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ABSTRACT

PyAline: Automatically Growing Language Family Trees

Using The ALINE Distance

Paul Huff

Department of Linguistics

Master of the Arts

Several methods for determining a numerical distance between languages have been proposed
in the literature. In this thesis I implement one of them, the ALINE distance, and develop a
methodology for comparing its results with other language distance metrics. I then compare it
with a leading distance metric, the LDND distance, proposed by the ASJP project.

Keywords: language phylogenies automatic language classification
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Chapter 1

Introduction

The use of statistical and numerical methods to analyze language change and relatedness has ex-

perienced a resurgence in interest over the last decade, despite having been relatively understudied

over the last 50 years. Among other things two extra-linguistic advances have helped feed this

resurgence. The first is the development of new statistical methods pioneered by mathematicians

and biologists for understanding tree-like structures. The second is the continuing increase in the

speed and power of computers available to the average linguist. These two advances have helped

make it easy to test statistical hypotheses regarding language. Consequently, lexicostatistics as

a linguistic subdiscipline has suddenly become a much more compelling field of research to a

growing number of linguists.

Over the last twenty to thirty years statistics have been put to great use for a variety of linguistic

tasks. However, statistics have only recently been used in earnest to study what might be called the

original questions that founded the field of linguistics itself: How did all known languages come to

be as they are and how are they related to one another? For roughly the first two hundred years of

the field’s life, linguists were nearly universally interested in such questions. For a brief period in

the 1950s and 1960s linguists began to look at these questions of language origin and relatedness

using statistical methods, but for much of the last fifty years historical linguists have eschewed

their use. The recent return of statistical methods to the historical analysis of language is therefore

as much about the field of historical linguistics itself as it is a potential new way to shed more light

1



CHAPTER 1. INTRODUCTION 2

on the subject.

Historical linguists have traditionally used the historical-comparative method as the principal

means to elucidate the relationships between languages. This method requires historical linguists

to look at a group of languages’ similarities and differences, construct a model of how their unat-

tested ancestors must have evolved into their current synchronic state, and then group the lan-

guages together into language families based on shared innovations from their ancestor languages

[McMahon and McMahon, 2005]. The method was developed (and used quite successfully) to

discover the relationships among the various Indo-European languages, and has been extended

successfully to various other language families throughout the world.

As statistical and mathematical methods became more powerful during the first half of the

twentieth century, they became an appealing tool to linguists. Perhaps the most infamous math-

ematical method used for discovering the relationships between languages is glottochronology,

championed in the 1950s by Morris Swadesh and others. Swadesh sought to investigate the histor-

ical relationships between languages by creating lists for certain culturally universal lexical items.

Glottochronology relies on the fact that so-called basic vocabulary items change less frequently

than other vocabulary items; by finding basic, universal lexical items, the rate of change across var-

ious languages ought to be relatively constant. By looking at the number of items that were similar

or cognate between the lists of basic vocabulary between two related languages and making the

assumption of a constant rate of change of any given language, practitioners of glottochronology

sought to establish with mathematical rigor a model for showing when languages descended from

one another. The principal glottochronological equation is as follows (following McMahon and

McMahon):

t =
log c

2 log r

where t = time depth in millennia, c = percentage of cognates and r = the glottochronological

constant. Using this formula, Swadesh and others attempted to discern the exact split dates in
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millennia between languages and their ancestors [McMahon and McMahon, 2005].

Glottochronology’s methods were heavily criticized and eventually nearly universally rejected

on a variety of grounds. Critics attacked the methodology of list construction, saying that there are

very few basic lexical items that are in reality universally present across all cultures. They also at-

tacked the rigor of the list construction process, since in some languages there are lexical-semantic

pairs for which more than one word might fit. Since the accuracy of the lists themselves is suspect,

the portion of the glottochronological equation which represents the percentage of cognates is sus-

pect as well, as it is derived from the lists. Finally glottochronology’s assumptions of a constant

rate of change was most roundly criticized since using the formula leads to time depths which vary

widely from known time depths. For some language pairs, like Tok Pisin and English, the equation

estimated the divergence as being much older than it actually was. For other language pairs, such as

Old Norse and Icelandic and Old Armenian and Modern Armenian, the glottochronology equation

predicts language deviation times which are vastly later than they actually were. These inconsis-

tencies highlighted the difficulty of trying to model language deviation times with a single constant

rate of change. Glottochronology’s mathematical problems contributed to a long disparagement of

the use of numerical methods in historical linguistics [McMahon and McMahon, 2005].

Another relatively well-known attempt at finding other ways of modelling language relatedness

was proposed and refined by Joseph Greenberg. “Multilateral comparison” was the name he gave

to the set of techniques and principles he developed in the 1950s and 1960s for creating genetic

family trees of languages. Essentially he gathered lists of form-meaning pairs for sets of languages

similar to Swadesh’s. Then he used a complex set of mathematical formulas and factors for judg-

ing similarities across large numbers of languages at a time, rather than just single languages. At

least ten different phenomena were considered as decisive, and were ranked in order. If a set of

languages had a similar form-meaning pair, then the languages could be grouped together accord-

ing to the mathematical weighting of the similarity between the forms. More similarities between
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more pairs meant that there was much more likely to be a genetic grouping than if a group of

languages simply shared one cognate between them [Croft, 2005].

Although much of what Greenberg proposed seemed sound initially, his methods were also

fairly universally criticized by the mainstream historical linguistic community. The technology

simply wasn’t available at the time to allow him to perform his (quite rigorous) statistical cal-

culations transparently, making the underlying processes seem somewhat opaque to his critics.

Indeed, many criticized the sloppiness and seeming arbitrariness of his assumptions of similarity

[Croft, 2005]. They likewise criticized his use of error-ridden data, his failure to use cognates that

were known to be genuine but dissimilar, the large number of languages he investigated at a time,

and several other methodological choices [Croft, 2005].

The general and quite public rejection of both Greenberg’s multilateral comparison and Swadesh’s

glottochronology by the historical linguistics community guaranteed that no further mathematical

models of language relatedness were seriously entertained for quite some time. Because of the

rather dramatic and public failures of these kinds of mathematical models to gain traction among

historical linguists, one might ask why anyone would bother returning to mathematical methods

for learning about linguistics. It is certainly true that the historical-comparative method’s long-

standing valuable contributions to the body of historical knowledge of languages and linguistics

are indisputable.

However, despite the historical-comparative method’s successes, Calvert Watkins, the noted

Indo-Europeanist, made clear that the method is not an end in and of itself, but instead is a means

to the end goal of understanding the history of how the world’s languages came to be as they are:

The reconstruction of Indo-European [via the historical-comparative method], the es-

tablishment, that is, of the grammar of that language to the best of our ability, is not

our fundamental object, as it would be if we were writing a descriptive grammar of a

known language. Rather, our ultimate aim is to write the linguistic history of known
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languages. We are seeking historical explanation for the grammar of languages acces-

sible to us by observation or from written texts. Reconstruction is only a tool, a means

to the end of understanding linguistic history.

Even if we were, by some miracle, handed a complete grammar of Common Indo-

European as spoken somewhere in, say, 4000 B.C. (the date is meaningless), the work

of the Indo-Europeanist would scarcely be done. In fact, it would be barely begun.

For his task would be, then as before, to relate the facts vouchsafed him to the facts

of attested languages: to construct hypotheses, and to demonstrate precisely how it

is possible, within a linguistic tradition or traditions, for a language to pass from one

system at one point in time to another system at a later point. [Watkins, 1973]

Given that the goal of historical linguistics is not the use of the historical comparitive method but,

as Watkins describes, uncovering “the linguistic history of known languages,” [Watkins, 1973],

linguists ought to be open to entertaining any field of research which has additional information

to bear on a subject. The mathematical modelling of linguistics, particularly through statistical

means, can be simply that: another way of shedding additional light from a different perspective

on the data that we have before us as linguists.

Additionally, Calvert Watkins described the models the comparative method produces this way:

We must not forget, of course, that the reconstruction, the postulated grammar which is

arbitrarily considered the initial point in the historical [comparative] linguistic process,

is an artifact reflecting the contemporary state of intellectual development. As such it is

subject to change, just as all intellectual artifacts or scientific propositions are. . . . This

mutability applies also to the model of kinship relations among a set of languages,

the configuration of the family tree, which may also be modified—like any scientific

proposition—by new data. [Watkins, 1973]
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While averring the legitimacy of the reconstructions created by the historical comparative method

as valid scientific models, Watkins is clearly stating that the constructions of the historical compar-

ative method are simply a tool in the historical linguist’s tool belt (though admittedly the predom-

inant tool for the last 200 years). Additionally, Watkins clearly states that new scientific insight

could certainly lead to a revision of the model of language relationships produced by the army of

linguists that has been toiling away with the historical comparative method for centuries. After

the spirit of inquiry that Watkins describes above, other methods of modelling language history

ought to be quite at home in the historical field, since they simply add additional data points to the

models that historical linguists have already constructed.

These mathematical and statistical methods also offer a few additional benefits over the tradi-

tional historical comparative method. First, because the historical comparative method involves

the linguist creating reconstructions, the manner and quality of the reconstructions is often thrown

into doubt between linguists who have a competing view point. This subjectivity of the histori-

cal comparative method has led to long standing disputes between linguists working in the same

field who simply see the data in different ways. By using an algorithmic or statistical method to

reconstruct relationships between languages instead of an “arbitrarily considered” (according to

Watkins) starting point to reconstruct relationships, arguments about relationships can be based on

quantifiable evidence instead of qualitative assertions.

Another advantage that mathematical and statistical methods offer comes about because of the

age of “Big Data” that we live in. In a post-Google world, we have gigantic data sets available

to us as scientists that would have been previously unfathomable. As large linguistic data sets

continue to proliferate, it becomes nearly impossible for one linguist to perform the individual

close analyses that the historical comparative method requires across all available data by hand.

These mathematical and algorithmic methods, when performed computationally, allow linguists to

be able to consider large data sets in their entirety during linguistic analysis in a way that wouldn’t
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have been possible, even a few years ago.

Perhaps in part because of these advantages that statistical and mathematical methods bestow,

in recent years there has been a rekindling of interest in the use of statistical methods in the pursuit

of historical linguistics. During the 50 or so years that linguists attempted to distance the field

from the use of flawed statistical methods such as glottochronology, biologists and mathematicians

have developed statistical and computational methods that are quite useful for answering specific

questions about how species are related to one another and the specifics of those relationships (in-

cluding the modelling of the timing of splits between species and the modelling of their family

tree relationships). These methods and the questions they answer have clear parallels in linguis-

tics, and recently a number of linguists have begun investigating them, creating a lexicostatistical

renaissance in the field of historical linguistics. Just as Watkins suggested might be possible, by

using statistics historical linguists are able to help uncover new information which augments and

revises the configuration of the established history of known languages.

In this thesis I will look at a new way of generating such knowledge: the ALINE distance

between languages. I will explain how the ALINE distance works and compare it with a different

distance metric between languages called LDND, which has been formulated by a research group

called the ASJP Project. By examining how these two metrics perform on the same set of data,

I will show that the ALINE distance is comparable to LDND, which is probably the best studied

automatic language distance metric currently available.

The rest of the thesis, then, will proceed as follows. In chapter two, I will examine the state of

the art of current methods for determining the distance between two languages. Then, in chapter

three, I will present the methodology that I use for building family trees and the methodology that

I have used for comparing two different distance metrics against each other. In chapter four I will

show how well ASJP’s distance metric and the ALINE distance metric work comparatively and

show that ALINE is an equally valid distance metric. In chapter 5, I will summarize my thesis and
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suggest possible areas for future research.



Chapter 2

The State of the Art

One of the first questions to ask when setting out to use a mathematical model is: “What am I

trying to model and why?” Asking this question helps frame how the model should work in order

to better understand the real-world process under examination. For a historical linguist using lexi-

costatistical methods, one answer to this question might be: “I’m trying to model the relationships

between languages. Once I’ve better understood the mathematics of language relationships, I’ll

understand better how one language becomes another.” Obviously there are various aspects of the

relationships between languages that might be investigated with such a model.

The specific aspect that is currently most studied in historical lexicostatistics is how to auto-

matically classify languages into groups in a way that approximates our current understanding of

language relationships. In what is currently the most common approach to this problem, two things

are required in order to generate such automatic family trees: a distance matrix (which records the

distances between individual languages), and a method for generating a tree from a distance ma-

trix. There are a number of standard algorithms for generating trees from such a distance matrix, so

most research in historical lexicostatistics has concentrated on the first problem: how do you come

up with a number that represents how different two languages are from each other? To situate the

work that I have done, I will examine three different approaches to this problem of numerically

representing language relatedness.

The first approach has been pioneered by McMahon and McMahon [McMahon and McMahon, 2005].

9
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They use a database of words constructed by Dyen, Kruskal and Black which is a large set of

Swadesh lists that have been generated for the Indo-European languages. Encoded in the database

for each set of two lexical items with the same meaning is a column which says whether or not

the words are cognate. This is pre-determined by hand, based on the judgments of historical lin-

guists and encoded in the database. For each pair of languages in the database, a distance number

between the pair of languages is generated based on the percentage of words in the two lists that

are cognates. McMahon and McMahon then further refine the items in question by using a set of

criteria for determining which lexical items are less likely to be borrowed through contact. This

allows them to create two sublists, one which is highly likely to be affected by borrowing and

therefore less stable over the long run, and one which is more likely to be unaffected by borrowing

and therefore more stable over the long run. They recompute distance matrices based only on the

stable sublists from the Dyen, Kruskal and Black database. The result matrices are then turned into

trees using off-the-shelf biological tree-building algorithms [McMahon and McMahon, 2005].

A second approach has been proposed by a group of researchers called the ASJP Project

[Holman et al., 2008]. After having collected Swadesh lists for more than 3500 languages from

all over the world, the ASJP Project devised a procedure which allows them to create trees for

these languages using an automated process to generate the distance matrices. For each set of

two languages in the whole pool of available languages, the individual items of the Swadesh list

are compared using the following process: two words with the same meaning are judged as similar

based on a particular distance metric called the Levenshtein distancewhich measures the number of

edits used to turn a word from the first language into a word from the second [Holman et al., 2008].

The Levenshtein distance between two words is defined as the minimum number of insertions

and deletions (also called insdels) and substitutions that it takes to turn one word into the other

[Levenshtein, 1966]. To compute the Levenshtein difference between cat and car as in Table 2.1

above, we create a distance matrix which we will use to determine the minimal difference between
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c a r
0 1 2 3

c 1
a 2
t 3

c a r
0 1 2 3

c 1 0 1 2
a 2 1 0 2
t 3 2 1 1

Table 2.1: On the left is an empty distance matrix waiting to be filled in by the Levenshtein algo-
rithm. On the right is a trivial Levenshtein distance matrix for computing the difference between
cat and car. The number at the bottom right of the filled-in matrix gives a distance of 1 since
substituting r for t is all that’s necessary to transform cat into car.

the two words, as on the right in Table 2.1 above. Matrix cells are represented by two pairs of

numbers which represent the row followed by the column of an individual cell. Each cell in the

matrix row i, column j represents the minimum number of insdels and substitutions needed to

transform the string on the left of the matrix up to character i into the the string on top of the

matrix up to character j.

For example, let’s call the upper left cell (which is blank in the matrices in Table 2.1) cell 0, 0

Since there are no characters of either string represented by cell 0, 0 it has a value of 0. This means

that cell 2, 1 represents the number of insdels and substitutions it would take to transform the ca

from cat into the c from car. Since ca is just one letter different from c (the a can be inserted into

c or deleted from ca to make the strings equal to each other) the Levenshtein distance value of cell

2, 1 is 1. Similarly, cell 3, 2 represents the minimum number of insdels and substitutions that are

required to turn cat into the ca from car. Since t can simply be removed from cat to make it ca,

and vice versa, this number is 1, as is the value in 3, 2.

The Levenshtein distance algorithm visits every blank cell in the matrix on the left in Table 2.1

on page 11, from the top to the bottom, and from left to right. At each step, the algorithm looks

at the characters from each of the two strings in question that are indicated by a given cell. If the

two characters are equivalent, it sets the value of the cell in question to be equal to the value of

the cell to its upper-left. If they are different, the algorithm adds one to the lowest value from all
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three surrounding cells that have already been populated. When the algorithm finishes, the cell

in the bottom righthand corner represents the total number of insertions, deletions or substitutions

necessary to turn one string into the other.

The ASJP Project’s methodology uses a modified version of the Levenshtein distance which

they call the LDND, which stands for Levenshtein Distance Normalized and Divided. They start

by calculating the Levenshtein distance between all of the word pairs of two languages. Each word

is phonetically encoded, so the Levenshtein distance is comparing phonemes with each other, not

written characters. ASJP then normalizes the distance between any two words by dividing by

the length of the longest of the two words compared. Finally this value is divided by a num-

ber which represents the amount of natural phonetic overlap between the two languages. This

value is computed by taking the average Levenshtein distance between all of the possible com-

binations of word pairs which don’t have the same meaning and averaging this into one number.

This last step is performed to average out any chance phonetic overlap between the two languages

in question [Wichmann et al., 2010]. This resulting number is subtracted from 100% and with

this percentage, the ASJP Project obtains a distance for each pair of languages in their database

[Holman et al., 2008]. At this point, they also use off-the-shelf biological tree-building algorithms.

A third approach to determining the distance between two languages has recently been exam-

ined by Downey et al. [Downey et al., 2008]. They use an algorithm called ALINE, developed

by Grzegorz Kondrak, which actually looks at the phonetic distinctive features underlying individ-

ual words in order to calculate distance matrices for those languages. Since this is the algorithm

examined by my thesis, I will explore its provenance in some detail.

In his original description of the ALINE algorithm, Grzegorz Kondrak surveys a different set

of algorithms for determining the phonetic distance between two words [Kondrak, 2000]. The first

algorithm that Kondrak describes was proposed by Michael Covington. It first groups phonemes

into three classes: consonants, vowels and glides. Convington’s algorithm then assigns a distance
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to each of the possible differences in classes between two phonemes. Additionally, deletions and

insertions of phonemes between the two words being compared are also assigned penalty scores

which are added to the overall distance measurement for the two words.

Kondrak also briefly describes two other distance metrics given by Gildea and Jurafsky, and

Nerbonne and Heeringa respectively. Rather than just using a single feature or a phoneme class,

both of these distance metrics use binary feature vectors to represent the words being compared.

A distance metric called the Hamming distance is used in both of these metrics to penalize a sub-

stitution from one phoneme to another, while insertions and deletions of phonemes are penalized

somewhat arbitrarily by both.

In contrast to these metrics, Kondrak proposes ALINE [Kondrak, 2002]. He shows that ALINE

performs well under a variety of circumstances. ALINE works over multivalued feature vec-

tors representing the words in question; that is, where Gildea and Jurafsky’s and Nerbonne and

Heeringa’s methods both use feature values that are either on or off, Kondrak’s ALINE has a vary-

ing fraction between 0 and 1 for the multiple values of each of the features considered (see Table

2.2 on page 14 for a list of features and their values). Additionally, ALINE, rather than computing

the distance between two words, computes the words’ similarities, giving higher scores for words

which are more similar and lower scores for words which are less similar [Kondrak, 2000].

In order to compute the similarity between two words, such as cat and car as described above

for the Levenshtein distance, ALINE first decomposes them into a set of feature value vectors, one

vector for each phoneme in the word. Note that since ALINE is considering the phonetic material

in the words, it has an encoding scheme for translating regular letters into phonemes, similar to

that used by ASJP. For example, in the ALINE representation of cat the letter F is added after the

a so that the string becomes caFt, to represent that the a is a front vowel. The a in car doesn’t have

this modifier since it is not a front vowel.

ALINE creates a similarity matrix which is very much like the distance matrix used by the
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Feature Name Value Name Value
place bilabial 100

labiodental 95
dental 90
alveolar 85
retroflex 80
palato-alveolar 75
palatal 70
velar 60
uvular 50
pharyngeal 30
glottal 10

manner stop 100
affricate 90
fricative 80
approximant 60
trill 50
vowel 40
high vowel 40
mid vowel 20
low vowel 0

high high 100
mid 50
low 0

back front 100
central 50
back 0

Feature Salience
Syllabic 5
Place 40
Voice 10
Nasal 10
Lateral 10
Aspirated 5
High 5
Back 5
Manner 50
Retroflex 10
Long 1
Round 5

Operation Cost
Skip -1000
Substitution 3500
Expansion 4500
Vowel 1000

Table 2.2: On the left are the multivalued features and their values as defined by ALINE, taken
originally from Ladefoged [Kondrak, 2002]. PyAline adds trill as a value for the feature manner
to the original set from ALINE. This is because the ASJP dataset encodes trills. ALINE also uses
the following binary features for each phoneme: syllabic, voice, nasal, lateral, aspirated, retroflex,
long, round. On the right, the salience of each feature and the penalty/reward for each operation
that ALINE allows between strings. The values are adjusted from those originally reported by
[Kondrak, 2002] so that they match the behavior of his implementation.
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c a r
0 0 0 0

c 0 35 25 15
aF 0 25 47.5 37.5
t 0 30 37.5 40.5

Table 2.3: On the left is an empty distance matrix waiting to be filled in by ALINE. On the right
is a trivial Levenshtein distance matrix for computing the difference between caFt and car which
are the phonetic encodings for cat and car using ALINE’s phonetic encoding scheme. The largest
value in the matrix is the overall similarity between the two words. In this case it’s the middle of
the matrix that has this value, which is 47.5.

Levenshtein distance, as can be seen in Table 2.3 above. Each cell in ALINE’s similarity matrix

represents how similar a particular set of phoenemes is under the optimal alignment up to that point.

ALINE considers the phonetic similarity of insdels and substitutions, much like the Levenshtein

distance. It also adds phonetic compressions and expansions to the processes it considers to be

relevant at each step. This allows it to consider a case such as Latin’s dictum turning into the

Italian detto where the single long t phoneme represented by the tt should be linked with both the

c and t phonemes in the Latin word, rather than simply deleting one of them from the comparison

[Kondrak, 2002].

In table 2.3, cell 1, 1 with a value of 35, represents the phonetic similarity of c from caFt and

c from car 1. Similarly, in cell 1, 2 we see the phonetic similarity between caF from caFt and c

from car. Since ALINE is a similarity algorithm, and making this change requires an insertion or

a deletion, this is penalized and the score for the similarity between caF and c is smaller than the

score between c and c.

ALINE fills in an empty matrix in the same order as the Levenshtein distance algorithm de-

scribed above does, from top to bottom, left to right. At each step, it examines similarity value of

each of the three possible changes noted above: inserting or deleting one of the phonetic segments

1Kondrak points out that since ALINE uses a similarity approach instead of a distance approach, the score of

identical segments isn’t 0, but is instead based on the feature values between them [Kondrak, 2002]
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in question; substituting them for one another; or expanding or contracting two segments from one

word into the other. It chooses whichever change (or no change) has the maximum similarity and

adds it to the previous similarity value which has been computed up to this point. Each type of

change is assigned a base score, which is then altered by the amount of phonetic similarity between

the phonemes involved in the change (see Table 2.2 on page 14 for the list of features, saliences

and base scores). The phonetic similarity is based on the differences between the numerical value

of the features for each phoneme, and different features are given different saliences in this calcu-

lation. A larger salience means that the feature causes a bigger difference to be calculated between

the phonemes in question.

As an example, the similarity between between b and p, which differ on the voiced feature, has

a score of 25, while the similarity between g and p, which differ on more than one feature, is scored

much lower with a value of 9. When the matrix is filled with the appropriate summation of these

similarity scores, the cell in the matrix with the largest value represents the phonetic similarity of

the two words in question [Kondrak, 2002].

Downey et al. [Downey et al., 2008] develop a distance metric between languages using Kon-

drak’s ALINE for determining the distance between two words, and then use the average ALINE

distance between languages to compute distance matrices between groups of languages. In order

to normalize the ALINE similarity score and turn it into a distance metric, they subtract 2 times

the ALINE similarity divided by the sum of comparing each word with itself since that gives the

most similarity. As two words become more similar, the sum gets closer to 1. To turn this number

into a distance metric instead of a similarity metric, they subtract the value from 1. Thus, as two

words become closer the distance between them approaches 0. The equation looks like this:

dALINE = 1− similarity(word1, word2)

similarity(word1, word1) + similarity(word2 + word2)

Downey et al. then average the dALINE for all the pairs of semantically equivalent words between

two languages to come up with a distance measure between two languages.
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The ALINE distance between languages appears to have a couple of advantages over the other

two metrics used by McMahon and McMahon, and the ASJP Project. In the case of McMahon

and McMahon, using ALINE replaces the work done by linguists, eliminating some subjectivity

in the results and making cognancy judgments much more analog. Rather than giving an absolute

“Yes, these two are cognates” or “No, these two are not cognates,” it says, “These two are 10%

cognates.” In the case of the modified Levenshtein distance that the ASJP Project uses, ALINE

appears to have an advantage because it actually takes into consideration the underlying distinctive

feature values in a particular set of phonemes, allowing phonemes like t and d to be more similar

mathematically than, say, t and m. As previously mentioned, the Levenshtein distance that the

ASJP Project uses would simply conclude t and d are not equal rather than saying they’re mostly

equal, as ALINE does.

While the ALINE distance seems to be a promising new entrant in this field, there has been so

far no objective way to measure one method against another. In the next chapter I will describe

how I have used the ALINE distance to measure the distance between the various Swadesh lists

created and gathered by the ASJP Project. I also discuss how I compared the trees generated by

the ASJP Project’s program with those which the ALINE distance generates2.

2Unfortunately, since the McMahon and McMahon method relies on expert linguists to decide if two words are

cognate with one another, it’s not possible (or practical) to compare it with the other two, since they’re capable of

looking at a much larger set of language data without human intervention. Therefore I was unable to compare the

McMahon and McMahon method with the other two for accuracy.



Chapter 3

A Methodology

To summarize the discussion in the last chapter, researchers have been attempting to use mathe-

matics to model the relationships between languages. Once we better understand the mathematics

of language relationships, we’ll understand better how one language becomes another. Of course,

one model would suffice for answering this question, but, as we have seen, multiple models now

exist for defining the distance between words and consequently between languages. How can we

determine if one language distance metric is more accurate than another? The most intuitive way

to do this would be to run them on the same set of data, generate a set of trees, and compare the

trees generated by the model against trees created by experts.

Since the ALINE distance is a relative newcomer to this field, it has not been tried on as wide

a data set as some of the other metrics, particularly the ASJP distance metric. For the purposes of

this thesis, I set out to determine how well the ALINE distance worked for generating language

family trees in comparison with the ASJP distance metric.

To measure the ALINE distance against the ASJP Project’s Levenshtein-based distance, a set

of languages could be fed into both distance metrics. Then the trees generated from both metrics’

output can be compared with a set of trees generated by linguists to see whether ASJP or ALINE

is closer.

As I began my research, I knew I would need an easily manipulable implementation of the

ALINE algorithm, and the existing C++ implementation was not conducive to this. So I reimple-

18
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mented the algorithm in Python and called the resulting program PyAline1. I also needed data so

that I could compare the two algorithms on a wide variety of different types of languages.

I approached the ASJP Project with a request to use their data, and was generously granted

both access and eventually membership in the consortium. As I examined the data, though, I

realized I had a second problem: the ASJP Project’s data uses its own encoding format to describe

phonemes, as does ALINE, and the two encoding formats differ greatly. It was at this point that I

was able to first make use of my reimplementation of ALINE in Python. It was straightforward to

simply swap out the input reading portion of the PyAline implementation and create feature vectors

based on the ASJP encoding scheme instead of the ALINE encoding scheme. Since I could use

the same encoding scheme for both the ALINE and ASJP algorithms, I could take the same input

and compare the trees generated based on the output from both algorithms. I was now ready to

compare apples to apples.

As I began running large sets of languages through both programs, it quickly became apparent

that running ALINE’s dynamic programming algorithm across varying feature sets was signifi-

cantly slower than ASJP’s more simplistic Levenshtein distance. This is in part because in the step

where a Levenshtein distance compares to see if two phonemes are equal and assigns a binary 1

or 0 to this comparison, ALINE compares each feature between the two characters and then as-

signs a more analog weight to the differences it finds. Where ASJP was doing one comparison per

phoneme pair, I was comparing across 15 individual features for that same phoneme pair. Data

1PyAline can be downloaded at http://sourceforge.net/projects/pyaline/files/pyaline-0.0.1.tgz/download

During this reimplementation in Python I discovered a few minor issues in the description of the algorithm by Kondrak.

While comparing PyAline’s alignments with ALINE’s, I had trouble getting the alignments to match. I eventually

discovered that the penalty factors that the algorithm gives to deletion, substitution, expansion and skipping were all

off by a factor of 100 as described in Kondrak’s PhD thesis. Once I adjusted them accordingly (multiplying each

by 100), I was able to get PyAline’s alignments to exactly match those generated by Kondrak’s implementation of

ALINE. Table 2.2 on page 14 reflects the corrected values from Kondrak’s original description.

http://sourceforge.net/projects/pyaline/files/pyaline-0.0.1.tgz/download
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runs for one large set of languages with PyAline were taking more than a day and a half to finish

on a MacBook Pro with a 2.53 GHz Intel Core 2 Duo and 4GB of RAM, which at the time of this

writing is a reasonably fast machine.

To speed up the generation of results I was able to once again take advantage of the modularity

of the PyAline implementation of ALINE in order to parallelize the generation of distance matrices

between languages. I did this by generating a set of wrapper programs around PyAline that was

able to parallelize the most costly portions of the algorithm by running each calculation between

two sets of language in parallel on an Apache Hadoop cluster.

Apache Hadoop is an open source system which runs large processing jobs across huge amounts

of data. It implements a massively parallel programming paradigm developed by Google called

MapReduce. The first part, Map, applies an operation in parallel to every member in a list of items.

Reduce, the second step, performs an operation which normally aggregates the results of the Map

step into a final data structure. Google’s original purpose was to create an index of the entire web

by processing websites in parallel across multiple computers, each with multiple processors using

a Map, and then using the Reduce step to combine those processed results into a central index.

Hadoop is an incredibly useful tool for processing and better understanding large amounts of

data. So, naturally, when confronting the large amount of linguistic data I had from the ASJP

Project, I set out to implement PyAline in such away that Hadoop could process it via MapReduce.

In order to create a language family tree from Swadesh lists, we must compare each set of

2 languages in the data in question to one another and obtain a distance for each pair. This was

a natural Map step. Therefore, I created a script which would generate a list of all pairs of the

languages, and fed this into Hadoop with a Map function that would take a pair of languages, and

output the ALINE distance between those two languages after calculating it. The Reduce step then

simply became the creation of a matrix of the resulting distances, putting each distance into the

right place. Since the ALINE distance is symmetric (i.e. dALINE(language1, language2) ==
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dALINE(language2, language1)) I don’t need to fill up every square in a distance matrix and

compare each set of languages twice. Therefore, I implemented this speed up in PyAline and the

Hadoop implementation of PyAline, as well, only computing half the distance matrix for each set

of languages, since the other half was exactly the same.

Once I had a reasonable implementation of PyAline running on top of Hadoop, I used a gener-

ous set of cluster computing grants from Amazon.com. Amazon has a large set of computers that

it rents out on an hourly basis2. Using 20 machines of Amazon’s at a time, and running PyAline in

a Map Reduce mode I reduced the processing time down to an hour from several days for some of

the larger language groups.

Having obtained distance matrices for both the ASJP distance and PyAline distance I needed

to build a set of trees from those distance matrices. There are several algorithms used in the

bioinformatics community which generate a tree based on a distance matrix. The two that I chose

to experiment with for the purposes of this thesis are the Unweighted Pair Group Method with

Arithmetic Mean (UPGMA) method and the Neighbor Joining (NJ) method, which are the same

two that Downey et al. used in their preliminary experiments with the ALINE distance.

Both methods start with a distance matrix which represents a collection of different items and

the distances between each pair of items (as I generated above using PyAline and ASJP). They then

examine those items and find the two which are closest together based on some distance function,

and then combine the two items into a single bifurcation on a tree, though they differ in how they

choose which items are the closest together.

As part of its first step, UPGMA picks the two items which have the closest distance to each

other in the distance matrix. It makes a new node between them in the tree it’s creating and

combines them into a single item in the distance matrix. It calculates the distance between the new

2Amazon give grants of computing time on these cluster computers to students who are learning to use Hadoop

and other cluster computing tools. They also give grants to other researchers to help them have computing resources

on which to run their research programs.
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item in the distance matrix and the rest of the existing items by averaging the distance between the

individual items contained in the new item and the other items in the collection under consideration.

This process is repeated until every item in the distance matrix is part of the tree and all the created

nodes are connected to each other. See Figure 3.1 on page 23 for an example of how UPGMA

works.

The are two big differences between UPGMA and NJ. The first is that NJ begins with a tree

structure where all of the items in the distance matrix are connected to a single central node. The

other is that NJ computes a second matrix called the Q matrix based on the distance matrix. There

are several different equations for generating the Q matrix but they all produce the same trees,

because they all seek to minimize the lengths of the branches of the resulting tree when two nodes

are combined. So, whereas UPGMA uses the smallest distance between two nodes to pick which

two nodes to choose next, NJ picks the two nodes whose resulting tree has the smallest maximum

branch length possible. One popular equation for computing the Q value between two nodes which

we’ll call i and j is this:

Q(i, j) = (numberOfItems− 2) ∗ d(i, j)−
numberOfItems∑

k=1

d(i, k)−
numberOfItems∑

k=1

d(j, k)

This equation sums over the distance between i and every other node in the distance matrix and j

and every other node in the distance matrix. Doing so, it approximates the length of the resulting

tree were these nodes to be combined [Gascuel and Steel, 2006].

Once the nodes with the smallest Q value are selected, they’re combined with an extra node,

which is then connected to the central node that we started with. For the purposes of these equa-

tions, let’s call this new node u and the nodes which it connects f and g. The distance between this

new node u and any node k that’s already in the distance matrix can be calculated as follows:

d(u, k) =
1

2
[d(f, k)− d(f, u)] +

1

2
[d(g, k)− d(g, u)]

Clearly this equation relies on the distance between our new node u and the nodes it comebined f
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Step 1 A B C D E
A x
B 5 x
C 2 7 x
D 3 4 1 x
E 9 3 4 2 x

C

D

Step 2 A B CD E
A x
B 5 x

CD 2.5 5.5 x
E 9 3 3 x A

C

D

Step 3 ACD B E
ACD x

B 5.3̄ x
E 5 3 x

A

C

D

B

E

Step 4 ACD BE
ACD x
BE 5.16̄ x

B

E

A

C

D

Figure 3.1: This graph represents how UPGMA would construct a tree from the above distance
matrix. Step 1: The smallest distance is between items C and D which have a distance of one.
These two items are combined into one node CD, which has a distance of d(A,C) +d(A,D)/2 =
(2 + 3)/2 = 2.5 from A, a distance of d(B,C) + d(B,D)/2 = (7 + 4)/2 = 5.5 from B and a
distance of (d(E,C) + d(E,D)/2 = (4 + 2)/2 = 3. Step 2: Since the average distance of CD to
A is smaller than the distance to B or to E, add A as the next node to the tree, and create a column
ACD. Step 3: The distance between B and E is smallest, so they are joined into a node. Step 4:
Finally, there are only two nodes left, BE and ACD and they are joined.
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and g. This distance can be calculated thusly for f (we just need to replace f with g to calculate

the distance for the other node):

d(f, u) =
1

2
d(f, g) +

1

(2(numberOfItems)− 2)

numberOfItems∑
k=1

d(i, k)−
numberOfItems∑

k=1

d(j, k)


These equations calculate a new distance matrix for the newly attached node to the tree. This

process is repeated until there are 3 items left in the distance matrix. Since all the items start

connected to the central node, they’re always part of the tree, so when there are 3 items left the

tree has been appropriately built. Since NJ is trying to choose the nodes which will lead to the

smallest resulting tree length at each step, the resulting tree should be pretty close to the smallest

tree available for the given items. See Figure 3.2 on page 25 for an example of how NJ works

[Gascuel and Steel, 2006].

I chose the NJ implementation that is provided by the ape package in the R statistical language

system [R Development Core Team, 2010]. I also used R’s default UPGMA implementation. Af-

ter running UPGMA and NJ on both the ASJP and ALINE data, I had two sets of automatically

generated trees for each tree-building method. In order to tell which set of trees (and consequently

which distance metric) was more accurate, I needed a way to compare trees to each other. I re-

alized that if I had a set of expert trees, I could compare the distance between each of my sets

of generated trees and the expert trees, and whichever methodology got closer to the expert trees

could be considered better.

I was able to construct two sets of such expert trees. Ethnologue [Lewis, 2009] has a set of lan-

guage information (including classifications) about many of the languages which are represented

in the ASJP database. Luckily, the ASJP data contains the standard ISO three letter code for each

language that has a Swadesh list, and each language on the online version of Ethnologue is ac-

cessible based on its ISO code. I was able to write a program which took this code and visited

the Ethnologue website and parsed the family lineage for each language from the web page and
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Step 0

A B C D E
A x
B 5 x
C 2 7 x
D 3 4 1 x
E 9 3 4 2 x

A
B

C

D
E

Step 1

A B C D E
A x
B 5 x
C 2 7 x
D 3 4 1 x
E 9 3 4 2 x

Qs A B C D E
A ∞
B -23 ∞
C -27 -12 ∞
D -20 -17 -21 ∞
E -10 -28 -20 -22 ∞

A

B

E

C
D

Step 2

A C D BE
A 0 2 3 5.5
C 2 0 1 4
D 3 1 0 1.5

BE 5.5 4 1.5 0

Qs A C D BE
A ∞
C -13.5 ∞
D -10 -10.5 ∞

BE -10.5 -10 -13.5 ∞
B

E

A

C
D

Step 3
D BE AC

D 0.0 1.50 1.00
BE 1.5 0.00 3.75
AC 1.0 3.75 0.00

See graph from
Step 2

Figure 3.2: Step 0: NJ starts by linking all the items in the distance matrix to one central node. Step 1: A Q matrix
is constructed, representing the length of the total tree if two nodes were to be linked together as described above. The
two nodes with the lowest Q are joined with a linking node. A linking node replaces the two nodes on the central node.
B and E are chosen. Step 2: A distance matrix is created including the new node. Q values are generated for it and
the same process is repeated to find the next branch of the tree. There’s a tie between nodes A and C and node D and
the new BE node. A and C are arbitrarily chosen and joined. Step 3 NJ stops when there are 3 items in the distance
matrix, so the process is now complete.
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then put this information back together into a set of expert trees from Ethnologue3. A second

source of expert trees was found encoded along with the ASJP dataset. Each language in the ASJP

dataset is given a classification based on a modified version of the Ethnologue dataset. In some

cases, extra groupings are added that would most likely be in Ethnologue if the languages had been

known at the time of its construction. In other cases multiple languages are given the same 3 letter

ISO code because there are Swadesh lists for languages in the ASJP dataset which Ethnologue

hasn’t classified yet. In these cases the strict Ethnologue expert tree described above will place all

the languages with the same ISO code in the same branch, while the ASJP modified Ethnologue

classification might place them differently. Both sets of trees are not binary, which means that a

mother language or group can have multiple children at each level. This is an important distinction

because the trees which I generated using NJ and UPGMA were binary trees.

Since the languages that are classified by the strict Ethnologue set are a slightly different set

than those classified by the modified Ethnologue dataset provided by the ASJP project, I had to

remove some languages from consideration by ALINE and ASJP in the strict Ethnologue tree

classification experiment. I made the data preparation step which generated Ethnologue trees also

generate the data sets for ASJP and ALINE input so that I could run one program on several inputs

and generate a synchronized set of inputs for ASJP and ALINE at the same time as I created expert

trees to compare them against.

After passing the input languages into ASJP and PyAline to get a distance matrix, and us-

ing neighbor joining and UPGMA to create trees from the distance matrices, I had a set of trees

for each methodology. I needed a way to determine whether one set of trees was more accu-

rate than the other at approximating the expert trees. The phangorn package for R provides a

3This script is publicly available under an open source license and can be found at the ASJP website: http://www.

eva.mpg.de/%7Ewichmann/process asjp-0.0.1.zip

The trees can be found on the ASJP website as well at the following urls: http://www.eva.mpg.de/%7Ewichmann/

Strict Ethnologue family trees.zip and http://www.eva.mpg.de/%7Ewichmann/Modified Ethnologue family trees.zip

http://www.eva.mpg.de/%7Ewichmann/process_asjp-0.0.1.zip
http://www.eva.mpg.de/%7Ewichmann/process_asjp-0.0.1.zip
http://www.eva.mpg.de/%7Ewichmann/Strict_Ethnologue_family_trees.zip
http://www.eva.mpg.de/%7Ewichmann/Strict_Ethnologue_family_trees.zip
http://www.eva.mpg.de/%7Ewichmann/Modified_Ethnologue_family_trees.zip
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way of measuring tree distances using the popular Robinson-Foulds distance metric between trees

[Steel and Penny, 1993]. To calculate the Robinson-Foulds metric between two trees, the number

of different ways each tree can be cut in half (called a split, or a bipartition) is calculated. Then

the two sets of splits are compared to each other (see Figure 3.3 on page 28 for an example us-

ing the trees described earlier). The value of the metric between two trees is twice the number

of splits that are different between the trees [Steel and Penny, 1993]. So, to determine whether

one set of trees was ore accurate than the other I simply calculated the Robinson-Foulds distance

between the ASJP generated trees and the expert trees and then calculated the Robinson-Foulds

distance between the PyAline generated trees and the expert trees. At this point I had an objective,

quantifiable measure of the relative accuracy of the two language distance metrics.
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Figure 3.3: RF distance between two trees is twice the number of splits that are different between the two trees.
Splits are created by removing an internal edge (one which doesn’t have a leaf node attached to it). In the top example
we see the original trees again. The second level shows the removal of an internal edge on both trees which isolates
nodes B and E on one half and A C and D on the other. Though A C and D are configured differently, these bipartitions
are considered equivalent. The third level shows the removal of the other internal edge on both trees. This results in
a different bipartition for each tree. This means that there is 1 split which is different between the two trees. The
distance is 1 ∗ 2 = 2 since there are no other internal edges to be removed [Steel and Penny, 1993].



Chapter 4

Results

In this chapter we will see the fruits of the methodology outlined in the previous chapter. I will

examine the overall results of both the ALINE distance and ASJP’s results for a wide ranging set

of language families, using two sets of expert trees, one based on the ASJP Project’s modified

Ethnologue classification and the other based on the strict Ethnologue classification [Lewis, 2009].

As is seen in Table 4.1 on page 29 below, the modified Ethnologue classification data set in-

cludes 58 language families comprising Swadesh lists for 3878 languages in total. The largest

group, the Austronesian family, is made up of 845 languages. The smallest group is comprised of

7 languages from the Chukotko-Kamchatkan family of northeastern Siberia. The mean number of

languages in each group is 66.86, with a standard deviation of 138.33. Given the wide standard

deviation, it’s clear there is a wide variety of sizes of language families. For the purposes of having

Modified Ethnologue Data Set
Language Families 58
Total Languages 3878
Largest Family Size 845
Smallest Family Size 7
Mean # of Languages 66.86
Standard Deviation 138.33

Table 4.1: A description of the basic statistics concerning the language families in the modified
Ethnologue data set.

29
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meaningful data, I removed language families for which there was no expert tree (all the languages

were on the same level of the tree). Since both tree-building algorithms were incapable of con-

structing a structure other than a tree, the Robinson-Foulds (RF) distances between the constructed

trees and the expert non-classification would have been essentially meaningless.

A quick glance at the first two columns of Table 4.2 on page 31 shows that PyAline and ASJP

return similar results for each of the language groups in consideration here. Of the 58 language

families in consideration in this experiment, there are 12 families (21%) for which PyAline and

NJ produce a tree which is closer to the expert tree than ASJP, 15 families (26%) where ASJP

and NJ produce a tree which is closer to the expert tree than PyAline, and 31 families (53%)

where ASJP and PyAline when combined with NJ produce trees which are the same distance from

the expert tree. This is interesting, because there are only 8 families of the 58 for which ASJP

and PyAline combined with NJ produce the same tree (see the distance between the ASJP- and

PyAline-generated trees in the third column; those with distance 0 are equivalent trees). This

means that nearly 40% of the time, PyAline and ASJP are creating distance matrices which yield

different trees using NJ but which are the same distance from the expert trees provided by the

modified Ethnologue data.

What this large collection of trees which are the same RF distance from the expert tree while

not being the same tree indicates is that ASJP and PyAline are working in such a way that they

both generate different suggestions for how a group of languages are related to one another, and

both of those suggestions are objectively equivalent, though they are structurally different. An

expert in the language family might prefer one structure over the other, but the RF distance metric

is incapable of doing so.

The mean difference between the RF distances of the trees generated by each is 1.76 with

a standard deviation of 3.16, which means that in 95% of the language families examined, the

automatically generated trees have RF distances to the expert tree that are within 8.08 points of



CHAPTER 4. RESULTS 31

Language Family ALINE NJ ASJP NJ ALINE-ASJP NJ ALINE UPGMA ASJP UPGMA ALINE-ASJP UPGMA
Afro-Asiatic 374 376 148 378 372 118
Algic 46 46 28 46 48 26
Altaic 136 132 58 140 134 80
Austronesian 1488 1470 660 1490 1474 750
Arawakan 88 88 26 90 88 36
Austro-Asiatic 64 60 30 66 66 36
Australian 314 312 132 308 314 176
Border 24 26 12 26 28 14
Chukotko-Kamchatkan 0 0 0 2 2 0
Carib 28 28 12 32 30 12
Chibchan 34 34 20 36 36 24
Choco 8 8 0 8 8 2
Creole 86 84 32 86 88 40
Dravidian 22 22 8 24 24 10
Eskimo-Aleut 10 10 2 10 10 0
Eleman 4 4 2 4 4 0
Andamanese 14 14 2 16 16 0
Gogodala-Suki 10 10 4 10 10 4
Hmong-Mien 36 36 14 36 36 18
Hokan 32 30 12 34 34 6
Witotoan 4 4 0 4 4 0
Indo-European 400 412 196 408 416 202
Iroquoian 2 2 2 2 2 2
Japonic 4 4 0 4 4 2
Khoisan 22 20 6 20 22 8
Tor-Kwerba 6 6 0 6 6 4
LakesPlain 42 40 12 38 40 12
Ramu-LowerSepik 16 18 2 16 16 2
Macro-Ge 32 34 18 34 36 26
Morehead and Upper
Maro Rivers

18 20 4 22 22 2

Mixe-Zoque 14 12 10 14 14 2
Marind 42 42 4 46 42 6
Mayan 152 152 56 152 150 72
Niger-Congo 928 930 458 936 928 470
NorthCaucasian 34 34 14 34 34 16
Na-Dene 26 32 20 32 28 12
Nilo-Saharan 156 162 56 158 164 70
Oto-Manguean 84 90 42 88 90 48
Panoan 30 30 16 32 32 22
Pauwasi 6 6 0 6 6 0
Penutian 20 18 6 20 22 8
Sino-Tibetan 258 258 146 260 262 140
Salishan 12 12 2 12 12 0
Sepik 42 40 20 44 42 24
Siouan 6 4 2 8 4 4
Sko 20 20 4 20 22 4
East Bird’s Head-Sentani 10 10 0 10 10 0
Tai-Kadai 104 104 38 104 104 48
Trans-New Guinea 490 482 198 490 476 212
Torricelli 52 50 12 54 54 16
Totonacan 20 20 2 20 20 4
Tucanoan 18 16 4 14 18 8
Tupi 84 84 40 84 84 44
Uto-Aztecan 138 140 70 142 140 82
Uralic 26 28 4 26 26 14
West Bomberai 10 10 2 10 10 0
West Papuan 58 58 12 58 56 22
Yeniseian 4 4 0 4 4 2

Table 4.2: This table shows the Robinson-Foulds distance between the trees generated by PyAline
and the expert trees from the modified Ethnologue classification in the ASJP data set. It also shows
the RF distance between the expert trees and the ASJP generated trees, and the RF distance between
the ASJP and PyAline trees, illustrating how different the two sets of automatically generated trees
are from each other.
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NJ Results for Modified Ethnologue Data
PyAline < ASJP 12 (21%) Mean RF Difference 1.76
ASJP < PyAline 15 (26%) Std Dev RF Difference 3.16
PyAline == ASJP 31 (53%)
Same Tree by Both 8 (14%)

Table 4.3: A table describing the basic outcome of the experiment in which distance matrices
created by PyAline and ASJP were turned into trees using Neighbor Joining and compared to
modified Ethnologue expert trees

each other. Based on these results, it seems reasonable to conclude that as far as is currently

discernible, PyAline and ASJP produce results which are roughly equivalent to each other in terms

of how close they match expert trees. These results are summarized in Table 4.3 on page 32.

A similar set of results can be seen for trees generated using UPGMA data as shown in columns

4 and 5 of Table 4.2 on page 31. For UPGMA generated trees, there are 14 families (24%) for

which PyAline produces a closer tree than ASJP. There are also 14 families (24%) for which

ASJP produces a closer tree to the expert tree than PyAline. The remaining 30 trees (52%) are

equivalently distant, using PyAline or ASJP. Only 9 of those trees (16% of the 58 total families,

30% of the equidistant families) are exactly the same (see column 6 in Table 4.2 on page 31 to

see how different many of the generated trees are from each other). The mean difference between

PyAline and ASJP trees is 2.03 and the standard deviation is 3.27. This means that 95% of the trees

generated by ASJP and PyAline are within 8.59 RF distance points of each other. These results are

summarized in Table 4.4 on page 33.

Once again, based on these results, it seems like PyAline and ASJP produce fairly equivalent

results in terms of how close the trees generated using UPGMA get to modified Ethnologue expert

trees. This reinforces the notion that PyAline and ASJP are roughly equivalent language distance

metrics, since the trees that are produced from their distance matrices are nearly equivalent a

majority of the time.

Interestingly, based on these experiments we can draw another conclusion which is that NJ on
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Summary of UPGMA Results for Modified Ethnologue Data
PyAline < ASJP 14 (24%) Mean RF Difference 2.03
ASJP < PyAline 14 (24%) Std Dev RF Difference 3.27
PyAline == ASJP 30 (52%)
Same Tree by Both 9 (16%)

Table 4.4: A table describing the basic outcome of the experiment in which distance matrices
created by PyAline and ASJP were turned into trees using UPGMA and compared to modified
Ethnologue expert trees

Strict Ethnologue-Based Data Set
Language Families 61
Total Languages 3787
Largest Family Size 826
Smallest Family Size 6
Mean # of Languages 61.08
Standard Deviation 132.10

Table 4.5: A description of the basic statistics concerning the language families in the strict
Ethnologue-based data set.

average produces trees which are closer to the modified Ethnologue expert trees than UPGMA.

Using the PyAline distance matrices, 26 of the NJ family trees (45%) are closer to the modified

Ethnologue expert trees than the UPGMA generated family trees. Only 4 of the UPGMA family

trees (7%) are closer than the NJ family trees. The remaining 28 family trees (48%) are equidistant

from the modified Ethnologue expert trees whether they are generated by NJ or UPGMA.

Using the ASJP distance matrices, similar numbers are evidenced. There are 26 families (45%)

for which NJ produces a tree closer to the expert data than UPGMA, 8 families (14%) for which

UPGMA produces a tree closer to the expert data and 24 (41%) families for which UPGMA and

ALINE produce trees which are equidistant from the modified Ethnologue expert trees. Based on

these two sets of data, it seems clear that NJ is a better tree generation algorithm for the language

data such as that provided by the ASJP Project’s language database.

I also performed an experiment using a set of expert trees based more strictly on the Ethno-
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logue classifications of the ASJP Project’s Swadesh lists. The strict Ethnologue-based data set

consists of 61 families comprised of 3787 individual languages. The largest family is again the

Austronesian family, though in this data set it is made up of 826 languages, a 19 fewer than in the

modified Ethnologue data set. The Chukotko-Kamtchatkan family is also the smallest in the strict

Ethnologue-based data set, made up of only 6 languages since Ethnologue only knew about 6 of

the languages in the data set. This reduction in family size is also evidenced in the mean and stan-

dard distribution of the family size in the strict Ethnologue-based data set, with a mean of 61.08

languages per family and a standard deviation of 132.10. See Table 4.5 on page 33 for a summary

of these numbers.

As can be seen from Table 4.6 on page 35, experiments using the strict Ethnologue-based data

set resulted in similar results to the experiments using the modified Ethnologue data set for the

two distance metrics in question. Using NJ as the tree-building algorithm, PyAline produced 13

family trees (21%) which were closer to the expert than ASJP; ASJP produced 16 family trees

(26%) which were closer to the expert trees than the PyAline-produced trees for the same family,

and they produced 32 equivalently close family trees (53%). Only 8 of these family trees (13%)

were exactly the same, highlighting again that ASJP and PyAline are coming up with different

trees most of the time. A summary of these results can be seen in Table 4.7 on page 36.

The mean difference between the RF distances to the expert trees using PyAline and ASJP is

1.87. The standard deviation of the differences between RF distances to the expert trees is 3.95.

This means that 95% of the trees are within 9.76 RF distance points of each other. These statistics

reinforce the previous assertion that PyAline and ASJP are about equally good at producing family

trees that approximate those generated by experts, even though in most cases they produce different

trees.

When using UPGMA as the tree-building algorithm, PyAline produced 16 family trees (26%)

which were closer to the expert tree than those produced by ASJP. ASJP also produced 16 family
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Language Family ALINE NJ ASJP NJ ALINE-ASJP NJ ALINE UPGMA ASJP UPGMA ALINE-ASJP UPGMA
Afro-Asiatic 348 352 150 354 350 114
Algic 46 46 28 46 48 26
Altaic 136 132 58 140 134 80
Austronesian 1424 1396 640 1434 1406 730
Arawakan 78 74 26 76 74 34
Austro-Asiatic 58 52 30 62 60 36
Australian 268 266 122 262 266 136
Border 24 26 12 26 28 14
Chukotko-Kamchatkan 0 0 0 0 0 0
Carib 28 28 12 32 30 12
Chibchan 24 26 14 24 26 18
Choco 8 8 0 8 8 2
Creole 74 74 24 74 78 36
Dravidian 22 22 8 24 24 10
Eskimo-Aleut 10 10 2 10 10 0
Eleman 4 4 2 4 4 0
Andamanese 14 14 2 16 16 0
Gogodala-Suki 10 10 4 10 10 4
Hmong-Mien 18 18 6 18 18 6
Hokan 30 28 10 32 32 2
Witotoan 4 4 0 4 4 0
Indo-European 358 368 164 362 374 204
Iroquoian 2 2 2 2 2 2
Japonic 4 4 0 4 4 2
Khoisan 22 20 6 20 22 8
Tor-Kwerba 6 6 0 6 6 4
LakesPlain 42 40 12 38 40 12
Ramu-LowerSepik 16 18 2 16 16 2
Arai-Kwomtari 8 8 4 10 10 0
Macro-Ge 36 38 18 36 38 26
Morehead and Upper
Maro Rivers

18 20 4 22 22 2

Mixe-Zoque 8 8 2 10 6 6
Marind 42 42 4 46 42 6
Mayan 118 114 44 118 118 44
Muskogean 4 4 0 6 6 0
Niger-Congo 884 884 444 894 886 456
NorthCaucasian 34 34 14 34 34 16
Na-Dene 26 32 20 32 28 12
Nilo-Saharan 142 146 56 150 150 66
Oto-Manguean 80 82 38 80 82 42
Panoan 28 28 18 28 28 20
Pauwasi 6 6 0 6 6 0
Penutian 18 18 10 16 18 8
Quechuan 30 30 10 30 30 20
Sino-Tibetan 244 242 130 248 244 136
Salishan 12 12 2 12 12 0
Sepik 38 36 20 40 38 24
Siouan 6 4 2 8 4 4
Sko 8 8 2 8 10 4
East Bird’s Head-Sentani 10 10 0 10 10 0
Tai-Kadai 88 90 36 88 90 50
Trans-NewGuinea 462 456 200 466 452 212
Trans-NewGuinea1 6 6 2 6 6 2
Torricelli 52 50 12 52 52 16
Totonacan 12 12 2 12 12 2
Tucanoan 18 16 4 14 18 8
Tupi 78 78 28 76 78 52
Uto-Aztecan 54 56 22 58 56 28
Uralic 26 28 4 26 28 14
West Bomberai 10 10 2 10 10 0
WestPapuan 58 56 12 58 54 22

Table 4.6: This table shows the Robinson-Foulds distance between the trees generated by PyAline
and the expert trees from the strict Ethnologue classification. It also shows the RF distance between
the expert trees and the ASJP generated trees, and the RF distance between the ASJP and PyAline
trees. This indicates how different the automatically generated trees are from each other.
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Summary of NJ Results for strict Ethnologue-Based Data
PyAline < ASJP 13 (21%) Mean RF Difference 1.87
ASJP < PyAline 16 (26%) Std Dev RF Difference 3.95
PyAline == ASJP 32 (53%)
Same Tree by Both 8 (13%)

Table 4.7: A table describing the basic outcome of the experiment in which distance matrices
created by PyAline and ASJP were turned into trees using NJ and compared to strict Ethnologue-
based expert trees

Summary of UPGMA Results for Strict Ethnologue-Based Data
PyAline < ASJP 16 (26%) Mean RF Difference 2.33
ASJP < PyAline 16 (26%) Std Dev RF Difference 4.32
PyAline == ASJP 29 (48%)
Same Tree by Both 11 (18%)

Table 4.8: A table describing the basic outcome of the experiment in which distance matri-
ces created by PyAline and ASJP were turned into trees using UPGMA and compared to strict
Ethnologue-based expert trees

trees (26%) which were closer than the family trees produced by PyAline and PyAline and ASJP

produced 29 equivalently close family trees (48%). 11 of these family trees (18%) were exactly the

same, slightly more than was previously seen, but still not a majority by any stretch. A summary

of these results can be examined in Table 4.8 on page 36.

The mean difference between the RF distances produced by both algorithms for UPGMA-

generated trees was 2.33. The standard deviation of the difference between the RF distances was

4.32. This means that for the UPGMA method, 95% of the time ASJP and PyAline generated trees

which have distances from the expert tree which are within 10.97 RF distance points of each other.

Once again these results confirm the notion that PyAline and ASJP are equivalently successful at

approximating expert family trees, though they produce different results a large majority of the

time.

The last result which the strict Ethnologue dataset reinforces is the fact that NJ is a better tree-
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building algorithm for this dataset than UPGMA. For PyAline, 23 of the NJ generated family trees

(38%) are closer to the expert trees than the UPGMA generated. Only 7 of the UPGMA generated

family trees (11%) are closer than the NJ generated for PyAline distance matrices, and the remain-

ing 31 family trees (51%) are equidistant from the expert trees regardless of which tree building

algorithm is used. Similar results can be seen for the ASJP-generated distance matrices. 23 of the

NJ generated family trees (38%) are closer to the expert trees than the UPGMA expert trees. 6

of the UPGMA-generated trees (10%) are closer to the expert trees. 32 of the UPGMA- and NJ-

generated family trees (52%) are equidistant from the expert trees based on the strict Ethnologue

classifications. These results reinforce those derived from the modified Ethnologue data set that

NJ is a better tree generating algorithm than UPGMA for this linguistic data.

An examination of the PyAline-generated tree and ASJP-generated tree for one particular fam-

ily of languages shows how close both trees are able to get to the expert trees in practice. In Figure

4.1 on page 39 we see the PyAline and ASJP trees for some Salishan languages along with the

expert tree. When using NJ as the tree-building algorithm for this particular data both PyAline and

ASJP end up 12 RF distance points away from the expert tree, and 2 RF distance points away from

each other.

Figure 4.1 on page 39 demonstrates several interesting differences between the generated trees

and the expert tree. First, the generated trees do not have any groups of more than two languages

on the same level. As previously explained, this is because of the way that NJ builds a tree out of

a distance matrix, finding the smallest distance at each step and conglomerating the two languages

which are the smallest distance from each other. Even though NJ can’t group four languages

together as they are in the middle of the expert tree (see Salish Straits, Songish, Samish, and

Clallam), the generated trees do group these languages together properly in related subgroups.

Another interesting feature of the generated trees is how close Twana and Cowlitz are to each other

even though in the expert tree they are grouped far apart from each other. Both algorithms also
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manage to group the two subgroups of Cowichean-Musqueam and Spokane-Thompson together,

though they place them on the tree differently than the expert does. Lastly, note that PyAline

matches the expert tree in hanging Bella Coola off the main branch of the tree, while ASJP groups

it together in a subgroup along with the Thompson-Spokane subgroup.

In case of Siouan, shown in Figure 4.2 on page 40, a few differences are visible between the

two generated trees. The PyAline-generated tree is 6 RF distance points from the expert tree. The

ASJP-generated tree beats it with an RF distance of 4 to the modified Ethnologue expert tree. The

key difference between the two seems to be that the ASJP tree manages to keep Tutelo closer to

the Ofo-Biloxi subgroup, while PyAline places them an extra generation apart from each other,

resulting in the increase in score. Both generated trees manage to keep the Hidatsa-Crow subgroup

together and both keep the Ofo-Biloxi subgroup together. Both PyAline and ASJP also keep the

threesome of Lahota-Winnebago-Osage together, though clearly in a bifurcated tree, not a three

childed tree. This is due, once again, to NJ being incapable of building nodes with more than 2

children.

While both the Salsihan and Siouan trees clearly invite more in depth analysis based on the

linguistic characteristics of the respective families, in this thesis I’m attempting to discuss the

merits of the algorithms, and point out the types of structural differences that ASJP and PyAline

might produce. I leave further detailed analysis of these trees to experts in the respective language

families.

After having examined these trees and the preceding data summaries, it is clear that PyAline

and ASJP are comparable in terms of the trees they produce and their accuracy at generating trees

similar to the expert trees for the two data sets in question. It also seems clear that the methodology

used for measuring their accuracy is useful for ascertaining how good a given language distance

metric is.
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Figure 4.1: Trees generated using NJ from PyAline and ASJP distance matrices in comparison
with the modified Ethnologue expert classification for the Salishan languages.
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Figure 4.2: Trees generated using NJ from PyAline and ASJP distance matrices in comparison
with the modified Ethnologue expert classification for the Siouan languages.
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Conclusion

In the preceding chapters I have proven that the ALINE distance is a viable competitor with the

ASJP Project’s LDND and that as far as is currently discernible with state of the art methods, the

two are equally accurate at automatically generating language family trees based on Swadesh lists.

Now that it has been established that the ALINE distance is a viable language distance metric, one

might ask: what next? There are several avenues for further research that might be pursued armed

with this knowledge. I will examine three such avenues in conclusion.

The first avenue for further research might be tuning the various parameters of the ALINE al-

gorithm. As previously mentioned, ALINE has been designed with a variety of tunable parameters

to allow the altering of the similarity scores between different phonetic strings. There are various

experiments that could be conducted to determine whether tuning the parameters can yield more

accurate results and if so, how to best tune them. In fact, one could easily imagine using some

subset of the expert trees as a training data set to establish which values of the various parameters

lead to the most accurate results for the training set and then generating trees using those parame-

ters on the rest of the data to see if they’re better everywhere. Any number of parameter training

algorithms might be useful in this process, including a genetic algorithm approach or any other

searching algorithm.

Another experiment in the vein of altering the various parameters of the ALINE algorithm

might involve using different parameter settings for different types of language groups where some

41
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a priori linguistic knowledge could help determine what those settings should be. For example, the

weighting of the feature vectors could be set differently for families where it is known that a cer-

tain phoneme is more common, or certain phonemes are understood to be more like each other or

allophones across an entire language family. Yet another experiment might involve looking at the

full ASJP data set using the ALINE feature vector in order to establish those features which are

most interesting mathematically using a statistical clustering method of some type. Such an algo-

rithm could help discover mathematically which features are most useful in determining language

similarity without human assitance, and then weight those features most heavily.

A second avenue for research using this data might be to come up with a database of feature-

value transition probabilities. Since PyAline breaks the ASJP data down into phonetic feature

vectors and is designed to actually align words, it should be relatively simple to take languages that

are one step away from each other in the expert classified trees and figure out which phonemes, or

which feature values, transition to one another. Using this data could generate a statistical treasure

trove since it would allow linguists to definitively make assertions such as, “It is exactly N times

more likely that a voiced fricative becomes unvoiced than an unvoiced fricative gains voice.” This

could open a whole new way of objectively measuring phonetic universals.

Having a table of phonetic transition probabilities could allow for another type of experiment

using the ASJP data as well. There is another way of building trees which linguists so far linguists

haven’t examined, at least not on the phonetic level. Biologists have long used a type of modelling

for generating family trees which differs greatly from the models that I’ve described. Called Monte

Carlo modelling, this process uses randomization along a probablity vector to build trees based on

languages. Monte Carlo modelling is akin to trying to measure the area of a design by putting it

on a dart board and randomly throwing darts at it thousands of times. If you know the area of the

dart board, and you know on average how many times your darts land in the shape and how many

the land outside of the shape, you can determine the area of the shape by multiplying the area of
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the dart board by the ratio of hits to misses on the shape.

Similarly, biologists use transition probabilities from one piece of DNA to another to simulate

repeatedly the likeliness of a given tree configuration for a set of species. Since there are only 4

codons in DNA (T,C,A,G), the probabilities for one to turning into another are simple to model.

Because reliable phonetic transition probabilities are as of yet unavailable, it is much harder to

say, “There is an X% chance that this word in language 1 became this other word in language 2.”

While a phonetic transition probability table would clearly be much larger for linguistic data, it

would allow this type of Monte Carlo modelling on a phonetic basis, which should theoretically

lead to much more accurate trees than are currently generated.

A third avenue for future research would be transitioning from comparing automatically gen-

erated trees with expert trees to comparing automatically generated family networks with expert

networks. McMahon and McMahon devote an entire chapter to using networks instead of trees in

their book on automatic language classification because network structures allow more nuanced

relationships between languages to be described [McMahon and McMahon, 2005]. One reason

for this is that networks don’t enforce a one-to-many child-to-parent relationship, which would be

beneficial for a language like English which has both heavy Anglo-Saxon and Latin influences. By

not imposing a strict one parent notion on English, we can create a structure which shows both of

these heritages and represents how much influence each has on the language.

Networks weren’t used in the current study because there is, unfortunately, no network-based

representation generated by experts against which one can measure the accuracy of an algorithm

for generating linguistic metrics. A further avenue of research might be to, first, create a project to

gather a network based expert classification from the world’s linguistic experts, and then, instead

of creating family trees from the distance matrics generated by ASJP and PyAline, generate family

networks and measure those against those created by experts.

Perhaps one last contribution of this thesis, however, lies not in the specific algorithm I’ve
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explored for determining language distance, but in the methodology I’ve used for determining

whether or not my algorithm is more accurate than ASJP’s. Since the ASJP Project has made their

data sets freely and publicly available for download, many other, perhaps more accurate algorithms

for generating language distance matrices now have a way of determining how successful they have

been at shedding more light on the origins of the worlds languages.

As linguists delve into these questions using more and more objective methodology, they will

enrich our understanding of how and why our linguistic heritage has evolved as it has, continu-

ing on in the endeavor that Calvert Watkins posed as the foundation of historical linguistics: “to

demonstrate precisely how it is possible, within a linguistic tradition or traditions, for a language

to pass from one system at one point in time to another system at a later point” [Watkins, 1973].

As more and larger machine readable historical data sources become available, methods such as

those discussed in this thesis will nearly certainly lead the way in this type of discovery of the

relationships between language systems. This is only natural as they provide better clarity and

objectivity about why a linguist might argue for one type of relatedness or another. Because of

this, finally statistical processes will rightfully take their place among the accepted methodologies

for answering some of the earliest, and still only partially answered, questions of linguistics.
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