major difference, which is immediately evident, is that the optimizers

are highly unstable. The only pairing which shows some stability is LU/MC, with both

the other prediction selection methods, PB and M+C significantly underperforming it.

Based on the translation performance alone of optimizing the loss functions rep-

resented by LU/MC and M±C selection, it is hard to distinguish them, as they produce

comparable results on the evaluation sets for fr-en and cs-en. However, taking the un-

stable nature of LU/MC into account, the extent of which may depend on the tuning set,

the cost function itself, as well as other factors, for the rest of this thesis we will use the

loss function in Eq. 3.4 that is based on selecting the oracle and prediction pair based on

M±C.
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3.5.1 Parallelization

As another attractive property of online learning is fast convergence and scalability,

here we examine parallelization and the effect it has on both the tuning performance,

learning time, and final test performance. The results in this section compare Alg. 1,

i.e. a single learner, with Alg. 3 using 5 and 15 learners for fr-en. Figure 3.8 plots the

performance curve of the four scenarios on the tuning set versus total wallclock time.

With 15 learners, we are able to achieve good performance by the second iteration, with

a total time of less than 10 minutes, and total time for all 10 iterations of less than 50

minutes. On the other hand, with a single learner we need more than 50 minutes to go

through the tuning set once, and double that to achieve comparable performance.

Figure 3.9 presents performance comparison across the learners at each iteration,

with error bars marking hope and fear hypothesis scores. We see that on the first iteration,

fewer learners leads to slightly better performance, but this lead disappears by the second

iteration. We can also notice an interesting side effect in that the spread of the hope and

fear hypotheses increases with the number of learners.

Table 3.9 presents results on the evaluation sets. While a single learner performs

modestly better, the parallelization does not significantly impact final performance. Thus,

although parallelization and weight averaging yields different result from running a single

learner over the entire data, the difference is quite small in terms of convergence and

quality of tuned weights.

In future chapters, we will use Algorithm 3 to perform efficient parallel training for

SMT.
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Figure 3.8: Comparison of performance vs.
time on the tuning set for fr-en with 1, 5, and
15 parallel learners.
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Figure 3.9: Comparison of performance on
the tuning set for fr-en with 1, 5, and 15 par-
allel learners.

fr-en

learners NT09 NT10

1 26.08 27.86

5 25.94 27.28

15 25.95 27.54

Table 3.9: Results on fr-en with different numbers of parallel learners.

3.5.2 Cutting Plane vs. Passive Aggressive Optimization

The cutting-plane method of iteratively finding closer approximations for the so-

lution to the QP allows solving the structured prediction problem efficiently. However,

it can require the ability to reweight and generate new hypotheses from the hypergraph,

or re-extract the k-best, within one update iteration, which may not be feasible without

tight integration with the decoder. On the other hand, the passive-aggressive update is

conceptually simpler, and potentially favorable from an implementation standpoint. We

thus compare the cutting plane algorithm in Alg. 5 with the passive-aggressive update

presented in Alg. 4. Figure 3.10 presents the tuning performance plotted against wall-

clock time, and Figure 3.11 presents performance at each iteration. The cutting plane
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has slightly longer time per iteration, but not significantly different from the PA method.

Furthermore, although the curve is slower to ascend, it has a more stable arc. The evalu-

ation results in Table 3.10 reiterate the fact that the cutting plane finds a better solution,

achieving better performance than the single learner above. However, the PA update is

quite close, and requires much less computation per example.
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Figure 3.10: Comparison of performance vs.
time on the tuning set for fr-en with cutting-
plane vs. passive-aggressive learners.
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Figure 3.11: Comparison of performance on
the tuning set for fr-en with cutting-plane vs.
passive-aggressive learners.

fr-en

learners NT09 NT10

Cutting-Plane 26.14 27.90

PA 25.95 27.54

Table 3.10: Results on fr-en with cutting-plane and passive-aggressive optimization.
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Algorithm 4 MIRA Passive-Aggressive Update
1: procedure UPDATE(w)
2: (y+,d+)← FINDORACLE(Y(xi))
3: (y−,d−)← FINDPREDICTION(Y(xi))
4: margin← w>f(xi,y

−,d−)−w>f(xi,y
+,d+)

5: cost← BLEU(yi,y
+)− BLEU(yi,y

−)
6: loss = margin + cost
7: if loss > 0 then
8: α← min

(
C, loss
‖f(xi,y+,d+)−f(xi,y−,d−)‖2

)
9: w← w+ ηα (f(xi,y

+,d+)− f(xi,y
−,d−))

10: end if
11: return w
12: end procedure

13: procedure FINDORACLE(Y(xi))
14: if γ+=0 and β+=1 then
15: (y+,d+)← argmaxy∈Y(xi)

−∆(yi,y) . Min cost
16: else if γ+ = β+ = 1 then
17: (y+,d+)← argmaxy∈Y(xi)

w>f(xi,y,d)−∆(yi,y) . Hope
18: end if
19: return y+

20: end procedure

21: procedure FINDPREDICTION(Y(xi))
22: if γ−=0 and β−=1 then
23: y− ← argmaxy∈Y(xi)

cost(yi,y) . Max cost
24: else if γ−=1 and β−=0 then
25: (y−,d−)← argmaxy∈Y(xi)

w>f(xi,y) . Prediction Based
26: else if γ− = β− = 1 then
27: (y−,d−)← argmaxy∈Y(xi)

w>f(xi,y,d) + ∆(yi, y) . Max loss/Fear
28: end if
29: return y−
30: end procedure
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Algorithm 5 MIRA Cutting Plane Update (based on Chiang (2012)
1: procedure UPDATE(w)
2: (y+,d+)← FINDORACLE(Y(xi))
3: Si ← {(y+,d+)}
4: repeat
5: (y−,d−)← FINDPREDICTION(Y(xi))
6: compute ξ = max

{
0,max(y,d)∈Si

FINDLOSS((y,d))
}

7: if FINDLOSS((y−,d−)) ≥ ξ + ε then
8: Si ← Si ∪ {(y−,d−)}
9: OPTIMIZESET(w)

10: end if
11: until Si does not change
12: end procedure

13: procedure OPTIMIZESET(w)
14: αy ← 0 for (y,d) ∈ Si
15: αyi

← C
16: iterations← 0
17: while iterations ≤ 100 do
18: (y′,d′), (y′′,d′′)← SELECTPAIR(w)
19: if undefined (y′,d′), (y′′,d′′) then
20: return
21: end if
22: loss← ∆(yi,y

′)−∆(yi,y
′′)

23: margin← w>f(xi,y
′,d′)−w>f(xi,y

′′,d′′)
24: loss = margin + loss
25: γα ← loss

η||f(xi,y′,d′)−f(xi,y′′,d′′)||2

26: γα ← max(−αy,min(αy′ , γα))
27: αy ← αy + γα
28: αy′ ← αy′ − γα
29: w← w − γα(f(xi,y

′,d′)− f(xi,y
′′,d′′)

30: end while
31: end procedure
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32: procedure SELECTPAIR(w)
33: for (y′,d′) ∈ Si do
34: Hmax ← maxy′′ 6=y′ FINDLOSS(w, (y′′,d′′))
35: if α(y′,d′) = 0 and FINDLOSS > Hmax + ε then
36: if ∃(y′′,d′′) 6= (y′,d′) such that α(y′′,d′′) > 0 then
37: return (y′,d′), (y′′,d′′)
38: end if
39: end if
40: if α(y′,d′) > 0 and FINDLOSS(w, (y′,d′)) < Hmax − ε then
41: if ∃(y′′,d′′) 6= (y′,d′) such that FINDLOSS(w, (y′′,d′′)) >

FINDLOSS(w, (y′,d′)) then
42: return (y′,d′), (y′′,d′′)
43: end if
44: end if
45: end for
46: return undefined
47: end procedure
48: procedure FINDLOSS(w, (y,d))
49: if γ−=0 and β−=1 then
50: H(y)← cost(yi, y) . Max cost
51: else if γ−=1 and β−=0 then
52: H(y)← w>f(xi,y,d) . Prediction Based
53: else if γ− = β− = 1 then
54: H(y)← w>f(xi,y,d) + ∆(yi,y) . Max loss/Fear
55: end if
56: return H(y)
57: end procedure
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3.6 Large-Scale Discriminative Learning

In the previous sections, we empirically analyzed the PA algorithms ability to scale

to high-dimensional feature spaces for SMT. Although we now possess the ability to

easily handle sparse and lexicalized features, we face a new problem. Typically, a handful

of parameters for dense features are tuned, along with at most a few thousand others,

using a relatively small tuning set, on the order of several thousand sentences (Cherry

and Foster, 2012; Chiang et al., 2009). Since these features occur often, and there are far

fewer features than examples, there is plenty of support for them in the tuning sentences.

However, when dealing with thousands to millions of sparse features that occur very

infrequently, i.e. lexical features or rule identity, we may not find sufficient support using

only a small tuning set, leading to overfitting. This predicament has driven research into

scaling the size of the tuning set (Simianer et al., 2012; Flanigan et al., 2013; Yu et al.,

2013). While more features tuned on more data usually results in better performance for

other NLP tasks, this has not necessarily been the case for SMT.

The SGD based methods we have been discussing are especially well suited for

large-scale learning, since they scale nicely with both the size of the data and param-

eters (Bottou and Bousquet, 2011). In the following sections, we extend our previous

learner to handle large-scale training data in a highly distributed setting by developing

Mr. MIRA (Eidelman et al., 2013b), an open source decoder agnostic implementation of

online large-margin learning in Hadoop MapReduce.8 Mr. MIRA separates learning from

the decoder, allowing the flexibility to specify the desired inference procedure through a

8https://github.com/kho/mr-mira
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simple text communication protocol. The decoder receives input sentences and weight

updates from the learner. The learner only requires k-best output with feature vectors, as

well as the specification of a cost function. While the current demonstrated application

focuses on large-scale discriminative training for machine translation, the learning algo-

rithm is general with respect to the inference algorithm employed. To our best knowledge,

this work is the first to achieve practical large-scale large-margin learning with a passive-

aggressive algorithm for SMT.9 In so doing, we focus on improving understanding into

the effective use of sparse features, and the benefits and challenges of large-scale discrim-

inative training. Experimental results (§3.8) show that it scales linearly and makes fast

parameter tuning on large tuning sets for SMT practical.

3.7 Bitext Tuning

In principle, we may want to train our system completely discriminatively on the

parallel data, foregoing the construction of the previously described features in Sec-

tion 2.2.4.1 based generative models entirely. In practice, however, this remains infea-

sible. For one, bitexts range on the order of tens of millions of sentences pairs, and tuning

with them would require the repeated translation of millions of sentences – quite a task!

Furthermore, as we shall see, bitexts are composed of many genres, while the tuning set

is selected to match the genre of the data we want to be able to translate. Thus, tuning on

the bitext may pose an additional domain mismatch problem.

Thus, the current procedure is to utilize the generative models to align the bitext

9There has been related previous work using MapReduce to scale training, for instance Simianer et al.
(2012) used MapReduce with a perceptron algorithm for pairwise ranking.
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as before, and then simply take a large portion of it to use as a tuning set. This poses

another problem, however. Recall that in order to translate, we need to extract translation

grammars for each sentences, containing all the translation rules which can be applied to

translate the source side of the sentence, and these translation rules are extracted from the

aligned parallel corpus. If the portion of the bitext we wish to use for tuning, and thus need

to extract translation rules for, is included in the parallel corpus we extract translation

rules from, we face a serious overfitting issue. This is because our translation model

would have an abundance of rules to be able to correctly translate most of these sentences,

possibly preferring longer more specialized rules that are less able to generalize.10 While

for an unseen sentence, we would have far fewer rules available, and may not have learned

proper settings for them.

One solution is to construct a “leave-one-out grammar” (Simianer et al., 2012).

Here, the per-sentence grammar for sentence i would only contain rules not extractable

from sentence i. While effective, this solution is cumbersome, as it requires modify-

ing how most grammar extractors work. Another simpler solution is to jackknife the

data (Flanigan et al., 2013). Here, we divide the bitext into n folds, and withhold sen-

tences from one fold to use for tuning, while aligning and extracting the grammar from

the remaining n-1 folds. This results in n systems, of which the best performing one can

be taken, or the final weights can be combined.

10There would still be issues preventing the perfect translation for all sentences; alignment errors, re-
ordering spans longer than our maximum, etc.
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3.7.1 MapReduce

Hadoop MapReduce (Dean and Ghemawat, 2004) is a popular open-source imple-

mentation of the MapReduce distributed processing framework. MapReduce has gained

widespread adoption, with the advantage of providing scalable parallelization in a man-

ageable framework, taking care of data distribution, synchronization, fault tolerance, as

well as other features. This differs from previous parallelization architectures in that there

is no need to explicitly manage issues related to data distribution, concurrency, and other

system details. Thus, while we could otherwise achieve the same level of parallelization,

it would be in a more ad-hoc manner.

A MapReduce program is divided into a Map function and a Reduce function.

This mimics the common processing pipeline of many algorithms: some action is per-

formed on each instance, the results of which are then aggregated. The mapper contains

the action to be taken, and the reducer describes what is to be done with the results.

As part of the MapReduce design, the processing actually takes place over key-

value pairs, which define the input and output for mappers and reducers. The entire set of

input key-value pairs is split into shards, where the pairs in a shard are sent to a mapper,

which process them accordingly and produces intermediate key-value pairs in parallel

with other mappers. All intermediate values across mappers are then processed by the

reducer according to their key to produce the output key-value pairs. We refer to the

reader to Lin and Dyer (2010) for further details.
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3.7.2 Algorithm Design

The advantage of online methods lies in their ability to deal with large training

sets and high-dimensional input representations while remaining simple and offering fast

convergence. We use Hadoop streaming to parallelize the online training process, through

which our system can take advantage of commodity clusters to handle parallel large-scale

training while also being capable of running on a single machine or PBS-managed batch

cluster

Hadoop streaming allows any arbitrary executable to serve as the mapper or reducer,

as long as it handles key-value pairs properly.11

A single iteration of training is performed as a Hadoop streaming job. Each begins

with a map phase, with every parallel mapper, which is our learner from earlier, loading

the same initial weights and decoding and updating parameters on a shard of the data.

This is followed by a reduce phase, with a single reducer collecting final weights from

all mappers and computing a weighted average to distribute as initial weights for the next

iteration.

A straightforward MapReduce implementation of the MIRA learner accepts a single

input key-value pair to the Map function. The key is a sentence identifier,12 and the

value consists of one sentence from the training data, along with its reference(s). In each

mapper, the current parameter values (i.e., feature weights) are loaded into memory as an

initialization step, before processing any key-value pair. After processing each sentence,

11By default, each line is treated as a key-value pair encoded in text, where the key and the value are
separated by a <tab>.

12Sentence ids are non-negative.
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the mapper will update the parameters based on the computed gradient.

Each mapper loads the same initial weights, processes a single shard of data and

produces two types of intermediate key-value pairs: the one-best hypothesis of each sen-

tence along with the sentence ID as the key (non-negative); once there are no more input

lines, the final weights are output with a special negative key. In the reduce step, a single

reducer collects all key-value pairs, grouped and sorted by keys. The reducer first receives

the updated weights from all mappers, all grouped by key−1, from which it computes any

feature selection and weighted average of final weights received from all of the mappers

as before. The remaining key-value pairs are received in order of their sentence id, and

the one-best hypotheses are output to disk in the order they are received, so that the order

matches the reference translation set. After the reducer finishes, the averaged weights

are used as the initial weights for the next iteration; the emitted hypotheses are scored

against the references, which allows us to track the tuning performance and the progress

of convergence.

3.7.3 Scalability

In an application such as SMT, the decoder requires access to the translation gram-

mar and language model to produce translation hypotheses. In addition, the mapper also

needs to compute the gradient value for learning, and this requires access to the refer-

ence translations. For small tuning sets, which have been typical in MT research, having

these files transferred across the network to individual servers (which then load the data

into memory) is not a problem. However, for even modest input on the order of tens
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of thousands of sentences, this creates a challenge. For example, distributing thousands

of per-sentence grammar files to all the workers in a Hadoop cluster is time-consuming,

especially when this needs to be performed prior to every iteration.

To benefit from MapReduce, it is essential to avoid dependencies on “side data” as

much as possible, due to the challenges explained above with data transfer. To efficiently

encode the information that the learner and decoder require (source sentence, reference

translation, grammar rules) in a manner amenable to MapReduce, i.e. avoiding depen-

dencies on “side data” and large transfers across the network, we append the reference

and per-sentence grammar to each input source sentence, creating a very long string as

the value object.. Although this file’s size is substantial (e.g., 75 gigabytes for 50,000

sentences), it is not an issue since after the initial transfer the data reside on the Hadoop

distributed file system and MapReduce optimizes for data locality when scheduling map-

pers.

Unfortunately, it is much more difficult to obtain per-sentence language models

that are small enough to handle in this same manner. Currently, the best solution we have

found is to use Hadoop’s distributed cache to ship the single large language model to each

worker.

3.8 Evaluation

3.8.1 Setup

We evaluated online learning in Hadoop MapReduce by applying it to German-

English and Russian-English machine translation, using our hierarchical phrase-based
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Dev Test Test2 5k 10k 25k 50k

en 75k 74k 27k 132k 255k 634k 1258k

de 74k 73k 26k 133k 256k 639k 1272k

Table 3.11: Corpus statistics in tokens for Ger-
man.

Dev Test Test2 15k

ru 46k 24k 24k 350k

en 50k 27k 25k 371k

Table 3.12: Corpus statistics in tokens
for Russian.

translation system. The parallel training data for both languages consisted of the Europarl

and News Commentary corpora from the WMT12 translation task,13 For Russian, we

additionally used the Common Crawl and Yandex data. The data were lowercased and

tokenized, then filtered for length and aligned using the GIZA++ implementation of IBM

Model 4 (Och and Ney, 2003) to obtain one-to-many alignments in both directions and

symmetrized sing the grow-diag-final-and method (Koehn et al., 2003).

We constructed a 5-gram language model using SRILM (Stolcke, 2002) from the

provided English monolingual training data and parallel data with modified Kneser-Ney

smoothing Chen and Goodman (1996), which was binarized using KenLM (Heafield,

2011). The sentence-specific translation grammars were extracted using a suffix array

rule extractor (Lopez, 2007).

For German, we used the 3,003 sentences in newstest2011 as our tuning set, Dev,

and report results on the 3,003 sentences of the newstest2012 Test set using BLEU and

TER (Snover et al., 2006). For Russian, we took the first 2,000 sentences of newstest2012

for Dev, and report results on the remaining 1,003. For both languages, we selected 1,000

sentences from the bitext to be used as an additional testing set (Test2).

We experimented with two feature sets: (1) a small set of 16 standard features; and

(2) a large sparse feature setting containing the features described in Section 3.4.3.

13http://www.statmt.org/wmt12/translation-task.html

103



All experiments were conducted on a Hadoop cluster (running Cloudera’s distri-

bution, CDH 4.2.1) with 16 nodes, each with two quad-core 2.2 GHz Intel Nehalem

Processors, 24 GB RAM, and three 2 TB drives. In total, the cluster is configured for a

capacity of 128 parallel workers, although we do not have direct control over the number

of simultaneous mappers, which depends on the number of input splits. If the number of

splits is smaller than 128, then the cluster is under-utilized. To note this, we report the

number of splits for each setting in our experimental results.

We ran MIRA on a number of tuning sets, described in Tables 3.11 and 3.12, in

order to test the effectiveness and scalability of our system. First, we used the standard

tuning set from WMT12, consisting of 3,003 sentences from news domain. In order

to show the scaling characteristics of our approach, we then used larger portions of the

training bitext directly to tune parameters. Since the bitext is used to learn rules for

translation, using the same parallel sentences for grammar extraction as well as for tuning

feature weights can lead to severe overfitting (Flanigan et al., 2013). To avoid this issue,

we used a jackknifing method to split the training data into n = 10 folds, and built a

translation system on n− 1 folds, while sampling sentences from the News Commentary

portion of the held-out fold to obtain tuning sets ranging from 5,000 to 50,000 sentences

for German, and 15,000 sentences for Russian.
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Set # features Tune Test

↑BLEU ↑BLEU ↓TER

de-en 16 22.38 22.69 60.61
+sparse 108k 23.86 23.01 59.89

ru-en 16 30.18 29.89 49.05
+sparse 77k 32.40 30.81 48.40

Table 3.13: Results with the addition of sparse features for German and Russian.

3.8.2 Results

3.8.3 Sparse Features

We first perform an evaluation to gauge the effect sparse features have for these

language pairs on the typical tuning sets. To allow for memory efficiency while scaling

the training data, we hash all the lexical features from their string representation into a

64-bit integer.

3.9 Adaptive Learning Rate

Altogether, these templates result in millions of potential features, thus how to se-

lect appropriate features, and how to properly learn their weights can have a large impact

on the potential benefit. Figure 3.12 shows tuning performance for sparse models with a

single learning rate, and adaptive learning with λ=0.01 and λ=0.1, with associated results

on Test in Table 3.14.14 As can be seen, using a single η produces almost no gain on Dev.

However, while both settings using an adaptive rate fare better, the proper setting of λ is

14All sparse models are initialized with the same tuned baseline weights. Learning rates are local to each
mapper.
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Figure 3.12: Performance on the tuning set when using a single step size (η) versus dif-
ferent per-feature learning rates.

Adaptive # feat. Tune Test

↑BLEU ↑BLEU ↓TER

none 74k 22.75 22.87 60.19

λ=0.01 108k 23.86 23.01 59.89

λ=0.1 62k 23.32 22.92 60.09

Table 3.14: Results with different λ settings for using a per-feature learning rate with
sparse features.

important. With λ=0.01 we observe 0.5 BLEU gain over λ=0.1 in tuning, which translates

to a small gain on Test. Henceforth, we use an adaptive learning rate with λ=0.01 for all

experiments.

Table 3.13 presents baseline results for both languages. With the addition of sparse

features, tuning scores increase by 1.5 BLEU for German, leading to a 0.3 BLEU increase

on Test, and 2.2 BLEU for Russian, with 1 BLEU increase on Test. The majority of

active features for both languages are rule id (74%), followed by target bigrams (14%)

and context-dependent word pairs (11%).

106



3.10 Feature Selection

As the tuning set size increases, so do the number of active features. This may cause

practical problems, such as reduced speed of computation and memory issues. Further-

more, while some sparse features will generalize well, others may not, thereby incurring

practical costs with no performance benefit. Thus, while utilizing sparse features is a pri-

mary motivation for performing large-scale discriminative training, which features to use

and how to learn their weights can have a large impact on the potential benefit. To this

end, several techniques have recently been explored for improved learning.

Simianer et al. (2012) recently explored `1/`2 regularization for joint feature se-

lection for SMT in order to improve efficiency and counter overfitting effects. When

performing parallel learning this allows for selecting a reduced set of the top k features at

each iteration that are effective across all learners.

Table 3.15 compares selecting the top 200k features versus no selection for a larger

German and Russian tuning set. As can be seen, we achieve the same performance with

the top 200k features as we do when using double that amount, while the latter becomes

increasing cumbersome to manage. Therefore, we use a top 200k selection for the re-

mainder of this work.

3.11 Large-Scale Training

In the previous section, we saw that learning sparse features on the small tuning set

leads to substantial gains in performance. Next, we wanted to evaluate if we can obtain
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Set # feat. Tune Test

↑BLEU ↑BLEU ↓TER

all 510k 32.99 22.36 59.26
top 200k 200k 32.96 22.35 59.29

all 373k 34.26 28.84 49.29
top 200k 200k 34.45 28.98 49.30

Table 3.15: Comparison of using all features versus top k selection.

further gains by scaling the tuning data to learn parameters directly on a portion of the

training bitext. Results for large-scale training for German are presented in Table 3.16.

The second column shows the space each tuning set takes up on disk when we include

reference translations and grammar files along with the sentences. The reported tuning

BLEU is from the iteration with best performance, and running times are reported from

the top-scoring iteration as well.

Although we cannot compare the tuning scores across different size sets, we can see

that tuning scores for all sets improve substantially with sparse features. Unfortunately,

with increasing tuning set size, we see very little improvement in Test BLEU and TER with

either feature set. Similar findings for Russian are presented in Table 3.17. Introducing

sparse features improves translation performance on each set, respectively, but tuning on

Dev always performs better on Test.

While tuning on Dev data results in better BLEU on Test than when tuning on the

larger sets, it is important to note that although we are able to tune more features on the

larger bitext tuning sets, they are not composed of the same genre as the Tune and Test

sets, resulting in a domain mismatch.

This phenomenon is further evident in German when testing each model on Test2,
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which is selected from the bitext, and is thus closer matched to the larger tuning sets, but

is separate from both the parallel data used to build the translation model and the tuning

sets. Results on Test2 clearly show significant improvement using any of the larger tuning

sets versus Dev for both the baseline and sparse features. The 50k sparse setting achieves

almost 1 BLEU and 2 TER improvement, showing that there are significant differences

between the Dev/Test sets and sets drawn from the bitext.

For Russian, we amplified the effects by selecting Test2 from the portion of the

bitext that is separate from the tuning set, but is among the sentences used to create the

translation model. The effects of overfitting are markedly more visible here, as there is

almost a 7 BLEU difference between tuning on Dev and the 15k set with sparse features.

Furthermore, it is interesting to note when looking at Dev that using sparse features has a

significant negative impact, as the baseline tuned Dev performs reasonably well, while the

introduction of sparse features leads to overfitting the specificities of the Dev/Test genre,

which are not present in the bitext.

We attempted two strategies to mitigate this problem: combining the Dev set with

the larger bitext tuning set from the beginning, and tuning on a larger set to completion,

and then running 2 additional iterations of tuning on the Dev set using the learned model.

The resulting model improves somewhat on the other genre and strikes a middle ground,

although it is worse on Test than Dev.

Table 3.18 presents results for tuning several additional iterations after learning a

model on the larger sets. Although this leads to gains of around 0.5 BLEU on Test, none

of the models outperform simply tuning on Dev. Thus, neither of these two strategies

seem to help. In future work, we plan to forgo randomly sampling the tuning set from the
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bitext, and instead actively select the tuning set based on similarity to the test set.

Tuning set size Time/iter # splits # feat Tune BLEU Test Test2

(corpus) (on disk, GB) (sec) ↑BLEU ↑BLEU ↓TER ↑BLEU ↓TER

dev 3.3 119 120 16 22.38 22.69 60.61 29.31 54.26

5k 7.8 289 120 16 32.60 22.14 59.60 29.69 52.96

10k 15.2 432 120 16 33.16 22.06 59.43 29.93 52.37

25k 37.2 942 300 16 32.48 22.21 59.54 30.03 51.71

50k 74.5 1802 600 16 32.21 22.21 59.39 29.94 52.55

dev 3.3 232 120 85k 23.08 23.00 60.19 29.65 53.86

5k 7.8 610 120 159k 33.70 22.26 59.26 30.53 51.84

10k 15.2 1136 120 200k 34.00 22.12 59.24 30.51 51.71

25k 37.2 2395 300 200k 32.96 22.35 59.29 30.39 52.14

50k 74.5 4465 600 200k 32.86 22.40 59.15 30.54 51.88

Table 3.16: Evaluation of our Hadoop implementation of MIRA, showing running time as well as
BLEU and TER values for tuning and testing data.

3.11.0.1 Runtime

In terms of running time, we observe that the algorithm scales linearly with respect

to input size, regardless of the feature set. With more features, running time increases due

to a more complex translation model, as well as larger intermediate output (i.e., amount of

information passed from mappers to reducers). The scaling characteristics point out the

strength of our system: our scalable MIRA implementation allows one to tackle learning

problems where there are many parameters, but also many training instances.

Comparing the wall clock time of parallelization with Hadoop to the standard mode

of 10–20 learner parallelization (Haddow et al., 2011; Chiang et al., 2009), for the small

25k feature setting, after one iteration, which takes 4625 seconds using 15 learners on

110



Tuning # mappers # features Tune Test Test2

↑BLEU ↑BLEU ↓TER ↑BLEU ↓TER

Dev 120 16 30.18 29.89 49.05 57.14 32.56

15k 200 16 34.65 28.60 49.63 59.64 30.65

Dev+15k 200 16 33.97 28.88 49.37 58.24 31.81

Dev 120 77k 32.40 30.81 48.40 52.90 36.85

15k 200 200k 35.05 28.34 49.69 59.81 30.59

Dev+15k 200 200k 34.45 28.98 49.30 57.61 32.71

Table 3.17: Russian evaluation with large-scale tuning, showing numbers of mappers
employed, number of active features for best model, and test scores on Test and bitext
Test2 domains.

Tuning Test

↑BLEU ↓TER

5k 22.81 59.90

10k 22.77 59.78

25k 22.88 59.77

50k 22.86 59.76

Table 3.18: Results for German with 2 iterations of tuning on Dev after tuning on larger
set.

our PBS cluster, the tuning score is 19.5 BLEU, while in approximately the same time,

we can perform five iterations with Hadoop and obtain 30.98 BLEU. While this is not a

completely fair comparison, as the two clusters utilize different resources and the number

of learners, it suggests the practical benefits that Hadoop can provide. Although increas-

ing the number of learners on our PBS cluster to the number of mappers used in Hadoop

would result in roughly equivalent performance, arbitrarily scaling out learners on the

PBS cluster to handle larger training sets can be challenging since we would need to

manually coordinate the parallel processes in an ad-hoc manner.
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3.12 Summary

In this chapter, we extensively empirically analyzed aspects of large-margin struc-

tured learning with concrete application to the MT setting. Towards the goal of establish-

ing what to optimize in SMT, we defined a family of objective functions for large-margin

learning for structured prediction problems involving latent variables and cost-augmented

hypothesis selection. We presented the MIRA passive-aggressive algorithm for optimiz-

ing these objectives in SMT. By investigating the optimization performance in standard

and high-dimensional feature spaces, we showed that this method can be used directly to

effectively tune a statistical MT system with millions of parameters. With extensive em-

pirical evaluation, we evaluated the tradeoffs made by parallelization, cutting-plane versus

passive-aggressive optimization, and identified best practices for the cost-augmented and

diminished objective function to optimize for SMT.

Extending large-margin learning to large-scale training tasks, we developed an

open-source distributed large-margin learner on MapReduce. Parallelizing the learning

beyond the usual 15-20 learners, we were able to achieve speedups in convergence and

make large-scale learning practical, although without yet being able to improve transla-

tion performance.

112



4 Online Relative Margin Maximization

The hypotheses we accept ought to explain phenomena which we have observed. But
they ought to do more than this: our hypotheses ought to foretell phenomena which have
not yet been observed.

— William Whewell

In this chapter, we focus on how to improve large-margin optimization by introduc-

ing a novel online learning algorithm for relative margin maximization suitable for SMT.

Recent advances in large-margin learning have shown that better generalization can be

achieved by incorporating higher order information into the optimization. However, these

solutions are impractical in complex structured prediction problems such as statistical

machine translation. We present an online gradient-based algorithm for relative margin

maximization, which bounds the spread of the projected data while maximizing the mar-

gin. We evaluate our optimizer on Chinese-English and Arabic-English translation tasks,

each with small and large feature sets, and show that our learner is able to achieve sig-

nificant improvements of 1.2-2 BLEU and 1.7-4.3 TER on average over state-of-the-art

optimizers with the large feature set.1

1This chapter is based on material originally published in Eidelman et al. (2013a).
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4.1 Introduction

In every SMT system, and in machine learning in general, the goal of learning is

to find a model that generalizes well, i.e. one that will yield good translations for previ-

ously unseen sentences. However, while in Chapter 3 we showed that we can incorporate

high-dimensional sparse features, as the dimension of the feature space increases, gener-

alization becomes increasingly difficult. Since only a small portion of all (sparse) features

may be observed in a relatively small fixed set of instances during tuning, we are prone

to overfit the training data. An alternative approach for solving this problem is estimat-

ing discriminative feature weights directly on the training bitext (Tillmann and Zhang,

2006; Blunsom et al., 2008b; Simianer et al., 2012), which is usually substantially larger

than the tuning set. While we have also examined this approach in Section 3.6, that is

complementary to our goal here of better generalization given a fixed size tuning set.

In order to achieve that goal, we need to carefully choose what objective to opti-

mize, and how to perform parameter estimation of w for this objective. We have already

established the first part in Chapter 3, and will continue using our chosen large-margin

criterion as the objective, since this criterion performs well in practice for SMT at find-

ing a linear separator using the passive-aggressive algorithm in high-dimensional feature

spaces. Thus, now we focus on the second part of how to best optimize that objective.

While MIRA improves the feature capabilities over MERT, its generalization capabili-

ties are still less than optimal. The theoretical generalization ability of these learners is

also related to some measure of the spread of the data, a notion that has been receiving

increasing attention.
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Recent advances in machine learning have shown that the generalization ability of

these learners can be improved by utilizing second order information, as in the Second Or-

der Perceptron (Cesa-Bianchi et al., 2005), Gaussian Margin Machines (Crammer et al.,

2009b), confidence-weighted learning (Dredze and Crammer, 2008), and AROW (Cram-

mer et al., 2009a; Chiang, 2012).

Motivated by improvements of higher-order information, Relative Margin Machines

(RMM) (Shivaswamy and Jebara, 2009b) were introduced as an effective and less com-

putationally expensive way to incorporate the spread of the data – information about the

distance between hypotheses when projected onto the line defined by the weight vector w.

The motivation for this work has been that the margin should not be learned in isolation,

but instead with relation to the spread of the data.

In essence, structured prediction with relative margin is a generalization of Struc-

tured SVM (Tsochantaridis et al., 2004), which shares its underlying objective with MIRA

(Martins et al., 2010). Therefore, our intuition is that SMT should benefit from relative

margin maximization as well, compared with current large-margin-based tuning methods.

Unfortunately, not all advances in machine learning are easy to apply to structured

prediction problems such as SMT; the latter often involve latent variables and surrogate

references, resulting in loss functions that have not been well explored in machine learn-

ing (McAllester and Keshet, 2011; Gimpel and Smith, 2012). Although Shivaswamy

and Jebara (2009a) extended RMM to handle sequence labeling, their batch approach to

quadratic optimization, using existing off-the-shelf QP solvers, does not provide a practi-

cal solution: as Taskar et al. (2006) observe, “off-the-shelf QP solvers tend to scale poorly

with problem and training sample size” for structured prediction problems. This motivates
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an online gradient-based optimization approach—an approach that is particularly attrac-

tive because its simple update is well suited for efficiently processing structured objects

with sparse features (Crammer et al., 2012).

The contributions of this chapter include (1) introduction of a loss function for struc-

tured RMM in the SMT setting, with surrogate reference translations and latent variables;

(2) an online gradient-based solver, RM, with a closed-form parameter update to optimize

the relative margin loss; and (3) an efficient implementation that integrates well with the

open source cdec SMT system (Dyer et al., 2010).2 In addition, (4) as our solution is not

dependent on any specific QP solver, it can be easily incorporated into practically any

gradient-based learning algorithm.

First, we introduce RMM (§4.2.1) and propose a latent structured relative mar-

gin objective which incorporates cost-augmented hypothesis selection and latent vari-

ables. Then, we derive a simple closed-form online update necessary to create a large

margin solution while simultaneously bounding the spread of the projection of the data

(§4.2.2). Chinese-English translation experiments show that our algorithm, RM, signifi-

cantly outperforms strong state-of-the-art optimizers, in both a basic feature setting and

high-dimensional (sparse) feature space (§4.3). Additional Arabic-English experiments

further validate these results, even where previously MERT was shown to be advanta-

geous (§4.4). Finally, we discuss the spread and other key issues of RM (§4.5), and

conclude with discussion of future work (§4.6).
2https://github.com/veidel/cdec

116



4.2 The Relative Margin Machine in SMT

4.2.1 Relative Margin Machine

The margin, the distance between the correct hypothesis and incorrect one, is de-

fined by score(xi,y
+,d+) and score(xi,y

−,d−). It is maximized by minimizing the

norm in SVM, or analogously, the proximity constraint in MIRA: argminw
1
2
||w −wt||2.

However, theoretical results supporting large-margin learning, such as the VC-dimension

(Vapnik, 1995) or the Rademacher bound (Bartlett and Mendelson, 2003) consider mea-

sures of complexity, in addition to the empirical performance, when describing future

predictive ability. The measures of complexity usually take the form of some value on the

radius of the data, such as the ratio of the radius of the data to the margin (Shivaswamy

and Jebara, 2009a). This shows that there is a dependence of generalization error not just

on margin, but on the radius of the data. As radius is a way of measuring spread in any

projection direction, here we will specifically be interested in the the spread of the data as

measured after the projection defined by the learned model w.

More formally, the spread is the distance between y+, and the worst candidate

(yw,dw)← argmin
(y,d)∈Y(xi),D(xi)

score(xi,y,d),

after projecting both onto the line defined by the weight vector w. For each y′, this projec-

tion is conveniently given by score(xi,y
′,d), thus the spread is calculated as δscore(xi,y

+,yw),

where δscore(xi,y
+,y′) = δs(xi,y+,y′) = score(xi,y

+,d+)− score(xi,y
′,d′).
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(a) RM and large margin linear separators
for two-dimensional example. The RM so-
lution is shown with a darker dotted line,
while the large margin solution is shown
with a darker solid line. Parallel lighter
lines indicate margins.

 

(b) Spread of the projections given by the
large-margin and RM solutions above.

Figure 4.1: (a) RM and large margin solution comparison and (b) the spread of the
projections given by each.

Since generalization bounds for future performance of a large-margin classifier in-

clude the ratio of the radius of the data to the margin, RMM was introduced as a general-

ization over SVM that incorporates both the margin constraint and information regarding

the spread of the data. This is still a large margin solution, but now focused on creating

the optimal margin in the proper direction. The relative margin is the ratio of the absolute,

or maximum margin, to the spread of the projected data. Thus, the RMM learns a large

margin solution relative to the spread of the data, or in other words, geometrically creates

a max margin while simultaneously bounding the spread of the projected data.

As a concrete example, consider the plot shown in Figure 4.1(a), with hypotheses
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represented by two-dimensional feature vectors. The point marked with a circle in the

upper right represents f(xi,y+ d+), while all other squares represent alternative incorrect

hypotheses f(xi,y′,d). The large margin decision boundary is shown with a darker solid

line, while the relative margin solution is shown with a darker dotted line. The lighter lines

parallel to each define the margins, with the square at the intersection being f(xi,y
−).

The bottom portion of Figure 4.1(b) presents an alternative view of each solution, showing

the projections of the hypotheses given the learned model for the large margin on top, and

relative margin on the bottom. Notice that with a large margin solution, although the

distance between y+ and y− is greater, the points are highly spread, extending far to the

left of the decision boundary.

In contrast, with a relative margin, although we have a smaller absolute margin, the

spread is smaller, all points being within a smaller distance ε of the decision boundary.

Graphically, when all data points are projected onto a line, the relative margin solution

bounds how far away the leftmost and rightmost projected points are from one another.3

The higher the spread of the projection, the higher the variance of the projected points,

and the greater the likelihood that we will mislabel a new instance, since the high variance

projections may cross the learned decision boundary. In higher dimensions, accounting

for the spread becomes even more crucial, as will be discussed in Section 4.5.1.

3The motivation for controlling spread in RM is related to linear discriminant analysis (LDA) (Bishop,
2006), where LDA tries to create a large inter-class separation between classes, but decrease the intra-
class spread, the distance between instances of the same class. While we can see in Fig. 4.1(b) that the
RM solution decreases the overall spread, without explicitly trying to decrease intra-class spread, when
taking the bounding and margin constraints together, we can see that RM achieves substantially the same
effect as LDA. Considering all incorrect hypotheses as one class, and the correct hypothesis as the other, the
margin constraint creates a large inter-class separating distance between the two classes, while the bounding
constraint decreases the intra-class spread of the instances of the incorrect class by pushing them together as
a consequence of decreasing the overall spread. The motivation of confidence-weighted estimation Dredze
and Crammer (2008) and AROW Crammer et al. (2009a) is also related in spirit. They use second-order
information in the form of a distribution over weights to change the maximum margin solution.
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Although RMM is theoretically well-founded and improves practical performance

over large-margin learning in the settings where it was introduced, it is unsuitable for

most complex structured prediction in NLP. Large-margin learners in SMT have not pre-

viously accounted for the spread of the data, and only optimize the large margin criterion.

Furthermore, online optimization may be preferable from the computational perspective,

as we have shown that a simple update is well suited for processing structured objects

with sparse features efficiently. To take advantage of the information RMM utilizes for

increased generalizability in SMT, we need a computationally efficient optimization pro-

cedure that does not require batch training or an off-the-shelf QP solver.

4.2.2 RM Algorithm

We address the above-mentioned limitations by introducing a novel online learning

algorithm for relative margin maximization, RM. The relative margin solution is obtained

by maximizing the same margin as Eq. 2.26, but now with respect to the distance between

y+, and the worst candidate yw. Thus, the relative margin dictates trading-off between

a large margin as before, and a small spread of the projection, in other words, bounding

the distance between y+ and yw. The additional computation required, namely, obtaining

yw, is efficient to perform, and has likely already happened while obtaining the k-best

derivations necessary for the margin update. The online latent structured soft relative
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margin optimization problem is then:

wt+1 = argmin
w

1

2
||w −wt||2 + Cξi +Dτi

s.t.: δscore(xi,y
+,y−) ≥ ∆i(y

−)−∆i(y
+)− ξi

−B − τi ≤ δscore(xi,y
+,yw) ≤ B + τi

(4.1)

where ∆i(y) is the cost ∆(yi,y), and additional bounding constraints are added to the

usual margin constraints in order to contain the spread by bounding the difference in

projections. B is an additional parameter; it controls the spread, trading off between

margin maximization and spread minimization. Notice that when B →∞, the bounding

constraints disappear, and we are left with the original problem in Eq. 2.26. D, which

plays an analogous role to C, allows penalized violations of the bounding constraints.

The dual of Equation (4.1) can be derived as:

max
α,β,β∗

L =
∑

y∈Y(xi)

αy −B
∑

y∈Y(xi)

βy −B
∑

y∈Y(xi)

β∗y

−1

2

〈 ∑
y∈Y(xi)

αyωi(y
+,y)−

∑
y∈Y(xi)

βyωi(y
+,y) +

∑
y∈Y(xi)

β∗yωi(y
+,y),

∑
y′∈Y(xj)

αy′ωj(y
+,y′)−

∑
y′∈Y(xj)

βy′ωj(y
+,y′) +

∑
y′∈Y(xj)

β∗y′ωj(y
+,y′)

〉
(4.2)

where the α Lagrange multiplier corresponds to the standard margin constraint, while

β and β∗ each correspond to a bounding constraint, and ωi(y+,y′) corresponds to the

difference of f(xi,y
+,d+) and f(xi,y

′,d′). The weight update can then be obtained
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from the dual variables:

∑
αyωi(y

+,y)−
∑

βyωi(y
+,y) +

∑
β∗yωi(y

+,y) (4.3)

The dual in Equation (4.2) can be optimized using a cutting plane algorithm similar

to the one described in Section 3.3.3, an effective method for solving a relaxed optimiza-

tion problem in the dual, used in Structured SVM, MIRA, and RMM (Tsochantaridis

et al., 2004; Chiang, 2012; Shivaswamy and Jebara, 2009a). The cutting plane presented

in Alg. 6 decomposes the overall problem into subproblems which are solved indepen-

dently by creating working sets Sji , which correspond to the largest violations of either

the margin constraint, or bounding constraints, and iteratively satisfying the constraints

in each set.

The cutting plane in Alg. 6 makes use of the the closed-form gradient-based updates

we derived for RM presented in Alg. 7. The updates amount to performing a subgradient

descent step to update w in accordance with the constraints. Since the constraint matrix

of the dual program is not strictly decomposable across constraint types, we are in effect

solving an approximation of the original problem.

Alternatively, we could utilize a passive-aggressive updating strategy (Crammer

et al., 2006), which would simply bypass the cutting plane and select the most violated

constraint for each set, if there is one, and perform the corresponding parameter updates in

Alg. 7. We refer to the resulting passive-aggressive algorithm as RM-PA, and the cutting

plane version as RM-CP. Preliminary experiments showed that RM-PA performs on par

with RM-CP, thus RM-PA is the one used in the empirical evaluation below.
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Algorithm 6 RM Cutting Plane Algorithm (adapted from Shivaswamy and Jebara
(2009a))
Require: ith training example (xi,yi), weight w, margin reg. C, bound B, bound reg. D, ε, εB

1: S1
i ← {y+}, S2

i ← {y+}, S3
i ← {y+}

2: repeat
3: H(y) := ∆i(y)−∆i(y

+)− δs(xi,y+,y)
4: y1 ← argmaxy∈Y(xi)H(y)
5: y2 ← argmaxy∈Y(xi)G(y) := δs(xi,y+,y)
6: y3 ← argminy∈Y(xi)−G(y)
7: ξ ← max {0,maxy∈Si H(y)}
8: V1 ← H(y1)− ξ − ε
9: V2 ← G(y2)−B − εB

10: V3 ← −G(y3)−B − εB
11: j ← arg maxj′∈{1,2,3} Vj′

12: if Vj > 0 then
13: Sji ← Sji ∪ {yj}
14: OPTIMIZE(w, S1

i , S
2
i , S

3
i , C,B) . see Alg. 7

15: end if
16: until S1

i , S
2
i , S

3
i do not change

Furthermore, as all the computation necessary for the second set of bounding con-

straints is carried out for the normal margin constraints, it has the same complexity per

instance as the normal large margin solution.

A graphical depiction of the passive-aggressive RM update is presented in Fig-

ure 4.2. The upper right circle represents y+, while all other squares represent alternative

hypotheses y′. As in the standard MIRA solution, we select the maximum margin con-

straint violator, y−, shown as the triangle, and update such that the margin is greater than

the cost. Additionally, we select the maximum bounding constraint violator, yw, shown

as the upside-down triangle, and update so the distance from y+ is no greater than B.
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Algorithm 7 RM update with α, β, β∗

1: procedure OPTIMIZE(w, S1
i , S

2
i , S

3
i , C,B)

2: while w changes do
3: if

∣∣S1
i

∣∣ > 1 then
4: UPDATEMARGIN(w, S1

i , C)
5: end if
6: if

∣∣S2
i

∣∣ > 1 then
7: UPDATEUPPERBOUND(w, S2

i , B)
8: end if
9: if

∣∣S3
i

∣∣ > 1 then
10: UPDATELOWERBOUND(w, S3

i , B)
11: end if
12: end while
13: end procedure
14: procedure UPDATEMARGIN(w, S1

i , C)
15: αy ← 0 for all y ∈ S1

i

16: αy+
i
← C

17: for n← 1...MaxIter do
18: Select two constraints y,y′ from S1

i

19: γα ← ∆i(y
′)−∆i(y)−δs(xi,y,y

′)
||ω(y,y′)||2

20: γα ← max(−αy,min(αy′ , γα))
21: αy ← αy + γα ; α′y ← α′y − γα
22: w← w + γα(ω(y,y′))
23: end for
24: end procedure
25: procedure UPDATEUPPERBOUND(w, S2

i , B)
26: βy ← 0 for all y ∈ S2

i

27: for n← 1...MaxIter do
28: Select one constraint y from S2

i

29: γβ ← max(0, B−δs(xi,y+,y)
||ω(y+,y)||2 )

30: βy ← βy + γβ
31: w← w − γβ(ω(y+,y))
32: end for
33: end procedure
34: procedure UPDATELOWERBOUND(w, S3

i , B)
35: β∗y ← 0 for all y ∈ S3

i

36: for n← 1...MaxIter do
37: Select one constraint y from S3

i

38: γβ∗ ← max(0, −B−δs(xi,y+,y)
||ω(y+,y)||2 )

39: β∗y ← β∗y + γβ∗

40: w← w + γβ∗(ω(y+,y))
41: end for
42: end procedure
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Figure 4.2: RM update with margin and bounding constraints. The diagonal dotted line
depicts cost–margin equilibrium. The vertical gray dotted line depicts the boundB. White
arrows indicate updates triggered by constraint violations. Squares are data points in the
k-best list not selected for update in this round.

4.3 Experiments

4.3.1 Setup

To evaluate the advantage of explicitly accounting for the spread of the data, we

conducted several experiments on two Chinese-English translation test sets, using two

different feature sets in each. For training we used the non-UN and non-HK Hansards

portions of the NIST training corpora, which was segmented using the Stanford seg-

menter (Tseng et al., 2005). The data statistics are summarized in the top half of Ta-

ble 4.1. The English data was lowercased, tokenized and aligned using GIZA++ (Och

and Ney, 2003) to obtain bidirectional alignments, which were symmetrized using the

grow-diag-final-and method (Koehn et al., 2003). We trained a 4-gram LM on
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task Corpus Sentences Tokens
En Zh/Ar

Zh-En

training 1.6M 44.4M 40.4M
tune (MT06) 1664 48k 39k
MT03 919 28k 24k
MT05 1082 35k 33k

Ar-En

training 1M 23.7M 22.8M
tune (MT06) 1797 55k 49k
MT05 1056 36k 33k
MT08 1360 51k 45k

4-gram LM 24M 600M –

Table 4.1: Corpus statistics.

the English side of the corpus with additional words from non-NYT and non-LAT, ran-

domly selected portions of the Gigaword v4 corpus, using modified Kneser-Ney smooth-

ing (Chen and Goodman, 1996). We used cdec as our hierarchical phrase-based decoder,

and tuned the parameters of the system to optimize BLEU on the NIST MT06 corpus.

We applied several competitive optimizers as baselines: hypergraph-based MERT

(Kumar et al., 2009), k-best variants of MIRA (Crammer et al., 2006; Chiang et al., 2009),

PRO (Hopkins and May, 2011), and RAMPION (Gimpel and Smith, 2012). The size of

the k-best list was set to 500 for RAMPION, MIRA and RM, and 1500 for PRO, with both

PRO and RAMPION utilizing k-best aggregation across iterations. RAMPION settings

were as described in Gimpel and Smith (2012), and PRO settings as described in Hopkins

and May (2011), with PRO requiring regularization tuning in order to be competitive with

the other optimizers. MIRA and RM were run with 15 parallel learners using Alg. 3. All

optimizers were implemented in cdec and use the same system configuration, thus the

only independent variable is the optimizer itself. We set C to 0.01, and MaxIter to 100.

We selected the bound step size D, based on performance on a held-out dev set, to be
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0.01 for the basic feature set and 0.1 for the sparse feature set. The bound constraint B

was set to 1.4 The approximate sentence-level BLEU cost ∆i is computed in a manner

similar to Chiang et al. (2009), namely, in the context of previous 1-best translations of

the tuning set. All results are averaged over 3 runs. We use MultEval (Clark et al., 2011)

to perform a permutation test to estimate statistical significance.

4.3.2 Feature Sets

We experimented with a small (basic) feature set, and a large (sparse) feature set.

For the small feature set, we use 14 features, including a language model, 5 translation

model features, penalties for unknown words, the glue rule, and rule arity. For experi-

ments with a larger feature set, we introduced additional lexical and non-lexical sparse

Boolean features of the form commonly found in the literature and described in Sec-

tion 3.4.3 (Chiang et al., 2009; Watanabe et al., 2007; Simianer et al., 2012).

These feature templates resulted in a total of 3.4 million possible features, of which

only a fraction were active for the respective tuning set and optimizer, as shown in Ta-

ble 4.2.

4.3.3 Results

As can be seen from the results in Table 4.3, our RM method was the best performer

in all Chinese-English tests according to all measures – up to 1.9 BLEU and 6.6 TER over

4We also conducted an investigation into the setting of the B parameter. We explored alternative values
for B, as well as scaling it by the current candidate’s cost, and found that the optimizer is fairly insensitive
to these changes, resulting in only minor differences in BLEU.

127



Optimizer Zh Ar

MIRA 35k 37k
PRO 95k 115k
RAMPION 22k 24k
RM 30k 32k

Active+Inactive 3.4M 4.9M

Table 4.2: Active sparse feature templates

Small (basic) feature set Large (sparse) feature set
Optimizer Tune MT03 MT05 Tune MT03 MT05

↑BLEU ↑BLEU ↓TER ↑BLEU ↓TER ↑BLEU ↑BLEU ↓TER ↑BLEU ↓TER

MERT 35.4 35.8 60.8 32.4 63.9 - - - - -

MIRA 35.5 35.8 61.1 32.1 64.6 36.6 35.9 60.6 32.1 64.1

PRO 34.1 36.0 60.2 31.7 63.4 35.7 34.8 56.1 31.4 59.1

RAMPION 35.1 36.5 58.6 33.0 61.3 36.7 36.9 57.7 33.3 60.6

RM 31.3 36.5R− 56.4 33.6Ra 59.3 33.2 37.5 54.6 34.0 57.5

Table 4.3: Performance on Zh-En with basic (left) and sparse (right) feature sets on MT03 and
MT05. All RM improvements are significant at the p <0.001 level unless otherwise indicated:
(−) indicates significance at p < 0.05 and (a) at p < 0.1. These are combined with RAMPION

(R) to indicate baseline for comparison.
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MIRA – even though we only optimized for BLEU.5 Surprisingly, it seems that MIRA

did not benefit as much from the sparse features as RM. The results are especially notable

for the basic feature setting – up to 1.2 BLEU and 4.6 TER improvement over MERT –

since MERT has been shown to be competitive with small numbers of features compared

to high-dimensional optimizers such as MIRA (Chiang et al., 2008b).

For the tuning set, the decoder performance was consistently the lowest with RM,

compared to the other optimizers. We believe this is due to the RM bounding constraint

being more resistant to overfitting the training data, and thus allowing for improved gen-

eralization. Conversely, while PRO had the second lowest tuning scores, it seemed to

display signs of underfitting in the basic and large feature settings.

4.4 Additional Experiments

In order to explore the applicability of our approach to a wider range of languages,

we also evaluated its performance on Arabic-English translation. All experimental details

were the same as above, except those noted below.

For training, we used the non-UN portion of the NIST training corpora, which was

segmented using an HMM segmenter (Lee et al., 2003). Dataset statistics are given in

the bottom part of Table 4.1. The sparse feature templates resulted here in a total of

4.9 million possible features, of which again only a fraction were active, as shown in

Table 4.2.

As can be seen in Table 4.4, in the smaller feature set, RM and MERT were the
5In the small feature set RAMPION yielded similar best BLEU scores, but worse TER. In preliminary

experiments with a smaller trigram LM, our RM method consistently yielded the highest scores in all
Chinese-English tests – up to 1.6 BLEU and 6.4 TER from MIRA, the second best performer.
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Small (basic) feature set Large (sparse) feature set
Optimizer Tune MT05 MT08 Tune MT05 MT08

↑BLEU ↑BLEU ↓TER ↑BLEU ↓TER ↑BLEU ↑BLEU ↓TER ↑BLEU ↓TER

MERT 43.8 53.3 40.2 41.0 50.7 - - - - -

MIRA 43.0 52.8 40.8 41.3 50.6 44.4 53.4 40.1 41.8 50.2

PRO 41.5 51.3 41.5 39.4 51.5 46.8 53.2 40.0 41.4 49.7

RAMPION 42.4 52.0 40.8 40.0 50.8 44.6 52.9 40.4 41.0 50.4

RM 38.5 53.3En
M− 39.8En 40.6 49.7 43.0 55.3 37.5 41.8P−

M− 48.4

Table 4.4: Performance on Ar-En with basic (left) and sparse (right) feature sets on MT05 and
MT08. All RM improvements are significant at the p <0.001 level unless otherwise indicated:
(−) indicates significance at p < 0.05 and (n) indicates insignificant improvement at p > 0.1.
These are combined with MIRA (M), PRO (P) and MERT (E) to indicate baseline for comparison.

best performers, with the exception that on MT08, MIRA yielded somewhat better (+0.7)

BLEU but a somewhat worse (-0.9) TER score than RM.

On the large feature set, RM is again the best performer, except, perhaps, a tied

BLEU score with MIRA on MT08, but with a clear 1.8 TER gain. In both Arabic-English

feature sets, MIRA seems to take the second place, while RAMPION lags behind, unlike

in Chinese-English (§4.3).6

Interestingly, RM achieved substantially higher BLEU precision scores in all tests

for both language pairs. However, this was also usually coupled had a higher brevity

penalty (BP) than MIRA, with the BP increasing slightly when moving to the sparse

setting.

6In our preliminary experiments with the smaller trigram LM, MERT did better on MT05 in the smaller
feature set, and MIRA had a small advantage in two cases. RAMPION performed similarly to RM on the
smaller feature set. RM’s loss was only up to 0.8 BLEU (0.7 TER) from MERT or MIRA, while its gains
were up to 1.7 BLEU and 2.1 TER over MIRA.
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Small set Large set
Optimizer BLEU TER BLEU TER

MERT 0.4 2.6 - -

MIRA 0.5 3.0 1.4 4.3

PRO 1.4 2.9 2.0 1.7

RAMPION 0.6 1.6 1.2 2.8

Table 4.5: RM gain over other optimizers averaged over all test sets.

4.5 Discussion

The trend of the results, summarized as RM gain over other optimizers averaged

over all test sets, is presented in Table 4.5. RM shows clear advantage in both basic

and sparse feature sets, over all other state-of-the-art optimizers. The RM gains are no-

tably higher in the large feature set, which we take as an indication for the importance of

bounding the spread.

Figures 4.3 and 4.4 present a comparison of the performance on the Chinese tuning

set between MIRA and RM. The time per iteration is slightly higher with RM, but both

finish 20 iterations in under an hour using 15 learners. RM’s scores show the effect that the

bounding constraint has on optimization, introducing larger deviations between iterations

early on, but eventually converging to a more stable performance.

4.5.1 Spread Analysis

For RM, the average spread of the projected data in the Chinese-English small fea-

ture set was 0.9±3.6 for all tuning iterations, and 0.7±2.9 for the iteration with the highest

decoder performance. In comparison, the spread of the data for MIRA was 5.9±20.5 for
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Figure 4.3: Comparison of performance vs.
time on the tuning set for MIRA and RM.
The average time per iteration for MIRA is
2.7±0.7 minutes, and for RM is 3.0±0.9
minutes.
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Figure 4.4: Comparison of learning perfor-
mance with hope and fear scores for MIRA
and RM on the tuning set.

the best iteration. In the sparse setting, RM had an average spread of 0.9±2.4 for the

best iteration, while MIRA had a spread of 14.0±31.1. Similarly, on Arabic-English,

RM had a spread of 0.7±2.4 in the small setting, and 0.82±1.4 in the sparse setting,

while MIRA’s spread was 9.4±26.8 and 11.4±22.1, for the small and sparse settings,

respectively. Notice that the average spread for RM stays about the same when moving

to higher dimensions, with the variance decreasing in both cases. For MIRA, however,

the average spread increases in both cases, with the variance being much higher than RM.

For instance, observe that the spread of MIRA on Chinese grows from 5.9 to 14.0 in the

sparse feature setting. While bounding the spread is useful in the low-dimensional set-

ting (0.7-1.5 BLEU gain with RM over MIRA as shown in Table 4.3), accounting for the

spread is even more crucial with sparse features, where MIRA gains only up to 0.1 BLEU,

while RM gains 1 BLEU. These results support the claim that our imposed bound B in-

deed helps decrease the spread, and that, in turn, lower spread yields better generalization
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performance.7

4.5.2 Error Analysis

The inconclusive advantage of RM over MIRA (in BLEU vs. TER scores) on

Arabic-English MT08 calls for a closer look. Therefore we conducted a coarse error anal-

ysis on 15 randomly selected sentences from MERT, RMM and MIRA, with basic and

sparse feature settings for the latter two. This sample yielded 450 data points for analysis:

output of the 5 conditions on 15 sentences scored in 6 violation categories. The cate-

gories were: function word drop, content word drop, syntactic error (with a reasonable

meaning), semantic error (regardless of syntax), word order issues, and function word

mistranslation and “hallucination”. The purpose of this analysis was to get a qualitative

feel for the output of each model, and a better idea as to why we obtained performance

improvements. RM noticeably had more word order and excess/wrong function word

issues in the basic feature setting than any optimizer. However, RM seemed to benefit

the most from the sparse features, as its bad word order rate dropped close to MIRA,

and its excess/wrong function word rate dropped below that of MIRA with sparse fea-

tures (MIRA’s rate actually doubled from its basic feature set). We conjecture both these

issues will be ameliorated with syntactic features such as those in Chiang et al. (2008b).

This correlates with our observation that RM’s overall BLEU score is negatively

impacted by the BP, as the BLEU precision scores are noticeably higher. Table 4.6 shows

BLEU n-grams precisions and BP for MIRA and RM on the Chinese MT03 test set. RM

7Although we focused on incorporating a bounding constraint into a ramp-like loss, it as been suggested
that the bound may behave like a form of regularization, and thus we believe can be applied to other losses,
such as the log-loss.
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Optimizer features 1-gram 2-gram 3-gram 4-gram BP

MIRA base 76.7 45.9 27.6 16.8 1.0
RM base 79.5 47.4 28.6 17.4 0.99

MIRA sparse 77.1 46.0 27.9 17.0 1.0
RM sparse 80.3 48.5 29.7 18.4 0.98

Table 4.6: Comparison of RM and MIRA BLEU precisions and penalties on MT03.

with base features has better precisions than MIRA with sparse features, while the BP

penalty increases with sparse features for RM.

4.5.3 Parameter Settings

RM is potentially more sensitive to the size and order of the k-best list. While

MIRA is only concerned with the margin between y+ and y−, RM also accounts for the

distance between y+ and yw. Thus, it might be the case that a larger k-best, or revisiting

previous strategies for y+ and y− selection discussed in Section 3.2.1 might have a greater

impact. There are also many settings for B, where recall that as B →∞ we return to the

original large-margin solution. This introduces a continuum of RM solutions that trade off

between margin and spread in different ways. Table 4.7 presents a comparison between

performance using our original 500-best list, and increasing it by an order of magnitude

to 5000. As can be seen, the tuning BLEU decreases significantly, and test performance

degrades by 1 point, while TER stays approximately the same. When increasing B from 1

to 5, we see a 2 point increase in the tuning BLEU, performing midway between the RM

and MIRA tuning scores from Table 4.3. However, we only see a slight change in test

performance.
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bound k-best Tune MT03 MT05

↑BLEU ↑BLEU ↓TER ↑BLEU ↓TER

1 500 31.3 36.5 54.7 33.5 57.0
5 500 33.3 36.7 54.7 33.6 57.5
1 5000 29.3 35.4 54.6 32.2 56.8

Table 4.7: Comparison of RM performance under different bound and k-best settings.

4.5.4 Active Features

Perhaps contrary to expectation, we did not see evidence of a correlation between

the number of active features and optimizer performance. RAMPION, with the fewest

features, is the closest performer to RM in Chinese, while MIRA, with a greater number,

is the closest on Arabic. We also notice that while PRO had the lowest BLEU scores in

Chinese, it was competitive in Arabic with the highest number of features.

4.5.5 Model Comparison

Aside from producing quantitatively different solutions in terms of performance,

the parameters found by RM versus MIRA are also quite distinct. Table 4.8 presents

a comparison of the best features for the baseline setting of Chinese-English. We can

immediately notice that the RM solution heavily downweighs most parameter values,

including the language model and translation models.
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Feature Weight

PassThrough -9.910
SourceWordPenalty -1.000
WordPenalty -0.700
PhraseModel0 -0.276
Arity0 0.232
Arity2 0.232
PhraseModel1 -0.212
LanguageModel 0.173
PhraseModel2 -0.167
Arity1 0.124
PhraseModel4 -0.095
PhraseModel3 0.065
Glue -0.026

Feature Weight

WordPenalty -10.007
PassThrough -10.001
LanguageModel 2.206
PhraseModel1 -2.023
PhraseModel2 -1.732
PhraseModel0 -1.257
Glue -1.138
PhraseModel4 1.032
PhraseModel3 -1.010
SourceWordPenalty -1.000
Arity1 0.168
Arity0 0.013
Arity2 0.013

Table 4.8: Features and weights for RM and MIRA solutions arranged in decreasing order
of importance.

4.6 Future Work

In achieving sparse feature improvements with RM we made use of standard, rela-

tively small tuning sets, contrasted with improvements involving sparse features obtained

using much larger tuning sets, on the order of hundreds of thousands of sentences (Liang

et al., 2006; Tillmann and Zhang, 2006; Blunsom et al., 2008b; Simianer et al., 2012).

Since our approach is complementary to scaling up the tuning data, combining these two

methods should yield further improvements. In future work we also intend to explore

using additional sparse features that are known to be useful in translation, e.g. syntactic

features explored by Chiang et al. (2008b).

Finally, although motivated by statistical machine translation, RM is a gradient-

based method that can easily be applied to other problems. We plan to investigate its

utility elsewhere in NLP (e.g. for parsing) as well as in other domains involving high-
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dimensional structured prediction.

4.7 Summary

In this chapter, we focused on how to find a large-margin solution that general-

izes better by introducing a loss for structured relative margin with latent variables and

cost-augmented hypothesis selection. We developed RM, a novel online margin-based al-

gorithm designed for optimizing high-dimensional feature spaces, which introduces con-

straints into a large-margin optimizer that bound the spread of the projection of the data

while maximizing the margin. The closed-form online update for our relative margin

solution accounts for surrogate references and latent variables.

Empirical evaluation in statistical MT yielded significant improvements over sev-

eral other state-of-the-art optimizers, especially in a high-dimensional feature space (up

to 2 BLEU and 4.3 TER on average). Overall, RM achieves the best or comparable perfor-

mance according to two scoring methods in two language pairs, with two test sets each,

in small and large feature settings. Moreover, across conditions, RM always yielded the

best combined TER-BLEU score.8

8We and other researchers often use 1
2 (TER − BLEU) as a combined SMT quality metric.
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5 Adaptation with Topic Models

We see only what we know.
— Johann Wolfgang von Goethe

In the previous chapters, we have developed and extended our learning algorithm

to effectively optimize large numbers of parameters. As discriminatively informative

features allow our system to translate mode accurately, we now turn our attention to taking

advantage of our ability to learn in high-dimensions by defining new feature functions.

Thus, this chapter presents our contribution to the problem of how to represent the input

by developing novel features for translation modeling.

In accordance with improving the generalization ability of our learner in Chapter 4,

we develop features which help our model generalize to new domains. While domain

adaptation has typically been done with manually defined domains and corpora, we em-

ploy topic models to perform unsupervised domain induction; this can be thought of as

inducing subcorpora for adaptation without any human annotation. By introducing adap-

tation features based on probabilistic domain membership, we are able to dynamically
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bias our translation model toward relevant translations based on topic-specific contexts.1

5.1 Introduction

As in all statistical learning, we make the assumption in SMT that what we will see

in the future looks like what we saw in the past. Thus, the performance of a statistical

machine translation system on a translation task depends largely on the quantity and suit-

ability of the available parallel training data. Recall from Chapter 2 that our translation

rules are extracted for a given source sentence based on patterns we have observed in our

bitext data. If a sentence presents completely new lexical items or phrases, then we will

not be able to translate those at all. However, even when the sentence contains words

that we have observed, they may still be polysemous or homonymous, i.e. they are either

words which have multiple meanings, or different words sharing the same orthographic

form, respectively. The problem of word sense disambiguation (Jurafsky and Martin,

2008) is a difficult one monolingually, however, it is even further exacerbated in a mul-

tilingual setting. The same polysemous and homonymous words occurring in different

contexts usually have alternate meanings, and will likely result in different translations.

For instance, a tennis court and supreme court refer to different types of courts

in English, one for playing sports, the other for conducting judicial proceedings. While

they share the same form in English, they will most often translate to two different words

in another language; but how is our translation model supposed to make the distinction

between senses?

It is commonplace in SMT to define the notation of a domain, and assume that data
1This chapter is based on material originally published in Eidelman et al. (2012).
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coming from that domain will share certain characteristics, such as lexical preferences,

stylistic tendencies, and so on. A domain may refer to a collection of text of a specific

type, commonly referred to as a genre; common ones include newswire, broadcast news,

and blogs. Domain may also refer to a more fine-grained distinction between the specific

sources of text, such as different news outlets, or assimilation organizations that collect

and process text; such as Xinhua news, LDC, or UN.

Domains may vary widely in their lexical choices and stylistic preferences, and

what may be preferable in a general setting, or in one domain, is not necessarily preferable

in another domain. Indeed, sometimes the domain can change the meaning of a phrase

entirely. In a food related context, the Chinese sentence “粉丝很多 ” (“fěnsī hěnduō”)

would mean “They have a lot of vermicelli”; however, in an informal Internet conversa-

tion, this sentence would mean “They have a lot of fans”. Without the broader context, it

is impossible to determine the correct translation in otherwise identical sentences.

Thus, a translation model that is built on newswire training data will be a poor

choice when tasked with the translation of medical documents. This problem has led to

a substantial amount of recent work in trying to adapt the translation model (TM) toward

particular domains of interest (Axelrod et al., 2011; Foster et al., 2010).2 Assuming our

training corpus is composed of several different domains, we might reasonably assume

that domain gives us the indication of translation meaning that we were looking for. In

our earlier example, for instance, knowing tennis court is coming from ESPN, or supreme

court is coming from the National Law Journal, would be a very strong indication to

resolve the translation ambiguity.

2Language model adaptation is also prevalent but is not the focus of this work.
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Domain adaptation is the task of biasing our existing model to account for changes

in the domain. The intuition behind TM adaptation is to increase the likelihood of select-

ing relevant phrases for translation.

Notice that this problem setting makes the assumption that we know what the do-

main we are trying to adapt to is. This is a fairly common assumption, and results in the

cross-domain adaptation setting. However, here we are interested in dynamic adapta-

tion, where we do not know beforehand the domain of the unseen data. We will elaborate

on this issue further in Section 5.2.

The common thread throughout prior work is the concept of a domain. Inevitably

domain is a manually defined distinction of provenance: where the data is from. A

domain is typically an externally imposed, hand labeled, hard constraint, such as genre or

corpus collection. For example, a sentence either comes from newswire, or weblog, but

not both. However, this poses several problems.

First, many domain adaptation approaches focus on dividing the training data by

domain and learning different parameters for each one (Foster et al., 2010; Chiang et al.,

2011). Since in this setting a sentence contributes its counts only to the translation table

for the domain it came from, many word pairs will be unobserved for a given domains rule

table. This sparsity necessitates some form of smoothing. Second, and more important,

we may not actually know the (sub)corpora our training data comes from; and even if we

do, subcorpus may not be the most useful notion of domain to help translation quality.

In this chapter, we take advantage of our learning algorithms that allow efficient

high-dimensional optimization and take a finer-grained, flexible, unsupervised approach

to the idea of lexical weighting by domain. We induce domains in an unsupervised fash-
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ion from large corpora, and we incorporate soft, probabilistic domain membership into a

translation model. Unsupervised modeling of the training data produces naturally occur-

ring subcorpora, generalizing beyond corpus and genre. Depending on the model used to

select subcorpora, we can dynamically bias our translation toward any arbitrary distinc-

tion. This reduces the problem to identifying what automatically defined subsets of the

training corpus may be beneficial for translation.

We consider the underlying latent topics of the documents (Blei et al., 2003). In

our case, by building a topic distribution for the source side of the training data, we ab-

stract the notion of domain to include automatically derived subcorpora with probabilistic

membership. This topic model is used to infer the topic distribution of a test set and bias

sentence translations toward appropriate topics. We do this by introducing topic depen-

dent lexical probabilities directly as features in the translation model, and interpolating

them linearly with our other features, thus allowing us to discriminatively optimize their

weights on an arbitrary objective function. Incorporating these features into our hierar-

chical phrase-based translation system significantly improved translation performance, by

up to 1 BLEU and 3 TER over a strong Chinese to English baseline.

5.2 Domain Adaptation

The problem of domain adaptation is an active area of research in SMT (Daumé

and Marcu, 2006; Koehn and Schroeder, 2007; Foster et al., 2010; Axelrod et al., 2011;

Carpuat et al., 2013). From one perspective, the fact that training a system on one domain

leads to such poor performance on another can be viewed as a problem of overfitting. We
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learn parameters in such a way as to best fit our current (training) domain with all of its

tendencies and quirks, and then are unable to subsequently produce correct translations

for a different domain. The question then becomes how to tune our system in order to

improve its performance either on a specific domain, or on different domains in general.

The first problem is an instance of cross-domain adaptation, while the second is dynamic

adaptation. Since, as we described in Chapter 2, translation systems are built from a

number of heterogeneous steps, there is potential to adapt each component: the alignment,

the internal parameters of the translation and language models, and the linear weighted

combination.

Ideally, if we know the required domain ahead of time, and have some amount of

data from it, we should train our system on the corresponding data. This scenario is known

as cross-domain adaptation. However, this could still be problematic if the domain does

not offer a sufficient amount of parallel data to estimate a translation model. It would

be unwise to volitionally discard available data, even if it does not exactly match our

domain. Instead, we should combine the data sources in such a way as to leverage the

small domain-specific data to the fullest extent, while also taking into account the larger

domain. In this way, we can have a translation model that is capable of general translation,

but its parameters settings have be biased with domain-specific information.

Most domain adaptation work falls into this category. Specifically, they assume

one domain as the in-domain, or target for adaptation, and everything else is the out-of-

domain, or general-domain. It can be viewed as supervised adaptation, as the in domain

provides guidance as to the best setting of parameters. As many successful techniques

have been proposed for this setting, we will briefly review the relevant ones here.
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These fall into two categories: those that modify the training data, for instance

by weighting different domains differently, or filtering domains, and training a single

translation model, and those that train separate translation models for different domains

and combine them. While we could simply combine the in and out with uniform weight

and train a single translation model, since the general domain corpus is usually much

larger, this does not take full advantage of the in domain data (Koehn and Schroeder,

2007).

Better results can be achieved using the latter approach and training separate trans-

lation models (Koehn and Schroeder, 2007). This approach can be seen as an instance

of mixture modeling (Hastie et al., 2001). Foster and Kuhn (2007) trained a separate

translation model on each domain of interest, and then interpolated the translation tables

with either log-linear or linear mixture weights. For the log-linear mixture, the transla-

tion models were each represented as a feature in the global scoring function, and thus

combined directly with the other features. For the linear mixture, the mixture weights

were learned on a separate held-out set based on distance from the current sentence to

the different domains, and then the combined mixture probability was represented in the

global score as one feature. Thus, the difference becomes whether the mixing weights

are set in conjunction with all other features to optimize the overall loss, or separately for

another given optimization criterion. Surprisingly, they found that even a linear mixture

with uniform weights produces a gain.

Matsoukas et al. (2009) focus on estimating the quality of each individual sentence

in the bitext in order to down-weight the importance of out-of-domain segments. They

introduced assigning a pair of binary features to each training sentence, indicating sen-

144



tences’ genre and collection as a way to capture domains. They then learn a mapping

from these features to sentence weights, and use the sentence weights to bias the model

probability estimates by computing weighted counts for a single translation model, and

subsequently learn the model weights. While they do not have to indicate what is in

or out, the working assumption is that the domain distribution on the tuning set will be

similar to the test.

Foster et al. (2010) extend this approach and perform it on a more granular level:

individual phrase pairs. Instead of focusing on domain indicator features, they build on

work by Daumé and Marcu (2006) and Daumé (2007) to capture whether language is

general or specific. Foster et al. (2010) use a larger set of features than Matsoukas et al.

(2009) to capture whether a phrase pair is more similar to the in domain or general do-

main. Weights for out domain phrases are learned using a log-linear model and influence

the relative frequency estimates of phrase pairs coming from the out domain, which are

then combined linearly with in domain probabilities.

As Matsoukas et al. (2009) found sentence weights to be most beneficial for lexical

weighting, Chiang et al. (2011) extends the same notion of conditioning on provenance

(i.e. the origin of the text) by removing the separate mapping step of finding sentence

weights, instead directly optimizing the weight of the genre and collection features in

the linear model. They then compute a separate word translation table for each feature,

estimated from only those sentences that comprise that genre or collection, which will be

used to compute the lexical smoothing probabilities.

An alternative adaptation setting is that of dynamic adaption, where we have no

information about a specific domain; we must simply select the best possible translation
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for each sentence during decoding (Foster and Kuhn, 2007).3 This amounts to performing

adaptation in an unsupervised fashion. This scenario is less commonly examined.

Even if we do not have a marked in domain, but only a general corpus, we may

assume some parts of it are more applicable to a given sentence. For instance, to perform

dynamic adaptation, Foster and Kuhn (2007) constructed a multi-domain tuning set and

set linear mixture parameters as a function of distance of the different domains to the

current sentence. Finch and Sumita (2008) use a log-linear model to determine the prob-

ability a sentence comes from the question or declaration domain before decoding, and

train translation models for each domain. They control the contribution of each model

dynamically through interpolation weights which are set to be the probability assigned by

the classifier.

5.3 Topic Models

Topic models are a type of unsupervised Bayesian generative model for analyzing

and describing collections of text. They can be seen as a tool for dimensionality reduction

whereby the space of all words in the collection is reduced to a smaller low-dimensional

space of automatically fitted themes that occur in the data. These themes, or topics, as

they are usually referred to, are sets of words selected from the data that share some

similarity. Specifically, its posited that there is a latent dimension of the data which

relates these words to each other.

The reason why biasing toward certain genres and corpus collections helps trans-

3These two are not necessarily mutually exclusive, as we could have a cross-domain setting with some
in domain data, and then also make adjustments on a sentence basis.
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lation is because these domains usually share certain characteristics and preferences for

lexical choice that help resolve translation ambiguity. As the goal of topic models is

to automatically find meaningful similarities between possibly disparate documents, our

hypothesis is that perhaps this unsupervised approach, unbiased by distinctions of genre

and collection, can find other similarities that can be beneficial, perhaps ever more so, for

translation.

Latent Dirichlet Allocation (LDA) (Blei et al., 2003) has emerged as one of the most

popular methods for building topic models, and is available in multiple implementations.

The main driving intuition behind LDA is that a single document is composed of a number

of different topics. In describing LDA, as with most generative models, such as the noisy-

channel model in Chapter 2, it is typical to refer to the generative story of how the model

assumes the document was created.

LDA extends the multinomial mixture modeling approach described above by adding

an additional generation step into hierarchy. Formally, each document in a collection T

with vocabulary V is modeled as a multinomial overK unknown topics, where each topic

is a multinomial distribution over the vocabulary. All the documents in T share the same

set of K topics, but each document is allowed to have its own distribution over those

topics.

Instead of assuming that each document is generated by choosing a class, and then

choosing words form a class conditional density, the first step in generating a document

is choosing a multinomial distribution over topics (i.e. classes). Then, each word in the

document will be chosen from one of the topics. For each word, we first choose a topic z

according the the distribution over topics we chose for this document, and then, from the
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distribution over words that this topic defines, we choose a word.

The generative story of LDA proceeds as follows for each document:

1. Choose per-document topic distribution θ

2. Choose per-topic word distribution for each topic φk

3. For each word position wn:

(a) Choose topic zn from topic distribution according to θ

(b) Choose word wn according to topic-word probability φzn

The documents and words within are observed, but the topics, document-topic dis-

tributions and the topic-word distributions are latent, and need to be computed from the

data. The best model is the one whose latent structure best explains the document. The

explanation is a form of thematic annotation.

Figure 5.1 presents the topic distributions obtained by a three topic topic model

over the corpus of three documents shown. The bars for each document represent the

probability of that topic in the document. For instance, we would expect tennis court

to occur in a document with sports related content, so the probability of the sports topic,

Topic 1, is highest. Likewise, supreme court comes from Topic 2, the legal topic, and food

court, comes from Topic 3, the food topic. By looking at such a graphical representation,

we are able to easily summarize the main elements of each document.

There has been some exploration of topic modeling for use in SMT. For instance

Bilingual LSA adaptation (Tam et al., 2007), which uses source side topic information

on the target side to adapt the language model, and the BiTAM model (Zhao and Xing,
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Figure 5.1: Example topic distribution over a collection of three documents with three
possible topics.

2006), which uses a bilingual topic model for learning alignment. Recently, Xiao et al.

(2012) proposed a topic similarity model which assigns each rule in the grammar a topic

distribution, and compute a topic similarity feature between a rule and document based on

their topic distributions. They also include a topic sensitivity model so as not to penalize

generic rules which have low topic similarity. Furthermore, they independently model

the source and target side of rules, and compare the target similarity during decoding

by projecting the target distribution into the source space. Hasler et al. (2012) use source

side topic assignment in combination with sparse word and phrase pair features. They use

Hidden Topic Markov Models (HTMM) (Gruber et al., 2007) which model documents as

a Markov chain and assign a single topic to the whole sentence, rather than a distribution

of topics. Su et al. (2012) trained a HTMM on in-domain monolingual data and the

source-side of the out-of-domain bitext, where they estimate the probability of a topic
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given source from the former, and probability of a phrase pair from the latter, combining

the two by mapping the in-domain topic distribution into the out domain.

5.4 Lexical Weighting

We briefly introduced lexical weighting features in Section 2.2.4.1, but as we will

be adapting them, we now give a more thorough explanation. Lexical weighting features

were introduced by Koehn et al. (2003) as a way estimate the quality of a phrase pair by

combining the lexical translation probabilities of the words in the phrase. In a hierarchical

system, these correspond to translation rules. In other words, instead of computing the

frequency with which we see a whole phrase:

p(e|f) =
count(e, f)∑
e count(e, f)

p(f |e) =
count(e, f)∑
f count(e, f)

(5.1)

we see how well the individual words in the phrase translate to each by relying on the

word translation probabilities computed from the aligned parallel data. Given a source

sentence f = f1...fn and target sentence e = e1...em, with alignment a, we compute this

as described in Chiang et al. (2011):

count(fj, ei)← count(fj, ei) +
1

|ai|
for j ∈ ai (5.2)

count(NULL, ei)← count(NULL, ei) + 1 if |ai| = 0 (5.3)

Then, we compute the lexical conditional probabilities w(e|f) with maximum like-
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lihood estimates from relative frequencies:

w(e|f) =
count(f, e)∑
e count(f, e)

w(f |e) =
count(f, e)∑
f count(f, e)

(5.4)

The lexical weight plex(e|f) and plex(f |e) of a phrase pair is computed as described

in Koehn et al. (2003):

plex(e|f) =

|e|∏
i=1


1
|ai|
∑

j∈ai w(ei|fj) if|ai| > 0

w(ei|NULL) otherwise

(5.5)

This can be referred to as smoothing the phrase relative frequencies we obtain in Eq. 5.1,

as we are basically backing off to a probability which we can estimate more reliably.

Chiang et al. (2011) showed that is it beneficial to condition the lexical weighting

features on provenance by assigning each sentence pair a set of features, fs(e|f), for each

domain s, which compute a new word translation table ws(e|f) estimated from only those

sentences which belong to s:

counts(f, e)∑
e counts(f, e)

(5.6)

where counts(·) is the number of occurrences of the word pair in s.

5.5 Topic Modeling for MT

To generalize the notion of conditioning lexical weighting on provenance, we ex-

tend provenance to cover a set of automatically generated topics zn. Given a parallel

training corpus T composed of documents di, we build a source side topic model over T ,
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which provides a topic distribution p(zn|di) for zn = {1, . . . , K} over each document, us-

ing LDA. Then, we assign p(zn|di) to be the topic distribution for every sentence xj ∈ di,

thus enforcing topic sharing across sentence pairs in the same document instead of treat-

ing them as unrelated. Computing the topic distribution over a document and assigning it

to the sentences serves to tie the sentences together in the document context.

In many cases, document delineations may not be readily available for the training

corpus. Furthermore, a document may be too broad, covering too many disparate topics,

to effectively bias the weights on a phrase level. For this case, we also propose a local

LDA model, which treats each sentence in the training corpus as a separate document.

To obtain the lexical probability conditioned on topic distribution, we augment our

rule extraction to accept a topic distribution for each sentence, and imbue the topic dis-

tribution of a sentence to each rule extracted from that sentence. Then, to compute word

translation probabilities, we first compute the expected count ezn(e, f) of a word pair

under topic zn = {1, . . . , K}:

ezn(e, f) =
∑
di∈T

p(zn|di)
∑
xj∈di

countj(e, f) (5.7)

where countj(·) denotes the number of occurrences of the word pair in sentence xj , and

then compute the topic-dependent word probabilities in both directions:

wzn(e|f) =
ezn(e, f)∑
e ezn(e, f)

wzn(f |e) =
ezn(e, f)∑
f ezn(e, f)

(5.8)

wzn(e|f) tells us how likely we are to translate f into e when the topic is zn. This is
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in effect introducing K new word translation tables, one for each wzn(e|f) and wzn(f |e),

and 2K̇ new corresponding features fzn(e|f) and fzn(f |e), where we compute the lexical

weighting from the topic-dependent word probabilities as described in Eq. 5.5.

Our features will compute the similarity between each rule, which now has a topic

distribution based on the training corpus, and the topic distribution of the sentence we

are currently translating. Thus, although the word translation probabilities are computed

offline and are static, the actual feature values we compute will depend on the topic dis-

tribution of the document we are translating. For a test document V , we infer topic as-

signments on V , p(zn|V ), using the previously built topic model, thus keeping the topics

found from T fixed. The feature values conditioned on topic then become:

fzn(e|f) = − log
{
pzn(e|f) · p(zn|V )

}
fzn(f |e) = − log

{
pzn(f |e) · p(zn|V )

}
, (5.9)

a combination of the topic dependent lexical weight and the topic distribution of the sen-

tence from which we are extracting the phrase. To optimize the weights of these features

we combine them in our linear model with the other features when computing the model

score for each phrase pair:4

∑
p

wphp(e,f)︸ ︷︷ ︸
unadapted features

+
∑
zn

wznfzn(e|f)︸ ︷︷ ︸
adapted features

(5.10)

Combining the topic conditioned lexical weights pzn(e|f) computed from the training

corpus with the topic distribution p(zn|V ) of the test sentence being translated provides

4The unadapted lexical weight p(e|f) is included in the model features.
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a probability on how relevant that translation is to the sentence based on the topic. This

allows us to bias the translation toward the topic of the sentence. For example, if topic k

is dominant in T , pk(e|f) may be quite large, but if p(k|V ) is very small, then we should

steer away from this phrase pair and select a competing phrase pair which may have a

lower probability in T , but which is more relevant to the test sentence at hand.

Also note, that while Chiang (Chiang et al., 2011) has to explicitly smooth the result-

ing ps(e|f), since many word pairs will be unseen for a given domain s, we are already

performing an implicit form of smoothing (when computing the expected counts), since

each document has a distribution over all topics, and therefore we have some probability

of observing each word pair in every topic.

5.6 Feature Representation

After obtaining the topic conditional features, there are two possible ways we could

present them to the model. Which one we select depends on how we want our system to

interpret fz(e|f).

The two questions they could answer are: 1) F1: What is the probability under topic

1 of this sentence, topic 2? ... topic z?, or 2) F2: What is the probability under the most

probable topic of this sentence? Second most? etc.

A model using F1 learns whether a specific topic is useful for translation, since

feature f1 would be

f1 = pz=1(e|f) · p(z = 1|V ) (5.11)
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feature f2 would be

f2 = pz=2(e|f) · p(z = 2|V ) (5.12)

and so on. Thus, f1 is telling us about the translation probability under the topic that the

topic model identified as topic 1, f2 refers to the topic models topic 2, etc. Using F1, we

can restrict our topics to have a one-to-one mapping with genre/collection, which is trivial

to do by having as many topics as genres/collections and setting p(zn|di) to 1 for every

sentence in the collection and 0 to everything else. In this case, we see that our method

fully recovers Chiang et al. (2011).

F1 is appropriate for cross-domain adaptation when we have advance knowledge

that the distribution of the tuning data will match the test data, as in Chiang et al. (2011),

where they assume one genre as the in domain, eg. web, and then tune their system

and test on that domain. If we know that our translation task data will be drawn from the

same document-topic distribution, then this approach will also work well for unsupervised

domain induction.

If however, as in the more general case, we do not know what our data will be,

this approach will have the effect of overfitting the tuning set. For instance, if our tuning

data consisted of the sports document in Figure 5.1, then f1 would be the probability of

translation under the sports topics, and we would learn that f1 is informative. If our test

data is all from the sports topic as well, then this will fine. If our test data is from the

medical topic, however, we still have weight settings biasing us toward Topic 1, the sports

topic, and we would not have learned that f3 is important, and thus will not have adjusted

our weights accordingly. Thus, we can see that F1 is not the form of feature we would
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like, since we do want to learn to bias our system toward a certain topic distribution.

On the other hand, with F2, we are learning how useful knowledge of the topic

distribution is in general, since f1 is set to be the probability of translation under the most

likely topic:

f1 = pz=(argmaxzn
(p(zn|V )))(e|f) · p(z = argmax

zn

(p(zn|V ))|V ) (5.13)

and so on. The key distinction is that F2 does not does not correlate f1 with the topic

the topic model identified as topic 1. Rather, f1 represents the translation probability

under the dominant topic of the sentence, no matter what the identity of that topic is. F2

is intuitively what we want, since we do not want to bias our system toward a specific

distribution, but rather learn to utilize information from any topic distribution if it helps

us create relevant translations. F2 is useful for dynamic adaptation, where the adapted

feature weight changes based on the source sentence.

In our running example, with this approach in the same scenario where we tune on

the sports document, we would once again learn that f1, representing the sports topic, is

useful. The difference now lies in what happens when we apply it to unseen data. Upon

receiving the medical document, f1 would now represent the translation probability under

topic 3, the medical topic, since that is the most prominent topic in the medical document;

it would not be represented by f3, as with F1. Thus, by learning f1 is helpful in the tuning

data, when we apply our translation system to any new document, regardless of its topic

distribution, we can leverage that information.

Thus, we do not condition the feature weights on the topic identity, but rather topic
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prominence. If topic information is useful for translation, we should learn to favor hy-

potheses that have higher lexical probability from the most prominent topic of a docu-

ment, regardless of what specific topic it is.

This adaptation is dynamic because the weight given to each topic as defined by

the topic model changes from sentence to sentence, according to the topic distribution

of the source sentence. The weight for topic z on sentence n could be different from the

weight for topic z on sentence n+1, since the z that maximizes (argmaxzn(p(zn|V ))) can

change, but the weight on whichever z does remains constant. Each feature can be thought

of as a separate translation model, and the contribution of each of these translation model

is determined dynamically through the weights. It is also worth noting that this approach

should generalize to different topic distributions over the training data as well, not only

over the test sentences given the model built on the training data, a point we examine in

Section 5.7.4.

To summarize, if we know the data we want to translate after tuning will always

consist of predominantly of some fixed topic distribution, we can achieve better transla-

tions for that specific topic by using features of the form F1. If we do not, then F2 is the

appropriate choice. Thus, F2 is the approach we utilize in our work, which allows us to

tune our system weights toward having topic information be useful, not toward a specific

distribution.
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5.7 Experiments

5.7.1 Setup

To evaluate our approach, we performed experiments on Chinese to English MT in

two settings. In the first setting we will assume the bitext has marked document bound-

aries in order to evaluate document level topic models versus modeling at the sentence

level, while in the second, we will work in the more typical MT scenario of only having

sentence boundaries.

For the first setup, we use the FBIS corpus as our training bitext for MT and training

corpus for building the topic model. Since FBIS has document delineations, we can

compare modeling at the document level (GTM) with local topic modeling (LTM). In

the former, GTM, we compute the topic distribution of the document, and distribute that

distribution to each sentence. In the latter, LTM, we disregard the document boundaries

and infer a topic distribution on each sentence separately.

The second setting utilizes the non-UN and non-HK Hansards portions of the NIST

training corpora for MT and building the LTM only. Table 5.1 summarizes the data statis-

tics. For both settings, the data was lowercased, tokenized and aligned using GIZA++ (Och

and Ney, 2003) to obtain bidirectional alignments, which were symmetrized using the

grow-diag-final-and method (Koehn et al., 2003). The Chinese data were seg-

mented using the Stanford segmenter. We trained a trigram LM on the English side of the

corpus with an additional 150M words randomly selected from the non-NYT and non-

LAT portions of the Gigaword v4 corpus using modified Kneser-Ney smoothing (Chen
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Corpus Sentences Tokens
En Zh

FBIS 269K 10.3M 7.9M
NIST 1.6M 44.4M 40.4M

Table 5.1: Corpus statistics.

and Goodman, 1996).

We use cdec as our decoder, and tune the parameters of the system to optimize

BLEU on the NIST MT06 tuning corpus. Topic modeling was performed with Mal-

let (Mccallum, 2002), a standard implementation of LDA, using a Chinese stoplist and

setting the hyperparameter α = 0.01. This setting of α was chosen to encourage sparse

topic assignments, which make induced subdomains consistent within a document.5 All

results are averaged over 3 runs. We use MultEval to perform a permutation test to esti-

mate statistical significance.

5.7.2 Results

Results for the first setting, using the smaller document-delineated FBIS corpus,

are shown in Table 5.2. GTM models the latent topics at the document level, while LTM

models each sentence as a separate document. To evaluate the effect topic granularity

would have on translation, we varied the number of latent topics in each model to be 5,

10, and 20.6 On FBIS, we can see that both models achieve moderate but consistent gains

over the MIRA baseline with no topic-conditioned features using both BLEU and TER.

5We explored a number of alternative hyperparameter settings, and found that having a peaked distribu-
tion for each sentence was important for translation.

6We explored the inclusion of more topics, but as performance plateaued after 20, we only include these
settings in our results.
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The best model, LTM-10, achieves a gain of about 0.5 and 0.6 BLEU and 2 TER.

Although the performance on BLEU for both the 20 topic models LTM-20 and GTM-20

is suboptimal, the TER improvement is better. Interestingly, the difference in translation

quality between capturing document coherence in GTM and modeling purely on the sen-

tence level is not substantial.7 In fact, the opposite is true, with the LTM models achieving

better performance.8

Table 5.3 presents results on the NIST corpus. LTM-10 again achieves the best

gain of approximately 1 BLEU and up to 3 TER. LTM performs on par with or better

than GTM, and provides significant gains even in the NIST data setting, showing that this

method can be effectively applied directly on the sentence level to large training corpora

which have no document markings. Depending on the diversity of training corpus, a

varying number of underlying topics may be appropriate. However, in both settings, 10

topics were optimal, suggesting that may be a good initial point. This is also the setting

we will use for further experiments.

We further evaluated our model on our full BOLT system, comprised of 5 million

training sentences taken from LDC, GALE, and BOLT releases and using a 5-gram lan-

guage model trained on over 1 billion words. We built a 10 topic model on the entire

BOLT training corpus, and then extracted topic-dependent lexical translation features as

described above. The first column of results in Table 5.4 are the MIRA tuned baseline, and

the second column are with LTM-10 features. While the gains are more modest than in

the smaller NIST setting in Table 5.2, we still see general improvement across 5 different

7An avenue of future work would condition the sentence topic distribution on a document distribution
over topics (Teh et al., 2006).

8As an empirical validation of our earlier intuition regarding feature representation, presenting the fea-
tures in the form of F1 caused the performance to remain virtually unchanged from the baseline model.
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Model MT03 MT05

↑BLEU ↓TER ↑BLEU ↓TER

BL 28.72 65.96 27.71 67.58

GTM-5 28.95n 65.45 27.98n 67.38s

GTM-10 29.22 64.47 28.19 66.15

GTM-20 29.19 63.41 28.00n 64.89

LTM-5 29.23 64.57 28.19 66.30

LTM-10 29.29 63.98 28.18 65.56

LTM-20 29.09n 63.57 27.90n 65.17

Table 5.2: Performance using FBIS training corpus. Improvements are significant at the
p <0.05 level, except where indicated (n).

test sets.

5.7.3 RM Optimization

After establishing that topic adaptation features improve translation, we evaluate

whether combining these features with our RM optimizer can yield further improvements.

Table 5.5 compares MIRA and RM using the 10 topic LTM model on the NIST setting.

MIRA baseline results, and the best performing model with topics, LTM, are presented

first, with RM with a bound B setting of 1, 5, and 10 on the bottom. As we observed

in Chapter 4, minimizing the spread concurrently with maximizing the margin has the

effect of lowering the tuning score on MT06 dramatically, while preserving the gains on

the two test sets. As we decrease the aggressivity of the bound constraint B from 1 to 5

to 10, we see the RM solution coming closer to the LTM model. RM-10 produces better

BLEU and TER scores, while RM-5 improves TER substantially while underperforming
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Model MT03 MT05

↑BLEU ↓TER ↑BLEU ↓TER

BL 34.31 61.14 30.63 65.10

MERT 34.60 60.66 30.53 64.56

LTM-5 35.21 59.48 31.47 62.34

LTM-10 35.32 59.16 31.56 62.01

LTM-20 33.90n 60.89n 30.12n 63.87

Table 5.3: Performance using NIST corpus. Improvements are significant at the p <0.05
level, except where indicated (n).

Test Set Baseline LTM-10

↑BLEU ↓TER ↑BLEU ↓TER

Test1 20.06 59.72 20.34 59.72

Test2 18.66 59.67 19.00 59.74

Test3 28.37 55.66 28.78 55.63

Test4 15.68 62.53 15.85 62.39

Test5 14.70 59.06 14.77 58.82

Table 5.4: Performance on BOLT test sets.

on BLEU. RM-1 is too aggressive, and is not able to perform on par with the others,

giving an example where the B setting is too limiting.

5.7.4 Topic Distributions

To empirically verify our earlier point regarding the parameters from one distribu-

tion generalizing to different topic distributions over the training data, we compare using

a learned model from one topic distribution directly on another. First, we used our pre-

viously built topic model and corresponding inferred topics on the tuning and test sets to
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Model Tune MT03 MT05

↑BLEU ↑BLEU ↓TER ↑BLEU ↓TER

MIRA 34.31 35.12 59.99 31.56 63.05

LTM 34.03 35.83 58.67 32.30 61.40

RM-1 25.93 30.16 56.48 27.49 58.85

RM-5 28.44 35.23 55.60 32.50 58.29

RM-10 30.90 36.10 57.71 32.51 60.56

Table 5.5: Performance using RM learning with B set to 1, 5 and 10 compared to best
performing MIRA learner with 10 topics, LTM. All RM results are with the 10 topic LTM
model.

Model MT03 MT05

↑BLEU ↓TER ↑BLEU ↓TER

Old 35.83 58.67 32.30 61.40

New 35.88 58.50 32.61 60.89

Table 5.6: Performance using weights trained on one 10 topic distribution to decode test
sets with new 10 topic distribution.

tune parameters; presented as Old in Table 5.6. Then for New, we built a second topic

model on the training data, and infer topics with it on the tuning and test sets as before. Ta-

ble 5.8 shows the same 5 randomly selected sentences with topic distributions according

to the Old and New models. It is clear that the sentences have different topic distribu-

tions. However, we do not retune the parameters using the new topic features. Instead,

we decode using the parameters learned from Old. As the results show, the parameters

learned from the old topic distribution are equally valuable on the new distribution, with-

out having to retune the model weights, even though the topic distributions are obviously

different.

Table 5.7 presents a comparison of the baseline, unadapted MIRA system from
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Model Tune MT03 MT05

↑BLEU ↑BLEU ↓TER ↑BLEU ↓TER

BL 34.31 35.12 59.99 31.56 63.05

Shuffle Topic 33.63 34.41 61.07 31.19 64.00

Random 33.97 35.12 59.56 31.50 62.54

Table 5.7: Performance using random topic assignments. Shuffle uses same topic dis-
tribution assigned to each sentence with topic model, but randomly reassigns the topic
index. Random generates random topic distributions for each sentence.

Table 5.5 with topic adaptation using random topic assignments. In the first case, Shuffle

Topic, we retain the same topic distributions used in the LTM model for the training

corpus and test sets, but randomly reassign the topic indices on each sentence. In the

second case, Random, we generate random topic distributions for each sentence. In both

cases, we can see that random topic assignment does not improve upon the baseline of

having no topic adaptation, thereby showing that the improvement we observe is not

simply an artifact of having additional attributes, but rather that the method of inducing

topic assignments matters.

5.8 Discussion

Looking at the topic distributions inferred on our training data, we found topics

which corresponding more to the notion of topic prevalent in topic modeling. Naturally,

since certain genre talk about certain things more often, topics may in general correlate

somewhat with genre/domain, however the interaction seems to be minimal here, as most

of the training data is of similar genre. It is also worth noting that we chose Chinese

due to its topic-comment structure, which may play a role in allowing topic modeling to
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influence translation performance. It would be interesting to examine whether this holds

for other languages.

Inducing domains with topic models presents several advantages over existing ap-

proaches. We can construct a topic model once on the training data, and use it infer

topics on any test set to adapt the lexical weighting features. We can also incorporate

additional parallel, or monolingual data in the source language, to infer better latent topic

distributions without relying on collection or genre distinctions.

5.9 Future Work

There are several possible avenues of exploration in future work. First, we could

expand the topic modeling to multilingual topic models, with the hope of capturing top-

ics of higher relevance to both the source and target language (Boyd-Graber and Resnik,

2010), and thus better suited for translation. We could then use the same technique pre-

sented above to integrate topic information onto the source side grammar, and simply take

advantage of better topic assignments, or we could additionally include target side topic

information. If bilingual topic modeling is beneficial, there are several interesting ques-

tions, such as how the data is aligned - does the data have to be comparable, parallel, etc.?

Second, we could use big data for topic model, either monolingually or in combination

with multilingual modeling, and assess whether we can achieve better translation with

larger topic models. Furthermore, as sentences contain a mix of topics, we could also

integrate topic modeling with instance weighting (Foster et al., 2010) to distribute topic

information at a more granular level.
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5.10 Summary

Whenever we apply SMT to different domains, it is beneficial to introduce domain

knowledge. In this chapter, we abstracted the usual notion of a domain to finer-grained

topic distributions induced in an unsupervised fashion and introduced a novel method for

dynamic translation model adaptation. Utilizing our ability to optimize many features

with the learning algorithms presented in Chapters 2 and 4, we showed that incorporating

lexical weighting features conditioned on soft domain membership directly into our model

is an effective strategy for dynamically biasing SMT towards relevant translations, as

evidenced by significant performance gains in small to large settings. By applying the

RM algorithm we were able to tune these features toward a relative margin, showing

further gains on top of the large-margin model.
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Feature Weight

WordPenalty -10.787
PassThrough -9.997
LanguageModel 2.873
count(f , e) -2.014
count(f ) -1.654
count(f , e)=1 -1.345
pz=0(f |e) -1.229
p(e|f) -1.095
SourceWordPenalty -1.000
count(f )=1 -0.964
pz=0(e|f) -0.859
plex(e|f) 0.848
Glue -0.741
pz=6(e|f) -0.678
plex(f |e) -0.664
Arity0 0.583
Arity2 0.583
pz=6(f |e) -0.497
Arity1 -0.457
pz=7(e|f) -0.401
pz=7(f |e) -0.398
pz=3(f |e) -0.240
pz=8(e|f) 0.226
pz=4(e|f) -0.197
pz=1(e|f) -0.175
pz=9(e|f) 0.161
pz=3(e|f) -0.156
pz=5(e|f) 0.150
pz=2(f |e) -0.136
pz=1(f |e) -0.109
pz=9(f |e) 0.103
pz=2(e|f) 0.071
pz=5(f |e) -0.064
pz=4(f |e) -0.009
pz=8(f |e) -0.008

Feature Weight

PassThrough -9.897
WordPenalty -3.206
count(f ) -1.269
SourceWordPenalty -1.000
plex(e|f) 0.695
LanguageModel 0.634
count(f )=1 -0.599
p(e|f) -0.547
pz=0(e|f) -0.495
Arity0 0.478
Arity2 0.478
Glue -0.445
count(f , e)=1 -0.443
pz=0(f |e) -0.410
count(f , e) -0.347
pz=6(e|f) -0.306
pz=7(e|f) -0.302
Arity1 -0.289
pz=1(e|f) -0.140
pz=9(e|f) 0.129
pz=3(e|f) -0.120
pz=9(f |e) -0.098
pz=5(f |e) -0.089
pz=6(f |e) -0.088
pz=3(f |e) -0.087
plex(f |e) -0.078
pz=7(f |e) -0.069
pz=2(f |e) -0.067
pz=8(e|f) -0.066
pz=4(e|f) -0.033
pz=8(f |e) 0.032
pz=4(f |e) -0.027
pz=1(f |e) 0.014
pz=5(e|f) 0.005
pz=2(e|f) -0.005

Table 5.9: Features and weights for LTM-10 (left) and RM-10 (right) arranged in decreas-
ing order of importance.
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6 Latent Large-Margin Learning

You have your way. I have my way. As for the right way, the correct way, and the only
way, it does not exist.

— Friedrich Nietzsche

When it is not in our power to determine what is true, we ought to follow what is most
probable.

— Rene Descartes

The previous chapters discussed the problem of determining the appropriate objec-

tive to optimize (§3), and how to efficiently and effectively optimize the chosen objective

(§4). However, consistent with previous literature, we have been intentionally loose in

our interchangeable use of derivations and translations. In this chapter we present our

final contribution to optimization, by introducing a general framework for latent variable

models which explicitly accounts for derivations in both learning and decoding. We de-

fine a unified representation of a family of latent structured losses and show that various

previously defined losses emerge as special cases. We then present a novel loss function

from this family for large-margin learning in the latent variable setting, and develop a suit-

able optimization algorithm for maximum probability translation learning and inference
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in SMT.

6.1 Introduction

As discussed in Chapter 2, discriminative training algorithms for SMT must con-

tend with several issues that are not routinely encountered in standard structure predic-

tion settings in machine learning. First, the assumption that the correct output is reach-

able is violated, since our decoder is often incapable of producing the reference transla-

tion. This issue has received considerable attention recently (Liang et al., 2006; Chiang,

2012), with the introduction of various forms of surrogate references obtained through

cost-augmented hypothesis selection becoming prevalent.

The second issue, that a latent structure, or derivation, is constructed during the

translation process, will be tackled in this chapter. As briefly discussed in the introduction,

we can obtain many possible translations y from a source sentence xi, y ∈ Y(xi), and

for each y, we may have many derivations d that produce the same y, d ∈ D(x,y).

Recall that derivations d comprise the set of rules used in the production of y, but since

we only observe translations yi, which may have many possible derivations dj , we model

the derivations as a latent, or hidden, variable.

This leads to a well-known issue of derivational ambiguity, where there may be

multiple, exponentially many, in fact, ways to produce the same target string. This prob-

lem is related to spurious ambiguity, which is sometimes defined narrowly as multi-

ple distinct derivations (trees or segmentations) with the same set of features and output

string. Whereas, derivational ambiguity broadens the criteria to encompass derivations
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that can have different feature vectors but also produce the same target string. Derivational

and spurious ambiguity have sometimes been used interchangeably in the literature, and

here we focus on the broader problem of derivational ambiguity.

The problem is illustrated in Figure 6.1. The figure presents a simple grammar and

hypergraph that, using only the 5 rules in the grammar, encodes 4 different derivations

that translate ein kleines haus into a little house. Unfortunately, there is an exponential

relationship between the sentence length and the number of derivations (Blunsom et al.,

2008b), thus for a real sentence, we will have to deal with many more derivations.

X −→ 〈 ein , a 〉
X −→ 〈 kleines , little〉
X −→ 〈ein kleines , a little〉
X −→ 〈kleines haus , little house〉
X −→ 〈haus , house 〉
S −→ 〈 S0 X1 , S0 X1〉

While the goodness of a translation should be the total probability of all its deriva-

tions, most past work in SMT optimization does not consider all possible derivations of a

sentence. With some notable exceptions discussed below, it is standard practice in SMT

to decode and optimize toward the 1-best, or maximum Viterbi derivation (Koehn et al.,

2003), disregarding the multitude of other possibilities. Taking this shortcut is in effect

treating derivations as the translation, and optimizing towards the best derivation, not the

best translation.

Decoding and optimizing derivations is especially ubiquitous in linear and large-

margin models. However, it seems that for translation, where the ambiguities of not one,

but two languages are exposed, and where we are already limiting ourselves to building a
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Figure 6.1: Hypergraph representing different derivations that translate ein kleines haus
into a little house.

statistical system based on a cost computed on one to a handful of reference translations,

limiting ourselves even further by optimizing toward a single derivation of that single

reference is unwise.

Intuitively, we would like to account for all the possible derivations of all possible

translations. Since features are constructed over derivations, many derivations can actu-

ally contribute to a particular translation string y’s score. Accounting for all derivations

should further allow our learned model parameter vector w to generalize better, since we

are more likely to have observed a particular set of features.

We can separate this out into two separate but related problems: the decoding prob-

lem, where we decide what derivation and translation pair to produce, and the training

problem, where we decide what derivation(s) to optimize for.

In the decoding problem introduced in Chapter 2, finding the maximum probability
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translation necessitates marginalizing over all the derivations of all translations, and is

thus computationally intractable. Sima’an (1996) showed that it is an NP-hard problem.

For this reason, most systems address the decoding problem by approximating the maxi-

mum translation with the maximum derivation. However, ideally we would like to decode

to find the maximum translation itself.

In the training problem, in the simplest case, large-margin learners choose two

derivation and translation pairs, one for the surrogate reference, the hope, and another for

the worst violator, the fear, where each pair is described by one feature vector. However,

we would like to simultaneously tune our system toward all the derivations of a transla-

tion, replacing the feature vector with feature expectations by marginalizing over all the

possible derivations. For this, we will take advantage of the fact that marginalization over

derivations for a particular y is tractable.

In this chapter we accomplish this by introducing a new way of combining a proba-

bilistic framework for dealing with latent variables with a geometric model that performs

margin maximization. To date, margin and perceptron style methods have been used to

optimize derivations. To the best of our knowledge, a latent variable model has not been

used in coordination with a large-margin learner in SMT.

We define a unified representation of a family of latent structured losses (§6.3.3)

and show that various previously defined losses emerge as special cases. We then present

a novel loss function from this family for large-margin learning with latent variables

(§6.3.3), and develop a suitable optimization algorithm for maximum probability transla-

tion learning and inference in SMT (§6.3.4). We explicitly account for latent variables in

the translation process, instead of simply noting their presence but not taking advantage
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of them. By marginalizing over derivation paths in the training and decoding process,

we are able to combine maximum probability translation decoding with a latent variable

large margin learner.

6.2 Decoding Problem

In the decoding problem, we need to decide what derivation and translation pair to

produce. Since the maximum weighted derivation

(y∗,d∗) = argmax
(y,d)∈Y(x),D(x,y)

w>f(x,y,d) (6.1)

can be efficiently extracted using a dynamic programming technique for hypergraphs (Dyer,

2010a), this is the most common approximation for the model’s best output (Arun et al.,

2009; Li et al., 2009). However, since the maximum derivation is only informed by one

out of an exponential number of translation paths, it may be a bad approximation of the

model’s true maximum. The question for us then becomes, given a source sentence, how

to find the maximum probability translation in Eq. 6.2 efficiently?

y∗ = argmax
y∈Y(x)

∑
d∈D(x,y)

exp
{
w>f(x,y,d)

}
(6.2)

6.2.1 Maximum Translation Sampling

Several alternative strategies for considering all derivations in the hypergraph dur-

ing decoding have been explored in the literature. Li et al. (2009) develops a variational
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approximation to the MAP estimate. Using n-gram models to construct a second dis-

tribution q that approximates p(y|x) by collapsing the latent derivations and giving a

distribution over outputs for a given input, this scheme allows tractably finding the best

translation.

Blunsom et al. (2008b) presented a beam-search approximation to the sum over all

derivations. In a manner similar to cube-pruning for n-gram language model integration

into a hypergraph (Huang and Chiang, 2007), Blunsom uses a beam search to prune the

derivation forest when looking for the maximum probability translation, which results in

a potentially biased approximation.

Thinking in a probabilistic framework, the problem we are faced with is approxi-

mate inference of the posterior distribution produced by a complex model. Recently, we

have seen many general marginalization techniques (Li et al., 2009; Arun et al., 2009),

and particularly sampling methods, being used in NLP for approximate inference. Arun

et al. (2009) present a Markov Chain Monte Carlo technique that samples derivations from

the posterior distribution of a phrase-based model. Their Gibbs sampler produces sam-

ples from the entire search space by drawing derivation and translation output pairs from

p(d,y|x). This can be used to determine the maximum derivation, or, by marginalizing

over the derivations, an estimate of p(y|x) to obtain the maximum translation.

Although sampling the entire translation hypothesis space in this style is possible

for a phrase-based model, it becomes prohibitively expensive for our hierarchical phrase-

based model. Blunsom and Osborne (2008) presented another Monte-Carlo sampling

technique which can sample derivations from the probability distribution defined by the

SCFG model. Recall that a hypergraph encodes exponentially many trees, or derivations,
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in a compact structure. Since each derivation has a score associated with it based on

its features and weights, the hypergraph defines a probability distribution over deriva-

tions p(d,y|x). Furthermore, it defines an implicit distribution over translations p(y|x).

Blunsom and Osborne (2008) adapted INSIDE-OUTSIDE sampling (Goodman, 1998), a

monolingual sampling technique designed for PCFG, to the SCFG translation model.

Using the INSIDE algorithm, we can compute the scores that define a multinomial

distribution over all partial derivations available at a given rule. Processing top-down, we

can draw derivations from the distribution defined by the inside scores. Here, we draw

derivation samples from the LM pruned hypergraph, according to their probability. For

each sample we can simply discard the actual derivation d, keeping only the surface string

y. We can create a histogram of surface string occurrences, and assume the string with

the highest count is the maximum probability translation. Blunsom and Osborne (2008)

compare this method to the beam approximation in Blunsom et al. (2008b), and although

it does not result in significantly higher BLEU scores, it is theoretically more justified.

Thus, we utilize this sampling method for obtaining maximum probability translations as

part of our new latent large-margin learning technique.

6.2.2 Cost-Augmented Inference

Recall from Chapter 3 that the hope and fear candidates are obtained from the k-best

list by cost-augmented rescoring. In order to be able to sample the maximum probability

translation for y+ and y− candidates from the hypergraph as just described, we need to

rescore the hypergraph to include the cost on each rule, or hyperedge. Each edge repre-
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sents an application of a translation rule, containing the features and associated feature

values that are active when this rule is applied. In addition to the standard features de-

scribed in previous chapters, we can think of the BLEU statistics and approximated score

being additional features on the edge. However, these “features” always have a weight of

1 and are never optimized.

Since our cost function, BLEU, does not linearly decompose onto hyperedges like

the other features, we need to make several minor approximations (Li and Khudanpur,

2009; Chiang, 2012). First, when computing the normal BLEU score, we clip the maxi-

mum number of times the hypothesis can get credit for a given n-gram to be the number

of times that n-gram occurs in the reference. But since we are computing an approx-

imate BLEU score based on a partial representation of the hypothesis as we build the

hypergraph, accounting for how many times we have scored a given n-gram becomes

intractable (Chiang et al., 2008a). Thus, we compute the unclipped n-gram match count.

Second, we follow the procedure of Li and Khudanpur (2009), which is similar to

Dreyer et al. (2007) and Chiang et al. (2008a), and we rescore the hypergraph with the

cost using a dynamic program in a manner similar to language model integration with

cube pruning. In our setting, the major difference from LM integration is that we also

need to maintain the BLEU statistics, i.e. the hypothesized and matched n-gram counts

on each hyperedge. This additional information does not impose additional cost on the

inference, as the dynamic program states depend only on the partial hypothesis length and

left/right states, and not on the sufficient BLEU statistics associated with each node (Li

and Khudanpur, 2009).

Putting this together, to get the necessary hope and fear candidates for maximum
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translation optimization, we first construct the hypergraph for the source sentence in the

standard manner. Then, we rescore the hypergraph using the reference translations in

order to place an additional “feature”, the cost, on each hyperedge in the hypergraph.

We then extract the hope with a negative weight on the cost feature, and the fear with a

positive weight on the cost feature. Theoretically, we could forgo cost-augmented infer-

ence and extract the candidates from a k-best list as in previous chapters. However, we

believe this approach, which takes advantage of the whole space of hypotheses, is more

principled and better suited for learning with latent variables.

6.3 Training Problem

6.3.1 Latent Variable Model

Previous work in SMT using a latent variable model has utilized Minimum Risk or

expected BLEU (Rosti et al., 2010; Li and Eisner, 2009), and log-linear models (Blunsom

et al., 2008b; Dyer and Resnik, 2010). Li and Eisner (2009) perform minimum risk train-

ing over hypergraphs by introducing a novel second-order expectation semiring. While

we utilize a first-order semiring to compute feature expectations, which can also be used

to compute the risk objective, computing the gradient of the risk objective requires a spe-

cialized second-order semiring.

Blunsom et al. (2008b) were the first to introduce a discriminative latent variable

model for SMT by explicitly modeling derivations as a latent variable, and marginaliz-

ing over them during training and decoding to obtain the best translation. They max-

imized the regularized conditional marginal log-likelihood of the parallel training data
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T = {xi,yi}n1 in a CRF model, where the conditional probability of a target translation

and derivation pair is given by a log-linear model:

p(d,y|x) =
exp

{
w>f(x,y,d)

}
Z(x)

(6.3)

The normalizing partition function Z(x) sums over every derivation and translation:

Z(x) =
∑

y∈Y(x)

∑
d∈D(x,y)

exp
{
w>f(x,y,d)

}
(6.4)

The log-likelihood objective and corresponding gradient are:

` =
∑

(x,y)∈T

log p(y|x) (6.5)

∂`

∂wk

= Ep(d|x,y) [fk(x,y,d)]− Ep(y|x) [fk(x,y,d)] (6.6)

To compute the gradient, they need to obtain two separate hypergraphs.1 The first repre-

sents the complete derivation forest given a source sentence. They perform unconstrained

decoding of x to obtain a hypergraph representing all the possible resulting translations

y′ along with their derivations. By marginalizing over all the paths in this forest using the

INSIDE-OUTSIDE algorithm, they obtain the feature expectations of the model given the

source sentence, Ep(d|y,x), the first term in Eq. 6.6.

The second hypergraph contains only the derivations which produce the reference

translation from the source. They perform constrained decoding, by constraining the

1 Blunsom et al. (2008b) refer to them as packed charts.

179



target side y′ to only produce the reference y. The resulting hypergraph is a subset of the

first one, constrained on both sides (source and reference), whereas the first hypergraph

is only constrained on one side (source only). It is used to find the reference or correct

expected feature values. By marginalizing over the paths in this hypergraph they are able

to obtain the feature expectations of the model when constrained on both sides by the

source and target reference, i.e. Ep(y|x). These feature expectations can be considered the

empirical feature expectations with regard to the standard gradient of log-linear models.

In short, Blunsom et al. (2008b) want to maximize the likelihood of the training

data given the model, and the likelihood can be expressed in such a way that when you

differentiate with respect to a particular feature in the model, you get the difference in

expectations of that feature value for the model given a source sentence, versus for the

model when constrained on both sides by the source sentence and reference. This elimi-

nates the need to have a k-best list of derivations against which to optimize, since instead

of choosing just one derivation and placing our hopes on it, we distribute probability mass

throughout the full derivation forest, placing more mass on the good paths at the expense

of the bad paths.

This objective precludes the inclusion of an extrinsic loss, thus they were unable

to target BLEU, or any other evaluation score normally used in SMT. Like Dyer and

Resnik (2010), who also makes use of a log-linear model to incorporate latent variables,

to be competitive with state-of-the-art SMT models optimized toward an error metric, they

had to collapse any sparse features into dense features, and perform several optimization

rounds of MERT.

We will similarly utilize constrained and unconstrained decoding to allow us to
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update towards the maximum translation of the hope, and away from the maximum trans-

lation of the fear candidate, rather than optimizing toward a single derivation. An issue

that arises here is that in standard large-margin approaches, where derivations are treated

as translations, each derivation has a feature vector associated with it. One can simply

use the feature vector that corresponds to the decoder’s best derivation, and the feature

vector for the correct translation, and compute the difference. With the latent variable

model, however, we have a forest of derivations, where each derivation has its own set

of features, and a probability associated with that derivation - a distribution over feature

vectors for both the model and the reference.

We address this issue by creating feature vectors comprising the feature expecta-

tions computed by the INSIDE-OUTSIDE algorithm on the two hypergraphs resulting from

the hope and fear translations. Instead of defining

score(x,y,d) = w>f(x,y,d) (6.7)

we replace the feature vector f(x,y,d) with its expectation E [f(x,y)] to get

score(x,y) = w>E [f(x,y)] = E
[
w>f(x,y)

] (6.8)

by linearity of E. Thus, using the latent variable model, we can compute E [f(x,y+)] and

E [f(x,y−)], and update w directly towards the maximum translation.

We will describe how to obtain the feature expectations and compute the update

with them below.
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6.3.2 Loss Functions

We begin our discussion of large-margin learning with latent variables by going

back to a setting without latent variables. As we discussed in Section 2.4.2, in several

popular methods, including CRFs and max-margin models, learning takes place by the

minimization of a regularized loss function. As has been previously shown (Martins

et al., 2010; Pletscher et al., 2010), the loss function for max-margin learning:

`MM = −w>f(xi,yi) + max
y∈Y(xi)

{
w>f(xi,y) + ∆i(y)

}
(6.9)

and CRF log-loss:

`LL = −w>f(xi,yi) + log
∑

y∈Y(xi)

exp
{
w>f(xi,y)

}
(6.10)

can be unified by introducing an inverse temperature β as:

` = −w>f(xi,yi) +
1

β
log

∑
y∈Y(xi)

exp
[
β
{
w>f(xi,y) + γ∆i(y)

}]
(6.11)

This generalizes the loss of both regimes. It is easy to see that setting γ=0 and β=1

produces `LL. Following Theorem 8.1 (Wainwright and Jordan, 2008), we can produce

`MM as the limiting case when β → ∞ and γ=1. And as the bridge between the two,

we can produce the softmax-margin `SM (Gimpel and Smith, 2010; Pletscher et al., 2010)

with β=γ=1.
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`SM = −w>f(xi,yi) + log
∑

y∈Y(xi)

exp
{
w>f(xi,y) + ∆i(y)

}
(6.12)

This setting combines the benefits of probabilistic modeling with maximum entropy

and margin maximization. As the equations above are presented in the standard form that

posits reachable outputs, they need to be adapted accordingly for SMT.

6.3.3 Learning with Latent Variables

Now, we will examine how to include all the derivations that produce a single trans-

lation string in our optimization, with the goal that by marginalizing over these latent

derivations, we can compute the margin between the expected feature values, not just the

feature vector from a single derivation. More formally, the standard formulation of the

constraints for a structured large-margin learner, as presented in Chapter 3 is:

w>f(xi,yi,d)−w>f(xi,y
′,d) ≥ ∆i(y

′)− ξi (6.13)

By marginalizing over the latent variables, we can obtain the expected feature func-

tion E [f(xi,y)], and our constraints become:

w>E [f(xi,yi)]−w>E [f(xi,y
′)] ≥ ∆i(y

′)− ξi (6.14)

Crucially, what we care about is that the gradient of the objective function with

respect to the weights,∇`, incorporate these expectations, since the gradient will directly
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be used in the weight update at each iteration. Thus, the gradient takes the form

∇` = E [f(xi,yi)]− E [f(xi,y
′)]

.

Here we introduce a unified representation of a family of structured latent loss

functions which generalizes the max-margin latent variable formulation just described.

This formulation is analogous to the unifying loss function in the case with no latent

variables in Eq. 6.11 in the previous section. Instead of just a single inverse temperature

β, we introduce two temperature variables, ηd, which only applies to the latent part of the

function, d, and βy, which only applies to the observed part of the function, y.

`LV = − 1

ηd
log

∑
d∈D(x,yi)

exp
[
ηd

{
w>f(xi,yi,d)

}]
+

1

βy

1

ηd
log

∑
y′∈Y(xi)

∑
d∈D(xi,y′)

exp
[
βyηd

{
w>f(xi,y

′,d) + γ∆i(y
′)
}] (6.15)

Several well-known losses can be shown to emerge as special cases of this family.

Setting γ=0 and βy=ηd=1, we obtain the Hidden CRF (Quattoni et al., 2007; Blunsom

et al., 2008b):

`HCRF = − log
∑

d∈D(xi,yi)

exp
{
w>f(xi,yi,d)

}
+ log

∑
y′∈Y(xi)

∑
d∈D(xi,y′)

exp
{
w>f(xi,y

′,d)
}

(6.16)

Setting γ=1 and βy=ηd →∞, we recover the Latent SVM (Yu and Joachims, 2009):
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`LSVM = − max
d∈D(xi,yi)

w>f(xi,yi,d) + max
y′∈Y(xi)

max
d∈D(xi,y′)

{
w>f(xi,y

′,d) + ∆i(y
′)
}

(6.17)

Setting γ=βy=ηd=1 produces the latent variable softmax-margin (Gimpel and Smith,

2010):

`LSMM = − log
∑

d∈D(xi,yi)

exp
{
w>f(xi,yi,d)

}
+ log

∑
y′∈Y(xi)

∑
d∈D(xi,y′)

exp
{
w>f(xi,y

′,d) + ∆i(y
′)
}

(6.18)

Finally, as the unified view of the family above allows us to clearly see what has

not yet been explored, here we introduce the latent max-margin formulation, with γ =

ηd = 1 and βy →∞

`LMM = − log
∑

d∈D(xi,yi)

exp
{
w>f(xi,yi,d)

}
+ max

y′∈Y(xi)
log

∑
d∈D(xi,y′)

exp
{
w>f(xi,y

′,d) + ∆i(y
′)
}

(6.19)

Eqs. 6.16- 6.19 are presented for clarity in a form that assumes that yi is reach-

able, i.e. yi ∈ Y(xi). However, as we will be using surrogate references through cost-

augmented and diminished decoding, the loss function employed will have another max

operator on the first term of each equation to find y+. The SMT version of lLMM is

presented in Eq. 6.20.
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`LMM2 = − max
y+∈Y(xi)

log
∑

d∈D(xi,y+)

exp
{
w>f(xi,y

+,d)−∆i(y
+)
}

+ max
y−∈Y(xi)

log
∑

d∈D(xi,y−)

exp
{
w>f(xi,y

−,d) + ∆i(y
−)
} (6.20)

`LMM is related to the first three objectives, but has a few important differences. The

Latent SVM, `LSVM, is a well known model explicitly dealing with the introduction of

latent variables into a large-margin model that was developed as an extension of struc-

tural SVMs to support latent variables. Notice that when the latent variable is trivial, i.e.

D(x,y) contains a single member, these losses reduce to their non-latent versions. In this

case, `LMM and `LSVM become identical. This elucidates the major difference between the

two in the latent setting as well: `LSVM and `LMM differ in their treatment of derivations,

with `LSVM maximizing over the latent derivations by taking into account only the maxi-

mum scoring latent variable, whereas the other approaches marginalize over all of them.

Thus, it does not use feature expectations, but rather the exact feature function f(xi,y,d)

for the maximum scoring (y,d) pair. Like `LMM, the margin in `LSVM is computed be-

tween two labels, yi, and y′. `LSMM extends `HCRF with an additional cost, ∆i(y
′), and

both compute a softmax margin, between yi and a sum over all y′.

To ensure that `LMM has feature expectations in the gradient as we desired, we take

the partial derivative of `LMM with respect to the weights , and obtain:

∇`LMM = Ep(d|xi,yi) [f(xi,yi)]− Ep(d|xi,y′) [f(xi,y
′)] (6.21)
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In contrast, the gradient of `LSMM and `HCRF is

∇`LSMM = ∇`HCRF = Ep(d|xi,yi) [f(xi,yi)]− Ep(d,y′|xi) [f(xi,y
′)] (6.22)

All three are similar in that we want to learn parameters to produce a score for the

correct output that is better than some function of the other scores. The difference between

∇`LMM and the other two, ∇`LSMM and ∇`HCRF, lies in the probability distribution being

used to calculate the second expectation. For ∇`LSMM and ∇`HCRF, we are maximizing

the difference between the expected feature values of the correct output and all possible

outputs. In contrast, for ∇`LMM, we are maximizing the difference between the expected

feature values of the correct output and the incorrect outputs, exemplified by the output

y− that violates the constraint the most.

6.3.4 Expected Feature Computation

For `LMM, we can compute expectations by first computing marginal probabilities

using the INSIDE-OUTSIDE algorithm over the two forests of derivations, as in Blunsom

et al. (2008b).

Recall from Chapter 2 that synchronous parsing is the procedure utilized in de-

coding using a SCFG translation model. Dyer (2010b) presented an alternative view of

the synchronous parsing algorithm which decomposed it into two successive monolin-

gual parsing operations. The first parse can be seen as computing the composition of the

source sentence, represented as an FST, with our SCFG translation model. The composi-
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tion produces a hypergraph that can only generate x on the source side, but can generate

all possible translations of x on the target side that can be obtained with our translation

model. Composing this hypergraph again with an FST representing the target sentence y

results in a new hypergraph that can only produce x on the source side and y on the target

side.

We will need to construct three hypergraphs per sentence: by performing uncon-

strained decoding once, and constrained twice. The first decoding will be unconstrained

to produce the hypergraph representing the whole translation hypothesis space. From this

we obtain y′, and through cost-augmented inference, the fear translation y−, and hope

y+. The second decoding will be constrained to get the expected feature values for the

source and hope pair, and can be viewed as a composition operation of the full hypergraph

from above with the hope sentence, constraining the forest to only those derivations that

produce the hope sentence on the target side. Similarly, we will compose the full gram-

mar with the fear sentence to get the expected feature values for the source and fear pair.

These constrained decoding runs give us the expectations under the model. With these

expectations calculated, we can perform the standard large-margin update, as described

in Chapter 3.

Both in training and evaluation, we can obtain the desired hypotheses using maxi-

mum translation decoding via the sampling described above, or standard maximum deriva-

tion decoding.

188



6.4 Evaluation

6.4.1 Setup

To evaluate the advantage of explicitly accounting for latent variables in the opti-

mization and performing maximum probability translation decoding, we conduct experi-

ments on Chinese-English and Arabic-English translation.

As our training data we utilize the non-UN and non-HK Hansards portions of the

NIST training corpora, amounting to 1.6 million sentence pairs for Chinese and 1 mil-

lion sentence pairs for Arabic. The data was lowercased, tokenized and aligned us-

ing GIZA++ (Och and Ney, 2003) to obtain bidirectional alignments, which were sym-

metrized using the grow-diag-final-and method (Koehn et al., 2003). The Chi-

nese data were segmented using the Stanford segmenter. Arabic data were preprocessed

with an HMM segmenter (Lee et al., 2003). We trained a 4-gram LM on the English side

of each corpus with additional data randomly selected from the non-NYT and non-LAT

portions of the Gigaword v4 corpus using modified Kneser-Ney smoothing (Chen and

Goodman, 1996). We tuned the parameters of the system to optimize BLEU (Papineni

et al., 2002b) on the NIST MT06 tuning corpus.

We use a standard maximum-derivation MIRA optimizer as our baseline, but note

that it is now computing the cost-augmented and diminished hypotheses over the entire

hypergraph, not from a k-best approximation. More specifically, since we made approxi-

mations to the BLEU score when decomposing it over the hypergraph, instead of relying

on the one-best hope and fear, we extract a k-best hope list from a hypergraph rescored
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with a BLEU feature on each edge, and k-best fear list from the same hypergraph rescored

with -BLEU, and select our hope and fear from those lists, respectively.

We compare the baseline against several alternatives that explicitly account for the

latent structure. For tuning, all include marginalizing over the paths in the forest to obtain

translations, but they differ in how we obtain the hope and fear candidates from the cost-

augmented forest. In the first model, LMMd, we extract hope and fear as above, using a

standard maximum derivation decoding. In the second, LMMt, we sample from the forest

to obtain the maximum probability translations for the hope and fear. In both cases, the

candidates we obtain will be composed with the full forest as described above to obtain

the maximum translation feature expectations. We also include a maximum translation

softmax-margin optimizer, LSMM.

The regularization strength C was set to 0.01 in all cases. The oracle weight for

cost-augmented decoding is set to 1, and as previously stated, is only used for selecting

the hope and fear hypotheses and then excluded from all optimization.

For decoding, we can decode the test set with (1) maximum derivation or (2) max-

imum translation decoding by sampling, even if we did not train with latent variables

or perform maximum translation sampling while tuning. All results are averaged over 2

runs. We use MultEval to estimate statistical significance.

6.4.2 Results

Results for Chinese-English translation with baseline features using the latent max-

margin, LMMd and LMMt, latent softmax-margin, LSMM, and MIRA learners are pre-
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sented in Table 6.2. We first note that the standard condition is derivation training with

derivation decoding, presented in the first row, and first column of each test set. Simply

using the derivation trained MIRA and decoding for maximum translation, we already

observe a 0.5 BLEU and 0.9 TER improvement. This indicates that performing maxi-

mum translation decoding is useful in of itself, even without pairing it with an analogous

training regime.

Looking at the LMMd results, we first note that the BLEU score even for derivation

decoding is up to 0.3 BLEU points better than MIRA derivation decoding, suggesting the

complementary direction: learning toward translations, even when not decoding toward

them, imbues some additional useful information to the system. Moving to translation

decoding, we observe an additional small gain of 0.2 BLEU and over 1 TER improvement

over maximum translation MIRA.

We see that LSMM performance paired with derivation decoding is quite bad, and

although it improves substantially in translation decoding, it is still lagging far behind that

of MIRA and LMMd. Finally, LMMt further improves upon LMMd, gaining in derivation

decoding, and up to 0.9 BLEU and 1.5 TER for translation decoding. This results in overall

gains of up to 0.9 BLEU and over 2 TER over the best MIRA results.

While the LMMt results in the low-dimensional feature setting are already encour-

aging, we believe that a larger feature set with sparse features should benefit more from

feature expectations than the dense feature used thus far. Thus, we conducted sparse fea-

ture experiments comparing the models. Moving to sparse features in Table 6.1, we again

see significant gains going from MIRA to LMMd to LMMt. As compared to the baseline

feature set, we see improvements from sparse features for MIRA and LMMd, but small
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gains for LMMt.

Training Decoding

MT03 MT05

derivation translation derivation translation

↑BLEU ↓TER ↑BLEU ↓TER ↑BLEU ↓TER ↑BLEU ↓TER

MIRA (derivation) 36.18 59.41 36.72 58.89 32.57 62.85 32.96 62.00

LSMM (translation) 32.81 62.42 33.55 61.82 29.06 66.10 29.53 65.61

LMMd (derivation) 36.48 57.97 36.88 57.51 32.66 60.89 33.01 60.65

LMMt (translation) 36.99 57.05 37.13 56.38 33.58 59.67 33.87 59.17

Table 6.1: Results on Zh-En translation using maximum derivation and maximum trans-
lation with base features. Improvement of LMM (translation) over MIRA is significant at
the p <0.001 level for both decoding regimes in TER and BLEU.

Training Decoding

MT03 MT05

derivation translation derivation translation

↑BLEU ↓TER ↑BLEU ↓TER ↑BLEU ↓TER ↑BLEU ↓TER

MIRA (derivation) 36.29 58.94 36.57 58.49 32.94 62.03 33.12 61.76

LMMd (derivation) 36.69 56.73 36.84 56.30 33.28 60.32 33.47 59.98

LMMt (translation) 37.02 57.11 37.24 56.66 33.48 59.97 33.76 59.41

Table 6.2: Results on Zh-En translation using maximum derivation and maximum trans-
lation with sparse features. Improvement of LMM (translation) over MIRA is significant
at the p <0.001 level for both decoding regimes in TER and BLEU.

Similar results for Arabic-English translation are presented in Table 6.3. When

moving MIRA to translation decoding, we see a 0.7 BLEU and 0.4 TER improvement.

Moving to the LMMd results, we note that the BLEU score for derivation and translation

decoding is much better than MIRA in one case, and worse in another, while TER is better

for both. Once again, we see that LSMM performance with derivation decoding is bad,
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Training Decoding

MT05 MT08

derivation translation derivation translation

↑BLEU ↓TER ↑BLEU ↓TER ↑BLEU ↓TER ↑BLEU ↓TER

MIRA (derivation) 52.25 40.86 52.99 40.38 41.32 50.73 41.71 50.34

LSMM (translation) 48.68 44.55 49.25 44.13 38.57 53.96 39.07 53.50

LMMd (derivation) 53.45 39.32 53.92 39.04 40.44 49.69 40.86 49.34

LMMt (translation) 53.37 39.66 54.30 38.86 41.03− 49.67 41.48 49.21

Table 6.3: Results on Arabic translation using maximum derivation and maximum trans-
lation with base features. Improvement of LMM (translation) over MIRA is significant
at the p <0.001 level in TER and BLEU unless otherwise indicated: (−) indicates signifi-
cance at p < 0.05 level.

and although it improves substantially from derivation to translation, it is still far behind

that of MIRA and LMMd. LMMt improves upon the performance of LMMd, gaining in

all but one case (derivation decoding on MT05). Focusing on that condition, it seems

that LMMd overfit, and thus produced great results there, and seriously underperformed

on MT08. Meanwhile, LMMt improved upon MT05, and has comparable BLEU perfor-

mance with MIRA, with significantly better TER.

In the sparse condition, we again see LMMt outperforming all other models by

significant margins in both BLEU and TER.

6.5 Discussion

Table 6.5 presents the active feature counts for MIRA, LMMd, and LMMt on both

language pairs. In both settings, LMMd and LMMt activate considerably more features

than MIRA, showing that marginalizing over alternative derivations for the hope and fear
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Training Decoding

MT05 MT08

derivation translation derivation translation

↑BLEU ↓TER ↑BLEU ↓TER ↑BLEU ↓TER ↑BLEU ↓TER

MIRA (derivation) 53.06 40.08 53.45 39.75 41.62 49.97 41.78 49.68

LMMd (derivation) 52.85 40.13 53.59 39.55 41.73 50.01 41.83 49.89

LMMt (translation) 54.00 39.19 54.44 39.01 41.97 49.59 42.26 49.09

Table 6.4: Results on Arabic translation using maximum derivation and maximum trans-
lation with sparse features. Improvement of LMM (translation) over MIRA is significant
at the p <0.001 level for both decoding regimes in TER and BLEU.

hypotheses introduces more features of the pair into the optimization.

Optimizer Chinese Arabic

MIRA 102k 113k
LMMd 181k 308k
LMMt 286k 454k

Table 6.5: Active sparse features for MIRA, LMMd, and LMMt.

Figures 6.2 and 6.3 compare the tuning performance across the different learners.

We first see that all learners are stable, never deviating much from their best perform-

ing iteration. On Chinese-English translation, MIRA, LMMt, and LMMd are practically

indistinguishable on the tuning set, yet LMMt significantly outperforms the others on

the test sets. On Arabic-English, MIRA and LMMt are very close, with LMMd slightly

lower, and on test LMMt once again outperforms the others. In both cases, LSMM has

a lower performance across all iterations, being approximately 3 BLEU points lower on

tuning than the others, but improving slightly with time. This transfers to significantly

lower performance on the test sets. Interestingly, LMMt quickly excels to its optimal
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Figure 6.2: Comparison of performance
on the tuning set for ar-en between
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Figure 6.3: Comparison of performance
on the tuning set for zh-en between
LMMd, LMMt, LSMM, and MIRA.

Chinese-English Arabic-English
Method Ave (min/iter) Std Sent/Min Ave (min/iter) Std Sent/Min

MIRA (derivation) 4.77 1.02 349 7.67 0.54 234

LMM (derivation) 4.3 0.74 386 8.43 1.38 213

LMM (translation) 5.4 0.55 308 12.38 3.38 145

Table 6.6: Wallclock time per iteration for MIRA, LMMd and LMMt.

performance within the first few iterations, and stays within close proximity to it through-

out tuning. The other optimizers also reach their respective optimal performances fairly

quickly, but keep improving with later iterations. Thus, we can see that not only does

LMMt produce a better model, but it does so more efficiently. Table 6.6 presents a com-

parison of time taken by each learner per iteration. While explicitly accounting for latent

derivations and sampling for the maximum probability translation does incur computa-

tion cost, it still remains efficient, especially when considering that fewer iterations are

necessary to achieve optimal performance.
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6.6 Summary

In this chapter we presented a novel optimization procedure for maximum prob-

ability translation learning and inference, thereby introducing a new way of combining

a probabilistic framework for dealing with latent variables with a geometric model that

performs margin maximization. We presented a unified representation of latent variable

objectives as a family of latent structured losses, and developing a novel loss function for

large-margin learning in the latent variable setting which explicitly accounts for deriva-

tional ambiguity. Empirical evaluation of this loss showed significant gains in two lan-

guage settings over standard MIRA training with Viterbi decoding.
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7 Conclusion

The strongest arguments prove nothing so long as the conclusions are not verified by
experience. Experimental science is the queen of sciences and the goal of all
speculation.

— Roger Bacon

We are in the ordinary position of scientists of having to be content with piecemeal
improvements: we can make several things clearer, but we cannot make anything clear.

— Frank Plumpton Ramsay

Designing learning algorithms that are capable of efficiently learning models in

high-dimensions over large training sets is a core challenge in machine learning. Through-

out this dissertation, we introduced novel algorithms and methods focused on improving

scalability and generalization for feature-rich learning in SMT. We approached the prob-

lem of learning in high-dimensional feature spaces for SMT from several perspectives:

what to optimize, how to optimize, and what features to use. The contributions in these

areas as well as future work are discussed below.

In Chapter 3, we presented a generalized loss for cost-augmented learning with

latent variables, and performed an extensive empirical evaluation of different strategies

employed in constructing a state-of-the-art SMT system. We examined learning charac-
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teristics across objectives, solutions for the parameter update, parallelization, and intro-

duction of sparse features, and showed the cost-augmented hypothesis selection is impor-

tant for learning stability and generalization ability. We then introduced the capability for

large-scale training by developing a scalable learner on a highly distributed architecture.

In Chapter 4 we further improved our large-margin learner by introducing a loss

for structured relative margin maximization that incorporates spread information into the

optimization procedure, thereby focusing on creating the margin in the correct direc-

tion. We introduced a novel online margin-based algorithm designed for optimizing high-

dimensional feature spaces, which introduces constraints into a large-margin optimizer

that bound the spread of the projection of the data while maximizing the margin. We

showed that bounding the spread significantly improves translation performance.

In Chapter 5 we utilized our learning capabilities and extended translation mod-

eling for dynamic domain adaptation. We abstracted the usual notion of a domain to

finer-grained topic distributions induced in an unsupervised fashion. Utilizing our learn-

ing algorithms from Chapters 2 and 4, we showed that incorporating lexical weighting

features conditioned on soft domain membership directly into our model is an effective

strategy for dynamically biasing SMT towards relevant translations.

Finally, in Chapter 6 we defined a framework for latent variable models which ex-

plicitly accounted for the derivational ambiguity problem posed by our translation model

in both learning and decoding. We presented a novel loss function from a family of latent

structured losses for large-margin learning in the latent variable setting, and developed a

suitable optimization algorithm for training an SMT system with this objective.
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7.1 Future Work

7.1.1 Large-Scale Discriminative Training

This dissertation has taken steps toward large-scale training, by developing fast

online learning algorithms and implementing them on a scalable distributed architecture,

showing that such training is feasible. Despite several recent advances in large-scale train-

ing which utilize large numbers of features (Simianer et al., 2012; Flanigan et al., 2013;

Yu et al., 2013), while we were able to show improvement in translation performance

with sparse features, we were unable to achieveresults indicating that large bitext tuning

produces gains in translation quality on domain specific evaluation sets over the sparse

feature tuning on smaller tuning sets. The causes of this were discussed in Chapter 3,

including domain mismatch problems, and lack of requisite features for taking advantage

of the larger tuning set.

One avenue of exploration would be to analyze how to properly select sentences

from the bitext in such a way as to maximize similarity with existing in-domain tuning

sets. This could involve methods from information retrieval and domain adaptation. An-

other possibility it to examine the grammar rules themselves, and either remove, i.e. hard

constrain, or weight, i.e. soft constrain, rules based on some measure of general applica-

bility and generalization.
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7.1.2 Structured Prediction (beyond SMT)

As SMT is an instance of the more general structured prediction problem, the al-

gorithms we introduced in this dissertation have the capability to be applicable to a num-

ber of other problems in and outside of NLP. Online learning is also becoming popular

for its ability to scale with the data and handle sparse features. For instance, parsing

has benefited from large-margin learning, and is thus a natural fit for the improvements

we have introduced (McDonald and Pereira, 2006). Although SMT introduces problems

with regard to the reference translation that are somewhat unique, the field of structured

multi-label classification is emerging as important in other communities, and thus the ex-

ploration and techniques we have described could well be of use there as well (Lampert,

2011). Furthermore, computational biology and vision both have settings that require

latent variables and predicting a complex structure (Nowozin and Lampert, 2011).

7.1.3 Kernel Learning

The joint feature map f(x,y) we use maps the input and output pair into a feature

space: X×Y → H, which can be defined explicitly, as is in the formulation we have been

using for our linear model. However, it can also be implicitly defined through a kernel

function k : X × Y × X × Y → R (Bishop, 2006). Kernel functions are a principal

advantage to large-margin learning with SVM and MIRA, and are widely used in binary,

multiclass, and structured prediction settings outside SMT, since they allow non-linear

learning by mapping the input into a higher-dimensional space. However, to the best of

our knowledge, the use of kernels for machine translation has not yet been explored. This

200



would involve defining the right kernel to use, and how to factor it in while performing in-

ference over packed representations such as hypergraphs. In general, non-linear learning

is an area which has received little attention for SMT, although there has been a recent

resurgence in using neural networks for language and translation modeling (Son et al.,

2012; Servan and Schwenk, 2011).

7.1.4 Improved Topic Modeling

Although we showed in Chapter 5 that by inducing unsupervised domains using

topic models we could bias our translation model, the topic model we used was a stan-

dard Vanilla LDA implementation. We only modeled the source side and ignored the

relationship between the source and target languages. However, if a word is ambiguous in

the source language, we may not be able to place it in the correct topic, thereby reducing

our ability to model the document and translate it correctly. By modeling both the source

and target language, either with polylingual LDA (Mimno et al., 2009) or tree-based topic

models (Hu and Boyd-Graber, 2012), we can introduce information about the target lan-

guage and learn topics that better fit the aligned corpora. In this case, if the target topic

distribution is unambiguous, or has a better topic distribution, it can help adjust the source

documents topic distribution toward the desired context.

7.1.5 Semantic Features

Coming from a background in philosophy, we have been enchanted by the propo-

sition of semantic features since beginning this research. Alas, thus far they have had
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limited success in SMT. Semantic Role Labeling (SRL) has been gaining some traction

recently. SRL features have been used to help predict reordering (Li et al., 2013; Xiong

et al., 2012), as well as serving as a soft-constraint on production rules, in the same spirit

as soft-syntactic constraints. Work moving even further in this direction and outside of

our hierarchical model of translation is aimed at constructing semantic meaning represen-

tations of sentences, and using them to generate sentences for translations (Jones et al.,

2012). Regardless of the translation paradigm, our learning algorithms allow the introduc-

tion of expressive semantic features, allowing the progression of research in developing

such features that can aid translation.
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