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Many real-world datasets, including biological networks, the Web, and social

media, can be effectively modeled as networks or graphs, in which nodes represent

entities of interest and links mimic the interactions or relationships among them.

Such networks often contain multiple entity or relationship types, which are referred

to as heterogeneous networks. Networks also evolve due to the existence of tempo-

ral features that characterize the entities or to the temporal relationships among

them. Finding important/authoritative entities in real-world networks is a long-

standing and well-defined challenge. In this dissertation, I focus on two variants

of the problem. The first is the prediction of the ranking of scientific publications

in a future state of a citation network. I introduce a new measure labeled the fu-

ture PageRank score. I develop FutureRank, a prediction algorithm for predicting

the future PageRank scores from the historical network structure, and evaluate the

FutureRank algorithm on multiple bibliographic dataset.

Next, I focus on personalized ranking in social media. I extend a social media



dataset to include relationships (edge types) between authors, blog posts, categories

(topics) of the posts, and events (collections of posts). I then apply personalized

ranking algorithms over the historical posts and events that have been visited by a

user and use the ranking to recommend additional posts. I evaluate the personalized

recommendations through an experiment with real users, as well as an extensive

study of synthetic users whose preferences are defined based on intuitive criteria.

Finally, I present an approach for learning to rank (algorithms) applied to

heterogeneous networks. Existing methods for learning to rank are typically limited

to content-based features, while many real world problems correspond to relational

features. I develop a framework for learning to rank, which targets authority flow-

based ranking models on heterogeneous networks. I propose algorithms for both

pointwise and pairwise learning. However, this framework can easily utilize any loss

function from a non-relational learning domain. Experiments show that even with

a small amount of training data, both pointwise and pairwise algorithms perform

successfully and converge very fast. In addition, these solutions are shown to be

robust against noise.
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Chapter 1

Introduction

Many real-world problems can be effectively modeled as networks, in which

nodes represent entities of interest and links mimic the interactions or relationships

among them. Node attributes represent the properties of the entities and link at-

tributes represent the properties of the interactions or relationships. For example, a

Web graph has one node per Web page, which has properties such as the page URL,

title, content, etc. A directed link between two nodes represents a hyperlink from

the source Web page to the target Web page, which has an attribute that stores

the anchor text of the hyperlink. In a bibliographic network, there is one node per

paper and one node per author. Each paper has properties such as a title, abstract,

publication date, category labels, keywords, publication venue, etc., and each author

has properties such as a name, email, and organizational affiliation. There are bidi-

rectional links between authors and papers, as well as directed citation links from

papers to papers. An authorship link may have an integer attribute that indicates

the position of the corresponding author in the author list. Similarly, a citation

link may have an integer attribute that indicates the position of the cited paper

in the reference list, or an integer attribute that shows how many times the cited

paper is mentioned by the citing paper. Such heterogeneous networks, which have

multiple types of nodes and links, are referred to as entity-relationship networks in

the database literature.

Studying such rich data enables researchers to understand the structure of

the network and the interactions between entities. However, network analyses are

often limited to static snapshots of the network or a single type of link between

entities. As seen in the examples above, real world networks often contain multiple
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types of nodes and links. These networks also evolve due to the temporal behavior

of the entities and their relationships. For example, an author’s affiliation may

change, or she may collaborate with new people. A paper may accrue new citations

in the future. Such changes will change the network structure. Thus, limiting the

analysis to a static snapshot of single-mode networks results in the loss of a wealth of

information that could be used to develop a better understanding of the underlying

application domain.

Finding authoritative entities in networks is a common task that has been used

in a wide variety of applications. For example, in a Web graph, a hyperlink from

one page to another usually implies an “endorsement” or “recommendation.” This

is a fundamental assumption in authority flow-based ranking algorithm. PageRank

[57] and HITS [28] are two seminal authority flow-based ranking algorithms.

PageRank iteratively computes the score of a page based on the scores of its

neighbors. HITS separates the role of each web page into a hub or authority. The

hub score estimates the value of its links to other pages, and the authority score

estimates the importance of the page. PageRank and HITS have the following two

limitations: First, they were developed for homogeneous or single-mode networks.

Second, they cannot personalize authority flow. Balmin et al. [4] introduced Ob-

jectRank to overcome these limitations. ObjectRank computes authority scores for

entities in heterogeneous networks, which contain multiple types of entities and re-

lationships. It also can personalize authority flow using a weight assignment vector,

which associates a personalized authority flow weight with each edge type. The

weight of each edge determines the importance of the corresponding relationship.

ObjectRank is discussed in more detail in Section 4.2.1.

In this dissertation, I address two domain-specific ranking problems namely,

ranking predictions in evolving networks and personalized ranking in social media.

Both problems require the explicit specification of parameters/weights for Objec-
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tRank. These two solutions to the two domain specific problems motivates the third

and more general challenge of learning to rank in heterogeneous networks.

1.1 Challenges of Ranking in Evolving Networks

Answering queries in a bibliographic dataset poses some special challenges.

Users want results (papers) that score high based on relevancy, impact, and time-

liness. Information retrieval techniques are often used to retrieve the publications

that are relevant to user queries. There is also a long history of research in bib-

liometrics, which measures the impact of a publication. A popular approach to

measure the impact of a scientific article is counting the number of citations, which

measures the popularity of the articles. Alternatively, the PageRank score of an

article in a citation network can measure its authority.

Timeliness is a special challenge. Given two papers of equal impact and rel-

evance, a user may prefer the more recent paper. This is because the more recent

paper may provide insights that extend results from the dated paper and may even

provide a (citation) link to the more dated paper. Since citations occur in strict

chronological order, the dated paper would not be able to link to the more recent

paper. In addition, the number of citations to a paper is a function of time. Since

the recent paper has had less time to accrue the same number of citations as the

more dated paper, the more recent paper may be a better choice. I use the term

“impact” to refer to authority based on past citations and “usefulness” to refer to

authority based on future citations.

Suppose we consider the future PageRank score computed based only on the

citations that will be accrued in the future to determine usefulness. While this

definition of usefulness makes sense, obviously, it is also problematic, since it is

based on information that is not available at query time. It creates the need to

make predictions about future citations.
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CiteRank [68] is a key approach to predict the number of future citations of

scientific publications. It models the citation process, in which researchers start

their search from a recent paper and follow a chain of citations until satisfied. The

probability of following a citation link is proportional to the publication time of the

cited article; i.e. more recent articles are favored. CiteRank uses this random-walk

model to predict the number of future citations. It then uses the predicted number

of citations to rank the articles.

Chapter 3 presents FutureRank [60], an algorithm for predicting the number

of future citations and the future PageRank score. FutureRank is an authority flow-

based algorithm. It adopts mutual reinforcement between authors and papers, and

utilizes a personalization vector to favor the more recently published papers. By us-

ing a heterogeneous network it also can benefit from adding more types of nodes and

links into the network, such as the author affiliations and venues. FutureRank per-

forms parameter estimation through an exhaustive search on the parameter space.

The need for parameter-estimation algorithm will become more critical, as we add

more types of nodes and links. This is one of the motivations that lead to my

research in learning to rank in heterogeneous networks.

1.2 Challenges of Personalized Ranking in Social Media

Social media and the social interactions of users on the Internet have become

a vital source of breaking news, while reflecting the expertise of crowds. The im-

portance of such data has been acknowledged by Web search engines, which now

index blog sites. Such sources are of particular importance in evolving situations

such as disasters or other unplanned events. Social media is particularly important

when the most knowledgeable experts may not be known a priori, a diversity of

information is needed, information evolves over time, or the quality of information

varies. These factors increase the value of social media and social interactions as
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valuable sources of information. On the other hand, crowd-sourcing can also create

a massive stream of irrelevant and low-quality information. For instance, users of

social networking sites such as LinkedIn or Twitte may receive notifications linked

to thousands of blogs, messages, forums, etc., from other users and groups.

User behavior in social media is different from search behavior on the Web.

As discussed in [50], users submit ad hoc keyword queries to Web search engines. In

contrast, social media users may follow posts about a particular topic, or they may

follow their favorite author or an interesting event. Hence, the topics, authors, and

events that a user has liked in the past provide valuable information.

Personalization can enhance relevance and impact in social media recommen-

dations. The challenges of personalized social media ranking are as follows:

1. The lack of a rich entity-relationship graph for a social media dataset that

exploits the relationships between authors, blog posts, categories (topics) of

the posts, and events (collections of posts).

2. The need to reflect user browsing needs and to personalize the ranking output

based on their past history of retrieval.

As mentioned earlier, a major approach to personalization is based on author-

ity flow-based ranking [4, 23, 57]. There are two variants for personalization as

follows:

1. The first method uses a base set of entities of interest to the user. For example,

[57] suggests using a user’s favorite pages as the base set in PageRank, whereas

[23] proposes computing a set of PageRank topic vectors, with one for each

representative topic.

2. The second personalization method is exemplified by ObjectRank [4]. It ad-

justs the importance of various types of semantic connections. ObjectRank

models nodes as entity types and groups edges by their edge type or semantic
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type. It can personalize the ranking in heterogeneous networks by a weight

assignment vector, which associates a personalized authority flow weight with

each edge type. The weights determine the importance of each edge type in

the ranking.

Chapter 4 presents a personalized ranking algorithm based on the second ap-

proach, ObjectRank. This algorithm is then used to effectively rank blog postings in

a personalized way, by analyzing their content to discover key topics and exploiting

their explicit categorization and author information. A limitation of this solution is

that the parameters are set manually, instead of being learned from user feedback.

This, too, motivates the next challenge.

1.3 Challenges of Learning to Rank in Heterogeneous Networks

Learning-to-Rank is a type of supervised machine learning problem in which

the goal is to automatically construct a ranking model from given training data. For

example, in information retrieval, query-document pairs are usually represented by

numerical vectors called feature vectors, and a loss function associates a “cost” or

“error” between a given ranking and the ideal ranking. The ranking model is then

constructed by minimizing the error associated with the output of the model and

the given training data.

Based on the type of the training data, learning-to-rank algorithms fall into

three categories:

• Pointwise: The input(s) for this learner is one (or more) objects and their

scores. This approach reduces ranking to regression or classification on indi-

vidual documents [39, 52].

• Pairwise: The input(s) for this learner is one (or more) pairs of objects and

the partial order for each pair. This approach no longer assumes absolute rel-
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evance. It reduces ranking to classification on pairs of documents. A classifier

will classify each pair of objects to 1 if the first object is ranked lower and -1

if it is ranked higher [8, 14, 17, 18, 24, 66, 73, 74].

• Listwise: The input for this learner is a ranked list of objects. This approach

directly operates on ranked lists and directly optimizes information retrieval

evaluation measures or any other listwise loss functions [10, 70].

Existing learning-to-rank solutions focus on content-based features for ranking,

and are not applicable to networks or authority flow-based models. Learning to rank

objects based on both content information and relationships has not been extensively

explored. As a result, many network-ranking algorithms, including FutureRank and

the personalized ranking algorithm, discussed in Chapter 4, lack a framework for

learning the parameters.

Chapter 5 presents an effective framework for estimating the parameters of

authority flow-based ranking in heterogeneous networks. I first introduce a pointwise

solution for learning from absolute scores. Asking users to provide absolute score

may not always be easy, or sometimes, even possible. However, comparing two

objects and expressing the preference is much easier. I present a pairwise solution

for learning from partial preferences.

1.4 Contributions

• Ranking in Evolving Networks: I introduce a new measure I refer to

as the future PageRank score. The future PageRank score is the PageRank

score computed based only on the citations that will be accrued in the future.

I then present FutureRank, a prediction algorithm for predicting the future

PageRank score from the historical network structure. In addition to making

use of the citation network, FutureRank uses the authorship network and the

7



publication time of the article to predict future citations. Finally, I compare

FutureRank with existing approaches and show that FutureRank is accurate

and useful for finding and ranking publications.

• Personalized Ranking: I extend a social media dataset to exploit the as-

sociations between authors, blog posts, categories (topics) of the posts and

events (collections of posts). Next, I apply personalized random-walk rank-

ing algorithms. The personalization approaches are then evaluated through

an experiment with real users, as well as an extensive study of a range of

synthetic users whose preferences are defined based on intuitive criteria. The

results shows that the accuracy of my personalized recommendations ranges

from good to very good for a majority of users, and outperforms reasonable

baseline approaches.

• Learning to Rank in Heterogeneous Networks: I present a framework

to build an effective solution for estimating the parameters of an authority

flow-based model. It includes pointwise and pairwise learning algorithms:

– Pointwise: the training data include the absolute score of the training

objects.

– Pairwise: the training data include the preference for pairs of training

objects.

Finally, I evaluate the performance of these learning algorithms for learning

the parameters of FutureRank and Personalized Ranking on multiple datasets.

The results demonstrate that my framework successfully learns the parameters

of FutureRank as well as the personalized parameters for personalized ranking.

In addition, the results show that both pointwise and pairwise models can

successfully learn from as few as 10 training samples. Both models are shown

to be very robust against artificially-introduced noise in the dataset. The other
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advantage of my framework is that it allows learning-to-rank algorithms from

a non-relational domain to be utilized for learning-to-rank in heterogeneous

networks. Furthermore, it is simple to implement and converges after a few

iterations with high accuracy.

1.5 Outline

In the next chapter, the related work is reviewed. Chapter 3 presents the

FutureRank algorithm for ranking scientific articles, and Chapter 4 presents a per-

sonalized ranking algorithm for blog posts. Chapter 5 presents a framework for

learning the parameters of network-ranking models that can learn from different

types of user feedback. Finally, I conclude in Chapter 6 and discuss future work.
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Chapter 2

Related Work

This chapter reviews related research in the area of ranking objects in net-

works. I first give an overview of the preliminary work in ranking objects in net-

works. I then review personalized ranking in social media. Next, I present an

overview of related research in the area of learning to rank. Finally, related studies

of one application of ranking in heterogeneous networks–ranking scientific articles–

will be discussed.

2.1 Authority Flow-based Ranking

Finding authoritative entities in networks is a common task that has been

used in a wide variety of applications. For example, in a Web graph, a hyperlink

from one page to another usually implies an “endorsement” or “recommendation.”

This is a fundamental assumption in authority flow-based ranking algorithms. In

1998, two algorithms, PageRank [57] and HITS [28], launched the field of rankings

based on the link structure. Both algorithms propose to rank web pages based on

the link structure of the Web graph. PageRank was introduced in [57] to capture

the intuition that important pages have a large number of important pages pointing

to them. Let A denote the transition matrix which represents the authority transfer

rate from the source page of a hyperlink to the target page:

A[i, j] =


1

outdegree(j)
if there is an edge from j to i,

0 otherwise.
(2.1)

Let P be the PageRank vector to be computed over the web pages. The person-

10



alization vector P 0 (also called teleportation vector) can be used to bias PageRank to

prefer certain pages. In standard PageRank, P 0 is a uniform distribution to indicate

the equal probability of randomly jumping to any page. The PageRank vector P is

recursively defined as follows:

P = αA · P + (1− α)P 0 (2.2)

The other link-analysis-ranking algorithm, HITS [28], considers that each web

page has two roles: hub and authority. In the HITS algorithm, the first step is to

retrieve the set of results for the search query. The computation is then performed

only on this result set, not across all Web pages. The hub score estimates the value

of its links to other pages, and the authority score estimates the importance of the

page. x<p>, the non-negative authority score assigned for page p, and y<p>, the

non-negative hub score assigned for page p, are then calculated as follows:

x<p> =
∑

q:(q,p)∈E
y<q>

y<p> =
∑

q:(p,q)∈E
x<q>

In contrast to PageRank, which measures the global importance of a Web page

independent of the query, HITS ranks pages according to the query topic, which

can provide more relevant authority and hub pages. However, it is easily spammed.

Inefficiency at query time is the other disadvantage of HITS. Collecting the relevant

pages for each query, expanding it, and performing eigenvector computation are all

expensive operations.

Balmin et al. [4] introduced ObjectRank for ranking entities in entity-relation

graphs. ObjectRank models the entity sets and semantic connections among them

as a schema graph, where the authority-transfer assignment is dependent on the type
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of connections. In ObjectRank, the transition matrix A depends on the authority

transfer specified for each edge type. For a given graph G = (V,E), edge (j, i)

has type t(j, i) belonging to a set of types numbered 1, ..., T . Each type t has an

associated importance represented by βt. Thus, edge (j, i) has weight βt(j,i). The

transition matrix A is defined as follows:

A[i, j] = βt(j,i)a(j, i) (2.3)

aj,i =


1

OutDeg(j,t(j,i))
if exists (j, i)

0 otherwise.
(2.4)

where OutDeg(j, t(j, i)) is the number of outgoing edges from object j of type

t(j, i). Let P 0 represent the personalization vector. The score vector P is recursively

defined as follows:

P = αA.P + (1− α)P 0 (2.5)

While authority flow-based ranking algorithm ObjectRank has been very suc-

cessful for a wide range of problems, studies such as [35, 48, 49] show that for some

other problems other methods perform better. Minkov et al. [49] used n-grams of

edge labels as features for re-ranking the results of the authority flow-based model.

Minkov et al. [48] proposed a method that upweights authority flow paths that are

more likely to reach relevant entities in the training data. Lao et al. [35] showed that

for a range of problems called typed proximity queries in networks, a weighted com-

bination of path-constrained authority flows perform better than the generic type

of authority flow models. Instead of assigning a weight per edge type, they assign a

weight per edge type sequence: proximity is defined by a weighted combination of

simple path experts, each corresponding to following a particular sequence of edge

types.
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2.2 Personalized Ranking

Most of the existing search engines focus only on answering user queries, al-

though personalization will be more and more important as the amount of infor-

mation available on the Web increases. Some commercial search engines provide

personalization by accommodating the topics of interest, prior search history, or

other descriptions of users’ preferences.

Personalized Web Search: There is a large corpus of work on personal-

izing the results of Web searches. Solutions include using the user’s closest Web

community, relevance feedback, and navigation history [64, 65]. Recently, research

has been conducted on leveraging the tagging of pages in social networks to rank

the pages [25, 5, 26]. These methods generally create a tripartite graph of users,

tags, and pages, and apply adaptations of the PageRank algorithm. However, these

approaches cannot be directly applied to domains such as blogs and social media,

for which explicit links (hyperlinks or tag-to-user-to-page) are not available.

Kritikopoulos et al. [32] consider the Web community of a specific user to

personalize Web search results. Past interactions of the user with the search engine

are used to improve future search results. For each Web community, its neighbor-

hoods, including the documents linked to or from and documents in the community,

are determined. Query answers are ordered to reflect the number of times these

community neighborhoods have been visited. [64, 65] proposed refining search re-

sults based on users’ history, navigational history, browsing history, or query history.

Multiple data mining techniques can be applied to extract usage patterns from Web

logs [13, 63].

Personalization of Authority Flow-based Ranking: A major approach

to personalization is based on authority flow-based ranking [23, 57, 4], which uses two

methods for personalization. The first uses a base set of entities of known interest

to the user; e.g., PageRank [57] and ObjectRank [4] suggest using the user’s favorite
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pages as the base set in the personalization vector, whereas [23] proposes computing

a set of PageRank topic vectors, one for each representative topic.

The second personalization method adjusts the importance of various types of

semantic connections. As mentioned earlier, ObjectRank [4] groups edges by type

and assigns an authority-transfer rate to each type of edge. ObjectRank allows

the authority-transfer rates to be personalized for each user. The weight assignment

vector determines the importance of each type of relationship in the ranking. For ex-

ample, in Figure 2.1, 4 edge types associate BlogPost to BlogPost, etc. Eight weights

are associated to these edges, one for each direction of an edge type. Varadarajan

et al. [67] present techniques to learn the weights using relevance feedback.

Figure 2.1: Enhanced social media schema graph

2.3 Learning to Rank

The well-known network-ranking algorithms PageRank [57], HITS [28], and

many extensions, including ObjectRank [4], Co-Rank [75], and FutureRank [60], are

each defined for a specific domain or network. Applying to new domains requires

extensive tuning and adaptation. In addition, there is no universal framework for

learning the parameters of such algorithms in a new domain. For example, Ob-

jectRank is generic enough to be used for any networks with many types of nodes
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and relationships. However, the authority-flow rates, which have been shown to

dramatically affect the quality of the results, have to be set manually by a domain

expert or given by the user. Due to the complexity of network-ranking algorithms,

in which the rank of an object is correlated to the rank of its neighbors, traditional

learning algorithms are not applicable. As a result, many solutions for ranking in

networks, including FutureRank and the personalized ranking algorithm that will

be presented in this dissertation, lack a framework for learning the parameters.

Recently, a new generation of so-called Learning to Rank or Structured Predic-

tion models, has been introduced. Unlike traditional ranking models, these models

learn the ranking function from training data using one of the following approaches:

• Pointwise: The input for this learner is a single object, and the output is

the score of the object or the class label. This approach reduces ranking to

regression or classification on single documents [39, 52].

• Pairwise: The input for this learner is a pair of objects, and the output is the

partial order preference. This approach no longer assumes absolute relevance.

It reduces ranking to classification on document pairs. A classifier will classify

each pair of objects to 1 if the first object is ranked lower and -1 if it is ranked

higher [8, 14, 17, 18, 24, 66, 73, 74].

• Listwise: The input for this learner is the collection of objects, and the output

is the ranked object list. This approach directly operates on ranked lists and

directly optimizes IR evaluation measures or any other listwise loss functions

[10, 70].

These approaches are introduced for non-relational data and cannot be directly

used for networks. In this dissertation I present a framework for learning to rank

that can utilize these algorithms for ranking in heterogeneous networks.
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2.3.1 Learning to Rank in Networks

Lao et al. [36] proposed a method for learning a weighted combination of

path-constrained random walks, that is able to discover and leverage complex path

features of relational retrieval data. They also create a node for each word in the

documents and extend the network with these nodes. Finally, they use a combina-

tion of path-constrained random walkers in the extended network. Their solution is

more a retrieval algorithm for typed proximity queries in the network in which they

learn linear weighting schemes over all relation paths of bounded length l.

For a given transition matrix A, in practice, the PageRank or ObjectRank

score vector is frequently computed via power iteration, by initializing p = p0 and

iterating P = A.P until convergence. Chakrabarti et al. [11] truncate the recursion

and suggest P = AH .P 0 for modest values of H (10-50). Therefore, the problem of

learning the parameters reduces to optimizing some loss function for P = AH .P 0.

They solve this problem for a specific loss function. However, for any different

choice of loss function, they need to solve a new optimization problem. In addition,

Chakrabarti et al. [11] use a very specific authority transfer that normalizes trans-

ferred authority scores. The authority transfer from an node i to node j is specified

as follow:

C(i, j) =
β(t(i, j))∑
j′ β(t(i, j′))

However, this formula means that a node does not fairly distribute its authority

according to the neighbor types–e.g., if a paper has 10 outgoing citations and 1 au-

thor, and assuming all types have equal weight, the author will get 1/11 of authority

in this case. This is different from ObjectRank, which gives 1/2 of authority to the

author node, and the 10 papers would share the other 1/2. ObjectRank’s approach

is more intuitive. The formulation of transition matrix by Chakrabarti et al. allows

them to scale all βts by a factor and C(i, j) remains unchanged, which they use later
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in the optimization process.

2.4 Ranking Scientific Articles

Ranking scientific articles is an important and challenging problem with a long

tradition of study. One of the important early steps in this area was the work of

Garfield [19] in 1970s. He proposed a measure for ranking journals and called it the

ImpactFactor, which is calculated based on a three-year period. For example, the

impact factor of year i for a journal j is calculated as follows:

A = the number of times articles published in journal j in years i − 1 and i − 2

were cited in indexed journals during year i.

B = the number of articles, reviews, proceedings or notes published in journal j

years i− 1 and i− 2

ImpactFactor(j, i) = A/B.

Thus, the impact factor is an approximation of the average number of citations

within a year given to the set of articles in a journal published during the two

preceding years. He also applied a similar idea of counting citations to evaluate

scientists [20].

Based on this work, many different versions of impact factors have been pro-

posed [21, 29, 30, 31, 37, 38, 53, 54, 58]. However, all of these approaches count

citations. The problem with counting citations is that it measures only the pop-

ularity of articles and not the authority, which is measured by scores similar to

PageRank.

After the introduction of a revolutionary ranking model called PageRank

[57] and its application in different domains [6, 15, 22, 27, 47, 51, 55], many re-

searchers explored using PageRank on citation networks for ranking scientific arti-

cles [7, 12, 45]. The results confirmed that ImpactFactor finds the popularity while

17



the PageRank score reflects the authority.

In addition to analysis of the citation network, researchers have considered

making use of the co-authorship network as well. For example, Liu et al. [42]

applied PageRank to the co-authorship network to rank scientists. Zhou et al. [75]

used the idea of mutual reinforcement between hubs and authorities [28]. They

made use of three networks: the citation network, the co-authorship network, and

the authors’ social network. In the authors’ social network, two authors are linked if

they published a paper together or attended the same conference. Co-Rank contains

two independent random walks in the citation network and authors’ social network,

as well as a random walk on the authorship network. If at any given moment the

random walk is on the author side, then it can either make m intra-class steps or k

inter-class steps. Similarly, if it is on the document side, then it can either make n

intra-class steps or k inter-class steps:

M =

 (1− λ)(ÃT )m λDAT (ADTDAT )k

λADT (DATADT )k (1− λ)(D̃T )n



in which A denotes the adjacency matrix of authors’ social network, D denotes the

adjacency matrix of document citations, and AD denotes the adjacency matrix of

authorship network from authors to documents (DA just shows the reverse direction

of AD). Next, they concatenated the two vectors of ranks (vector a for articles and

vector d for documents) into a vector v such that v = [aT , dT ]T . Finally, by solving

v = MvT , the final scores are computed. The model provides a co-ranking of

articles and authors, and is evaluated based on the author ranking. Nie et al. also

consider articles as Web objects and collect Web information for the object [56].

They rank Web objects in terms of their popularity and relevance to the user query.

ObjectRank [4] computes an authority value for entities in the entity-relationship

graph for the DBLP database. The graph contains articles, authors, and venues.
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However, the focus of ObjectRank is on personalized ranking. It personalizes the

ranking by assigning a weight to each link, which determines the importance of the

corresponding association in the ranking.

A problem with the above approaches is that they rank articles by their prior

popularity or authority. Consequently, recently published articles will always receive

lower scores in such models. Walker et al. [68] introduced CiteRank, which uses the

publication time of the articles in a random walk to predict the number of future

citations. They then use the predicted values to rank the articles. CiteRank models

the citation process by which researchers start their search from a recent paper or

reviews and follow a chain of citations until satisfied. The probability of jumping

to an article is proportional to its publication time, which is computed as follows:

ρi = e−agei/Tdir

in which agei is the age of the i-th article. The CiteRank traffic of the paper is then

defined as follows:

−→
T = I.−→ρ + (1− α)W.−→ρ + (1− α)2W 2.−→ρ + ...

which shows the probability of encountering an article via all possible paths (W is

the adjacency matrix of the citation network). Their experiment shows that the best

correlation between the predicted citation by CiteRank and the number of future

citations is around 0.68.

2.5 Noise and Missing Data

Like other machine learning models, ranking models can suffer from noisy data

or missing data. Network datasets are often incomplete, which results in missing
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nodes and missing edges in the corresponding networks. There are many ways to

handle missing data in the non-network domain [33, 69]. The most common means

of dealing with missing data is deletion, i.e., when all instances with a missing

feature are deleted. However, a better solution is imputation, where missing data

are replaced with substitute values. A few of the well-known imputation approaches

are as follows:

• Mean imputation: In this approach any missing feature value is replaced

with the mean of that feature over all other instances. This has the benefit of

not changing the sample mean for that feature.

• Regression imputation: A regression model is estimated to predict observed

values of a feature based on other features, and that model is then used to

impute values in cases where that feature value is missing [33].

• Multiple imputation: Missing values for any feature are predicted using a

stochastic regression model (based on the existing values from other features),

where the predicted values are drawn from the posterior distribution. The

predicted values, called imputes, are substituted for the missing feature values,

resulting in a full data set called an imputed data set. However, this process is

performed multiple times producing multiple imputed data sets. Each imputed

data set is analyzed separately and the results are averaged [69].

In networks, missing data results in missing edges. The best solution for such

scenario is to use link prediction algorithms to predict the missing edges [3]. I will

discuss this issue in more detail in Chapter 5. I will explain how missing data in

networks can affect the results of an authority flow-based model and suggest some

possible solutions.
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Chapter 3

FutureRank: Ranking Scientific Articles by Predicting their Future

PageRank

A simple and popular approach to measure the quality of a scientific article

is by counting the number of citations. Unfortunately, newly published articles do

not have many citations. It is important to differentiate the popularity in the past

from usefulness, which is defined as the number of citations in the future. In other

words, usefulness is based on future popularity and authority. Future popularity is

well defined (but unobserved). I define future authority by introducing a measure I

refer to as the future PageRank score. The future PageRank score is the PageRank

score computed based only on the citations that will be accrued in the future.

While this definition of usefulness obviously makes sense, it is also problematic

in that it is based on information that is not available at the query time. Hence,

information about future citations has to be predicted.

In summary, my work makes the following contributions:

• I introduce a new measure I refer to as the future PageRank score. The future

PageRank score is the PageRank score based only on citations that will be

accrued in the future.

• I present FutureRank, a prediction algorithm for predicting the future PageR-

ank score. In addition to making use of the citation network, FutureRank

uses the authorship network and the publication time of the article to predict

future citations.

• My experiments compare FutureRank with existing approaches by using precision-

recall values and Spearman’s rank correlation.
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Figure 3.1: Average number of citations in the dataset (arXiv), which articles obtain
based on the number of years prior from publication date

The rest of this chapter is organized as follows: Section 3.1 describes Futur-

eRank, a model for ranking scientific articles. Section 3.2 presents experimental

results and evaluations. Finally, I conclude in section 3.3.

3.1 Proposed Model

In this section, I describe an algorithm for ranking scientific articles and au-

thors. The goal is to rank papers based on predicted future citations, as this will

help researchers find good articles more easily. To do this, we need a measure to

evaluate the usefulness of the articles. As mentioned earlier, one traditional mea-

sure is the popularity or number of citations, but a better measure would be the

PageRank score–i.e., the estimated authority of the article.

Figure 3.1 shows the average number of citations of an article in the following

years for the arXiv dataset, which is a collection of high-energy physics publica-

tions [1]. The figure shows that the number of citations an article receives in each

following year decreases exponentially; most citations are received after one year.

Consequently, any algorithm that does not incorporate publication date into the

ranking will not be able to capture this effect.

In addition, useful articles are often written by well-known researchers. There-
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fore, another source of valuable information is the authorship network, from which

author reputation and contribution can be extracted.

The assumptions for ranking scientific articles based on the usefulness are:

1. Useful articles are cited by many important articles.

2. Useful articles are written by researchers with high reputations, and researchers

have high reputation if they write good research articles. This illustrates the

mutual reinforcement between articles and authors.

3. Recently published articles are more useful. In other words, they are more

likely to accrue citations in the future.

4. Recently cited articles are more useful.

One might assume that these assumptions would penalize fundamental papers that

are not recent, yet are still cited by new papers. However, even these types of

papers will achieve good ranks using these assumptions. While these papers are not

recent, they still will be cited by recently published papers. Hence, assumptions 1,

3, and 4 support such papers. In an authority-transfer model, the citing papers will

propagate their score to the referenced papers, so the older papers will have high

scores because of their recent citations.

3.1.1 Network Structure

Figure 3.2 shows an example of a bibliographic network. The network has two

types of nodes, papers and authors, with two types of links: authorship links, which

are undirected links between papers and their authors, and citation links, which are

directed links from a paper to each paper that is cites. This network can be split

into two subnetworks. The first is the citation network, which only contains paper

nodes and citation links. One may use PageRank on this subnetwork to simulate
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Figure 3.2: An example of the scientific article network, which has two types of
nodes, papers (rectangles) and authors (circles), and two types of edges: authorship
edges, which are between authors and papers, and citation links, which are between
papers.

the authority transfer from articles to their references. The second subnetwork is

the authorship network, which contains both paper and author nodes, but only

contains authorship links. It is a bipartite network, in which articles are authorities

and authors are hubs. This network can simulate the mutual reinforcement between

articles and their authors using a HITS-style propagation algorithm. Figure 3.3

shows the mapping. An adjacency matrix is used to represent the network, and

ranking scores are stored in vectors. If P is the set of papers and A is the set of

authors, then matrix MC is a |P | × |P | citation matrix:

MC
j,i =


1

|citations(pi)| if pi cites pj;

0 otherwise;

For any paper pi that does not cite any article in the dataset, MC
i,j is set to 1,

for all js. In other words, there will be virtual links from dangling nodes to every

other node. Next, the authorship matrices MAP and MPA are defined as |P | × |A|
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Figure 3.3: Network decomposition: a single mode network of citations and a bi-
partite network of authorship

and |A| × |P | matrices:

MAP
j,i =


1

|papers(ai)| if ai is the author of pj;

0 otherwise;

MPA
i,j =


1

|authors(pi)| if aj is the author of pi;

0 otherwise;

3.1.2 FutureRank

Since two subnetworks share nodes, the scores of the objects in each network

cannot be computed separately. Instead, I propose a new ranking algorithm, which

I refer to as FutureRank. It operates on both networks, passing information back

and forth between networks. The ranking algorithm is an iterative algorithm that

runs one step of PageRank and one step of HITS, then combines the results. It then

repeats these steps until convergence. Let RP denote the vector of paper scores, and
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RA denote the vector of author ranks. Author scores are then computed as follows:

RA = MPA.RP

This computes the hub scores in the authorship network. Articles transfer their

authority score to their authors, and authors collect the authority score of all of

their publications. However, article scores are computed as follows:

RP = αMC .RP

+ βMAP .RA

+ γRT ime.

This formula is a linear combination of three factors:

• MC ∗RP is the authority scores coming from the citation network,

• MAP T ∗RA is the authority scores coming from the authorship network,

• and RT ime is a “personalized” PageRank vector. In the original PageRank

model, the personalized vector is a pre-computed score vector to favor the

user’s preferences. The default value for all nodes is 1
n
, where n is the number

of nodes in the network. In FutureRank, the values in the personalized vector

are pre-computed based on the publication time of the papers. FutureRank

favors the papers that has been published recently:

RT ime
i = e−ρ∗(Tcurrent−Ti)

where Tcurrent is the current time or the query time, and Ti is the publication

time of pi. Tcurrent − Ti shows the age of pi.
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The initial value of RP
i is 1

|P | and similarly the initial value of RA
i is 1

|A| . This

initialization keeps the sum of paper ranks equal to 1, as well as the sum of author

ranks. This property will also hold after each iteration, since the computation

performs an authority propagation and the sum of the weights, α+β+γ+ (1−α−

β − γ), is equal to one.

3.2 Evaluation

This section demonstrates the performance of FutureRank (several variants)

on a collection of scientific papers. Several performance criteria are used to compare

FutureRank with state-of-the-art algorithms. I conclude with a discussion of running

time and convergence.

3.2.1 Dataset

The evaluation is performed on two real datasets of scientific articles, the arXiv

(hep-th) dataset [1] and the DBLP dataset. The arXiv dataset contains articles

published on high-energy physics from 1993 to 2003. It contains approximately

28,000 articles, 15,000 authors, and 350,000 citations. The DBLP dataset contains

computer science articles published from 1993 to 2003. It contains approximately

21,000 articles, 16,000 authors, and 100,000 citations. I extracted authors from the

description file for each article. Two authors are considered identical only if their full

names match. This is a strong matching criterion and misses many partial matches.

More sophisticated author name resolution strategies have the potential to improve

performance. Citations to articles outside the dataset were removed.
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Figure 3.4: Hypothetical figure of entire dataset, in which horizontal lines show the
timeline and links show the citations: (a) the full dataset; the horizontal line shows
the timeline and links show the citations of articles by later articles; (b) the query
data, which only contain links originating before 2001; and (c) the evaluation data,
which only contain links originating after 2001.

3.2.2 Evaluation Setup

The dataset is split into two sets: The first set, historical data, contains all

papers published before 2001, and the second set, future data, contains papers

published in or after 2001. The first set is then used as training data for predictions,

and the second set is used as the gold standard for the evaluations.

To construct the evaluation, one may view the system from the standpoint of

a user in 2001 who is searching for research papers. At this point, the only available

information is the information in the first set. As the definition of usefulness, the

most useful paper for that user is the paper that will obtain the highest future

PageRank, e.g., the highest number of citations after 2001. The future PageRank

is computed as the PageRank scores of articles based only on citations in and after

2001. To do this, a new network of all papers from 1993 to 2003 is created. However,

the edges are restricted to citations that originate from articles published in and after

2001.

To illustrate the setup, figure 3.4(a) shows a hypothetical figure of a full
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dataset. The horizontal line in the figure shows the timeline, and links show the

citations. Dashed links show future citations, which are available only in the eval-

uation data. The historical and evaluation sets are also shown separately in Figure

3.4(b) and 3.4(c), respectively.

Gold-standard scores are computed as the PageRank score on the evaluation

network. It is called future PageRank because it is a PageRank score that is com-

puted on the future network. The goal of FutureRank is to predict future PageRank

by using historical data.

Recall the personalized vector RT ime that was introduced in section 3.1.2. To

find the best value of ρ in RT ime for the arXiv dataset, I found the best exponential

curve that fits Figure 3.1. Ignoring the data for #years= 0, the best curve is:

c ∗ e−0.62∗x

This value is exactly the same as that reported by [68] (for the arXiv dataset), in

which Tdir = 1.6 = 1
0.62

is the best value. The authors of [68] ran CiteRank for all

possible values of Tdir and found Tdir = 1.6 years as the best value. While both

obtained the same value, I found the best value by curve fitting and without using

the evaluation data. In CiteRank, the authors ran the model for all possible values

and needed test data to find the values that provided the best precision. I performed

the same curve fitting for the DBLP dataset and obtained ρ = 0.20 as the best value

for the DBLP dataset.

3.2.3 Ranking: Evaluation and Approaches

I use two approaches for evaluating the FutureRank algorithm:

• Precision and recall

• Spearman’s rank correlation between the ranking output of FutureRank and
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future PageRank.

The following variations of FutureRank are considered in this evaluation:

• FutureRank: The FutureRank model uses all available information (author-

ship, citation networks, and publication time):

RP = α ∗MC ∗RC

+ β ∗MAT ∗RA

+ γ ∗RT ime

+ (1− α + β + γ) ∗ [1/n]

RA = MA ∗RP

• FutureRank(CT): a variant of FutureRank that only uses citation network

and publication time, but does not use the authorship network (β = 0).

RP = α ∗MC ∗RC

+ γ ∗RT ime

+ (1− α− γ) ∗ [1/n]

RA = MA ∗RP

The information used in this model is similar to the information CiteRank [68]

uses. Neither uses the authorship network.

• FutureRank(CA): a variant of FutureRank that only uses citation and au-
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thorship networks (γ = 0).

RP = α ∗MC ∗RC

+ β ∗MAT ∗RA

+ (1− α− β) ∗ [1/n]

RA = MA ∗RP .

This model does not use the publication time of the articles, which is similar

to CoRank [75].

• PageRank: This is the traditional PageRank model for α = 0.9 and a random

jump with probability of 0.1 (α = .9, β = 0, and γ = 0).

RP = α ∗MC ∗RC

+ (1− α) ∗ [1/n]

RA = MA ∗RP

3.2.4 Evaluation Metrics

There are several metrics which are commonly used to judge how well an

ranking algorithm performs [46]:

• Set-based metrics: Precision, recall, and F measure are set-based measures

that are often used to compare two ranked lists. They are computed using

unordered sets of top k documents. Precision is the fraction of top k retrieved

documents that are relevant, while recall is the fraction of top k relevant

documents that are retrieved. In simple terms, high precision means that an

31



algorithm returned substantially more relevant results than irrelevant results,

while high recall means that an algorithm returned most of the relevant results.

A single measure that trades off precision versus recall is the F-measure; it

is the weighted harmonic mean of precision and recall. In recent years, other

measures have become more common. A popular measure among the TREC

community is Mean Average Precision (MAP), which provides a single-figure

measure of quality across recall levels. Among evaluation measures, MAP has

been shown to have especially good discrimination and stability.

• Rank-based metrics: Unlike the precision and recall, the Spearman’s rank

correlation coefficient ρ considers the order of the results as follows:

ρ = 1− 6
∑

(ri − gi)2

n(n2 − 1)

where ri is the predicted rank of document i, and gi is the rank of document i

in the gold standard. It uses a quadratic loss function (on the ranking position)

normalized by the size of the input lists. It measures the strength of the linear

relationship between two ranked lists. The coefficient can range between -1

and 1. The sign of the Spearman’s correlation indicates the direction of the

association between the two given ranked lists.

Kendall’s τ is another measure for the evaluation of ranked retrieval results as

follows:

τ =
#concordant pairs−#discordant pairs

n(n−1)
2

where concordant pairs represents the pairs that are in the correct order and

discordant pairs represents the pairs that are in the wrong order. In most

cases, Kendall’s τ and Spearman’s ρ values are very similar. However, they

represent different interpretations. Spearman’s ρ accounts for the variability

across two ranked list, whereas Kendall’s τ represents a probability, i.e., the
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difference between the probability that the observed data are in the same order

versus the probability that the observed data are not in the same order.

The output of FutureRank is a ranked list that has to be compared with the

gold standard ranking. I pick the top k = 50 papers returned by future PageRank as

the (relevant) gold-standard set. The precision of each algorithm is then computed

as follows:

Precision =
|FutureRanktop50 ∩ Future PageRanktop50|

50

Since I picked the same k for the number of retrieved results and the number of

relevant documents, precision and recall are always equal. Hence, I only the precision

for varying ks as well as the precision-recall curve for top k = 50 gold standard

results. In addition, I will report the Spearman’s ρ for the entire output lists (not

just the top k) to compare the output of FutureRank with the related work. The

reason for choosing Spearman’s ρ was that most other methods reported this value.

A nice property of both precision and Spearman’s ρ is that they only consider

the rank of documents (not the absolute scores that led to the ranking). Score

changes that do not lead to reordering have no effect on the value of the precision

or Spearman’s correlation coefficient. The rationale for using ranking positions

for evaluation is that the goal is the rank and not the score. In the context of

FutureRank, most papers will obtain only a few citations in their life time; hence,

we determine precision over the top k results.

3.2.5 Parameter Estimation

I first investigate the performance sensitivity of FutureRank to its parameters

(citation [α], author [β] and publication time information [γ]). Figure 3.5 shows the

precision of FutureRank for different values of α, β, and γ for the arXiv dataset (I

33



Figure 3.5: The precision of FutureRank for different configurations of the parame-
ters α, β, and γ on the arXiv dataset. At any point in the figure, the value of β is
equal to 1−α−γ. Similar analyses on the DBLP dataset resulted in a near-identical
figure.

obtained a very similar graph for the DBLP dataset as well). The x-axis shows the

value of γ and the vertical axis shows the value of α. Since α+β+γ is always equal

to 1 at any point in the heatmap, the value of β is 1− α− γ (the top right triangle

of the map is empty, because the sum of α, β, and γ cannot be more than 1). The

lighter the color in the heatmap, the higher the precision.

Figure 3.5 shows all possible configurations of FutureRank. For example, the

accuracies shown on each edge of the heatmap triangle show the combination of

using only two types of information. All values on the horizontal edge are obtained

for γ = 0, which means that the horizontal edge shows all possible configurations of

FutureRank(CA),while the hypotenuse shows all possible configurations of Futur-

eRank(CT). Each corner also shows the precision of FutureRank, which only uses

one type of information (one of α, β, and γ is equal to 1 and the other two are zero).

The nice observation is that the space has a single optimal region, rather than a

more complex collection of optimal configurations.

The highest precision of FutureRank is obtained at α = 0.19, β = 0.02 and

γ = 0.79. However, one should be careful when interpreting these values. This
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combination of values does not mean that the effect of time RT ime is three times

more important than the citation. This happens because the scores of the different

types of objects have different scales. While all scores are between 0 and 1, the sum

of scores in each vector RP , RA, and Rtime must sum to 1 individually. Hence, the

range of scores in the different vectors can be very different. For example, the sum

of author scores should be 1–as well as the sum of papers scores–but there are about

twice as many papers as authors. This means that the average score for papers will

be less than the average score for authors.

3.2.6 Further Comparison of Proposed Algorithms

This section shows the effectiveness of FutureRank in more detail. Figure 3.6

shows the precision-recall curves of four models:

1. FutureRank: The best curve is obtained by α = 0.19, β = 0.02, and γ = 0.79.

2. FutureRank(CT): The best curve is obtained by α = 0.2,β = 0, and γ = 0.8.

3. FutureRank(CA): The best curve is obtained by α = 0.2, β = 0.8, and

γ = 0.

4. PageRank

As shown in Figure 3.6, the top 25% of the FutureRank output are correct,

which means that the precision is 100%. While this figure shows that FutureRank

has a better performance on the arXiv dataset, note that for both arXiv dataset

and DBLP dataset, FutureRank significantly outperforms the other baseline algo-

rithms PageRank and FutureRank(CA). FutureRank(CA) uses the same features

that CoRank [75] uses for ranking authors.

Figure 3.7 shows the precision of FutureRank for varying k.

Consider the following four categories:
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Figure 3.6: Precision-recall based on precision in the top 50 results.

• High→High (True Positive): This category represents the papers that are

among the top k results based on the number of citations they acquired in the

past. They are also among the top k results based on the number of future

citations. The papers in this category are true positives.

• Low→High (True Positive): This category represents the papers that are

not among the top k results based on the number of citations that they ac-

quired in the past, but they are among the top k results based on the number

of future citations. The papers in this category are true positives.

• High→Low (False Positive): This category represents the papers that are
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Figure 3.7: Precision of the top k results of FutureRank compared to the top k
results of future PageRank
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among the top k results based on the number of citations they acquired in the

past, but they are not among the top k results based on the number of future

citations. The papers in this category are false positives.

• Low→Low (False Positive): This category represents the papers that are

neither among the top k results based on the number of citations they ac-

quired in the past, nor among the top k results based on the number of future

citations. The papers in this category are false positives.

Figure 3.8 shows the percentage of the papers from each category that were among

the top k output of FutureRank. This figure shows that FutureRank successfully

predicted almost all of the papers from the High→High category and more than 40%

of the papers from the Low→High category for the arXiv dataset. FutureRank also

makes accurate prediction for the category Low→Low. Finally, the least accurate

predictions are for the category High→Low. This is as expected as FutureRank has

no knowledge to identify such papers. FutureRank performs better on the arXiv

dataset compared to the DBLP dataset.

The authors of CiteRank [68] do not report precision/recall numbers, but

they computed the correlation coefficient between the number of citations in the

evaluation set (in the future) and the citation traffic estimation by CiteRank. They

run their experiments on the arXive dataset. The best correlation between the

predicted citation by CiteRank and the number of future citations for the arXiv

dataset was around 0.68, while the correlation between the FutureRank score and

the future PageRank score was 0.83. This is encouraging, but these correlation

values are not comparable since they are correlations of two different measures.

Hence, instead of comparing the correlations between scores, I chose the Spear-

man’s rank correlation. The CiteRank article showed the highest Spearman’s rank

correlation between the CiteRank ranking and the ranking by the number of cita-

tions in the future was 0.57, while the highest correlation between FutureRank and
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Figure 3.8: Percentage of the papers from each category that are among the top k
output of FutureRank.
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Figure 3.9: Correlation between ranking on the validation data and the results of
CiteRank and FutureRank

the ranking by the number of citations in the future was 0.74 (the publication date

is used as a tie-breaker if two articles have the same number of citations). This is a

significant improvement. I also computed the correlation between the FutureRank

ranking and the ranking by the future PageRank, which is a more desirable measure.

The obtained correlation is 0.59, which is still more than the correlation obtained

by CiteRank for the simpler measure of the number of future citations.

The parameters of the models shown in Figure 3.9 are as follows:

1. FutureRank: The best correlation is obtained by α = 0.4, β = 0.1, and

γ = 0.5

2. FutureRank(CT): The best correlation is obtained by α = 0.5, β = 0, and

γ = 0.5.

3. FutureRank(CA): The best correlation is obtained by α = 0.65, β = 0.35,

and γ = 0.

For the arXiv dataset, the highest correlation between FutureRank(CA) and the

number of future citations is 0.34, which is consistent with its precision-recall curve.

This shows the importance of publication time, which is ignored by methods such as

CoRank. Furthermore, the highest correlation between the number of citations and

40



FutureRank(CT), which uses the same information as CiteRank, is 0.62. This also

shows that in terms of precision and recall, FutureRank will significantly outperform

CiteRank, although the precision-recall curve of CiteRank was not available for

comparison. Figure 3.6 shows that the precision-recall curves of FutureRank(CT)

and FutureRank are very similar and cross each other several times. Although the

top results of both configurations are very similar, the correlations obtained for

FutureRank are slightly better than those for FutureRank(CT).

The top 20 results for FutureRank within PageRank and FutureRank(CA) are

shown in Table3.1. FutureRank, future PageRank (gold standard), the number of

citations that papers obtained before 2001 (historical data), the number of citations

that papers would obtain in and after 2001 (the future data that was not available

to the FutureRank), and the publication dates are shown in Table 3.1. Since the

top results for FutureRank and FutureRank(CT) are almost identical, results of

FutureRank(CT) are not shown in Table 3.1.

In Table3.1, article 9906064, “An Alternative to Compactification,” has only

414 citations before 2001. It received a good rank (3) by FutureRank. This paper

was published in 1999, and obtained the 414 citations in less than two years. This

suggests that the paper will receive many citations in the future and was a very

useful paper at the query time (in 2001). Both the number of citations (617) the

paper received after 2001 and the fact that it attained the second position in the

ranking by future PageRank confirm the accuracy of FutureRank.
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Table 3.1: Top 20 articles retrieved by FutureRank that were published before 2001
(arXiv dataset)
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9711200 The Large N Limit of Superconfor-
mal Field Theories and Supergrav-
ity

11/28/1997 1540 874 10 3 1 1

9802150 Anti De Sitter Space And Hologra-
phy

2/23/1998 1137 638 28 6 2 4

9906064 An Alternative to Compactification 6/9/1999 414 617 92 129 3 2
9802109 Gauge Theory Correlators from

Non-Critical String Theory
2/17/1998 1054 587 37 8 4 5

9908142 String Theory and Noncommuta-
tive Geometry

8/23/1999 471 673 131 26 5 3

9407087 Monopole Condensation 7/19/1994 1082 217 1 1 6 10
9610043 M Theory As A Matrix Model: A

Conjecture
10/8/1996 922 277 14 7 7 8

9510017 Dirichlet-Branes and Ramond-
Ramond Charges

10/5/1995 937 218 4 5 8 14

9711162 Noncommutative Geometry and
Matrix Theory: Compactification
on Tori

11/21/1997 449 339 106 91 9 7

9905111 Large N Field Theories 5/17/1999 352 455 174 80 10 6
9503124 String Theory Dynamics In Various

Dimensions
3/21/1995 981 133 2 4 11 46

9408099 Monopoles 8/19/1994 856 150 6 2 12 25
9510135 Bound States Of Strings And p-

Branes
10/19/1995 675 100 13 9 13 77

9510209 Heterotic and Type I String Dy-
namics from Eleven Dimensions

10/30/1995 546 242 40 18 14 9

9611050 TASI Lectures on D-Branes 11/11/1996 594 107 76 23 15 29
9409089 The World as a Hologram 9/20/1994 266 161 95 31 16 15
9711165 D-branes and the Noncommutative

Torus
11/24/1997 297 159 211 108 17 33

9204099 The Black Hole in Three Dimen-
sional Space Time

5/8/1992 291 89 69 37 18 62

9410167 Unity of Superstring Dualities 10/25/1994 672 76 5 12 19 94
9603142 Eleven-Dimensional Supergravity

on a Manifold with Boundary
3/22/1996 314 180 167 70 20 17

42



Finally, the top 20 authors retrieved by FutureRank and the number of their

publications are listed in Table 3.2.

3.2.7 Running Time and Convergence

The convergence of FutureRank is measured as if the score difference between

two consecutive iterations is less than some threshold minDifference. The score

difference of two consecutive iterations is computed as follows:

Difference =
∑
pj∈P

(RP
j

i −RP
j

i−1
)2

+
∑
aj∈A

(RA
j

i −RA
j

i−1
)2

While the convergence rate was different for different parameter sets, the model

converges very fast in most cases. Figure 3.10 shows the difference between the

scores computed in two consecutive steps. FutureRank and FutureRank(CT) have

very similar behavior and, apparently, both of them converge much faster than

FutureRank(CA).

Figure 3.11 shows the precision of the top 50 results. It shows that each model

converges after three or four iterations, while the results reported for CiteRank were

obtained after 20 iterations. Hence, in addition to better precision and correlations,

FutureRank converges in many fewer iterations than CiteRank.

3.3 Discussion

This chapter presented the FutureRank algorithm, which is able to combine

information about citations, authors, and publication time to effectively predict the

future PageRank of a paper. While the impact of a paper at any time can be

measured by the number of current citations, the number of the citations that a
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Table 3.2: Top 20 authors retrieved by FutureRank and the number of their articles
in the dataset

Rank Name # of Publications

1 Edward Witten 100

2 Ashoke Sen 89

3 A.A. Tseytlin 111

4 Zurab Kakushadze 63

5 Joseph Polchinski 47

6 Juan M. Maldacena 21

7 Donam Youm 55

8 Nathan Seiberg 45

9 Cumrun Vafa 78

10 John H. Schwarz 47

11 Michael R. Douglas 52

12 Andrew Strominger 65

13 Nathan Berkovits 59

14 P.K. Townsend 56

15 Sergei V. Ketov 51

16 Miao Li 52

17 C.N. Pope 129

18 Shinichi Nojiri 94

19 N. Seiberg 23

20 Ichiro Oda 37
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Figure 3.10: Score convergence. The vertical axis shows the difference between the
score values in two consecutive steps, so zero difference reflects the convergence

Figure 3.11: Precision of top 50 results after each iteration

paper will obtain in the future measures how useful the paper is at the query time.

This makes the future PageRank a better measure for retrieving articles that will

help researchers find the most relevant articles. Experimental results showed that

FutureRank is a significant improvement over other recently proposed algorithms.

Also, the precision-recall curve shows that FutureRank(CT), which only uses the

publication time of the article and the current citations, significantly outperforms the

traditional PageRank, which uses only the current citations. FutureRank obtained

a much higher correlation score, in addition to faster model convergence. It also

learned the decay-factor parameter from the data, while CiteRank had to perform

an exhaustive search.
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The ranking model introduced in this chapter was designed for a particular

application: predicting future PageRank. In Chapter 5, I present a learning-to-rank

algorithm that can learn ranking models such as FutureRank. It can also be trained

on user feedback and is powerful enough to learn any authority flow-based ranking

function in heterogeneous networks.
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Chapter 4

Personalized Ranking in Social Media

A major approach to personalization is based on authority flow-based ranking

[23, 57, 4]. There are two approaches to personalization in authority flow-based

ranking. The first method uses a base set of entities of known interest to the user;

e.g., [57] suggests using a user’s favorite pages as the base set in PageRank, whereas

[23] proposes computing a set of PageRank topic vectors, one for each representative

topic. The second personalization method, such as ObjectRank [4], adjusts the

importance of various types of semantic connections. ObjectRank models nodes as

entity types and groups edges by their edge type or semantic type. It can personalize

ranking in heterogeneous networks by a weight assignment vector, which associates

a personalized authority-flow weight with each edge type. The weight of each edge

determines the importance of the corresponding relationship.

This chapter presents a personalized ranking algorithm for a blog dataset,

which is based on the second approach, ObjectRank. This chapter has several

objectives. First, a blog dataset must be enhanced with additional nodes, e.g.,

authors, events, etc., and corresponding edges in order to apply ObjectRank. This

leads to a form of entity-relationship graph, which conforms to an entity-relationship

schema. For example, an entity-relationship schema to facilitate authority flow

ranking includes four entity types–BlogPost, Author, Category (explicit topic of a

post), and Event (discovered collection of posts)–as well as the corresponding edge

types, as shown in Figure 4.1. As mentioned above, while some entity types are

easily identified in social media, e.g., author and category, other entity types such

as Event must be generated, as will be discussed.

The second objective is to develop a suite of authority flow-based personalized
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ranking techniques. The list of personalization techniques developed in this study

are as follows:

• pPR: Personalized PageRank (pPR) on a restricted graph that has one entity

type BlogPost and a reflexive edge from BlogPost to BlogPost, where an edge

denotes the text similarity of two BlogPosts. Personalization for pPR is rep-

resented by a personalized base set of BlogPost entries, where the base set is

defined as the set of nodes of a graph from which the authority flow originates.

• pOR: ObjectRank (OR) [4] is an authority flow-based ranking technique for

entity-relationship data graphs. A key difference between ObjectRank and

PageRank is that in ObjectRank, different edge types (e.g., BlogPost-to-

Author) carry different amounts of authority flow. In contrast to the single-

node-type graph of pPR, the richer entity-relationship schema graph of Figure

4.1 is used in pOR. OR is associated with a Weight Authority Vector, which

associates a personalized authority flow weight with each edge type. pOR uses

a default value of equal authority flow for each edge type.

• pOR+: The weight for each edge type is customized based on user profile.

For instance, users who typically pick blogs based on the author have a high

BlogPost-to-Author weight. Clearly, pOR+ offers more flexibility and cus-

tomization than pPR and pOR, and, as will be shown, achieves the best per-

sonalized ranking.

• pIR: This is an extension of the Apache Lucene [44] text-search engine, in

which text-similarity algorithms are employed. pIR is a baseline for compari-

son. pIR achieves personalization using a user-specified set of BlogPosts, the

personalized base set. The favorite words for each user are extracted from the

base set documents.
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The next objective is to study the accuracy of personalized recommendations,

for which a subset of the Spinn3r dataset [9]. A human-subject study, as well as

an experiment with various types of synthetic users, is performed to measure the

effectiveness of these algorithms. Each synthetic user has a profile represented by a

personalized ranking of his daily favorite BlogPost entries. In particular, synthetic

users who follow the posts of a set of bloggers (Author Users), the posts of a set of

categories (Category Users), the posts related to a set of keywords (Keyword Users),

or the posts related to a set of events (Event Users) are considered.

Results show that pOR can provide accurate personalization for the majority

of real and synthetic users. The F1-score, which combines the precision and recall

measures, is used to compare the effectiveness of the various ranking techniques.

The performance of pOR+ for different types of synthetic users is examined, as well

as, the robustness of pOR and pOR+ ranking across many parameters that configure

the synthetic users.

In recognition that real-user behavior may be more sophisticated than that

of synthetic users, an evaluation with real users is performed. In this experiment,

both pIR and pPR are used as the baseline algorithms and are compared with pOR,

which shows superior performance. Despite the difficulty in constructing a profile for

real users, result shows that pOR (even with non-personalized weights) can provide

high-quality personalized recommendations for real users.

In summary, this chapter makes the following contributions:

• The social media dataset is enhanced with additional nodes and edges in or-

der to apply ObjectRank. A new event discovery algorithm that is efficient

for social media data is introduced. Further, a massively parallel document

similarity technique, using the MapReduce paradigm, is exploited to measure

the similarity between BlogPosts (Section 4.1).

• A suite of novel and baseline ranking techniques is presented for the person-
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alized recommendation of BlogPosts (Section 4.2).

• Effectiveness of the proposed ranking techniques is evaluated using both real

and synthetic users. Results demonstrate that pPR and pOR can significantly

outperform the baseline pIR for real users. Further, pOR outperforms pPR,

and pOR+ outperforms all variants1 (Section 4.3).

Figure 4.1: Enhanced Social Media Schema Graph

4.1 Enriching Social Media Dataset

The dataset provided by Spinn3r.com contains 44 million blog posts made

between August 1 and October 1 2008 [9]. The post includes both text and meta-

data such as the blog’s homepage, timestamp, etc. Data are formatted in XML

and further arranged into tiers approximating search-engine ranking. I first discuss

enriching the social media schema graph and dataset preparation and then briefly

summarize document-similarity computation and event identification.

1Due to the complexity of finding the best personalized weights for real users, pOR+ was not
considered in the real-user study. This will be addressed in Chapter 5.

50



4.1.1 Schema Graph for Personalized PR (pPR) and ObjectRank

(pOR)

A shortcoming of social media is the lack of a rich hypergraph to determine

the importance of pages. In this study, following the example of projects on ranking

collections of documents that are unconnected by hyperlinks, the pairwise document

similarity between two BlogPosts is computed first and inserted as a bidirectional

link between two documents, as seen in Figure 4.1; the label doc-sim-weight reflects

the document-similarity value for each link.

Next, an entity-relationship schema with four entity types, BlogPost, Author,

Category (topic of the post), and Event, is utilized to reflect authority flow. Fig-

ure 4.1 shows the schema. The concepts of BlogPost, Author, and Category are

intuitive, and these nodes are easily identified in social media datasets. The concept

of an Event and the process used to identify event nodes will be discussed in the

next section. Also, links represent the associations between BlogPost and Category,

BlogPost and Author, and BlogPost and Event, with the reflexive edge from BlogPost

to BlogPost representing document similarity.

4.1.2 Data Graph

A 31-day subset of the data (August 2008) is used to create data graphs for

both training and testing. After removing non-English posts and posts without

Author or Category information, the subset contains approximately 800,000 posts.

To create a data graph that is appropriate for personalized ranking, more

filtering is applied so that the distribution of posts per author, posts per category,

or categories per post reflect a non-sparse and normalized distribution. Furthermore,

a sufficient amount of data is needed for training and testing. For example, for a

synthetic user who is following a particular author, the author nodes in the dataset
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will be restricted to authors who have more than H posts. Note that many posts are

not labeled with category labels. In addition, category labels can be inconsistent

and sparse, since category labels are chosen arbitrarily by authors. Hence, some

category labels are only used by one author or a few authors.

The following procedure is used to create a data graph for personalization:

1. Identify frequent categories as categories that contain more than 50 posts.

2. Identify frequent authors as authors who have at least 10 posts from the fre-

quent categories.

3. Select the posts written by the frequent authors that are associated with the

frequent categories.

The final dataset comprises a data graph of

• 248908 nodes, including:

– 137047 BlogPosts,

– 2210 frequent Authors,

– and 109651 frequent Categories,

• and 1528514 edges, including:

– 137047 Author BlogPost edges,

– 794005 Category BlogPost edges,

– 15270 Event BlogPost edges,

– and 582192 BlogPost BlogPost edges.

4.1.3 Computing Document Similarity for BlogPosts

Document similarity has been used for many Web search applications, includ-

ing ranking and crawling [34, 59]. Computing pairwise document similarity between
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all pairs of BlogPosts is an expensive step in enhancing the entity-relationship data

graph. In this work, the cosine similarity between pairs of documents is used as

doc-sim-weight value of the link between the corresponding documents. The im-

plementation uses the MapReduce/Hadoop cloud computing framework [16, 41].

The MapReduce paradigm performs a parallel computation over a large number of

records to obtain partial results, which are then aggregated. Based on functional

programming, MapReduce provides an abstraction, in which the programmer defines

a mapper and a reducer. Hadoop [41] provides a distributed computing platform to

evaluate a Map/Reduce program.

Recall that the evaluation dataset included more than 100000 posts. Including

pairwise document similarity edges between each pair of posts would make the graph

very large, and result in a very expensive ranking computation without necessarily

improving the accuracy of the personalized recommendation. Hence, for each post,

BlogPost BlogPost edges are limited to the 5 most similar posts.

4.1.4 Identification of Events

Social media activity is often triggered or clustered around an event or topic;

loosely, an event or topic is a specific occurrence at a specific time and/or in a specific

place. When posts are clustered around an event, users may also be interested in

following those posts related to the event or topic of interest.

Many successful topic detection and tracking (TDT) approaches have been

studied in the literature [2, 40, 71]. TDT approaches have typically used clustering

algorithms, in which documents are treated as database records and words as fea-

tures. Next, variations of TF/IDF are used to compute feature values, and cosine

similarity is used as a similarity (or distance) measure. The next generation of

event detection approaches recognizes that a core group of words will be common

to the documents related to an event. In fact, the existence of such words for each
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Figure 4.2: An example of KeyGraph

topic makes the content of related documents similar to each other, as measured

by variations of TF/IDF. Hence, such keywords are important features for topic or

event detection. More importantly, they can scale to handle large noisy social media

data collections.

KeyGraph, a graph analytical approach that was designed for large-scale social

media datasets, was used to extract the events from the evaluation dataset. The

extracted events/topics were then used to enhance the social media schema graph.

Details of the approach are in [61, 62]. The algorithm includes the following steps:

1. Construct a word co-occurrence graph, labeled a KeyGraph (see Figure 4.2).

2. Perform community structure analysis of the KeyGraph to decompose into

multiple communities.
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3. Create an event corresponding to each community.

4. Cluster documents using the KeyGraph communities.

KeyGraph identified multiple communities in the KeyGraph of Figure 4.2. I

briefly describe an example of an event identified in the experimental dataset: the

cyclone in Myanmar in 2008. The event is identified by the following constellation

of keywords, cyclone, Myanmar, foreign aid workers, Burma, ban, etc. Fourteen

key events identified in this dataset were evaluated using 3 human evaluators (via

Amazon’s Mechanical Turk). When averaged across all events and all evaluations,

72% of the posts were identified as very relevant or relevant to the assigned event.

Further, 25% of the posts were also judged to be somewhat relevant by evaluators,

and only 3% of posts were judged to be not relevant. Thus, enhancement of the

blog dataset using events is expected to yield a high-quality enhanced dataset.

4.2 Personalized Authority Flow-based Ranking

Personalization of Authority Flow-based Ranking: Two approaches to

personalization are used in authority flow-based ranking. The first method considers

a set of preferred objects or topics. Personalization with a base set involves selecting

user specific objects as the source of the authority in the data graph. [57] suggests

using a user’s favorite pages as the base set in PageRank, whereas [23] proposes

computing a set of PageRank topic vectors, with one for each representative topic.

4.2.1 Authority Flow-based Ranking: The ObjectRank Algorithm

The second personalization method adjusts the importance of various types of

semantic connections. ObjectRank [4] personalizes ranking in Entity-Relationship

graphs; it models nodes as entity types and groups edges by their edge type or

semantic type. Then, the authority flow is personalized by a weight assignment
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vector. The weights determine the importance of each type of association in the

ranking. For example, in Figure 4.1, there are 4 edge types associating BlogPost to

BlogPost, to Author, etc. Bidirectional edges have two associated weights, one for

each direction. Varadarajan et al. [67] present techniques to learn the weights using

relevance feedback.

The transition matrix AOR of ObjectRank depends on the authority trans-

fer weights specified on the schema graph; however, AOR is defined at the level

of the data graph. To demonstrate the relationship of the ObjectRank transi-

tion matrix and the PageRank transition matrix, without loss of generality, one

may assume that objects of the same type are grouped together. Consider an

authority transfer schema graph with t types. The weight assignment vector =

{α1,1, α1,2, ..., α1,t, α2,1, α2,2, ..., α2,t, ..., αt,1, αt,2, ..., αt,t} represents the authority trans-

fer weights. AOR contains t× t submatrices. Each submatrix entry of the transition

matrix AOR is multiplied by the authority transfer weight for the corresponding

semantic edge type. AOR can be expressed as follows:

AOR =



α1,1A1,1 α1,2A1,2 · · · α1,tA1,t

α2,1A2,1 α2,2A2,2 · · · α2,tA2,t

...
...

...

αt,1At,1 αt,2At,2 · · · αt,tAt,t


(4.1)

The submatrix Ap,q contains authority transfer probabilities from objects of

type p to objects of type q. Let eT (vi, vj) be the semantic type of edge (vi, vj)

in the data graph. Let α(eT (vi, vj)) denote the weight assignment for eT (vi, vj).

OutDeg(vi, e
T (vi, vj)) is the number of outgoing edges from page vi, of type eT (vi, vj).

The submatrix Ap,q is defined as follows:
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Ap,q[i, j] =


1

OutDeg(vi,eT (vi,vj))
if exists (v1,vj)

0 otherwise.
(4.2)

Let P represent a personalized baseset at the level of the data graph. Let ATOR

denote the transposition of AOR. The ObjectRank vector R is recursively defined

as follows in Equation (5.3):

R = εATOR ·R + (1− ε)P (4.3)

4.2.2 Personalized Ranking Variants

In this study, the following personalization models are evaluated on the en-

riched social media graph of Figure 4.1.

• pPR: This is a personalized PageRank (pPR) that is applied to a restricted

graph that has one entity type, BlogPost, and a reflexive edge from BlogPost

to BlogPost with a document similarity edge weight. There will also be a

personalized base set of BlogPost entries. The details of computing document

similarity and the choice of queries and personalized base set for evaluation

will be discussed later. This variant pPR will be the baseline for the evaluation

of personalized ranking.

• pOR: Personalized ObjectRank (OR) will be evaluated on the entity-relationship

schema graph of Figure 4.1. For this variant, the edge weights are set to de-

fault weights, i.e., equal weights for all outgoing types of edges from each type

of node. Thus, this variant of pOR determines the impact of only enriching

the social media schema graph, but not using personalized weights. pOR will

also use a personalized base set of BlogPost entries.
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• pOR+: Personalized ObjectRank, where personalization consists of both a

personalized base set of BlogPosts as well as a personalized set of weights for

each edge type.

• pIR: This is an extension of the Apache Lucene text search engine [44]. Person-

alization is implemented by using all the keywords in the personalized baseset

of each BlogPost entry to create a document query [72]. This will also serve

as a baseline.

In this study, edge weights are set manually based on the type of synthetic

user. Handpicked weights are reported in the evaluation section. pOR+ reflects the

(maximum) expected benefit of an enriched social media schema graph, authority

flow-based ranking, and complete knowledge of the profile of the synthetic user.

Since the synthetic users had simple profiles, e.g., they followed posts about some

event, it was straightforward to manually determine the best weights to be used in

pOR+. In contrast, real users are difficult to model. This problem will be addressed

in the next chapter.

4.3 Evaluation

This section presents the results of an experimental evaluation of the accuracy

of personalized authority flow-based ranking using the enhanced Spinn3r dataset.

The first set of experiments demonstrates the accuracy of pOR for several classes

of synthetic users. The sensitivity of pOR to the types of synthetic users is also

examined.

The second set of experiments provides a comparative analysis of personalized

PageRank (pPR), pOR and pOR+, in which the personalized weights have been

manually chosen to reflect each synthetic user’s profile. pPR represents a baseline,

since the social media dataset is not completely enhanced with additional node
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or edge types. Similarly, pOR+ represents the maximum benefit of enhancing the

dataset and using authority flow-based ranking. The robustness of the pOR and

pOR+ ranking across many parameters that configure synthetic users is evaluated

as well.

Finally, in recognition that real-user behavior may be more sophisticated than

that of synthetic users, a third set of experiments using an evaluation with real

users is conducted as well. In this experiment, both pIR and pPR as used as

the baseline. The performance of baseline algorithms is then compared with that of

pOR. Recall that choosing the best personalized weights for the complicated profiles

of real users is too difficult to be done manually. Hence, pOR+ is not evaluated

in this experiment. Despite the difficulty of constructing a profile for real users,

results show that even pOR with no personalized weights can provide high-quality

personalized recommendations for real users.

4.3.1 Synthetic User Experiment

Four classes of synthetic users are considered in this experiment:

• Author Users: These users are interested in posts by specific authors; both

the personalized training base set and testing set are from posts by a selected

author.

• Category Users: These users are interested in posts labeled with specific cat-

egories; both the training and testing posts are posts that are labeled with a

specific category.

• Keyword Users: These users are interested in posts that are most relevant to

some set of keywords. All BlogPosts were indexed using the Apache Lucene [44]

text search engine, and the Top K=100 posts for each keyword are retrieved

to serve as the ground truth.
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• Event Users: These users are interested in posts about a specific event; both

the personalized training base set and testing set are posts that are labeled

with a specific event, as discussed in a previous section.

I consider several parameters to test the sensitivity and robustness of the per-

sonalization variants. For each synthetic-user experiment, I vary three parameters,

as follows:

1. The first parameter, D, is the number of distinct queries for a synthetic user.

For example, for D = 2, an Author User will follow the posts of 2 authors or

a Category User will follow posts labeled with 2 Category keywords.

2. The second parameter, H, reflects the cardinality of the personalized training

base set. The set of ground truth BlogPosts will be sorted in chronological

order and partitioned into two parts; the first H posts are for the personalized

training base set.

3. The third parameter, U , indicates the number of synthetic users generated for

each experiment. Results are reported as an average over U users.

For each experiment, the personalized training base set is provided to pOR.

Default weights are equal values for all outgoing edges from each type of node

((Author BlogPost = 1.0, Category BlogPost = 1.0, Event BlogPost = 1.0, Blog-

Post Author = 0.25, BlogPost Category = 0.25, BlogPost BlogPost = 0.25, Blog-

Post Event = .25). After training, pOR then returns a set of personalized recom-

mendations, pRec. The cardinality of the pRec set is chosen to be the cardinality of

the ground truth testing set.

Note that for Author, Event, and Category Users, one can only determine

whether a recommended post in pRec is contained in the ground truth and is relevant

to the user, or if it is not contained in the ground truth and thus is not relevant to
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the user. For Keyword Users, one could utilize the ranking provided by the search

engine. However, for uniform reporting of experimental results, a binary decision

of relevant or not relevant is made to determine whether the recommended post in

pRec is contained in the ground truth.

To measure the accuracy of the personalized ranking, I report on the F1

measure for pRec, averaged over the U users. F1 is the harmonic mean of precision

and recall; it has a best-case score of 1.0 and a worst-case score of 0. Recall that

the cardinality of pRec is identical to the cardinality of the ground truth testing set.

Hence, in the experiments, the value of F1 for pRec is equal to both the precision

and the recall.

4.3.1.1 Comparison of Ranking Algorithm Variants

I compare the performance of the ranking variants for all type of users, as

follows:

• pIR: The posts in the user’s base set are concatenated into a single user profile

document P. Next, the candidate-recommended posts are ranked by their sim-

ilarity to P. The similarity is the cosine similarity that is returned by Lucene

[44]. This variant serves as one of the basline algorithms in this experiment.

• pPR: This uses the schema graph of Figure 4.1, restricted to one node type,

BlogPost, and one reflexive document similarity link. This variant serves as

the second baseline algorithm.

• pOR-NE: This uses the schema graph of Figure 4.1 without the Event node

and without the edge type Event-BlogPost; here, the purpose is to compare

both pPR and pOR when neither can benefit from the Event node for Event

Users.
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• pOR: This uses the schema graph of Figure 4.1, including the Event node, and

the edge type Event-BlogPost. Personalized weights were chosen using the

following simple heuristic: A weight of 1.0 was chosen for the authoritative

edge types, e.g., the Author BlogPost edge type or the Category BlogPost

edge type. Other edge types where the authority flow is not known, e.g., the

BlogPost BlogPost edge type or the backlinks, such as the BlogPost Category

edge type, were given a weight of 0.25 to reflect the lower authority flow. The

weights are as follows: (Author BlogPost = 1.0, Category BlogPost = 1.0,

Event BlogPost = 1.0, BlogPost Author = 0.25, BlogPost Category = 0.25,

BlogPost BlogPost = 0.25, BlogPost Event = .25)

• pOR+: This is similar to pOR, with the additional benefit that weights are

adjusted manually to be more appropriate for the profile of an Event User.

An Event User was observed in experiments to be a good reflection of human

user behavior. The weights are as follows: (Author BlogPost = 1.0, Cate-

gory BlogPost = 1.0, Event BlogPost = 1.0, BlogPost Author = 0.2, Blog-

Post Category = 0.2, BlogPost BlogPost = 0.2, BlogPost Event = .4). Note

that adjusting the weights manually is not ideal. The best approach is to learn

the weights from user feedback, as will be addressed in the next chapter.

Figure 4.3 shows the superiority of pOR, in comparison to the authority-flow

baseline of pPR and full-text-search baseline of pIR, for Author Users, Category

Users, Keyword Users, and Event Users. The most significant improvement observed

was for Author Users. Surprisingly, pIR does not perform well for Keyword users.

This is because the user profile document P is too big, so the weight of the user’s

profile keywords is not high.

Figure 4.4 reports on the F1 values for the four variants for Event users. This

figure shows that the baseline algorithm pIR has an extremely low F1 value. pPR

and pOR-NE have very similar low F1 values. However, pOR shows a significant
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Figure 4.3: F1 Values of pIR and PageRank versus ObjectRank for Author and Cat-
egory users (U=50, D=6, H=30), Event users (U=15, D=1, H=30), and Keyword
users (U=10, D=1, H=30).

Figure 4.4: F1 Values for Event Users with D = 1 and H = 30 and U = 15.

improvement (approximately 100% increase) in the F1 value. Similarly, there is

another significant increase of the F1 value (approximately 50%) when comparing

pOR+ to pOR. To summarize, both pOR and pOR+ provide significant improve-

ments over the baselines pIR and pPR for Event Users.

The Wilcoxon Signed Rank test for statistical significance shows that the F1

score for pOR significantly dominates pPR, and pPR is significantly dominates pIR

for author and category users at the 95 confidence level. Furthermore, the F1 scores

for pOR and pPR significantly dominate pIR for keyword and event users at the 95

confidence level. Although pOR outperforms pPR for 5 events out of 7, it is not

statistically significant due to the small size of the sample data.
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Figure 4.5: Average F1 Values of pOR for 50 Author Users (U = 50) with Varying
Values of D = 2, 4, 6, 8, 10 and H = 10, 20, 30, 40, 50.

Figure 4.6: Average F1 Values of pOR for 50 Category Users (U = 50) with Varying
Values of D = 2, 4, 6, 8, 10 and H = 10, 20, 30, 40, 50.

4.3.1.2 Parameter Sensitivity Analysis

Next, I report on the sensitivity and robustness of the personalization variants.

Recall the three parameters of my experimental setup: D, the number of distinct

queries for a synthetic user; H, the cardinality of the personalized training base set;

U , the number of synthetic users for each experiment.

Figure 4.5 reports the value of F1 for Author Users. The X axis varies the

value of H from 10 to 50. Each of the curves in the figure corresponds to values

of D from 2 to 10. Each data point in each plot is averaged over U = 50 Author

Users. As observed in the figure, the value of F1 is highest for lower values of D = 2

compared to higher values of D = 10; this is because larger values of D represent

a diversity of queries for each Author User. As expected, the F1 value increases
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Figure 4.7: F1 Values of pOR for 10 Keyword Users with Varying Values of H =
10, 20, 30, 40, 50.

as the value of H increases or the cardinality of the personalized training base set

increases. This benefit from increasing H values is observed clearly for the case of

D = 10. As the value of H approaches 50, the F1 values converge, indicating that

there is no additional benefit of higher H values. Overall, personalized pOR has

high accuracy for Author Users.

Figure 4.6 reports on Category Users. This figure shows similar trends for

varying values of D and H. For H = 10, the F1 values are low for all values of D;

this reflects an insufficient personalized training base set. As the value of H increases

to 50, a significant improvement in the F1 values occurs. However, the F1 values for

Category Users appear to be lower than the F1 values for Author Users. To explain,

each post is associated with exactly one Author, but can be associated with multiple

Category keywords. Hence, pOR is able to better exploit a post in the personalized

training base set for Author Users and make accurate recommendations.

Figure 4.7 reports on Keyword Users, in which a single Keyword query or

D = 1 is chosen for each user. Given that the ground truth for Keyword Users is

determined using a search engine and the fact that the social media graph does not

include keywords, high F1 scores are not expected. The F1 scores for each of the 10
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Figure 4.8: Results of Experiment with Real Users

Keyword users are reported individually, as well as the average over all of them; the

Keywords are also indicated in the figure. As observed in the figure, the F1 scores

for Keyword Users are low, and there does not appear to be much benefit from

increasing H. Each post typically contains multiple Keywords, and it is a challenge

for pOR to exploit a post in making a personalized recommendation.

To summarize, personalized pOR provides high accuracy for Author Users.

pOR provides reasonably high accuracy for Category Users with improving perfor-

mance as the cardinality of H, the personalized training base set, increases. While

the accuracy for Keyword Users is low, I know of no other personalized ranking for

social media that currently provides better accuracy for personalized recommenda-

tions across all types of synthetic users.

4.3.2 Evaluation with Real Users

I recognize that real users are more sophisticated and cannot be modeled using

a single criterion, as was done for synthetic users. I report an experiment with up to

10 real users. Users were solicited from an undergraduate course in the Smith School

of Business and through a message to graduate students in computer science. The

majority of users were familiar with the concept of both ranking and personalization.

The protocol was structured as follows:
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Figure 4.9: The interface for human user experiment

• Each user was presented with a tool to browse the BlogPost dataset. They

were free to follow posts using a keyword search, posts labeled with a specific

Category, posts by a specific Author, or posts labeled by a specific Event.

• The training period was 30 minutes. Users were informed that the objective

was to learn their browsing profile, and they were instructed to be more focused

in their browsing behavior. Users had to provide feedback while browsing the

posts. The feedback rated the posts as Relevant, May be relevant, or Not

relevant to their search profile or query. I asked each user to provide up to 30

relevant posts.

• User feedback was then provided to the 3 ranking variants, pIR, pPR, and

pOR. Fifteen recommended documents were obtained from the 3 methods

and combined in a random order to create a dataset pRec of 45 recommended

posts.

• Users were asked to rate the posts as in the training phase, with feedback

ranging from Relevant to May be relevant to Not relevant to their original

search profile or query from the training phase.
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Figure 4.9 shows the interface for the real-user experiment; users could browse

posts, provide training data, and then rate the recommendations.

In this experiment, pIR is defined as follows: It uses the content similarity of

posts, which was already computed to build the post-to-post links in the graph. For

each blog post, I find all the similar blog posts in the blog post baseset given by the

user and calculate the sum of the similarity values. The total sum shows the content

similarity of the posts to the user blog post baseset. The total similarity is then

used to rank and retrieve the top 15 posts. Note that Lucene’s document-query is

also a solution.

Figure 4.8 reports on the accuracy of each of the three algorithms. pOR

outperformed both pIR and pPR, and pPR outperformed pIR. On average, users

ranked at least 90% of the recommended posts by pOR to be Relevant or May be

relevant ; this value was approximately 70% for pOR but less than 20% for pIR. The

number of posts that were ranked Relevant was 86% for pOR and 64% for pPR. This

number was very low, at 9% for pIR. The number of posts that were ranked May

be relevant varied from 12% for pOR to 8% for pPR and 10% for pIR. Similarly, the

number of posts that were ranked Not relevant varied from 3% for pOR to 28% for

pPR to 80% for pIR.

The evaluation with real users showed that pOR significantly outperformed

pIR. Note that this is not surprising. To explain, in my pre-tests with users, I ob-

served that users followed posts by an Author or posts labeled with an Event. Hence,

comparing the accuracy of recommendations pRec from pOR to the posts recom-

mended by pIR, which are retrieved from a search engine that does not distinguish

Author-related or Event-related posts, gave a significant advantage to pOR.
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4.4 Discussion

In this chapter, I extended a social media dataset and provided accurate per-

sonalized authority flow-based ranking for both synthetic and real users. I then

presented a suite of blog ranking techniques, which were then evaluated by both

real and synthetic users. One main shortcoming was the fact that personalized edge

weights were set manually. In Chapter 5, I introduce a learning algorithm that uses

relevance feedback to learn the best edge weights.
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Chapter 5

Learning to Rank in Heterogeneous Networks

In this chapter, I address the problem of learning to rank in networks. As

discussed in section 2.3, Learning-to-Rank is a type of supervised machine learn-

ing problem in which the goal is to automatically construct a ranking model from

given training data. For example, in information retrieval, query-document pairs

are usually represented by numerical vectors called feature vectors, and a loss func-

tion associates a “cost” or “error” between a given ranking and the ideal ranking.

The ranking model is then constructed by minimizing the error associated with the

output of the model and the given training data. Existing learning-to-rank models

[8, 10, 14, 17, 18, 24, 39, 52, 66, 70, 73, 74] are limited to one class of algorithms,

namely, ranking based on content information or local features. Entity associa-

tions or relational features are ignored. Features are limited to the object’s proper-

ties/attributes. Applying the current learning-to-rank models to network datasets

is not trivial. Here, I briefly discuss the challenges in using current learning-to-rank

algorithms to rank objects in networks. In an authority flow-based ranking model,

ranking scores are computed as follows:

P = A · P

where P is the score vector and A is the transition matrix. A is parameterized

by the edge weights that have to be learned from the training data. According to

P = A ·P , the score of each object is a function of the score of neighbor objects. In

the context of learning to rank, this means that the features of each object are the

scores of neighbor objects, which by default are all unknown. In current learning-
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to-rank solutions, all input features are known a priori, and the task is to learn

the weight of each feature from training data. Due to the dependency between the

scores of the adjacent objects, current learning-to-rank algorithms fail in network

datasets.

This chapter introduces a framework for learning-to-rank in heterogeneous

networks. It allows learning-to-rank algorithms from non-relational domains to be

used for learning to rank in networks. In particular, I present pointwise and pairwise

learning-to-rank models:

1. Pointwise: In this model, training data include the absolute ranking score of

the training objects.

2. Pairwise: In this model, training data only include the preference for pairs

of training objects.

I will present experimental results that demonstrate the success of this frame-

work in learning the parameters of FutureRank as well as the personalized param-

eters for personalized ranking. The results show that both pointwise and pairwise

models can successfully learn from as few as 10 training samples (per node type)

and converge after a few iterations. In addition, both models are shown to be very

robust against artificially-introduced noise in the training data.

The rest of this chapter is organized as follows: Section 5.1 describes the

proposed learning framework. Section 5.2 presents pointwise and pairwise models,

and Section 5.3 presents the experimental results.

5.1 Learning Framework

For a given graph G = (V,E), edge (j, i) from object j to i has type t(j, i), be-

longing to a set of types numbered 1, ..., T . Each type t has an associated authority-

flow weight represented by βt. If βt(j,i) denotes the weight of edge (j, i), the transition

71



matrix A is defined as follows:

A[i, j] = βt(j,i)aj,i (5.1)

aj,i =


1

OutDeg(j,t(j,i))
if exists (j, i)

0 otherwise.
(5.2)

where OutDeg(j, t(j, i)) is the number of outgoing edges from object j, of type

t(j, i). P 0 is a personalization vector that assigns an initial score p0i to each object

i. The score vector P is recursively defined as follows:

P = αA · P + (1− α)P 0. (5.3)

We can rewrite the score pi for object i as a function of T + 1 features, in which T is

the number of edge types in the network and each edge type t(j, i) is indexed 1..T ,

as follows:

pi = (1− α)p0i + α
∑
(j,i)

A[i, j]pj

pi = (1− α)p0i + α
∑
(j,i)

βt(j,i)aj,ipj

= (1− α)p0i + α
∑

t∈1,...,T

∑
t(j,i)=t

βtaj,ipj

= (1− α)p0i +
∑

t∈1,...,T
αβt

∑
t(j,i)=t

aj,ipj

= w0f
0(i) +

∑
t∈1,...,T

wtf
t(i)

=
∑

t∈0,...,T
wtf

t(i)

= S(f 0(i), ..., fT (i)) (5.4)

where

w0 = 1− α
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Figure 5.1: Spinn3r Schema Graph

wt = αβt

f 0(i) = p0i

f t(i) =
∑

t(i,j)=t

aj,ipj

From Equation 5.4, the score of each object is then defined as a function of

the scores of the adjacent nodes, grouped by type, as follows:

pi = S(f 0(i), ..., fT (i)) =
∑

t∈0,...,T
wtf

t(i) (5.5)

I use the node and edge types of the Spinn3r schema graph to illustrate.

Suppose the type of edges in Figure 5.1 are indexed as follows, with weight βi

associated with edge type i:

• 1 : Post→ Author

• 2 : Author → Post

• 3 : Post→ Post

• 4 : Post→ Category

• 5 : Category → Post

• 6 : Post→ Event
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• 7 : Event→ Post

The following expression represents the score of a node of type Author, where

the first element pa represents the score of node a, and the following seven elements

correspond to the seven edge types for this schema graph:

pa = S(f 0
a , f

1
a , f

2
a , f

3
a , f

4
a , f

5
a , f

6
a , f

7
a )

= S(f 0
a , f

1
a , 0, 0, 0, 0, 0, 0)

= w0f
0
a + w1f

1
a + 0 + 0 + 0 + 0 + 0 + 0

= (1− α)f 0
a + αβ1f

1
a (5.6)

Thus, f 1
a is the sum of the incoming scores to a, from any node of type Post, along

edge type 1 : Post → Author with weight β1. Since authors have only one type

of incoming link, the rest of the features are always zero for any Author node.

Similarly, the score of a node d of type Post is computed as follows:

pd = S(f 0
d , f

1
d , f

2
d , f

3
d , f

4
d , f

5
d , f

6
d , f

7
d )

= S(f 0
d , 0, f

2
d , f

3
d , 0, f

5
d , 0, f

7
d )

= w0f
0
d + 0 + w2f

2
d + w3f

3
d + 0 + w5f

5
d + 0 + w7f

7
d

= (1− α)f 0
d + αβ2f

2
d + αβ3f

3
d + αβ5f

5
d + αβ7f

7
d (5.7)

where f 0
d is the personalization value for node d and f 2

d , f 3
d , f 5

d , and f 7
d are the total

incoming scores to d, from any node of types Author (along edge type 1 : Author →

Post, with weight β2), Post, Category, and Event.

An expectation maximization (EM) algorithm is an iterative method for find-

ing maximum likelihood or maximum a posteriori estimates of parameters in sta-

tistical models, where the model depends on unobserved latent variables. The EM

iteration alternates between performing an expectation (E) step, which creates a
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function for the expectation of the log-likelihood value evaluated using the current

estimates for the parameters, and a maximization (M) step, which recomputes the

values for the parameters while maximizing the expected log-likelihood value from

the previous E step. These parameter estimates are then used to determine the

distribution of the latent variables in the next E step. Recall that with authority

flow, the score of each object depends on the (unobserved) scores of each adjacent

object as determined by the type of the adjacent object. Thus, for learning to rank

in networks, I take an iterative approach similar to expectation maximization (EM)

for learning the model parameters (wis in Equation 5.5) in my framework.

Let vector W denote wis and AW denote the adjacency matrix, which is

weighted by W . Let loss(P, Y ) denote the loss function that measures the disagree-

ment between score vector P and training data Y . The two steps of our iterative

approach are as follows:

1. Expectation step:

P̂ = AŴ · P̂

2. Maximum likelihood estimation step:

Ŵ = arg min{loss(AW · P̂ , Y )}

based on equations 5.4 and 5.5:

Ŵ = arg min{loss(SW , Y )}

.

The initial value of Ŵ is set to equal weights for all edges. The expectation step

and the maximum likelihood estimation step will be repeated until convergence. In

this learning framework, the learning problem reduces to finding arg min{loss(AW ·
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Figure 5.2: The workflow of a learning algorithm for ObjectRank

P̂ , Y )} in each iteration. Based on equations 5.4 and 5.5, this is equivalent to

finding arg min{loss(S, Y )}, where S is a non-recursive, linear function and Y is

the training data. Lets compare the proposed iterative approach with the on-shot

learning solution proposed by Chakrabarti et al. [11]. For a given transition matrix

A, in practice, the PageRank or ObjectRank score vector is frequently computed

via power iteration, by initializing p = p0 and iterating P = A.P until convergence.

Chakrabarti et al. expand and truncate the recursion, and suggest P = AH .P 0

for modest values of H (10-50). Therefore, the problem of learning the parameters

reduces to optimizing some loss function for P = AH .P 0. They solve this problem

for a specific loss function.

The workflows for the proposed iterative model in this chapter and the ap-

proach taken by Chakrabarti et al. are shown in Figures 5.2 and 5.3, These figures

show the advantages of an iterative model over the one-shot learning algorithm

proposed by Chakrabarti et al.:

• First, the score function in the iterative model is independent of the transition

matrix. Changing the transition-matrix formula only changes the feature val-
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Figure 5.3: The workflow of a learning algorithm proposed by Chakrabarti et al.

ues. It changes the expectation-maximization step, but does not change the

maximum-likelihood-estimation algorithm. In other words, for a different type

of transition-matrix formula (in the same class of authority transfer as Ob-

jectRank), the same maximum-likelihood-estimation algorithm can be used.

However, in Chakrabarti et al.’s approach, new optimizers must be developed

for different formulations of the transition matrix. This is because any change

in the transition-matrix formulation will directly change the score-function for-

mulation. Building a new optimizer is not trivial, due to the complex nature

of the score function.

• Second, for different domains and applications, different loss functions may be

more appropriate. In addition, different types of training data Y need different

loss functions. Plugging a new loss function into the iterative model is trivial.

The optimizer module is a stand-alone model that optimizes a loss function

for a linear score function. The loss function and optimizer in this module

can be easily replaced by any off-the-shelf loss function and optimizer in the

non-relational learning-to-rank literature without affecting the consistency of
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the other parts of the framework. In contrast, building a new optimizer for

a new loss function would be difficult or expensive using Chakrabarti et al.’s

approach.

One limitation of the iterative learning-to-rank framework is that the optimiza-

tion (edge weight learning) for each node type is performed locally. This framework

needs at least a few training samples from all types of nodes to learn all edge weights.

Recall feature f t(i) for node i is as follows:

f t(i) =
∑

t(i,j)=t

aj,ipj

For learning wt, f
t(i) must be non-zero and this occurs if and only if edge type

t is defined for node i. For example, if edge type t represents the Paper-to-Author

edge, feature f t is non-zero for Author nodes, but it will be zero for all other types

of nodes. To learn the weight wt for feature f t, the training data should include at

least a few Author nodes.

5.2 Loss Function

In each iteration of learning, arg min{loss(SW , Y )} has to be calculated. loss(.)

maps the difference between the ranking by SW and training data Y onto a real num-

ber, intuitively representing the “error” associated with the ranking. In the following

sections, the appropriate loss functions for pointwise and pairwise models will be

presented.

5.2.1 Pointwise Learning

In a pointwise learning model, training data contains a set of objects with their

absolute ranking scores. In this case, a natural choice of loss function is a squared

error function that measures the total squared differences between the predicted
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scores and the gold-standard scores in training data Y:

loss(S, Y ) =
∑
i

(s(i)− Y (i))2

Since S is a linear function, finding arg min{∑i (s(i)− Y (i))2} is in fact a least-

square linear regression problem.

5.2.2 Pairwise Learning

In this setting, training data include the ranking preference for pairs of training

objects. Training data only provides relative orders, unlike the pointwise model,

which requires absolute values. It is easier for humans to compare two objects and

express their preference rather than providing absolute values. In addition, other

studies have collected large amounts of implicit relevance judgments by recording

facets of user interactions between the system and the browser during actual search

sessions [43]. For example, if a user clicks on the third link before clicking on the

first or second links, we infer that the user prefers the third link to the first and

second links. However, we may not infer preferences for the links that appear after

the third link. This way, we can collect a huge amount of training data that can

help improve parameter estimation.

The pairwise model uses a step loss function. Chakrabarti et al.[11] showed

that a Huber function with window L is a proper step function for pairwise learning:

loss(S, Y ) =
∑

i≺j∈Y
huber(s(i)− s(j)) (5.8)

huber(z) =


0 z ≤ 0

z2/(2L) y ∈ (0, L]

z − L/2 y > L.

(5.9)
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5.3 Evaluation

This section demonstrates the performance of the proposed learning frame-

work. Two case studies are conducted: First, real-world networks and synthetic

parameters are used to generate synthetic datasets and the performance of the pro-

posed framework using different types of training data is evaluated. Note that the

parameters used to generate the training dataset are hidden from learners. Fi-

nally, performance of both pointwise and pairwise algorithms for varying amounts

of training data and noise is demonstrated.

In the second case study, I test whether the proposed framework can learn

FutureRank, which predicts the future PageRank of scientific articles.

5.3.1 Datasets

• Spinn3r Dataset: dataset provided by Spinn3r.com, which was used in

Chapter 4 to evaluate the performance of the proposed personalization al-

gorithm.

• arXiv Dataset: This is a dataset of scientific articles, called the arXiv (hep-

th) dataset[1], which was used in Chapter 3 to evaluate the performance of

FutureRank.

5.4 Case Study 1: Evaluate the Performance of Learning Variants

In this case study, the performance of the proposed learning framework for

different types of training data is evaluated. The performance of both pointwise and

pairwise learning models is compared with that of a baseline model. The baseline

algorithm is an ObjectRank model with no learning, in which the outgoing edges

from each node type have equal weights (βs) and are summed up to 1. Finally, the

performance of each model for varying amounts of training data and noise will be
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demonstrated.

5.4.1 Evaluation

The main steps of the evaluation schema are as follows:

1. Get graph G from a real dataset.

2. Generate training data Y .

• Assign hidden parameters α and βs and compute ObjectRank using hid-

den parameters.

• Draw random objects (for pointwise learning) or random pairs of objects

(for pairwise learning) as training objects.

3. Give G and Y to the learning algorithm but not the hidden parameters.

4. The learner estimates α∗ and β∗s.

5. Compute the ranking R∗ using α∗ and β∗s.

6. Compare the top K results of R∗ with the top K results of ranking R, which

is computed using the hidden parameters.

Figure 5.4 shows the accuracy of the baseline algorithm, as well as the point-

wise and pairwise models, for the arXiv and Spinn3r datasets. The X axis shows the

size of the training data, and the Y axis shows the F1 score for the top 50 results for

each algorithm. Since the baseline algorithm does not perform any learning, its per-

formance is constant and independent of the size of the training data. In both real

datasets with synthetic parameters, both pointwise and pairwise models success-

fully learn the parameters with as few as 10 training data samples (per node type).

However, pointwise learning outperforms pairwise learning for smaller amounts of

81



Figure 5.4: Accuracy of pointwise learning and pairwise learning. The X axis shows
the size of the training data per node type and the Y axis shows the F1 for the top
50 results.

training data. Figure 5.5 shows the accuracy of the same three algorithms after

each iteration of learning. The X axis shows the iteration number, and the Y axis

shows the F1 score for the top 50 results for each algorithm. For each dataset, both

pointwise and pairwise algorithms converge after a few iterations. Again, since the

baseline algorithm does not perform any learning, its performance does not change.

In this case study, training data are generated from real graphs with synthetic

parameters that are hidden from the learning algorithms. There is also an assump-

tion that there will be no noise or inconsistency in the training data. However, in

a real-world situation, users may provide inconsistent feedback/training data. In

addition, many sources of training data are implicit data that are automatically

extracted from the user’s interaction with the system. For such training data, there

is the potential to miss-interpret the user’s actions and collect training data that are

not perfect. Due to the existence of such sources of noise, I also evaluate the perfor-

mance of both pointwise and pairwise algorithms against noisy data. x percent noise

is added to the training data as follows: For each object o in the training dataset,
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Figure 5.5: Convergence of pointwise learning and pairwise learning. The X axis
shows the number of learning iterations and the Y axis shows the F1 for the top 50
results.

Figure 5.6: Performance of pointwise learning and pairwise learning with up to 50%
noise in the training data. The X axis shows the percentage of noise and the Y axis
shows the F1 value for the top 50 results.
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score so is replaced with a random number drawn with a uniform distribution from:

[(1− x) ∗ so, (1 + x) ∗ so]

Figure 5.6 shows the performance of both algorithms, as well as the baseline

algorithm for the noisy data. Again, since the baseline algorithm does not perform

any learning, its performance is constant and independent of the amount of noise

in the data. The performance of the pointwise model drops slightly. Similarly, the

pairwise model also shows a slight drop.

In these experiments, the assumption was that there is no missing or noisy

information to distort the network structure and only the training data may be

noisy. Real-world datasets are often incomplete, which results in missing nodes and

missing edges in networks. As discussed in Chapter 2, there are many different ways

to handle the missing data in non-network domains [33, 69]. Missing data regarding

the network structure can results in the following two scenarios:

• Uniformly distributed missing information: In this scenario, the missing

nodes and edges are uniformly distributed. Recall the ObjectRank formula-

tion. The features f t for each object is the sum of all incoming authority flows

from edges of type t. If nodes and edges are uniformly missing, feature f t will

exist. Learning wt for f t will have to accommodate noisy values because of

the missing edges and neighbor nodes of type t. Hence, this scenario will re-

semble the problem of noisy data (feature level) in non-network datasets. The

best solution for such a scenario is to use link prediction algorithms to predict

the missing edges [3]. The advantage of link prediction algorithms over the

non-network imputation methods such as regression imputation or multiple

imputation [33, 69] is that link prediction models consider both non-relational

features and the network structure to predict the missing edges.
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• Skewed missing information: In this scenario, (a subset of) particular

nodes may be missing all edges of a particular type. For example, in the

bibliographic network (arXiv), Author edges may be missing for a subset of

papers. Similar to the previous scenario, such missing edges can be predicted

using the link prediction algorithms [3]. However, if the Author edge is missing

for most papers, then this is equivalent to missing a particular feature (for the

most of the records) in a non-network dataset. There is a little benefit in

imputing or predicting such values or such edges. The common practice is to

ignore these features/edge types entirely.

5.5 Case Study 2: Learning the Parameters of FutureRank

In the second case study, I evaluate the performance of the proposed framework

for learning the parameters of FutureRank. Note that there is no set of parameters

that can perfectly predict the number of future citations or future PageRank. The

best results obtained by exhaustive searches had a F1 value of 52% for the top 50

results and Spearman’s rank correlation of 58. Hence, in this case study, obtaining

the same performance as an exhaustive search approach is considered as learning

perfectly.

I will first show how to implement FutureRank by ObjectRank. Let α denote

the weight of the citation links and β denote the weights of the links from authors

to papers. The weight of the links from papers to authors is 1. γ represents (1−α)

in ObjectRank notation, and RT ime is the personalization vector:

Aj,i =



1
outdegree(j,“Paper′′)

if i is the author of j;

α
outdegree(i,“Author′′)

if j is the author of i;

β
outdegree(i,“Paper′′)

if i is citing j;

0 otherwise;
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P = γRT ime + (1− γ)A.P

Now, let us use the proposed learning algorithm to learn the FutureRank. I

will compare the performance of the learned model with the original FutureRank

model, which was obtained by an exhaustive search on the parameter space.

5.5.1 Evaluation

Here are the main steps of the evaluation schema:

1. Get graph G from the arXiv dataset.

2. Generate training data Y :

• Split the dataset into two partitions: The first partition, historical data,

contains all papers published before 2001 and the second partition, future

data, contains papers published in or after 2001.

• Run PageRank on the second partition to compute the future PageRank

score for each object.

• Draw a set of random objects as training data.

3. Give G and Y to the learner.

4. The learner estimates α∗ and β∗s.

5. Compute ObjectRank using α∗ and β∗s.

6. Evaluate the top K results of the ObjectRank using α∗ and β∗ and compare

them with the top K results of Future PageRank.

Figure 5.7 shows the accuracy of an exhaustive search, as well as the pointwise

algorithm for learning FutureRank. It shows that the learning algorithm successfully
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Figure 5.7: Performance for learning FutureRank in comparison with the exhaustive
search algorithm.

finds the best parameters (which were found by an exhaustive search). Both the F1

measure and Spearman’s correlation obtained by the learner are similar to the F1

measure and Spearman’s correlation obtained by an exhaustive search approach.
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Chapter 6

Conclusion

In this dissertation, I have addressed some of the challenges of ranking in

heterogeneous networks.

• Ranking in Evolving Networks: In Chapter 3, I introduced a new measure

for ranking scientific articles that I referred to as the future PageRank score.

The future PageRank score is the PageRank score computed based only on

the citations that will be accrued in the future. I then presented FutureRank,

a prediction algorithm for predicting the future PageRank score from the his-

torical network structure. I compared FutureRank with existing approaches

and showed that FutureRank is more accurate than traditional models such

as citation count, PageRank, or CiteRank [68] for finding and ranking publi-

cations.

FutureRank addressed the specific problem of predicting the future PageRank

in a citation network. Studying prediction models in other networks is a

possible direction of future work. For example, predicting the number of

retweets that a tweet will obtain in the future is a an interesting problem

to look at.

• Personalized Ranking: In Chapter 4, I presented a personalized random-

walk ranking algorithm for recommendations in social media. The personal-

ization algorithm was then evaluated through an experiment with real users,

as well as an extensive study of a range of synthetic users. The results showed

that my personalized recommendations outperforms baseline approaches.

A possible extension to this work is to apply a similar algorithm to other
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domains such as movie recommendations. Movie rating datasets can also be

enriched with metadata to build a network:

1. Create one node per movie, actor, director, and genre.

2. Create metadata links between each movie and its actors, directors, and

genres. An actor link can be weighted by the role (first actor, second

actor, etc).

3. Finally, add a (similarity) link between two movies weighted by similarity

measures by algorithms such as collaborative filtering.

An interesting question would then be how the performance of the personal-

ized network ranking algorithm on such graphs compares to a non-network

recommendation algorithm.

• Learning to Rank in Heterogeneous Networks: In Chapter 5, I pre-

sented a framework for learning to rank in networks. The goal was to build

an effective solution for estimating the parameters of an authority flow-based

model. A pointwise and a pairwise learning algorithm were presented un-

der the proposed framework. The experimental results demonstrated that

the learning framework successfully learns the parameters of FutureRank as

well as the personalized parameters for personalized ranking. In addition, the

results show that both pointwise and pairwise models can successfully learn

from as few as 10 training samples (per node type). Both models are shown to

be very robust against artificially-introduced noise in the dataset. The main

advantage of my framework is that it allows learning-to-rank algorithms from

a non-relational domain to be utilized for learning-to-rank in heterogeneous

networks. Furthermore, it was shown to converge after a few iterations with

high accuracy.
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Possible extensions to this work could be an analogy of the behavior of other

learning-to-rank algorithms and loss functions in networks. For example, list-

wise models [10, 70] have been shown to have a superior performance compared

to pointwise and pairwise models. Testing the proposed framework on more

real-world applications and networks is another direction for future work.

As mentioned in Chapter 5, real-world datasets are often incomplete, which

could result in missing nodes and missing edges in the networks. While we addressed

the problem of noisy training data in Chapter 5, the problem of incomplete network

structure is an open question. Future work would be to study the effect of missing

edges and nodes on the performance of the FutureRank, the personalized ranking

algorithm, and the learning-to-rank framework.
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