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Chapter 1: Introduction 

Overview 

Computer and network security is at the forefront in the minds of corporate 

and government leaders.  Information technology permeates seemingly every aspect 

of our lives.  Consequently, both public and private sector leaders have invested 

tremendous amounts of money into developing better protection.  Numerous studies 

have created classification techniques that have asserted promising results. 

Theoretically, these techniques could be used in an intrusion detection system to 

identify malicious traffic.  Yet, despite considerable investment into research for 

protection of our computer and network assets, there has been a lack of significant 

artificial intelligence and machine learning application into real-world intrusion 

detection. Due to the lack of pragmatic machine learning approaches in intrusion 

detection, security administrators are limited to signature-based methods and manual 

processes, which are both error prone and easy to evade.  While attackers are growing 

in sophistication, the security community is struggling to keep pace. 

This thesis explores semi-supervised machine learning (SSL) and data mining 

techniques in the context of network intrusion detection in an effort to address these 

domain specific challenges. Through a series of controlled and focused experiments, 

this research attempts to understand how to improve network intrusion detection.  

Specifically, this thesis focuses on stealth network reconnaissance, a particular subset 

of malicious activity. By focusing on this specific attack paradigm, we create a 

cleaner dataset and avoid some of the pitfalls of previous research.  Additionally, this 
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research analyzes lightweight network flow data, a form of metadata.  Based on the 

results of this work, we demonstrate that, although there are still some significant 

challenges, cluster-then-label (CTL) semi-supervised machine learning can be 

employed with performance comparable to supervised learning in certain settings.  

That being stated, practical considerations may limit how effective a CTL approach 

can be in a real world setting. 

One of the background motivations for this study was Symons's and Beaver's 

idea of penetration testing your own network to train a tailor-made SSL classifier [1]. 

A cost-effective method for developing a tailor-made classifier addresses two specific 

problems in intrusion detection: the enormous variability among different networks 

and the rapidly changing nature of attack paradigms.  In a practical security setting, a 

semi-supervised learner would train on a small set of labeled network logs, which a 

network administrator would audit, as well as the complete set of unlabeled network 

logs.  This training would produce a network specific classifier, which would be 

sensitive to the particular characteristics and protocols of that network.  Furthermore, 

if this method is proven feasible, then new attack paradigms, for instance a new 

paradigm that is reported on a hacker convention, could be injected into regular 

traffic, thus building a classifier that can keep pace with the latest attack trends.  

The Threat 

Network scanning is an integral part of the attack paradigm; it enables 

attackers to perform the reconnaissance necessary to identify potential targets and 

courses of actions to achieve their ultimate objectives.  Scanning is typically the first 

part of the targeting cycle; thus, if a security administrator has warning of scanning, 



 3 

 

then that administrator should be more focused on the targeted assets (see Figure 1).  

Furthermore, if there is an indication of scanning that demonstrates a high level of 

skill on the part of an attacker, then the security administrator should be even more 

alarmed.  Sophisticated and well-funded attackers have the resources to conduct 

stealthy reconnaissance over the period of days, and often send network probes at 

such a low rate that it is infeasible for an intrusion detection system (IDS) to detect 

probing activity within a reasonable time window.   

 

Figure 1: Targeting Cycle 

Motivation for Researching Stealth Scanning  

 While scanning does not directly harm the availability or integrity of a 

computer system, there are several properties that make it significant.  First, detecting 

scans that last over a long time period is laborious.  It is typically a manual process 

assisted by some signature-based querying.  As a result, the process is error prone. 

Security administrators often ignore scanning due to these challenges.  Automated 

methods that perform better than signatures or other ad hoc techniques can help 
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alleviate this burden.  Second, scanning is usually the first part of the targeting cycle.  

Therefore, if a network defender had knowledge of scanning, the defender would be 

better able to prioritize and sort subsequent alarms that correspond to activities related 

to other parts of the targeting cycle.  Third, since stealth scanning does not trigger 

conventional automated methods, such as an IDS, stealth scanning is largely 

undocumented in existing labeled datasets.  In addition, there is a general lack of 

documentation on how to exactly perform stealth scanning.  Finally, scanning is a 

good starting point to conduct realistic experiments on a live network.  Since 

scanning does not directly harm network resources, experiments can be implemented 

without extensive investment.  Once a technique has been validated for scanning, it 

can then be applied to more intrusive portions of the targeting cycle.   

Motivation for Studying Network Flow Metadata 

 Network flow metadata is important for several reasons.  First, network flow 

data is ubiquitous.  Almost all routers produce network flow records.  In certain 

situations, a security administrator performing network forensics may only have 

network flow data available to analyze.  Second, network flow data requires order of 

magnitudes less storage than other network log data such as packet capture (PCAP).  

This smaller footprint means logs can be stored for a longer period.  Finally, the more 

network protocols use encryption, the more network defenders will need techniques 

that can infer attacks without relying on deep packet inspection of packet’s payload.       

Objectives 

This thesis aims to address the following questions: 
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1. Does previously established scan detection techniques perform well on a 

specific set of malicious data (stealth scanning) produced on a real production 

network? This question aims to determine the strengths and weaknesses of 

previous approaches, and to gauge how the network environment affects the 

techniques. If a previous approach works well, it can be used as a basis of 

comparison for new techniques. 

2. Do semi-supervised methods perform comparably to supervised methods?  

The objective of this question is to show whether semi-supervised methods 

can perform as well or potentially better than supervised methods, while using 

a fraction of the required effort. 

3. Do any of these techniques show promise in a practical network intrusion 

detection setting?  As this thesis will show, network intrusion detection has 

some unique challenges that require specific attention in order for an 

implementation to be successful.     

Experimental Overview 

Figure 2 illustrates the main phases of the study.  Before any analysis of a 

classifier could be performed, this study had to develop and catalog attack paradigms, 

build a dataset, and audit that dataset for errors.  After the data was properly audited 

and organized, the scan detection methods were evaluated.    
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Figure 2: Experimental Phases 

 

Contributions 

 There are three main contributions to this research.  First, it validates previous 

work.  Too often intrusion detection studies are neither validated nor replicated and 

this lack of scientific rigor results in limited real world applicability.  This lack of 

validation is further exacerbated by the changing nature of network technology.  

What may work today, may be ineffective or impractical tomorrow.  Second, this 

work has produced a clean, labeled dataset that was built in a transparent and 

controlled manner.  There is a critical lack of labeled datasets in intrusion detection.  

Furthermore, this thesis clearly lays out how the experiment was conducted so that 

other researchers can perform similar studies in an effort to replicate and reproduce 

results. In addition, steps have been taken to make this dataset publically available.  

Finally, to our knowledge, this thesis is the first dedicated study on using CTL SSL 

techniques to detect a specific subset of malicious activity, and one of the few studies 

on SSL in intrusion detection.  The results of this study document potential issues 
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with a SSL implementation in intrusion detection and other application domains 

where there is an imbalance in class distributions.   

Organization 

The remainder of this thesis is organized as follows.  In Chapter 2, relevant 

background concepts and previous works are explained.  Chapter 3 describes the 

methods employed in this experiment. Chapter 4 provides an overview of the dataset.  

Chapter 5 describes the experimental parameters for the trials.  Chapter 6 analyzes the 

trial results with insight to practical application issues.  Chapter 7 summarizes this 

thesis and provides recommendations for future work.    
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Chapter 2: Background and Related Works 

Network FlowData 

Network flow data is metadata about network based transactions between 

pairs of endpoints in a network.  The heart of network flow data is the concept of an 

IP flow, which is a set of similar packets observed on a certain point and time in a 

network, going from one source host to one destination host.  A flow record 

summarizes the pertinent characteristics from the IP flow (see Table 1).  Typically, a 

router will record IP flow records and then export them to a server for storage.  For 

most network transactions between two endpoints, the transaction is bidirectional, so 

the router or observation point will record two flows.  For instance, when a client 

browses to a web server, a router collecting network flows will record two flow 

records: one that describes the set of packets from the client to the server and one in 

the reverse direction.  A network flow log is a flat collection of network flow records.  

Administrators use network flow data for a variety of purposes including billing, 

network monitoring, capacity planning, security analysis, and data mining [2].   
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Table 1: Basic Network Flow Record Information 

Field Remarks 

Time Timestamp of when flow began 

Duration The length of the flow in milliseconds 

Source IP address The TCP/UDP port number of the source socket 

Source port  

Destination IP 

address 

 

Destination port The TCP/UDP port number of the destination socket 

OSI Layer 3/4 

Protocol 

Layer 3 Protocol used. For IPv4, typically the layer 4 protocol 

is specified (TCP/UDP)  

Router interface The interface on which the packet entered 

TCP Flags If TCP, this field is the union of all the TCP flags seen 

Number of packets  

Number of bytes  

 

Some aspects of network flow data are important to understand in order to 

analyze network communications.  A flow record is created whenever the observing 

device sees a unique IP address port combination.  Thus, a single communication 

graph between two endpoints could have multiple flow records if the network 

communication involves multiple layer 7 protocols (i.e. spans multiple ports).  The 

observing device records what it sees from the packet’s header and typically does not 

have any enhanced security features to detect spoofing.  Therefore, security analysts 

need to be cognizant that attackers may have the ability to obfuscate themselves in 

certain attacks.  In addition, a router may produce a flow record if any of the 

conditions in Table 2 are met.  As a result, proper analysis must account for 

premature segmentation of flows.              
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Table 2: Conditions for Network Flow Expiration 

Condition Remarks 

TCP flag 

received 

If a host sends a FIN or RST flag on a TCP connection, the flow will 

be terminated [2]. 

Inactivity If the flow is inactive for some predefined threshold, the flow is 

terminated [2].  Default for NetFlow is 15 seconds [3].  

Long flows If the flow continues to be active longer than a prefunded threshold, 

the flow is terminated [2].  Default for NetFlow is 30 minutes [3]. 

Memory 

exhaustion 

Depending on the implementation, a router may prematurely close a 

flow record, if it is low on memory.  By default NetFlow will expire 

30 flow records prior to its cache hitting maximum capacity [3].   

 

It is worth noting that the term “network flow” refers to a family of similar 

protocols.  Cisco pioneered the field with their priority format NetFlow.  NetFlow 

version 9 is the basis for the open IETF standard IP Flow Information Export (IPFIX) 

protocol.  Despite the existence of a multitude of priority formats, each format is 

similar enough that a technique developed on one will tend to work with other vendor 

formats.  In other words, the network flow techniques will work on all formats as 

long as the technique is limited to the information in Table 1 and it does not rely on 

any user-defined fields.  This thesis used NetFlow version 5 through the nfdump 

toolset.  An example output from nfdump is show in Figure 3. 

 

Figure 3: Example Nfdump Output 
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Scanning 

This research focuses on port scanning, a specific subset of network 

reconnaissance.  Scanning covers a range of activities by which attackers attempt to 

gain information about a target network and its hosts.  Attackers typically perform 

initial discovery of hosts through ping scans (“ping sweeps”), reverse-DNS 

resolution, and ports scans.  Port scans attempt to reach open TCP and UDP services 

on hosts.  In the case of TCP scans, various header flags may be set to gauge how the 

network and hosts are configured to respond.  After initial scans, an attacker may 

employ more interactive scripts to ascertain specific vulnerabilities in protocols or 

how the server is implemented.  This activity, known as vulnerability scanning, varies 

in level of how invasive it is to the host machine and has a different traffic profile 

from port scanning.  In addition to information about services hosted, attackers can 

use ping scans, port scans, and vulnerability scans to infer OS version, network 

configuration and other information [4]. 

While scanning can take many forms, most researchers categorize port scans 

into two basic categories based on the scan’s intended target footprint: horizontal 

scans and vertical scans [5].  Horizontal scans refer to scans where an attacker seeks 

to gain information on a range of hosts on a network: which ones are accessible, what 

services they hosts, what version of a protocol, etc.  Vertical scans refer to scans 

where an attacker seeks to gain information about a specific host.  These scans 

typically include a greater range of ports and protocols targeted, and they may include 

other reconnaissance techniques to infer OS build, poor protocol configurations, etc.  
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An understanding of each scan type and their purpose provides insight on how 

available network record sources can be processed and minded to detect this activity.  

Challenges with Machine Learning in Intrusion Detection 

Machine learning, despite successful application in other areas, has had 

difficulty in being adopted in practical network intrusion detection (NID) settings.  

Many studies fail to recognize fundamentally how machine learning algorithms work 

and their underlying assumptions.  Furthermore, some unique aspects of classifying 

network traffic make it a dramatically different task than other applications such as 

classifying spam or optical character recognition (OCR).   In addition, intrusion 

detection has the added problem of an adversary community that constantly seeks 

ways to tune attacks and evade detection [6].  Understanding these idiosyncrasies is 

critical to understanding how to apply machine learning techniques more effectively. 

One of the most frequent flaws in machine learning applied to NID is 

assuming that novel attacks will be detected given a large dataset of known activity 

[6]. On the surface, machine learning algorithms can classify instances as “abnormal” 

vs. “normal” or “malicious” vs. “benign”; however, the algorithms require 

“abnormal” or “malicious” training experience to develop a classifier that generalizes 

well.  If the datasets on which the algorithm is trained does not contain representative 

samples of attacks, then the resultant classifier may be inadequate.  As Sommer and 

Paxson assert, studies often wind up “training an anomaly detection system with the 

opposite of what it is supposed to find…it requires having a perfect model of 

normality for any reliable decision” [6].  This idea is referred to as the “closed world 

assumption”; the idea of specifying only positive examples and adopting a standing 
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assumption that the rest are negative [6].  As a consequence of this misunderstanding, 

the trained classifiers often do not generalize adequately in future settings. 

There are some particular aspects of NID that can make a naive 

implementation of a machine-learned classifier ill-posed.  NID is an area of study that 

is plagued by the base-rate fallacy [7].  Since the proportion of benign traffic is order 

of magnitudes larger than the proportion of malicious traffic, many studies fail to 

highlight that while the accuracy of a detection scheme is ostensibly high, for instance 

95%, its performance will be poor in practice.  This apparent incongruent is due to the 

detection scheme generating orders of magnitude more false positive alarms than true 

positive alarms.  Consequently, in order for a detection scheme to be of practical use, 

it must detect at an extremely high accuracy, which for a learning algorithm may 

require an infeasible amount of training data and may not generalize outside of the 

network on which the learning algorithm trained. 

The costs of classification errors in NID are much higher than in other 

domains.  Other areas where applications have been successful demonstrate error 

tolerance (like recommending products for e-commerce).  In these domains, making a 

classification error has a negligible impact.  In NID, the impacts of errors are 

extreme; false positives can result in a significant waste of time, false negatives in 

compromised computer systems [6].  Alerts for scanning in particular are full of false 

positive alarms.  The base-rate fallacy further exacerbates the situation, because users 

of a system will quickly lose faith if they waste all of their time chasing large 

numbers of false alarms without ever finding a true positive. 
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  In other machine learning applications, like spam, it is easy to correct/validate 

false positives or false negatives.  Other successful applications have been able to 

improve their performance over time because the user base can easily provide 

feedback.  Subsequently, this feedback can tune classifiers and correct datasets.  

Intrusion detection alerts are inherently difficult to evaluate [6].  Even when 

classification errors are discovered, it is not in a volume that is large enough to 

significantly improve a classifier performance or build a cleaner dataset.  

Spam classification also demonstrates that certain machine learning 

applications can benefit from an unbalanced cost mode.  In some cases, designers can 

gear an algorithm to err towards false negatives to avoid the more adverse cost of a 

false positive.  This skewing allows a machine-learned classifier to be employed in a 

real-world setting without burdening the user.  NID does not offer the opportunity for 

such a tradeoff. Both false positives and false negatives are extremely undesirable [6]. 

Network traffic demonstrates an enormous variability of benign traffic.  As 

Sommer and Paxson assert, it is “difficult to find stable notions of normality.”  Many 

of the traffic profiles are heavy-tailed distributions, where there are events that are 

significantly far away from the mean but only occur at infrequent times.  This means 

studies seeking to develop an accurate probability distribution would require an 

enormous amount of time and effort. The rapidly changing nature of network 

configurations would further impede a meaningful study. What the network looks like 

now, may not be what the network looks like after the installation of a new service, 

device, or a major connectivity change.  Furthermore, what is normal at one site, may 

not be normal at another site.  A study that does not consider how the experimental 
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network impacts the classifier will be doomed to low adoption.  Without a meaningful 

discussion on the nature of the network traffic, a scheme could fail to demonstrate the 

same classification accuracy or may not even be able to be implemented [6]. 

Many machine learning studies fail to account for how attackers operate.  

Sophisticated attackers study security research and develop ways to tune their tactics 

to evade detection.  This antagonistic relationship makes naive studies irrelevant 

when attackers can arbitrarily adjust their traffic characteristics that will be present in 

log data.  For instance, an attacker may pad their packet payloads so that the packet 

size appears less suspicious.  The padding does not interfere with the attack, but if a 

classifier has been trained to look for instances of small packet sizes, the modified 

packet may evade detection.  Therefore, any study needs to develop a classification 

scheme from the motivation and perspective of an attacker.  Ideally, the classification 

scheme needs to choose features that are invariant for a type of attack, so the attacker 

cannot easily adjust his/her technique.  Consideration should also be given on how a 

scheme could be defeated.  Even if an attacker can evade one security measure, it 

may present an opportunity for alternate security measures or methods to be used to 

detect the attack.  

Challenges with Intrusion Detection Datasets 

Arguably, the most significant challenge to intrusion detection research is the 

lack of sound publically available labeled datasets.  One reason for the absence is the 

difficulty in classifying and verifying network traffic to build the dataset in a clean 

manner.  As Sommon and Paxson assert the investment of building an experimental 

set-up is often more difficult than developing the detection scheme itself [6].  For 
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studies that built their own sets, privacy and security concerns typically prevent 

researchers from sharing their information with the community [8].  Currently, there 

are three publically available labeled datasets: the 1998/1999 DARPA Lincoln Lab 

Intrusion Detection Evaluation dataset (DARPA-98/99), the Knowledge Discovery 

and Data Mining Cup 1999 dataset (KDD-99), and the Kyoto University 2006-2009 

Honeypot dataset (Kyoto2006+).  Many critical studies have shown these datasets 

have considerable issues, to include out-of-date attack paradigms, unrealistic traffic 

modelling, ambiguous labeling schemes, erroneously labeled data, and a significant 

lack of validation [1, 9, 10, 11, 12, 13].    

The DARPA-98/99 and the KDD-99 are the two most commonly used 

datasets, and they both have significant issues.  Both datasets are over ten years old; 

network bandwidth, applications and attacks have all changed significantly since the 

original studies.  Both the DARPA-98/99 and KDD-99 used simulated traffic that is 

supposed to be representative of a typical Air Force base.  Critical studies of these 

datasets have demonstrated, however, that the traffic is not representative of even the 

installation that it is supposed to model [9, 10].  Despite the obvious deleterious 

effects unrealistic simulations could have, the original DARPA study did not perform 

analysis on how the artificial nature of the simulated traffic affected their evaluation 

of various IDSs.  Many studies perpetuate this mistake and report findings without 

consideration of this glaring issue.  As McHugh asserts, “the burden is on the 

experimenter to show that the artificial environment did not affect the outcome of the 

experiment.” Furthermore, the categories of malicious data used in the datasets are 

often ambiguous.  The broad, attack-centric taxonomy does fail to describe clearly 



 17 

 

from the IDS’s perspective what is alarming.  Tavallaee et al. demonstrated a serious 

lack of validation in both datasets that has led to errors, such as redundant records, 

dropped traffic records, etc.  While these two datasets are the most widely used and 

therefore the most criticized, it is worth noting that many of the homegrown datasets 

in intrusion detection studies repeat many of the same errors with respect to 

modelling, analysis, and validation [9]. 

Kyoto2006+ is a relatively new dataset that took an innovative approach in an 

effort to capture more realistic attack traffic.  In contrast with the scripted nature of 

the traffic in DARPA-98/99 and KDD-99, Kyoto2006+ used honeypots to collect real 

attack information and it injected traffic from real servers (a mail and DNS server) to 

create the non-attack traffic.  In order to label the traffic, the creators of the data used 

a combination of a network IDS, host anti-virus and a shellcode detection tool known 

as Ashula [10].  The use of the Ashula tool offers an interesting aspect in the 

Kyoto2006+ labeled set: it allowed the researchers to demonstrate how effective their 

detection scheme is at detecting malicious traffic for which traditional IDS and host 

anti-viruses did not have a signature. This concept supports the underlying hope 

behind many machine learning studies that the classifier can generalize to detect new 

and previously unseen forms of malicious data. 

There are significant issues with the Kyoto2006+ dataset. First, the manner in 

which the creators injected normal traffic is problematic. They assumed that all 

injected traffic can be classified normal because they “observed that there is few [sic] 

attack data even if the server has received cyber attacks” [10].  As we will 

demonstrate later in this paper, this assumption can have disastrous effects depending 
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the researcher’ activity of interest and the learning technique which they apply to the 

dataset.  Furthermore, the proportions of injected traffic and type of inject traffic is 

completely unrealistic.  The authors of the dataset report 50,033,015 normal network 

transactions and 42,617,536 malicious ones.  As previously discussed, in reality the 

actual amount of normal traffic is orders of magnitude more than the malicious 

traffic.  The “normal traffic” is limited to two hosted services and the management 

traffic to the servers.  It lacks any client behavior such as peer-to-peer that could have 

serious effects on a classification scheme.  These issues mean that any parametric 

learning approach will fail to generalize to any real-world network.  In addition to 

labeling issues, there is no consideration on how sophisticated attackers act on 

honeypots.  There is research among the attack community on how to detect 

honeypots and ways to exploit them in a stealth manner [12, 11]. This lack of 

consideration means that the automated architecture may fail to detect certain 

hackers, and would incorrectly label certain network transactions as benign.  It also 

undermines the previous assumption that the captured traffic is representative of all of 

the possible attacks that the network will see in the “wild.”  Another issue is that the 

Ashula tool is no longer available for download, and its parent website, www.secure-

ware.com, is down.  Their 2009 paper does not discuss Ashula’ inner workings.  

Without any conversation on how Ashula works, situations in which it may not detect 

a type of exploit, or how it can be defeated, researchers cannot accurately claim that it 

detects all instances.  Finally, other papers that used the Kyoto2006+ dataset have 

demonstrated that it may contain errors [1].  Without an enduring effort at curating 
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the dataset, when a researcher finds a labeling error, there is no mechanism to 

disabuse the dataset for future studies. 

Previous Semi-Supervised Learning Work  

Semi-supervised learning techniques are an emerging area of research in 

intrusion detection.  In one of the earliest works, intrusion detection is modelled as a 

partially observable Markov decision-making process (POMDP) and uses a semi-

supervised approach (Expectation Maximization to the learn conditional probability 

distributions) in order to classify legitimate and misuse user behavior in a UNIX 

terminal [12].  In [13], a co-training method for intrusion detection is applied to the 

KDD-99 dataset.  In [1], the authors explored the use of non-parametric graph-based 

methods (Laplacian Eigenmaps and Laplacian Regularized Least Squares) on the 

Kyoto2006+ dataset. One of the promising aspects of their approach is that the 

authors do not have to make any assumptions about the probability distributions of 

the traffic. The paper also made an assertion that semi-supervised techniques could be 

used in practical real world settings, where a system administrator could build his/her 

own mixed labeled dataset by auditing a portion of existing normal traffic and 

performing some penetration testing. This comment is one of the motivations for this 

study.  

Cluster-then-label (CTL) SSL techniques have been applied to other domains 

with success.  The authors in [14] used CTL techniques successfully in three-

dimensional character recognition, and [15] demonstrated success in classifying eight 

datasets from the UC-Irvine Machine Learning Repository.  [16] provided a 

theoretical analysis on situations where a CTL approach provides a better error bound 
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than a pure supervised classifier, and situations where CTL techniques cannot 

perform any better.  At the time of this thesis, there appears to be no application of a 

CTL approach to intrusion detection. 

Previous Scan Detection Work 

Numerous supervised learning and data mining studies have been applied to 

scanning.  [17] developed the Stealth Probing and Intrusion Correlation Engine 

(SPICE), which uses a Bayes network approach to compute the probability that a 

network flow record is a scan.  [18] developed a method based on sequential 

hypothesis testing (SHT). Their scheme, Threshold Random Walk, evaluates a 

probability ratio for each connection 
 rscanner

 rnon scanner
  per remote host, and performs SHT 

until it has seen enough connections to classify the host as a scanner or non-scanner 

based on two predefined thresholds. [19] proposed innovative clustering and mining 

technique to visualize scans and attack data. 

Simon et al., from UMN MINDS, presented an innovative data-mining 

approach to scan detection [20]. Their approach performs heavy preprocessing of 

network flow records, transforming them in to a dataset that consists of rich features 

before using a supervised learner. These features, such as the number of distinct 

internal IP addresses touched by a single external IP, intuitively correspond to 

characteristics of scans that are useful in distinguishing them from non-scan traffic.  

After preprocessing, the authors train a rule-learning algorithm known as Repeated 

Incremental Pruning to Produce Error Reduction (RIPPER). This thesis replicates 

their working using the same feature set and classifier in order to gauge the 
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effectiveness of their method and use it as a benchmark to evaluate the semi-

supervised technique.  
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Chapter 3: Method 

Supervised Classifier 

Rule-based algorithms, which follow an algorithmic paradigm similar to 

decision trees, are an easy to use family of algorithms for inductive inference.  In 

essence, these rule-based algorithms create a sequence of rules, where each rule 

attempts to cover and separate out as many instances of one class of data as possible.  

Different versions of algorithms vary in the heuristics that they use to select rules and 

the logic to prune rules to avoid overfitting.  The most significant drawback of rule-

based algorithms is their tendency to overfit to the dataset on which they were trained 

[21].   

RIPPER is one of the most popular rule-based classifiers, due to optimizations 

for fast runtime and pruning logic that minimizes overfitting effects [22].  It runs in 

 ( (        time, opposed to the popular decision tree algorithm C4.5, which runs 

in  (    time [21].  The resultant classifier RIPPER produces is intuitive to the 

human reader; it essentially is a series of “if-then” statements, which could be used in 

existing signature-based IDS. RIPPER can handle datasets that are not linearly 

separable.  It does not require a priori knowledge of the underlying statistical 

distribution of the dataset.  This fact allows research to avoid making erroneous 

assumptions.  In addition, it is robust to noise, both errors in classifications of the 

training instances and errors in the feature values that describe these instances [21].   

This property offers the user some latitude since building a flawless training set in 

NID is near impossible.  The pseudocode in Figure 4 explains RIPPER operations.  

Figure 5 explains the metrics and heuristics, which RIPPER uses. 
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Figure 4: RIPPER Pseudocode (adapted from [21] [22], [23]) 

 

Figure 5: RIPPER Metrics and Heuristics (Adapted from [22], [21]) 

Unsupervised Clustering  

  The unsupervised clustering method used in this thesis was k-means++.  K-

means++ is an optimized version of k-means.  It uses randomized seeding to increase 
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runtime performance (empirical studies have shown a performance speedup by factor 

2 to 10).  While finding the optimal clustering is NP-hard, k-means++ is guaranteed 

to be O(log(k)) competitive to the optimal solution [24].        

Semi-Supervised Method 

The experiments conducted in this thesis depart from the mainstream SSL 

approaches, which are either graph-based or based on a parametric mixture model, 

and explores “cluster-then-label” (CTL) SSL methods.  The overall intuition and 

assumption is that in a given domain similar instances tend to group together.  In this 

paradigm, first an unsupervised algorithm groups data points into clusters known as 

decision sets. Next, a supervised learning algorithm per cluster is trained on the 

labeled instances.  This supervised classifier is then transductively applied to the 

unlabeled instances within the decision set.  There are two ways to classify future 

instances. First, a CTL algorithm can map an instance to a decision set, then apply 

that set's supervised classifier.  Alternatively, the CTL algorithm can use a global 

classifier.  This global classifier is built after performing an additional iteration of 

supervised learning during the build portion of the algorithm (see Figure 6).  This 

thesis evaluated both variants, primarily focusing on the former. 
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Figure 6: Cluster-Then-Label Algorithm 

CTL offers several advantages over the other approaches. First, although CTL 

is similar to mixture-models, it is fundamentally more general.  It makes no 

assumption what the underlying distribution is for the populations of benign and 

malicious. As Zhu and Goldberg assert, if a poor model is assumed it could have 
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deleterious impact on classification [25].  Hu et al. demonstrated that network traffic 

and in particular malicious traffic can be heavy-tailed, which may exacerbate poor 

choices in models [26].  In addition, since this experiment injects malicious traffic, 

any supposition on a distribution would be fundamentally flawed and skewed from 

the true distribution.  

While there may be some similarities in mathematical reasoning between CTL 

decision sets and the manifold regularization of graph-based methods, the clustering 

methods employed in the CTL approach are mathematically simpler and 

computationally less expensive than the graph-based methods. As Goldberg et al. 

suggest, it follows a “wrapper” design paradigm, where multiple and previously 

established techniques can be used for the unsupervised and supervised steps of the 

algorithm without having to develop newer or more confusing techniques [14].  Since 

many of the machine learning and SSL algorithms are computationally expensive, a 

wrapper design paradigm allows the choice of optimized supervised and unsupervised 

implementations.  This flexibility enables CTL to process large datasets faster than 

other algorithms that have a greater runtime complexity.   

The need for an easy to interpret classifier goes beyond mere convenience.  

Some techniques like artificial neural networks (ANN) or support vector machines 

(SVM) may not offer much insight into what causes a particular instance to be 

detected.  It would be fallacious to subscribe to a “black box” mentality that assumes 

that once a classifier is in place it will continue to exhibit the same success rate.   
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Without insight into how something works, attackers could potentially run many 

variations of an attack against the same “black box” until they discover an undetected 

permutation.  Choosing a classifier that supports anti-forensic analysis is paramount. 

Cluster-then-label Analysis 

The purpose of this section is to provide theoretical background on situations 

where the CTL approach has a provably better error bound than a pure supervised 

approach.  In particular, this section will summarize Singh, Nowak and Zhu’s 

analysis of CTL error convergence rates.  This section will also highlight some of the 

implicit assumptions of the model that are subtle but have tremendous impact if not 

properly followed.   

Error Performance 

Singh et al.’s analysis provides the mathematical justification to why empirical 

evidence demonstrates that CTL appears to improve error performance in some cases 

but not in others.  Their core idea is based on a geometric understanding of how the 

labeled and unlabeled data are distributed.  In essence, if the individual clusters, 

which make a CTL decision set, are more discernable than the whole set of labeled 

data, then CTL SSL can yield higher accuracy rates than a pure supervised classifier.  

Figure 7 illustrates this concept; in portion in Figure 7a presents an omniscient view 

of two classes that exist in discernable dense clusters.  Unfortunately, the amount and 

distribution of the available labeled data in Figure 7b is not enough to accurately 

distinguish the boundary between the two classes.  Figure 7c shows that when 

unlabeled data is combined with labeled data, the boundary becomes distinct.   
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Figure 7: a) Omniscient view of two classes, b) the whole set of labeled instances, 

c) the set of labeled and unlabeled instances (Adapted from [16]) 

Singh et al.’s proof consists of two major parts.  In the first part, Singh et al. 

establish a lower bound on the separation distance between clusters in order for data 

points to be sufficiently distinguishable; i.e. margin necessary to cluster instances 

with high probability ( (   
 

 
 ) into the correct decision set without any additional 

knowledge.  Figure 8 shows this bound, which relates the margin between clusters, γ, 

to the average density within a cluster.   

 

Figure 8: Margin-cluster Density Relationship 

Using this density relationship, Singh et al. prove the error performance by comparing 

the CTL algorithm to a “clairvoyant supervised learner.”  The clairvoyant supervised 

learner assumes there exists a pure supervised learning algorithm that has the best 



 30 

 

possible knowledge of the data.  This clairvoyant learner is bounded by the 

underlying unavoidable error in the dataset, i.e. it cannot be improved.   

 

The authors then argue if a clairvoyant learner exists, then there is also a clairvoyant 

CTL SSL classifier for each set.  This clairvoyant CTL SSL classifier uses the same 

algorithm as the pure supervisory classifier, but instead of classifying instances for 

the entire dataset, the clairvoyant CTL SSL classifier only maps instances for its own 

cluster.  The error bound for the clairvoyant CTL SSL classifier is therefore the same 

as the pure supervisory classifier within that decision set. 

 

Singh et al. complete the proof by placing an upper bound on the accuracy of any 

CTL SSL classifier by showing how it is equivalent to the error of the clairvoyant 

CTL SSL classifier plus the potential error due to clustering mistake.   
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The immediate conclusion is that as more unlabeled data, m, becomes available, the 

probability of clustering errors decreases, hence the error due to cluster mistakes 

decreases.  For problem domains with discernable boundaries, this means that the 

CTL SSL classifier can approach theoretical limits of accuracy with more unlabeled 

instances.  Finally, Singh et al, also demonstrated that while certain cases a CTL 

approach cannot improve performance, using a CTL does not provable degrade 

performance either [16].      

Practical Issues 

 Despite this optimistic implication, there are a number of practical issues 

arriving from the fundamental assumptions of the CTL model.  First, this CTL 

approach assumes “good” clustering behavior, where the unsupervised method used 

conforms to the discernable decision set margin assumption.  Unfortunately, it is far 

from obvious whether the unsupervised method will conform to this assumption.  As 

[27] demonstrated, a poor choice of clustering can result in the following 

degenerative situation.  In Figure 9, there are four clusters that naturally exist in a 

population.  As Figure 10 demonstrates, the choice of clustering method uses the CTL 

algorithm to mistake the true decision sets and then trains on the incorrect set of 

labeled instances.  Here complete linkage clustering erroneously links two disjoined 

sets.  The resultant decision set will then train on inaccurate data.   
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Figure 9: An Example Population Consisting of Four Clusters (Adapted from 

[25])  

 

Figure 10: Hierarchical Clustering in Example Population (Adapted from [27]) 

The second issue is that the CTL algorithm assumes a “good” labeling 

distribution.  Typically, any supervised learning algorithm will require that the 

training dataset is independent and identically distributed (i.i.d.) from the underlying 
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population.  While random sampling can ensure that samples are drawn i.i.d. from a 

population, there is no guarantee that the CTL algorithm will have enough labeled 

instances per cluster to accurately train each decision set classifier.  In a population 

with features that follow heavy tailed distributions, there may exist clusters with little 

or no labeled data.  Furthermore, certain classes in a population exist at any extreme 

disproportion to the majority class.  Thus, any sampling method, if not 

comprehensive enough, may not fully capture the minority class of interest.  As 

Chapter 6 will demonstrate, this issue was encountered during the evaluation.  One of 

the promises of SSL is that less labeled information needs to be collected, but it is 

unclear exactly how much less is needed.  With these issues in mind, a researcher 

may not be able to tell a prior if a dataset has enough labeled data, thus practical 

implementation may be forced to overestimate the volume of labeled traffic. This 

sobering reality limits how much effort an SSL approach saves over a pure 

supervisory approach in a real world setting.   
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Chapter 4: Dataset 

Introduction 

 This chapter describes the intent and methodology used to create a labeled 

intrusion detection dataset.  First, the “ aradigm Development” section describes how 

this study created representative samples of stealth scans and the procedure by which 

those samples were vetted.  This chapter also explains the network set-up, 

implementation choices, and auditing procedures in an effort to be as transparent as 

possible.  This transparency is necessary, because the way the dataset was built could 

potentially influence the results of any study that uses it. 

Paradigm Development 

While it is common knowledge that advanced attackers will perform “slow-

and-low” stealthy scans, there is no authoritative source that exactly prescribes the 

perimeters by which attackers scan.  To develop a set of stealth scan profiles, I 

worked with a small group of four students who are members of the University of 

Maryland Cyber Security Club.  All have experience in ethical hacking and 

penetration testing; two of the students have professional experience.  Over a period 

of five weeks, we trained on the open-source scanning tool, nmap, and dissected how 

to best scan a network without being detected by traditional means.  Nmap is the most 

popular scanning tool in the security community, and it allows an unparalleled 

amount of control in setting parameters for scans.    

The profiles were developed with intent to determine how a well-resourced 

attacker would scan a network given a specific objective, a set of exploits to common 
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services and an operational window of no longer than month.  The one-month 

window was chosen because it corresponds to the time between major patch releases. 

Thus, an attacker could have an entire month to scan a target before it changes. Using 

nmap, these profiles were tested against an open-source instance of an IDS, Snort.  

Snort was set with the most stringent port scanning thresholds in order to ensure that 

the attack would be representative of a stealth scan.  In addition, small sets of the 

profiles were tested against the University's commercial intrusion prevention system 

(IPS).  

Not surprisingly, the scan profiles did not have to deviate significantly from 

default nmap settings to evade the IDS/IPS.  We investigated the two broad 

categorizes of port scanning based on the scan's intended target footprint: horizontal 

scans and vertical scans.  The main parameters of interest were the target ports and 

inter-packet timing.  We determined that it is possible to infer with good confidence 

detailed host information while sending a minimal amount of port probes over a long 

time interval.  Table 3 shows the tradeoff between scanning only the most common 

ports and the percentage of open services discovered.  Although the expected 

percentage of discovered open services may not equal 100%, the scans we developed 

have enough information to start planning how to exploit the services that are 

available.  Table 4 shows typical settings that were used to evade IDS detection.  

Additionally, data padding was used in some cases to further obscure detection. 
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Table 3: Percentage of Services Discovered (adapted from [4]) 

Expected discovery of open 

services  

k most popular TCP 

Ports 

k most popular UDP 

Ports 

10% 1 5 

20% 2 12 

30% 4 27 

40% 6 135 

50% 10 1075 

60% 18 2618 

70% 44 5157 

80% 122 7981 

85% 236 9623 

90% 576 11307 

95% 1558 13035 

99% 3328 15094 

100% 65536 65536 

 

Table 4: Typical Port Scan Settings 

 Typical Port Settings Typical Timing Settings 

Vertical 

Scans 

Top port (80), top 10 ports, top 

20 ports, top 100 ports, all 

well-known ports 

Min delay between packet {300s, 

350s, 400s}, max delay between 

packet {400s, 500s, 600s} 

Horizontal 

Scans 

Top port (80), top 3 ports, top 

10 ports, top 20 ports, top 100 

ports 

Min delay between packet {300s, 

350s, 400s}, max delay between 

packet {400s, 500s, 600s} 

 

In addition to vertical and horizontal scans, we investigated more advanced 

forms of scanning.  We included some instances of coordinated scans, where multiple 

scanners scan a set of targets.  In this paradigm, each scanner IP had a portion of the 

overall target network's IP addresses and ports.  This diffusion makes it harder for a 

human analyst to see the typical attack scheme in network logs.  We also investigated 

idle or “zombie” scans, where attackers use internal hosts to the target network.  In 

this case, we had trouble reliably scanning the target networks.  The limited literature 

on idle scanning suggests that this experience is not uncommon.  The idle scan model 
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requires zombie hosts to have a quiet traffic profile, an obsolete TCP/IP stack 

implementation, and reliable uptime [28].  Consequently, we did not include idle 

scanning in this study. 

Network Configuration 

With profiles developed, we scripted a network of 32 virtual machines (VMs) 

to scan two Class C subnets of a real production network and instrumented it to 

collect network flow records, pcap and Snort alerts (see Figure 11 below).  Although 

the experiment focused on network flow records, the other sources of information 

provided additional insight in case some inconsistency was found.  These VMs 

created two datasets from November through December 2013.   

Figure 11: Network Setup 

Table 5 5, 6, and 7 summarize the characteristics of this dataset database.   
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Figure 11: Network Setup 

Table 5: November Dataset Characteristics 

Duration 30  

Total Number of Raw Flows 12,986,232 97.367% 

Total Number of Injected Vertical Scan 

Flows 

4,868 0.036% 

Total Number of Injected Horizontal Scan 

Flows 

346,331 2.597% 

Total Number of Flows  13,337,431 100.000% 

   

Total Number of Raw Records 2,340,394 98.782% 

Total Number of Injected Vertical Records 4,308 0.182% 

Total Number of Injected Horizontal 

Records 

24,559 1.037% 

Total Number of "Noise records" 29,323 1.238% 

Total Number of Adjusted Attack Records 58,190 2.456% 

Total Number of Adjusted Raw Records 2,311,073 97.544% 

Total Number of Records 2,369,263 100.000% 

 

Table 6: December Dataset Characteristics 

Duration 9 Days  

Total Number of Raw Flows 5,025,058 93.143% 

Total Number of Injected Vertical Scan 

Flows 

35,349 0.655% 

Total Number of Injected Horizontal Scan 

Flows 

334,581 6.202% 

Total Number of Flows  5,394,988 100.000% 

   

Total Number of Raw Records 1,004,382 95.600% 

Total Number of Injected Vertical Records 24,093 2.293% 

Total Number of Injected Horizontal 

Records 

22,134 2.107% 

Total Number of "Noise records" 17,792 1.693% 

Total Number of Adjusted Attack Records 64,019 6.094% 

Total Number of Adjusted Raw Records 986,590 93.906% 

Total Number of Records 1,050,609 100.000% 
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Table 7: January Dataset Characteristics 

Duration 28 Days  

Total Number of Raw Flows 24,839,005 98.410% 

Total Number of Injected Vertical Scan 

Flows 

19,085 0.076% 

Total Number of Injected Horizontal Scan 

Flows 

382,349 1.515% 

Total Number of Flows  25,240,439 100.000% 

   

Total Number of Raw Records 1,672,186 98.362% 

Total Number of Injected Vertical Records 14,384 0.846% 

Total Number of Injected Horizontal 

Records 

13,471 0.792% 

Total Number of "Noise records" 35,732 2.102% 

Total Number of Adjusted Attack Records 63,587 3.740% 

Total Number of Adjusted Raw Records 1,636,454 96.260% 

Total Number of Records 1,700,041 100.000% 

 

Data Preprocessing 

Feature Set 

The University of Minnesota (UMN) Minnesota Intrusion Detection System 

(MINDS) method incorporates considerable expert knowledge as well as domain-

specific knowledge in producing the processed dataset.  Tables 8, 9, 10 and 11 

enumerate the features that were calculated for this experiment, which was adapted 

from the UMN MINDS method.  The evaluation used these records, which consisted 

of a key (tuple of source ip, source port and destination port), plus the encoded 

feature set.  

Table 8: Record Key 

srcip   External IP, part of key 

srcport   Source port of external host, 0 for multiple source ports, part of key 

dstport   Destination port port of the internal host, part of key 
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Table 9: Features of Basic Flow Characteristics 

Feature Description 

ndstip   Number of distinct internal IPs touched by the srcip  

ndstports   Number of distinct interal ports touched by the srcip  

avgdstips   Number of distinct internal IPs averaged over all destination ports 

touched by the srcip. 

maxdstips Maximum number of distinct internal IPs over all destination ports that 

the srcip touched 

 

Table 10: Features over All Destination Ports 

Feature   Description    

server ratio   Ratio of distinct internal IPs that provided the service that the 

srcip requested to ndstip.  

client ratio   The ratio of distinct internal IPs that requested service from the 

external IP to ndstip.   

nosrv ratio   The ratio of distinct internal IPs touched by the srcip that offered 

no service on dstport to any source during the observation period 

to ndstip.  

dark ratio   The ratio of distinct internal IPs that has been inactive during the 

experiment window to ndstip.   

blk ratio   The ratio of distinct internal IPs that were attempted connections 

to by the scrcip on a blocked port during the experiment to 

ndstip. 

p2p ratio   The ratio of distinct internal IPs that have actively participated 

in P2P traffic during the experiment window. 

 

Table 11: Feature on Individual Destination Ports 

Feature   Description    

i_ndstips   Number of distinct internal IPs touched by the srcip and specific 

dstport 

i_none ratio   Ratio of distinct internal IPs touched by the srcip and specific 

dstport that did not offer the service requested to i_ndstips 

i_dark ratio   Ratio of distinct internal IPs touched by the srcip and specific 

dstport that did not were not active to i_ndstips 

i_blk  ratio   Ratio of distinct IPs touched by the srcip to a specific specific 

blocked dstport to i_ndstips  

 

 Two implementation choices in the encoding of the feature set above could 

have had potential impact on this study.  First, the UMN method has an implicit 
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encoding of time.  The choice is up to the implementer when to calculate the statistics 

and how far back to calculate the statistics, based on the availability of storage and 

computation resources. Their implementation calculates the record every 20 minutes 

for up to a period of 3 days.  The size of their defended network limited how many 

days the UMN researchers could reasonable process in a given time.  As Simon et al. 

suggest, the more days evaluated, the more accurate the method will be [20].  This 

thesis evaluates the performance of the detection scheme using an evaluation window 

of 30 days, given the nature of the types of scans evaluated.  This choice seems 

reasonable given the advances in storage and processing big datasets; however, a 

practical implementation may need a significant amount of optimizations if the 

network is large. 

Second, since every record key consists of a source IP address, there was a 

potential for the VMs, which were constantly scanning, to have exaggerated statistics.  

As a result, each complete scan set from the 32 VMs was relabeled with a unique 

source IP, so that every scan attack seemed to come from a new IP.  This choice may 

be slightly artificial, since in the real world, there is potential for IPs to repeat scans 

on the same subnet.  However, this choice does represent an attack that is harder to 

distinguish than a scan attack that repeatedly targets the same network and has large 

statistics on the feature set above.      

Data Auditing 

All network flow records and processed records were entered into a 

PostgreSQL database, which enabled manual verification.  Network flow records and 

processed records were stored in separate tables based on whether they were from the 
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network of honeypots or the production network.  All records from the network of 

honeypots were labeled “scanner;” all records from the production network were 

initially labeled “non-scanner” and then scrutinized for error.  In particular, several 

different queries were used to better check for labeling errors. These queries included 

manually verifying the most frequent external IP addresses, checking external hosts 

that initiated flows with a ndstip feature greater than the number of active internal 

hosts during evaluation period, and checking external hosts that communicated to 

many well-known ports on the same internal host.  By combining the processed 

record with a filtered network flow table, many scans that were previously unlabeled 

became evident in the production set.  In Table 5, 6 and 7, the noise records are those 

records that were relabeled.  Notice that in November, the amount of noise records 

actually exceeds the injected traffic.   

Figure 12 shows an example of a scan that the queries above catch.  By some 

reorganization of the flow records, it is clear there is horizontal scan from one source 

IP to an entire subnet looking for hosts that have Remote Desktop Protocol (RDP) 

services running.  RDP is an important Microsoft protocol that allows users to 

remotely access and control their PCs, and it is a popular target for malicious 

attackers that are seeking to gain quick control of a poorly administered computer.  

Records for the scanner IP address (before it was encrypted) reveal that it belongs to 

one of the major ISPs on the East Coast and is most likely a home user.  Based off 

this information, there is no logical explanation why one home user would be seeking 

that many RDP connections other than having malicious intent.   
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Figure 12 Embedded Scan (source and target IP obscurred and masked)  
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Chapter 5:  Experiment 

Experimental Parameters 

This thesis used a series of trials to evaluate the performance of the UMN 

MINDS algorithm as well as the CTL algorithm.  The evaluated implementation of 

CTL used k-means++ with simple Euclidian distance and RIPPER for the supervised 

classifier with two rounds of optimization.  Two trials were executed using only the 

control algorithm: one with the network of honeypots traffic naively injected and one 

with records adjusted. These trials demonstrate the effect that noise may have when 

building a classifier with injected attack data.  Next, the datasets were broken into sets 

of randomly selected labeled instances mixed with unlabeled instances.  The 

motivation behind creating these sets is to compare the CTL algorithm performance 

against a pure supervisor and to illustrate how much labeled data would be needed to 

achieve acceptable levels of accuracy.  Trial I attempts to show how a practical 

approach a security administrator might take to labeling a dataset, for instance from a 

company network.  In this setting, the administrator combines penetration testing data 

with the existing logs.  The administrator would have audited only the most frequent 

hosts, which he/she would label as scanner or non-scanner as appropriate.  In addition 

to varying the proportions of labeled traffic, we varied the number of clusters across 

all CTL implementations 

Tables 12, 13 and 14 capture the the experimental parameters that were used 

in each trial for the test and control cases. 
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Table 12: Experimental Parameters over Supervised Trial Cases 

Trial Training  set Test set Number of 

labeled 

Instances  

Number of 

labeled attack 

Instances 

Number of 

distinct Ips 

Total Size 

of Training 

set 

A NOV; fully 

labeled 

10-CV; Adjusted 

NOV full 

2,369,263 28,867 287,974 2,369,263 

B Adjusted NOV; 

fully labeled 

10-CV 2,369,263 58,190 287,974 2,369,263 
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Table 13: Experimental Parameters over CTL Trial Cases 

Trial Training  set Test set Number of 

clusters 

evaluated 

Number of 

labeled 

Instances  

Number of 

labeled 

attack 

Instances 

Number 

of 

distinct 

Ips 

Total Size 

of 

Training 

set 

C 75% randomly 

selected labeled 

instances, mixed 

from NOV 

 DEC, fully 

labeled;  JAN, 

fully labeled 

{2-90} 1,781,360 43,700 234,221 2,369,263 

D 50% randomly 

selected labeled 

instances, mixed 

from NOV 

DEC, fully 

labeled;  JAN, 

fully labeled 

{2-90} 1,194,064 29,479 175,645 2,369,263 

E 25% randomly 

selected labeled 

instances, mixed  

from NOV 

DEC, fully 

labeled;  JAN, 

fully labeled 

{2-90} 607,608 15,160 108,284 2,369,263 

F 10% randomly 

selected labeled 

instances,  mixed  

from NOV 

DEC, fully 

labeled;  JAN, 

fully labeled 

{2-90} 254,952 6,352 57,895 2,369,263 

G 5% randomly 

selected labeled 

instances, mixed  

from NOV 

DEC, fully 

labeled;  JAN, 

fully labeled 

  137,755 3,515 36,693 2,369,263 

H 1% randomly 

selected labeled 

instances, mixed  

from NOV 

DEC, fully 

labeled;  JAN, 

fully labeled 

{2-90} 43,183 1,228 15,333 2,369,263 

I top 30 benign, top 5 

scanners, mixed  

from NOV 

DEC, fully 

labeled; JAN, 

fully labeled 

{2-100} 302,300 32,303 35 2,369,263 

J 1% randomly 

selected labeled 

instances plus 

injected labeled  scan 

traffic, mixed  from 

NOV 

DEC, fully 

labeled; JAN, 

fully labeled 

{2-90} 82,718 40,764 15,356 2,369,263 
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Table 14: Experimental Parameters over CTL Control Cases 

Trial Training  set Test set Number 

of 

clusters 

evaluated 

Number 

of labeled 

Instances  

Number 

of 

labeled 

attack 

Instances 

Number 

of 

distinct 

Ips 

Total Size of 

Training set 

C_control 75% randomly 

selected only 

labeled instances 

from NOV 

 DEC, fully 

labeled;  JAN, 

fully labeled 

N/A 1,781,360 43,700 234,221 1,781,360 

D_control 50% randomly 

selected only 

labeled instances 

from NOV 

DEC, fully 

labeled;  JAN, 

fully labeled 

N/A 1,194,064 29,479 175,645 1,194,064 

E_control 25% randomly 

selected only 

labeled instances  

from NOV 

DEC, fully 

labeled;  JAN, 

fully labeled 

N/A 607,608 15,160 108,284 607,608 

F_control 10% randomly 

selected labeled 

instances,  

mixed  from 

NOV 

DEC, fully 

labeled;  JAN, 

fully labeled 

N/A 254,952 6,352 57,895 254,952 

G_control 5% randomly 

selected only 

labeled instances  

from NOV 

DEC, fully 

labeled;  JAN, 

fully labeled 

N/A 137,755 3,515 36,693 137,755 

H_control 1% randomly 

selected only 

labeled instances  

from NOV 

DEC, fully 

labeled;  JAN, 

fully labeled 

N/A 43,183 1,228 15,333 43,183 

I_control top 30 benign, 

top 5 scanners, 

mixed  from 

NOV 

DEC, fully 

labeled; JAN, 

fully labeled 

N/A 302,300 32,303 302,300 302,300 

J_control 1% randomly 

selected labeled 

instances plus 

injected labeled  

scan traffic, 

mixed  from 

NOV 

DEC, fully 

labeled; JAN, 

fully labeled 

N/A 82,718 40,764 15,356 82,718 

 

Experimental Evaluation 
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Each trial was evaluated with the following measures: 

 

 

Figure 13: Performance Measures 

 The true positive (TP), true negative (TN), false positive (FP), and false 

negative (FN) are given by Table 15.  Recall, also known as sensitivity, corresponds 

to the relative frequency of correctly classified scanner instances.  Precision captures 

the proportion of correctly classified scanner instances.  The F-measure captures the 

balance between recall and precision, so that an ideal classifier that has a low rate of 

false positives and false negatives will achieve a F-measure close to one.  It is worth 

noting that the ROC score (sensitivity versus false positive rate), which is popular 

measure, was not calculated.  We did not use the ROC score because the balance 

between the true positive rate and false positive rate was not a monotonic function of 

some threshold in this experiment.  Thus, ROC curves did not add any meaningful 

insight into a classifier’s performance beyond what was already captured by the 

metrics above [29].       
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Table 15: Classification Matrix (Adapted from [20]) 

 Classified As Scanner Classified as Not Scanner 

Actual Scanner TP FN 

Actual Non-scanner FP TN 

 

McNemar's test was used for testing statistical significance [30].  Unless 

explicitly stated below, all trials in this test showed statistical distinction from their 

control, with the probability of Type I error < 0.5% . 

CTL Implementation 

There is no off-the-shelf program with CTL already implemented.  I 

implemented the main portions of CTL in Java, which enabled the use of the Weka 

machine learning library.  Weka has implementations of RIPPER and k-means++, 

and a well-documented API.   

Tests were executed on a 64-bit virtual machine with 16 GB of RAM, 8 x 

2643 MHz CPUs.      
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Chapter 6:  Results and Discussion 

The first two trials demonstrate that naively injected traffic into a dataset 

without verification can have disastrous results. In Table 16, the first iteration of Trial 

A using the unrectified NOV dataset showed high accuracy in a 10 fold cross-

validation test.  Using Trial A's classifier, it was then evaluated against the adjusted 

NOV dataset, where it produced 29,317 more false negatives. RIPPER is theoretically 

tolerant of noise, but this property has limits.  If the amount of training data that is 

mislabeled as “normal” is on the order of the injected attack traffic, then the 

algorithm will overfit to the injected traffic.  

Table 16: Supervised Trials 

 Spec Acc Precision  Recall/sens Fm 

Trial A, 10-CV 0.999998 0.999990 0.999861 0.999307 0.999584 

Trial A, Adjusted 

NOV full 

0.999998 0.987616 0.999861 0.495807 0.662898 

Trial B 1.000000 0.999992 1.000000 0.999656 0.999828 

 

The general trend in the results from trials C-J is that the CTL algorithm is 

more sensitive to the choice in number of clusters than the theoretical background 

would suggest (see Figure 14).  Trials C-H and J in particular exhibited this behavior 

(Figures 14, 15, 16, and 18).  The CTL implementation consistently failed to 

outperform the control when the number of clusters was not ideal, and in some cases 

the CTL performance was marginally poorer.  For most trials, the ideal number of 

clusters is around 50.  In this range (30 to 70), the CTL method will typically 

outperform the pure supervisory algorithm in all measures.  For trials C-H and J this 

performance increase was marginal compared to the control; for trial I (Figure 17) the 
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performance increase was significant.

 

Figure 14: Performance of CTL Classifiers with Different Amounts of Labeled 

Data 
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Figure 15: Improvement from December Trial H (1 % Labeled) 

 

Figure 16: Improvement from December Trial C(75% labeled) 
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Figure 17: Improvement from December Trial I (top 30 non-scanner, top 5 

scanners labeled) 

 

 

Figure 18: Improvement from December Trial J (1 % random with injected 

attack traffic labeled) 
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When the cluster assignment is not ideal, the CTL algorithm typically has 

poor sensitivity, therefore a high false negative rate, compared to the control.  The 

high false negative rate is primarily due to inherent disproportion between scan and 

non-scan classes.  Even though the sampling method conformed to the i.i.d. 

imperative, because such a small percentage of scan traffic is present in the dataset, 

the sampling procedure did not capture enough instances to accurately train each 

decision set classifier.  To illustrate this phenomenon, Figure 19, 20, and 21 show the 

number of instances of each class label from a 1% randomly selected training set and 

from a full month test set.   

 

 

Figure 19: Proportions of Training and Test Set Traffic per Cluster 
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Figure 20: Proportions of Training and Test Set Scan Traffic per cluster 

 

Figure 21: Proportions of Training and Test Set Scan Traffic per Cluster (Scaled 

Between 0 To 2500) 

It becomes clear in Figure 21 that there are certain clusters in the training set 

that never received a sufficient amount of labeled scan traffic for RIPPER to work 

properly.  Table 17 shows that there are a few clusters that experience little to no 

scans in the training set but experience a high number of scans in the test set.  Since 

RIPPER is seeking to separate out the minority (scan) class on its distinguishing 

features, if RIPPER does not train on enough representative minority class samples, 
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the algorithm will produce a large amount of false negatives.  While it is obvious that 

any supervised algorithm performs better with more training data, since the 

proportion of normal traffic is much greater than the proportion of attack traffic, 

simple sampling is not enough.  In situations where the number of clusters is small, it 

may actually be better to inject more attack traffic than what occurs at natural 

proportions.  This skewing of the data set helps to induce the proper bias for the 

classifier.  Finally, if there are too many clusters, the false negative rate also becomes 

high.  This problem is caused by the CTL algorithm subdividing an ideal decision 

cluster into multiple subpar clusters.  Since the subpar clusters have little labeled 

instances, their internal cluster classifier may default to majority voting.  Any future 

instance will be labeled with the majority class label (i.e. non-scanner); therefore, 

subdividing an ideal decision cluster may result in unlabeled scanner instances being 

improperly classified as non-scanner.   
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Table 17: Number of Scans Per Cluster in Test and Training Sets  

Cluster Number of labeled Scan instances in the 

training set 

Number of Scan instances in the 

test set 

1 14 668 

2 0 0 

3 0 0 

4 0 0 

5 0 20 

6 1 106 

7 0 0 

8 442 8310 

9 0 0 

10 0 0 

11 0 0 

12 37 3046 

13 0 0 

14 0 0 

15 0 0 

16 0 0 

17 0 0 

18 0 0 

19 75 3623 

20 0 0 

21 0 0 

22 0 0 

23 0 0 

24 0 0 

25 0 0 

26 291 22634 

27 361 19248 

28 0 0 

29 7 535 

30 0 0 

 

As confirmation of the effects of injecting more scan traffic, trial J (Figure 18) 

consists of a mixed data set comprised of a random selection of 1% of the labeled 

NOV traffic and all the labeled traffic from 23 dedicated scanners (both the injected 

scan records and records that were discovered in the dataset during auditing).  While 
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trial J ran with a lower false negative rate, it is still sensitive to the choice of cluster 

numbers.    

Despite only showing marginal performance gains in trial C-H and J, trial I 

showed more promising results for a real world implementation.  Here the 

performance gains were significant.  Before the trial, I conjectured that this choice of 

the top 30 I  addresses for the “normal” labeled portion may skew the classifier.  

Most of the IP addresses on the targeted subnet are servers, but in the network flows 

associated with the top 30 IP addresses, the UMD internal hosts are primarily acting 

as clients.  Surprisingly, the choice of top 30 benign IP addresses does not skew the 

data much in the CTL approach.  While there was no significant impact in this study, 

this choice may affect another set of malicious activity in an unintended way.  

However, this technique does offer hope that in a practical implementation a security 

administrator would only have to audit a small amount of the most frequently seen IP 

addresses in order to build an adequate classifier. 

Interestingly, the supervised classifier in each cluster has fewer rules when the 

number of clusters increases.  For implementations with the largest number of 

clusters, the decision set supervised classifier is just majority voting, i.e. traffic gets 

labeled with the label of the class that makes up the majority of that cluster.  This 

behavior reinforces the idea the data for this attack type behaves “nicely” and 

naturally occurs in close-nit clusters, for the optimal k.  A practical real world 

implementation could exploit the natural clustering by calculating a large number of k 

clusters, and then labeling each centroid with the majority class label.  Future 
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instances could then be classified using a nearest neighbor search on the cluster 

centroids.   

Some analysis was conducted to assess the impact that domain-specific 

knowledge has on classification accuracy.  Some of the features require extensive 

encoding of a priori knowledge such as the set of block ports per host.  Ideally, smart 

feature selection could still have good performance without extensive amounts of 

overhead.  While some initial research showed potential, the analysis was halted 

because of some inherent limitations.  First, in the January dataset, there is a spike in 

the prevalence of cloud services that use protocols communicating on multiple 

registered ports (1024 < registered ports < 30k).  This spike makes it difficult to 

determine if vertical scans are being performed on certain hosts without logic that 

checks if that port on a host is open, closed or filtered.  Furthermore, it started to 

become apparent that rules the RIPPER was learning rules that were specific to the 

evaluation network.  For instance, one of the rules RIPPER developed accurately 

capture the number of distinct IP addresses that were active on the subnet during the 

evaluation window, but this number may not generalize to another subnet with a 

different distinct number of IP addresses.  While the domain-specific knowledge 

requires some overhead, the way the statistics are calculated do allow it to generalize 

better to other subnets.       

There are some minor issues that are network specific.  On our test network, 

the network logs time stamps did not always provide the necessary accuracy to state 

which external IP was a server or a client.  The router appears to arbitrarily order 

complimentary network flows with identical timestamps; therefore, our 
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implementation defaulted to labeling external IP addresses as clients when the time 

stamps were equal and the external port was outside the well-known and registered 

range.  This way of handling identical time stamps could introduce noise, and the 

approach described in this thesis could exhibit better performance on more accurate 

logs.  Also, this lack of fidelity weakens distance measures.  In every situation, where 

an external host cannot be deterministically declared as a client or server, the 

implementation defaults to client.  As a result, certain statistics like client ratio, have 

few nonzero entries.  A high occurrence of a default value will make the Euclidean 

distance between two disparate instances seem smaller than if the distance was 

calculated with the feature was omitted.       

The performance of trial A and B exhibited better performance than what was 

originally reported in the UMN MINDS study.   This difference is most likely due to 

our study using a 30-day evaluation window.  Also, this study used two focused 

subnets with minimal peer-to-peer traffic as opposed to the UMN study which used 

records from the entire campus.   

Unfortunately, the base-rate fallacy still limits an adoption of this approach. 

While some iterations did achieve an accuracy that may be acceptable (> 99.5%), 

most iterations did not and a user of this approach would have to perform extensive 

evaluation to find the optimal number of clusters.  In addition, auditing the existing 

traffic for the presence of noise to a specific attack type requires sizable analysis.  For 

scanning, it is verbose enough to identify after some initial processing.  Other attack 

paradigms may not be so accommodating. Without this extensive auditing, the 

accuracy may fall to a level where the base-rate fallacy prevents its use.   
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Finally, a pleasant surprise came from a mistake in the way one of the datasets 

was created.  When creating the mixed label set for Trial J, the original test did not 

use the correct file with both labeled and unlabeled instances.  The CTL 

implementation was executed on a dataset set that on only contained labeled data 

(Figure 22).  In this context, this classifier is not acting in as a semi-supervised 

learner but as a two-stage supervised classifier: clustering on the labeled instances in 

the first stage and pure supervised learning within the clusters in the second.  This 

two-stage classifier exhibited high performance across all numbers of clusters.   

While a full analysis of this approach is beyond this thesis, one potential explanation 

that RIPPER is experiencing a performance gain in choosing how to divide the 

instances based on the feature values.  One way to interpreted RI  ER’s output is as 

a function that maps an instance based on a series of conditional probabilities.  

RIPPER uses a greedy algorithm to select dividing points in the values of a feature’s 

domain.  In most implementations there appears to be no advanced statistics on 

continuous values, just sorting and selection.  When restricted to subsets of the 

instances, RIPPER may be better able to learn dividing points since there is less likely 

to be variance and skewness in the range of a feature’s values within a cluster.  A 

two-stage classifier offers hope that rule-based and decision tree algorithms can be 

used in domains like intrusion detection where perfect knowledge of underlying 

distributions is often infeasible.    
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Figure 22: Performance of a Two-stage Classifier  
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Chapter 7: Conclusions 

This thesis illustrated how CTL SSL algorithms can build classifiers with 

comparable accuracy with a fraction of the labeling effort as traditional supervised 

learning, provided the number of clusters is ideal.  Performance gains vary, but in 

general the trend is that at the ideal cluster value they will do better than the 

supervised counterpart.  While lending promise to security researchers, enthusiasm 

for SSL needs to be tempered with consideration for practical issues such as noise in 

the normal traffic.  Poor clustering can actually slightly degrade performance.  

Careful consideration should also be given for the choice unsupervised and 

supervised learners and their parameters.  

There are numerous avenues for future work.  First, a comprehensive 

evaluation of CTL using other supervised and unsupervised learning methods with 

different heuristics and distances measures should be performed.  The choice of 

RIPPER was driven by the need for interpretable results, speed, and comparison to 

existing measures. The performance gain for RIPPER may not be as pronounced as it 

is for other algorithms.  The theoretical analysis suggests that the CTL algorithm 

should have a markedly better performance than a pure supervised algorithm given 

enough unlabeled data.  That being stated, RIPPER is not as constrained as other 

approaches, such as SVM.  It may stand to reason that an application that lends itself 

to SVM or other linear discriminative methods may have better performance using a 

CTL approach.   

For unsupervised clustering, the Euclidean distance was the only distance 

measure evaluated here.  The Euclidean distance does not always perform the best.  
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Certain low variance features, like client ratio, weaken un-weighted measures of 

distance.  Thus, there is potential when using Euclidean distance measures in a set 

with a large number of features or many similar valued features that all instances may 

appear close.  In this situation, other weighted distances and compensated distance 

measures can account for features where the domain lacks variance or have missing 

values.  These techniques might be more appropriate here.        

While initially a mistake and outside the scope of this thesis, a two-stage 

approach shows promise.  In particular, it may be better able to handle imbalanced 

datasets or datasets with proportions of classes that deviate from the natural 

population.  A two-stage approach warrants further investigation.      

Finally, this approach should be evaluated on other attack paradigms and 

datasets to see how the traffic characteristics of different attacks affect detection in 

network flow data.  Scanning produces many network flow records; so even before 

preprocessing, there are many instances within a dataset to train a machine learning 

algorithm.  Other sets of activity may prove too difficult to detect accurately without 

additional information sources.  Related to this study, more research should focus on 

how evidence of scanning can be used in conjunction with other evidence to detect 

other sets of activities.  While Lane’s work in modelling  OMD  in order to detect 

UNIX terminal misuse is a start, a multi-disciplinary approach should cover detection 

for all know threat frameworks [12].  An advanced hacker conducts scanning in a 

radically different manner than the way a worm conducts its automated scans, so 

belief networks should be built according to the know behavior of threats.        
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