
ABSTRACT

Title of thesis: IMPROVING RADIAL BASIS FUNCTION INTER-
POLATION VIA RANDOM SVD PRECONDITION-
ERS AND FAST MULTIPOLE METHODS

Kerry Cheng, Master of Science, 2013

Thesis directed by: Professor Ramani Duraiswami
Department of Computer Science

Recent research in fast-multipole algorithms has yielded approxima-

tion algorithms that compute specific matrix vector products to any

specified accuracy in linear time. This thesis tries to combine this

with recent research in randomized algorithms that has developed fast

ways to compute rank-k SVDs of an M ×N matrix. This combination

yields an approximate SVD in O(kmax(M,N)) time. We demonstrate

this and explore its use in developing a novel scattered-data interpola-

tion algorithm in three dimensions. The use of sinc functions in three

dimensions is also explored, specifically their ability to accurately in-

terpolate some standard functions. We find that the width parameter

plays an important role, and suggest a prescription for its selection.

As with other RBF interpolation algorithms, interpolating N points

requires the solution of a dense linear system, which has O(N3) cost.

We explore two uses of the fast randomized SVD to reduce this cost.

First, we use the randomized SVD to come up with a solution to the

linear system. Next, we use a preconditioned Krylov iterative method

(GMRES) with a low rank SVD as a preconditioner. Results are pre-

sented, and the method is found promising.

IMPROVING RADIAL BASIS
FUNCTION INTERPOLATION VIA

RANDOM SVD
PRECONDITIONERS AND FAST

MULTIPOLE METHODS

Kerry Cheng

August 13, 2013

Thesis submitted to the Faculty of the Graduate School of the
University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of
Master of Science

2013

Advisory Committee:
Professor Ramani Duraiswami, Chair
Professor Larry Davis
Professor David Mount

c©Copyright by

Kerry Cheng

2013

Acknowledgments

Many thanks to Dr. Ramani Duraiswami, my advisor, for his guidance, support,
patience, encouragement, and significant suggestions throughout my undergradu-
ate independent study and graduate research to complete this thesis. I would like
to thank Dr. Nail Gumerov as well, for his guidance and advice.

Thanks to Professor Jeff Foster, Associate Chair for Graduate Studies, and
Graduate School of University of Maryland, for accepting me as a graduate student
while I was still in my junior year.

Last but not least, I would like to thank my parents for all their love and
support.

ii

List of Tables

3.1 SVD Results: N = 500; k = 200, l = 220 for Random SVD 7
3.2 SVD Results: N = 2000; k = 500, l = 520 for Random SVD 8
3.3 SVD Results: N = 5000, k = 1000, l = 1020 for Random SVD . . . 8
3.4 SVD Results: N = 10000, k = 2500, l = 2520 for Random SVD . . . 8
4.1 Comparing Wavenumber: N = 500 12
4.2 Comparing Wavenumber: N = 1000 12
5.1 FMM in GMRES: N = 500 . 14
5.2 FMM in GMRES: N = 2000 . 14
5.3 FMM in GMRES: N = 3000 . 14
5.4 FMM in GMRES: N = 5000 . 14
5.5 Random SVD: N = 500 . 15
5.6 Random SVD: N = 2000 . 16

iii

List of Figures

3.1 Singular Values for N = 500 . 7
3.2 Time vs. N . 8
4.1 Sinc Function . 10
4.2 Normal k . 11
4.3 Large vs. Small k . 11
4.4 Interpolation Error vs. a . 12
5.1 Using FMM as a matrix-vector in GMRES 15

iv

Contents

1 Introduction 1
1.1 Fast Multipole Method . 1

1.1.1 Matrix Vector Product . 1
1.2 Singular Value Decomposition (SVD) 1

1.2.1 Randomized Algorithm . 2
Algorithm . 2

1.3 Sinc Function . 2
1.4 Radial Basis Function Interpolation 3

1.4.1 Setting Up the System . 3
1.4.2 Solving the System . 4

2 Methods 5
2.1 FMM . 5
2.2 Code . 5
2.3 Testing . 5

3 FMM Accelerated Rank k SVD 7
3.1 Implementation . 7
3.2 Results . 7

3.2.1 Singular Values . 7
3.2.2 Error . 7
3.2.3 Time . 8

4 Radial Basis Function Interpolation with the sinc function 10
4.1 k Parameter . 10
4.2 Results . 11

5 Iterative Methods and Preconditioning 13
5.1 Background . 13

5.1.1 Krylov Subspace Methods 13
5.1.2 Preconditioning . 13

5.2 Results . 14
5.2.1 GMRES . 14
5.2.2 Preconditioning . 15

6 Conclusions 17
6.1 Future Directions . 17

7 Appendices 18
7.1 Source Code . 18

7.1.1 FMM mexfunction . 18
7.1.2 Random SVD MATLAB Source Code 20
7.1.3 Random SVD using FMM MATLAB Source Code 20

7.2 Thesis Presentation . 21

v

1 Introduction

1.1 Fast Multipole Method

The Fast Multipole Method (FMM) was developed by Greengard and Rokhlin in
1987. The algorithm could rapidly evaluate potential and force fields for systems
with a large number of particles. Previously, such calculations required work on
the order of O(N2) to evaluate all pairwise interaction, unless a truncation method
was used. However, the FMM algorithm could perform the same calculations to
arbitrary accuracy in the order of O(N) time [4].

1.1.1 Matrix Vector Product

While the FMM was initially developed to accelerate the calculation of forces in
the n-body problem, it has since been used to improve many other algorithms. In
particular, it can speed up sums of the following type:

s(xj) =
N∑
i=1

αiφ(||xj − xi||)

[5]. This is exactly the sort of sum that is calculated when performing a matrix-
vector product with a matrix A where Aij = φ(||xi−xj||). For an arbitrary vector
x,

[Ax](j) =
N∑
i=1

xiφ(||xj − xi||)

Therefore, an FMM routine can be used to dramatically speed up any matrix
vector products of this type.

1.2 Singular Value Decomposition (SVD)

The Singular Value Decomposition (SVD) of an N × N matrix A is defined as
follows:

A = UΣV T

where U and V are N × N matrices whose columns are orthonormal and Σ is a
diagonal matrix containing the N singular values on the diagonal. Using this, it
is easy to form a pseudoinverse:

A−1 = V Σ+UT ,

where Σ+ is the psuedoinverse of Σ. Σ+ can be formed by replacing every non-zero
element on the diagonal with its reciprocal. Thus, given a linear system Ax = b,
it can be solved by finding the SVD and multiplying.

A−1Ax = A−1b

x = A−1b

1

The standard algorithm for calculating the SVD of a matrix involves two steps
[10]. First, the matrix needs to be reduced to a bidiagonal one. This can be done
in O(mn2) operations for an M × N matrix, where M ≥ N . Then the SVD of
this bidiagonal matrix is found via an iterative algorithm. This step is usually
computed to some constant precision and is less computationally expensive than
the first step. Therefore, the overall cost is O(mn2) [10].

1.2.1 Randomized Algorithm

A randomized algorithm was developed by Martinsson et al., which constructs a
rank-k approximation of the SVD using l random vectors (l > k) [7]. When holding
l−k to be 20, the algorithm’s accuracy was found to be of roughly the same order
as the best possible rank-k approximation. Additionally, the algorithm’s failure
rate was almost negligible (10−17 was typical). This efficiency and accuracy suggest
it could be used as an effective preconditioner.

Algorithm For an arbitrary N ×N matrix A, it is approximated by a matrix Z
of rank k using l

1. The algorithm approximates an N ×N matrix A by first applying AT to the
collection of l random vectors of length N . This gives a rectangular matrix
R of size N × l.

2. Using an SVD of R = U ′Σ′V ′T, let Q be the first k columns of U . This will
be a matrix of dimensions N × k and its columns are a good approximation
of an orthonormal basis of the range of A [7].

3. Then, the N × k matrix is calculated, T = AQ, requiring k matrix vector
products.

4. Now another SVD is formed: T = UΣWT, where T is a k × k matrix.

5. Compute a final matrix vector product V = QW . U,Σ, V will form an SVD
of the original matrix A, such that, A = UΣV T.

Steps 1 and 3 both require multiple matrix vector products between A and arbi-
trary vectors. Therefore, these operations could also be replaced with an FMM
routine to improve speed and convergence.

This scheme is efficient whenever A and AT can be applied rapidly to arbitrary
vectors [7]. Thus, it is clear that the FMM could be useful in improving this
randomized algorithm.

1.3 Sinc Function

The sinc function is one that has been used in a lot of digital sample processing.
It is defined as:

sinc(x) =
sin(x)

x
, where x ∈ R

2

The radial basis version, applicable for any number of dimensions, is:

sinc(x) =
sin(k||x− x∗||)
k||x− x∗||

, where x ∈ Rd

As a radial basis function, this is centered on a specific point. And its value at
any point in Rd is completely dependent on the distance to that center.

1.4 Radial Basis Function Interpolation

As mentioned previously, radial basis functions are the set of functions whose val-
ues at a certain point are based on the distance from some center point. While
these functions are simple, they have found significant use as one of the primary
methods of interpolating multidimensional scattered data. The Radial Basis Func-
tion (RBF) method is based on approximating multivariable functions as linear
combinations of terms based on a function of one variable (the radial basis func-
tion). As mentioned previously, functions which are either not known or too
complex to evaluate at many points in its domain can then be approximated at
those points with a much simpler function. This allows the approximated function
to be evaluated much more efficiently and quickly.

In many domains, functions that need to be approximated are of many variables,
such as in neural network learning. Radial basis functions are commonly used, due
to their efficiency and accuracy. An important property of RBF interpolations is
the data dependence of the approximation space. As this method can be used for
functions of any dimensionality, it has wide applicability. In addition, there are no
restrictions placed on the data, other than being at distinct points. Many methods
such as multivariate spline methods or the Finite Element method depend on the
data having a specific geometry. The sampled points can be irregularly placed
rather than necessarily on a uniform grid [3]. In practical applications, this can
be difficult, if not impossible. Finally, RBF interpolants have been found to be
very accurate, even when the number of interpolation points is small [3].

Currently, the multiquadric, Gaussian, inverse multiquadric, and thin plate
spline functions are the most studied and used in interpolations [3]. However,
other functions could demonstrate good performance, especially in specific appli-
cations. It is our hope that the sinc function can also show promise.

1.4.1 Setting Up the System

Assume that data values are given at N points in d dimensional space. We want
our interpolant to be a linear combination of the N RBF functions centered at
these N points. It will be of the form:

f(x) =
N∑
j=1

λj · φ(||x− xj||) (1.1)

Since the interpolation must fit at all N points, we have a linear system of N
equations and N variables. For each point xj,

f(xj) = λ1 · φ(||xj − x1||) + · · ·+ λN · φ(||xj − xN ||)

3

These can be represented in matrix form (Ax = b):φ(||x1 − x1||) · · · φ(||x1 − xN ||)
...

. . .
...

φ(||xN − x1||) · · · φ(||xn − xN ||)

λ1...
λN

 =

f1...
fN

 (1.2)

Note that A is positive definite.

1.4.2 Solving the System

This system can be solved with a wide variety of methods. Simple direct ones,
like Gaussian elimination, could be used to obtain an exact solution. However, in
practical applications, these systems are far too large to be solved efficiently in
this way. Thus, better ways of solving these systems must be used.

4

2 Methods

All testing was done in a combination of MATLAB and FORTRAN. Most of
the code was written in MATLAB, with calls to FORTRAN routines for FMM
calculations.

To simplify testing, all interpolation was done in the unit cube in 3 dimen-
sions, i.e., [0 − 1] × [0 − 1] × [0 − 1] ⊂ R × R × R. For a given number N ,
the function is interpolated at N random locations. The matrix A can be cal-
culated by looping through every combination of points i and j, and finding
sinc(k ∗ ||pointsi − pointsj||). This creates the system to be solved, AX = F
as mentioned in (1.2). The system can be solved for X via various methods. This
includes the SVD as mentioned earlier or an iterative method like GMRES [1].

To test the accuracy of this interpolant, a 3-dimensional mesh is created on
the domain with uniform distance between mesh points. At each mesh point, the
approximation is calculated as described in (1.1), with X corresponding to λ. This
is compared to the exact value of the interpolated function to find the error. After
processing each point in the mesh, the L2 and Linf norms are calculated for both
the absolute and relative errors.

2.1 FMM

The FORTRAN FMM routine used was developed by Duraiswami and Gumerov
to accelerate the iterative solution of the boundary element method for the three-
dimensional Helmholtz equation [6]. As the points are not moving, the sources
and receivers of the FMM routine are both simply set to the N random points.
The wavenumber of the FMM is set to the k parameter to ensure they are using
the same scaling.

2.2 Code

In order to test the FMM, it was necessary to call the FORTRAN FMM routine
from a MATLAB function.

Due to limitations of MATLAB, it wasn’t possible to pass arrays of structures.
Due to the way complex numbers are stored, this made it impossible to natively
call the FORTRAN routine using just libpointer [2]. Instead, a FORTRAN
mexfunction had to be created to serve as a bridge between the MATLAB and
FORTRAN data.

It takes in arrays for native MATLAB input and output arrays. From this,
it can dynamically allocate memory for FORTRAN data and appropriately set
them. Then, the FMM routine can be easily called from the shared library. The
final matrix vector product returned is then converted into a MATLAB pointer
and passed back. All this allows MATLAB to act as if the FORTRAN routine is
a native MATLAB function. The source code for this function can be found in
section 7.1.1.

2.3 Testing

Tests were done to compare the accuracy and speed of these methods. A standard
convection reaction was used as the problem to be interpolated. Specifically, the

5

convection-diffusion reaction, defined as:

T (x, y, z) = e−x + e−y + e−z (2.1)

[8].
Since it is possible to find interpolants that are too narrow, the mesh needed

to be more dense than N . This ensures the accuracy measurement won’t miss
areas of poor accuracy between the sampled points. As such, a mesh distance of
.01 was used, giving 101 mesh points along each dimension. This corresponds to
1013 = 1030301 total mesh points. For the values of N tested, this was more than
sufficient.

Multiple trials of each test were done to find an average. For smaller values of
N , 20 trials were used, but this became infeasible for larger ones. Therefore, for
smaller values of N , only 5 trials were used.

When evaluating the method on the mesh, both the absolute and relative error
are recorded. After finishing the L2 and Linf norms of both are given. The L2

norms are divided by N to normalize them. Additionally, the number of iterations
required for convergence and time taken (in seconds) are also reported.

6

3 FMM Accelerated Rank k SVD

As mentioned previously, given a linear system Ax = b, the solution can be found
by using the SVD to form a pseudoinverse. The random SVD algorithm can give
a rank k approximation of the inverse. And this can be accelerated by using an
FMM routine to replace the matrix vector product.

3.1 Implementation

The random SVD algorithm is not natively implemented in MATLAB. Instead of
passing in a function handle, it was simple enough to just replace every the matrix
vector products involving A with a call to the mexfunction created. For any given
comparison, the rank and number of matrix-vector products used is kept constant.
The source code for the non-FMM and FMM versions of the random SVD can be
found in sections 7.1.2 and 7.1.3.

3.2 Results

3.2.1 Singular Values

(a) Full SVD (b) Random SVD: k = 200, l = 220

Figure 3.1: Singular Values for N = 500

The graphs in Figure 3.1 show the singular values for both the full SVD and the
random SVD accelerated via an FMM. The low rank SVD approximation has very
similar singular values compared to the ones from the full SVD. This supports the
use of our accelerated SVD without a noticeable loss in accuracy.

3.2.2 Error

Type L2 Err. Linf Err. L2 Rel. Err. Linf Rel. Err. Time
Full 6.99e-4 6.20e+0 4.25e-4 3.42e+0 1.41e-1

Random 6.91e-4 5.80e+0 4.21e-4 3.42e+0 8.03e-2
FMM Random 6.91e-4 5.80e+0 4.21e-4 3.42e+0 1.25e+0

Table 3.1: SVD Results: N = 500; k = 200, l = 220 for Random SVD

7

Type L2 Err. Linf Err. L2 Rel. Err. Linf Rel. Err. Time
Full 6.97e-4 7.09e+0 4.24e-4 3.64e+0 3.72e+0

Random 6.89e-4 6.67e+0 4.20e-4 3.34e+0 7.48e-1
FMM Random 6.89e-4 6.67e+0 4.20e-4 3.34e+0 4.24e+1

Table 3.2: SVD Results: N = 2000; k = 500, l = 520 for Random SVD

Type L2 Err. Linf Err. L2 Rel. Err. Linf Rel. Err. Time
Full 7.14e-4 7.70e+0 4.34e-4 3.81e+0 6.68e+1

Random 6.97e-4 6.70e+0 4.25e-4 3.61e+0 5.27e+0
FMM Random 6.97e-4 6.70e+0 4.25e-4 3.61e+0 5.26e+2

Table 3.3: SVD Results: N = 5000, k = 1000, l = 1020 for Random SVD

Type L2 Err. Linf Err. L2 Rel. Err. Linf Rel. Err. Time
Full 7.41e-4 7.99e+0 4.53e-4 4.21e+0 5.26e+2

Random 7.25e-4 7.54e+0 4.43e-4 4.18e+0 5.52e+1
FMM Random 7.25e-4 7.54e+0 4.43e-4 4.18e+0 5.23e+3

Table 3.4: SVD Results: N = 10000, k = 2500, l = 2520 for Random SVD

Tables 3.1 to 3.3 also show a similarity in accuracy between the various SVD
algorithms. At all values of N , all measures of the error were extremely close.
There was practically no difference between the FMM and non FMM routines.
And additionally, the Random SVD algorithms were more accurate compared
to using the standard MATLAB full SVD. This difference only get larger as N
increases.

3.2.3 Time

Figure 3.2: Time vs. N

Figure 3.2 shows the time used in solving the system versus N . The routine
using the non-FMM random SVD ran faster than the one using a full SVD, but

8

the FMM version was the slowest of all three. However, looking at the rate of
growth of time required, the full SVD routine grew the fasted. At higher values
of N , it is expected that the FMM version will eventually run faster.

9

4 Radial Basis Function Interpolation with the sinc
function

4.1 k Parameter

As mentioned previously, the k parameter of the sinc function highly influences
the accuracy of the solution. This parameter k determines the width of the inter-
polating sinc functions. It corresponds to the locality of each function. Higher k’s
lead to narrower sinc functions, and lower k’s lead to wider ones. As k increases,
the approximate solution becomes zero everywhere throughout the domain except
for the n centers. Obviously A therefore approaches the identity matrix and the
system becomes almost already solved. However, this would lead to highly inac-
curate approximations through most of the domain. Likewise, if k is too small,
the interpolating sinc functions become too global. The accuracy of using the
sinc function for RBF interpolation is dependent on finding a good value of k.
Preferably, a generally optimal k could be found for a wide range of functions.

Figure 4.1: Sinc Function

Figure 4.1 shows the sinc function with no k parameter. The zeros occur at every
non-zero multiple of π. And the further x is from 0, the smaller the function’s
amplitude. So given one of the N sampled points, the further an evaluation point
is, the smaller the effect it has on the approximation. The points within one period
of the evaluation point will have, by far, the largest effect.

It becomes clear that this k parameter will have a significant effect on the
accuracy of the resulting interpolant. Figure 4.2 shows an accurate interpolation
using a good value of k. However, if k is very large, as in Figure 4.3a, then the
interpolating sinc functions are too narrow. The system matrix will be close to
the identity matrix and a solution will be quickly found, but the interpolant will
be very inaccurate in between sampled points. The opposite happens if k is very
small, as in Figure 4.3b. The interpolating sinc functions are too broad and the
resulting approximation is not smooth. In addition, the system matrix will have
a very poor condition number.

10

Figure 4.2: Normal k

(a) Large k (b) Small k

Figure 4.3: Large vs. Small k

These tests were done with N = 10 data points. Changing N would change how
many sinc functions significantly affect any evaluation point. Thus, in testing, k
was determined by calculating the average distance to the closest point. In other
words, for each of the N points, find the distance to the closest neighboring point
and take the average. Then if k = 2π

a∗avgdist , then a will determine how many points
lie within the primary wave.

4.2 Results

As mentioned before, too large or small values of the k parameter can lead to very
inaccurate results. As Table 4.1 shows, there is a sharp loss of accuracy in the
jump from a = 1 to a = 2 and an even larger one to a = 4. There seems to be
an exponential increase in error, iterations to convergence, and time needed as a
increases.

In the methods section, a simple 1D example was given showing that values of
k that were too large (equivalent to values of a that are too small) produced even
worse results than values of k that were too small. However, the accuracy in these
tests seemed to just level off. Table 4.2 shows a similar trend for N = 1000.

11

a Iters. L2 Err. Linf Err. L2 Rel. Err. Linf Rel. Err. Time
1/64 3.00 1.62e-4 3.01e+0 9.80e-5 1.21e+0 2.48e-2
1/32 4.00 1.62e-4 3.01e+0 9.80e-5 1.23e+0 9.73e-2
1/16 4.40 1.62e-4 3.19e+0 9.80e-5 1.28e+0 3.33e-2
1/8 5.40 1.62e-4 3.52e+0 9.82e-5 1.39e+0 2.08e-2
1/4 7.40 1.63e-4 3.76e+0 9.85e-5 1.65e+0 3.89e-2
1/2 11.60 1.65e-4 4.59e+0 1.00e-4 2.24e+0 3.96e-2
1 25.40 1.76e-4 7.12e+0 1.07e-4 3.48e+0 8.71e-2
2 109.60 2.94e-4 1.49e+1 1.83e-4 8.03e+0 4.14e-1
4 499.00 7.50e+0 1.34e+6 4.77e+0 8.16e+5 3.92e+0

Table 4.1: Comparing Wavenumber: N = 500

a Iters. L2 Err. Linf Err. L2 Rel. Err. Linf Rel. Err. Time
1/64 3.20 1.62e-4 3.00e+0 9.80e-5 1.15e+0 1.12e-1
1/32 4.20 1.62e-4 3.04e+0 9.80e-5 1.23e+0 7.29e-2
1/16 4.60 1.62e-4 3.27e+0 9.81e-5 1.28e+0 8.63e-2
1/8 6.40 1.62e-4 3.50e+0 9.82e-5 1.39e+0 8.76e-2
1/4 8.80 1.63e-4 3.78e+0 9.86e-5 1.69e+0 1.12e-1
1/2 14.20 1.66e-4 5.03e+0 1.01e-4 2.35e+0 1.65e-1

Table 4.2: Comparing Wavenumber: N = 1000

(a) L2 Error vs. a (b) Linf Error vs. a

Figure 4.4: Interpolation Error vs. a

12

5 Iterative Methods and Preconditioning

5.1 Background

Iterative methods are algorithms which produce successively more accurate ap-
proximations of the solution. Unlike direct methods, which run until the exact
solution is found, iterative methods generally run until the residual reaches a given
tolerance. This allows iterative methods to converge to a solution far faster than
direct ones can.

For linear systems, there are two main types of iterative methods. Stationary
ones are relatively simple but are only guaranteed to converge for certain types of
matrices. As such, their use is very limited in practical applications.

5.1.1 Krylov Subspace Methods

The Krylov subspace of order r of a linear system Ax = b is the space spanned by
the images of b under the r successive powers of A.

span{b, Ab,A2b, . . . , Ar−1b}

For an N × nN matrix A, its inverse can be represented as a linear combination
of its order n Krylov basis.

A−1 =
(−1)N−1

det(A)

(
AN−1 + cN−1A

N−2 + · · ·+ c1IN
)

The iterative methods using this create a Krylov basis with the images of suc-
cessive residuals. The approximate solution at an iteration step is then found by
minimizing the residual over the current subspace. Obviously, this algorithm lends
itself to being improved with an FMM routine. Both forming the subspace and
minimizing the residual require matrix vector products with A. Improving the
efficiency of these will improve the efficiency overall.

For our research, the Generalized minimum residual method (GMRES) was
tested. For the nth iteration, this method attempts to minimize the residual in
the Kyrlov subspace Kn. This is done by solving a linear least squares problem
[9].

5.1.2 Preconditioning

In order to speed up the convergence of the iterative methods described, pre-
conditioners can be used to improve the system’s conditioning. Given some pre-
conditioner M , the system Ax = b is transformed into M−1Ax = M−1b for left
preconditioning and AM−1Mx = b for left preconditioning.

Generally, a preconditioner M should approximate A so the system Ax = b
can approach x = A−1b. The closer the preconditioner is to A, the closer the
preconditioned system’s condition number will be to 1. This would lead to instant
convergence. However, if M is chosen to be exactly A, applying the preconditioner
is equivalent to solving the original system. Optimal preconditioners must balance
improving convergence and ease of calculation. Using the random SVD algorithm
allows for a compromise between the two. Since the approximate SVD can be

13

found for any arbitrary rank k, it can be as expensive or inexpensive as wanted.
In addition, as mentioned previously, the lower rank random SVDs are still very
accurate approximations.

Our linear system can be simply solved by just using an SVD to estimate the
inverse of the matrix A. However, this solution can be improved by combining
the random SVD as a preconditioner to an iterative method. This will be more
accurate than simply solving the system via the SVD since it will be improved
further via reducing the residual. And similarly, it will run faster than simply
running the iterative method, since the iterative method will converge much faster.

5.2 Results

5.2.1 GMRES

Type Iters. L2 Err. Linf Err. L2 Rel. Err. Linf Rel. Err. Time
Standard 23.00 1.77e-4 6.88e+0 1.08e-4 3.48e+0 4.13e-2

FMM 25.40 1.76e-4 7.12e+0 1.07e-4 3.48e+0 8.71e-2

Table 5.1: FMM in GMRES: N = 500

Type Iters. L2 Err. Linf Err. L2 Rel. Err. Linf Rel. Err. Time
Standard 38.80 1.85e-4 8.39e+0 1.13e-4 4.37e+0 2.05e+0

FMM 44.00 1.85e-4 8.59e+0 1.13e-4 4.16e+0 1.97e+0

Table 5.2: FMM in GMRES: N = 2000

Type Iters. L2 Err. Linf Err. L2 Rel. Err. Linf Rel. Err. Time
Standard 48.00 1.90e-4 8.81e+0 1.16e-4 4.70e+0 6.98e+0

FMM 48.00 1.90e-4 8.82e+0 1.16e-4 4.70e+0 5.91e+0

Table 5.3: FMM in GMRES: N = 3000

Type Iters. L2 Err. Linf Err. L2 Rel. Err. Linf Rel. Err. Time
Standard 58.80 1.97e-4 9.87e+0 1.21e-4 5.20e+0 2.50e+1

FMM 47.00 1.98e-4 9.62e+0 1.20e-4 5.20e+0 1.40e+1

Table 5.4: FMM in GMRES: N = 5000

At all values of N , GMRES has similar accuracy when using the FMM matrix
vector product and when computing the actual product with A. Tables 5.1 through
5.4 show that the errors are very comparable.

However, at smaller values of N , the FMM version takes much longer. At
N = 500, it requires more than double the time needed by the standard version.
This can be attributed to the constant amount of overhead needed by the FMM
algorithm, which at smaller values of N , is significant. However, at N = 2000, the
two versions run in about the same amount of time. And at N = 3000, the FMM
version runs significantly faster than the standard matrix vector product. As N
increases more, this difference is only magnified further.

14

(a) Number of iterations (b) Time Required

Figure 5.1: Using FMM as a matrix-vector in GMRES

5.2.2 Preconditioning

There were many variations to test for the Random SVD Preconditioner. To serve
as a baseline, the standard nonrandom SVD was tested with the same parameters
(this is the ”Full” type referred to). For the random version of the SVD, there are
additional k and l parameters. These refer to the rank of the approximation used
and the number of matrix vector products used to calculate this approximation,
respectively. For each value of N tested, various combinations of k and l are
compared to the full nonrandom SVD and each other.

Type Iters. L2 Err. Linf Err. L2 Rel. Err. Linf Rel. Err. Time
Full 1.00 1.77e-4 6.88e+0 1.08e-4 3.48e+0 1.32e-2

k = 500
1.00 1.76e-4 6.86e+0 1.07e-4 3.49e+0 1.12e-2

l = 500
k = 100

5.90 1.91e-4 1.25e+1 1.21e-4 8.97e+0 3.17e-2
l = 100
k = 100

1.00 1.68e-4 5.08e+0 1.02e-4 2.69e+0 1.05e-2
l = 120
k = 200

10.75 1.75e-4 6.61e+0 1.06e-4 3.73e+0 5.92e-2
l = 200
k = 200

1.00 1.70e-4 5.39e+0 1.03e-4 2.84e+0 1.06e-2
l = 220

Table 5.5: Random SVD: N = 500

Looking at the results in Tables 5.5 and 5.6, the preconditioned versions of
GMRES were both more accurate and faster than the non preconditioned versions.
There are several outliers which have higher errors and which took much longer
to run. The randomized SVD algorithm suggests that k < l < n [7]. In addition,
l − k = 20 was found to be generally optimal. The outliers occurred when k = l,
so they can be ignored as not indicative of the algorithm’s overall performance.

The nonrandom SVD GMRES performed comparably to the non-preconditioned
version in accuracy, but consistently converges in 1 iteration. This obviously cor-
relates to a much faster run time too. The random SVD version further improves
upon this performance. For N = 500, using k = 100 and l = 120 reduces all

15

Type Iters. L2 Err. Linf Err. L2 Rel. Err. Linf Rel. Err. Time
Full 1.00 1.85e-4 8.35e+0 1.13e-4 4.26e+0 1.75e-1

k = 2000
1.00 1.86e-4 8.46e+0 1.13e-4 4.30e+0 1.54e-1

l = 2000
k = 1000

64.00 3.07e-4 3.08e+2 1.88e-4 1.29e+2 4.02e-1
l = 1000
k = 1000

1.00 1.74e-4 6.35e+0 1.05e-4 3.19e+0 1.55e-1
l = 1020
k = 500

99.80 2.00e-4 1.57e+1 1.23e-4 1.01e+1 5.16e+0
l = 500
k = 500

1.00 1.70e-4 5.65e+0 1.03e-4 3.11e+0 1.45e-1
l = 520

Table 5.6: Random SVD: N = 2000

error measures, as shown in Table 5.5. Additionally, since a much smaller rank
preconditioner is created, it runs much faster. The full interpolation took on av-
erage 1.05× 10−2 seconds, compared to 1.32× 10−2 for the nonrandom SVD, and
8.71× 10−2 for the non-preconditioned GMRES.

For larger values of N , the low rank random SVD GMRES takes magnitudes
less time than the standard non-preconditioned GMRES.

16

6 Conclusions

The sinc function showed good results in scattered data interpolation. When
evaluated on a tight mesh, the errors were quite low. By tuning the wavenumber,
the maximum relative error could be limited to around 1.20. Similarly, the L2

norm of the errors was also very small. However, the amount of time and number
of iterations required for convergence was very high.

Due to the nature of Krylov iterative methods, the main exploding factor is the
matrix-vector product. As 5.1b shows, substituting an FMM routine dramatically
decreases the growth. At N = 5000, the advantages are already dramatic.

The system matrices can also be relatively poorly conditioned. Depending on
the wavenumber, 25 iterations or even more could be required. This left a lot
of room for improvement in preconditioning. Using the random SVD as a pre-
conditioner reduced the number of iterations required to generally around only 1.
While it is clear that high rank approximations would have this effect, lower rank
ones did the same. Table 5.5 gives an example of such results. An approximation
of rank 100 for N = 500 still caused the iterative method to converge in only
one iteration in each trial. Since so much fewer iterations are needed, there is a
large decrease in the time needed, even at a small N = 500. For higher N ’s, the
difference is even larger.

Finally, replacing the matrix-vector products of A in the random SVD routine
with an FMM improved the overall performance even further. With a good selec-
tion of the approximation rank and number of matrix-vector products used, the
time needed could be reduced by more than half. Compared to the standard sinc
RBF interpolation, these improvements decreased the time needed by a factor of
more than eight.

6.1 Future Directions

While large improvements were made to RBF interpolation with the sinc function,
there is still more that could be done. One aspect of GMRES is that every outer
iteration uses the same preconditioner. However, a flexible version of GMRES
(FGMRES), has been described which allows for a variable preconditioner in each
outer iteration. This could allow each iteration to successively better condition
the matrix A and converge quicker.

17

7 Appendices

7.1 Source Code

7.1.1 FMM mexfunction

1 #inc lude ” f i n t r f . h”
2 C==
3 #i f 0
4 C
5 C f a n t a l g o d r i v e r .F
6 C .F f i l e needs to be preproce s s ed to generate . f o r equ iva l en t
7 C
8 #end i f
9 C
10 C f a n t a l g o d r i v e r . f
11 C
12
13 C This i s a MEX− f i l e f o r MATLAB.
14 C Copyright 1984−2011 The MathWorks , Inc .
15 C $Revis ion : 1 . 1 3 . 2 . 5 $
16 C==
17 C Gateway rout in e
18 subrout ine mexFunction (nlhs , plhs , nrhs , prhs)
19
20 C Dec l a ra t i on s
21 imp l i c i t none
22
23 C mexFunction arguments :
24 mwPointer p lhs (∗) , prhs (∗)
25 i n t e g e r nlhs , nrhs
26
27 C Function d e c l a r a t i o n s :
28 mwPointer mxCreateDoubleMatrix , mxGetPr
29 i n t e g e r mxIsNumeric
30 mwPointer mxGetM, mxGetN
31
32 C Po inte r s to input mxArrays :
33 mwPointer po in t s pr , x pr , opt ion pr , param pr , i n f o i n t p r , i n f o r e a l p r
34
35 C Po inte r s to output mxArrays :
36 mwPointer prod pr
37
38 C Array in fo rmat ion :
39 mwPointer m, n
40 mwSize s i z e
41
42 r e a l ∗8 , a l l o c a t a b l e : : po in t s (: , :)
43 r e a l ∗8 , a l l o c a t a b l e : : x (:)
44 r e a l ∗8 , a l l o c a t a b l e : : prod (:)
45
46 C Arguments f o r computat ional r ou t in e :
47 C Maximum s i z e = numel
48 r e a l ∗8 , a l l o c a t a b l e : : s ou r c e s (: , :) , r e c e i v e r s (: , :)
49 i n t e g e r ∗8 i c a l l , i e r r , opt ion (21) , i n f o i n t (16)
50 r e a l ∗8 i n f o r e a l (6) , param (16)
51 complex ∗16 , a l l o c a t a b l e : : monopolestrengths (:) , p o t e n t i a l (:)

18

52
53 C−−
54 C Check f o r proper number o f arguments .
55 i f (nrhs . ne . 6) then
56 c a l l mexErrMsgIdAndTxt (’MATLAB: matsq : nInput ’ ,
57 + ’ Six inputs r equ i r ed . ’)
58 e l s e i f (n lhs . ne . 1) then
59 c a l l mexErrMsgIdAndTxt (’MATLAB: matsq : nOutput ’ ,
60 + ’One output r equ i r ed . ’)
61 end i f
62
63 C Get the s i z e o f the input array .
64 m = mxGetM(prhs (1))
65 n = mxGetN(prhs (1))
66 s i z e = m∗n
67
68 C Points array must have 3 rows
69 i f (m . ne . 3) then
70 c a l l mexErrMsgIdAndTxt (’MATLAB: matsq : mSize ’ ,
71 + ’ Points array must have 3 rows . ’)
72 end i f
73
74 C Check that the array i s numeric (not s t r i n g s) .
75 i f (mxIsNumeric (prhs (1)) . eq . 0) then
76 c a l l mexErrMsgIdAndTxt (’MATLAB: matsq : NonNumeric ’ ,
77 + ’ Input must be a numeric array . ’)
78 end i f
79
80 C Create matrix f o r the re turn argument .
81 a l l o c a t e (po in t s (3 , n))
82 a l l o c a t e (x (n))
83 a l l o c a t e (prod (n))
84 p lhs (1) = mxCreateDoubleMatrix (n , 1 , 0)
85 po in t s p r = mxGetPr(prhs (1))
86 c a l l mxCopyPtrToReal8 (po in t s pr , po ints , s i z e)
87 x pr = mxGetPr(prhs (2))
88 c a l l mxCopyPtrToReal8 (x pr , x , n)
89 opt i on pr = mxGetPr(prhs (3))
90 c a l l mxCopyPtrToReal8 (opt ion pr , option , 2 1)
91 param pr = mxGetPr(prhs (4))
92 c a l l mxCopyPtrToReal8 (param pr , param , 16)
93 i n f o i n t p r = mxGetPr(prhs (5))
94 c a l l mxCopyPtrToReal8 (i n f o i n t p r , i n f o i n t , 1 6)
95 i n f o r e a l p r = mxGetPr(prhs (6))
96 c a l l mxCopyPtrToReal8 (i n f o r e a l p r , i n f o r e a l , 6)
97 prod pr = mxGetPr(p lhs (1))
98
99 C Cal l the computat ional subrout ine .

100 a l l o c a t e (sour c e s (3 , n))
101 a l l o c a t e (r e c e i v e r s (3 , n))
102 sourc e s=po in t s
103 r e c e i v e r s=po in t s
104 a l l o c a t e (monopolestrengths (n))
105 monopolestrengths (1 : n)=x (1 : n)
106 a l l o c a t e (p o t e n t i a l (n))
107 i c a l l =0
108 i e r r=0
109 c a l l s inc3d fmm fanta lgo 11 i (i c a l l , option , param , sources , r e c e i v e r s ,

19

110 + monopolestrengths , po t en t i a l , i e r r , i n f o i n t , i n f o r e a l)
111 i c a l l =2
112 i e r r=0
113 c a l l s inc3d fmm fanta lgo 11 i (i c a l l , option , param , sources , r e c e i v e r s ,
114 + monopolestrengths , po t en t i a l , i e r r , i n f o i n t , i n f o r e a l)
115 prod (1 : n)=po t en t i a l (1 : n)
116 prod=prod/param (1)
117 i c a l l =3
118 i e r r=0
119 c a l l s inc3d fmm fanta lgo 11 i (i c a l l , option , param , sources , r e c e i v e r s ,
120 + monopolestrengths , po t en t i a l , i e r r , i n f o i n t , i n f o r e a l)
121
122 C Load the data in to y pr , which i s the output to MATLAB.
123 c a l l mxCopyReal8ToPtr (prod , prod pr , n)
124
125 d e a l l o c a t e (po in t s)
126 d e a l l o c a t e (x)
127 d e a l l o c a t e (prod)
128 d e a l l o c a t e (sour c e s)
129 d e a l l o c a t e (r e c e i v e r s)
130 d e a l l o c a t e (monopolestrengths)
131 d e a l l o c a t e (p o t e n t i a l)
132
133 return
134 end

7.1.2 Random SVD MATLAB Source Code

1 func t i on [U, S ,V]=RandSVD2(A, k , l)
2 % re tu rn s the Randomized SVD of order k f o r matrix A
3 [m, n]= s i z e (A) ;
4 G=rand (m, l) ;
5 R=A’∗G;
6 [Ur , Sr , Vr]=svd (R, ’ econ ’) ;
7 Q=Ur (: , 1 : k) ;
8 c l e a r Ur Sr Vr ;
9 T=A∗Q;
10 [U, S ,W]=svd (T, ’ econ ’) ;
11 V=Q∗W;
12 return
13 end

7.1.3 Random SVD using FMM MATLAB Source Code

1 func t i on [U, S ,V]=RandSVD2FMM(points , option , param , i n f o i n t , i n f o r e a l , k , l
)

2 % re tu rn s the Randomized SVD of order k f o r matrix A
3 [m, n]= s i z e (po in t s) ;
4 G=rand (n , l) ;
5 R=ze ro s (n , l) ;
6 f o r i =1: l
7 R(: , i)=f a n t a l g o d r i v e r (po ints ,G(: , i) , option , param , i n f o i n t ,

i n f o r e a l) ;
8 end
9 [Ur , Sr , Vr]=svd (R, ’ econ ’) ;

20

10 Q=Ur (: , 1 : k) ;
11 c l e a r Ur Sr Vr ;
12 T=ze ro s (n , k) ;
13 f o r i =1:k
14 T(: , i)=f a n t a l g o d r i v e r (po ints ,Q(: , i) , option , param , i n f o i n t ,

i n f o r e a l) ;
15 end
16 [U, S ,W]=svd (T, ’ econ ’) ;
17 V=Q∗W;
18 return
19 end

7.2 Thesis Presentation

21

8/9/2013

1

Improving Radial Basis
Function Interpolation via
Random SVD
Preconditioners and Fast
Multiple Methods
Author: Kerry Cheng

Advisor: Professor Ramani Duraiswami

Fast Multipole Methods (FMM)

• Mathematical technique developed to speed up calculations
of long range forces

• Can speed up sums of type:

• 𝑠 𝑥𝑗 = 𝛼𝑖𝜙(𝑥𝑗 − 𝑥𝑖)
𝑁
𝑖=1

• Splits sum into a close range sum evaluated directly and a long
range sum evaluated approximately to a specified accuracy ϵ

• Initially developed for Laplace equation

• Recent research for the Helmholtz equation has given
approximation algorithms that compute matrix vector
products of specific matrices

• Linear time to any specified accuracy ϵ

8/9/2013

2

Radial Basis Function (RBF)
Interpolation
• RBF: Function of one variable, taken as the

distance from a center xi

𝜙(𝑥𝑗 − 𝑥𝑖)

• Approximate multivariable functions, f, as linear
combination of RBFs
at scattered centers
(interpolation points)

RBF Interpolation

• Approximation

𝑓 𝑥 = 𝜆𝑗𝜙(𝑥 − 𝑥𝑗)

𝑁

𝑗=1

• Interpolation conditions

𝑓 𝑥𝑖 = 𝜆𝑗𝜙(𝑥𝑖 − 𝑥𝑗)

𝑁

𝑗=1

• Leads to linear system to solve 𝐴𝑥 = 𝑓
𝜙(𝑥1 − 𝑥1) ⋯ 𝜙(𝑥1 − 𝑥𝑁)

⋮ ⋱ ⋮
𝜙(𝑥𝑁 − 𝑥1) ⋯ 𝜙(𝑥𝑁 − 𝑥𝑁)

𝜆1
⋮
𝜆𝑁

=
𝑓1
⋮
𝑓𝑁

• Can be solved in variety of ways

8/9/2013

3

Novel Candidate RBF: Sinc
Function

• 𝜙 𝑥 = sinc 𝑥 =
sin(𝑥)

𝑥
, 𝑥 ∈ ℝ

• Widely used in signal
processing

• Radial basis version:

• sinc 𝑥 =
sin(𝑘| 𝑥−𝑥∗ |)

𝑘| 𝑥−𝑥∗ |
, 𝑥 ∈ ℝd

• k is a scale parameter

• Can be expected to affect
“influence” of a particular
point on interpolant

Methods

• 𝑁 random points chosen in unit cube as a test
problem

• Linear RBF system set up and solved for a
particular test function

• Approximation evaluated on uniform grid and
errors recorded

• Code written in MATLAB with calls to algorithm
of sinc FMM code developed by Gumerov and
Duraiswami

8/9/2013

4

𝑘 Parameter for sinc Function

𝑵 = 𝟏𝟎, Large 𝒌 𝑵 = 𝟏𝟎, Small 𝒌

𝑘 parameter value is crucial to getting a good interpolation

Oscillatory interpolant Noisy interpolant

𝑘 Parameter for sinc Function

𝑁 = 10
“Good” interpolant

8/9/2013

5

𝑘 Parameter heuristic

• 𝑘 determines width of sinc functions

• Developed a heuristic

• Base 𝑘 on average distance to closest particle

• Set 𝑘 =
2𝜋

𝑎∙av𝑔𝑑𝑖𝑠𝑡

• 𝑎 determines number of points that lie within
primary wave of sinc function

𝑘 Parameter for sinc Function
Results

L2 Error vs. 𝒂 Linf Error vs. 𝒂

8/9/2013

6

Solving the System via SVD
• Singular Value Decomposition (SVD)

• SVD: 𝐴 = 𝑈Σ𝑉𝑇

• 𝑈, 𝑉 are 𝑁 × 𝑁 matrices with orthonormal columns

• Σ diagonal matrix with singular values of 𝐴 on diagonal

• Easy to form pseudoinverse: 𝐴−1 = 𝑉Σ+𝑈𝑇

• Σ𝑇 is formed by simple replacing every non-zero element
with its reciprocal

• Leads to solution:

• 𝐴𝑥 = 𝐹

• 𝐴−1𝐴𝑥 = 𝐴−1𝐹

• 𝑥 = 𝐴−1𝐹

• Cost of SVD for a M×N matrix is O(MN2) time

• Here M=N

Randomized SVD
• Standard SVD of an M x N matrix, 𝐴, takes 𝑂(𝑀𝑁2) time

• Random SVD algorithm developed by Martinsson et al.
constructs rank-𝑘 approximation using 𝑙 random vectors

• Runs in 𝑂 𝑘2𝑀+𝑙2𝑁 + 𝑘 ∙ 𝐶𝐴 + 𝑙 ∙ 𝐶𝐴𝑇 time

• 𝐶𝐴 is cost to apply 𝐴 to arbitrary vector

• 𝐶𝐴𝑇 is cost to apply 𝐴𝑇 to arbitrary vector

• 𝑙 is 𝑘 plus a small constant which determines accuracy

• Goal: combine with FMM to give accurate SVD
approximation in 𝑂(𝑘max 𝑀,𝑁) time

• Significant improvement in complexity by combining

• Approximation algorithm (FMM)

• Randomized algorithm (Random SVD)

8/9/2013

7

Random SVD Results
Full SVD
𝑵 = 𝟓𝟎𝟎

Random SVD
𝑵 = 𝟓𝟎𝟎, 𝒌 = 𝟐𝟎𝟎, 𝒍 = 𝟐𝟐𝟎

Singular values match well

Random SVD FMM Results

Type L2 Error Linf Error L2 Rel. Error Linf Rel. Error

Full 6.99e-4 6.20e+0 4.25e-4 3.42e+0

Random 6.91e-4 5.80e+0 4.21e-4 3.42e+0

FMM Random 6.91e-4 5.80e+0 4.21e-4 3.42e+0

• 𝑁 = 500

• 𝑘 = 200, 𝑙 = 220 for Random SVD tests

• Random SVD actually more accurate

8/9/2013

8

Random SVD FMM Results

Slope is right (random FMM SVD shows linear scaling), but still expensive
Implementation should be explored in the future

GMRES

• Iterative method

• Successively produce more accurate approximations of
solution

• Krylov subspace of order 𝑟 for a linear system 𝐴𝑥 = 𝑏

• 𝑠𝑝𝑎𝑛{𝑏, 𝐴𝑏, 𝐴𝑏2, … }

• At nth iteration, minimizes residual in subspace Kn by solving
least squares problem

• Requires many matrix vector products with 𝐴

8/9/2013

9

GMRES Results
Number of Iterations to

Convergence Time Required to Solve System

Preconditioning

• Can improve convergence of iterative method by improving
conditioning

• Let 𝑀 be approximation of 𝐴

• 𝑀−1𝐴𝑥 = 𝑀−1𝑏

• Want to use random SVD algorithm as a preconditioner to
GMRES iterative method

• More accurate than simply solving via SVD

• Faster than non-preconditioned GMRES

8/9/2013

10

Preconditioning Results
Accuracy
Type L2 Error Linf Error L2 Rel. Error Linf Rel.

Error

SVD 6.91e-4 5.80e+0 4.21e-4 3.42e+0

No
Preconditio
ning

1.76e-4 6.88e+0 1.07e-4 3.48e+0

Preconditio
ning

1.70e-4 5.39e+0 1.03e-4 2.84e+0

𝑁 = 500
𝑘 = 200, 𝑙 = 220 for Random SVD

All FMM accelerated

Preconditioning Results Time

Type Iterations Time

No Preconditioning 25.4 8.71e-2

Preconditioning 1 1.06e-2

𝑁 = 500
𝑘 = 200, 𝑙 = 220 for Random SVD

All FMM accelerated

8/9/2013

11

Conclusion

• Accurate interpolation

• Choice of sinc wavenumber is broad

• FMM has constant overhead but improves speed of
calculating random SVD and GMRES

• Combining random SVD as preconditioner with iterative
method gave good results

• More accurate than directly solving via approximate SVD

• Faster convergence than non-preconditioned GMRES

Future Directions

• Investigate FGMRES

• Allows variable preconditioner in each iteration

• Each iteration can successively better condition the matrix to
converge quicker

8/9/2013

12

Acknowledgements

• Professor Ramani Duraiswami

• Professor Nail Gumerov

• My parents

References

[1] Matlab documentation for gmres function. Website, 2013. http://www.

mathworks.com/help/matlab/ref/gmres.html.

[2] Matlab documentation for libpointer function. Website, 2013. http://www.

mathworks.com/help/matlab/ref/libpointer.html.

[3] Brad Baxter. The Interpolation Theory of Radial Basis Functions. PhD
thesis, University of Cambridge, 2010.

[4] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations.
Journal of Computational Physics, 73(2):325–348, 1987.

[5] Nail Gumerov and Ramani Duraiswami. Tutorial lecture on the fast multipole
method, 2004. Center for Scientific Computing and Mathematical Modeling.

[6] Nail A Gumerov and Ramani Duraiswami. A broadband fast multipole accel-
erated boundary element method for the three dimensional helmholtz equa-
tion. The Journal of the Acoustical Society of America, 125:191, 2009.

[7] Per-Gunnar Martinsson, Vladimir Rokhlin, and Mark Tygert. A randomized
algorithm for the decomposition of matrices. Applied and Computational
Harmonic Analysis, 30(1):47–68, 2011.

[8] Estaner Claro Romo and Luiz Felipe Mendes de Moura. Galerkin and least
squares methods to solve a 3d convectiondiffusionreaction equation with vari-
able coefficients. Numerical Heat Transfer, Part A: Applications, 61(9):669–
698, 2012.

[9] Youcef Saad and Martin H Schultz. Gmres: A generalized minimal resid-
ual algorithm for solving nonsymmetric linear systems. SIAM Journal on
scientific and statistical computing, 7(3):856–869, 1986.

[10] Lloyd N Trefethen and David Bau III. Numerical linear algebra. Number 50.
Siam, 1997.

34

