
 

 

 

 

ABSTRACT 

Title of Dissertation: COMPARATIVE AND COMPUTATIONAL 
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Derrick Edward Wood, Doctor of Philosophy, 2014 

 

Directed by: Professor Steven L. Salzberg 

Department of Computer Science 

 

Through the study of genomic sequences, researchers are able to learn much 

about the workings of life. As sequencing technology has improved over the past 

decade, the number of genomes that have been assembled has grown 

exponentially, and the amount of sequence generated by sequencing machines can 

easily number in the billions or even trillions of nucleotides for a single project. 

This rise in the amount of information present requires informatics approaches to 

correctly and efficiently analyze the data. One common approach has been to use 

comparative methods, which use sequence similarity to infer functional or 

evolutionary relationships between sequences. This dissertation uses comparative 

methods to improve existing records of genomic data, and introduces a novel 

computational approach to the problem of taxonomic sequence classification. 

The first part of this dissertation uses two approaches involving pairwise and 

multiple sequence alignments to find and correct errors in the public records of 

microbial genomes. Through alignment to sets of genes with known function, we 



 

 

show that thousands of genes have been mistakenly omitted from our public 

records. Our analysis of these genes shows a tendency for short genes to be 

omitted, and reveals that genes are more frequently omitted by organizations with 

less experience in annotating genomes. We also use multiple alignments of 

protein sequences to improve the annotation of start positions of genes, in some 

cases restoring hundreds of nucleotides to the genes’ records. Through analysis of 

our results, we also found a link between a high use of rare start codons and a 

high rate of erroneously annotated start sites. 

The final part of this dissertation presents a method involving exact alignment of 

short sequences to perform rapid taxonomic sequence classification. By using the 

existing concept of minimizers to increase CPU cache utilization, we have created 

a tool capable of performing taxonomic classification with a sensitivity that is 

comparable to existing methods, a precision that surpasses all existing methods, 

and a speed that is over 900 times faster than the fastest existing classification 

approach. 
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1 Introduction 

1.1 Background 

1.1.1 DNA and sequencing technology 

Within the cells of all living organisms are one or more molecules of 

deoxyribonucleic acid (DNA), and each molecule of DNA consists of two strands 

of nucleotides. The 4 nucleotides of DNA are adenine (A), cytosine (C), guanine 

(G), and thymine (T). The two strands of nucleotides are joined together by 

hydrogen bonds between the nucleotides, and a bonded pair of nucleotides is 

often referred to as a base pair (bp). In normal conditions, adenine will only bond 

with thymine, and cytosine will only bond with guanine; this means that the 

sequence of nucleotides on one strand of DNA can be determined by the sequence 

on the other strand. The sequence of an organism’s DNA is the organism’s 

genome, and that sequence provides genetic information that guides the 

organism’s development. 

Analysis of an organism’s genome often involves whole genome shotgun 

sequencing, where DNA is broken into many fragments. Each fragment is then 

examined by a sequencing machine, which reports the sequence of the fragment 

with an error rate that varies between machines [1]; these sequences are called 

reads. The read length that can be obtained varies depending on the type of 

sequencing machine, but is measured in the hundreds (or in some cases, 

thousands) of base pairs. In contrast, most known bacterial genomes are 2-6 

million base pairs long, and the human genome contains 3.3 billion base pairs. 
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This means that each read represents only a small fraction of the genome that the 

read came from. 

1.1.2 Protein-coding genes and open reading frames 

Within a bacterial cell, molecules of ribonucleic acid (RNA) are created from 

various parts of the DNA. These RNA molecules, known as transcripts, are nearly 

identical in sequence to the DNA they are created from, with the nucleotide uracil 

used in place of thymine. Some of these transcripts are messenger RNA (mRNA) 

molecules, which are then processed by a ribosome to produce a protein through a 

process known as translation. The regions of the DNA that are eventually 

translated are known as protein-coding genes. There are other types of genes, 

including ribosomal RNA (rRNA) and transfer RNA (tRNA), but when used 

without qualification the term “gene” most often refers to protein-coding genes. 

During translation, the ribosome scans the mRNA three nucleotides at a time, and 

produces a chain of amino acids, with one amino acid being added to the chain for 

each nucleotide triplet encountered. These triplets, also known as codons, 

effectively provide instructions to the ribosome on how to proceed with the 

translation process. 61 of the possible 64 codons will cause the recruitment of an 

additional amino acid to the growing chain, while 3 stop codons (UGA, UAA, 

UAG) cause the translation to terminate when they are scanned by the ribosome. 

Translation typically only begins at AUG, GUG, or UUG codons, with AUG 

codons representing the large majority of known start codons. 
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Because the mRNA is read in triplets, any given strand of RNA has three possible 

reading frames (DNA has six, as the reverse strand must also be considered). For 

example, the sequence AGGCC can be read starting at any of the first three 

characters, resulting in the first codon encountered being AGG, GGC, or GCC. 

Depending on which reading frame is used, the translation of a given RNA or 

DNA sequence will be very different. An open reading frame (ORF) is a region 

starting immediately following a stop codon and ending with the first downstream 

stop codon in the same reading frame. With the exception of a very small number 

of genes that span multiple reading frames due to ribosomal slippage 

(“frameshifted” genes), all protein-coding genes in bacterial genomes are found 

within open reading frames. In addition, all protein-coding genes end at the 

downstream end of an open reading frame; the start of these genes is not as easy 

to determine, as the possible start codons can serve as internal codons as well. 

1.1.3 Gene finding and annotation 

For those genomes that have been fully sequenced and assembled, a common 

research goal is to analyze the genes present in the genome. Several programs 

have been developed to find genes in a genome, often building a compositional 

model of protein-coding DNA in the process. For example, Glimmer [2–4] uses 

Markov models to represent the sequences often found in a genome’s coding 

DNA, and then uses this model to score all open reading frames in the genome. 

Other programs, such as Prodigal [5], use hexamer (6 bp substrings) frequencies 

to create a coding DNA model. 
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To create a model of coding DNA, a program must have a large amount of DNA 

sequences that are very likely to be coding DNA. This can be done by having a 

user supply a set of known genes, or by examining the open reading frames in the 

genome and selecting those that are so long that it is unlikely that the reading 

frame does not contain a gene. To increase the number of selected long ORFs that 

contain a gene, other statistics such as codon frequencies can be used to inform 

the selection process; Glimmer does this with its long-orfs program, selecting 

ORFs with a codon distribution that approximates the “universal” bacterial codon 

distribution [4]. 

Once a set of genes is obtained via a gene prediction pipeline, the genome can be 

annotated to note the locations of these genes on the genome. Further analysis can 

involve attempting to determine the function of these genes; the locations and 

functions of the genome’s protein-coding genes make up the large majority of a 

microbial genome’s annotation. Although laboratory experiments can help 

determine a gene’s function, the large number of genomes that are sequenced 

makes this approach unrealistic for most genes. Instead, a gene G is often 

compared to a large database of genes, and if G’s sequence is very similar to a 

gene with known function, that function is considered to be G’s function as well. 

1.1.4 Sequence alignment 

To explore the relationships between two or more genomic sequences, it is often 

necessary to gain a measure of the similarity between them by aligning the 

sequences. Using a dynamic programming approach, an optimal alignment 

between two sequences can be found with respect to a given scoring scheme. 
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Such pairwise sequence alignments can be global in nature, attempting to align 

each sequence end-to-end [6], or can be local, allowing the alignment to begin 

and end in the middle of the two sequences [7]. These dynamic programming 

algorithms have a computational complexity of O(mn), where m and n are the 

lengths of the two sequences being aligned. In cases where large sequences must 

be aligned, the memory and runtime requirements of these algorithms exceed 

what is reasonable, and other methods exist that reduce these requirements at the 

expense of losing the optimality guarantee of the dynamic programming 

algorithms. 

A commonly used and widespread program to align a query sequence against a 

large database of sequences is BLAST [8, 9]. The BLAST algorithm for 

nucleotide alignment divides the query sequence into overlapping strings of 

length k (or k-mers), and finds all known locations of these k-mers in the database 

using exact matching. Each occurrence of a query sequence k-mer in the database 

(an exact alignment) serves as a seed for the next step of the algorithm, where the 

seed alignment is extended in both directions until extension would cause a 

decrease in alignment score. Alignments that exceed a specified E-value threshold 

are then reported. An alignment’s E-value is the number of alignments that would 

be expected to score as well or better than the given alignment, if a random query 

sequence and database of the same lengths were used to perform the search. A 

similar approach exists for protein sequence alignments, but certain differences 

from the query sequence k-mers are allowed to be present in the seeds. In addition 

to BLAST, a similar program BLAT [10] performs alignments even faster, 
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through the use of an index of non-overlapping k-mers stored in physical 

memory, but it is less sensitive than BLAST. 

Alignment of reads to a known genome is also a common operation, and the 

gigabases of data that are generated by current sequencing technology cannot be 

efficiently by either BLAT or BLAST [11]. To address this, tools such as MAQ 

[12], SOAP [11], Bowtie [13, 14], and BWA [15] were created, utilizing different 

indexing strategies to make read alignment faster. The most successful of these 

has been the use of the Burrows-Wheeler transform [16] and the FM index [17], 

used in both Bowtie and BWA. 

In addition to pairwise sequence alignment, multiple sequence alignments are 

possible, allowing researchers to examine the relationships between several 

homologous regions at the same time. Programs such as Clustal W [18] and 

MUSCLE [19] can create these multiple sequence alignments for both nucleotide 

and protein sequences. 

1.1.5 Comparative genomics 

Common regions between two genomes can indicate information about the 

relationship of the regions to those genomes, and information about the 

relationship between the two organisms. If a region in one genome is similar to a 

region in another genome, but the two genomes are largely different, then the 

regions are likely to have maintained their similarity under evolutionary pressure. 

The evidence of this pressure means that the regions likely serve a necessary and 

similar function for their respective organisms [20, 21]. 
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In closely related genomes, we expect high similarity to exist in many regions of 

the genomes, due to the lack of evolutionary time for mutations to occur and 

cause large differences between the genomes. This property means that, without 

knowledge of the origins of the two sequences, high similarity does not imply 

functionality (or even conservation). However, high similarity can still imply a 

close evolutionary relationship between the two sequences. This relationship 

allows us to use BLAST searches to accurately assign taxonomic labels to 

sequences of unknown origin by using the highest-scoring match as the label [22, 

23]. 

1.1.6 Metagenomics 

While most genomic studies have involved the use of DNA that is known to be 

from a single species (and often from the same strain), the past decade has seen a 

rise in metagenomic studies, where all the DNA in an environmental sample is 

sequenced, without an attempt to culture specific members of the sample. These 

studies have allowed researchers to obtain data from the genomes of organisms 

that cannot be cultured in a laboratory setting. Metagenomic studies also allow 

researchers to learn about the genes and taxonomic distribution of the populations 

in various environments such as the guts of obese and lean humans [24] and acid 

mine drainage [25]. 

1.2 Motivation 

In 1995, the genome of Haemophilus influenzae was published [26], marking the 

first time a bacterial genome had been sequenced. Less than 15 years later, in late 

2009, the 1,000th bacterial genome was completed [27]. Not even five years after 
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that event, the number of completed genomes has nearly tripled: in early 2014, 

over 2,700 completed bacterial genomes exist with nearly 10,000 more genomes 

available as draft assemblies. This sharp rise in the number of completed genomes 

is in large part due to the increasing throughput of sequencing technology, and the 

decreasing cost of sequencing a genome with the high coverage needed to 

perform an assembly. Although these increases in completed genomes and 

throughput provide much more data than was previously available, and so can be 

of great help to researchers, there are issues that accompany these increases. Two 

of these issues affect comparative methods’ accuracy and efficiency, and this 

dissertation addresses each of these problems through the use of comparative 

methods and novel algorithms. 

1.2.1 Errors in genome annotation 

The large number of completed genomes makes comparative genomics 

approaches more powerful, because these approaches will have a much richer set 

of references to compare against. As the growth of the public genome databases 

continues, researchers will be able to gain further insight into the mechanisms 

through which life works. 

An implicit assumption in comparative genomics, and in any work performed that 

utilizes a reference database of genomic information, is that the reference is 

correct. The NCBI Reference Sequence (RefSeq) database [28, 29] was created 

with the goal of providing a set of genomes where the sequences and 

corresponding annotations had been manually curated and validated. This curation 

would provide a database that could be used by a researcher without requiring 
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further validation of the reference data before beginning the analysis that is of 

interest to the researcher. As the number of completed genomes has increased, 

many of these new genomes are entered into the RefSeq database without 

undergoing manual curation. Given the time, labor, and material costs in 

performing such curation, it is unlikely that many new genomes will be 

individually validated. Without this curation, the sequences in RefSeq now 

contain annotations that are largely unmodified from those supplied by the 

researchers who deposited the sequence into the GenBank database (from which 

many of RefSeq’s records originate). This effectively means that the annotations 

are not at a uniform standard of quality and cannot be relied upon without further 

validation, which in large part defeats one of the main purposes of the RefSeq 

database. 

Computational methods to evaluate and improve the accuracy of existing 

annotations are necessary because the growth of sequenced genomes has outpaced 

the ability of researchers to perform the laboratory work needed to provide 

experimental evidence to support the annotations. The vast majority of 

annotations are performed solely via computational and comparative methods, 

using gene finding programs and sequence similarity searches to locate the genes 

in a genome and discover the functional properties of these genes. Existing gene 

finding programs are quite sensitive: for example, Glimmer is able to correctly 

predict the existence of 99% of genes in microbial genomes [4]. However, gene 

finding programs often have tunable parameters, and while these can be used to 

improve a program’s performance, they can also be misused to produce gene 
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predictions that are far from accurate. When inaccurate annotations are produced 

by researchers and deposited into public databases such as GenBank and RefSeq, 

these annotations can confound future research, and the errors in these annotations 

can propagate into future annotations. Therefore, it is imperative that incorrect 

information in these databases be found as quickly as possible and corrected [30]. 

In an effort toward finding and correcting erroneous annotations, this dissertation 

addresses this problem by contributing two pipelines for genome annotation 

analysis, both of which use a strategy of alignment to other sequences to support 

their results. 

Chapter 2 presents a pipeline that is used to determine if an existing annotation is 

missing genes that are truly present in the genome. In reviewing the pipeline’s 

results, over 10,000 genes are wrongly omitted from the genomes deposited in 

GenBank, including many that may be of interest to pharmaceutical researchers. 

Using commonly available tools such as Glimmer [3] and BLAST [9], this 

pipeline can be implemented by any laboratory performing genome annotation, 

and should enable such laboratories to avoid missing genes for which ample 

evidence supports their annotation. 

Related to the problem of gene finding is the problem of start site annotation. 

Whereas the three stop codons always terminate translation and so can serve as a 

clear end site for a gene, the possible start codons can also occur in the interior of 

a gene. Gene finding programs typically have to incorporate upstream signals, 

such as ribosome binding sites, in order to achieve a start site prediction accuracy 

of over 90% [31]. Even with this extra information, however, start site prediction 
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accuracy lags behind overall gene prediction accuracy. Correctly identifying the 

start site is important because an incorrect start site annotation can give the 

impression that large portions of a protein’s sequence are not actually part of a 

gene, when these wrongly omitted portions can provide necessary functionality to 

the organism. Likewise, wrongly included protein sequence can mislead 

researchers into believing a protein has a function that it does not truly have. 

In Chapter 3, I present Phantim, a pipeline using multiple alignments of proteins 

to address the problem of start site annotation for protein-coding genes. Phantim 

uses these multiple alignments to search for conservation-based evidence for the 

selection of a given start site. By requiring strong conservation to make any 

prediction, Phantim reports a small set of genes for which we estimate over 99% 

are correct. After examining the differences between existing annotations and 

Phantim’s predicted annotations, I developed an easily-calculated test to 

determine if an existing annotation was incorrectly using rare start codons in a 

way that was likely to lead to widespread incorrect start site annotation. 

1.2.2 Computational burden of increased sequencing throughput 

The ability of today’s sequencing machines to generate millions of sequences per 

sequencing run has enabled many new studies. However, analysis of these 

millions of sequences can require enormous amounts of computational resources. 

Requiring researchers to wait several days, if not weeks or months to analyze their 

data can cause those researchers to not even consider various avenues of research, 

as those avenues would be considered unreasonably expensive to pursue. It was 

this problem that motivated the development of tools like Bowtie [13] and BWA 
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[15] to rapidly align reads to a reference genome, and these tools have proven 

themselves extremely useful in the years since their introduction: the 2009 Bowtie 

paper has seen over 3,000 citations in the 5 years since its publication. 

In metagenomics, taxonomic sequence classification is the problem of assigning a 

taxonomic label (e.g., a genus or species name) to a DNA sequence. This is 

related to the problem of aligning reads to a reference genome; in fact, one 

method for doing taxonomic classification involves aligning a read against a large 

set of reference genomes using BLAST. However, this has proven to be 

computationally intensive and time consuming, with even the fastest BLAST 

program, Megablast, only able to process less than 10,000 reads per minute. 

Using such an approach renders downstream research much more difficult, as the 

classification step would take days for a common sample size of 30 million 

sequences. Larger samples, such as the over 20 trillion base pairs of sequence 

generated by the Human Microbiome Project (HMP) [32], would require 

enormous amounts of computational processing to obtain classification results in 

a reasonable amount of time. To process this large amount of sequence, the HMP 

turned to the abundance estimation program MetaPhlAn [33]. 

Abundance estimation programs such as MetaPhlAn or MetaPhyler [34] work by 

aligning reads to a small database containing only clade-specific or “marker” 

genes. Alignment against these smaller databases allows the programs to run 

much faster than alignment against a set of reference genomes: MetaPhlAn can 

process over 400,000 reads per minute. But this speed comes at a cost: only a 

small subset of reads (those that are from the regions covered by the marker 
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genes) can be classified. Thus, abundance estimation programs use this subset to 

report population abundance estimates rather than attempt to classify all reads in a 

sample. 

Ideally, it would be possible to classify the large majority of reads in a 

metagenomic sample, and do so quickly. In Chapter 4, I introduce Kraken, a 

program that accomplishes both of these goals through the use of k-mer matching 

and a pre-computed database. Kraken’s accuracy is comparable to the fastest 

BLAST program, while its speed exceeds other classifiers by multiple orders of 

magnitude. The k-mer matching of Kraken is the element that gives Kraken a 

majority of its speed, as the database allows a k-mer to be compared against a set 

of n genomes in an O(lg n) time operation. In addition, Kraken is made even 

faster through the application of the existing minimizer concept [35] in a novel 

manner that allows increased locality and CPU cache utilization. Kraken was 

released to the public in 2013, and the paper describing its methods was published 

in March 2014. 
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2 Discovery and analysis of unannotated genes in microbial 

genomes 

This chapter describes work performed with Henry Lin, Ami Levy-Moonshine, 

Rajiswari Swaminathan, Yi-Chien Chang, Brian P. Anton, Lais Osmani, Martin 

Steffen, Simon Kasif, and Steven L. Salzberg. In this work, we developed a 

pipeline for discovering genes that had mistakenly been omitted from existing 

genome annotations. Using a database of genomic data that includes 

experimentally verified genes and many other sources of information, we 

provided evidence that a large majority of the missed genes we found were indeed 

true genes. We also investigated the causes for the missed genes’ omission, 

focusing on issues such as gene length and the experience of the centers 

performing the genome annotations. This work was published in Biology Direct in 

October 2012 [36]. 

My contribution to this work included development and implementation of the 

missed gene discovery pipeline as well as analysis of the causes of the missed 

genes. Henry Lin helped in developing the pipeline and performing the missed 

genes cause analysis. Ami Levy-Moonshine, along with Rajiswari Swaminathan 

and Yi-Chien Chang, contributed the analysis of the missed genes with the 

COMBREX database. All of the authors helped in the design of this study, and in 

the preparation of the text. 

2.1 Background 

Bacterial gene identification has improved considerably since the first bacterial 

genome, Haemophilus influenzae Rd KW20, was sequenced in 1995 [26]. 
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Bacterial genome annotation is usually done through an automated process that 

identifies most genes very accurately, with sensitivity sometimes exceeding 99% 

[4]. As a result of the declining cost and increasing ease of genome sequencing in 

recent years, 1,699 prokaryotic genomes (113 archaea and 1,586 bacteria) have 

been completely sequenced, and nearly 5,000 more draft genomes have been 

deposited in public archives. The genomes of most of these species have been 

sequenced and annotated by relatively large sequencing centers, but many smaller 

centers and even individual laboratories have contributed some genomes as well. 

The continuing reduction in the cost of sequencing suggests that the trend towards 

sequencing by small laboratories will increase substantially in the future. Many of 

these smaller laboratories do not have substantial in-house bioinformatics 

expertise. The annotation process can vary greatly from one center to the next, 

and even within a center it varies from year to year, with different programs used 

for gene finding, alignment, and assigning gene names. 

Several different gene finding programs have been used over the years, including 

Glimmer [2–4], GeneMark [37, 38], and others, and each of these programs has 

itself gone through different versions that produced changes (mostly 

improvements) in their performance. The one program that has been consistently 

used over the years and across all species is BLAST [8], which is most commonly 

used to search predicted protein-coding genes against an ever-growing database of 

previously reported proteins. Significant sequence similarity with a protein in 

another species is strong evidence that the predicted protein is genuine, especially 
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if the target species is evolutionarily distant. BLAST searches for homologous 

sequences have long been the gold standard of evidence for gene prediction. 

As a result of the various methodologies, annotation is not very consistent 

between prokaryotic genomes, even for different strains of the same species, 

unless the annotation was all performed at the same sequencing center and within 

a relatively short time period.  Genes can be missing from the annotation of some 

strains and present in others; their start codon positions can vary widely, yielding 

genes with apparently different lengths; genes can be labeled as pseudogenes or 

not, depending on the conventions used by the original annotators; and genes can 

be annotated on the wrong strand or the wrong reading frame. Other differences in 

annotation programs or in the parameters used to run them can also influence the 

set of genes found, for example by omitting genes below an arbitrary length 

threshold. Addressing these inconsistencies should improve current 

methodologies for prokaryotic annotation. 

Obtaining perfect annotation for a bacterial genome is still beyond our reach, even 

though methods continue to improve. Thus it is reasonable to assume that there 

are genes missing in current annotations. Finding even some of those genes that 

have been omitted and correcting other flaws will have direct effects on our 

biological understanding of the species in question. Many of the missed genes can 

be associated with specific biochemical functions, thus contributing to our 

knowledge of the species’ molecular machinery. In some cases, for example when 

a missed gene in a potentially pathogenic organism is associated with antibiotic 
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resistance, identifying it can help us better understand the causes and treatments 

of infections.  

For this reason, we took a very broad look at all the completely sequenced 

prokaryotic genomes to determine how many likely genes are simply missing 

from the annotation and are easily found with our proposed pipeline. We focused 

on this question because protein sequence homology, as measured by BLAST, 

provides a highly reliable, consistent tool for identifying missing genes. Although 

gene identification is generally much better for prokaryotes than for eukaryotes 

(whose gene structure is much more complex), many genes are nonetheless 

missing entirely from finished, published genomes. 

In this work, we do not intend to find the entire set of missing genes but instead to 

demonstrate a relatively simple way to find a large set of likely missed genes. In 

addition to identifying thousands of missing genes, we also provide some possible 

explanations for their omission, and provide analysis and information about each 

missed gene in a publicly available database (see details below).  It is important to 

note that there are additional issues with gene annotation that are beyond the 

scope of our work, but should be addressed by the annotation community. In 

addition to missing genes, we found many other inconsistencies, including genes 

of varying lengths and with clearly incompatible names, but resolving those 

inconsistencies is much more difficult, often involving manual curation. 

Another problem that may arise in genome annotation is the problem of 

overannotation, the incorrect annotation of ORFs in genomes which are not true 
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genes.  Unfortunately, there are no reliable methods for definitively determining 

that a particular ORF is not a true gene.  Experiments can show that an ORF is not 

expressed under certain conditions, but showing that an ORF is not expressed 

under all conditions is not feasible.  There have been attempts to quantify 

overannotation by examining the length distribution of annotated genes, and 

showing that the length distribution of all annotated genes does not match the 

length distribution of only annotated genes with supporting homology to known 

genes [39].  Since it is impossible to precisely determine the extent of 

overannotation in a genome, we focused on finding unannotated genes that had 

considerable computational support for their protein-coding nature and were able 

to be found with freely available and commonly used software. 

Our approach to finding missed genes involves using a combination of Glimmer 

to find ORFs that were likely to be protein-coding genes, which were not present 

in the existing annotations from GenBank [40], and then using BLAST to find 

genes that had significant sequence similarity to previously annotated genes. After 

ruling out potential pseudogenes, we were left with 52,605 ORFs, which we 

called candidate missed genes, from 1,474 completely sequenced prokaryotic 

genome annotations. Although many of the candidate missed genes had sequence 

similarity to proteins with functional annotations, providing strong evidence that 

they were true missed genes, there were also many candidate missed genes with 

sequence similarity to only hypothetical proteins, which are putative proteins with 

no known function. These hypothetical proteins may have only been predicted by 

gene prediction programs without additional evidence to support a claim that they 
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are true genes. For those candidate missed genes with homology only to 

hypothetical proteins, we needed additional information to determine if they were 

indeed genes. 

To this end, we make use of the newly available resource COMBREX [41], which 

is an online database [42] containing functional predictions and phenotype 

information for more than 3 million microbial genes (see Methods for more 

details). Using this knowledgebase, we were able to assign each gene to a 

COMBREX support level, which helps estimate how likely each potential missed 

gene found is to be a true protein-coding gene. For instance, if a candidate missed 

gene has a homolog in COMBREX that has been experimentally cloned and 

tested for function, we assign the gene to the strong COMBREX support level, 

and our confidence that this candidate missed gene is a fully functional, protein-

coding gene increases. In our analysis, most of the candidate missed genes that 

share sequence similarity with non-hypothetical proteins were found to have 

strong COMBREX support. For the candidate missed genes that only have 

sequence similarity to hypothetical proteins, a significant number were also found 

to have evidence from COMBREX showing that they are likely protein-coding 

genes.  Additionally, we were able to use COMBREX to assign functional and 

phenotype information to many of the missed genes we identified. 

Previously, Warren, et al. [43] performed a similar study to find missing genes in 

1,297 annotated prokaryotic chromosomes and plasmids in RefSeq. They reported 

over 38,000 of what they termed “absent annotations”, or “putative genes by 

similarity to currently annotated genes” [43]. Our criteria for determining 
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candidate missed genes roughly match their criteria for determining “absent 

annotations,” although we find more candidate missed genes, as we analyze more 

genomes. Warren, et al. also found 1,000 additional “missed genes,” which are 

unannotated ORFs with sequence similarity to other ORFs in other distant 

species. 

Our analysis differs from Warren, et al. by going further to determine the subset 

of candidate missed genes that have strong support to be actual protein-coding 

genes, and analyzing them with COMBREX. We use COMBREX both to provide 

further evidence of the gene’s protein-coding nature, and to draw attention to 

candidate missed genes with important phenotypes that might be of special 

interest. We also suggest possible reasons for the omission of missed genes, 

which can be put into practice to improve future annotation efforts. 

Although the analysis of Warren, et al. may find more missed genes, as they 

analyze every intergenic ORF, our focus on predicted yet unannotated genes is 

able to find a comparable number of missed genes while expending less 

computational effort in the task of searching for homologous genes.  We found 

that Glimmer predicted over 97% of genes in RefSeq bacterial genome 

annotations, suggesting that our approach will find a substantial number of missed 

genes without needing to search all intergenic ORFs.  Even though a small 

number of missed genes may be overlooked by our approach, our goal with this 

study was not to find all missed genes, but rather a large subset thereof that could 

be easily found through existing tools.  This large subset of missed genes, while 

not complete, should nonetheless be useful for the research community. 



21 

 

Currently, the entire set of missed genes is accessible online [44] in the form of 

downloadable lists of genes and sequences, divided by some basic criteria. 

Eventually, these genes will be fully integrated into COMBREX, which will 

allow one to search for a particular gene based on specific attributes, view 

information associated with the gene, and utilize other functionality available 

from COMBREX. 

2.2 Methods 

2.2.1 Overview of Analysis 

The process used to identify missed genes is summarized in Figure 1. We began 

by looking at a set of 1,574 prokaryotic chromosomes with GenBank annotations 

from 1,474 completely sequenced genomes. We used Glimmer3 [4] and a few 

consecutive filtering steps to identify a set of candidate missed genes. These 

genes were further separated into two distinct subsets based on the nature of the 

homologs of each individual candidate missed gene. A candidate missed gene that 

shared significant sequence similarity (based on BLAST similarity scores) with a 

known gene with non-hypothetical annotation was termed a named missed gene. 

Named missed genes are very likely to be missed genes, given their homology to 

a known protein with functional annotation. The remaining candidate missed 

genes were termed hypothetical missed genes. These two phases of the pipeline 

are described in more detail in the first part of this Methods section. 
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In the next step, we mined COMBREX for functional information about the 

candidate missed genes. We were able to assign functional and phenotype 

information to many of the missed genes using ComBlast, a tool that associates 

the query missed genes with existing data in COMBREX through sequence 

similarity methods. Based on the data stored in COMBREX, we were also able to 

assign COMBREX support levels to each missed gene, indicating whether or not 

Figure 1. Data flow through our analysis pipeline. Annotations and sequences were obtained from 

GenBank, and all sequences were processed with the Glimmer 3 gene finder to obtain gene 

predictions. Sets of predicted genes were filtered to exclude annotated genes and pseudogenes to 

obtain a set of candidate missed genes. These predicted genes were input as queries to BLAST 

against a database of all bacterial genes in RefSeq. Predicted genes were then designated as named 

missed genes or hypothetical missed genes, based on if they had a significant alignment to a non-

hypothetical protein, or only aligned to hypothetical proteins, respectively. Each of these two sets 

were further analyzed by ComBlast, which uses BLAST and the COMBREX database to associate 

genes with additional attributes, such as experimentally determined function, 3D structure, 

conservation and phenotype information and assign a COMBREX support level to each potential 

missed gene. 
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it was a true protein-coding gene. Both COMBREX and its use in our analysis are 

described later in this section. 

2.2.2 Preprocessing and Filtering 

As shown in Figure 1, we first downloaded all GenBank files (files with a .gbk 

extension) corresponding to prokaryotic genomes from NCBI [40] on May 16, 

2011. We then removed any GenBank files that represented plasmids so that we 

could focus on the main chromosomes. We decided to exclude plasmids from our 

analysis because gene prediction methods do not work well on very small 

sequences, and plasmids typically represent only a small percentage of a genome. 

We also removed 39 GenBank files that did not contain any annotations at all, 

presumably because the annotations have not yet been completed. This was an 

important filtering step as it eliminated around 100,000 of the missing genes we 

originally thought we found. 

Similarly, we took care to remove any draft genomes, as Glimmer may make gene 

predictions which extend beyond the end of a contig or extend into a region 

containing many ambiguous nucleotides in the sequence. Since we were unsure if 

the new genes we found for these genomes were true missed genes, we decided 

instead to exclude draft and incomplete sequences that we had initially found in 

the list of “complete” genomes at NCBI. We excluded 36 genomes containing the 

phrases “draft” or “nearly complete” in the header line, or whose sequences 

contain more than 10 distinct locations with at least 5 consecutive ambiguous 

nucleotides. After performing these initial filtering steps, we were left with 1,574 
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GenBank files, for which we used Glimmer3 and BLAST to find our final set of 

candidate missed genes. 

2.2.3 Gene Prediction and Finding Missed Genes 

For each of the 1,574 chromosomes, we generated a set of ab initio gene 

predictions by running Glimmer3 with the g3-iterated.csh script, yielding roughly 

4.94 million predicted genes. The only modifications we made to the standard 

options in the g3-iterated.csh script were for 35 chromosomes, mostly from the 

genus Mycoplasma, that use a non-standard genetic code, where we ran Glimmer3 

with the option "-z 4" to set the stop codons used by Glimmer3 to be only TAG 

and TAA.  

We then compared the predicted genes with the annotations in the original 

GenBank file to find roughly 350,000 predicted genes missed in the GenBank 

annotation. A predicted gene was considered present in the original annotation if 

its 3' end was shared with any annotated CDS in the GenBank file. Predicted 

genes were also eliminated if they overlapped other annotated features, such as 

RNAs, gene features without a CDS, and CDS entries with a '/pseudo' tag, by 

more than 50%. 

For the roughly 350,000 gene predictions that remained, to determine which of 

these might be true missed genes, we created a BLAST database containing all 

proteins from every bacterial genome listed in the RefSeq database [29], which 

was approximately 4.2 million proteins as of March 28, 2011. We then translated 

and aligned each of the remaining predicted genes against this protein database. 
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Although the use of homology searches will yield many useful results, some of 

the false predicted genes may also have a low-scoring alignment that, absent any 

further processing, would lead us to call this false gene a missed gene.  Therefore, 

to ensure that the pairs of homologous genes implied by these BLAST alignments 

were indicative of true pairs (as opposed to alignments that could occur simply by 

random chance), we used three filters: an E-value threshold of 10
-6

, an alignment 

coverage requirement, and the requirement that the alignment was to a gene with 

assigned function.  We discuss each in more detail below. 

The E-value of an alignment A is the expected number of alignments of the query 

that would score as well as A by random chance alone, and is dependent on the 

length of the query and the size of the database searched against [45].  The 

probability of finding an alignment that scores as well as A (the P-value) is related 

to the E-value by the equation P = 1 - exp(-E) [8].  For the E-value 10
-6

, the P-

value is also 10
-6

, which means the expected number of our 350,000 predicted 

genes that would align to the database of proteins by chance alone should be less 

than 1, according to the model used to calculate BLAST E-values.  Of the 

127,000 possible missed genes that had a BLAST alignment, only 78,000 had an 

alignment that passed through this filter. 

However, many of the proteins in our database are homologous to many others, 

and so the database is not made of independent sequences.  It is unclear as to what 

degree this would affect the expected number of false homologous pairs.  For this 

reason, as well as the presence of pseudogenes, we further filter our set of 

alignments by requiring each alignment to cover at least 80% of the subject gene.  
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This filter reduced our set of possible missed genes to a total of 52,605 candidate 

missed genes. 

Finally, even if a predicted gene were an exact amino acid match to a gene in 

RefSeq, there is the possibility that the RefSeq gene is simply an incorrect 

computational prediction.  The RefSeq database has many hypothetical proteins, 

and it is likely that a significant fraction of such genes are not true genes.  Those 

genes that have an assigned function have such an assignment due to either an 

experiment verifying that function or high sequence similarity to an 

experimentally-confirmed gene.  This means that those genes with assigned 

function should have a higher probability of being true genes than those without. 

Therefore, we divide our remaining candidate missed genes into two groups: 

those with sequence similarity to a protein without the string "hypothetical" in its 

description (or any of several common spellings of hypothetical), designated 

named missed genes; and those with sequence similarity only to hypothetical 

proteins, which we designated hypothetical missed genes.  Our analysis yielded 

13,602 named missed genes and 39,003 hypothetical missed genes that we further 

analyzed using COMBREX. 

2.2.4 COMBREX 

COMBREX (Computational Bridges to Experiments) is an NIH funded effort to 

bring computational and experimental biologists together. It serves as a 

clearinghouse for computationally determined gene function predictions, 

prioritizes these for experimental testing, and offers grants to experimental 
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biologists to test specific predictions [41]. COMBREX maintains a database [42] 

of experimentally determined and computationally predicted functions for more 

than 3 million microbial genes. The genes in the COMBREX database are 

organized into functionally linked gene groups. In the default scheme, the genes 

are grouped into sequence-similar and likely isofunctional groups, as defined by 

the NCBI Protein Clusters Database [46]. 

COMBREX is the first functional database that attempts to provide fully traceable 

annotation, where predictions are traced (whenever possible) to the 

experimentally determined evidence. For many genes COMBREX provides a link 

to the nearest gene with experimentally determined function, as determined by 

both BLAST similarity score and shared domain composition. 

In addition, COMBREX also provides information about documented phenotypes 

associated with each gene. Currently, this phenotype data consists of antibiotic 

resistance, antibiotic sensitivity, and candidate gene essentiality. Antibiotic 

resistance genes, obtained from Antibiotic Resistance Genes Database [47], 

confer resistance to one or more antibiotics through several mechanisms. 

Antibiotic sensitivity genes are genes that when lost, confer increased sensitivity 

to antibiotics [48]. The essential genes are identified, by multiple sources, as 

being essential for growth or viability in one or more organisms (a complete list 

of the organisms and sources can be found at the COMBREX web server). 
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2.2.5 COMBREX Analysis 

Approximately 75% of the total missed gene set is comprised of hypothetical 

missed genes, for which the annotation of related proteins in GenBank provides 

no useful functional information. However, we were able to provide additional 

information for many of these hypothetical missed genes with COMBREX, by 

utilizing the ComBlast annotation pipeline, which we describe below. 

Based on the data stored in COMBREX, ComBlast associates each missed gene 

with various types of important evidence or data. Consider a case of a 

hypothetical gene prediction identified in two closely related strains using the 

same gene prediction software. Clearly, this prediction could be a false positive 

resulting from a roughly similar k-mer distribution in the predicted region. Our 

confidence in the prediction grows if the same prediction is found in a large 

number of organisms suggesting this gene is conserved. The confidence also 

grows if one of the homologs has been explored experimentally. This principle is 

deployed systematically throughout our study. The evidence associated with each 

gene includes any one of the following attributes: conservation of the gene, 

evidence of experimentally validated function or predicted molecular function, 

existing 3D structures or protein domains, protein purification status, EC 

numbers, and gene phenotype. A missed gene is associated with specific evidence 

if it shares significant sequence similarity with individual genes with this type of 

information, or if it is assigned to one or more protein clusters in COMBREX 

(with at least one gene in the cluster having the required information). For the 

purpose of this paper, missed gene A shares significant sequence similarity with 
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COMBREX gene B if the sequence alignment of A against B covers at least 80% 

of the length of B and has BLAST E-value less than 10
-5

. If gene B contains any 

of the above mentioned evidence, they are assigned to gene A. Gene A can also 

be assigned to protein cluster C if A shares significant sequence similarity with at 

least 100 members in that cluster (for big clusters) or all members in the cluster 

(for smaller clusters), or if A shares significant sequence similarity with members 

of only one cluster. 

The information from COMBREX is used to assign each missed gene to a 

COMBREX support level. A missed gene is assigned to the strong COMBREX 

support level for being a true functional gene if the gene is found to be conserved 

in multiple organisms. We define a gene as conserved in multiple organisms if it 

is assigned to a cluster with more than 50 members coming from at least 2 

different phyla or if it shares significant sequence similarity to more than 50 

COMBREX genes. Additionally, a missed gene is assigned to the strong 

COMBREX support level if it has significant similarity to one or more genes 

associated with at least one of the following types of information: experimentally 

validated function with evidence, known 3D structure, presence of purified 

protein, protein domain, or EC number. 

A missed gene not assigned to the strong support level is assigned to the fair 

COMBREX support level if it satisfies one or more of the following conditions: if 

it is assigned to at least one cluster having a computational prediction for its 

genes, if it is assigned to at least one cluster containing 5 or more members, or if 

it shares significant sequence similarity to 10-50 COMBREX genes. The 
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remainder of the named missed genes that do not match the strong or fair criteria, 

are assigned the weak COMBREX support level, since they still have significant 

sequence similarity to genes with meaningful functional annotation. Other 

hypothetical missed genes that do not match the strong or fair criteria are labeled 

as having the insufficient COMBREX support level. 

2.2.6 Spurious Gene Family Analysis 

Along with our use of ComBlast to examine the support available for our 

candidate missed genes, we used AntiFam [49] to examine our candidate missed 

genes to determine if there is any evidence that they are not true genes.  AntiFam 

is a database of hidden Markov models (HMMs) that represent families of genes 

that have been incorrectly annotated in the past frequently.  In this study, we use 

AntiFam 2.0, which contains 47 HMMs representing families that include genes 

from ORFs that overlap known rRNAs, tRNAs, and other genomic features. 

2.3 Results and Discussion 

2.3.1 ComBlast Results 

By the end of our search for candidate missed genes, we found 13,602 named 

missed genes with significant sequence similarity to a known gene with non-

hypothetical annotation, and 39,003 hypothetical missed genes with homology 

only to hypothetical proteins. 13,307 of the named missed genes and 36,127 of the 

hypothetical missed genes had significant sequence similarity to COMBREX 

genes, and could be further analyzed using COMBREX. 
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We started by using COMBREX to assign a confidence level to the 13,602 named 

missed genes. Using ComBlast, the annotation pipeline in COMBREX, we 

assigned 63% of the named missed genes to the strong COMBREX support level 

and 18% to the fair level (Figure 2). In addition, while taking into account the 

hypothetical missed genes, we were able to double the number of likely genes that 

have at least the fair COMBREX support level for being protein-coding genes.  In 

total, we can assign the fair COMBREX support level to another 11,792 genes 

from the hypothetical missed gene set, which illustrates the limitations associated 

with sequence homology based prediction methods (Figure 2). 2,824 of the 

hypothetical missed genes are assigned to the strong COMBREX support level 

(for examples see Table 1), and more than 3,000 genes also have some 

information through functional predictions of other genes.  

Figure 2. Assignment of COMBREX support levels to the hypothetical/named missed genes using 

ComBlast. For each missed gene we assign a COMBREX support level based on sequence 

homology and assignment to gene clusters in COMBREX. A missed gene has the strong 

COMBREX support level of being a true protein coding gene if it is conserved or associated with 

at least one of the following information: possessing experimentally validated function, known 3D 

structure, purified protein, protein domain or EC number. It has the fair COMBREX support level 

if it has a sufficient number of homologs or is associated with a predicted function. The other 

named missed genes, which were confirmed by sequence homology to at least one gene with non-

hypothetical protein annotation, have a weak COMBREX support level. The rest of the 

hypothetical genes have insufficient evidence and thus they are not counted in the statistics of 

missed genes in this paper. 
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We also used COMBREX phenotype data to identify potentially important 

(scientifically or clinically) missed genes. We could associate 1,264 missed genes 

with phenotype data stored uniquely in COMBREX (Figure 3A and Table 2). 

Even genes that could not be associated with any meaningful functional evidence 

through BLAST-based analysis have been shown to contain interesting phenotype 

information; we found 46 such cases (see example 3 in the last column of Table 

2). In our set of missed genes, we were able to find candidates that could be 

associated with three phenotypes: 26 could be associated with antibiotic 

resistance, 210 with antibiotic sensitivity, 852 with candidate essential genes and 

an additional 176 genes that could be associated both with candidate essential 

genes and antibiotic sensitivity.  

Gene Reasons for association with the strong support level 

AE014295_orf00919 

from Bifidobacterium 

longum NCC2705 

Assigned to the NCBI curated cluster PRK11770. The ORF has 213 

significant sequence homologs (BLAST E-values range between 1e-58 

to 3e-09) in the cluster. The cluster contains 218 genes from 125 species 

belonging to 6 different phyla. It has a conserved domain along with 

few cloned and purified members. Thus, using ComBlast, this 

hypothetical missed gene is assigned the strong COMBREX support 

level of being a true protein-coding gene. 

CP002334_orf00644 

from Helicobacter 

pylori Lithuania75 

Assigned to the NCBI cluster CLSK496073. All other members of the 

cluster are hypothetical proteins (NCBI annotation), but COMBREX 

identified 3 experimentally validated genes within the cluster, giving 

the strong COMBREX support level that this hypothetical missed gene 

is a true protein-coding gene. 

AE017354_orf01466 

from Legionella 

pneumophila 

Has significant sequence similarity (BLAST E-Value 1e-09) to a gene 

from Aeromonas hydrophila that is included in the gold-standard 

database in COMBREX (a novel set of genes with experimentally 

validated molecular function). This gives the strong COMBREX 

support level that the hypothetical missed gene is a true protein-coding 

gene. 

BA000023_orf01717 

from Sulfolobus 

sokodaii str. 7 

Has significant sequence similarity (BLAST E-Value 2e-21) to a 

protein from Sulfolobus solfataricus with NCBI annotation as 

hypothetical protein. However, in COMBREX this gene was identified 

as having a known 3D structure (PDB code: 2JTM) and thus this gene 

has a higher probability of yielding a functional protein. 

Table 1. Examples of hypothetical missed genes that are associated with the strong COMBREX 

support level 
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Along with providing functional and phenotype related information to the missed 

genes, COMBREX also tries to identify which of these genes might be medically 

relevant. These genes may be potential drug targets in the future. To identify such 

cases, we considered 3 different criteria that the missed genes have to satisfy: (i) 

the missed gene should belong to a pathogenic organism (according to The 

Microbial Rosetta Stone Database of Pathogens [50]); (ii) the missed gene should 

be assigned to a protein cluster with at least 50 members (based on ComBlast 

results); and (iii) the missed gene should possess significant sequence similarity to 

any essential gene within COMBREX (based on ComBlast results). By this 

method, we found 359 missed genes, belonging to 88 different pathogenic 

organisms, that satisfied all the above criteria and thus might be interesting drug 

targets (Figure 3B). The full list of those genes is also available online [44]. 

 

Figure 3. Missed genes that can be associated with COMBREX phenotype data: (A) Phenotype 

data distribution. Some of the missed genes can be associated with phenotype data using the novel 

COMBREX resource. A gene is associated with a specific phenotype if it has significant sequence 

similarity (see Methods) to a gene in COMBREX with the phenotype or if it is assigned to a 

cluster containing a gene with the phenotype. (B) Potential drug target genes (see text for details) 

with their distribution in pathogenic organisms (identified only to the species level). The largest 

portion of these genes belongs to the Enterobacteriaceae family of pathogens (Yersinia, E. coli, 

etc.) as seen in the figure. This phenotype information is pooled together using ComBlast. 
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2.3.2 Spurious Gene Family Analysis 

To identify spurious genes in our set of candidate missed genes, the AntiFam 

database of HMMs was compared against both our named missed genes and 

hypothetical missed genes.  8 of the 13614 (0.06%) named missed genes, and 141 

of the 39003 (0.36%) hypothetical missed genes were labeled as spurious 

according to AntiFam.  We also show the number of spurious missed genes as 

divided by COMBREX support level in Table 3. 

The low number of genes in our named missed genes set that were labeled 

spurious is encouraging, as we had hoped demanding a functional assignment 

would result in few false positives.  As may be expected, the percentage of genes 

in the hypothetical missed genes set that are spurious is higher than the named 

missed genes set, due to the lack of a functional assignment in the homologous 

genes used to add genes to the hypothetical set.   

Assigned Name  CP001172_orf00556 CP000948_orf05287 CP002071_orf01199 

Species 

containing 

missed gene 

Acinetobacter baumannii 

AB307-0294 

Escherichia coli K-12 

substr. DH10B 

Helicobacter pylori 

Sat464 

Species 

containing 

homologous gene 

Escherichia coli ED1a  Escherichia coli K-12 

substr. MG1655 

Helicobacter pylori 

26695 

Name of 

homologous gene 

dimethyladenosine 

transferase 

adenylate cyclase      

(EC 4.6.1.1) 

hypothetical 

protein 

Blast E-value 9e-75 0.0 1e-176 

Combrex 

phenotype 

associations 

antibiotic resistance class 

KsgA 

picin sensitivity and 

triclosan sensitivity 

candidate essential 

gene 

Table 2. Examples of missed genes associated with COMBREX phenotype data. Three 

representative examples of missed genes that are associated with COMBREX phenotype data: 

"antibiotic resistance", "antibiotic sensitivity", or "candidate essential gene". Note that 

CP002071_orf01199 is a hypothetical missed gene with BLAST similarity only to hypothetical 

proteins. 
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Five of the spurious genes (all belonging to Haemophilus influenzae F3031) 

appeared in our named missed genes set due to a single gene annotated in the 

RefSeq annotation of H. influenzae F3031 (HIBPF15861, described as “cell wall-

associated hydrolase”) that AntiFam indicates is from a region that is antisense to 

23S rRNA; a sixth spurious gene was due to a homologous annotated gene in 

Lactobacillus crispatus ST1.  The other two spurious genes in this set, called 

translations of CRISPR regions by AntiFam, are homologs to two genes in 

Syntrophus aciditrophicus SB that were annotated as a “putative cytoplasmic 

protein” at the time we obtained our set of annotated genes in RefSeq, but now are 

no longer in the RefSeq record. 

We also examined the 51 hypothetical missed genes that were assigned to the 

strong COMBREX support level, yet were labeled as spurious by AntiFam.  One 

of these genes was a translation of a tRNA, one was contained within a repeat in 

the Vibrio superintegron, and six were contained within the insertion sequence 

ISlin1.  The remaining 43 were labeled as translations of CRISPR regions, with 

41 of those being part of a family described by a single HMM.  Analysis of these 

41 genes revealed that their entry into our candidate missed genes set was, in all 

but 3 cases, due to homologous genes that existed in RefSeq at the time we 

COMBREX Support Level Named Missed Genes Hypothetical Missed Genes 

Strong 8 / 8581 (0.09%) 51 / 2824 (1.81%) 

Fair 0 / 2498 (0%) 46 / 8968 (0.51%) 

Weak 0 / 2228 (0%) 0 / 0 (0%) 

Insufficient 0 / 0 (0%) 44 / 24437 (0.18%) 

Totals 8 / 13307 (0.06%) 141 / 36127 (0.39%) 

Table 3. Spurious genes found within the various subsets of candidate missed genes.  The number 

of spurious genes and number of total genes within each combination of COMBREX support level 

(strong, fair, weak, and insufficient) and missed gene category (named and hypothetical) is given, 

as found by running candidate missed genes against the AntiFam database.  This table includes 

only the candidate missed genes that could be analyzed by ComBlast. 
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generated the set but that are no longer in the RefSeq database. In addition, all 46 

of the spurious hypothetical missed genes assigned to the fair COMBREX support 

level were translations of antisense rRNA regions. 

In summary, many of the spurious genes that we found in our set of candidate 

missed genes appear to have been introduced into our set by the existence of 

genes in a slightly outdated version of RefSeq (that have since been removed).  

There are also many spurious genes that overlapped rRNAs, indicating that the 

original annotators missed rRNA genes, as our pipeline excluded ORFs that 

overlapped annotated rRNAs.  These two large groups of spurious missed genes, 

although less than one percent of our total set of missed genes, indicate two other 

problems with existing annotations that do not involve missing protein-coding 

genes. 

2.3.3 Missed Genes Analysis 

In addition to finding missed genes, we conducted further analysis looking for 

patterns in the data that might explain why these genes were missed.  Note that 

our analysis here is limited to the genes found via our pipeline, and does not 

attempt to evaluate the annotations beyond analyzing the missed genes we found. 

We first checked if the center performing the annotation influenced the number of 

missed genes in each annotation. The majority of gene annotations were done by 

4 major organizations: the Department of Energy Joint Genome Institute (JGI), 

The Institute for Genomic Research (TIGR), the J. Craig Venter Institute (JCVI), 

and the Sanger Institute. These four institutes were responsible for over half of all 
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the annotations that we reviewed in this study. The other centers that provided 

genome annotations were typically smaller and only did a few genome 

annotations each. 

In analyzing the number of missed genes by each center, we focused solely on 

analyzing the number of named missed genes, as we had good confidence that 

most of the named missed genes were true missed genes. When comparing the 

number of named missed genes from each of the four major centers with the 

number of named missed genes from the other smaller centers, we found that a 

higher relative proportion of named missed genes came from smaller centers, 

suggesting that a lack of adequate resources or experience may have contributed 

to the higher error rate. Reasons for missing genes might also include using a less 

sensitive gene finder or gene annotation pipeline. 

Overall, for the four major institutes, we found between 0.71 to 3.92 named 

missed genes for each Mbp of sequence annotated, while for the other smaller 

centers, the average number of named missed genes found per Mbp was 4.48. We 

also computed the percent of named missed genes found versus the number of 

originally annotated genes. Here we found that the four major institutes missed 

between 0.08% and 0.43% of the genes, while the other centers missed on average 

0.48% of the genes. The exact numbers of named missed genes for each of the 

major centers compared to other centers are provided in Table 4 along with some 

other statistics. 
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To examine the distribution of missed genes further, we divided the 1,574 

annotations into two groups, with one group containing annotations from the four 

major centers, and the other group containing all other annotations; each group 

was then ranked by the number of missed genes per Mbp. By plotting each 

annotation’s rank within its group against the annotation’s number of missed 

genes per Mbp (Figure 4), a clear visual distinction between the two groups is 

evident. A more detailed examination of those annotations with at least 10 missed 

genes per Mbp reveals that of the 97 such annotations, 79 (81%) were performed  

by centers other than the four major institutes. Although the major centers do have 

some annotations that are missing many genes, and some smaller centers miss 

none or very few genes, clearly the general trend is that the major centers miss 

fewer genes than the smaller centers. This trend is further confirmed when we 

examine the distribution of missed gene rates on a per-chromosome basis within 

the sets of annotations performed by a particular center (Figure 5), as well as view 

the relationship between the missed gene rate of a center and the number of 

annotations the center has performed (Figure 6).  

Center JGI TIGR JCVI Sanger Others Total 

Chromosomes annotated 563 95 68 67 781 1574 

Named missed genes 1463 852 190 892 10205 13602 

Annotated genes 1830805 254484 179284 205667 2105188 4575428 

Average missed genes per 

chromosome 

2.60 8.97 2.79 13.31 13.07 8.64 

Percent named missed 

genes vs. annotated genes 

0.08% 0.33% 0.11% 0.43% 0.48% 0.30% 

Total chromosome length 

(Mbp) 

2058.6 273.9 190.1 227.7 2276.6 5026.9 

Named missed genes per 

Mbp 

0.71 3.11 1.00 3.92 4.48 2.71 

Table 4. Results of named missed genes analysis. The statistics here only count named missed 

genes and do not include hypothetical missed genes, as the lack of an association with a 

known function makes it more difficult to determine if a potential gene is a true gene. 
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Another observation from our analysis of the set of named missed genes is that 

many of them are short genes, under 300 bp in length. Examining the shortest 

annotated gene for each chromosome reveals that some of the annotators likely 

used a minimum gene length higher than the 110 bp cutoff we used, which may 

account for some of these short genes being missed. In fact, for the annotations of 

two strains of Yersinia pestis, Z176003 and D182038, all 200+ missed genes were 

under 300 bp, while the minimum annotated gene length in the original 

Figure 4. Plot of prokaryotic annotations organized by rate of missed genes.  Each of the 1,574 

annotations studied was placed into one of two groups: the 793 annotations done by one of the 

four large centers (JGI, TIGR, JCVI, and the Sanger Institute), and the 781 other annotations done 

by the smaller centers.  The annotations were then sorted for the two groups separately, in 

increasing order by the number of named missed genes found in the annotation per Mbp of 

genome sequence.  The number of named missed genes per Mbp was then plotted for each 

annotation according to its rank within the sorted ordering of its group of annotations.  The 

resulting plot shows the distribution of the number of named missed genes per Mbp for 

annotations provided by the four large centers and by all other centers; each blue 'x' represents an 

annotation performed by one of the four major annotation centers, while each orange '+' 

represents an annotation performed by one of the other smaller centers.  A green dashed line 

marks the threshold of 10 named missed genes per Mbp.  Note that since there are roughly the 

same number of annotations performed by the large centers as the smaller centers, the blue 'x's 

appearing below the orange '+'s indicate that the large centers generally produced annotations 

with fewer named missed genes per Mbp. 
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annotations was 300 bp. In these cases, it is clear that the minimum gene length 

setting was the primary cause of these genes being missed. 

In our analysis, we used a minimum gene length of 110 bp when running 

Glimmer3 to find missed genes. This minimum length was used as it is the default 

length supplied by Glimmer3’s g3-iterated.csh script. It appears that based on the 

smallest annotated gene in each chromosome, some annotators use a higher 

minimum than 110 bp, which may result in missing shorter genes. Although short 

genes were not the sole cause of missed genes, we found that about 60% of the 

named missed genes were genes of length between 110 bp and 300 bp. A full 

histogram of the lengths of the missed genes we found is shown in Figure 7, and 

we can see that many of the genes have length less than 300 bp.  

Figure 5. Missed gene rate distributions per center.  For each of the four major centers, as well as 

the other centers as a group, a representation of the distribution of the missed gene rates for the 

centers is shown.  For an individual center, all chromosomes annotated by that center had their 

missed gene rates calculated, and the 80th and 95th percentiles are displayed along with the 

minimum and maximum missed gene rates. 



41 

 

In addition to checking the distribution of gene lengths, we also checked to see if 

the annotations with the highest missed genes were all from several years ago, or 

if there were still high numbers of genes being missed in recent years. In general, 

it was difficult to know for certain when each annotation was done, as many 

annotations did not have publications associated with them, and for the ones with 

publications, there was still some chance that the annotation was done many years 

before the publication. However, we did find a number of missed genes in 

annotations associated with publications from the past five years. There was one 

particular example where the annotation of Lactobacillus fermentum CECT 5716 

(accession CP002033) was described in a 2010 publication [51], yet the 

annotation still had over 100 missing genes per Mbp. This example had only 29 

Figure 6. Relationship between the named missed gene rate of a center and the number of 

annotations performed. Each point on the plot represents a single annotation center, and indicates 

the number of annotations the center has performed as well as the number of named missed genes 

per Mbp of sequence annotated by the center. The four major annotation centers (JGI, TIGR, 

JCVI, and Sanger) do not appear in the figure above, as they each have done over 60 annotations, 

but they all have less than four named missed genes per Mbp. 
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out of 224 missed genes under 300 bp in length, indicating that recent gene 

annotations may still miss many genes that are not short. One last factor we 

checked was to see if the missed gene rate of an annotation was influenced by the 

GC content of the genome, but we did not see any noticeable correlations (data 

not shown). 

We further examined the ten genomes that had the highest named missed gene 

rates; these genomes are listed in Table 5. Of these ten, 8 were annotated by 

smaller centers, with only one annotated by JGI (Bacillus thurengiensis) and one 

by the Sanger Institute (Streptococcus pneumoniae). The presence of E. coli, Y. 

pestis, and B. thurengiensis genomes on this list is especially surprising, given the 

high number of closely-related genomes that have been sequenced and annotated, 

which should have made annotating these genomes easier. 

Figure 7. A histogram of the lengths of 13,602 named missed genes found in 1,574 prokaryotic 

chromosomes. Of the 13,602 named missed genes found in our study, 7,627 were less than 300 bp 

in length, indicating a strong tendency on the part of some annotators to omit shorter genes from 

genome annotation. 
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We were able to find information regarding the gene finding programs used for 7 

of these ten annotations; the annotations for Neisseria gonorrhoeae [52], L. 

fermentum [51], and S. pneumoniae [53] lacked an accompanying publication 

detailing the annotation methods. Glimmer version 3 was used in the annotation 

of the three Y. pestis genomes [54] in Table 5. Three other annotations (Sodalis 

glossinidius, Clostridium tetani, and B. thurengiensis) used Glimmer version 2 as 

part of their annotation [55–57]. In addition, GenomeGambler 1.51 [58] was used 

to find genes in the annotation for S. glossinidius [55], although it is unclear how 

the results from GenomeGambler and Glimmer were combined. The annotation of 

E. coli used the GeneQuest program sold by DNASTAR for finding genes [59]. 

Looking at the shortest annotated gene in these ten annotations reveals the likely 

use of a high minimum gene length in the process of annotation. Five annotations 

Genome Accession # Genome 

Size 

(Mbp) 

Missed 

genes 

per 

Mbp 

Total 

missed 

genes 

% 

Missed 

genes ≤ 

300 bp 

Shortest 

annotated 

gene (bp) 

N. gonorrhoeae 

FA 1090 

AE004969 2.15 107.7 232 35.3% 108 

L. fermentum 

CECT 5716 

CP002033 2.10 106.6 224 12.9% 189 

S. glossinidius 

str. ‘morsitans’ 

AP008232 4.17 89.7 374 25.4% 99 

E. coli 

APEC 01 

CP000468 5.08 62.0 315 69.8% 240 

C. tetani 

E88 

AE015927 2.80 55.7 156 87.8% 303 

B. thurengiensis 

str. Al Hakam 

CP000485 5.26 52.9 278 61.5% 138 

S. pneumoniae 

INV104 

FQ312030 2.14 52.3 112 50.0% 99 

Y. pestis 

Z176003 

CP001593 4.55 50.9 232 100.0% 300 

Y. pestis 

D106004 

CP001585 4.64 50.9 236 99.6% 300 

Y. pestis 

D182038 

CP001589 4.63 50.8 235 100.0% 300 

Table 5. The ten chromosomes with the highest named missed gene rates. 
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have no genes less than 240 bp in length, and in each of these five annotations, the 

majority of missed genes were less than 300 bp in length. This appears to indicate 

that in these cases, the use of a high minimum gene length was the primary cause 

of these annotations’ high missed gene rates. 

In the remaining five cases, the cause of the high rates of missed genes is less 

clear, largely due to a lack of information about the annotation methods used. For 

only two of these remaining genomes do we have a description of the gene finders 

used to perform the annotation, and for S. glossinidius, two gene finders’ results 

were used in an ambiguous manner. 

We also wanted to determine if the genes missing from the 10 GenBank 

annotations listed in Table 5 were also missing from their corresponding RefSeq 

annotations. Although RefSeq does contain manually curated genomes for some 

organisms, many annotations for bacterial genomes are listed as “provisional”, 

meaning that they have not yet undergone final review by NCBI staff.  As many 

RefSeq annotations for prokaryotic genomes are largely based on the genomes’ 

GenBank annotations when provided [29], the RefSeq annotations may still be 

missing large numbers of genes.  Our comparison between the two sets of 10 

annotations, detailed in Table 6, revealed that only 13 genes were unique to 

RefSeq annotations, while 43 genes were unique to GenBank annotations.  Of the 

13 genes unique to RefSeq annotations, 11 were in our set of named missed 

genes. 
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2.4 Conclusions 

In this study, we found and made publicly available a substantial number of genes 

missed in the annotations of prokaryotic genomes in GenBank. Through analysis 

on 1,474 completely sequenced prokaryotic genomes, we found 13,602 genes 

missed that had significant amino acid sequence similarity to named (non-

hypothetical) genes in NCBI’s RefSeq database. We also found 39,003 missed 

genes which had significant sequence similarity only to genes annotated as 

hypothetical protein, and among those genes, we found 11,792 candidate ORFs 

with at least some evidence from COMBREX supporting that they are genuine 

missed genes. The fact that many of the hypothetical genes can be associated with 

evidence from known genes highlights the need for taking into account more 

 GenBank annotation RefSeq annotation Common genes 

Genome # 

Genes 

# Unique 

genes 

# 

Genes 

# Unique 

genes 

# 

Genes 

# 5’ 

changes 

N. gonorrhoeae 

FA 1090 

2002 0 2002 0 2002 9 

L. fermentum 

CECT 5716 

1051 0 1051 0 1051 0 

S. glossinidius 

str. ‘morsitans’ 

2432 0 2432 0 2432 13 

E. coli 

APEC 01 

4467 39 4430 2 4428 72 

C. tetani 

E88 

2373 0 2380 7 2373 21 

B. thurengiensis 

str. Al Hakam 

4736 0 4736 0 4736 33 

S. pneumoniae 

INV104 

1824 4 1820 0 1820 0 

Y. pestis 

Z176003 

3542 0 3546 4 3542 0 

Y. pestis 

D106004 

3629 0 3629 0 3629 0 

Y. pestis 

D182038 

3620 0 3620 0 3620 0 

Table 6. Comparison of GenBank and RefSeq annotations for the ten chromosomes with the 

highest named missed gene rates.  Genes not contained in both annotations (as determined by stop 

codon position) for a given genome are considered “unique”, while those contained in both are 

“common”.  For common genes, “# 5’ changes” indicates the number of genes that have differing 

start codon annotations. 
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information than just the gene description as is commonly done by many who use 

only BLAST. COMBREX addresses this need by providing a wider variety of 

information coming from many different sources.  Given the large number of 

probable missed genes found by our method, we recommend it as an addition to 

bacterial annotation pipelines.  Although we used Glimmer, we note other high-

sensitivity gene finders, or combination of such gene finders, may also be suitable 

for improving gene annotations. 

We found the major centers responsible for genome annotation generally had very 

few missed genes, and their annotations missed fewer genes on average than 

annotations from smaller centers. Although some smaller centers did consistently 

produce gene annotations with low numbers of missed genes, we found that the 

majority of gene annotations with a high rate of missed genes were from the 

smaller centers, which may have less experience in gene annotation. 

We also found many short missed genes, suggesting that annotators selected a 

minimum gene length considerably higher than Glimmer’s default of 110 bp. Use 

of such a high minimum length is the likely reason behind the lack of annotation 

of a large fraction of the missed genes we found.  Besides the common problem of 

missing short genes, it was difficult to determine the reasons for missing the 

longer genes, as the methods of annotation were not always detailed in GenBank 

or in the annotations’ associated publications. A survey of the genomes that had 

the 10 highest rates of missed genes showed a variety of annotation pipelines and 

software, indicating that there are several different approaches to annotation. As 

these approaches almost certainly differ in terms of sensitivity, those seeking to 
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perform annotation should take care to ascertain the quality of their chosen 

methods. 

We were also able to identify several genomes without any annotations present, 

and draft genomes, which appeared on a list of complete genomes on the NCBI 

Entrez Genome Project website. The presence of such genomes on a list purported 

to contain “complete genomes” should serve as a reminder to researchers that the 

data in our public archives is not always 100% accurate.  These inconsistencies in 

genome annotation along with the large number of missed genes found strongly 

suggests the need for a common standard of best practices to be followed by gene 

annotation centers, and we hope this work can steer the attention of the annotation 

community towards this direction. 

In addition to identifying many missed genes, we used COMBREX to assign 

phenotype information to many genes. In our phenotype analysis, we were able 

associate some of the missed genes with one or more phenotypes, such as 

antibiotic resistance, antibiotic sensitivity, and essentiality. Some of these missed 

genes, which are conserved in many organisms and found in potentially 

pathogenic organisms, could be interesting targets for the pharmaceutical 

community.  

The cost of sequencing is decreasing at a very rapid rate suggesting that the 

number of organisms or clinically important strains sequenced by small 

laboratories without bioinformatics expertise will increase dramatically. Our 

results suggest a need for open access and high accuracy annotation software 
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available to the community that combines the strengths of gene prediction 

programs, such as Glimmer, with information from protein databases, such as 

COMBREX. 
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3 Improving start site annotation using multiple protein 

alignments 

This chapter describes work with Steven Salzberg that created a pipeline to 

improve microbial genome annotation by finding regions near the start of genes 

that were conserved across multiple species. These regions allow the pipeline to 

determine the start sites of genes with high precision. During our validation of this 

pipeline, which we call Phantim, we found a number of existing annotations that 

had a high number of errors with respect to start site annotation. These 

annotations were brought to our attention by their high disagreement with 

Phantim’s results and a much higher than normal use of rare start codons. 

3.1 Background 

Many computational methods have been devised for the annotation of prokaryotic 

genomes. However, the “gold standard” for annotation remains experimental 

verification of results, a time-consuming task that is undertaken for only a small 

percentage of genes, a percentage that grows smaller as the number of sequenced 

genomes continues to rise. As a consequence, the use of automated annotation 

methods will likely continue to be the dominant approach to genome annotation. 

A combination of manually reviewed and automatically generated annotations of 

genomes is available in NCBI's reference sequence database, RefSeq [28]. 

Although a portion of the RefSeq database has been manually reviewed by NCBI 

staff, many genomes' annotations are “provisional,” meaning that they have not 

been reviewed and are usually identical to the annotation submitted by the 

original genome sequencing group. This means that gene annotations today derive 
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from many different sources, were created by different methods, and are of 

varying degrees of quality. Although these issues are widely known, scientists 

nonetheless rely on published annotation to guide a broad array of downstream 

research, and most researchers have neither the time nor the expertise to validate 

the genes they retrieve from public archives. Although perfect accuracy may not 

be possible with automated method, it is helpful to have some indication as to the 

quality of a given annotation. 

The gene finding programs most widely used for automated annotation typically 

rely on a combination of statistical models of protein-coding DNA, start site 

signal detection, and comparative genomics methods. To create models of coding 

DNA, sets of known or likely protein coding regions are used to train the model; 

the gene finders Glimmer [2, 3], GeneMark.hmm [37], and Prodigal [5] all work 

in this fashion. Start sites can be predicted with coding models alone, but their 

accuracy is rather poor, and a variety of post-processing tools have been created 

to adjust start site prediction, often focusing on the ribosomal binding site and 

other signals found upstream of the start codon. Such tools include RBSFinder 

[31], GS-Finder [60], and TiCO [61]. Recent programs, including Glimmer 3 [4], 

GeneMarkS [38], and Prodigal [5], have incorporated start site signal recognition 

into their prediction method to avoid the need for post-processing improvements. 

Each of these methods is relatively independent of knowledge of other genomes, 

allowing them to make predictions on new, unknown genomes. As the number of 

sequenced genomes has increased, however, useful information is available for 

annotation of both new and existing genomes. Many of the over 1400 bacterial 
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genomes in RefSeq are close relatives of each other. Both genome assembly [62] 

and gene finding [63, 64] methods have exploited the conservation of sequence in 

these close relatives to improve their results. Close genetic relatives have also 

been the basis of algorithms to improve start site predictions, using product 

hidden Markov models [65] and a majority vote approach [66]. 

In spite of the considerable progress in computational gene prediction, and 

especially in start site prediction, the accuracy of the methods is difficult to 

ascertain with certainty. Little experimentally verified data exists for start site 

locations, and almost all of that data is from one species, Escherichia coli. 

Different gene finders report different accuracies at start site prediction, ranging 

from 90% to 98.5%, but these estimates are extrapolations that may not be at all 

accurate for species other than E. coli and its close relatives. 

The variable nature of most methods' accuracy is due in large part to the fact that 

they must report a start site prediction for every gene in a genome, even when 

evidence for a given start site is weak. It is possible instead to report start sites for 

only a subset of genes, choosing only those for which we can state with high 

confidence that the start sites are correct. For such genes, comparative evidence 

can show that the predicted start site is the only one that can explain the sequence 

conservation seen between genomes. These sets of genes can then be compared to 

a genome's existing annotation; a high rate of agreement would mean the 

annotation was highly accurate, while lower agreement could indicate a need to 

reexamine the annotation. 
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To this end, we created Phantim (Protein Homology-based ANnoTation 

IMprovement), a tool utilizing multiple alignments of homologous proteins and a 

set of strict rules that allow only highly accurate predictions to be made. Phantim 

makes predictions for only a subset of the genes in a bacterial genome, but our 

analysis showed these to be 100% correct on a subset of experimentally verified 

genes, and well over 99% correct on a larger set of genes from 13 species. On 

several genomes, our analysis indicated not only that existing annotations had 

mislabeled many start sites, but that they were completely missing some genes, 

many of which could be found with simple homology searches to a database of 

known proteins. 

3.2 Methods 

3.2.1 Summary of the Phantim algorithm 

The goal of Phantim is to report a set of genes in a given genome for which there 

exists evolutionary evidence supporting both the 3' and 5' ends of the reported 

genes. This is done by comparing each predicted gene in a genome with several 

homologous genes in closely related genomes, and searching for situations where 

conservation between the genes implies a necessary protein domain. Where such 

situations exist, and where they imply an unambiguous start site, Phantim will 

report the gene as a predicted gene. Through this procedure, Phantim reports a 

subset of genes for each genome that has high precision with respect to both 3' 

and 5' ends, and allows for correction of existing annotations. 

To begin operation, a user identifies a target genome for Phantim to act upon, and 

Phantim then examines the set of all genomes to find genomes that are closely 
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related to the target, which Phantim will use to support its recommendations. The 

selection of support genomes is performed by first dividing the set of genomes 

into clusters of genomes that are closely related to each other. Furthest-neighbor 

clustering is performed with the distances between genomes provided by the 

Jaccard distances calculated as part of the OperonDB project [67]. Support 

genomes are then selected such that only one genome per cluster is used. 

This selection process is necessary to ensure that the genomes used for 

comparative purposes in Phantim are not too similar to the target genome. If, for 

example, two genomes of the same species were used, it is quite possible that 

alignments between genes from these genomes would show identical stretches of 

intergenic DNA that are near-identical only because the two genomes have not 

had time to mutate and drift apart. Our initial attempts at using comparative 

genomics to improve start site annotation failed for this very reason: the core 

assumption of Phantim, that conservation will imply functionality, does not hold 

if the genes being compared are from extremely close relatives. By requiring 

several more distant relatives to make its decisions, Phantim is able to make much 

more accurate predictions of genes than it would otherwise. 

After support genome selection, Glimmer is used to find possible protein coding 

genes in both the target as well as all support genomes. BLASTP [8] is then used 

to find sets of homologous genes among these predicted genes, with several filters 

used on the results in an attempt to increase the likelihood that support genes used 

in comparison will be suitable for verifying start site locations. Each set of 

homologous genes have the genes' protein translations placed into a multiple 
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alignment using MUSCLE [19], and the alignment is examined for conservation 

between the first and second possible start codons in the target genome's gene, 

using a BLOSUM similarity matrix [68] and pairwise comparisons within each 

column of the alignment. If and only if conservation is found within this region 

(highlighted in Figures 8 and 9) does Phantim declare the first possible start 

codon to be the correct one and report the gene as a predicted gene; otherwise, no 

prediction whatsoever is made regarding the gene. 

Figure 8. Conservation in the open reading frames of two genes. Conservation is shown in 

alignments of the ribF gene (b0025) in E. coli and the ccmF gene (Arad_1495) in A. radiobacter, 

each against 10 homologous gene ORFs in different species. The mean BLOSUM80 scores in 

each column of the alignments are plotted as red dots, with the green line representing the trend of 

these points. The leftmost blue vertical line in each plot, labeled “P”, indicates the first possible 

start codon, predicted by Phantim. The second blue line is the second possible start codon, and the 

space between it and the first line is the region examined for conservation. The blue line labeled 

“A” indicates the position of the annotated start in RefSeq; for E. coli’s ribF gene, the prediction 

and annotation agree, and for A. radiobacter’s ccmF gene, the annotation is downstream from the 

prediction. To simplify the figure, “position in alignment” is relative to the beginning of the target 

gene’s ORF in each alignment, and only 350 positions are shown of each alignment. 



55 

 

For the purposes of Phantim, a region in an alignment is considered to be 

conserved if the mean BLOSUM80 value meets or exceeds 3.0, and the region is 

at least 21 nt in length. We determined our threshold scoring value by running 

Phantim against a set of genes from E. coli for which the start site had been 

verified by N-terminal sequencing.  These genes were found by searching the 

EcoGene database [69] and selecting those genes that were annotated as 

“Verified” but not as either “EXCEP” or “MUTANT” (in the same manner as was 

done in evaluating Glimmer3 [4]).  Upon trying various scoring thresholds 

Figure 9. Examples of multiple alignments used by Phantim. Portions of the multiple alignments 

of ORFs used in Figure 8 are shown, with the examined region between the first two possible start 

codons in the target gene highlighted with a blue box. The start codon position predicted by 

Phantim is highlighted with a red background, while the annotated start codon (if different from 

Phantim’s prediction) is highlighted with a red box. (a) The alignment with the E. coli gene shows 

conservation at and immediately downstream of the annotated start site, with a noticeable lack of 

conservation upstream. (b) The alignment with an A. radiobacter gene shows the annotated start 

site is downstream of the beginning of conservation; the presence of conservation between the first 

two possible start sites in this gene leads Phantim to declare the first site the true start site.  For 

both alignments, translation is done using the standard translation table, meaning that the GTG 

codon that serves as an alternate start is translated as valine (V); this is why the leftmost residue 

inside the blue box in alignment (b) for Bradyrhizobium BTAi1 is a V, even though it is actually 

the annotated start site for that gene and so would be translated as methionine (M) by the 

ribosome. 
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(Figure 10), we settled upon using a threshold of 3.0 to ensure high precision 

while making as many predictions as possible. 

The length requirement was selected to be long enough so that regulatory 

elements, such as ribosomal binding sites and transcriptional promoters, would 

not dominate the region and give rise to a false appearance of protein sequence 

conservation. These two rules, combined with the use of genomes that have a 

substantial evolutionary distance between them, serve to force Phantim to make 

only predictions for which it has strong evidence of the start site's correctness. 

3.2.2 Selection of support genomes 

Phantim begins operation by having a user identify a genome to act upon, called 

the “target” genome. Then, Phantim must select a set of genomes that: (a) have a 

close evolutionary relationship with the target genome, and (b) are not too closely 

Figure 10. Effect of various scoring thresholds on Phantim’s start site prediction agreement. For 

each half-unit threshold value between 0 and 9 (inclusive), Phantim was run on the E. coli K12 

substr. MG1655 genome and predictions were only considered for alignments that had an 

examination region score that was higher than that threshold. The considered start site predictions 

were then compared to both the RefSeq annotation as well as a subset of genes in the EcoGene 

database for which the start sites had been experimentally verified. The percentage of genes that 

had a predicted start site that agreed with the reference annotation (either RefSeq or EcoGene 

subset) is shown as a function of the various scoring thresholds. 
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related to any other genome in the set (as well as the target genome). To find such 

a set of what Phantim calls “support” genomes, Phantim utilizes the Jaccard 

distances between genomes calculated as part of the OperonDB project [67]. The 

1059 genomes used in creating OperonDB are clustered using furthest-neighbor 

clustering, such that no cluster contains two genomes with a Jaccard distance 

between them that exceeds 0.4 (we have found this to roughly correspond to one 

species per cluster). This clustering is performed only once, and can be reused 

between executions of Phantim. 

To select the set of support genomes, the following algorithm is used. The set of 

support genomes, S, begins as an empty set, and all 1059 genomes with known 

Jaccard distances are placed in a set C that holds all possible support genome 

candidates. The target genome, along with all genomes in its cluster, is then 

removed from C. Then the genome g in C with the smallest Jaccard distance to 

the target genome is added to S; g, along with all of the genomes in its cluster, is 

removed from C. This step of selection from and removal from C is repeated until 

either (a) g has a Jaccard distance of more than 0.65 from the target genome, or 

(b) C is reduced to the empty set. 

3.2.3 Locating coding ORFs and maximal length genes 

Once the support genomes are identified, possible genes are found in each 

genome (including the target) by running Glimmer. A modified version of the g3-

iterated.csh script supplied with Glimmer, designed to avoid gene prediction in 

certain regions, is run against each chromosome and plasmid found in each 

genome's GenBank record. Phantim reviews the Glimmer predictions for each 
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chromosome and plasmid, and records three items of information for each gene 

prediction: (a) the coordinates and amino acid translation of the gene's open 

reading frame (ORF); (b) the coordinates within the ORF of the first two possible 

start codons codons within the ORF; and (c) the coordinates and amino acid 

translation of the maximal length gene (the gene using the first possible start 

codon as a start codon). 

Glimmer was used as the gene finder for Phantim because of its high sensitivity; 

as only the genes selected in this step are possible candidates for inclusion in 

Phantim's final report, it is important to have as many true genes found as 

possible. However, Glimmer's start site predictions are actually ignored by 

Phantim, as all start site predictions for Phantim will be made using conservation; 

only Glimmer's 3' and respective ORF predictions are carried forward. 

There are certain types of genes that Glimmer does not recognize, however. These 

include genes with a programmed frame shift, selenoproteins, and RNA genes. 

Glimmer also cannot determine if a region that looks like a protein coding gene is 

actually a pseudogene (a region that used to be a gene but is no longer functional). 

To avoid a situation where Phantim would make predictions that included parts of 

these kinds of genes (thereby making erroneous predictions), regions that are 

annotated in GenBank as selenoproteins, pseudogenes, RNA genes, or regions 

labeled as a gene feature but lacking a corresponding CDS feature are excluded 

from gene prediction in Glimmer. 50 bp are removed from the edge of each of 

these excluded regions so that genes that may overlap these regions can still be 

predicted by Glimmer. 
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Finally, although Glimmer cannot detect it by itself, if the alternative translation 

table used by Mycoplasma and other related species is specified in the annotation, 

it will be used by Glimmer as well as all subsequent translations in Phantim. 

3.2.4 Finding sets of homologous genes 

Phantim requires that several homologous genes in support genomes exhibit 

conservation with a target gene in order to make a prediction about the target 

gene's coordinates. To find these homologous genes, Phantim begins by placing 

all the maximal length genes from the support genomes into a protein database. 

BLASTP is then run against this database, using the target genome's maximal 

length genes as query sequences. As the target and support genomes are intended 

to be closely related, BLASTP is directed to use the BLOSUM80 substitution 

matrix when scoring its alignments. 

The results from BLASTP are filtered in several ways, to increase the likelihood 

that the support genes used in comparison will be suitable for verifying start site 

locations. Alignments are discarded if any of the following apply: (a) the 

alignment's E-value is greater than 1e-3; (b) the identity within the alignment is 

less than 45%; (c) the alignment's length is less than 90% of the target gene's 

length; or (d) the difference between the length of the support gene in the 

alignment and the length of the target gene is more than 10% of the length of the 

target gene. The list of BLASTP hits is further narrowed by ensuring only one 

gene from any given support genome can be matched with a given target gene. 
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The remaining results are then used to create sets of homologous genes, with one 

set per target gene. Each set consists of the top 10 support genes that have 

alignments with a given target gene in the filtered BLASTP results. To ensure that 

predictions are made with sufficient evidence, sets with less than 3 support genes 

are discarded. 

3.2.5 Scoring multiple alignments 

For each set of homologous support genes, the genes' respective ORF translations 

are placed into a multiple alignment along with the ORF translation of the set's 

corresponding target gene, using MUSCLE [19]. Phantim then examines the 

window of columns in the multiple alignment that represent the first (inclusive) 

and second (exclusive) possible start codons in the target gene. Within this 

window, each column is examined separately, and the amino acids in the support 

genes are scored by their similarity to the target gene's amino acid within that 

column, using the BLOSUM80 matrix (gap characters receive a score of -8 for 

non-identity substitution, and +1 for alignment of two gap characters). For each 

column, the mean of these scores is calculated, and then the mean of the column 

scores throughout the window is found. If this mean substitution score is at least 

3.0, and the length of the window is at least 7 amino acids, Phantim will declare 

the first possible start codon to be the correct one and report the gene as a 

predicted gene; if these two conditions do not hold, no prediction whatsoever is 

made regarding the gene. 

Due to the fact that the similarity between homologous genes can break down 

toward the 5' ends, a lack of conservation in a given segment of the target gene 
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does not imply that that segment is not actually part of the gene. In such a case, it 

is not possible to make a claim one way or another regarding the gene's start site, 

and so Phantim does not attempt to do so in the absence of conservation. 

Similarly, only the gap between the first and second possible start codons is 

searched; conservation here does indeed lend support to the claim that the gap is 

part of a functional protein. But a lack of conservation in that gap, and the 

presence of conservation in a later part of the gene does not allow Phantim to 

make any firm conclusions as to the correct start site, due to the possibility of the 

target gene possessing a novel mutation not present in the support genes. 

3.2.6 Implementation and Execution 

Phantim is designed for use with a Linux operating system, and makes extensive 

use of Perl and Make, along with other standard Unix utilities, in addition to the 

various programs cited above. To run Phantim with a specific target genome, the 

name of that genome must be specified. All chromosomes and plasmids in the 

target genome's GenBank record will have their sequences analyzed for genes that 

can be annotated with high confidence, and a separate report will be made for 

each sequence. These reports can then be compared with the GenBank or RefSeq 

annotation to determine if changes should be made in the current annotation, and 

all alignments used in making Phantim's predictions are retained for possible 

manual examination.  

As the number of support genomes increases, the amount of gene finding and the 

size of the BLASTP database increase as well, leading to long running times. To 

reduce overall execution time, Phantim is designed to use (by default) all 
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processing units on a computer and store gene finding results for use in future 

executions. 

3.2.7 Evaluation 

To evaluate Phantim, we ran it on 15 microbial genomes and compared its 

predictions to the corresponding annotations in RefSeq; the results of these 

comparisons are shown in Table 7. We examined manually any predictions that 

did not match the 5' and 3' ends of the annotated coding sequence, by inspecting 

the alignment used by Phantim to make the prediction. In the case of predictions 

without a matching 3' end, we used BLASTP to align the predicted genes and any 

genes overlapping them against the bacterial component of NCBI's non-redundant 

protein database. 

Our manual examination of the alignments for genes where Phantim’s 5’ end 

prediction disagreed with RefSeq’s annotation produced one of three 

recommendations for each gene: change to the predicted coordinates, keep the 

existing annotation, or review the annotation. For each alignment, sequence 

conservation was looked for both before and after the predicted start site, as well 

as before and after the annotated start site.  If conservation clearly began at or 

shortly after the predicted start site, and not at the annotated start site, we 

recommended that the gene’s annotation be changed. In situations where 

conservation clearly favored the annotated start site, we recommended the 

annotated be kept as is.  In all other situations, where the correct start site is not 

clear visually (either due to weak conservation or to conservation upstream of the 

predicted start site), we recommended a review of the annotation. We note that we 
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did not look for conservation of the start sites themselves, but rather sequence 

conservation in a region that clearly led to selection of the 5’-most possible start 

codon in the target gene, either upstream of or at the beginning of sequence 

conservation. 

For each of the genes that were predicted by Phantim but were not present in 

RefSeq annotations, the gene’s source genome was examined along with 

BLASTP results for the gene. Our recommendations were either to add the gene 

to annotation, to replace an annotated gene with the predicted one (due to high 

overlap between the two), or leave the predicted gene out of the set of annotated 

protein-coding genes while adding it to the annotation as a pseudogene. Given the 

number of homologs required for a prediction, as well as the high amount of 

conservation that would be present, we did not expect to declare any of our 

predicted genes as pseudogenes. 

Conclusively evaluating the start-site prediction accuracy of Phantim is difficult 

due to the lack of experimentally-verified data about start sites. Although a set of 

genes with experimentally verified start sites exists for E. coli, this set was used to 

set the threshold parameter of Phantim’s algorithm, and so we do not use it for 

evaluation.  Instead, we use a set of genes from two archaeal species, 

Halobacterium salinarum and Natronomonas pharonis, for which many genes 

have had their start sites verified through experiment [70].  This set of archaeal 

genes has the additional benefit of originating from two high-GC genomes, where 

start-site prediction is considerably more difficult, thereby providing a more 

exacting test for Phantim than genes from E. coli.  The set of genes we used 
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excluded plasmid genes, genes without an entry in RefSeq, or genes where the 

experimentally determined amino acid sequence was ambiguous or disagreed with 

the RefSeq sequence for the gene. 

3.3 Results and Discussion 

3.3.1 High agreement in both 3' and 5' predictions 

As seen in Table 7, with one exception (Mycobacterium tuberculosis), over 99% 

of Phantim's predicted genes had their 3' ends match with a gene in a genome's 

respective RefSeq annotation. All genomes also had at least 92% agreement 

between predictions and 5' end annotations. Genomes with higher GC content 

tended to have lower 5' agreement, likely a consequence of the increased 

difficulty in discerning the correct start codon in longer ORFs. In total, of the 

7243 genes for which Phantim made predictions, 97.6% agreed with RefSeq on 

both the start and stop coordinates. 

Genome Gene Counts Matches with RefSeq Annotation 

Organism GC SG RefSeq Phantim % 3’ Matches 5’ & 3’ Matches 

A. citrulli 69 56 4709 471 10 470 99.8% 462 98.1% 

A. radiobacter 60 63 6107 564 9 559 99.1% 525 93.1% 

B. anthracis 35 19 5328 697 13 696 99.9% 694 99.6% 

B. subtilis 44 40 4176 581 14 581 100.0% 577 99.3% 

Bradyrhizobium BTAi1 65 48 7393 678 9 677 99.9% 631 93.1% 

C. violaceum 65 70 4407 439 10 439 100.0% 424 96.6% 

E. coli 51 65 4145 781 19 781 100.0% 775 99.2% 

H. pylori 39 9 1573 198 13 198 100.0% 196 99.0% 

H. salinarum 68 6 2110 176 8 176 100.0% 175 99.4% 

M. tuberculosis 66 16 4189 261 6 258 98.9% 250 95.8% 

N. meningitidis 52 28 2063 218 11 218 100.0% 218 100.0% 

N. pharonis 63 6 2659 269 10 269 100.0% 269 100.0% 

S. aureus 33 31 2650 350 13 350 100.0% 350 100.0% 

V. cholerae 47 52 3834 712 19 711 99.9% 711 99.9% 

X. bovienii 45 24 4260 848 20 848 100.0% 819 96.6% 

Totals 59603 7243 12 7231 99.8% 6632 97.7% 

Table 7. Comparison of Phantim predictions to RefSeq annotations. “SG” is the number of support 

genomes used. 3’ matches are predicted genes that share a stop codon with a CDS in the RefSeq 

annotation. 5’ & 3’ matches are predicted genes that share both a start and stop codon with an 

annotated CDS. 
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This high agreement between our predictions and the RefSeq annotations tends to 

support the hypothesis that Phantim yields a set of highly accurate predictions. 

We sought further evidence of Phantim's high precision for start site prediction by 

comparing the predictions of genes in two archaeal genomes to those with 

experimentally verified starts (Table 8). Of these 847 genes, Phantim made 

predictions for 153 (18.1%), and all 153 (100%) agreed with the verified set on 

both the 5' and 3' ends. 

Finally, upon manual examination (Appendices A and B), all of the 3' 

disagreements resulted in the addition of new unannotated genes. 123 of the 155 

5' disagreements were resolved in favor of Phantim, and only 3 were clearly 

resolved in favor of the RefSeq annotation; each of these 3 were due to the use of 

a rare ATT or CTG start codon for the gene. Phantim's high percentage of 

predictions that either agree with the existing annotation, or are verified by 

examination, gives strong support to the idea that it provides a high-precision set 

of start-site predictions, and it also provides a rough estimate as to how precise 

the predictions are. With 99.6% of start-site predictions validated by experimental 

data or by manual inspection, Phantim appears to be a very precise tool for 

validating and correcting start-site predictions. 

Genome  Gene counts   

Organism GC% SG  Verified Phantim  5’ & 3’ Matches 

H. salinarum 68 6  526 84  84 100.0% 

N. pharonis 63 6  321 69  69 100.0% 

Table 8. Comparison of Phantim start site predictions to sets of archaeal genes with verified start 

sites. SG is the number of support genomes used. Gene counts refer only to the genes in the 

verified subsets; genes predicted by Phantim that lacked a 3’ match within the verified subset were 

not considered. 
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3.3.2 Discovery of previously unannotated genes 

Twelve genes predicted by Phantim failed entirely to match an annotated gene 

from RefSeq. Manual examination of each of these indicated clearly that all 

twelve of these genes should be added to their respective annotations; e.g., 

multiple other species contain the same genes, with strong sequence homology. In 

several cases, these genes should replace annotated genes that have no evidence to 

support them and whose coordinates overlap. Appendix A contains a summary of 

the recommended changes and the evidence that exists for making them. 

Six of these genes exist in regions that are currently annotated as intergenic in 

RefSeq, or are overlapped by less than 5 nt by another gene. A simpler method of 

extracting these regions, supplying them as input to TBLASTN, and searching 

against a database of known bacterial proteins would have found as much 

evidence as Phantim did for these genes, if not far more. Such a method would 

also find such evidence much faster, and almost certainly would find even more 

unannotated genes than Phantim. Given the large number of bacterial genomes 

that have been sequenced and annotated, such a process should now be used by 

any annotation pipeline. 

Six other predicted genes have large overlaps with annotated genes, in most cases 

being completely overlapped by the annotated gene. In each of these six cases, the 

gene predicted by Phantim has far more alignments against bacterial proteins in 

NCBI's non-redundant database than does the corresponding overlapping 

annotated gene. This larger amount of sequence conservation in other bacteria 

found in the predicted genes serves as strong evidence of the correctness of these 



67 

 

predictions; in light of the high overlap in these situations, the higher conservation 

also serves as evidence of the incorrectness of the conflicting annotations. 

Like those genes found in regions annotated as intergenic, the predicted genes that 

were overlapped were all found as part of the Glimmer prediction set. Even in the 

face of a conflicting annotation from another source, the conflict can be resolved 

by the use of a BLAST search against other genomes. In this case, a TBLASTN 

search of two overlapping potential genes against all bacterial genomes provides 

guidance as to which of the two genes was more conserved, and thus more likely 

to be a true gene. Once again, with the rise in sequenced bacterial genomes in 

GenBank, there exist considerable resources for such a method, and it would be a 

useful addition to an annotation pipeline. 

3.3.3 Lengthening predicted genes 

The primary motivation behind Phantim is to correct start site annotations, and it 

appears to perform this task with very high precision. For all but one genome, 

over 99% of Phantim's start site predictions either matched the RefSeq annotation 

or were verified by examination. When Phantim's start site prediction disagreed 

with the RefSeq annotation, manual review of the alignments favored Phantim in 

nearly all cases. These results are summarized in Table 9, with details in 

Appendix B. This high percentage of gene predictions that agree with the 

annotation or have been verified supports the idea that Phantim provides a high-

precision set of start site predictions, and it also provides a rough estimate as to 

exactly how precise the predictions are.  
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Because Phantim will only predict a start site that lies at the 5'-most start codon, 

the gene predicted by Phantim is always at least as long as the corresponding 

annotated gene (with the exception of genes that use very rare start codons). In 

some cases, Phantim extends genes by more than 100 nt in the 5' direction. With 

the exception of Xenorhabdus bovienii, in most of the low-GC (< 60%) genomes, 

the number of genes needing adjustments was very low. Many more start sites 

needed to be altered in high-GC genomes, which are more prone to misannotation 

due to the longer ORFs found out-of-frame in such genomes. 

3.3.4 High erroneous annotation of rare start codons 

There appears to be a connection between the quality of an annotation and the 

number of rare start codons used in the annotation. Most bacterial gene finders  

Genome Phantim comparison Recommendations  

Organism GC 3’ matches 5’ mismatches Chng. Rev. Keep 5’ matched/verified 

A. citrulli 69 470 8 6 2 0 468 99.6% 

A. radiobacter 60 559 34 24 10 0 549 98.2% 

B. anthracis 35 696 2 2 0 0 696 100.0% 

B. subtilis 44 581 4 3 0 1 580 99.8% 

Bradyrhiz. BTAi1 65 677 46 42 4 0 673 99.4% 

C. violaceum 65 439 15 11 4 0 435 99.1% 

E. coli 51 781 6 3 1 2 778 99.6% 

H. pylori 39 198 2 2 0 0 198 100.0% 

H. salinarum 68 176 1 1 0 0 176 100.0% 

M. tuberculosis 66 258 8 7 1 0 257 99.6% 

N. meningitidis 52 218 0 0 0 0 218 100.0% 

N. pharonis 63 269 0 0 0 0 269 100.0% 

S. aureus 33 350 0 0 0 0 350 100.0% 

V. cholerae 47 711 0 0 0 0 711 100.0% 

X. bovienii 45 848 29 22 7 0 841 99.2% 

Totals 7231 155 123 29 3 7231 99.6% 

Table 9. Results of examination of 5’ differences in prediction. All Phantim predictions were 

compared to the respective RefSeq annotation, and for those genes that had a 3’ match but a 5’ 

mismatch, the alignment was analyzed. Recommendations as a result of that analysis are given 

here, with “Chng.” meaning an annotation should be changed, “Rev.” indicating further review is 

needed, and “Keep” meaning that the annotation should be left as is. “5’ matched/verified” is a 

count of predicted genes with 3’ matches and a 5’ end that either matched a RefSeq gene or was 

verified by examination, along with the percentage of 3’ matches such a count constitutes. 
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will only allow ATG, GTG, and TTG start codons with their default settings, 

although the NCBI standard for bacterial annotation also permits translation 

initiation with CTG, ATT, ATC, and ATA. These rare start codons have been 

shown to be used in exceptional cases; e.g., when an organism needs to limit the 

production of IF3 [71, 72]. For the two most intensively studied species, Bacillus 

subtilis and E. coli, only 21 out of 8321 protein-coding genes (0.25%) use one of 

these four rare start codons. For many other genomes, no instances of rare start 

codons appear in their RefSeq annotations. 

While other species might use a significantly higher proportion of rare start 

codons, computational prediction methods cannot justify their use without 

significant evidence. Looking at the annotation for the 13 genomes used in 

Phantim's evaluation, four had > 0.7% of genes utilizing the CTG codon. (None 

of these used any of the other rare starts.) These four genomes also had the four 

largest numbers of disagreements with Phantim for predicted start sites when 

compared to the other genomes in this study (Table 10, last two columns). The 

only common property among these genomes appears to be their higher-than-

expected proportion of CTG start codons. Curiously, there does not appear to be 

any documented reason for such a high usage of this rare start codon for any of 

these species [73–75]. 

The high rate of Phantim's disagreement over a small subset of genes in these 

species appears to indicate a weakness in the methods used to annotate their start 

sites. In particular, by allowing their annotation methods to automatically call a 

CTG start codon, the authors of these studies might have unintentionally over-
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predicted the usage of CTG starts. For this and other rare start codons, we would 

suggest that any software that predicts rare starts should only do so when there is 

considerable evidence (ideally, experimental evidence) supporting those 

predictions. Otherwise, a high rate of annotation of CTG or other rare start codons 

may simply indicate that the existing annotation is in need of review.  

An inspection of the bacterial chromosome annotations in RefSeq revealed five 

genomes that used rare start codons for more than 5% of genes, and had at least 

50 such genes. Three of these genomes, of the Mycoplasma genus, were annotated 

by the same group. Four of the five annotated ATT as the start site for 13-20% of 

their genes. An examination of the articles published for these genomes revealed 

no discussion of these rare start codons [76–78]. We ran Phantim on each, and 

found extraordinarily high disagreement between the annotations and Phantim's 5' 

predictions (see Tables 11 and 12). This level of disagreement, combined with  

Genome RefSeq start codon usage (%) Phantim predictions 

Organism GC% CTG ATT ATC ATA 5’ mismatches Changes 

A. citrulli 69 0.00 0.00 0.00 0.00 8 6 

A. radiobacter 60 3.95 0.00 0.00 0.00 34 24 

B. anthracis 35 0.00 0.00 0.00 0.00 2 2 

B. subtilis 44 0.14 0.22 0.05 0.00 4 3 

Bradyrhizo. BTAi1 65 0.72 0.00 0.00 0.00 46 42 

C. violaceum 65 4.29 0.00 0.00 0.00 15 11 

E. coli 51 0.05 0.05 0.00 0.00 6 3 

H. pylori 39 0.06 0.06 0.00 0.00 2 2 

H. salinarum 68 0.00 0.00 0.00 0.00 1 1 

M. tuberculosis 66 0.00 0.00 0.00 0.00 8 7 

N. meningitidis 52 0.00 0.00 0.00 0.00 0 0 

N. pharonis 63 0.00 0.00 0.00 0.00 0 0 

S. aureus 33 0.00 0.00 0.00 0.00 0 0 

V. cholerae 47 0.00 0.00 0.00 0.00 0 0 

X. bovienii 45 3.92 0.00 0.00 0.00 29 22 

Table 10. Relationship between GC content, high annotation of rare start codons, and Phantim 

disagreement. RefSeq start codon usage is the percentage of annotated genes using the given start 

codon. 5’ mismatches are instances where the prediction had a stop codon match with the 

annotation, but not the start codon. Changes are the number of 5’ mismatches resolved in favor of 

the prediction after manual examination. 
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Phantim’s high precision and a startlingly high rate of rare start codons, leads us 

to suggest that these five genomes contain many incorrectly annotated start sites. 

3.3.5 Factors affecting the number of Phantim's predictions 

High-GC genomes have ORFs that extend farther upstream from the true start 

codon than do low-GC genomes. This property is a simple consequence of the 

fact that stop codons (TAA, TGA, TAG) are AT-rich, and in GC-rich genomes, 

fewer of these triplets are found by chance in intergenic regions. As shown in 

Table 7, Phantim predicts fewer start sites in high-GC genomes than it does in 

low-GC genomes. This is due to two factors associated with a longer upstream 

region. First, the extra possible start codons can cause the maximal length genes 

to be of widely differing sizes in different genomes; Phantim's requirement for 

homologous maximal length genes to be of approximately the same length can 

eliminate possible useful homologs from consideration. This in turn can lead to a 

target gene not having enough homologs in other species, which will lower the 

Genome RefSeq start codon usage (%) 

Organism GC% CTG ATT ATC ATA 

C. turicensis z3032 57 8.36 5.06 4.51 3.06 

M. hyopneumoniae 7448 28 1.37 17.81 7.91 3.65 

M. hyopneumoniae J 29 1.37 17.96 8.68 3.96 

M. synoviae 53 29 0.46 13.51 9.71 2.28 

R. massilae MTU5 33 2.58 19.94 23.14 4.65 

Table 11. Five genomes with high annotated usage of rare start codons. Start codon usage is a 

percentage of all genes annotated for a given genome. 

Genome Gene counts Matches with RefSeq annotation 

Organism SG RefSeq Phantim 3’ Matches 

5’ & 3’ 

Matches 

C. turicensis z3032 54 4213 934 932 99.8% 768 82.4% 

M. hyopneumoniae 7448 7 657 85 85 100.0% 71 83.5% 

M. hyopneumoniae J 7 657 85 85 100.0% 71 83.5% 

M. synoviae 53 10 659 109 109 100.0% 86 78.9% 

R. massilae MTU5 7 968 80 80 100.0% 38 47.5% 

Table 12. Results of running Phantim on five genomes with high annotated rare start codon usage. 
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number of predicted genes. Another factor that drives the prediction count down 

in high-GC genomes is that Phantim will only predict genes where it finds 

evidence that the first possible start codon is the correct one; the more possible 

start codons upstream of true start codons that a genome has, the fewer genes that 

can be predicted by such a method. This requirement might be relaxed for future 

versions of Phantim. 

In addition, low numbers of support genomes will result in very few predictions. 

This occurs when an organism has not had many of its closer evolutionary 

neighbors sequenced. As the bacterial tree of life is filled out due to future 

sequencing efforts, Phantim will be able to predict many more start sites. 

3.4 Conclusion 

Phantim's gene predictions are highly accurate, with a precision that exceeds 99%. 

Such high precision enables it to make corrections to existing annotations. 

Application of Phantim to existing genomes reveals that species with a high rate 

of rare start codons are likely to have a high error rate in start site annotation. In 

addition to recommending more accurate start sites, Phantim also discovered a 

small number of genes that were entirely missing from the current annotation. 

Approximately half of these would have been discovered by a thorough BLAST 

search of the annotated intergenic regions. 

The results of comparing Phantim's predictions with RefSeq's annotations reveal 

that researchers seeking to use these annotations should be aware that although 

these annotations are mostly correct, they may contain errors, particularly in the 
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location of gene start sites. Researchers should especially cautious of annotations 

that use rare start codons. At the same time, genome annotators should ensure that 

their software pipelines generate results that are consistent with known genomes 

and with experimental evidence. 
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4 Ultrafast metagenomic sequence classification using exact 

alignments 

This chapter describes work performed with Steven Salzberg to provide a highly 

sensitive metagenomic sequence classification program that performs its task in a 

fraction of the time used by existing methods. This program, called Kraken, uses 

exact alignments of short DNA sequences (k-mers) to achieve accuracy 

comparable to classification methods that use more computationally expensive 

methods such as inexact alignments or Markov models. Using these exact 

alignments, along with a pre-computed database that maps k-mers to nodes in a 

taxonomic tree, Kraken is able to achieve this accuracy nearly a thousand times 

faster than the fastest comparable classification methods. This work was 

published in Genome Biology in March 2014 [23]. 

4.1 Background 

Metagenomics, the study of genomic sequences obtained directly from an 

environment, has become an increasingly popular field of study in the past 

decade. In projects that have studied environments as varied as sea water [79], 

acidic mine drainage [25], and the human body [32], metagenomics has allowed 

researchers to create a picture of an environment’s microbial life without the need 

to isolate and culture individual microbes. Combined with the ability to quickly 

sequence DNA, metagenomics projects can generate a huge amount of sequence 

data that describes these previously invisible worlds. 

For many metagenomic samples, the species, genera, and even phyla present in 

the sample are largely unknown at the time of sequencing, and the goal of 
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sequencing is to determine this microbial composition as precisely as possible.  

Of course, if an organism is completely unlike anything previously seen, then its 

DNA sequence cannot be characterized other than to label it as novel.  Many 

species, though, have some detectable similarity to a previously known species, 

and this similarity can be detected by a sensitive alignment algorithm.  The most 

well-known such algorithm, and one of the best methods for assigning a 

taxonomic label to an unknown sequence, is the BLAST program [8], which can 

classify a sequence by finding the best alignment to a large database of genomic 

sequences.  Although BLAST was not designed for metagenomic sequences, it is 

easily adapted to this problem and it remains one of the best methods available 

[22]. 

Other methods of sequence classification have been proposed, utilizing sequence 

alignment and machine learning techniques in an attempt to improve upon 

BLAST’s accuracy. In the MEGAN [80] program, a sequence is searched (using 

BLAST) against multiple databases, and the lowest common ancestor (LCA) of 

the best matches against each database is assigned to the sequence. PhymmBL 

[22, 81] combines the results of BLAST with scores produced from interpolated 

Markov models (IMMs) to achieve higher accuracy than BLAST alone, and the 

Naïve Bayes Classifier (NBC) [82] applies a Bayesian rule to distributions of k-

mers within a genome. However, all these programs perform at speeds slower 

than BLAST, which itself takes very substantial CPU time to align the millions of 

sequences generated by a typical Illumina sequencing run.  This processing 
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burden is so demanding that it suggested another, faster approach to metagenomic 

sequence analysis: abundance estimation. 

Abundance estimation programs work by creating a database that is much smaller 

than the collection of all genomes, which allows them to perform classification 

much faster than methods that attempt to identify every read in a data set. These 

databases are engineered to contain “marker” genes (single-copy genes present in 

nearly all microbes) [34], or genes that have been found to be specific to certain 

clades [33]. Because the databases only contain a very small sample of each 

genome, these programs can only classify a small percentage of sequences from a 

typical metagenomics sample.  They are meant to be used to characterize the 

distribution of organisms present a given sample, rather than labelling every 

single read. For example, the initial analysis of the Human Microbiome Project 

[32] used one of these programs, MetaPhlAn [33], to perform an analysis of 

several trillion bases (terabases) of metagenomic sequence collected from 

hundreds of humans. Although abundance estimation programs provide a 

summary-level characterization of a metagenomics project, they cannot help with 

analyses that require more details about the sample.  For example, they cannot be 

used to estimate the gene content in a sample, which requires every read to be 

compared to known genes.  If a sample contains a large number of reads from one 

species, then it is sometimes possible to assemble those reads to reconstruct part 

or all of the genome [83], and then to classify the resulting contigs. 

Here we describe Kraken, a new sequence classification tool whose accuracy is 

comparable to the best existing sequence classification techniques, and whose 
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speed far exceeds both classifiers and abundance estimation programs. This speed 

advantage derives in large part from the use of exact-match database queries of k-

mers, rather than inexact alignment of sequences. Its accuracy is made possible by 

the very large and still-growing number of sequenced microbial genomes, 

currently numbering over 8,500, which makes it likely that very similar sequences 

from a given species have been seen before. Through the use of a novel algorithm 

to process the disparate results returned by its database, Kraken is able to achieve 

genus-level sensitivity and precision that are very similar to that obtained by the 

fastest BLAST program, Megablast. 

4.2 Results and Discussion 

4.2.1 K-mer to LCA database 

At the core of Kraken is a database that contains records consisting of a k-mer and 

the lowest common ancestor (LCA) of all organisms whose genomes contain that 

k-mer. This database, built using a user-specified library of genomes, allows 

quick lookup of the most specific node in the taxonomic tree that is associated 

with a given k-mer. Sequences are classified by querying the database for each k-

mer in a sequence, and then using the resulting set of LCA taxa to determine an 

appropriate label for the sequence (Figure 11 and Methods). Sequences that have 

no k-mers present in the database are left unclassified by Kraken. By default, 

Kraken builds the database with k = 31, but this value is user-modifiable. 



78 

 

4.2.2 Simulated metagenome data 

Although genuine metagenomic reads might provide the most realistic test of 

performance, such data would not allow us to assess classification accuracy, 

because the true species in metagenomic data sets today are mostly unknown.  We 

instead used two simulated metagenomes created by combining real sequences 

obtained from projects that sequenced isolated microbial genomes. When creating 

these simulated metagenomes, we used data sequenced by the Illumina HiSeq and 

MiSeq sequencing platforms, and thus we call these the “HiSeq” and “MiSeq” 

metagenomes respectively (see Methods). These metagenomes were constructed 

to measure classification speed and genus-level accuracy for data generated by 

current and widely-used sequencing platforms. 

Figure 11. The Kraken sequence classification algorithm. To classify a sequence, each k-mer in 

the sequence is mapped to the lowest common ancestor (LCA) of the genomes that contain that k-

mer through the use of a database. The taxa associated with the sequence’s k-mers, as well as the 

taxa’s ancestors, form a pruned subtree of the general taxonomy tree that is used for classification. 

In the classification tree, each node has a weight equal to the number of k-mers in the sequence 

associated with the node’s taxon. Each root-to-leaf (RTL) path in the classification tree is scored 

by adding all weights in the path, and the maximal RTL path in the classification tree is the 

classification path (nodes highlighted in yellow); the leaf of this classification path (the orange, 

leftmost leaf in the classification tree) is the classification used for the query sequence. 
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In addition to the two simulated metagenomes constructed with sequences from 

isolated genomes, we created a third metagenomic sample covering a much 

broader range of the sequenced phylogeny. This sample, featuring simulated 

bacterial and archaeal reads (called simBA-5), was created with an error rate 5 

times higher than what would be expected, in order to evaluate Kraken’s 

performance on data that contain many errors or have strong differences from 

Kraken’s genomic library (see Methods). 

4.2.3 Classification accuracy 

Classifiers generally adopt one of two strategies: for example, PhymmBL and 

NBC classify all sequences as accurately as possible, while Kraken and Megablast 

leave some sequences unclassified if insufficient evidence exists. Because 

PhymmBL and NBC label everything, they will tend to have more false positives 

than methods like Kraken.  In turn, one can expect a selective classifier to have 

higher precision at some cost to sensitivity. Uniquely among metagenomics 

classifiers, PhymmBL supplies confidence scores for its classifications, which can 

be used to discard low-confidence predictions and improve accuracy. Using a 

lower bound of 0.65 for genus-level confidence, we created a selective classifier 

based on PhymmBL’s predictions that we denote as PhymmBL65. To compare 

Kraken’s accuracy to these other classification methods, we classified 10,000 

sequences from each of our simulated metagenomes and measured genus-level 

sensitivity and precision (Table 13 and Figure 12).  Here, sensitivity refers to the 

proportion of sequences assigned to the correct genus.  Precision, also known as 

positive predictive value, refers to the proportion of correct classifications, out of 
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the total number of classifications attempted. Kraken’s sensitivity and precision 

are very close to that of Megablast; for all three metagenomes, Kraken’s 

sensitivity was within 2.5 percentage points of Megablast’s. The use of exact 31-

base matches, however, appears to yield a higher precision for Kraken, as its 

precision was the highest of all classifiers for each of the three metagenomes. As 

may be expected, the nonselective classifiers were able to achieve slightly higher 

sensitivity than the selective classifiers, but at the cost of a significantly lower 

precision, approximately 80% versus close to 100% for Kraken. 

We also note the recent publication of a method, LMAT [84], which uses a k-mer 

indexing scheme similar to Kraken's, but otherwise differs in its classification 

strategy.  LMAT cannot easily be downloaded and run on our simulated data (see 

Appendix C) so instead we ran Kraken on a data set used in LMAT’s published 

results. On that data (the "PhymmBL" set), Kraken exceeded LMAT’s accuracy 

results at both the tasks of identifying read origin and identifying the presence of 

species in the sample.  Both methods had essentially perfect (near 100%) 

precision, but Kraken correctly labelled the species of 89% of the reads while 

LMAT only did so for 74% of the reads. However, as we note, that data set does 

 HiSeq MiSeq simBA-5 

Classifier Prec Sens Prec Sens Prec Sens 

Megablast 99.03 79.00 92.44 75.76 96.93 93.67 

NBC 82.33 82.33 77.78 77.78 97.64 97.64 

PhymmBL 79.14 79.14 76.21 76.21 96.11 96.11 

PhymmBL65 99.13 73.95 92.47 73.03 99.08 95.45 

Kraken 99.20 77.15 94.71 73.46 99.90 91.25 

Kraken-Q 99.12 76.31 94.69 70.41 99.92 89.54 

MiniKraken 99.44 66.12 97.41 67.95 99.95 65.87 

MiniKraken-Q 99.36 65.67 97.32 65.84 99.98 65.31 

Kraken-GB 99.51 93.75 98.48 86.23 99.48 91.13 

Table 13. Genus-level classification accuracy against three simulated metagenomes. Precision and 

sensitivity, measured at the genus rank, are displayed for each of the classifiers used. 
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not provide a good basis for comparison because the reads are simulated without 

error from genomes included in both Kraken’s and LMAT’s databases. 

Figure 12. Classification accuracy and speed comparison of classification programs across three 

simulated metagenomes. For each metagenome, genus precision and sensitivity are shown for five 

classifiers, and speed is shown for five programs (PhymmBL65 is simply a confidence-filtered 

version of PhymmBL’s results, and MetaPhlAn only classifies a subset of reads that map to one of 

its marker genes, as it is an abundance estimation program). Results shown are from performance 

on (a) the HiSeq metagenome, consisting of HiSeq reads (mean length µ = 92 bp) in equal 

proportion from 10 bacterial sequencing projects; (b) the MiSeq metagenome, consisting of MiSeq 

reads (µ = 156 bp) in equal proportion from 10 bacterial projects; and (c) the simBA-5 

metagenome, consisting of simulated 100 bp reads with high error from 1,967 bacterial and 

archaeal taxa. Note that the horizontal axes in all speed graphs are shown with a logarithmic scale. 
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4.2.4 Classification speed 

Because of the very large size of metagenomic data sets today, classification 

speed is critically important, as demonstrated by the emergence of rapid 

abundance estimation programs such as MetaPhlAn. To evaluate classification 

speed, we ran each classifier, as well as MetaPhlAn, against each of our three 

metagenomes that we used to test accuracy (Figure 12). 

Kraken classified reads much faster than any other classifier, with performance 

ranging from 150-240 times faster than the closest competitor.  Kraken processed 

data at a rate of over 1.5 million reads per minute (rpm) for the HiSeq 

metagenome, over 1.3 million rpm for the simBA-5 metagenome, and over 

890,000 rpm for the MiSeq metagenome. The next fastest classifier, Megablast, 

had speeds of 7,143 rpm for the HiSeq metagenome, 4,511 rpm for the simBA-5 

metagenome, and 2,830 rpm for the MiSeq metagenome. For all three 

metagenomes, PhymmBL classified at a rate of <100 rpm, and NBC at <10 rpm.  

Kraken is also more than three times as fast as MetaPhlAn (which only classifies 

a subset of reads), which had speeds of 445,000 rpm; 371,000 rpm; and 276,000 

rpm for the HiSeq, simBA-5, and MiSeq metagenomes, respectively. These 

results are shown in Figure 2. As expected, all tools processed the longer MiSeq 

reads (mean length µ = 156 bp) more slowly than the simBA-5 (µ = 100 bp) or 

HiSeq (µ = 92 bp) reads. We also performed a speed comparison against LMAT 

using one of the real samples discussed in LMAT’s published results; on this 

sample Kraken was 38.82 times faster than LMAT, and 7.55 times faster than a 

version of LMAT using a smaller database (Appendix C). 
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4.2.5 Other variants of Kraken 

To obtain maximal speed, Kraken needs to avoid page faults (instances where 

data must be brought from a hard drive into physical memory), so it is important 

that Kraken be run on a computer with enough RAM to hold the entire database. 

Although Kraken’s default database requires 70 GB of RAM, we also developed a 

method to remove k-mers from the database that dramatically reduces the 

memory requirements. When using Kraken with this smaller database, we call it 

“MiniKraken”; for our results here, we use a 4 GB database. Compared to 

Kraken, the ability of MiniKraken to recognize species from short reads is lower, 

with sensitivity on our real sequence metagenomes dropping approximately 11% 

(Figure 13 and Table 13). On the high-error simBA-5 metagenome, MiniKraken’s 

sensitivity was more than 25 percentage points lower than Kraken’s, indicating 

that for short reads, high error rates can cause substantial loss in sensitivity. 

However, for all three metagenomes, MiniKraken was more precise than Kraken. 

MiniKraken’s high precision demonstrates that in many cases we do not need to 

examine all k-mers in a sequence to get the correct classification. Taking this idea 

to its extreme, we developed a “quick operation” mode for Kraken (and 

MiniKraken), where instead of querying all k-mers in a sequence against our 

database, we instead stop at the first k-mer that exists in the database, and use the 

LCA associated with that k-mer to classify the sequence. This operation mode 

(denoted by appending “-Q” to the classifier name) allows Kraken to skip tens or 

hundreds of k-mer queries per sequence, significantly increasing its classification 

speed with only a small drop in accuracy (Figure 13 and Table 13).  Because a 
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database containing fewer k-mers requires more queries from a sequence to find a 

hit, MiniKraken-Q is slower than Kraken-Q, even when MiniKraken is faster than 

Kraken. 

Figure 13. Classification accuracy and speed comparison of variants of Kraken across three 

simulated metagenomes. For each metagenome, genus precision and sensitivity are shown for five 

classifiers, and speed is shown for Kraken, along with a reduced memory version of Kraken 

(MiniKraken), quick execution versions of both (Kraken-Q and MiniKraken-Q), and Kraken run 

with a database containing draft and completed microbial genomes in GenBank (Kraken-GB). 

Results shown are from performance on the same metagenomes used in Figure 12. Note that 

scales of the axes differ from Figure 12, as the precision and speed of Kraken (and its variants) 

exceed that of the other classifiers used. 
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We also created a variant Kraken database that contains GenBank’s draft and 

completed genomes for bacteria and archaea, which we call Kraken-GB.  (The 

regular version of Kraken only includes RefSeq complete genomes, numbering 

2,256, while Kraken-GB contains 8,517 genomes.) Our hypothesis was that 

Kraken-GB would have a higher sensitivity than standard Kraken on our 

metagenomes, by virtue of its larger database. Comparing Kraken-GB’s 

sensitivity for the HiSeq and MiSeq metagenomes to Kraken’s, we see a large 

increase for Kraken-GB (Figure 13 and Table 13), primarily due to the presence 

of two genomes in these simulated metagenomic samples that have close relatives 

only in Kraken-GB’s database (Methods). 

Although Kraken-GB does have higher sensitivity than Kraken, it sometimes 

makes surprising errors, which we discovered were caused by contaminant and 

adapter sequence in the contigs of some draft genomes.  These contaminant 

sequences come from other bacteria, viruses, or even human genomes, and they 

result in incorrectly labelled k-mers in the database. We attempted to remove 

these from Kraken-GB (Methods), but some contaminants may still slip through 

any filters.  Thus for now, the default version of Kraken uses only complete 

RefSeq genomes. 

4.2.6 Clade exclusion experiments 

An important goal of metagenomics is the discovery of new organisms, and 

proper classification of novel organisms is a challenge for any classifier. Although 

a classifier cannot possibly give a novel species the proper species label, it may be 

able to identify the correct genus. To simulate the presence of novel organisms, 
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we re-analyzed the simBA-5 metagenome after first removing organisms from the 

Kraken database that belonged to the same clade.  I.e., for each read, we masked 

out database hits for the species of the read’s origin, and evaluated Kraken’s 

accuracy at the higher ranks (e.g., genus, family). We continued this masking and 

evaluation process for clades of origin up to the phylum rank. This procedure 

approximates how Kraken would classify the metagenomic reads if that clade 

were not present in the database. 

Table 14 contains the results of this analysis. Kraken exhibited high rank-level 

precision in all cases where a clade is excluded, with rank-level precision 

remaining at or above 93% for all pairs of measured and excluded ranks. 

However, sensitivity was dramatically lower: at best, Kraken is able to classify 

approximately 33% of reads when their species has never been seen before.  This 

is not surprising in light of Kraken's reliance on exact matches of relatively long 

k-mers: sequences deriving from different genera rarely share long exact matches. 

Nonetheless, the high precision in this experiment indicates that when Kraken is 

presented with novel organisms, it is likely either to properly classify them at 

higher levels or not classify them at all. 

Measured 

Rank 

Excluded rank 

Species Genus Family Order Class Phylum 

Kingdom 100/24.4/24.4 100/7.9/7.9 100/2.8/2.8 100/2.3/2.3 100/1.5/1.5 100/1.1/1.1 

Phylum 99.9/23.9/24.5 99.6/7.2/7.9 98.7/2.5/2.8 98.0/1.6/2.4 96.8/1.2/1.7 -- 

Class 99.7/24.7/25.3 99.1/7.1/7.9 96.7/2.0/3.0 93.2/1.0/2.3 -- -- 

Order 99.7/24.1/25.3 98.9/6.8/8.5 96.4/2.0/3.4 -- -- -- 

Family 99.7/25.4/26.7 98.5/8.5/10.8 -- -- -- -- 

Genus 99.2/26.3/33.2 -- -- -- -- -- 

Table 14. Classification statistics with clade exclusion for Kraken on the simBA-5 metagenome. 

For each measured rank, Kraken’s rank-level precision, sensitivity, and classification percentage 

are shown. Classification percentage is defined here as the percentage of reads, with taxonomic 

entries at both the measured and excluded ranks, that were classified by Kraken with the clade of 

origin excluded. 
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4.2.7 Human Microbiome Project data 

We used Kraken to classify reads from three saliva samples collected as part of 

the Human Microbiome Project. Because these samples were obtained from 

humans, we created a Kraken database containing bacterial, viral, and human 

genomes to classify these reads. Combining the three samples together, we report 

the taxonomic distribution of the classified reads (Figure 14). An analysis of the 

classified reads from the combined samples reveals that a majority of those reads 

Figure 14. Taxonomic distribution of saliva microbiome reads classified by Kraken. Sequences 

from saliva samples collected from three individuals were classified by Kraken. The distribution 

of those reads that were classified by Kraken is shown. 
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were classified into one of three genera: Streptococcus (30%), Haemophilus 

(17%), and Prevotella (13%). Streptococcus mitis [85], Haemophilus 

parainfluenzae [86], and Prevotella melaninogenica [87], the most abundant 

species (by read count) of each of these three genera, are all known to be 

associated with human saliva. 

Of note is that 68.2% of the reads were not classified by Kraken. To determine 

why these reads were not classified by Kraken, we aligned a randomly-selected 

subset of 2,500 of these unclassified reads to the RefSeq bacterial genomes using 

BLASTN. Only 11% (275) of the subset of unclassified reads had a BLASTN 

alignment with an E-value ≤ 10
-5

 and identity ≥ 90%. This suggests that the vast 

majority of the reads unclassified by Kraken were significantly different from any 

known species, and thus simply impossible to identify. 

4.3 Conclusions 

Kraken’s accuracy is comparable to that of Megablast for classifying short 

sequence reads, as might be expected given that both require long exact sequence 

matches (Kraken requires 31 bp exact matches, while Megablast requires 28 bp 

[9]). As we showed on the simBA-5 metagenome, where high sequence error 

rates were simulated, Megablast’s inexact alignment strategy allowed it to tolerate 

more errors and achieve higher sensitivity than Kraken, which uses only exact 

alignment. We note that even in the face of this high error, Kraken’s sensitivity 

still exceeded 90%, and its precision was 99.9%. With Kraken’s high precision, 

users concerned with maximizing sensitivity could run Kraken first, and then run 
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another classification program on the reads not classified by Kraken, obtaining 

high sensitivity results much faster than with a single program. 

An important constraint with Kraken is its memory usage: at present, the default 

database requires 70 GB, a value that will grow in linear proportion to the number 

of distinct k-mers in the genomic library (the database’s records occupy 12 bytes 

per k-mer). For comparison, the only other k-mer based classifier, LMAT, reports 

a far larger database size of 619 GB. Where Kraken only stores the LCA for each 

k-mer, LMAT also records all genomes associated with a k-mer, resulting in a 

record size bounded only by the number of genomes in the library. The use of the 

reduced database in MiniKraken offers a nearly equivalent alternative should 

Kraken’s database size be too large for available computational resources. 

One important potential alternative use of Kraken is to rapidly identify 

contaminant sequences. As we noted, some of the draft microbial genomes in 

GenBank contain contaminating sequences from many different sources.  Using a 

fast classifier like Kraken can quickly identify many such contaminants before 

they are included a draft assembly. Similarly, for microbial samples collected 

from humans, a Kraken database can be created that will quickly identify 

contaminating human reads from a metagenomic sample. 

Finally, Kraken’s results demonstrate the high speed and accuracy that is 

achievable through the use of short exact alignments. The Kraken database 

structure, which is tuned to rapidly query overlapping k-mers, enables Kraken to 

produce its results even faster than it would without the database facilitating this 
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type of query activity. We believe that this structure can find a use in other 

applications beyond taxonomic classification; for example, de Bruijn graphs, 

commonly used in genome assembly programs, can effectively be traversed by 

querying a database with overlapping k-mers [88], and that process can be made 

faster through the caching behavior of the Kraken database. Likewise, most 

operations that require querying overlapping k-mers should be able to run 

significantly faster through use of a data structure like the Kraken database. 

4.4 Methods 

4.4.1 Sequence classification algorithm 

To classify a DNA sequence S, we collect all k-mers within that sequence into a 

set, denoted as K(S).  We then map each k-mer in K(S), using the algorithm 

described below, to the lowest common ancestor (LCA) taxon of all genomes that 

contain that k-mer. These LCA taxa and their ancestors in the taxonomy tree form 

what we term the classification tree, a pruned subtree that is used to classify S. 

Each node in the classification tree is weighted with the number of k-mers in K(S) 

that mapped to the taxon associated with that node. Then, each root-to-leaf (RTL) 

path in the classification tree is scored by calculating the sum of all node weights 

along the path.  The maximum scoring RTL path in the classification tree is the 

classification path, and S is assigned the label corresponding to its leaf (in the 

case of multiple maximally scoring paths, the LCA of all those paths’ leaves is 

selected). This algorithm, illustrated in Figure 11, allows Kraken to consider each 

k-mer within a sequence as a separate piece of evidence, and then attempt to 

resolve any conflicting evidence if necessary.  Note that for an appropriate choice 
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of k, most k-mers will map uniquely to a single species, greatly simplifying the 

classification process.  Sequences for which none of the k-mers in K(S) are found 

in any genome are left unclassified by this algorithm. 

The use of RTL path scoring in the classification tree is necessary in light of the 

inevitable differences between the sequences to be classified and the sequences 

present in any library of genomes. Such differences can, even for large values of 

k, result in a k-mer that is present in the library but associated with a species far 

removed from the true source species. By scoring the various RTL paths in the 

classification tree, we can compensate for these differences and correctly classify 

sequences even when a small minority of k-mers in a sequence would indicate 

that the sequence should be assigned an incorrect taxonomic label. 

4.4.2 Database creation 

Efficient implementation of Kraken’s classification algorithm requires that the 

mapping of k-mers to taxa be performed by querying a pre-computed database.  

Kraken creates this database through a multi-step process, beginning with the 

selection of a library of genomic sequences. Kraken includes a default library, 

based on completed microbial genomes in the NCBI RefSeq database, but the 

library can be customized as needed by individual users.  

Once the library is chosen, we use the Jellyfish multithreaded k-mer counter [89] 

to create a database containing every distinct 31-mer in the library.  Once the 

database is complete, the 4-byte spaces Jellyfish used to store the k-mer counts in 

the database file are instead used by Kraken to store the taxonomic ID numbers of 
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the k-mers’ LCA values. After the database is created by Jellyfish, the genomic 

sequences in the library are processed one at a time: for each sequence, the taxon 

associated with it is used to set the stored LCA values of all k-mers in the 

sequence. As sequences are processed, if a k-mer from a sequence has had its 

LCA value previously set, then the LCA of the stored value and the current 

sequence’s taxon is calculated and that LCA is stored for the k-mer. Taxon 

information is obtained from the NCBI taxonomy database. 

4.4.3 Database structure and search algorithm 

Because Kraken very frequently uses a k-mer as a database query immediately 

after querying an adjacent k-mer, and because adjacent k-mers share a substantial 

amount of sequence, we utilize the minimizer concept [35] to group similar k-

mers together.  To explain our application of this concept, we here define the 

canonical representation of a DNA sequence S as the lexicographically smaller of 

S and the reverse complement of S. To determine a k-mer’s minimizer of length 

M, we consider the canonical representation of all M-mers in the k-mer, and select 

the lexicographically smallest of those M-mers as the k-mer’s minimizer.  In 

practice, adjacent k-mers will often have the same minimizer. 

In Kraken’s database, all k-mers with the same minimizer are stored 

consecutively, and are sorted in lexicographical order of their canonical 

representations. A query for a k-mer R can then be processed by looking up in an 

index the positions in the database where the k-mers with R’s minimizer would be 

stored, and then performing a binary search within that region (Figure 15). 

Because adjacent k-mers often have the same minimizer, the search range is often 
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the same between two consecutive queries, and the search in the first query can 

often bring data into the CPU cache that will be used in the second query. By 

allowing memory accesses in subsequent queries to access data in the CPU cache 

instead of RAM, this strategy makes subsequent queries much faster than they 

would otherwise be. The index containing the offsets of each group of k-mers in 

the database requires 8 x 4
M

 bytes. By default Kraken uses 15 bp minimizers, but 

the user can modify this value; for example, in creating MiniKraken, we used 13 

bp minimizers to ensure the total database size stayed under 4 GB. 

Figure 15. Kraken database structure. Each k-mer to be queried against the database has a specific 

substring that is its minimizer. To search for a k-mer in the database, the positions in the database 

that contain k-mers with the same minimizer are examined; these positions are quickly found by 

examining the minimizer offset array for the start positions of records with the k-mer’s minimizer 

(orange) and the next possible minimizer (blue). Within a range of records associated with a given 

minimizer, records are sorted by lexicographical ordering of their k-mers, allowing a query to be 

completed using binary search over this range. 
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In implementing Kraken, we made further optimizations to the structure and 

search algorithm described above. First, as noted by Roberts et al. [35], a simple 

lexicographical ordering of M-mers can result in a skewed distribution of 

minimizers that over-represents low-complexity M-mers. In Kraken, such a bias 

would create many large search ranges that would require more time to search. To 

create a more even distribution of minimizers (and thus speed up searches), we 

use the exclusive-or (XOR) operation to toggle half of the bits of each M-mer’s 

canonical representation prior to comparing the M-mers to each other using 

lexicographical ordering. This XOR operation effectively scrambles the standard 

ordering, and prevents the large bias toward low-complexity minimizers. 

We also take advantage of the fact that the search range is often the same between 

queries to make Kraken’s queries faster. Rather than compute the minimizer each 

time we perform a query, we first search the previous range. If our queried k-mer 

is found in this range, the query can return immediately. If the k-mer is not found, 

then the minimizer is computed; if the k-mer’s minimizer is the same as the last 

queried k-mer’s, then the query fails, as the minimizer’s search space has been 

shown not to have the k-mer. Only if the minimizer has changed does Kraken 

have to adjust the search range and search again for the k-mer. 

4.4.4 Constructing simulated metagenomes 

The HiSeq and MiSeq metagenomes were built using 20 sets of bacterial whole-

genome shotgun reads. These reads were found either as part of the GAGE-B 

project [90] or in the NCBI Sequence Read Archive. Each metagenome contains 

sequences from 10 genomes (Table 15). Both the 10,000 and 10 million read 
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samples of each of these metagenomes had 10% of their sequences selected from 

each of the 10 component genome datasets (i.e., each genome had equal sequence 

abundance). All sequences were trimmed to remove low quality bases and adapter 

sequence.  

The composition of these two metagenomes poses certain challenges to our 

classifiers. For example, Pelosinus fermentans, found in our HiSeq metagenome, 

cannot be correctly identified at the genus level by Kraken (or any of the other 

previously described classifiers), because there are no Pelosinus genomes in the 

RefSeq complete genomes database; however, there are 7 such genomes in 

Kraken-GB’s database, including 6 strains of P. fermentans. Similarly, in our 

MiSeq metagenome, Proteus vulgaris is often classified incorrectly at the genus 

level because the only Proteus genome in Kraken’s database is a single Proteus 

Metagenome Genome Source 

HiSeq Aeromonas hydrophila SSU GAGE-B web site 

HiSeq Bacillus cereus VD118 GAGE-B web site 

HiSeq Bacteroides fragilis HMW615 GAGE-B web site 

HiSeq Mycobacterium abscessus 6G-0125-R GAGE-B web site 

HiSeq Pelosinus fermentans A11 SRA run SRR515982 

HiSeq Rhodobacter sphaeroides 2.4.1 GAGE-B web site 

HiSeq Staphylococcus aureus M0927 GAGE-B web site 

HiSeq Streptococcus pneumoniae TIGR4 SRA run SRR387337 

HiSeq Vibrio cholerae CP1032(5) GAGE-B web site 

HiSeq Xanthomonas axonopodis pv. Manihotis UA323 GAGE-B web site 

MiSeq Bacillus cereus VD118 GAGE-B web site 

MiSeq Citrobacter freundii 47N SRA run SRR493656 

MiSeq Enterobacter cloacae SRA run SRR568037 

MiSeq Klebsiella pneumoniae NES14 SRA run SRR493683 

MiSeq Mycobacterium abscessus 6G-0125-R GAGE-B web site 

MiSeq Proteus vulgaris 66N SRA run SRR493654 

MiSeq Rhodobacter sphaeroides 2.4.1 GAGE-B web site 

MiSeq Staphylococcus aureus ST22 SRA run ERR103400 

MiSeq Salmonella enterica Montevideo str. N19965 SRA run SRR493338 

MiSeq Vibrio cholerae CP1032(5) GAGE-B web site 

Table 15. Component genomes in the HiSeq and MiSeq simulated metagenomes. Some data were 

obtained from the GAGE-B project web site (http://ccb.jhu.edu/gage_b/), while others were found 

through searches of the NCBI Sequence Read Archive (SRA). 
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mirabilis genome; 5 more Proteus genomes are present in Kraken-GB’s database, 

allowing Kraken-GB to better classify reads from that genus. In addition, the 

MiSeq metagenome contains 5 genomes from the Enterobacteriaceae family 

(Citrobacter, Enterobacter, Klebsiella, Proteus, and Salmonella). The high 

sequence similarity between the genera in this family can make distinguishing 

between genera difficult for any classifier. 

The simBA-5 metagenome was created by simulating reads from the set of 

complete bacterial and archaeal genomes in RefSeq. Replicons from those 

genomes were used if they were associated with a taxon that had an entry 

associated with the genus rank, resulting in a set of replicons from 607 genera. 

We then used the Mason read simulator (http://www.seqan.de/projects/mason/) 

with its Illumina model to produce 10 million 100-bp reads from these genomes. 

First we created simulated genomes for each species, using a SNP rate of 0.1% 

and an indel rate of 0.1% (both default parameters), from which we generated the 

reads.  For the simulated reads, we multiplied the default mismatch and indel rates 

by 5, resulting in an average mismatch rate of 2% (ranging from 1% at the 

beginning of reads to 6% at the ends) and an indel rate of 1% (0.5% insertion 

probability and 0.5% deletion probability). For the simBA-5 metagenome, the 

10,000 read set was generated from a random sample of the 10 million read set. 

4.4.5 Evaluation of accuracy and speed 

We elected to measure accuracy primarily at the genus level, which was the 

lowest level for which we could easily determine the taxonomy information for 

PhymmBL and NBC’s predictions in an automated fashion. (This is due to the 
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manner in which PhymmBL and NBC report their results.)  Because some 

genomes do not have taxonomic entries at all seven ranks (species, genus, family, 

order, class, phylum, and kingdom), we defined genus-level sensitivity as A/B, 

where A was the number of reads with an assigned genus that were correctly 

classified at that rank, and B was the total number of reads with any assigned 

genus.  We defined sensitivity similarly for other taxonomic ranks. 

Because Kraken may classify a read at levels above the species, measuring its 

precision requires us to define the effect on precision of assigning the correct 

genus (for example) while not assigning a species at all. For this reason, we 

defined rank-level precision as C/(D+E), where C was the number of reads 

labeled at or below correct taxon at the measured rank, D was the number of reads 

labeled at or below the measured rank, and E was the number of reads incorrectly 

labeled above the measured rank. For example, given a read R that should be 

labeled as Escherichia coli: a labeling of R as E. coli, E. fergusonii, or 

Escherichia would improve genus-level precision; a label of Enterobacteriaceae 

(correct family) or Proteobacteria (correct phylum) would have no effect on 

genus-level precision; and a label for R of Bacillus (incorrect genus) or Firmicutes 

(incorrect phylum) would decrease genus-level precision. 

When evaluating PhymmBL’s accuracy, following its developers’ advice [81], we 

selected a genus confidence threshold for our comparisons. We selected 3,333 

reads from the simulated medium complexity (simMC) [91] dataset, covering 31 

different genera. To simulate short reads from the Sanger sequence data in the 

simMC set, we selected the last 100 bp from each of the reads. We then ran 
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PhymmBL against those 100 bp reads, and then evaluated the genus-level 

sensitivity and precision of PhymmBL’s predictions with genus confidence 

thresholds from 0 to 1, in increments of 0.05. We found that a threshold of 0.65 

yielded the highest F-score value (the harmonic mean of sensitivity and 

precision), with 0.60 and 0.70 also having F-scores within 0.5 percentage points 

of the maximum (Table 16). We therefore used the 0.65 genus confidence 

threshold in our comparisons; although the selection of a threshold depends on a 

user’s individual needs, and so is to some extent arbitrary, a threshold selected in 

this manner provides a more proper comparison to a selective classifier such as 

Kraken than no threshold at all. 

The time and accuracy results when using Megablast as a classifier were obtained 

from the log data produced by PhymmBL, as PhymmBL uses Megablast for its 

alignment step. When assigning a taxonomic label to a read with Megablast, we 

Confidence Level Accuracy Precision Sensitivity 

0.0 54.9 54.9 54.9 
(results equal for all confidence levels from 0-0.45) 

0.45 54.9 54.9 54.9 

0.50 55.2 55.5 54.9 

0.55 66.8 86.1 54.5 

0.60 69.6 97.5 54.2 

0.65 69.7 98.0 54.1 

0.70 69.5 98.2 53.8 

0.75 68.6 98.2 52.7 

0.80 61.8 98.1 45.1 

0.85 26.4 97.7 15.3 

0.90 0.1 100.0 0.0 
0.95 No labels at or above this confidence level 

Table 16. PhymmBL classification accuracy across different confidence levels. Genus-level 

accuracy for PhymmBL on 3,333 reads from the simMC dataset is shown, with varying genus 

confidence thresholds applied. Note that when only labels with genus confidence >= 0.9 were 

considered, only 1 label remained. 
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used the taxon associated with the first reported alignment. Megablast was run 

with default options. 

Speed was evaluated by using single-threaded operation of each program (except 

for NBC); PhymmBL was altered to have its call to the “blastn” program use one 

thread instead of two. NBC was run with 36 concurrent processes operating on 

disjoint sets of genomes in its genomic library, and total time for the classifier 

was determined by summing the decompression and scoring times for each 

genome. Wall clock times were recorded for all classifiers. In comparing Kraken 

to the other classifiers, we used BLAST+ 2.2.27, PhymmBL 4.0, NBC 1.1, and 

MetaPhlAn 1.7.6. Classifiers were all run on the same computer, with 48 AMD 

Opteron 6172 2.1 GHz CPUs and 252 GB of RAM, running Red Hat Enterprise 

Linux 5. The datasets used for speed evaluation had 10,000 reads each for all 

programs other than Kraken (and its variants) and MetaPhlAn, which used 

10,000,000 read datasets; the increased read numbers were used with these faster 

programs to minimize the impact of initial and final operations that take place 

during the programs’ execution. 

Although Kraken is the only one of the programs we examined that explicitly 

performs operations to ensure its data is in physical memory before classification, 

we wanted to be sure that all programs were evaluated in a similar manner. For 

each program, we read all database files (e.g. IMM files and BLAST databases for 

PhymmBL, k-mer frequency lists for NBC, the Bowtie index for MetaPhlAn) into 

memory three times before running the program for the purposes of the speed 



100 

 

evaluation, in order to place the database content in the operating system cache 

(which is stored in physical memory). 

4.4.6 Reduced database sizes 

To generate the 4 GB database for our MiniKraken results, we removed the first 

18 of every block of 19 records in the standard Kraken database. A shrinking 

factor of 19 was selected as it was the smallest integer factor that would reduce 

the size to less than 4 GB, a size that could easily fit into memory on many 

common personal computers. For users that have more RAM available, Kraken 

allows a smaller shrinking factor to be used, which will allow increased 

sensitivity. 

4.4.7 Use of draft genomes 

When constructing the Kraken-GB database, we noticed several contigs that had 

known adapter sequences at the ends of the contigs. In subsequent tests, we also 

found that some sequences in samples with large amounts of human sequence 

were consistently misclassified by this database, leading us to conclude that 

contamination was likely present in the draft genomes. In an attempt to counteract 

the presence of this contamination, we removed from the database those k-mers 

from known adapter sequences, as well as the first and last 20 k-mers from each 

of the draft contigs. While this did improve classification, it did not eliminate the 

misclassification problem. For this reason, we believe that if draft genomes are 

used in a Kraken database, very stringent measures should be used to remove 

contaminant sequence from the genomic library. 
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4.4.8 Clade exclusion experiments 

When re-analyzing the simBA-5 dataset for our clade exclusion experiments, 

some reads were not used for certain pairs of measured and excluded ranks. If a 

read’s origin lacked a taxonomic entry at either of the measured or excluded 

ranks, it was not used for that particular experiment. 

In addition, a read was not used in an experiment unless at least two other taxa 

represented in our database (aside from the excluded clade) at the excluded rank 

shared the clade of origin’s taxon at the measured rank. For example, a read from 

genus G would not be used in an experiment measuring accuracy at the class rank 

and excluding the genus rank unless G’s home class had at least two other genera 

with genomes in Kraken’s genomic library. Without this filtering step, were a 

genus excluded when it was the only genus in its class, Kraken could not possibly 

name the correct class, as all entries in the database from that class could be 

excluded as well. This is the same approach taken in similar experiments that 

were used to evaluate PhymmBL [22]. 

4.4.9 Human microbiome data classification 

We classified the HMP data using a Kraken database made from complete RefSeq 

bacterial, archaeal, and viral genomes, along with the GRCh37 human genome. 

We retrieved the sequences of three accessions (SRS019120, SRS014468, and 

SRS015055) from the NCBI Sequence Read Archive, and each accession had two 

runs submitted. All reads were trimmed to remove low quality bases and adapter 

sequence. Krona [92] was used to generate all taxonomic distribution plots. 
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Because the sequences were all paired reads, we joined the reads together by 

concatenating the mates with a sequence of ‘NNNNN’ between them. Kraken 

ignores k-mers with ambiguous nucleotides, so the k-mers that span these ‘N’ 

characters do not affect classification. This operation allowed Kraken to classify a 

pair of reads as a single unit rather than having to classify the mates separately. 
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5 Conclusions 

The work in this dissertation contributes advances toward improving the accuracy 

of microbial genome annotation and the classification speed of metagenomic 

sequences. Both of these problems have gained importance in recent years due to 

the increases in sequencing throughput and completed microbial genomes. 

Chapter 2 introduced a pipeline that found over 10,000 genes that were wrongly 

omitted from the annotation of microbial genomes in GenBank. The pipeline uses 

open source and widely available tools, allowing researchers to easily add the 

pipeline’s steps to their own annotation pipeline. The pipeline could also easily be 

integrated into the GenBank submission process to help keep incorrect 

information from ever entering the public databases. 

In Chapter 3, I discussed Phantim, a tool that uses multiple protein sequence 

alignments to improve gene start site annotation. Phantim’s high precision helped 

to reveal a link between an annotation’s high use of rare start codons and incorrect 

start site annotation. The degree of rare start codon usage is easily calculated, and 

can also be added to the GenBank submission process to improve the quality of 

incoming annotations. 

Chapter 4 focuses on the problem of taxonomic classification of metagenomic 

sequences. In that chapter I introduced Kraken, a taxonomic classifier that is both 

highly accurate and very fast.  This combination of attributes filled an important 

need in metagenomic research, as no previous program had been able to 

accomplish both high accuracy and high speed. In Kraken’s case, its accuracy is 
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comparable to the best existing methods, and its speed is faster than all previous 

methods, including those that sacrifice sensitivity for speed. 

Kraken has also found use in other areas of bioinformatics aside from 

metagenomics. In DIAMUND [93], a variant detection pipeline for exome data, 

there is a step in the pipeline where thousands of “interesting” k-mers and 

millions of reads are processed to select a set of reads that have at least one of the 

k-mers of interest. Kraken’s modules were easily repurposed to perform this task, 

turning the taxonomic classifier into a binary classifier. The addition of Kraken to 

the DIAMUND pipeline reduced the time needed for this binary classification 

task significantly; for one data set, the runtime was reduced from 2 hours to 10 

minutes. 

As sequencing technology continues to improve, the ability of computational 

methods to handle the challenges posed by this improvement gains in importance. 

The results obtained by the pipelines in chapters 2 and 3 demonstrate a clear need 

for validation of genome annotations prior to their insertion into our genomic 

databases. The pipelines described aid in performing that validation. The speed 

provided by Kraken, achieved while maintaining high sensitivity, will enable new 

avenues of metagenomic research. The work presented in this dissertation 

provides researchers with tools to address current challenges of bioinformatics, 

and it is my hope that this work will provide the foundation for future 

developments in the field as well. 
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A Results of examination of Phantim-only genes 

This appendix contains a list of all Phantim predictions that do not have a 3’ 

match in a genome’s RefSeq annotation, as well as a recommendation regarding 

any changes in the annotation with respect to the predicted gene. 

Table 17. List of Phantim 3’ disagreements with RefSeq annotations 

Genome Start Stop Str. Recommendation 

A. citrulli      2978649 2978326 rev.  Add gene to annotation. This gene 

is an exact nucleotide copy of 

Aave_2936.  This gene only 

overlaps one gene, Aave_2709, by 

4 nt.  

A. radiobacter 

chr. 1  

579295 579161 rev.  Add gene to annotation. This gene 

has over 100 BLASTP hits in nr, 

all to ribosomal proteins; one hit is 

a 94% amino acid identity 

alignment, with 100% coverage, to 

a "50S ribosomal protein" in 

Methylobacterium populi BJ001.  

Its region is intergenic according to 

the RefSeq annotation.   

A. radiobacter 

chr. 1  

1323593 1323829 fwd.  Replace Arad_1670. This gene is 

almost completely overlapped by 

Arad_1670, named an "acyl carrier 

protein".  Arad_1670 has only 26 

BLASTP hits in nr, and only 9 

with E-values less than 1e-3.  In 

comparison, this region has over 

100 BLASTP hits, with the 100th 

best having an E-value of 5e-21; 

the name of all these hits is also 

"acyl carrier protein".  

A. radiobacter 

chr. 1  

1571695 1572003 fwd.  Add gene to annotation. This gene 

has over 100 BLASTP hits to 

ribosomal proteins in nr, with 

100% amino acid identity to a 

"30S ribosomal protein S10" in 

Rhizobium etli.  Its region is 

intergenic according to the RefSeq 

annotation.  
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A. radiobacter 

chr. 1  

1669050 1668718 rev.  Replace Arad_ 2117. 77 nt overlap 

with Arad_2117, a hypothetical 

protein with only 3 BLASTP hits 

in nr, the best having an E-value of 

2.1. This gene has over 100 

BLASTP hits in nr, one with 88% 

amino acid identity to an "iron-

sulfur cluster assembly accessory 

protein" in Rhizobium 

leguminosarum.  

A. radiobacter 

chr. 2  

1069411 1069803 fwd.  Add gene to annotation. This gene 

has 101 BLASTP hits to genes in 

nr, including an 87% amino acid 

identity alignment to a 

"glutathione-dependent 

formaldehyde-activating, GFA" 

gene in Mesothizobium sp. BNCI.  

Its region is intergenic according to 

the RefSeq annotation.  

B. anthracis     3825729 3825601 rev.  Replace BA_4175. This gene is 

overlapped completely by 

BA_4175, which is a hypothetical 

protein with only 5 BLASTP hits 

in nr.  This gene has 22 BLASTP 

hits to genes in various Bacillus 

and other genomes, including a 

72% amino acid identity alignment 

to a phosphoesterase gene in B. 

thuringiensis.  In addition, this 

gene has 81% amino acid identity 

to BA_4174, located just upstream.  

Bradyrhizobium 

BTAi1   

1946535 1946260 rev.  Add gene to annotation. This gene 

has 97 BLASTP hits in nr, most of 

which are alignments to conserved 

hypothetical proteins and proteins 

of unknown function (DUF1153). 

Its region is currently intergenic 

according to the RefSeq 

annotation.  
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M. tuberculosis     2765730 2765107 rev.  Replace MT2541. This gene has 

over 100 BLASTP hits in nr, 

including one with 57% amino 

acid identity to "DSBA 

oxidoreductase" in Streptomyces 

sp. SPB78. MT2541 is a 

hypothetical protein that 

completely overlaps this gene, and 

has only 17 BLASTP hits, only 

one of which has an E-value below 

1.  

M. tuberculosis     2943593 2943240 rev.  Replace MT2694. This gene has 

over 100 BLASTP hits in nr, 

including one with 98% coverage 

and 58% amino acid identity to a 

"Cupin 2 conserved barrel domain-

containing protein" in Nakamurella 

multipartita. MT2694 is a 

hypothetical protein that 

completely overlaps this gene, and 

has only 2 BLASTP hits, with E-

values of 2.3 and 7.3.  

M. tuberculosis     4103085 4103603 fwd.  Replace MT3770. This gene has 

over 100 BLASTP hits in nr, 

including one with 100% amino 

acid identity to a "transmembrane 

protein" in M. tuberculosis H37Rv. 

MT3770 is a hypothetical protein 

that overlaps all but 72 nt of this 

gene, and has only 6 BLASTP hits, 

only one of which has an E-value 

below 1.  

V. cholerae chr. I  1651882 1652085 fwd.  Add gene to annotation. This gene 

has over 100 BLASTP hits to 

genes in nr, two of which are "Zn-

ribbon proteins" in Idiomarina 

genomes.  Its region is intergenic 

according to the RefSeq 

annotation.  
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B Results of examination of Phantim/RefSeq 5’ disagreements 

This appendix contains a list of all Phantim predictions that have a 3’ match but 

not a 5’ match in a genome’s RefSeq annotation, as well as notes regarding the 

conservation found in the predicted gene’s multiple alignment. Evaluations 

indicate one or more of the following is true for the gene: 

 Change: strong, clear conservation exists and supports the prediction; 

annotation should be changed. 

 ReviewWeak: gene needs further examination, due to weaker evidence 

for the change; for genes annotated with a rare start codon, this can occur 

if the annotated start site is close (within ~15 nt) to the predicted start site. 

 ReviewUp: gene needs further examination, as conservation exists 

upstream of predicted start (not just annotated start); this may be evidence 

of a frameshift or operon. 

 CTG or ATT: a rare start codon (CTG/ATT) is annotated for this gene. 

 Keep: strong conservation is present for the annotated start, and 

annotation should be left unchanged. 

Table 18. Results of examination of Phantim and RefSeq 5’ disagreements 

  RefSeq Phantim  

Genome Gene ID Start Stop Str. Start 

Extra 

(nt) Evaluation 

A. citrulli  Aave_0289 320917 321636 fwd. 320743 +174 Change  

A. citrulli  Aave_0691 750181 752169 fwd. 749971 +210 ReviewUp  

A. citrulli  Aave_2611 2860437 2863607 fwd. 2860347 +90 Change  

A. citrulli  Aave_2652 2914135 2914890 fwd. 2914012 +123 Change  

A. citrulli  Aave_3114 3439123 3439587 fwd. 3439066 +57 Change  

A. citrulli  Aave_3366 3722691 3721507 rev. 3722721 +30 ReviewUp  

A. citrulli  Aave_4383 4876301 4875558 rev. 4876328 +27 Change  

A. citrulli  Aave_4645 5170949 5170674 rev. 5171006 +57 Change  

A. radiob. chr. 1  Arad_0252 225153 224752 rev. 225234 +81 Change  

A. radiob. chr. 1  Arad_0288 257347 256451 rev. 257692 +345 ReviewWeak  
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A. radiob. chr. 1 Arad_0306 270939 272090 fwd. 270489 +450 ReviewUp  

A. radiob. chr. 1 Arad_0597 493707 494546 fwd. 493656 +51 Change  

A. radiob. chr. 1 Arad_0772 635281 635916 fwd. 635233 +48 Change CTG  

A. radiob. chr. 1 Arad_1495 1187396 1189285 fwd. 1187294 +102 Change  

A. radiob. chr. 1 Arad_1676 1329161 1328331 rev. 1329158 -3 ReviewWeak CTG  

A. radiob. chr. 1 Arad_1810 1431875 1431402 rev. 1431869 -6 ReviewWeak CTG  

A. radiob. chr. 1 Arad_1862 1475491 1477029 fwd. 1475518 -27 Change CTG  

A. radiob. chr. 1 Arad_1909 1517403 1518875 fwd. 1517394 +9 Change CTG  

A. radiob. chr. 1 Arad_1938 1541374 1542411 fwd. 1541383 -9 ReviewUp CTG  

A. radiob. chr. 1 Arad_2513 1986301 1987098 fwd. 1986265 +36 Change  

A. radiob. chr. 1 Arad_2726 2165484 2165020 rev. 2165508 +24 Change CTG  

A. radiob. chr. 1 Arad_2787 2210814 2209909 rev. 2210859 +45 Change  

A. radiob. chr. 1 Arad_3282 2619023 2619982 fwd. 2619059 -36 Change CTG  

A. radiob. chr. 1 Arad_3401 2727288 2726584 rev. 2727369 +81 Change  

A. radiob. chr. 1 Arad_3755 2996226 2995261 rev. 2996292 +66 Change  

A. radiob. chr. 1 Arad_4308 3444447 3442915 rev. 3444444 -3 ReviewUp CTG  

A. radiob. chr. 1 Arad_4366 3491052 3490612 rev. 3491148 +96 Change  

A. radiob. chr. 1 Arad_4394 3516274 3513554 rev. 3516244 -30 Change CTG  

A. radiob. chr. 1 Arad_4606 3694076 3694975 fwd. 3694103 -27 Change CTG  

A. radiob. chr. 1 Arad_4853 3926590 3926063 rev. 3926629 +39 Change  

A. radiob. chr. 2  Arad_7499 430127 431005 fwd. 430130 -3 ReviewWeak CTG  

A. radiob. chr. 2  Arad_7920 817597 818448 fwd. 817543 +54 Change  

A. radiob. chr. 2 Arad_8127 988105 989187 fwd. 988120 -15 Change CTG  

A. radiob. chr. 2 Arad_8281 1127905 1127375 rev. 1127959 +54 Change  

A. radiob. chr. 2 Arad_8316 1158746 1159600 fwd. 1158749 -3 ReviewWeak CTG  

A. radiob. chr. 2 Arad_8341 1183088 1183612 fwd. 1183064 +24 Change  

A. radiob. chr. 2 Arad_8351 1190315 1191175 fwd. 1190318 -3 ReviewWeak CTG  

A. radiob. chr. 2 Arad_8840 1594101 1595582 fwd. 1593927 +174 Change  

A. radiob. chr. 2 Arad_9098 1816141 1817154 fwd. 1816096 +45 Change  

A. radiob. chr. 2 Arad_9333 2023774 2024781 fwd. 2023777 -3 ReviewWeak CTG  

A. radiob. chr. 2 Arad_9399 2087678 2087016 rev. 2087687 +9 Change CTG  

A. radiob. chr. 2 Arad_9605 2271724 2270276 rev. 2271709 -15 Change CTG  

B. anthracis  BA_0265 258100 257393 rev. 258142 +42 Change  

B. anthracis  BA_5541 5032319 5031801 rev. 5032340 +21 Change  

B. subtilis  BSU01460 151303 152133 fwd. 151264 +39 Change  

B. subtilis  BSU25180 2599266 2598616 rev. 2599332 +66 Change  

B. subtilis  BSU26550 2714140 2713949 rev. 2714209 +69 Change  

B. subtilis  BSU28870 2953349 2952828 rev. 2953331 -18 Keep ATT  

Bradyrhiz. BTAi1  BBta_0068 70735 69536 rev. 70759 +24 Change  

Bradyrhiz. BTAi1  BBta_0178 184778 185194 fwd. 184751 +27 Change  

Bradyrhiz. BTAi1 BBta_0228 234160 234495 fwd. 234097 +63 Change  

Bradyrhiz. BTAi1 BBta_0456 456727 457239 fwd. 456577 +150 Change  

Bradyrhiz. BTAi1 BBta_0472 470341 470496 fwd. 470215 +126 Change  

Bradyrhiz. BTAi1 BBta_0740 761034 760111 rev. 761145 +111 Change  

Bradyrhiz. BTAi1 BBta_0948 981763 982704 fwd. 981736 +27 Change  

Bradyrhiz. BTAi1 BBta_0951 984964 984527 rev. 985012 +48 Change  

Bradyrhiz. BTAi1 BBta_1240 1316169 1317290 fwd. 1316007 +162 Change  

Bradyrhiz. BTAi1 BBta_1457 1543707 1543964 fwd. 1543659 +48 Change  

Bradyrhiz. BTAi1 BBta_1599 1672857 1672570 rev. 1672893 +36 Change  

Bradyrhiz. BTAi1 BBta_1707 1780631 1780266 rev. 1780661 +30 Change  
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Bradyrhiz. BTAi1 BBta_1788 1856837 1857526 fwd. 1856831 +6 ReviewWeak CTG  

Bradyrhiz. BTAi1 BBta_2009 2074788 2075000 fwd. 2074764 +24 Change  

Bradyrhiz. BTAi1 BBta_2165 2241836 2243518 fwd. 2241800 +36 Change  

Bradyrhiz. BTAi1 BBta_2898 3004559 3005311 fwd. 3004529 +30 Change  

Bradyrhiz. BTAi1 BBta_3040 3177551 3175974 rev. 3177626 +75 ReviewWeak  

Bradyrhiz. BTAi1 BBta_3463 3614525 3613716 rev. 3614585 +60 Change  

Bradyrhiz. BTAi1 BBta_3585 3745821 3747008 fwd. 3745767 +54 Change  

Bradyrhiz. BTAi1 BBta_3602 3767174 3768643 fwd. 3767144 +30 Change  

Bradyrhiz. BTAi1 BBta_3675 3838804 3840465 fwd. 3838771 +33 Change  

Bradyrhiz. BTAi1 BBta_3755 3933201 3933923 fwd. 3933168 +33 Change  

Bradyrhiz. BTAi1 BBta_3767 3947285 3946362 rev. 3947396 +111 Change  

Bradyrhiz. BTAi1 BBta_3829 4015302 4012717 rev. 4015368 +66 Change  

Bradyrhiz. BTAi1 BBta_4168 4379434 4378142 rev. 4379488 +54 Change  

Bradyrhiz. BTAi1 BBta_4219 4432432 4433520 fwd. 4432330 +102 ReviewUp  

Bradyrhiz. BTAi1 BBta_4257 4470093 4469278 rev. 4470129 +36 Change  

Bradyrhiz. BTAi1 BBta_4324 4530792 4531415 fwd. 4530714 +78 Change  

Bradyrhiz. BTAi1 BBta_4516 4731195 4730293 rev. 4731216 +21 Change  

Bradyrhiz. BTAi1 BBta_5019 5249017 5249691 fwd. 5248993 +24 Change  

Bradyrhiz. BTAi1 BBta_5059 5283790 5283476 rev. 5284099 +309 Change  

Bradyrhiz. BTAi1 BBta_5089 5314187 5314029 rev. 5314220 +33 Change  

Bradyrhiz. BTAi1 BBta_5101 5326283 5327206 fwd. 5326172 +111 Change  

Bradyrhiz. BTAi1 BBta_5121 5349491 5348595 rev. 5349536 +45 Change  

Bradyrhiz. BTAi1 BBta_5178 5407689 5408177 fwd. 5407632 +57 Change  

Bradyrhiz. BTAi1 BBta_5409 5630107 5629340 rev. 5630137 +30 ReviewWeak  

Bradyrhiz. BTAi1 BBta_6332 6594995 6595918 fwd. 6594884 +111 Change  

Bradyrhiz. BTAi1 BBta_6527 6808355 6810403 fwd. 6808175 +180 Change CTG  

Bradyrhiz. BTAi1 BBta_6829 7153662 7153033 rev. 7153683 +21 Change  

Bradyrhiz. BTAi1 BBta_6844 7170752 7170844 fwd. 7170638 +114 Change  

Bradyrhiz. BTAi1 BBta_7012 7346366 7346106 rev. 7346408 +42 Change  

Bradyrhiz. BTAi1 BBta_7069 7410657 7411580 fwd. 7410546 +111 Change  

Bradyrhiz. BTAi1 BBta_7206 7566745 7565036 rev. 7566808 +63 Change  

Bradyrhiz. BTAi1 BBta_7442 7816925 7817194 fwd. 7816703 +222 Change  

Bradyrhiz. BTAi1 BBta_7495 7870110 7869391 rev. 7870164 +54 Change  

Bradyrhiz. BTAi1 BBta_7569 7953895 7953326 rev. 7953967 +72 Change  

C. violaceum  CV_0086 97321 99189 fwd. 97279 +42 Change  

C. violaceum  CV_0099 114821 113448 rev. 115055 +234 ReviewUp  

C. violaceum  CV_0668 695894 696301 fwd. 695831 +63 Change  

C. violaceum  CV_0744 764543 764809 fwd. 764453 +90 Change  

C. violaceum  CV_0766 788326 786851 rev. 788383 +57 Change  

C. violaceum  CV_0794 818319 817570 rev. 818394 +75 Change  

C. violaceum  CV_1122 1175575 1176570 fwd. 1175503 +72 Change  

C. violaceum  CV_1162 1221800 1220469 rev. 1221842 +42 Change  

C. violaceum  CV_1224 1285455 1287536 fwd. 1285329 +126 Change  

C. violaceum  CV_1457 1545716 1545402 rev. 1545752 +36 Change  

C. violaceum  CV_3405 3699237 3699959 fwd. 3699075 +162 Change  

C. violaceum  CV_3735 4033281 4033877 fwd. 4032915 +366 ReviewUp  

C. violaceum  CV_3965 4289117 4286490 rev. 4289129 +12 ReviewWeak CTG  

C. violaceum  CV_4100 4442560 4441790 rev. 4442584 +24 ReviewWeak CTG  

C. violaceum  CV_4405 4750493 4750305 rev. 4750514 +21 Change CTG  

E. coli  b0429 447270 446941 rev. 447351 +81 Change  
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E. coli  b0923 974845 975549 fwd. 974818 +27 ReviewWeak  

E. coli  b1081 1136594 1137535 fwd. 1136564 +30 Change  

E. coli  b1432 1501741 1502889 fwd. 1501681 +60 Change  

E. coli  b1718 1798662 1798120 rev. 1798554 -108 Keep ATT  

E. coli  b4461 2746796 2748082 fwd. 2746820 -24 Keep CTG  

H. pylori  HP0885 935407 936792 fwd. 935332 +75 Change  

H. pylori  HP1507 1580322 1581479 fwd. 1580280 +42 Change  

H. salinarum OE3470F 1285778 1286029 fwd. 1285745 +33 Change 

M. tuberculosis  MT0055 52775 53188 fwd. 52754 +21 Change  

M. tuberculosis  MT0436 510004 509207 rev. 510034 +30 Change  

M. tuberculosis  MT0738 808614 810887 fwd. 808524 +90 Change  

M. tuberculosis  MT0786 857867 856839 rev. 857966 +99 Change  

M. tuberculosis  MT1041 1131690 1133303 fwd. 1131669 +21 Change  

M. tuberculosis  MT2188 2390918 2389791 rev. 2391035 +117 Change  

M. tuberculosis  MT2191 2393215 2392427 rev. 2393320 +105 ReviewUp  

M. tuberculosis  MT3860 4192534 4192034 rev. 4192555 +21 Change  

X. bovienii  XBJ1_0065 69975 72482 fwd. 69954 +21 ReviewUp  

X. bovienii  XBJ1_0068 75246 77303 fwd. 75195 +51 Change  

X. bovienii  XBJ1_0241 244359 243160 rev. 244416 +57 Change  

X. bovienii  XBJ1_0338 346775 345549 rev. 346880 +105 Change  

X. bovienii  XBJ1_0342 349583 353326 fwd. 349559 +24 Change  

X. bovienii  XBJ1_0604 621716 625150 fwd. 621668 +48 Change  

X. bovienii  XBJ1_0731 718904 721669 fwd. 718835 +69 Change  

X. bovienii  XBJ1_0803 822940 822218 rev. 822967 +27 ReviewWeak  

X. bovienii  XBJ1_0893 903055 904665 fwd. 902896 +159 Change  

X. bovienii  XBJ1_1116 1139112 1140110 fwd. 1139070 +42 Change  

X. bovienii  XBJ1_1800 1758537 1759787 fwd. 1758480 +57 Change  

X. bovienii  XBJ1_1924 1859695 1861266 fwd. 1859635 +60 Change  

X. bovienii  XBJ1_1926 1862240 1863208 fwd. 1862156 +84 Change  

X. bovienii  XBJ1_1960 1892419 1893384 fwd. 1892389 +30 ReviewWeak  

X. bovienii  XBJ1_2624 2590238 2590903 fwd. 2590196 +42 Change  

X. bovienii  XBJ1_2675 2630754 2628988 rev. 2630820 +66 Change  

X. bovienii  XBJ1_2786 2754576 2753962 rev. 2754792 +216 ReviewUp  

X. bovienii  XBJ1_2841 2792338 2791175 rev. 2792377 +39 Change  

X. bovienii  XBJ1_2847 2800875 2800045 rev. 2800932 +57 ReviewWeak  

X. bovienii  XBJ1_2862 2811808 2810801 rev. 2811838 +30 Change  

X. bovienii  XBJ1_2952 2918549 2919121 fwd. 2918501 +48 Change  

X. bovienii  XBJ1_3332 3256054 3256938 fwd. 3256009 +45 Change  

X. bovienii  XBJ1_3473 3382791 3382066 rev. 3382890 +99 Change  

X. bovienii  XBJ1_3487 3398596 3398105 rev. 3398626 +30 ReviewWeak  

X. bovienii  XBJ1_3802 3682635 3683657 fwd. 3682593 +42 ReviewWeak  

X. bovienii  XBJ1_3913 3789753 3788374 rev. 3789783 +30 Change  

X. bovienii  XBJ1_4158 3995207 3992748 rev. 3995348 +141 Change  

X. bovienii  XBJ1_4169 4006207 4005245 rev. 4006324 +117 Change  

X. bovienii  XBJ1_4412 4224742 4224416 rev. 4224775 +33 Change  
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C Comparison of Kraken with LMAT 

As LMAT requires over 4,300 CPU hours to build its database [84], over half a 

terabyte of RAM, and superuser privileges to use its memory allocation 

procedures, we were unable to create a local installation and run LMAT against 

the three metagenomes we developed to evaluate Kraken. Instead, we have run 

Kraken against some of the data used in LMAT’s published results, and report our 

comparisons here.  

LMAT has the ability to be run with two databases: kFull, the complete database, 

and kML, a database containing only “marker” k-mers that are the most 

“taxonomically informative” k-mers in the complete database. kFull (using k = 

20) is 619 GB in size, while kML (using k = 18) is 39 GB. The authors reported 

results using both databases. As the relationship between LMAT-kFull and 

LMAT-kML is somewhat analogous to that between Kraken and MiniKraken, we 

report both Kraken and MiniKraken in our comparisons to LMAT.  

The PhymmBL dataset used in evaluating LMAT’s accuracy was formed by 

extracting 50 simulated 100 bp reads from each replicon that existed in RefSeq’s 

set of completed bacterial and archaeal genomes as of October 2008 [22]. The 

simBA-5 metagenome is similar to this dataset, but the addition of simulated error 

is a crucial difference, as the PhymmBL dataset was simulated without error. 

Because both LMAT and Kraken used RefSeq genomes to build their k-mer 

database, and the sequences in the PhymmBL dataset were drawn without 

modification from that library, both classifiers should achieve very high accuracy 

because they are being tested on data contained in their training sets. Nonetheless, 
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as it was the only dataset to which we have access and for which we have 

LMAT’s classification results, we use it here, and report LMAT’s published 

results on this dataset.  

The first experiment was to classify the dataset, which contained 540 distinct 

species, and report the number of species correctly identified in the dataset. 

Kraken identified 538 species, and MiniKraken identified 536, with neither 

mistakenly declaring the presence of a species not in the dataset. LMAT-kFull 

and LMAT-kML also had no false declarations of species presence, but only 

identified 531 and 527 species, respectively.  

In the second experiment, we examined the individual reads to determine if they 

were classified at the species level, and if so, if they were correctly classified. 

Neither Kraken nor MiniKraken erroneously classified the species of any read. 

Kraken correctly identified the species of 88.68% of the reads, and MiniKraken 

correctly identified 85.06% of the reads’ species. LMAT-kFull correctly 

identified the species of 74.2% of the reads, with 99.8% of species-level 

classifications being correct. LMAT-kML correctly identified the species of 

40.4% of the reads, with 99.7% of species-level classifications being correct.  

Since we do not have a local installation of LMAT, we cannot report LMAT’s 

speed on any of our metagenomes. However, LMAT has published speeds for a 

human microbiome metagenome (SRA ERR011121), consisting of 33,123,975 75 

bp reads. LMAT’s raw speeds are reported in Kbp/s, but are the result of 40-

threaded execution; we therefore divide their reported speeds by 40 here. LMAT-
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kFull classified the sample at a speed of 63.7 Kbp/s on a single core, and LMAT-

kML classified the sample at a speed of 327.4 Kbp/s on a single core. We 

downloaded this sample and classified it using Kraken and MiniKraken, using a 

single thread. Kraken classified the sample in 1005 seconds, for a classification 

speed of 2473 Kbp/s; MiniKraken took 915 seconds, for a speed of 2714 Kbp/s. 
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